WorldWideScience

Sample records for capillary water

  1. A complete soil hydraulic model accounting for capillary and adsorptive water retention, capillary and film conductivity, and hysteresis

    NARCIS (Netherlands)

    Sakai, Masaru; Van Genuchten, Martinus Th|info:eu-repo/dai/nl/31481518X; Alazba, A. A.; Setiawan, Budi Indra; Minasny, Budiman

    2015-01-01

    A soil hydraulic model that considers capillary hysteretic and adsorptive water retention as well as capillary and film conductivity covering the complete soil moisture range is presented. The model was obtained by incorporating the capillary hysteresis model of Parker and Lenhard into the hydraulic

  2. Effect of air on water capillary flow in silica nanochannels

    DEFF Research Database (Denmark)

    Zambrano, Harvey; Walther, Jens Honore; Oyarzua, Elton

    2013-01-01

    , with the fabrication of microsystems integrated by nanochannels, a thorough understanding of the transport of fluids in nanoconfinement is required for a successful operation of the functional parts of such devices. In this work, Molecular Dynamics simulations are conducted to study the spontaneous imbibition of water...... in sub 10 nm silica channels. The capillary filling speed is computed in channels subjected to different air pressures. In order to describe the interactions between the species, an effective force field is developed, which is calibrated by reproducing the water contact angle. The results show...... that the capillary filling speed qualitatively follows the classical Washburn model, however, quantitatively it is lower than expected. Furthermore, it is observed that the deviations increase as air pressure is higher. We attribute the deviations to amounts of air trapped at the silica-water interface which leads...

  3. Exploring Ultimate Water Capillary Evaporation in Nanoscale Conduits.

    Science.gov (United States)

    Li, Yinxiao; Alibakhshi, Mohammad Amin; Zhao, Yihong; Duan, Chuanhua

    2017-08-09

    Capillary evaporation in nanoscale conduits is an efficient heat/mass transfer strategy that has been widely utilized by both nature and mankind. Despite its broad impact, the ultimate transport limits of capillary evaporation in nanoscale conduits, governed by the evaporation/condensation kinetics at the liquid-vapor interface, have remained poorly understood. Here we report experimental study of the kinetic limits of water capillary evaporation in two dimensional nanochannels using a novel hybrid channel design. Our results show that the kinetic-limited evaporation fluxes break down the limits predicated by the classical Hertz-Knudsen equation by an order of magnitude, reaching values up to 37.5 mm/s with corresponding heat fluxes up to 8500 W/cm 2 . The measured evaporation flux increases with decreasing channel height and relative humidity but decreases as the channel temperature decreases. Our findings have implications for further understanding evaporation at the nanoscale and developing capillary evaporation-based technologies for both energy- and bio-related applications.

  4. 3D Printing by Multiphase Silicone/Water Capillary Inks.

    Science.gov (United States)

    Roh, Sangchul; Parekh, Dishit P; Bharti, Bhuvnesh; Stoyanov, Simeon D; Velev, Orlin D

    2017-08-01

    3D printing of polymers is accomplished easily with thermoplastics as the extruded hot melt solidifies rapidly during the printing process. Printing with liquid polymer precursors is more challenging due to their longer curing times. One curable liquid polymer of specific interest is polydimethylsiloxane (PDMS). This study demonstrates a new efficient technique for 3D printing with PDMS by using a capillary suspension ink containing PDMS in the form of both precured microbeads and uncured liquid precursor, dispersed in water as continuous medium. The PDMS microbeads are held together in thixotropic granular paste by capillary attraction induced by the liquid precursor. These capillary suspensions possess high storage moduli and yield stresses that are needed for direct ink writing. They could be 3D printed and cured both in air and under water. The resulting PDMS structures are remarkably elastic, flexible, and extensible. As the ink is made of porous, biocompatible silicone that can be printed directly inside aqueous medium, it can be used in 3D printed biomedical products, or in applications such as direct printing of bioscaffolds on live tissue. This study demonstrates a number of examples using the high softness, elasticity, and resilience of these 3D printed structures. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Effect of surface roughness and softness on water capillary adhesion in apolar media

    NARCIS (Netherlands)

    Banerjee, S.; Mulder, P.; Kleijn, J.M.; Cohen Stuart, M.A.

    2012-01-01

    The roughness and softness of interacting surfaces are both important parameters affecting the capillary condensation of water in apolar media, yet are poorly understood at present. We studied the water capillary adhesion between a cellulose surface and a silica colloidal probe in hexane by AFM

  6. Capillary and sorbed water content in wood as studied by nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Olek, W.; Baranowska, H.M.; Guzenda, R.; Olszewski, K.J.

    1995-01-01

    Water content in wood has been studied by NMR technique. The spin-spin relaxation time has been measured for distinguish the capillary and sorbed water. The qualitative and quantitative determination have been possible by means of proposed method

  7. Thermally excited capillary waves at vapor/liquid interfaces of water-alcohol mixtures

    International Nuclear Information System (INIS)

    Vaknin, David; Bu Wei; Sung, Jaeho; Jeon, Yoonnam; Kim, Doseok

    2009-01-01

    The density profiles of liquid/vapor interfaces of water-alcohol (methanol, ethanol and propanol) mixtures were studied by surface-sensitive synchrotron x-ray scattering techniques. X-ray reflectivity and diffuse scattering measurements, from the pure and mixed liquids, were analyzed in the framework of capillary wave theory to address the characteristic length scales of the intrinsic roughness and the shortest capillary wavelength (alternatively, the upper wavevector cutoff in capillary wave theory). Our results establish that the intrinsic roughness is dominated by average interatomic distances. The extracted effective upper wavevector cutoff indicates capillary wave theory breaks down at distances of the order of bulk correlation lengths.

  8. Performance Evaluation of Automated Passive Capillary Sampler for Estimating Water Drainage in the Vadose Zone

    Science.gov (United States)

    Passive capillary samplers (PCAPs) are widely used to monitor, measure and sample drainage water under saturated and unsaturated soil conditions in the vadose zone. The objective of this study was to evaluate the performance and accuracy of automated passive capillary sampler for estimating drainage...

  9. Early Regimes of Water Capillary Flow in Slit Silica Nanochannels

    DEFF Research Database (Denmark)

    Oyarzua, Elton; Walther, Jens Honore; Mejia, Andres

    2015-01-01

    on the dynamics of capillaryfilling. The results indicate that the nanoscale imbibition process is divided into three main flow regimes:an initial regime where the capillary force is balanced only by the inertial drag and characterized by aconstant velocity and a plug flow profile. In this regime, the meniscus...... velocity profiles identify the passage froman inviscid flow to a developing Poiseuille flow. Gas density profiles ahead of the capillary front indicatea transient accumulation of air on the advancing meniscus. Furthermore, slower capillary filling ratescomputed for higher air pressures reveal a significant...... retarding effect of the gas displaced by the advancing meniscus....

  10. Enhanced solar evaporation of water from porous media, through capillary mediated forces and surface treatment

    International Nuclear Information System (INIS)

    Canbazoglu, F. M.; Fan, B.; Kargar, A.; Vemuri, K.; Bandaru, P. R.

    2016-01-01

    The relative influence of the capillary, Marangoni, and hydrophobic forces in mediating the evaporation of water from carbon foam based porous media, in response to incident solar radiation, are investigated. It is indicated that inducing hydrophilic interactions on the surface, through nitric acid treatment of the foams, has a similar effect to reduced pore diameter and the ensuing capillary forces. The efficiency of water evaporation may be parameterized through the Capillary number (Ca), with a lower Ca being preferred. The proposed study is of much relevance to efficient solar energy utilization.

  11. Low internal pressure in femtoliter water capillary bridges reduces evaporation rates.

    Science.gov (United States)

    Cho, Kun; Hwang, In Gyu; Kim, Yeseul; Lim, Su Jin; Lim, Jun; Kim, Joon Heon; Gim, Bopil; Weon, Byung Mook

    2016-03-01

    Capillary bridges are usually formed by a small liquid volume in a confined space between two solid surfaces. They can have a lower internal pressure than the surrounding pressure for volumes of the order of femtoliters. Femtoliter capillary bridges with relatively rapid evaporation rates are difficult to explore experimentally. To understand in detail the evaporation of femtoliter capillary bridges, we present a feasible experimental method to directly visualize how water bridges evaporate between a microsphere and a flat substrate in still air using transmission X-ray microscopy. Precise measurements of evaporation rates for water bridges show that lower water pressure than surrounding pressure can significantly decrease evaporation through the suppression of vapor diffusion. This finding provides insight into the evaporation of ultrasmall capillary bridges.

  12. Low internal pressure in femtoliter water capillary bridges reduces evaporation rates

    Science.gov (United States)

    Cho, Kun; Hwang, In Gyu; Kim, Yeseul; Lim, Su Jin; Lim, Jun; Kim, Joon Heon; Gim, Bopil; Weon, Byung Mook

    2016-01-01

    Capillary bridges are usually formed by a small liquid volume in a confined space between two solid surfaces. They can have a lower internal pressure than the surrounding pressure for volumes of the order of femtoliters. Femtoliter capillary bridges with relatively rapid evaporation rates are difficult to explore experimentally. To understand in detail the evaporation of femtoliter capillary bridges, we present a feasible experimental method to directly visualize how water bridges evaporate between a microsphere and a flat substrate in still air using transmission X-ray microscopy. Precise measurements of evaporation rates for water bridges show that lower water pressure than surrounding pressure can significantly decrease evaporation through the suppression of vapor diffusion. This finding provides insight into the evaporation of ultrasmall capillary bridges. PMID:26928329

  13. Relating shear strength of unsaturated soils with capillary water retention curve

    Directory of Open Access Journals (Sweden)

    Zhou Annan

    2016-01-01

    Full Text Available This paper proposes a new water retention model for unsaturated soils, which takes into account capillary condensation of adsorbed water. In the proposed water retention model, the degree of saturation of a soil is separated into that based on capillary water and that based on adsorbed water. Through the analysis of a partially saturated two-cylinder system, a new shear strength criterion for unsaturated soils is proposed, in which only the degree of saturation based on capillary water contributes to the variation of shear strength with suction. The proposed shear strength criterion is justified against thermodynamic principles. The proposed strength criterion is compared against existing criteria in the literature, which shows that it provides a much improved prediction of the experimental data, for a wide range of suction values.

  14. Mass-controlled capillary viscometer for a Newtonian liquid: Viscosity of water at different temperatures

    Science.gov (United States)

    Digilov, Rafael M.; Reiner, M.

    2007-03-01

    The operation principle of the mass-controlled capillary viscometer is presented for a Newtonian liquid. The derived equation for the temporal changes of the mass in a liquid column draining under gravity through a discharge capillary tube accounts self-consistently for the inertial convective term associated with the acceleration effect. The viscosity of water measured at different temperatures using the new approach is in good agreement with literature data.

  15. Determination of capillary motion of water in bricks using neutron radiography

    International Nuclear Information System (INIS)

    Czachor, A.; Abd El-Ghany El-Abd; Milczarek, J.J.

    2002-01-01

    Vertical migration of water in several porous materials has been directly observed and recorded with the recently installed neutron and gamma radiography facility at Maria reactor of Institute of Atomic Energy, Swierk. The density profiles of water in samples were obtained from the optical density of digitalised images. A simple model (representing the porous material as a collection of capillary tubes of various radii) has been introduced to describe the liquid transport in porous materials in terms of capillary motion. The equation for viscous movement of water in porous material in presence of the gravitation is proposed. A good agreement of the calculated density profiles for vertical water migration with the data collected for siliceous bricks suggests that the thinnest capillary tubes determine the upper edge of the water density profile. (author)

  16. Diffusive-dispersive mass transfer in the capillary fringe: Impact of water table fluctuations and heterogeneities

    DEFF Research Database (Denmark)

    Grathwohl, Peter; Haberer, Cristina; Ye, Yu

    Diffusive–dispersive mass transfer in the capillary fringe is important for many groundwater quality issues such as transfer of volatile compounds into (and out of) the groundwater, the supply of oxygen for aerobic degradation of hydrocarbons as well as for precipitation of minerals (e.g. iron...... hydroxides). 2D-laboratory scale experiments were used to investigate the transfer of oxygen into groundwater under non-reactive and reactive conditions, at steady state and with water table fluctuations. Results show that transfer of oxygen is limited by transverse dispersion in the capillary fringe...... and the dispersion coefficients are the same as below the water table. Water table fluctuations cause temporarily increased fluxes of oxygen into groundwater during draining conditions and entrapped air after water table rise. High-permeability inclusions in the capillary fringe enhance mass transfer of oxygen...

  17. Capillary pressure at irregularly shaped pore throats: Implications for water retention characteristics

    Science.gov (United States)

    Suh, Hyoung Suk; Kang, Dong Hun; Jang, Jaewon; Kim, Kwang Yeom; Yun, Tae Sup

    2017-12-01

    The random shapes of pore throats in geomaterials hinder accurate estimation of capillary pressure, and conventional pore network models that simply use the Young-Laplace equation assuming circular pore throats overestimate the capillary pressure. As a solution to this problem that does not complicate the pore network model or slow its implementation, we propose a new morphological analysis method to correlate the capillary pressure at an irregular pore channel with its cross-sectional geometry using lattice Boltzmann (LB) simulation and Mayer and Stowe-Princen theory. Geometry-based shape factors for pore throats are shown here to correlate strongly with the capillary pressure obtained by LB simulation. Water retention curves obtained by incorporating the morphological calibration into conventional pore network simulation and their correlative scheme agree well with experimental data. The suggested method is relevant to pore-scale processes such as geological CO2 sequestration, methane bubbling from wetlands, and enhanced carbon recovery.

  18. Capillary pressure as a unique function of electric permittivity and water saturation

    NARCIS (Netherlands)

    Plug, W.J.; Slob, E.; Van Turnhout, J.; Bruining, J.

    2007-01-01

    The relation between capillary pressure (Pc) and interfacial area has been investigated by measuring Pc and the electric permittivity at 100 kHz simultaneously as function of the water saturation, (Sw). Drainage and imbibition experiments have been conducted for sand-distilled water-gas (CO2/N2)

  19. Aqueous treatment of water-sensitive paper objects: capillary unit, blotter wash or paraprint wash?

    NARCIS (Netherlands)

    Schalkx, H.; Iedema, P.; Reissland, B.; van Velzen, B.

    2011-01-01

    Blotter washing andwashing with the capillary unit are both methods used for aqueoustreatment of water-sensitive paper objects. The challenge of thistreatment is to remove water-soluble products while keeping thewater-sensitive medium in its place. In this article the two methodsare compared, along

  20. Capillary Tube and Thermostatic Expansion Valve Comparative Analysis in Water Chiller Air Conditioning

    Science.gov (United States)

    Wijaya Sunu, Putu; Made Rasta, I.; Anakottapary, Daud Simon; Made Suarta, I.; Cipta Santosa, I. D. M.

    2018-01-01

    The aims of this study to compares the performance characteristics of a water chiller air conditioning simulation equipped with thermostatic expansion valve (TEV) with those of a capillary tube. Water chiller system filled with the same charge of refrigerant. Comparative analyses were performed based on coefficient of performance (COP) and performance parameter of the refrigeration system, carried out at medium cooling load level with the ambient temperature of 29-31°C, constant compressor speed and fixed chilled water volume flowrate at 15 lpm. It was shown that the TEV system showed better energy consumption compared to that of capillary tube. From the coefficient of performance perspective, the thermostatic expansion valve system showed higher COP (± 21.4%) compared to that of capillary tube system.

  1. Effect of surface roughness and softness on water capillary adhesion in apolar media.

    Science.gov (United States)

    Banerjee, Soumi; Mulder, Pieter; Kleijn, J Mieke; Cohen Stuart, Martien A

    2012-06-28

    The roughness and softness of interacting surfaces are both important parameters affecting the capillary condensation of water in apolar media, yet are poorly understood at present. We studied the water capillary adhesion between a cellulose surface and a silica colloidal probe in hexane by AFM force measurements. Nanomechanical measurements show that the Young's modulus of the cellulose layer in water is significantly less (~7 MPa) than in hexane (~7 GPa). In addition, the cellulose surface in both water and hexane is rather rough (6-10 nm) and the silica probe has a comparable roughness. The adhesion force between cellulose and silica in water-saturated hexane shows a time-dependent increase up to a waiting time of 200 s and is much (2 orders of magnitude) lower than that expected for a capillary bridge spanning the whole silica probe surface. This suggests the formation of one or more smaller bridges between asperities on both surfaces, which is confirmed by a theoretical analysis. The overall growth rate of the condensate cannot be explained from diffusion mediated capillary condensation alone; thin film flow due to the presence of a wetting layer of water at both the surfaces seems to be the dominant contribution. The logarithmic time dependence of the force can also be explained from the model of the formation of multiple capillary bridges with a distribution of activation times. Finally, the force-distance curves upon retraction show oscillations. Capillary condensation between an atomically smooth mica surface and the silica particle show less significant oscillations and the adhesion force is independent of waiting time. The oscillations in the force-distance curves between cellulose and silica may stem from multiple bridge formation between the asperities present on both surfaces. The softness of the cellulose surface can bring in additional complexities during retraction of the silica particle, also resulting in oscillations in the force-distance curves.

  2. METHODOLOGY FOR CALCULATION OF HORIZONTAL WATER PERMEABILITY COEFFICIENT IN SOIL CAPILLARY BORDER

    Directory of Open Access Journals (Sweden)

    E. I. Michnevich

    2011-01-01

    Full Text Available The paper shows that for overall estimation of soil water permeability it is necessary to know a horizontal water permeability value of a soil capillary border in addition to coefficients of filtration and permeability. Relations allowing to determine soil permeability in the area of incomplete saturation, are given in the paper. For a fully developed capillary border some calculation formulae have been obtained in the form of algebraic polynomial versus soil grading (grain composition. These formulae allow to make more accurate calculations while designing and operating  reclamation works.

  3. Transport mechanisms in capillary condensation of water at a single-asperity nanoscopic contact.

    Science.gov (United States)

    Sirghi, Lucel

    2012-02-07

    Transport mechanisms involved in capillary condensation of water menisci in nanoscopic gaps between hydrophilic surfaces are investigated theoretically and experimentally by atomic force microscopy (AFM) measurements of capillary force. The measurements showed an instantaneous formation of a water meniscus by coalescence of the water layers adsorbed on the AFM tip and sample surfaces, followed by a time evolution of meniscus toward a stationary state corresponding to thermodynamic equilibrium. This dynamics of the water meniscus is indicated by time evolution of the meniscus force, which increases with the contact time toward its equilibrium value. Two water transport mechanisms competing in this meniscus dynamics are considered: (1) Knudsen diffusion and condensation of water molecules in the nanoscopic gap and (2) adsorption of water molecules on the surface region around the contact and flow of the surface water toward the meniscus. For the case of very hydrophilic surfaces, the dominant role of surface water transportation on the meniscus dynamics is supported by the results of the AFM measurements of capillary force of water menisci formed at sliding tip-sample contacts. These measurements revealed that fast movement of the contact impedes on the formation of menisci at thermodynamic equilibrium because the flow of the surface water is too slow to reach the moving meniscus.

  4. Water movement in glass bead porous media: 1. Experiments of capillary rise and hysteresis

    Science.gov (United States)

    Lu, T. X.; Biggar, J. W.; Nielsen, D. R.

    1994-12-01

    Experimental observations of capillary rise and hysteresis of water or ethanol in glass beads are presented to improve our understanding of those physical processes in porous media. The results provide evidence that capillary rise into porous media cannot be fully explained by a model of cylinders. They further demonstrate that the "Ink bottle" model does not provide an adequate explanation of hysteresis. Glass beads serving as a model for ideal soil are enclosed in a rectangular glass chamber model. A TV camera associated with a microscope was used to record the processes of capillary rise and drainage. It is clearly shown during capillary rise that the fluid exhibits a "jump" behavior at the neck of the pores in an initially dry profile or at the bottom of the water film in an initially wet profile. Under an initially dry condition, the jump initiates at the particle with smallest diameter. The jump process continues to higher elevations until at equilibrium the surface tensile force is balanced by the hydrostatic force. The wetting front at that time is readily observed as flat and saturated. Under an initially wet condition, capillary rise occurs as a water film thickening process associated with the jump process. Trapped air behind the wetting front renders the wetting front irregular and unsaturated. The capillary rise into an initially wet porous medium can be higher than that into an initially dry profile. During the drying process, large surface areas associated with the gas-liquid interface develop, allowing the porous medium to retain more water than during the wetting process at the same pressure. That mechanism explains better the hysteresis phenomenon in porous media in contrast to other mechanisms that now prevail.

  5. Unsaturated flow characterization utilizing water content data collected within the capillary fringe

    Science.gov (United States)

    Baehr, Arthur; Reilly, Timothy J.

    2014-01-01

    An analysis is presented to determine unsaturated zone hydraulic parameters based on detailed water content profiles, which can be readily acquired during hydrological investigations. Core samples taken through the unsaturated zone allow for the acquisition of gravimetrically determined water content data as a function of elevation at 3 inch intervals. This dense spacing of data provides several measurements of the water content within the capillary fringe, which are utilized to determine capillary pressure function parameters via least-squares calibration. The water content data collected above the capillary fringe are used to calculate dimensionless flow as a function of elevation providing a snapshot characterization of flow through the unsaturated zone. The water content at a flow stagnation point provides an in situ estimate of specific yield. In situ determinations of capillary pressure function parameters utilizing this method, together with particle-size distributions, can provide a valuable supplement to data libraries of unsaturated zone hydraulic parameters. The method is illustrated using data collected from plots within an agricultural research facility in Wisconsin.

  6. Isoelectric focusing in continuously tapered fused silica capillary prepared by etching with supercritical water

    Czech Academy of Sciences Publication Activity Database

    Šlais, Karel; Horká, Marie; Karásek, Pavel; Planeta, Josef; Roth, Michal

    2013-01-01

    Roč. 85, č. 9 (2013), s. 4296-4300 ISSN 0003-2700 R&D Projects: GA ČR(CZ) GAP106/12/0522; GA MV VG20102015023 Institutional support: RVO:68081715 Keywords : capillary isoelectric focusing * resolution of ampholytes * supercritical water Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 5.825, year: 2013

  7. Near- and supercritical water as a diameter manipulation and surface roughening agent in fused silica capillaries

    Czech Academy of Sciences Publication Activity Database

    Karásek, Pavel; Planeta, Josef; Roth, Michal

    2013-01-01

    Roč. 85, č. 1 (2013), s. 327-333 ISSN 0003-2700 R&D Projects: GA ČR(CZ) GAP106/12/0522; GA ČR(CZ) GAP206/11/0138 Institutional support: RVO:68081715 Keywords : supercritical water * fused silica capillary * surface treatment Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 5.825, year: 2013

  8. Time-resolved observation of thermally activated rupture of a capillary-condensed water nanobridge

    International Nuclear Information System (INIS)

    Bak, Wan; Sung, Baekman; Kim, Jongwoo; Kwon, Soyoung; Kim, Bongsu; Jhe, Wonho

    2015-01-01

    The capillary-condensed liquid bridge is one of the most ubiquitous forms of liquid in nature and contributes significantly to adhesion and friction of biological molecules as well as microscopic objects. Despite its important role in nanoscience and technology, the rupture process of the bridge is not well understood and needs more experimental works. Here, we report real-time observation of rupture of a capillary-condensed water nanobridge in ambient condition. During slow and stepwise stretch of the nanobridge, we measured the activation time for rupture, or the latency time required for the bridge breakup. By statistical analysis of the time-resolved distribution of activation time, we show that rupture is a thermally activated stochastic process and follows the Poisson statistics. In particular, from the Arrhenius law that the rupture rate satisfies, we estimate the position-dependent activation energies for the capillary-bridge rupture

  9. Neutron spin echo measurements of monolayer and capillary condensed water in MCM-41 at low temperatures

    International Nuclear Information System (INIS)

    Yoshida, K; Yamaguchi, T; Kittaka, S; Bellissent-Funel, M-C; Fouquet, P

    2012-01-01

    Neutron spin echo measurements of monolayer and capillary condensed heavy water (D 2 O) confined in MCM-41 C10 (pore diameter 2.10 nm) were performed in a temperature range of 190-298 K. The intermediate scattering functions were analyzed by the Kohlrausch-Williams-Watts stretched exponential function. The relaxation times of confined D 2 O in the capillary condensed state follow remarkably well the Vogel-Fulcher-Tammann equation between 298 and 220 K, whereas below 220 K they show an Arrhenius type behavior. That is, the fragile-to-strong (FTS) dynamic crossover occurs, which has never been seen in experiments on bulk water. On the other hand, for monolayer D 2 O, the FTS dynamic crossover was not observed in the temperature range measured. The FTS dynamic crossover observed in capillary condensed water would take place in the central region of the pore, not near the pore surface. Because the tetrahedral-like water structure in the central region of the pore is more preserved than that near the pore surface, the FTS dynamic crossover would be concerned with the tetrahedral-like water structure. (paper)

  10. Reduction of the capillary water absorption of foamed concrete by using the porous aggregate

    Science.gov (United States)

    Namsone, E.; Sahmenko, G.; Namsone, E.; Korjakins, A.

    2017-10-01

    The article reports on the research of reduction of the capillary water absorption of foamed concrete (FC) by using the porous aggregate such as the granules of expanded glass (EG) and the cenospheres (CS). The EG granular aggregate is produced by using recycled glass and blowing agents, melted down in high temperature. The unique structure of the EG granules is obtained where the air is kept closed inside the pellet. The use of the porous aggregate in the preparation process of the FC samples provides an opportunity to improve some physical and mechanical properties of the FC, classifying it as a product of high-performance. In this research the FC samples were produced by adding the EG granules and the CS. The capillary water absorption of hardened samples has been verified. The pore size distribution has been determined by microscope. It is a very important characteristic, specifically in the cold climate territories-where temperature often falls below zero degrees. It is necessary to prevent forming of the micro sized pores in the final structure of the material as it reduces its water absorption capacity. In addition, at a below zero temperature water inside these micro sized pores can increase them by expanding the stress on their walls during the freezing process. Research of the capillary water absorption kinetics can be practical for prevision of the FC durability.

  11. An innovative technique for estimating water saturation from capillary pressure in clastic reservoirs

    Science.gov (United States)

    Adeoti, Lukumon; Ayolabi, Elijah Adebowale; James, Logan

    2017-11-01

    A major drawback of old resistivity tools is the poor vertical resolution and estimation of hydrocarbon when applying water saturation (Sw) from historical resistivity method. In this study, we have provided an alternative method called saturation height function to estimate hydrocarbon in some clastic reservoirs in the Niger Delta. The saturation height function was derived from pseudo capillary pressure curves generated using modern wells with complete log data. Our method was based on the determination of rock type from log derived porosity-permeability relationship, supported by volume of shale for its classification into different zones. Leverette-J functions were derived for each rock type. Our results show good correlation between Sw from resistivity based method and Sw from pseudo capillary pressure curves in wells with modern log data. The resistivity based model overestimates Sw in some wells while Sw from the pseudo capillary pressure curves validates and predicts more accurate Sw. In addition, the result of Sw from pseudo capillary pressure curves replaces that of resistivity based model in a well where the resistivity equipment failed. The plot of hydrocarbon pore volume (HCPV) from J-function against HCPV from Archie shows that wells with high HCPV have high sand qualities and vice versa. This was further used to predict the geometry of stratigraphic units. The model presented here freshly addresses the gap in the estimation of Sw and is applicable to reservoirs of similar rock type in other frontier basins worldwide.

  12. Reverse capillary flow of condensed water through aligned multiwalled carbon nanotubes

    International Nuclear Information System (INIS)

    Yun, Jongju; Jeon, Wonjae; Alam Khan, Fakhre; Lee, Jinkee; Baik, Seunghyun

    2015-01-01

    Molecular transport through nanopores has recently received considerable attention as a result of advances in nanofabrication and nanomaterial synthesis technologies. Surprisingly, water transport investigations through carbon nanochannels resulted in two contradicting observations: extremely fast transport or rejection of water molecules. In this paper, we elucidate the mechanism of impeded water vapor transport through the interstitial space of aligned multiwalled carbon nanotubes (aligned-MWCNTs)—capillary condensation, agglomeration, reverse capillary flow, and removal by superhydrophobicity at the tip of the nanotubes. The origin of separation comes from the water’s phase change from gas to liquid, followed by reverse capillary flow. First, the saturation water vapor pressure is decreased in a confined space, which is favorable for the phase change of incoming water vapor into liquid drops. Once continuous water meniscus is formed between the nanotubes by the adsoprtion and agglomeration of water molecules, a high reverse Laplace pressure is induced in the mushroom-shaped liquid meniscus at the entry region of the aligned-MWCNTs. The reverse Laplace pressure can be significantly enhanced by decreasing the pore size. Finally, the droplets pushed backward by the reverse Laplace pressure can be removed by superhydrophobicity at the tip of the aligned-MWCNTs. The analytical analysis was also supported by experiments carried out using 4 mm-long aligned-MWCNTs with different intertube distances. The water rejection rate and the separation factor increased as the intertube distance decreased, resulting in 90% and 10, respectively, at an intertube distance of 4 nm. This mechanism and nanotube membrane may be useful for energy-efficient water vapor separation and dehumidification. (paper)

  13. Supercritical water-treated fused silica capillaries in analytical separations: Status review

    Czech Academy of Sciences Publication Activity Database

    Karásek, Pavel; Horká, Marie; Šlais, Karel; Planeta, Josef; Roth, Michal

    2018-01-01

    Roč. 1539, MAR (2018), s. 1-11 ISSN 0021-9673 R&D Projects: GA MV VI20172020069; GA ČR(CZ) GA16-03749S; GA MZd(CZ) NV16-29916A Institutional support: RVO:68081715 Keywords : supercritical water * fused silica capillary * surface treatment Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 3.981, year: 2016

  14. Influence of capillary forces on water injection into hot rock, saturated with superheated vapour

    Energy Technology Data Exchange (ETDEWEB)

    Tsypkin, G.G. [Institute for Problems in Mechanics, RAS, Vernadskogo Ave. 101, 119420 Moscow (Russian Federation); Calore, C. [Istituto di Geoscienze e Georisorse - CNR, Sezione di Firenze, via La Pira 4, 50121 Florence (Italy)

    2007-07-15

    The results of a theoretical study and numerical analysis of the role of capillary pressure of cold water injection into depleted geothermal reservoirs are presented. A simplified 1-D mathematical model is developed, that describes the motion of a sharp vaporization front. Some asymptotic estimates for a wide range of parameters are given and a similarity solution is derived. Analytical results are then compared with those obtained from the numerical reservoir simulator TOUGH2, showing a good agreement between the two. (author)

  15. Capillary condensation of water between mica surfaces above and below zero-effect of surface ions.

    Science.gov (United States)

    Nowak, Dominika; Christenson, Hugo K

    2009-09-01

    We have studied the capillary condensation of water from saturated vapor below 0 degrees C in the annular wedge-pore formed around two mica surfaces in contact in a surface force apparatus. The condensed water remains liquid down to at least -9 degrees C, and the measured condensate size is close to the predictions of a recent model for the dependence of the interfacial curvature of supercooled capillary condensates on temperature and surface tension. The small deviation observed may be accounted for by assuming that solute as K(2)CO(3) from the mica-condensate interface dissolves in the condensates and gives rise to an additional depression of the freezing point apart from that caused by the interface curvature. By contrast, measurements of the interface curvature at relative vapor pressures of 0.95-0.99 at 20 degrees C confirm a significantly larger deviation from the Kelvin equation. The magnitude of the deviation is in remarkable agreement with that calculated from the results of an earlier study of capillary condensation of water from a nonpolar liquid, also at T = 20 degrees C. Evidently, additional solute from the surrounding mica surface migrates into the condensates at room temperature. We conclude that the surface diffusion of ions on mica is much slower at subzero temperatures than at room temperature.

  16. Role of mixed boundaries on flow in open capillary channels with curved air-water interfaces.

    Science.gov (United States)

    Zheng, Wenjuan; Wang, Lian-Ping; Or, Dani; Lazouskaya, Volha; Jin, Yan

    2012-09-04

    Flow in unsaturated porous media or in engineered microfluidic systems is dominated by capillary and viscous forces. Consequently, flow regimes may differ markedly from conventional flows, reflecting strong interfacial influences on small bodies of flowing liquids. In this work, we visualized liquid transport patterns in open capillary channels with a range of opening sizes from 0.6 to 5.0 mm using laser scanning confocal microscopy combined with fluorescent latex particles (1.0 μm) as tracers at a mean velocity of ∼0.50 mm s(-1). The observed velocity profiles indicate limited mobility at the air-water interface. The application of the Stokes equation with mixed boundary conditions (i.e., no slip on the channel walls and partial slip or shear stress at the air-water interface) clearly illustrates the increasing importance of interfacial shear stress with decreasing channel size. Interfacial shear stress emerges from the velocity gradient from the adjoining no-slip walls to the center where flow is trapped in a region in which capillary forces dominate. In addition, the increased contribution of capillary forces (relative to viscous forces) to flow on the microscale leads to increased interfacial curvature, which, together with interfacial shear stress, affects the velocity distribution and flow pattern (e.g., reverse flow in the contact line region). We found that partial slip, rather than the commonly used stress-free condition, provided a more accurate description of the boundary condition at the confined air-water interface, reflecting the key role that surface/interface effects play in controlling flow behavior on the nanoscale and microscale.

  17. Increased Water Retention in Polymer Electrolyte Membranes at Elevated Temperatures Assisted by Capillary Condensation

    International Nuclear Information System (INIS)

    Park, M.J.; Downing, K.H.; Jackson, A.; Gomez, E.D.; Minor, A.M.; Cookson, D.; Weber, A.Z.; Balsara, N.P.

    2007-01-01

    We establish a new systematic methodology for controlling the water retention of polymer electrolyte membranes. Block copolymer membranes comprising hydrophilic phases with widths ranging from 2 to 5 nm become wetter as the temperature of the surrounding air is increased at constant relative humidity. The widths of the moist hydrophilic phases were measured by cryogenic electron microscopy experiments performed on humid membranes. Simple calculations suggest that capillary condensation is important at these length scales. The correlation between moisture content and proton conductivity of the membranes is demonstrated.

  18. Increased water retention in polymer electrolyte membranes at elevated temperatures assisted by capillary condensation.

    Science.gov (United States)

    Park, Moon Jeong; Downing, Kenneth H; Jackson, Andrew; Gomez, Enrique D; Minor, Andrew M; Cookson, David; Weber, Adam Z; Balsara, Nitash P

    2007-11-01

    We establish a new systematic methodology for controlling the water retention of polymer electrolyte membranes. Block copolymer membranes comprising hydrophilic phases with widths ranging from 2 to 5 nm become wetter as the temperature of the surrounding air is increased at constant relative humidity. The widths of the moist hydrophilic phases were measured by cryogenic electron microscopy experiments performed on humid membranes. Simple calculations suggest that capillary condensation is important at these length scales. The correlation between moisture content and proton conductivity of the membranes is demonstrated.

  19. Capillary condensation in atomic scale friction: how water acts like a glue.

    Science.gov (United States)

    Jinesh, K B; Frenken, J W M

    2006-04-28

    We present atomic-scale friction force measurements that strongly suggest that the capillary condensation of water between a tungsten tip and a graphite surface leads to the formation of ice at room temperature. This phenomenon increases the friction force, introduces a short-term memory in the form of an elastic response against shearing, and allows us to "write" a temporary line of ice on a hydrophobic surface. Rearrangements of the condensate are shown to take place on a surprisingly slow time scale of seconds.

  20. Converting Water Adsorption and Capillary Condensation in Usable Forces with Simple Porous Inorganic Thin Films.

    Science.gov (United States)

    Boudot, Mickael; Elettro, Hervé; Grosso, David

    2016-11-22

    This work reports an innovative humidity-driven actuation concept based on conversion of chemical energy of adsorption/desorption using simple nanoporous sol-gel silica thin films as humidity-responsive materials. Bilayer-shaped actuators, consisting of a humidity-sensitive active nanostructured silica film deposited on a polymeric substrate (Kapton), were demonstrated as an original mean to convert water molecule adsorption and capillary condensation in usable mechanical work. Reversible solvation stress changes in silica micropores by water adsorption and energy produced by the rigid silica film contraction, induced by water capillary condensation in mesopores, were finely controlled and used as energy sources. The influence of the film nanostructure (microporosity, mesoporosity) and thickness and the polymeric substrate thickness on actuation force, on movement speed and on displacement amplitude are clearly evidenced and discussed. We show that the global mechanical response of such silica-based actuators can easily be adjusted to fabricate tailor-made actuation systems triggered by humidity variation. This study provides insight into hard ceramic stimulus-responsive materials that seem to be a promising alternative to traditional soft organic materials for surface-chemistry-driven actuation systems.

  1. Capillary electrophoretic determination of selected phenolic compounds in humic substances of well waters and fertilizers.

    Science.gov (United States)

    Chen, Mei-Ying; Chang, Yan-Zin; Lu, Fung-Jou; Chen, Jian-Lian

    2010-01-01

    Humic substances (HS) from well waters, fertilizers, and synthetic phenolic polymers were characterized by elemental and UV-VIS spectroscopic analyses. Capillary zone electrophoresis (CZE) with UV absorption detection was used to analyze the lignin-derived phenolic distribution in the degradation residues after alkaline CuO oxidation of HS samples. Eleven phenols with p-acetyl, vanillyl and syringyl substituents were selected to optimize the CZE parameters. For well waters and fertilizers, the content of phenolic fragments was in agreement with the findings of the elemental and spectroscopic measurements. Additionally, parameters derived from the vanillic acid/vanilline, syringyl acid/syringaldehyde, p-hydroxyl/vanillyl and syringyl/vanillyl ratios matched analogous studies on dissolved organic matter from natural waters and on humic acids from terrestrial substances. The amount of phenolic monomer bonded within two synthetic HS polymers was found to be 25.9% protocatechuic acid and 71.3% gallic acid.

  2. Hardening of particle/oil/water suspensions due to capillary bridges: Experimental yield stress and theoretical interpretation.

    Science.gov (United States)

    Danov, Krassimir D; Georgiev, Mihail T; Kralchevsky, Peter A; Radulova, Gergana M; Gurkov, Theodor D; Stoyanov, Simeon D; Pelan, Eddie G

    2018-01-01

    Suspensions of colloid particles possess the remarkable property to solidify upon the addition of minimal amount of a second liquid that preferentially wets the particles. The hardening is due to the formation of capillary bridges (pendular rings), which connect the particles. Here, we review works on the mechanical properties of such suspensions and related works on the capillary-bridge force, and present new rheological data for the weakly studied concentration range 30-55 vol% particles. The mechanical strength of the solidified capillary suspensions, characterized by the yield stress Y, is measured at the elastic limit for various volume fractions of the particles and the preferentially wetting liquid. A quantitative theoretical model is developed, which relates Y with the maximum of the capillary-bridge force, projected on the shear plane. A semi-empirical expression for the mean number of capillary bridges per particle is proposed. The model agrees very well with the experimental data and gives a quantitative description of the yield stress, which increases with the rise of interfacial tension and with the volume fractions of particles and capillary bridges, but decreases with the rise of particle radius and contact angle. The quantitative description of capillary force is based on the exact theory and numerical calculation of the capillary bridge profile at various bridge volumes and contact angles. An analytical formula for Y is also derived. The comparison of the theoretical and experimental strain at the elastic limit reveals that the fluidization of the capillary suspension takes place only in a deformation zone of thickness up to several hundred particle diameters, which is adjacent to the rheometer's mobile plate. The reported experimental results refer to water-continuous suspension with hydrophobic particles and oily capillary bridges. The comparison of data for bridges from soybean oil and hexadecane surprisingly indicate that the yield strength is

  3. Foam on troubled water: Capillary induced finite-time arrest of sloshing waves

    Science.gov (United States)

    Viola, Francesco; Brun, P.-T.; Dollet, Benjamin; Gallaire, François

    2016-09-01

    Interfacial forces exceed gravitational forces on a scale small relative to the capillary length—two millimeters in the case of an air-water interface—and therefore dominate the physics of sub-millimetric systems. They are of paramount importance for various biological taxa and engineering processes where the motion of a liquid meniscus induces a viscous frictional force that exhibits a sublinear dependence in the meniscus velocity, i.e., a power law with an exponent smaller than one. Interested in the fundamental implications of this dependence, we use a liquid-foam sloshing system as a prototype to exacerbate the effect of sublinear friction on the macroscopic mechanics of multi-phase flows. In contrast to classical theory, we uncover the existence of a finite-time singularity in our system yielding the arrest of the fluid's oscillations. We propose a minimal theoretical framework to capture this effect, thereby amending the paradigmatic damped harmonic oscillator model. Our results suggest that, although often not considered at the macroscale, sublinear capillary forces govern the friction at liquid-solid and liquid-liquid interfaces.

  4. A purge-and-trap capillary column gas chromatographic method for the measurement of halocarbons in water and air

    Energy Technology Data Exchange (ETDEWEB)

    Happell, J.D.; Wallace, D.W.R.; Wills, K.D.; Wilke, R.J.; Neill, C.C.

    1996-06-01

    This report describes an automated, accurate, precise and sensitive capillary column purge- and -trap method capable of quantifying CFC-12, CFC-11, CFC-113, CH{sub 3}CCL{sub 3}, and CCL{sub 4} during a single chromatographic analysis in either water or gas phase samples.

  5. Performance evaluation and accuracy of passive capillary samplers (PCAPs) for estimating real-time drainage water fluxes

    Science.gov (United States)

    Successful monitoring of pollutant transport through the soil profile requires accurate, reliable, and appropriate instrumentation to measure amount of drainage water or flux within the vadose layer. We evaluated the performance and accuracy of automated passive capillary wick samplers (PCAPs) for ...

  6. Reverse polarity capillary zone electrophoresis analysis of nitrate and nitrite in natural water samples

    Energy Technology Data Exchange (ETDEWEB)

    Metcalf, S.G.

    1998-06-11

    This paper describes the application of reverse polarity capillary zone electrophoresis (RPCE) for rapid and accurate determination of nitrate and nitrite in natural water samples. Using hexamethonium bromide (HMB) as an electroosmotic flow modifier in a borate buffer at pH 9.2, the resolution of nitrate and nitrite was accomplished in less than 3 minutes. RPCE was compared with ion chromatographic (IC) and cadmium reduction flow injection analysis (Cd-FIA) methods which are the two most commonly used standard methods for the analysis of natural water samples for nitrate and nitrite. When compared with the ion chromatographic method for the determination of nitrate and nitrite, RPCE reduced analysis time, decreased detection limits by a factor of 10, cut laboratory wastes by more than two orders of magnitude, and eliminated interferences commonly associated with IC. When compared with the cadmium reduction method, RPCE had the advantage of simultaneous determination of nitrate and nitrite, could be used in the presence of various metallic ions that normally interfere in cadmium reduction, and decreased detection limits by a factor of 10.

  7. Reverse polarity capillary zone electrophoresis analysis of nitrate and nitrite in natural water samples

    International Nuclear Information System (INIS)

    Metcalf, S.G.

    1998-01-01

    This paper describes the application of reverse polarity capillary zone electrophoresis (RPCE) for rapid and accurate determination of nitrate and nitrite in natural water samples. Using hexamethonium bromide (HMB) as an electroosmotic flow modifier in a borate buffer at pH 9.2, the resolution of nitrate and nitrite was accomplished in less than 3 minutes. RPCE was compared with ion chromatographic (IC) and cadmium reduction flow injection analysis (Cd-FIA) methods which are the two most commonly used standard methods for the analysis of natural water samples for nitrate and nitrite. When compared with the ion chromatographic method for the determination of nitrate and nitrite, RPCE reduced analysis time, decreased detection limits by a factor of 10, cut laboratory wastes by more than two orders of magnitude, and eliminated interferences commonly associated with IC. When compared with the cadmium reduction method, RPCE had the advantage of simultaneous determination of nitrate and nitrite, could be used in the presence of various metallic ions that normally interfere in cadmium reduction, and decreased detection limits by a factor of 10

  8. Capillary transport of water through textile-reinforced concrete applied in repairing and/or strengthening cracked RC structures

    International Nuclear Information System (INIS)

    Lieboldt, M.; Mechtcherine, V.

    2013-01-01

    The use of textile-reinforced concrete (TRC) has great potential for innovative solutions in repairing, protecting, and strengthening concrete and RC structures. The article at hand reports on an investigation on composite concrete specimens made of cracked ordinary concrete as substrate and textile-reinforced concrete (TRC) as a cover layer for its strengthening and repair. The TRC cover layer was assessed with regard to its effectiveness as a protective layer against the ingress of water through capillary action. Since in real applications such TRC layers may be cracked or presumed to be so, thereby activating the load-carrying function of the textile reinforcement, the TRC layer was cracked for purposes of this study. The water transport in the cracked ordinary concrete specimens without the TRC layer was used as a reference. Gravimetric measurements and neutron radiography served as the testing techniques. In ordinary concrete quick and deep ingress of water through relatively wide macro-cracks of approximately 100 μm width, followed by transport through the capillary pore system, caused saturation of large areas in a rather short time. TRC applied to the RC surface reduced the ingress of water to a large extent. Its small crack widths of 15 to 20 μm changed suction behaviour fundamentally. In the cracked substrate of ordinary concrete, capillary suction was prevented, and transport through the pore system of the matrix became the prevailing transport mechanism of capillary action. Not only was the mechanism altered, but the transport of water deep into inner regions was markedly retarded as well

  9. Distinction of water-soluble constituents between natural and cultured Cordyceps by capillary electrophoresis.

    Science.gov (United States)

    Li, S P; Song, Z H; Dong, T T X; Ji, Z N; Lo, C K; Zhu, S Q; Tsim, K W K

    2004-11-01

    Cordyceps is an expensive traditional Chinese medicine, which has anti-tumor activity and significant effects on the immune system. In Southeast Asia, Cordyceps is commonly sold in capsule form as a health food product. Most of these products are derived from cultured Cordyceps mycelia. Because of the price difference, some manufacturers claim their products are from natural Cordyceps. In order to distinguish among various types of Cordyceps in the market, the profiles of water-soluble constituents derived from different sources of Cordyceps were determined by capillary electrophoresis (CE). Both natural and cultured Cordyceps showed three peak clusters migrated at 5-7, 9-11 and 12-13 min, and the height and resolution of these peak clusters were rather distinct. Peak cluster at 9-11 min was identified as adenosine, guanosine and uridine, and shared a similarity between natural and cultured products. In contrast, the peak cluster at 5-7 min was characteristic of natural Cordyceps, regardless of hosts and sources. By using the peak characteristics of CE profiles of different Cordyceps samples, hierarchical clustering analysis was performed. The result shows that those samples of natural Cordyceps were grouped together distinct from the cultured and commercial products. Thus, the CE profiles could serve as fingerprints for the quality control of Cordyceps.

  10. GROUND WATER SAMPLING OF VOCS IN THE WATER/CAPILLARY FRINGE AREA FOR VAPOR INTRUSION ASSESSMENT

    Science.gov (United States)

    Vapor intrusion has recently been considered a major pathway for increased indoor air contamination from certain volatile organic contaminants (VOCs). The recent Draft EPA Subsurface Vapor Intrusion Guidance Document states that ground water samples should be obtained from the u...

  11. Visualization and quantification of weathering effects on capillary water uptake of natural building stones by using neutron imaging

    International Nuclear Information System (INIS)

    Raneri, Simona; Barone, Germana; Mazzoleni, Paolo; Rabot, Eva

    2016-01-01

    Building stones are frequently subjected to very intense degradation due to salt crystallization, often responsible for strong modifications of their pore network. These effects have a great influence on the mechanical properties and durability of the materials, and on the penetration of water. Therefore, the quantification and visualization of water absorption into the pore network of degraded stones could provide useful information to better understand the weathering process. In this study, neutron radiography has been used (1) to monitor and visualize in two dimensions the capillary water uptake in a Sicilian calcarenite widely used as building and replace stone (namely Sabucina stone) and (2) to quantify the water content distribution, as a function of time and weathering degree. Additionally, traditional experiments based on gravimetric methods have been performed, following the standard recommendations. Results demonstrated a change in the physical properties of Sabucina stones with the intensification of the degradation process, with severe effects on the capillary imbibition dynamics. The water penetration depth at the end of the experiment was substantially higher in the fresh than in the weathered stones. The water absorption kinetics was faster in the weathered samples, and the amount of water absorbed increased with the number of weathering cycles. Good agreement between classical and neutron imaging data has also been evidenced. However, neutron radiography has allowed retrieving additional spatial information on the water absorption process, and to better understand how salt weathering affects the petrophysical properties of the studied stone and how it influences then the stone response against water. (orig.)

  12. Visualization and quantification of weathering effects on capillary water uptake of natural building stones by using neutron imaging

    Energy Technology Data Exchange (ETDEWEB)

    Raneri, Simona; Barone, Germana; Mazzoleni, Paolo [University of Catania, Department of Biological, Geological and Environment Sciences, Catania (Italy); Rabot, Eva [Laboratoire Leon Brillouin (CNRS/CEA), Gif-Sur-Yvette (France)

    2016-11-15

    Building stones are frequently subjected to very intense degradation due to salt crystallization, often responsible for strong modifications of their pore network. These effects have a great influence on the mechanical properties and durability of the materials, and on the penetration of water. Therefore, the quantification and visualization of water absorption into the pore network of degraded stones could provide useful information to better understand the weathering process. In this study, neutron radiography has been used (1) to monitor and visualize in two dimensions the capillary water uptake in a Sicilian calcarenite widely used as building and replace stone (namely Sabucina stone) and (2) to quantify the water content distribution, as a function of time and weathering degree. Additionally, traditional experiments based on gravimetric methods have been performed, following the standard recommendations. Results demonstrated a change in the physical properties of Sabucina stones with the intensification of the degradation process, with severe effects on the capillary imbibition dynamics. The water penetration depth at the end of the experiment was substantially higher in the fresh than in the weathered stones. The water absorption kinetics was faster in the weathered samples, and the amount of water absorbed increased with the number of weathering cycles. Good agreement between classical and neutron imaging data has also been evidenced. However, neutron radiography has allowed retrieving additional spatial information on the water absorption process, and to better understand how salt weathering affects the petrophysical properties of the studied stone and how it influences then the stone response against water. (orig.)

  13. Hydrolysis of polycarbonate in sub-critical water in fused silica capillary reactor with in situ Raman spectroscopy

    Science.gov (United States)

    Pan, Z.; Chou, I-Ming; Burruss, R.C.

    2009-01-01

    The advantages of using fused silica capillary reactor (FSCR) instead of conventional autoclave for studying chemical reactions at elevated pressure and temperature conditions were demonstrated in this study, including the allowance for visual observation under a microscope and in situ Raman spectroscopic characterization of polycarbonate and coexisting phases during hydrolysis in subcritical water.

  14. Green Synthesis and Catalytic Activity of Gold Nanoparticles Synthesized by Artemisia capillaris Water Extract

    Science.gov (United States)

    Lim, Soo Hyeon; Ahn, Eun-Young; Park, Youmie

    2016-10-01

    Gold nanoparticles were synthesized using a water extract of Artemisia capillaris (AC-AuNPs) under different extract concentrations, and their catalytic activity was evaluated in a 4-nitrophenol reduction reaction in the presence of sodium borohydride. The AC-AuNPs showed violet or wine colors with characteristic surface plasmon resonance bands at 534 543 nm that were dependent on the extract concentration. Spherical nanoparticles with an average size of 16.88 ± 5.47 29.93 ± 9.80 nm were observed by transmission electron microscopy. A blue shift in the maximum surface plasmon resonance was observed with increasing extract concentration. The face-centered cubic structure of AC-AuNPs was confirmed by high-resolution X-ray diffraction analysis. Based on phytochemical screening and Fourier transform infrared spectra, flavonoids, phenolic compounds, and amino acids present in the extract contributed to the reduction of Au ions to AC-AuNPs. The average size of the AC-AuNPs decreased as the extract concentration during the synthesis was increased. Higher 4-nitrophenol reduction reaction rate constants were observed for smaller sizes. The extract in the AC-AuNPs was removed by centrifugation to investigate the effect of the extract in the reduction reaction. Interestingly, the removal of extracts greatly enhanced their catalytic activity by up to 50.4 %. The proposed experimental method, which uses simple centrifugation, can be applied to other metallic nanoparticles that are green synthesized with plant extracts to enhance their catalytic activity.

  15. The Relationship Between Microscopic Grain Surface Structure and the Dynamic Capillary-Driven Advance of Water Films over Individual Dry Natural Sand Grains

    Science.gov (United States)

    Kibbey, T. C. G.; Adegbule, A.; Yan, S.

    2017-12-01

    The movement of nonvolatile solutes in unsaturated porous media at low water contents depends on transport in surface-associated water films. The focus of the work described here was on studying solute movement in water films advancing by capillary forces over initially-dry grain surfaces, to understand how microscopic surface roughness features influence the initial velocity of water film advance. For this work, water containing a non-adsorbing conservative tracer was used to track the movement of advancing water films. A stainless steel capillary tube connected to an external reservoir a fixed distance below the grain surface was used to transmit solution to the grain surface under negative pressure (positive capillary pressure), consistent with conditions that might be expected in the unsaturated zone. The small internal diameter of the capillary prevents solution from draining out of the capillary back into the reservoir. When the capillary is contacted with a grain surface, capillary forces that result from contact between the fluid and the rough grain surface cause water films to wick across the grain surface. Multiple experiments were conducted on the same grain, rotating the grain and varying the capillary contact point around the circumference of the grain. Imaging was conducted at fixed intervals using an automated Extended Depth of Field (EDF) imaging system, and images were analyzed to determine initial velocity. Grain surfaces were then characterized through scanning electron microscope (SEM) imaging, using a hybrid stereoscopic reconstruction method designed to extract maximum detail in creating elevation maps of geologic surfaces from tilted pairs of SEM images. The resulting elevation maps were used to relate surface roughness profiles around the grain with initial velocities. Results suggest that velocity varies significant with contact point around an individual grain, and correlates quantitatively with the local grain surface structure

  16. Application of capillary electrophoresis to anion speciation in soil water extracts: 2. Arsenic

    Energy Technology Data Exchange (ETDEWEB)

    Naidu, R.; Smith, J.; McLaren, R.G.; Stevens, D.P.; Sumner, M.E.; Jackson, P.E.

    2000-02-01

    A method has been developed for the speciation of arsenic (AsO{sub 2}{sup {minus}}, AsO{sub 4}{sup 3{minus}}, and dimethylarsinic [DMA]) in natural soil solutions from contaminated sites in Australia. The separation of these anions was achieved by capillary zone electrophoresis (CZE) using a fused silica capillary with a basic chromate buffer and on-column indirect UV detection at 254 nm. Method parameters, such as electrolyte pH, run voltage, and capillary temperature were studied in order to establish suitable analytical conditions. The ideal separation for As(III) and DMA was achieved with a buffer pH of 8.0, a run voltage of 25 kV, and a capillary temperature of 30 C. Under these conditions, As(V) and orthophosphate ions comigrated. However, the use of a chromate buffer at pH 10, a run voltage of 20 kV, and capillary temperature of 20 C led to complete separation of As(V) and phosphate peaks. Results of these investigations together with recovery test data suggest that separation of the As species from soil solutions can be achieved in less than 5 min with detection limits of 0.50, 0.10, and 0.10 mg L{sup {minus}1} for As(III), As(V), and DMA, respectively.

  17. Experimental study of a water thermo-capillary loop; Etude experimentale d`une boucle thermocapillaire a eau

    Energy Technology Data Exchange (ETDEWEB)

    Lefriec, C; Alexandre, A [Ecole Nationale Superieure de Mecanique et d` Aerotechnique (ENSMA), 86 - Poitiers (France)

    1997-12-31

    This paper presents a bench scale experiment of a water thermo-capillary loop which allows to improve the understanding of its functioning mechanisms thanks to the internal visualisation of each component using transparent walls. The advantages of water are its non-toxicity, its high chemical compatibility with several materials and its low functioning pressure. The experimental device is presented and the functioning regimes of each component is analyzed: condenser (flow visualization, influence of tilt), evaporator (quality of heat exchange between teeth and porous medium, bubbles, heat exchange coefficient). (J.S.)

  18. Experimental study of a water thermo-capillary loop; Etude experimentale d`une boucle thermocapillaire a eau

    Energy Technology Data Exchange (ETDEWEB)

    Lefriec, C.; Alexandre, A. [Ecole Nationale Superieure de Mecanique et d`Aerotechnique (ENSMA), 86 - Poitiers (France)

    1996-12-31

    This paper presents a bench scale experiment of a water thermo-capillary loop which allows to improve the understanding of its functioning mechanisms thanks to the internal visualisation of each component using transparent walls. The advantages of water are its non-toxicity, its high chemical compatibility with several materials and its low functioning pressure. The experimental device is presented and the functioning regimes of each component is analyzed: condenser (flow visualization, influence of tilt), evaporator (quality of heat exchange between teeth and porous medium, bubbles, heat exchange coefficient). (J.S.)

  19. Improvements to water vapor transmission and capillary absorption measurements in porous materials

    Science.gov (United States)

    Samuel L. Zelinka; Samuel V. Glass; Charles R. Boardman

    2016-01-01

    The vapor permeability (or equivalently the vapor diffusion resistance factor) and the capillary absorption coefficient are frequently used as inputs to hygrothermal or heat, air, and moisture (HAM) models. However, it has been well documented that the methods used to determine these properties are sensitive to the operator, and wide variations in the properties have...

  20. A glass capillary based microfluidic electromembrane extraction of basic degradation products of nitrogen mustard and VX from water.

    Science.gov (United States)

    Tak, Vijay; Kabra, Ankur; Pardasani, Deepak; Goud, D Raghavender; Jain, Rajeev; Dubey, D K

    2015-12-24

    In this work, a glass capillary based microfluidic electromembrane extraction (μ-EME) was demonstrated for the first time. The device was made by connecting an auxillary borosilicate glass tubing (O.D. 3mm, I.D. 2mm) perpendicular to main borosilicate glass capillary just below one end of the capillary (O.D. 8mm, I.D. 1.2mm). It generated the distorted T-shaped device with inlet '1' and inlet '2' for the introduction of sample and acceptor solutions, respectively. At one end of this device (inlet '2'), a microsyringe containing acceptor solution along with hollow fiber (O.D. 1000μm) was introduced. This configuration creates the micro-channel between inner wall of glass capillary and outer surface of hollow fiber. Sample solution was pumped into the system through another end of glass capillary (inlet '1'), with a micro-syringe pump. The sample was in direct contact with the supported liquid membrane (SLM), consisted of 20% (w/w) di-(2-ethylhexyl)phosphate in 2-nitrophenyl octyl ether immobilized in the pores of the hollow fiber. In the lumen of the hollow fiber, the acceptor phase was present. The driving force for extraction was direct current (DC) electrical potential sustained over the SLM. Highly polar (logP=-2.5 to 1.4) basic degradation products of nitrogen mustard and VX were selected as model analytes. The influence of chemical composition of SLM, extraction time, voltage and pH of donor and acceptor phase were investigated. The model analytes were extracted from 10μL of pure water with recoveries ranging from 15.7 to 99.7% just after 3min of operation time. Under optimized conditions, good limits of detection (2-50ngmL(-1)), linearity (from 5-1000 to 100-1000ngmL(-1)), and repeatability (RSDs below 11.9%, n=3) were achieved. Applicability of the proposed μ-EME was proved by recovering triethanolamine (31.3%) from 10μL of five times diluted original water sample provided by the Organization for the Prohibition of Chemical Weapons during 28th official

  1. Separation of methicillin-resistant from methicillin-susceptible staphylococcus aureus by electrophoretic methods in fused silica capillaries etched with supercritical water

    Czech Academy of Sciences Publication Activity Database

    Horká, Marie; Karásek, Pavel; Růžička, F.; Dvořáčková, M.; Sittová, M.; Roth, Michal

    2014-01-01

    Roč. 86, č. 19 (2014), s. 9701-9708 ISSN 0003-2700 R&D Projects: GA MV VG20112015021; GA ČR(CZ) GAP106/12/0522 Institutional support: RVO:68081715 Keywords : Staphylococcus aureus strains * capillary zone electrophoresis * supercritical water-treated capillary Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 5.636, year: 2014 http://hdl.handle.net/11104/0236865

  2. Determination of C6-C10 aromatic hydrocarbons in water by purge-and-trap capillary gas chromatography

    Science.gov (United States)

    Eganhouse, R.P.; Dorsey, T.F.; Phinney, C.S.; Westcott, A.M.

    1993-01-01

    A method is described for the determination of the C6-C10 aromatic hydrocarbons in water based on purge-and-trap capillary gas chromatography with flame ionization and mass spectrometric detection. Retention time data and 70 eV mass spectra were obtained for benzene and all 35 C7-C10 aromatic hydrocarbons. With optimized chromatographic conditions and mass spectrometric detection, benzene and 33 of the 35 alkylbenzenes can be identified and measured in a 45-min run. Use of a flame ionization detector permits the simultaneous determination of benzene and 26 alkylbenzenes.

