WorldWideScience

Sample records for capillary fluidic device

  1. Fabrication of Microbeads with a Controllable Hollow Interior and Porous Wall Using a Capillary Fluidic Device

    OpenAIRE

    Choi, Sung-Wook; Zhang, Yu; Xia, Younan

    2009-01-01

    Poly(d,l-lactide-co-glycolide) (PLGA) microbeads with a hollow interior and porous wall are prepared using a simple fluidic device fabricated with PVC tubes, glass capillaries, and a needle. Using the fluidic device with three flow channels, uniform water-in-oil-in-water (W-O-W) emulsions with a single inner water droplet can be achieved with controllable dimensions by varying the flow rate of each phase. The resultant W-O-W emulsions evolve into PLGA microbeads with a hollow interior and por...

  2. FLUIDICS DEVICE FOR ASSAY

    DEFF Research Database (Denmark)

    2007-01-01

    The present invention relates to a device for use in performing assays on standard laboratory solid supports whereon chemical entities are attached. The invention furthermore relates to the use of such a device and a kit comprising such a device. The device according to the present invention is...... adapted to receive one or more replaceable solid support(s) (40) onto which chemical entities (41) are attached, said device comprising a base (1, 60, 80, 300, 400, 10, 70, 140, 20, 90, 120, 150, 30, 100), one or more inlet(s) (5), one or more outlet(s) (6). The base and the solid support (40) defines......, when operatively connected, one or more chambers (21) comprising the chemical entities (41), the inlet(s) (5) and outlet(s) (6) and chambers (21) being in fluid connection. The device further comprise means for providing differing chemical conditions in each chamber (21)....

  3. Topology optimization of flexible micro-fluidic devices

    DEFF Research Database (Denmark)

    Kreissl, Sebastian; Pingen, Georg; Evgrafov, Anton;

    2010-01-01

    A multi-objective topology optimization formulation for the design of dynamically tunable fluidic devices is presented. The flow is manipulated via external and internal mechanical actuation, leading to elastic deformations of flow channels. The design objectives characterize the performance in t...

  4. Performance verification test for APR1400 fluidic device

    International Nuclear Information System (INIS)

    Using the full scale test facility called 'VAPER', five sets of repeatability tests have been carried out to verify the performance of the Fluidic Device which is adopted in the standard design of APR1400. Quality assurance program for the APR1400 Fluidic Device verification test has been developed and applied to each set of repeatability test procedure, and precise calibration for major measuring instruments has been performed. Thus, the highest reliability and integrity of the test results was ensured. Throughout the present tests, the repeatability of the major parameter related with APR1400 Fluidic Device performance has been sufficiently confirmed. Total K factor in the actual plant system would be about 16 at high flow condition and about 105 at low flow condition, which is similar to the design goal (about 17 at high flow condition and about 100 at low flow condition) The results of the present research contributes to the smooth construction of Sin-Kori units 3 and 4, and to the promotion of domestic analytic capability for the LOCA of advanced LWR

  5. Development of fluidic device in sit for KNGR design

    International Nuclear Information System (INIS)

    The fluidic device (FD) has been introduced in the Safety Injection Tank (SIT) as one of the passive safety features in KNGR design. With the introduction of FD, the flowrate from the SIT is controlled without any moving part. The relatively large initial flowrate is reduced by about 80% during core reflooding stage following LOCA. As a consequence, this device enhances the effective use of borated water by limiting unnecessary water supply during core reflooding stage. Scaled-down model test will be performed to obtain required flow characteristics during flow transition, cavitation, and ingestion of nitrogen gas will be examined through the tests. This paper describes the general layout of the test program and briefly discusses the technical features of FD

  6. Performance Verification for Safety Injection Tank with Fluidic Device

    International Nuclear Information System (INIS)

    In LBLOCA, the SITs of a conventional nuclear power plant deliver excessive cooling water to the reactor vessel causing the water to flow into the containment atmosphere. In an effort to make it more efficient, Fluidic Device (FD) is installed inside a SIT of Advanced Power Reactor 1400 (APR 1400). FD, a complete passive controller which doesn't require actuating power, controls injection flow rates which are susceptible to a change in the flow resistance inside a vortex chamber of FD. When SIT Emergency Core Cooling (ECC) water level is above the top of the stand pipe, the water enters the vortex chamber through both the top of the stand pipe and the control ports resulting in injection of the water at a large flow rate. When the water level drops below the top of the stand pipe, the water only enters the vortex chamber through the control ports resulting in vortex formation in the vortex chamber and a relatively small flow injection. Performance verification of SIT shall be carried out because SITs play an integral role to mitigate accidents. In this paper, the performance verification method of SIT with FD is presented. In this paper, the equations for calculation of flow resistance coefficient (K) are induced to evaluate on-site performance of APR 1400 SIT with FD. Then, the equations are applied to the performance verification of SIT with FD and good results are obtained

  7. Performance Verification for Safety Injection Tank with Fluidic Device

    Energy Technology Data Exchange (ETDEWEB)

    Yune, Seok Jeong; Kim, Da Yong [KEPCO Engineering and Construction Company, Daejeon (Korea, Republic of)

    2014-05-15

    In LBLOCA, the SITs of a conventional nuclear power plant deliver excessive cooling water to the reactor vessel causing the water to flow into the containment atmosphere. In an effort to make it more efficient, Fluidic Device (FD) is installed inside a SIT of Advanced Power Reactor 1400 (APR 1400). FD, a complete passive controller which doesn't require actuating power, controls injection flow rates which are susceptible to a change in the flow resistance inside a vortex chamber of FD. When SIT Emergency Core Cooling (ECC) water level is above the top of the stand pipe, the water enters the vortex chamber through both the top of the stand pipe and the control ports resulting in injection of the water at a large flow rate. When the water level drops below the top of the stand pipe, the water only enters the vortex chamber through the control ports resulting in vortex formation in the vortex chamber and a relatively small flow injection. Performance verification of SIT shall be carried out because SITs play an integral role to mitigate accidents. In this paper, the performance verification method of SIT with FD is presented. In this paper, the equations for calculation of flow resistance coefficient (K) are induced to evaluate on-site performance of APR 1400 SIT with FD. Then, the equations are applied to the performance verification of SIT with FD and good results are obtained.

  8. Stimuli-responsive materials: developing integrated opto-molecular systems as sensors and actuators in micro-fluidic devices

    OpenAIRE

    Florea, Larisa

    2013-01-01

    Micro-fluidic platforms have been conferred with inherent optical sensing capabilities by coating the walls of micro-fluidic channels or micro-capillaries with stimuli-responsive materials. These adaptive materials respond optically to environmental stimuli, such as changes in pH, solvent polarity, the presence of certain metal ions and light. This approach confers sensing capabilities along the entire length of the coated micro-channel or micro-capillary. Adaptive coatings based on two types...

  9. Manufacture of micro fluidic devices by laser welding using thermal transfer printing techniques

    Science.gov (United States)

    Klein, R.; Klein, K. F.; Tobisch, T.; Thoelken, D.; Belz, M.

    2016-03-01

    Micro-fluidic devices are widely used today in the areas of medical diagnostics and drug research, as well as for applications within the process, electronics and chemical industry. Microliters of fluids or single cell to cell interactions can be conveniently analyzed with such devices using fluorescence imaging, phase contrast microscopy or spectroscopic techniques. Typical micro-fluidic devices consist of a thermoplastic base component with chambers and channels covered by a hermetic fluid and gas tight sealed lid component. Both components are usually from the same or similar thermoplastic material. Different mechanical, adhesive or thermal joining processes can be used to assemble base component and lid. Today, laser beam welding shows the potential to become a novel manufacturing opportunity for midsize and large scale production of micro-fluidic devices resulting in excellent processing quality by localized heat input and low thermal stress to the device during processing. For laser welding, optical absorption of the resin and laser wavelength has to be matched for proper joining. This paper will focus on a new approach to prepare micro-fluidic channels in such devices using a thermal transfer printing process, where an optical absorbing layer absorbs the laser energy. Advantages of this process will be discussed in combination with laser welding of optical transparent micro-fluidic devices.

  10. A novel simple preparation method of a hydrogel mold for PDMS micro-fluidic device fabrication

    International Nuclear Information System (INIS)

    A novel method to prepare a very thick master mold for poly(dimethylsiloxane) (PDMS) casting was investigated by using a hydrogel ultraviolet (UV) curing process through a film mask. A simple process of dispensing of hydrogel, UV curing through a photomask and rinsing enabled the construction of micro-hydrogel structures in a fast manner. These hydrogel structures can be used as a mold for PDMS casting for PDMS fluidic chip fabrication. This method allows the fast construction of very thick micro-structures more than 1 mm. The characterizations about vertical sidewall and adhesion enhancement between the substrate and micro-structures were studied. The application of a PDMS fluidic chip, which was prepared from the hydrogel mold by PDMS casting, to some fluidic flow rate tests was demonstrated. This method is fast and simple to prepare a PDMS casting mold at low cost and can be applied in micro-fabrication of biochemical chips and micro-fluidic devices. (paper)

  11. Fluidic Oscillators with Active Devices Operating in Anti-Parallel

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav

    Praha : Institute of Theoretical and Applied Mechanics ASCR, v. v. i, 2015 - (Náprstek, J.; Fischer, C.). s. 326-327 ISBN 978-80-86246-42-0. ISSN 1805-8248 R&D Projects: GA ČR GA13-23046S; GA ČR GA14-08888S Institutional support: RVO:61388998 Keywords : fluidics * oscillators * anti-parallel operation Subject RIV: BK - Fluid Dynamics

  12. Development of fluidic device in SIT for Korean Next Generation Reactor I

    International Nuclear Information System (INIS)

    The KNGR is to install a Fluidic Device at the bottom of the inner space of the SIT (Safety Injection Tank) to control the flow rate of safety injection coolant from SIT during LBLOCA. During the past two years, a scale model test to obtain the required flow characteristics of the device under the KNGR specific conditions has been performed using the experience and existing facility of AEA Technology (UK) with appropriate modifications. The performance verification test is to be performed this year to obtain optimum characteristics and design data of full size fluidic device. The purpose of the model test was to check the feasibility of developing the device and to produce a generic flow characteristic data. The test was performed in approximately 1/7 scale in terms of flow rate with full height and pressure. This report presents the details of system performance requirements for the device, design procedure for the fluidic device to be used, test facility and test method. The time dependent flow, pressure and Euler number are presented as characteristics curves and the most stable and the most effective flow control characteristic parameters were recommended through the evaluation. A method to predict the size of the fluidic device is presented. And a sizing algorithm, which can be used to conveniently determine the major geometric data of the device for various operating conditions, and a FORTRAN program to produce the prediction of performance curves have been developed. (author). 32 refs., 15 tabs., 47 figs

  13. Microfluidic chip-capillary electrophoresis devices

    CERN Document Server

    Fung, Ying Sing; Du, Fuying; Guo, Wenpeng; Ma, Tongmei; Nie, Zhou; Sun, Hui; Wu, Ruige; Zhao, Wenfeng

    2015-01-01

    Capillary electrophoresis (CE) and microfluidic chip (MC) devices are relatively mature technologies, but this book demonstrates how they can be integrated into a single, revolutionary device that can provide on-site analysis of samples when laboratory services are unavailable. By introducing the combination of CE and MC technology, Microfluidic Chip-Capillary Electrophoresis Devices broadens the scope of chemical analysis, particularly in the biomedical, food, and environmental sciences.The book gives an overview of the development of MC and CE technology as well as technology that now allows

  14. Customizable 3D Printed 'Plug and Play' Millifluidic Devices for Programmable Fluidics.

    Directory of Open Access Journals (Sweden)

    Soichiro Tsuda

    Full Text Available Three dimensional (3D printing is actively sought after in recent years as a promising novel technology to construct complex objects, which scope spans from nano- to over millimeter scale. Previously we utilized Fused deposition modeling (FDM-based 3D printer to construct complex 3D chemical fluidic systems, and here we demonstrate the construction of 3D milli-fluidic structures for programmable liquid handling and control of biological samples. Basic fluidic operation devices, such as water-in-oil (W/O droplet generators for producing compartmentalized mono-disperse droplets, sensor-integrated chamber for online monitoring of cellular growth, are presented. In addition, chemical surface treatment techniques are used to construct valve-based flow selector for liquid flow control and inter-connectable modular devices for networking fluidic parts. As such this work paves the way for complex operations, such as mixing, flow control, and monitoring of reaction / cell culture progress can be carried out by constructing both passive and active components in 3D printed structures, which designs can be shared online so that anyone with 3D printers can reproduce them by themselves.

  15. Observation and Manipulation of a Capillary Jet in a Centrifuge-Based Droplet Shooting Device

    Directory of Open Access Journals (Sweden)

    Kazuki Maeda

    2015-10-01

    Full Text Available We report observation and manipulation of a capillary jet under ultra-high centrifugal gravity in a proposed capillary-based fluidic device for the synthesis of microparticles in a centrifugal tube called Centrifuge-Based Droplet Shooting Device (CDSD. Using a high-speed camera, we directly observed the dripping to jetting transition of a viscous capillary jet of water and Sodium alginate solution generated from a glass capillary-orifice of a diameter of O (100 m under centrifugal gravity ranging from 190 to 450 g. A non-dimensional analysis shows that the mechanism of the dripping-jetting transition in the CDSD may follow that previously reported for a dripping faucet under standard gravity. We also fabricated calcium alginate microparticles by gelating droplets of sodium alginate solution obtained in the break-up of the capillary jet in the jetting regime and demonstrated fabrication of microbeads-on-a-string structures. We confirmed that the jetting regime of the capillary jet could be used to fabricate smaller particles than that of the dripping regime. The results show that the CDSD would be a more useful device to fabricate various polymeric structures and understand the physics of fluid jets under ultra-high gravity.

  16. Improvements in fluidic device evaluation using particle image velocimetry.

    OpenAIRE

    Raben, Jaime Melton Schmieg

    2013-01-01

    This work investigates flow measurement capabilities within meso- and micro-scaled medically relevant devices using particle image velocimetry (PIV). Medical devices can be particularly challenging to validate due to small length scales and complex geometries, which can reduce measurement accuracy by introducing noise and reducing available signal. Although the sources of such problems are often device specific, the effective outcome is a reduction in the signal-to-noise ratios (SNRs) of PIV ...

  17. An in-mold packaging process for plastic fluidic devices.

    Science.gov (United States)

    Yoo, Y E; Lee, K H; Je, T J; Choi, D S; Kim, S K

    2011-01-01

    Micro or nanofluidic devices have many channel shapes to deliver chemical solutions, body fluids or any fluids. The channels in these devices should be covered to prevent the fluids from overflowing or leaking. A typical method to fabricate an enclosed channel is to bond or weld a cover plate to a channel plate. This solid-to-solid bonding process, however, takes a considerable amount of time for mass production. In this study, a new process for molding a cover layer that can enclose open micro or nanochannels without solid-to-solid bonding is proposed and its feasibility is estimated. First, based on the design of a model microchannel, a brass microchannel master core was machined and a plastic microchannel platform was injection-molded. Using this molded platform, a series of experiments was performed for four process or mold design parameters. Some feasible conditions were successfully found to enclosed channels without filling the microchannels for the injection molding of a cover layer over the plastic microchannel platform. In addition, the bond strength and seal performance were estimated in a comparison with those done by conventional bonding or welding processes. PMID:21446432

  18. Maintenance Free Fluidic Transfer and Mixing Devices for Highly Radioactive Applications - Design, Development, Deployment and Operational Experience

    International Nuclear Information System (INIS)

    Power Fluidics is the generic name for a range of maintenance-free fluid transfer and mixing devices, capable of handling a wide range of highly radioactive fluids, jointly developed by British Nuclear Group, its US-based subsidiary BNG America, and AEA Technology. Power Fluidic devices include Reverse Flow Diverters (RFDs), Vacuum Operated Slug Lifts (VOSLs), and Air Lifts, all of which have an excellent proven record for pumping radioactive liquids and sludges. Variants of the RFD, termed Pulse Jet Mixers (PJMs) are used to agitate and mix tank contents, where maintenance-free equipment is desirable, and where a high degree of homogenization is necessary. The equipment is designed around the common principle of using compressed air to provide the motive force to transfer liquids and sludges. These devices have no moving parts in contact with the radioactive medium and therefore require no maintenance in radioactive areas of processing plants. Once commissioned, Power Fluidic equipment has been demonstrated to operate for the life of the facility. Over 800 fluidic devices continue to operate safely and reliably in British Nuclear Group's nuclear facilities at the Sellafield site in the United Kingdom, and some of these have done so for almost 40 years. More than 400 devices are being supplied by AEA Technology and BNG America for the Waste Treatment Plant (WTP) at the Hanford Site in southeastern Washington State, USA. This paper discusses: - Principles of operation of fluidic pumps and mixers. - Selection criteria and design of fluidic pumps and mixers. - Operational experience of fluidic pumps and mixers in the United Kingdom. - Applications of fluidic pumps and mixers at the U.S. Department of Energy nuclear sites. (authors)

  19. Inorganic nanotubes and electro-fluidic devices fabricated therefrom

    Science.gov (United States)

    Yang, Peidong; Majumdar, Arunava; Fan, Rong; Karnik, Rohit

    2011-03-01

    Nanofluidic devices incorporating inorganic nanotubes fluidly coupled to channels or nanopores for supplying a fluid containing chemical or bio-chemical species are described. In one aspect, two channels are fluidly interconnected with a nanotube. Electrodes on opposing sides of the nanotube establish electrical contact with the fluid therein. A bias current is passed between the electrodes through the fluid, and current changes are detected to ascertain the passage of select molecules, such as DNA, through the nanotube. In another aspect, a gate electrode is located proximal the nanotube between the two electrodes thus forming a nanofluidic transistor. The voltage applied to the gate controls the passage of ionic species through the nanotube selected as either or both ionic polarities. In either of these aspects the nanotube can be modified, or functionalized, to control the selectivity of detection or passage.

  20. Thermo-fluidic devices and materials inspired from mass and energy transport phenomena in biological system

    Institute of Scientific and Technical Information of China (English)

    Jian XIAO; Jing LIU

    2009-01-01

    Mass and energy transport consists of one of the most significant physiological processes in nature, which guarantees many amazing biological phenomena and activ-ities. Borrowing such idea, many state-of-the-art thermo-fluidic devices and materials such as artificial kidneys, carrier erythrocyte, blood substitutes and so on have been successfully invented. Besides, new emerging technologies are still being developed. This paper is dedicated to present-ing a relatively complete review of the typical devices and materials in clinical use inspired by biological mass and energy transport mechanisms. Particularly, these artificial thermo-fluidic devices and materials will be categorized into organ transplantation, drug delivery, nutrient transport, micro operation, and power supply. Potential approaches for innovating conventional technologies were discussed, corresponding biological phenomena and physical mechan-isms were interpreted, future promising mass-and-energy-transport-based bionic devices were suggested, and prospects along this direction were pointed out. It is expected that many artificial devices based on biological mass and energy transport principle will appear to better improve vari-ous fields related to human life in the near future.

  1. Review on recent and advanced applications of monoliths and related porous polymer gels in micro-fluidic devices

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez, Mercedes, E-mail: mercedes.vazquez@dcu.ie [Irish Separation Science Cluster, National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin 9, Dublin (Ireland); Paull, Brett, E-mail: brett.paull@dcu.ie [Irish Separation Science Cluster, National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin 9, Dublin (Ireland)

    2010-06-04

    This review critically summarises recent novel and advanced achievements in the application of monolithic materials and related porous polymer gels in micro-fluidic devices appearing within the literature over the period of the last 5 years (2005-2010). The range of monolithic materials has developed rapidly over the past decade, with a diverse and highly versatile class of materials now available, with each exhibiting distinct porosities, pore sizes, and a wide variety of surface functionalities. A major advantage of these materials is their ease of preparation in micro-fluidic channels by in situ polymerisation, leading to monolithic materials being increasingly utilised for a larger variety of purposes in micro-fluidic platforms. Applications of porous polymer monoliths, silica-based monoliths and related homogeneous porous polymer gels in the preparation of separation columns, ion-permeable membranes, preconcentrators, extractors, electrospray emitters, micro-valves, electrokinetic pumps, micro-reactors and micro-mixers in micro-fluidic devices are discussed herein. Procedures used in the preparation of monolithic materials in micro-channels, as well as some practical aspects of the micro-fluidic chip fabrication are addressed. Recent analytical/bioanalytical and catalytic applications of the final micro-fluidic devices incorporating monolithic materials are also reviewed.

  2. Review on recent and advanced applications of monoliths and related porous polymer gels in micro-fluidic devices

    International Nuclear Information System (INIS)

    This review critically summarises recent novel and advanced achievements in the application of monolithic materials and related porous polymer gels in micro-fluidic devices appearing within the literature over the period of the last 5 years (2005-2010). The range of monolithic materials has developed rapidly over the past decade, with a diverse and highly versatile class of materials now available, with each exhibiting distinct porosities, pore sizes, and a wide variety of surface functionalities. A major advantage of these materials is their ease of preparation in micro-fluidic channels by in situ polymerisation, leading to monolithic materials being increasingly utilised for a larger variety of purposes in micro-fluidic platforms. Applications of porous polymer monoliths, silica-based monoliths and related homogeneous porous polymer gels in the preparation of separation columns, ion-permeable membranes, preconcentrators, extractors, electrospray emitters, micro-valves, electrokinetic pumps, micro-reactors and micro-mixers in micro-fluidic devices are discussed herein. Procedures used in the preparation of monolithic materials in micro-channels, as well as some practical aspects of the micro-fluidic chip fabrication are addressed. Recent analytical/bioanalytical and catalytic applications of the final micro-fluidic devices incorporating monolithic materials are also reviewed.

  3. A New Drop Fluidics Enabled by Magnetic Field Mediated Elasto-Capillary Transduction

    CERN Document Server

    Biswas, Saheli; Chaudhury, Manoj K

    2016-01-01

    This research introduces a new drop fluidics, which uses a deformable and stretchable elastomeric film as the platform, instead of the commonly used rigid supports. Such a soft film impregnated with magnetic particles can be modulated with an external electromagnetic field that produces a vast array of topographical landscapes with varying surface curvature, which, in conjunction with capillarity, can direct and control motion of water droplets efficiently and accurately. When a thin layer of oil is present on this film that is deformed locally, a centrosymmetric wedge is formed. A water droplet placed on this oil laden film becomes asymmetrically deformed thus producing a gradient of Laplace pressure within the droplet setting it to motion. A simple theory is presented that accounts for the droplet speed in terms of such geometric variables as the volume of the droplet and the thickness of the oil film covering the soft elastomeric film, as well as such material variables as the viscosity of the oil and inte...

  4. Assessment of fluid flow characteristics for fluidic device in APR 1400

    International Nuclear Information System (INIS)

    New evolutionary light water reactors (LWRs) are being developed all over the world today. Some of those LWRs employ so-called passive safety components that use natural phenomena as the driving force such as expansion of pressurised gas, natural circulation, and so forth. These passive safety components and their systems are applied to improve the safety of nuclear power plants, further achieving not only to simplify the safety system, but also to improve its reliability and to provide a sufficient time margin to enable the operators to cope with accidents. The APR 1400 (Advanced Pressurised Water Reactor), which is a Korean Next Generation Reactor, adopted fluidic device as one of its passive pieces of safety equipment. The fluidic device is installed at the bottom of the inner space of the Safety Injection Tank (SIT) to control the flow rate of emergency cooling water during a large break loss of coolant accident (LBLOCA). During the past two years, a scale model test to obtain the required flow characteristics of the device under the APR 1400 specific conditions has been performed in Korea. The performance verification test was conducted to obtain the optimum characteristics and design data of full fluidic device (FD). In this study, the thermal-hydraulic characteristics for the fluidic device are analysed using SIMPLE algorithm with an aim to develop the assessment and verification guidelines for the APR 1400. To assess the flow characteristics for fluidic device, a three dimensional numerical model is developed and its results are compared with those of experiments. The fluid flow characteristics of the FD, which is passive flow control device in the SIT of APR-1400 are assessed using SIMPLE algorithm using FLUENT code and are compared with the experimental results. In this study, the fluid flow rate and pressure in the FD are predicted on the basis of the boundary condition at the entrance of supply port, control port, and discharge port respectively, so as

  5. Fabrication of fluidic devices with 30 nm nanochannels by direct imprinting

    DEFF Research Database (Denmark)

    Cuesta, Irene Fernandez; Palmarelli, Anna Laura; Liang, Xiaogan;

    2011-01-01

    In this work, we propose an innovative approach to the fabrication of a complete micro/nano fluidic system, based on direct nanoimprint lithography. The fabricated device consists of nanochannels connected to U-shaped microchannels by triangular tapered inlets, and has four large reservoirs for...... liquid input. A master silicon stamp with the multilevel structures is fabricated first, and then a negative replica is made, to be used as a stamp for ultraviolet nanoimprint lithography (UV-NIL). Afterwards, just one single UV-NIL step is necessary for patterning all the the micro and nanostructures....... Furthermore, the devices are made of all-transparent materials, and the method allows flexibility for the type of substrates used. The active material (an inorganic-organic hybrid polymer) used for the fabrication of the device has been carefully chosen, so it has adequate surface properties (inert and...

  6. Functional integration of PCR amplification and capillary electrophoresis in a microfabricated DNA analysis device.

    Science.gov (United States)

    Woolley, A T; Hadley, D; Landre, P; deMello, A J; Mathies, R A; Northrup, M A

    1996-12-01

    Microfabricated silicon PCR reactors and glass capillary electrophoresis (CE) chips have been successfully coupled to form an integrated DNA analysis system. This construct combines the rapid thermal cycling capabilities of microfabricated PCR devices (10 degrees C/s heating, 2.5 degrees C/s cooling) with the high-speed (Real-time monitoring of PCR target amplification in these integrated PCR-CE devices is also feasible. Amplification of the beta-globin target as a function of cycle number was directly monitored for two different reactions starting with 4 x 10(7) and 4 x 10(5) copies of DNA template. This work establishes the feasibility of performing high-speed DNA analyses in microfabricated integrated fluidic systems. PMID:8946790

  7. Development of a millimetrically scaled biodiesel transesterification device that relies on droplet-based co-axial fluidics

    Science.gov (United States)

    Yeh, S. I.; Huang, Y. C.; Cheng, C. H.; Cheng, C. M.; Yang, J. T.

    2016-01-01

    In this study, we investigated a fluidic system that adheres to new concepts of energy production. To improve efficiency, cost, and ease of manufacture, a millimetrically scaled device that employs a droplet-based co-axial fluidic system was devised to complete alkali-catalyzed transesterification for biodiesel production. The large surface-to-volume ratio of the droplet-based system, and the internal circulation induced inside the moving droplets, significantly enhanced the reaction rate of immiscible liquids used here – soybean oil and methanol. This device also decreased the molar ratio between methanol and oil to near the stoichiometric coefficients of a balanced chemical equation, which enhanced the total biodiesel volume produced, and decreased the costs of purification and recovery of excess methanol. In this work, the droplet-based co-axial fluidic system performed better than other methods of continuous-flow production. We achieved an efficiency that is much greater than that of reported systems. This study demonstrated the high potential of droplet-based fluidic chips for energy production. The small energy consumption and low cost of the highly purified biodiesel transesterification system described conforms to the requirements of distributed energy (inexpensive production on a moderate scale) in the world. PMID:27426677

  8. Development of a millimetrically scaled biodiesel transesterification device that relies on droplet-based co-axial fluidics.

    Science.gov (United States)

    Yeh, S I; Huang, Y C; Cheng, C H; Cheng, C M; Yang, J T

    2016-01-01

    In this study, we investigated a fluidic system that adheres to new concepts of energy production. To improve efficiency, cost, and ease of manufacture, a millimetrically scaled device that employs a droplet-based co-axial fluidic system was devised to complete alkali-catalyzed transesterification for biodiesel production. The large surface-to-volume ratio of the droplet-based system, and the internal circulation induced inside the moving droplets, significantly enhanced the reaction rate of immiscible liquids used here - soybean oil and methanol. This device also decreased the molar ratio between methanol and oil to near the stoichiometric coefficients of a balanced chemical equation, which enhanced the total biodiesel volume produced, and decreased the costs of purification and recovery of excess methanol. In this work, the droplet-based co-axial fluidic system performed better than other methods of continuous-flow production. We achieved an efficiency that is much greater than that of reported systems. This study demonstrated the high potential of droplet-based fluidic chips for energy production. The small energy consumption and low cost of the highly purified biodiesel transesterification system described conforms to the requirements of distributed energy (inexpensive production on a moderate scale) in the world. PMID:27426677

  9. Numerical study of fluidic device in APR1400 using free surface model

    International Nuclear Information System (INIS)

    A fluidic device (FD) has been adopted in the safety injection tanks (SITs) of APR1400. A flow control mechanism of the FD was used to vary the flow regime in the vortex chamber corresponding to the SITs water level. The flow regime in the vortex chamber has a different pressure loss from low to high in accordance with the SITs water level. Nitrogen at the top of the SIT could be released owing to inertia of discharge flow when changing from a high flow rate to a low flow rate. This phenomenon is important to design improvement perspective because it can affect the performance of the FD. This paper shows a result of a preliminary numerical study to obtain the transient data related to air release in the flow turn down period using a two fluid free surface model provided from ANSYS CFX 13.0. In conclusion, there is no significant effect on the performance of the FD, though a small quantity of air is released during the flow turn down period

  10. Passive fluidic diode for simple fluids using nested nanochannel structures

    Science.gov (United States)

    Mo, Jingwen; Li, Long; Wang, Jun; Li, Zhigang

    2016-03-01

    In this paper, we propose a moving part-free fluidic diode for simple fluids using nested nanochannels, which contain inner and outer channels of different lengths. Molecular dynamics simulations show that the fluidic diode accepts water flows in the forward direction and blocks flows in the backward direction in a wide range of pressure drops. The anisotropic flow rates are generated by the distinct activation pressures in different directions. In the forward direction, the activation pressure is low, which is determined by the infiltration pressure of the inner channel. In the backward direction, the activation pressure is quite high due to the capillary effects when flows are released from the inner to the outer channel. The pressure drop range for the fluidic diode can be varied by changing the channel size or surface wettability. The fluidic diode offers an alternative way for flow control in integrated micro- and nanofluidic devices.

  11. Manipulating fluids: Advances in micro-fluidics, opto-fluidics and fluidic self assembly

    Science.gov (United States)

    Vyawahare, Saurabh

    This dissertation describes work in three inter-related areas---micro-fluidics, opto-fluidics and fluidic self-assembly. Micro-fluidics has gotten a boost in recent years with the development of multilayered elastomeric devices made of poly (dimethylsiloxane) (PDMS), allowing active elements like valves and pumps. However, while PDMS has many advantages, it is not resistant to organic solvents. New materials and/or new designs are needed for solvent resistance. I describe how novel fluorinated elastomers can replace PDMS when combined with the three dimensional (3-D) solid printing. I also show how another 3-D fabrication method, multilayer photo-lithography, allows for fabrication of devices integrating filters. In general, 3-D fabrications allow new kinds of micro-fluidic devices to be made that would be impossible to emulate with two dimensional chips. In opto-fluidics, I describe a number of experiments with quantum dots both inside and outside chips. Inside chips, I manipulate quantum dots using hydrodynamic focusing to pattern fine lines, like a barcode. Outside chips, I describe our attempts to create quantum dot composites with micro-spheres. I also show how evaporated gold films and chemical passivation can then be used to enhance the emission of quantum dots. Finally, within fluids, self assembly is an attractive way to manipulate materials, and I provide two examples: first, a DNA-based energy transfer molecule that relies on quantum mechanics and self-assembles inside fluids. This kind of molecular photonics mimics parts of the photosynthetic apparatus of plants and bacteria. The second example of self-assembly in fluids describes a new phenomena---the surface tension mediated self assembly of particles like quantum dots and micro-spheres into fine lines. This self assembly by capillary flows can be combined with photo-lithography, and is expected to find use in future nano- and micro-fabrication schemes. In conclusion, advances in fludics, integrating

  12. Performing chemical reactions in virtual capillary of surface tension-confined microfluidic devices

    Indian Academy of Sciences (India)

    Angshuman Nag; Biswa Ranjan Panda; Arun Chattopadhyay

    2005-10-01

    In this paper we report a new method of fabrication of surface tension-confined microfluidic devices on glass. We have also successfully carried out some well-known chemical reactions in these fluidic channels to demonstrate the usefulness of these wall-less microchannels. The confined flow path of liquid was achieved on the basis of extreme differences in hydrophobic and hydrophilic characters of the surface. The flow paths were fabricated by making parallel lines using permanent marker pen ink or other polymer on glass surfaces. Two mirror image patterned glass plates were then sandwiched one on top of the other, separated by a thin gap - created using a spacer. The aqueous liquid moves between the surfaces by capillary forces, confined to the hydrophilic areas without wetting the hydrophobic lines, achieving liquid confinement without physical side-walls. We have shown that the microfluidic devices designed in such a way can be very useful due to their simplicity and low fabrication cost. More importantly, we have also demonstrated that the minimum requirement of such a working device is a hydrophilic line surrounded by hydrophobic environment, two walls of which are constituted of air and the rest is made of a hydrophobic surface.

  13. A Device for Measurement of Capillary Refilling Time

    OpenAIRE

    Shamsudin, Nebil

    2012-01-01

    The main objective of this project is to design, construct and validate a portable prototype of a device that is capable of performing a test to accurately measure Capillary Refilling Time (CRT), and to analyze the results with defined parameters; force, area, pressure (compression) and time. This prototype is dedicated to study and evaluate CRT readouts for different pressure values, collected from healthy subjects.The presented prototype of this study is capable of producing skin compressin...

  14. Lab-on-a-brain: Implantable micro-optical fluidic devices for neural cell analysis in vivo

    Science.gov (United States)

    Takehara, Hiroaki; Nagaoka, Akira; Noguchi, Jun; Akagi, Takanori; Kasai, Haruo; Ichiki, Takanori

    2014-10-01

    The high-resolution imaging of neural cells in vivo has brought about great progress in neuroscience research. Here, we report a novel experimental platform, where the intact brain of a living mouse can be studied with the aid of a surgically implanted micro-optical fluidic device; acting as an interface between neurons and the outer world. The newly developed device provides the functions required for the long-term and high-resolution observation of the fine structures of neurons by two-photon laser scanning microscopy and the microfluidic delivery of chemicals or drugs directly into the brain. A proof-of-concept experiment of single-synapse stimulation by two-photon uncaging of caged glutamate and observation of dendritic spine shrinkage over subsequent days demonstrated a promising use for the present technology.

  15. The influence of polydimethylsiloxane curing ratio on capillary pressure in microfluidic devices

    Energy Technology Data Exchange (ETDEWEB)

    Viola, Ilenia, E-mail: ilenia.viola@nano.cnr.it [National Nanotechnology Laboratory-Institute Nanoscience-CNR (NNL-CNR NANO), via Arnesano, I-73100 Lecce (Italy); National Nanotechnology Laboratory-Institute Nanoscience-CNR (NNL-CNR NANO), c/o Dipartimento di Fisica, Universita La Sapienza, I-00185 Roma (Italy); Zacheo, Antonella [National Nanotechnology Laboratory-Institute Nanoscience-CNR (NNL-CNR NANO), via Arnesano, I-73100 Lecce (Italy); Universita del Salento, Dip. Matematica e Fisica ' Ennio De Giorgi' , via Arnesano, I-73100 Lecce (Italy); Arima, Valentina [National Nanotechnology Laboratory-Institute Nanoscience-CNR (NNL-CNR NANO), via Arnesano, I-73100 Lecce (Italy); Arico, Antonino S. [CNR-ITAE Institute, via Salita S. Lucia sopra Contesse, I-98126 Messina (Italy); Cortese, Barbara [National Nanotechnology Laboratory-Institute Nanoscience-CNR (NNL-CNR NANO), via Arnesano, I-73100 Lecce (Italy); Manca, Michele [National Nanotechnology Laboratory-Institute Nanoscience-CNR (NNL-CNR NANO), via Arnesano, I-73100 Lecce (Italy); Italian Institute of Technology (IIT), Center for Biomolecular Nanotechnologies (Italy); Zocco, Anna [STMicroelectronics, MFD Division, Application Laboratory Lecce, via Arnesano, I-73100 Lecce (Italy); Taurino, Antonietta [CNR, Istituto per la Microelettronica e Microsistemi (IMM), via Monteroni, I-73100 Lecce (Italy); Rinaldi, Ross [National Nanotechnology Laboratory-Institute Nanoscience-CNR (NNL-CNR NANO), via Arnesano, I-73100 Lecce (Italy); Universita del Salento, Dip. Matematica e Fisica ' Ennio De Giorgi' , via Arnesano, I-73100 Lecce (Italy); and others

    2012-08-01

    Investigations on surface properties of poly(dimethylsiloxane) (PDMS) are justified by its large application ranges especially as coating polymer in fluidic devices. At a micrometer scale, the liquid dynamics is strongly modified by interactions with a solid surface. A crucial parameter for this process is microchannel wettability that can be tuned by acting on surface chemistry and topography. In literature, a number of multi-step, time and cost consuming chemical and physical procedures are reported. Here we selectively modify both wetting and mechanical properties by a single step treatment. Changes of PDMS surface were investigated by X-ray photoelectron spectroscopy and atomic force microscopy and the effects of interface properties on the liquid displacement inside a microfluidic system were evaluated. The negative capillary pressure obtained tailoring the PDMS wettability is believed to be promising to accurately control sample leakage inside integrated lab-on-chip by acting on the liquid confinement and thus to reduce the sample volume, liquid drying as well as cross-contamination during the operation.

  16. Development of a Contingency Capillary Wastewater Management Device

    Science.gov (United States)

    Thomas, Evan A.

    2010-01-01

    The Personal Body .Attached Liquid Liquidator (PBALL) is conceived as a passive, capillary driven contingency wastewater disposal device. In this contingency scenario, the airflow system on the NASA Crew Exploration Vehicle (CEV) is assumed to have failed, leaving only passive hardware and vacuum vent to dispose of the wastewater. To meet these needs, the PBALL was conceived to rely on capillary action and urine wetting design considerations. The PBALL is designed to accommodate a range of wetting conditions, from 0deg < (theta)adv approx. 90deg, be adaptable for both male and female use, collect and retain up to a liter of urine, minimize splash-back, and allow continuous drain of the wastewater to vacuum while minimizing cabin air loss. A sub-scale PBALL test article was demonstrated on NASA's reduced gravity aircraft in April, 2010.

  17. Design and Application of a New Automated Fluidic Visceral Stimulation Device for Human fMRI Studies of Interoception

    Science.gov (United States)

    Gassert, Roger; Wanek, Johann; Michels, Lars; Mehnert, Ulrich; Kollias, Spyros S.

    2016-01-01

    Mapping the brain centers that mediate the sensory-perceptual processing of visceral afferent signals arising from the body (i.e., interoception) is useful both for characterizing normal brain activity and for understanding clinical disorders related to abnormal processing of visceral sensation. Here, we report a novel closed-system, electrohydrostatically driven master–slave device that was designed and constructed for delivering controlled fluidic stimulations of visceral organs and inner cavities of the human body within the confines of a 3T magnetic resonance imaging (MRI) scanner. The design concept and performance of the device in the MRI environment are described. In addition, the device was applied during a functional MRI (fMRI) investigation of visceral stimulation related to detrusor distention in two representative subjects to verify its feasibility in humans. System evaluation tests demonstrate that the device is MR-compatible with negligible impact on imaging quality [static signal-to-noise ratio (SNR) loss <2.5% and temporal SNR loss <3.5%], and has an accuracy of 99.68% for flow rate and 99.27% for volume delivery. A precise synchronization of the stimulus delivery with fMRI slice acquisition was achieved by programming the proposed device to detect the 5 V transistor–transistor logic (TTL) trigger signals generated by the MRI scanner. The fMRI data analysis using the general linear model analysis with the standard hemodynamic response function showed increased activations in the network of brain regions that included the insula, anterior and mid-cingulate and lateral prefrontal cortices, and thalamus in response to increased distension pressure on viscera. The translation from manually operated devices to an MR-compatible and MR-synchronized device under automatic control represents a useful innovation for clinical neuroimaging studies of human interoception. PMID:27551646

  18. A comparative study of SU-8 and wax based paper-fluidic device with respect to channel geometry

    Science.gov (United States)

    Lee, Jinkee; Jafry, Ali Turab; Lim, Hosub

    2015-11-01

    Although many fabrication techniques of paper fluidic devices have evolved as a result of its broad application spectrum and ease of use, the technology has still barely scratched the surface of its potential in terms of its underlying fundamental principle i.e. fluid flow analysis. In this paper we have studied the comparison of flow profile attained by using two of the most promising techniques of photolithography and wax printing from a hydrodynamic point of view. A modified protocol for synthesizing an SU-8 based channel and wax based channel is created by optimizing few process parameters to our equipment. Water and oil (oleic acid) are chosen as hydrophilic and hydrophobic fluids respectively and their flow is analyzed in straight channels within paper device. A new approach to vary flow velocity is described in detail involving dots as resistance inside the paper channel. Observing the length-time curve for the two fluids, it becomes evident that both follow the Lucas-Washburn equation if the width of channel is large enough. Various configurations of dots reveal different longitudinal flow velocity implying its application in simultaneous addition of chemicals without the need to change channel width or length

  19. Microfluidic PMMA interfaces for rectangular glass capillaries

    International Nuclear Information System (INIS)

    We present the design and fabrication of a polymeric capillary fluidic interface fabricated by micro-milling. The design enables the use of glass capillaries with any kind of cross-section in complex microfluidic setups. We demonstrate two different designs of the interface; a double-inlet interface for hydrodynamic focusing and a capillary interface with integrated pneumatic valves. Both capillary interfaces are presented together with examples of practical applications. This communication shows the design optimization and presents details of the fabrication process. The capillary interface opens up for the use of complex microfluidic systems in single-use glass capillaries. They also enable simple fabrication of glass/polymer hybrid devices that can be beneficial in many research fields where a pure polymer chip negatively affects the device's performance, e.g. acoustofluidics. (technical note)

  20. Structuration of micro-fluidic devices based on low temperature co-fired ceramic (LTCC) technology

    OpenAIRE

    Birol, Hansu; Maeder, Thomas; Jacq, Caroline; Corradini, Giancarlo; Fournier, Yannick; Saglini, Igor; Straessler, Sigfrid; Ryser, Peter

    2005-01-01

    Smart packaging concept has been the driving force for the search of advanced technologies to produce multi-functional micro-scale devices for long years. In this sense, LTCC technology has been recently addressed as the suitable choice for a wide range of applications. In addition to its attractive characteristics for high-frequency applications those have been profited for a long time, it receives a growing attention for sensor applications in the recent years as well. This is due to the ea...

  1. In situ patterned micro 3D liver constructs for parallel toxicology testing in a fluidic device.

    Science.gov (United States)

    Skardal, Aleksander; Devarasetty, Mahesh; Soker, Shay; Hall, Adam R

    2015-09-01

    3D tissue models are increasingly being implemented for drug and toxicology testing. However, the creation of tissue-engineered constructs for this purpose often relies on complex biofabrication techniques that are time consuming, expensive, and difficult to scale up. Here, we describe a strategy for realizing multiple tissue constructs in a parallel microfluidic platform using an approach that is simple and can be easily scaled for high-throughput formats. Liver cells mixed with a UV-crosslinkable hydrogel solution are introduced into parallel channels of a sealed microfluidic device and photopatterned to produce stable tissue constructs in situ. The remaining uncrosslinked material is washed away, leaving the structures in place. By using a hydrogel that specifically mimics the properties of the natural extracellular matrix, we closely emulate native tissue, resulting in constructs that remain stable and functional in the device during a 7-day culture time course under recirculating media flow. As proof of principle for toxicology analysis, we expose the constructs to ethyl alcohol (0-500 mM) and show that the cell viability and the secretion of urea and albumin decrease with increasing alcohol exposure, while markers for cell damage increase. PMID:26355538

  2. 3D-Printed Fluidic Devices for Nanoparticle Preparation and Flow-Injection Amperometry Using Integrated Prussian Blue Nanoparticle-Modified Electrodes.

    Science.gov (United States)

    Bishop, Gregory W; Satterwhite, Jennifer E; Bhakta, Snehasis; Kadimisetty, Karteek; Gillette, Kelsey M; Chen, Eric; Rusling, James F

    2015-01-01

    A consumer-grade fused filament fabrication (FFF) 3D printer was used to construct fluidic devices for nanoparticle preparation and electrochemical sensing. Devices were printed using poly(ethylene terephthalate) and featured threaded ports to connect polyetheretherketone (PEEK) tubing via printed fittings prepared from acrylonitrile butadiene styrene (ABS). These devices included channels designed to have 800 μm × 800 μm square cross sections and were semitransparent to allow visualization of the solution-filled channels. A 3D-printed device with a Y-shaped mixing channel was used to prepare Prussian blue nanoparticles (PBNPs) under flow rates of 100 to 2000 μL min(-1). PBNPs were then attached to gold electrodes for hydrogen peroxide sensing. 3D-printed devices used for electrochemical measurements featured threaded access ports into which a fitting equipped with reference, counter, and PBNP-modified working electrodes could be inserted. PBNP-modified electrodes enabled amperometric detection of H2O2 in the 3D-printed channel by flow-injection analysis, exhibiting a detection limit of 100 nM and linear response up to 20 μM. These experiments show that a consumer-grade FFF printer can be used to fabricate low-cost fluidic devices for applications similar to those that have been reported with more expensive 3D-printing methods. PMID:25901660

  3. Device for rapid transfer of condensable gases into a capillary

    Science.gov (United States)

    Halas, S.; Krouse, H. R.

    1984-07-01

    An inverted bellows-sealed vacuum valve was modified by replacing the Teflon pad on its stem by a stainless-steel dish with a knife-edge circumference and a capillary attached through its center. A Teflon cup for containing liquid air was threaded on top into the valve outlet. With the dish down, condensable gases could be frozen on a small surface area on the bottom of the cup. By pushing the dish upwards so the knife edge pushed into the Teflon, the gas was quantitatively transferred into the capillary upon warming.

  4. A LASER-TRIGGERED DRIVER FOR FAST CAPILLARY DISCHARGE DEVICE

    Czech Academy of Sciences Publication Activity Database

    Schmidt, Jiří; Koláček, Karel; Boháček, Vladislav; Prukner, Václav; Frolov, Oleksandr; Štraus, Jaroslav

    Piscataway : IEEE Operations Center, 2004, s. 82-84. ISBN 0-7803-8586-1. ISSN 1076-8467. [Power Modulator Symposium and 2004 High Voltage Workshop/26th./. San Francisco (US), 23.05.2004-26.05.2004] R&D Projects: GA MŠk(CZ) 1P04LA235 Keywords : capillary discharge * laser-triggered driver Subject RIV: BL - Plasma and Gas Discharge Physics

  5. Performance of a capillary propellant management device with hydrazine

    Science.gov (United States)

    Tegart, J. R.

    1979-01-01

    The propellant management device that was successfully used in the Viking Orbiter spacecraft was selected for the main propulsion system of the Teleoperator Retrieval System (TRS). Due to differences in the missions and different propellants, the operation of this sheet metal vane device required reverification for the TRS application. An analytical investigation was performed considering the adverse acceleration environment and the high contract angle of the hydrazine propellant. Drop tower tests demonstrated that the device would provide propellant acquisition while the TRS was docked with Skylab, but its operation would have to be supplemented through propellant settling when free-flying.

  6. A capillary pumping device utilizing super-hydrophobic silicon grass

    International Nuclear Information System (INIS)

    In this study, we show that a compact silicon grass surface can be generated by utilizing the induced coupled plasma method with suitably chosen fabrication parameters. This super-hydrophobic structure suspends deionized water on top of the grass and keeps the contact angle at around 153°. The silicon grass is used to improve the driving efficiency of a capillary pumping micro-duct (without sidewalls), which is completely defined by a bottom hydrophilic stripe (adjacent to a Teflon substrate) and a fully top-covered hydrophobic Teflon surface which is coated on a glass substrate. The channel has a height of 3 µm and a width of 100 µm. In this work, the Teflon substrate is replaced with the silicon grass surface. When the fluid is flowing through the micro-duct on the stripe, the interface between the silicon grass and the hydrophilic stripe forms a stable air cushion barrier to the fluid, thus effectively reducing the frictional force. By changing only the interface with this replacement, we demonstrate that the average measured velocities of the new design show improvements of 21% and 17% in the driving efficiency over the original design for transporting deionized water and human blood, respectively. It is also shown that the measured data of the present design are closer to the values predicted by a theoretical analysis which relates the flow velocity to the contact angles, surface tension and fluid viscosity

  7. MEMS fluidic actuator

    Science.gov (United States)

    Kholwadwala, Deepesh K.; Johnston, Gabriel A.; Rohrer, Brandon R.; Galambos, Paul C.; Okandan, Murat

    2007-07-24

    The present invention comprises a novel, lightweight, massively parallel device comprising microelectromechanical (MEMS) fluidic actuators, to reconfigure the profile, of a surface. Each microfluidic actuator comprises an independent bladder that can act as both a sensor and an actuator. A MEMS sensor, and a MEMS valve within each microfluidic actuator, operate cooperatively to monitor the fluid within each bladder, and regulate the flow of the fluid entering and exiting each bladder. When adjacently spaced in a array, microfluidic actuators can create arbitrary surface profiles in response to a change in the operating environment of the surface. In an embodiment of the invention, the profile of an airfoil is controlled by independent extension and contraction of a plurality of actuators, that operate to displace a compliant cover.

  8. Rugged gap reactor device for postcolumn fluorescence detection in capillary electrophoresis.

    Science.gov (United States)

    Wei, H; Li, S F

    1998-12-01

    In this paper, the construction and performance of a rugged device for postcolumn derivatization in capillary electrophoresis (CE) are described. The device was based on a gap design, and a gap with a very small distance (derivatizing reagents into the reaction capillary was attributable to gravity flow. The concentration of derivatizing reagents can be controlled through manipulating the electroosmotic flow in the reaction capillary and the height of the liquid levels from the derivatizing reagents to the buffer reservoirs. The device has been applied in fluorescence detection of amino acids using a mixture of o-phthaldialdehyde/2-mercaptoethanol as derivatizing reagent. Theoretical plate numbers for 11 amino acids separated in a pH 9.5 borate buffer were obtained in the order of 40 000-250 000. The detection limit for glycine (S/N = 2) was found to be 6.7 × 10(-)(7) mol/L using a commercial HPLC fluorescence detector modified for CE. Free amino acids in a wine sample were also determined. Because the device is quite stable, we believe that it can be used routinely in analytical laboratories. PMID:21644687

  9. Holographic opto-fluidic microscopy

    OpenAIRE

    Bishara, Waheb; Zhu, Hongying; Ozcan, Aydogan

    2010-01-01

    Over the last decade microfluidics has created a versatile platform that has significantly advanced the ways in which micro-scale organisms and objects are controlled, processed and investigated, by improving the cost, compactness and throughput aspects of analysis. Microfluidics has also expanded into optics to create reconfigurable and flexible optical devices such as reconfigurable lenses, lasers, waveguides, switches, and on-chip microscopes. Here we present a new opto-fluidic microscopy ...

  10. Study of lyophobic capillary-porous systems and development of energy devices on their base

    International Nuclear Information System (INIS)

    Thermophysical properties of lyophobic capillary-porous systems (LCPS) and peculiarities of their thermodynamics are considered. It is shown that LCPS have some characteristics differ from their component ones, in other words they have pronounced synergetic effect. The unique LCPS properties provide the prospectiveness of development of new energy facilities of various functionality, first of all of temperature and pressure protection devices. The calculational and experimental justification of characteristics of fast reactor passive shutdown systems, pulsation damper and liquid pressure compensators is conducted

  11. Drug penetration and metabolism in 3D cell cultures treated in a 3D printed fluidic device: assessment of irinotecan via MALDI imaging mass spectrometry.

    Science.gov (United States)

    LaBonia, Gabriel J; Lockwood, Sarah Y; Heller, Andrew A; Spence, Dana M; Hummon, Amanda B

    2016-06-01

    Realistic in vitro models are critical in the drug development process. In this study, a novel in vitro platform is employed to assess drug penetration and metabolism. This platform, which utilizes a 3D printed fluidic device, allows for dynamic dosing of three dimensional cell cultures, also known as spheroids. The penetration of the chemotherapeutic irinotecan into HCT 116 colon cancer spheroids was examined with MALDI imaging mass spectrometry (IMS). The active metabolite of irinotecan, SN-38, was also detected. After twenty-four hours of treatment, SN-38 was concentrated to the outside of the spheroid, a region of actively dividing cells. The irinotecan prodrug localization contrasted with SN-38 and was concentrated to the necrotic core of the spheroids, a region containing mostly dead and dying cells. These results demonstrate that this unique in vitro platform is an effective means to assess drug penetration and metabolism in 3D cell cultures. This innovative system can have a transformative impact on the preclinical evaluation of drug candidates due to its cost effectiveness and high throughput. PMID:27198560

  12. High Resolution Tracking Devices Based on Capillaries Filled with Liquid Scintillator

    CERN Multimedia

    Bonekamper, D; Vassiltchenko, V; Wolff, T

    2002-01-01

    %RD46 %title\\\\ \\\\The aim of the project is to develop high resolution tracking devices based on thin glass capillary arrays filled with liquid scintillator. This technique provides high hit densities and a position resolution better than 20 $\\mu$m. Further, their radiation hardness makes them superior to other types of tracking devices with comparable performance. Therefore, the technique is attractive for inner tracking in collider experiments, microvertex devices, or active targets for short-lived particle detection. High integration levels in the read-out based on the use of multi-pixel photon detectors and the possibility of optical multiplexing allow to reduce considerably the number of output channels, and, thus, the cost for the detector.\\\\ \\\\New optoelectronic devices have been developed and tested: the megapixel Electron Bombarded CCD (EBCCD), a high resolution image-detector having an outstanding capability of single photo-electron detection; the Vacuum Image Pipeline (VIP), a high-speed gateable pi...

  13. "Master and Slave" fluidic amplifier cascade

    Directory of Open Access Journals (Sweden)

    Tesař Václav

    2012-04-01

    Full Text Available No-moving-part fluidics recently found interesting application in generation of gas microbubbles by oscillating the inlet flow of the gas into the aerator. The oscillation frequency has to be high and this calls for small size of the oscillator. On the other hand, most microbubble applications require a large total gas flow. This calls for large fluidic device – a les expensive alternative than “numbering up” (several oscillators in parallel. The contradiction of the large and small scale is solved by the “MASTER & SLAVE” fluidic circuit: large output device controlled by a small oscillator. Paper discusses basic problems encountered in designing the circuit which requires matching the characteristics of the two devices.

  14. Fluidic interconnections for microfluidic systems: A new integrated fluidic interconnection allowing plug 'n' play functionality

    DEFF Research Database (Denmark)

    Perozziello, Gerardo; Bundgaard, Frederik; Geschke, Oliver

    2008-01-01

    A crucial challenge in packaging of microsystems is microfluidic interconnections. These have to seal the ports of the system, and have to provide the appropriate interface to other devices or the external environment. Integrated fluidic interconnections appear to be a good solution for interconn......A crucial challenge in packaging of microsystems is microfluidic interconnections. These have to seal the ports of the system, and have to provide the appropriate interface to other devices or the external environment. Integrated fluidic interconnections appear to be a good solution for...... interconnecting polymer microsystems in terms of cost, space and performance. Following this path we propose a new reversible, integrated fluidic interconnection composed of custom-made cylindrical rings integrated in a polymer house next to the fluidic network. This allows plug 'n' play functionality between...

  15. Tuning fluidic resistance via liquid crystal microfluidics.

    Science.gov (United States)

    Sengupta, Anupam

    2013-01-01

    Flow of molecularly ordered fluids, like liquid crystals, is inherently coupled with the average local orientation of the molecules, or the director. The anisotropic coupling-typically absent in isotropic fluids-bestows unique functionalities to the flowing matrix. In this work, we harness this anisotropy to pattern different pathways to tunable fluidic resistance within microfluidic devices. We use a nematic liquid crystalline material flowing in microchannels to demonstrate passive and active modulation of the flow resistance. While appropriate surface anchoring conditions-which imprint distinct fluidic resistances within microchannels under similar hydrodynamic parameters-act as passive cues, an external field, e.g., temperature, is used to actively modulate the flow resistance in the microfluidic device. We apply this simple concept to fabricate basic fluidic circuits, which can be hierarchically extended to create complex resistance networks, without any additional design or morphological patterning of the microchannels. PMID:24256819

  16. A Surface-Enhanced Raman Scattering Sensor Integrated with Battery-Controlled Fluidic Device for Capture and Detection of Trace Small Molecules

    OpenAIRE

    Qitao Zhou; Guowen Meng; Peng Zheng; Scott Cushing; Nianqiang Wu; Qing Huang; Chuhong Zhu; Zhuo Zhang; Zhiwei Wang

    2015-01-01

    For surface-enhanced Raman scattering (SERS) sensors, one of the important issues is the development of substrates not only with high SERS-activity but also with strong ability to capture analytes. However, it is difficult to achieve the two goals simultaneously especially when detecting small molecules. Herein a compact battery-controlled nanostructure-assembled SERS system has been demonstrated for capture and detection of trace small molecule pollutants in water. In this SERS fluidic syste...

  17. Fabrication of microfluidic devices using dry film photoresist for microchip capillary electrophoresis.

    Science.gov (United States)

    Tsai, Yuan-Chien; Jen, Hsiu-Ping; Lin, Kuan-Wen; Hsieh, You-Zung

    2006-04-14

    An inexpensive, disposable microfluidic device was fabricated from a dry film photoresist using a combination of photolithographic and hot roll lamination techniques. A microfluidic flow pattern was prefabricated in a dry film photoresist tape using traditional photolithographic methods. This tape became bonded to a poly(methyl methacrylate) (PMMA) sheet with prepouched holes when passed through a hot roll laminator. A copper working electrode and platinum decoupler was readily incorporated within this microchip. The integrated microchip device was then fixed in a laboratory-built Plexiglas holder prior to its use in microchip capillary electrophoresis. The performance of this device with amperometric detection for the separation of dopamine and catechol was examined. The separation was complete within 50 s at an applied potential of 200 V/cm. The relative standard deviations (RSD) of analyte migration times were less than 0.71%, and the theoretical plate numbers for dopamine and catechol were 3.2 x 10(4) and 4.1 x 10(4), respectively, based on a 65 mm separation channel. PMID:16384565

  18. Development and optimization of an integrated capillary-based opto-microfluidic device for chemiluminescence quantitative detection

    International Nuclear Information System (INIS)

    A capillary-action driven device amenable for integration of organic photodiodes (OPDs) was developed for monitoring parallel chemiluminescence (CL) reactions. Device characterization was conducted using finite element method (FEM) simulations. Definition of the simulation setup, dimensional optimization of the reaction chamber and overall geometrical characterization of the microfluidic device were the main simulation results. Furthermore, a non-uniform filling process was observed during the final simulation of the capillary device. Validation of this result and the proposed capillary-driven filling process was later confirmed by experimental results. Experimental testing performed on a single chamber defined an optimal exposure time to the luminescent substrate of 5 min, indicating a quick analyte detection time. Further tests using one chamber presented a linear relation between the signal-to-noise ratio and increasing concentrations of the protein used. A measured limit of detection of 28 nM was obtained for streptavidin. Regarding the tests performed on the whole device, acceptable values of 39 s ± 5 s were obtained for the luminescent substrate total filling times. Also, the microfluidic device showed the capability to perform a quantitative detection of the occurring CL reactions. Weaker optical signals, due to the occurrence of CL reactions, were detected in the chambers with a later filling process, as predicted by simulation results. Notwithstanding these results, the capillary-based device is promising for quantitative detection of proteins in future point-of-care systems, presenting an unprompted filling process and parallel quantitative detection capability. (paper)

  19. Research Progress in Capillary Electrophoresis and Micro-fluidic Chip Electrophoresis Applied in Testing Genetically Modified Food%毛细管电泳与芯片电泳技术在转基因食品检测中的研究进展

    Institute of Scientific and Technical Information of China (English)

    李永新; 黎源倩; 何玲; 李灿

    2012-01-01

    大量的转基因生物体作为食品进入人们的生活,灵敏、快速、特异的检测方法对保护消费者的知情权和选择权、保障转基因标签制度的顺利实施起到了举足轻重的作用.毛细管电泳和芯片电泳作为新兴的分离技术,以其高通量、高灵敏度、快捷低耗的优势弥补了传统凝胶电泳的不足.对目前常用的转基因食品检测方法进行归纳和评价,并重点综述了近年来毛细管电泳与芯片电泳技术在转基因食品检测中的研究进展.%In the past few years,genetically modified organs as food ( GMC) have entered into people's daily life. The fast,sensitive and reliable testing methods have played a decisive role in protecting the customers' right to know and to choose,safeguarding the smooth implementation of labeling system for genetically modified food ( GMF) . Capillary electrophoresis and micro-fluidic chip electrophoresis,as relatively new technology has made up the deficiencies of traditional gel eleetrophoTesis with their high flux,high sensitivity,fast and low consumption. This paper summarized and assessed the common methods for testing GMF and laid emphasis in reviewing the research progress made in capillary and micro-fluidic chip electrophoresis for testing GMF in recent years.

  20. Fluidic control of reactor flow—Pressure drop matching

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav

    2009-01-01

    Roč. 87, č. 6A (2009), s. 817-832. ISSN 0263-8762 R&D Projects: GA AV ČR IAA200760705; GA ČR GA101/07/1499 Institutional research plan: CEZ:AV0Z20760514 Keywords : fluidics * matching of fluidic devices * dissipance Subject RIV: BK - Fluid Dynamics Impact factor: 1.223, year: 2009 http://www. science direct.com/ science

  1. Study on the Fluidic Component of the Complete Fluidic Sprinkler

    OpenAIRE

    Hong Li; Chao Wang; Chao Chen; Zhenhua Shen

    2013-01-01

    The PXH fluidic sprinkler controlled by the outlet clearance is a new type sprinkler which is driven and controlled by the Coanda effect. This paper analyzes the offset jet with control stream in the simplified model. Based on the special design of the fluidic component of the fluidic sprinkler, a control stream coefficient was proposed and the air entrance hole distance was considered as one of the key factors that, influence the offset flow field. Based on the numerical simulations and the ...

  2. Superquadratic fluidic restrictors and their applications

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav

    Southampton : WIT Press, 2012 - (Rahman, M.; Brebbia, C.), s. 507-519 ISBN 978-1-84564-600-4. ISSN 1746-4471. [Advances in Fluid Mechanics /9./. Split (HR), 26.06.2012-28.06.2012] R&D Projects: GA TA ČR(CZ) TA02020795; GA ČR(CZ) GCP101/11/J019 Institutional research plan: CEZ:AV0Z20760514 Keywords : fluidics * flow restrictors * vortex devices Subject RIV: BK - Fluid Dynamics

  3. Micro-fluidic (Lab-on the- Chip) PCR Array Cartridge for Biological Screening in a Hand Held Device: FInal Report for CRADA no 264. PNNL-T2-258-RU with CombiMatrix Corp

    Energy Technology Data Exchange (ETDEWEB)

    Rainina, Evguenia I.

    2010-10-31

    The worldwide emergence of both new and old diseases resulting from human expansion and also human and materials mobility has and will continue to place stress on both medical and clinical diagnostics. The classical approach to bioagents detection involves the use of differential metabolic assays to determine species type in the case of most bacteria, or the use of cell culture and electron microscopy to diagnose viruses and some bacteria that are intracellular parasites. The long-term goal in bioagent detection is to develop a hand-held instrument featuring disposable cartridges which contain all the necessary reagents, reaction chambers, waste chambers, and micro-fluidics to extract, concentrate, amplify, and analyze nucleic acids. This GIPP project began development of a sensory platform using nucleic-acid based probes. Although research was not completed, initial findings indicated that an advanced sensing device could theoretically be built on a DNA/RNA-based technology platform.

  4. A low-cost, manufacturable method for fabricating capillary and optical fiber interconnects for microfluidic devices.

    Science.gov (United States)

    Hartmann, Daniel M; Nevill, J Tanner; Pettigrew, Kenneth I; Votaw, Gregory; Kung, Pang-Jen; Crenshaw, Hugh C

    2008-04-01

    Microfluidic chips require connections to larger macroscopic components, such as light sources, light detectors, and reagent reservoirs. In this article, we present novel methods for integrating capillaries, optical fibers, and wires with the channels of microfluidic chips. The method consists of forming planar interconnect channels in microfluidic chips and inserting capillaries, optical fibers, or wires into these channels. UV light is manually directed onto the ends of the interconnects using a microscope. UV-curable glue is then allowed to wick to the end of the capillaries, fibers, or wires, where it is cured to form rigid, liquid-tight connections. In a variant of this technique, used with light-guiding capillaries and optical fibers, the UV light is directed into the capillaries or fibers, and the UV-glue is cured by the cone of light emerging from the end of each capillary or fiber. This technique is fully self-aligned, greatly improves both the quality and the manufacturability of the interconnects, and has the potential to enable the fabrication of interconnects in a fully automated fashion. Using these methods, including a semi-automated implementation of the second technique, over 10,000 interconnects have been formed in almost 2000 microfluidic chips made of a variety of rigid materials. The resulting interconnects withstand pressures up to at least 800psi, have unswept volumes estimated to be less than 10 femtoliters, and have dead volumes defined only by the length of the capillary. PMID:18369517

  5. Capillary acquisition devices for high-performance vehicles: Executive summary. [evaluation of cryogenic propellant management techniques using the centaur launch vehicle

    Science.gov (United States)

    Blatt, M. H.; Bradshaw, R. D.; Risberg, J. A.

    1980-01-01

    Technology areas critical to the development of cryogenic capillary devices were studied. Passive cooling of capillary devices was investigated with an analytical and experimental study of wicking flow. Capillary device refilling with settled fluid was studied using an analytical and experimental program that resulted in successful correlation of a versatile computer program with test data. The program was used to predict Centaur D-1S LO2 and LH2 start basket refilling. Comparisons were made between the baseline Centaur D-1S propellant feed system and feed system alternatives including systems using capillary devices. The preferred concepts from the Centaur D-1S study were examined for APOTV and POTV vehicles for delivery and round trip transfer of payloads between LEO and GEO. Mission profiles were determined to provide propellant usage timelines and the payload partials were defined.

  6. Tissue culture on a chip: Developmental biology applications of self-organized capillary networks in microfluidic devices.

    Science.gov (United States)

    Miura, Takashi; Yokokawa, Ryuji

    2016-08-01

    Organ culture systems are used to elucidate the mechanisms of pattern formation in developmental biology. Various organ culture techniques have been used, but the lack of microcirculation in such cultures impedes the long-term maintenance of larger tissues. Recent advances in microfluidic devices now enable us to utilize self-organized perfusable capillary networks in organ cultures. In this review, we will overview past approaches to organ culture and current technical advances in microfluidic devices, and discuss possible applications of microfluidics towards the study of developmental biology. PMID:27272910

  7. Strangely behaving fluidic oscillator

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav; Peszyński, K.

    Liberec : Technical University of Liberec, 2013 - (Dančová, P.; Novotný, P.) ISBN 978-80-7372-912-7. ISSN 2100-014X. - (EPJ Web of Conferences. 45). [Experimental Fluid Mechanics 2012 /7./. Hradec Králové (CZ), 20.11.2012-23.11.2012] R&D Projects: GA TA ČR TA02020795; GA ČR(CZ) GCP101/11/J019 Institutional research plan: CEZ:AV0Z20760514 Keywords : fluidics * oscillators * strouhal number Subject RIV: BK - Fluid Dynamics http://dx.doi.org/10.1051/epjconf/20134501074

  8. Fluidic electrodynamics: Approach to electromagnetic propulsion

    International Nuclear Information System (INIS)

    We report on a new methodological approach to electrodynamics based on a fluidic viewpoint. We develop a systematic approach establishing analogies between physical magnitudes and isomorphism (structure-preserving mappings) between systems of equations. This methodological approach allows us to give a general expression for the hydromotive force, thus re-obtaining the Navier-Stokes equation departing from the appropriate electromotive force. From this ground we offer a fluidic approach to different kinds of issues with interest in propulsion, e.g., the force exerted by a charged particle on a body carrying current; the magnetic force between two parallel currents; the Magnus's force. It is shown how the intermingle between the fluid vector fields and electromagnetic fields leads to new insights on their dynamics. The new concepts introduced in this work suggest possible applications to electromagnetic (EM) propulsion devices and the mastery of the principles of producing electric fields of required configuration in plasma medium.

  9. Fluidic angular velocity sensor

    Science.gov (United States)

    Berdahl, C. M. (Inventor)

    1986-01-01

    A fluidic sensor providing a differential pressure signal proportional to the angular velocity of a rotary input is described. In one embodiment the sensor includes a fluid pump having an impeller coupled to a rotary input. A housing forming a constricting fluid flow chamber is connected to the fluid input of the pump. The housing is provided with a fluid flow restrictive input to the flow chamber and a port communicating with the interior of the flow chamber. The differential pressure signal measured across the flow restrictive input is relatively noise free and proportional to the square of the angular velocity of the impeller. In an alternative embodiment, the flow chamber has a generally cylindrical configuration and plates having flow restrictive apertures are disposed within the chamber downstream from the housing port. In this embodiment, the differential pressure signal is found to be approximately linear with the angular velocity of the impeller.

  10. Laser ablation construction of on-column reagent addition devices for capillary electrophoresis.

    Science.gov (United States)

    Rezenom, Yohannes H; Lancaster, Joseph M; Pittman, Jason L; Gilman, S Douglass

    2002-04-01

    A simple and reproducible technique for constructing perfectly aligned gaps in fused-silica capillaries has been developed for postcolumn reagent addition with capillary electrophoresis. This technique uses laser ablation with the second harmonic of a Nd:YAG laser (532 nm) at 13.5 mJ/pulse and a repetition rate of 15 Hz to create these gaps. A capillary is glued to a microscope slide and positioned at the focal point of a cylindrical lens using the focused beam from a laser pointer as a reference. Gaps of 14.0 +/- 2.2 microm (n = 33) at the bore of the capillary are produced with a success rate of 94% by ablation with 400 pulses. This simple method of gap construction requires no micromanipulation under a microscope, hydrofluoric acid etching, or use of column fittings. These structures have been used for reagent addition for postcolumn derivatization with laser-induced fluorescence detection and have been tested for the separation of proteins and amino acids. Detection limits of 6 x 10(-7) and 1 x 10(-8) M have been obtained for glycine and tranferrin, respectively. Separation efficiencies obtained using these gap reactors range from 38,000 to 213,000 theoretical plates. PMID:12043598

  11. DNA Assembly in 3D Printed Fluidics.

    Directory of Open Access Journals (Sweden)

    William G Patrick

    Full Text Available The process of connecting genetic parts-DNA assembly-is a foundational technology for synthetic biology. Microfluidics present an attractive solution for minimizing use of costly reagents, enabling multiplexed reactions, and automating protocols by integrating multiple protocol steps. However, microfluidics fabrication and operation can be expensive and requires expertise, limiting access to the technology. With advances in commodity digital fabrication tools, it is now possible to directly print fluidic devices and supporting hardware. 3D printed micro- and millifluidic devices are inexpensive, easy to make and quick to produce. We demonstrate Golden Gate DNA assembly in 3D-printed fluidics with reaction volumes as small as 490 nL, channel widths as fine as 220 microns, and per unit part costs ranging from $0.61 to $5.71. A 3D-printed syringe pump with an accompanying programmable software interface was designed and fabricated to operate the devices. Quick turnaround and inexpensive materials allowed for rapid exploration of device parameters, demonstrating a manufacturing paradigm for designing and fabricating hardware for synthetic biology.