  3. Surface Tension of Supercooled Water Determined by Using a Counterpressure Capillary Rise Method

    Czech Academy of Sciences Publication Activity Database

    Vinš, Václav; Fransen, M. A. L. J.; Hykl, Jiří; Hrubý, Jan

    2015-01-01

    Roč. 119, č. 17 (2015), s. 5567-5575 ISSN 1520-6106 R&D Projects: GA MŠk LG13056; GA ČR GJ15-07129Y Institutional support: RVO:61388998 Keywords : capillary tube * interfacial tension * metastable liquid * supercooled liquid Subject RIV: BJ - Thermodynamics Impact factor: 3.187, year: 2015 http://pubs.acs.org/doi/abs/10.1021/acs.jpcb.5b00545

  4. Capillary and sorbed water content in wood as studied by nuclear magnetic resonance; Badanie zawartosci wody wolnej i zwiazanej w drewnie metoda magnetycznego rezonansu jadrowego

    Energy Technology Data Exchange (ETDEWEB)

    Olek, W.; Baranowska, H.M.; Guzenda, R.; Olszewski, K.J. [Akademia Rolnicza, Poznan (Poland)

    1995-12-31

    Water content in wood has been studied by NMR technique. The spin-spin relaxation time has been measured for distinguish the capillary and sorbed water. The qualitative and quantitative determination have been possible by means of proposed method. 8 refs, 6 figs.

  5. Selective removal of water in purge and cold-trap capillary gas chromatographic analysis of volatile organic traces in aqueous samples

    NARCIS (Netherlands)

    Noij, T.H.M.; van Es, A.J.J.; Cramers, C.A.M.G.; Rijks, J.A.; Dooper, R.P.M.

    1987-01-01

    The design and features of an on-line purge and cold-trap pre-concentration device for rapid analysis of volatile organic compounds in aqueous samples are discussed. Excessive water is removed from the purge gas by a condenser or a water permeable membrane in order to avoid blocking of the capillary

  6. Electrolytically generated hydrogen warm water cleanses the keratin-plug-clogged hair-pores and promotes the capillary blood-streams, more markedly than normal warm water does

    Directory of Open Access Journals (Sweden)

    Yoshiharu Tanaka

    2018-01-01

    Full Text Available Biomedical properties of hydrogen water have been extensively investigated, but the effect of hydrogen on good healthy subjects remains unclear. This study was designed to explore the hygiene improvement by electrolytically generated hydrogen warm water (40°C on capillary blood streams, skin moisture, and keratin plugs in skin pores in normal good healthy subjects with their informed consents. Fingertip-capillary blood stream was estimated after hand-immersing in hydrogen warm water by videography using a CCD-based microscope, and the blood flow levels increased to about 120% versus normal warm water, after 60 minutes of the hand-immersing termination. Skin moisture of subjects was assessed using an electro-conductivity-based skin moisture meter. Immediately after taking a bath filled with hydrogen warm water, the skin moisture increased by 5–10% as compared to before bathing, which was kept on for the 7-day test, but indistinct, because of lower solubility of hydrogen in “warm” water than in room-temperature water. Cleansing of keratin plugs in skin-pores was assessed by stereoscopic microscopy and scanning electron microscopy. After hydrogen warm water bathing, the numbers of cleansed keratin plugs also increased on cheek of subjects 2.30- to 4.47-fold as many as the control for normal warm water. And areas of cleansed keratin plugs in the cheeks increased about 1.3-fold as much as the control. More marked improvements were observed on cheeks than on nostrils. Hydrogen warm water may thoroughly cleanse even keratin-plugs of residual amounts that could not be cleansed by normal warm water, through its permeability into wide-ranged portions of hair-pores, and promote the fingertip blood streams more markedly than merely through warmness due to normal warm water.

  7. Biomimetic Unidirectional Capillary Action

    Science.gov (United States)

    Rupert, Eric; Moran, Patrick; Dahl, Jason

    2017-11-01

    In arid environments animals require specialized adaptations to collect adequate water. The Texas horned lizard (P. cornutum) has superhydrophylic skin which draws water out of moist soil or directly from water sources. The water then makes its way into the lizard's unidirectional capillary system, made of overlapping scales, which serves to channel water to its mouth. Testing different channel geometries, repeated ``D'' shaped chambers as in Commans et al. (2015) and truncated isosceles triangle chambers, as found in P. cornutum, we show the ability to have passive, unidirectional, fluid transport. Tests were carried out with the capillaries in a horizontal configuration. While both capillary geometries produced the desired traits, the triangular chambers showed superior unidirectionality, with no observed back flow, while ``D'' chambers showed back flow under testing conditions. The chambers provided similar flow rates. These types of channel systems will find use in microfluidics, notably in medical, printing, and lab-on-chip applications.

  8. Determination of ammonium in river water and sewage samples by capillary zone electrophoresis with direct UV detection.

    Science.gov (United States)

    Fukushi, Keiichi; Ito, Hideyuki; Kimura, Kenichi; Yokota, Kuriko; Saito, Keiitsu; Chayama, Kenji; Takeda, Sahori; Wakida, Shin-ichi

    2006-02-17

    We developed capillary zone electrophoresis (CZE) with direct UV detection for determination of ammonium in environmental water samples. Ammonium in the samples was partly converted into ammonia in the alkaline background electrolyte (BGE) during migration and was detected by molecular absorption of ammonia at 190 nm in approximately 7 min. The limit of detection (LOD) for ammonium was 0.24 mg/l (as nitrogen) at a signal-to-noise ratio of three. The respective values of the relative standard deviation (RSD) of peak area, peak height, and migration time for ammonium were 2.1, 1.8, and 0.46%. Major alkali and alkaline earth metal ions coexisting in the samples did not interfere with ammonium determination by the proposed method. The proposed method determined ammonium in surface water and sewage samples. The results were compared to those obtained using ion chromatography (IC).

  9. Capillary gas chromatographic separation of organic bases using a pH-adjusted basic water stationary phase.

    Science.gov (United States)

    Darko, Ernest; Thurbide, Kevin B

    2016-09-23

    The use of a pH-adjusted water stationary phase for analyzing organic bases in capillary gas chromatography (GC) is demonstrated. Through modifying the phase to typical values near pH 11.5, it is found that various organic bases are readily eluted and separated. Conversely, at the normal pH 7 operating level, they are not. Sodium hydroxide is found to be a much more stable base than ammonium hydroxide for altering the pH due to the higher volatility and evaporation of the latter. In the basic condition, such analytes are not ionized and are observed to produce good peak shapes even for injected masses down to about 20ng. By comparison, analyses on a conventional non-polar capillary GC column yield more peak tailing and only analyte masses of 1μg or higher are normally observed. Through carefully altering the pH, it is also found that the selectivity between analytes can be potentially further enhanced if their respective pKa values differ sufficiently. The analysis of different pharmaceutical and petroleum samples containing organic bases is demonstrated. Results indicate that this approach can potentially offer unique and beneficial selectivity in such analyses. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Capillary detectors

    International Nuclear Information System (INIS)

    Konijn, J.; Winter, K.; Vilain, P.; Wilquet, G.; Fabre, J.P.; Kozarenko, E.; Kreslo, I.; Goldberg, J.; Hoepfner, K.; Bay, A.; Currat, C.; Koppenburg, P.; Frekers, D.; Wolff, T.; Buontempo, S.; Ereditato, A.; Frenkel, A.; Liberti, B.; Martellotti, G.; Penso, G.; Ekimov, A.; Golovkin, S.; Govorun, V.; Medvedkov, A.; Vasil'chenko, V.

    1998-01-01

    The option for a microvertex detector using glass capillary arrays filled with liquid scintillator is presented. The status of capillary layers development and possible read-out techniques for high rate environment are reported. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  11. [Methods quantitative for determination of water-soluble vitamins in premixes and fortified food products by micellar electrokinetic chromatography on short end of the capillary].

    Science.gov (United States)

    Bogachuk, M N; Bessonov, V V; Perederiaev, O I

    2011-01-01

    It was purposed new technique by micellar electrokinetic chromatography on short end of the capillary (capillary electrophoresis system Agilent 3D CE, DAD, quartz capillary HPCE stndrd cap 56 cm, 50 microm, 50 mM borate buffer pH=9,3, 100 mM sodium dodecil sulfate) for simultaneous determination of water-soluble vitamins (B1, B2, B6, B12, PP, B5, B9, C, B8) in fortified food products and premixes. It was observed on 6 samples of vitamin premixes and 28 samples of fortified food products using this technique. Our findings are consistent with the results of research on certain vitamins, conducted by other methods. The developed technique can be used in analysis of water-soluble vitamins in premixes and fortified food products.

  12. [Fast separation and analysis of water-soluble vitamins in spinach by capillary electrophoresis with high voltage].

    Science.gov (United States)

    Hu, Xiaoqin; You, Huiyan

    2009-11-01

    In capillary electrophoresis, 0-40 kV (even higher) voltage can be reached by a connecting double-model high voltage power supply. In the article, water-soluble vitamins, VB1, VB2, VB6, VC, calcium D-pantothenate, D-biotin, nicotinic acid and folic acid in vegetable, were separated by using the high voltage power supply under the condition of electrolyte water solution as running buffer. The separation conditions, such as voltage, the concentration of buffer and pH value etc. , were optimized during the experiments. The results showed that eight water-soluble vitamins could be baseline separated in 2.2 min at 40 kV applied voltage, 25 mmol/L sodium tetraborate buffer solution (pH 8.8). The water-soluble vitamins in spinach were quantified and the results were satisfied. The linear correlation coefficients of the water-soluble vitamins ranged from 0.9981 to 0.9999. The detection limits ranged from 0.2 to 0.3 mg/L. The average recoveries ranged from 88.0% to 100.6% with the relative standard deviations (RSD) range of 1.15%-4.13% for the spinach samples.

  13. Effect of capillary number on the oil recovery using oil-water emulsion injection in core flooding experiments

    Energy Technology Data Exchange (ETDEWEB)

    Guillen Nunez, Victor Raul; Carvalho, Marcio da Silveira [Pontifical Catholic University of Rio de Janeiro (PUC-Rio), RJ (Brazil). Dept. of Mechanical Engineering], E-mail: msn@puc-rio.br; Basante, Vladimir Alvarado [University of Wyoming, Laramie, WY (United States). Dept. of Chemical/Petroleum Engineering], E-mail: valvard@uwyo.edu

    2010-07-01

    The Water injection flooding is a common method to improve reservoir sweep and pressure maintenance. The heavy-oil-recovery efficiency is in part limited by the high water-to-oil mobility ratio. Several enhanced oil recovery methods are being developed as more efficient alternatives to water flooding. Dispersion injection, in particular oil-water emulsion injection, has been tried with relative success as an enhanced oil recovery method, but the technique is not fully developed or understood. If emulsion injection proves to be an effective EOR method, its use would bring the added benefit of disposing produced water with small oil content that could be modified to serve as the injected oil-water emulsion. The use of such methods requires a detailed analysis of the different flow regimes of emulsions through the porous space of a reservoir rock. If the drop size of the disperse phase is of the same order of magnitude as the pore size, the drops may agglomerate and partially block water flow through pores. This flow regime may be used to control the mobility of the injected liquid, leading to higher recovery factor. We have shown in recent experiments of oil displacement in a sandstone core that, the oil recovery factor could be raised from approximately 40 %, obtained with water injection only, up to approximately 75 % by alternating water and emulsion injection. Although these results clearly show the improvement in the recovery factor, the mechanisms responsible for the phenomenon have not been clearly elucidated. In this work, two sandstone cores were used to demonstrate the effect of flow rate (capillary number) on the mobility control by emulsion injection. Figure 1 shows a schematic representation of the experiment set-up. The experiments show that raising the flow rate by a factor of 10 (0.03 ml/min to 0.3 ml/min), the oil recovered factor decreases considerably. (author)

  14. Salicylic acid determination in estuarine and riverine waters using hollow fiber liquid-phase microextraction and capillary zone electrophoresis.

    Science.gov (United States)

    da Silva, Gilmar Silvério; Lima, Diana L D; Esteves, Valdemar Inocêncio

    2017-06-01

    A low-cost methodology using hollow fiber liquid-phase microextraction (HF-LPME) and capillary zone electrophoresis (CZE) with UV-Vis detector was developed to analyze the salicylic acid (SA) in estuarine and riverine waters. The technique is easy-to-use and rapid, and demands little volume of organic solvent. The extraction was carried out using a polypropylene membrane supporting into octan-1-ol. HF-LPME under optimized conditions (donor solution sample pH 2, acceptor solution pH 14, sample volume 25 mL, fiber length 10 cm, acceptor volume 25 μL, extraction time 3 h and stirring speed 350 rpm) presented high enrichment factor (407 times) and good recovery in real water samples (from 88 to 110%). A limit of detection of 2.6 μg L -1 was achieved using CZE with UV-Vis detector as quantification method. The method was applied to direct quantification of SA in environmental complex estuarine and riverine water matrices.

  15. Observations of electric discharge streamer propagation and capillary oscillations on the surface of air bubbles in water

    Energy Technology Data Exchange (ETDEWEB)

    Sommers, B S; Foster, J E [Department of Nuclear Engineering and Radiological Science, University of Michigan, Ann Arbor, MI, 48109 (United States); Babaeva, N Yu; Kushner, Mark J [Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, 48109 (United States)

    2011-03-02

    The propagation of electric discharge streamers inside bubbles in liquids is of interest for the remediation of toxins in water and plasma-based surgical instruments. The manner of streamer propagation has an important influence on the production of reactive species that are critical to these applications. Streamer propagation along the surface of electrode-attached bubbles of air in water, previously predicted by numerical simulations, has been experimentally imaged using a fast frame-rate camera. The successive pulsing of the streamer discharge inside the bubbles produced oscillations along the air-water interface. Subsequent streamers were observed to closely follow surface distortions induced by such oscillations. The oscillations likely arise from the non-uniform perturbation of the bubble driven by the electric field of the streamer and were found to be consistent with Kelvin's equation for capillary oscillations. For a narrow range of applied voltage pulse frequencies, the oscillation amplitude increased over several pulse periods indicating, potentially, resonant behaviour. We also observed coupling between bubbles wherein oscillations in a second bubble without an internal discharge were induced by the presence of a streamer in a fixed bubble. (fast track communication)

  16. Pressurized capillary electrochromatographic analysis of water-soluble vitamins by combining with on-line concentration technique.

    Science.gov (United States)

    Jia, Li; Liu, Yaling; Du, Yanyan; Xing, Da

    2007-06-22

    A pressurized capillary electrochromatography (pCEC) system was developed for the separation of water-soluble vitamins, in which UV absorbance was used as the detection method and a monolithic silica-ODS column as the separation column. The parameters (type and content of organic solvent in the mobile phase, type and concentration of electrolyte, pH of the electrolyte buffer, applied voltage and flow rate) affecting the separation resolution were evaluated. The combination of two on-line concentration techniques, namely, solvent gradient zone sharpening effect and field-enhanced sample stacking, was utilized to improve detection sensitivity, which proved to be beneficial to enhance the detection sensitivity by enabling the injection of large volumes of samples. Coupling electrokinetic injection with the on-line concentration techniques was much more beneficial for the concentration of positively charged vitamins. Comparing with the conventional injection mode, the enhancement in the detection sensitivities of water-soluble vitamins using the on-line concentration technique is in the range of 3 to 35-fold. The developed pCEC method was applied to evaluate water-soluble vitamins in corns.

  17. Pressure-assisted electrokinetic injection for on-line enrichment in capillary electrophoresis-mass spectrometry: a sensitive method for measurement of ten haloacetic acids in drinking water.

    Science.gov (United States)

    Zhang, Huijuan; Zhu, Jiping; Aranda-Rodriguez, Rocio; Feng, Yong-Lai

    2011-11-07

    Haloacetic acids (HAAs) are by-products of the chlorination of drinking water containing natural organic matter and bromide. A simple and sensitive method has been developed for determination of ten HAAs in drinking water. The pressure-assisted electrokinetic injection (PAEKI), an on-line enrichment technique, was employed to introduce the sample into a capillary electrophoresis (CE)-electrospray ionization-tandem mass spectrometry system (ESI-MS/MS). HAAs were monitored in selected reaction monitoring mode. With 3 min of PAEKI time, the ten major HAAs (HAA10) in drinking water were enriched up to 20,000-fold into the capillary without compromising resolution. A simple solid phase clean-up method has been developed to eliminate the influence of ionic matrices from drinking water on PAEKI. Under conditions optimized for mass spectrometry, PAEKI and capillary electrophoresis, detection limits defined as three times ratio of signal to noise have been achieved in a range of 0.013-0.12 μg L(-1) for ten HAAs in water sample. The overall recoveries for all ten HAAs in drinking water samples were between 76 and 125%. Six HAAs including monochloro- (MCAA), dichloro- (DCAA), trichloro- (TCAA), monobromo- (MBAA), bromochloro- (BCAA), and bromodichloroacetic acids (BDCAA) were found in tap water samples collected. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  18. On hydraulics of capillary tubes

    Directory of Open Access Journals (Sweden)

    N.G. Aloyan

    2016-03-01

    Full Text Available The article considers the laws of motion of water in the capillary tubes, taken as a model for flowing well, on the analogical net count device. For capillary tube the lower limit value of flow rate is empirically determined above which the total hydraulic resistance of the capillary is practically constant. The specificity of the phenomenon is that the regime of motion, by a Reynolds number, for a given flow rate still remains laminar. This circumstance can perplex the specialists, so the author invites them to the scientific debate on the subject of study. Obviously, to identify the resulting puzzle it is necessary to conduct a series of experiments using capillaries of different lengths and diameters and with different values of overpressure. The article states that in tubes with very small diameter the preliminary magnitude of capillary rise of water in the presence of flow plays no role and can be neglected.

  19. Automated Passive Capillary Lysimeters for Estimating Water Drainage in the Vadose Zone

    Science.gov (United States)

    Jabro, J.; Evans, R.

    2009-04-01

    In this study, we demonstrated and evaluated the performance and accuracy of an automated PCAP lysimeters that we designed for in-situ continuous measuring and estimating of drainage water below the rootzone of a sugarbeet-potato-barley rotation under two irrigation frequencies. Twelve automated PCAPs with sampling surface dimensions of 31 cm width * 91 cm long and 87 cm in height were placed 90 cm below the soil surface in a Lihen sandy loam. Our state-of-the-art design incorporated Bluetooth wireless technology to enable an automated datalogger to transmit drainage water data simultaneously every 15 minutes to a remote host and had a greater efficiency than other types of lysimeters. It also offered a significantly larger coverage area (2700 cm2) than similarly designed vadose zone lysimeters. The cumulative manually extracted drainage water was compared with the cumulative volume of drainage water recorded by the datalogger from the tipping bucket using several statistical methods. Our results indicated that our automated PCAPs are accurate and provided convenient means for estimating water drainage in the vadose zone without the need for costly and manually time-consuming supportive systems.

  20. Pore-scale imaging of capillary trapped supercritical CO2 as controlled by water-wet vs. CO2-wet media and grain shapes

    Science.gov (United States)

    Chaudhary, K.; Cardenas, M.; Wolfe, W. W.; Maisano, J. A.; Ketcham, R. A.; Bennett, P.

    2013-12-01

    The capillary trapping of supercritical CO2 (s-CO2) is postulated to comprise up to 90% of permanently trapped CO2 injected during geologic sequestration. Successive s-CO2/brine flooding experiments under reservoir conditions showed that water-wet rounded beads trapped 15% of injected s-CO2 both as clusters and as individual ganglia, whereas CO2¬-wet beads trapped only 2% of the injected s-CO2 as minute pockets in pore constrictions. Angular water-wet grains trapped 20% of the CO2 but flow was affected by preferential flow. Thus, capillary trapping is a viable mechanism for the permanent CO2 storage, but its success is constrained by the media wettability.

  1. Fused silica capillaries with two segments of different internal diameters and inner surface roughnesses prepared by etching with supercritical water and used for volume coupling electrophoresis

    Czech Academy of Sciences Publication Activity Database

    Horká, Marie; Karásek, Pavel; Roth, Michal; Šlais, Karel

    2017-01-01

    Roč. 38, 9-10 (2017), s. 1260-1267 ISSN 0173-0835 R&D Projects: GA ČR(CZ) GA16-03749S; GA MZd(CZ) NV16-29916A Institutional support: RVO:68081715 Keywords : fused silica capillary * supercritical water * volume coupling electrophoresis Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 2.744, year: 2016

  2. Combined effect of capillary barrier and layered slope on water, solute and nanoparticle transfer in an unsaturated soil at lysimeter scale.

    Science.gov (United States)

    Prédélus, Dieuseul; Coutinho, Artur Paiva; Lassabatere, Laurent; Bien, Le Binh; Winiarski, Thierry; Angulo-Jaramillo, Rafael

    2015-10-01

    It is well recognized that colloidal nanoparticles are highly mobile in soils and can facilitate the transport of contaminants through the vadose zone. This work presents the combined effect of the capillary barrier and soil layer slope on the transport of water, bromide and nanoparticles through an unsaturated soil. Experiments were performed in a lysimeter (1×1×1.6m(3)) called LUGH (Lysimeter for Urban Groundwater Hydrology). The LUGH has 15 outputs that identify the temporal and spatial evolution of water flow, solute flux and nanoparticles in relation to the soil surface conditions and the 3D system configuration. Two different soil structures were set up in the lysimeter. The first structure comprises a layer of sand (0-0.2cm, in diameter) 35cm thick placed horizontally above a layer of bimodal mixture also 35cm thick to create a capillary barrier at the interface between the sand and bimodal material. The bimodal material is composed of a mixture 50% by weight of sand and gravel (0.4-1.1cm, in diameter). The second structure, using the same amount of sand and bimodal mixture as the first structure represents an interface with a 25% slope. A 3D numerical model based on Richards equation for flow and the convection dispersion equations coupled with a mechanical module for nanoparticle trapping was developed. The results showed that under the effect of the capillary barrier, water accumulated at the interface of the two materials. The sloped structure deflects flow in contrast to the structure with zero slope. Approximately 80% of nanoparticles are retained in the lysimeter, with a greater retention at the interface of two materials. Finally, the model makes a good reproduction of physical mechanisms observed and appears to be a useful tool for identifying key processes leading to a better understanding of the effect of capillary barrier on nanoparticle transfer in an unsaturated heterogeneous soil. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Rapid analysis of ethanol and water in commercial products using ionic liquid capillary gas chromatography with thermal conductivity detection and/or barrier discharge ionization detection.

    Science.gov (United States)

    Weatherly, Choyce A; Woods, Ross M; Armstrong, Daniel W

    2014-02-26

    Analysis of ethanol and water in consumer products is important in a variety of processes and often is mandated by regulating agencies. A method for the simultaneous quantitation of ethanol and water that is simple, accurate, precise, rapid, and cost-effective is demonstrated. This approach requires no internal standard for the quantitation of both ethanol and water at any/all levels in commercial products. Ionic liquid based gas chromatography (GC) capillary columns are used to obtain a fast analysis with high selectivity and resolution of water and ethanol. Typical run times are just over 3 min. Examination of the response range of water and ethanol with GC, thermal conductivity detection (TCD), and barrier ionization detection (BID) is performed. Quantitation of both ethanol and water in consumer products is accomplished with both TCD and BID GC detectors using a nonlinear calibration. Validation of method accuracy is accomplished by using standard reference materials.

  4. Slope wavenumber spectrum models of capillary and capillary-gravity waves

    Institute of Scientific and Technical Information of China (English)

    贾永君; 张杰; 王岩峰

    2010-01-01

    Capillary and capillary-gravity waves possess a random character, and the slope wavenumber spectra of them can be used to represent mean distributions of wave energy with respect to spatial scale of variability. But simple and practical models of the slope wavenumber spectra have not been put forward so far. In this article, we address the accurate definition of the slope wavenumber spectra of water surface capillary and capillary-gravity waves. By combining the existing slope wavenumber models and using th...

  5. Loss of Propiconazole and Its Four Stereoisomers from the Water Phase of Two Soil-Water Slurries as Measured by Capillary Electrophoresis

    Directory of Open Access Journals (Sweden)

    Rebecca D. Miller

    2011-08-01

    Full Text Available Propiconazole is a chiral fungicide used in agriculture for control of many fungal diseases on a variety of crops. This use provides opportunities for pollution of soil and, subsequently, groundwater. The rate of loss of propiconazole from the water phase of two different soil-water slurries spiked with the fungicide at 50 mg/L was followed under aerobic conditions over five months; the t1/2 was 45 and 51 days for the two soil slurries. To accurately assess environmental and human risk, it is necessary to analyze the separate stereoisomers of chiral pollutants, because it is known that for most such pollutants, both biotransformation and toxicity are likely to be stereoselective. Micellar electrokinetic chromatography (MEKC, the mode of capillary electrophoresis used for analysis of neutral chemicals, was used for analysis of the four propiconazole stereoisomers with time in the water phase of the slurries. MEKC resulted in baseline separation of all stereoisomers, while GC-MS using a chiral column gave only partial separation. The four stereoisomers of propiconazole were lost from the aqueous phase of the slurries at experimentally equivalent rates, i.e., there was very little, if any, stereoselectivity. No loss of propiconazole was observed from the autoclaved controls of either soil, indicating that the loss from active samples was most likely caused by aerobic biotansformation, with a possible contribution by sorption to the non-autoclaved active soils. MEKC is a powerful tool for separation of stereoisomers and can be used to study the fate and transformation kinetics of chiral pesticides in water and soil.

  6. Ultraviolet laser-induced fluorescence detection strategies in capillary electrophoresis: determination of naphthalene sulphonates in river water.

    NARCIS (Netherlands)

    Kok, S.J.; Isberg, I.C.K.; Gooijer, C.; Brinkman, U.A.T.; Velthorst, N.H.

    1998-01-01

    Various UV-laser-induced fluorescence detection strategies for capillary electrophoresis (CE) are compared, i.e. two UV-laser systems (a pulsed laser providing up to 25 mW of tunable emission, applied at 280, 290 and 325 nm, and a continuous wave (cw) laser providing up to 100 mW of 257 nm emission)

  7. Ascensão capilar de água em substratos de coco e de pinus Capillary water rise in coconut and pine bark substrates

    Directory of Open Access Journals (Sweden)

    Carlos Vinicius Garcia Barreto

    2012-01-01

    Full Text Available O uso da irrigação por capilaridade na produção de mudas em viveiros pode trazer vantagens ao uso de água e sua utilização adequada requer o conhecimento da capacidade de ascensão de água no meio de crescimento das raízes, atributo pouco estudado. Para avaliar esta condição fundamental, este trabalho tem como objetivo avaliar a ascensão de água em substratos comerciais de coco e pinus, em dois padrões de tamanho de partículas e em duas condições de umidade, para indicar aquele que possua as melhores características físicas para aplicação na irrigação por capilaridade. Utilizou-se o método de ascensão capilar, com colunas desmontáveis de anéis preenchidas com substratos, avaliando-se os seguintes tempos de contato do fundo da coluna com a lâmina de água: 0,25, 0,5, 1, 2, 4, 8, 16 e 24 horas, com 10 repetições por tempo testado. Pelos resultados, observou-se que a maior ascensão capilar acumulada em 24 horas de ensaio foi obtida para os substratos de textura fina de coco e de pinus. Além disso, a hidrofobia do substrato de coco seco recomenda que as irrigações nesse material devem ter frequências maiores que substratos de pinus, evitando seu secamento. O substrato de pinus, por não apresentar esse comportamento, deve ter turnos de rega mais espaçados, principalmente sob textura fina. Devido à sua maior retenção de água e capacidade de elevação de água quando umedecido, o substrato fino de coco é mais adequado à irrigação por capilaridade em recipientes como tubetes.The capillary irrigation in nursery production could give advantages in water use and its correct application demands knowledge about capillary water rise through root growth media, an attribute poorly studied. This research had as objective to evaluate water capillary rise in commercial pine and coconut substrates for two particle size distributions and two moisture conditions, to indicate the substrate with the best physical

  8. Extraction of water labeled with oxygen 15 during single-capillary transit. Influence of blood pressure, osmolarity, and blood-brain barrier damage

    International Nuclear Information System (INIS)

    Go, K.G.; Lammertsma, A.A.; Paans, A.M.; Vaalburg, W.; Woldring, M.G.

    1981-01-01

    By external detection, the influence of arterial blood pressure (BP), osmolarity, and cold-induced blood-brain barrier damage was assessed on the extraction of water labeled with oxygen 15 during single-capillary transit in the rat. There was an inverse relation between arterial BP and extraction that was attributable to the influence of arterial BP on cerebral blood flow (CBF) and the relation between CBF and extraction. Neither arterial BP nor osmolarity of the injected bolus had any direct effect on extraction of water 15O, signifying that the diffusional exchange component (determined by blood flow) of extraction greatly surpasses the convection flow contribution by hydrostatic or osmotic forces. Damage to the blood-brain barrier did not change its permeability to water

  9. Simultaneous separation of water- and fat-soluble vitamins in isocratic pressure-assisted capillary electrochromatography using a methacrylate-based monolithic column.

    Science.gov (United States)

    Yamada, Hiroki; Kitagawa, Shinya; Ohtani, Hajime

    2013-06-01

    A method of simultaneous separation of water- and fat-soluble vitamins using pressure-assisted CEC with a methacrylate-based capillary monolithic column was developed. In the proposed method, water-soluble vitamins were mainly separated electrophoretically, while fat soluble-ones were separated chromatographically by the interaction with a methacrylate-based monolith. A mixture of six water-soluble and four fat-soluble vitamins was separated simultaneously within 20 min with an isocratic elution using 1 M formic acid (pH 1.9)/acetonitrile (30:70, v/v) containing 10 mM ammonium formate as a mobile phase. When the method was applied to a commercial multivitamin tablet and a spiked one, the vitamins were successfully analyzed, and no influence of the matrix contained in the tablet was observed. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Role of Aquaporin-4 in Airspace-to-Capillary Water Permeability in Intact Mouse Lung Measured by a Novel Gravimetric Method

    Science.gov (United States)

    Song, Yuanlin; Ma, Tonghui; Matthay, Michael A.; Verkman, A.S.

    2000-01-01

    The mammalian peripheral lung contains at least three aquaporin (AQP) water channels: AQP1 in microvascular endothelia, AQP4 in airway epithelia, and AQP5 in alveolar epithelia. In this study, we determined the role of AQP4 in airspace-to-capillary water transport by comparing water permeability in wild-type mice and transgenic null mice lacking AQP1, AQP4, or AQP1/AQP4 together. An apparatus was constructed to measure lung weight continuously during pulmonary artery perfusion of isolated mouse lungs. Osmotically induced water flux (Jv) between the airspace and capillary compartments was measured from the kinetics of lung weight change in saline-filled lungs in response to changes in perfusate osmolality. Jv in wild-type mice varied linearly with osmotic gradient size (4.4 × 10−5 cm3 s−1 mOsm−1) and was symmetric, independent of perfusate osmolyte size, weakly temperature dependent, and decreased 11-fold by AQP1 deletion. Transcapillary osmotic water permeability was greatly reduced by AQP1 deletion, as measured by the same method except that the airspace saline was replaced by an inert perfluorocarbon. Hydrostatically induced lung edema was characterized by lung weight changes in response to changes in pulmonary arterial inflow or pulmonary venous outflow pressure. At 5 cm H2O outflow pressure, the filtration coefficient was 4.7 cm3 s−1 mOsm−1 and reduced 1.4-fold by AQP1 deletion. To study the role of AQP4 in lung water transport, AQP1/AQP4 double knockout mice were generated by crossbreeding of AQP1 and AQP4 null mice. Jv were (cm3 s−1 mOsm−1 × 10−5, SEM, n = 7–12 mice): 3.8 ± 0.4 (wild type), 0.35 ± 0.02 (AQP1 null), 3.7 ± 0.4 (AQP4 null), and 0.25 ± 0.01 (AQP1/AQP4 null). The significant reduction in P f in AQP1 vs. AQP1/AQP4 null mice was confirmed by an independent pleural surface fluorescence method showing a 1.6 ± 0.2-fold (SEM, five mice) reduced P f in the AQP1/AQP4 double knockout mice vs. AQP1 null mice. These results establish

  11. Development of a New Microextraction Fiber Combined to On-Line Sample Stacking Capillary Electrophoresis UV Detection for Acidic Drugs Determination in Real Water Samples

    Science.gov (United States)

    Araujo, Lilia; Prieto, Avismelsi; Navalón, Alberto; Vílchez, José Luis; Valera, Paola; Zambrano, Ana; Dugas, Vincent

    2017-01-01

    A new analytical method coupling a (off-line) solid-phase microextraction with an on-line capillary electrophoresis (CE) sample enrichment technique was developed for the analysis of ketoprofen, naproxen and clofibric acid from water samples, which are known as contaminants of emerging concern in aquatic environments. New solid-phase microextraction fibers based on physical coupling of chromatographic supports onto epoxy glue coated needle were studied for the off-line preconcentration of these micropollutants. Identification and quantification of such acidic drugs were done by capillary zone electrophoresis (CZE) using ultraviolet diode array detection (DAD). Further enhancement of concentration sensitivity detection was achieved by on-line CE “acetonitrile stacking” preconcentration technique. Among the eight chromatographic supports investigated, Porapak Q sorbent showed higher extraction and preconcentration capacities. The screening of parameters that influence the microextraction process was carried out using a two-level fractional factorial. Optimization of the most relevant parameters was then done through a surface response three-factor Box-Behnken design. The limits of detection and limits of quantification for the three drugs ranged between 0.96 and 1.27 µg∙L−1 and 2.91 and 3.86 µg∙L−1, respectively. Recovery yields of approximately 95 to 104% were measured. The developed method is simple, precise, accurate, and allows quantification of residues of these micropollutants in Genil River water samples using inexpensive fibers. PMID:28686186

  12. Pore-scale modeling of capillary trapping in water-wet porous media: A new cooperative pore-body filling model

    Science.gov (United States)

    Ruspini, L. C.; Farokhpoor, R.; Øren, P. E.

    2017-10-01

    We present a pore-network model study of capillary trapping in water-wet porous media. The amount and distribution of trapped non-wetting phase is determined by the competition between two trapping mechanisms - snap-off and cooperative pore-body filling. We develop a new model to describe the pore-body filling mechanism in geologically realistic pore-networks. The model accounts for the geometrical characteristics of the pore, the spatial location of the connecting throats and the local fluid topology at the time of the displacement. We validate the model by comparing computed capillary trapping curves with published data for four different water-wet rocks. Computations are performed on pore-networks extracted from micro-CT images and process-based reconstructions of the actual rocks used in the experiments. Compared with commonly used stochastic models, the new model describes more accurately the experimental measurements, especially for well connected porous systems where trapping is controlled by subtleties of the pore structure. The new model successfully predicts relative permeabilities and residual saturation for Bentheimer sandstone using in-situ measured contact angles as input to the simulations. The simulated trapped cluster size distributions are compared with predictions from percolation theory.

  13. Development of a New Microextraction Fiber Combined to On-Line Sample Stacking Capillary Electrophoresis UV Detection for Acidic Drugs Determination in Real Water Samples

    Directory of Open Access Journals (Sweden)

    Maria Espina-Benitez

    2017-07-01

    Full Text Available A new analytical method coupling a (off-line solid-phase microextraction with an on-line capillary electrophoresis (CE sample enrichment technique was developed for the analysis of ketoprofen, naproxen and clofibric acid from water samples, which are known as contaminants of emerging concern in aquatic environments. New solid-phase microextraction fibers based on physical coupling of chromatographic supports onto epoxy glue coated needle were studied for the off-line preconcentration of these micropollutants. Identification and quantification of such acidic drugs were done by capillary zone electrophoresis (CZE using ultraviolet diode array detection (DAD. Further enhancement of concentration sensitivity detection was achieved by on-line CE “acetonitrile stacking” preconcentration technique. Among the eight chromatographic supports investigated, Porapak Q sorbent showed higher extraction and preconcentration capacities. The screening of parameters that influence the microextraction process was carried out using a two-level fractional factorial. Optimization of the most relevant parameters was then done through a surface response three-factor Box-Behnken design. The limits of detection and limits of quantification for the three drugs ranged between 0.96 and 1.27 µg∙L−1 and 2.91 and 3.86 µg∙L−1, respectively. Recovery yields of approximately 95 to 104% were measured. The developed method is simple, precise, accurate, and allows quantification of residues of these micropollutants in Genil River water samples using inexpensive fibers.

  14. Development of a New Microextraction Fiber Combined to On-Line Sample Stacking Capillary Electrophoresis UV Detection for Acidic Drugs Determination in Real Water Samples.

    Science.gov (United States)

    Espina-Benitez, Maria; Araujo, Lilia; Prieto, Avismelsi; Navalón, Alberto; Vílchez, José Luis; Valera, Paola; Zambrano, Ana; Dugas, Vincent

    2017-07-07

    A new analytical method coupling a (off-line) solid-phase microextraction with an on-line capillary electrophoresis (CE) sample enrichment technique was developed for the analysis of ketoprofen, naproxen and clofibric acid from water samples, which are known as contaminants of emerging concern in aquatic environments. New solid-phase microextraction fibers based on physical coupling of chromatographic supports onto epoxy glue coated needle were studied for the off-line preconcentration of these micropollutants. Identification and quantification of such acidic drugs were done by capillary zone electrophoresis (CZE) using ultraviolet diode array detection (DAD). Further enhancement of concentration sensitivity detection was achieved by on-line CE "acetonitrile stacking" preconcentration technique. Among the eight chromatographic supports investigated, Porapak Q sorbent showed higher extraction and preconcentration capacities. The screening of parameters that influence the microextraction process was carried out using a two-level fractional factorial. Optimization of the most relevant parameters was then done through a surface response three-factor Box-Behnken design. The limits of detection and limits of quantification for the three drugs ranged between 0.96 and 1.27 µg∙L -1 and 2.91 and 3.86 µg∙L -1 , respectively. Recovery yields of approximately 95 to 104% were measured. The developed method is simple, precise, accurate, and allows quantification of residues of these micropollutants in Genil River water samples using inexpensive fibers.

  15. Weight-controlled capillary viscometer

    Science.gov (United States)

    Digilov, Rafael M.; Reiner, M.

    2005-11-01

    The draining of a water column through a vertical discharge capillary tube is examined with the aid of a force sensor. The change of the mass of the liquid in the column with time is found to be not purely exponential as implied by Poiseuille's law. Using observed residuals associated with a kinetic energy correction, an approximate formula for the mass as a function of time is derived and excellent agreement with experimental data is attained. These results are verified by a viscosity test of distilled water at room temperature. A simple and inexpensive weight-controlled capillary viscometer is proposed that is especially suitable for undergraduate physics and chemistry laboratories.

  16. Impacts on oil recovery from capillary pressure and capillary heterogeneities

    Energy Technology Data Exchange (ETDEWEB)

    Bognoe, Thomas

    2008-07-01

    The main conclusions drawn from this thesis are; 7 scientific papers are published on a broad variety of subjects, and describes in detail the experiments and research treated in this thesis. Scientific research has been performed, investigating the subjects of capillary pressure and capillary heterogeneities from different angles. This thesis discusses the findings in this study and aims to illustrate the benefits of the results obtained for further development of other experiments, and/or even the industrial benefits in field development. The methods for wettability alteration have developed throughout the work. From producing heterogeneous wettability alterations, the methods have improved to giving both radial and lateral uniform wettability alterations, which also remains unaltered throughout the duration of the experimental work. The alteration of wettability is dependent on initial water saturation, flow rate, aging time and crude oil composition. Capillary pressure and relative permeability curves have been measured for core plugs at different wettabilities using conventional centrifuge methods. The trends observed are mostly consistent with theory. The production mechanisms of strongly and moderately water wet chalk has been investigated. At strongly water wet conditions in fractured chalk; the flow is governed by capillary forces, showing strong impact from the fractures. At moderately water wet conditions, the impact of the fractures are absent, and a dispersed water front is observed during the displacement. The oil recovery is about the same, at the two wettabilities. Fracture crossing mechanisms at the same wettability conditions have been mapped. And the observations are consistent with those of the water floods. During strongly water wet displacement, the fracture crossing is occurring once the inlet core has reached endpoint of spontaneous imbibition. At moderately water wet conditions the fracture crossing is less abrupt, and creation of wetting

  17. Unilateral NMR: a Noninvasive Tool for Monitoring In Situ the Effectiveness of Intervention to Reduce the Capillary Raise of Water in an Ancient Deteriorated Wall Painting

    Directory of Open Access Journals (Sweden)

    Valeria Di Tullio

    2012-01-01

    Full Text Available Portable unilateral NMR was used to quantitatively map in a fully noninvasive way the moisture distribution in an ancient deteriorated wall painting before and after an intervention to reduce the capillary raise of water through the wall. Maps obtained at a depth of 0.5 cm clearly showed the path of the capillary raise and indicated that, after the intervention, the moisture level was reduced. Maps obtained by measuring the first layers of the wall painting were affected by the critical environmental conditions of the second hypogeous level of St. Clement Basilica, Rome, and by the presence of salts efflorescence and encrustations on the surface of the wall painting. The morphology and the elemental composition of salts investigated by SEM-EDS indicated that efflorescences and encrustations were mostly constituted of gypsum and calcite. The presence of these salts is explained with the presence of high concentration of carbon dioxide and sulphur-rich particles due to pollution which, along with the high-moisture level and the extremely feeble air circulation, cause recarbonation and sulphation processes on the plaster surface.

  18. Determination of diffusion coefficients of carbon dioxide in water between 268 and 473 K in a high-pressure capillary optical cell with in situ Raman spectroscopic measurements

    Science.gov (United States)

    Lu, Wanjun; Guo, Huirong; Chou, I.-Ming; Burruss, R.C.; Li, Lanlan

    2013-01-01

    Accurate values of diffusion coefficients for carbon dioxide in water and brine at reservoir conditions are essential to our understanding of transport behavior of carbon dioxide in subsurface pore space. However, the experimental data are limited to conditions at low temperatures and pressures. In this study, diffusive transfer of carbon dioxide in water at pressures up to 45 MPa and temperatures from 268 to 473 K was observed within an optical capillary cell via time-dependent Raman spectroscopy. Diffusion coefficients were estimated by the least-squares method for the measured variations in carbon dioxide concentration in the cell at various sample positions and time. At the constant pressure of 20 MPa, the measured diffusion coefficients of carbon dioxide in water increase with increasing temperature from 268 to 473 K. The relationship between diffusion coefficient of carbon dioxide in water [D(CO2) in m2/s] and temperature (T in K) was derived with Speedy–Angell power-law approach as: D(CO2)=D0[T/Ts-1]m where D0 = 13.942 × 10−9 m2/s, Ts = 227.0 K, and m = 1.7094. At constant temperature, diffusion coefficients of carbon dioxide in water decrease with pressure increase. However, this pressure effect is rather small (within a few percent).

  19. Effect of surfactant species and electrophoretic medium composition on the electrophoretic behavior of neutral and water-insoluble linear synthetic polymers in nonaqueous capillary zone electrophoresis.

    Science.gov (United States)

    Fukai, Nao; Kitagawa, Shinya; Ohtani, Hajime

    2017-07-01

    We have recently demonstrated the separation of neutral and water-insoluble linear synthetic polymers in nonaqueous capillary zone electrophoresis (NACZE) using a cationic surfactant of cetyltrimethylammonium chloride (CTAC). In this study, eight ionic surfactants were investigated for the separation of four synthetic polymers (polystyrene, polymethylmethacrylates, polybutadiene, and polycarbonate); only three surfactants (CTAC, dimethyldioctadecylammonium bromide, and sodium dodecylsulfate) caused their separation. The order of the interaction between the polymers and the surfactants depended on both the surfactant species and the composition of the electrophoretic medium. Their investigation revealed that the separation is majorly affected by the hydrophobic interactions between the polymers and the ionic surfactants. In addition, the electrophoretic behavior of polycarbonate suggested that electrostatic interaction also affects the selectivity of the polymers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. [Matrix effect and application of field-amplified sample injection in the analysis of four tetracyclines in waters by capillary electrohoresis].

    Science.gov (United States)

    2014-08-01

    The system abilities of two chromatographic techniques, capillary electrophoresis (CE) and high performance liquid chromatography (HPLC), were compared for the analysis of four tetracyclines (tetracycline, chlorotetracycline, oxytetracycline and doxycycline). The pH, concentration of background electrolyte (BGE) were optimized for the analysis of the standard mixture sample, meanwhile, the effects of separation voltage and water matrix (pH value and hardness) effects were investigated. In hydrodynamic injection (HDI) mode, a good quantitative linearity and baseline separation within 9. 0 min were obtained for the four tetracyclines at the optimal conditions; the analytical time was about half of that of HPLC. The limits of detection (LODs) were in the range of 0. 28 - 0. 62 mg/L, and the relative standard deviations (RSDs) (n= 6) of migration time and peak area were 0. 42% - 0. 56% and 2. 24% - 2. 95%, respectively. The obtained recoveries spiked in tap water and fishpond water were at the ranges of 96. 3% - 107. 2% and 87. 1% - 105. 2%, respectively. In addition, the stacking method, field-amplified sample injection (FASI), was employed to improve the sensitivity, and the LOD was down to the range of 17.8-35.5 μg/L. With FASI stacking, the RSDs (n=6) of migration time and peak area were 0. 85%-0. 95% and 1. 69%-3.43%, respectively. Due to the advantages of simple sample pretreatment and fast speed, CE is promising in the analysis of the antibiotics in environmental water.

  1. Capillary electrophoresis-driven synthesis of water-soluble CdTe quantum dots in nanoliter scale

    Science.gov (United States)

    Nejdl, Lukas; Hynek, David; Adam, Vojtech; Vaculovicova, Marketa

    2018-04-01

    ‘Green nanotechnology’ is a term used for the design of nanomaterials and processes that reduce or eliminate the use and/or generation of hazardous substances. In this paper, a capillary electrophoresis (CE)-driven synthesis of CdTe quantum dots (QDs) and their subsequent conjugation with a metal-binding protein metallothionein (isofom MT1) is reported. Even though the toxic materials (cadmium and potassium borohydride) were used for synthesis, the proposed method can be labeled as ‘environmentally friendly’ because the whole process (synthesis of QDs and MT1 conjugation) was carried out under mild conditions: ultra-low volume (nanoliter scale), relatively low temperature (50 °C), atmospheric pressure, and completed in a short time (under 90 s). Prepared QDs were also characterized by classical fluorescence spectroscopy and transmission electron microscopy. This study opens up new possibilities for the utilization of classical CE in the synthesis of nanoparticles and on-line labeling of biomolecules in the nanoliter scale in short period of time.

  2. Speciation of organotin compounds in waters and marine sediments using purge-and-trap capillary gas chromatography with atomic emission detection

    International Nuclear Information System (INIS)

    Campillo, Natalia; Aguinaga, Nerea; Vin-tilde as, Pilar; Lopez-Garcia, Ignacio; Hernandez-Cordoba, Manuel

    2004-01-01

    A procedure for the simultaneous determination of six organotin compounds, including methyl-, butyl- and phenyltins, in waters and marine sediments is developed. The analytes were leached from the solid samples into an acetic acid:methanol mixture by using an ultrasonic probe. The organotins were derivatized with sodium tetraethylborate (NaBEt 4 ) in the aqueous phase, stripped by a flow of helium, pre-concentrated in a trap and thermally desorbed. This was followed by capillary gas chromatography with microwave-induced plasma atomic emission spectrometry as the detection system (GC-AED). Each chromatographic run took 22 min, including the purge time. Calibration curves were obtained by plotting peak area versus concentration and the correlation coefficients for linear calibration were at least 0.9991. Detection limits ranged from 11 to 50 ng Sn l -1 for tributyltin and tetramethyltin, respectively. The seawater samples analyzed contained variable concentrations of mono-, di- and tributyl- and monophenyltin, ranging from 0.05 to 0.48 μg Sn l -1 , depending on the compound. Some of the sediments analyzed contained concentrations of dibutyl- and tributyltin of between 6.0 and 13.0 ng Sn g -1 . Analysis of the certified reference material PACS-2, as well as of spiked water and sediment samples showed the accuracy of the method. The proposed method is selective and reproducible, and is considered suitable for monitoring organotin compounds in water and sediment samples

  3. Speciation of organotin compounds in waters and marine sediments using purge-and-trap capillary gas chromatography with atomic emission detection

    Energy Technology Data Exchange (ETDEWEB)

    Campillo, Natalia [Department of Analytical Chemistry, Faculty of Chemistry, University of Murcia, E-30071 Murcia (Spain); Aguinaga, Nerea [Department of Analytical Chemistry, Faculty of Chemistry, University of Murcia, E-30071 Murcia (Spain); Vin-tilde as, Pilar [Department of Analytical Chemistry, Faculty of Chemistry, University of Murcia, E-30071 Murcia (Spain); Lopez-Garcia, Ignacio [Department of Analytical Chemistry, Faculty of Chemistry, University of Murcia, E-30071 Murcia (Spain); Hernandez-Cordoba, Manuel [Department of Analytical Chemistry, Faculty of Chemistry, University of Murcia, E-30071 Murcia (Spain)]. E-mail: hcordoba@um.es

    2004-11-08

    A procedure for the simultaneous determination of six organotin compounds, including methyl-, butyl- and phenyltins, in waters and marine sediments is developed. The analytes were leached from the solid samples into an acetic acid:methanol mixture by using an ultrasonic probe. The organotins were derivatized with sodium tetraethylborate (NaBEt{sub 4}) in the aqueous phase, stripped by a flow of helium, pre-concentrated in a trap and thermally desorbed. This was followed by capillary gas chromatography with microwave-induced plasma atomic emission spectrometry as the detection system (GC-AED). Each chromatographic run took 22 min, including the purge time. Calibration curves were obtained by plotting peak area versus concentration and the correlation coefficients for linear calibration were at least 0.9991. Detection limits ranged from 11 to 50 ng Sn l{sup -1} for tributyltin and tetramethyltin, respectively. The seawater samples analyzed contained variable concentrations of mono-, di- and tributyl- and monophenyltin, ranging from 0.05 to 0.48 {mu}g Sn l{sup -1}, depending on the compound. Some of the sediments analyzed contained concentrations of dibutyl- and tributyltin of between 6.0 and 13.0 ng Sn g{sup -1}. Analysis of the certified reference material PACS-2, as well as of spiked water and sediment samples showed the accuracy of the method. The proposed method is selective and reproducible, and is considered suitable for monitoring organotin compounds in water and sediment samples.

  4. Multiple capillary biochemical analyzer

    Science.gov (United States)

    Dovichi, N.J.; Zhang, J.Z.

    1995-08-08

    A multiple capillary analyzer allows detection of light from multiple capillaries with a reduced number of interfaces through which light must pass in detecting light emitted from a sample being analyzed, using a modified sheath flow cuvette. A linear or rectangular array of capillaries is introduced into a rectangular flow chamber. Sheath fluid draws individual sample streams through the cuvette. The capillaries are closely and evenly spaced and held by a transparent retainer in a fixed position in relation to an optical detection system. Collimated sample excitation radiation is applied simultaneously across the ends of the capillaries in the retainer. Light emitted from the excited sample is detected by the optical detection system. The retainer is provided by a transparent chamber having inward slanting end walls. The capillaries are wedged into the chamber. One sideways dimension of the chamber is equal to the diameter of the capillaries and one end to end dimension varies from, at the top of the chamber, slightly greater than the sum of the diameters of the capillaries to, at the bottom of the chamber, slightly smaller than the sum of the diameters of the capillaries. The optical system utilizes optic fibers to deliver light to individual photodetectors, one for each capillary tube. A filter or wavelength division demultiplexer may be used for isolating fluorescence at particular bands. 21 figs.

  5. Ion-pair in-tube solid-phase microextraction and capillary liquid chromatography using a titania-based column: application to the specific lauralkonium chloride determination in water.

    Science.gov (United States)

    Prieto-Blanco, M C; Moliner-Martínez, Y; López-Mahía, P; Campíns-Falcó, P

    2012-07-27

    A quick, miniaturized and on-line method has been developed for the determination in water of the predominant homologue of benzalkonium chloride, dodecyl dimethyl benzyl ammonium chloride or lauralkonium chloride (C(12)-BAK). The method is based on the formation of an ion-pair in both in-tube solid-phase microextraction (IT-SPME) and capillary liquid chromatography. The IT-SPME optimization required the study of the length and nature of the stationary phase of capillary and the processed sample volume. Because to the surfactant character of the analyte both, the extracting and replacing solvents, have played a decisive role in the IT-SPME optimized procedure. Conditioning the capillary with the mobile phase which contains the counter ion (acetate), using an organic additive (tetrabutylammonium chloride) added to the sample and a mixture water/methanol as replacing solvent (processed just before the valve is switched to the inject position), allowed to obtain good precision of the retention time and a narrow peak for C(12)-BAK. A reversed-phase capillary based TiO(2) column and a mobile phase containing ammonium acetate at pH 5.0 for controlling the interactions of cationic surfactant with titania surface were proposed. The optimized procedure provided adequate linearity, accuracy and precision at the concentrations interval of 1.5-300 μg L(-1) .The limit of detection (LOD) was 0.5 μg L(-1) using diode array detection (DAD). The applicability of proposed IT-SPME-capillary LC method has been assessed in several water samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Intramedullary capillary haemangioma.

    LENUS (Irish Health Repository)

    Kelleher, T

    2012-02-03

    Intramedullary capillary haemangioma is extremely rare and only four cases have been previously reported. We describe a further case, outlining the clinical, radiological, surgical and pathological features.

  7. Analysis of major histocompatibility complex class II gene in water voles using capillary electrophoresis-single stranded conformation polymorphism

    Czech Academy of Sciences Publication Activity Database

    Bryja, Josef; Galan, M.; Charbonnel, N.; Cosson, J.-F.

    2005-01-01

    Roč. 5, č. 1 (2005), s. 173-176 ISSN 1471-8278 Institutional research plan: CEZ:AV0Z6093917 Keywords : water vole * population genetics Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.219, year: 2005

  8. Tilting oil-water contact in the chalk of Tyra Field as interpreted from capillary pressure data

    DEFF Research Database (Denmark)

    Fabricius, Ida Lykke; Rana, M.A.

    2010-01-01

    The Tyra Field in the central North Sea is located in Palaeogene and Upper Cretaceous chalk. It contains a natural gas zone underlain by an oil leg. Based on analysis of logs and core data from ten wells drilled prior to the field being put into production, normalized water saturation depth-trend...... inequilibriumin the aquifer following tectonic tilting....

  9. Enthalpy and interfacial free energy changes of water capillary condensed in mesoporous silica, MCM-41 and SBA-15.

    Science.gov (United States)

    Kittaka, Shigeharu; Ishimaru, Shinji; Kuranishi, Miki; Matsuda, Tomoko; Yamaguchi, Toshio

    2006-07-21

    The effect of confinement on the solid-liquid phase transitions of water was studied by using DSC and FT-IR measurements. Enthalpy changes upon melting of frozen water in MCM-41 and SBA-15 were determined as a function of pore size and found to decrease with decreasing pore size. The melting point also decreased almost monotonically with a decrease in pore size. Analysis of the Gibbs-Thomson relation on the basis of the thermodynamic data showed that there were two stages of interfacial free energy change after the constant region, i.e., below a pore size of 6.0 nm: a gradual decrease down to 3.4 nm and another decrease after a small jump upward. This fact demonstrates that the simple Gibbs-Thomson relation, i.e., a linear relation between the melting point change and the inverse pore size, is limited to the range not far from the melting point of bulk water. FT-IR measurements suggest that the decrease in enthalpy change and interfacial free energy change with decreasing pore size reflect the similarity of the structures of both liquid and solid phases of water in smaller pores at lower temperatures.

  10. In situ analysis of proteins at high temperatures mediated by capillary-flow hydrothermal UV-vis spectrophotometer with a water-soluble chromogenic reagent.

    Science.gov (United States)

    Kawamura, Kunio; Nagayoshi, Hiroki; Yao, Toshio

    2010-05-14

    In situ monitoring of quantities, interactions, and conformations of proteins is essential for the study of biochemistry under hydrothermal environments and the analysis of hyperthermophilic organisms in natural hydrothermal systems on Earth. We have investigated the potential of a capillary-flow hydrothermal UV-vis spectrophotometer (CHUS) for performing in situ measurements of proteins and determining their behavior at extremely high temperatures, in combination with a chromogenic reagents probe, which interacts with the proteins. The spectral shift obtained using a combination of water-soluble porphyrin (TPPS) and bovine serum albumin (BSA) was the best among the spectral shifts obtained using different combinations of chromogenic reagents and proteins. The association behavior of TPPS with BSA was investigated in detail using CHUS at temperatures up to 175 degrees C and the association constant (K(ass)) of TPPS with BSA was successfully determined at temperatures up to 100 degrees C. The lnK(ass) values were inversely proportional to the T(-1) values in the temperature range 50-100 degrees C. These analyses showed for the first time that the decrease of association of TPPS with BSA is due to the conformational change, fragmentation, and/or denaturing of BSA rather than the decrease of the hydrophobic association between TPPS and BSA. This study conclusively demonstrates the usability of the CHUS system with a chromogenic reagent as an in situ detection and measurement system for thermostable proteins at extremely high temperatures. Copyright 2010 Elsevier B.V. All rights reserved.

  11. Measurement of Capillary Radius and Contact Angle within Porous Media.

    Science.gov (United States)

    Ravi, Saitej; Dharmarajan, Ramanathan; Moghaddam, Saeed

    2015-12-01

    The pore radius (i.e., capillary radius) and contact angle determine the capillary pressure generated in a porous medium. The most common method to determine these two parameters is through measurement of the capillary pressure generated by a reference liquid (i.e., a liquid with near-zero contact angle) and a test liquid. The rate of rise technique, commonly used to determine the capillary pressure, results in significant uncertainties. In this study, we utilize a recently developed technique for independently measuring the capillary pressure and permeability to determine the equivalent minimum capillary radii and contact angle of water within micropillar wick structures. In this method, the experimentally measured dryout threshold of a wick structure at different wicking lengths is fit to Darcy's law to extract the maximum capillary pressure generated by the test liquid. The equivalent minimum capillary radii of different wick geometries are determined by measuring the maximum capillary pressures generated using n-hexane as the working fluid. It is found that the equivalent minimum capillary radius is dependent on the diameter of pillars and the spacing between pillars. The equivalent capillary radii of micropillar wicks determined using the new method are found to be up to 7 times greater than the current geometry-based first-order estimates. The contact angle subtended by water at the walls of the micropillars is determined by measuring the capillary pressure generated by water within the arrays and the measured capillary radii for the different geometries. This mean contact angle of water is determined to be 54.7°.

  12. Pre-concentration and separation of bacteria by volume coupling electrophoresis on supercritical water-etched fused silica capillary with two segments of different internal diameters and inner surface roughnesses

    Czech Academy of Sciences Publication Activity Database

    Horká, Marie; Karásek, Pavel; Roth, Michal; Růžička, F.

    2018-01-01

    Roč. 410, č. 1 (2018), s. 167-175 ISSN 1618-2642 R&D Projects: GA MV(CZ) VI20172020069; GA ČR(CZ) GA16-03749S; GA MZd(CZ) NV16-29916A Keywords : fused silica capillary * volume coupling electrophoresis * supercritical water * blood Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 3.431, year: 2016

  13. Pre-concentration and separation of bacteria by volume coupling electrophoresis on supercritical water-etched fused silica capillary with two segments of different internal diameters and inner surface roughnesses

    Czech Academy of Sciences Publication Activity Database

    Horká, Marie; Karásek, Pavel; Roth, Michal; Růžička, F.

    2018-01-01

    Roč. 410, č. 1 (2018), s. 167-175 ISSN 1618-2642 R&D Projects: GA MV(CZ) VI20172020069; GA ČR(CZ) GA16-03749S; GA MZd(CZ) NV16-29916A Keywords : fused silica capillary * volume coupling electrophoresis * supercritical water * blood Subject RIV: CB - Analytical Chemistry , Separation OBOR OECD: Analytical chemistry Impact factor: 3.431, year: 2016

  14. Design of Capillary Flows with Spatially Graded Porous Films

    Science.gov (United States)

    Joung, Young Soo; Figliuzzi, Bruno Michel; Buie, Cullen

    2013-11-01

    We have developed a new capillary tube model, consisting of multi-layered capillary tubes oriented in the direction of flow, to predict capillary speeds on spatially graded porous films. Capillary flows through thin porous media have been widely utilized for small size liquid transport systems. However, for most media it is challenging to realize arbitrary shapes and spatially functionalized micro-structures with variable flow properties. Therefore, conventional media can only be used for capillary flows obeying Washburn's equation and the modifications thereof. Given this background, we recently developed a method called breakdown anodization (BDA) to produce highly wetting porous films. The resulting surfaces show nearly zero contact angles and fast water spreading speed. Furthermore, capillary pressure and spreading diffusivity can be expressed as functions of capillary height when customized electric fields are used in BDA. From the capillary tube model, we derived a general capillary flow equation of motion in terms of capillary pressure and spreading diffusivity. The theoretical model shows good agreement with experimental capillary flows. The study will provide novel design methodologies for paper-based microfluidic devices.