  12. Integral fluidic generator of microbubbles

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav; Jílek, Miroslav

    Praha : Ústav termomechaniky AV ČR, v. v. i., 2013 - (Jonáš, P.; Uruba, V.), s. 33-34 ISBN 978-80-87012-48-2. [Colloquium FLUID DYNAMICS 2013. Praha (CZ), 23.10.2013-25.10.2013] R&D Projects: GA TA ČR TA02020795; GA ČR GA13-23046S Institutional support: RVO:61388998 Keywords : fluidics * microbubbles * fluidic oscillators Subject RIV: BK - Fluid Dynamics

  13. Micro-Cavity Fluidic Dye Laser

    DEFF Research Database (Denmark)

    Helbo, Bjarne; Kristensen, Anders; Menon, Aric Kumaran

    2003-01-01

    We have successfully designed, fabricated and characterized a micro-cavity fluidic dye laser with metallic mirrors, which can be integrated with polymer based lab-on-a-chip microsystems without further processing steps. A simple rate-equation model is used to predict the average pumping power...... threshold for lasing as function of cavity-mirror reflectance, laser dye concentration and cavity length. The laser device is characterized using the laser dye Rhodamine 6G dissolved in ethanol. Lasing is observed, and the influence of dye concentration is investigated....

  14. An accessible micro-capillary electrophoresis device using surface-tension-driven flow

    OpenAIRE

    Mohanty, Swomitra K; Warrick, Jay; Gorski, Jack; Beebe, David J.

    2009-01-01

    We present a rapidly fabricated micro-capillary electrophoresis chip that utilizes surface-tension-driven flow for sample injection and extraction of DNA. Surface-tension-driven flow (i.e. passive pumping) injects a fixed volume of sample that can be predicted mathematically. Passive pumping eliminates the need for tubing, valves, syringe pumps, and other equipment typically needed for interfacing with microelectrophoresis chips. This method requires a standard micropipette to load samples be...

  15. THE FIRST EXPERIMENTAL RESULTS OF NEWLY DESIGNED CAPILLARY-DISCHARGE DEVICE

    Czech Academy of Sciences Publication Activity Database

    Schmidt, Jiří; Koláček, Karel; Frolov, Oleksandr; Prukner, Václav; Štraus, Jaroslav; Boháček, Vladislav

    Piscataway : IEEE Operations Center, 2005. s. 305-305. ISBN 0-7803-9300-7. [IEEE International Conference on Plasma Science. 20.06.2005-23.06.2005, Monterey, California] R&D Projects: GA ČR GA202/03/0711 Institutional research plan: CEZ:AV0Z20430508 Keywords : capillary discharge * soft X-ray radiation Subject RIV: BL - Plasma and Gas Discharge Physics

  16. Microfluidic hubs, systems, and methods for interface fluidic modules

    Energy Technology Data Exchange (ETDEWEB)

    Bartsch, Michael S; Claudnic, Mark R; Kim, Hanyoup; Patel, Kamlesh D; Renzi, Ronald F; Van De Vreugde, James L

    2015-01-27

    Embodiments of microfluidic hubs and systems are described that may be used to connect fluidic modules. A space between surfaces may be set by fixtures described herein. In some examples a fixture may set substrate-to-substrate spacing based on a distance between registration surfaces on which the respective substrates rest. Fluidic interfaces are described, including examples where fluid conduits (e.g. capillaries) extend into the fixture to the space between surfaces. Droplets of fluid may be introduced to and/or removed from microfluidic hubs described herein, and fluid actuators may be used to move droplets within the space between surfaces. Continuous flow modules may be integrated with the hubs in some examples.

  17. Numerical Studies of a Fluidic Diverter for Flow Control

    Science.gov (United States)

    Gokoglu, Suleyman A.; Kuczmarski, Maria A.; Culley, Dennis E.; Raghu, Surya

    2009-01-01

    The internal flow structure in a specific fluidic diverter is studied over a range from low subsonic to sonic inlet conditions by a time-dependent numerical analysis. The understanding will aid in the development of fluidic diverters with minimum pressure losses and advanced designs of flow control actuators. The velocity, temperature and pressure fields are calculated for subsonic conditions and the self-induced oscillatory behavior of the flow is successfully predicted. The results of our numerical studies have excellent agreement with our experimental measurements of oscillation frequencies. The acoustic speed in the gaseous medium is determined to be a key factor for up to sonic conditions in governing the mechanism of initiating the oscillations as well as determining its frequency. The feasibility of employing plasma actuation with a minimal perturbation level is demonstrated in steady-state calculations to also produce oscillation frequencies of our own choosing instead of being dependent on the fixed-geometry fluidic device.

  18. Picosecond Laser Machining of Metallic and Polymer Substrates for Fluidic Driven Self-Alignment

    NARCIS (Netherlands)

    Römer, G.R.B.E.; Arnaldo del Cerro, D.; Pohl, R.; Chang, B.; Liimatainen, V.; Zhou, Q.; Huis in 't Veld, A.J.

    2012-01-01

    Fluidic self-alignment of micro-components relies on creating a receptor site that is able to confine a liquid droplet. When a micro-component is brought in contact with the droplet, capillary forces move the component to its final position. A method to stop the advancing of a liquid from a receptor

  19. 全射流喷头压力调节装置损失系数分析及试验%Experiments on loss coefficient of complete fluidic sprinkler pressure regulation device

    Institute of Scientific and Technical Information of China (English)

    刘俊萍; 袁寿其; 骆寅; 汤跃; 李红

    2011-01-01

    According to the shortage of resoarch work on pressure loss in pressure regulation device of complete fluidic sprinkler for variable irrigation, the pressure variation of system was analyzed by Bernoulli equation. Based on definition system characteristics the sprinkler changed when working. Thc loss pressure coefficient was put forward with the value that, plus of section area variable coefficient and shape coefficient and then minus axial clearance influence coefficient of the moving chips in relative motion. For the calculation, the maximum loss pressure coefficient value was 0.7414, the minimum value was 0.0204. Virtual instrument and LabVIEW software were adopt to measure the relationships between pressure value, the sprinkler running time, the working conditions of pressure regulation device. The results showed that when the flow rates decreased, the upstream pressure increased, and the downstream pressure decreased, the range of downstream pressure changed was larger relatively. With the flow rate decreased, the loss coefficient increased. The maximum loss coefficient value of pressure regulation device was 0.582, and the minimum value was 0.265. The study can provide a theoretical basis for the design of complete fluidic sprinkler pressure regulation device.%针对变量喷洒全射流喷头工作中压力调节装置压力损失研究不足的情况,根据喷头工作中系统特性发生变化的特点,应用伯努力方程对系统压力变化规律进行了分析.提出压力损失系数为压力调节装置动静片的截面积变化系数及形状系数之和并减去轴向间隙系数,通过计算得到压力损失系数最大值为0.7414,最小值为0.0204.采用虚拟仪器LabVIEW软件测量调节装置前后压力与时间、工作状态之间的关系.结果表明:随着流量的减小,调节装置上游压力增大,下游压力减小,下游压力变化幅度较大.测量得到装置压力损失系数的变化规律,随着流量的

  20. Fluidic Oscillator with Vortical Feedback

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav

    Tokyo : Tokyo Institute of Technology, 2013, s. 53-61. [International Symposium on Fluid Control, Measurement and Visualization : FLUCOME 2013 /12./. Nara (JP), 18.11.2013-23.11.2013] R&D Projects: GA ČR GA13-23046S Institutional support: RVO:61388998 Keywords : fluidics * microbubbles * bubbe conjunctions Subject RIV: BK - Fluid Dynamics

  1. Dielectric Elastomers for Fluidic and Biomedical Applications

    Science.gov (United States)

    McCoul, David James

    Dielectric elastomers have demonstrated tremendous potential as high-strain electromechanical transducers for a myriad of novel applications across all engineering disciplines. Because their soft, viscoelastic mechanical properties are similar to those of living tissues, dielectric elastomers have garnered a strong foothold in a plethora of biomedical and biomimetic applications. Dielectric elastomers consist of a sheet of stretched rubber, or elastomer, coated on both sides with compliant electrode materials; application of a voltage generates an electrostatic pressure that deforms the elastomer. They can function as soft generators, sensors, or actuators, and this last function is the focus of this dissertation. Many design configurations are possible, such as stacks, minimum energy structures, interpenetrating polymer networks, shape memory dielectric elastomers, and others; dielectric elastomers are already being applied to many fields of biomedicine. The first part of the original research presented in this dissertation details a PDMS microfluidic system paired with a dielectric elastomer stack actuator of anisotropically prestrained VHB(TM) 4910 (3M(TM)) and single-walled carbon nanotubes. These electroactive microfluidic devices demonstrated active increases in microchannel width when 3 and 4 kV were applied. Fluorescence microscopy also indicated an accompanying increase in channel depth with actuation. The cross-sectional area strains at 3 and 4 kV were approximately 2.9% and 7.4%, respectively. The device was then interfaced with a syringe pump, and the pressure was measured upstream. Linear pressure-flow plots were developed, which showed decreasing fluidic resistance with actuation, from 0.192 psi/(microL/min) at 0 kV, to 0.160 and 0.157 psi/(microL/min) at 3 and 4 kV, respectively. This corresponds to an ~18% drop in fluidic resistance at 4 kV. Active de-clogging was tested in situ with the device by introducing ~50 microm diameter PDMS microbeads and

  2. Portable integrated micro-fluidic platform for the monitoring and detection of nitrite

    OpenAIRE

    Czugala, Monika; Fay, Cormac; O'Connor, Noel E.; Corcoran, Brian; Benito-Lopez, Fernando; Diamond, Dermot

    2013-01-01

    A wireless, portable integrated micro-fluidic platform is proposed and applied for the determination of nitrite anions in water. The colourimetric analysis of nitrite is based on the Griess reagent, and the colour intensity of nitrite Griess reagent complex is detected using a low cost Paired Emitter Detector Diode technique. The micro-fluidic device employed a photoswitchable micro-valve, controlled by white light and generated using a light emitting diode. This low-cost and low-power detect...

  3. Sampling by Fluidics and Microfluidics

    OpenAIRE

    V. Tesař

    2002-01-01

    Selecting one from several available fluid samples is a procedure often performed especially in chemical engineering. It is usually done by an array of valves sequentially opened and closed. Not generally known is an advantageous alternative: fluidic sampling units without moving parts. In the absence of complete pipe closure, cross-contamination between samples cannot be ruled out. This is eliminated by arranging for small protective flows that clear the cavities and remove any contaminated ...

  4. A modular and low­cost 3D­-printed microfluidic device with assembly of capillaries for droplet mass production

    Science.gov (United States)

    Aguirre-Pablo, A. A.; Zhang, J. M.; Li, E. Q.; Thoroddsen, S. T.

    2015-11-01

    We report a new 3D­-printed microfluidic system with assembly of capillaries for droplet generation. The system consists of the following parts: 3D­printed Droplet Generation Units (DGUs) with embedded capillaries and two 3D-printed pyramid distributors for supplying two different fluid phases into every DGU. A single DGU consists of four independent parts: a top channel, a bottom channel, a capillary and a sealing gasket. All components are produced by 3d­printing except the capillaries, which are formed in a glass-­puller. DGUs are independent of the distributor and from each other; they can easily be assembled, replaced and modified due to its modular design which is an advantage in case of a faulty part or clogging, eliminating the need to fabricate a complete new system which is cost and time demanding. We assessed the feasibility of producing droplets in this device varying different fluid parameters, such as liquid viscosity and flow rate, which affect droplet size and generation frequency. The design and fabrication of this device is simple and low­-cost with the 3D printing technology. Due to the modular design of independent parts, low-cost fabrication and easy parallelization of multiple DGU's, this system provides great flexibility for industrial applications.

  5. High-frequency fluidic oscillator

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav

    2015-01-01

    Roč. 234, October (2015), s. 158-167. ISSN 0924-4247 R&D Projects: GA ČR GA13-23046S Institutional support: RVO:61388998 Keywords : pulsating flow * jet * fluidics Subject RIV: BK - Fluid Dynamics Impact factor: 1.903, year: 2014 http://www.sciencedirect.com/science/article/pii/S0924424715301114/pdfft?md5=42ec4f6f3180151913ceade1e4625d74&pid=1-s2.0-S0924424715301114-main.pdf

  6. Opto-mechano-fluidic viscometer

    Energy Technology Data Exchange (ETDEWEB)

    Han, Kewen, E-mail: khan56@illinois.edu; Zhu, Kaiyuan; Bahl, Gaurav, E-mail: bahl@illinois.edu [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 W. Green St., Urbana, Illinois 61801 (United States)

    2014-07-07

    The recent development of opto-mechano-fluidic resonators has provided—by harnessing photon radiation pressure—a microfluidics platform for the optical sensing of fluid density and bulk modulus. Here, we show that fluid viscosity can also be determined through optomechanical measurement of the vibrational noise spectrum of the resonator mechanical modes. A linear relationship between the spectral linewidth and root-viscosity is predicted and experimentally verified in the low viscosity regime. Our result is a step towards multi-frequency measurement of viscoelasticity of arbitrary fluids, without sample contamination, using highly sensitive optomechanics techniques.

  7. Micro-Fluidic Dye Ring Laser - Experimental Tuning of the Wavelength and Numerical Simulation of the Cavity Modes

    DEFF Research Database (Denmark)

    Gersborg-Hansen, Morten; Balslev, Søren; Mortensen, Niels Asger;

    2006-01-01

    We demonstrate wavelength tuning of a micro-fluidic dye ring laser. Wavelength tunability is obtained by controlling the liquid dye concentration. The device performance is modelled by FEM simulations supporting a ray-tracing view.......We demonstrate wavelength tuning of a micro-fluidic dye ring laser. Wavelength tunability is obtained by controlling the liquid dye concentration. The device performance is modelled by FEM simulations supporting a ray-tracing view....

  8. Fluidic Electrodynamics: a new approach to EM Propulsion

    CERN Document Server

    Martins, Alexandre A

    2008-01-01

    We report on a new methodological approach to electrodynamics based on a fluidic viewpoint. We develop a systematic approach establishing analogies between physical magnitudes and isomorphism (structure-preserving mappings) between systems of equations. This methodological approach allows us to give a general expression for the hydromotive force, thus re-obtaining the Navier-Stokes equation departing from the an appropriate electromotive force. From this ground we offer a fluidic approach to different kind of issues with interest in propulsion, e.g., the force exerted by a charged particle on a body carrying current; the magnetic force between two parallel currents; the Magnus's force. It is shown how the intermingle between the fluid vectors fields and electromagnetic fields lead to new insights on their dynamics. The new concepts introduced in this work suggest possible applications to electromagnetic (EM) propulsion devices and the mastery of the principles of producing electric fields of required configur...

  9. Fluidic Analysis in an Annular Centrifugal Contactor for Fuel Reprocessing

    International Nuclear Information System (INIS)

    An annular centrifugal contactor (ACC) is a promising device for fuel reprocessing process, because it offers several advantages—a smaller size, a smaller holdup volume, and a higher separation performance—over conventional contactors such as a mixer-settler and a pulse column. Fluid dynamics and dispersion in an ACC, which has a combined mixer/centrifuge structure, are closely related to its separation performance and capacity, and this information is useful in improving equipment design. In this paper, experimental and computational fluid dynamics (CFD) studies were conducted to analyze fluidic and dispersion behavior in ACCs. Multiphase mixing (water/TBP-dodecane/air) in the annular zone was observed by Particle Imaging Velocimetry, and the change in the fluidic and dispersion behavior was ascertained under several operational conditions. The results of the CFD studies, which considered multiphase turbulent flow in the annular and rotor interior zones, were in a good agreement with the experimental data. (author)

  10. Electroactive nanowells for spectrographic fluidic memory

    Science.gov (United States)

    Cordovez, Bernardo; Psaltis, Demetri; Erickson, David

    2007-09-01

    Current optical storage devices such as DVDs have their read/write capabilities fundamentally restricted by the diffraction limit of light. We present an optofluidic architecture for storing cocktails of colloidal quantum dots in electroactive nanowell structures. One application of these devices is the development of a fluidic memory approach which could enable the generation, reading and erasing of multiple bit information packages on single light diffraction limited data marks by spectral and intensity multiplexing of quantum dot cocktails. Here we focus on the development of the electroactive nanowell trapping architecture. Briefly, we have shown that by applying an electric potential between a top and bottom Indium Tin Oxide (ITO) electrodes, particles ranging from 5μm polystyrene spheres to 5nm quantum dots suspended in solution can be attracted, stored and rejected from a targeted well structure by electrokinetic actuation. Nanowells 100 nm in diameter and 1 μm deep were fabricated by depositing silicon and a small oxide thin film on top of an ITO cover slip, patterning the wells on electron beam resist followed by a series of dry etching steps that leave the ITO substrate exposed in the well sites. When the quantum dots are electrokinetically transported to their sensing sites, they are then excited by a UV-blue light, and their discrete fluorescent signal is captured by a fiber spectrometer. Data erasure can be selectively performed by reversing the polarity of the field and ejecting the quantum dots from the nanowell data marks.

  11. Suitability of capillary blood obtained by a minimally invasive lancet technique to detect subclinical ketosis in dairy cows by using 3 different electronic hand-held devices.

    Science.gov (United States)

    Kanz, P; Drillich, M; Klein-Jöbstl, D; Mair, B; Borchardt, S; Meyer, L; Schwendenwein, I; Iwersen, M

    2015-09-01

    The objective of this study was to evaluate the suitability of capillary blood obtained by a minimally invasive lancet technique to detect subclinical ketosis in 49 prepartum and 191 postpartum Holstein-Friesian cows using 3 different electronic hand-held devices [FreeStyle Precision (FSP, Abbott), GlucoMen LX Plus (GLX, A. Menarini), NovaVet (NOV, Nova Biomedical)]. The β-hydroxybutyrate (BHBA) concentration in serum harvested from coccygeal blood samples was analyzed in a laboratory and used as a reference value. Capillary samples were obtained from the skin of the exterior vulva by using 1 of 3 different lancets. In all samples, the concentration of BHBA was immediately analyzed with all 3 hand-held devices used in random order. All lancets used in the study were eligible for capillary blood collection but differed in the total number of incisions needed. Spearman correlation coefficients between the BHBA concentrations in capillary blood and the reference test were highly significant with 83% for the FSP, 73% for the NOV, and 63% for the GLX. Using capillary blood, the FSP overestimated the mean BHBA concentration compared with the reference test (+0.08 mmol/L), whereas the GLX and NOV underestimated the mean concentration (-0.07 and -0.01 mmol/L). When a BHBA concentration of 1.2 mmol/L in serum was used to define subclinical ketosis, the corresponding analyses of receiver operating characteristics resulted in optimized thresholds for capillary blood of 1.1 mmol/L for the NOV and GLX devices, and of 1.0 mmol/L for the FSP. Based on these thresholds, sensitivities (Se) and specificities (Sp) were 89 and 84% for the NOV, 80 and 89% for the GLX, and 100 and 76% for the FSP. Based on a serum BHBA concentration of 1.4 mmol/L, analyses of receiver operating characteristics resulted in optimized cut-offs of 1.4 mmol/L for the FSP (Se 100%, Sp 92%), 1.3 mmol/L for the NOV (Se 80%, Sp 95%), and 1.1 mmol/L (Se 90%, Sp 85%) for the GLX. Using these optimized thresholds

  12. Miniaturized unified imaging system using bio-inspired fluidic lens

    Science.gov (United States)

    Tsai, Frank S.; Cho, Sung Hwan; Qiao, Wen; Kim, Nam-Hyong; Lo, Yu-Hwa

    2008-08-01

    Miniaturized imaging systems have become ubiquitous as they are found in an ever-increasing number of devices, such as cellular phones, personal digital assistants, and web cameras. Until now, the design and fabrication methodology of such systems have not been significantly different from conventional cameras. The only established method to achieve focusing is by varying the lens distance. On the other hand, the variable-shape crystalline lens found in animal eyes offers inspiration for a more natural way of achieving an optical system with high functionality. Learning from the working concepts of the optics in the animal kingdom, we developed bio-inspired fluidic lenses for a miniature universal imager with auto-focusing, macro, and super-macro capabilities. Because of the enormous dynamic range of fluidic lenses, the miniature camera can even function as a microscope. To compensate for the image quality difference between the central vision and peripheral vision and the shape difference between a solid-state image sensor and a curved retina, we adopted a hybrid design consisting of fluidic lenses for tunability and fixed lenses for aberration and color dispersion correction. A design of the world's smallest surgical camera with 3X optical zoom capabilities is also demonstrated using the approach of hybrid lenses.

  13. A Programmable MicroFluidic Processor: Integrated and Hybrid Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Rose, K A

    2002-05-10

    The Programmable Fluidic Processor (PFP), a device conceived of by researchers at MD Anderson Cancer Center, is a reconfigurable and programmable bio-chemical analysis system designed for handheld operation in a variety of applications. Unlike most microfluidic systems which utilize channels to control fluids, the PFP device is a droplet-based system. The device is based on dielectrophoresis; a fluid transport phenomenon that utilizes mismatched polarizability between a droplet and its medium to induce droplet mobility. In the device, sample carrying droplets are polarized by an array of electrodes, individually addressable by subsurface microelectronics. My research focused on the development of a polymer-based microfluidic injection system for injecting these droplets onto the electrode array. The first of two device generations fabricated at LLNL was designed using extensive research and modeling performed by MD Anderson and Coventor. Fabricating the first generation required several iterations and design changes in order to generate an acceptable device for testing. Difficulties in planar fabrication of the fluidic system and a narrow channel design necessitated these changes. The second generation device incorporated modifications of the previous generation and improved on deficiencies discovered during experimentation with the initial device. Extensive modeling of the injection channels and fluid storage chamber also aided in redesigning the device's microfluidic system. A micromolding technique with interlocking features enabled precise alignments and dimensional control, critical requirements for device optimization. Fabrication of a final device will be fully integrated with the polymer-based microfluidics bonded directly to the silicon-based microelectronics. The optimized design and process flow developed in the trial generations will readily transfer to this approach.

  14. Magnetohydrodynamic actuation of droplets for millimetric planar fluidic systems

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadi, A., E-mail: ali.ahmadi@ubc.ca; McDermid, C. M.; Markley, L. [School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7 (Canada)

    2016-01-04

    In this work, a magnetohydrodynamic method is proposed for the actuation of droplets in small-scale planar fluidic systems, providing an alternative to commonly used methods such as electrowetting-on-dielectric. Elementary droplet-based operations, including transport, merging, and mixing, are demonstrated. The forces acting on millimetric droplets are carefully investigated, with a primary focus on the magnetic actuation force and on the unbalanced capillary forces that arise due to hysteresis. A super-hydrophobic channel is 3D printed to guide the droplets, with thin wires installed as contact electrodes and permanent magnets providing a static magnetic field. It is shown that droplet motion is enhanced by increasing the droplet size and minimizing the electrode contact surface. The effects of channel geometry on threshold voltage and minimum moveable droplet volume are characterized. Finally, the presence of electrolysis is investigated and mitigating strategies are discussed.

  15. Magnetohydrodynamic actuation of droplets for millimetric planar fluidic systems

    Science.gov (United States)

    Ahmadi, A.; McDermid, C. M.; Markley, L.

    2016-01-01

    In this work, a magnetohydrodynamic method is proposed for the actuation of droplets in small-scale planar fluidic systems, providing an alternative to commonly used methods such as electrowetting-on-dielectric. Elementary droplet-based operations, including transport, merging, and mixing, are demonstrated. The forces acting on millimetric droplets are carefully investigated, with a primary focus on the magnetic actuation force and on the unbalanced capillary forces that arise due to hysteresis. A super-hydrophobic channel is 3D printed to guide the droplets, with thin wires installed as contact electrodes and permanent magnets providing a static magnetic field. It is shown that droplet motion is enhanced by increasing the droplet size and minimizing the electrode contact surface. The effects of channel geometry on threshold voltage and minimum moveable droplet volume are characterized. Finally, the presence of electrolysis is investigated and mitigating strategies are discussed.

  16. Fluidics platform and method for sample preparation

    Energy Technology Data Exchange (ETDEWEB)

    Benner, Henry W.; Dzenitis, John M.

    2016-06-21

    Provided herein are fluidics platforms and related methods for performing integrated sample collection and solid-phase extraction of a target component of the sample all in one tube. The fluidics platform comprises a pump, particles for solid-phase extraction and a particle-holding means. The method comprises contacting the sample with one or more reagents in a pump, coupling a particle-holding means to the pump and expelling the waste out of the pump while the particle-holding means retains the particles inside the pump. The fluidics platform and methods herein described allow solid-phase extraction without pipetting and centrifugation.

  17. A Coupled Cavity Micro Fluidic Dye Ring Laser

    OpenAIRE

    Gersborg-Hansen, M.; Balslev, S.; Mortensen, N. A.; Kristensen, A.

    2004-01-01

    We present a laterally emitting, coupled cavity micro fluidic dye ring laser, suitable for integration into lab-on-a-chip micro systems. The micro-fluidic laser has been successfully designed, fabricated, characterized and modelled. The resonator is formed by a micro-fluidic channel bounded by two isosceles triangle mirrors. The micro-fluidic laser structure is defined using photo lithography in 10 microns thick SU-8 polymer on a glass substrate. The micro fluidic channel is sealed by a glass...

  18. Large-scale submicron horizontally aligned single-walled carbon nanotube surface arrays on various substrates produced by a fluidic assembly method

    International Nuclear Information System (INIS)

    Single-walled carbon nanotube (CNT) arrays have been assembled on various substrates over mm-scale surface areas by combining fluidic alignment with soft lithography (micropatterning in capillaries) techniques. The feature size of the nanotube patterns reaches down to submicrometre scale. To this end, tailored substrate surface modification and pre-alignment of chopped CNTs in suspension are highly critical

  19. Large-scale submicron horizontally aligned single-walled carbon nanotube surface arrays on various substrates produced by a fluidic assembly method.

    Science.gov (United States)

    Yan, Y H; Li, S; Chen, L Q; Chan-Park, M B; Zhang, Qing

    2006-11-28

    Single-walled carbon nanotube (CNT) arrays have been assembled on various substrates over mm-scale surface areas by combining fluidic alignment with soft lithography (micropatterning in capillaries) techniques. The feature size of the nanotube patterns reaches down to submicrometre scale. To this end, tailored substrate surface modification and pre-alignment of chopped CNTs in suspension are highly critical. PMID:21727344

  20. Formation of a vertical MOSFET for charge sensing in a Si micro-fluidic channel

    International Nuclear Information System (INIS)

    We have formed a fluidic channel that can be used in micro-fluidic systems and fabricated a 3-dimensional vertical metal-oxide semiconductor field-effect transistor (vertical MOSFET) in the convex corner of a Si micro-fluidic channel by using an anisotropic tetramethyl ammonium hydroxide (TMAH) etching solution. A Au/Cr layer was used for the gate metal and might be useful for detecting charged biomolecules. The electrical characteristics of the vertical MOSFET and its operation as a chemical sensor were investigated. At VDS = -5 V and VGS = -5 V the drain current of the device was -22.5 μA and the threshold voltage was about -1.4 V. A non-planar, non-rectangular vertical MOSFET with a trapezoidal gate was transformed into an equivalent rectangularly based one by using a Schwartz-Christoffel transformation. The LEVEL1 device parameters of the vertical MOSFET were extracted from the measured electrical device characteristics and were used in the SPICE simulation for the vertical MOSFET. The measured and the simulated results for the vertical PMOSFET showed relatively good agreement. When the vertical MOSFET was dipped into a thiol DNA solution, the drain current decreased due to charged biomolecules probably being adsorbed on the gate, which indicates that a vertical MOSFET in a Si micro-fluidic channel might be useful for sensing charged biomolecules.

  1. Water oxygenation by fluidic microbubble generator

    Directory of Open Access Journals (Sweden)

    Tesař V

    2014-03-01

    Full Text Available Oxygenation of water by standard means in waste water processing, in particular to improve the conditions for the micro-organisms that decompose organic wastes is rather ineffective. The classical approach to improvements – decreasing the size of the aerator exits - have already reached their limits. A recent new idea is to decrease the size of the generated air bubbles by oscillating the supplied air flow using fluidic oscillators. Authors made extensive performance measurements with an unusual high-frequency fluidic oscillator, designed to operate within the submersed aerator body. The performance was evaluated by the dynamic method of recording the oxygen concentration increase to saturation in the aerated water. Experiments proved the fluidic generator can demonstrably increase the aeration efficiency 4.22-times compared with the aeration from a plain end of a submerged air supply tube. Despite this significant improvement, the behaviour of the generator still provides an opportunity for further improvements.

  2. Steady cone-jet mode in compound-fluidic electro-flow focusing for fabricating multicompartment microcapsules

    Science.gov (United States)

    Si, Ting; Yin, Chuansheng; Gao, Peng; Li, Guangbin; Ding, Hang; He, Xiaoming; Xie, Bin; Xu, Ronald X.

    2016-01-01

    A compound-fluidic electro-flow focusing (CEFF) process is proposed to produce multicompartment microcapsules. The central device mainly consists of a needle assembly of two parallel inner needles and one outer needle mounted in a gas chamber with their tips facing a small orifice at the bottom of the chamber. As the outer and the inner fluids flow through the needle assembly, a high-speed gas stream elongates the liquid menisci in the vicinity of the orifice entrance. An electric field is further integrated into capillary flow focusing to promote the formation of steady cone-jet mode in a wide range of operation parameters. The multiphase liquid jet is broken up into droplets due to perturbation propagation along the jet surface. To estimate the diameter of the multiphase liquid jet as a function of process parameters, a modified scaling law is derived and experimentally validated. Microcapsules of around 100 μm with an alginate shell and multiple cores at a production rate of 103-105 per second are produced. Technical feasibility of stimulation triggered coalescence and drug release is demonstrated by benchtop experiments. The proposed CEFF process can be potentially used to encapsulate therapeutic agents and biological cargos for controlled micro-reaction and drug delivery.

  3. Fluidic Elements based on Coanda Effect

    Directory of Open Access Journals (Sweden)

    Constantin OLIVOTTO

    2010-12-01

    Full Text Available This paper contains first some definitions and classifications regarding the fluidic elements. Thegeneral current status is presented, nominating the main specific elements based on the Coanda effect developedspecially in Romania. In particularly the development of an original bistable element using industrial compressedair at industrial pressure supply is presented. The function of this element is based on the controlled attachmentof the main jet at a curved wall through the Coanda effect. The methods used for particular calculation andexperiments are nominated. The main application of these elements was to develop a specific execution element:a fluidic step–by-step motor based on the Coanda effect.

  4. Inside needle capillary adsorption trap device for headspace solid-phase dynamic extraction based on polyaniline/hexagonally ordered silica nanocomposite.

    Science.gov (United States)

    Gholivand, Mohammad Bagher; Abolghasemi, Mir Mahdi

    2012-03-01

    Highly porous polyaniline/hexagonally ordered silica sorbent was used for fabrication of the inside needle capillary adsorption trap (INCAT) device. Polyaniline/SBA-15 nanocomposite was synthesized via chemical polymerization technique. The fabricated INCAT device was evaluated to the extraction of some polycyclic aromatic hydrocarbons (PAHs) from aqueous sample solutions in combination with gas chromatography (GC)-mass spectrometry (MS). A one at-the-time optimization strategy was applied for optimizing the important extraction parameters such as extraction temperature, extraction time, ionic strength, sampling flow rate, desorption time, and desorption temperature. In optimum conditions (extraction temperature 55 °C, extraction time 20 min, ionic strength 20% (w/v), flow rate 4.5 mL min(-1), desorption temperature 270 °C, desorption time 3 min) the repeatability for one INCAT device (n = 4), expressed as relative standard deviation, was between 4.2 and 10.2% for the tested compounds. The quantitation limits for the studied compounds were between 1 and 5 pg mL(-1). The developed method was successfully applied to spring water sample which was spiked with PAHs with the relative recovery percentages of 87.3-109.1%. The developed method offers the advantage of being simple to use, with shorter analysis times, lower cost of equipment, and thermal stability. PMID:22517641

  5. Investigation of combustion control in a dump combustor using the feedback free fluidic oscillator

    Science.gov (United States)

    Meier, Eric J.

    The feedback free fluidic oscillator uses the unsteady nature of two colliding jets to create a single oscillating outlet jet with a wide sweep angle. These devices have the potential to provide additional combustion control, boundary layer control, thrust vectoring, and industrial flow deflection. Two-dimensional computational fluid dynamics, CFD, was used to analyze the jet oscillation frequency over a range of operating conditions and to determine the effect that geometric changes in the oscillator design have on the frequency. Results presented illustrate the changes in jet oscillation frequency with gas type, gas temperature, operating pressure, pressure ratio across the oscillator, aspect ratio of the oscillator, and the frequency trends with various changes to the oscillator geometry. A fluidic oscillator was designed and integrated into single element rocket combustor with the goal of suppressing longitudinal combustion instabilities. An array of nine fluidic oscillators was tested to mimic modulated secondary oxidizer injection into the dump plane using 15% of the oxidizer flow. The combustor has a coaxial injector that uses gaseous methane and decomposed hydrogen peroxide at an O/F of 11.66. A sonic choke plate on an actuator arm allows for continuous adjustment of the oxidizer post acoustics for studying a variety of instability magnitudes. The fluidic oscillator unsteady outlet jet performance is compared with equivalent steady jet injection and a baseline design with no secondary oxidizer injection. At the most unstable operating conditions, the unsteady outlet jet saw a 60% reduction in the instability pressure oscillation magnitude when compared to the steady jet and baseline data. The results indicate open loop propellant modulation for combustion control can be achieved through fluidic devices that require no moving parts or electrical power to operate. Three-dimensional computational fluid dynamics, 3-D CFD, was conducted to determine the

  6. Fabrication of inorganic-organic hybrid polymer micro and nanostructures for fluidic applications

    OpenAIRE

    Aura, Susanna

    2011-01-01

    Microfluidics is a rapidly developing branch of microtechnology with applications in chemistry, biology, medicine and other sciences. One major trend in fluidics has been the miniaturization of analytical devices. Miniaturization improves performance, mainly speed and sensitivity, and also reduces the required sample volumes. Initially microfluidic devices were fabricated from silicon and glass using microfabrication methods borrowed from the integrated circuits industry. But polymers are gai...

  7. Picosecond Laser Machining of Metallic and Polymer Substrates for Fluidic Driven Self-Alignment

    Science.gov (United States)

    Römer, G. R. B. E.; Cerro, D. Arnaldo Del; Pohl, R.; Chang, B.; Liimatainen, V.; Zhou, Q.; Veld, A. J. Huis In `t.

    Fluidic self-alignment of micro-components relies on creating a receptor site that is able to confine a liquid droplet. When a micro-component is brought in contact with the droplet, capillary forces move the component to its final position. A method to stop the advancing of a liquid from a receptor site, consists of creating geometrical features, such as edges around the site. A picosecond pulsed laser source was used to create suitable edges in a metallic and a polyimide substrate. Subsequently, the self-alignment capabilities of these sites were tested. The receptor sites in polyimide showed the highest success rate.

  8. Picosecond Laser Machining of Metallic and Polymer Substrates for Fluidic Driven Self-Alignment

    OpenAIRE

    Römer, G.R.B.E.; Cerro, D. Arnaldo Del; Pohl, R.; Chang, B.; Liimatainen, V.; Q. Zhou; Veld, A.J. Huis In ‘t

    2012-01-01

    Fluidic self-alignment of micro-components relies on creating a receptor site that is able to confine a liquid droplet. When a micro-component is brought in contact with the droplet, capillary forces move the component to its final position. A method to stop the advancing of a liquid from a receptor site, consists of creating geometrical features, such as edges around the site. A picosecond pulsed laser source was used to create suitable edges in a metallic and a polyimide substrate. Subseque...

  9. Atomiser with excitation by a fluidic oscillator

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav; Hykl, Jiří

    Brno: Brno University of Technology , 2014 - (Fuis, V.), s. 656-659 ISBN 978-80-214-4871-1. ISSN 1805-8248. [Engineering Mechanics 2014 /20./. Svratka (CZ), 12.05.2014-15.05.2014] R&D Projects: GA ČR GA13-23046S Institutional support: RVO:61388998 Keywords : droplets * atomizer * fluidic oscillator Subject RIV: BK - Fluid Dynamics

  10. Variable recruitment fluidic artificial muscles: modeling and experiments

    International Nuclear Information System (INIS)

    We investigate taking advantage of the lightweight, compliant nature of fluidic artificial muscles to create variable recruitment actuators in the form of artificial muscle bundles. Several actuator elements at different diameter scales are packaged to act as a single actuator device. The actuator elements of the bundle can be connected to the fluidic control circuit so that different groups of actuator elements, much like individual muscle fibers, can be activated independently depending on the required force output and motion. This novel actuation concept allows us to save energy by effectively impedance matching the active size of the actuators on the fly based on the instantaneous required load. This design also allows a single bundled actuator to operate in substantially different force regimes, which could be valuable for robots that need to perform a wide variety of tasks and interact safely with humans. This paper proposes, models and analyzes the actuation efficiency of this actuator concept. The analysis shows that variable recruitment operation can create an actuator that reduces throttling valve losses to operate more efficiently over a broader range of its force–strain operating space. We also present preliminary results of the design, fabrication and experimental characterization of three such bioinspired variable recruitment actuator prototypes. (paper)

  11. Design and validation of an ambulatory system for the measurement of the microcirculation in the capillaries: microHematron device.

    Science.gov (United States)

    Toumi, Dareen; Gehin, Claudine; Dittmar, Andre; McAdams, Eric

    2009-01-01

    The non-invasive Hematron sensor is an active sensor used in studying skin blood flow (SBF) by measuring thermal conductivity of living tissues. Up to now, the Hematron device was composed of the Hematron probe and a heavy analog conditioning electronics. This paper presents the design, realization and validation of an ambulatory device (microHematron) associated with the original Hematron probe. The electronic architecture is based on a Programmable System on Chip (PSoC), which contributes in reducing the number of discrete components, and consequently, the electronic conditioning circuit of Hematron. The microHematron device can be worn on the wrist of the patient thanks to its size (4x3x1cm3) compared to the non-ambulatory conditioning electronics sized 20x30x20cm3. In addition, data can be stored in a microSD card or transmitted using a ZigBee module. The validation of the microHematron device was performed using the analog conditioning electronics as a reference. Experiments were performed first on a physical model reproducing microcirculation in order to characterize the linearity of the thermal conductivity as a function of water flow. Then, two experiments were hold in-vivo conditions highlighting the performances of this new device. In a first experiment, effects of mental calculation on effective tissue perfusion were measured and in a second one, effects of an anti-cellulite cream on micro-vascularisation and skin temperature were studied. PMID:19963806

  12. Short capillary tubing as fiber optic sensor of viscosity of liquids

    Science.gov (United States)

    Borecki, Michal; Korwin Pawlowski, Michael L.; Beblowska, Maria; Jakubowski, Andrzej

    2007-05-01

    Optical capillaries are used in capillary gas and liquid chromatography, capillary electrophoresis, absorbance spectroscopy, Raman spectroscopy etc. These micro-fluidic methods find applications in biotechnologies, medical diagnostic, drug discovery and environmental sciences. In the presented work we discuss some aspects of light guidance in capillary tubing made from silica glass or Teflon AF. The wide range of capillary constructions allows them to be used advantageously in specific applications. We have analyzed both theoretically and experimentally partially liquid filled optical capillaries as fiber optic sensor elements in laser light transmission and reflection conditions at 670, 1310 and 1550 nm. We have shown that the light transmission properties and signal in the reflectometric mode of work depend on capillary construction, their length and position of inserted liquid drop. The results obtained by us show that capillary tubing can be used as sensing elements in optical fiber sensors of surface tension and viscosity of small liquid samples with volume below 10 -8 cm 3.

  13. Design and testing of micro fluidic chemical analysis chip integrated with micro valveless pump

    Institute of Scientific and Technical Information of China (English)

    FU; Xin; XIE; Haibo; YANG; Huayong; JIA; Zhijian; FANG; Qun

    2005-01-01

    A new structure and working principle of the chip integrated with micro valveless pump for capillary electrophoresis was proposed in this paper. The micro valveless pump with plane structure has advantages of simple structure, and the process technology is compatible with existing micro chips for capillary electrophoresis. Based upon the mathematical model, simulation study of micro pump was carried out to investigate the influence of structural parameters on flow characteristics, and the performance of the integrated micro pump was also tested with different control parameters. The simulation results agree with the experimental results. Three samples, which are amino acid, fluorescein and buffer solution, have been examined with this chip. The results of the primary experiments showed that the micro valveless pump was promising in the integration and automatization of miniature integrated fluidic systems.

  14. Opto-fluidic flow analysis for monitoring of immunity levels

    Science.gov (United States)

    Mohan, A.; Bharadwaj, A.,; Marshkole, N.; Saiyed, T.; Prabhakar, A.

    2015-06-01

    We describes the design, development and testing of a cost effective and miniaturized version of a flow analyzer. It is designed to detect fluorescence labeled immunocytes in human blood sample. Availing of advancements in micro fluidics and nanolithographic technique, we fabricated a PDMS based device with integrated micro channels for accommodating the optical fibers. The lensed fibers serves as the waveguides for illumination and collection of laser and scattered signals respectively. As a cell crosses the interrogation point the forward scatter, side scatter and fluorescence are detected. Photomultiplier tubes used in conventional flow cytometers have been replaced here with APDs (avalanche photo detectors) and supplemented with digital signal processing. The prototype was tested with different sized polymer beads as well as the live cells.

  15. Micro-fluidic chip for cell sorting

    Czech Academy of Sciences Publication Activity Database

    Šerý, Mojmír; Pilát, Zdeněk; Ježek, Jan; Kaňka, Jan; Zemánek, Pavel

    Munich : EOS, 2015. ISBN 978-952-93-5069-8. [EOS Conferences at the World of Photonics Congress 2015. Munich (DE), 22.06.2015-25.06.2015] R&D Projects: GA MŠk(CZ) LD14069; GA MŠk(CZ) LO1212; GA TA ČR TA03010642; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : Micro-fluidic chip * cell sorting Subject RIV: BH - Optics, Masers, Lasers

  16. LITTLE KNOWN PRINCIPLES OF FLUIDIC PUMPING

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav

    Vol. 1. Liberec : Technical University of Liberec, 2010 - (Vít, T.; Dančová, P.), s. 716-731 ISBN 978-80-7372-670-6. [International Conference Experimental Fluid Mechanics 2010. Liberec (CZ), 24.11.2010-26.11.2010] R&D Projects: GA ČR GA101/07/1499; GA AV ČR IAA200760705 Institutional research plan: CEZ:AV0Z20760514 Keywords : pumps * fluidics * hazardous liquids Subject RIV: BK - Fluid Dynamics

  17. Fluidic Relaxation Oscillators for Microbubble Generation

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav

    Praha: Institute of Theoretical and Applied Mechanics ASCR, v. v. i, 2015 - (Náprstek, J.; Fischer, C.). s. 324-325 ISBN 978-80-86246-42-0. ISSN 1805-8248 R&D Projects: GA ČR GA13-23046S; GA ČR GA14-08888S Institutional support: RVO:61388998 Keywords : fluidics * oscillators * relaxation Subject RIV: BK - Fluid Dynamics

  18. Plasma-discharge control in fluidics

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav; Šonský, Jiří

    Praha: Ústav termomechaniky AV ČR, v. v. i., 2015 - (Šimurda, D.; Bodnár, T.), s. 221-236 ISBN 978-80-87012-55-0. ISSN 2336-5781. [Topical Problems of Fluid Mechanics 2015. Praha (CZ), 11.02.2015-13.02.2015] R&D Projects: GA ČR GA13-23046S Institutional support: RVO:61388998 Keywords : fluidics * plasma dicharge * dielectric barrier Subject RIV: BK - Fluid Dynamics

  19. Fluidic Elements based on Coanda Effect

    OpenAIRE

    Constantin OLIVOTTO

    2010-01-01

    This paper contains first some definitions and classifications regarding the fluidic elements. Thegeneral current status is presented, nominating the main specific elements based on the Coanda effect developedspecially in Romania. In particularly the development of an original bistable element using industrial compressedair at industrial pressure supply is presented. The function of this element is based on the controlled attachmentof the main jet at a curved wall through the Coanda effect. T...

  20. Water oxygenation by fluidic microbubble generator

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav; Peszyński, K.

    Liberec : Technical University of Liberec, 2013 - (Vít, T.; Dančová, P.; Novotný, P.), s. 544-549 ISBN 978-80-260-5375-0. [Experimental Fluid Mechanics 2013. Kutná hora (CZ), 19.11.2013-22.11.2013] R&D Projects: GA TA ČR TA02020795; GA ČR GA13-23046S Institutional support: RVO:61388998 Keywords : fluidics * microbubble generator * oxygenation Subject RIV: BK - Fluid Dynamics

  1. The laboratory stand for didactic and research of a Fluidic Muscle

    Directory of Open Access Journals (Sweden)

    P. Zub

    2007-12-01

    Full Text Available Purpose: The aim of this work was to design and build a laboratory stand dedicated for didactic and research purposes connected with a Fluidic Muscle. The stand is placed at the Electropneumatic and PLC controllers Laboratory [10,11,12] of the Institute of Engineering Processes Automation and Integrated Manufacturing Systems of the Faculty of Mechanical Engineering of the Silesian University of Technology, Gliwice, Poland.Design/methodology/approach: The stand was designed and visualised by utilisation of professional CAD software – CATIA and a fluidic muscle was chosen according to a MuscleSIM programme of FESTO company.Findings: The device integrates the elements which are indispensable determinant of contemporary industry and the main aim of its construction was to bring closer conceptions and ideas connected with the construction and the outworking of the fluidic muscle, problems of proportional pressure control, visualisation and control of the industrial processes as well as making possible of carrying out the investigations and experiments on these elements.Research limitations/implications: The module structure of the research stand gives possibility to make its further development by adding extra modules that can be easily mounted on plates, which will make possible the implementation of series of individual positions controlled by one PLC. Thanks to the applied system of visualisation, switching among synoptic screens is possible. The visualisation represents every separate module of the stand and so, with the help of one operator position, gives possibility to control every chosen module of the whole device.Originality/value: The mechatronic didactic and research device introduced in the paper represents the new approach to the problem of visualisation and control of the fluidic muscle and constitutes the perfect tool of the aided didactic process in the Institute’s laboratory

  2. Interaction of turbulence with flexible beams in fluidic energy harvesting

    Science.gov (United States)

    Danesh Yazdi, Amir Hossein

    Advances in the development and fabrication of microelectronics have enhanced the energy efficiency of these devices to such an extent that they can now operate at very low power levels, typically on the order of a few microwatts or less. Batteries are primarily thought of as the most convenient source of power for electronic devices, but in instances where a device needs to be deployed in a difficult-to-access location such as under water, the added weight and especially maintenance of such a power source becomes costly. A solution that avoids this problem and is particularly attractive in a "deploy & forget" setting involves designing a device that continuously harvests energy from the surrounding environment. Piezoelectric energy harvesters, which employ the direct piezoelectric effect to convert mechanical strain into electrical energy, have garnered a great deal of attention in the literature. This work presents an overview of the experimental and analytical results related to fluidic energy extraction from vortex and turbulent flow using piezoelectric cantilever beams. In particular, the development of the FTGF (Fourier Transform-Green's Function) solution approach to the coupled, continuous electromechanical equations governing piezoelectric cantilever beams and the associated TFB (Train of Frozen Boxcars) method, which models the flow of vortices and turbulent eddies over the beams, is discussed. In addition, the behavior of fluidic energy harvesters in decaying isotropic, homogeneous grid turbulence generated by passive, semi-passive and active grids is examined and a novel grid-turbulence forcing model is introduced. An expression for the expected power output of the piezoelectric beam is obtained by utilizing this forcing function model in the single degree-of-freedom electromechanical equations. Furthermore, approximate, closed-form solutions to the theoretical expected power are derived from deterministic turbulence forcing models and are compared with

  3. 水射流无损插桩专用机具射流装置设计%Design of the Dedicated Machine Fluidic Device Used for Water Jet Pitching of Pile Without Damage

    Institute of Scientific and Technical Information of China (English)

    吴林峰; 蔡长治; 耿淼蕊

    2014-01-01

    Accordinf to the desifn requirements of Jet equipment used for repeatable assemblinf diversion dike,the Jet device was desifned. This device consisted of thirteen nozzles and Jet board,which could be connected by bolts and prepared concrete pipes. The nozzles contained five straifht nozzles and eifht oblique nozzles,and the exit diameter of nozzle was 16 mm,the lenfth to diameter ratio was 4 and the entrance anfle was 20 defrees. Besides,the thickness of the Jet board was 30 mm and the material chose Q235A. The application results show that it really has an ap-propriately desifn and hifh efficiency of drivinf piles.%根据重复组装式导流桩坝专用射流机具的要求,对其射流装置进行了设计。该射流装置由13个喷嘴和射流板通过螺栓与混凝土预制管桩组成,其中5个直喷嘴、8个斜喷嘴,喷嘴出口直径为16 mm、长径比为4、入口角取20°;射流板厚30 mm,材料为Q235A。应用结果表明:该射流装置设计合理,插桩效率较高。

  4. Capillary electrophoresis

    International Nuclear Information System (INIS)

    After a short historical introduction, the different modes of separation in capillary electrophoresis are explained and illustrated by practical examples. In addition, the most important parameters that can be used to optimize the selectivity of the separation, are discussed. (author) 27 refs.; 8 figs

  5. Fluidic Generator Of Microbubbles – Oscillator With Gas Flow Reversal For A Part Of Period

    Directory of Open Access Journals (Sweden)

    Tesař Václav

    2015-12-01

    Full Text Available Paper presents a fluidic device developed for generation of small (less than 1 mm in diameter microbubbles in a liquid from gas passing gas through small passages. Until now the bubbles are larger than the size of aerator passage exits so that making the passages smaller did not result in obtaining the desirable microbubbles. Analysis of high-speed camera images (obtained with a special lens of large working distance have shown show that the large bubble size is caused by slow ascent motion of very small bubbles so that they get into mutual contact and grow by conjunction. The solution is to pulsate the supplied gas flow by a no-moving-part fluidic oscillator. The generated small bubble is moved back into the aerator passage where it is for a part of oscillation period protected from the conjunction with other, previously generated microbubbles.

  6. Fluidic hydrogen detector production prototype development

    Science.gov (United States)

    Roe, G. W.; Wright, R. E.

    1976-01-01

    A hydrogen gas sensor that can replace catalytic combustion sensors used to detect leaks in the liquid hydrogen transfer systems at Kennedy Space Center was developed. A fluidic sensor concept, based on the principle that the frequency of a fluidic oscillator is proportional to the square root of the molecular weight of its operating fluid, was utilized. To minimize sensitivity to pressure and temperature fluctuations, and to make the sensor specific for hydrogen, two oscillators are used. One oscillator operates on sample gas containing hydrogen, while the other operates on sample gas with the hydrogen converted to steam. The conversion is accomplished with a small catalytic converter. The frequency difference is taken, and the hydrogen concentration computed with a simple digital processing circuit. The output from the sensor is an analog signal proportional to hydrogen content. The sensor is shown to be accurate and insensitive to severe environmental disturbances. It is also specific for hydrogen, even with large helium concentrations in the sample gas.

  7. A universal label-free biosensing platform based on opto-fluidic ring resonators

    Science.gov (United States)

    Zhu, Hongying; White, Ian M.; Suter, Jonathan D.; Gohring, John; Fan, Xudong

    2009-02-01

    Rapid and accurate detection of biomolecules is important for medical diagnosis, pharmaceuticals, homeland security, food quality control, and environmental protection. A simple, low cost and highly sensitive label-free optical biosensor based on opto-fluidic ring resonator (OFRR) has been developed that naturally integrates microfluidics with ring resonators. The OFRR employs a piece of fused silica capillary with a diameter around 100 micrometers. The circular cross section of the capillary forms the ring resonator and light repeatedly travels along the resonator circumference in the form of whispering gallery modes (WGMs) through total internal reflection. When the capillary wall is as thin as a couple of micrometers (interacts with the sample when it flows through the OFRR. In order to detect the target molecules with high specificity, the OFRR inner surface is functionalized with receptors, such as antibodies, peptide-displayed bacteriophage or oligonucleotide DNA probes. The WGM spectral position shifts when biomolecules bind to the OFRR inner surface and change the local refractive index, which provides quantitative and kinetic information about the biomolecule interaction near the OFRR inner surface. The OFRR has been successfully demonstrated for detection of various types of biomoelcuels. Here, we will first introduce the basic operation principle of the OFRR as a sensor and then application examples of the OFRR in the detection of proteins, disease biomarkers, virus, DNA molecules, and cells with high sensitivities will be presented.

  8. Improving acoustic streaming effects in fluidic systems by matching SU-8 and polydimethylsiloxane layers.

    Science.gov (United States)

    Catarino, S O; Minas, G; Miranda, J M

    2016-07-01

    This paper reports the use of acoustic waves for promoting and improving streaming in tridimensional polymethylmethacrylate (PMMA) cuvettes of 15mm width×14mm height×2.5mm thickness. The acoustic waves are generated by a 28μm thick poly(vinylidene fluoride) - PVDF - piezoelectric transducer in its β phase, actuated at its resonance frequency: 40MHz. The acoustic transmission properties of two materials - SU-8 and polydimethylsiloxane (PDMS) - were numerically compared. It was concluded that PDMS inhibits, while SU-8 allows, the transmission of the acoustic waves to the propagation medium. Therefore, by simulating the acoustic transmission properties of different materials, it is possible to preview the acoustic behavior in the fluidic system, which allows the optimization of the best layout design, saving costs and time. This work also presents a comparison between numerical and experimental results of acoustic streaming obtained with that β-PVDF transducer in the movement and in the formation of fluid recirculation in tridimensional closed domains. Differences between the numerical and experimental results are credited to the high sensitivity of acoustic streaming to the experimental conditions and to limitations of the numerical method. The reported study contributes for the improvement of simulation models that can be extremely useful for predicting the acoustic effects of new materials in fluidic devices, as well as for optimizing the transducers and matching layers positioning in a fluidic structure. PMID:27044029

  9. Stability of flowing open fluidic channels

    Directory of Open Access Journals (Sweden)

    Jue Nee Tan

    2013-02-01

    Full Text Available Open fluidic systems have a distinct advantage over enclosed channels in that the fluids exposed nature makes for easy external interaction, this finds uses in introduction of samples by adding liquid droplets or from the surrounding gaseous medium. This work investigates flowing open channels and films, which can potentially make use of the open section of the system as an external interface, before bringing the sample into an enclosed channel. Clearly, in this scenario a key factor is the stability of the flowing open fluid. The open channels investigated include a straight open channel defined by a narrow strip of solid surface, the edges of which allow large contact angle hysteresis, and a wider structure allowing for multiple inputs and outputs. A model is developed for fluid flow, and the findings used to describe the process of failure in both cases.

  10. Fluidic Oscillator Having Decoupled Frequency and Amplitude Control

    Science.gov (United States)

    Koklu, Mehti (Inventor)

    2016-01-01

    A fluidic oscillator having independent frequency and amplitude control includes a fluidic-oscillator main flow channel having a main flow inlet, a main flow outlet, and first and second control ports disposed at opposing sides thereof. A fluidic-oscillator controller has an inlet and outlet. A volume defined by the main flow channel is greater than the volume defined by the controller. A flow diverter coupled to the outlet of the controller defines a first fluid flow path from the controller's outlet to the first control port and defines a second fluid flow path from the controller's outlet to the second control port.

  11. Lattice Boltzmann Modeling of Micro-fluidic Devices

    Energy Technology Data Exchange (ETDEWEB)

    Clague, D S

    2002-01-28

    The results to date do indeed show that the lattice Boltzmann method accurately solves relevant, non-trivial flow problems. The parallelization of both the fluid and the mobile species in flow has enhanced this capability such that it is useful for solving relevant problems in a timely fashion. The initial studies of stationary or capture species revealed evidence of hydrodynamic screening between upstream and downstream particles. Numerical studies reveal that the critical length for which the test particle is hydrodynamically decoupled from upstream and downstream particles is on the order of 30 sphere radii. For mobile species, the LB capability was shown to be naturally suited for predicting the hydrodynamic lift phenomenon (inertial lift). A conversion factor was developed based on scaling arguments to include relevant forces generated by external fields. Using this conversion, an analytic solution for the Dielectrophoretic force was included into the LB capability which enabled the study of Dielectrophoretic particle capture. The Non-Newtonian enhancements have expanded the applicability of the LB capability to more physical systems. Specifically, with the bead-n-spring representation of macromolecules researchers will be able to study chain dynamics in micro-, physiological and Bio-MEMS environments. Furthermore, the ability to capture the shear thinning behavior, without any increase in computational time, positions this capability to be applied to a whole host of new problems involving biofluids.

  12. Lattice Boltzmann Modeling of Micro-fluidic Devices

    International Nuclear Information System (INIS)

    The results to date do indeed show that the lattice Boltzmann method accurately solves relevant, non-trivial flow problems. The parallelization of both the fluid and the mobile species in flow has enhanced this capability such that it is useful for solving relevant problems in a timely fashion. The initial studies of stationary or capture species revealed evidence of hydrodynamic screening between upstream and downstream particles. Numerical studies reveal that the critical length for which the test particle is hydrodynamically decoupled from upstream and downstream particles is on the order of 30 sphere radii. For mobile species, the LB capability was shown to be naturally suited for predicting the hydrodynamic lift phenomenon (inertial lift). A conversion factor was developed based on scaling arguments to include relevant forces generated by external fields. Using this conversion, an analytic solution for the Dielectrophoretic force was included into the LB capability which enabled the study of Dielectrophoretic particle capture. The Non-Newtonian enhancements have expanded the applicability of the LB capability to more physical systems. Specifically, with the bead-n-spring representation of macromolecules researchers will be able to study chain dynamics in micro-, physiological and Bio-MEMS environments. Furthermore, the ability to capture the shear thinning behavior, without any increase in computational time, positions this capability to be applied to a whole host of new problems involving biofluids

  13. On-line coupling of a clean-up device with supported liquid membrane to capillary electrophoresis for direct injection and analysis of serum and plasma samples

    Czech Academy of Sciences Publication Activity Database

    Kubáň, Pavel; Boček, Petr

    2012-01-01

    Roč. 1234, APR 20 (2012), s. 2-8. ISSN 0021-9673 R&D Projects: GA ČR GAP206/10/1219 Institutional research plan: CEZ:AV0Z40310501 Keywords : capillary electrophoresis * on-line sample treatment * supported liquid membranes Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.612, year: 2012

  14. Compact Fluidic Actuator Arrays For Flow Control Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall objective of the proposed research is to design, develop and demonstrate fluidic actuator arrays for aerodynamic separation control and drag reduction....

  15. Compact Fluidic Actuator Arrays for Flow Control Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall objective of the proposed research is to design, develop and demonstrate fluidic actuator arrays for aerodynamic separation control and drag reduction....

  16. Integration of amperometric sensors for microchip capillary electrophoresis application

    International Nuclear Information System (INIS)

    Capillary electrophoresis is a technique for the separation and analysis of chemical compounds. Techniques adopted from the microchip technology knowledge have led to recent developments of electrophoresis system with integration on microchip. Microchip Capillary Electrophoresis (μCE) systems offer a series of advantages as easy integration for Lab-on-a-chip applications, high performance, portability, speed, minimal solvent and sample requirements. A new technological challenge aims at the development of an economic modular microchip capillary electrophoresis systems using separable and independent units concerning the sensor. In this project we worked on the development of an interchangeable amperometric sensor in order to provide a solution to such electrode passivation and facilitating the use of tailored sensors for specific analyte detection besides. Fluidic chips have been machined from cyclic olefin polymer pallets (Zeonor) using a micro-injection molding machine.

  17. The Fluidic Obstacle Technique: An Approach for Enhancing Deflagration-to-Detonation Transition in Pulsed Detonation Engines

    Science.gov (United States)

    Knox, Benjamin W.

    The current research explored the fluidic obstacle technique and obtained relative performance estimates of this new approach for enhancement of de agration-to-detonation transition. Optimization of conventional physical obstacles has comprised the majority of de agration-to-detonation enhancement research but these devices ultimately degrade the performance of a pulsed detonation engine. Therefore, a new approach has been investigated that demonstrates a fluidic obstacle has the potential to maximize turbulence production and enhance the flame acceleration process, leading to successful DDT. A fluidic obstacle is also able to reduce total pressure losses, "heat soaking", and ignition times. A reduction in these variables serves to maximize available thrust. In addition, the fluidic obstacle technique is an active combustion control method capable of adapting to off-design conditions. Steady non-reacting and unsteady reacting flow have been utilized in two facilities, namely the UB Combustion Laboratory and AFRL Detonation Engine Research facility, to provide experimental measurements and observations into the feasibility of this new approach.

  18. Fluidic Electrodynamics: a new approach to EM Propulsion

    OpenAIRE

    Martins, Alexandre A.; Pinheiro, Mario J.

    2008-01-01

    We report on a new methodological approach to electrodynamics based on a fluidic viewpoint. We develop a systematic approach establishing analogies between physical magnitudes and isomorphism (structure-preserving mappings) between systems of equations. This methodological approach allows us to give a general expression for the hydromotive force, thus re-obtaining the Navier-Stokes equation departing from the an appropriate electromotive force. From this ground we offer a fluidic approach to ...

  19. Microbubble generator excited by fluidic oscillator's third harmonic frequency

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav

    2014-01-01

    Roč. 92, č. 9 (2014), s. 1603-1615. ISSN 0263-8762 R&D Projects: GA ČR GA13-23046S Institutional support: RVO:61388998 Keywords : fluidic oscillator * microbubble generation * fluidic feedback loop Subject RIV: BK - Fluid Dynamics Impact factor: 2.348, year: 2014 http://dx.doi.org/10.1016/j.cherd.2013.12.004

  20. A Coupled Cavity Micro Fluidic Dye Ring Laser

    CERN Document Server

    Gersborg-Hansen, M; Mortensen, N A; Kristensen, A

    2004-01-01

    We present a laterally emitting, coupled cavity micro fluidic dye ring laser, suitable for integration into lab-on-a-chip micro systems. The micro-fluidic laser has been successfully designed, fabricated, characterized and modelled. The resonator is formed by a micro-fluidic channel bounded by two isosceles triangle mirrors. The micro-fluidic laser structure is defined using photo lithography in 10 microns thick SU-8 polymer on a glass substrate. The micro fluidic channel is sealed by a glass lid, using PMMA adhesive bonding. The laser is characterized using the laser dye Rhodamine 6G dissolved in ethanol or ethylene glycol as the active gain medium, which is pumped through the micro-fluidic channel and laser resonator. The dye laser is optically pumped normal to the chip plane at 532 nm by a pulsed, frequency doubled Nd:YAG laser and lasing is observed with a threshold pump pulse energy flux of around 55 micro-Joule/square-milimeter. The lasing is multi-mode, and the laser has switchable output coupling into...

  1. Numerical model for light propagation and light intensity distribution inside coated fused silica capillaries

    Science.gov (United States)

    Piasecki, Tomasz; Macka, Mirek; Paull, Brett; Brabazon, Dermot

    2011-07-01

    Numerical simulations of light propagation through capillaries have been reported to a limited extent in the literature for uses such as flow-cell design. These have been restricted to prediction of light path for very specific cases to date. In this paper, a new numerical model of light propagation through multi-walled cylindrical systems, to represent coated and uncoated capillaries is presented. This model allows for light ray paths and light intensity distribution within the capillary to be predicted. Macro-scale (using PMMA and PC cylinders) and micro-scale (using PTFE coated fused silica capillaries) experiments were conducted to validate the model's accuracy. These experimental validations have shown encouragingly good agreement between theoretical predictions and measured results, which could allow for optimisation of associated regions for monolith synthesis and use in fluidic chromatography, optical detection systems and flow cells for capillary electrophoresis and flow injection analysis.

  2. Tubular astigmatism-tunable fluidic lens.

    Science.gov (United States)

    Kopp, Daniel; Zappe, Hans

    2016-06-15

    We demonstrate a new means to fabricate three-dimensional liquid lenses which may be tuned in focal length and astigmatism. Using actuation by electrowetting-on-dielectrics, astigmatism in arbitrary directions may be tuned independently, with almost no cross talk between orthogonal orientations. The lens is based on electrodes structured on planar polyimide foils and subsequently rolled, enabling high-resolution patterning of complex electrodes along the azimuthal and radial directions of the lens. Based on a design established through fluidic and optical simulations, the astigmatism tuning is experimentally verified by a change of the corresponding Zernike coefficients measured using a Shack-Hartmann wavefront sensor. It was seen that the back focal length can be tuned by 5 mm and 0° and 45° astigmatism by 3 μm through application of voltages in the range of 50  Vrms. It was observed that the cross talk with other aberrations is very low, suggesting a novel means for astigmatism control in imaging systems. PMID:27304276

  3. Fluidic energy harvesting beams in grid turbulence

    Science.gov (United States)

    Danesh-Yazdi, A. H.; Goushcha, O.; Elvin, N.; Andreopoulos, Y.

    2015-08-01

    Much of the recent research involving fluidic energy harvesters based on piezoelectricity has focused on excitation through vortex-induced vibration while turbulence-induced excitation has attracted very little attention, and virtually no previous work exists on excitation due to grid-generated turbulence. The present experiments involve placing several piezoelectric cantilever beams of various dimensions and properties in flows where turbulence is generated by passive, active, or semi-passive grids, the latter having a novel design that significantly improves turbulence generation compared to the passive grid and is much less complex than the active grid. We experimentally show for the first time that the average power harvested by a piezoelectric cantilever beam placed in decaying isotropic, homogeneous turbulence depends on mean velocity, velocity and length scales of turbulence as well as the electromechanical properties of the beam. The output power can be modeled as a power law with respect to the distance of the beam from the grid. Furthermore, we show that the rate of decay of this power law closely follows the rate of decay of the turbulent kinetic energy. We also introduce a forcing function used to model approximately the turbulent eddies moving over the cantilever beam and observe that the feedback from the beam motion onto the flow is virtually negligible for most of the cases considered, indicating an effectively one-way interaction for small-velocity fluctuations.

  4. Laser-based capillary polarimeter.

    Science.gov (United States)

    Swinney, K; Hankins, J; Bornhop, D J

    1999-01-01

    A laser-based capillary polarimeter has been configured to allow for the detection of optically active molecules in capillary tubes with a characteristic inner diameter of 250 microm and a 39-nL (10(-9)) sample volume. The simple optical configuration consists of a HeNe laser, polarizing optic, fused-silica capillary, and charge-coupled device (CCD) camera in communication with a laser beam analyzer. The capillary scale polarimeter is based on the interaction between a polarized laser beam and a capillary tube, which results in a 360 degree fan of scattered light. This array of scattered light contains a set of interference fringe, which respond in a reproducible manner to changes in solute optical activity. The polarimetric utility of the instrument will be demonstrated by the analysis of two optically active solutes, R-mandelic acid and D-glucose, in addition to the nonoptically active control, glycerol. The polarimetric response of the system is quantifiable with detection limits facilitating 1.7 x 10(-3) M or 68 x 10(-12) nmol (7 psi 10(-9) g) sensitivity. PMID:11315158

  5. Simple Check Valves for Microfluidic Devices

    Science.gov (United States)

    Willis, Peter A.; Greer, Harold F.; Smith, J. Anthony

    2010-01-01

    A simple design concept for check valves has been adopted for microfluidic devices that consist mostly of (1) deformable fluorocarbon polymer membranes sandwiched between (2) borosilicate float glass wafers into which channels, valve seats, and holes have been etched. The first microfluidic devices in which these check valves are intended to be used are micro-capillary electrophoresis (microCE) devices undergoing development for use on Mars in detecting compounds indicative of life. In this application, it will be necessary to store some liquid samples in reservoirs in the devices for subsequent laboratory analysis, and check valves are needed to prevent cross-contamination of the samples. The simple check-valve design concept is also applicable to other microfluidic devices and to fluidic devices in general. These check valves are simplified microscopic versions of conventional rubber- flap check valves that are parts of numerous industrial and consumer products. These check valves are fabricated, not as separate components, but as integral parts of microfluidic devices. A check valve according to this concept consists of suitably shaped portions of a deformable membrane and the two glass wafers between which the membrane is sandwiched (see figure). The valve flap is formed by making an approximately semicircular cut in the membrane. The flap is centered over a hole in the lower glass wafer, through which hole the liquid in question is intended to flow upward into a wider hole, channel, or reservoir in the upper glass wafer. The radius of the cut exceeds the radius of the hole by an amount large enough to prevent settling of the flap into the hole. As in a conventional rubber-flap check valve, back pressure in the liquid pushes the flap against the valve seat (in this case, the valve seat is the adjacent surface of the lower glass wafer), thereby forming a seal that prevents backflow.

  6. Viscosity measurement in the capillary tube viscometer under unsteady flow

    International Nuclear Information System (INIS)

    The objective of the present study is to develop a new device that the viscous characteristics of fluids are determined by applying the unsteady flow concept to the traditional capillary tube viscometer. The capillary tube viscometer consists of a small cylindrical reservoir, capillary tube, a load cell system that measures the mass flow rate, interfaces, and computer. Due to the small size of the reservoir the height of liquid in the reservoir decreases as soon as the liquid in the reservoir drains out through the capillary and the mass flow rate in the capillary decreases as the hydrostatic pressure in the reservoir decreases resulting in a decrease of the shear rate in the capillary tube. The instantaneous shear rate and driving force in the capillary tube are determined by measuring the mass flow rate through the capillary, and the fluid viscosity is determined from the measured flow rate and the driving force

  7. Experimental and analytical investigation of a fluidic power generator

    Science.gov (United States)

    Sarohia, V.; Bernal, L.; Beauchamp, R. B.

    1981-01-01

    A combined experimental and analytical investigation was performed to understand the various fluid processes associated with the conversion of flow energy into electric power in a fluidic generator. Experiments were performed under flight-simulated laboratory conditions and results were compared with those obtained in the free-flight conditions. It is concluded that the mean mass flow critically controlled the output of the fluidic generator. Cross-correlation of the outputs of transducer data indicate the presence of a standing wave in the tube; the mechanism of oscillation is an acoustic resonance tube phenomenon. A linearized model was constructed coupling the flow behavior of the jet, the jet-layer, the tube, the cavity, and the holes of the fluidic generator. The analytical results also show that the mode of the fluidic power generator is an acoustical resonance phenomenon with the frequency of operation given by f approx = a/4L, where f is the frequency of jet swallowing, a is the average speed of sound in the tube, and L is the length of the tube. Analytical results further indicated that oscillations in the fluidic generator are always damped and consequently there is a forcing of the system in operation.

  8. Research of Dielectric Breakdown Micro fluidic Sampling Chip

    International Nuclear Information System (INIS)

    Micro fluidic chip is mainly driven electrically by external electrode and array electrode, but there are certain disadvantages in both of ways, which affect the promotion and application of micro fluidic technology. This paper discusses a scheme that uses the conductive solution in a microchannel made by PDMS, replacing electrodes and the way of dielectric breakdown to achieve microfluidic chip driver. It could reduce the driving voltage and simplify the chip production process. To prove the feasibility of this method, we produced a micro fluidic chip used in PDMS material with the lithography technology and experimented it. The results showed that using the dielectric breakdown to achieve microfluidic chip driver is feasible, and it has certain application prospect.