  15. Depth dependent microbial carbon use efficiency in the capillary fringe as affected by water table fluctuations in a column incubation experiment

    Science.gov (United States)

    Pronk, G. J.; Mellage, A.; Milojevic, T.; Smeaton, C. M.; Rezanezhad, F.; Van Cappellen, P.

    2017-12-01

    Microbial growth and turnover of soil organic carbon (SOC) depend on the availability of electron donors and acceptors. The steep geochemical gradients in the capillary fringe between the saturated and unsaturated zones provide hotspots of soil microbial activity. Water table fluctuations and the associated drying and wetting cycles within these zones have been observed to lead to enhanced turnover of SOC and adaptation of the local microbial communities. To improve our understanding of SOC degradation under changing moisture conditions, we carried out an automated soil column experiment with integrated of hydro-bio-geophysical monitoring under both constant and oscillating water table conditions. An artificial soil mixture composed of quartz sand, montmorillonite, goethite and humus was used to provide a well-defined system. This material was inoculated with a microbial community extracted from a forested riparian zone. The soils were packed into 6 columns (60 cm length and 7.5 cm inner diameter) to a height of 45 cm; and three replicate columns were incubated under constant water table while another three were saturated and drained monthly. The initial soil development, carbon cycling and microbial community development were then characterized during 10 months of incubation. This system provides an ideal artificial gradient from the saturated to the unsaturated zone to study soil development from initially homogeneous materials and the same microbial community composition under controlled conditions. Depth profiles of SOC and microbial biomass after 329 days of incubation showed a depletion of carbon in the transition drying and wetting zone that was not associated with higher accumulation of microbial biomass, indicating a lower carbon use efficiency of the microbial community established within the water table fluctuation zone. This was supported by a higher ATP to microbial biomass carbon ratio within the same zone. The findings from this study highlight the

  16. Nasal Lobular Capillary Hemangioma

    Directory of Open Access Journals (Sweden)

    Prashant Patil

    2013-01-01

    Full Text Available Nasal lobular capillary hemangioma is a rare benign tumor of the paranasal sinuses. This lesion is believed to grow rapidly in size over time. The exact etiopathogenesis is still a dilemma. We discuss a case of nasal lobular capillary hemangioma presenting with a history of epistaxis. Contrast enhanced computed tomography of paranasal sinuses revealed an intensely enhancing soft-tissue mass in the left nasal cavity and left middle and inferior meati with no obvious bony remodeling or destruction. We present imaging and pathologic features of nasal lobular capillary hemangioma and differentiate it from other entities like nasal angiofibroma.

  17. The profile of a capillary liquid bridge between solid surfaces

    NARCIS (Netherlands)

    van Honschoten, J.W.; Tas, Niels Roelof; Elwenspoek, Michael Curt

    2010-01-01

    Scanning force microscopy, such as atomic force microscopy (AFM) is complicated by the capillary force of a water meniscus formed in air between the probe tip and the sample. This small liquid bridge between the hydrophilic sample and the sharp AFM tip can be formed by capillary condensation from

  18. Potential of capillary electrophoresis for the profiling of propolis

    NARCIS (Netherlands)

    Hilhorst, M.J; Somsen, G.W; de Jong, G.J.

    1998-01-01

    The usefulness of capillary electrophoresis (CE) with diode array detection for the profiling of Propolis, a hive product, is investigated. Water extracts of Propolis were analyzed with both capillary zone electrophoresis (CZE) at pH 7.0 and 9.3, and micellar electrokinetic chromatography (MEKC)

  19. QUANTITATIVE DETERMINATION OF CHIRAL DICHLORPROP AND MECOPROP ENANTIOMERS IN DRINKING AND SURFACE WATERS BY SOLID-PHASE EXTRACTION AND CAPILLARY ELECTROPHORESIS

    Czech Academy of Sciences Publication Activity Database

    Tříska, Jan; Vrchotová, Naděžda

    2002-01-01

    Roč. 11, č. 7 (2002), s. 332-336 ISSN 1018-4619 Institutional research plan: CEZ:AV0Z6087904 Keywords : capillary electrophoresis * solid-phase extraction * chiral herbicides Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 0.309, year: 2002

  20. New methodology for capillary electrophoresis with ESI-MS detection: Electrophoretic focusing on inverse electromigration dispersion gradient. High-sensitivity analysis of sulfonamides in waters

    Czech Academy of Sciences Publication Activity Database

    Malá, Zdeňka; Gebauer, Petr; Boček, Petr

    2016-01-01

    Roč. 935, SEP (2016), s. 249-257 ISSN 0003-2670 R&D Projects: GA ČR(CZ) GA16-09135S Institutional support: RVO:68081715 Keywords : electrophoretic focusing * CE-ESI-MS * capillary electrophoresis Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.950, year: 2016

  1. Loss of Propiconazole and its Four Stereoisomers from the Water Phase of Two Soil-Water Slurries as Measured by Capillary Electrophoresis

    Science.gov (United States)

    Propiconazole is a chiral fungicide used in agriculture for control of many fungal diseases on a variety of crops. This use provides opportunities for pollution of soil and, subsequently, groundwater. The rate of loss of propiconazole from the water phase of two different soil-wa...

  2. Colloid mobilization and transport during capillary fringe fluctuations.

    Science.gov (United States)

    Aramrak, Surachet; Flury, Markus; Harsh, James B; Zollars, Richard L

    2014-07-01

    Capillary fringe fluctuations due to changing water tables lead to displacement of air-water interfaces in soils and sediments. These moving air-water interfaces can mobilize colloids. We visualized colloids interacting with moving air-water interfaces during capillary fringe fluctuations by confocal microscopy. We simulated capillary fringe fluctuations in a glass-bead-filled column. We studied four specific conditions: (1) colloids suspended in the aqueous phase, (2) colloids attached to the glass beads in an initially wet porous medium, (3) colloids attached to the glass beads in an initially dry porous medium, and (4) colloids suspended in the aqueous phase with the presence of a static air bubble. Confocal images confirmed that the capillary fringe fluctuations affect colloid transport behavior. Hydrophilic negatively charged colloids initially suspended in the aqueous phase were deposited at the solid-water interface after a drainage passage, but then were removed by subsequent capillary fringe fluctuations. The colloids that were initially attached to the wet or dry glass bead surface were detached by moving air-water interfaces in the capillary fringe. Hydrophilic negatively charged colloids did not attach to static air-bubbles, but hydrophobic negatively charged and hydrophilic positively charged colloids did. Our results demonstrate that capillary fringe fluctuations are an effective means for colloid mobilization.

  3. Geometry Effects of Capillary on the Evaporation from the Meniscus

    International Nuclear Information System (INIS)

    Choi, Choong Hyo; Jin, Song Wan; Yoo, Jung Yul

    2007-01-01

    The effect of capillary cross-section geometry on evaporation is investigated in terms of the meniscus shape, evaporation rate and evaporation-induced flow for circular, square and rectangular cross-sectional capillaries. The shapes of water and ethanol menisci are not much different from each other in square and rectangular capillaries even though the surface tension of water is much larger than that of ethanol. On the other hand, the shapes of water and ethanol menisci are very different from each other in circular capillary. The averaged evaporation fluxes in circular and rectangular capillaries are measured by tracking the meniscus position. At a given position, the averaged evaporation flux in rectangular capillaries in much larger than that in circular capillary with comparable hydraulic diameter. The flow near the evaporating meniscus is also measured using micro-PIV, so that the rotating vortex motion is observed near the evaporating ethanol and methanol menisci except for the case of methanol meniscus in rectangular capillary. This difference is considered to be due to the existence of corner menisci at the four corners

  4. Gas-Filled Capillary Model

    International Nuclear Information System (INIS)

    Steinhauer, L. C.; Kimura, W. D.

    2006-01-01

    We have developed a 1-D, quasi-steady-state numerical model for a gas-filled capillary discharge that is designed to aid in selecting the optimum capillary radius in order to guide a laser beam with the required intensity through the capillary. The model also includes the option for an external solenoid B-field around the capillary, which increases the depth of the parabolic density channel in the capillary, thereby allowing for propagation of smaller laser beam waists. The model has been used to select the parameters for gas-filled capillaries to be utilized during the Staged Electron Laser Acceleration -- Laser Wakefield (STELLA-LW) experiment

  5. Capillary condenser/evaporator

    Science.gov (United States)

    Valenzuela, Javier A. (Inventor)

    2010-01-01

    A heat transfer device is disclosed for transferring heat to or from a fluid that is undergoing a phase change. The heat transfer device includes a liquid-vapor manifold in fluid communication with a capillary structure thermally connected to a heat transfer interface, all of which are disposed in a housing to contain the vapor. The liquid-vapor manifold transports liquid in a first direction and conducts vapor in a second, opposite direction. The manifold provides a distributed supply of fluid (vapor or liquid) over the surface of the capillary structure. In one embodiment, the manifold has a fractal structure including one or more layers, each layer having one or more conduits for transporting liquid and one or more openings for conducting vapor. Adjacent layers have an increasing number of openings with decreasing area, and an increasing number of conduits with decreasing cross-sectional area, moving in a direction toward the capillary structure.

  6. Capillary electrophoretic profiling of tryptic digests of water soluble proteins from Bacillus thuringiensis-transgenic and non-transgenic maize species

    Czech Academy of Sciences Publication Activity Database

    Sázelová, Petra; Kašička, Václav; Leon, C.; Ibanez, E.; Cifuentes, A.

    2012-01-01

    Roč. 134, č. 3 (2012), s. 1607-1615 ISSN 0308-8146 R&D Projects: GA ČR(CZ) GA203/08/1428 Grant - others:AV ČR(CZ) 2008CZ0019 Institutional research plan: CEZ:AV0Z40550506 Keywords : Bt-transgenic maize * capillary zone electrophoresis * maize proteins Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.334, year: 2012

  7. Fast and simple method for determination of iodide in human urine, serum, sea water, and cooking salt by capillary zone electrophoresis

    Czech Academy of Sciences Publication Activity Database

    Pantůčková, Pavla; Křivánková, Ludmila

    2004-01-01

    Roč. 25, 7-8 (2004), s. 1102-1110 ISSN 0173-0835 R&D Projects: GA ČR GA203/02/0023; GA ČR GA203/01/0401; GA AV ČR IAA4031103 Institutional research plan: CEZ:AV0Z4031919 Keywords : capillary zone electrophoresis * cooking salt * human serum Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.743, year: 2004

  8. Potential of capillary-column-switching liquid chromatography-tandem mass spectrometry for the quantitative trace analysis of small molecules. Application to the on-line screening of drugs in water.

    Science.gov (United States)

    Pitarch, Elena; Hernandez, Felix; ten Hove, Jan; Meiring, Hugo; Niesing, Willem; Dijkman, Ellen; Stolker, Linda; Hogendoorn, Elbert

    2004-03-26

    We have investigated the potential of capillary-column-switching liquid chromatography coupled to tandem mass spectrometry (cLC-MS-MS) for the quantitative on-line trace analysis of target compounds in aqueous solutions. The technical design of the nano-scale cLC system developed at our Institute for peptide and protein identification has been tested and evaluated for the direct trace analysis of drugs in water samples. Sulphametoxazole, bezafibrate, metoprolol, carbamazepine and bisoprolol occurring frequently in Dutch waters, were selected as test compounds. Adequate conditions for trapping, elution and MS-MS detection were investigated by employing laboratory made 200 microm i.d. capillary columns packed with 5 microm aqua C18 material. In the final cLC-MS-MS conditions, a 1 cm length trapping column and a 4 cm length analytical column were selected. Under these conditions, the target compounds could be directly determined in water down to a level of around 50 ng/l employing only 25 microl of water sample. Validation was done by recovery experiments in ground-, surface- and drinking-water matrices as well as by the analysis of water samples with incurred residues and previously analyzed with a conventional procedure involving off-line solid-phase extraction and narrow-bore LC with MS-MS detection. The new methodology provided recoveries (50-500 ng/l level) between 50 and 114% with RSDs (n = 3, each level) below 20% for most of the compounds. Despite the somewhat less analytical performance in comparison to the conventional procedure, the on-line approach of the new methodology is very suitable for screening of drugs in aqueous samples.

  9. Western Blotting using Capillary Electrophoresis

    OpenAIRE

    Anderson, Gwendolyn J.; Cipolla, Cynthia; Kennedy, Robert T.

    2011-01-01

    A microscale Western blotting system based on separating sodium-dodecyl sulfate protein complexes by capillary gel electrophoresis followed by deposition onto a blotting membrane for immunoassay is described. In the system, the separation capillary is grounded through a sheath capillary to a mobile X-Y translation stage which moves a blotting membrane past the capillary outlet for protein deposition. The blotting membrane is moistened with a methanol and buffer mixture to facilitate protein a...

  10. Impact of capillary rise and recirculation on simulated crop yields

    NARCIS (Netherlands)

    Kroes, J.G.; Supit, I.; Dam, van J.C.; Walsum, van P.E.V.; Mulder, H.M.

    2018-01-01

    Upward soil water flow is a vital supply of water to crops. The purpose of this study is to determine if upward flow and recirculated percolation water can be quantified separately, and to determine the contribution of capillary rise and recirculated water to crop yield and groundwater recharge.

  11. Practical capillary electrophoresis

    CERN Document Server

    Weinberger, Robert

    2000-01-01

    In the 1980s, capillary electrophoresis (CE) joined high-performance liquid chromatography (HPLC) as the most powerful separation technique available to analytical chemists and biochemists. Published research using CE grew from 48 papers in the year of commercial introduction (1988) to 1200 in 1997. While only a dozen major pharmaceutical and biotech companies have reduced CE to routine practice, the applications market is showing real or potential growth in key areas, particularly in the DNA marketplace for genomic mapping and forensic identification. For drug development involving small molecules (including chiral separations), one CE instrument can replace 10 liquid chromatographs in terms of speed of analysis. CE also uses aqueous rather than organic solvents and is thus environmentally friendlier than HPLC. The second edition of Practical Capillary Electrophoresis has been extensively reorganized and rewritten to reflect modern usage in the field, with an emphasis on commercially available apparatus and ...

  12. Capillary electrophoresis in a fused-silica capillary with surface roughness gradient

    Czech Academy of Sciences Publication Activity Database

    Horká, Marie; Šlais, Karel; Karásek, Pavel; Růžička, F.; Šalplachta, Jiří; Šesták, Jozef; Kahle, Vladislav; Roth, Michal

    2016-01-01

    Roč. 39, č. 19 (2016), s. 3827-3834 ISSN 1615-9306 R&D Projects: GA ČR(CZ) GA16-03749S; GA MZd(CZ) NV16-29916A Institutional support: RVO:68081715 Keywords : capillary electrophoresis * supercritical water * surface roughness gradient Subject RIV: CB - Analytical Chemistry , Separation Impact factor: 2.557, year: 2016

  13. Capillary electrophoresis in a fused-silica capillary with surface roughness gradient

    Czech Academy of Sciences Publication Activity Database

    Horká, Marie; Šlais, Karel; Karásek, Pavel; Růžička, F.; Šalplachta, Jiří; Šesták, Jozef; Kahle, Vladislav; Roth, Michal

    2016-01-01

    Roč. 39, č. 19 (2016), s. 3827-3834 ISSN 1615-9306 R&D Projects: GA ČR(CZ) GA16-03749S; GA MZd(CZ) NV16-29916A Institutional support: RVO:68081715 Keywords : capillary electrophoresis * supercritical water * surface roughness gradient Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.557, year: 2016

  14. Automated Parallel Capillary Electrophoretic System

    Science.gov (United States)

    Li, Qingbo; Kane, Thomas E.; Liu, Changsheng; Sonnenschein, Bernard; Sharer, Michael V.; Kernan, John R.

    2000-02-22

    An automated electrophoretic system is disclosed. The system employs a capillary cartridge having a plurality of capillary tubes. The cartridge has a first array of capillary ends projecting from one side of a plate. The first array of capillary ends are spaced apart in substantially the same manner as the wells of a microtitre tray of standard size. This allows one to simultaneously perform capillary electrophoresis on samples present in each of the wells of the tray. The system includes a stacked, dual carousel arrangement to eliminate cross-contamination resulting from reuse of the same buffer tray on consecutive executions from electrophoresis. The system also has a gel delivery module containing a gel syringe/a stepper motor or a high pressure chamber with a pump to quickly and uniformly deliver gel through the capillary tubes. The system further includes a multi-wavelength beam generator to generate a laser beam which produces a beam with a wide range of wavelengths. An off-line capillary reconditioner thoroughly cleans a capillary cartridge to enable simultaneous execution of electrophoresis with another capillary cartridge. The streamlined nature of the off-line capillary reconditioner offers the advantage of increased system throughput with a minimal increase in system cost.

  15. Evaluation of Tillandsia capillaris Ruiz amd Pav. f. capillaris as biomonitor of atmospheric pollution in Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Pignata, M.L. [Univ. Nacional de Cordoba, Cordoba (Argentina). Facultad de Ciencias Exactas, Fisicas y Naturales]|[Instituto Multidisciplinario de Biologia Vegetal (IMBIV-UNC), Cordoba (Argentina); Wannaz, E.D.; Martinez, M.S.; Caminotti, G. [Univ. Nacional de Cordoba, Cordoba (Argentina). Facultad de Ciencias Exactas, Fisicas y Naturales

    2002-07-01

    The behaviour of Tillandsia capillaris Ruiz and Pav. f. capillaris, when exposed to atmospheric pollutants, was assessed by measuring chemical parameters indicating foliar damage and the contents of some heavy metals. Samples were transplanted to three sites in the City of Cordoba and were collected back after 15, 30, 60 and 90 days of exposure. At the same time, samples coming from the collection site were analyzed for each of said exposure times. Chlorophylls, hydroperoxy conjugated dienes, water contents, malondialdehyde, sulfur, Cu, Pb, Ni, Co, Mn, Zn and Fe were measured in the samples. A Foliar Damage Index was calculated from some of these parameters. (orig.)

  16. Numerical simulations of capillary barrier field tests

    International Nuclear Information System (INIS)

    Morris, C.E.; Stormont, J.C.

    1997-01-01

    Numerical simulations of two capillary barrier systems tested in the field were conducted to determine if an unsaturated flow model could accurately represent the observed results. The field data was collected from two 7-m long, 1.2-m thick capillary barriers built on a 10% grade that were being tested to investigate their ability to laterally divert water downslope. One system had a homogeneous fine layer, while the fine soil of the second barrier was layered to increase its ability to laterally divert infiltrating moisture. The barriers were subjected first to constant infiltration while minimizing evaporative losses and then were exposed to ambient conditions. The continuous infiltration period of the field tests for the two barrier systems was modelled to determine the ability of an existing code to accurately represent capillary barrier behavior embodied in these two designs. Differences between the field test and the model data were found, but in general the simulations appeared to adequately reproduce the response of the test systems. Accounting for moisture retention hysteresis in the layered system will potentially lead to more accurate modelling results and is likely to be important when developing reasonable predictions of capillary barrier behavior

  17. Demonstration of Nautilus Centripetal Capillary Condenser Technology

    Science.gov (United States)

    Wheeler, RIchard; Tang, Linh; Wambolt, Spencer; Golliher, Eric; Agui, Juan

    2016-01-01

    This paper describes the results of a proof of concept effort for development of a Nautilus Centripetal Capillary Condenser (NCCC or NC3) used for microgravity compatible water recovery from moist air with integral passive phase separation. Removal of liquid condensate from the air stream exiting a condenser is readily performed here on Earth. In order to perform this function in space however, without gravity or mechanical action, other tactics including utilization of inertial, drag and capillary forces are required. Within the NC3, liquid water forms via condensation on cold condenser surfaces as humid air passes along multiple spiral channels, each in its own plane, all together forming a stacked plate assembly. Non-mechanical inertial forces are employed to transfer condensate, as it forms, via centripetal action to the outer perimeter of each channel. A V-shaped groove, constructed on this outer edge of the spiral channel, increases local capillary forces thereby retaining the liquid. Air drag then pulls the liquid along to a collection region near the center of the device. Dry air produced by each parallel spiral channel is combined in a common orthogonal, out-of-plane conduit passing down the axial center of the stacked device. Similarly, the parallel condensate streams are combined and removed from the condenser/separator through yet another out-of-plane axial conduit. NC3 is an integration of conventional finned condenser operation, combined with static phase separation and capillary transport phenomena. A Mars' transit mission would be a logical application for this technology where gravity is absent and the use of vibrating, energy-intensive, motor-driven centrifugal separators is undesired. Here a vapor stream from either the Heat Melt Compactor or the Carbon dioxide Reduction Assembly, for example, would be dried to a dew point of 10 deg using a passive NC3 condenser/separator with the precious water condensate recycled to the water bus.

  18. Capillary Condensation in Confined Media

    OpenAIRE

    Charlaix, Elisabeth; Ciccotti, Matteo

    2009-01-01

    28 pages - To appear in 2010 in the Handbook of Nanophysics - Vol 1 - Edited by Klaus Sattler - CRC Press; We review here the physics of capillary condensation of liquids in confined media, with a special regard to the application in nanotechnologies. The thermodynamics of capillary condensation and thin film adsorption are first exposed along with all the relevant notions. The focus is then shifted to the modelling of capillary forces, to their measurements techniques (including SFA, AFM and...

  19. Capillary waves in slow motion

    International Nuclear Information System (INIS)

    Seydel, Tilo; Tolan, Metin; Press, Werner; Madsen, Anders; Gruebel, Gerhard

    2001-01-01

    Capillary wave dynamics on glycerol surfaces has been investigated by means of x-ray photon correlation spectroscopy performed at grazing angles. The measurements show that thermally activated capillary wave motion is slowed down exponentially when the sample is cooled below 273 K. This finding directly reflects the freezing of the surface waves. The wave-number dependence of the measured time constants is in quantitative agreement with theoretical predictions for overdamped capillary waves

  20. Wall modified photonic crystal fibre capillaries as porous layer open tubular columns for in-capillary micro-extraction and capillary chromatography

    International Nuclear Information System (INIS)

    Kazarian, Artaches A.; Sanz Rodriguez, Estrella; Deverell, Jeremy A.; McCord, James; Muddiman, David C.; Paull, Brett

    2016-01-01

    Wall modified photonic crystal fibre capillary columns for in-capillary micro-extraction and liquid chromatographic separations is presented. Columns contained 126 internal parallel 4 μm channels, each containing a wall bonded porous monolithic type polystyrene-divinylbenzene layer in open tubular column format (PLOT). Modification longitudinal homogeneity was monitored using scanning contactless conductivity detection and scanning electron microscopy. The multichannel open tubular capillary column showed channel diameter and polymer layer consistency of 4.2 ± 0.1 μm and 0.26 ± 0.02 μm respectively, and modification of 100% of the parallel channels with the monolithic polymer. The modified multi-channel capillaries were applied to the in-capillary micro-extraction of water samples. 500 μL of water samples containing single μg L"−"1 levels of polyaromatic hydrocarbons were extracted at a flow rate of 10 μL min"−"1, and eluted in 50 μL of acetonitrile for analysis using HPLC with fluorescence detection. HPLC LODs were 0.08, 0.02 and 0.05 μg L"−"1 for acenaphthene, anthracene and pyrene, respectively, with extraction recoveries of between 77 and 103%. The modified capillaries were also investigated briefly for direct application to liquid chromatographic separations, with the retention and elution of a standard protein (cytochrome c) under isocratic conditions demonstrated, proving chromatographic potential of the new column format, with run-to-run retention time reproducibility of below 1%. - Highlights: • Novel PS-DVB modified photonic crystal fibres for in-capillary micro-extraction. • New method for micro-extraction of PAHs and HPLC-FL detection at sub-ppb levels. • Demonstration of PS-DVB modified photonic crystal fibres for capillary bioseparations.

  1. Wall modified photonic crystal fibre capillaries as porous layer open tubular columns for in-capillary micro-extraction and capillary chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Kazarian, Artaches A. [Australian Centre for Research on Separation Science, School of Physical Sciences, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001 (Australia); W.M. Keck FT-ICR-MS Laboratory, Department of Chemistry, North Carolina State University, Raleigh, NC (United States); Sanz Rodriguez, Estrella; Deverell, Jeremy A. [Australian Centre for Research on Separation Science, School of Physical Sciences, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001 (Australia); McCord, James; Muddiman, David C. [W.M. Keck FT-ICR-MS Laboratory, Department of Chemistry, North Carolina State University, Raleigh, NC (United States); Paull, Brett, E-mail: Brett.Paull@utas.edu.au [Australian Centre for Research on Separation Science, School of Physical Sciences, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001 (Australia); ARC Centre of Excellence for Electromaterials Science, School of Physical Sciences, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001 (Australia)

    2016-01-28

    Wall modified photonic crystal fibre capillary columns for in-capillary micro-extraction and liquid chromatographic separations is presented. Columns contained 126 internal parallel 4 μm channels, each containing a wall bonded porous monolithic type polystyrene-divinylbenzene layer in open tubular column format (PLOT). Modification longitudinal homogeneity was monitored using scanning contactless conductivity detection and scanning electron microscopy. The multichannel open tubular capillary column showed channel diameter and polymer layer consistency of 4.2 ± 0.1 μm and 0.26 ± 0.02 μm respectively, and modification of 100% of the parallel channels with the monolithic polymer. The modified multi-channel capillaries were applied to the in-capillary micro-extraction of water samples. 500 μL of water samples containing single μg L{sup −1} levels of polyaromatic hydrocarbons were extracted at a flow rate of 10 μL min{sup −1}, and eluted in 50 μL of acetonitrile for analysis using HPLC with fluorescence detection. HPLC LODs were 0.08, 0.02 and 0.05 μg L{sup −1} for acenaphthene, anthracene and pyrene, respectively, with extraction recoveries of between 77 and 103%. The modified capillaries were also investigated briefly for direct application to liquid chromatographic separations, with the retention and elution of a standard protein (cytochrome c) under isocratic conditions demonstrated, proving chromatographic potential of the new column format, with run-to-run retention time reproducibility of below 1%. - Highlights: • Novel PS-DVB modified photonic crystal fibres for in-capillary micro-extraction. • New method for micro-extraction of PAHs and HPLC-FL detection at sub-ppb levels. • Demonstration of PS-DVB modified photonic crystal fibres for capillary bioseparations.

  2. Capillary waves of compressible fluids

    International Nuclear Information System (INIS)

    Falk, Kerstin; Mecke, Klaus

    2011-01-01

    The interplay of thermal noise and molecular forces is responsible for surprising features of liquids on sub-micrometer lengths-in particular at interfaces. Not only does the surface tension depend on the size of an applied distortion and nanoscopic thin liquid films dewet faster than would be expected from hydrodynamics, but also the dispersion relation of capillary waves differ at the nanoscale from the familiar macroscopic behavior. Starting with the stochastic Navier-Stokes equation we study the coupling of capillary waves to acoustic surface waves which is possible in compressible fluids. We find propagating 'acoustic-capillary waves' at nanometer wavelengths where in incompressible fluids capillary waves are overdamped.

  3. On Capillary Rise and Nucleation

    Science.gov (United States)

    Prasad, R.

    2008-01-01

    A comparison of capillary rise and nucleation is presented. It is shown that both phenomena result from a balance between two competing energy factors: a volume energy and a surface energy. Such a comparison may help to introduce nucleation with a topic familiar to the students, capillary rise. (Contains 1 table and 3 figures.)

  4. Capillary optics for radiation focusing

    International Nuclear Information System (INIS)

    Peurrung, A.J.; Reeder, P.L.; Bliss, M.; Craig, R.A.; Lepel, E.A.; Stromswold, D.C.; Stoffels, J.; Sunberg, D.S.; Tenny, H.

    1996-11-01

    Capillary lens technology may ultimately bring benefits to neutron and x-ray-based science like conventional lenses with visible light. Although the technology is not yet 10 years old, these lenses have already had a significant impact in engineering, science, and medicine. Capillary lenses are advantageous when it is desirable to increase the radiation flux at a location without regard to its angular divergence. PNNL has worked to improve the technology in several ways. A single, optimally tapered capillary was manufactured, which allows intensity gains of a factor of 270 for an initially parallel, incident x-ray beam. Feasibility of constructing neutron lenses using 58 Ni (particularly effective at reflecting neutrons) has been explored. Three applications for capillary optics have been identified and studied: neutron telescope, Gandolphi x-ray diffractometry, and neutron radiotherapy. A brief guide is given for determining which potential applications are likely to be helped by capillary optics

  5. Biomedical applications of capillary electrophoresis

    International Nuclear Information System (INIS)

    Kartsova, L A; Bessonova, E A

    2015-01-01

    The review deals with modern analytical approaches used in capillary electrophoresis for solving medical and biological problems: search for biomarkers of various diseases and rapid diagnosis based on characteristic profiles of biologically active compounds by capillary electrophoresis with mass spectrometric detection; monitoring of the residual drugs in biological fluids for evaluating the efficiency of drug therapy; testing of the enantiomeric purity of pharmaceutical products; the use of novel materials as components of stationary and pseudo-stationary phases in capillary electrophoresis and capillary electrochromatography to increase the selectivity of separation of components of complex matrices; and identification of various on-line preconcentration techniques to reduce the detection limits of biologically active analytes. A topical trend in capillary electrophoresis required in clinical practice, viz., the design of microfluidic systems, is discussed. The bibliography includes 173 references

  6. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; determination of semivolatile organic compounds in bottom sediment by solvent extraction, gel permeation chromatographic fractionation, and capillary-column gas chromatography/mass spectrometry

    Science.gov (United States)

    Furlong, E.T.; Vaught, D.G.; Merten, L.M.; Foreman, W.T.; Gates, Paul M.

    1996-01-01

    A method for the determination of 79 semivolatile organic compounds (SOCs) and 4 surrogate compounds in soils and bottom sediment is described. The SOCs are extracted from bottom sediment by solvent extraction, followed by partial isolation using high-performance gel permeation chromatography (GPC). The SOCs then are qualitatively identified and quantitative concentrations determined by capillary-column gas chromatography/mass spectrometry (GC/MS). This method also is designed for an optional simultaneous isolation of polychlorinated biphenyls (PCBs) and organochlorine (OC) insecticides, including toxaphene. When OCs and PCBs are determined, an additional alumina- over-silica column chromatography step follows GPC cleanup, and quantitation is by dual capillary- column gas chromatography with electron-capture detection (GC/ECD). Bottom-sediment samples are centrifuged to remove excess water and extracted overnight with dichloromethane. The extract is concentrated, centrifuged, and then filtered through a 0.2-micrometer polytetrafluoro-ethylene syringe filter. Two aliquots of the sample extract then are quantitatively injected onto two polystyrene- divinylbenzene GPC columns connected in series. The SOCs are eluted with dichloromethane, a fraction containing the SOCs is collected, and some coextracted interferences, including elemental sulfur, are separated and discarded. The SOC-containing GPC fraction then is analyzed by GC/MS. When desired, a second aliquot from GPC is further processed for OCs and PCBs by combined alumina-over-silica column chromatography. The two fractions produced in this cleanup then are analyzed by GC/ECD. This report fully describes and is limited to the determination of SOCs by GC/MS.

  7. Capillary-induced crack healing between surfaces of nanoscale roughness.

    Science.gov (United States)

    Soylemez, Emrecan; de Boer, Maarten P

    2014-10-07

    Capillary forces are important in nature (granular materials, insect locomotion) and in technology (disk drives, adhesion). Although well studied in equilibrium state, the dynamics of capillary formation merit further investigation. Here, we show that microcantilever crack healing experiments are a viable experimental technique for investigating the influence of capillary nucleation on crack healing between rough surfaces. The average crack healing velocity, v̅, between clean hydrophilic polycrystalline silicon surfaces of nanoscale roughness is measured. A plot of v̅ versus energy release rate, G, reveals log-linear behavior, while the slope |d[log(v̅)]/dG| decreases with increasing relative humidity. A simplified interface model that accounts for the nucleation time of water bridges by an activated process is developed to gain insight into the crack healing trends. This methodology enables us to gain insight into capillary bridge dynamics, with a goal of attaining a predictive capability for this important microelectromechanical systems (MEMS) reliability failure mechanism.

  8. Physiological factors influencing capillary growth.

    Science.gov (United States)

    Egginton, S

    2011-07-01

    (1) Angiogenesis (growth of new capillaries from an existing capillary bed) may result from a mismatch in microvascular supply and metabolic demand (metabolic error signal). Krogh examined the distribution and number of capillaries to explore the correlation between O(2) delivery and O(2) consumption. Subsequently, the heterogeneity in angiogenic response within a muscle has been shown to reflect either differences in fibre type composition or mechanical load. However, local control leads to targetted angiogenesis in the vicinity of glycolytic fibre types following muscle stimulation, or oxidative fibres following endurance training, while heterogeneity of capillary spacing is maintained during ontogenetic growth. (2) Despite limited microscopy resolution and lack of specific markers, Krogh's interest in the structure of the capillary wall paved the way for understanding the mechanisms of capillary growth. Angiogenesis may be influenced by the response of perivascular or stromal cells (fibroblasts, macrophages and pericytes) to altered activity, likely acting as a source for chemical signals modulating capillary growth such as vascular endothelial growth factor. In addition, haemodynamic factors such as shear stress and muscle stretch play a significant role in adaptive remodelling of the microcirculation. (3) Most indices of capillarity are highly dependent on fibre size, resulting in possible bias because of scaling. To examine the consequences of capillary distribution, it is therefore helpful to quantify the area of tissue supplied by individual capillaries. This allows the spatial limitations inherent in most models of tissue oxygenation to be overcome generating an alternative approach to Krogh's tissue cylinder, the capillary domain, to improve descriptions of intracellular oxygen diffusion. © 2010 The Author. Acta Physiologica © 2010 Scandinavian Physiological Society.

  9. Capillaries for use in a multiplexed capillary electrophoresis system

    Science.gov (United States)

    Yeung, E.S.; Chang, H.T.; Fung, E.N.

    1997-12-09

    The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification (``base calling``) is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations. 19 figs.

  10. Open tubular capillary column for the separation of cytochrome C tryptic digest in capillary electrochromatography.

    Science.gov (United States)

    Ali, Faiz; Cheong, Won Jo

    2015-10-01

    A silica capillary of 50 μm internal diameter and 500 mm length (416 mm effective length) was chemically modified with 4-(trifluoromethoxy) phenyl isocyanate in the presence of dibutyl tin dichloride as catalyst. Sodium diethyl dithiocarbamate was reacted with the terminal halogen of the bound ligand to incorporate the initiator moiety, and in situ polymerization was performed using a monomer mixture of styrene, N-phenylacrylamide, and methacrylic acid. The resultant open tubular capillary column immobilized with the copolymer layer was used for the separation of tryptic digest of cytochrome C in capillary electrochromatography. The sample was well eluted and separated into many components. The elution patterns of tryptic digest of cytochrome C were studied with respect to pH and water content in the mobile phase. This preliminary study demonstrates that open tubular capillary electrochromatography columns with a modified copolymer layer composed of proper nonpolar and polar units fabricated by reversible addition-fragmentation transfer polymerization can be useful as separation media for proteomic analysis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Capillary gas-solid chromatography

    International Nuclear Information System (INIS)

    Berezkin, V.G.

    1996-01-01

    Modern state of gas adsorption chromatography in open capillary columns has been analyzed. The history of the method development and its role in gas chromatography, ways to construct open adsorptional capillary columns, foundations of the theory of retention and washing of chromatographic regions in gas adsorption capillary columns have been considered. The fields is extensively and for analyzing volatile compounds of different isotopic composition, inorganic and organic gases, volatile organic polar compounds, aqueous solutions of organic compounds. Separation of nuclear-spin isomers and isotopes of hydrogen is the first illustrative example of practical application of the adsorption capillary chromatography. It is shown that duration of protium and deuterium nuclear isomers may be reduced if the column temperature is brought to 47 K

  12. DNA typing by capillary electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, N.

    1997-10-08

    Capillary electrophoresis is becoming more and more important in nucleic acid analysis including DNA sequencing, typing and disease gene measurements. This work summarized the background of DNA typing. The recent development of capillary electrophoresis was also discussed. The second part of the thesis showed the principle of DNA typing based on using the allelic ladder as the absolute standard ladder in capillary electrophoresis system. Future work will be focused on demonstrating DNA typing on multiplex loci and examples of disease diagnosis in the on-line format of PCR-CE. Also capillary array electrophoresis system should allow high throughput, fast speed DNA typing. Only the introduction and conclusions for this report are available here. A reprint was removed for separate processing.

  13. Capillary viscosimetry on ferrofluids

    International Nuclear Information System (INIS)

    Pop, L M; Odenbach, S

    2008-01-01

    Experiments performed for different ferrofluids under shear flow have shown that an increase of the magnetic field strength applied to the sample yields an increase of the fluid's viscosity, the so called magnetoviscous effect. It has been shown that the magnitude of the effect is strongly related to the modification of the microstructure of ferrofluids and can be influenced by varying both the dipole-dipole interaction between the particles and the concentration of large particles within the fluid. This result has been further used to synthesize new ferrofluids which, on one hand, are more compatible for technical applications but, on the other hand, led to difficulties for the experimenters in measuring the viscous behavior in the presence of a magnetic field. To overcome this problem, a specially designed ferrofluid-compatible capillary viscometer has been developed. Within this paper, the experimental setup as well as experimental results concerning the investigation of the magnetoviscous effect in both diluted and concentrated cobalt-based ferrofluids are presented

  14. Methods of Analysis by the U.S. Geological Survey National Water Quality Laboratory - Determination of Wastewater Compounds by Polystyrene-Divinylbenzene Solid-Phase Extraction and Capillary-Column Gas Chromatography/Mass Spectrometry

    Science.gov (United States)

    Zaugg, Steven D.; Smith, Steven G.; Schroeder, Michael P.; Barber, Larry B.; Burkhardt, Mark R.

    2002-01-01

    A method for the determination of 67 compounds typically found in domestic and industrial wastewater is described. The method was developed in response to increasing concern over the impact of endocrine-disrupting chemicals in wastewater on aquatic organisms. This method also may be useful for evaluating the impact of combined sanitary and storm-sewer overflow on the water quality of urban streams. The method focuses on the determination of compounds that are an indicator of wastewater or that have been chosen on the basis of their endocrine-disrupting potential or toxicity. These compounds include the alkylphenol ethoxylate nonionic surfactants and their degradates, food additives, fragrances, antioxidants, flame retardants, plasticizers, industrial solvents, disinfectants, fecal sterols, polycyclicaromatic hydrocarbons, and high-use domestic pesticides. Water samples are filtered to remove suspended particulate matter and then are extracted by vacuum through disposable solid-phase cartridges that contain polystyrene-divinylbenzene resin. Cartridges are dried with nitrogen gas, and then sorbed compounds are eluted with dichloromethane-diethyl ether (4:1) and determined by capillary-column gas chromatography/mass spectrometry. Recoveries in reagent-water samples fortified at 4 micrograms per liter averaged 74 percent ? 7 percent relative standard deviation for all method compounds. Initial method detection limits for single-component compounds (excluding hormones and sterols) averaged 0.15 microgram per liter. Samples are preserved by filtration, the addition of 60 grams NaCl, and storage at 4 degrees Celsius. The laboratory has established a sample-holding time (prior to sample extraction) of 14 days from the date of sample collection until a statistically accepted method can be used to determine the effectiveness of these sample-preservation procedures.

  15. The feasibility and reliability of capillary blood pressure measurements in the fingernail fold

    NARCIS (Netherlands)

    de Graaff, Jurgen C.; Ubbink, Dirk Th; Lagarde, Sjoerd M.; Jacobs, Michael J. H. M.

    2002-01-01

    Capillary blood pressure is an essential parameter in the study of the (patho-)physiology of microvascular perfusion. Currently, capillary pressure measurements in humans are performed using a servo-nulling micropressure system containing an oil-water interface, which suffers some drawbacks. In

  16. Gravimetric capillary method for kinematic viscosity measurements

    Science.gov (United States)

    Rosenberger, Franz; Iwan, J.; Alexander, D.; Jin, Wei-Qing

    1992-01-01

    A novel version of the capillary method for viscosity measurements of liquids is presented. Viscosity data can be deduced in a straightforward way from mass transfer data obtained by differential weighing during the gravity-induced flow of the liquid between two cylindrical chambers. Tests of this technique with water, carbon tetrachloride, and ethanol suggest that this arrangement provides an accuracy of about +/- 1 percent. The technique facilitates operation under sealed, isothermal conditions and, thus can readily be applied to reactive and/or high vapor pressure liquids.

  17. Polydimethylsiloxane rod extraction, a novel technique for the determination of organic micropollutants in water samples by thermal desorption-capillary gas chromatography-mass spectrometry.

    Science.gov (United States)

    Montero, L; Popp, P; Paschke, A; Pawliszyn, J

    2004-01-30

    A novel, simple and inexpensive approach to absorptive extraction of organic compounds from environmental samples is presented. It consists of a polydimethylsiloxane rod used as an extraction media, enriched with analytes during shaking, then thermally desorbed and analyzed by GC-MS. Its performance was illustrated and evaluated for the enrichment of sub- to ng/l of selected chlorinated compounds (chlorobenzenes and polychlorinated biphenyls) in water samples. The new approach was compared to the stir bar sorptive extraction performance. A natural ground water sample from Bitterfeld, Germany, was also extracted using both methods, showing good agreement. The proposed approach presented good linearity, high sensitivity, good blank levels and recoveries comparable to stir bars, together with advantages such as simplicity, lower cost and higher feasibility.

  18. Modelization and simulation of capillary barriers

    International Nuclear Information System (INIS)

    Lisbona Cortes, F.; Aguilar Villa, G.; Clavero Gracia, C.; Gracia Lozano, J.L.

    1998-01-01

    Among the different underground transport phenomena, that due to water flows is of great relevance. Water flows in infiltration and percolation processes are responsible of the transport of hazardous wastes towards phreatic layers. From the industrial and geological standpoints, there is a great interest in the design of natural devices to avoid the flows transporting polluting substances. This interest is increased when devices are used to isolate radioactive waste repositories, whose life is to be longer than several hundred years. The so-called natural devices are those based on the superimposition of material with different hydraulic properties. In particular, the flow retention in this kind stratified media, in unsaturated conditions, is basically due to the capillary barrier effect, resulting from placing a low conductivity material over another with a high hydraulic conductivity. Covers designed from the effect above have also to allow a drainage of the upper layer. The lower cost of these covers, with respect to other kinds of protection systems, and the stability in time of their components make them very attractive. However, a previous investigation to determine their effectivity is required. In this report we present the computer code BCSIM, useful for easy simulations of unsaturated flows in a capillary barrier configuration with drainage, and which is intended to serve as a tool for designing efficient covers. The model, the numerical algorithm and several implementation aspects are described. Results obtained in several simulations, confirming the effectivity of capillary barriers as a technique to build safety covers for hazardous waste repositories, are presented. (Author)

  19. Dosages d'hydrocarbures dans l'eau et le sédiment marins par infrarouge et chromatographie gazeuse sur colonne capillaire Hydrocarbon Titration in Water and Marine Sediments by Infrared Analysis and Gas Chromatography in a Capillary Column

    Directory of Open Access Journals (Sweden)

    Morel G.

    2006-11-01

    Full Text Available Nous avons étudié l'évolution des hydrocarbures pétroliers dans un site confiné, celui de l'Aber-Benoît (Finistère, à la suite de l'accident du super-pétrolier Amoco-Cadiz en mars 1978. Pour ce faire, plusieurs méthodes ont été mises en oeuvre, et tout particulièrement la chromato-graphie gazeuse sur colonne capillaire : le protocole analytique est décrit pour l'eau et pour le sédiment, après optimisation des techniques de filtration, de préconcentration et de fractionnement préalables à la mesure. Il est possible de travailler sur des échantillons de deux litres d'eau de mer ou de cinquante grammes de sédiment, avec des seuils de détection du niveau de la partie par trillion (ppt dans l'eau et de la centaine de ppt dans le sédiment. The evolution of petroleum hydrocarbons was analyzed in a confined site, at Aber-Benoît in the Finistère department, following the accident of the supertanker Amoco Cadiz in March 1978. To do this, several methods were developed, including, in particular, capillary coulumn as chromatography. The analytical procedure is described for water and sediment after optimization of filtering, preconcentrating and fractionating techniques prior to measuring. Analyses can be made with two liters of seawater or fifty grams of sediment, with detection thresholds in parts per trillion (ppt in water and the hundredth of a ppt in sediment.

  20. Western blotting using capillary electrophoresis.

    Science.gov (United States)

    Anderson, Gwendolyn J; M Cipolla, Cynthia; Kennedy, Robert T

    2011-02-15

    A microscale Western blotting system based on separating sodium-dodecyl sulfate protein complexes by capillary gel electrophoresis followed by deposition onto a blotting membrane for immunoassay is described. In the system, the separation capillary is grounded through a sheath capillary to a mobile X-Y translation stage which moves a blotting membrane past the capillary outlet for protein deposition. The blotting membrane is moistened with a methanol and buffer mixture to facilitate protein adsorption. Although discrete protein zones could be detected, bands were broadened by ∼1.7-fold by transfer to membrane. A complete Western blot for lysozyme was completed in about one hour with 50 pg mass detection limit from low microgram per milliliter samples. These results demonstrate substantial reduction in time requirements and improvement in mass sensitivity compared to conventional Western blots. Western blotting using capillary electrophoresis shows promise to analyze low volume samples with reduced reagents and time, while retaining the information content of a typical Western blot.

  1. whistler oscillitons and capillary-gravity generalized solitons

    African Journals Online (AJOL)

    Nonlinear stationary waveforms in two completely different systems, namely, electromagnetic-fluid waves in a magnetic plasma and capillary-gravity water waves, are compared and contrasted. These systems display common features and are amenable to a Hamiltonian description. More importantly, however, is the fact ...

  2. Minimized Capillary End Effect During CO2 Displacement in 2-D Micromodel by Manipulating Capillary Pressure at the Outlet Boundary in Lattice Boltzmann Method

    Science.gov (United States)

    Kang, Dong Hun; Yun, Tae Sup

    2018-02-01

    We propose a new outflow boundary condition to minimize the capillary end effect for a pore-scale CO2 displacement simulation. The Rothman-Keller lattice Boltzmann method with multi-relaxation time is implemented to manipulate a nonflat wall and inflow-outflow boundaries with physically acceptable fluid properties in 2-D microfluidic chip domain. Introducing a mean capillary pressure acting at CO2-water interface to the nonwetting fluid at the outlet effectively prevents CO2 injection pressure from suddenly dropping upon CO2 breakthrough such that the continuous CO2 invasion and the increase of CO2 saturation are allowed. This phenomenon becomes most pronounced at capillary number of logCa = -5.5, while capillary fingering and massive displacement of CO2 prevail at low and high capillary numbers, respectively. Simulations with different domain length in homogeneous and heterogeneous domains reveal that capillary pressure and CO2 saturation near the inlet are reproducible compared with those with a proposed boundary condition. The residual CO2 saturation uniquely follows the increasing tendency with increasing capillary number, corroborated by experimental evidences. The determination of the mean capillary pressure and its sensitivity are also discussed. The proposed boundary condition is commonly applicable to other pore-scale simulations to accurately capture the spatial distribution of nonwetting fluid and corresponding displacement ratio.

  3. Paramecium swimming in capillary tube

    Science.gov (United States)

    Jana, Saikat; Um, Soong Ho; Jung, Sunghwan

    2012-04-01

    Swimming organisms in their natural habitat need to navigate through a wide range of geometries and chemical environments. Interaction with boundaries in such situations is ubiquitous and can significantly modify the swimming characteristics of the organism when compared to ideal laboratory conditions. We study the different patterns of ciliary locomotion in glass capillaries of varying diameter and characterize the effect of the solid boundaries on the velocities of the organism. Experimental observations show that Paramecium executes helical trajectories that slowly transition to straight lines as the diameter of the capillary tubes decreases. We predict the swimming velocity in capillaries by modeling the system as a confined cylinder propagating longitudinal metachronal waves that create a finite pressure gradient. Comparing with experiments, we find that such pressure gradient considerations are necessary for modeling finite sized ciliary organisms in restrictive geometries.

  4. Genetic variability of Artemisia capillaris (Wormwood capillary) by ...

    African Journals Online (AJOL)

    The genetic variability among individuals of Artemisia capillaris from state of Terengganu, Malaysia was examined by using the random amplified polymorphic DNA (RAPD) technique. The samples were collected from differences regional in Terengganu State. The genomic DNA was extracted from the samples leaves.

  5. Separation of selenium compounds by CE-ICP-MS in dynamically coated capillaries applied to selenized yeast samples

    DEFF Research Database (Denmark)

    Bendahl, Lars; Gammelgaard, Bente

    2004-01-01

    The selenium species in nutritional supplement tablets, based on selenized yeast, were separated by capillary zone electrophoresis using capillaries coated dynamically with poly(vinyl sulfonate) and detected by ICP-MS. Sample pre-treatment consisted of cold-water extraction by sonication and subs......The selenium species in nutritional supplement tablets, based on selenized yeast, were separated by capillary zone electrophoresis using capillaries coated dynamically with poly(vinyl sulfonate) and detected by ICP-MS. Sample pre-treatment consisted of cold-water extraction by sonication...

  6. Zirconia coated stir bar sorptive extraction combined with large volume sample stacking capillary electrophoresis-indirect ultraviolet detection for the determination of chemical warfare agent degradation products in water samples.

    Science.gov (United States)

    Li, Pingjing; Hu, Bin; Li, Xiaoyong

    2012-07-20

    In this study, a sensitive, selective and reliable analytical method by combining zirconia (ZrO₂) coated stir bar sorptive extraction (SBSE) with large volume sample stacking capillary electrophoresis-indirect ultraviolet (LVSS-CE/indirect UV) was developed for the direct analysis of chemical warfare agent degradation products of alkyl alkylphosphonic acids (AAPAs) (including ethyl methylphosphonic acid (EMPA) and pinacolyl methylphosphonate (PMPA)) and methylphosphonic acid (MPA) in environmental waters. ZrO₂ coated stir bar was prepared by adhering nanometer-sized ZrO₂ particles onto the surface of stir bar with commercial PDMS sol as adhesion agent. Due to the high affinity of ZrO₂ to the electronegative phosphonate group, ZrO₂ coated stir bars could selectively extract the strongly polar AAPAs and MPA. After systematically optimizing the extraction conditions of ZrO₂-SBSE, the analytical performance of ZrO₂-SBSE-CE/indirect UV and ZrO₂-SBSE-LVSS-CE/indirect UV was assessed. The limits of detection (LODs, at a signal-to-noise ratio of 3) obtained by ZrO₂-SBSE-CE/indirect UV were 13.4-15.9 μg/L for PMPA, EMPA and MPA. The relative standard deviations (RSDs, n=7, c=200 μg/L) of the corrected peak area for the target analytes were in the range of 6.4-8.8%. Enhancement factors (EFs) in terms of LODs were found to be from 112- to 145-fold. By combining ZrO₂ coating SBSE with LVSS as a dual preconcentration strategy, the EFs were magnified up to 1583-fold, and the LODs of ZrO₂-SBSE-LVSS-CE/indirect UV were 1.4, 1.2 and 3.1 μg/L for PMPA, EMPA, and MPA, respectively. The RSDs (n=7, c=20 μg/L) were found to be in the range of 9.0-11.8%. The developed ZrO₂-SBSE-LVSS-CE/indirect UV method has been successfully applied to the analysis of PMPA, EMPA, and MPA in different environmental water samples, and the recoveries for the spiked water samples were found to be in the range of 93.8-105.3%. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Imbibition Triggered by Capillary Condensation in Nanopores.

    Science.gov (United States)

    Vincent, Olivier; Marguet, Bastien; Stroock, Abraham D

    2017-02-21

    We study the spatiotemporal dynamics of water uptake by capillary condensation from unsaturated vapor in mesoporous silicon layers (pore radius r p ≃ 2 nm), taking advantage of the local changes in optical reflectance as a function of water saturation. Our experiments elucidate two qualitatively different regimes as a function of the imposed external vapor pressure: at low vapor pressures, equilibration occurs via a diffusion-like process; at high vapor pressures, an imbibition-like wetting front results in fast equilibration toward a fully saturated sample. We show that the imbibition dynamics can be described by a modified Lucas-Washburn equation that takes into account the liquid stresses implied by Kelvin equation.

  8. Fast determination of soil behavior in the capillary zone using simple laboratory tests.

    Science.gov (United States)

    2012-12-01

    Frost heave and thaw weakening are typical problems for engineers building in northern regions. These unsaturated-soil behaviors are : caused by water flowing through the capillary zone to a freezing front, where it forms ice lenses. Although suction...

  9. APPLICATION OF THE NATURALLY-OCCURRING DEUTERIUM ISOTOPE TO TRACING THE CAPILLARY FRINGE

    Science.gov (United States)

    Naturally-occurring deuterium is a useful tracer of subsurface hydrologic processes. A possible application includes the identification of capillary fringes in the vadose zone. Multiple and discontinuous water tables persist in many temperate regions, under various hydrogeologi...

  10. 3D capillary valves for versatile capillary patterning of channel walls

    NARCIS (Netherlands)

    Papadimitriou, Vasileios; van den Berg, Albert; Eijkel, Jan C.T.

    2016-01-01

    We demonstrate passive capillary patterning of channel walls with a liquid in situ. Patterning is performed using a novel 3D capillary valve system combining three standard capillary stop valves. A range of different patterns is demonstrated in three channel walls. Capillary patterning was designed

  11. Filling of charged cylindrical capillaries

    NARCIS (Netherlands)

    Das, Siddhartha; Chanda, Sourayon; Eijkel, J.C.T.; Tas, N.R.; Chakraborty, Suman; Mitra, Sushanta K.

    2014-01-01

    We provide an analytical model to describe the filling dynamics of horizontal cylindrical capillaries having charged walls. The presence of surface charge leads to two distinct effects: It leads to a retarding electrical force on the liquid column and also causes a reduced viscous drag force because

  12. Capillary thinning of polymeric filaments

    DEFF Research Database (Denmark)

    Kolte, Mette Irene; Szabo, Peter

    1999-01-01

    The capillary thinning of filaments of a Newtonian polybutene fluid and a viscoelastic polyisobutylene solution are analyzed experimentally and by means of numerical simulation. The experimental procedure is as follows. Initially, a liquid sample is placed between two cylindrical plates. Then, th...

  13. Vacuum scanning capillary photoemission microscopy.

    Science.gov (United States)

    Aseyev, S A; Cherkun, A P; Mironov, B N; Petrunin, V V; Chekalin, S V

    2017-08-01

    We demonstrate the use of a conical capillary in a scanning probe microscopy for surface analysis. The probe can measure photoemission from a substrate by transmitting photoelectrons along the capillary as a function of probe position. The technique is demonstrated on a model substrate consisting of a gold reflecting layer on a compact disc which has been illuminated by an unfocused laser beam with a wavelength 400nm, from a femtosecond laser with a beam size of 4mm. A quartz capillary with a 2-µm aperture has been used in the experiments. The period of gold microstructure, shown to be 1.6µ, was measured by the conical probe operating in shear force mode. In shear force regime, the dielectric capillary has been used as a "classical" SPM tip, which provided images reflecting the surface topology. In a photoelectron regime photoelectrons passed through hollow tip and entered a detector. The spatial distribution of the recorded photoelectrons consisted of periodic mountain-valley strips, resembling the surface profile of the sample. Submicron spatial resolution has been achieved. This approach paves the way to study pulsed photodesorption of large organic molecular ions with high spatial and element resolution using the combination of a hollow-tip scanner with time-of-flight technique. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Capillary Sharp Inner Edge Manufacturing

    Czech Academy of Sciences Publication Activity Database

    Hošek, Jan; Studenovský, K.; Najdek, D.

    2009-01-01

    Roč. 19, č. 35 (2009), s. 19-25 ISSN 1584-5982. [MECAHITECH 09 /1./. Bukurešť, 08.10.2009-09.10.2009] R&D Projects: GA AV ČR IAA200760905 Institutional research plan: CEZ:AV0Z20760514 Keywords : capillary * edge * manufacturing Subject RIV: JR - Other Machinery

  15. X-ray focusing using capillary arrays

    International Nuclear Information System (INIS)

    Nugent, K.A.; Chapman, H.N.

    1990-01-01

    A new form of X-ray focusing device based on glass capillary arrays is presented. Theoretical and experimental results for array of circular capillaries and theoretical and computational results for square hole capillaries are given. It is envisaged that devices such as these will find wide applications in X-ray optics as achromatic condensers and collimators. 3 refs., 4 figs

  16. Capillary Flow of Liquid Metals in Brazing

    Science.gov (United States)

    Dehsara, Mohammad

    Capillary flow is driven or controlled by capillary forces, exerted at the triple line where the fluid phases meet the solid boundary. Phase field (PF) models naturally accommodate diffusive triple line motion with variable contact angle, thus allowing for the no-slip boundary condition without the stress singularities. Moreover, they are uniquely suited for modeling of topological discontinuities which often arise during capillary flows. In this study, we consider diffusive triple line motion within two PF models: the compositionally compressible (CC) and the incompressible (IC) models. We derive the IC model as a systematic approximation to the CC model, based on a suitable choice of continuum velocity field. The CC model, applied to the fluids of dissimilar mass densities, exhibits a computational instability at the triple line. The IC model perfectly represents the analytic equilibria. We develop the parameter identification procedure and show that the triple line kinetics can be well represented by the IC model's diffusive boundary condition. The IC model is first tested by benchmarking the phase-field and experimental kinetics of water, and silicone oil spreading over the glass plates in which two systems do not interact with the substrate. Then, two high-temperature physical settings involving spreading of the molten Al-Si alloy: one over a rough wetting substrate, the other over a non-wetting substrate are modeled in a T-joint structure which is a typical geometric configuration for many brazing and soldering applications. Surface roughness directly influences the spreading of the molten metal by causing break-ups of the liquid film and trapping the liquid away from the joint. In the early stages of capillary flow over non-wetting surface, the melting and flow are concurrent, so that the kinetics of wetting is strongly affected by the variations in effective viscosity of the partially molten metal. We define adequate time-dependent functions for the

  17. Surfing with capillary waves: a survival strategy for trapped bees

    Science.gov (United States)

    Roh, Chris; Gharib, Morteza

    2017-11-01

    Honeybees are able to propel themselves at the water surface. A rapid vibration (30-220 Hz) of wings at the air-water interface results in a locomotion speed of 3-4 cm/s. A mechanism for generating thrust required for achieving and maintaining such speed must be different from their mechanism of flight inasmuch as they are in a different fluid environment. In this study, we present the thrust generating mechanism of the honeybee at the air-water interface. A close observation of the wing's interaction with the water surface showed that the wing does not penetrate nor detach from the water surface. Moreover, the stroke speed of the wing exceeds the minimum capillary wave speed, which signifies that the wing constantly generates the capillary wave by pulling on the surface with its wetted underside. Observation of such interaction suggests that honeybee's locomotion at the water surface resembles surfing on the self-generated capillary wave. A further evidence of described mechanism is explored by constructing a similarly sized mechanical model. This material is based upon work supported by the National Science Foundation under Grant No. CBET-1511414; additional support by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1144469.

  18. Numerical analysis of scaling laws for capillary rise in soils; Lois d'echelle pour l'ascension capillaire dans les sols: analyse numerique

    Energy Technology Data Exchange (ETDEWEB)

    Rezzoug, A.; Konig, D.; Triantafyllidis, Th. [Ruhr Bochum Univ. (Germany); Coumoulos, H.; Soga, K. [Cambridge Univ. (United Kingdom)

    2000-07-01

    The capillary movement of water through soils is of interest in many practical environmental engineering problems, especially problems concerning pollutant transport in soils. The potential use of the geotechnical centrifuge to study the capillary phenomena in soils has been proposed and some results have been reported. The main issue in relation is the verification of the scaling laws for the capillary phenomena in soils. However, the theoretical aspect of the capillary rise in relation to the accelerated gravity effect is still poorly understood; further investigation is required on the gravity effect on the capillary pressure, the meniscus form, the scaling of the capillary height and the scaling of the time. A theoretical analysis of the movement in capillary tube, representing soil, is presented. Scaling laws for the capillary height and the time are proposed. The effect of the contact angle changes on the scaling laws is also considered. (authors)

  19. Measurements of capillary pressure and electric permittivity of gas-water systems in porous media at elevated pressures : Application to geological storage of CO2 in aquifers and wetting behavior in coal

    NARCIS (Netherlands)

    Plug, W.J.

    2007-01-01

    Sequestration of CO2 in aquifers and coal layers is a promising technique to reduce greenhouse gas emissions. Considering the reservoir properties, e.g. wettability, heterogeneity and the caprocks sealing capacity, the capillary pressure is an important measure to evaluate the efficiency, the

  20. Mixed Capillary Venous Retroperitoneal Hemangioma

    Directory of Open Access Journals (Sweden)

    Mohit Godar

    2013-01-01

    Full Text Available We report a case of mixed capillary venous hemangioma of the retroperitoneum in a 61-year-old man. Abdominal ultrasonography showed a mass to be hypoechoic with increased flow in color Doppler imaging. Dynamic contrast-enhanced computed tomography revealed a centripetal filling-in of the mass, located anterior to the left psoas muscle at the level of sacroiliac joint. On the basis of imaging features, preoperative diagnosis of hemangioma was considered and the mass was excised by laparoscopic method. Immunohistochemical studies were strongly positive for CD31 and CD34, and negative for calretinin, EMA, WT1, HMB45, Ki67, synaptophysin, and lymphatic endothelial cell marker D2–40. Histologically, the neoplasm was diagnosed as mixed capillary venous hemangioma.