  9. Fluidics platform and method for sample preparation and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Benner, W. Henry; Dzenitis, John M.; Bennet, William J.; Baker, Brian R.

    2014-08-19

    Herein provided are fluidics platform and method for sample preparation and analysis. The fluidics platform is capable of analyzing DNA from blood samples using amplification assays such as polymerase-chain-reaction assays and loop-mediated-isothermal-amplification assays. The fluidics platform can also be used for other types of assays and analyzes. In some embodiments, a sample in a sealed tube can be inserted directly. The following isolation, detection, and analyzes can be performed without a user's intervention. The disclosed platform may also comprises a sample preparation system with a magnetic actuator, a heater, and an air-drying mechanism, and fluid manipulation processes for extraction, washing, elution, assay assembly, assay detection, and cleaning after reactions and between samples.

  10. Silicon micro-fluidic cooling for NA62 GTK pixel detectors

    CERN Document Server

    Romagnoli, G; Brunel, B; Catinaccio, A; Degrange, J; Mapelli, A; Morel, M; Noel, J; Petagna, P

    2015-01-01

    Silicon micro-channel cooling is being studied for efficient thermal management in application fields such as high power computing and 3D electronic integration. This concept has been introduced in 2010 for the thermal management of silicon pixel detectors in high energy physics experiments. Combining the versatility of standard micro-fabrication processes with the high thermal efficiency typical of micro-fluidics, it is possible to produce effective thermal management devices that are well adapted to different detector configurations. The production of very thin cooling devices in silicon enables a minimization of material of the tracking sensors and eliminates mechanical stresses due to the mismatch of the coefficient of thermal expansion between detectors and cooling systems. The NA62 experiment at CERN will be the first high particle physics experiment that will install a micro-cooling system to perform the thermal management of the three detection planes of its Gigatracker pixel detector.

  11. Fluidic Self-Assembly Using Molten Ga Bumps and Its Application to Resonant Tunneling Diodes

    Science.gov (United States)

    Nakano, Jun; Shibata, Tomoaki; Morita, Hiroki; Sakamoto, Hiroshi; Mori, Masayuki; Maezawa, Koichi

    2013-11-01

    Fluidic self-assembly (FSA) using molten metal bumps is one of the most promising heterogeneous integration (HI) technologies, which enable us to integrate devices made of various materials on various substrates. We can fabricate the metal bumps using Ga having diameters of 24, 18, 12, and 8 µm with good yield. Using Ga has significant advantages; especially, it includes no toxic metals. These bumps were used for the FSA process of the metal dummy blocks having a diameter of 18 µm, and a good yield of 84% was obtained all over the substrate of about 1×1 cm2. Finally, we applied this method to the resonant tunneling diode (RTD) to verify good electrical, mechanical, and thermal contacts. The RTD device blocks having a diameter of 24 µm have been successfully assembled using the molten Ga bumps. This method is promising for high-performance RTD integration.

  12. Fluidic valves for variable-configuration gas treatment

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav

    2005-01-01

    Roč. 83, A9 (2005), s. 1111-1121. ISSN 0263-8762 Institutional research plan: CEZ:AV0Z20760514 Keywords : fluidics valves * vehicle emissions * variable configuration Subject RIV: BK - Fluid Dynamics Impact factor: 0.792, year: 2005

  13. Design and simulation of bio fluidic sensor based on photonic crystal

    Directory of Open Access Journals (Sweden)

    Rajini Gaddam Kesava Reddy

    2014-03-01

    Full Text Available Photonic crystals are materials patterned with a periodicity in dielectric constant in one, two and three dimensions and associated with Bragg scattering which can create range of forbidden frequencies called Photonic Band Gap (PBG. By optimizing various parameters and creating defects, we will review the design and characterization of waveguides, optical cavities and multi-fluidic channel devices. We have used such waveguides and laser nanocavities as Biosensor, in which field intensity is strongly dependent on the type of biofliud and its refractive index. This design and simulation technique leads to development of a nanophotonic sensor for detection of biofluids.  In this paper, we have simulated sensing of biofliud in various photonic defect structures with the help of a numerical algorithm called Finite Difference Time Domain (FDTD method. The simulation result shows the high sensitivity for the change in the bio-molecular structure. For developing the complete sensor system, we have to use the MEMS technologies to integrate on-chip fluidic transport components with sensing systems. The resulting biofluidic system will have the capability to continuously monitor the concentration of a large number of relevant biological molecules continuously from ambulatory patients.   Keywords: FDTD, Photonic Crystals, Bio fluid Sensor, Optical Cavity.

  14. Proton beam writing of long, arbitrary structures for micro/nano photonics and fluidics applications

    Science.gov (United States)

    Udalagama, Chammika; Teo, E. J.; Chan, S. F.; Kumar, V. S.; Bettiol, A. A.; Watt, F.

    2011-10-01

    The last decade has seen proton beam writing maturing into a versatile lithographic technique able to produce sub-100 nm, high aspect ratio structures with smooth side walls. However, many applications in the fields of photonics and fluidics require the fabrication of structures with high spatial resolution that extends over several centimetres. This cannot be achieved by purely magnetic or electrostatic beam scanning due to the large off-axis beam aberrations in high demagnification systems. As a result, this has limited us to producing long straight structures using a combination of beam and stage scanning. In this work we have: (1) developed an algorithm to include any arbitrary pattern into the writing process by using a more versatile combination of beam and stage scanning while (2) incorporating the use of the ubiquitous AutoCAD DXF (drawing exchange format) into the design process. We demonstrate the capability of this approach in fabricating structures such as Y-splitters, Mach-Zehnder modulators and microfluidic channels that are over several centimetres in length, in polymer. We also present optimisation of such parameters as scanning speed and scanning loops to improve on the surface roughness of the structures. This work opens up new possibilities of using CAD software in PBW for microphotonics and fluidics device fabrication.

  15. Proton beam writing of long, arbitrary structures for micro/nano photonics and fluidics applications

    Energy Technology Data Exchange (ETDEWEB)

    Udalagama, Chammika, E-mail: chammika@nus.edu.sg [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore (NUS), 2 Science Drive 3, Singapore 117542 (Singapore); Teo, E.J. [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore (NUS), 2 Science Drive 3, Singapore 117542 (Singapore); Chan, S.F. [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore (NUS), 2 Science Drive 3, Singapore 117542 (Singapore); NUS Nanoscience and Nanotechnology Initiative, 2 Science Drive 3, 117542 (Singapore); Department of Chemistry, NUS, 3 Science Drive 3, 117543 (Singapore); Kumar, V.S.; Bettiol, A.A.; Watt, F. [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore (NUS), 2 Science Drive 3, Singapore 117542 (Singapore)

    2011-10-15

    The last decade has seen proton beam writing maturing into a versatile lithographic technique able to produce sub-100 nm, high aspect ratio structures with smooth side walls. However, many applications in the fields of photonics and fluidics require the fabrication of structures with high spatial resolution that extends over several centimetres. This cannot be achieved by purely magnetic or electrostatic beam scanning due to the large off-axis beam aberrations in high demagnification systems. As a result, this has limited us to producing long straight structures using a combination of beam and stage scanning. In this work we have: (1) developed an algorithm to include any arbitrary pattern into the writing process by using a more versatile combination of beam and stage scanning while (2) incorporating the use of the ubiquitous AutoCAD DXF (drawing exchange format) into the design process. We demonstrate the capability of this approach in fabricating structures such as Y-splitters, Mach-Zehnder modulators and microfluidic channels that are over several centimetres in length, in polymer. We also present optimisation of such parameters as scanning speed and scanning loops to improve on the surface roughness of the structures. This work opens up new possibilities of using CAD software in PBW for microphotonics and fluidics device fabrication.

  16. A microscope automated fluidic system to study bacterial processes in real time.

    Directory of Open Access Journals (Sweden)

    Adrien Ducret

    Full Text Available Most time lapse microscopy experiments studying bacterial processes ie growth, progression through the cell cycle and motility have been performed on thin nutrient agar pads. An important limitation of this approach is that dynamic perturbations of the experimental conditions cannot be easily performed. In eukaryotic cell biology, fluidic approaches have been largely used to study the impact of rapid environmental perturbations on live cells and in real time. However, all these approaches are not easily applicable to bacterial cells because the substrata are in all cases specific and also because microfluidics nanotechnology requires a complex lithography for the study of micrometer sized bacterial cells. In fact, in many cases agar is the experimental solid substratum on which bacteria can move or even grow. For these reasons, we designed a novel hybrid micro fluidic device that combines a thin agar pad and a custom flow chamber. By studying several examples, we show that this system allows real time analysis of a broad array of biological processes such as growth, development and motility. Thus, the flow chamber system will be an essential tool to study any process that take place on an agar surface at the single cell level.

  17. Characteristics and fluidic properties of porous monoliths prepared by radiation-induced polymerization for Lab-on-a-Chip applications

    International Nuclear Information System (INIS)

    Porous polymer monoliths were prepared by UV- or EB-induced polymerization of hydroxyethyl methacrylate (HEMA) and ethylene dimethacrylate (EDMA) as network precursors dissolved in porogenic solvent mixtures composed of methanol and n-hexane. The fluidic properties and the pressure resistance of porous monoliths synthesized into 1 mm i.d. capillaries and in 100 μm-wide microchannels were investigated. The influence of photopolymerization time (or electron beam dose) and monomer content on flow properties is discussed on the basis of morphological features. The two types of radiation can be used to achieve the in situ fabrication of monolith inside microsystems. The permeability of the porous monoliths can be adjusted by tuning compositional and processing parameters

  18. Multichannel microchip electrophoresis device fabricated in polycarbonate with an integrated contact conductivity sensor array.

    Science.gov (United States)

    Shadpour, Hamed; Hupert, Mateusz L; Patterson, Donald; Liu, Changgeng; Galloway, Michelle; Stryjewski, Wieslaw; Goettert, Jost; Soper, Steven A

    2007-02-01

    A 16-channel microfluidic chip with an integrated contact conductivity sensor array is presented. The microfluidic network consisted of 16 separation channels that were hot-embossed into polycarbonate (PC) using a high-precision micromilled metal master. All channels were 40 microm deep and 60 microm wide with an effective separation length of 40 mm. A gold (Au) sensor array was lithographically patterned onto a PC cover plate and assembled to the fluidic chip via thermal bonding in such a way that a pair of Au microelectrodes (60 microm wide with a 5 microm spacing) was incorporated into each of the 16 channels and served as independent contact conductivity detectors. The spacing between the corresponding fluidic reservoirs for each separation channel was set to 9 mm, which allowed for loading samples and buffers to all 40 reservoirs situated on the microchip in only five pipetting steps using an 8-channel pipettor. A printed circuit board (PCB) with platinum (Pt) wires was used to distribute the electrophoresis high-voltage to all reservoirs situated on the fluidic chip. Another PCB was used for collecting the conductivity signals from the patterned Au microelectrodes. The device performance was evaluated using microchip capillary zone electrophoresis (mu-CZE) of amino acid, peptide, and protein mixtures as well as oligonucleotides that were separated via microchip capillary electrochromatography (mu-CEC). The separations were performed with an electric field (E) of 90 V/cm and were completed in less than 4 min in all cases. The conductivity detection was carried out using a bipolar pulse voltage waveform with a pulse amplitude of +/-0.6 V and a frequency of 6.0 kHz. The conductivity sensor array concentration limit of detection (SNR = 3) was determined to be 7.1 microM for alanine. The separation efficiency was found to be 6.4 x 10(4), 2.0 x 10(3), 4.8 x 10(3), and 3.4 x 10(2) plates for the mu-CEC of the oligonucleotides and mu-CZE of the amino acids, peptides

  19. Torque Control of Electrorheological Fluidic Actuators

    OpenAIRE

    Vitrani, Marie-Aude; Nikitczuk, Jason; Morel, Guillaume; Mavroidis, Constantinos

    2004-01-01

    In this paper, the experimental closed loop torque control of electro-rheological fluids (ERF) based actuators for haptic applications is performed. ERFs are liquids that respond mechanically to electric fields by changing their properties, such as viscosity and shear stress, electroactively. Using the electrically controlled rheological properties of ERFs, we developed actuators for haptic devices that can resist human operator forces in a controlled and tunable fashion. In this study, the E...

  20. Compound-fluidic electrospray:An efficient method for the fabrication of microcapsules with multicompartment structure

    Institute of Scientific and Technical Information of China (English)

    CHEN HongYan; ZHAO Yong; JIANG Lei

    2009-01-01

    Microcapsules with multiple compartments are of significant importance in many applications such as smart drug delivery,microreactor,complicated sensor,end so on. Here we report a novel compound-fluidic electrospray method that could fabricate multicompartment microcapsules in a single step. The as-prepared microcapsules have multiple compartments inside. The compartments are separated from each other by inner walls made from shell materials,and different content can be independently loaded in each of them without any contact. We assemble a hierarchical compound nozzle by inserting certain numbers of metallic inner capillaries separately into a blunt metal needle. The particular configuration of the compound nozzle induces a completely and independently envelope of core fluids by shell fluid,as a result of which mulicomponent microcapsules with multicompartment structure can be obtained. And also,the number of inner compartments and the corresponding encapsulated components can be controlled by rationally designing the configuration of the compound nozzle.This general method can be readily extended to many other functional materials,especially for the effective encapsulation of active ingredients,such as sensitive and reactive materials.

  1. Soft x-ray amplification in an ablative capillary discharge

    International Nuclear Information System (INIS)

    Soft x-ray amplification in CVI 18.2 nm line is observed in an ablative UHMW-PE capillary discharge. The gain coefficient is measured to be 1.9 cm-1. The electron density is about 2 x 1019 cm-3. This indicates that capillary discharge pumping device can be a source for a compact soft x-ray laser. (author)

  2. An all-glass 12 μm ultra-thin and flexible micro-fluidic chip fabricated by femtosecond laser processing.

    Science.gov (United States)

    Yalikun, Yaxiaer; Hosokawa, Yoichiroh; Iino, Takanori; Tanaka, Yo

    2016-07-01

    This study investigated and established a method, using femtosecond laser processing, to fabricate a 100%-glass-based 12 μm ultra-thin and flexible micro-fluidic chip. First we investigated the suitable pulse energy of the laser to fabricate ultra-thin glass sheets and then we fabricated a prototype glass micro-fluidic chip. Two 1 mm-in-diameter orifices for facilitating alignment in the bonding step and one channel with a width of 20 μm and a length of 25 mm were fabricated in a 4 μm thickness ultra-thin glass sheet using the femtosecond laser; this forms layer 2 in the completed device. Next, the glass sheet with the channel was sandwiched between another glass sheet having an inlet hole and an outlet hole (layer 1) and a base glass sheet (layer 3); the three sheets were bonded to each other, resulting in a flexible, 100%-glass micro-fluidic chip with a thickness of approximately 12 μm and a weight of 3.6 mg. The basic function of the glass micro-fluidic chip was confirmed by flowing 1 and 2 μm in-diameter bead particles through the channel. The fabrication method clearly scales down the thickness limitation of flexible glass devices and offers a possible element technology for fabricating ultra-thin glass devices that can be applied to convection-enhanced delivery, implantable medical devices, wearable devices, and high-resolution imaging of small biological objects such as bacteria and proteins in the channel. PMID:27225521

  3. Micro-fluidic tools for the liquid-liquid extraction of radionuclides in analytical procedures

    International Nuclear Information System (INIS)

    The analyses of radionuclides are in great demand and a cost effective technique for the separation of analytes is required. A micro-scale reactor composed of microchannels fabricated in a microchip was chosen to investigate liquid-liquid extraction reactions driven by three different families of metal extractants: neutral, acidic and ion-pair extractants. The extraction conditions in the micro-fluidic device were considered. These investigations demonstrated that the conventional methodology used for solvent extraction in macro-scale reactors is not directly transposable to micro liquid-liquid extraction systems. However, it is expected that the understanding of the chemical and physical phenomena involved in a reference extraction systems studied in a given selected lab-on-chip will lead us to develop and validate a methodology suitable to miniaturized reactors. (authors)

  4. Development of a continuous-flow fluidic pump

    International Nuclear Information System (INIS)

    A study was made of a fluidic pump which utilizes gas pistons, a venturi-like reverse-flow-diverter, and a planar Y-type flow junction to produce a continuous flow of liquid from a system containing no moving parts. The study included an evaluation of the system performance and of methods for controlling the stability of the fluidic system. A mathematical model of the system was developed for steady-state operation using accepted theories of fluid mechanics. Although more elaborate models are needed for detailed design and optimization of specific systems, the model determined some of the main factors controlling the system performance and will be used in the development of more accurate models. 49 refs., 39 figs., 9 tabs

  5. pH-Sensitive Hydrogel for Micro-Fluidic Valve

    Directory of Open Access Journals (Sweden)

    Zhengzhi Yang

    2012-07-01

    Full Text Available The deformation behavior of a pH-sensitive hydrogel micro-fluidic valve system is investigated using inhomogeneous gel deformation theory, in which the fluid-structure interaction (FSI of the gel solid and fluid flow in the pipe is considered. We use a finite element method with a well adopted hydrogel constitutive equation, which is coded in commercial software, ABAQUS, to simulate the hydrogel valve swelling deformation, while FLUENT is adopted to model the fluid flow in the pipe of the hydrogel valve system. The study demonstrates that FSI significantly affects the gel swelling deformed shapes, fluid flow pressure and velocity patterns. FSI has to be considered in the study on fluid flow regulated by hydrogel microfluidic valve. The study provides a more accurate and adoptable model for future design of new pH-sensitive hydrogel valves, and also gives a useful guideline for further studies on hydrogel fluidic applications.

  6. Fabrication of resonant micro cantilevers with integrated transparent fluidic channel

    DEFF Research Database (Denmark)

    Khan, Faheem; Schmid, Silvan; Davis, Zachary James;

    2011-01-01

    of fluids or detect particles suspended in a fluid by sensing the change in total mass of the structure. The 4 × 4 μm2 integrated microfluidic channel makes it possible to flow a fluid through the channel while the cantilevers are resonating. The movement of any particles (present in the fluid) can......Microfabricated cantilevers are proving their potential as excellent tools for analysis applications. In this paper, we describe the design, fabrication and testing of resonant micro cantilevers with integrated transparent fluidic channels. The cantilevers have been devised to measure the density...... be visually observed through the transparent fluidic channel. The resonant frequency of the cantilever is changed by the fluid inside the channel, due to the change in mass. The shift in the resonant frequency can be translated into a density of the fluid or into the presence of macro/micro molecules...

  7. Fluidic Oscillator Array for Synchronized Oscillating Jet Generation

    Science.gov (United States)

    Koklu, Mehti (Inventor)

    2016-01-01

    A fluidic oscillator array includes a plurality of fluidic-oscillator main flow channels. Each main flow channel has an inlet and an outlet. Each main flow channel has first and second control ports disposed at opposing sides thereof, and has a first and a second feedback ports disposed at opposing sides thereof. The feedback ports are located downstream of the control ports with respect to a direction of a fluid flow through the main flow channel. The system also includes a first fluid accumulator in fluid communication with each first control port and each first feedback port, and a second fluid accumulator in fluid communication with each second control port and each second feedback port.

  8. Intramedullary capillary haemangioma.

    LENUS (Irish Health Repository)

    Kelleher, T

    2012-02-03

    Intramedullary capillary haemangioma is extremely rare and only four cases have been previously reported. We describe a further case, outlining the clinical, radiological, surgical and pathological features.

  9. Assembly of microsystems for optical and fluidic applications

    OpenAIRE

    Haasl, Sjoerd

    2005-01-01

    This thesis addresses assembly issues encountered in optical and fluidic microsystem applications. In optics, the first subject concerns the active alignment of components in optical fibersystems. A solution for reducing the cost of optical component assembly while retaining submicron accuracy is to integrate the alignment mechanism onto the optical substrate. A polymer V-shaped actuator is presented that can carry the weight of the large components - on a micromechanical scale - and that can...

  10. Stochastic regimes in very-low-frequency fluidic oscillator

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav

    Liberec : Polypress s.r.o, 2015 - (Dančová, P.; Veselý, M.), s. 809-816 [Experimental Fluid Mechanics 2015. Praha (CZ), 17.11.2015-20.11.2015] R&D Projects: GA ČR GA13-23046S Institutional support: RVO:61388998 Keywords : fluidic oscillator * ant-parallel operation * stochastic regimes Subject RIV: BK - Fluid Dynamics

  11. Micro-fluidic flow cells for studies of electrochemical reactions

    OpenAIRE

    Ingdal, Mats

    2014-01-01

    Micro fluidic flow cells (MFFCs) are a relatively new technique for characterization of electrochemical reactions. This work includes both techniques for manufacturing the cells and electrochemical characterization of them.Improvements to a previously established procedure for the manufacturing MFFCs included change of template for PDMS-masters from glass slides to silicon wafers and the change from electrodes consisting of titanium gold and platinum to only titanium and platinum. The changes...

  12. Mechanisms of fluidic microbubble generation Part II: Suppressing the conjunctions

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav

    2014-01-01

    Roč. 116, č. 6 (2014), s. 849-856. ISSN 0009-2509 R&D Projects: GA ČR GA13-23046S Institutional support: RVO:61388998 Keywords : bubble coalescence * bubble conjunction * fluidic oscillator Subject RIV: BK - Fluid Dynamics Impact factor: 2.337, year: 2014 http://dx.doi.org/10.1016/j.ces.2014.06.006

  13. Disposable micro-fluidic biosensor array for online parallelized cell adhesion kinetics analysis on quartz crystal resonators

    DEFF Research Database (Denmark)

    Cama, G.; Jacobs, T.; Dimaki, Maria;

    2010-01-01

    In this contribution we present a new disposable micro-fluidic biosensor array for the online analysis of adherent Madin Darby canine kidney (MDCK-II) cells on quartz crystal resonators (QCRs). The device was conceived for the parallel cultivation of cells providing the same experimental conditions...... with focus on the comparison of the resulting sensor signals influenced by different cell distributions on the sensor surface. To prove the assumption of equal flow circulation within the symmetric micro-channel network and support the hypothesis of identical cultivation conditions for the cells living...

  14. An axial approach to detection in capillary electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, J.A.

    1993-05-01

    Our approach involves on-axis illumination of the compounds inside the capillary detection region and is applied to absorbance and fluorescence detection. Absorbance measurements were made by focussing an incident laser beam into one capillary end; by using signals collected over the entire length of analyte band, this enhances the analytical path length of conventional absorbance detection 60x. This instrument offers a 15x improvement in detection limits. Three fluorescence detection experiments are discussed, all of which involve insertion of an optical fiber into capillary. The first uses a high refractive index liquid phase to obtain total internal reflectance along capillary axis, this reducing light scatter. The second uses a charge-coupled device camera for simultaneous imaging of a capillary array (this may be useful in genome sequencing, etc.). The third is a study of fluid motion inside the capillary under pressure-driven and electroosmotic flow. The thesis is divided into four parts. Figs, tabs.

  15. High Performance Wafer-Based Capillary Electrochromatography Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Los Gatos Research proposes to develop wafer-based capillary electrochromatography for lab-on-a-chip (LOC) applications. These microfluidic devices will be...

  16. FLUIDICS: THE ANSWER TO PROBLEMS OF HANDLING HAZARDOUS FLUIDS – A SURVEY

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav

    2012-01-01

    Roč. 2, č. 2 (2012), s. 167-183. ISSN 2041-9031 R&D Projects: GA ČR(CZ) GCP101/11/J019; GA TA ČR TA02020795 Institutional research plan: CEZ:AV0Z20760514 Keywords : fluidic pumps * fluidics * fluidic valves Subject RIV: BK - Fluid Dynamics http://journals.witpress.com/journals.asp?iID=78#papers

  17. Optimal Control of Airfoil Flow Separation using Fluidic Excitation

    Science.gov (United States)

    Shahrabi, Arireza F.

    This thesis deals with the control of flow separation around a symmetric airfoils with the aid of multiple synthetic jet actuators (SJAs). CFD simulation methods have been implemented to uncover the flow separation regimes and associated properties such as frequencies and momentum ratio. In the first part of the study, the SJA was studied thoroughly. Large Eddy Simulations (LES) were performed for one individual cavity; the time history of SJA of the outlet velocity profile and the net momentum imparted to the flow were analyzed. The studied SJA is asymmetrical and operates with the aid of a piezoelectric (PZT) ceramic circular plate actuator. A three-dimensional mesh for the computational domain of the SJA and the surrounding volume was developed and was used to evaluate the details of the airflow conditions inside the SJA as well as at the outlet. The vibration of the PZT ceramic actuator was used as a boundary condition in the computational model to drive the SJA. Particular attention was given to developing a predictive model of the SJA outlet velocity. Results showed that the SJA velocity output is correlated to the PZT ceramic plate vibration, especially for the first frequency mode. SJAs are a particular class of zero net mass flux (ZNMF) fluidic devices with net imparted momentum to the flow. The net momentum imparted to the flow in the separated region is such that positive enhancement during AFC operations is achieved. Flows around the NACA 0015 airfoil were simulated for a range of operating conditions. Attention was given to the active open and closed loop control solutions for an airfoil with SJA at different angles of attack and flap angles. A large number of simulations using RANS & LES models were performed to study the effects of the momentum ratio (Cμ) in the range of 0 to 11% and of the non-dimensional frequency, F+, in the range of 0 to 2 for the control of flow separation at a practical angle of attack and flap angle. The optimum value of C

  18. Capillary Discharge XUV Radiation Source

    Directory of Open Access Journals (Sweden)

    M. Nevrkla

    2009-01-01

    Full Text Available A device producing Z-pinching plasma as a source of XUV radiation is described. Here a ceramic capacitor bank pulse-charged up to 100 kV is discharged through a pre-ionized gas-filled ceramic tube 3.2 mm in diameter and 21 cm in length. The discharge current has amplitude of 20 kA and a rise-time of 65 ns. The apparatus will serve as experimental device for studying of capillary discharge plasma, for testing X-ray optics elements and for investigating the interaction of water-window radiation with biological samples. After optimization it will be able to produce 46.9 nm laser radiation with collision pumped Ne-like argon ions active medium. 

  19. Fluidic vortices generated from optical vortices in a microdroplet cavity

    CERN Document Server

    Bar-David, Daniel; Martin, Leoplodo L; Carmon, Tal

    2016-01-01

    We harness the momentum of light resonating inside a micro-droplet cavity, to experimentally generate micro-flows within the envelope of the drop. We 3D map these optically induced flows by using fluorescent nanoparticles; which reveals circular micro-streams. The flows are parametrically studied and, as expected, exhibit an increase of rotation speed with optical power. The flow is non-circular only when we intentionally break the axial symmetry of the droplet. Besides the fundamental interest in light-flow interactions including in opto-fluidic cavities, the optically controlled flows can serve in bringing analytes into the maximum-power region of the microcavity.

  20. Fluidics: the answer to problems of handling hazardous fluids

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav

    Southampton : WIT Press, 2011 - (Brebbia, C.; Guarascio, M.; Reniers, G.), s. 465-477 ISBN 978-1-84564-522-9. ISSN 1746-4498. [ International Conference on Safety and Security Engineering /4./. Antverpy (BE), 04.07.2011-06.07.2011] R&D Projects: GA ČR(CZ) GCP101/11/J019 Institutional research plan: CEZ:AV0Z20760514 Keywords : fluidics * hazardous liquids * coanda effect Subject RIV: BK - Fluid Dynamics http://www.witpress.com/978-1-84564-522-9.html

  1. pH-Sensitive Hydrogel for Micro-Fluidic Valve

    OpenAIRE

    Zhengzhi Yang; Haiyan Miao; Zhiwei Ding; Somsak Swaddiwudhipong; Yan Zhang; Zishun Liu

    2012-01-01

    The deformation behavior of a pH-sensitive hydrogel micro-fluidic valve system is investigated using inhomogeneous gel deformation theory, in which the fluid-structure interaction (FSI) of the gel solid and fluid flow in the pipe is considered. We use a finite element method with a well adopted hydrogel constitutive equation, which is coded in commercial software, ABAQUS, to simulate the hydrogel valve swelling deformation, while FLUENT is adopted to model the fluid flow in the pipe of the hy...

  2. Capillary saturation and desaturation.

    Science.gov (United States)

    Hilfer, R; Armstrong, R T; Berg, S; Georgiadis, A; Ott, H

    2015-12-01

    Capillary desaturation experiments produce disconnected (trapped) ganglia of mesoscopic sizes intermediate between pore size and system size. Experimental evidence for interactions between these mesoscale clusters during desaturation is analyzed and discussed within the established microscopic and macroscopic laws of Newton, Young-Laplace, and Darcy. A theoretical expression for capillary number correlations is introduced that seems to have remained unnoticed. It expresses capillary desaturation curves in terms of stationary capillary pressures and relative permeabilities. The theoretical expression shows that the plateau saturation in capillary desaturation curves may in general differ from the residual nonwetting saturation defined through the saturation limit of the main hysteresis loop. Hysteresis effects as well as the difference between wetting and nonwetting fluids are introduced into the analysis of capillary desaturation experiments. The article examines experiments with different desaturation protocols and discusses the existence of a mesoscopic length scale intermediate between pore scale and sample scale. The theoretical expression is derived entirely within the existing traditional theory of two-phase flow in porous media and compared to a recent experiment. PMID:26764820

  3. Capillary saturation and desaturation

    Science.gov (United States)

    Hilfer, R.; Armstrong, R. T.; Berg, S.; Georgiadis, A.; Ott, H.

    2015-12-01

    Capillary desaturation experiments produce disconnected (trapped) ganglia of mesoscopic sizes intermediate between pore size and system size. Experimental evidence for interactions between these mesoscale clusters during desaturation is analyzed and discussed within the established microscopic and macroscopic laws of Newton, Young-Laplace, and Darcy. A theoretical expression for capillary number correlations is introduced that seems to have remained unnoticed. It expresses capillary desaturation curves in terms of stationary capillary pressures and relative permeabilities. The theoretical expression shows that the plateau saturation in capillary desaturation curves may in general differ from the residual nonwetting saturation defined through the saturation limit of the main hysteresis loop. Hysteresis effects as well as the difference between wetting and nonwetting fluids are introduced into the analysis of capillary desaturation experiments. The article examines experiments with different desaturation protocols and discusses the existence of a mesoscopic length scale intermediate between pore scale and sample scale. The theoretical expression is derived entirely within the existing traditional theory of two-phase flow in porous media and compared to a recent experiment.

  4. Fluidic Force Discrimination Assays: A New Technology for Tetrodotoxin Detection

    Directory of Open Access Journals (Sweden)

    Cy R. Tamanaha

    2010-03-01

    Full Text Available Tetrodotoxin (TTX is a low molecular weight (~319 Da neurotoxin found in a number of animal species, including pufferfish. Protection from toxin tainted food stuffs requires rapid, sensitive, and specific diagnostic tests. An emerging technique for the detection of both proteins and nucleic acids is Fluidic Force Discrimination (FFD assays. This simple and rapid method typically uses a sandwich immunoassay format labeled with micrometer-diameter beads and has the novel capability of removing nonspecifically attached beads under controlled, fluidic conditions. This technique allows for near real-time, multiplexed analysis at levels of detection that exceed many of the conventional transduction methods (e.g., ELISAs. In addition, the large linear dynamic range afforded by FFD should decrease the need to perform multiple sample dilutions, a common challenge for food testing. By applying FFD assays to an inhibition immunoassay platform specific for TTX and transduction via low magnification microscopy, levels of detection of ~15 ng/mL and linear dynamic ranges of 4 to 5 orders of magnitude were achieved. The results from these studies on the first small molecule FFD assay, along with the impact to detection of seafood toxins, will be discussed in this manuscript.

  5. Pinched flow fractionation devices for detection of single nucleotide polymorphisms

    DEFF Research Database (Denmark)

    Larsen, A.V.; Poulsen, L.; Birgens, H.;

    2008-01-01

    We demonstrate a new and flexible micro fluidic based method for genotyping single nucleotide polymorphisms ( SNPs). The method relies on size separation of selectively hybridized polystyrene microspheres in a micro fluidic pinched flow fractionation (PFF) device. The micro fluidic PFF devices with......, synthesized using human DNA samples from individuals with point mutations in the HBB gene. Following a stringent wash, the beads were separated in a PFF device and the fluorescent signal from the beads was analyzed. Patients being wildtypes, heterozygotes or mutated respectively for the investigated mutation...... could reliably be diagnosed in the PFF device. This indicates that the PFF technique can be used for accurate and fast genotyping of SNPs Udgivelsesdato: 2008...

  6. How Capillary Rafts Sink

    CERN Document Server

    Protiere, S; Aristoff, J; Stone, H

    2010-01-01

    We present a fluid dynamics video showing how capillary rafts sink. Small objects trapped at an interface are very common in Nature (insects walking on water, ant rafts, bubbles or pollen at the water-air interface, membranes...) and are found in many multiphase industrial processes. Thanks to Archimedes principle we can easily predict whether an object sinks or floats. But what happens when several small particles are placed at an interface between two fluids. In this case surface tension also plays an important role. These particles self-assemble by capillarity and thus form what we call a "capillary raft". We show how such capillary rafts sink for varying sizes of particles and define how this parameter affects the sinking process.

  7. A micro fluidic system to study the cytotoxic effect of drugs: the combined effect of celecoxib and 5-fluorouracil on normal and cancer cells

    International Nuclear Information System (INIS)

    We have investigated the response of normal and cancer cells to exposure a combination of celecoxib (Celbx) and 5-fluorouracil (5-FU) using a lab-on-a-chip micro fluidic device. Specifically, we have tested the cytotoxic effect of Celbx on normal mouse embryo cells (Balb/c 3T3) and human lung carcinoma cells (A549). The single drugs or their combinations were adjusted to five different concentrations using a concentration gradient generator (CGG) in a single step. The results suggest that Celbx can enhanced the anticancer activity of 5-FU by stronger inhibition of cancer cell growth. We also show that the A549 cancer cells are more sensitive to Celbx than the Balb/c 3T3 normal cells. The results obtained with the micro fluidic system were compared to those obtained with a macro scale in vitro cell culture method. In our opinion, the micro fluidic system represents a unique approach for an evaluation of cellular response to multidrug exposure that also is more simple than respective micro well plate assays. (author)

  8. Stochastic regimes in very-low-frequency fluidic oscillator

    Science.gov (United States)

    Tesař, Václav

    2016-03-01

    Paper discusses interesting unexpected stochastic regimes discovered in a fluidic oscillator designed for operation at very low oscillation frequencies - without the inconvenience of the long feedback loops needed in standard low-frequency oscillator designs. The new oscillator contains a pair of bistable turn-down active valves operating in anti-parallel — essentially analogous to Abraham & Bloch electric "multibrateur" invented in 1919. Three different self-excited oscillation regimes were found. In the order of increasing supplied flow rate, these regimes are characterised by: (A) generation of stochastic-duration multi-pulse packs, (B) generation of individual pulses with a degree of periodicity, and (C) regime with randomly appearing flow pulses separated by intervals of the order of seconds.

  9. Experimental study of fluidic mixing in a cylindrical reactor

    Energy Technology Data Exchange (ETDEWEB)

    Orfaniotis, A.; Fonade, C.; Lalane, M.; Doubrovine, N. [Centre National de la Recherche Scientifique (CNRS), 31 - Toulouse (France)

    1996-04-01

    Fluidic mixing in a cylindrical reactor was studied in an effort to determine the effect of jet disposition and the viscosity of the liquid. The tests were carried out in a a tank using conductimetric probes to measure the mixing time. Results indicated that relative jet positions leading to an impinging flow structure were less efficient than shear flow configurations. When these results were compared with results of earlier work by Simon and Fonade (1993) it was found that they were consistent with the exponent 2/3 obtained by them in experiments with turbulent jets. It was pointed out that these mixing times apply only to mixing in cylindrical reactors. With different geometries, such as basins and lagoons with small liquid depths, a new choice of the reference length included in the expression of the reference time will be needed. 10 refs., 3 tabs., 16 figs.