  1. Capillary waves with surface viscosity

    Science.gov (United States)

    Shen, Li; Denner, Fabian; Morgan, Neal; van Wachem, Berend; Dini, Daniele

    2017-11-01

    Experiments over the last 50 years have suggested a correlation between the surface (shear) viscosity and the stability of a foam or emulsion. With recent techniques allowing more accurate measurements of the elusive surface viscosity, we examine this link theoretically using small-amplitude capillary waves in the presence of the Marangoni effect and surface viscosity modelled via the Boussinesq-Scriven model. The surface viscosity effect is found to contribute a damping effect on the amplitude of the capillary wave with subtle differences to the effect of the convective-diffusive Marangoni transport. The general wave dispersion is augmented to take into account the Marangoni and surface viscosity effects, and a first-order correction to the critical damping wavelength is derived. The authors acknowledge the financial support of the Shell University Technology Centre for fuels and lubricants.

  2. Characterization for capillary barriers effects in a sand box test using time-lapsed GPR measurements

    Science.gov (United States)

    Kuroda, S.; Ishii, N.; Morii, T.

    2017-12-01

    Capillary barriers have been known as the method to protect subsurface regions against infiltration from soil surface. It is caused by essentially heterogeneous structure in permeability or soil physical property and produce non-uniform infiltration process then, in order to estimate the actual situation of the capillary barrier effect, the site-characterization with imaging technique like geophysical prospecting is effective. In this study, we examine the applicability of GPR to characterization for capillary barriers. We built a sand box with 90x340x90cm in which a thin high-permeable gravel layer was embedded as a capillary barrier. We conducted an infiltration test in the sand box using porous tube array for irrigation. It is expected to lead to non-uniform flow of soil water induced by capillary barrier effects. We monitored this process by various types of GPR measurements, including time-lapsed common offset profiling (COP) with multi- frequency antenna and transmission measurements like cross-borehole radar. At first, we conducted GPR common-offset survey. It could show the depth of capillary barrier in sand box. After that we conducted the infiltration test and GPR monitoring for infiltration process. GPR profiles can detect the wetting front and estimate water content change in the soil layer above the capillary barrier. From spatial change in these results we can estimate the effect of capillary barrier and the zone where the break through occur or not. Based on these results, we will discuss the applicability of GPR for monitoring the phenomena around the capillary barrier of soil. At first, we conducted GPR common-offset survey. It could show the depth of capillary barrier in sand box. After that we conducted the infiltration test and GPR monitoring for infiltration process. GPR profiles can detect the wetting front and estimate water content change in the soil layer above the capillary barrier. From spatial change in these results we can estimate the

  3. Capillary Condensation with a Grain of Salt.

    Science.gov (United States)

    Yarom, Michal; Marmur, Abraham

    2017-11-21

    Capillary condensation (CC), namely, the formation from the vapor of a stable phase of drops below the saturation pressure, is a prevalent phenomenon. It may occur inside porous structures or between surfaces of particles. CC between surfaces, a liquid "bridge", is of particular practical interest because of its resulting adhesive force. To date, studies have focused on pure water condensation. However, nonvolatile materials, such as salts and surfactants, are prevalent in many environments. In the current study, the effect of these contaminants on CC is investigated from a thermodynamic point of view. This is done by computing the Gibbs energy of such systems and developing the modified Kelvin equation, based on the Kohler theory. The results demonstrate that nonvolatile solutes may have a number of major effects, including an increase in the critical radius and the stabilization of the newly formed phase.

  4. Capillary Refill using Augmented Reality

    OpenAIRE

    Clausen, Christoffer

    2017-01-01

    Master's thesis in Computer science The opportunities within augmented reality is growing. Augmented reality is a combination of the real and the virtual world in real time, and large companies like Microsoft and Google is now investing heavily in the technology. This thesis presents a solution for simulating a medical test called capillary refill, by using augmented reality. The simulation is performed with an augmented reality headset called HoloLens. The HoloLens will recognise a mark...

  5. Capillary electrophoresis systems and methods

    Science.gov (United States)

    Dorairaj, Rathissh [Hillsboro, OR; Keynton, Robert S [Louisville, KY; Roussel, Thomas J [Louisville, KY; Crain, Mark M [Georgetown, IN; Jackson, Douglas J [New Albany, IN; Walsh, Kevin M [Louisville, KY; Naber, John F [Goshen, KY; Baldwin, Richard P [Louisville, KY; Franco, Danielle B [Mount Washington, KY

    2011-08-02

    An embodiment of the invention is directed to a capillary electrophoresis apparatus comprising a plurality of separation micro-channels. A sample loading channel communicates with each of the plurality of separation channels. A driver circuit comprising a plurality of electrodes is configured to induce an electric field across each of the plurality of separation channels sufficient to cause analytes in the samples to migrate along each of the channels. The system further comprises a plurality of detectors configured to detect the analytes.

  6. Capillaries modified by noncovalent anionic polymer adsorption for capillary zone electrophoresis, micellar electrokinetic capillary chromatography and capillary electrophoresis mass spectrometry

    DEFF Research Database (Denmark)

    Bendahl, L; Hansen, S H; Gammelgaard, Bente

    2001-01-01

    A simple coating procedure for generation of a high and pH-independent electroosmotic flow in capillary zone electrophoresis (CZE) and micellar electrokinetic capillary chromatography (MEKC) is described. The bilayer coating was formed by noncovalent adsorption of the ionic polymers Polybrene...... capillaries was (4.9+/-0.1) x 10(-4) cm2V(-1)s(-1) in a pH-range of 2-10 (ionic strength = 30 mM). When alkaline compounds were used as test substances intracapillary and intercapillary migration time variations (n = 6) were less than 1% relative standard deviation (RSD) and 2% RSD, respectively in the entire...... pH range. The coating was fairly stable in the presence of sodium dodecyl sulfate, and this made it possible to perform fast MEKC separations at low pH. When neutral compounds were used as test substances, the intracapillary migration time variations (n = 6) were less than 2% RSD in a pH range of 2...

  7. Progression of Diabetic Capillary Occlusion: A Model.

    Directory of Open Access Journals (Sweden)

    Xiao Fu

    2016-06-01

    Full Text Available An explanatory computational model is developed of the contiguous areas of retinal capillary loss which play a large role in diabetic maculapathy and diabetic retinal neovascularization. Strictly random leukocyte mediated capillary occlusion cannot explain the occurrence of large contiguous areas of retinal ischemia. Therefore occlusion of an individual capillary must increase the probability of occlusion of surrounding capillaries. A retinal perifoveal vascular sector as well as a peripheral retinal capillary network and a deleted hexagonal capillary network are modelled using Compucell3D. The perifoveal modelling produces a pattern of spreading capillary loss with associated macular edema. In the peripheral network, spreading ischemia results from the progressive loss of the ladder capillaries which connect peripheral arterioles and venules. System blood flow was elevated in the macular model before a later reduction in flow in cases with progression of capillary occlusions. Simulations differing only in initial vascular network structures but with identical dynamics for oxygen, growth factors and vascular occlusions, replicate key clinical observations of ischemia and macular edema in the posterior pole and ischemia in the retinal periphery. The simulation results also seem consistent with quantitative data on macular blood flow and qualitative data on venous oxygenation. One computational model applied to distinct capillary networks in different retinal regions yielded results comparable to clinical observations in those regions.

  8. Fluid Delivery System For Capillary Electrophoretic Applications.

    Science.gov (United States)

    Li, Qingbo; Liu, Changsheng; Kane, Thomas E.; Kernan, John R.; Sonnenschein, Bernard; Sharer, Michael V.

    2002-04-23

    An automated electrophoretic system is disclosed. The system employs a capillary cartridge having a plurality of capillary tubes. The cartridge has a first array of capillary ends projecting from one side of a plate. The first array of capillary ends are spaced apart in substantially the same manner as the wells of a microtitre tray of standard size. This allows one to simultaneously perform capillary electrophoresis on samples present in each of the wells of the tray. The system includes a stacked, dual carrousel arrangement to eliminate cross-contamination resulting from reuse of the same buffer tray on consecutive executions from electrophoresis. The system also has a gel delivery module containing a gel syringe/a stepper motor or a high pressure chamber with a pump to quickly and uniformly deliver gel through the capillary tubes. The system further includes a multi-wavelength beam generator to generate a laser beam which produces a beam with a wide range of wavelengths. An off-line capillary reconditioner thoroughly cleans a capillary cartridge to enable simultaneous execution of electrophoresis with another capillary cartridge. The streamlined nature of the off-line capillary reconditioner offers the advantage of increased system throughput with a minimal increase in system cost.

  9. Effect of surfactant on kinetics of thinning of capillary bridges

    Science.gov (United States)

    Nowak, Emilia; Kovalchuk, Nina; Simmons, Mark

    2015-11-01

    Kinetics of thinning of capillary bridges is of great scientific and industrial interest being of vital importance for example in various emulsification and microfluidic processes. It is well known that the rate of bridge thinning is proportional to the interfacial tension. Therefore it is expected that the process should slow down by addition of surfactant. The kinetics of capillary bridges in the presence of surfactant was studied by the dripping of liquid from a capillary tip under conditions of nearly zero flow rate (We personal care products. The viscosity, surfactant activity and adsorption kinetics have been controlled by addition of glycerol and sodium chloride. The study has shown that the kinetics of capillary bridges are determined by dynamic surface tension rather than by its equilibrium value. In particular, the kinetics of the bridge thinning for the 0.1 g L-1 aqueous SLES solution is practically the same as that of pure water despite twice lower equilibrium surface tension. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.

  10. Numerical Simulation of Particle Distribution in Capillary Membrane during Backwash

    Directory of Open Access Journals (Sweden)

    Anik Keller

    2013-09-01

    Full Text Available The membrane filtration with inside-out dead-end driven UF-/MF- capillary membranes is an effective process for particle removal in water treatment. Its industrial application increased in the last decade exponentially. To date, the research activities in this field were aimed first of all at the analysis of filtration phenomena disregarding the influence of backwash on the operation parameters of filtration plants. However, following the main hypothesis of this paper, backwash has great potential to increase the efficiency of filtration. In this paper, a numerical approach for a detailed study of fluid dynamic processes in capillary membranes during backwash is presented. The effect of particle size and inlet flux on the backwash process are investigated. The evaluation of these data concentrates on the analysis of particle behavior in the cross sectional plane and the appearance of eventually formed particle plugs inside the membrane capillary. Simulations are conducted in dead-end filtration mode and with two configurations. The first configuration includes a particle concentration of 10% homogeneously distributed within the capillary and the second configuration demonstrates a cake layer on the membrane surface with a packing density of 0:6. Analyzing the hydrodynamic forces acting on the particles shows that the lift force plays the main role in defining the particle enrichment areas. The operation parameters contribute in enhancing the lift force and the heterogeneity to anticipate the clogging of the membrane.

  11. Microfluidic PMMA interfaces for rectangular glass capillaries

    International Nuclear Information System (INIS)

    Evander, Mikael; Tenje, Maria

    2014-01-01

    We present the design and fabrication of a polymeric capillary fluidic interface fabricated by micro-milling. The design enables the use of glass capillaries with any kind of cross-section in complex microfluidic setups. We demonstrate two different designs of the interface; a double-inlet interface for hydrodynamic focusing and a capillary interface with integrated pneumatic valves. Both capillary interfaces are presented together with examples of practical applications. This communication shows the design optimization and presents details of the fabrication process. The capillary interface opens up for the use of complex microfluidic systems in single-use glass capillaries. They also enable simple fabrication of glass/polymer hybrid devices that can be beneficial in many research fields where a pure polymer chip negatively affects the device's performance, e.g. acoustofluidics. (technical note)

  12. Capillary pumped loop body heat exchanger

    Science.gov (United States)

    Swanson, Theodore D. (Inventor); Wren, deceased, Paul (Inventor)

    1998-01-01

    A capillary pumped loop for transferring heat from one body part to another body part, the capillary pumped loop comprising a capillary evaporator for vaporizing a liquid refrigerant by absorbing heat from a warm body part, a condenser for turning a vaporized refrigerant into a liquid by transferring heat from the vaporized liquid to a cool body part, a first tube section connecting an output port of the capillary evaporator to an input of the condenser, and a second tube section connecting an output of the condenser to an input port of the capillary evaporator. A wick may be provided within the condenser. A pump may be provided between the second tube section and the input port of the capillary evaporator. Additionally, an esternal heat source or heat sink may be utilized.

  13. Pump effect of a capillary discharge in electrically conductive liquids

    Czech Academy of Sciences Publication Activity Database

    De Baerdemaeker, F.; Šimek, Milan; Leys, C.; Verstraete, W.

    2007-01-01

    Roč. 27, č. 4 (2007), s. 473-485 ISSN 0272-4324 R&D Projects: GA AV ČR IAA1043403 Institutional research plan: CEZ:AV0Z20430508 Keywords : water * conductive * capillary * AC discharge * pump Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.747, year: 2007 http://www.springerlink.com/content/w802073563282272/fulltext.pdf

  14. Intracranial capillary hemangioma mimicking a dissociative disorder

    Directory of Open Access Journals (Sweden)

    Alexander Lacasse

    2012-01-01

    Full Text Available Capillary hemangiomas, hamartomatous proliferation of vascular endothelial cells, are rare in the central nervous system (CNS. Intracranial capillary hemangiomas presenting with reversible behavioral abnormalities and focal neurological deficits have rarely been reported. We report a case of CNS capillary hemangioma presenting with transient focal neurological deficits and behavioral abnormalities mimicking Ganser’s syndrome. Patient underwent total excision of the vascular malformation, resulting in complete resolution of his symptoms.

  15. Capillary condensation between disks in two dimensions

    OpenAIRE

    Gil, Tamir; Ipsen, John Hjorth

    1997-01-01

    Capillary condensation between two two-dimensional wetted circular substrates (disks) is studied by an effective free energy description of the wetting interface. The interfacial free-energy potential is developed on the basis of the theory for the wetting of a single disk, where interfacial capillary fluctuations play a dominant role. A simple approximative analytical expression of the interfacial free energy is developed and is validated numerically. The capillary condensation is characteri...

  16. Capillary concentrators for synchrotron radiation beamlines

    International Nuclear Information System (INIS)

    Heald, S.M.; Brewe, D.L.; Kim, K.H.; Brown, F.C.; Barg, B.; Stern, E.A.

    1996-01-01

    Capillary concentrators condense x-rays by multiple reflections down a gradually tapering capillary. They can provide sub-micron beam spots, and are promising candidates for use in the next generation x-ray microprobe beamlines. The weak energy dependence of their properties make them especially useful for energy scanning applications such as micro-XAFS. This paper examines the potential performance of capillary optics for an x-ray microprobe, as well as some practical issues such as fabrication and alignment. Best performance at third generation sources requires long capillaries, and the authors have been using fiber optics techniques to fabricate capillaries up to one meter in length. The performance of shorter (less than about 0.5 m) capillaries has often been found to agree well with theoretical calculations, indicating the inner surface is a high quality x-ray reflector. These capillaries have been tested at the NSLS for imaging and micro-XAFS down to 2.6 microm resolution with excellent results. On an unfocused bend magnet line flux density approaching 10 6 ph/sec/microm 2 has been achieved. While nearly optimum profiles have been achieved for longer capillaries, the results have been disappointing, and alignment problems are suspected. The dramatic improvement in performance possible at third generation synchrotrons such as the APS is discussed along with improvements possible by using the capillaries in conjunction with coupling optics

  17. Capillary electrophoresis and nanomaterials - Part I: Capillary electrophoresis of nanomaterials.

    Science.gov (United States)

    Adam, Vojtech; Vaculovicova, Marketa

    2017-10-01

    Nanomaterials are in analytical science used for a broad range of purposes, covering the area of sample pretreatment as well as separation, detection, and identification of target molecules. This part of the review covers capillary electrophoresis (CE) of nanomaterials and focuses on the application of CE as a method for characterization used during nanomaterial synthesis and modification as well as the monitoring of their properties and interactions with other molecules. The heterogeneity of the nanomaterial family is extremely large. Depending on different definitions of the term Nanomaterial/Nanoparticle, the group may cover metal and polymeric nanoparticles, carbon nanomaterials, liposomes and even dendrimers. Moreover, these nanomaterials are usually subjected to some kind of surface modification or functionalization, which broadens the diversity even more. Not only for purposes of verification of nanomaterial synthesis and batch-to-batch quality check, but also for determination the polydispersity and for functionality characterization on the nanoparticle surface, has CE offered very beneficial capabilities. Finally, the monitoring of interactions between nanomaterials and other (bio)molecules is easily performed by some kind of capillary electromigration technique. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Vacuum scanning capillary photoemission microscopy

    DEFF Research Database (Denmark)

    Aseyev, S.A.; Cherkun, A P; Mironov, B N

    2017-01-01

    of a gold reflecting layer on a compact disc which has been illuminated by an unfocused laser beam with a wavelength 400nm, from a femtosecond laser with a beam size of 4mm. A quartz capillary with a 2-µm aperture has been used in the experiments. The period of gold microstructure, shown to be 1.6µ...... distribution of the recorded photoelectrons consisted of periodic mountain-valley strips, resembling the surface profile of the sample. Submicron spatial resolution has been achieved. This approach paves the way to study pulsed photodesorption of large organic molecular ions with high spatial and element...

  19. Modeling capillary bridge dynamics and crack healing between surfaces of nanoscale roughness

    Science.gov (United States)

    Soylemez, Emrecan; de Boer, Maarten P.

    2017-12-01

    Capillary bridge formation between adjacent surfaces in humid environments is a ubiquitous phenomenon. It strongly influences tribological performance with respect to adhesion, friction and wear. Only a few studies, however, assess effects due to capillary dynamics. Here we focus on how capillary bridge evolution influences crack healing rates. Experimental results indicated a logarithmic decrease in average crack healing velocity as the energy release rate increases. Our objective is to model that trend. We assume that capillary dynamics involve two mechanisms: capillary bridge growth and subsequently nucleation followed by growth. We show that by incorporating interface roughness details and the presence of an adsorbed water layer, the behavior of capillary force dynamics can be understood quantitatively. We identify three important regimes that control the healing process, namely bridge growth, combined bridge growth and nucleation, and finally bridge nucleation. To fully capture the results, however, the theoretical model for nucleation time required an empirical modification. Our model enables significant insight into capillary bridge dynamics, with a goal of attaining a predictive capability for this important microelectromechanical systems (MEMS) reliability failure mechanism.

  20. Ion guiding and losses in insulator capillaries

    International Nuclear Information System (INIS)

    Juhasz, Z.; Sulik, B.; Vikor, Gy.; Biri, S.; Fekete, E.; Ivan, I.; Gall, F.; Toekesi, K.; Matefi-Tempfli, S.; Matefi-Tempfli, M.

    2007-01-01

    Complete text of publication follows. Not long ago it was discovered that insulating capillaries can guide slow ions, so that the ions avoid close contact with the capillary walls and preserve their initial charge state. This phenomenon did not only give a new puzzle for theoreticians but opened the way for new possible applications where ions are manipulated (deflected, focused and directed to different patterns on the irradiated media) with small capillary devices. The most important question for such applications is how large fraction of the ions can be guided to the desired direction. It is already known that the ion guiding is due to the charging up of the inner capillary walls by earlier ion impact events. In tilted capillaries one side of the capillary walls charges up. This deflects the later arriving ions, so that some of them pass through the capillaries nearly parallel with respect to their axes. The angle where the transmission drops to 1/e of the direct transmission at 0 deg is the guiding angle, which characterize the guiding ability. At 0 deg the ideal 100 percent transmission for the ions, which enter the capillaries, is reduced due to the mirror charge attraction and geometrical imperfections. These losses appear in the transmission for tilted capillaries with similar magnitude, since after the deflection region, which usually restricted to the close surroundings of the capillary openings, the guided ions pass through the rest of the capillaries as in non-tilted samples. In our experimental studies with Al 2 O 3 capillaries we found that around 90 percent of the incoming ions are lost. To understand these significant losses, the effects of the mirror charge attraction and geometrical imperfections have been calculated classically. The mirror charge potential was taken from.The model of the capillaries used in the calculations can be seen in Figure 1. The calculations have shown that the effects of mirror charge attraction and the angular

  1. Impact of capillary rise and recirculation on simulated crop yields

    Directory of Open Access Journals (Sweden)

    J. Kroes

    2018-05-01

    Full Text Available Upward soil water flow is a vital supply of water to crops. The purpose of this study is to determine if upward flow and recirculated percolation water can be quantified separately, and to determine the contribution of capillary rise and recirculated water to crop yield and groundwater recharge. Therefore, we performed impact analyses of various soil water flow regimes on grass, maize and potato yields in the Dutch delta. Flow regimes are characterized by soil composition and groundwater depth and derived from a national soil database. The intermittent occurrence of upward flow and its influence on crop growth are simulated with the combined SWAP-WOFOST model using various boundary conditions. Case studies and model experiments are used to illustrate the impact of upward flow on yield and crop growth. This impact is clearly present in situations with relatively shallow groundwater levels (85 % of the Netherlands, where capillary rise is a well-known source of upward flow; but also in free-draining situations the impact of upward flow is considerable. In the latter case recirculated percolation water is the flow source. To make this impact explicit we implemented a synthetic modelling option that stops upward flow from reaching the root zone, without inhibiting percolation. Such a hypothetically moisture-stressed situation compared to a natural one in the presence of shallow groundwater shows mean yield reductions for grassland, maize and potatoes of respectively 26, 3 and 14 % or respectively about 3.7, 0.3 and 1.5 t dry matter per hectare. About half of the withheld water behind these yield effects comes from recirculated percolation water as occurs in free-drainage conditions and the other half comes from increased upward capillary rise. Soil water and crop growth modelling should consider both capillary rise from groundwater and recirculation of percolation water as this improves the accuracy of yield simulations. This also improves the

  2. Impact of capillary rise and recirculation on simulated crop yields

    Science.gov (United States)

    Kroes, Joop; Supit, Iwan; van Dam, Jos; van Walsum, Paul; Mulder, Martin

    2018-05-01

    Upward soil water flow is a vital supply of water to crops. The purpose of this study is to determine if upward flow and recirculated percolation water can be quantified separately, and to determine the contribution of capillary rise and recirculated water to crop yield and groundwater recharge. Therefore, we performed impact analyses of various soil water flow regimes on grass, maize and potato yields in the Dutch delta. Flow regimes are characterized by soil composition and groundwater depth and derived from a national soil database. The intermittent occurrence of upward flow and its influence on crop growth are simulated with the combined SWAP-WOFOST model using various boundary conditions. Case studies and model experiments are used to illustrate the impact of upward flow on yield and crop growth. This impact is clearly present in situations with relatively shallow groundwater levels (85 % of the Netherlands), where capillary rise is a well-known source of upward flow; but also in free-draining situations the impact of upward flow is considerable. In the latter case recirculated percolation water is the flow source. To make this impact explicit we implemented a synthetic modelling option that stops upward flow from reaching the root zone, without inhibiting percolation. Such a hypothetically moisture-stressed situation compared to a natural one in the presence of shallow groundwater shows mean yield reductions for grassland, maize and potatoes of respectively 26, 3 and 14 % or respectively about 3.7, 0.3 and 1.5 t dry matter per hectare. About half of the withheld water behind these yield effects comes from recirculated percolation water as occurs in free-drainage conditions and the other half comes from increased upward capillary rise. Soil water and crop growth modelling should consider both capillary rise from groundwater and recirculation of percolation water as this improves the accuracy of yield simulations. This also improves the accuracy of the

  3. Two-dimensional capillary origami

    Energy Technology Data Exchange (ETDEWEB)

    Brubaker, N.D., E-mail: nbrubaker@math.arizona.edu; Lega, J., E-mail: lega@math.arizona.edu

    2016-01-08

    We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid. - Highlights: • Full solution set of the two-dimensional capillary origami problem. • Fluid does not necessarily wet the entire plate. • Global energy approach provides exact differential equations satisfied by minimizers. • Bifurcation diagrams highlight three different regimes. • Conditions for spontaneous encapsulation are identified.

  4. Two-dimensional capillary origami

    International Nuclear Information System (INIS)

    Brubaker, N.D.; Lega, J.

    2016-01-01

    We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid. - Highlights: • Full solution set of the two-dimensional capillary origami problem. • Fluid does not necessarily wet the entire plate. • Global energy approach provides exact differential equations satisfied by minimizers. • Bifurcation diagrams highlight three different regimes. • Conditions for spontaneous encapsulation are identified.

  5. Mixed Fluid Conditions: Capillary Phenomena

    KAUST Repository

    Santamarina, Carlos

    2017-07-06

    Mixed fluid phenomena in porous media have profound implications on soil-atmosphere interaction, energy geotechnology, environmental engineering and infrastructure design. Surface tension varies with pressure, temperature, solute concentration, and surfactant concentration; on the other hand, the contact angle responds to interfacial tensions, surface topography, invasion velocity, and chemical interactions. Interfaces are not isolated but interact through the fluid pressure and respond to external fields. Jumps, snap-offs and percolating wetting liquids along edges and crevices are ubiquitous in real, non-cylindrical porous networks. Pore- and macroscale instabilities together with pore structure variability-and-correlation favor fluid trapping and hinder recovery efficiency. The saturation-pressure characteristic curve is affected by the saturation-history, flow-rate, the mechanical response of the porous medium, and time-dependent reactive and diffusive processes; in addition, there are salient differences between unsaturation by internal gas nucleation and gas invasion. Capillary forces add to other skeletal forces in the porous medium and can generate open-mode discontinuities when the capillary entry pressure is high relative to the effective stress. Time emerges as an important variable in mixed-fluid conditions and common quasi-static analyses may fail to capture the system response.

  6. Equilibrium capillary forces with atomic force microscopy

    NARCIS (Netherlands)

    Sprakel, J.H.B.; Besseling, N.A.M.; Leermakers, F.A.M.; Cohen Stuart, M.A.

    2007-01-01

    We present measurements of equilibrium forces resulting from capillary condensation. The results give access to the ultralow interfacial tensions between the capillary bridge and the coexisting bulk phase. We demonstrate this with solutions of associative polymers and an aqueous mixture of gelatin

  7. Assembly for connecting the column ends of two capillary columns

    International Nuclear Information System (INIS)

    Kolb, B.; Auer, M.; Pospisil, P.

    1984-01-01

    In gas chromatography, the column ends of two capillary columns are inserted into a straight capillary from both sides forming annular gaps. The capillary is located in a tee out of which the capillary columns are sealingly guided, and to which carrier gas is supplied by means of a flushing flow conduit. A ''straight-forward operation'' having capillary columns connected in series and a ''flush-back operation'' are possible. The dead volume between the capillary columns can be kept small

  8. Sheathless interface for coupling capillary electrophoresis with mass spectrometry

    Science.gov (United States)

    Wang, Chenchen; Tang, Keqi; Smith, Richard D.

    2014-06-17

    A sheathless interface for coupling capillary electrophoresis (CE) with mass spectrometry is disclosed. The sheathless interface includes a separation capillary for performing CE separation and an emitter capillary for electrospray ionization. A portion of the emitter capillary is porous or, alternatively, is coated to form an electrically conductive surface. A section of the emitter capillary is disposed within the separation capillary, forming a joint. A metal tube, containing a conductive liquid, encloses the joint.

  9. Static Response of Microbeams due to Capillary and Electrostatic Forces

    KAUST Repository

    Bataineh, Ahmad M.

    2016-03-07

    Micro-sensors or micro-switches usually operate under the effect of electrostatic force and could face some environmental effects like humidity, which may lead to condensation underneath the beams and create strong capillary forces. Those tiny structures are principally made of microbeams that can undergo instabilities under the effect of those created huge capillary forces. In fact, during the fabrication of microbeams, there is an important step to separate the beam from its substrate (wet etching). After this step, the microstructure is dried, which may causes the onset of some droplets of water trapped underneath the beam that could bring about a huge capillary force pulling it toward its substrate. If this force is bigger than the microbeam\\'s restoring force, it will become stuck to the substrate. This paper investigates the instability scenarios of both clamped-clamped (straight and curved) and cantilever (straight and curled) microbeams under the effect of capillary and/or electrostatic forces. The reduced order modeling (ROM) based on the Galerkin procedure is used to solve the nonlinear beam equations. The non-ideal boundaries are modeled by adding springs. The volume of the fluid between the beam and the substrate underneath it is varied and the relation between the volume of the water and the stability of the beam is shown. An analysis for the factors of which should be taken in to consideration in the fabrication processes to overcome the instability due to huge capillary forces is done. Also the size of the electrode for the electrostatic force is varied to show the effect on the micro-switch stability. A variation of the pull-in voltage with some specific beam parameters and with more than one case of electrode size is shown. It is found that capillary forces have a pronounced effect on the stability of microbeams. It is also found that the pull-in length decreases as the electrode size increases. It is also shown that the pull-in voltage decreases

  10. The penetration of aerosols through fine capillaries

    International Nuclear Information System (INIS)

    Mitchell, J.P.; Edwards, R.T.; Ball, M.H.E.

    1989-10-01

    A novel experimental technique has been developed to study the penetration of aerosol particles ranging from about 1 to 15 μm aerodynamic diameter through capillaries varying from 20 to 80 μm bore and from 10 to 50 mm in length. When the driving pressure was 100 kPa, the penetration of the airborne particles was considerably smaller than expected from a simple comparison of particle diameter with the bore of the capillary. Particle size distributions determined after penetration through the capillaries were in almost all cases similar to the particle size distribution of the aerosol at the capillary entrance. This lack of size-selectivity can be explained in terms of the capillary behaving as a conventional suction-based sampler from a near still (calm) air environment. The resulting particle penetration data are important in assessing the potential for the leakage of aerosols through seals in containers used to transport radioactive materials. (author)

  11. A Partial Equilibrium Theory for Drops and Capillary Liquids

    International Nuclear Information System (INIS)

    Searcy, Alan W.; Beruto, Dario T.; Barberis, Fabrizio

    2006-01-01

    The two-century old theory of Young and Laplace retains a powerful influence on surface and interface studies because it quantitatively predicts the height of rise of capillary liquids from the contact angles of drops. But the classical theory does not acknowledge that equilibrium requires separate minimization of partial free energies of one-component liquids bonded to immiscible solids. We generalize a theorem of Gibbs and Curie to obtain a partial equilibrium (PE) theory that does so and that also predicts the height of capillary rise from contact angles of drops. Published observations and our own measurements of contact angles of water bonded to glass and Teflon surfaces support the conclusion of PE theory that contact angles of meniscuses and of drops are different dependent variables. PE theory provides thermodynamic and kinetic guidance to nanoscale processes that the classical theory obscures, as illustrated by examples in our concluding section

  12. A combined capillary cooling system for cooling fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Ana Paula; Pelizza, Pablo Rodrigo; Galante, Renan Manozzo; Bazzo, Edson [Universidade Federal de Santa Catarina (LabCET/UFSC), Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica. Lab. de Combustao e Engenharia de Sistemas Termicos], Emails: ana@labcet.ufsc.br, pablo@labcet.ufsc.br, renan@labcet.ufsc.br, ebazzo@emc.ufsc.br

    2010-07-01

    The operation temperature control has an important influence over the PEMFC (Proton Exchange Membrane Fuel Cell) performance. A two-phase heat transfer system is proposed as an alternative for cooling and thermal control of PEMFC. The proposed system consists of a CPL (Capillary Pumped Loop) connected to a set of constant conductance heat pipes. In this work ceramic wick and stainless mesh wicks have been used as capillary structure of the CPL and heat pipes, respectively. Acetone has been used as the working fluid for CPL and deionized water for the heat pipes. Experimental results of three 1/4 inch stainless steel outlet diameter heats pipes and one CPL have been carried out and presented in this paper. Further experiments are planned coupling the proposed cooling system to a module which simulates the fuel cell. (author)

  13. Critical effect of pore characteristics on capillary infiltration in mesoporous films.

    Science.gov (United States)

    Ceratti, D R; Faustini, M; Sinturel, C; Vayer, M; Dahirel, V; Jardat, M; Grosso, D

    2015-03-12

    Capillary phenomena governing the mass-transport (capillary filling, condensation/evaporation) has been experimentally investigated in around 20 different silica thin films exhibiting various porosities with pores dimension ranging from 2 to 200 nm. Films have been prepared by sol-gel chemistry combined with soft-templating approaches and controlled dip coating process. Environmental ellipsometric porosimetry combined with electronic microscopy were used to assess the porosity characteristics. Investigation of lateral capillary filling was performed by following the natural infiltration of water and ionic liquids at the edge of a sessile drop in open air or underneath a PDMS cover. The Washburn model was applied to the displacement of the liquid front within the films to deduce the kinetic constants. The role of the different capillary phenomena were discussed with respect to the porosity characteristics (porosity vol%, pore dimensions and constrictions). We show that correlation between capillary filling rate and pore dimensions is not straightforward. Generally, with a minimum of constrictions, faster filling is observed for larger pores. In the case of mesopores (capillary condensation dynamics, taking place at the meniscus inside the porosity, has to be considered to explain the transport mode. This fundamental study is of interest for applications involving liquids at the interface of mesoporous networks such as nanofluidics, purification, separation, water harvesting or heat transfer.

  14. Genetics Home Reference: megalencephaly-capillary malformation syndrome

    Science.gov (United States)

    ... Additional NIH Resources (1 link) National Institute of Neurological Disorders and Stroke: Megalencephaly Educational Resources (5 links) Boston Children's Hospital: Capillary Malformation Cincinnati Children's Hospital: Capillary Malformations ...

  15. Capillary leak syndrome: etiologies, pathophysiology, and management.

    Science.gov (United States)

    Siddall, Eric; Khatri, Minesh; Radhakrishnan, Jai

    2017-07-01

    In various human diseases, an increase in capillary permeability to proteins leads to the loss of protein-rich fluid from the intravascular to the interstitial space. Although sepsis is the disease most commonly associated with this phenomenon, many other diseases can lead to a "sepsis-like" syndrome with manifestations of diffuse pitting edema, exudative serous cavity effusions, noncardiogenic pulmonary edema, hypotension, and, in some cases, hypovolemic shock with multiple-organ failure. The term capillary leak syndrome has been used to describe this constellation of disease manifestations associated with an increased capillary permeability to proteins. Diseases other than sepsis that can result in capillary leak syndrome include the idiopathic systemic capillary leak syndrome or Clarkson's disease, engraftment syndrome, differentiation syndrome, the ovarian hyperstimulation syndrome, hemophagocytic lymphohistiocytosis, viral hemorrhagic fevers, autoimmune diseases, snakebite envenomation, and ricin poisoning. Drugs including some interleukins, some monoclonal antibodies, and gemcitabine can also cause capillary leak syndrome. Acute kidney injury is commonly seen in all of these diseases. In addition to hypotension, cytokines are likely to be important in the pathophysiology of acute kidney injury in capillary leak syndrome. Fluid management is a critical part of the treatment of capillary leak syndrome; hypovolemia and hypotension can cause organ injury, whereas capillary leakage of administered fluid can worsen organ edema leading to progressive organ injury. The purpose of this article is to discuss the diseases other than sepsis that produce capillary leak and review their collective pathophysiology and treatment. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  16. Two-dimensional capillary electrophoresis: capillary isoelectric focusing and capillary zone electrophoresis with laser-induced fluorescence detection

    Science.gov (United States)

    Dickerson, Jane A.; Ramsay, Lauren M.; Dada, Oluwatosin O.; Cermak, Nathan

    2011-01-01

    Capillary isoelectric focusing and capillary zone electrophoresis are coupled with laser-induced fluorescence detection to create an ultrasensitive two-dimensional separation method for proteins. In this method, two capillaries are joined through a buffer filled interface. Separate power supplies control the potential at the injection end of the first capillary and at the interface; the detector is held at ground potential. Proteins are labeled with the fluorogenic reagent Chromeo P503, which preserves the isoelectric point of the labeled protein. The labeled proteins were mixed with ampholytes and injected into the first dimension capillary. A focusing step was performed with the injection end of the capillary at high pH and the interface at low pH. To mobilize components, the interface was filled with a high pH buffer, which was compatible with the second dimension separation. A fraction was transferred to the second dimension capillary for separation. The process of fraction transfer and second dimension separation was repeated two dozen times. The separation produced a spot capacity of 125. PMID:20603830

  17. Microwave discharges in capillary tubes

    International Nuclear Information System (INIS)

    Dervisevic, Emil

    1984-01-01

    This research thesis aims at being a contribution to the study of microwave discharge by a surface wave, and more precisely focusses on the discharge in capillary tubes filled with argon. The author first present theoretical models which describe, on the one hand, the propagation of the surface wave along the plasma column, and, on the other hand, longitudinal and radial profiles of the main discharge characteristics. The second part addresses the study of the influence of parameters (gas pressure and tube radius) on discharge operation and characteristics. Laws of similitude as well as empirical relationships between argon I and argon II emission line intensities, electron density, and electric field in the plasma have been established [fr

  18. The Texas horned lizard as model for robust capillary structures for passive directional transport of cooling lubricants

    Science.gov (United States)

    Comanns, Philipp; Winands, Kai; Pothen, Mario; Bott, Raya A.; Wagner, Hermann; Baumgartner, Werner

    2016-04-01

    Moisture-harvesting lizards, such as the Texas horned lizard Phrynosoma cornutum, have remarkable adaptations for inhabiting arid regions. Special skin structures, in particular capillary channels in between imbricate overlapping scales, enable the lizard to collect water by capillarity and to transport it to the snout for ingestion. This fluid transport is passive and directional towards the lizard's snout. The directionality is based on geometric principles, namely on a periodic pattern of interconnected half-open capillary channels that narrow and widen. Following a biomimetic approach, these principles were transferred to technical prototype design and manufacturing. Capillary structures, 50 μm to 300 μm wide and approx. 70 μm deep, were realized by use of a pulsed picosecond laser in hot working tool steel, hardened to 52 HRC. In order to achieve highest functionality, strategies were developed to minimize potential structural inaccuracies, which can occur at the bottom of the capillary structures caused by the laser process. Such inaccuracies are in the range of 10 μm to 15 μm and form sub-capillary structures with greater capillary forces than the main channels. Hence, an Acceleration Compensation Algorithm was developed for the laser process to minimize or even avoid these inaccuracies. The capillary design was also identified to have substantial influence; by a hexagonal capillary network of non-parallel capillaries potential influences of sub-capillaries on the functionality were reduced to realize a robust passive directional capillary transport. Such smart surface structures can lead to improvements of technical systems by decreasing energy consumption and increasing the resource efficiency.

  19. Capillary condensation between disks in two dimensions

    DEFF Research Database (Denmark)

    Gil, Tamir; Ipsen, John Hjorth

    1997-01-01

    Capillary condensation between two two-dimensional wetted circular substrates (disks) is studied by an effective free energy description of the wetting interface. The interfacial free-energy potential is developed on the basis of the theory for the wetting of a single disk, where interfacial...... capillary fluctuations play a dominant role. A simple approximative analytical expression of the interfacial free energy is developed and is validated numerically. The capillary condensation is characterized by the analysis of the coverage of the condensed phase, its stability, and asymptotic behaviors...

  20. Possibilities of testing capillary absorption on microcores

    Directory of Open Access Journals (Sweden)

    Čeh Arpad

    2016-01-01

    Full Text Available During inspection of reinforced concrete structures from the aspect of durability evaluation of concrete, the present methods generally use the test results obtained by the sophisticated and expensive equipment, which are usually not universal purpose, ie. they can be used only for one segment of durability evaluation of the concrete. This way any additional information about the condition of concrete is valuable, especially if it is not require an additional testing with special equipment. Tests of concrete and reinforced concrete with microcore drilling is considered to be a semi- destructive method, which slightly damages the structure itself, and it is primarily used for testing carbonation, density and absorption of concrete. The paper presents the results of capillary absorption according to SRPS EN 480-5 on standard-size samples and on the microcores extracted from cube form samples with edge length of 20 cm. In the article the testing results of penetration of water under pressure are also presented on the same samples, on which we previously gained microcores. These tests were carried out on with concrete mixtures designed for the most demanding exposure classes according to EN 206-1 and using a variety of additives that are known to affect the structure of pores and consequently also the durability of a hardened concrete.

  1. Transport of volatile organic compounds across the capillary fringe

    Science.gov (United States)

    McCarthy, Kathleen A.; Johnson, Richard L.

    1993-01-01

    Physical experiments were conducted to investigate the transport of a dissolved volatile organic compound (trichloroethylene, TCE) from shallow groundwater to the unsaturated zone under a variety of conditions including changes in the soil moisture profile and water table position. Experimental data indicated that at moderate groundwater velocities (0.1 m/d), vertical mechanical dispersion was negligible and molecular diffusion was the dominant vertical transport mechanism. Under these conditions, TCE concentrations decreased nearly 3 orders of magnitude across the capillary fringe and soil gas concentrations remained low relative to those of underlying groundwater. Data collected during a water table drop showed a short-term increase in concentrations throughout most of the unsaturated zone, but these concentrations quickly declined and approached initial values after the water table was returned to its original level. In the deep part of the unsaturated zone, the water table drop resulted in a long-term decrease in concentrations, illustrating the effects of hysteresis in the soil moisture profile. A two-dimensional random walk advection-diffusion model was developed to simulate the experimental conditions, and numerical simulations agreed well with experimental data. A simpler, one-dimensional finite-difference diffusion-dispersion model was also developed. One-dimensional simulations based on molecular diffusion also agreed well with experimental data. Simulations which incorporated mechanical dispersion tended to overestimate flux across the capillary fringe. Good agreement between the one- and two-dimensional models suggested that a simple, one-dimensional approximation of vertical transport across the capillary fringe can be useful when conditions are appropriate.

  2. Effects of intermediate wettability on entry capillary pressure in angular pores.

    Science.gov (United States)

    Rabbani, Harris Sajjad; Joekar-Niasar, Vahid; Shokri, Nima

    2016-07-01

    Entry capillary pressure is one of the most important factors controlling drainage and remobilization of the capillary-trapped phases as it is the limiting factor against the two-phase displacement. It is known that the entry capillary pressure is rate dependent such that the inertia forces would enhance entry of the non-wetting phase into the pores. More importantly the entry capillary pressure is wettability dependent. However, while the movement of a meniscus into a strongly water-wet pore is well-defined, the invasion of a meniscus into a weak or intermediate water-wet pore especially in the case of angular pores is ambiguous. In this study using OpenFOAM software, high-resolution direct two-phase flow simulations of movement of a meniscus in a single capillary channel are performed. Interface dynamics in angular pores under drainage conditions have been simulated under constant flow rate boundary condition at different wettability conditions. Our results shows that the relation between the half corner angle of pores and contact angle controls the temporal evolution of capillary pressure during the invasion of a pore. By deviating from pure water-wet conditions, a dip in the temporal evolution of capillary pressure can be observed which will be pronounced in irregular angular cross sections. That enhances the pore invasion with a smaller differential pressure. The interplay between the contact angle and pore geometry can have significant implications for enhanced remobilization of ganglia in intermediate contact angles in real porous media morphologies, where pores are very heterogeneous with small shape factors. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Symmetric and asymmetric capillary bridges between a rough surface and a parallel surface.

    Science.gov (United States)

    Wang, Yongxin; Michielsen, Stephen; Lee, Hoon Joo

    2013-09-03

    Although the formation of a capillary bridge between two parallel surfaces has been extensively studied, the majority of research has described only symmetric capillary bridges between two smooth surfaces. In this work, an instrument was built to form a capillary bridge by squeezing a liquid drop on one surface with another surface. An analytical solution that describes the shape of symmetric capillary bridges joining two smooth surfaces has been extended to bridges that are asymmetric about the midplane and to rough surfaces. The solution, given by elliptical integrals of the first and second kind, is consistent with a constant Laplace pressure over the entire surface and has been verified for water, Kaydol, and dodecane drops forming symmetric and asymmetric bridges between parallel smooth surfaces. This solution has been applied to asymmetric capillary bridges between a smooth surface and a rough fabric surface as well as symmetric bridges between two rough surfaces. These solutions have been experimentally verified, and good agreement has been found between predicted and experimental profiles for small drops where the effect of gravity is negligible. Finally, a protocol for determining the profile from the volume and height of the capillary bridge has been developed and experimentally verified.

  4. Fast plasma discharge capillary design as a high power throughput soft x-ray emission source.

    Science.gov (United States)

    Wyndham, E S; Favre, M; Valdivia, M P; Valenzuela, J C; Chuaqui, H; Bhuyan, H

    2010-09-01

    We present the experimental details and results from a low energy but high repetition rate compact plasma capillary source for extreme ultraviolet and soft x-ray research and applications. Two lengths of capillary are mounted in two versions of a closely related design. The discharge operates in 1.6 and 3.2 mm inner diameter alumina capillaries of lengths 21 and 36 mm. The use of water both as dielectric and as coolant simplifies the compact low inductance design with nanosecond discharge periods. The stored electrical energy of the discharge is approximately 0.5 J and is provided by directly charging the capacitor plates from an inexpensive insulated-gate bipolar transistor in 1 μs or less. We present characteristic argon spectra from plasma between 30 and 300 Å as well as temporally resolved x-ray energy fluence in discrete bands on axis. The spectra also allow the level of ablated wall material to be gauged and associated with useful capillary lifetime according to the chosen configuration and energy storage. The connection between the electron beams associated with the transient hollow cathode mechanism, soft x-ray output, capillary geometry, and capillary lifetime is reported. The role of these e-beams and the plasma as measured on-axis is discussed. The relation of the electron temperature and the ionization stages observed is discussed in the context of some model results of ionization in a non-Maxwellian plasma.

  5. Nanoparticle-based capillary electroseparation of proteins in polymer capillaries under physiological conditions

    DEFF Research Database (Denmark)

    Nilsson, C.; Harwigsson, I.; Becker, K.

    2010-01-01

    Totally porous lipid-based liquid crystalline nanoparticles were used as pseudostationary phase for capillary electroseparation with LIF detection of proteins at physiological conditions using unmodified cyclic olefin copolymer capillaries (Topas (R), 6.7 cm effective length). In the absence of n...... at protein friendly conditions. The developed capillary-based method facilitates future electrochromatography of proteins on polymer-based microchips under physiological conditions and enables the initial optimization of separation conditions in parallel to the chip development....

  6. Capillary fringe and tritium and nitrogen tracing history in the Senonian chalk of Champagne

    International Nuclear Information System (INIS)

    Ballif, J.L.

    1998-01-01

    In the middle of Champagne-Ardenne area, a chalky zone is located, directly on top of which lies the soil and in which the water table is relatively close the soil; which allows for capillary direction to the surface horizons and the renewal of water reserve. After the presentation of the hydrological characteristics, the total porosity of chalk, the pores distribution, the capillary attraction is shown by the hydrological comportment of the soil and the upper part of the unsaturated zone of chalk. In the homogeneous rock, the tritium and nitrogen transfers reveal the historical tracks. (authors)

  7. Capillary detectors for high resolution tracking

    International Nuclear Information System (INIS)

    Annis, P.; Bay, A.; Bonekaemper, D.; Buontempo, S.; Ereditato, A.; Fabre, J.P.; Fiorillo, G.; Frekers, D.; Frenkel, A.; Galeazzi, F.; Garufi, F.; Goldberg, J.; Golovkin, S.; Hoepfner, K.; Konijn, J.; Kozarenko, E.; Kreslo, I.; Liberti, B.; Martellotti, G.; Medvedkov, A.; Mommaert, C.; Panman, J.; Penso, G.; Petukhov, Yu.; Rondeshagen, D.; Tyukov, V.; Vasilchenko, V.; Vilain, P.; Vischers, J.L.; Wilquet, G.; Winter, K.; Wolff, T.; Wong, H.

    1997-01-01

    We present a new tracking device based on glass capillary bundles or layers filled with highly purified liquid scintillator and read out at one end by means of image intensifiers and CCD devices. A large-volume prototype consisting of 5 x 10 5 capillaries with a diameter of 20 μm and a length of 180 cm and read out by a megapixel CCD has been tested with muon and neutrino beams at CERN. With this prototype a two track resolution of 33 μm was achieved with passing through muons. Images of neutrino interactions in a capillary bundle have also been acquired and analysed. Read-out chains based on electron bombarded CCD (EBCCD) and image pipeline devices are also investigated. Preliminary results obtained with a capillary bundle read out by an EBCCD are presented. (orig.)

  8. Capillary detectors for high resolution tracking

    CERN Document Server

    Annis, P

    1997-01-01

    We present a new tracking device based on glass capillary bundles or layers filled with highly purified liquid scintillator and read out at one end by means of image intensifiers and CCD devices. A large-volume prototype consisting of 5 × 105 capillaries with a diameter of 20 μm and a length of 180 cm and read out by a megapixel CCD has been tested with muon and neutrino beams at CERN. With this prototype a two track resolution of 33 μm was achieved with passing through muons. Images of neutrino interactions in a capillary bundle have also been acquired and analysed. Read-out chains based on Electron Bombarded CCD (EBCCD) and image pipeline devices are also investigated. Preliminary results obtained with a capillary bundle read out by an EBCCD are presented.

  9. Microgravity Investigation of Capillary Driven Imbibition

    Science.gov (United States)

    Dushin, V. R.; Nikitin, V. F.; Smirnov, N. N.; Skryleva, E. I.; Tyurenkova, V. V.

    2018-05-01

    The goal of the present paper is to investigate the capillary driven filtration in porous media under microgravity conditions. New mathematical model that allows taking into account the blurring of the front due to the instability of the displacement that is developing at the front is proposed. The constants in the mathematical model were selected on the basis of the experimental data on imbibition into unsaturated porous media under microgravity conditions. The flow under the action of a combination of capillary forces and a constant pressure drop or a constant flux is considered. The effect of capillary forces and the type of wettability of the medium on the displacement process is studied. A criterion in which case the capillary effects are insignificant and can be neglected is established.

  10. Characterization of asphaltenes by nonaqueous capillary electrophoresis

    NARCIS (Netherlands)

    Kok, W.T.; Tüdös, A.J.; Grutters, M.; Shepherd, A.G.

    2011-01-01

    Nonaqueous capillary electrophoresis was used for the separation and characterization of asphaltene samples from different sources. For the separation medium (background electrolyte), mixtures of tetrahydrofuran and a high-permittivity organic solvent could be used. The best results were obtained

  11. Hierarchical capillary adhesion of microcantilevers or hairs

    International Nuclear Information System (INIS)

    Liu Jianlin; Feng Xiqiao; Xia Re; Zhao Hongping

    2007-01-01

    As a result of capillary forces, animal hairs, carbon nanotubes or nanowires of a periodically or randomly distributed array often assemble into hierarchical structures. In this paper, the energy method is adopted to analyse the capillary adhesion of microsized hairs, which are modelled as clamped microcantilevers wetted by liquids. The critical conditions for capillary adhesion of two hairs, three hairs or two bundles of hairs are derived in terms of Young's contact angle, elastic modulus and geometric sizes of the beams. Then, the hierarchical capillary adhesion of hairs is addressed. It is found that for multiple hairs or microcantilevers, the system tends to take a hierarchical structure as a result of the minimization of the total potential energy of the system. The level number of structural hierarchy increases with the increase in the number of hairs if they are sufficiently long. Additionally, we performed experiments to verify our theoretical solutions for the adhesion of microbeams

  12. Vulvar Lobular Capillary Hemangioma (Pyogenic Granuloma

    Directory of Open Access Journals (Sweden)

    Kian-Mei Chong

    2005-03-01

    Conclusion: Pyogenic granuloma is considered a reactive hyperproliferative vascular response to trauma or other stimuli. The name “pyogenic granuloma” is a misnomer since the condition is not associated with pus and does not represent a granuloma histologically. There are a few cases of lobular capillary hemangioma of the glans penis but it is rare on the female genitalia. We present this case to help physicians become aware that lobular capillary hemangiomas may occur at this site.

  13. Simulation of capillary bridges between nanoscale particles.

    Science.gov (United States)

    Dörmann, Michael; Schmid, Hans-Joachim

    2014-02-04

    Capillary forces are very important as they exceed in general other adhesion forces. But at the same time the exact calculation of these forces is very complex, so often assumptions and approximations are used. Previous research was done with regard to micrometer sized particles, but the behavior of nanoscale particles is different. Hence, the results for micrometer sized particles cannot be directly transferred when considering nanoscale particles. Therefore, a simulation method was developed to calculate numerically the shape of a rotationally symmetrical capillary bridge between two spherical particles or a particle and a plate. The capillary bridge in the gap between the particles is formed due to capillary condensation and is in thermodynamic equilibrium with the gas phase. Hence the Kelvin equation and the Young-Laplace equation can be used to calculate the profile of the capillary bridge, depending on the relative humidity of the surrounding air. The bridge profile consists of several elements that are determined consecutively and interpolated linearly. After the shape is determined, the volume and force, divided into capillary pressure force and surface tension force, can be calculated. The validation of this numerical model will be shown by comparison with several different analytical calculations for micrometer-sized particles. Furthermore, it is demonstrated that two often used approximations, (1) the toroidal approximation and (2) the use of an effective radius, cannot be used for nanoscale particles without remarkable mistake. It will be discussed how the capillary force and its components depend on different parameters, like particle size, relative humidity, contact angle, and distance, respectively. The rupture of a capillary bridge due to particle separation will also be presented.

  14. DNA Sequencing by Capillary Electrophoresis

    Science.gov (United States)

    Karger, Barry L.; Guttman, Andras

    2009-01-01

    Sequencing of human and other genomes has been at the center of interest in the biomedical field over the past several decades and is now leading toward an era of personalized medicine. During this time, DNA sequencing methods have evolved from the labor intensive slab gel electrophoresis, through automated multicapillary electrophoresis systems using fluorophore labeling with multispectral imaging, to the “next generation” technologies of cyclic array, hybridization based, nanopore and single molecule sequencing. Deciphering the genetic blueprint and follow-up confirmatory sequencing of Homo sapiens and other genomes was only possible by the advent of modern sequencing technologies that was a result of step by step advances with a contribution of academics, medical personnel and instrument companies. While next generation sequencing is moving ahead at break-neck speed, the multicapillary electrophoretic systems played an essential role in the sequencing of the Human Genome, the foundation of the field of genomics. In this prospective, we wish to overview the role of capillary electrophoresis in DNA sequencing based in part of several of our articles in this journal. PMID:19517496

  15. Cell adhesion during bullet motion in capillaries.

    Science.gov (United States)

    Takeishi, Naoki; Imai, Yohsuke; Ishida, Shunichi; Omori, Toshihiro; Kamm, Roger D; Ishikawa, Takuji

    2016-08-01

    A numerical analysis is presented of cell adhesion in capillaries whose diameter is comparable to or smaller than that of the cell. In contrast to a large number of previous efforts on leukocyte and tumor cell rolling, much is still unknown about cell motion in capillaries. The solid and fluid mechanics of a cell in flow was coupled with a slip bond model of ligand-receptor interactions. When the size of a capillary was reduced, the cell always transitioned to "bullet-like" motion, with a consequent decrease in the velocity of the cell. A state diagram was obtained for various values of capillary diameter and receptor density. We found that bullet motion enables firm adhesion of a cell to the capillary wall even for a weak ligand-receptor binding. We also quantified effects of various parameters, including the dissociation rate constant, the spring constant, and the reactive compliance on the characteristics of cell motion. Our results suggest that even under the interaction between P-selectin glycoprotein ligand-1 (PSGL-1) and P-selectin, which is mainly responsible for leukocyte rolling, a cell is able to show firm adhesion in a small capillary. These findings may help in understanding such phenomena as leukocyte plugging and cancer metastasis. Copyright © 2016 the American Physiological Society.

  16. Evaluation of capillary pore size characteristics in high-strength concrete at early ages

    International Nuclear Information System (INIS)

    Igarashi, Shin-ichi; Watanabe, Akio; Kawamura, Mitsunori

    2005-01-01

    The quantitative scanning electron microscope-backscattered electron (SEM-BSE) image analysis was used to evaluate capillary porosity and pore size distributions in high-strength concretes at early ages. The Powers model for the hydration of cement was applied to the interpretation of the results of image analysis. The image analysis revealed that pore size distributions in concretes with an extremely low water/binder ratio of 0.25 at early ages were discontinuous in the range of finer capillary pores. However, silica-fume-containing concretes with a water/binder ratio of 0.25 had larger amounts of fine pores than did concretes without silica fume. The presence of larger amounts of fine capillary pores in the concretes with silica fume may be responsible for greater autogenous shrinkage in the silica-fume-containing concretes at early ages

  17. Direct measurement of the wetting front capillary pressure in a clay brick ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Ioannou, Ioannis [Manchester Centre for Civil and Construction Engineering, UMIST, PO Box 88, Manchester M60 1QD (United Kingdom); Hall, Christopher [Centre for Materials Science and Engineering and School of Engineering and Electronics, University of Edinburgh, The King' s Buildings, Edinburgh EH9 3JL (United Kingdom); Wilson, Moira A [Manchester Centre for Civil and Construction Engineering, UMIST, PO Box 88, Manchester M60 1QD (United Kingdom); Hoff, William D [Manchester Centre for Civil and Construction Engineering, UMIST, PO Box 88, Manchester M60 1QD (United Kingdom); Carter, Margaret A [Manchester Centre for Civil and Construction Engineering, UMIST, PO Box 88, Manchester M60 1QD (United Kingdom)

    2003-12-21

    The absorption of a liquid into a rectangular bar of an initially dry porous material that is sealed on all surfaces except the inflow face is analysed in terms of Sharp Front theory. Sharp Front models are developed for both complete and incomplete displacement of air ahead of the advancing wetting front. Experiments are described from which a characteristic capillary potential of the material is obtained by measuring the equilibrium pressure of the air displaced and compressed ahead of the advancing wetting front. Results for the absorption of water and n-heptane by a fired clay brick ceramic suggest that this wetting front capillary pressure (or capillary potential) scales approximately with the surface tension and also that the permeability scales inversely with the liquid viscosity. The pressure of the air trapped in the wetted region is found to be the same as the pressure of the displaced air. For this material the wetting front capillary pressure for water at 20 C is 0.113 MPa, equivalent to a hydraulic tension head of 11.5 m and to a Young-Laplace pore diameter of 2.6 {mu}m. The capillary pressure so measured is apparently a fundamental percolation property of the material that can be interpreted as the air pressure at which liquid phase continuity and unsaturated conductivity both vanish. The method described can be applied generally to porous materials.

  18. Detection of moving capillary front in porous rocks using X-ray and ultrasonic methods

    Directory of Open Access Journals (Sweden)

    Christian eDavid

    2015-07-01

    Full Text Available Several methods are compared for the detection of moving capillary fronts in spontaneous imbibition experiments where water invades dry porous rocks. These methods are: (i the continuous monitoring of the mass increase during imbibition, (ii the imaging of the water front motion using X-ray CT scanning, (iii the use of ultrasonic measurements allowing the detection of velocity, amplitude and spectral content of the propagating elastic waves, and (iv the combined use of X-ray CT scanning and ultrasonic monitoring. It is shown that the properties of capillary fronts depend on the heterogeneity of the rocks, and that the information derived from each method on the dynamics of capillary motion can be significantly different. One important result from the direct comparison of the moving capillary front position and the P wave attributes is that the wave amplitude is strongly impacted before the capillary front reaches the sensors, in contrast with the velocity change which is concomitant with the fluid front arrival in the sensors plane.

  19. Direct measurement of the wetting front capillary pressure in a clay brick ceramic

    International Nuclear Information System (INIS)

    Ioannou, Ioannis; Hall, Christopher; Wilson, Moira A; Hoff, William D; Carter, Margaret A

    2003-01-01

    The absorption of a liquid into a rectangular bar of an initially dry porous material that is sealed on all surfaces except the inflow face is analysed in terms of Sharp Front theory. Sharp Front models are developed for both complete and incomplete displacement of air ahead of the advancing wetting front. Experiments are described from which a characteristic capillary potential of the material is obtained by measuring the equilibrium pressure of the air displaced and compressed ahead of the advancing wetting front. Results for the absorption of water and n-heptane by a fired clay brick ceramic suggest that this wetting front capillary pressure (or capillary potential) scales approximately with the surface tension and also that the permeability scales inversely with the liquid viscosity. The pressure of the air trapped in the wetted region is found to be the same as the pressure of the displaced air. For this material the wetting front capillary pressure for water at 20 C is 0.113 MPa, equivalent to a hydraulic tension head of 11.5 m and to a Young-Laplace pore diameter of 2.6 μm. The capillary pressure so measured is apparently a fundamental percolation property of the material that can be interpreted as the air pressure at which liquid phase continuity and unsaturated conductivity both vanish. The method described can be applied generally to porous materials

  20. Impaired skin capillary recruitment in essential hypertension is caused by both functional and structural capillary rarefaction

    NARCIS (Netherlands)

    Serne, EH; Gans, ROB; ter Maaten, JC; Tangelder, GJ; Donker, AJM; Stehouwer, CDA

    Capillary rarefaction occurs in many tissues in patients with essential hypertension and may contribute to an increased vascular resistance and impaired muscle metabolism. Rarefaction may be caused by a structural (anatomic) absence of capillaries, functional nonperfusion, or both. The aim of this

  1. Monoliths in capillary electrochromatography and capillary liquid chromatography in conjunction with mass spectrometry

    Czech Academy of Sciences Publication Activity Database

    Moravcová, Dana; Rantamäki, A. H.; Duša, Filip; Wiedmer, S. K.