  10. Quantum dot conjugates in a sub-micrometer fluidic channel

    Science.gov (United States)

    Stavis, Samuel M.; Edel, Joshua B.; Samiee, Kevan T.; Craighead, Harold G.

    2010-04-13

    A nanofluidic channel fabricated in fused silica with an approximately 500 nm square cross section was used to isolate, detect and identify individual quantum dot conjugates. The channel enables the rapid detection of every fluorescent entity in solution. A laser of selected wavelength was used to excite multiple species of quantum dots and organic molecules, and the emission spectra were resolved without significant signal rejection. Quantum dots were then conjugated with organic molecules and detected to demonstrate efficient multicolor detection. PCH was used to analyze coincident detection and to characterize the degree of binding. The use of a small fluidic channel to detect quantum dots as fluorescent labels was shown to be an efficient technique for multiplexed single molecule studies. Detection of single molecule binding events has a variety of applications including high throughput immunoassays.

  11. Fluidic Control of Aerodynamic Forces on an Axisymmetric Body

    Science.gov (United States)

    Abramson, Philip; Vukasinovic, Bojan; Glezer, Ari

    2007-11-01

    The aerodynamic forces and moments on a wind tunnel model of an axisymmetric bluff body are modified by induced local vectoring of the separated base flow. Control is effected by an array of four integrated aft-facing synthetic jets that emanate from narrow, azimuthally-segmented slots, equally distributed around the perimeter of the circular tail end within a small backward facing step that extends into a Coanda surface. The model is suspended in the wind tunnel by eight thin wires for minimal support interference with the wake. Fluidic actuation results in a localized, segmented vectoring of the separated base flow along the rear Coanda surface and induces asymmetric aerodynamic forces and moments to effect maneuvering during flight. The aerodynamic effects associated with quasi-steady and transitory differential, asymmetric activation of the Coanda effect are characterized using direct force and PIV measurements.

  12. Thin-walled compliant plastic structures for mesoscale fluidic systems

    Science.gov (United States)

    Miles, Robin R.; Schumann, Daniel L.

    1999-06-01

    Thin-walled, compliant plastic structures for meso-scale fluidic systems were fabricated, tested and used to demonstrate valving, pumping, metering and mixing. These structures permit the isolation of actuators and sensors form the working fluid, thereby reducing chemical compatibility issues. The thin-walled, compliant plastic structures can be used in either a permanent, reusable system or as an inexpensive disposable for single-use assay systems. The implementation of valving, pumping, mixing and metering operations involve only an elastic change in the mechanical shape of various portions of the structure. Advantages provided by the thin-walled plastic structures include reduced dead volume and rapid mixing. Five different methods for fabricating the thin-walled plastic structures discussed including laser welding, molding, vacuum forming, thermal heat staking and photolithographic patterning techniques.

  13. Computation of transient flow rates in passive pumping micro-fluidic systems

    OpenAIRE

    Chen, I-Jane; Eckstein, Eugene C.; Lindner, Ernő

    2008-01-01

    Motion in micro-channels of passive flow micro-fluidic systems can be controlled by proper design and estimated by careful modeling. We report on methods to describe the flow rate as function of time in a passive pump driven micro-fluidic systems. The model considers the surface energy present in small droplets, which prompts their shrinkage and induces flow. The droplet geometries are controlled by the micro-fluidic system geometry and hydrophilicity of the droplet channel contact area so th...

  14. Capillary electrophoresis - electrospray ionization mass spectrometry in small diameter capillaries

    Energy Technology Data Exchange (ETDEWEB)

    Wahl, J.H.; Goodlett, D.R.; Udseth, H.R.; Smith, R.D.

    1992-06-01

    Methods (such as small inner diameter capillaries) are being explored to increase analyte sensitivity in capillary electrophoresis- electrospray ionization/mass spectroscopy(CE-ESI/MS). Results are reported for melittin in a protein mixture, with 10 to 100 {mu}m ID capillaries; and for a mixture of aprotinin, cytochrome c, myoglobin, and carbonic anhydrase, with 5 to 50 {mu}m ID capillaries. It is shown that an increase in solute sensitivity occurs when small ID capillaries ({lt} 20 {mu}m) are used in CE-ESI/MS for both a peptide and a protein mixture. 3 figs. (DLC)

  15. Imbibition of ``Open Capillary'': Fundamentals and Applications

    Science.gov (United States)

    Tani, Marie; Kawano, Ryuji; Kamiya, Koki; Okumura, Ko

    2015-11-01

    Control or transportation of small amount of liquid is one of the most important issues in various contexts including medical sciences or pharmaceutical industries to fuel delivery. We studied imbibition of ``open capillary'' both experimentally and theoretically, and found simple scaling laws for both statics and dynamics of the imbibition, similarly as that of imbibition of capillary tubes. Furthermore, we revealed the existence of ``precursor film,'' which developed ahead of the imbibing front, and the dynamics of it is described well by another scaling law for capillary rise in a corner. Then, to show capabilities of open capillaries, we demonstrated two experiments by fabricating micro mixing devices to achieve (1) simultaneous multi-color change of the Bromothymol blue (BTB) solution and (2) expression of the green florescent protein (GFP). This research was partly supported by ImPACT Program of Council for Science, Technology and Innovation (Cabinet Office, Government of Japan). M. T. is supported by the Japan Society for the Promotion of Science Research Fellowships for Young Scientists.

  16. Macroscopic theory for capillary-pressure hysteresis.

    Science.gov (United States)

    Athukorallage, Bhagya; Aulisa, Eugenio; Iyer, Ram; Zhang, Larry

    2015-03-01

    In this article, we present a theory of macroscopic contact angle hysteresis by considering the minimization of the Helmholtz free energy of a solid-liquid-gas system over a convex set, subject to a constant volume constraint. The liquid and solid surfaces in contact are assumed to adhere weakly to each other, causing the interfacial energy to be set-valued. A simple calculus of variations argument for the minimization of the Helmholtz energy leads to the Young-Laplace equation for the drop surface in contact with the gas and a variational inequality that yields contact angle hysteresis for advancing/receding flow. We also show that the Young-Laplace equation with a Dirichlet boundary condition together with the variational inequality yields a basic hysteresis operator that describes the relationship between capillary pressure and volume. We validate the theory using results from the experiment for a sessile macroscopic drop. Although the capillary effect is a complex phenomenon even for a droplet as various points along the contact line might be pinned, the capillary pressure and volume of the drop are scalar variables that encapsulate the global quasistatic energy information for the entire droplet. Studying the capillary pressure versus volume relationship greatly simplifies the understanding and modeling of the phenomenon just as scalar magnetic hysteresis graphs greatly aided the modeling of devices with magnetic materials. PMID:25646688

  17. LES-based characterization of a suction and oscillatory blowing fluidic actuator

    Science.gov (United States)

    Kim, Jeonglae; Moin, Parviz

    2015-11-01

    Recently, a novel fluidic actuator using steady suction and oscillatory blowing was developed for control of turbulent flows. The suction and oscillatory blowing (SaOB) actuator combines steady suction and pulsed oscillatory blowing into a single device. The actuation is based upon a self-sustained mechanism of confined jets and does not require any moving parts. The control output is determined by a pressure source and the geometric details, and no additional input is needed. While its basic mechanisms have been investigated to some extent, detailed characteristics of internal turbulent flows are not well understood. In this study, internal flows of the SaOB actuator are simulated using large-eddy simulation (LES). Flow characteristics within the actuator are described in detail for a better understanding of the physical mechanisms and improving the actuator design. LES predicts the self-sustained oscillations of the turbulent jet. Switching frequency, maximum velocity at the actuator outlets, and wall pressure distribution are in good agreement with the experimental measurements. The computational results are used to develop simplified boundary conditions for numerical experiments of active flow control. Supported by the Boeing company.

  18. A comparative study of Raman enhancement in capillaries

    Science.gov (United States)

    Eftekhari, Fatemeh; Irizar, Juan; Hulbert, Laila; Helmy, Amr S.

    2011-06-01

    This work reports on the comparative studies of Raman enhancement in liquid core waveguides (LCWs). The theoretical considerations that describe Raman enhancement in LCWs is adapted to analyze and compare the performance of hollow core photonic crystal fibers (HCPCFs) to conventional Teflon capillary tubes. The optical losses in both platforms are measured and used to predict their performance for different lengths. The results show that for an optimal waveguide length, two orders of magnitude enhancement in the Raman signal can be achieved for aqueous solutions using HCPCFs. This length, however, cannot be achieved using normal capillary effects. By integrating the interface of the fluidic pump and the HCPCF into a microfluidic chip, we are able to control fluid transport and fill longer lengths of HCPCFs regardless of the viscosity of the sample. The long-term stability and reproducibility of Raman spectra attained through this platform are demonstrated for naphthalenethiol, which is a well-studied organic compound. Using the HCPCF platform, the detection limit of normal Raman scattering in the range of micro-molars has been achieved. In addition to the higher signal-to-noise ratio of the Raman signal from the HCPCF-platform, more Raman modes of naphthalenethiol are revealed using this platform.

  19. Conductivity detection for conventional and miniaturised capillary electrophoresis systems.

    Science.gov (United States)

    Guijt, Rosanne M; Evenhuis, Christopher J; Macka, Miroslav; Haddad, Paul R

    2004-12-01

    Since the introduction of capillary electrophoresis (CE), conductivity detection has been an attractive means of detection. No additional chemical properties are required for detection, and no loss in sensitivity is expected when miniaturising the detector to scale with narrow-bore capillaries or even to the microchip format. Integration of conductivity and CE, however, involves a challenging combination of engineering issues. In conductivity detection the resistance of the solution is most frequently measured in an alternating current (AC) circuit. The influence of capacitors both in series and in parallel with the solution resistance should be minimised during conductivity measurements. For contact conductivity measurements, the positioning and alignment of the detection electrodes is crucial. A contact conductivity detector for CE has been commercially available, but was withdrawn from the market. Microfabrication technology enables integration and precise alignment of electrodes, resulting in the popularity of conductivity detection in microfluidic devices. In contactless conductivity detection, the alignment of the electrodes with respect to the capillary is less crucial. Contactless conductivity detection (CCD) was introduced in capillary CE, and similar electronics have been applied for CCD using planar electrodes in microfluidic devices. A contactless conductivity detector for capillaries has been commercialised recently. In this review, different approaches towards conductivity detection in capillaries and chip-based CE are discussed. In contrast to previous reviews, the focus of the present review is on the technological developments and challenges in conductivity detection in CE. PMID:15597418

  20. A novel highly flexible, simple, rapid and low-cost fabrication tool for paper-based microfluidic devices (μPADs) using technical drawing pens and in-house formulated aqueous inks.

    Science.gov (United States)

    Nuchtavorn, Nantana; Macka, Mirek

    2016-05-01

    Paper-based microfluidic devices (μPADs) are capable of achieving rapid quantitative measurements of a variety of analytes inexpensively. μPADs rely on patterning hydrophilic-hydrophobic regions on a sheet of paper in order to create capillary channels within impermeable fluidic brakes on the paper. Here, we present a novel, highly flexible and low-cost fabrication method using a desktop digital craft plotter/cutter and technical drawing pens with tip size of 0.5 mm. The pens were used with either commercial black permanent ink for drawing fluidic brakes, or with specialty in-house formulated aqueous inks. With the permanent marker ink it was possible to create barriers on paper rapidly and in a variety of designs in a highly flexible manner. For instance, a design featuring eight reservoirs can be produced within 10 s for each μPAD with a consistent line width of brakes (%RSD < 1.5). Further, we investigated the optimal viscosity range of in-house formulated inks controlled with additions of poly(ethylene glycol). The viscosity was measured by capillary electrophoresis and the optimal viscosity was in the range of ∼3-6 mPa s. A functional test of these μPADs was conducted by the screening of antioxidant activity. Colorimetric measurements of flavonoid, phenolic compounds and DPPH free radical scavenging activity were carried out on μPADs. The results can be detected by the naked eye and simply quantified by using a camera phone and image analysis software. The fabrication method using technical drawing pens provides flexibility in the use of in-house formulated inks, short fabrication time, simplicity and low cost. PMID:27086101

  1. Surface Tension Directed Fluidic Self-Assembly of Semiconductor Chips across Length Scales and Material Boundaries

    Directory of Open Access Journals (Sweden)

    Shantonu Biswas

    2016-03-01

    Full Text Available This publication provides an overview and discusses some challenges of surface tension directed fluidic self-assembly of semiconductor chips which are transported in a liquid medium. The discussion is limited to surface tension directed self-assembly where the capture, alignment, and electrical connection process is driven by the surface free energy of molten solder bumps where the authors have made a contribution. The general context is to develop a massively parallel and scalable assembly process to overcome some of the limitations of current robotic pick and place and serial wire bonding concepts. The following parts will be discussed: (2 Single-step assembly of LED arrays containing a repetition of a single component type; (3 Multi-step assembly of more than one component type adding a sequence and geometrical shape confinement to the basic concept to build more complex structures; demonstrators contain (3.1 self-packaging surface mount devices, and (3.2 multi-chip assemblies with unique angular orientation. Subsequently, measures are discussed (4 to enable the assembly of microscopic chips (10 μm–1 mm; a different transport method is introduced; demonstrators include the assembly of photovoltaic modules containing microscopic silicon tiles. Finally, (5 the extension to enable large area assembly is presented; a first reel-to-reel assembly machine is realized; the machine is applied to the field of solid state lighting and the emerging field of stretchable electronics which requires the assembly and electrical connection of semiconductor devices over exceedingly large area substrates.

  2. An integrated multiple capillary array electrophoresis system for high-throughput DNA sequencing

    Energy Technology Data Exchange (ETDEWEB)

    Lu, X.

    1998-03-27

    A capillary array electrophoresis system was chosen to perform DNA sequencing because of several advantages such as rapid heat dissipation, multiplexing capabilities, gel matrix filling simplicity, and the mature nature of the associated manufacturing technologies. There are two major concerns for the multiple capillary systems. One concern is inter-capillary cross-talk, and the other concern is excitation and detection efficiency. Cross-talk is eliminated through proper optical coupling, good focusing and immersing capillary array into index matching fluid. A side-entry excitation scheme with orthogonal detection was established for large capillary array. Two 100 capillary array formats were used for DNA sequencing. One format is cylindrical capillary with 150 {micro}m o.d., 75 {micro}m i.d and the other format is square capillary with 300 {micro}m out edge and 75 {micro}m inner edge. This project is focused on the development of excitation and detection of DNA as well as performing DNA sequencing. The DNA injection schemes are discussed for the cases of single and bundled capillaries. An individual sampling device was designed. The base-calling was performed for a capillary from the capillary array with the accuracy of 98%.

  3. Liquid crystal thermometry for micro-fluidic applications

    Science.gov (United States)

    Pottebaum, Tait

    2009-11-01

    Liquid crystal thermometry has been implemented in a micro-channel and the performance of the technique quantified. Implementation of the technique is subject to constraints on imaging and illumination configurations similar to the constraints on micro-PIV. In addition, the proximity of the measurements to interfaces and surfaces from which light scatters leads to high noise levels that cannot be reduced by wavelength filtering (such as with fluorescent particles) because the temperature information is contained in the color of the particles. Therefore, circular polarization filtering is used, exploiting the circular dichroism of the thermochromic liquid crystal (TLC). Encapsulated TLC particles were flowed through the micro-channel and subjected to a series of uniform temperatures for calibration. To validate the technique, a temperature gradient was imposed with no flow. Finally, the technique was applied to micro-channel flow with an imposed wall temperature gradient in the flow direction. Liquid crystal thermometry can now be applied to a wide range of micro-fluidic applications.

  4. Experimental Observation of Bohr’s Nonlinear Fluidic Surface Oscillation

    Science.gov (United States)

    Moon, Songky; Shin, Younghoon; Kwak, Hojeong; Yang, Juhee; Lee, Sang-Bum; Kim, Soyun; An, Kyungwon

    2016-01-01

    Niels Bohr in the early stage of his career developed a nonlinear theory of fluidic surface oscillation in order to study surface tension of liquids. His theory includes the nonlinear interaction between multipolar surface oscillation modes, surpassing the linear theory of Rayleigh and Lamb. It predicts a specific normalized magnitude of 0.416η2 for an octapolar component, nonlinearly induced by a quadrupolar one with a magnitude of η much less than unity. No experimental confirmation on this prediction has been reported. Nonetheless, accurate determination of multipolar components is important as in optical fiber spinning, film blowing and recently in optofluidic microcavities for ray and wave chaos studies and photonics applications. Here, we report experimental verification of his theory. By using optical forward diffraction, we measured the cross-sectional boundary profiles at extreme positions of a surface-oscillating liquid column ejected from a deformed microscopic orifice. We obtained a coefficient of 0.42 ± 0.08 consistently under various experimental conditions. We also measured the resonance mode spectrum of a two-dimensional cavity formed by the cross-sectional segment of the liquid jet. The observed spectra agree well with wave calculations assuming a coefficient of 0.414 ± 0.011. Our measurements establish the first experimental observation of Bohr’s hydrodynamic theory.

  5. VIII All-Russian symposium on molecular liquid chromatography and capillary electrophoresis. Program. Summary of reports

    International Nuclear Information System (INIS)

    Program and summary of reports of the VIII All-Russian symposium on molecular liquid chromatography and capillary electrophoresis are performed. The meeting took place 15-19 October, 2001 in Moscow. Many problems of liquid and ion exchange chromatography, capillary electrophoresis, thin-layer chromatography have been discussed extensively. Reports covering properties of sorbents and devices for chromatography are incorporated in the collection

  6. Capillary permeability in adipose tissue

    DEFF Research Database (Denmark)

    Paaske, W P; Nielsen, S L

    1976-01-01

    A method for measurement of capillary permeability using external registration of gamma emitting isotopes after close arterial bolus injection was applied to the isolated inguinal fat pad in slightly fasting rabbits. An average extraction of 26 per cent for 51Cr-EDTA was found at a plasma flow of...... about 7 ml/100 g-min. This corresponds to a capillary diffusion capacity of 2.0 ml/100 g-min which is half the value reported for vasodilated skeletal muscle having approximately twice as great capillary surface area. Thus, adipose tissue has about the same capillary permeability during slight metabolic...

  7. Microchip device for liquid phase analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ramsey, j.m.

    2000-05-01

    The lab-on-a-chip concept has enabled miniature instruments to be developed that allow the rapid execution and automation of fluidic operations such as valving, separation, dilution, mixing, and flow splitting upon the proper application of a motive (driving) force. The integration of these simple operations to perform complete, multiple-step chemical assays is rapidly becoming a reality. Such compact, monolithic devices potentially enjoy advantages in speed, cost, automation, reagent consumption, and waste generation compared to existing laboratory-scale instruments. Initial reports of these microfluidic devices focused on combining various electrokinetically driven separation methods including microchip electrophoresis, gel electrophoresis, micellar electrokinetic chromatography (MEKC) and open channel electrochromatography (OCEC) with fluidic valving to introduce sample plugs into the separation channel. Other operations have quickly been integrated with the separations and fluidic valving on these microchips. For example, integrated devices with mixers/diluters for precolumn and postcolumn analyte derivatization, deoxyribonucleic acid (DNA) restriction digests, enzyme assays, and polymerase chain reaction (PCR) amplification have been added to the basic design. Integrated mixers that can perform solvent programming for both MEKC and OCEC have also been demonstrated. These examples are simple, yet powerful, demonstrations of the potential for lab-on-a-chip devices. In this report, three key areas for improved performance of these devices are described: on-chip calibration techniques, enhanced separative performance, and enhanced detection capabilities.

  8. DESIGN AND FABRICATION OF A ROLLER IMPRINTING DEVICE FOR MICROFLUIDIC DEVICE MANUFACTURING

    OpenAIRE

    Vijayaraghavan, Athulan; Jayanathan, Stephen; Helu, Moneer; Dornfeld, David

    2008-01-01

    Microfluidic devices are gaining popularity in a variety of applications, ranging from molecular biology to bio-defense. However, the widespread adoption of this technology is constrained by the lack of efficient and cost-effective manufacturing processes. This paper focuses on the roller imprinting process, which is being developed to rapidly and inexpensively fabricate micro-fluidic devices. In this process, a cylindrical roll with raised features on its surface creates imprints by rolling ...

  9. Bacterial adhesion force quantification by fluidic force microscopy

    Science.gov (United States)

    Potthoff, Eva; Ossola, Dario; Zambelli, Tomaso; Vorholt, Julia A.

    2015-02-01

    Quantification of detachment forces between bacteria and substrates facilitates the understanding of the bacterial adhesion process that affects cell physiology and survival. Here, we present a method that allows for serial, single bacterial cell force spectroscopy by combining the force control of atomic force microscopy with microfluidics. Reversible bacterial cell immobilization under physiological conditions on the pyramidal tip of a microchanneled cantilever is achieved by underpressure. Using the fluidic force microscopy technology (FluidFM), we achieve immobilization forces greater than those of state-of-the-art cell-cantilever binding as demonstrated by the detachment of Escherichia coli from polydopamine with recorded forces between 4 and 8 nN for many cells. The contact time and setpoint dependence of the adhesion forces of E. coli and Streptococcus pyogenes, as well as the sequential detachment of bacteria out of a chain, are shown, revealing distinct force patterns in the detachment curves. This study demonstrates the potential of the FluidFM technology for quantitative bacterial adhesion measurements of cell-substrate and cell-cell interactions that are relevant in biofilms and infection biology.Quantification of detachment forces between bacteria and substrates facilitates the understanding of the bacterial adhesion process that affects cell physiology and survival. Here, we present a method that allows for serial, single bacterial cell force spectroscopy by combining the force control of atomic force microscopy with microfluidics. Reversible bacterial cell immobilization under physiological conditions on the pyramidal tip of a microchanneled cantilever is achieved by underpressure. Using the fluidic force microscopy technology (FluidFM), we achieve immobilization forces greater than those of state-of-the-art cell-cantilever binding as demonstrated by the detachment of Escherichia coli from polydopamine with recorded forces between 4 and 8 nN for many

  10. A micro-fluidic study of whole blood behaviour on PMMA topographical nanostructures

    Directory of Open Access Journals (Sweden)

    Tsud Nataliya

    2008-02-01

    Full Text Available Abstract Background Polymers are attractive materials for both biomedical engineering and cardiovascular applications. Although nano-topography has been found to influence cell behaviour, no established method exists to understand and evaluate the effects of nano-topography on polymer-blood interaction. Results We optimized a micro-fluidic set-up to study the interaction of whole blood with nano-structured polymer surfaces under flow conditions. Micro-fluidic chips were coated with polymethylmethacrylate films and structured by polymer demixing. Surface feature size varied from 40 nm to 400 nm and feature height from 5 nm to 50 nm. Whole blood flow rate through the micro-fluidic channels, platelet adhesion and von Willebrand factor and fibrinogen adsorption onto the structured polymer films were investigated. Whole blood flow rate through the micro-fluidic channels was found to decrease with increasing average surface feature size. Adhesion and spreading of platelets from whole blood and von Willebrand factor adsorption from platelet poor plasma were enhanced on the structured surfaces with larger feature, while fibrinogen adsorption followed the opposite trend. Conclusion We investigated whole blood behaviour and plasma protein adsorption on nano-structured polymer materials under flow conditions using a micro-fluidic set-up. We speculate that surface nano-topography of polymer films influences primarily plasma protein adsorption, which results in the control of platelet adhesion and thrombus formation.

  11. Modelization and simulation of capillary barriers

    International Nuclear Information System (INIS)

    Among the different underground transport phenomena, that due to water flows is of great relevance. Water flows in infiltration and percolation processes are responsible of the transport of hazardous wastes towards phreatic layers. From the industrial and geological standpoints, there is a great interest in the design of natural devices to avoid the flows transporting polluting substances. This interest is increased when devices are used to isolate radioactive waste repositories, whose life is to be longer than several hundred years. The so-called natural devices are those based on the superimposition of material with different hydraulic properties. In particular, the flow retention in this kind stratified media, in unsaturated conditions, is basically due to the capillary barrier effect, resulting from placing a low conductivity material over another with a high hydraulic conductivity. Covers designed from the effect above have also to allow a drainage of the upper layer. The lower cost of these covers, with respect to other kinds of protection systems, and the stability in time of their components make them very attractive. However, a previous investigation to determine their effectivity is required. In this report we present the computer code BCSIM, useful for easy simulations of unsaturated flows in a capillary barrier configuration with drainage, and which is intended to serve as a tool for designing efficient covers. The model, the numerical algorithm and several implementation aspects are described. Results obtained in several simulations, confirming the effectivity of capillary barriers as a technique to build safety covers for hazardous waste repositories, are presented. (Author)

  12. Generation of emulsion droplets and micro-bubbles in microfluidic devices

    KAUST Repository

    Zhang, Jiaming

    2016-04-01

    Droplet-based microfluidic devices have become a preferred versatile platform for various fields in physics, chemistry and biology to manipulate small amounts of liquid samples. In addition to microdroplets, microbubbles are also needed for various pro- cesses in the food, healthcare and cosmetic industries. Polydimethylsiloxane (PDMS) soft lithography, the mainstay for fabricating microfluidic devices, usually requires the usage of expensive apparatus and a complex manufacturing procedure. In ad- dition, current methods have the limited capabilities for fabrication of microfluidic devices within three dimensional (3D) structures. Novel methods for fabrication of droplet-based microfluidic devices for the generation microdroplets and microbubbles are therefore of great interest in current research. In this thesis, we have developed several simple, rapid and low-cost methods for fabrication of microfluidic devices, especially for generation of microdroplets and mi- crobubbles. We first report an inexpensive full-glass microfluidic devices with as- sembly of glass capillaries, for generating monodisperse multiple emulsions. Different types of devices have been designed and tested and the experimental results demon- strated the robust capability of preparing monodisperse single, double, triple and multi-component emulsions. Second, we propose a similar full-glass device for generation of microbubbles, but with assembly of a much smaller nozzle of a glass capillary. Highly monodisperse microbubbles with diameter range from 3.5 to 60 microns have been successfully produced, at rates up to 40 kHz. A simple scaling law based on the capillary number and liquid-to-gas flow rate ratio, successfully predicts the bubble size. Recently, the emergent 3D printing technology provides an attractive fabrication technique, due to its simplicity and low cost. A handful of studies have already demonstrated droplet production through 3D-printed microfluidic devices. However, two

  13. Development of elastomeric lab-on-a-chip devices through Proton Beam Writing (PBW) based fabrication strategies

    International Nuclear Information System (INIS)

    In recent years, one of the most exciting developments in fluidic device applications is the rapid evolution of miniaturized micro- and nanofluidic systems, the so called 'lab-on-a-chip' devices. These devices integrate laboratory functions into a single chip, and are capable of various biochemical analysis and synthesis, such as sample injection and preparation, single cell/molecule observation, bioparticle sequencing and sorting etc. The evolvement of lab-on-a-chip concept implies the use of novel fabrication techniques for the construction of versatile analytical components in a fast and reproducible manner. Endowed with unique three-dimensional fabrication abilities, Proton Beam Writing (PBW) , which is capable of producing nanometer scaled fluidic structures with smooth and straight side wall features, has a great potential to develop all sorts of polymer fluidic devices. In this paper, we describe the batch fabrication of Poly-dimethysiloxane (PDMS) elastomeric lab-on-a-chip devices utilizing PBW technique. A series of fabrication processes, involving PBW, nickel electroplating, soft lithography, polymer dynamic coating and hydrophilic treating, were modified and adopted in our work. Subsequent characterization of individual categories of channel devices was carried out for specific fluidic studies. Respective experimental procedures are presented and results are explained. The channel devices demonstrated good fluidic performance and functionality, suggesting their further application in more complex biological investigations, and the versatility of PBW in lab-on-a-chip development.

  14. Tapered capillary optics

    Science.gov (United States)

    Hirsch, Gregory

    1998-01-01

    A metal or glass wire is etched with great precision into a very narrowly tapering cone which has the shape of the desired final capillary-optics bore. By controlling the rate of removal of the wire from an etchant bath, a carefully controlled taper is produced. A sensor measures the diameter of the wire as it leaves the surface of the etchant. This signal is used for feedback control of the withdrawal speed. The etched wire undergoes a treatment to produce an extremely low surface-roughness. The etched and smoothed wire is coated with the material of choice for optimizing the reflectivity of the radiation being focused. This could be a vacuum evaporation, sputtering, CVD or aqueous chemical process. The coated wire is either electroplated, built up with electroless plating, or encapsulated in a polymer cylinder such as epoxy to increase the diameter of the wire for easier handling and greater robustness. During this process, the wire is vertically oriented and tensioned to assure that the wire is absolutely straight. The coated and electroformed wire is bonded to a flat, rigid substrate and is then periodically segmented by cutting or etching a series of narrow slits or grooves into the wire. The wire is vertically oriented and tensioned during the bonding process to assure that it is straight. The original wire material is then chemically etched away through the slits or otherwise withdrawn to leave the hollow internal bore of the final tapered-capillary optical element.

  15. Open Tubular Microreactor with Enzyme Functionalized Micro- fluidic Channel for Amperometric Detection of Glucose

    Institute of Scientific and Technical Information of China (English)

    张蕾; 曲平; 盛金; 雷建平; 鞠烷先

    2012-01-01

    A simple and efficient method using enzyme immobilized microfluidic channel as open tubular microreactor was designed for amperometric detection of glucose. The microreactor was composed of a polydimethylsilicone/ glass hybrid device with three reservoirs, a cooling cave and a 6 cm capillary with a sampling fracture as micro-channel. The microchannel was further modified by thermal polymerization, followed by covalently attaching with glucose oxidase. Through fracture sampling and electrochromatography separation, the production via enzymatic reaction was determinated by Pt electrode at the end of capillary. The linear range for the detection of glucose was 0.05--7.5 mmol·L-1 with detection limit of 23μmol.L-1 The inter-and intra-chip reproducibilities for determination of 2.5 mmol-L-1 glucose were 98.5% (n=5) and 96.0% (n=5), respectively. With the advantage of flexible assembly, rapid efficiency, good stability and low-cost, this microreactor provided a potential platform for estab- lishing a portable enzyme-based chemical detection system in practical application.

  16. Experimental investigation of the noise reduction of supersonic exhaust jets with fluidic inserts

    Science.gov (United States)

    Powers, Russell William Walter

    The noise produced by the supersonic, high temperature jets that exhaust from military aircraft is becoming a hazard to naval personnel and a disturbance to communities near military bases. Methods to reduce the noise produced from these jets in a practical full-scale environment are difficult. The development and analysis of distributed nozzle blowing for the reduction of radiated noise from supersonic jets is described. Model scale experiments of jets that simulate the exhaust jets from typical low-bypass ratio military jet aircraft engines during takeoff are performed. Fluidic inserts are created that use distributed blowing in the divergent section of the nozzle to simulate mechanical, hardwall corrugations, while having the advantage of being an active control method. This research focuses on model scale experiments to better understand the fluidic insert noise reduction method. Distributed blowing within the divergent section of the military-style convergent divergent nozzle alters the shock structure of the jet in addition to creating streamwise vorticity for the reduction of mixing noise. Enhancements to the fluidic insert design have been performed along with experiments over a large number of injection parameters and core jet conditions. Primarily military-style round nozzles have been used, with preliminary measurements of hardwall corrugations and fluidic inserts in rectangular nozzle geometries also performed. It has been shown that the noise reduction of the fluidic inserts is most heavily dependent upon the momentum flux ratio between the injector and core jet. Maximum reductions of approximately 5.5 dB OASPL have been observed with practical mass flow rates and injection pressures. The first measurements with fluidic inserts in the presence of a forward flight stream have been performed. Optimal noise reduction occurs at similar injector parameters in the presence of forward flight. Fluidic inserts in the presence of a forward flight stream were

  17. Capillary-driven flow in tub es connected to the containers under microgravity condition%微重力条件下与容器连通的毛细管中的毛细流动研究∗

    Institute of Scientific and Technical Information of China (English)

    周宏伟; 王林伟; 徐升华; 孙祉伟

    2015-01-01

    theoretical model. Compared with the extensively studied system in which tubes are directly immersed into liquid, the container/tube system studied in this paper is more similar to many actual systems such as fluid transfer systems in the microgravity condition and in micro-fluidic devices. Therefore, this study is useful for predicting and analyzing the capillary flows of these actual systems.

  18. Biomedical applications of capillary electrophoresis

    Science.gov (United States)

    Kartsova, L. A.; Bessonova, E. A.

    2015-08-01

    The review deals with modern analytical approaches used in capillary electrophoresis for solving medical and biological problems: search for biomarkers of various diseases and rapid diagnosis based on characteristic profiles of biologically active compounds by capillary electrophoresis with mass spectrometric detection; monitoring of the residual drugs in biological fluids for evaluating the efficiency of drug therapy; testing of the enantiomeric purity of pharmaceutical products; the use of novel materials as components of stationary and pseudo-stationary phases in capillary electrophoresis and capillary electrochromatography to increase the selectivity of separation of components of complex matrices; and identification of various on-line preconcentration techniques to reduce the detection limits of biologically active analytes. A topical trend in capillary electrophoresis required in clinical practice, viz., the design of microfluidic systems, is discussed. The bibliography includes 173 references.

  19. Capillary optics for radiation focusing

    International Nuclear Information System (INIS)

    Capillary lens technology may ultimately bring benefits to neutron and x-ray-based science like conventional lenses with visible light. Although the technology is not yet 10 years old, these lenses have already had a significant impact in engineering, science, and medicine. Capillary lenses are advantageous when it is desirable to increase the radiation flux at a location without regard to its angular divergence. PNNL has worked to improve the technology in several ways. A single, optimally tapered capillary was manufactured, which allows intensity gains of a factor of 270 for an initially parallel, incident x-ray beam. Feasibility of constructing neutron lenses using 58Ni (particularly effective at reflecting neutrons) has been explored. Three applications for capillary optics have been identified and studied: neutron telescope, Gandolphi x-ray diffractometry, and neutron radiotherapy. A brief guide is given for determining which potential applications are likely to be helped by capillary optics

  20. Determining DfT Hardware by VHDL-AMS Fault Simulation for Biological Micro-Electronic Fluidic Arrays

    NARCIS (Netherlands)

    Kerkhoff, H.G.; Zhang, X.; Liu, H.; Richardson, A.; Nouet, P.; Azais, F.

    2005-01-01

    The interest of microelectronic fluidic arrays for biomedical applications, like DNA determination, is rapidly increasing. In order to evaluate these systems in terms of required Design-for-Test structures, fault simulations in both fluidic and electronic domains are necessary. VHDL-AMS can be used

  1. An Experimental Comparison of the Refrigerant Flow through Adiabatic and Non-Adiabatic Helical Capillary Tubes

    OpenAIRE

    Javidmand, Puya; Zareh, Masoud

    2014-01-01

    Capillary tubes are used as refrigerant controlling devices, expansion devices and also as heart of a small vapor compression refrigeration cycle. It connects outlet condenser to the inlet evaporator and balances the refrigeration cycle pressure and controls the refrigerant mass flux. Capillary tubes are relatively cheap, resulting in extensive implementations in small household refrigerators and freezers with nearly constant refrigeration load. In general, the inner diameter and length of a ...

  2. Advances in capillary electrophoresis

    International Nuclear Information System (INIS)

    In the 1980s, capillary electrophoresis (CE) developed rapidly into a first-class analytical separation technique. Its advances in instru-mentation and method development will not only enhance or complement existing mature separation techniques such as liquid chromatography and conventional slab gel electrophoresis, but will also severely challenge these separation methods. A brief overview of most striking achievement of CE in the 1980s is given, which illustrates the challenge to liquid chromatography and conventional slab gel electrophoresis, and some detailed discussions are presented to highlight the advantages of CE. New developments in CE that can be expected for the 1990s include especially column technology, separation chemistry and instrumentation, which will serve further to diversify and improve the applicability of this technique in areas which are poorly addressed by other separation methods. This paper considers and speculates on the technological advancements that can be expected to emerge for CE in the 1990s. (author). 95 refs.; 14 figs

  3. Precision manufacturing of polymer micro-nano fluidic systems

    DEFF Research Database (Denmark)

    Garnæs, Jørgen; Calaon, Matteo; Tosello, Guido;

    2015-01-01

    Lab-on-a-Chip (LoC) technologies require the possibility of fabricating devices which include micro down to sub-micrometre features with high production rate and low cost. In the present study precision injection moulding is performed using a COC Topas 5013 L10 polymer to produce LoC devices for...

  4. Geometrical and fluidic tuning of periodically modulated thin metal films

    DEFF Research Database (Denmark)

    Gilardi, Giovanni; Xiao, Sanshui; Beccherelli, Romeo; d’Alessandro, Antonio; Mortensen, N. Asger

    2012-01-01

    We numerically demonstrate near-zero transmission of light through two-dimensional arrays of isolated gold rings. The analysis of the device as an optofluidic sensor is presented to demonstrate the tuning of the device in relation to variations of volume and refractive index of an isotropic fluid...

  5. Development of a novel concept for performing multiple assays on clinical samples using fluidic device

    DEFF Research Database (Denmark)

    Søe, Martin Jensen

    . Nye histologiske teknikker som er mere følsomme og i stand til at detekterer multiple miRNAer samtidigt eller i kombination med protein biomarkører, anses for at være nødvendige i udviklingen af nye diagnostiske analyser. På trods af disse lovende udsigter har implementering af miRNA detektion i......RNA-130a sammenlignet med konventionelle teknikker, hvor der benyttes prober af DNA og LNA. Desuden kunne multiple miRNAer detekteres ved brug af sekventielle inkuberinger af TSA reagens. Dette tillod detektion af to miRNA og et protein på samme vævssnit. Den anden model involverede design og konstruktion...... analysetiden sammenlignet med konventionelle teknikker. De to løsningsmodeller har vist sig at muliggøre udførelse af følsomme, multiple analyser for in situ detektion af biomarkører i vævssnit. Dette har potentielt relevans indenfor udvikling og implementering af diagnostiske analyser....

  6. Improvement of Modeling Scheme of the Safety Injection Tank with Fluidic Device for Realistic LBLOCA Calculation

    International Nuclear Information System (INIS)

    Confirmation of the performance of the SIT with FD should be based on thermal-hydraulic analysis of LBLOCA and an adequate and physical model simulating the SIT/FD should be used in the LBLOCA calculation. To develop such a physical model on SIT/FD, simulation of the major phenomena including flow distribution of by standpipe and FD should be justified by full scale experiment and/or plant preoperational testing. Author's previous study indicated that an approximation of SIT/FD phenomena could be obtained by a typical system transient code, MARS-KS, and using 'accumulator' component model, however, that additional improvement on modeling scheme of the FD and standpipe flow paths was needed for a reasonable prediction. One problem was a depressurizing behavior after switchover to low flow injection phase. Also a potential to release of nitrogen gas from the SIT to the downstream pipe and then reactor core through flow paths of FD and standpipe has been concerned. The intrusion of noncondensible gas may have an effect on LBLOCA thermal response. Therefore, a more reliable model on SIT/FD has been requested to get a more accurate prediction and a confidence of the evaluation of LBLOCA. The present paper is to discuss an improvement of modeling scheme from the previous study. Compared to the existing modeling, effect of the present modeling scheme on LBLOCA cladding thermal response is discussed. The present study discussed the modeling scheme of SIT with FD for a realistic simulation of LBLOCA of APR1400. Currently, the SIT blowdown test can be best simulated by the modeling scheme using 'pipe' component with dynamic area reduction. The LBLOCA analysis adopting the modeling scheme showed the PCT increase of 23K when compared to the case of 'accumulator' component model, which was due to the flow rate decrease at transition phase low flow injection and intrusion of nitrogen gas to the core. Accordingly, the effect of SIT/FD modeling scheme should be considered for realistic LBLOCA analysis

  7. Analysis of Capillary Rise in Asymmetric Branch-Like Capillary

    Science.gov (United States)

    Li, Caoxiong; Shen, Yinghao; Ge, Hongkui; Yang, Zhihui; Su, Shuai; Ren, Kai; Huang, Heyu

    2016-05-01

    Transport in porous media is common in nature, attracting many attentions for a long time. Tree-like network model is often used as a simplification for porous space, expressing the complexity of pore spaces instead of capillary bundle. To investigate spontaneous imbibition characteristics in this network, a dynamic asymmetric branch-like capillary model is used to represent basic network structure, using fractal method to represent tortuosity. This work investigates the influence of parameters on imbibition process in the branch-like capillary model. An analytical equation for the imbibition mass versus time is derived. Parameters from capillary structures to liquid properties are taken into account and analyzed based on the numerical solution of the equation. It is found that the imbibition process in asymmetric branch-like capillary model can be recognized by four sections and brunching tubes are positive for imbibition process. Concomitantly, meniscus arrest event is simulated and discussed. Moreover, the influence of parameters on imbibition process is discussed. These parameters can be classified as static and dynamic. Static parameters mainly change the capillary force, which are related to the ultimate imbibition mass or imbibition ability, while dynamic parameters mainly have influence on resistance of flowing fluid, which are related to the imbibition speed in the imbibition process.

  8. Dielectrophoresis and electrohydrodynamics-mediated fluidic assembly of silicon resistors

    OpenAIRE

    Lee, S. W.; Bashir, Rashid

    2003-01-01

    In this letter, we present techniques, utilizing dielectrophoresis and electrohydrodynamics, which can be used for assembling single-crystal silicon devices suspended in a solution onto a binding site on a heterogeneous substrate. Silicon resistors with gold/chromium layers located at the end of the resistors and silicon blocks without metal were fabricated on bonded and etched-backed silicon-on-insulator wafers and successfully released into deionized water. The devices were subsequently ass...

  9. Centrifugal micro-fluidic platform for radiochemistry: Potentialities for the chemical analysis of nuclear spent fuels

    International Nuclear Information System (INIS)

    The use of a centrifugal micro-fluidic platform is for the first time reported as an alternative to classical chromatographic procedures for radiochemistry. The original design of the micro-fluidic platform has been thought to fasten and simplify the prototyping process with the use of a circular platform integrating four rectangular microchips made of thermoplastic. The microchips, dedicated to anion-exchange chromatographic separations, integrate a localized monolithic stationary phase as well as injection and collection reservoirs. The results presented here were obtained with a simplified simulated nuclear spent fuel sample composed of non-radioactive isotopes of Europium and Uranium, in proportion usually found for uranium oxide nuclear spent fuel. While keeping the analytical results consistent with the conventional procedure (extraction yield for Europium of ∼97%), the use of the centrifugal micro-fluidic platform allowed to reduce the volume of liquid needed by a factor of ∼250. Thanks to their unique 'easy-to-use' features, centrifugal micro-fluidic platforms are potential successful candidates for the down-scaling of chromatographic separation of radioactive samples (automation, multiplexing, easy integration in glove-boxes environment and low cost of maintenance). (authors)

  10. No-moving-part electro/fluidic transducer based on plasma discharge effect

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav; Šonský, Jiří

    2015-01-01

    Roč. 232, August (2015), s. 20-29. ISSN 0924-4247 R&D Projects: GA ČR GA13-23046S Institutional support: RVO:61388998 Keywords : transducer * fluidic * plasma discharge Subject RIV: BK - Fluid Dynamics Impact factor: 1.903, year: 2014 http://www.sciencedirect.com/science/article/pii/S092442471500206X

  11. A capability study of micro moulding for nano fluidic system manufacture

    DEFF Research Database (Denmark)

    Calaon, Matteo; Hansen, Hans Nørgaard; Tosello, Guido;

    2013-01-01

    With the present paper the authors analysed process capability of ultra-precision moulding used for producing nano crosses with the same critical channels dimensions of a nano fluidic system for optical mapping of genomic length DNA. The process variation focused on product tolerances is quantified...

  12. Fluidic system for long-term in vitro culturing and monitoring of organotypic brain slices

    DEFF Research Database (Denmark)

    Bakmand, Tanya; Troels-Smith, Ane R.; Dimaki, Maria;

    2015-01-01

    Brain slice preparations cultured in vitro have long been used as a simplified model for studying brain development, electrophysiology, neurodegeneration and neuroprotection. In this paper an open fluidic system developed for improved long term culturing of organotypic brain slices is presented...... their structure better than the control slices cultured using the standard interface method....

  13. Fluidic generator of microbubbles – oscillator with gas flow reversal for a part of period

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav

    2015-01-01

    Roč. 9, č. 4 (2015), s. 195-203. ISSN 1898-4088 R&D Projects: GA ČR GA13-23046S Institutional support: RVO:61388998 Keywords : fluidics * oscillators * microbubbles Subject RIV: BK - Fluid Dynamics

  14. Combination of Micro-fluidic Chip with Fluorescence Correlation Spectroscopy for Single Molecule Detection

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A single molecule detection technique was developed by the combination of a single channel poly (dimethylsiloxane)/glass micro-fluidic chip and fluorescence correlation spectroscopy (FCS). This method was successfully used to determine the proportion of two model components in the mixture containing fluorescein and the rhodamine-green succinimidyl ester.

  15. Micro Machining of Injection Mold Inserts for Fluidic Channel of Polymeric Biochips

    Directory of Open Access Journals (Sweden)

    Myeong-Woo Cho

    2007-08-01

    Full Text Available Recently, the polymeric micro-fluidic biochip, often called LOC (lab-on-a-chip, has been focused as a cheap, rapid and simplified method to replace the existing biochemical laboratory works. It becomes possible to form miniaturized lab functionalities on a chip with the development of MEMS technologies. The micro-fluidic chips contain many micro-channels for the flow of sample and reagents, mixing, and detection tasks. Typical substrate materials for the chip are glass and polymers. Typical techniques for micro-fluidic chip fabrication are utilizing various micro pattern forming methods, such as wet-etching, micro-contact printing, and hot-embossing, micro injection molding, LIGA, and micro powder blasting processes, etc. In this study, to establish the basis of the micro pattern fabrication and mass production of polymeric micro-fluidic chips using injection molding process, micro machining method was applied to form micro-channels on the LOC molds. In the research, a series of machining experiments using micro end-mills were performed to determine optimum machining conditions to improve surface roughness and shape accuracy of designed simplified micro-channels. Obtained conditions were used to machine required mold inserts for micro-channels using micro end-mills. Test injection processes using machined molds and COC polymer were performed, and then the results were investigated.

  16. Rapid prototyping tools and methods for all-Topas (R) cyclic olefin copolymer fluidic microsystems

    DEFF Research Database (Denmark)

    Bundgaard, Frederik; Perozziello, Gerardo; Geschke, Oliver

    2006-01-01

    , good machinability, and good optical properties. A number of different processes for rapid and low-cost prototyping of all-Topas microfluidic systems, made with desktop machinery, are presented. Among the processes are micromilling of fluidic structures with a width down to 25 p,m and sealing of...

  17. Development of a Photo-Fluidic Control Valve without Mechanical Moving Parts

    Science.gov (United States)

    Akagi, Tetsuya; Dohta, Shujiro

    An optical servo system is a new control system which can be used in hazardous environments; such as those with electromagnetic influence, radiation and so on. The purpose of our study is to develop such an optical control system. In our previous study, an optical servo valve in which the output differential pressure was proportional to input optical power had been developed. However, the dynamics of the valve depended on the time required to move the flapper membrane of a fluid booster amplifier using the lower flow rate from the photo-fluidic interface. In addition, the lifetime of the valve depends on that of the fluid booster amplifier that has mechanical moving parts. As a next step, we need to improve the dynamics and to get longer lifetime of the optical servo valve and try to develop another type of optical servo valve whose elements have no mechanical moving parts. In this paper, a photo-fluidic control valve which consists of the photo-fluidic interface and fluid amplifier only using fluidics is proposed. As a result, we found that the tested valve generated output differential pressure of + 80 kPa or -80 kPa according to applied optical power. By driving a pneumatic cylinder whose inner diameter is 16 mm with a stroke of 100 mm using the tested valve, we also confirmed that the tested valve has enough output fluid power to drive a small-sized pneumatic cylinder on the market.

  18. Rapid fabrication of supercapacitor electrodes using bionanoscaffolds in capillary microfluidics

    Science.gov (United States)

    Zang, F.; Chu, S.; Gerasopoulos, K.; Culver, J. N.; Ghodssi, R.

    2015-12-01

    This paper reports the utilization of capillary microfluidics to rapidly create nanostructure-patterned electrodes for energy storage applications. Using patterned photoresist as open-channel capillary microfluidics, Tobacco mosaic virus (TMV) bio-nanoscaffolds suspended in solution are autonomously delivered onto planar gold electrodes over a 1 cm2 area. The TMVs assemble on the electrode and form a dense bio-nanoscaffold layer due to enhanced evaporation-assisted assembly in the open-channel capillary microfluidic device within an hour. The TMV structures are coated with Ni/NiO through electroless plating and thermal oxidation to form supercapacitor electrodes. The galvanostatic charge/discharge cycle showed a 3.6-fold increase in areal capacitance for the nanostructured electrode compared to planar structures.

  19. Acupuncture Sample Injection for Microchip Capillary Electrophoresis and Electrokinetic Chromatography.

    Science.gov (United States)

    Ha, Ji Won; Hahn, Jong Hoon

    2016-05-01

    A simple nanoliter-scale injection technique was developed for polydimethylsiloxane (PDMS) microfluidic devices to form the well-defined sample plugs in microfluidic channels. Sample injection was achieved by performing acupuncture on a channel with a needle and applying external pressure to a syringe. This technique allowed us to achieve reproducible injection of a 3-nL segment into a microchannel for PDMS microchip-based capillary electrophoresis (CE). Capillary zone electrophoresis (CZE) and capillary electrochromatography (CEC) with bead packing were successfully performed by applying a single potential in the most simplified straight channel. The advantages of this acupuncture injection over the electrokinetic injection in microchip CE include capability of minimizing sample loss and voltage control hardware, capability of serial injections of different sample solutions into a same microchannel, capability of injecting sample plugs into any position of a microchannel, independence on sample solutions during the loading step, and ease in making microchips due to the straight channel, etc. PMID:27056036

  20. Proposal for an electro/fluidic no-moving-part transducer based on wall-jet separation from a heated curved surface

    Directory of Open Access Journals (Sweden)

    Tesař Václav

    2015-01-01

    Full Text Available Transducers for varying output flow from a fluidic device in dependence on electric input signal are increasing in importance – and yet no their design has been so far fully satisfactory. Except those that handle very extraordinary liquids (e.g. electro-rheologic, the transducers operate in two stages. The first stage is conversion into a motion or deformation of a mechanical component. In the second stage this mechanical effect acts on the output fluid flow. This signal conversion involving mechanical movements is a weak link between no-moving-parts electronics as well as no-moving-parts fluidics. Mechanical components complicate manufacturing, have tendency to get stuck or become worn – or, if deformed, may break (e.g. due to material fatigue. Their inertia limits the frequency range. Author here proposes a new transducer idea. The electric input heats the wall to which is attached a fluid jet, causing separation of the jet from the surface. Preliminary experiments show that relatively small heating suffices to change the flowfield substantially — and the reduction of the attachment wall to a thin metal foil can make the frequency range quite acceptable.

  1. Surface Tension and Capillary Rise

    Science.gov (United States)

    Walton, Alan J.

    1972-01-01

    Discussion of the shortcomings of textbook explanations of surface tension, distinguishing between concepts of tension and capillary rise. The arguments require only a clear understanding of Newtonian mechanics, notably potential energy. (DF)

  2. Capillary Condensation in Confined Media

    CERN Document Server

    Charlaix, Elisabeth

    2009-01-01

    We review here the physics of capillary condensation of liquids in confined media, with a special regard to the application in nanotechnologies. The thermodynamics of capillary condensation and thin film adsorption are first exposed along with all the relevant notions. The focus is then shifted to the modelling of capillary forces, to their measurements techniques (including SFA, AFM and crack tips) and to their influence on AFM imaging techniques as well as on the static and dynamic friction properties of solids (including granular heaps and sliding nanocontacts). A great attention is spent in investigating the delicate role of the surface roughness and all the difficulties involved in the reduction of the probe size to nanometric dimensions. Another major consequence of capillary condensation in nanosystems is the activation of several chemical and corrosive processes that can significantly alter the surface properties, such as dissolution/redeposition of solid materials and stress-corrosion crack propagati...

  3. Capillary electrophoresis electrospray ionization mass spectrometry interface

    Science.gov (United States)

    Smith, Richard D.; Severs, Joanne C.

    1999-01-01

    The present invention is an interface between a capillary electrophoresis separation capillary end and an electrospray ionization mass spectrometry emitter capillary end, for transporting an anolyte sample from a capillary electrophoresis separation capillary to a electrospray ionization mass spectrometry emitter capillary. The interface of the present invention has: (a) a charge transfer fitting enclosing both of the capillary electrophoresis capillary end and the electrospray ionization mass spectrometry emitter capillary end; (b) a reservoir containing an electrolyte surrounding the charge transfer fitting; and (c) an electrode immersed into the electrolyte, the electrode closing a capillary electrophoresis circuit and providing charge transfer across the charge transfer fitting while avoiding substantial bulk fluid transfer across the charge transfer fitting. Advantages of the present invention have been demonstrated as effective in providing high sensitivity and efficient analyses.

  4. Fluidic switching in nanochannels for the control of Inchworm: a synthetic biomolecular motor with a power stroke

    Science.gov (United States)

    Niman, Cassandra S.; Zuckermann, Martin J.; Balaz, Martina; Tegenfeldt, Jonas O.; Curmi, Paul M. G.; Forde, Nancy R.; Linke, Heiner

    2014-11-01

    Synthetic molecular motors typically take nanometer-scale steps through rectification of thermal motion. Here we propose Inchworm, a DNA-based motor that employs a pronounced power stroke to take micrometer-scale steps on a time scale of seconds, and we design, fabricate, and analyze the nanofluidic device needed to operate the motor. Inchworm is a kbp-long, double-stranded DNA confined inside a nanochannel in a stretched configuration. Motor stepping is achieved through externally controlled changes in salt concentration (changing the DNA's extension), coordinated with ligand-gated binding of the DNA's ends to the functionalized nanochannel surface. Brownian dynamics simulations predict that Inchworm's stall force is determined by its entropic spring constant and is ~0.1 pN. Operation of the motor requires periodic cycling of four different buffers surrounding the DNA inside a nanochannel, while keeping constant the hydrodynamic load force on the DNA. We present a two-layer fluidic device incorporating 100 nm-radius nanochannels that are connected through a few-nm-wide slit to a microfluidic system used for in situ buffer exchanges, either diffusionally (zero flow) or with controlled hydrodynamic flow. Combining experiment with finite-element modeling, we demonstrate the device's key performance features and experimentally establish achievable Inchworm stepping times of the order of seconds or faster.Synthetic molecular motors typically take nanometer-scale steps through rectification of thermal motion. Here we propose Inchworm, a DNA-based motor that employs a pronounced power stroke to take micrometer-scale steps on a time scale of seconds, and we design, fabricate, and analyze the nanofluidic device needed to operate the motor. Inchworm is a kbp-long, double-stranded DNA confined inside a nanochannel in a stretched configuration. Motor stepping is achieved through externally controlled changes in salt concentration (changing the DNA's extension), coordinated

  5. Experimental and simulation investigation of ion transfer in different sampling capillaries.

    Science.gov (United States)

    Yu, Quan; Jiang, Tao; Ni, Kai; Qian, Xiang; Tang, Fei; Wang, Xiaohao

    2015-12-01

    Atmospheric pressure interfaces were a fundamental structure for transferring air generated ions into the vacuum manifold of a mass spectrometer. This work is devoted to the characterization of ion transfer in metal capillaries through both experimental and simulated investigations. The impact of capillary configurations on ion transmission efficiency was evaluated using an electrospray mass spectrometer with various bent capillaries as the transfer devices. In addition, a numerical model has been set up by coupling the SIMION 8.0 and the computational flow dynamics for simulation study of ion migration in the complex atmospheric system. The transfer efficiency was found to be highly affected by the variation in electric field and the capillary geometry, revealing that the hydrodynamic and electric force were both dominant and interactional during the transmission process. The consistency of the results from the experimental analysis and simulation modeling proved the validity of the model, which was helpful for understanding ion activity in transfer capillaries. PMID:26634970

  6. A submicron synchrotron X-ray beam generated by capillary optics

    International Nuclear Information System (INIS)

    A novel capillary optics technique for focusing synchrotron X-ray beams has been applied in an experiment performed at the DORIS storage ring at HASYLAB. This new technqiue, which utilizes the total reflection properties of X-rays inside small capillaries, has recently been applied to generate microbeams of X-rays, with a beam size down to about 10 μm using conventional X-ray tubes. The result from our recent experiment shows that capillary optics can also be used to generate a submicron beam of X-rays from a synchrotron light source. A description of the capillary unit, and the alignment procedure is given. The influence of the thermal load on the device caused by the intense flux of synchrotron radiation will be discussed. Future perspectives of the capillary techniques as applied to synchrotron radiation will be discussed. (orig.)

  7. All-organic electrostrictive polymer composites with low driving electrical voltages for micro-fluidic pump applications

    Science.gov (United States)

    Le, Minh Quyen; Capsal, Jean-Fabien; Galineau, Jérémy; Ganet, Florent; Yin, Xunqian; Yang, Mingchia (Dawn); Chateaux, Jean-François; Renaud, Louis; Malhaire, Christophe; Cottinet, Pierre-Jean; Liang, Richard

    2015-07-01

    This paper focuses on the improvement of a relaxor ferroelectric terpolymer, i.e., poly (vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) [P(VDF-TrFE-CFE)], filled with a bis(2-ethylhexyl) phthalate (DEHP). The developed material gave rise to a significantly increased longitudinal electrostrictive strain, as well as an increased mechanical energy density under a relatively low electric field. These features were attributed to the considerably enhanced dielectric permittivity and a decreased Young modulus as a result of the introduction of only small DEHP plasticizer molecules. In addition, the plasticizer-filled terpolymer only exhibited a slight decrease of the dielectric breakdown strength, which was a great advantage with respect to the traditional polymer-based electrostrictive composites. More importantly, the approach proposed herein is promising for the future development and scale-up of new high-performance electrostrictive dielectrics under low applied electrical fields through modification simply by blending with a low-cost plasticizer. An experimental demonstration based on a flexible micro-fluidic application is described at the end of this paper, confirming the attractive characteristics of the proposed materials as well as the feasibility of integrating them as micro-actuators in small-scale devices.

  8. 3D Nanofabrication of fluidic components by corner lithography

    OpenAIRE

    Burouni, N.

    2014-01-01

    A reproducible wafer-scale method to obtain 3D nanostructures using a low-budget lithography tool is investigated. This method, called corner lithography, explores the conformal deposition and the subsequent timed isotropic etching of a thin film in a 3D shaped silicon template. Moreover, it offers sub-micron lithography in wafer scales that allows wide range of miniaturization of nano devices, shich are uniform and compatible with geometrical expectation. The technique leaves a residue of th...

  9. Micro-patterning and actuation of phosphonium-based photo-responsive ionogels for micro-fluidic applications

    OpenAIRE

    Blin, Candice; Byrne, Robert; Diamond, Dermot; Benito-Lopez, Fernando

    2011-01-01

    The concept of “Micro-total-analysis-Systems” or “Lab-on-chip” has emerged over the past 20-years but, despite of the fact their incredible potential to revolutionise analytical science few outputs have reached the market so far[1]. Moreover, important issues like durability, disposability and cost of manufacture slow down the process of the integration of micro-fluidics into commercially relevant analytical products[2]. We believe that the next breakthroughs on micro-fluidic technology will ...

  10. Investigation of pressure drop in capillary tube for mixed refrigerant Joule-Thomson cryocooler

    International Nuclear Information System (INIS)

    A capillary tube is commonly used in small capacity refrigeration and air-conditioning systems. It is also a preferred expansion device in mixed refrigerant Joule-Thomson (MR J-T) cryocoolers, since it is inexpensive and simple in configuration. However, the flow inside a capillary tube is complex, since flashing process that occurs in case of refrigeration and air-conditioning systems is metastable. A mixture of refrigerants such as nitrogen, methane, ethane, propane and iso-butane expands below its inversion temperature in the capillary tube of MR J-T cryocooler and reaches cryogenic temperature. The mass flow rate of refrigerant mixture circulating through capillary tube depends on the pressure difference across it. There are many empirical correlations which predict pressure drop across the capillary tube. However, they have not been tested for refrigerant mixtures and for operating conditions of the cryocooler. The present paper assesses the existing empirical correlations for predicting overall pressure drop across the capillary tube for the MR J-T cryocooler. The empirical correlations refer to homogeneous as well as separated flow models. Experiments are carried out to measure the overall pressure drop across the capillary tube for the cooler. Three different compositions of refrigerant mixture are used to study the pressure drop variations. The predicted overall pressure drop across the capillary tube is compared with the experimentally obtained value. The predictions obtained using homogeneous model show better match with the experimental results compared to separated flow models

  11. Impacts on oil recovery from capillary pressure and capillary heterogeneities

    Energy Technology Data Exchange (ETDEWEB)

    Bognoe, Thomas

    2008-07-01

    The main conclusions drawn from this thesis are; 7 scientific papers are published on a broad variety of subjects, and describes in detail the experiments and research treated in this thesis. Scientific research has been performed, investigating the subjects of capillary pressure and capillary heterogeneities from different angles. This thesis discusses the findings in this study and aims to illustrate the benefits of the results obtained for further development of other experiments, and/or even the industrial benefits in field development. The methods for wettability alteration have developed throughout the work. From producing heterogeneous wettability alterations, the methods have improved to giving both radial and lateral uniform wettability alterations, which also remains unaltered throughout the duration of the experimental work. The alteration of wettability is dependent on initial water saturation, flow rate, aging time and crude oil composition. Capillary pressure and relative permeability curves have been measured for core plugs at different wettabilities using conventional centrifuge methods. The trends observed are mostly consistent with theory. The production mechanisms of strongly and moderately water wet chalk has been investigated. At strongly water wet conditions in fractured chalk; the flow is governed by capillary forces, showing strong impact from the fractures. At moderately water wet conditions, the impact of the fractures are absent, and a dispersed water front is observed during the displacement. The oil recovery is about the same, at the two wettabilities. Fracture crossing mechanisms at the same wettability conditions have been mapped. And the observations are consistent with those of the water floods. During strongly water wet displacement, the fracture crossing is occurring once the inlet core has reached endpoint of spontaneous imbibition. At moderately water wet conditions the fracture crossing is less abrupt, and creation of wetting

  12. Non-Aqueous Capillary Electrophoresis

    Science.gov (United States)

    Szumski, Michał; Buszewski, Bogusław

    Non-aqueous capillary electrophoresis and capillary electrochromatography are special variants of these techniques. Here, organic solvents or their mixtures with or without dissolved electrolytes are used as separation buffer or mobile phase, respectively. The most important features of non-aqueous systems are: better solubility of more hydrophobic ionic substances (many natural products) than in water, much less current and Joule heating allows for using highly concentrated buffers and/or larger capillary internal diameters, polar interactions are enhanced in organic solvents which is often highly advantageous in chiral separation systems. This chapter presents most frequently used solvents, their properties, as well as shows pH* scale which is often used in non-aqueous systems.

  13. Numerical Studies of a Supersonic Fluidic Diverter Actuator for Flow Control

    Science.gov (United States)

    Gokoglu, Suleyman A.; Kuczmarski, Maria A.; Culley, Dennis e.; Raghu, Surya

    2010-01-01

    The analysis of the internal flow structure and performance of a specific fluidic diverter actuator, previously studied by time-dependent numerical computations for subsonic flow, is extended to include operation with supersonic actuator exit velocities. The understanding will aid in the development of fluidic diverters with minimum pressure losses and advanced designs of flow control actuators. The self-induced oscillatory behavior of the flow is successfully predicted and the calculated oscillation frequencies with respect to flow rate have excellent agreement with our experimental measurements. The oscillation frequency increases with Mach number, but its dependence on flow rate changes from subsonic to transonic to supersonic regimes. The delay time for the initiation of oscillations depends on the flow rate and the acoustic speed in the gaseous medium for subsonic flow, but is unaffected by the flow rate for supersonic conditions

  14. Induced fluid rotation and bistable fluidic turn-down valves (a survey

    Directory of Open Access Journals (Sweden)

    Tesař Václav

    2015-01-01

    Full Text Available Paper surveys engineering applications of an unusual fluidic principle — momentum transfer through a relatively small communicating window into a vortex chamber, where the initially stationary fluid is put into rotation. The transfer is often by shear stress acting in the window plane, but may be enhanced and perhaps even dominated by fluid flow crossing the boundary. The case of zero-time-mean fluid transport through the window has found use in experimental fluid mechanics: non-invasive measurement of wall shear stress on objects by evaluating the induced rotation in the vortex chamber. The case with the non-zero flow through the interface became the starting point in development of fluidic valves combining two otherwise mutually incompatible properties: bistability and flow turning down.

  15. 3D-printed fluidic networks as vasculature for engineered tissue.

    Science.gov (United States)

    Kinstlinger, Ian S; Miller, Jordan S

    2016-05-24

    Fabrication of vascular networks within engineered tissue remains one of the greatest challenges facing the fields of biomaterials and tissue engineering. Historically, the structural complexity of vascular networks has limited their fabrication in tissues engineered in vitro. Recently, however, key advances have been made in constructing fluidic networks within biomaterials, suggesting a strategy for fabricating the architecture of the vasculature. These techniques build on emerging technologies within the microfluidics community as well as on 3D printing. The freeform fabrication capabilities of 3D printing are allowing investigators to fabricate fluidic networks with complex architecture inside biomaterial matrices. In this review, we examine the most exciting 3D printing-based techniques in this area. We also discuss opportunities for using these techniques to address open questions in vascular biology and biophysics, as well as for engineering therapeutic tissue substitutes in vitro. PMID:27173478

  16. Wind tunnel tests of the dynamic characteristics of the fluidic rudder

    Science.gov (United States)

    Belsterling, C. A.

    1976-01-01

    The fourth phase is given of a continuing program to develop the means to stabilize and control aircraft without moving parts or a separate source of power. Previous phases have demonstrated the feasibility of (1) generating adequate control forces on a standard airfoil, (2) controlling those forces with a fluidic amplifier and (3) cascading non-vented fluidic amplifiers operating on ram air supply pressure. The foremost objectives of the fourth phase covered under Part I of this report were to demonstrate a complete force-control system in a wind tunnel environment and to measure its static and dynamic control characteristics. Secondary objectives, covered under Part II, were to evaluate alternate configurations for lift control. The results demonstrate an overall response time of 150 msec, confirming this technology as a viable means for implementing low-cost reliable flight control systems.

  17. Evaluation of the threshold trimming method for micro inertial fluidic switch based on electrowetting technology

    Directory of Open Access Journals (Sweden)

    Tingting Liu

    2014-03-01

    Full Text Available The switch based on electrowetting technology has the advantages of no moving part, low contact resistance, long life and adjustable acceleration threshold. The acceleration threshold of switch can be fine-tuned by adjusting the applied voltage. This paper is focused on the electrowetting properties of switch and the influence of microchannel structural parameters, applied voltage and droplet volume on acceleration threshold. In the presence of process errors of micro inertial fluidic switch and measuring errors of droplet volume, there is a deviation between test acceleration threshold and target acceleration threshold. Considering the process errors and measuring errors, worst-case analysis is used to analyze the influence of parameter tolerance on the acceleration threshold. Under worst-case condition the total acceleration threshold tolerance caused by various errors is 9.95%. The target acceleration threshold can be achieved by fine-tuning the applied voltage. The acceleration threshold trimming method of micro inertial fluidic switch is verified.

  18. Numerical Simulation of a High-Lift Configuration with Embedded Fluidic Actuators

    Science.gov (United States)

    Vatsa, Veer N.; Casalino, Damiano; Lin, John C.; Appelbaum, Jason

    2014-01-01

    Numerical simulations have been performed for a vertical tail configuration with deflected rudder. The suction surface of the main element of this configuration is embedded with an array of 32 fluidic actuators that produce oscillating sweeping jets. Such oscillating jets have been found to be very effective for flow control applications in the past. In the current paper, a high-fidelity computational fluid dynamics (CFD) code known as the PowerFLOW(Registered TradeMark) code is used to simulate the entire flow field associated with this configuration, including the flow inside the actuators. The computed results for the surface pressure and integrated forces compare favorably with measured data. In addition, numerical solutions predict the correct trends in forces with active flow control compared to the no control case. Effect of varying yaw and rudder deflection angles are also presented. In addition, computations have been performed at a higher Reynolds number to assess the performance of fluidic actuators at flight conditions.

  19. Gas Dynamical Capillary Flowmeters of Small and Micro Flowrates of Gases

    OpenAIRE

    Stasiuk, Ivan

    2015-01-01

    The possibility of application of glass capillary tubes (CTs) as sensors of small and micro flowrates of gases was justified. The accuracy of a number of CTs flowrate equations was analyzed on the basis of experimental studies of CTs flowrate characteristics. It was shown that CTs can be applied as primary devices of small and micro flowrates of gases without individual calibration. The results of studies on the dynamic properties of gas dynamical capillary flowmeters of small and micro flowr...

  20. Modeling of low-capillary number segmented flows in microchannels using OpenFOAM

    OpenAIRE

    Hoang, D.A.; Van Steijn V.; Portela, L.M.; Kreutzer, M.T.; Kleijn, C. R.

    2012-01-01

    Modeling of low-Capillary number segmented flows in microchannels is important for the design of microfluidic devices. We present numerical validations of microfluidic flow simulations using the volume-of-fluid (VOF) method as implemented in OpenFOAM. Two benchmark cases were investigated to ensure the reliability of OpenFOAM in modeling complex physical phenomena in microfluidics, viz. 1) the steady motion of bubbles in capillaries, and 2) the formation of bubbles in T-junctions. We found th...

  1. Use of fluidic oscillator to measure fuel-air ratios of combustion gases

    Science.gov (United States)

    Riddlebaugh, S. M.

    1974-01-01

    A fluidic oscillator was investigated for use in measuring fuel-air ratios in hydrocarbon combustion processes. The oscillator was operated with dry exhaust gas from an experimental combustor burning ASTM A-1 fuel. Tests were conducted with fuel-air ratios between 0.015 and 0.031. Fuel-air ratios determined by oscillator frequency were within 0.001 of the values computed from separate flow measurements of the air and fuel.

  2. On the design and simulation of an airlift loop bioreactorwith microbubble generation by fluidic oscillation

    Czech Academy of Sciences Publication Activity Database

    Zimmerman, W. B.; Tesař, Václav; Hewakandamby, B.N.; Bandulasena, H.C.H.; Omotowa, O.A.

    2009-01-01

    Roč. 87, C3 (2009), s. 215-227. ISSN 0960-3085 Institutional research plan: CEZ:AV0Z20760514 Keywords : microbubbles * fluidic oscillators * transport phenomena Subject RIV: BK - Fluid Dynamics Impact factor: 0.952, year: 2009 http://apps.isiknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=1&SID=V2FDdpCMohHOjGaLDMi&page=1&doc=3&colname=WOS

  3. Fluidic low-frequency oscillator with vortex spin-up time delay

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav; Smyk, E.