    2016-01-01

    Roč. 37, 7-8 (2016), s. 880-912 ISSN 0173-0835 Institutional support: RVO:68081715 Keywords : capillary electrochromatography * capillary liquid chromatography * mass spec- trometry * monolithic columns Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.744, year: 2016

  2. Method of analysis and quality-assurance practices for determination of pesticides in water by solid-phase extraction and capillary-column gas chromatography/mass spectrometry at the U.S. Geological Survey California District Organic Chemistry Laboratory, 1996-99

    Science.gov (United States)

    Crepeau, Kathryn L.; Baker, Lucian M.; Kuivila, Kathryn

    2000-01-01

    A method of analysis and quality-assurance practices were developed to study the fate and transport of pesticides in the San Francisco Bay-Estuary by the U.S. Geological Survey. Water samples were filtered to remove suspended-particulate matter and pumped through C-8 solid-phase extraction cartridges to extract the pesticides. The cartridges were dried with carbon dioxide and the pesticides were eluted with three cartridge volumes of hexane:diethyl ether (1:1) solution. The eluants were analyzed using capillary-column gas chromatography/mass spectrometry in full-scan mode. Method detection limits for pesticides ranged from 0.002 to 0.025 microgram per liter for 1-liter samples. Recoveries ranged from 44 to 140 percent for 25 pesticides in samples of organic-free reagent water and Sacramento-San Joaquin Delta and Suisun Bay water fortified at 0.05 and 0.50 microgram per liter. The estimated holding time for pesticides after extraction on C-8 solid-phase extraction cartridges ranged from 10 to 257 days.

  3. Modeling aerobic biodegradation in the capillary fringe.

    Science.gov (United States)

    Luo, Jian; Kurt, Zohre; Hou, Deyi; Spain, Jim C

    2015-02-03

    Vapor intrusion from volatile subsurface contaminants can be mitigated by aerobic biodegradation. Laboratory column studies with contaminant sources of chlorobenzene and a mixture of chlorobenzene, 1,2-dichlorobenzene, and 1,4-dichlorobenzene showed that contaminants were rapidly degraded in thin reactive zones with high biomass and low substrate concentrations in the vicinity of the capillary fringe. Such behavior was well characterized by a model that includes oxygen-, substrate-, and biomass-dependent biodegradation kinetics along with diffusive transport processes. An analytical solution was derived to provide theoretical support for the simplification of reaction kinetics and the approximation of reactive zone location and mass flux relationships at steady state. Results demonstrate the potential of aerobic natural attenuation in the capillary fringe for preventing contaminant migration in the unsaturated zone. The solution indicates that increasing contaminant mass flux into the column creates a thinner reactive zone and pushes it toward the oxygen boundary, resulting in a shorter distance to the oxygen source and a larger oxygen mass flux that balances the contaminant mass flux. As a consequence, the aerobic biodegradation can reduce high contaminant concentrations to low levels within the capillary fringe and unsaturated zone. The results are consistent with the observations of thin reactive layers at the interface in unsaturated zones. The model considers biomass while including biodegradation in the capillary fringe and unsaturated zone and clearly demonstrates that microbial communities capable of using the contaminants as electron donors may lead to instantaneous degradation kinetics in the capillary fringe and unsaturated zone.

  4. Micro-injector for capillary electrophoresis.

    Science.gov (United States)

    Sáiz, Jorge; Koenka, Israel Joel; García-Ruiz, Carmen; Müller, Beat; Chwalek, Thomas; Hauser, Peter C

    2015-08-01

    A novel micro-injector for capillary electrophoresis for the handling of samples with volumes down to as little as 300 nL was designed and built in our laboratory for analyses in which the available volume is a limitation. The sample is placed into a small cavity located directly in front of the separation capillary, and the injection is then carried out automatically by controlled pressurization of the chamber with compressed air. The system also allows automated flushing of the injection chamber as well as of the capillary. In a trial with a capillary electrophoresis system with contactless conductivity detector, employing a capillary of 25 μm diameter, the results showed good stability of migration times and peak areas. To illustrate the technique, the fast separation of five inorganic cations (Na(+) , K(+) , NH4 (+) , Ca(2+) , and Mg(2+) ) was set up. This could be achieved in less than 3 min, with good limits of detection (10 μM) and linear ranges (between about 10 and 1000 μM). The system was demonstrated for the determination of the inorganic cations in porewater samples of a lake sediment core. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. IN SITU ABIOTIC DETOXIFICATION AND IMMOBILIZATION OF HEXAVALENT CHROMIUM IN THE CAPILLARY FRINGE ZONE

    Science.gov (United States)

    Detailed site characterization data from the former electroplating shop at the U.S. Coast Guard Air Support Center, Elizabeth City, North Carolina suggested that the elevated Cr(VI) in the capillary fringe area had contaminated the ground water at the site. Most of the mobile Cr(...

  6. Capillary Suction Time. Operational Control Tests for Wastewater Treatment Facilities. Instructor's Manual [and] Student Workbook.

    Science.gov (United States)

    Wooley, John F.

    Capillary suction time is time required for the liquid phase of a treated sludge to travel through 1 centimeter of media (blotter or filter paper). Designed for individuals who have completed National Pollutant Discharge Elimination System (NPDES) level 1 laboratory training skills, this module provides waste water treatment plant operators with…

  7. Microjet formation in a capillary by laser-induced cavitation

    Science.gov (United States)

    Peters, Ivo R.; Tagawa, Yoshiyuki; van der Meer, Devaraj; Prosperetti, Andrea; Sun, Chao; Lohse, Detlef

    2010-11-01

    A vapor bubble is created by focusing a laser pulse inside a capillary that is partially filled with water. Upon creation of the bubble, a shock wave travels through the capillary. When this shock wave meets the meniscus of the air-water interface, a thin jet is created that travels at very high speeds. A crucial ingredient for the creation of the jet is the shape of the meniscus, which is responsible for focusing the energy provided by the shock wave. We examine the formation of this jet numerically using a boundary integral method, where we prepare an initial interface at rest inside a tube with a diameter ranging from 50 to 500 μm. To simulate the effect of the bubble we then apply a short, strong pressure pulse, after which the jet forms. We investigate the influence of the shape of the meniscus, and pressure amplitude and duration on the jet formation. The jet shape and velocity obtained by the simulation compare well with experimental data, and provides good insight in the origin of the jet.

  8. Influence of the nature of interfaces on the capillary transport in layered materials

    DEFF Research Database (Denmark)

    Derluyn, Hannelore; Janssen, Hans; Carmeliet, Jan

    2011-01-01

    This paper presents an experimental and quantitative analysis of capillary transport across the interface brick–mortar joint in masonry. Moisture profiles are measured with X-ray projection. The influence of curing conditions is analyzed by considering three types of mortars: cured in a mould......, between capillary wet and dry bricks. A decrease in moisture inflow for the mortars cured between bricks is measured. The pore structure and the moisture transport properties of mortar change significantly due to water extraction from the initially wet mortar to the bricks during curing. Numerical...... simulations reveal the existence of a hydraulic interface resistance between brick and wet/dry cured mortar....

  9. Recent applications of nanomaterials in capillary electrophoresis.

    Science.gov (United States)

    González-Curbelo, Miguel Ángel; Varela-Martínez, Diana Angélica; Socas-Rodríguez, Bárbara; Hernández-Borges, Javier

    2017-10-01

    Nanomaterials have found an important place in Analytical Chemistry and, in particular, in Separation Science. Among them, metal-organic frameworks, magnetic and non-magnetic nanoparticles, carbon nanotubes and graphene, as well as their combinations, are the most important nanomaterials that have been used up to now. Concerning capillary electromigration techniques, these nanomaterials have also been used as both pseudostationary phases in electrokinetic chromatography (EKC) and as stationary phases in microchip capillary electrophoresis (CE) and capillary electrochromatography (CEC), as a result of their interesting and particular properties. This review article pretends to provide a general and critical revision of the most recent applications of nanomaterials in this field (period 2010-2017). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Capillary interactions in nano-particle suspensions

    International Nuclear Information System (INIS)

    Bossev, D.P.; Warren, G.

    2009-01-01

    We have investigated the structures formed by colloidal particles suspended in solvents at volume fractions below 10% and interacting through capillary bridges. Such systems resemble colloidal gas of sticky nano-spheres that form pearl-necklace like chains that, in turn, induce strong viscoelasticity due to the formation of 3-D fractal network. The capillary force dominates the electrostatic and Van der Waals forces in solutions and can bridge multiple particles depending of the volume of the capillary bridge. We have investigated the morphology of the structures formed at different fractions of the bridging fluid. Small-angle neutron scattering (SANS) is used to study nanoparticles with an average diameter of 10 nm in polar and non-polar organic solvents at ambient temperatures. SANS intensity as a function of the scattering vector is analyzed as a product of a form factor, that depends on the particle shape, and a structure factor, that characterizes the interparticle inter reactions. The interaction of particles in polar solvents is considered to be through electrostatic repulsion and the data is successfully fitted by Hayter-Penfold mean spherical approximation (HPMSA). Computer simulations of a pearl necklace-like chain of spheres is conducted to explain the structure factor when capillary bridges are present. Alternatively, we have analyzed the slope of the intensity at low scattering vector in a double logarithmic plot to determine the dimension of the fractal structures formed by the particles at different volume fraction of the bridging fluid. We have also studied the properties of the capillary bridge between a pair of particles. The significance of this study is to explore the possibility of using capillary force as a tool to engineer new colloidal structures and materials in solutions and to optimize their viscoelastic properties. (author)

  11. Validation of capillary blood analysis and capillary testing mode on the epoc Point of Care system

    Directory of Open Access Journals (Sweden)

    Jing Cao

    2017-12-01

    Full Text Available Background: Laboratory test in transport is a critical component of patient care, and capillary blood is a preferred sample type particularly in children. This study evaluated the performance of capillary blood testing on the epoc Point of Care Blood Analysis System (Alere Inc. Methods: Ten fresh venous blood samples was tested on the epoc system under the capillary mode. Correlation with GEM 4000 (Instrumentation Laboratory was examined for Na+, K+, Cl-, Ca2+, glucose, lactate, hematocrit, hemoglobin, pO2, pCO2, and pH, and correlation with serum tested on Vitros 5600 (Ortho Clinical Diagnostics was examined for creatinine. Eight paired capillary and venous blood was tested on epoc and ABL800 (Radiometer for the correlation of Na+, K+, Cl-, Ca2+, glucose, lactate, hematocrit, hemoglobin, pCO2, and pH. Capillary blood from 23 apparently healthy volunteers was tested on the epoc system to assess the concordance to reference ranges used locally. Results: Deming regression correlation coefficients for all the comparisons were above 0.65 except for ionized Ca2+. Accordance of greater than 85% to the local reference ranges were found in all assays with the exception of pO2 and Cl-. Conclusion: Data from this study indicates that capillary blood tests on the epoc system provide comparable results to reference method for these assays, Na+, K+, glucose, lactate, hematocrit, hemoglobin, pCO2, and pH. Further validation in critically ill patients is needed to implement the epoc system in patient transport. Impact of the study: This study demonstrated that capillary blood tests on the epoc Point of Care Blood Analysis System give comparable results to other chemistry analyzers for major blood gas and critical tests. The results are informative to institutions where pre-hospital and inter-hospital laboratory testing on capillary blood is a critical component of patient point of care testing. Keywords: Epoc, Capillary, Transport, Blood gas, Point of care

  12. Infraglottic lobular capillary hemangioma: A case report

    Directory of Open Access Journals (Sweden)

    Vinh Ly Pham Hoang

    2018-03-01

    Full Text Available Lobular capillary hemangioma (LCH is a benign proliferation of capillary blood vessels adopting a lobular configuration. A laryngeal origin of LCH is exceedingly rare. Here, we describe a case of an 11-year-old boy presenting with a subglottic lesion, leading to a subglottic stenosis. Histopathologic findings of the lesion implicated an LCH, which was removed successfully by a coblator. This is the first report of a subglottic LCH. Physicians should be aware of this unique lesion and laryngeal LCH should be considered in diagnosing the cause of a subglottic stenosis. Additionally, coblation should be an effective treatment for laryngeal LCH.

  13. Use of Plastic Capillaries for Macromolecular Crystallization

    Science.gov (United States)

    Potter, Rachel R.; Hong, Young-Soo; Ciszak, Ewa M.

    2003-01-01

    Methods of crystallization of biomolecules in plastic capillaries (Nalgene 870 PFA tubing) are presented. These crystallization methods used batch, free-interface liquid- liquid diffusion alone, or a combination with vapor diffusion. Results demonstrated growth of crystals of test proteins such as thaumatin and glucose isomerase, as well as protein studied in our laboratory such dihydrolipoamide dehydrogenase. Once the solutions were loaded in capillaries, they were stored in the tubes in frozen state at cryogenic temperatures until the desired time of activation of crystallization experiments.

  14. Can positrons be guided by insulating capillaries?

    International Nuclear Information System (INIS)

    DuBois, R.D.; Toekesi, K.

    2011-01-01

    Complete text of publication follows. Investigations of guiding of few hundred eV antiparticles by macroscopic insulating capillaries have been described. Using subfemtoamp positron and electron beams, we demonstrated that a portion of the entering beams were transmitted and emerged in the direction of the capillary. We also demonstrated that the transmitted intensities decreased as the capillary tilt angle was increased (see Fig. 1). Both of these are indications of guiding. However, a comparison with transmitted photon data implies that the positron transmission may result from geometric factors associated with our diffuse beams and tapered capillary used in these studies. For electrons, the comparison indicates differences which could imply that even very low intensity beams can be guided. Measurements of the transmitted intensity as a function of charge entering the capillary were inconclusive as no major increases in the transmitted intensity were observed. 2D static simulations imply that our beam intensities, although extremely small with respect to previous guiding experiments, were capable of supplying sufficient charge for guiding to occur. Although not definitive, our study implies that sub-femtoamp beam intensities are sufficient to form charge patches and produce guiding. This may have been observed for electrons with the question remaining open for positrons. That guiding was not clearly seen may have been due to the capillary geometry used or it may indicate that although sufficient charge is being supplied, the surface and bulk resistivities of glass permit this charge to dissipate faster than it is formed. This aspect was not taken into consideration in our simulations but a crude estimate of the discharge rate implies that beam intensities on the order of pA, rather than fA as used here, may be required for guiding to occur in the capillaries used here. Additional studies are required to definitively answer the question as to whether antiparticles

  15. Capillary condensation of adsorbates in porous materials.

    Science.gov (United States)

    Horikawa, Toshihide; Do, D D; Nicholson, D

    2011-11-14

    Hysteresis in capillary condensation is important for the fundamental study and application of porous materials, and yet experiments on porous materials are sometimes difficult to interpret because of the many interactions and complex solid structures involved in the condensation and evaporation processes. Here we make an overview of the significant progress in understanding capillary condensation and hysteresis phenomena in mesopores that have followed from experiment and simulation applied to highly ordered mesoporous materials such as MCM-41 and SBA-15 over the last few decades. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Hysteretic capillary condensation in a porous material

    International Nuclear Information System (INIS)

    Lilly, M.P.; Hallock, R.B.

    1995-01-01

    The authors report on the behavior of hysteresis subloops in the capillary condensation of 4 He in the porous material Nuclepore. For hysteretic systems composed of many independent elements, the Preisach model may be used to predict the behavior of the resulting hysteresis. One prediction is that subloops with common chemical potential endpoints will be congruent. The observations of such subloops show that the prediction of congruence fails for this capillary condensation system. To understand deviations from Preisach behavior the authors modify the model to account for intersections among the pores. The modified model is in close agreement with the experimental results

  17. Intracerebral Capillary Hemangioma: A Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Youn, In Young; Kim, Jae Kyun; Byun, Jun Soo [Dept. of Radiology, Chung Ang University Medical Center, Chung Ang University College of Medicine, Seoul (Korea, Republic of); Park, Eon Sub [Dept. of Radiology, Chung Ang University Medical Center, Chung Ang University College of Medicine, Seoul (Korea, Republic of)

    2012-01-15

    Intracerebral capillary hemangiomas are very rare benign vascular tumors that mostly occur during infancy. We described a 69-year-old man with generalized tonic-clonic seizures who was diagnosed with an intracranial mass. Multidetector computed tomography, magnetic resonance imaging and digital subtraction angiography studies were performed for evaluation of brain, and there was a well-enhancing mass found in the right temporal lobe without a definite feeding vessel. The patient underwent surgery and the pathologic examination demonstrated marked proliferation of small vessels with a lobular pattern in the brain parenchyma, which was confirmed to be capillary hemangioma.

  18. Studies on pulsed hollow cathode capillary discharges

    Energy Technology Data Exchange (ETDEWEB)

    Choi, P; Dumitrescu-Zoita, C; Larour, J; Rous, J [Ecole Polytechnique, 91 - Palaiseau (France). Lab. de Physique des Milieux Ionises; Favre, M; Moreno, J; Chuaqui, H; Wyndham, E [Pontificia Univ. Catolica de Chile, Santiago (Chile). Facultad de Fisica; Zambra, M [Comision Chilena de Energia Nuclear, Santiago (Chile); Wong, C S [Univ. of Malaya, Kuala Lumpur (Malaysia). Plasma Research Lab

    1997-12-31

    Preliminary results on radiation characteristics of pulsed hollow cathode capillary discharges are presented. The device combines the on axis electron beam assisted ionization capabilities of the transient hollow cathode discharge with a novel high voltage low inductance geometrical design, which integrates the local energy storage into the electrode system. A nanosecond regime high temperature plasma is produced in a long, high aspect ratio capillary, with light emission in the UV to XUV region. The discharge is operated from near vacuum to pressure in the 1000 mTorr range. (author). 2 figs., 7 refs.

  19. TESTICULAR CAPILLARY HEMANGIOMA: DESCRIPTION OF A CASE

    Directory of Open Access Journals (Sweden)

    A. S. Markova

    2012-01-01

    Full Text Available The paper describes a clinical case of testicular capillary hemangioma in a 24-year-old man undergone a partial resection of the testis with the intraoperative morphological examination. Testicular capillary hemangioma is a rare benign tumor of a vascular origin, which can be similar to malignant testicular tumors on the clinical presentation, as well as on the imaging methods, in particular to seminoma. The intraoperative histological study can assist in avoiding organ-removing surgical interventions in diagnostically ambiguous cases if a benign testicular tumor is diagnosed.

  20. Direct Printing of Stretchable Elastomers for Highly Sensitive Capillary Pressure Sensors.

    Science.gov (United States)

    Liu, Wenguang; Yan, Chaoyi

    2018-03-28

    We demonstrate the successful fabrication of highly sensitive capillary pressure sensors using an innovative 3D printing method. Unlike conventional capacitive pressure sensors where the capacitance changes were due to the pressure-induced interspace variations between the parallel plate electrodes, in our capillary sensors the capacitance was determined by the extrusion and extraction of liquid medium and consequent changes of dielectric constants. Significant pressure sensitivity advances up to 547.9 KPa -1 were achieved. Moreover, we suggest that our innovative capillary pressure sensors can adopt a wide range of liquid mediums, such as ethanol, deionized water, and their mixtures. The devices also showed stable performances upon repeated pressing cycles. The direct and versatile printing method combined with the significant performance advances are expected to find important applications in future stretchable and wearable electronics.

  1. A single-probe capillary microgripper induced by dropwise condensation and inertial release

    International Nuclear Information System (INIS)

    Fan, Zenghua; Rong, Weibin; Wang, Lefeng; Sun, Lining

    2015-01-01

    A micromanipulation method based on liquid droplets is widely used as a non-destructive technology to pick-and-place micrometer-scale objects. We focus on the development of a single-probe capillary microgripper to execute reliable micromanipulation tasks. By controlling dropwise condensation on a probe tip, the water droplet volume on the hydrophobic tip surface can be varied dynamically, which helps establish appropriate capillary lifting forces during capturing tasks. An inertia-releasing strategy was utilized to implement a piezoelectric actuator integrated with the capillary microgripper and to address release problems caused by adhesion force action. The influence of droplet formation and the capillary lifting force generated during the manipulation process were characterized experimentally. Micromanipulation tests were conducted using a customized motion platform with viewing microscopes to verify the performance potential of the capillary microgripping tool. Experimental results indicated that polystyrene microspheres with 20–100 μm radii and micro-silicon chips (1.63–12.1 μN) were grasped reliably, and that adhered micro-objects could be placed on a target using the proposed microhandling technique of inertial release in ambient conditions. (paper)

  2. Biodegradation of phenol, salicylic acid, benzenesulfonic acid, and iomeprol by Pseudomonas fluorescens in the capillary fringe.

    Science.gov (United States)

    Hack, Norman; Reinwand, Christian; Abbt-Braun, Gudrun; Horn, Harald; Frimmel, Fritz H

    2015-12-01

    Mass transfer and biological transformation phenomena in the capillary fringe were studied using phenol, salicylic acid, benzenesulfonic acid, and the iodinated X-ray contrast agent iomeprol as model organic compounds and the microorganism strain Pseudomonas fluorescens. Three experimental approaches were used: Batch experiments (uniform water saturation and transport by diffusion), in static columns (with a gradient of water saturation and advective transport in the capillaries) and in a flow-through cell (with a gradient of water saturation and transport by horizontal and vertical flow: 2-dimension flow-through microcosm). The reactors employed for the experiments were filled with quartz sand of defined particle size distribution (dp=200...600 μm, porosity ε=0.42). Batch experiments showed that phenol and salicylic acid have a high, whereas benzenesulfonic acid and iomeprol have a quite low potential for biodegradation under aerobic conditions and in a matrix nearly close to water saturation. Batch experiments under anoxic conditions with nitrate as electron acceptor revealed that the biodegradation of the model compounds was lower than under aerobic conditions. Nevertheless, the experiments showed that the moisture content was also responsible for an optimized transport in the liquid phase of a porous medium. Biodegradation in the capillary fringe was found to be influenced by both the moisture content and availability of the dissolved substrate, as seen in static column experiments. The gas-liquid mass transfer of oxygen also played an important role for the biological activity. In static column experiments under aerobic conditions, the highest biodegradation was found in the capillary fringe (e.g. βt/β0 (phenol)=0 after t=6 d) relative to the zone below the water table and unsaturated zone. The highest biodegradation occurred in the flow-through cell experiment where the height of the capillary fringe was largest. Copyright © 2015 Elsevier B.V. All rights

  3. Quantification of nucleotides by ICPMS: coupling of ICPMS with capillary electrophoresis or capillary HPLC

    International Nuclear Information System (INIS)

    Inagaki, K.; Fujii, S.; Takatsu, A.; Yarita, T.; Zhu, Y.; Chiba, K.

    2009-01-01

    Full text: Quantification of nucleotides in small volumes of biological samples has eagerly been demanded. A method using ICPMS coupled with capillary electrophoresis or capillary liquid chromatography is reported. A new interface system, which consists of a double tube nebulizer inserted with a fused silica capillary tube and a cylinder mini-chamber with a sheath gas inlet, was designed. Moreover, the surface conditions of the sampling and skimmer cones, and the introduction of H 2 gas into the plasma were found to significantly improve the signal/background ratio for phosphorus determination at m/z 31. (author)

  4. Comprehensive protein profiling by multiplexed capillary zone electrophoresis using cross-linked polyacrylamide coated capillaries.

    Science.gov (United States)

    Liu, Shaorong; Gao, Lin; Pu, Qiaosheng; Lu, Joann J; Wang, Xingjia

    2006-02-01

    We have recently developed a new process to create cross-linked polyacrylamide (CPA) coatings on capillary walls to suppress protein-wall interactions. Here, we demonstrate CPA-coated capillaries for high-efficiency (>2 x 10(6) plates per meter) protein separations by capillary zone electrophoresis (CZE). Because CPA virtually eliminates electroosmotic flow, positive and negative proteins cannot be analyzed in a single run. A "one-sample-two-separation" approach is developed to achieve a comprehensive protein analysis. High throughput is achieved through a multiplexed CZE system.

  5. A direct method for determining complete positive and negative capillary pressure curves for reservoir rock using the centrifuge

    Energy Technology Data Exchange (ETDEWEB)

    Spinler, E.A.; Baldwin, B.A. [Phillips Petroleum Co., Bartlesville, OK (United States)

    1997-08-01

    A method is being developed for direct experimental determination of capillary pressure curves from saturation distributions produced during centrifuging fluids in a rock plug. A free water level is positioned along the length of the plugs to enable simultaneous determination of both positive and negative capillary pressures. Octadecane as the oil phase is solidified by temperature reduction while centrifuging to prevent fluid redistribution upon removal from the centrifuge. The water saturation is then measured via magnetic resonance imaging. The saturation profile within the plug and the calculation of pressures for each point of the saturation profile allows for a complete capillary pressure curve to be determined from one experiment. Centrifuging under oil with a free water level into a 100 percent water saturated plug results in the development of a primary drainage capillary pressure curve. Centrifuging similarly at an initial water saturation in the plug results in the development of an imbibition capillary pressure curve. Examples of these measurements are presented for Berea sandstone and chalk rocks.

  6. METHOD 521: DETERMINATION OF NITROSAMINES IN DRINKING WATER BY SOLID PHASE EXTRACTION AND CAPILLARY COLUMN GAS CHROMATOGRAPHY WITH LARGE VOLUME INJECTION AND CHEMICAL IONIZATION TANDEM MASS SPECTROMETRY (MS/MS)

    Science.gov (United States)

    NDMA is an emerging drinking water contaminant that is of interest to EPA and the environmental community. Its presence in drinking water is a potential health concern, because the EPA's IRIS data base lists the concentration of NDMA required to result in a one in one million li...

  7. Hysteretic capillary condensation of 4He on Nuclepore substrates

    International Nuclear Information System (INIS)

    Godshalk, K.M.; Smith, D.T.; Hallock, R.B.

    1987-01-01

    Measurements of the approach to capillary condensation and the hysteresis encountered in capillary condensation are reported for helium adsorbed on the polycarbonate substrate Nuclepore. (Author) (5 refs., 3 figs.)

  8. Viscosity measurement in the capillary tube viscometer under unsteady flow

    International Nuclear Information System (INIS)

    Park, Heung Jun; Yoo, Sang Sin; Suh, Sang Ho

    2000-01-01

    The objective of the present study is to develop a new device that the viscous characteristics of fluids are determined by applying the unsteady flow concept to the traditional capillary tube viscometer. The capillary tube viscometer consists of a small cylindrical reservoir, capillary tube, a load cell system that measures the mass flow rate, interfaces, and computer. Due to the small size of the reservoir the height of liquid in the reservoir decreases as soon as the liquid in the reservoir drains out through the capillary and the mass flow rate in the capillary decreases as the hydrostatic pressure in the reservoir decreases resulting in a decrease of the shear rate in the capillary tube. The instantaneous shear rate and driving force in the capillary tube are determined by measuring the mass flow rate through the capillary, and the fluid viscosity is determined from the measured flow rate and the driving force

  9. Location and optimization analysis of capillary tube network embedded in active tuning building wall

    International Nuclear Information System (INIS)

    Niu, Fuxin; Yu, Yuebin

    2016-01-01

    In this study, a building wall with a thermal tuning function is further investigated. This design turns the building wall from a passive thermal system to an active system. A capillary tube network is installed inside the wall to manipulate the thermodynamics and realize more flexibility and potentials of the wall. This novel building wall structure performs efficiently in terms of building load reduction and supplementary heating and cooling, and the structure is convenient for applying low grade or natural energy with a wider temperature range. The capillary tube network's location inside the wall greatly impacts the thermal and energy performance of the building wall. The effects of three locations including external, middle and internal side are analyzed. The results indicate that the internal wall surface temperature can be neutralized from the ambient environment when the embedded tubes are fed with thermal water. The wall can work with a wide range of water temperature and the optimal location of the tube network is relatively constant in different modes. Power benefit with the wall changes from 2 W to 39 W when the outdoor air temperature changes, higher in summer than in winter. - Highlights: • A building wall with a tuning function is proposed using a capillary pipe network. • Low-grade thermal water can be used to actively manipulate the thermal mass. • Location of the capillary network is investigated to maximize the performance. • The innovation can potentially lower down the grade of energy use in buildings.

  10. Capillary pressure - saturation relations in quartz and carbonate sands: Limitations for correlating capillary and wettability influences on air, oil, and supercritical CO2 trapping

    Science.gov (United States)

    Tokunaga, T. K.; Wang, S.; Wan, J.; Dong, W.; Kim, Y.

    2016-12-01

    Capillary pressure (Pc) - saturation (Sw) relations are essential for predicting equilibrium and flow of immiscible fluid pairs in soils and deeper geologic formations. In systems that are difficult to measure, behavior is often estimated based on capillary scaling of easily measured Pc-Sw relations (e.g., air-water, and oil-water), yet the reliability of such approximations needs to be examined. In this study, seventeen sets of brine drainage and imbibition curves were measured with air-brine, decane-brine, and supercritical (sc) CO2-brine in homogeneous quartz and carbonate sands, using porous plate systems under ambient (0.1 MPa, 23 °C) and reservoir (12.0 MPa, 45 °C) conditions. Comparisons between these measurements showed significant differences in residual nonwetting phase saturation, Snw,r. Through applying capillary scaling, changes in interfacial properties were indicated, particularly wettability. With respect to the residual trapping of the nonwetting phases, Snwr, CO2 > Snwr, decane > Snwr, air. Decane-brine and scCO2-brine Pc-Sw curves deviated significantly from predictions assuming hydrophilic interactions. Moreover, neither the scaled capillary behavior nor Snw,r for scCO2-brine were well represented by decane-brine, apparently because of differences in wettability and viscosities, indicating limitations for using decane (and other organic liquids) as a surrogate fluid in studies intended to apply to geological carbon sequestration. Thus, challenges remain in applying scaling for predicting capillary trapping and multiphase displacement processes across such diverse fields as vadose zone hydrology, enhanced oil recovery, and geologic carbon sequestration.

  11. Development of high power pumping system for capillary discharge EUV laser

    International Nuclear Information System (INIS)

    Sakai, Yusuke; Komatsu, Takanori; Watanabe, Masato; Okino, Akitoshi; Hotta, Eiki

    2008-01-01

    Development of high power pumping system for capillary discharge soft X-ray laser is reported. The pulsed power system consists of a 2.2 μF LC generator, a 2:54 step-up transformer and a 3 nF water capacitor. Taking advantage of high efficiency configuration, step-up ratio of water capacitor voltage to LC generator initial voltage is about 40 times. Consequently, obtained water capacitor voltage reaches about 450 kV when LC generator was charged to 12.5 kV. As a consequent, possibility of charging a water capacitor to 1 MV is demonstrated. With this extremely compact system, discharge current could be increased to nearly 100 kA through moderately long capillary, which leads to generation of high-density and high-temperature plasma column in order to realize EUV laser. (author)

  12. The Determination of Pesticidal and Non-Pesticidal Organotin Compounds by in situ Ethylation and Capillary Gas Chromatography with Pulsed Flame Photometric Detection

    Science.gov (United States)

    The concurrent determination of pesticidal and non-pesticidal organotin compounds in several water matrices, using a simultaneous in situ ethylation and liquid-liquid extraction followed by splitless injection mode capillary gas chromatography with pulsed flame photometric detect...

  13. Anomalous capillary flow of coal tar pitches

    Energy Technology Data Exchange (ETDEWEB)

    Saint Romain, J.L.; Lahaye, J.; Ehrburger, P.; Couderc, P.

    1986-06-01

    Capillary flow of liquid coal tar pitch into a coke bed was studied. Anomalies in the flow could not be attributed to a plugging effect for mesophase content lower than 20 wt%. The flow behaviour of small pitch droplets can be correlated with the change in physicochemical properties, as measured by the glass transition temperature, on penetration into the coke bed. 4 references.

  14. Capillary-Patterns for Biometric Authentication

    NARCIS (Netherlands)

    Paloma Benedicto, J.; Bruekers, A.A.M.; Presura, C.N.; Garcia Molina, G.

    2007-01-01

    In this report, we present a method using the capillary structuresunder the "distal interphalangeal joint" (DIP joint), which is located between the second and third (distal) phalanges of the finger, for achieving secure biometric authentication. Images of the DIPjoint are acquired using a

  15. Capillary Condensation in Pores with Rough Walls:

    Czech Academy of Sciences Publication Activity Database

    Bryk, P.; Rżysko, W.; Malijevský, Alexandr; Sokołowski, S.

    2007-01-01

    Roč. 313, č. 1 (2007), s. 41-52 ISSN 0021-9797 Grant - others:TOK(XE) 509249 Institutional research plan: CEZ:AV0Z40720504 Source of funding: R - rámcový projekt EK Keywords : adsorption * pore * capillary condensation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.309, year: 2007

  16. Delayed Capillary Breakup of Falling Viscous Jets

    NARCIS (Netherlands)

    Javadi, A.; Eggers, J.; Bonn, D.; Habibi, M.; Ribe, N.M.

    2013-01-01

    Thin jets of viscous fluid like honey falling from capillary nozzles can attain lengths exceeding 10 m before breaking up into droplets via the Rayleigh-Plateau (surface tension) instability. Using a combination of laboratory experiments and WKB analysis of the growth of shape perturbations on a jet

  17. Imbibition of ``Open Capillary'': Fundamentals and Applications

    Science.gov (United States)

    Tani, Marie; Kawano, Ryuji; Kamiya, Koki; Okumura, Ko

    2015-11-01

    Control or transportation of small amount of liquid is one of the most important issues in various contexts including medical sciences or pharmaceutical industries to fuel delivery. We studied imbibition of ``open capillary'' both experimentally and theoretically, and found simple scaling laws for both statics and dynamics of the imbibition, similarly as that of imbibition of capillary tubes. Furthermore, we revealed the existence of ``precursor film,'' which developed ahead of the imbibing front, and the dynamics of it is described well by another scaling law for capillary rise in a corner. Then, to show capabilities of open capillaries, we demonstrated two experiments by fabricating micro mixing devices to achieve (1) simultaneous multi-color change of the Bromothymol blue (BTB) solution and (2) expression of the green florescent protein (GFP). This research was partly supported by ImPACT Program of Council for Science, Technology and Innovation (Cabinet Office, Government of Japan). M. T. is supported by the Japan Society for the Promotion of Science Research Fellowships for Young Scientists.

  18. Van de Graaff generator for capillary electrophoresis.

    Science.gov (United States)

    Lee, Seung Jae; Castro, Eric R; Guijt, Rosanne M; Tarn, Mark D; Manz, Andreas

    2017-09-29

    A new approach for high voltage capillary electrophoresis (CE) is proposed, which replaces the standard high voltage power supply with a Van de Graaff generator, a low current power source. Because the Van de Graaff generator is a current-limited source (10μA), potentials exceeding 100kV can be generated for CE when the electrical resistance of the capillary is maximized. This was achieved by decreasing the capillary diameter and reducing the buffer ionic strength. Using 2mM borate buffer and a 5μm i.d. capillary, fluorescently labeled amino acids were separated with efficiencies up to 3.5 million plates; a 5.7 fold improvement in separation efficiency compared to a normal power supply (NPS) typically used in CE. This separation efficiency was realized using a simple set-up without significant Joule heating, making the Van de Graaff generator a promising alternative for applying the high potentials required for enhancing resolution in the separation and analysis of highly complex samples, for example mixtures of glycans. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Capillary Electrophoresis Analysis of Conventional Splicing Assays

    DEFF Research Database (Denmark)

    de Garibay, Gorka Ruiz; Acedo, Alberto; García-Casado, Zaida

    2014-01-01

    of these assays is often challenging. Here, we explore this issue by conducting splicing assays in 31 BRCA2 genetic variants. All variants were assessed by RT-PCR followed by capillary electrophoresis and direct sequencing. If assays did not produce clear-cut outputs (Class-2 or Class-5 according to analytical...

  20. Analytical biotechnology: Capillary electrophoresis and chromatography

    International Nuclear Information System (INIS)

    Horvath, C.; Nikelly, J.G.

    1990-01-01

    The papers describe the separation, characterization, and equipment required for the electrophoresis or chromatography of cyclic nucleotides, pharmaceuticals, therapeutic proteins, recombinant DNA products, pheromones, peptides, and other biological materials. One paper, On-column radioisotope detection for capillary electrophoresis, has been indexed separately for inclusion on the data base

  1. Application of CHESS single-bounce capillaries at synchrotron beamlines

    Science.gov (United States)

    Huang, R.; Szebenyi, T.; Pfeifer, M.; Woll, A.; Smilgies, D.-M.; Finkelstein, K.; Dale, D.; Wang, Y.; Vila-Comamala, J.; Gillilan, R.; Cook, M.; Bilderback, D. H.

    2014-03-01

    Single-bounce capillaries are achromatic X-ray focusing optics that can provide efficient and high demagnification focusing with large numerical apertures. Capillary fabrication at CHESS can be customized according to specific application requirements. Exemplary applications are reviewed in this paper, as well as recent progress on condensers for high-resolution transmission X-ray microscopy and small focal size capillaries.

  2. Analysis of glycated hemoglobin A1c by capillary electrophoresis and capillary isoelectric focusing

    Czech Academy of Sciences Publication Activity Database

    Koval, Dušan; Kašička, Václav; Cottet, H.

    2011-01-01

    Roč. 413, č. 1 (2011), s. 8-15 ISSN 0003-2697 R&D Projects: GA ČR GP203/09/P485; GA ČR(CZ) GA203/08/1428 Institutional research plan: CEZ:AV0Z40550506 Keywords : capillary zone electrophoresis * capillary isoelectric focusing * glycated hemoglobin HbA1c Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.996, year: 2011

  3. Validation of capillary blood analysis and capillary testing mode on the epoc Point of Care system.

    Science.gov (United States)

    Cao, Jing; Edwards, Rachel; Chairez, Janette; Devaraj, Sridevi

    2017-12-01

    Laboratory test in transport is a critical component of patient care, and capillary blood is a preferred sample type particularly in children. This study evaluated the performance of capillary blood testing on the epoc Point of Care Blood Analysis System (Alere Inc). Ten fresh venous blood samples was tested on the epoc system under the capillary mode. Correlation with GEM 4000 (Instrumentation Laboratory) was examined for Na+, K+, Cl-, Ca2+, glucose, lactate, hematocrit, hemoglobin, pO2, pCO2, and pH, and correlation with serum tested on Vitros 5600 (Ortho Clinical Diagnostics) was examined for creatinine. Eight paired capillary and venous blood was tested on epoc and ABL800 (Radiometer) for the correlation of Na+, K+, Cl-, Ca2+, glucose, lactate, hematocrit, hemoglobin, pCO2, and pH. Capillary blood from 23 apparently healthy volunteers was tested on the epoc system to assess the concordance to reference ranges used locally. Deming regression correlation coefficients for all the comparisons were above 0.65 except for ionized Ca2+. Accordance of greater than 85% to the local reference ranges were found in all assays with the exception of pO2 and Cl-. Data from this study indicates that capillary blood tests on the epoc system provide comparable results to reference method for these assays, Na+, K+, glucose, lactate, hematocrit, hemoglobin, pCO2, and pH. Further validation in critically ill patients is needed to implement the epoc system in patient transport. This study demonstrated that capillary blood tests on the epoc Point of Care Blood Analysis System give comparable results to other chemistry analyzers for major blood gas and critical tests. The results are informative to institutions where pre-hospital and inter-hospital laboratory testing on capillary blood is a critical component of patient point of care testing.

  4. Multiscale network model for simulating liquid water and water vapour transfer properties of porous materials

    NARCIS (Netherlands)

    Carmeliet, J.; Descamps, F.; Houvenaghel, G.

    1999-01-01

    A multiscale network model is presented to model unsaturated moisture transfer in hygroscopic capillary-porous materials showing a broad pore-size distribution. Both capillary effects and water sorption phenomena, water vapour and liquid water transfer are considered. The multiscale approach is

  5. Harvesting liquid from unsaturated vapor - nanoflows induced by capillary condensation

    Science.gov (United States)

    Vincent, Olivier; Marguet, Bastien; Stroock, Abraham

    2016-11-01

    A vapor, even subsaturated, can spontaneously form liquid in nanoscale spaces. This process, known as capillary condensation, plays a fundamental role in various contexts, such as the formation of clouds or the dynamics of hydrocarbons in the geological subsurface. However, large uncertainties remain on the thermodynamics and fluid mechanics of the phenomenon, due to experimental challenges as well as outstanding questions about the validity of macroscale physics at the nanometer scale. We studied experimentally the spatio-temporal dynamics of water condensation in a model nanoporous medium (pore radius 2 nm), taking advantage of the color change of the material upon hydration. We found that at low relative humidities ( 60 % RH, driven by a balance between the pore capillary pressure and the condensation stress given by Kelvin equation. Further analyzing the imbibition dynamics as a function of saturation allowed us to extract detailed information about the physics of nano-confined fluids. Our results suggest excellent extension of macroscale fluid dynamics and thermodynamics even in pores 10 molecules in diameter.

  6. Effect of interference of capillary length on evaporation at meniscus

    Science.gov (United States)

    Soma, Shu; Kunugi, Tomoaki; Yokomine, Takehiko; Kawara, Zensaku

    2017-11-01

    In this study, the experimental results on the evaporation characteristics of meniscus in various geometrical configurations which enable to vary a perimeter of liquid-vapor interface and a meniscus curvature were obtained, and the main factor in evaporation process was clarified. As the experimental conditions, the perimeter was adjusted from 1mm to 100mm order, and the curvature from the inverse of capillary length, κ( 0.4mm-1) , to about 10mm-1 . Measuring devices for evaporation rate, which consisted of a test section on an electric balance, was set to a reduced pressure environment for making the purified water in the test section evaporate. There is no heater in the test section and system was set to be isolated from outside environment. It was found that the evaporation rate and flux could be organized by the perimeter if the curvature is constant at κ. On the other hand, when the curvature is larger than κ, it was found that the curvature is the dominant factor in the evaporation process. It can be considered that an interference of capillary length is a key to understand these results.

  7. Early capillary flux homogenization in response to neural activation.

    Science.gov (United States)

    Lee, Jonghwan; Wu, Weicheng; Boas, David A

    2016-02-01

    This Brief Communication reports early homogenization of capillary network flow during somatosensory activation in the rat cerebral cortex. We used optical coherence tomography and statistical intensity variation analysis for tracing changes in the red blood cell flux over hundreds of capillaries nearly at the same time with 1-s resolution. We observed that while the mean capillary flux exhibited a typical increase during activation, the standard deviation of the capillary flux exhibited an early decrease that happened before the mean flux increase. This network-level data is consistent with the theoretical hypothesis that capillary flow homogenizes during activation to improve oxygen delivery. © The Author(s) 2015.

  8. Applications of capillary optics for focused ion beams

    International Nuclear Information System (INIS)

    Umezawa, Kenji

    2014-01-01

    This article introduces applications of focused ion beams (∼1 μm) with glass capillaries systems. A first report on the interaction between ion beams and glass capillaries was published in 1996. The guiding capabilities of glass capillaries were discovered due to ion reflection from inner wall of glass surfaces. Meanwhile, the similar optics have been already realized in focusing X-rays using glass capillaries. The basic technology of X-rays optics using glass capillaries had been developed in the 1980's and 1900's. Also, low energy atom scattering spectroscopy for insulator material analysis will be mentioned. (author)

  9. Dependence of Capillary Properties of Contemporary Clinker Bricks on Their Microstructure

    Science.gov (United States)

    Wesołowska, Maria; Kaczmarek, Anna

    2017-10-01

    Contemporary clinker bricks are applied for outer layers of walls built from other materials and walls which should have high durability and aesthetic qualities. The intended effect depends not only on the mortar applied but also on clinker properties. Traditional macroscopic tests do not allow to predict clinker behaviour in contact with mortars and external environment. The basic information for this issue is open porosity of material. It defines the material ability to absorb liquids: rain water (through the face wall surface) and grout from mortar (through base surface). The main capillary flow goes on in pores with diameters from 300 to 3000nm. It is possible to define pore distribution and their size using the Mercury Intrusion Porosimetry method. The aim of these research is evaluation of clinker brick capillary properties (initial water absorption and capillary rate) and analysis of differences in microstructure of the face and base wall of a product. Detailed results allowed to show pore distribution in function of their diameters and definition of pore amount responsible for capillary flow. Based on relation between volume function differential and pore diameter, a differential distribution curve was obtained which helped to determine the dominant diameters. The results obtained let us state that face wall of bricks was characterized with the lowest material density and open porosity. In this layer (most burnt) part of pores could be closed by locally appearing liquid phase during brick burning. Thus density is lower comparing to other part of the product.

  10. Development of hydrophobic clay–alumina based capillary membrane for desalination of brine by membrane distillation

    Directory of Open Access Journals (Sweden)

    Rakhi Das

    2016-09-01

    Full Text Available Clay–alumina compositions of 0, 20, 40 and 55 weight percent (wt% clay and rest alumina were maintained in porous support preparation by extrusion followed by sintering at 1300 °C for 2.5 h to obtain 3 mm/2 mm (outer diameter/inner diameter capillary. 1H,1H,2H,2H-perfluorodecyltriethoxysilane (97% (C8 was used to modify the capillary surface of all compositions without any intermediate membrane layer to impart hydrophobic characteristics and compared in terms of contact angle produced by the capillaries with water and liquid entry pressure (LEPw. FTIR analysis showed that the hydrophilic surface of the capillary membranes was efficiently modified by the proposed grafting method. Capillary with 55 wt% clay produced a pore size of 1.43 micron and was considered as an ideal candidate for grafting with C8 polymer to impart surface hydrophobicity. The contact angle and LEPw value obtained for this modified membrane (C-55-M were 145° and 1 bar, respectively. The modified capillary membrane was applied for desalination of brine by air gap membrane distillation (AGMD at a feed pressure of 0.85 bar. Maximum flux obtained for C-55-M membrane was 98.66 L/m2 day at a temperature difference of 60 °C with salt rejection of 99.96%. Mass transfer coefficient of C-55-M was 16 × 10−3 mm/s at feed temperature of 70 °C.

  11. Automated dual capillary electrophoresis system with hydrodynamic injection for the concurrent determination of cations and anions

    Energy Technology Data Exchange (ETDEWEB)

    Pham, Thi Thanh Thuy; Mai, Thanh Duc [University of Basel, Department of Chemistry, Spitalstrasse 51, Basel 4056 (Switzerland); Centre for Environmental Technology and Sustainable Development (CETASD), Hanoi University of Science, Nguyen Trai Street 334, Hanoi (Viet Nam); Nguyen, Thanh Dam [Centre for Environmental Technology and Sustainable Development (CETASD), Hanoi University of Science, Nguyen Trai Street 334, Hanoi (Viet Nam); Sáiz, Jorge [Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering – University of Alcalá, Ctra. Madrid-Barcelona km 33.6, Alcalá de Henares, Madrid 28871 (Spain); Pham, Hung Viet, E-mail: phamhungviet@hus.edu.vn [Centre for Environmental Technology and Sustainable Development (CETASD), Hanoi University of Science, Nguyen Trai Street 334, Hanoi (Viet Nam); Hauser, Peter C., E-mail: Peter.Hauser@unibas.ch [University of Basel, Department of Chemistry, Spitalstrasse 51, Basel 4056 (Switzerland)

    2014-09-02

    Highlights: • Concurrent determination of cations and anions was carried out by electrophoretic separation. • Optimized conditions for each class of analystes was possible by using separate capillaries. • Simultaneous hydrodynamic injection was carried out. • Pneumatic actuation was used for flushing and sample handling. • The denitrification of drinking water was successfully demonstrated. - Abstract: The capillary electrophoresis instrument developed for the concurrent determination of cations and anions features two separate capillaries and individual detectors to allow independent optimization for each group of ions. The capillaries are joined in a common injector block. The sample is drawn into the injector with a small membrane pump and automated simultaneous injection into both capillaries is achieved by pressurization of the fluid with compressed air. Flushing of the injector and of the capillaries with the background electrolyte is also carried out automatically by the same means. The buffer consisted of 12 mM histidine and 2 mM 18-crown-6 adjusted to pH 4 with acetic acid and was suitable for the contactless conductivity detection employed. The system was optimized for the determination of cationic NH{sub 4}{sup +} and anionic NO{sub 3}{sup −} and NO{sub 2}{sup −}, and linear calibration curves from about 20 μM up to about 1.5 mM were obtained for these ions. In a test run over 8 h, the reproducibility for the peak areas was within ±7%. For demonstration, the instrument was successfully applied to the concurrent monitoring of the concentrations of the three ions during the biological removal of ammonium from contaminated groundwater in a sequencing batch reactor, where NO{sub 3}{sup −} and NO{sub 2}{sup −} are formed as intermediate products.

  12. Rugged Large Volume Injection for Sensitive Capillary LC-MS Environmental Monitoring

    Directory of Open Access Journals (Sweden)

    Hanne Roberg-Larsen

    2017-08-01

    Full Text Available A rugged and high throughput capillary column (cLC LC-MS switching platform using large volume injection and on-line automatic filtration and filter back-flush (AFFL solid phase extraction (SPE for analysis of environmental water samples with minimal sample preparation is presented. Although narrow columns and on-line sample preparation are used in the platform, high ruggedness is achieved e.g., injection of 100 non-filtrated water samples did not result in a pressure rise/clogging of the SPE/capillary columns (inner diameter 300 μm. In addition, satisfactory retention time stability and chromatographic resolution were also features of the system. The potential of the platform for environmental water samples was demonstrated with various pharmaceutical products, which had detection limits (LOD in the 0.05–12.5 ng/L range. Between-day and within-day repeatability of selected analytes were <20% RSD.

  13. Capillary Interactions between a Probe Tip and a Nanoparticle

    International Nuclear Information System (INIS)

    Li-Ning, Sun; Le-Feng, Wang; Wei-Bin, Rong

    2008-01-01

    To understand capillary interactions between probe tips and nanoparticles under ambient conditions, a theoretical model of capillary forces between them is developed based on the geometric relations. It is found that the contribution of surface tension force to the total capillary force attains to similar order of magnitude as the capillary pressure force in many cases. It is also shown that the tip shape and the radial distance of the meniscus have great influence on the capillary force. The capillary force decreases with the increasing separation distances, and the variance of the contact angles may change the magnitudes of capillary forces several times at large radial distances. The applicability of the symmetric meniscus approximation is discussed. (condensed matter: structure, mechanical and thermal properties)

  14. Capillary pressure and saturation relations for supercritical CO2 and brine in sand: High-pressure Pc(Sw) controller/meter measurements and capillary scaling predictions

    Science.gov (United States)

    Tokunaga, Tetsu K.; Wan, Jiamin; Jung, Jong-Won; Kim, Tae Wook; Kim, Yongman; Dong, Wenming

    2013-08-01

    In geologic carbon sequestration, reliable predictions of CO2 storage require understanding the capillary behavior of supercritical (sc) CO2. Given the limited availability of measurements of the capillary pressure (Pc) dependence on water saturation (Sw) with scCO2 as the displacing fluid, simulations of CO2 sequestration commonly rely on modifying more familiar air/H2O and oil/H2O Pc(Sw) relations, adjusted to account for differences in interfacial tensions. In order to test such capillary scaling-based predictions, we developed a high-pressure Pc(Sw) controller/meter, allowing accurate Pc and Sw measurements. Drainage and imbibition processes were measured on quartz sand with scCO2-brine at pressures of 8.5 and 12.0 MPa (45°C), and air-brine at 21°C and 0.1 MPa. Drainage and rewetting at intermediate Sw levels shifted to Pc values that were from 30% to 90% lower than predicted based on interfacial tension changes. Augmenting interfacial tension-based predictions with differences in independently measured contact angles from different sources led to more similar scaled Pc(Sw) relations but still did not converge onto universal drainage and imbibition curves. Equilibrium capillary trapping of the nonwetting phases was determined for Pc = 0 during rewetting. The capillary-trapped volumes for scCO2 were significantly greater than for air. Given that the experiments were all conducted on a system with well-defined pore geometry (homogeneous sand), and that scCO2-brine interfacial tensions are fairly well constrained, we conclude that the observed deviations from scaling predictions resulted from scCO2-induced decreased wettability. Wettability alteration by scCO2 makes predicting hydraulic behavior more challenging than for less reactive fluids.

  15. Microfluidic chip-capillary electrophoresis devices

    CERN Document Server

    Fung, Ying Sing; Du, Fuying; Guo, Wenpeng; Ma, Tongmei; Nie, Zhou; Sun, Hui; Wu, Ruige; Zhao, Wenfeng

    2015-01-01

    Capillary electrophoresis (CE) and microfluidic chip (MC) devices are relatively mature technologies, but this book demonstrates how they can be integrated into a single, revolutionary device that can provide on-site analysis of samples when laboratory services are unavailable. By introducing the combination of CE and MC technology, Microfluidic Chip-Capillary Electrophoresis Devices broadens the scope of chemical analysis, particularly in the biomedical, food, and environmental sciences. The book gives an overview of the development of MC and CE technology as well as technology that now allows for the fabrication of MC-CE devices. It describes the operating principles that make integration possible and illustrates some achievements already made by the application of MC-CE devices in hospitals, clinics, food safety, and environmental research. The authors envision further applications for private and public use once the proof-of-concept stage has been passed and obstacles to increased commercialization are ad...

  16. Soluto-capillary convection in micro-encapsulation

    International Nuclear Information System (INIS)

    Subramanian, P.; Zebib, A.

    2005-01-01

    Spherical shells used as laser targets in inertial confinement fusion (ICF) experiments are made by micro-encapsulation. In one phase of manufacturing, the spherical shells contain a solvent (fluoro-benzene, FB) and a solute (polystyrene, PAMS) in a water-FB environment. Evaporation of the FB results in the desired hardened plastic hollow spherical shells, 1-2 mm in diameter. Perfect sphericity is demanded for efficient fusion ignition and the observed surface roughness maybe driven by Marangoni instabilities due to surface tension dependence on the FB concentration (buoyant forces are negligible in this micro-scale problem). Here we model this drying process and compute nonlinear, time-dependent, axisymmetric, variable viscosity, infinite Schmidt number soluto-capillary convection in the shells. Comparison with results from linear theory and available experiments are made. (authors)

  17. Bacterial surface layer proteins as a novel capillary coating material for capillary electrophoretic separations

    Energy Technology Data Exchange (ETDEWEB)

    Moreno-Gordaliza, Estefanía, E-mail: emorenog@ucm.es [Division of Analytical Biosciences, Leiden Academic Centre for Drug Research, Universiteit Leiden, Einsteinweg 55, 2300, RA, Leiden (Netherlands); Department of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040, Madrid (Spain); Stigter, Edwin C.A. [Division of Analytical Biosciences, Leiden Academic Centre for Drug Research, Universiteit Leiden, Einsteinweg 55, 2300, RA, Leiden (Netherlands); Department of Molecular Cancer Research, Universitair Medisch Centrum Utrecht, Wilhelmina Kinder Ziekenhuis, Lundlaan 6, 3584, EA Utrecht (Netherlands); Lindenburg, Petrus W.; Hankemeier, Thomas [Division of Analytical Biosciences, Leiden Academic Centre for Drug Research, Universiteit Leiden, Einsteinweg 55, 2300, RA, Leiden (Netherlands)

    2016-06-07

    A novel concept for stable coating in capillary electrophoresis, based on recrystallization of surface layer proteins on hydrophobized fused silica capillaries, was demonstrated. Surface layer protein A (SlpA) from Lactobacillus acidophilus bacteria was extracted, purified and used for coating pre-silanized glass substrates presenting different surface wettabilities (either hydrophobic or hydrophilic). Contact angle determination on SlpA-coated hydrophobic silica slides showed that the surfaces turned to hydrophilic after coating (53 ± 5°), due to a protein monolayer formation by protein-surface hydrophobic interactions. Visualization by atomic force microscopy demonstrated the presence of a SlpA layer on methylated silica slides displaying a surface roughness of 0.44 ± 0.02 nm. Additionally, a protein layer was visualized by fluorescence microscopy in methylated silica capillaries coated with SlpA and fluorescein isothiocyanate-labeled. The SlpA-coating showed an outstanding stability, even after treatment with 20 mM NaOH (pH 12.3). The electroosmotic flow in coated capillaries showed a partial suppression at pH 7.50 (3.8 ± 0.5 10{sup −9} m{sup 2} V{sup −1} s{sup −1}) when compared with unmodified fused silica (5.9 ± 0.1 10{sup −8} m{sup 2} V{sup −1} s{sup −1}). To demonstrate the potential of this novel coating, the SlpA-coated capillaries were applied for the first time for electrophoretic separation, and proved to be very suitable for the isotachophoretic separation of lipoproteins in human serum. The separations showed a high degree of repeatability (absolute migration times with 1.1–1.8% coefficient-of-variation (CV) within a day) and 2–3% CV inter-capillary reproducibility. The capillaries were stable for more than 100 runs at pH 9.40, and showed to be an exceptional alternative for challenging electrophoretic separations at long-term use. - Highlights: • New coating using recrystallized surface-layer proteins on

  18. Water

    Science.gov (United States)

    ... www.girlshealth.gov/ Home Nutrition Nutrition basics Water Water Did you know that water makes up more ... to drink more water Other drinks How much water do you need? top Water is very important, ...

  19. Thermally stable dexsil-400 glass capillary columns

    International Nuclear Information System (INIS)

    Maskarinec, M.P.; Olerich, G.

    1980-01-01

    The factors affecting efficiency, thermal stability, and reproducibility of Dexsil-400 glass capillary columns for gas chromatography in general, and for polycyclic aromatic hydrocarbons (PAHs) in particular were investigated. Columns were drawn from Kimble KG-6 (soda-lime) glass or Kimox (borosilicate) glass. All silylation was carried out at 200 0 C. Columns were coated according to the static method. Freshly prepared, degassed solutions of Dexsil-400 in pentane or methylene chloride were used. Thermal stability of the Dexsil 400 columns with respect to gas chromatography/mass spectrometry (GC/MS) were tested. Column-to-column variability is a function of each step in the fabrication of the columns. The degree of etching, extent of silylation, and stationary phase film thickness must be carefully controlled. The variability in two Dexsil-400 capillary column prepared by etching, silylation with solution of hexa methyl disilazone (HMDS), and static coating is shown and also indicates the excellent selectivity of Dexsil-400 for the separation of alkylated aromatic compounds. The wide temperature range of Dexsil-400 and the high efficiency of the capillary columns also allow the analysis of complex mixtures with minimal prefractionation. Direct injection of a coal liquefaction product is given. Analysis by GC/MS indicated the presence of parent PAHs, alkylated PAHs, nitrogen and sulfur heterocycles, and their alkylated derivatives. 4 figures

  20. The order of condensation in capillary grooves

    International Nuclear Information System (INIS)

    Rascón, Carlos; Parry, Andrew O; Nürnberg, Robert; Pozzato, Alessandro; Tormen, Massimo; Bruschi, Lorenzo; Mistura, Giampaolo

    2013-01-01

    We consider capillary condensation in a deep groove of width L. The transition occurs at a pressure p co (L) described, for large widths, by the Kelvin equation p sat − p co (L) = 2σcosθ/L, where θ is the contact angle at the side walls and σ is the surface tension. The order of the transition is determined by the contact angle of the capped end θ cap ; it is continuous if the liquid completely wets the cap, and first-order otherwise. When the transition is first-order, corner menisci at the bottom of the capillary lead to a pronounced metastability, determined by a complementary Kelvin equation Δp(L) = 2σsinθ cap /L. On approaching the wetting temperature of the capillary cap, the corner menisci merge and a single meniscus unbinds from the bottom of the groove. Finite-size scaling shifts, crossover behaviour and critical singularities are determined at mean-field level and beyond. Numerical and experimental results showing the continuous nature of condensation for θ cap = 0 and the influence of corner menisci on adsorption isotherms are presented. (fast track communication)

  1. Capillary condensation of short-chain molecules.

    Science.gov (United States)

    Bryk, Paweł; Pizio, Orest; Sokolowski, Stefan

    2005-05-15

    A density-functional study of capillary condensation of fluids of short-chain molecules confined to slitlike pores is presented. The molecules are modeled as freely jointed tangent spherical segments with a hard core and with short-range attractive interaction between all the segments. We investigate how the critical parameters of capillary condensation of the fluid change when the pore width decreases and eventually becomes smaller than the nominal linear dimension of the single-chain molecule. We find that the dependence of critical parameters for a fluid of dimers and of tetramers on pore width is similar to that of the monomer fluid. On the other hand, for a fluid of chains consisting of a larger number of segments we observe an inversion effect. Namely, the critical temperature of capillary condensation decreases with increasing pore width for a certain interval of values of the pore width. This anomalous behavior is also influenced by the interaction between molecules and pore walls. We attribute this behavior to the effect of conformational changes of molecules upon confinement.

  2. The order of condensation in capillary grooves.

    Science.gov (United States)

    Rascón, Carlos; Parry, Andrew O; Nürnberg, Robert; Pozzato, Alessandro; Tormen, Massimo; Bruschi, Lorenzo; Mistura, Giampaolo

    2013-05-15

    We consider capillary condensation in a deep groove of width L. The transition occurs at a pressure p(co)(L) described, for large widths, by the Kelvin equation p(sat) - p(co)(L) = 2σ cosθ/L, where θ is the contact angle at the side walls and σ is the surface tension. The order of the transition is determined by the contact angle of the capped end θcap; it is continuous if the liquid completely wets the cap, and first-order otherwise. When the transition is first-order, corner menisci at the bottom of the capillary lead to a pronounced metastability, determined by a complementary Kelvin equation Δp(L) = 2σ sinθcap/L. On approaching the wetting temperature of the capillary cap, the corner menisci merge and a single meniscus unbinds from the bottom of the groove. Finite-size scaling shifts, crossover behaviour and critical singularities are determined at mean-field level and beyond. Numerical and experimental results showing the continuous nature of condensation for θcap = 0 and the influence of corner menisci on adsorption isotherms are presented.

  3. Proper Use of Capillary Number in Chemical Flooding

    Directory of Open Access Journals (Sweden)

    Hu Guo

    2017-01-01

    Full Text Available Capillary number theory is very important for chemical flooding enhanced oil recovery. The difference between microscopic capillary number and the microscopic one is easy to confuse. After decades of development, great progress has been made in capillary number theory and it has important but sometimes incorrect application in EOR. The capillary number theory was based on capillary tube bundles and Darcy’s law hypothesis, and this should always be kept in mind when used in chemical flooding EOR. The flow in low permeability porous media often shows obvious non-Darcy effects, which is beyond Darcy’s law. Experiments data from ASP flooding and SP flooding showed that remaining oil saturation was not always decreasing as capillary number kept on increasing. Relative permeability was proved function of capillary number; its rate dependence was affected by capillary end effects. The mobility control should be given priority rather than lowering IFT. The displacement efficiency was not increased as displacement velocity increased as expected in heavy oil chemical flooding. Largest capillary number does not always make highest recovery in chemical flooding in heterogeneous reservoir. Misuse of CDC in EOR included the ignorance of mobility ratio, Darcy linear flow hypothesis, difference between microscopic capillary number and the microscopic one, and heterogeneity caused flow regime alteration. Displacement of continuous oil or remobilization of discontinuous oil was quite different.

  4. Liquid distribution and cohesion in wet granular assemblies beyond the capillary bridge regime

    International Nuclear Information System (INIS)

    Scheel, M; Seemann, R; Brinkmann, M; Herminghaus, S; Di Michiel, M; Sheppard, A

    2008-01-01

    Dry sand turns into a stiff and moldable material as soon as it is mixed with some liquid. This is a direct consequence of the internal liquid-air interfaces spanning between the grains which causes capillary cohesion by virtue of the surface tension of the liquid. As a model for wet granulates we investigated random packings of submillimeter spherical beads mixed with water. Measurements of the tensile strength and the fluidization threshold demonstrate that the mechanical stiffness is rather insensitive to the liquid content over a wide range. Only for a high liquid content, when more than half of the available pore space is filled with liquid, does the capillary cohesion weaken. In order to understand the interplay between the mechanical properties and the liquid content, we investigated the liquid distribution in random packings of glass spheres by means of x-ray microtomography. The three-dimensional images reveal that the liquid forms a network of capillary bridges fused at local triangular bead configurations. The spontaneous organization of the liquid into these ramified structures, which exhibit a large liquid-air interface, is responsible for the constancy of the cohesive forces in a wide range of liquid contents beyond the onset of capillary bridge coalescence.

  5. Usefulness of vitamin A binding protein as a marker for capillary endothelial permeability

    Energy Technology Data Exchange (ETDEWEB)

    Ishizaka, Akitoshi; Suzuki, Yukio; Kanazawa, Minoru; Kubo, Atsushi; Kawashiro, Takeo [Keio Univ., Tokyo (Japan). School of Medicine

    1992-06-01

    We performed a preliminary study to assess the usefulness of Vitamin A binding protein (VABP) as a gamma-camera marker for capillary endothelial permeability. We used a guinea pig model of endotoxin (LPS) induced acute lung injury. We calculated the concentration ratio of either {sup 125}I-albumin or {sup 125}I-VABP in lung tissue to that in plasma (tissue plasma ratio; T/P) as a parameter of capillary endothelial permeability. {sup 99m}Tc-diethylene triamine pentaacetic acid (DTPA) was used as marker for pulmonary interstitial volume. We estimated wet to dry lung weight ratio as a parameter of lung water accumulation (W/D). LPS increased the T/P of {sup 125}I-albumin and W/D, suggesting the development of permeability edema. The T/P for {sup 125}I-VABP was also increased, indicating that {sup 125}I-VABP can be used to detect elevated capillary endothelial permeability. In both groups, LPS and saline, the T/P was higher for {sup 125}I-VABP than for {sup 125}I-albumin. These data suggest that the pulmonary capillary endothelium is more permeable to VABP than albumin. (author).

  6. ssDNA degradation along capillary electrophoresis process using a Tris buffer.

    Science.gov (United States)

    Ric, Audrey; Ong-Meang, Varravaddheay; Poinsot, Verena; Martins-Froment, Nathalie; Chauvet, Fabien; Boutonnet, Audrey; Ginot, Frédéric; Ecochard, Vincent; Paquereau, Laurent; Couderc, François

    2017-06-01

    Tris-Acetate buffer is currently used in the selection and the characterization of ssDNA by capillary electrophoresis (CE). By applying high voltage, the migration of ionic species into the capillary generates a current that induces water electrolysis. This phenomenon is followed by the modification of the pH and the production of Tris derivatives. By injecting ten times by capillary electrophoresis ssDNA (50 nM), the whole oligonucleotide was degraded. In this paper, we will show that the Tris buffer in the running vials is modified along the electrophoretic process by electrochemical reactions. We also observed that the composition of the metal ions changes in the running buffer vials. This phenomenon, never described in CE, is important for fluorescent ssDNA analysis using Tris buffer. The oligonucleotides are degraded by electrochemically synthesized species (present in the running Tris vials) until it disappears, even if the separation buffer in the capillary is clean. To address these issues, we propose to use a sodium phosphate buffer that we demonstrate to be electrochemically inactive. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Moisture Transfer in Concrete: Numerical Determination of the Capillary Conductivity Coefficient

    Directory of Open Access Journals (Sweden)

    Simo Elie

    2017-03-01

    Full Text Available We numerically investigated moisture transfer in buildings made of concrete. We considered three types of concrete: normal concrete, pumice concrete and cellular concrete. We present the results of a 1-D liquid water flow in such materials. We evaluated the moisture distribution in building materials using the Runge-Kutta fourth-and-fifth-order method. The DOPRI5 code was used as an integrator. The model calculated the resulting moisture content and other moisture-dependent physical parameters. The moisture curves were plotted. The dampness data obtained was utilized for the numerical computation of the coefficient of the capillary conductivity of moisture. Different profiles of this coefficient are represented. Calculations were performed for four different values of the outdoor temperature: -5°C, 0°C, 5°C and 10°C. We determined that the curves corresponding to small time intervals of wetting are associated with great amplitudes of the capillary conductivity . The amplitudes of the coefficient of the capillary conductivity decrease as the time interval increases. High outdoor temperatures induce high amplitudes of the coefficient of the capillary conductivity.

  8. Reliable and Accurate Release of Micro-Sized Objects with a Gripper that Uses the Capillary-Force Method

    Directory of Open Access Journals (Sweden)

    Suzana Uran

    2017-06-01

    Full Text Available There have been recent developments in grippers that are based on capillary force and condensed water droplets. These are used for manipulating micro-sized objects. Recently, one-finger grippers have been produced that are able to reliably grip using the capillary force. To release objects, either the van der Waals, gravitational or inertial-forces method is used. This article presents methods for reliably gripping and releasing micro-objects using the capillary force. The moisture from the surrounding air is condensed into a thin layer of water on the contact surfaces of the objects. From the thin layer of water, a water meniscus between the micro-sized object, the gripper and the releasing surface is created. Consequently, the water meniscus between the object and the releasing surface produces a high enough capillary force to release the micro-sized object from the tip of the one-finger gripper. In this case, either polystyrene, glass beads with diameters between 5–60 µm, or irregularly shaped dust particles of similar sizes were used. 3D structures made up of micro-sized objects could be constructed using this method. This method is reliable for releasing during assembly and also for gripping, when the objects are removed from the top of the 3D structure—the so-called “disassembling gripping” process. The accuracy of the release was lower than 0.5 µm.

  9. Lattice Boltzmann simulations of the permeability and capillary adsorption of cement model microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Zalzale, M. [Laboratory of Construction Materials, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland); McDonald, P.J., E-mail: p.mcdonald@surrey.ac.uk [Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom)

    2012-12-15

    The lattice Boltzmann method is used to investigate the permeability of microstructures of cement pastes generated using the numerical models CEMHYD3D (Bentz, 1997) and {mu}IC (Bishnoi and Scrivener, 2009). Results are reported as a function of paste water-to-cement ratio and degree of hydration. The permeability decreases with increasing hydration and decreasing water-to-cement ratio in agreement with experiment. However the permeability is larger than the experimental data recorded using beam bending methods (Vichit-Vadakan and Scherer, 2002). Notwithstanding, the lattice Boltzmann results compare favourably with alternate numerical methods of permeability calculation for cement model microstructures. In addition, we show early results for the liquid/vapour capillary adsorption and desorption isotherms in the same model {mu}IC structures. The broad features of the experimental capillary porosity isotherm are reproduced, although further work is required to adequately parameterise the model.

  10. Capillary density: An important parameter in nailfold capillaroscopy.

    Science.gov (United States)

    Emrani, Zahra; Karbalaie, Abdolamir; Fatemi, Alimohammad; Etehadtavakol, Mahnaz; Erlandsson, Björn-Erik

    2017-01-01

    Nailfold capillaroscopy is one of the various noninvasive bioengineering methods used to investigate skin microcirculation. It is an effective examination for assessing microvascular changes in the peripheral circulation; hence it has a significant role for the diagnosis of Systemic sclerosis with the classic changes of giant capillaries as well as the decline in capillary density with capillary dropout. The decline in capillary density is one of microangiopathic features existing in connective tissue disease. It is detectable with nailfold capillaroscopy. This parameter is assessed by applying quantitative measurement. In this article, we reviewed a common method for calculating the capillary density and the relation between the number of capillaries as well as the existence of digital ulcers, pulmonary arterial hypertension, autoantibodies, scleroderma patterns and different scoring system. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Condensation and Evaporation Transitions in Deep Capillary Grooves

    OpenAIRE

    Malijevský, A. (Alexandr); Parry, A.O.

    2014-01-01

    We study the order of capillary condensation and evaporation transitions of a simple fluid adsorbed in a deep capillary groove using a fundamental measure density functional theory (DFT). The walls of the capillary interact with the fluid particles via long-ranged, dispersion, forces while the fluid-fluid interaction is modelled as a truncated Lennard-Jones-like potential. We find that below the wetting temperature $T_w$ condensation is first-order and evaporation is continuous with the metas...

  12. High Performance Wafer-Based Capillary Electrochromatography, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The Phase II research comprises designing, constructing, and testing a chip-based capillary electrochromatography (CEC) prototype for separation and analysis of...

  13. Channeling of neutral particles in micro- and nano-capillaries

    International Nuclear Information System (INIS)

    Dabagov, S.B.

    2003-01-01

    After briefly reviewing the main directions in X-ray optics and analyzing the development of capillary optics, a general theory of radiation propagation through capillary structures is described in both geometrical optics and wave optics approximations. Analysis of radiation field structure inside a capillary waveguide shows that wave propagation in channels can be of a purely modal nature, with transmitted energy mostly concentrated in the immediate neighbourhood of capillary inner walls. A qualitative change in radiation scattering with decreasing channel diameter 0 namely, the transition from surface channeling in microcapillaries to bulk channeling in nanocapillaries - is discussed [ru

  14. Capillary-Condenser-Pumped Heat-Transfer Loop

    Science.gov (United States)

    Silverstein, Calvin C.

    1989-01-01

    Heat being transferred supplies operating power. Capillary-condenser-pumped heat-transfer loop similar to heat pipe and to capillary-evaporator-pumped heat-transfer loop in that heat-transfer fluid pumped by evaporation and condensation of fluid at heat source and sink, respectively. Capillary condenser pump combined with capillary evaporator pump to form heat exchanger circulating heat-transfer fluids in both loops. Transport of heat more nearly isothermal. Thermal stress in loop reduced, and less external surface area needed in condenser section for rejection of heat to heat sink.

  15. Genetics Home Reference: capillary malformation-arteriovenous malformation syndrome

    Science.gov (United States)

    ... Institute: How the Heart Works National Institute of Neurological Disorders and Stroke: Arteriovenous Malformation Educational Resources (7 links) Boston Children's Hospital: Arteriovenous Malformation Boston Children's Hospital: Capillary Malformation ...

  16. Genetics Home Reference: microcephaly-capillary malformation syndrome

    Science.gov (United States)

    ... and Stroke: Epilepsy Information Page National Institute of Neurological Disorders and Stroke: Microcephaly Educational Resources (7 links) Boston Children's Hospital: Capillary Malformation Boston Children's Hospital: Microcephaly Centers ...

  17. Nanoscale Capillary Flows in Alumina: Testing the Limits of Classical Theory.

    Science.gov (United States)

    Lei, Wenwen; McKenzie, David R

    2016-07-21

    Anodic aluminum oxide (AAO) membranes have well-formed cylindrical channels, as small as 10 nm in diameter, in a close packed hexagonal array. The channels in AAO membranes simulate very small leaks that may be present for example in an aluminum oxide device encapsulation. The 10 nm alumina channel is the smallest that has been studied to date for its moisture flow properties and provides a stringent test of classical capillary theory. We measure the rate at which moisture penetrates channels with diameters in the range of 10 to 120 nm with moist air present at 1 atm on one side and dry air at the same total pressure on the other. We extend classical theory for water leak rates at high humidities by allowing for variable meniscus curvature at the entrance and show that the extended theory explains why the flow increases greatly when capillary filling occurs and enables the contact angle to be determined. At low humidities our measurements for air-filled channels agree well with theory for the interdiffusive flow of water vapor in air. The flow rate of water-filled channels is one order of magnitude less than expected from classical capillary filling theory and is coincidentally equal to the helium flow rate, validating the use of helium leak testing for evaluating moisture flows in aluminum oxide leaks.

  18. Capillary Thinning of Particle-laden Drops

    Science.gov (United States)

    Wagoner, Brayden; Thete, Sumeet; Jahns, Matt; Doshi, Pankaj; Basaran, Osman

    2015-11-01

    Drop formation is central in many applications such as ink-jet printing, microfluidic devices, and atomization. During drop formation, a thinning filament is created between the about-to-form drop and the fluid hanging from the nozzle. Therefore, the physics of capillary thinning of filaments is key to understanding drop formation and has been thoroughly studied for pure Newtonian fluids. The thinning dynamics is, however, altered completely when the fluid contains particles, the physics of which is not well understood. In this work, we explore the impact of solid particles on filament thinning and drop formation by using a combination of experiments and numerical simulations.

  19. Paramecium swimming in a capillary tube

    Science.gov (United States)

    Jana, Saikat; Jung, Sunghwan

    2010-03-01

    Micro-organisms exhibit different strategies for swimming in complex environments. Many micro-swimmers such as paramecium congregate and tend to live near wall. We investigate how paramecium moves in a confined space as compared to its motion in an unbounded fluid. A new theoretical model based on Taylor's sheet is developed, to study such boundary effects. In experiments, paramecia are put inside capillary tubes and their swimming behavior is observed. The data obtained from experiments is used to test the validity of our theoretical model and understand how the cilia influence the locomotion of paramecia in confined geometries.

  20. Sapphire capillary interstitial irradiators for laser medicine

    Science.gov (United States)

    Shikunova, I. A.; Dolganova, I. N.; Dubyanskaya, E. N.; Mukhina, E. E.; Zaytsev, K. I.; Kurlov, V. N.

    2018-04-01

    In this paper, we demonstrate instruments for laser radiation delivery based on sapphire capillary needles. Such sapphire irradiators (introducers) can be used for various medical applications, such as photodynamic therapy, laser hyperthermia, laser interstitial thermal therapy, and ablation of tumors of various organs. Unique properties of sapphire allow for effective redistribution of the heat, generated in biological tissues during their exposure to laser radiation. This leads to homogeneous distribution of the laser irradiation around the needle, and lower possibility of formation of the overheating focuses, as well as the following non-transparent thrombi.

  1. Dynamics of capillary condensation in aerogels.

    Science.gov (United States)

    Nomura, R; Miyashita, W; Yoneyama, K; Okuda, Y

    2006-03-01

    Dynamics of capillary condensation of liquid 4He in various density silica aerogels was investigated systematically. Interfaces were clearly visible when bulk liquid was rapidly sucked into the aerogel. Time evolution of the interface positions was consistent with the Washburn model and their effective pore radii were obtained. Condensation was a single step in a dense aerogel and two steps in a low density aerogel. Crossover between the two types of condensation was observed in an intermediate density aerogel. Variety of the dynamics may be the manifestation of the fractal nature of aerogels which had a wide range of distribution of pore radii.

  2. Modulation of capillary condensation by trace component

    Directory of Open Access Journals (Sweden)

    Shiqi Zhou

    2011-06-01

    Full Text Available Impact of trace component on capillary condensation (CC is investigated systematically using a classical density functional theory. It is discovered that (i presence of the trace component makes the CC to occur at much lower condensation pressure than when its absence; (ii Lennard-Jones potential parameters like size parameter and energy parameter of the trace component, and its concentration in the bulk adsorption system, show their effects the most remarkably within a particular range beyond which the effects eventually become insignificant. The present discoveries have implications in low pressure storage of gases, separation and enrichment of low concentration component, and easy control of CC transition, etc.

  3. Electro-capillary effects in capillary filling dynamics of electrorheological fluids.

    Science.gov (United States)

    Dhar, Jayabrata; Ghosh, Uddipta; Chakraborty, Suman

    2015-09-21

    The flow of electrorheological fluids is characterized by an apparent increase in viscosity manifested by the yield stress property of the fluid, which is a function of the applied electric field and the concentration of the suspended solute phase within the dielectric medium. This property of electrorheological fluids generally hinders flow through a capillary if the imposed shear stress is lower than the induced yield stress. This results in a plug-like zone in the flow profile, thus giving the fluid Bingham plastic properties. In the present work, we study such influences of the yield stress on the capillary filling dynamics of an electrorheological fluid by employing a rheologically consistent reduced order formalism. One important feature of the theoretical formalism is its ability to address the intricate interplay between the surface tension and viscous forces, both of which depend sensitively on the electric field. Our analysis reveals that the progress of the capillary front is hindered at an intermediate temporal regime, which is attributable to the increase of the span of the plug-zone across the channel width with time. With a preliminary understanding on the cessation of the capillary front advancement due to the yield stress property of the electrorheological fluids, we further strive to achieve a basic comparison with an experimental study made earlier. Reasonable agreements with the reported data support our theoretical framework. Comprehensive scaling analysis brings further insight to our reported observations over various temporal regimes.

  4. A two-dimensional model of the pressing section of a paper machine including dynamic capillary effects

    KAUST Repository

    Iliev, Oleg P.; Printsypar, Galina; Rief, Stefan

    2013-01-01

    is developed to account for the water flow within the pressing zone. A Richards-type equation is used to describe the flow in the unsaturated zone. The dynamic capillary pressure-saturation relation is adopted for the paper production process. The mathematical

  5. A capillary-based multiplexed isothermal nucleic acid-based test for sexually transmitted diseases in patients.

    Science.gov (United States)

    Xu, Gaolian; Zhao, Hang; Cooper, Jonathan M; Reboud, Julien

    2016-10-06

    We demonstrate a multiplexed loop mediated isothermal amplification (LAMP) assay for infectious disease diagnostics, where the analytical process flow of target pathogens genomic DNA is performed manually by moving magnetic beads through a series of plugs in a capillary. Heat is provided by a water bath and the results are read by the naked eye, enabling applications in low resource settings.

  6. Redox control of capillary filling speed in poly(ferrocenylsilane)-modified microfluidic channels for switchable delay valves

    NARCIS (Netherlands)

    Dos Ramos, Lionel; Lajoinie, Guillaume Pierre Rene; Kieviet, B.D.; de Beer, Sissi; Versluis, Michel; Hempenius, Mark A.; Vancso, Gyula J.

    2016-01-01

    We present a method to reversibly change the wetting of gold-coated microchannel walls, and, as a result, alter the capillary filling speed of water inside such modified microchannels. To this end, we employ the redox-response of surface-anchored poly(ferrocenylsilane) (PFS) films, which allows for

  7. Capillary pressure-saturation relationships for porous granular materials: Pore morphology method vs. pore unit assembly method

    Science.gov (United States)

    Sweijen, Thomas; Aslannejad, Hamed; Hassanizadeh, S. Majid

    2017-09-01

    In studies of two-phase flow in complex porous media it is often desirable to have an estimation of the capillary pressure-saturation curve prior to measurements. Therefore, we compare in this research the capability of three pore-scale approaches in reproducing experimentally measured capillary pressure-saturation curves. To do so, we have generated 12 packings of spheres that are representative of four different glass-bead packings and eight different sand packings, for which we have found experimental data on the capillary pressure-saturation curve in the literature. In generating the packings, we matched the particle size distributions and porosity values of the granular materials. We have used three different pore-scale approaches for generating the capillary pressure-saturation curves of each packing: i) the Pore Unit Assembly (PUA) method in combination with the Mayer and Stowe-Princen (MS-P) approximation for estimating the entry pressures of pore throats, ii) the PUA method in combination with the hemisphere approximation, and iii) the Pore Morphology Method (PMM) in combination with the hemisphere approximation. The three approaches were also used to produce capillary pressure-saturation curves for the coating layer of paper, used in inkjet printing. Curves for such layers are extremely difficult to determine experimentally, due to their very small thickness and the presence of extremely small pores (less than one micrometer in size). Results indicate that the PMM and PUA-hemisphere method give similar capillary pressure-saturation curves, because both methods rely on a hemisphere to represent the air-water interface. The ability of the hemisphere approximation and the MS-P approximation to reproduce correct capillary pressure seems to depend on the type of particle size distribution, with the hemisphere approximation working well for narrowly distributed granular materials.

  8. Reliability of widefield capillary microscopy to measure nailfold capillary density in systemic sclerosis.

    Science.gov (United States)

    Hudson, M; Masetto, A; Steele, R; Arthurs, E; Baron, M

    2010-01-01

    To determine intra- and inter-observer reliability of widefield microscopy to measure nailfold capillary density in patients with systemic sclerosis (SSc). Five SSc patients were examined with a STEMV-8 Zeiss biomicroscope with 50x magnification. The nailfold of the second, third, fourth and fifth fingers of both hands of each patient were photographed twice by each of two observers, once in the morning and again in the afternoon (total of 32 pictures). Two raters reviewed the photographs to produce capillary density readings. Intra- and inter-rater reliability of the readings were computed using intra-class correlations (ICC). Additional analyses were undertaken to determine the impact of other sources of variability in the data, namely patient, finger, technician and time. Intra-and inter-rater reliability were substantial (ICC 0.72-0.84) when raters were reading the same photographs or photographs taken at the same time of day. Agreement was only fair between morning and afternoon density readings (ICC 0.30-0.37). Patients, individual fingers and technician accounted for a large part of the variability in the data (combined variance component of 7.69 out of the total 12.23). The coefficient of variation of widefield microscopy was 24%. Although intra- and inter-rater reliability of nailfold capillary density measurements using widefield microscopy are good, proper standardisation of the conditions under which capillaroscopy is done and better imaging of nailfold capillary abnormalities should be considered if nailfold capillary density is to be used as an outcome measure in multi-centre clinical trials in SSc.

  9. Integrated refractive index optical ring resonator detector for capillary electrophoresis.

    Science.gov (United States)

    Zhu, Hongying; White, Ian M; Suter, Jonathan D; Zourob, Mohammed; Fan, Xudong

    2007-02-01

    We developed a novel miniaturized and multiplexed, on-capillary, refractive index (RI) detector using liquid core optical ring resonators (LCORRs) for future development of capillary electrophoresis (CE) devices. The LCORR employs a glass capillary with a diameter of approximately 100 mum and a wall thickness of a few micrometers. The circular cross section of the capillary forms a ring resonator along which the light circulates in the form of the whispering gallery modes (WGMs). The WGM has an evanescent field extending into the capillary core and responds to the RI change due to the analyte conducted in the capillary, thus permitting label-free measurement. The resonating nature of the WGM enables repetitive light-analyte interaction, significantly enhancing the LCORR sensitivity. This LCORR architecture achieves dual use of the capillary as a sensor head and a CE fluidic channel, allowing for integrated, multiplexed, and noninvasive on-capillary detection at any location along the capillary. In this work, we used electro-osmotic flow and glycerol as a model system to demonstrate the fluid transport capability of the LCORRs. In addition, we performed flow speed measurement on the LCORR to demonstrate its flow analysis capability. Finally, using the LCORR's label-free sensing mechanism, we accurately deduced the analyte concentration in real time at a given point on the capillary. A sensitivity of 20 nm/RIU (refractive index units) was observed, leading to an RI detection limit of 10-6 RIU. The LCORR marries photonic technology with microfluidics and enables rapid on-capillary sample analysis and flow profile monitoring. The investigation in this regard will open a door to novel high-throughput CE devices and lab-on-a-chip sensors in the future.

  10. Capillary discharge sources of hard UV radiation

    International Nuclear Information System (INIS)

    Cachoncinlle, C; Dussart, R; Robert, E; Goetze, S; Pons, J; Mohanty, S R; Viladrosa, R; Fleurier, C; Pouvesle, J M

    2002-01-01

    We developed and studied three different extreme ultraviolet (EUV) capillary discharge sources either dedicated to the generation of coherent or incoherent EUV radiation. The CAPELLA source has been developed especially as an EUV source for the metrology at 13.4 nm. With one of these sources, we were able to produce gain on the Balmer-Hα (18.22 nm) and Hβ (13.46 nm) spectral lines in carbon plasma. By injecting 70 GW cm -3 we measured gain-length products up to 1.62 and 3.02 for the Hα and Hβ, respectively optimization of the EUV capillary source CAPELLA led to the development of an EUV lamp which emits 2 mJ in the bandwidth of the MoSi mirror, per joule stored, per shot and in full solid angle. The wall-plug efficiency is 0.2%. Stability of this lamp is better than 4% and the lamp can operate at repetition rate of 50 Hz

  11. Vesicle dynamics in shear and capillary flows

    International Nuclear Information System (INIS)

    Noguchi, Hiroshi; Gompper, Gerhard

    2005-01-01

    The deformation of vesicles in flow is studied by a mesoscopic simulation technique, which combines multi-particle collision dynamics for the solvent with a dynamically triangulated surface model for the membrane. Shape transitions are investigated both in simple shear flows and in cylindrical capillary flows. We focus on reduced volumes, where the discocyte shape of fluid vesicles is stable, and the prolate shape is metastable. In simple shear flow at low membrane viscosity, the shear induces a transformation from discocyte to prolate with increasing shear rate, while at high membrane viscosity, the shear induces a transformation from prolate to discocyte, or tumbling motion accompanied by oscillations between these two morphologies. In capillary flow, at small flow velocities the symmetry axis of the discocyte is found not to be oriented perpendicular to the cylinder axis. With increasing flow velocity, a transition to a prolate shape occurs for fluid vesicles, while vesicles with shear-elastic membranes (like red blood cells) transform into a coaxial parachute-like shape

  12. Quantitative analysis by microchip capillary electrophoresis – current limitations and problem-solving strategies

    NARCIS (Netherlands)

    Revermann, T.; Götz, S.; Künnemeyer, Jens; Karst, U.

    2008-01-01

    Obstacles and possible solutions for the application of microchip capillary electrophoresis in quantitative analysis are described and critically discussed. Differences between the phenomena occurring during conventional capillary electrophoresis and microchip-based capillary electrophoresis are

  13. Heterogeneity of capillary spacing in the hypertrophied plantaris muscle from young-adult and old rats.

    NARCIS (Netherlands)

    Degens, H.; Morse, C.I.; Hopman, M.T.E.

    2009-01-01

    Heterogeneity of capillary spacing may affect tissue oxygenation. The determinants of heterogeneity of capillary spacing are, however, unknown. To investigate whether 1) impaired angiogenesis and increased heterogeneity of capillary spacing delays development of hypertrophy during aging and 2)

  14. A two-dimensional model of the pressing section of a paper machine including dynamic capillary effects

    KAUST Repository

    Iliev, Oleg P.

    2013-05-15

    Paper production is a problem with significant importance for society; it is also a challenging topic for scientific investigation. This study is concerned with the simulation of the pressing section of a paper machine. A two-dimensional model is developed to account for the water flow within the pressing zone. A Richards-type equation is used to describe the flow in the unsaturated zone. The dynamic capillary pressure-saturation relation is adopted for the paper production process. The mathematical model accounts for the coexistence of saturated and unsaturated zones in a multilayer computational domain. The discretization is performed by the MPFA-O method. Numerical experiments are carried out for parameters that are typical of the production process. The static and dynamic capillary pressure-saturation relations are tested to evaluate the influence of the dynamic capillary effect. © 2013 Springer Science+Business Media Dordrecht.

  15. Isotherms of Capillary Condensation Influenced by Formation of Adsorption Films.

    Science.gov (United States)

    Churaev; Starke; Adolphs

    2000-01-15

    Isotherms of capillary condensation are often used to determine the vapor sorption capacity of porous adsorbents as well as the pore size distribution by radii. In this paper, for calculating the volume of capillary condensate and of adsorption films in a porous body, an approach based on the theory of surface forces is used. Adsorption isotherms and disjoining pressure isotherms of wetting films are presented here in an exponential form discussed earlier. The calculations were made for straight cylindrical capillaries of different radii and slit pores of different width. The mechanisms of capillary condensation differ in cylindrical and slit pores. In cylindrical pores capillary condensation occurs due to capillary instability of curved wetting films on a capillary surface, when film thickness grows. In the case of slit pores, coalescence of wetting films formed on opposite slit surfaces proceeds under the action of attractive dispersion forces. Partial volumes of liquid in the state of both capillary condensate and adsorbed films are calculated dependent on the relative vapor pressure in a surrounding media. Copyright 2000 Academic Press.

  16. Capillary condensation in porous alumina observed by positronium lifetime spectroscopy

    International Nuclear Information System (INIS)

    Ivanov, Eugeniu; Vata, Ion; Toderian, Stefan; Dudu, Dorin; Rusen, Ion; Stefan, Nitisor

    2008-01-01

    The PALS method based on time distribution measurements has been used to study capillary condensation of different gases adsorbed in microporous alumina powder. The isotherms exhibit features which are associated with a shifted gas-liquid transition. The sorption and desorption processes are irreversible presenting a hysteresis effect. Suggestions on some new aspects of the capillary condensation dynamics are made

  17. Capillary filling of miniaturized sources for electrospray mass spectrometry

    International Nuclear Information System (INIS)

    Arscott, Steve; Gaudet, Matthieu; Brinkmann, Martin; Ashcroft, Alison E; Blossey, Ralf

    2006-01-01

    Capillary slot-based emitter tips are a novel tool for use in electrospray ionization-mass spectrometry of large biomolecules. We have performed a combined theoretical and experimental study of capillary filling in micron-sized slots with the aim of developing a rational design procedure for miniaturized electrospray sources, ultimately enabling the integration of ESI into laboratory-on-a-chip devices

  18. 21 CFR 864.6150 - Capillary blood collection tube.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Capillary blood collection tube. 864.6150 Section 864.6150 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Manual Hematology Devices § 864.6150 Capillary...

  19. First report of microcephaly-capillary malformations syndrome in ...

    African Journals Online (AJOL)

    Background: Microcephaly-capillary malformation (MIC-CAP) syndrome is a newly described autosomal recessive syndrome characterized by microcephaly, multiple cutaneous capillary malformations, intractable epilepsy and profound developmental delay. We present the first description of MIC-CAP syndrome in Russia.

  20. Thermodynamics of Capillary Rise: Why Is the Meniscus Curved?

    Science.gov (United States)

    Henriksson, Ulf; Eriksson, Jan Christer

    2004-01-01

    The thermodynamics of capillary rise is explained as the gravitational elevation of the whole column of liquid caused by the positive connection between the liquid, and the solid wall of the capillary tube. The curvature of the meniscus is ascribed to the maintenance of a physiochemical balance throughout the gravitational column of liquid.

  1. A capillary pumping device utilizing super-hydrophobic silicon grass

    International Nuclear Information System (INIS)

    Kung, Chun-Fei; Chang, Chien-Cheng; Chu, Chin-Chou

    2011-01-01

    In this study, we show that a compact silicon grass surface can be generated by utilizing the induced coupled plasma method with suitably chosen fabrication parameters. This super-hydrophobic structure suspends deionized water on top of the grass and keeps the contact angle at around 153°. The silicon grass is used to improve the driving efficiency of a capillary pumping micro-duct (without sidewalls), which is completely defined by a bottom hydrophilic stripe (adjacent to a Teflon substrate) and a fully top-covered hydrophobic Teflon surface which is coated on a glass substrate. The channel has a height of 3 µm and a width of 100 µm. In this work, the Teflon substrate is replaced with the silicon grass surface. When the fluid is flowing through the micro-duct on the stripe, the interface between the silicon grass and the hydrophilic stripe forms a stable air cushion barrier to the fluid, thus effectively reducing the frictional force. By changing only the interface with this replacement, we demonstrate that the average measured velocities of the new design show improvements of 21% and 17% in the driving efficiency over the original design for transporting deionized water and human blood, respectively. It is also shown that the measured data of the present design are closer to the values predicted by a theoretical analysis which relates the flow velocity to the contact angles, surface tension and fluid viscosity

  2. Determination of flotation reagents used in tin-mining by capillary electrophoresis.

    Science.gov (United States)

    Hissner, F; Daus, B; Mattusch, J; Heinig, K

    1999-08-20

    Alkyl xanthates (O-alkyl dithiocarbonates) and phosphonates are important organic collectors for the flotation of metals from crude ore. Leaching from waste dumps into river and ground water, these substances can cause environmental pollution. A capillary electrophoretic method for the routine determination of ethyl, isopropyl, hexyl xanthate, and styrene phosphonate has been developed. Separation within 12 min could be achieved in borate pH 8.8 performing UV detection at 254 and 300 nm simultaneously. To improve the limits of detection obtained with hydrodynamic injection (0.4-1.5 ppm), field amplified sample injection (FASI) and stacking were investigated. An increase in sensitivity up to 4-8 fold could be achieved by pressure assisted FASI. Applying a stacking method to enrich the analytes by filling the capillary with sample solution to one third of its length, the limits of detection could be decreased to 10-40 ppb. Water samples from a former tin ore mining area have been analyzed using the optimized stacking technique. Quantitation was performed by standard addition. Good precision and accuracy were obtained, making this robust capillary electrophoretic method well-suited for routine analysis.

  3. Paper Capillary Enables Effective Sampling for Microfluidic Paper Analytical Devices.

    Science.gov (United States)

    Shangguan, Jin-Wen; Liu, Yu; Wang, Sha; Hou, Yun-Xuan; Xu, Bi-Yi; Xu, Jing-Juan; Chen, Hong-Yuan

    2018-06-06

    Paper capillary is introduced to enable effective sampling on microfluidic paper analytical devices. By coupling mac-roscale capillary force of paper capillary and microscale capillary forces of native paper, fluid transport can be flexibly tailored with proper design. Subsequently, a hybrid-fluid-mode paper capillary device was proposed, which enables fast and reliable sampling in an arrayed form, with less surface adsorption and bias for different components. The resulting device thus well supports high throughput, quantitative, and repeatable assays all by hands operation. With all these merits, multiplex analysis of ions, proteins, and microbe have all been realized on this platform, which has paved the way to level-up analysis on μPADs.

  4. Capillary array electrophoresis using laser-excited confocal fluorescence detection

    Energy Technology Data Exchange (ETDEWEB)

    Huang, X.C.; Quesada, M.A.; Mathies, R.A. [Univ. of California, Berkeley, CA (United States)

    1992-04-15

    Capillary electrophoresis (CE) has found widespread application in analytical and biomedical research, and the scope and sophistication of CE is still rapidly advancing. Gel-filled capillaries have been employed for the rapid separation and analysis of synthetic polynucleotides, DNA sequencing fragments, and DNA restriction fragments. Open-tube capillary electrophoresis has attained subattomole detection levels in amino acid separations 14 and proven its utility for the separation of proteins, viruses, and bacteria. Separation of the optical isomers of dansyl amino acids has also been successfully demonstrated. Micellar electrokinetic capillary chromatography, isoelectric focusing, and on-column derivatization can all be performed on CE columns, demonstrating the utility of capillary electrophoresis as an analytical and micropreparative tool. 29 refs., 6 figs., 1 tab.

  5. A macrothermodynamic approach to the limit of reversible capillary condensation.

    Science.gov (United States)

    Trens, Philippe; Tanchoux, Nathalie; Galarneau, Anne; Brunel, Daniel; Fubini, Bice; Garrone, Edoardo; Fajula, François; Di Renzo, Francesco

    2005-08-30

    The threshold of reversible capillary condensation is a well-defined thermodynamic property, as evidenced by corresponding states treatment of literature and experimental data on the lowest closure point of the hysteresis loop in capillary condensation-evaporation cycles for several adsorbates. The nonhysteretical filling of small mesopores presents the properties of a first-order phase transition, confirming that the limit of condensation reversibility does not coincide with the pore critical point. The enthalpy of reversible capillary condensation can be calculated by a Clausius-Clapeyron approach and is consistently larger than the condensation heat in unconfined conditions. Calorimetric data on the capillary condensation of tert-butyl alcohol in MCM-41 silica confirm a 20% increase of condensation heat in small mesopores. This enthalpic advantage makes easier the overcoming of the adhesion forces by the capillary forces and justifies the disappearing of the hysteresis loop.

  6. Generalized polymer effective charge measurement by capillary isotachophoresis.

    Science.gov (United States)

    Chamieh, Joseph; Koval, Dušan; Besson, Adeline; Kašička, Václav; Cottet, Hervé

    2014-11-28

    In this work, we have generalized the use of capillary isotachophoresis as a universal method for determination of effective charge of anionic and cationic (co)polymers on ordinary capillary electrophoresis instruments. This method is applicable to a broad range of strong or weak polyelectrolytes with good repeatability. Experimental parameters (components and concentrations of leading and terminating electrolytes, capillary diameters, constant electric current intensity) were optimized for implementation in 100 μm i.d. capillaries for both polyanions and polycations. Determined values of polymer effective charge were in a very good agreement with those obtained by capillary electrophoresis with indirect UV detection. Uncertainty of the effective charge measurement using isotachophoresis was addressed and estimated to be ∼5-10% for solutes with mobilities in the 20-50 × 10(-9)m(2)V(-1)s(-1) range. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Capillary evaporation of the ionic liquid [EMIM][BF4] in nanoscale solvophobic confinement

    Science.gov (United States)

    Shrivastav, Gourav; Remsing, Richard C.; Kashyap, Hemant K.

    2018-05-01

    Solvent density fluctuations play a crucial role in liquid-vapor transitions in solvophobic confinement and can also be important for understanding solvation of polar and apolar solutes. In the case of ionic liquids (ILs), density fluctuations can be used to understand important processes in the context of nanoscale aggregation and colloidal self-assemblies. In this article, we explore the nature of density fluctuations associated with capillary evaporation of the IL 1-ethyl-3-methylimidazolium tetrafluoroborate ([EMIM][BF4]) in the confined region of model solvophobic nanoscale sheets by using molecular dynamics simulations combined with non-Boltzmann sampling techniques. We demonstrate that density fluctuations of the confined IL play an important role in capillary evaporation, suggesting analogies to dewetting transitions involving water. Significant changes in the interfacial structure of the IL are also detailed and suggested to underlie a non-classical (non-parabolic) dependence of the free energy barrier to evaporation on the degree of confinement.

  8. Invariance of the solid-liquid interfacial energy in electrowetting probed via capillary condensation.

    Science.gov (United States)

    Gupta, Rohini; Olivier, Gloria K; Frechette, Joelle

    2010-07-20

    Capillary condensation is employed to probe the solid-liquid interfacial energy in electrowetting on dielectric. The height of an annular water meniscus formed via capillary condensation inside the surface force apparatus is measured as a function of the potential applied across the meniscus and the dielectric stack where the meniscus is formed. According to the Kelvin equation, a decrease in the solid-liquid interfacial energy at constant temperature and relative humidity should lead to an increase in the meniscus height. Our experimental results on nanometer-sized meniscus are in agreement with the work of Mugele [J. Phys.: Condens. Matter 2007, 19, 375112] and unequivocally demonstrate that the real contact angle (or the solid-liquid interfacial energy) remains unaltered in electrowetting on dielectric.

  9. Determination of Na and Al Ions in Semiconductor Cleaning Solution Using Capillary Electrophoresis

    International Nuclear Information System (INIS)

    Lee, H. P.; Lim, H. B.

    2003-01-01

    The most common process chemical used in the manufacturing process is a standard cleaning (SC) solution, a mixture of ammonia and hydrogen peroxide in deionized water. Since the purity of the SC solution used in the process has been required to the level of sub-ppb range, accurate and reliable determination of ionic contaminants becomes increasingly difficult. In order to satisfy the requirement of impurity control, inductively coupled plasma-mass spectrometer (ICP-MS), graphite furnace atomic absorption spectrometer (GFAAS), and ion chromatography (IC) are currently the most common analytical instruments used in the process. However, those instruments are not designed for on-line monitoring but rather for off-line analysis. Recently, separation and detection of various particles, such as cells and nanoparticles, with capillary electrophoresis (CE) was reported, although the application of CE has been mostly limited to organic or biological samples. Capillary electrophoresis has been emerging as an alternative to ICPAES and AAS for trace metal analysis

  10. Rapid capillary coating by epoxy-poly-(dimethylacrylamide): Performance in capillary zone electrophoresis of protein and polystyrene carboxylate

    Czech Academy of Sciences Publication Activity Database

    Chiari, M.; Cretich, M.; Šťastná, Miroslava; Radko, S. P.; Chrambach, A.

    2001-01-01

    Roč. 22, č. 4 (2001), s. 656-659 ISSN 0173-0835 Institutional research plan: CEZ:AV0Z4031919 Keywords : capillary coating * capillary zone electrophoresis * proteins Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.282, year: 2001

  11. Capillary-driven flow in a fracture located in a porous medium

    International Nuclear Information System (INIS)

    Martinez, M.J.

    1988-09-01

    Capillary-driven immiscible displacement of air by water along an isolated fracture located in a permeable medium is induced by an abrupt change in water saturation at the fracture inlet. The fracture is idealized as either a smooth slot with permeable walls or a high-permeability later. The penetration distance of moisture in the fracture permeability ratio and length scales for the problem. The models are applied to materials representative of the Yucca Mountain region of the Nevada Test Site. Fracture moisture-penetration histories are predicted for several units in Yucca Mountain and for representative fracture apertures. 18 refs., 20 figs., 6 tabs

  12. Capillary pressure - saturation relations for supercritical CO2 and brine: Implications for capillary/residual trapping in carbonate reservoirs during geologic carbon sequestration

    Science.gov (United States)

    Wang, S.; Tokunaga, T. K.

    2014-12-01

    In geologic carbon sequestration (GCS), data on capillary pressure (Pc) - saturation (Sw) relations are routinely needed to appraise reservoir processes. Capillarity and its hysteresis have been often experimentally studied in oil-water, gas-water and three phase gas-oil-water systems, but fewer works have been reported on scCO2-water under in-situ reservoir conditions. Here, Pc-Sw relations of supercritical (sc) CO2 displacing brine, and brine rewetting the porous medium to trap scCO2 were studied to understand CO2 transport and trapping behavior in carbonate reservoirs under representative reservoir conditions. High-quality drainage and imbibition (and associated capillary pressure hysteresis) curves were measured under elevated temperature and pressure (45 ºC, 8.5 and 12 MPa) for scCO2-brine as well as at room temperature and pressure (23 ºC, 0.1 MPa) for air-brine in unconsolidated limestone and dolomite sand columns using newly developed semi-automated multistep outflow-inflow porous plate apparatus. Drainage and imbibition curves for scCO2-brine deviated from the universal scaling curves for hydrophilic interactions (with greater deviation under higher pressure) and shifted to lower Pc than predicted based on interfacial tension (IFT) changes. Augmented scaling incorporating differences in IFT and contact angle improved the scaling results but the scaled curves still did not converge onto the universal curves. Equilibrium residual trapping of the nonwetting phase was determined at Pc =0 during imbibition. The capillary-trapped amounts of scCO2 were significantly larger than for air. It is concluded that the deviations from the universal capillary scaling curves are caused by scCO2-induced wettability alteration, given the fact that pore geometry remained constant and IFT is well constrained. In-situ wettability alteration by reactive scCO2 is of critical importance and must be accounted for to achieve reliable predictions of CO2 behavior in GCS reservoirs.

  13. Highly efficient capillary polymerase chain reaction using an oscillation droplet microreactor

    International Nuclear Information System (INIS)

    Liu Dayu; Liang Guangtie; Lei Xiuxia; Chen Bin; Wang Wei; Zhou Xiaomian

    2012-01-01

    Graphical abstract: An oscillation-flow approach using a droplet reactor was developed to fully explore the potential of continuous-flow PCR. By fully utilizing interfacial chemistry, a water-in-oil (w/o) droplet was automatically generated by allowing an oil–water plug to flow through a polytetrafluoroethylene (PTFE) capillary. Due to the movement of aqueous phase relative to the oil phase, the droplet moves further into the middle of the oil plug with increase in migration distance. The resulting droplet was transported spanning the two heating zones and was employed as the reactor of oscillating-flow PCR. Highlights: ► Droplet formation in a capillary. ► Transport the droplet using oscillation-flow. ► Oscillation droplet PCR. ► Improved reaction efficiency. - Abstract: The current work presents the development of a capillary-based oscillation droplet approach to maximize the potential of a continuous-flow polymerase chain reaction (PCR). Through the full utilization of interfacial chemistry, a water-in-oil (w/o) droplet was generated by allowing an oil–water plug to flow along a polytetrafluoroethylene (PTFE) capillary. The w/o droplet functioned as the reactor for oscillating-flow PCR to provide a stable reaction environment, accelerate reagent mixing, and eliminate surface adsorption. The capillary PCR approach proposed in the current research offers high amplification efficiency, fast reaction speed, and easy system control attributable to the oscillation droplet reactor. Experimental results show that the droplet-based micro-PCR assay requires lower reaction volume (2 μL) and shorter reaction time (12 min) compared with conventional PCR methods. Taking the amplification of the New Delhi metallo-beta-lactamase (NDM-1) gene as an example, the present work demonstrates that the oscillation droplet PCR assay is capable of achieving high efficiency up to 89.5% and a detection limit of 10 DNA copies. The miniature PCR protocol developed in the current

  14. 3D Printing by Multiphase Silicone/Water Capillary Inks

    NARCIS (Netherlands)

    Roh, Sangchul; Parekh, Dishit P.; Bharti, Bhuvnesh; Stoyanov, Simeon D.; Velev, Orlin D.

    2017-01-01

    3D printing of polymers is accomplished easily with thermoplastics as the extruded hot melt solidifies rapidly during the printing process. Printing with liquid polymer precursors is more challenging due to their longer curing times. One curable liquid polymer of specific interest is

  15. Strength, shrinkage, erodibility and capillary flow characteristics of cement-treated recycled pavement materials

    Directory of Open Access Journals (Sweden)

    William Fedrigo

    2017-09-01

    Full Text Available Full-depth recycling with portland cement (FDR-PC has been widely used for pavement rehabilitation; however, doubts remain regarding factors affecting some properties of the recycled material. Aiming on quantifying the effects of those factors on the strength, drying shrinkage, erodibility, capillary rise and absorption of cement-treated mixtures (CTM of reclaimed asphalt pavement (RAP and graded crushed stone, tests were conducted considering different RAP contents, cement contents, compaction efforts and curing times. Cement addition increased the mixtures strength and reduced their erodibility and capillary flow characteristics, but increased shrinkage. Low cement contents resulted in acceptable strength for CTM, but in high capillary rise and absorption, not being suitable if the layer is exposed to long periods of water soaking. Higher compaction effort led to similar effects as cement addition, counterbalancing low cement contents usage and reducing costs and shrinkage cracking risk. Strength and shrinkage showed higher growth rates at early stages, and then precautions should be taken in order to avoid moisture loss. Increasing RAP content decreased strength; though, RAP effect on the other properties was statistically non-significant, indicating a similar behaviour as CTM without RAP. Considering the studied properties, the mixture with most satisfactory behaviour for field applications was identified. The results highlighted strength is not the only property to be considered when designing FDR-PC mixtures; although presenting acceptable strength, some mixtures may fail due to shrinkage cracking or erosion, when exposed to water content variations. Keywords: Full-depth recycling with cement, Strength, Drying shrinkage, Erodibility, Capillary rise, Absorption

  16. Growth of metal-organic framework HKUST-1 in capillary using liquid-phase epitaxy for open-tubular capillary electrochromatography and capillary liquid chromatography.

    Science.gov (United States)

    Bao, Tao; Zhang, Juan; Zhang, Wenpeng; Chen, Zilin

    2015-02-13

    Much attention is being paid to applying metal-organic frameworks (MOFs) as stationary phases in chromatography because of their fascinating properties, such as large surface-to-volume ratios, high levels of porosity, and selective adsorption. HKUST-1 is one of the best-studied face-centered-cubic MOF containing nano-sized channels and side pockets for film growth. However, growth of HKUST-1 framework inside capillary column as stationary phase for capillary electrochromatography is a challenge work. In this work, we carry out the growth of HKUST-1 on the inner wall of capillary by using liquid-phase epitaxy process at room temperature. The fabricated HKUST-1@capillary can be successfully used for the separation of substituted benzene including methylbenzene, ethylbenzene, styrene, chlorobenzene, bromobenzene, o-dichlorobenzene, benzene series, phenolic acids, and benzoic acids derivates. High column efficiency of 1.5×10(5) N/m for methylbenzene was achieved. The formation of HKUST-1 grown in the capillary was confirmed and characterized by scanning electron microscopy images, Fourier transform infrared spectra and X-ray diffraction. The column showed long lifetime and excellent stability. The relative standard deviations for intra-day and inter-day repeatability of the HKUST-1@capillary were lower than 7%. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Separation of oligopeptides, nucleobases, nucleosides and nucleotides using capillary electrophoresis/electrochromatography with sol-gel modified inner capillary wall.

    Science.gov (United States)

    Svobodová, Jana; Kofroňová, Olga; Benada, Oldřich; Král, Vladimír; Mikšík, Ivan

    2017-09-29

    The aim of this article is to study the modification of an inner capillary wall with sol-gel coating (pure silica sol-gel or silica sol-gel containing porphyrin-brucine conjugate) and determine its influence on the separation process using capillary electrophoresis/electrochromatography method. After modification of the inner capillary surface the separation of analytes was performed using two different phosphate buffers (pH 2.5 and 9.0) and finally the changes in electrophoretic mobilities of various samples were calculated. To confirm that the modification of the inner capillary surface was successful, the parts of the inner surfaces of capillaries were observed using scanning electron microscopy. The analytes used as testing samples were oligopeptides, nucleosides, nucleobases and finally nucleotides. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Radionuclide diagnosis of pulmonary capillary protein leakage

    International Nuclear Information System (INIS)

    Creutzig, H.; Sturm, J.A.; Schober, O.; Nerlich, M.L.; Kant, C.J.; Medizinische Hochschule Hannover

    1984-01-01

    Pulmonary extravascular albumin extra-vasation in patients with adult respiratory distress syndrome can be quantified with radionuclide techniques. While imaging procedures with a computerized gamma camera will allow reproducible ROIs, this will be the main limitation in nonimaging measurements with small scintillation probes. Repeated positioning by one operator results in a mean spatial variation of position of about 2 cm and a variation in count rate of 25%. For the estimation of PCPL the small probes must be positioned under scintigraphic control. Under these conditions the results of both techniques are identical. The upper limit of normal was estimated to be 1 x E-5/sec. The standard deviation abnormal measurements was about 10%. The pulmonary capillary protein leakage can be quantified by radionuclide techniques with good accuracy, using the combination of imaging and nonimaging techniques. (orig.) [de

  19. Capillary condensation and adsorption of binary mixtures.

    Science.gov (United States)

    Weinberger, B; Darkrim-Lamari, F; Levesque, D

    2006-06-21

    The adsorption of equimolar binary mixtures of hydrogen-carbon dioxide, hydrogen-methane, and methane-carbon dioxide in porous material models is determined by grand canonical Monte Carlo simulations. The material models have an adsorbent surface similar to that of nanofibers with a herringbone structure. Our main result, which is relevant for hydrogen purification and carbon dioxide capture, is that the adsorption selectivities calculated for the mixtures can differ significantly from those deduced from simulations of the adsorption of pure gases, in particular, when one of the adsorbed gases presents a capillary condensation induced by confinement within the pore network. A comparison of our data is also made with theoretical models used in the literature for predicting the properties of the mixture adsorption.

  20. Capillary Pumped Heat Transfer (CHT) Experiment

    Science.gov (United States)

    Hallinan, Kevin P.; Allen, J. S.

    1998-01-01

    The operation of Capillary Pumped Loops (CPL's) in low gravity has generally been unable to match ground-based performance. The reason for this poorer performance has been elusive. In order to investigate the behavior of a CPL in low-gravity, an idealized, glass CPL experiment was constructed. This experiment, known as the Capillary-driven Heat Transfer (CHT) experiment, was flown on board the Space Shuttle Columbia in July 1997 during the Microgravity Science Laboratory mission. During the conduct of the CHT experiment an unexpected failure mode was observed. This failure mode was a result of liquid collecting and then eventually bridging the vapor return line. With the vapor return line blocked, the condensate was unable to return to the evaporator and dry-out subsequently followed. The mechanism for this collection and bridging has been associated with long wavelength instabilities of the liquid film forming in the vapor return line. Analysis has shown that vapor line blockage in present generation CPL devices is inevitable. Additionally, previous low-gravity CPL tests have reported the presence of relatively low frequency pressure oscillations during erratic system performance. Analysis reveals that these pressure oscillations are in part a result of long wavelength instabilities present in the evaporator pores, which likewise lead to liquid bridging and vapor entrapment in the porous media. Subsequent evaporation to the trapped vapor increases the vapor pressure. Eventually the vapor pressure causes ejection of the bridged liquid. Recoil stresses depress the meniscus, the vapor pressure rapidly increases, and the heated surface cools. The process then repeats with regularity.

  1. Capillary sieving electrophoresis and micellar electrokinetic capillary chromatography produce highly correlated separation of tryptic digests

    Science.gov (United States)

    Dickerson, Jane A.; Dovichi, Norman J.

    2011-01-01

    We perform two-dimensional capillary electrophoresis on fluorescently labeled proteins and peptides. Capillary sieving electrophoresis was performed in the first dimension and micellar electrokinetic capillary chromatography was performed in the second. A cellular homogenate was labeled with the fluorogenic reagent FQ and separated using the system. This homogenate generated a pair of ridges; the first had essentially constant migration time in the CSE dimension, while the second had essentially constant migration time in the MEKC dimension. In addition a few spots were scattered through the electropherogram. The same homogenate was digested using trypsin, and then labeled and subjected to the two dimensional separation. In this case, the two ridges observed from the original two-dimensional separation disappeared, and were replaced by a set of spots that fell along the diagonal. Those spots were identified using a local-maximum algorithm and each was fit using a two-dimensional Gaussian surface by an unsupervised nonlinear least squares regression algorithm. The migration times of the tryptic digest components were highly correlated (r = 0.862). When the slowest migrating components were eliminated from the analysis, the correlation coefficient improved to r = 0.956. PMID:20564272

  2. Capillary electrophoresis: principles and applications in illicit drug analysis.

    Science.gov (United States)

    Tagliaro, F; Turrina, S; Smith, F P

    1996-02-09

    Capillary electrophoresis, which appeared in the early 1980s, is now rapidly expanding into many scientific disciplines, including analytical chemistry, biotechnology and biomedical and pharmaceutical sciences. In capillary electrophoresis,electrokinetic separations are carried out in tiny capillaries at high voltages (10-30 kV), thus obtaining high efficiencies (N > 10(5)) and excellent mass sensitivities (down to 10(-18)-10(-20) moles). The main features of capillary electrophoresis are: versatility of application (from inorganic ions to large DNA fragments), use of different separation modes with different selectivity, extremely low demands on sample volume, negligible running costs, possibility of interfacing with different detection systems, ruggedness and simplicity of instrumentation. Capillary electrophoresis applications in forensic sciences have appeared only recently, but are now rapidly growing, particularly in forensic toxicology. The present paper briefly describes the basic principles of capillary electrophoresis, from both the instrumental and analytical points of view. Furthermore, the main applications in the analysis of illicit/controlled drugs in both illicit preparations and biological samples are presented and discussed (43 references). It is concluded that the particular separation mechanism and the high complementarity of this technique to chromatography makes capillary electrophoresis a new powerful tool of investigation in the hands of forensic toxicologists.

  3. Geometry-induced phase transition in fluids: capillary prewetting.

    Science.gov (United States)

    Yatsyshin, Petr; Savva, Nikos; Kalliadasis, Serafim

    2013-02-01

    We report a new first-order phase transition preceding capillary condensation and corresponding to the discontinuous formation of a curved liquid meniscus. Using a mean-field microscopic approach based on the density functional theory we compute the complete phase diagram of a prototypical two-dimensional system exhibiting capillary condensation, namely that of a fluid with long-ranged dispersion intermolecular forces which is spatially confined by a substrate forming a semi-infinite rectangular pore exerting long-ranged dispersion forces on the fluid. In the T-μ plane the phase line of the new transition is tangential to the capillary condensation line at the capillary wetting temperature T(cw). The surface phase behavior of the system maps to planar wetting with the phase line of the new transition, termed capillary prewetting, mapping to the planar prewetting line. If capillary condensation is approached isothermally with T>T(cw), the meniscus forms at the capping wall and unbinds continuously, making capillary condensation a second-order phenomenon. We compute the corresponding critical exponent for the divergence of adsorption.

  4. Capillary contact angle in a completely wet groove.

    Science.gov (United States)

    Parry, A O; Malijevský, A; Rascón, C

    2014-10-03

    We consider the phase equilibria of a fluid confined in a deep capillary groove of width L with identical side walls and a bottom made of a different material. All walls are completely wet by the liquid. Using density functional theory and interfacial models, we show that the meniscus separating liquid and gas phases at two phase capillary coexistence meets the bottom capped end of the groove at a capillary contact angle θ(cap)(L) which depends on the difference between the Hamaker constants. If the bottom wall has a weaker wall-fluid attraction than the side walls, then θ(cap) > 0 even though all the isolated walls are themselves completely wet. This alters the capillary condensation transition which is now first order; this would be continuous in a capped capillary made wholly of either type of material. We show that the capillary contact angle θ(cap)(L) vanishes in two limits, corresponding to different capillary wetting transitions. These occur as the width (i) becomes macroscopically large, and (ii) is reduced to a microscopic value determined by the difference in Hamaker constants. This second wetting transition is characterized by large scale fluctuations and essential critical singularities arising from marginal interfacial interactions.

  5. Capillary Rise: Validity of the Dynamic Contact Angle Models.

    Science.gov (United States)

    Wu, Pingkeng; Nikolov, Alex D; Wasan, Darsh T

    2017-08-15

    The classical Lucas-Washburn-Rideal (LWR) equation, using the equilibrium contact angle, predicts a faster capillary rise process than experiments in many cases. The major contributor to the faster prediction is believed to be the velocity dependent dynamic contact angle. In this work, we investigated the dynamic contact angle models for their ability to correct the dynamic contact angle effect in the capillary rise process. We conducted capillary rise experiments of various wetting liquids in borosilicate glass capillaries and compared the model predictions with our experimental data. The results show that the LWR equations modified by the molecular kinetic theory and hydrodynamic model provide good predictions on the capillary rise of all the testing liquids with fitting parameters, while the one modified by Joos' empirical equation works for specific liquids, such as silicone oils. The LWR equation modified by molecular self-layering model predicts well the capillary rise of carbon tetrachloride, octamethylcyclotetrasiloxane, and n-alkanes with the molecular diameter or measured solvation force data. The molecular self-layering model modified LWR equation also has good predictions on the capillary rise of silicone oils covering a wide range of bulk viscosities with the same key parameter W(0), which results from the molecular self-layering. The advantage of the molecular self-layering model over the other models reveals the importance of the layered molecularly thin wetting film ahead of the main meniscus in the energy dissipation associated with dynamic contact angle. The analysis of the capillary rise of silicone oils with a wide range of bulk viscosities provides new insights into the capillary dynamics of polymer melts.

  6. Extensional flow of low-viscosity fluids in capillary bridges formed by pulsed surface acoustic wave jetting

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, P K; McDonnell, A G; Prabhakar, R; Yeo, L Y; Friend, J, E-mail: james.friend@monash.edu.au [MicroNanophysics Research Laboratory, Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, VIC 3800 (Australia); Melbourne Centre for Nanofabrication, Melbourne, VIC 3800 (Australia)

    2011-02-15

    Forming capillary bridges of low-viscosity ({approx}<10 mPa s) fluids is difficult, making the study of their capillary-thinning behavior and the measurement of the fluid's extensional viscosity difficult as well. Current techniques require some time to form a liquid bridge from the stretching of a droplet. Rapidly stretching a liquid bridge using these methods can cause its breakup if the viscosity is too low. Stretching more slowly allows the bridge to thin and break up before a suitable bridge geometry can be established to provide reliable and accurate rheological data. Using a pulsed surface acoustic wave to eject a jet from a sessile droplet, a capillary bridge may be formed in about 7.5 ms, about seven times quicker than current methods. With this approach, capillary bridges may be formed from Newtonian and non-Newtonian fluids having much lower viscosities-water, 0.04% by weight solution of high-molecular-weight (7 MDa) polystyrene in dioctyl phthalate and 0.25% fibrinogen solution in demineralized water, for example. Details of the relatively simple system used to achieve these results are provided, as are experimental results indicating deviations from a Newtonian response by the low-viscosity non-Newtonian fluids used in our study.

  7. Extensional flow of low-viscosity fluids in capillary bridges formed by pulsed surface acoustic wave jetting

    International Nuclear Information System (INIS)

    Bhattacharjee, P K; McDonnell, A G; Prabhakar, R; Yeo, L Y; Friend, J

    2011-01-01

    Forming capillary bridges of low-viscosity (∼<10 mPa s) fluids is difficult, making the study of their capillary-thinning behavior and the measurement of the fluid's extensional viscosity difficult as well. Current techniques require some time to form a liquid bridge from the stretching of a droplet. Rapidly stretching a liquid bridge using these methods can cause its breakup if the viscosity is too low. Stretching more slowly allows the bridge to thin and break up before a suitable bridge geometry can be established to provide reliable and accurate rheological data. Using a pulsed surface acoustic wave to eject a jet from a sessile droplet, a capillary bridge may be formed in about 7.5 ms, about seven times quicker than current methods. With this approach, capillary bridges may be formed from Newtonian and non-Newtonian fluids having much lower viscosities-water, 0.04% by weight solution of high-molecular-weight (7 MDa) polystyrene in dioctyl phthalate and 0.25% fibrinogen solution in demineralized water, for example. Details of the relatively simple system used to achieve these results are provided, as are experimental results indicating deviations from a Newtonian response by the low-viscosity non-Newtonian fluids used in our study.

  8. Application of capillary electrophoresis to the simultaneous determination and stability study of four extensively used penicillin derivatives

    Directory of Open Access Journals (Sweden)

    Brigitta Simon

    2014-09-01

    Full Text Available The applicability of capillary electrophoresis for the analysis of four extensively used penicillin derivatives (benzylpenicillin, ampicillin, amoxicillin, oxacilllin has been studied. Because of structural similarities, the electrophoretic behavior of these derivatives is very similar; consequently an efficient separation using the conventional capillary zone electrophoresis is hard to be achieved. Their simultaneous separation was solved by using micellar electrokinetic capillary chromatography, the separation being based on the differential partition of the analytes between the micellar and aqueous phase. Using a buffer solution containing 25 mM sodium tetraborate and 100 mM sodium dodecyl sulfate as surfactant, at a pH of 9.3, applying a voltage of + 25 kV at a temperature of 25 °C, we achieved the simultaneous separation of the studied penicillin derivatives in less then 5 minutes. The separation conditions were optimized and the analytical performance of the method was evaluated in terms of precision, linearity, limit of detection, and quantification. Also, a simple capillary zone electrophoresis method was applied to study the stability of the studied penicillin derivatives in water at different temperatures, using ciprofloxacin hydrochloride as internal standard. It was observed that the extent of the hydrolysis of penicillins in water is highly dependent on the time and also temperature.

  9. Creeping motion of long bubbles and drops in capillary tubes

    DEFF Research Database (Denmark)

    Westborg, Henrik; Hassager, Ole

    1989-01-01

    The flow of inviscid bubbles and viscous drops in capillary tubes has been simulated by a Galerkin finite element method with surface tension included at the bubble/liquid interface. The results show good agreement with published experimental results. At low capillary numbers the front and the rear...... of the bubble are nearly spherical. As the capillary number increases the thickness of the wetting film between the tube wall and the bubble increases, and the bubble assumes a more slender shape with a characteristic bump at the rear. Recirculations are found in front and behind the bubble, which disappear...

  10. Pulmonary capillary haemangiomatosis: a rare cause of pulmonary hypertension.

    Science.gov (United States)

    Babu, K Anand; Supraja, K; Singh, Raj B

    2014-01-01

    Pulmonary capillary haemangiomatosis (PCH) is a rare disorder of unknown aetiology, characterised by proliferating capillaries that invade the pulmonary interstitium, alveolar septae and the pulmonary vasculature. It is often mis-diagnosed as primary pulmonary hypertension and pulmonary veno-occlusive disease. Pulmonary capillary haemangiomatosis is a locally aggressive benign vascular neoplasm of the lung. We report the case of a 19-year-old female who was referred to us in the early post-partum period with severe pulmonary artery hypertension, which was diagnosed as PCH by open lung biopsy.

  11. Recent advances of capillary electrophoresis in pharmaceutical analysis.

    Science.gov (United States)

    Suntornsuk, Leena

    2010-09-01

    This review covers recent advances of capillary electrophoresis (CE) in pharmaceutical analysis. The principle, instrumentation, and conventional modes of CE are briefly discussed. Advances in the different CE techniques (non-aqueous CE, microemulsion electrokinetic chromatography, capillary isotachophoresis, capillary electrochromatography, and immunoaffinity CE), detection techniques (mass spectrometry, light-emitting diode, fluorescence, chemiluminescence, and contactless conductivity), on-line sample pretreatment (flow injection) and chiral separation are described. Applications of CE to assay of active pharmaceutical ingredients (APIs), drug impurity testing, chiral drug separation, and determination of APIs in biological fluids published from 2008 to 2009 are tabulated.

  12. Water

    Science.gov (United States)

    ... drink and water in food (like fruits and vegetables). 6. Of all the earth’s water, how much is ocean or seas? 97 percent of the earth’s water is ocean or seas. 7. How much of the world’s water is frozen? Of all the water on earth, about 2 percent is frozen. 8. How much ...

  13. An Amorphous Network Model for Capillary Flow and Dispersion in a Partially Saturated Porous Medium

    Science.gov (United States)

    Simmons, C. S.; Rockhold, M. L.

    2013-12-01

    Network models of capillary flow are commonly used to represent conduction of fluids at pore scales. Typically, a flow system is described by a regular geometric lattice of interconnected tubes. Tubes constitute the pore throats, while connection junctions (nodes) are pore bodies. Such conceptualization of the geometry, however, is questionable for the pore scale, where irregularity clearly prevails, although prior published models using a regular lattice have demonstrated successful descriptions of the flow in the bulk medium. Here a network is allowed to be amorphous, and is not subject to any particular lattice structure. Few network flow models have treated partially saturated or even multiphase conditions. The research trend is toward using capillary tubes with triangular or square cross sections that have corners and always retain some fluid by capillarity when drained. In contrast, this model uses only circular capillaries, whose filled state is controlled by a capillary pressure rule for the junctions. The rule determines which capillary participate in the flow under an imposed matric potential gradient during steady flow conditions. Poiseuille's Law and Laplace equation are used to describe flow and water retention in the capillary units of the model. A modified conjugate gradient solution for steady flow that tracks which capillary in an amorphous network contribute to fluid conduction was devised for partially saturated conditions. The model thus retains the features of classical capillary models for determining hydraulic flow properties under unsaturated conditions based on distribution of non-interacting tubes, but now accounts for flow exchange at junctions. Continuity of the flow balance at every junction is solved simultaneously. The effective water retention relationship and unsaturated permeability are evaluated for an extensive enough network to represent a small bulk sample of porous medium. The model is applied for both a hypothetically

  14. Demonstrate use of capillary electrophoresis low level transient of anions

    International Nuclear Information System (INIS)

    Moum, Kari-Lye; Solheim, Torill; McElrath, Joel; Frattini, Paul

    2012-09-01

    Capillary Electrophoresis (CE) is a well-known analytical method capable of rapid detection of very low concentration of cations and anionic species such as chloride, sulfate and nitrate. These anions are of crucial importance in reducing the potential of stainless steel components to undergo stress corrosion cracking. Currently, Nuclear Power Plants (NPPs) use Ion Chromatography (IC) as the analytical technique to achieve the required detection levels of ionic species. At the Halden Reactor Project (HRP) IC was replaced by CE in 1996, and since then HRP has gained nearly 20 years of operational experience. During the last 15 years, EPRI has done research on the CE technique and has achieved extensive experience in this area. EPRI has demonstrated detection levels at ppt and sub-ppb levels. This paper presents the ability of the CE technique to follow low level transients of anions in Boiling Water Reactor (BWR) coolant. A transient caused by approx. 10 ppb chloride and sulfate was simulated in an experimental circuit simulating BWR conditions. A series of grab samples were taken and analysed using HRPs CE (Agilent G1600). (authors)

  15. Breakup Behavior of a Capillary Bridge on a Hydrophobic Stripe Separating Two Hydrophilic Stripes

    Science.gov (United States)

    Hartmann, Maximilian; Hardt, Steffen

    2017-11-01

    The breakup dynamics of a capillary bridge on a hydrophobic area between two liquid filaments occupying two parallel hydrophilic stripes is studied experimentally. In addition calculations with the finite-element software Surface Evolver are performed to obtain the corresponding stable minimal surfaces. Droplets of de-ionized water are placed on substrates with alternating hydrophilic and hydrophobic stripes of different width. Their volume decreases by evaporation. This results in a droplet shaped as the letter ``H'' covering two hydrophilic stripes separated by one hydrophobic stripe. The width of the capillary bridge d(t) on the hydrophobic stripe during the breakup process is observed using a high-speed camera mounted on a bright-field microscope. The results of the experiments and the numerical studies show that the critical width dcrit, indicating the point where the capillary bridge becomes unstable, mainly depends on the width ratio of the hydrophilic and hydrophobic stripes. It is found that the time derivative of d(t) first decreases after dcrit has been reached. The final breakup dynamics then follows a t 2 / 3 scaling. We kindly acknowledge the financial support by the German Research Foundation (DFG) within the Collaborative Research Centre 1194 ``Interaction of Transport and Wetting Processes'', Project A02a.

  16. In situ observation and analysis of ultrasonic capillary effect in molten aluminium.

    Science.gov (United States)

    Tzanakis, I; Xu, W W; Eskin, D G; Lee, P D; Kotsovinos, N

    2015-11-01

    An in situ synchrotron radiographic study of a molten Al-10 wt% Cu alloy under the influence of an external ultrasonic field was carried out using the Diamond-Manchester Branchline pink X-ray imaging at the Diamond Light Source in UK. A bespoke test rig was used, consisting of an acoustic transducer with a titanium sonotrode coupled with a PID-controlled resistance furnace. An ultrasonic frequency of 30 kHz, with a peak to peak amplitude at 140 microns, was used, producing a pressure output of 16.9 MPa at the radiation surface of the 1-mm diameter sonotrode. This allowed quantification of not only the cavitation bubble formation and collapse, but there was also evidence of the previously hypothesised ultrasonic capillary effect (UCE), providing the first direct observations of this phenomenon in a molten metallic alloy. This was achieved by quantifying the re-filling of a pre-existing groove in the shape of a tube (which acted as a micro-capillary channel) formed by the oxide envelope of the liquid sample. Analytical solutions of the flow suggest that the filling process, which took place in very small timescales, was related to micro-jetting from the collapsing cavitation bubbles. In addition, a secondary mechanism of liquid penetration through the groove, which is related with the density distribution of the oxides inside the groove, and practically to the filtration of aluminium melt from oxides, was revealed. The observation of the almost instantaneous re-filling of a micro-capillary channel with the metallic melt supports the hypothesised sono-capillary effect in technologically important liquids other than water, like metallic alloys with substantially higher surface tension and density. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  17. Water

    International Nuclear Information System (INIS)

    Chovanec, A.; Grath, J.; Kralik, M.; Vogel, W.

    2002-01-01

    An up-date overview of the situation of the Austrian waters is given by analyzing the status of the water quality (groundwater, surface waters) and water protection measures. Maps containing information of nitrate and atrazine in groundwaters (analyses at monitoring stations), nitrate contents and biological water quality of running waters are included. Finally, pollutants (nitrate, orthophosphate, ammonium, nitrite, atrazine etc.) trends in annual mean values and median values for the whole country for the years 1992-1999 are presented in tables. Figs. 5. (nevyjel)

  18. Solid density, low temperature plasma formation in a capillary discharge

    International Nuclear Information System (INIS)

    Kania, D.R.; Jones, L.A.; Maestas, M.D.; Shepherd, R.L.

    1987-01-01

    This work discusses the ability of the authors to produce solid density, low temperature plasmas in polyurethane capillary discharges. The initial capillary diameter is 20 μm. The plasma is produced by discharging a one Ohm parallel plate waterline and Marx generator system through the capillary. A peak current of 340 kA in 300 ns heats the inner wall of the capillary, and the plasma expands into the surrounding material. The authors studied the evolution of the discharge using current and voltage probes, axial and radial streak photography, axial x-ray diode array and schlieren photography, and have estimated the peak temperature of the discharge to be approximately 10 eV and the density to be near 10/sup 23/cm/sup -3/. This indicates that the plasma may approach the strongly coupled regime. They discuss their interpretation of the data and compare their results with theoretical models of the plasma dynamics

  19. TECHNIQUES WITH POTENTIAL FOR HANDLING ENVIRONMENTAL SAMPLES IN CAPILLARY ELECTROPHORESIS

    Science.gov (United States)

    An assessment of the methods for handling environmental samples prior to capillary electrophoresis (CE) is presented for both aqueous and solid matrices. Sample handling in environmental analyses is the subject of ongoing research at the Environmental Protection Agency's National...

  20. Targeted Functionalization of Nanoparticle Thin Films via Capillary Condensation

    KAUST Repository

    Gemici, Zekeriyya; Schwachulla, Patrick I.; Williamson, Erik H.; Rubner, Michael F.; Cohen, Robert E.

    2009-01-01

    Capillary condensation, an often undesired natural phenomenon in nanoporous materials, was used advantageously as a universal functionalization strategy in nanoparticle thin films assembled layer-by-layer. Judicious choice of nanoparticle (and therefore pore) size allowed targeted capillary condensation of chemical vapors of both hydrophilic and hydrophobic molecules across film thickness. Heterostructured thin films with modulated refractive index profiles produced in this manner exhibited broadband antireflection properties with an average reflectance over the visible region of the spectrum of only 0.4%. Capillary condensation was also used to modify surface chemistry and surface energy. Photosensitive capillary-condensates were UV-cross-linked in situ. Undesired adventitious condensation of humidity could be avoided by condensation of hydrophobic materials such as poly(dimethyl siloxane). © 2009 American Chemical Society.

  1. Targeted Functionalization of Nanoparticle Thin Films via Capillary Condensation

    KAUST Repository

    Gemici, Zekeriyya

    2009-03-11

    Capillary condensation, an often undesired natural phenomenon in nanoporous materials, was used advantageously as a universal functionalization strategy in nanoparticle thin films assembled layer-by-layer. Judicious choice of nanoparticle (and therefore pore) size allowed targeted capillary condensation of chemical vapors of both hydrophilic and hydrophobic molecules across film thickness. Heterostructured thin films with modulated refractive index profiles produced in this manner exhibited broadband antireflection properties with an average reflectance over the visible region of the spectrum of only 0.4%. Capillary condensation was also used to modify surface chemistry and surface energy. Photosensitive capillary-condensates were UV-cross-linked in situ. Undesired adventitious condensation of humidity could be avoided by condensation of hydrophobic materials such as poly(dimethyl siloxane). © 2009 American Chemical Society.

  2. Static Response of Microbeams due to Capillary and Electrostatic Forces

    KAUST Repository

    Bataineh, Ahmad M.; Ouakad, Hassen M.; Younis, Mohammad I.

    2016-01-01

    Micro-sensors or micro-switches usually operate under the effect of electrostatic force and could face some environmental effects like humidity, which may lead to condensation underneath the beams and create strong capillary forces. Those tiny

  3. CAPILLARY CONDENSATION IN MMS AND PORE STRUCTURE CHARACTERIZATION. (R825959)

    Science.gov (United States)

    Phenomena of capillary condensation and desorption in siliceous mesoporous molecular sieves (MMS) with cylindrical channels are studied by means of the non-local density functional theory (NLDFT). The results are compared with macroscopic thermodynamic approaches based on Kelv...

  4. Targeted functionalization of nanoparticle thin films via capillary condensation.

    Science.gov (United States)

    Gemici, Zekeriyya; Schwachulla, Patrick I; Williamson, Erik H; Rubner, Michael F; Cohen, Robert E

    2009-03-01

    Capillary condensation, an often undesired natural phenomenon in nanoporous materials, was used advantageously as a universal functionalization strategy in nanoparticle thin films assembled layer-by-layer. Judicious choice of nanoparticle (and therefore pore) size allowed targeted capillary condensation of chemical vapors of both hydrophilic and hydrophobic molecules across film thickness. Heterostructured thin films with modulated refractive index profiles produced in this manner exhibited broadband antireflection properties with an average reflectance over the visible region of the spectrum of only 0.4%. Capillary condensation was also used to modify surface chemistry and surface energy. Photosensitive capillary-condensates were UV-cross-linked in situ. Undesired adventitious condensation of humidity could be avoided by condensation of hydrophobic materials such as poly(dimethyl siloxane).

  5. Chip Integrated, Hybrid EHD/Capillary Driven Thermal Management System

    Data.gov (United States)

    National Aeronautics and Space Administration — Chip-Integrated, Hybrid EHD/Capillary-Driven Thermal Management System is a two year that will leverage independently attained yet related prototype hardware...

  6. Omphalocele and alveolar capillary dysplasia: a new association.

    NARCIS (Netherlands)

    Gerrits, L.C.; Mol, A.C. de; Bulten, J.; Staak, F.H.J.M. van der; Heijst, A.F.J. van

    2010-01-01

    OBJECTIVE: First report of an infant with coexistent omphalocele and alveolar capillary dysplasia. DESIGN: Descriptive case report. SETTING: Neonatal intensive care unit of a tertiary care children's hospital. PATIENT: We describe a term infant with omphalocele and respiratory insufficiency

  7. Capillary electrophoresis in the N-glycosylation analysis of biopharmaceuticals

    Czech Academy of Sciences Publication Activity Database

    Guttman, András

    2013-01-01

    Roč. 48, JUL-AUG (2013), s. 132-143 ISSN 0165-9936 Institutional support: RVO:68081715 Keywords : automated workflow * biopharmaceuticals * capillary electrophoresis Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 6.612, year: 2013

  8. Capillary Pressure-induced Lung Injury: Fact or Fiction?

    African Journals Online (AJOL)

    QuickSilver

    2003-05-07

    May 7, 2003 ... ing severe exercise, thus causing significant capillary hyper- tension. Pulmonary ... sponses evoked by high-pressure stress. To clarify the .... by an increased release of the vasoconstrictor endothelin-1 and thromboxane A2.

  9. Success and failure with phthalate buffers in capillary zone electrophoresis

    NARCIS (Netherlands)

    Bocek, P.; Gebauer, P.; Beckers, J.L.

    2001-01-01

    Phthalate buffers are currently used in capillary electrophoresis as robust electrolyte systems for indirect detection. This contribution demonstrates that these buffers show regularly not only successful regions of mobilities of analytes (sample window) but also regions of failure where the

  10. Methods and instrumentation for quantitative microchip capillary electrophoresis

    NARCIS (Netherlands)

    Revermann, T.

    2007-01-01

    The development of novel instrumentation and analytical methodology for quantitative microchip capillary electrophoresis (MCE) is described in this thesis. Demanding only small quantities of reagents and samples, microfluidic instrumentation is highly advantageous. Fast separations at high voltages

  11. Anomalous dynamics of capillary rise in porous media

    KAUST Repository

    Shikhmurzaev, Yulii D.; Sprittles, James E.

    2012-01-01

    The anomalous dynamics of capillary rise in a porous medium discovered experimentally more than a decade ago is described. The developed theory is based on considering the principal modes of motion of the menisci that collectively form the wetting

  12. CAPILLARY BARRIERS IN UNSATURATED FRACTURED ROCKS OF YUCCA MOUNTAIN, NEVADA

    International Nuclear Information System (INIS)

    Wu, Y.S.; Zhang, W.; Pan, L.; Hinds, J.; Bodvarsson, G.

    2000-01-01

    This work presents modeling studies investigating the effects of capillary barriers on fluid-flow and tracer-transport processes in the unsaturated zone of Yucca Mountain, Nevada, a potential site for storing high-level radioactive waste. These studies are designed to identify factors controlling the formation of capillary barriers and to estimate their effects on the extent of possible large-scale lateral flow in unsaturated fracture rocks. The modeling approach is based on a continuum formulation of coupled multiphase fluid and tracer transport through fractured porous rock. Flow processes in fractured porous rock are described using a dual-continuum concept. In addition, approximate analytical solutions are developed and used for assessing capillary-barrier effects in fractured rocks. This study indicates that under the current hydrogeologic conceptualization of Yucca Mountain, strong capillary-barrier effects exist for significantly diverting moisture flow

  13. Wood–water interactions

    DEFF Research Database (Denmark)

    Engelund, Emil Tang

    2011-01-01

    Predicting the performance of wood for decades ahead is important when using the material for structural purposes. The performance is closely related to the hierarchical material structure of wood and the dependent interaction with water in the structure. Accurately predicting wood performance...... therefore requires an understanding of material structure from molecular to macroscopic level as well as of the impact of water molecules. The objective of this work is to investigate the performance of wood in terms of mechanical response of the material and effect of water. To understand the latter, one...... must first know in which parts of the wood structure, water is located. If parts of the water in wood are held in capillaries in the wood structure, these water molecules interact with the material differently than those held within wood cell walls. In this study, the occurrence of capillary water...

  14. Effect of moisture content of concrete on water uptake

    International Nuclear Information System (INIS)

    Rucker-Gramm, P.; Beddoe, R.E.

    2010-01-01

    The penetration of water and non-polar hexane in Portland cement mortar prisms with different initial moisture contents was investigated using nuclear magnetic resonance ( 1 H NMR). The amount of water in gel pores strongly affects the penetration of water in much larger capillary pores. Water penetration is reduced by the self-sealing effect as characterized by non-√t dependence of capillary uptake and penetration depth. This is explained by the ongoing redistribution of water from capillaries into gel pores which results in internal swelling and loss of continuity of the capillary pore system; a correlation was observed between the amount of redistributed water and departure from √t behaviour. A descriptive model is used to explain the dependence of water uptake and penetration on moisture content. For increasing initial moisture contents up to a critical value equivalent to equilibrium with a relative humidity between 65 and 80%, less penetrating water is able to redistribute. Thus more penetrating water is in larger capillaries with less viscous resistance; uptake and penetration depth increase. Above the critical initial moisture content, uptake and penetration depth decrease towards zero. This is explained by (a) an overall reduction in capillary pressure because transport takes places in fewer and larger pores and (b) an increase in viscous resistance due to the connection of penetrating capillary water with pores already containing water. Less capillary pore space is available for transport. The surface region of concrete placed in contact with water is not instantaneously saturated. Water content increases with time depending on the degree of surface saturation. A new transition coefficient for capillary suction γ is defined for the calculation of surface flux.

  15. Pharmacology of post-irradiation damage of blood capillaries

    International Nuclear Information System (INIS)

    Pospisil, J.; Pouckova, P.

    1979-01-01

    Available literature data are summed up on the effect of a number of substances on irradiation damage to blood capillaries. The substances include vitamins, bioflavonoids, serotonine, histamine, bradykinin, ACTH, adrenal hormones, vasopressin, estrogens, prostaglandins, escin 1-butanol, diisopropylfluorophosphate, phenoxybenzamine, 1,4-dihydroxybenzenesulphonic acid derivatives, and xi-aminohexanoic acid. The data include the effects of the substances administered before and after irradiation on blood capillary damage and on mortality. (Ha)

  16. Soft x-ray lasing in a capillary discharge

    International Nuclear Information System (INIS)

    Lee, Tong-Nyong; Shin, Hyun-Joon; Kim, Dong-Eon

    1995-01-01

    Soft x-ray lasing in the C VI Balmer α transition is observed in a capillary discharge. The capillary is made of polyethylene with a bore diameter of 1.2 mm. Plasma radiation from the discharge is analyzed using a toroidal mirror and a two-meter grazing-incidence spectrograph-monochromator. The electron temperatures are measured at both the axial and the peripheral region close to the capillary wall, using space-resolved spectra. A comparison of the branching ratio in the hot (axial) and the cool (peripheral) plasma regions indicates that there is a large population inversion between n=3 and 2 states of C 5+ ions in the cool (Te∼13 eV) region of the capillary plasma. Relative line intensities of the C VI Hα and a number of non-lasing lines are compared in this cool region as a function of capillary length. The C VI Hα line intensity increases exponentially whereas those of non-lasing transitions increase linearly with an increase of the capillary length. The gain coefficient thus measured indicates 2.8 cm -1 . The lasing line intensity does not seem to increase exponentially beyond a capillary length of 16 mm and the gain-length product, gL, obtained here is 3.9, which is a typical value one would expect for a recombination soft x-ray laser. The photoelectric signals of the lasing line indicate that the lasing takes place about 40 ns after the current peak in the first half cycle of the capillary discharge, with a lasing pulse width of 60 ns in FWHM

  17. Field-portable Capillary Electrophoresis Instrument with Conductivity Detection

    International Nuclear Information System (INIS)

    Zhang, H F; Liu, X W; Wang, W; Wang, X L; Tian, L

    2006-01-01

    In this paper a novel capillary electrophoresis chip (CEC) is presented with integrated platinum electrodes and simplified conductivity detector. CEC is fabricated by the method of mechanical modification with probe on organic glass. Capillary electrophoresis chip can rapidly completed ion separation by simulation of concentration distribution and zone-broadening. Detection circuit is simple which can detect pA order current. This system has those advantages such as small volume, low power consumption and linearity, and well suit for field analysis

  18. Geometry-induced phase transition in fluids: Capillary prewetting

    OpenAIRE

    Yatsyshin, Petr; Savva, Nikos; Kalliadasis, Serafim

    2013-01-01

    We report a new first-order phase transition preceding capillary condensation and corresponding to the discontinuous formation of a curved liquid meniscus. Using a mean-field microscopic approach based on the density functional theory we compute the complete phase diagram of a prototypical two-dimensional system exhibiting capillary condensation, namely that of a fluid with long-ranged dispersion intermolecular forces which is spatially confined by a substrate forming a semi-infinite rectangu...

  19. Soft x-ray amplification in an ablative capillary discharge

    International Nuclear Information System (INIS)

    Kwek, K.H.; Low, K.S.; Tan, C.A.; Lim, C.S.

    1999-01-01

    Soft x-ray amplification in CVI 18.2 nm line is observed in an ablative UHMW-PE capillary discharge. The gain coefficient is measured to be 1.9 cm -1 . The electron density is about 2 x 10 19 cm -3 . This indicates that capillary discharge pumping device can be a source for a compact soft x-ray laser. (author)

  20. Capillary gel electrophoresis for rapid, high resolution DNA sequencing.

    OpenAIRE

    Swerdlow, H; Gesteland, R

    1990-01-01

    Capillary gel electrophoresis has been demonstrated for the separation and detection of DNA sequencing samples. Enzymatic dideoxy nucleotide chain termination was employed, using fluorescently tagged oligonucleotide primers and laser based on-column detection (limit of detection is 6,000 molecules per peak). Capillary gel separations were shown to be three times faster, with better resolution (2.4 x), and higher separation efficiency (5.4 x) than a conventional automated slab gel DNA sequenci...

  1. Water

    Science.gov (United States)

    ... can be found in some metal water taps, interior water pipes, or pipes connecting a house to ... reduce or eliminate lead. See resources below. 5. Children and pregnant women are especially vulnerable to the ...

  2. Fabricating PFPE Membranes for Capillary Electrophoresis

    Science.gov (United States)

    Lee, Michael C.; Willis, Peter A.; Greer, Frank; Rolland, Jason

    2009-01-01

    A process has been developed for fabricating perfluoropolyether (PFPE) membranes that contain microscopic holes of precise sizes at precise locations. The membranes are to be incorporated into laboratory-on-a-chip microfluidic devices to be used in performing capillary electrophoresis. The present process is a modified version of part of the process, described in the immediately preceding article, that includes a step in which a liquid PFPE layer is cured into solid (membrane) form by use of ultraviolet light. In the present process, one exploits the fact that by masking some locations to prevent exposure to ultraviolet light, one can prevent curing of the PFPE in those locations. The uncured PFPE can be washed away from those locations in the subsequent release and cleaning steps. Thus, holes are formed in the membrane in those locations. The most straightforward way to implement the modification is to use, during the ultraviolet-curing step, an ultraviolet photomask similar to the photomasks used in fabricating microelectronic devices. In lieu of such a photomask, one could use a mask made of any patternable ultraviolet-absorbing material (for example, an ink or a photoresist).

  3. Pulmonary capillary pressure in pulmonary hypertension.

    Science.gov (United States)

    Souza, Rogerio; Amato, Marcelo Britto Passos; Demarzo, Sergio Eduardo; Deheinzelin, Daniel; Barbas, Carmen Silvia Valente; Schettino, Guilherme Paula Pinto; Carvalho, Carlos Roberto Ribeiro

    2005-04-01

    Pulmonary capillary pressure (PCP), together with the time constants of the various vascular compartments, define the dynamics of the pulmonary vascular system. Our objective in the present study was to estimate PCPs and time constants of the vascular system in patients with idiopathic pulmonary arterial hypertension (IPAH), and compare them with these measures in patients with acute respiratory distress syndrome (ARDS). We conducted the study in two groups of patients with pulmonary hypertension: 12 patients with IPAH and 11 with ARDS. Four methods were used to estimate the PCP based on monoexponential and biexponential fitting of pulmonary artery pressure decay curves. PCPs in the IPAH group were considerably greater than those in the ARDS group. The PCPs measured using the four methods also differed significantly, suggesting that each method measures the pressure at a different site in the pulmonary circulation. The time constant for the slow component of the biexponential fit in the IPAH group was significantly longer than that in the ARDS group. The PCP in IPAH patients is greater than normal but methodological limitations related to the occlusion technique may limit interpretation of these data in isolation. Different disease processes may result in different times for arterial emptying, with resulting implications for the methods available for estimating PCP.

  4. Familial Pulmonary Capillary Hemangiomatosis Early in Life

    Directory of Open Access Journals (Sweden)

    Johannes Wirbelauer

    2011-01-01

    Full Text Available Background. Pulmonary capillary hemangiomatosis (PCH is a rare disease, especially in infancy. Four infants have been reported up to the age of 12 months. So far, no familial patients are observed at this age. Patients. We report three siblings, two female newborns and a foetus of 15-week gestation of unrelated, healthy parents suffering from histologically proven PCH. The first girl presented with increased O2 requirements shortly after birth and patent ductus arteriosus (PDA. She subsequently developed progressive respiratory failure and pulmonary hypertension and died at the age of five months. The second girl presented with clinical signs of bronchial obstruction at the age of three months. The work-up showed a PDA—which was surgically closed—pulmonary hypertension, and bronchial wall instability with stenosis of the left main bronchus. Transient oxygen therapy was required with viral infections. The girl is now six years old and clinically stable without additional O2 requirements. Failure to thrive during infancy and a somewhat delayed development may be the consequence of the disease itself but also could be attributed to repeated episodes of respiratory failure and a long-term systemic steroid therapy. The third pregnancy ended as spontaneous abortion. The foetus showed histological signs of PCH. Conclusion. Despite the differences in clinical course, the trias of PCH, PDA, and pulmonary hypertension in the two life born girls suggests a genetic background.

  5. Oscillation of an isolated liquid plug inside a dry capillary

    Science.gov (United States)

    Srinivasan, Vyas; Kumar, Siddhartha; Asfer, Mohammed; Khandekar, Sameer

    2017-11-01

    The present work reports an experimental study on the dynamics of partially wetting isolated liquid plug (DI water), which is made to oscillate inside a square, glass capillary tube (1 mm × 1 mm; 60 mm length). The liquid plug is made to oscillate pneumatically at two different frequencies (0.25 and 0.35 Hz), using a cam-follower mechanism. Bright field imaging is used to visualize the three-phase contact line behavior, while, micro-Particle Imaging Velocimetry (PIV) apparatus is used to discern the nature of flow inside the oscillating liquid plug. During a cycle, due to the partial wetting nature of DI water, the three-phase contact line at the menisci gets pinned at the extreme end of each stroke, where the dynamic apparent contact angle gets drastically altered before the initiation of the next stroke. The difference between the apparent contact angle of the front and rear meniscus are seen to be a function of the oscillating frequency; the difference increasing with increasing frequency. The flow inside the liquid plug reveals unique non-Poiseuille flow features near the meniscus, due to free-slip boundary condition, which leads to formation of distinct vortex pairs behind it. The vortices too change their direction during each stroke of the oscillation, eventually leading to an alternating recirculation pattern inside the plug. The results clearly indicate that improved mathematical models are required for predicting transport parameters in such flows, which are important in engineering systems such as pulsating heat pipes, lab-on-chip devices and PEM fuel cells.

  6. Multianalyte detection using a capillary-based flow immunosensor.

    Science.gov (United States)

    Narang, U; Gauger, P R; Kusterbeck, A W; Ligler, F S

    1998-01-01

    A highly sensitive, dual-analyte detection system using capillary-based immunosensors has been designed for explosive detection. This model system consists of two capillaries, one coated with antibodies specific for 2,4,6-trinitrotoluene (TNT) and the other specific for hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) combined into a single device. The fused silica capillaries are prepared by coating anti-TNT and anti-RDX antibodies onto the silanized inner walls using a hetero-bifunctional crosslinker. After immobilization, the antibodies are saturated with a suitable fluorophorelabeled antigen. A "T" connector is used to continuously flow the buffer solution through the individual capillaries. To perform the assay, an aliquot of TNT or RDX or a mixture of the two analytes is injected into the continuous flow stream. In each capillary, the target analyte displaces the fluorophore-labeled antigen from the binding pocket of the antibody. The labeled antigen displaced from either capillary is detected downstream using two portable spectrofluorometers. The limits of detection for TNT and RDX in the multi-analyte formate are 44 fmol (100 microliters of 0.1 ng/ml TNT solution) and 224 fmol (100 microliters of 0.5 ng/ml RDX solution), respectively. The entire assay for both analytes can be performed in less than 3 min.

  7. Factors affecting the separation performance of proteins in capillary electrophoresis.

    Science.gov (United States)

    Zhu, Yueping; Li, Zhenqing; Wang, Ping; Shen, Lisong; Zhang, Dawei; Yamaguchi, Yoshinori

    2018-04-15

    Capillary electrophoresis (CE) is an effective tool for protein separation and analysis. Compared with capillary gel electrophoresis (CGE), non-gel sieving capillary electrophoresis (NGSCE) processes the superiority on operation, repeatability and automaticity. Herein, we investigated the effect of polymer molecular weight and concentration, electric field strength, and the effective length of the capillary on the separation performance of proteins, and find that (1) polymer with high molecular weight and concentration favors the separation of proteins, although concentrated polymer hinders its injection into the channel of the capillary due to its high viscosity. (2) The resolution between the adjacent proteins decreases with the increase of electric field strength. (3) When the effective length of the capillary is long, the separation performance improves at the cost of separation time. (4) 1.4% (w/v) hydroxyethyl cellulose (HEC), 100 V/cm voltage and 12 cm effective length offers the best separation for the proteins with molecular weight from 14,400 Da to 97,400 Da. Finally, we employed the optimal electrophoretic conditions to resolve Lysozyme, Ovalbumin, BSA and their mixtures, and found that they were baseline resolved within 15 min. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Principles of Micellar Electrokinetic Capillary Chromatography Applied in Pharmaceutical Analysis

    Directory of Open Access Journals (Sweden)

    Árpád Gyéresi

    2013-02-01

    Full Text Available Since its introduction capillary electrophoresis has shown great potential in areas where electrophoretic techniques have rarely been used before, including here the analysis of pharmaceutical substances. The large majority of pharmaceutical substances are neutral from electrophoretic point of view, consequently separations by the classic capillary zone electrophoresis; where separation is based on the differences between the own electrophoretic mobilities of the analytes; are hard to achieve. Micellar electrokinetic capillary chromatography, a hybrid method that combines chromatographic and electrophoretic separation principles, extends the applicability of capillary electrophoretic methods to neutral analytes. In micellar electrokinetic capillary chromatography, surfactants are added to the buffer solution in concentration above their critical micellar concentrations, consequently micelles are formed; micelles that undergo electrophoretic migration like any other charged particle. The separation is based on the differential partitioning of an analyte between the two-phase system: the mobile aqueous phase and micellar pseudostationary phase. The present paper aims to summarize the basic aspects regarding separation principles and practical applications of micellar electrokinetic capillary chromatography, with particular attention to those relevant in pharmaceutical analysis.

  9. THE CAPILLARY PATTERN IN HUMAN MASSETER MUSCLE DURING AGEING

    Directory of Open Access Journals (Sweden)

    Erika Cvetko

    2013-10-01

    Full Text Available The effect of ageing on the capillary network in skeletal muscles has produced conflicting results in both, human and animals studies. Some of the inconsistencies are due to non-comparable and biased methods that were applied on thin transversal sections, especially in muscles with complicated morphological structures, such as in human masseter muscle. We present a new immunohistochemical method for staining capillaries and muscle fibres in 100 µm thick sections as well as novel approach to 3D visualization of capillaries and muscle fibres. Applying confocal microscopy and virtual 3D stereological grids, or tracing capillaries in virtual reality, length of capillaries within a muscle volume or length of capillaries adjacent to muscle fibre per fibre length, fibre surface or fibre volume were evaluated in masseter muscle of young and old subjects by an unbiased approach. Our findings show that anatomic capillarity is well maintained in masseter muscle in old subjects; however, vascular remodelling occurs with age, which could be a response to changed muscle function and age-related muscle fibre type transformations.

  10. Fast separation of enantiomers by capillary electrophoresis using a combination of two capillaries with different internal diameters.

    Science.gov (United States)

    Šebestová, Andrea; Petr, Jan

    2017-12-01

    The combination of capillaries with different internal diameters was used to accelerate the separation of enantiomers in capillary electrophoresis. Separation of R,S-1,1'-binaphthalene-2,2'-diyl hydrogen phosphate using isopropyl derivative of cyclofructan 6 was studied as a model system. The best separation conditions included 500 mM sodium borate pH 9.5 with 60 mM concentration of the chiral selector. Separation lasted approx. 1.5 min using the combination of 50 and 100 μm id capillaries of 9.7 cm and 22.9 cm, respectively. It allowed approx. 12-fold acceleration in comparison to the traditional long-end separation mainly due to the higher electroosmotic flow generated in the connected capillaries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Nitrogen capillary plasma as a source of intense monochromatic radiation at 2.88 nm

    Czech Academy of Sciences Publication Activity Database

    Vrba, Pavel; Vrbová, M.; Zakharov, S.V.; Zakharov, V.S.; Jančárek, A.; Nevrkla, M.

    2014-01-01

    Roč. 196, October (2014), s. 24-30 ISSN 0368-2048 R&D Projects: GA ČR GAP102/12/2043; GA MŠk(CZ) LG13029 Grant - others:GA MŠk(CZ) CZ.1.07/2.3.00/20.0092 Institutional support: RVO:61389021 Keywords : Capillary Z-pinch * Water window radiation source * RHMD Code Z* Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.436, year: 2014 http://dx.doi.org/10.1016/j.elspec.2013.12.015

  12. Determination of cocaine in brazilian paper currency by capillary gas chromatography/mass spectrometry

    Directory of Open Access Journals (Sweden)

    Enrico Di Donato

    2007-01-01

    Full Text Available The presence of illicit drugs such as cocaine and marijuana in US paper currency is very well demonstrated. However, there is no published study describing the presence of cocaine and/or other illicit drugs in Brazilian paper currency. In this study, Brazilian banknotes were collected from nine cities, extracted and analyzed by capillary gas chromatography/mass spectrometry, in order to investigate the presence of cocaine. Bills were extracted with deionized water followed by ethyl acetate. Results showed that 93% of the bills presented cocaine in a concentration range of 2.38-275.10 µg/bill.

  13. A capillary-pumped loop (CPL) with microcone-shaped capillary structure for cooling electronic devices

    International Nuclear Information System (INIS)

    Jung, Jung-Yeul; Oh, Hoo-Suk; Kwak, Ho-Young; Lee, Dae Keun; Choi, Kyong Bin; Dong, Sang Keun

    2008-01-01

    A MEMS-based integrated capillary-pumped loop (CPL), which can be used for cooling electronic devices such as the CPU of a personal computer or notebook, was developed. The CPL consists of an evaporator and condenser both with the same size of 30 mm × 30 mm × 5.15 mm, which were fabricated using two layers of glass wafer and one layer of silicon wafer. A key element of the CPL is that the 480 ± 15 µm thickness silicon wafer where an array of 56 × 56 cone-shaped microholes that generates the capillary forces was fabricated and inserted above the compensation cavity for liquid transportation instead of a porous wick in the evaporator. The same cone-shaped microstructure was used in the condenser to create a stable interface between the liquid and vapor phases. The CPL fabricated was tested under various conditions such as different relative heights, fill ratios and heat fluxes. The operation conditions of the CPL were varied according to the relative height and fill ratios. With an allowable temperature of 110 °C on the evaporator surfaces, the CPL can handle a heat flux of about 6.22 W cm −2 for the air-cooled condenser. Steady-state operation conditions were achieved within 10 min. (note)

  14. Scaling laws in centrifuge modelling for capillary rise in soils; Lois de similitude de l'ascension capillaire dans les sols en centrifugeuse

    Energy Technology Data Exchange (ETDEWEB)

    Rezzoug, A.; Konig, D.; Triantafyllidis, Th. [Ruhr Bochum Univ. (Germany)

    2000-07-01

    It appears to be possible to extend the application of geotechnical centrifuge modelling to environmental problems. In this paper, one aspect of similitude laws concerning the flow of water through soils is investigated. Within the Network of European Centrifuges of Environmental Geotechnic Research (NECER), several tests have been carried out to study similitude laws describing the capillary ascension in porous media under different levels of acceleration. The aim of this paper is to present the results obtained at Ruhr-Universitaet Bochum. A fine sand is used in the experiment. For the visualisation of capillary height in the soil sample, image processing is used. Different boundary conditions (constant water level or variable) have been investigated and discussed. A simple similitude law for capillary rise has been investigated and the kinetic phenomena has been measured at different g-levels. These experiments confirm, that capillary rise appears to be scaled by the factor N and time seems to be scaled by N{sup 2}. These results validate thus the possibility of using accelerated small-scale models of capillary phenomena in a centrifuge, and open the way to more complex investigations on flow and pollutant transports in unsaturated centrifuged soils. (authors)

  15. Technology development for the design of waste repositories at arid sites: field studies of biointrusion and capillary barriers

    International Nuclear Information System (INIS)

    Nyhan, J.W.; Abeele, W.; Hakonson, T.; Lopez, E.A.

    1986-03-01

    The field research program involving the development of technology for arid shallow land burial (SLB) sites is described. Results of field testing of biointrusion barriers installed at an active low-level radioactive waste disposal site (Area G) at Los Alamos are presented. A second experiment was designed to test the ability of a capillary barrier to effectively convey water infiltrating a SLB trench around and away from underlying buried wastes. The performance of the capillary barrier was tested in the field for a barrier of known thickness (2 m), slope (10%), and slope length (2 m), and for one combination of porous materials [a crushed tuff-clay (2% w/w) mixture overlying Ottawa sand] subjected to a known water addition rate. The waste management implications of both studies are also discussed

  16. Capillary Electrophoresis Artifact Due to Eosin

    Science.gov (United States)

    Murphy, Kathleen M.; Berg, Karin D.; Geiger, Tanya; Hafez, Michael; Flickinger, Katie A.; Cooper, Lisa; Pearson, Patrick; Eshleman, James R.

    2005-01-01

    Capillary electrophoresis (CE) is a commonly used tool in the analysis of fluorescently labeled PCR amplification products. We have identified a CE artifact caused by the tissue stain eosin that can complicate the interpretation of CE data. The artifact was detected during routine analysis of a DNA sample isolated from a formalin-fixed, paraffin-embedded tissue sample considered histologically suspicious for a B-cell neoplasm. A standard clinical PCR and CE assay for immunoglobulin heavy chain (IGH) gene rearrangement revealed a weak polyclonal population of rearranged IGH genes and a 71 base peak suspicious for IGH clonality. The spectral properties of the 71 base peak were unusual in that although the dominant fluorescence of the peak was blue, it also fluoresced in green and yellow (blue>green>yellow), raising the suspicion that the peak might represent an artifact. CE analysis of the genomic DNA sample without PCR amplification demonstrated the presence of the 71 base peak, suggesting that the artifact was caused by a contaminant within the DNA sample itself. We demonstrate that eosin, which was used to stain the formalin-fixed tissue during processing, yields a discrete 71 base peak of similar morphology to the contaminant peak on CE analysis. The data suggest that eosin in the fixed tissue was not completely eliminated during nucleic acid extraction, resulting in the artifact peak. We discuss the implications of this potentially common contaminant on the interpretation of CE data and demonstrate that artifacts caused by eosin can be avoided by using more stringent DNA purification steps. Histological dyes may fluoresce, and artifacts from them should be considered when primary peaks contain additional underlying peaks of other colors. PMID:15681487

  17. Effect of hypothermic pulmonary artery flushing on capillary filtration coefficient.

    Science.gov (United States)

    Andrade, R S; Wangensteen, O D; Jo, J K; Tsai, M Y; Bolman, R M

    2000-07-27

    We previously demonstrated that surfactant dilution and inhibition occur immediately after pulmonary artery flushing with hypothermic modified Euro-Collins solution. Consequently, we speculated that increased capillary permeability contributed to these surfactant changes. To test this hypothesis, we evaluated the effects of hypothermic pulmonary artery flushing on the pulmonary capillary filtration coefficient (Kfc), and additionally performed a biochemical analysis of surfactant. We used a murine isolated, perfused lung model to measure the pulmonary capillary filtration coefficient and hemodynamic parameters, to determine the wet to dry weight ratio, and to evaluate surfactant by biochemical analysis of lung lavage fluid. We defined three study groups. In group I (controls), we harvested lungs without hypothermic pulmonary artery flushing, and measured Kfc immediately. In group II (in situ flush), we harvested lungs after hypothermic pulmonary artery flushing with modified Euro-Collins solution, and then measured Kfc. Experiments in groups I and II were designed to evaluate persistent changes in Kfc after pulmonary artery flushing. In group III (ex vivo flush), we flushed lungs ex vivo to evaluate transient changes in Kfc during hypothermic pulmonary artery flushing. Groups I and II did not differ significantly in capillary filtration coefficient and hemodynamics. Group II showed significant alterations on biochemical surfactant analysis and a significant increase in wet-to-dry weight ratio, when compared with group I. In group III, we observed a significant transient increase in capillary filtration coefficient during pulmonary artery flushing. Hypothermic pulmonary artery flushing transiently increases the capillary filtration coefficient, leads to an increase in the wet to dry weight ratio, and induces biochemical surfactant changes. These findings could be explained by the effects of hypothermic modified Euro-Collins solution on pulmonary capillary

  18. Wettability impact on supercritical CO2 capillary trapping: Pore-scale visualization and quantification

    Science.gov (United States)

    Hu, Ran; Wan, Jiamin; Kim, Yongman; Tokunaga, Tetsu K.

    2017-08-01

    How the wettability of pore surfaces affects supercritical (sc) CO2 capillary trapping in geologic carbon sequestration (GCS) is not well understood, and available evidence appears inconsistent. Using a high-pressure micromodel-microscopy system with image analysis, we studied the impact of wettability on scCO2 capillary trapping during short-term brine flooding (80 s, 8-667 pore volumes). Experiments on brine displacing scCO2 were conducted at 8.5 MPa and 45°C in water-wet (static contact angle θ = 20° ± 8°) and intermediate-wet (θ = 94° ± 13°) homogeneous micromodels under four different flow rates (capillary number Ca ranging from 9 × 10-6 to 8 × 10-4) with a total of eight conditions (four replicates for each). Brine invasion processes were recorded and statistical analysis was performed for over 2000 images of scCO2 saturations, and scCO2 cluster characteristics. The trapped scCO2 saturation under intermediate-wet conditions is 15% higher than under water-wet conditions under the slowest flow rate (Ca ˜ 9 × 10-6). Based on the visualization and scCO2 cluster analysis, we show that the scCO2 trapping process in our micromodels is governed by bypass trapping that is enhanced by the larger contact angle. Smaller contact angles enhance cooperative pore filling and widen brine fingers (or channels), leading to smaller volumes of scCO2 being bypassed. Increased flow rates suppress this wettability effect.

  19. Water

    CSIR Research Space (South Africa)

    Van Wyk, Llewellyn V

    2010-08-01

    Full Text Available Water scarcity is without a doubt on of the greatest threats to the human species and has all the potential to destabilise world peace. Falling water tables are a new phenomenon. Up until the development of steam and electric motors, deep groudwater...

  20. Water

    OpenAIRE

    Hertie School of Governance

    2010-01-01

    All human life depends on water and air. The sustainable management of both is a major challenge for today's public policy makers. This issue of Schlossplatz³ taps the streams and flows of the current debate on the right water governance.

  1. On the performance of capillary barriers as landfill cover

    Directory of Open Access Journals (Sweden)

    M. Kämpf

    1997-01-01

    Full Text Available Landfills and waste heaps require an engineered surface cover upon closure. The capping system can vary from a simple soil cover to multiple layers of earth and geosynthetic materials. Conventional design features a compacted soil layer, which suffers from drying out and cracking, as well as root and animal intrusion. Capillary barriers consisting of inclined fine-over-coarse soil layers are investigated as an alternative cover system. Under unsaturated conditions, the textural contrast delays vertical drainage by capillary forces. The moisture that builds up above the contact will flow downdip along the interface of the layers. Theoretical studies of capillary barriers have identified the hydraulic properties of the layers, the inclination angle, the length of the field and the infiltration rate as the fundamental characteristics of the system. However, it is unclear how these findings can lead to design criteria for capillary barriers. To assess the uncertainty involved in such approaches, experiments have been carried out in a 8 m long flume and on large scale test sites (40 m x 15 m. In addition, the ability of a numerical model to represent the relevant flow processes in capillary barriers has been examined.

  2. On the performance of capillary barriers as landfill cover

    Science.gov (United States)

    Kämpf, M.; Montenegro, H.

    Landfills and waste heaps require an engineered surface cover upon closure. The capping system can vary from a simple soil cover to multiple layers of earth and geosynthetic materials. Conventional design features a compacted soil layer, which suffers from drying out and cracking, as well as root and animal intrusion. Capillary barriers consisting of inclined fine-over-coarse soil layers are investigated as an alternative cover system. Under unsaturated conditions, the textural contrast delays vertical drainage by capillary forces. The moisture that builds up above the contact will flow downdip along the interface of the layers. Theoretical studies of capillary barriers have identified the hydraulic properties of the layers, the inclination angle, the length of the field and the infiltration rate as the fundamental characteristics of the system. However, it is unclear how these findings can lead to design criteria for capillary barriers. To assess the uncertainty involved in such approaches, experiments have been carried out in a 8 m long flume and on large scale test sites (40 m x 15 m). In addition, the ability of a numerical model to represent the relevant flow processes in capillary barriers has been examined.

  3. Viscoelastic capillary flow: the case of whole blood

    Directory of Open Access Journals (Sweden)

    David Rabaud

    2016-07-01

    Full Text Available The dynamics of spontaneous capillary flow of Newtonian fluids is well-known and can be predicted by the Lucas-Washburn-Rideal (LWR law. However a wide variety of viscoelastic fluids such as alginate, xanthan and blood, does not exhibit the same Newtonian behavior.In this work we consider the Herschel-Bulkley (HB rheological model and Navier-Stokes equation to derive a generic expression that predicts the capillary flow of non-Newtonian fluids. The Herschel-Bulkley rheological model encompasses a wide variety of fluids, including the Power-law fluids (also called Ostwald fluids, the Bingham fluids and the Newtonian fluids. It will be shown that the proposed equation reduces to the Lucas-Washburn-Rideal law for Newtonian fluids and to the Weissenberg-Rabinowitsch-Mooney (WRM law for power-law fluids. Although HB model cannot reduce to Casson’s law, which is often used to model whole blood rheology, HB model can fit the whole blood rheology with the same accuracy.Our generalized expression for the capillary flow of non-Newtonian fluid was used to accurately fit capillary flow of whole blood. The capillary filling of a cylindrical microchannel by whole blood was monitored. The blood first exhibited a Newtonian behavior, then after 7 cm low shear stress and rouleaux formation made LWR fails to fit the data: the blood could not be considered as Newtonian anymore. This non-Newtonian behavior was successfully fit by the proposed equation.

  4. A high-resolution non-invasive approach to quantify oxygen transport across the capillary fringe and within the underlying groundwater.

    Science.gov (United States)

    Haberer, Christina M; Rolle, Massimo; Liu, Sanheng; Cirpka, Olaf A; Grathwohl, Peter

    2011-03-25

    Oxygen transport across the capillary fringe is relevant for many biogeochemical processes. We present a non-invasive technique, based on optode technology, to measure high-resolution concentration profiles of oxygen across the unsaturated/saturated interface. By conducting a series of quasi two-dimensional flow-through laboratory experiments, we show that vertical hydrodynamic dispersion in the water-saturated part of the capillary fringe is the process limiting the mass transfer of oxygen. A number of experimental conditions were tested in order to investigate the influence of grain size and horizontal flow velocity on transverse vertical dispersion in the capillary fringe. In the same setup, analogous experiments were simultaneously carried out in the fully water-saturated zone, therefore allowing a direct comparison with oxygen transfer across the capillary fringe. The outcomes of the experiments under various conditions show that oxygen transport in the two zones of interest (i.e., the unsaturated/saturated interface and the saturated zone) is characterized by very similar transverse dispersion coefficients. An influence of the capillary fringe morphology on oxygen transport has not been observed. These results may be explained by the narrow grain size distribution used in the experiments, leading to a steep decline in water saturation at the unsaturated/saturated interface and to the absence of trapped gas in this transition zone. We also modeled flow (applying the van Genuchten and the Brooks-Corey relationships) and two-dimensional transport across the capillary fringe, obtaining simulated profiles of equivalent aqueous oxygen concentration that were in good agreement with the observations. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. A design tool for predicting the capillary transport characteristics of fuel cell diffusion media using an artificial neural network

    Science.gov (United States)

    Kumbur, E. C.; Sharp, K. V.; Mench, M. M.

    Developing a robust, intelligent design tool for multivariate optimization of multi-phase transport in fuel cell diffusion media (DM) is of utmost importance to develop advanced DM materials. This study explores the development of a DM design algorithm based on artificial neural network (ANN) that can be used as a powerful tool for predicting the capillary transport characteristics of fuel cell DM. Direct measurements of drainage capillary pressure-saturation curves of the differently engineered DMs (5, 10 and 20 wt.% PTFE) were performed at room temperature under three compressions (0, 0.6 and 1.4 MPa) [E.C. Kumbur, K.V. Sharp, M.M. Mench, J. Electrochem. Soc. 154(12) (2007) B1295-B1304; E.C. Kumbur, K.V. Sharp, M.M. Mench, J. Electrochem. Soc. 154(12) (2007) B1305-B1314; E.C. Kumbur, K.V. Sharp, M.M. Mench, J. Electrochem. Soc. 154(12) (2007) B1315-B1324]. The generated benchmark data were utilized to systematically train a three-layered ANN framework that processes the feed-forward error back propagation methodology. The designed ANN successfully predicts the measured capillary pressures within an average uncertainty of ±5.1% of the measured data, confirming that the present ANN model can be used as a design tool within the range of tested parameters. The ANN simulations reveal that tailoring the DM with high PTFE loading and applying high compression pressure lead to a higher capillary pressure, therefore promoting the liquid water transport within the pores of the DM. Any increase in hydrophobicity of the DM is found to amplify the compression effect, thus yielding a higher capillary pressure for the same saturation level and compression.

  6. Transmission of fast highly charged ions through straight and tapered glass capillaries

    International Nuclear Information System (INIS)

    Ayyad, Asma M; Keerthisinghe, D; Kayani, A; Tanis, J A; Dassanayake, B S; Ikeda, T

    2013-01-01

    The transmission of 1 and 3 MeV protons through a borosilicate straight glass capillary and a tapered glass capillary was investigated. The straight capillary had a diameter of ∼0.18 mm and a length of ∼14.4 mm, while the tapered capillary had an inlet diameter of ∼0.71 mm, an outlet diameter of ∼0.10 mm and a length of ∼28 mm. The results show that the 1 and 3 MeV protons traverse through both samples without energy loss, while the tapered capillary showed better transmission than the straight capillary. (paper)

  7. Water

    Directory of Open Access Journals (Sweden)

    E. Sanmuga Priya

    2017-05-01

    Full Text Available Phytoremediation through aquatic macrophytes treatment system (AMATS for the removal of pollutants and contaminants from various natural sources is a well established environmental protection technique. Water hyacinth (Eichhornia crassipes, a worst invasive aquatic weed has been utilised for various research activities over the last few decades. The biosorption capacity of the water hyacinth in minimising various contaminants present in the industrial wastewater is well studied. The present review quotes the literatures related to the biosorption capacity of the water hyacinth in reducing the concentration of dyestuffs, heavy metals and minimising certain other physiochemical parameters like TSS (total suspended solids, TDS (total dissolved solids, COD (chemical oxygen demand and BOD (biological oxygen demand in textile wastewater. Sorption kinetics through various models, factors influencing the biosorption capacity, and role of physical and chemical modifications in the water hyacinth are also discussed.

  8. Estimation of relative permeability and capillary pressure from mass imbibition experiments

    Science.gov (United States)

    Alyafei, Nayef; Blunt, Martin J.

    2018-05-01

    We perform spontaneous imbibition experiments on three carbonates - Estaillades, Ketton, and Portland - which are three quarry limestones that have very different pore structures and span wide range of permeability. We measure the mass of water imbibed in air saturated cores as a function of time under strongly water-wet conditions. Specifically, we perform co-current spontaneous experiments using a highly sensitive balance to measure the mass imbibed as a function of time for the three rocks. We use cores measuring 37 mm in diameter and three lengths of approximately 76 mm, 204 mm, and 290 mm. We show that the amount imbibed scales as the square root of time and find the parameter C, where the volume imbibed per unit cross-sectional area at time t is Ct1/2. We find higher C values for higher permeability rocks. Employing semi-analytical solutions for one-dimensional flow and using reasonable estimates of relative permeability and capillary pressure, we can match the experimental data. We finally discuss how, in combination with conventional measurements, we can use theoretical solutions and imbibition measurements to find or constrain relative permeability and capillary pressure.

  9. Concept for Sustained Plant Production on ISS Using VEGGIE Capillary Mat Rooting System

    Science.gov (United States)

    Stutte, Gary W.; Newsham, Gerard; Morrow, Robert M.; Wheeler, Raymond M.

    2011-01-01

    Plant growth in microgravity presents unique challenges associated with maintaining appropriate conditions for seed germination, seedling establishment, maturation and harvest. They include maintaining appropriate soil moisture content, nutrient balance, atmospheric mixing and containment. Sustained production imposes additional challenges of harvesting, replanting, and safety. The VEGGIE is a deployable (collapsible) plant growth chamber developed as part of a NASA SBIR Phase II by Orbitec, Madison, WI. The intent of VEGGIE is to provide a low-resource system to produce fresh vegetables for the crew on long duration missions. The VEGGIE uses and LED array for lighting, an expandable bellows for containment, and a capillary matting system for nutrient and water delivery. The project evaluated a number of approaches to achieve sustained production, and repeated plantings, using the capillary rooting system. A number of different root media, seed containment, and nutrient delivery systems were evaluated and effects on seed germination and growth were evaluated. A number of issues limiting sustained production, such as accumulation of nutrients, uniform water, elevated vapor pressure deficit, and media containment were identified. A concept using pre-planted rooting packs shown to effectively address a number of those issues and is a promising approach for future development as a planting system for microgravity conditions.

  10. Determination of anions with an on-line capillary electrophoresis method; Anionien on-line maeaeritys kapillaarielektroforeesilla - MPKT 10

    Energy Technology Data Exchange (ETDEWEB)

    Siren, H; Saerme, T; Kotiaho, T; Hiissa, T; Savolahti, P; Komppa, V [VTT Chemical Technology, Espoo (Finland)

    1999-12-31

    The aim of the study was to set-up an on-line capillary electrophoresis method for determination of anions in process waters of pulp and paper industry with exporting the results to the process control system of the mill. The quantification is important, since it will give information about the possible causes of precipitation. In recent years, the capillary electrophoresis (CE) due to its high separation efficiency has been shown as a method to take into consideration when analyzing chemical species ranging from small inorganic anions to different macromolecules. Many compounds are not easily detected in their native state, why analysis methods must be developed to improve their detection. Especially, small inorganic and organic anions which do not have chromophores are not sensitive enough for direct-UV detection. In such analyses the anions are mostly detected with indirect-UV technique. Capillary electrophoresis instruments are used to analyze samples in off-line, which seldom represent the situation in process. Therefore, on-line instrument technology with autoanalyzing settings will be needed in quality control. The development of a fully automatic capillary electrophoresis system is underway in co-operation with KCL (The Finnish Pulp and Paper Research Institute). In our research, we have first concentrated on the determination of sulphate in waters of paper industry. The method used for detection of sulphate is based on indirect-UV detection with CE, where the background electrolyte (BGE) is an absorbing mixture of secondary amines. The whole procedure for quantification of sulphate is performed within 15 minutes, after which a new sample is analyzed automatically. The only sample pretreatment is filtration, which is necessary before analysis. The concentrations of sulphate in process waters tested were between 300 and 800 ppm. Our tests show that a simultaneous determination of chloride, sulphate, nitrate, nitrite, sulphite, carbonate and oxalate is also

  11. Determination of anions with an on-line capillary electrophoresis method; Anionien on-line maeaeritys kapillaarielektroforeesilla - MPKT 10

    Energy Technology Data Exchange (ETDEWEB)

    Siren, H.; Saerme, T.; Kotiaho, T.; Hiissa, T.; Savolahti, P.; Komppa, V. [VTT Chemical Technology, Espoo (Finland)

    1998-12-31

    The aim of the study was to set-up an on-line capillary electrophoresis method for determination of anions in process waters of pulp and paper industry with exporting the results to the process control system of the mill. The quantification is important, since it will give information about the possible causes of precipitation. In recent years, the capillary electrophoresis (CE) due to its high separation efficiency has been shown as a method to take into consideration when analyzing chemical species ranging from small inorganic anions to different macromolecules. Many compounds are not easily detected in their native state, why analysis methods must be developed to improve their detection. Especially, small inorganic and organic anions which do not have chromophores are not sensitive enough for direct-UV detection. In such analyses the anions are mostly detected with indirect-UV technique. Capillary electrophoresis instruments are used to analyze samples in off-line, which seldom represent the situation in process. Therefore, on-line instrument technology with autoanalyzing settings will be needed in quality control. The development of a fully automatic capillary electrophoresis system is underway in co-operation with KCL (The Finnish Pulp and Paper Research Institute). In our research, we have first concentrated on the determination of sulphate in waters of paper industry. The method used for detection of sulphate is based on indirect-UV detection with CE, where the background electrolyte (BGE) is an absorbing mixture of secondary amines. The whole procedure for quantification of sulphate is performed within 15 minutes, after which a new sample is analyzed automatically. The only sample pretreatment is filtration, which is necessary before analysis. The concentrations of sulphate in process waters tested were between 300 and 800 ppm. Our tests show that a simultaneous determination of chloride, sulphate, nitrate, nitrite, sulphite, carbonate and oxalate is also

  12. The application of capillary microsampling in GLP toxicology studies.

    Science.gov (United States)

    Verhaeghe, Tom; Dillen, Lieve; Stieltjes, Hans; Zwart, Loeckie de; Feyen, Bianca; Diels, Luc; Vroman, Ann; Timmerman, Philip

    2017-04-01

    Capillary microsampling (CMS) to collect microplasma volumes is gradually replacing traditional, larger volume sampling from rats in GLP toxicology studies. About 32 µl of blood is collected with a capillary, processed to plasma and stored in a 10- or 4-µl capillary which is washed out further downstream in the laboratory. CMS has been standardized with respect to materials, assay validation experiments and application for sample analysis. The implementation of CMS has resulted in blood volume reductions in the rat from 300 to 32 µl per time point and the elimination of toxicokinetic satellite groups in the majority of the rat GLP toxicology studies. The technique has been successfully applied in 26 GLP studies for 12 different projects thus far.

  13. Integration of amperometric sensors for microchip capillary electrophoresis application

    International Nuclear Information System (INIS)

    Dicorato, F; Moore, E; Glennon, J

    2011-01-01

    Capillary electrophoresis is a technique for the separation and analysis of chemical compounds. Techniques adopted from the microchip technology knowledge have led to recent developments of electrophoresis system with integration on microchip. Microchip Capillary Electrophoresis (μCE) systems offer a series of advantages as easy integration for Lab-on-a-chip applications, high performance, portability, speed, minimal solvent and sample requirements. A new technological challenge aims at the development of an economic modular microchip capillary electrophoresis systems using separable and independent units concerning the sensor. In this project we worked on the development of an interchangeable amperometric sensor in order to provide a solution to such electrode passivation and facilitating the use of tailored sensors for specific analyte detection besides. Fluidic chips have been machined from cyclic olefin polymer pallets (Zeonor) using a micro-injection molding machine.

  14. First attempts to combine capillary tubes with photocathodes

    CERN Document Server

    Peskov, Vladimir; Sokolova, T; Radionov, I

    1999-01-01

    We describe our efforts to combine glass capillary plates, operating as a gas amplification structure at approx 1 atm, with photocathodes sensitive to visible light. Such capillary tubes are a by-product of the manufacture of Microchannel Plates and are commercially available. Preliminary tests indicate that gas gains >10 sup 3 could be achieved without photon feedback. With two capillary plates in tandem (double-step multiplication) overall gains up to 10 sup 5 were possible at counting rate <100 Hz/mm sup 2. This approach may open new possibilities for detection of visible photons by gaseous detectors. Potential advantages are: high gains, large sensitive area, high granularity, and insensitivity to magnetic fields.

  15. The free-jet expansion from a capillary source

    International Nuclear Information System (INIS)

    Miller, D.R.; Fineman, M.A.; Murphy, H.

    1985-01-01

    This paper presents a comparison of the free-jet expansions originating from an orifice and a capillary by measuring the terminal gas properties. Time-of-flight and intensity data are reported for pure gases (He, Ar, CO 2 ) and mixtures of CO 2 /He, together with condensed dimer intensities for Ar and Co 2 . Pitot tube data are reported for N 2 . The results suggest that the free-jet expansions are nearly the same, provided the capillary is modeled as a non-isentropic Fanno flow process. The Fanno flow is slightly non-adiabatic, which complicates the analysis. Only the condensation kinetics appear strongly sensitive to the differences in the initial conditions for the supersonic expansion; any kinetic process relaxing near the capillary orifice exit would be affected

  16. Capillary condensation and evaporation in alumina nanopores with controlled modulations.

    Science.gov (United States)

    Bruschi, Lorenzo; Mistura, Giampaolo; Liu, Lifeng; Lee, Woo; Gösele, Ulrich; Coasne, Benoit

    2010-07-20

    Capillary condensation in nanoporous anodic aluminum oxide presenting not interconnected pores with controlled modulations is studied using adsorption experiments and molecular simulations. Both the experimental and simulation data show that capillary condensation and evaporation are driven by the smallest size of the nanopore (constriction). The adsorption isotherms for the open and closed pores are almost identical if constrictions are added to the system. The latter result implies that the type of pore ending does not matter in modulated pores. Thus, the presence of hysteresis loops observed in adsorption isotherms measured in straight nanopores with closed bottom ends can be explained in terms of geometrical inhomogeneities along the pore axis. More generally, these results provide a general picture of capillary condensation and evaporation in constricted or modulated pores that can be used for the interpretation of adsorption in disordered porous materials.

  17. X-ray Talbot interferometry with capillary plates

    International Nuclear Information System (INIS)

    Momose, Atsushi; Kawamoto, Shinya

    2006-01-01

    An X-ray Talbot interferometer consisting of two capillary plates, which were used as X-ray amplitude gratings, was evaluated for X-ray phase imaging. A theoretical aspect of capillary X-ray Talbot interferometry is presented with a preliminary operation result using synchrotron radiation. A two-dimensional X-ray Talbot effect, or self-imaging effect, which was the basis of Talbot interferometry, was observed with the capillary plate, and moire images formed by the X-ray Talbot interferometer exhibited contrasts corresponding to the differential phase shift caused by phase objects placed in front of the interferometer. Finally, the possibility of quantitative phase measurement with a fringe scanning technique is discussed. (author)

  18. Capillary assisted deposition of carbon nanotube film for strain sensing

    Science.gov (United States)

    Li, Zida; Xue, Xufeng; Lin, Feng; Wang, Yize; Ward, Kevin; Fu, Jianping

    2017-10-01

    Advances in stretchable electronics offer the possibility of developing skin-like motion sensors. Carbon nanotubes (CNTs), owing to their superior electrical properties, have great potential for applications in such sensors. In this paper, we report a method for deposition and patterning of CNTs on soft, elastic polydimethylsiloxane (PDMS) substrates using capillary action. Micropillar arrays were generated on PDMS surfaces before treatment with plasma to render them hydrophilic. Capillary force enabled by the micropillar array spreads CNT solution evenly on PDMS surfaces. Solvent evaporation leaves a uniform deposition and patterning of CNTs on PDMS surfaces. We studied the effect of the CNT concentration and micropillar gap size on CNT coating uniformity, film conductivity, and piezoresistivity. Leveraging the piezoresistivity of deposited CNT films, we further designed and characterized a device for the contraction force measurement. Our capillary assisted deposition method of CNT films showed great application potential in fabrication of flexible CNT thin films for strain sensing.

  19. An improved interface for capillary zone electrophoresis-mass spectrometry

    International Nuclear Information System (INIS)

    Smith, R.D.; Loo, J.A.; Barinaga, C.J.; Udseth, H.R.

    1988-06-01

    We have recently developed an improved electrospray ionization interface for capillary electrophoresis mass-spectrometry (CZE-MS). Our initial interface employed a vacuum deposited metal film at the exit of the capillary to make an electrical contact with he eluting buffer and establish the electrospray field gradient. This interface did, however, impose significant limitations on the range of capillary electrophoretic (CE) separations that could be performed. To circumvent these limitations, an interface that does not require a metalized tip was designed nd developed. In the new approach, the electrical contact at the column exit is made through a flowing liquid sheath. The principal advantage of this interface is that it allows operation with a much broader range of electrophoresis conditions. The sheath flow can be readily varied in both composition and volume. An electrospray ionization spectrum is given for a previously intractable buffer solution. 5 refs., 2 figs

  20. Using evaporation to control capillary instabilities in micro-systems.

    Science.gov (United States)

    Ledesma-Aguilar, Rodrigo; Laghezza, Gianluca; Yeomans, Julia M; Vella, Dominic

    2017-12-06

    The instabilities of fluid interfaces represent both a limitation and an opportunity for the fabrication of small-scale devices. Just as non-uniform capillary pressures can destroy micro-electrical mechanical systems (MEMS), so they can guide the assembly of novel solid and fluid structures. In many such applications the interface appears during an evaporation process and is therefore only present temporarily. It is commonly assumed that this evaporation simply guides the interface through a sequence of equilibrium configurations, and that the rate of evaporation only sets the timescale of this sequence. Here, we use Lattice-Boltzmann simulations and a theoretical analysis to show that, in fact, the rate of evaporation can be a factor in determining the onset and form of dynamical capillary instabilities. Our results shed light on the role of evaporation in previous experiments, and open the possibility of exploiting diffusive mass transfer to directly control capillary flows in MEMS applications.

  1. Integration of amperometric sensors for microchip capillary electrophoresis application

    Energy Technology Data Exchange (ETDEWEB)

    Dicorato, F; Moore, E [Life Sciences Interface Group, Tyndall National Institute, Lee Maltings, Dyke Parade, Cork (Ireland); Glennon, J, E-mail: eric.moore@tyndall.ie [Chemistry Department, University College Cork, College Road, Cork (Ireland)

    2011-08-17

    Capillary electrophoresis is a technique for the separation and analysis of chemical compounds. Techniques adopted from the microchip technology knowledge have led to recent developments of electrophoresis system with integration on microchip. Microchip Capillary Electrophoresis ({mu}CE) systems offer a series of advantages as easy integration for Lab-on-a-chip applications, high performance, portability, speed, minimal solvent and sample requirements. A new technological challenge aims at the development of an economic modular microchip capillary electrophoresis systems using separable and independent units concerning the sensor. In this project we worked on the development of an interchangeable amperometric sensor in order to provide a solution to such electrode passivation and facilitating the use of tailored sensors for specific analyte detection besides. Fluidic chips have been machined from cyclic olefin polymer pallets (Zeonor) using a micro-injection molding machine.

  2. Delayed post-traumatic capillary haemangioma of the spine.

    Science.gov (United States)

    Shilton, Hamish; Goldschlager, Tony; Kelman, Anthony; Xenos, Chris

    2011-11-01

    Capillary haemangiomas are well-circumscribed aggregates of closely packed, thin-walled capillaries separated by connective tissue stroma. In subcutaneous tissue they are termed pyogenic granuloma and commonly follow trauma. They rarely occur in the spine. We present a 43-year-old woman with a 6-week history of thoracic myelopathy and back pain on a background of T7 and T8 vertebral compression fractures from a motor vehicle accident 10 years previously. MRI demonstrated a posteriorly based extradural homogeneously enhancing mass at this level. The lesion was resected and diagnosed histopathologically as a capillary haemangioma. The patient's symptoms resolved and she made an uneventful recovery. The literature is reviewed and the possible pathogenesis is discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Surface tension in microsystems engineering below the capillary length

    CERN Document Server

    Lambert, Pierre

    2014-01-01

    This book describes how surface tension effects can be used by engineers to provide mechanical functions in miniaturized products (<1 mm). Even if precursors of this field such as Jurin or Laplace already date back to the 18th century, describing surface tension effects from a mechanical perspective is very recent. The originality of this book is to consider the effects of capillary bridges on solids, including forces and torques exerted both statically and dynamically by the liquid along the 6 degrees-of-freedom. It provides a comprehensive approach to various applications, such as capillary adhesion (axial force), centering force in packaging and micro-assembly (lateral force) and recent developments such as a capillary motor (torque). It devises how surface tension can be used to provide mechanical functions such as actuation (bubble-actuated compliant table), sealing and tightness, energy harvesting, nanodispending.

  4. Tomographic Imaging of Water Injection and Withdrawal in PEMFC Gas Diffusion Layers

    Energy Technology Data Exchange (ETDEWEB)

    McGill U; Gostick, J. T.; Gunterman, H. P.; Weber, A. Z.; Newman, J. S.; Kienitz, B. L.; MacDowell, A. A.

    2010-06-25

    X-ray computed tomography was used to visualize the water configurations inside gas diffusion layers for various applied capillary pressures, corresponding to both water invasion and withdrawal. A specialized sample holder was developed to allow capillary pressure control on the small-scale samples required. Tests were performed on GDL specimens with and without hydrophobic treatments.

  5. Investigation into the suitability of capillary tubes for microcrystalline testing.

    Science.gov (United States)

    Elie, Leonie E; Baron, Mark G; Croxton, Ruth S; Elie, Mathieu P

    2013-07-01

    A comparison between microcrystalline tests performed on microscope slides and flat capillary tubes with inner diameters ranging from 0.1 to 0.7 mm was carried out to explore the appropriateness of tubes for rapid testing of suspected drugs of abuse in the laboratory as well as in the field. Tests for mephedrone, cocaine, and phencyclidine were chosen as examples to investigate the handling of the capillary tubes, the influence on crystal habit, size, and the effects on the limit of detection. Image stacking software was used to increase the depth of field of micrographs taken from developed microcrystals greatly enhancing the interpretability even months after carrying out the microcrystalline test. Additionally, the potential of seeding capillary tubes with a reagent was studied. Pre-treatment of tubes would allow microcrystalline tests to be carried out quicker and anywhere without the necessity of taking along expensive and hazardous reagents. The sealing of capillary tubes containing developed microcrystalline tests in order to preserve results for a long period of time was successfully done by applying paraffin wax to the open ends. Finally, it was concluded that capillary tubes are suitable vessels for performing microcrystalline tests. The increased portability of the improved set-up allows tests to be safely executed outside laboratories without impairing the quality of the result. Findings were applied to six legal high samples purchased online between May and August 2011. The active ingredients like MDAI as well as cutting agents like caffeine were successfully identified using the microcrystalline test technique in capillary tubes. Copyright © 2012 John Wiley & Sons, Ltd.

  6. Density functional study of condensation in capped capillaries.

    Science.gov (United States)

    Yatsyshin, P; Savva, N; Kalliadasis, S

    2015-07-15

    We study liquid adsorption in narrow rectangular capped capillaries formed by capping two parallel planar walls (a slit pore) with a third wall orthogonal to the two planar walls. The most important transition in confined fluids is arguably condensation, where the pore becomes filled with the liquid phase which is metastable in the bulk. Depending on the temperature T, the condensation in capped capillaries can be first-order (at T≤Tcw) or continuous (at T>Tcw), where Tcw is the capillary wetting temperature. At T>Tcw, the capping wall can adsorb mesoscopic amounts of metastable under-condensed liquid. The onset of condensation is then manifested by the continuous unbinding of the interface between the liquid adsorbed on the capping wall and the gas filling the rest of the capillary volume. In wide capped capillaries there may be a remnant of wedge filling transition, which is manifested by the adsorption of liquid drops in the corners. Our classical statistical mechanical treatment predicts a possibility of three-phase coexistence between gas, corner drops and liquid slabs adsorbed on the capping wall. In sufficiently wide capillaries we find that thick prewetting films of finite length may be nucleated at the capping wall below the boundary of the prewetting transition. Prewetting then proceeds in a continuous manner manifested by the unbinding interface between the thick and thin films adsorbed on the side walls. Our analysis is based on a detailed numerical investigation of the density functional theory for the fluid equilibria for a number of illustrative case studies.

  7. Direct Numerical Simulation of Low Capillary Number Pore Scale Flows

    Science.gov (United States)

    Esmaeilzadeh, S.; Soulaine, C.; Tchelepi, H.

    2017-12-01

    The arrangement of void spaces and the granular structure of a porous medium determines multiple macroscopic properties of the rock such as porosity, capillary pressure, and relative permeability. Therefore, it is important to study the microscopic structure of the reservoir pores and understand the dynamics of fluid displacements through them. One approach for doing this, is direct numerical simulation of pore-scale flow that requires a robust numerical tool for prediction of fluid dynamics and a detailed understanding of the physical processes occurring at the pore-scale. In pore scale flows with a low capillary number, Eulerian multiphase methods are well-known to produce additional vorticity close to the interface. This is mainly due to discretization errors which lead to an imbalance of capillary pressure and surface tension forces that causes unphysical spurious currents. At the pore scale, these spurious currents can become significantly stronger than the average velocity in the phases, and lead to unphysical displacement of the interface. In this work, we first investigate the capability of the algebraic Volume of Fluid (VOF) method in OpenFOAM for low capillary number pore scale flow simulations. Afterward, we compare VOF results with a Coupled Level-Set Volume of Fluid (CLSVOF) method and Iso-Advector method. It has been shown that the former one reduces the VOF's unphysical spurious currents in some cases, and both are known to capture interfaces sharper than VOF. As the conclusion, we will investigate that whether the use of CLSVOF or Iso-Advector will lead to less spurious velocities and more accurate results for capillary driven pore-scale multiphase flows or not. Keywords: Pore-scale multiphase flow, Capillary driven flows, Spurious currents, OpenFOAM

  8. Influence of ignored and well-known zone distortions on the separation performance of proteins in capillary free zone electrophoresis with special reference to analysis in polyacrylamide-coated fused silica capillaries in various buffers. I. Theoretical studies.

    Science.gov (United States)

    Hjertén, Stellan; Mohabbati, Sheila; Westerlund, Douglas

    2004-10-22

    Distortion of the starting zone upon its electrophoretic migration toward the detection window gives rise to both symmetrical zones caused by diffusion, sedimentation in the horizontal section of the capillary and the curvature of the capillary, and asymmetrical zones having their origin in Joule heating, sedimentation in the vertical section of the capillary, pH and conductivity differences between the sample zone and the surrounding buffer, solute adsorption onto the capillary wall, and association-dissociation of complexes between the analyte and a buffer constituent or between analytes. Interestingly and importantly a theoretical study shows that moderate pH and conductivity differences as well as adsorption and all of the above interactions when they are characterized by a fast on/off kinetics do not increase the zone broadening (or only slightly), because the sharpening of one boundary of the zone is about the same as the broadening of the other boundary. In addition the peak symmetry caused by a conductivity difference is in most experiments counteracted by a pH difference. The experimentally determined plate numbers in the absence of electroosmosis exceeded one million per meter in some experiments (Part II). These plate numbers are among the highest reported [Z. Zhao, A. Malik, M.L. Lee, Anal. Chem. 65 (1993) 2747; M. Gilges, K. Kleemiss, G. Schomburg, Anal. Chem. 66 (1994) 2038; H. Wan, M. Ohman, L.G. Blomberg, J. Chromatogr. A 924 (2001) 591 (plate numbers determined in the presence of electroosmosis may be higher, although the width of the zone in the capillary may be larger) [p. 680 in S. Hjertén, Electrophoresis 11 (1990) 665]). Capillary free zone electrophoresis is perhaps the only separation method, which, under optimum conditions, gives a plate number not far from the theoretical limit. A prerequisite for this high performance is that the polyacrylamide-coated capillary is washed with 2 M HCl between the runs and stored in water over night (Part

  9. Experimental and numerical studies of choked flow through adiabatic and diabatic capillary tubes

    International Nuclear Information System (INIS)

    Deodhar, Subodh D.; Kothadia, Hardik B.; Iyer, K.N.; Prabhu, S.V.

    2015-01-01

    Capillary tubes are extensively used in several cooling applications like refrigeration, electronic cooling etc. Local pressure variation in adiabatic straight capillary tube (mini channel) is studied experimentally and numerically with R134a as the working fluid. Experiments are performed on two straight capillary tubes. It is found that the diameter is the most sensitive design parameter of the capillary tube. Experiments are performed on five helically coiled capillary tubes to quantify the effect of pitch and curvature of helically coiled capillary tube on the pressure drop. Non dimensionalized factor to account coiling of capillary tube is derived to calculate mass flow rate in helically coiled capillary tubes. Flow visualization in adiabatic capillary tube confirms the bubbly nature of two phase flow. Numerical and experimental investigations in diabatic capillary tube suggest that the use of positive displacement pump and choking at the exit of the channel ensures flow stability. - Highlights: • Model is developed to design capillary tube in adiabatic and diabatic condition. • Effect of coil curvature on pressure drop is studied experimentally. • Correlation is developed to predict mass flow rate in helical capillary tubes. • Flow visualization is carried out to check the type of two phase flow. • Effect of choked flow on diabatic capillary tubes is studied experimentally.

  10. Capillary electrophoretic separation of inorganic and organic arsenic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Greschonig, H. [Institute of Analytical Chemistry, Karl Franzens University Graz (Austria); Schmid, M.G.; Guebitz, G. [Institute of Pharmaceutical Chemistry, Karl Franzens University Graz (Austria)

    1998-09-01

    Capillary zone electrophoresis was used to separate arsenite, arsenate, dimethylarsinic and diphenylarsinic acid, methanearsonic acid, phenyl- and p-aminophenyl arsonic acid, phenylarsineoxide and phenarsazinic acid. Anionic and uncharged species were separated in a fused silica capillary with on-column UV detection at 200 nm. A 15 mM phosphate solution adjusted to pH 6.5 containing 10 mM sodium dodecylsulfonate served as background electrolyte. The influence of pH and applied voltage on separation efficiency, as well as the feasibility of identification of arsenic compounds in spiked urine, were investigated. (orig.) With 7 figs., 1 tab., 22 refs.

  11. Antiresonant hollow core fiber with seven nested capillaries

    DEFF Research Database (Denmark)

    Antonio-Lopez, Jose E.; Habib, Selim; Van Newkirk, Amy

    2016-01-01

    We report an antiresonant hollow core fiber formed of 7 non-touching capillaries with inner tubes. The fiber has a core diameter of ∼33μm and a core wall of ∼780nm of thickness. We demonstrate robust single mode operation at 1064nm and broad transmission bandwidth.......We report an antiresonant hollow core fiber formed of 7 non-touching capillaries with inner tubes. The fiber has a core diameter of ∼33μm and a core wall of ∼780nm of thickness. We demonstrate robust single mode operation at 1064nm and broad transmission bandwidth....

  12. Capillary condensation, invasion percolation, hysteresis, and discrete memory

    International Nuclear Information System (INIS)

    Guyer, R.A.; McCall, K.R.

    1996-01-01

    A model of the capillary condensation process, i.e., of adsorption-desorption isotherms, having only pore-pore interactions is constructed. The model yields (1) hysteretic isotherms, (2) invasion percolation on desorption, and (3) hysteresis with discrete memory for interior chemical potential loops. All of these features are seen in experiment. The model is compared to a model with no pore-pore interactions (the Preisach model) and to a related model of interacting pore systems (the random field Ising model). The capillary condensation model differs from both. copyright 1996 The American Physical Society

  13. Conjugation of colloidal clusters and chains by capillary condensation.

    Science.gov (United States)

    Li, Fan; Stein, Andreas

    2009-07-29

    Capillary condensation was used to establish connections in colloidal clusters and 1D colloidal chains with high regional selectivity. This vapor-phase process produced conjugated clusters and chains with anisotropic functionality. The capillary condensation method is simple and can be applied to a wide range of materials. It can tolerate geometric variations and even permits conjugation of spatially separated particles. The selective deposition was also used to modulate the functionality on the colloid surfaces, producing tip-tethered nanosized building blocks that may be suitable for further assembly via directional interactions.

  14. Stacking by electroinjection with discontinuous buffers in capillary zone electrophoresis.

    Science.gov (United States)

    Shihabi, Zak K

    2002-08-01

    The work presented here demonstrates that electroinjection can be performed using discontinuous buffers, which can result in better stacking than that obtained by hydrodynamic injection. The sample can be concentrated at the tip of the capillary leaving practically the whole capillary for sample separation. This results in several advantages, such as better sample concentration, higher plate number and shorter time of stacking. However, sample introduction by electromigration is suited for samples free or low in salt content. Samples, which are high in salt content, are better introduced by the hydrodynamic injection for stacking by the discontinuous buffers. Different simple methods to introduce the discontinuity in the buffer for electroinjection are discussed.

  15. Laser–capillary interaction for the EXIN project

    Energy Technology Data Exchange (ETDEWEB)

    Bisesto, F.G., E-mail: fabrizio.giuseppe.bisesto@lnf.infn.it [INFN-LNF, Via Enrico Fermi 40, 00044 Frascati (Italy); Sapienza – University of Rome, P.le Aldo Moro, 2, 00185 Rome (Italy); Anania, M.P. [INFN-LNF, Via Enrico Fermi 40, 00044 Frascati (Italy); Bacci, A.L. [INFN – Milano, Via Celoria 16, 20133 Milan (Italy); Bellaveglia, M.; Chiadroni, E. [INFN-LNF, Via Enrico Fermi 40, 00044 Frascati (Italy); Cianchi, A. [INFN-LNF, Via Enrico Fermi 40, 00044 Frascati (Italy); Universit degli studi di Roma Tor Vergata, Via di Tor Vergata, Rome (Italy); Curcio, A. [INFN-LNF, Via Enrico Fermi 40, 00044 Frascati (Italy); Sapienza – University of Rome, P.le Aldo Moro, 2, 00185 Rome (Italy); Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Galletti, M.; Gallo, A.; Ghigo, A. [INFN-LNF, Via Enrico Fermi 40, 00044 Frascati (Italy); Marocchino, A.; Mostacci, A.; Petrarca, M. [Sapienza – University of Rome, P.le Aldo Moro, 2, 00185 Rome (Italy); INFN – Roma1, P.le Aldo Moro, 2, 00185 Rome (Italy); Pompili, R. [INFN-LNF, Via Enrico Fermi 40, 00044 Frascati (Italy); Rossi, A.R.; Serafini, L. [INFN – Milano, Via Celoria 16, 20133 Milan (Italy); Vaccarezza, C. [INFN-LNF, Via Enrico Fermi 40, 00044 Frascati (Italy)

    2016-09-01

    The EXIN project is under development within the SPARC-LAB facility of the National Laboratory of Frascati (LNF-INFN). This project aims to accelerate pre-existing electron bunches with high brightness by exploiting the wakefield plasma acceleration technique, while preserving the initial brightness. The wakefield is excited inside a dielectric capillary by high intensity laser pulses produced by the FLAME laser interacting with a gas. In this work, we present numerical simulations in order to optimize energy coupling between our laser with super-Gaussian transverse profile and a dielectric capillary. Moreover, an overview of the experimental layout will be given.

  16. [Determination of acetochlor and oxyfluorfen by capillary gas chromatography].

    Science.gov (United States)

    Xiang, Wen-Sheng; Wang, Xiang-Jing; Wang, Jing; Wang, Qing

    2002-09-01

    A method is described for the determination of acetochlor and oxyfluorfen by capillary gas chromatography with FID and an SE-30 capillary column (60 m x 0.53 mm i. d., 1.5 microm), using dibutyl phthalate as the internal standard. The standard deviations for acetochlor and oxyfluorfen concentration(mass fraction) were 0.44% and 0.47% respectively. The relative standard deviations for acetochlor and oxyfluorfen were 0.79% and 0.88% and the average recoveries for acetochlor and oxyfluorfen were 99.3% and 101.1% respectively. The method is simple, rapid and accurate.

  17. Ring cavity for a Raman capillary waveguide amplifier

    Science.gov (United States)

    Kurnit, N.A.

    1981-01-27

    A regenerative ring amplifier and regenerative ring oscillator are described which function to feed back a portion of the Stokes signal to complete the ring cavity. The ring cavity configuration allows the CO/sub 2/ laser pump signal and Stokes signal to copropagate through the Raman capillary waveguide amplifier. A Raman capillary waveguide amplifier is also provided in the return leg of the ring cavity to increase gain without increasing the round trip time. Additionally, the ring cavity can be designed such that the amplified Stokes signal is synchronous with the mode-locked spikes of the incoming CO/sub 2/ laser pump signal.

  18. Ring cavity for a Raman capillary waveguide amplifir

    Science.gov (United States)

    Kurnit, N.A.

    1981-01-27

    A regenerative ring amplifier and regenerative ring oscillator are described which function to feed back a portion of the Stokes signal to complete the ring cavity. The ring cavity configuration allows the CO/sub 2/ laser pump signal and Stokes signal to copropagate through the Raman capillary waveguide amplifier. A Raman capillary waveguide amplifier is also provided in the return leg of the ring cavity to increase gain without increasing the round trip time. Additionally, the ring cavity can be designed such that the amplified Stokes signal is synchronous with the mode-locked spikes of the incoming CO/sub 2/ laser pump signal.

  19. The effects of hypercapnia on cortical capillary transit time heterogeneity (CTH) in anesthetized mice

    DEFF Research Database (Denmark)

    Gutiérrez-Jiménez, Eugenio; Angleys, Hugo; Rasmussen, Peter Mondrup

    2018-01-01

    Capillary flow patterns are highly heterogeneous in the resting brain. During hyperemia, capillary transit-time heterogeneity (CTH) decreases, in proportion to blood's mean transit time (MTT) in passive, compliant microvascular networks. Previously, we found that functional activation reduces...

  20. Ion guiding in macro-size insulating capillaries: straight, tapered, and curved shapes

    Science.gov (United States)

    Kojima, Takao M.

    2018-02-01

    When keV energy ions are injected into a tilted insulating capillary, a certain fraction of the injected ions are transported through the tilt angle of the capillary. This ion guiding phenomenon is considered to be caused by a self-organizing charge distribution, where the inner wall of the capillary becomes charged by initial incoming ions. The charge distribution, which is formed, can guide following ions toward the exit of the capillary. Since the initial discovery of this effect, studies of ion guiding by insulating capillaries have been extended to various materials, and different sizes and shapes of capillaries. In recent years, some investigations of the guiding effect of macro-size curved capillaries have also been reported. In this review, relevant studies in a history of ion guiding in curved capillaries are discussed and future directions in this field are considered.

  1. Ergot alkaloids as chiral selectors in capillary electrophoresis and other electromigration methods

    Czech Academy of Sciences Publication Activity Database

    Sinibaldi, M.; Messina, A.; Stodůlková, Eva; Flieger, Miroslav

    2010-01-01

    Roč. 1, č. 3 (2010), s. 233-243 ISSN 0976-5514 Institutional research plan: CEZ:AV0Z50200510 Keywords : capillary electrophoresis * capillary electrochromatography * chiral analysis Subject RIV: CB - Analytical Chemistry, Separation

  2. A fully automated 384 capillary array for DNA sequencer. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qingbo; Kane, T

    2003-03-20

    Phase I SpectruMedix has successfully developed an automatic 96-capillary array DNA prototype based on the multiplexed capillary electrophoresis system originated from Ames Laboratory-USDOE, Iowa State University. With computer control of all steps involved in a 96-capillary array running cycle, the prototype instrument (the SCE9600) is now capable of sequencing 450 base pairs (bp) per capillary, or 48,000 bp per instrument run within 2 hrs. Phase II of this grant involved the advancement of the core 96 capillary technologies, as well as designing a high density 384 capillary prototype. True commercialization of the 96 capillary instrument involved finalization of the gel matrix, streamlining the instrument hardware, creating a more reliable capillary cartridge, and further advancement of the data processing software. Together these silos of technology create a truly commercializable product (the SCE9610) capable of meeting the operation needs of the sequencing centers.

  3. A Comprehensive Review on Measurement and Correlation Development of Capillary Pressure for Two-Phase Modeling of Proton Exchange Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Chao Si

    2015-01-01

    Full Text Available Water transport and the corresponding water management strategy in proton exchange membrane (PEM fuel cells are quite critical for the improvement of the cell performance. Accuracy modeling of water transport in porous electrodes strongly depends on the appropriate constitutive relationship for capillary pressure which is referred to as pc-s correlation, where pc is the capillary pressure and s is the fraction of saturation in the pores. In the present PEM fuel cell two-phase models, the Leverett-Udell pc-s correlation is widely utilized which is proposed based on fitting the experimental data for packed sands. However, the size and structure of pores for the commercial porous electrodes used in PEM fuel cells differ from those for the packed sands significantly. As a result, the Leverett-Udell correlation should be improper to characterize the two-phase transport in the porous electrodes. In the recent decade, many efforts were devoted to measuring the capillary pressure data and developing new pc-s correlations. The objective of this review is to review the most significant developments in recent years concerning the capillary pressure measurements and the developed pc-s correlations. It is expected that this review will be beneficial to develop the improved PEM fuel cell two-phase model.

  4. Impact of groundwater capillary rises as lower boundary conditions for soil moisture in a land surface model

    Science.gov (United States)

    Vergnes, Jean-Pierre; Decharme, Bertrand; Habets, Florence

    2014-05-01

    Groundwater is a key component of the global hydrological cycle. It sustains base flow in humid climate while it receives seepage in arid region. Moreover, groundwater influences soil moisture through water capillary rise into the soil and potentially affects the energy and water budget between the land surface and the atmosphere. Despite its importance, most global climate models do not account for groundwater and their possible interaction with both the surface hydrology and the overlying atmosphere. This study assesses the impact of capillary rise from shallow groundwater on the simulated water budget over France. The groundwater scheme implemented in the Total Runoff Integrated Pathways (TRIP) river routing model in a previous study is coupled with the Interaction between Soil Biosphere Atmosphere (ISBA) land surface model. In this coupling, the simulated water table depth acts as the lower boundary condition for the soil moisture diffusivity equation. An original parameterization accounting for the subgrid elevation inside each grid cell is proposed in order to compute this fully-coupled soil lower boundary condition. Simulations are performed at high (1/12°) and low (0.5°) resolutions and evaluated over the 1989-2009 period. Compared to a free-drain experiment, upward capillary fluxes at the bottom of soil increase the mean annual evapotranspiration simulated over the aquifer domain by 3.12 % and 1.54 % at fine and low resolutions respectively. This process logically induces a decrease of the simulated recharge from ISBA to the aquifers and contributes to enhance the soil moisture memory. The simulated water table depths are then lowered, which induces a slight decrease of the simulated mean annual river discharges. However, the fully-coupled simulations compare well with river discharge and water table depth observations which confirms the relevance of the coupling formalism.

  5. Influence of granulometry in the Hurst exponent of air liquid interfaces formed during capillary rising in a granular media

    Directory of Open Access Journals (Sweden)

    Gontijo Guilherme L.

    2017-01-01

    Full Text Available We report results concerning the fractal dimension of a air/fluid interface formed during the capillary rising of a fluid into a dense granular media. The system consists in a modified Hele-Shaw cell filled with grains at different granulometries and confined in a narrow gap between the glass plates. The system is then placed onto a water reservoir, and the liquid penetrates the medium due to capillary forces. We measure the Hurst exponent of the liquid/air interface with help of image processing, and follow the temporal evolution of the profiles. We observe that the Hurst exponent can be related with the granulometry, but the range of values are odd to the predicted values from models or theory.

  6. Separation of oligopeptides, nucleobases, nucleosides and nucleotides using capillary electrophoresis/electrochromatography with sol–gel modified inner capillary wall

    Czech Academy of Sciences Publication Activity Database

    Svobodová, Jana; Kofroňová, Olga; Benada, Oldřich; Král, V.; Mikšík, Ivan

    2017-01-01

    Roč. 1517, Sep 29 (2017), s. 185-194 ISSN 0021-9673 R&D Projects: GA ČR(CZ) GA15-01948S; GA MŠk(CZ) LO1509 Institutional support: RVO:67985823 ; RVO:61388971 Keywords : capillary electrochromatography (CEC) * open-tubular capillary electrochromatography (OT-CEC) * nucleo-compounds * oligopeptides * sol–gel methods * Porphyrin * scanning electron microscopy (SEM) Subject RIV: CB - Analytical Chemistry, Separation; CE - Biochemistry (MBU-M) OBOR OECD: Analytical chemistry; Biochemistry and molecular biology (MBU-M) Impact factor: 3.981, year: 2016

  7. Interaction of a tin-based capillary porous structure with ITER/DEMO relevant plasma conditions

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, T.W., E-mail: t.w.morgan@differ.nl; Bekerom, D.C.M. van den; De Temmerman, G.

    2015-08-15

    Sn filled capillary porous structures were exposed to high flux low temperature plasma conditions at the Pilot-PSI linear device. Enhanced erosion above that expected classically was investigated via spectroscopic observation of Sn{sup 0} emission from the plasma in front of the target surface while the surface temperature was monitored by both thermography and pyrometry. An anomalous erosion flux was observed as temperature increases, with onset for this occurrence varying strongly between different ion species. The results appear incompatible with existing ‘adatom’ models for the anomalous erosion flux. Further targets were exposed in turn to increasing heat fluxes and the heat removed determined from cooling water calorimetry, which was then compared to a solid Mo reference target. At high powers the total energy of the cooling water is reduced, indicating a shielding of the surface from the plasma heat flux by the vapour cloud in front.

  8. Multiple-capillary measurement of RBC speed, flux, and density with optical coherence tomography.

    Science.gov (United States)

    Lee, Jonghwan; Wu, Weicheng; Lesage, Frederic; Boas, David A

    2013-11-01

    As capillaries exhibit heterogeneous and fluctuating dynamics even during baseline, a technique measuring red blood cell (RBC) speed and flux over many capillaries at the same time is needed. Here, we report that optical coherence tomography can capture individual RBC passage simultaneously over many capillaries located at different depths. Further, we demonstrate the ability to quantify RBC speed, flux, and linear density. This technique will provide a means to monitor microvascular flow dynamics over many capillaries at different depths at the same time.

  9. Capillary Optics as an x-ray Condensing Lens An Alignment

    CERN Document Server

    Cappuccio, G

    2000-01-01

    The procedure of capillary lens alignment is described in detail. The theoretical basis of capillary optics is given in the framework of a comparative analysis of monocapillary and polycapillary optics. The results of x-ray $9 distribution scanning behind the capillary lens for various angle planes, together with the tting results, are presented. A qualitative explanation is given for the discrepancy between the expected and observed divergences of x-ray $9 beams transmitted by the capillary lens.

  10. Atomic-scale friction : thermal effects and capillary condensation

    NARCIS (Netherlands)

    Jinesh, Kochupurackal Balakrishna Pillai

    2006-01-01

    This work entitled as "Atomic-scale friction: thermal effects and capillary condensation" is a study on the fundamental aspects of the origin of friction from the atomic-scale. We study two realistic aspects of atomic-scale friction, namely the effect of temperature and the effect of relative

  11. Characterization of Agrobacterium species by capillary isoelectric focusing

    Czech Academy of Sciences Publication Activity Database

    Süle, S.; Horká, Marie; Matoušková, H.; Kubesová, Anna; Šalplachta, Jiří; Horký, J.

    2012-01-01

    Roč. 132, č. 1 (2012), s. 81-89 ISSN 0929-1873 R&D Projects: GA AV ČR IAAX00310701 Institutional research plan: CEZ:AV0Z40310501 Keywords : capillary isoelectric focusing * Agrobacterium spp. * identification Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 1.610, year: 2012

  12. Performing chemical reactions in virtual capillary of surface tension ...

    Indian Academy of Sciences (India)

    The flow paths were fabricated by making parallel lines using permanent marker pen ink or other polymer on glass surfaces. Two mirror image patterned glass plates were then sandwiched one on top of the other, separated by a thin gap - created using a spacer. The aqueous liquid moves between the surfaces by capillary ...

  13. Capillary electrophoresis-based assessment of nanobody affinity and purity

    NARCIS (Netherlands)

    Haselberg, Rob; Oliveira, Sabrina; van der Meel, Roy; Somsen, Govert W; de Jong, Gerhardus J

    2014-01-01

    Drug purity and affinity are essential attributes during development and production of therapeutic proteins. In this work, capillary electrophoresis (CE) was used to determine both the affinity and composition of the biotechnologically produced "nanobody" EGa1, the binding fragment of a

  14. Capillary zone electrophoresis-mass spectromet of intact proteins

    NARCIS (Netherlands)

    Domínguez-Vega, Elena; Haselberg, Rob; Somsen, Govert W.

    2016-01-01

    Capillary electrophoresis (CE) coupled with mass spectrometry (MS) has proven to be a powerful analytical tool for the characterization of intact proteins. It combines the high separation efficiency, short analysis time, and versatility of CE with the mass selectivity and sensitivity offered by MS

  15. Study of Capillary Condensation of Butane in Vycor Membrane

    Czech Academy of Sciences Publication Activity Database

    Uchytil, Petr; Petričkovič, Roman; Seidel-Morgenstern, A.

    2005-01-01

    Roč. 264, 1-2 (2005), s. 27-36 ISSN 0376-7388 R&D Projects: GA AV ČR(CZ) IAA4072402 Institutional research plan: CEZ:AV0Z40720504 Keywords : capillary condensation * mass transport * porous membrane Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.654, year: 2005

  16. Comparison of monolithic silica and polymethacrylate capillary columns for LC

    Czech Academy of Sciences Publication Activity Database

    Moravcová, D.; Jandera, P.; Urban, J.; Planeta, Josef

    2004-01-01

    Roč. 27, 10-11 (2004), s. 789-800 ISSN 1615-9306 R&D Projects: GA ČR(CZ) GA203/02/0023 Keywords : monolithic column s * capillary HPLC * column testing Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 1.927, year: 2004

  17. Characterization of polymer monolithic stationary phases for capillary HPLC

    Czech Academy of Sciences Publication Activity Database

    Moravcová, D.; Jandera, P.; Urban, J.; Planeta, Josef

    2003-01-01

    Roč. 26, č. 11 (2003), s. 1005-1016 ISSN 1615-9306 R&D Projects: GA ČR GA203/02/0023 Institutional research plan: CEZ:AV0Z4031919; CEZ:MSM 253100002 Keywords : monolithic column s * capillary HPLC * column testing Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.108, year: 2003

  18. Investigation of X-ray lasing in a capillary discharge

    NARCIS (Netherlands)

    Ellwi, S. S.; Juschkin, L.; Ferri, S.; Kunze, H. J.; E. Louis,

    2001-01-01

    Using a new technique of an induced MHD instability in a capillary made of polyacetal we observed an intense spike (signal) of the Balmer-a line of C VI at 18.22 nm during the second half cycle of the discharge. The spike is identified as Amplified Spontaneous Emission (ASE), and enhancements are

  19. Application of a diode-array detector in capillary electrophoresis

    NARCIS (Netherlands)

    Beck, W.; Hoek, van R.; Engelhardt, H.

    1993-01-01

    In the last decade diode-array detection has proved to be extremely useful in high performance liquid chromatography in recording UV-visible spectra directly and on-line in the column effluent. In capillary electrophoresis (CE) only fast-scanning detectors with long scan times (up to 2 s) are

  20. The dissipative flow of superfluid helium-3 through capillaries

    International Nuclear Information System (INIS)

    Kopnin, N.B.

    1986-01-01

    The equations are obtained which describe the behaviour of the chemical potential (pressure) of the superfluid helium-3 flowing through a narrow capillary, diffusively scattering boundaries being taken into consideration. The possibility is discussed whether the dissipation experimentally observed by Manninen and Pekola can be understood in terms of the phase-slip process

  1. Influence of roughness on capillary forces between hydrophilic surfaces

    NARCIS (Netherlands)

    van Zwol, P. J.; Palasantzas, G.; De Hosson, J. Th. M.

    Capillary forces have been measured by atomic force microscopy in the plate-sphere setup between gold, borosilicate glass, GeSbTe, titanium, and UV-irradiated amorphous titanium-dioxide surfaces. The force measurements were performed as a function contact time and surface roughness in the range

  2. Thermostatted dual-channel portable capillary electrophoresis instrument

    Czech Academy of Sciences Publication Activity Database

    Koenka, I.J.; Küng, N.; Kubáň, Pavel; Chwalek, T.; Furrer, G.; Wehrli, B.; Müller, B.; Hauser, P.C.

    2016-01-01

    Roč. 37, 17-18 (2016), s. 2368-2375 ISSN 0173-0835 Institutional support: RVO:68081715 Keywords : portable devices * on-site measurements * capillary electrophoresis Subject RIV: CB - Analytical Chemistry , Separation Impact factor: 2.744, year: 2016

  3. Characterization of metal/humic acid systems by Capillary Electrophoresis

    NARCIS (Netherlands)

    Staden JJ van; Hoop MAGT van den; Cleven R; LAC

    2000-01-01

    Metal-humic acid systems have been characterised applying Capillary Electrophoresis (CE). Appropriate experimental conditions with respect to carrier electrolyte, pH range, salt concentration, humic acid concentration and the applied potential, have been optimised. The influence of multivalent metal

  4. Desing of a new driver for fast capillary discharge

    Czech Academy of Sciences Publication Activity Database

    Koláček, Karel; Boháček, Vladislav; Schmidt, Jiří; Šunka, Pavel; Řípa, Milan; Ullschmied, Jiří; Fuciman, Marcel

    2001-01-01

    Roč. 11, č. 11 (2001), s. Pr2-613 ISSN 1155-4339 Institutional research plan: CEZ:AV0Z2043910 Keywords : capillary Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.401, year: 2001

  5. Capillary electrophoresis in the analysis of biologically important thiols

    Czech Academy of Sciences Publication Activity Database

    Lačná, J.; Kubáň, Petr; Foret, František

    2017-01-01

    Roč. 38, č. 1 (2017), s. 203-222 ISSN 0173-0835 Institutional support: RVO:68081715 Keywords : biological thiols * capillary electrophoresis * clinical applications Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 2.744, year: 2016

  6. Split and flow: reconfigurable capillary connection for digital microfluidic devices.

    Science.gov (United States)

    Lapierre, Florian; Harnois, Maxime; Coffinier, Yannick; Boukherroub, Rabah; Thomy, Vincent

    2014-09-21

    Supplying liquid to droplet-based microfluidic microsystems remains a delicate task facing the problems of coupling continuous to digital or macro- to microfluidic systems. Here, we take advantage of superhydrophobic microgrids to address this problem. Insertion of a capillary tube inside a microgrid aperture leads to a simple and reconfigurable droplet generation setup.

  7. Capillary electrochromatography of proteins and peptides (2006–2015)

    Czech Academy of Sciences Publication Activity Database

    Mikšík, Ivan

    2017-01-01

    Roč. 40, č. 1 (2017), s. 251-271 ISSN 1615-9306 R&D Projects: GA ČR(CZ) GA15-01948S Institutional support: RVO:67985823 Keywords : capillary electrochromatography * peptides * proteins Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 2.557, year: 2016

  8. Study of Streptavidin-Modified Quantum Dots by Capillary Electrophoresis

    Czech Academy of Sciences Publication Activity Database

    Stanisavljevic, M.; Janů, L.; Šmerková, K.; Křížková, S.; Pizúrová, Naděžda; Ryvolová, M.; Adam, V.; Hubálek, J.; Kizek, R.

    2013-01-01

    Roč. 76, 7-8 (2013), s. 335-343 ISSN 0009-5893 Institutional support: RVO:68081723 Keywords : Capillary electrophoresis * Gel electrophoresis * Avidin-biotin technology * Oligonucleotide * Nanoparticle * quantum dots Subject RIV: CE - Biochemistry Impact factor: 1.370, year: 2013

  9. Study of a pulsed capillary discharge with a modulated radius

    NARCIS (Netherlands)

    Broks, B.H.P.; Dijk, van W.; Mullen, van der J.J.A.M.; Veldhuizen, van E.M.

    2005-01-01

    In this contribution, we present a plasma physical model of a pulsed capillary discharge with a modulated radius. Using a 2D time-dependent model, we have modeled the plasma and wall properties of this channel. It was found that properties of the central plasma are different than the properties of a

  10. Thermostatted dual-channel portable capillary electrophoresis instrument

    Czech Academy of Sciences Publication Activity Database

    Koenka, I.J.; Küng, N.; Kubáň, Pavel; Chwalek, T.; Furrer, G.; Wehrli, B.; Müller, B.; Hauser, P.C.

    2016-01-01

    Roč. 37, 17-18 (2016), s. 2368-2375 ISSN 0173-0835 Institutional support: RVO:68081715 Keywords : portable devices * on-site measurements * capillary electrophoresis Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.744, year: 2016

  11. An analytical model for enantioseparation process in capillary electrophoresis

    Science.gov (United States)

    Ranzuglia, G. A.; Manzi, S. J.; Gomez, M. R.; Belardinelli, R. E.; Pereyra, V. D.

    2017-12-01

    An analytical model to explain the mobilities of enantiomer binary mixture in capillary electrophoresis experiment is proposed. The model consists in a set of kinetic equations describing the evolution of the populations of molecules involved in the enantioseparation process in capillary electrophoresis (CE) is proposed. These equations take into account the asymmetric driven migration of enantiomer molecules, chiral selector and the temporary diastomeric complexes, which are the products of the reversible reaction between the enantiomers and the chiral selector. The solution of these equations gives the spatial and temporal distribution of each species in the capillary, reproducing a typical signal of the electropherogram. The mobility, μ, of each specie is obtained by the position of the maximum (main peak) of their respective distributions. Thereby, the apparent electrophoretic mobility difference, Δμ, as a function of chiral selector concentration, [ C ] , can be measured. The behaviour of Δμ versus [ C ] is compared with the phenomenological model introduced by Wren and Rowe in J. Chromatography 1992, 603, 235. To test the analytical model, a capillary electrophoresis experiment for the enantiomeric separation of the (±)-chlorpheniramine β-cyclodextrin (β-CD) system is used. These data, as well as, other obtained from literature are in closed agreement with those obtained by the model. All these results are also corroborate by kinetic Monte Carlo simulation.

  12. Capillary hemangiomas with hemorrhage in cervicothoracic intramedullary, a case report

    Directory of Open Access Journals (Sweden)

    Jian Li

    2017-12-01

    Full Text Available A 48-year-old male patient had presented with worsening pain at extremities and body. The MRI showed an inhomogeneously enhancing lesion at C5-T1. During the surgical evacuation through a midline myelotomy, a frozen section could not find any tumor cells or vascular malformations. Immunohistochemically, the diagnosis of capillary hemangiomas was confirmed.

  13. The capillary pattern in human masseter muscle during ageing

    Czech Academy of Sciences Publication Activity Database

    Cvetko, E.; Janáček, Jiří; Kubínová, Lucie; Eržen, I.

    2013-01-01

    Roč. 32, č. 3 (2013), s. 135-144 ISSN 1580-3139 Institutional research plan: CEZ:AV0Z50110509 Institutional support: RVO:67985823 Keywords : 3D analysis * capillaries * confocal microscopy * human * masseter * muscle Subject RIV: EA - Cell Biology Impact factor: 0.697, year: 2013

  14. Determination of propionate in bread using capillary zone electrophoresis

    NARCIS (Netherlands)

    Ackermans, M.T.; Ackermans-Loonen, J.C.J.M; Beckers, J.L.

    1992-01-01

    A method for the determination of propionate in bread is described. The propionate was extracted from the bread with a repeated extraction procedure and measured using capillary zone electrophoresis in the indirect UV mode applying a background electrolyte of 0.005 M Tris adjusted at pH 4.6 by

  15. Capillary pericytes regulate cerebral blood flow in health and disease

    DEFF Research Database (Denmark)

    Hall, Catherine N; Reynell, Clare; Gesslein, Bodil

    2014-01-01

    Increases in brain blood flow, evoked by neuronal activity, power neural computation and form the basis of BOLD (blood-oxygen-level-dependent) functional imaging. Whether blood flow is controlled solely by arteriole smooth muscle, or also by capillary pericytes, is controversial. We demonstrate t...

  16. Pathogenetics of alveolar capillary dysplasia with misalignment of pulmonary veins

    NARCIS (Netherlands)

    Szafranski, P.; Gambin, T.; Dharmadhikari, A.V.; Akdemir, K.C.; Jhangiani, S.N.; Schuette, J.; Godiwala, N.; Yatsenko, S.A.; Sebastian, J.; Madan-Khetarpal, S.; Surti, U.; Abellar, R.G.; Bateman, D.A.; Wilson, A.L.; Markham, M.H.; Slamon, J.; Santos-Simarro, F.; Palomares, M.; Nevado, J.; Lapunzina, P.; Chung, B.H.; Wong, W.L.; Chu, Y.W.; Mok, G.T.; Kerem, E.; Reiter, J.; Ambalavanan, N.; Anderson, S.A.; Kelly, D.R.; Shieh, J.; Rosenthal, T.C.; Scheible, K.; Steiner, L.; Iqbal, M.A.; McKinnon, M.L.; Hamilton, S.J.; Schlade-Bartusiak, K.; English, D.; Hendson, G.; Roeder, E.R.; DeNapoli, T.S.; Littlejohn, R.O.; Wolff, D.J.; Wagner, C.L.; Yeung, A.; Francis, D.; Fiorino, E.K.; Edelman, M.; Fox, J.; Hayes, D.A.; Janssens, S.; Baere, E. De; Menten, B.; Loccufier, A.; Vanwalleghem, L.; Moerman, P.; Sznajer, Y.; Lay, A.S.; Kussmann, J.L.; Chawla, J.; Payton, D.J.; Phillips, G.E.; Brosens, E.; Tibboel, D.; Klein, A.; Maystadt, I.; Fisher, R.; Sebire, N.; Male, A.; Chopra, M.; Pinner, J.; Malcolm, G.; Peters, G.; Arbuckle, S.; Lees, M.; Mead, Z.; Quarrell, O.; Sayers, R.; Owens, M.; Shaw-Smith, C.; Lioy, J.; McKay, E.; Leeuw, N. de; Feenstra, I.; Spruijt, L.; Elmslie, F.; Thiruchelvam, T.; Bacino, C.A.; Langston, C.; Lupski, J.R.; Sen, P.; Popek, E.; Stankiewicz, P.

    2016-01-01

    Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) is a lethal lung developmental disorder caused by heterozygous point mutations or genomic deletion copy-number variants (CNVs) of FOXF1 or its upstream enhancer involving fetal lung-expressed long noncoding RNA genes

  17. In Vivo Microscopy Reveals Extensive Embedding of Capillaries within the Sarcolemma of Skeletal Muscle Fibers

    Science.gov (United States)

    Glancy, Brian; Hsu, Li-Yueh; Dao, Lam; Bakalar, Matthew; French, Stephanie; Chess, David J.; Taylor, Joni L.; Picard, Martin; Aponte, Angel; Daniels, Mathew P.; Esfahani, Shervin; Cushman, Samuel; Balaban, Robert S.

    2013-01-01

    Objective To provide insight into mitochondrial function in vivo, we evaluated the 3D spatial relationship between capillaries, mitochondria, and muscle fibers in live mice. Methods 3D volumes of in vivo murine Tibialis anterior muscles were imaged by multi-photon microscopy (MPM). Muscle fiber type, mitochondrial distribution, number of capillaries, and capillary-to-fiber contact were assessed. The role of myoglobin-facilitated diffusion was examined in myoglobin knockout mice. Distribution of GLUT4 was also evaluated in the context of the capillary and mitochondrial network. Results MPM revealed that 43.6 ± 3.3% of oxidative fiber capillaries had ≥ 50% of their circumference embedded in a groove in the sarcolemma, in vivo. Embedded capillaries were tightly associated with dense mitochondrial populations lateral to capillary grooves and nearly absent below the groove. Mitochondrial distribution, number of embedded capillaries, and capillary-to-fiber contact were proportional to fiber oxidative capacity and unaffected by myoglobin knockout. GLUT4 did not preferentially localize to embedded capillaries. Conclusions Embedding capillaries in the sarcolemma may provide a regulatory mechanism to optimize delivery of oxygen to heterogeneous groups of muscle fibers. We hypothesize that mitochondria locate to paravascular regions due to myofibril voids created by embedded capillaries, not to enhance the delivery of oxygen to the mitochondria. PMID:25279425

  18. Analysis of lipoproteins by capillary zone electrophoresis in microfluidic devices: Assay development and surface roughness measurements

    NARCIS (Netherlands)

    Weiller, Bruce H.; Ceriotti, Laura; Shibata, Takayuki; Rein, Dietrich; Roberts, Matthew A.; Lichtenberg, Jan; German, J. Bruce; De Rooij, Nico F.; Verpoorte, Elisabeth

    2002-01-01

    The development of a new assay for lipoproteins by capillary electrophoresis in fused-silica capillaries and in glass microdevices is described in this paper. The separation of low-density (LDL) and high-density (HDL) lipoproteins by capillary zone electrophoresis is demonstrated in fused-silica

  19. Cortical capillary dysfunction in patients suspected of Alzheimer’s disease

    DEFF Research Database (Denmark)

    Eskildsen, Simon Fristed; Gyldensted, Louise; Nagenthiraja, Kartheeban

    Vascular risk factors are suspected to play a role in the etiology of Alzheimer’s disease. Recently, a model that relates capillary dysfunction to the development of AD was proposed[1]. The model predicts that capillary dysfunction in form of increased capillary transit time heterogeneity (CTH...

  20. Evaluation and management of Periocular Capillary Hemangioma: A review

    International Nuclear Information System (INIS)

    Al-Motowa, Saeed A.; Chaudhry, Imtiaz A.

    2006-01-01

    To review the salient features of periocular capillary hemangioma, provide the ophthalmologist with clinical, diagnostic and histological features characteristic of the tumor and discuss various methods of management. Methods were literature review of periocular capillary hemangioma, diagnostic evaluation with emphasis on treatment through the presentation of illustrative clinical cases. Capillary hemangioma is the most common benign vascular tumor found on the head and neck area including eyelids and orbit. The lesion typically manifests within the first few weeks of life, grows rapidly in the first year during the proliferative phase, then invariably and slowly regresses over the next 4 to 5 years during the involutional phase. The lesion may resolve without leaving any significant cosmetic sequelae in vast majority of patients, however, the functional defects in the form of amblyopia, squint, facial disfigurement and rarely optic atrophy may persist long after complete resolution of the tumor. The diagnosis of the capillary hemangioma requires a combination of clinical and imaging studies such as ultrasonography, computerized tomography, magnetic resonance imaging and angiography in selected cases. With the advent of less invasive diagnostic techniques, the need for biopsy in capillary hemangioma has decreased. Nevertheless, it should be differentiated from other periocular tumors such as rhabdomyosarcoma, lymphangioma, chloroma, neuroblastoma, orbital cyst, and orbital cellulites. Treatment is indicated to prevent amblyopia or cosmetic disfigurement. If indicated, intra-lesional corticosteroids may be used to enhance resolution of the tumor. Other forms of treatment tried with variable success include systematic and topical corticosteroids, radiation, surgical excision and intravenous embolization of the tumor. Indecent years, laser ablation of the tumor has been found effective in some cases. Interferon-u has been utilized effectively in cases of capillary