    2015-01-01

    Roč. 90, April (2015), s. 6-15. ISSN 0255-2701 R&D Projects: GA ČR GA13-23046S; GA ČR GA14-08888S Institutional support: RVO:61388998 Keywords : fluidics * oscillator * vortex chamber Subject RIV: BK - Fluid Dynamics Impact factor: 2.071, year: 2014 http://www.sciencedirect.com/science/article/pii/S0255270115000252

  4. Finite-element simulation of cavity modes in a micro-fluidic dye ring laser

    CERN Document Server

    Gersborg-Hansen, M; Mortensen, N A; 10.1088/1464-4258/8/1/003

    2006-01-01

    We consider a recently reported micro-fluidic dye ring laser and study the full wave nature of TE modes in the cavity by means of finite-element simulations. The resonance wave-patterns of the cavity modes support a ray-tracing view and we are also able to explain the spectrum in terms of standing waves with a mode spacing dk = 2pi/L_eff where L_eff is the effective optical path length in the cavity.

  5. Fabrication of Biochips with Micro Fluidic Channels by Micro End-milling and Powder Blasting

    OpenAIRE

    Dong Sam Park; Tae Il Seo; Dae Jin Yun

    2008-01-01

    For microfabrications of biochips with micro fluidic channels, a large number of microfabrication techniques based on silicon or glass-based Micro-Electro-Mechanical System (MEMS) technologies were proposed in the last decade. In recent years, for low cost and mass production, polymer-based microfabrication techniques by microinjection molding and micro hot embossing have been proposed. These techniques, which require a proper photoresist, mask, UV light exposure, developing, and electroplati...

  6. Research of Confocal Laser Induced Fluorescence Detection System for Micro-fluidic Chip

    Institute of Scientific and Technical Information of China (English)

    FENG Jin-yuan; WANG Xiu-hua; ZHANG Hua-feng

    2007-01-01

    The characteristics such as signal noise ratio(SNR)[1-2] and sensitivity of the fluorescence detection system for micro-fluidic chip influence the performance of the whole system extremely.The confocal laser induced fluorescence detection system is presented.Based on the debugging of optical and circuit modules, the results of detecting the samples are given and analyzed theoretically,and the improved project is put forward.

  7. Characterization of printable cellular micro-fluidic channels for tissue engineering

    International Nuclear Information System (INIS)

    Tissue engineering has been a promising field of research, offering hope of bridging the gap between organ shortage and transplantation needs. However, building three-dimensional (3D) vascularized organs remains the main technological barrier to be overcome. One of the major challenges is the inclusion of a vascular network to support cell viability in terms of nutrients and oxygen perfusion. This paper introduces a new approach to the fabrication of vessel-like microfluidic channels that has the potential to be used in thick tissue or organ fabrication in the future. In this research, we investigate the manufacturability of printable micro-fluidic channels, where micro-fluidic channels support mechanical integrity as well as enable fluid transport in 3D. A pressure-assisted solid freeform fabrication platform is developed with a coaxial needle dispenser unit to print hollow hydrogel filaments. The dispensing rheology is studied, and effects of material properties on structural formation of hollow filaments are analyzed. Sample structures are printed through the developed computer-controlled system. In addition, cell viability and gene expression studies are presented in this paper. Cell viability shows that cartilage progenitor cells (CPCs) maintained their viability right after bioprinting and during prolonged in vitro culture. Real-time PCR analysis yielded a relatively higher expression of cartilage-specific genes in alginate hollow filament encapsulating CPCs, compared with monolayer cultured CPCs, which revealed that printable semi-permeable micro-fluidic channels provided an ideal environment for cell growth and function. (paper)

  8. Characterization of printable cellular micro-fluidic channels for tissue engineering.

    Science.gov (United States)

    Zhang, Yahui; Yu, Yin; Chen, Howard; Ozbolat, Ibrahim T

    2013-06-01

    Tissue engineering has been a promising field of research, offering hope of bridging the gap between organ shortage and transplantation needs. However, building three-dimensional (3D) vascularized organs remains the main technological barrier to be overcome. One of the major challenges is the inclusion of a vascular network to support cell viability in terms of nutrients and oxygen perfusion. This paper introduces a new approach to the fabrication of vessel-like microfluidic channels that has the potential to be used in thick tissue or organ fabrication in the future. In this research, we investigate the manufacturability of printable micro-fluidic channels, where micro-fluidic channels support mechanical integrity as well as enable fluid transport in 3D. A pressure-assisted solid freeform fabrication platform is developed with a coaxial needle dispenser unit to print hollow hydrogel filaments. The dispensing rheology is studied, and effects of material properties on structural formation of hollow filaments are analyzed. Sample structures are printed through the developed computer-controlled system. In addition, cell viability and gene expression studies are presented in this paper. Cell viability shows that cartilage progenitor cells (CPCs) maintained their viability right after bioprinting and during prolonged in vitro culture. Real-time PCR analysis yielded a relatively higher expression of cartilage-specific genes in alginate hollow filament encapsulating CPCs, compared with monolayer cultured CPCs, which revealed that printable semi-permeable micro-fluidic channels provided an ideal environment for cell growth and function. PMID:23458889

  9. Automation of column-based radiochemical separations. A comparison of fluidic, robotic, and hybrid architectures

    International Nuclear Information System (INIS)

    Two automated systems have been developed to perform column-based radiochemical separation procedures. These new systems are compared with past fluidic column separation architectures, with emphasis on using disposable components so that no sample contacts any surface that any other sample has contacted, and setting up samples and columns in parallel for subsequent automated processing. In the first new approach, a general purpose liquid handling robot has been modified and programmed to perform anion exchange separations using 2 mL bed columns in 6 mL plastic disposable column bodies. In the second new approach, a fluidic system has been developed to deliver clean reagents through disposable manual valves to six disposable columns, with a mechanized fraction collector that positions one of four rows of six vials below the columns. The samples are delivered to each column via a manual 3-port disposable valve from disposable syringes. This second approach, a hybrid of fluidic and mechanized components, is a simpler more efficient approach for performing anion exchange procedures for the recovery and purification of plutonium from samples. The automation architectures described can also be adapted to column-based extraction chromatography separations. (orig.)

  10. High-Throughput Proteomics Using High Efficiency Multiple-Capillary Liquid Chromatography With On-Line High-Performance ESI FTICR Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Yufeng (BATTELLE (PACIFIC NW LAB)); Tolic, Nikola (BATTELLE (PACIFIC NW LAB)); Zhao, Rui (ASSOC WESTERN UNIVERSITY); Pasa Tolic, Ljiljana (BATTELLE (PACIFIC NW LAB)); Li, Lingjun (Illinois Univ Of-Urbana/Champa); Berger, Scott J.(ASSOC WESTERN UNIVERSITY); Harkewicz, Richard (BATTELLE (PACIFIC NW LAB)); Anderson, Gordon A.(BATTELLE (PACIFIC NW LAB)); Belov, Mikhail E.(BATTELLE (PACIFIC NW LAB)); Smith, Richard D.(BATTELLE (PACIFIC NW LAB))

    2000-12-01

    We report on the design and application of a high-efficiency multiple-capillary liquid chromatography (LC) system for high-throughput proteome analysis. The multiple-capillary LC system was operated at the pressure of 10,000 psi using commercial LC pumps to deliver the mobile phase and newly developed passive feedback valves to switch the mobile phase flow and introduce samples. The multiple-capillary LC system was composed of several serially connected dual-capillary column devices. The dual-capillary column approach was designed to eliminate the time delay for regeneration (or equilibrium) of the capillary column after its use under the mobile phase gradient condition (i.e. one capillary column was used in separation and the other was washed using mobile phase A). The serially connected dual-capillary columns and ESI sources were operated independently, and could be used for either''backup'' operation or with other mass spectrometer(s). This high-efficiency multiple-capillary LC system uses switching valves for all operations and is highly amenable to automation. The separations efficiency of dual-capillary column device, optimal capillary dimensions (column length and packed particle size), suitable mobile phases for electrospray, and the capillary re-generation were investigated. A high magnetic field (11.5 tesla) Fourier transform ion cyclotron resonance (FTICR) mass spectrometer was coupled on-line with this high-efficiency multiple-capillary LC system through an electrospray ionization source. The capillary LC provided a peak capacity of {approx}600, and the 2-D capillary LC-FTICR provided a combined resolving power of > 6 x 10 7 polypeptide isotopic distributions. For yeast cellular tryptic digests, > 100,000 polypeptides were typically detected, and {approx}1,000 proteins can be characterized in a single run.

  11. Capillary thinning of polymeric filaments

    DEFF Research Database (Denmark)

    Kolte, Mette Irene; Szabo, Peter

    1999-01-01

    The capillary thinning of filaments of a Newtonian polybutene fluid and a viscoelastic polyisobutylene solution are analyzed experimentally and by means of numerical simulation. The experimental procedure is as follows. Initially, a liquid sample is placed between two cylindrical plates. Then, th...

  12. Capillary thinning of polymeric filaments

    DEFF Research Database (Denmark)

    Kolte, Mette Irene; Szabo, Peter; Hassager, Ole

    The capillary thinning of a polymeric filament is analysed experimentally as well as by means of numerical simulation. The experimental procedure is as follows. Initially a liquid sample is kept between two cylindrical plates. Then the bottom plate is lowered under gravity to yield a given strain...

  13. Ion guiding in alumina capillaries

    DEFF Research Database (Denmark)

    Juhász, Z.; Sulik, B.; Biri, S.;

    2009-01-01

    Transmission of a few keV impact energy Ne ions through capillaries in anodic alumina membranes has been studied with different ion counting methods using an energy dispersive electrostatic spectrometer, a multichannel plate (MCP) array and sensitive current-measurement. In the present work, we...

  14. Capillary Rise in a Wedge

    Science.gov (United States)

    Piva, M.

    2009-01-01

    In introductory-level physics courses, the concept of surface tension is often illustrated using the example of capillary rise in thin tubes. In this paper the author describes experiments conducted using a planar geometry created with two small plates forming a thin wedge. The distribution of the fluid entering the wedge can be studied as a…

  15. On-column radioisotope detection for capillary electrophoresis

    International Nuclear Information System (INIS)

    Three on-line radioactivity detection schemes for capillary electrophoresis are described. The first detector system utilizes a commercially available semiconductor device positioned external to the separation channel and responding directly to impinging γ or high-energy β radiation. The second detector system utilizes a commercially available plastic scintillator material and a cooled photomultiplier tube operated in the photon counting mode. The third detector system utilizes a plastic scintillator material and two room-temperature photomultiplier tubes operated in the coincidence counting mode. The system performance and detector efficiency are evaluated for each of the detection schemes using synthetic mixtures of 32P-labeled sample molecules. The detection limits are determined to be in the low nanocurie range for separations performed under standard conditions (an injected sample quantity of 1 nanocurie corresponds to 110 x 10-18 moles of 32P). The lower limit of detection is extended to the sub-nanocurie level by using flow (voltage) programming to increase the residence time of labeled sample components in the detection volume. The separation of 32P-labeled oligonucleotide mixtures using polyacrylamide gel-filled capillaries and on-line radioisotope detection is also presented. When desired, the residence time can be made almost arbitrarily long by freezing the contents of the capillary, permitting autoradiograms to be recorded. This last technique is applied to gel-filled capillaries and provides a detection sensitivity of a few DPM per separated component, corresponding to subattomole amounts of radiolabel

  16. The performance of a self-excited fluidic energy harvester

    International Nuclear Information System (INIS)

    The available power in a flowing fluid is proportional to the cube of its velocity, and this feature indicates the potential for generating substantial electrical energy by exploiting the direct piezoelectric effect. The present work is an experimental investigation of a self-excited piezoelectric energy harvester subjected to a uniform and steady flow. The harvester consists of a cylinder attached to the free end of a cantilevered beam, which is partially covered by piezoelectric patches. Due to fluid–structure interaction phenomena, the cylinder is subjected to oscillatory forces, and the beam is deflected accordingly, causing the piezoelectric elements to strain and thus develop electric charge. The harvester was tested in a wind tunnel and it produced approximately 0.1 mW of non-rectified electrical power at a flow speed of 1.192 m s−1. The aeroelectromechanical efficiency at resonance was calculated to be 0.72%, while the power per device volume was 23.6 mW m−3 and the power per piezoelectric volume was 233 W m−3. Strain measurements were obtained during the tests and were used to predict the voltage output by employing a distributed parameter model. The effect of non-rigid bonding on strain transfer was also investigated. While the rigid bonding assumption caused a significant (>60%) overestimation of the measured power, a non-rigid bonding model gave a better agreement (<10% error). (paper)

  17. Modelling and simulation of particle acceleration by a plasma flow in a discharge capillary-ablative pipe system

    Energy Technology Data Exchange (ETDEWEB)

    Zoler, D. [Tel Aviv Univ. (Israel); Kaplan, Z.; Ashkenazy, J. [SOREQ, Yavne (Israel)

    1995-12-31

    In a recent paper, the discharge capillary - ablative pipe system was proposed as a device able to provide high density high temperature plasmas. In such a device the plasma is produced in the discharge section (the capillary) and continues to evolve through its interaction with the walls of the ablative pipe representing the second section of the installation. Using the consistent model developed for the plasma flow in such a kind of discharges, it was proved that, by changing the level of the input electrical energy or, alternatively, by simple modifications of the system geometry we can obtain plasmas with an extended range of hydrodynamic and thermodynamic parameters. Due to this feature of the capillary-pipe systems, it could find uses in many applications. In the present work we show that the capillary-pipe system can also be an efficient device for accelerating clusters of small particles in the mass range of a few micrograms each to large velocities.

  18. Modelling and simulation of particle acceleration by a plasma flow in a discharge capillary-ablative pipe system

    International Nuclear Information System (INIS)

    In a recent paper, the discharge capillary - ablative pipe system was proposed as a device able to provide high density high temperature plasmas. In such a device the plasma is produced in the discharge section (the capillary) and continues to evolve through its interaction with the walls of the ablative pipe representing the second section of the installation. Using the consistent model developed for the plasma flow in such a kind of discharges, it was proved that, by changing the level of the input electrical energy or, alternatively, by simple modifications of the system geometry we can obtain plasmas with an extended range of hydrodynamic and thermodynamic parameters. Due to this feature of the capillary-pipe systems, it could find uses in many applications. In the present work we show that the capillary-pipe system can also be an efficient device for accelerating clusters of small particles in the mass range of a few micrograms each to large velocities

  19. Fabricating PFPE Membranes for Capillary Electrophoresis

    Science.gov (United States)

    Lee, Michael C.; Willis, Peter A.; Greer, Frank; Rolland, Jason

    2009-01-01

    A process has been developed for fabricating perfluoropolyether (PFPE) membranes that contain microscopic holes of precise sizes at precise locations. The membranes are to be incorporated into laboratory-on-a-chip microfluidic devices to be used in performing capillary electrophoresis. The present process is a modified version of part of the process, described in the immediately preceding article, that includes a step in which a liquid PFPE layer is cured into solid (membrane) form by use of ultraviolet light. In the present process, one exploits the fact that by masking some locations to prevent exposure to ultraviolet light, one can prevent curing of the PFPE in those locations. The uncured PFPE can be washed away from those locations in the subsequent release and cleaning steps. Thus, holes are formed in the membrane in those locations. The most straightforward way to implement the modification is to use, during the ultraviolet-curing step, an ultraviolet photomask similar to the photomasks used in fabricating microelectronic devices. In lieu of such a photomask, one could use a mask made of any patternable ultraviolet-absorbing material (for example, an ink or a photoresist).

  20. Interwoven Four-Compartment Capillary Membrane Technology for Three-Dimensional Perfusion with Decentralized Mass Exchange to Scale Up Embryonic Stem Cell Culture

    OpenAIRE

    Gerlach, Jörg C.; Lübberstedt, Marc; Edsbagge, Josefina; Ring, Alexander; Hout, Mariah; Baun, Matt; Rossberg, Ingrid; Knöspel, Fanny; Peters, Grant; Eckert, Klaus; Wulf-Goldenberg, Annika; Björquist, Petter; Stachelscheid, Harald; Urbaniak, Thomas; Schatten, Gerald

    2010-01-01

    We describe hollow fiber-based three-dimensional (3D) dynamic perfusion bioreactor technology for embryonic stem cells (ESC) which is scalable for laboratory and potentially clinical translation applications. We added 2 more compartments to the typical 2-compartment devices, namely an additional media capillary compartment for countercurrent ‘arteriovenous’ flow and an oxygenation capillary compartment. Each capillary membrane compartment can be perfused independently. Interweaving the 3 capi...

  1. Capillary hemangioma of palatal mucosa

    OpenAIRE

    Bharti, Vipin; Singh, Jagmohan

    2012-01-01

    Hemangiomas are common tumors characterized microscopically by proliferation of blood vessels. The congenital hemangioma is often present at birth and may become more apparent throughout life. They are probably developmental rather than neoplastic in origin. Despite their benign origin and behavior, hemangiomas in the oral cavity are always of clinical importance to the dental profession and require appropriate clinical management. This case report presents a case of capillary hemangioma of a...

  2. Exponential asymptotics and capillary waves

    OpenAIRE

    Chapman, S. J.; Vanden-Broeck, J.

    2002-01-01

    Recently developed techniques in exponential asymptotics beyond all orders are employed on the problem of potential flows with a free surface and small surface tension, in the absence of gravity. Exponentially small capillary waves are found to be generated on the free surface where the equipotentials from singularities in the flow (for example, stagnation points and corners) meet it. The amplitude of these waves is determined, and the implications are considered for many quite general flows....

  3. Nonlinear waves in capillary electrophoresis

    OpenAIRE

    Ghosal, Sandip; Chen, Zhen

    2012-01-01

    Electrophoretic separation of a mixture of chemical species is a fundamental technique of great usefulness in biology, health care and forensics. In capillary electrophoresis the sample migrates in a microcapillary in the presence of a background electrolyte. When the ionic concentration of the sample is sufficiently high, the signal is known to exhibit features reminiscent of nonlinear waves including sharp concentration ‘shocks’. In this paper we consider a simplified model consisting of a ...

  4. Inertial Rise in Short Capillaries

    CERN Document Server

    Shardt, Orest; Derksen, J J; Mitra, Sushanta K

    2013-01-01

    In this fluid dynamics video we show capillary rise experiments with diethyl ether in short tubes. The height of each short tube is less than the maximum height the liquid can achieve, and therefore the liquid reaches the top of the tube while still rising. Over a narrow range of heights, the ether bulges out from the top of the tube and spreads onto the external wall.

  5. Atom guiding in single mode optical fiber capillary

    Science.gov (United States)

    Romaniuk, Ryszard S.; Dorosz, Jan

    2006-10-01

    A relatively new method of atomic DeBroglie wave transmission in a hollow single mode optical fiber is presented. A slightly blue-detuned, from the atomic resonance, optical evanescent wave in the ring core of the capillary optical fiber creates a potential barrier for co-propagating or counter-propagating DeBroglie wave. The applied optical wavelength, associated with the used atomic transitions, was in the range 1100-400nm. Excited, metastable atoms of chromium, rubidium, cesium, helium, alkalis, etc., were transmitted in the capillary optical fiber. Initially the transmission was multimode and then single mode, with increasing efficiency. There are considered initial application perspectives of this transmission technology of DeBroglie wave for building of coherent cold sources of atoms, atom interferometers, and devices of the inverse lithography, which may possibly compete with the short-wave photo-lithography. The paper is a tutorial and has a teaching and technology review character.

  6. Fluid Mechanics of Torch Appearance in Capillary Microplasma Jet

    Science.gov (United States)

    Choi, Jaegu; Matsuo, Keita; Yoshida, Hidekazu; Hosseini, S. Hamid R.; Namihira, Takao; Katsuki, Sunao; Akiyama, Hidenori

    2009-01-01

    Atmospheric-pressure microplasma jets with long and fine torches have recently been used in industrial and medical applications, such as local dental treatment, inner surface treatment of capillaries, stimuli of microorganisms, and local cleaning of semiconductor devices. The final torch appearance is greatly dependent on both the plasma between electrodes and the gas flow that is also dominated by the configuration of the nozzle. In this study, the mechanisms of torch appearance in a dc-driven capillary microplasma jet using atmospheric-pressure air have been investigated. Experimentally measured visible torch lengths are analyzed on the basis of fluid mechanics using a fluid simulation code. The time evolution of the plasma torch is visualized with a high-speed camera, and the length and propagation velocity of the torch are presented.

  7. Performance of capillary discharge guided laser plasma wakefieldaccelerator

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Kei; Esarey, Eric; Geddes, Cameron G.R.; Gonsalves,Anthony J.; Leemans, Wim P.; Panasenko, Dmitriy; Schroeder, Carl B.; Toth, Csaba; Hooker, S.M.

    2007-06-25

    A GeV-class laser-driven plasma-based wakefield acceleratorhas been realized at the Lawrence Berkeley National Laboratory (LBNL).The device consists of the 40TW high repetition rate Ti:sapphire LOASISlaser system at LBNL and a gas-filled capillary discharge waveguidedeveloped at Oxford University. The operation of the capillary dischargeguided laser plasma wakefield accelerator with a capillaryof 225 mu mdiameter and 33 mm in length was analyzed in detail. The input intensitydependence suggests that excessive self-injection causes increased beamloading leading to broadband lower energy electron beam generation. Thetrigger versus laser arrival timing dependence suggests that the plasmachannel parameters can be tuned to reduce beam divergence.

  8. Treelike networks accelerating capillary flow

    Science.gov (United States)

    Shou, Dahua; Ye, Lin; Fan, Jintu

    2014-05-01

    Transport in treelike networks has received wide attention in natural systems, oil recovery, microelectronic cooling systems, and textiles. Existing studies are focused on transport behaviors under a constant potential difference (including pressure, temperature, and voltage) in a steady state [B. Yu and B. Li, Phys. Rev. E 73, 066302 (2006), 10.1103/PhysRevE.73.066302; J. Chen, B. Yu, P. Xu, and Y. Li, Phys. Rev. E 75, 056301 (2007), 10.1103/PhysRevE.75.056301]. However, dynamic (time-dependent) transport in such systems has rarely been concerned. In this work, we theoretically investigate the dynamics of capillary flow in treelike networks and design the distribution of radius and length of local branches for the fastest capillary flow. It is demonstrated that capillary flow in the optimized tree networks is faster than in traditional parallel tube nets under fixed constraints. As well, the flow time of the liquid is found to increase approximately linearly with penetration distance, which differs from Washburn's classic description that flow time increases as the square of penetration distance in a uniform tube.

  9. Progression of Diabetic Capillary Occlusion: A Model.

    Directory of Open Access Journals (Sweden)

    Xiao Fu

    2016-06-01

    Full Text Available An explanatory computational model is developed of the contiguous areas of retinal capillary loss which play a large role in diabetic maculapathy and diabetic retinal neovascularization. Strictly random leukocyte mediated capillary occlusion cannot explain the occurrence of large contiguous areas of retinal ischemia. Therefore occlusion of an individual capillary must increase the probability of occlusion of surrounding capillaries. A retinal perifoveal vascular sector as well as a peripheral retinal capillary network and a deleted hexagonal capillary network are modelled using Compucell3D. The perifoveal modelling produces a pattern of spreading capillary loss with associated macular edema. In the peripheral network, spreading ischemia results from the progressive loss of the ladder capillaries which connect peripheral arterioles and venules. System blood flow was elevated in the macular model before a later reduction in flow in cases with progression of capillary occlusions. Simulations differing only in initial vascular network structures but with identical dynamics for oxygen, growth factors and vascular occlusions, replicate key clinical observations of ischemia and macular edema in the posterior pole and ischemia in the retinal periphery. The simulation results also seem consistent with quantitative data on macular blood flow and qualitative data on venous oxygenation. One computational model applied to distinct capillary networks in different retinal regions yielded results comparable to clinical observations in those regions.

  10. Flow behaviour and drag reduction of fluidic ash-water slurries

    Czech Academy of Sciences Publication Activity Database

    Vlasák, Pavel; Chára, Zdeněk

    Johannesburg : The S.A. Institute of Mining and Metallurgy and BHR Group, 2007, s. 39-55. ISBN 978-1-85598-084-6. - (Symposium Series. S 46). [HYDROTRANSPORT: International Conference on the Hydraulic Transport of Solids /17./. Cape Town (ZA), 08.05.2007-10.05.2007] R&D Projects: GA AV ČR IAA200600503 Institutional research plan: CEZ:AV0Z20600510 Keywords : fluidic ash slurry * laminar flow * turbulent flow * laminar/turbulent transition * drag reduction Subject RIV: BK - Fluid Dynamics

  11. A first implementation of an automated reel-to-reel fluidic self-assembly machine.

    Science.gov (United States)

    Park, Se-Chul; Fang, Jun; Biswas, Shantonu; Mozafari, Mahsa; Stauden, Thomas; Jacobs, Heiko O

    2014-09-10

    A first automated reel-to-reel fluidic selfassembly process for macroelectronic applications is reported. This system enables high-speed assembly of semiconductor dies (15 000 chips per hour using a 2.5 cm-wide web) over large-area substrates. The optimization of the system (>99% assembly yield) is based on identification, calculation, and optimization of the relevant forces. As an application, the production of a solid-state lighting panel is discussed, involving a novel approach to apply a conductive layer through lamination. PMID:24975472

  12. Fluidic harvesters in free stream turbulence undergoing flow-induced vibrations or flutter

    Science.gov (United States)

    Gomez, Joan; Azadeh Ranjbar, Vahid; Goushcha, Oleg; Andreopoulos, Yiannis; Elvin, Niell

    2015-11-01

    In the present experimental work we investigated the performance of fluidic harvesters consisting of cylindrical body mounted of the tip of a flexible beam in the presence of nearly homogeneous and isotropic turbulence. Circular, semi-circular and square shapes have been tested. It was found that turbulence interferes with resonance conditions between the flow and the structure in the case of vortex induced vibrations and has absolutely no effect in flutter dominated case. As a result, turbulence increases the power output of non-linear harvesters subjected to vortex induces vibration and it has no effect in harvester under flutter conditions. Supported by NSF Grant: CBET #1033117.

  13. Capillary pumped loop body heat exchanger

    Science.gov (United States)

    Swanson, Theodore D. (Inventor); Wren, deceased, Paul (Inventor)

    1998-01-01

    A capillary pumped loop for transferring heat from one body part to another body part, the capillary pumped loop comprising a capillary evaporator for vaporizing a liquid refrigerant by absorbing heat from a warm body part, a condenser for turning a vaporized refrigerant into a liquid by transferring heat from the vaporized liquid to a cool body part, a first tube section connecting an output port of the capillary evaporator to an input of the condenser, and a second tube section connecting an output of the condenser to an input port of the capillary evaporator. A wick may be provided within the condenser. A pump may be provided between the second tube section and the input port of the capillary evaporator. Additionally, an esternal heat source or heat sink may be utilized.

  14. DNA Sequencing Using capillary Electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Barry Karger

    2011-05-09

    The overall goal of this program was to develop capillary electrophoresis as the tool to be used to sequence for the first time the Human Genome. Our program was part of the Human Genome Project. In this work, we were highly successful and the replaceable polymer we developed, linear polyacrylamide, was used by the DOE sequencing lab in California to sequence a significant portion of the human genome using the MegaBase multiple capillary array electrophoresis instrument. In this final report, we summarize our efforts and success. We began our work by separating by capillary electrophoresis double strand oligonucleotides using cross-linked polyacrylamide gels in fused silica capillaries. This work showed the potential of the methodology. However, preparation of such cross-linked gel capillaries was difficult with poor reproducibility, and even more important, the columns were not very stable. We improved stability by using non-cross linked linear polyacrylamide. Here, the entangled linear chains could move when osmotic pressure (e.g. sample injection) was imposed on the polymer matrix. This relaxation of the polymer dissipated the stress in the column. Our next advance was to use significantly lower concentrations of the linear polyacrylamide that the polymer could be automatically blown out after each run and replaced with fresh linear polymer solution. In this way, a new column was available for each analytical run. Finally, while testing many linear polymers, we selected linear polyacrylamide as the best matrix as it was the most hydrophilic polymer available. Under our DOE program, we demonstrated initially the success of the linear polyacrylamide to separate double strand DNA. We note that the method is used even today to assay purity of double stranded DNA fragments. Our focus, of course, was on the separation of single stranded DNA for sequencing purposes. In one paper, we demonstrated the success of our approach in sequencing up to 500 bases. Other

  15. A New Conductivity Detector for Capillary Electrophoresis

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A new conductivity detector for capillary electrophoresis consisting of an electrochemical cell and a conductive meter was developed. In the cell, the microelectrode and capillary were inserted through the cell wall and fixed by screws and sealing ring, the ends of microelectrode and capillary were located by a guide with two cross holes. LOD for K+ was 1.5×10-5 mol/L.

  16. Serum proteins analysis by capillary electrophoresis

    OpenAIRE

    Uji, Yoshinori; Okabe, Hiroaki

    2001-01-01

    The purpose of this study was to evaluate the efficacy of multi-capillary electrophoresis instrument in clinical laboratory. An automated clinical capillary electrophoresis system was evaluated for performing serum proteins electrophoresis and immuno-fixation electrophoresis by subtraction. In this study the performance of capillary electrophoresis was compared with the cellulose acetate membrane electrophoresis and agarose gel immunofixation electrophoresis for serum proteins. The results of...

  17. Cytokine Analysis by Immunoaffinity Capillary Electrophoresis

    OpenAIRE

    Mendonca, Mark; Kalish, Heather

    2013-01-01

    Immunoaffinity capillary electrophoresis (ICE) is a powerful tool used to detect and quantify target proteins of interest in complex biological fluids. The target analyte is captured and bound to antibodies immobilized onto the wall of a capillary, labeled in situ with a fluorescent dye, eluted and detected online using laser-induced fluorescence following electrophoretic separation. Here, we illustrate how to construct an immunoaffinity capillary and utilize it to run ICE in order to capture...

  18. A Paper-Based "Pop-up" Electrochemical Device for Analysis of Beta-Hydroxybutyrate.

    Science.gov (United States)

    Wang, Chien-Chung; Hennek, Jonathan W; Ainla, Alar; Kumar, Ashok A; Lan, Wen-Jie; Im, Judy; Smith, Barbara S; Zhao, Mengxia; Whitesides, George M

    2016-06-21

    This paper describes the design and fabrication of a "pop-up" electrochemical paper-based analytical device (pop-up-EPAD) to measure beta-hydroxybutyrate (BHB)-a biomarker for diabetic ketoacidosis-using a commercial combination BHB/glucometer. Pop-up-EPADs are inspired by pop-up greeting cards and children's books. They are made from a single sheet of paper folded into a three-dimensional (3D) device that changes shape, and fluidic and electrical connectivity, by simply folding and unfolding the structure. The reconfigurable 3D structure makes it possible to change the fluidic path and to control timing; it also provides mechanical support for the folded and unfolded structures that enables good registration and repeatability on folding. A pop-up-EPAD designed to detect BHB shows performance comparable to commercially available plastic test strips over the clinically relevant range of BHB in blood when used with a commercial glucometer that integrates the ability to measure glucose and BHB (combination BHB/glucometer). With simple modifications of the electrode and the design of the fluidic path, the pop-up-EPAD also detects BHB in buffer using a simple glucometer-a device that is more available than the combination BHB/glucometer. Strategies that use a "3D pop-up"-that is, large-scale changes in 3D structure and fluidic paths-by folding/unfolding add functionality to EPADs (e.g., controlled timing, fluidic handling and path programming, control over complex sequences of steps, and alterations in electrical connectivity) and should enable the development of new classes of paper-based diagnostic devices. PMID:27243791

  19. Slope wavenumber spectrum models of capillary and capillary-gravity waves

    Institute of Scientific and Technical Information of China (English)

    贾永君; 张杰; 王岩峰

    2010-01-01

    Capillary and capillary-gravity waves possess a random character, and the slope wavenumber spectra of them can be used to represent mean distributions of wave energy with respect to spatial scale of variability. But simple and practical models of the slope wavenumber spectra have not been put forward so far. In this article, we address the accurate definition of the slope wavenumber spectra of water surface capillary and capillary-gravity waves. By combining the existing slope wavenumber models and using th...

  20. Fabrication of Biochips with Micro Fluidic Channels by Micro End-milling and Powder Blasting

    Directory of Open Access Journals (Sweden)

    Dong Sam Park

    2008-02-01

    Full Text Available For microfabrications of biochips with micro fluidic channels, a large number of microfabrication techniques based on silicon or glass-based Micro-Electro-Mechanical System (MEMS technologies were proposed in the last decade. In recent years, for low cost and mass production, polymer-based microfabrication techniques by microinjection molding and micro hot embossing have been proposed. These techniques, which require a proper photoresist, mask, UV light exposure, developing, and electroplating as a preprocess, are considered to have some problems. In this study, we propose a new microfabrication technology which consists of micro end-milling and powder blasting. This technique could be directly applied to fabricate the metal mold without any preprocesses. The metal mold with micro-channels is machined by micro end-milling, and then, burrs generated in the end-milling process are removed by powder blasting. From the experimental results, micro end-milling combined with powder blasting could be applied effectively for fabrication of the injection mold of biochips with micro fluidic channels.

  1. Micro-fluidic module for blood cell separation for gene expression radiobiological assays

    International Nuclear Information System (INIS)

    Advances in molecular techniques have improved discovery of biomarkers associated with radiation exposure. Gene expression techniques have been demonstrated as effective tools for biodosimetry, and different assay platforms with different chemistries are now available. One of the main challenges is to integrate the sample preparation processing of these assays into micro-fluidic platforms to be fully automated for point-of-care medical countermeasures in the case of a radiological event. Most of these assays follow the same workflow processing that comprises first the collection of blood samples followed by cellular and molecular sample preparation. The sample preparation is based on the specific reagents of the assay system and depends also on the different subsets of cells population and the type of biomarkers of interest. In this article, the authors present a module for isolation of white blood cells from peripheral blood as a prerequisite for automation of gene expression assays on a micro-fluidic cartridge. For each sample condition, the gene expression platform can be adapted to suit the requirements of the selected assay chemistry (authors)

  2. Characterization of a tunable astigmatic fluidic lens with adaptive optics correction for compact phoropter application

    Science.gov (United States)

    Fuh, Yiin-Kuen; Huang, Chieh-Tse

    2014-07-01

    Fluidically controlled lenses which adaptively correct prescribed refractive error without mechanically moving parts are extensively applied in the ophthalmic applications. Capable of variable-focusing properties, however, the associated aberrations due to curvature change and refractive index mismatch can inherently degrade image quality severely. Here we present the experimental study of the aberrations in tunable astigmatic lens and use of adaptive optics to compensate for the wavefront errors. Characterization of the optical properties of the individual lenses is carried out by Shack-Hartmann measurements. An adaptive optics (AO) based scheme is demonstrated for three injected fluidic volumes, resulting in a substantial reduction of the wavefront errors from -0.12, -0.25, -0.32 to 0.01, -0.01, -0.20 μm, respectively, corresponding to the optical power tenability of 0.83 to 1.84 D. Furthermore, an integrated optical phoroptor consisting of adjustable astigmatic lenses and AO correction is demonstrated such that an induced refraction error of -1 D cylinder at 180° of a model eye vision is experimentally corrected.

  3. Rapid, low-cost prototyping of centrifugal microfluidic devices for effective implementation of various microfluidic components

    OpenAIRE

    Smith, Suzanne; Land, Kevin; Madou, Marc; Kido, Horacio

    2015-01-01

    A centrifugal microfluidic platform to develop various microfluidic operations – the first of its kind in South Africa – is presented. Rapid and low-cost prototyping of centrifugal microfluidic disc devices, as well as a set-up to test the devices using centrifugal forces, is described. Preliminary results show that various microfluidic operations such as fluidic valving, transportation, and microfluidic droplet generation can be achieved. This work provides a complete centrifugal microfluidi...

  4. Microwave bonding of poly(methylmethacrylate) microfluidic devices using a conductive polymer

    OpenAIRE

    Holmes, R.J.; McDonagh, C.; McLaughlin, J.A.D.; Mohr, S.; Goddard, N J; Fielden, P.R.

    2011-01-01

    Abstract Component binding within microfluidic devices is a problem that has long been seeking a solution. In this investigation, the use of microwave radiation to seal PMMA components has been investigated using polyaniline as an absorber capable of inducting interfacial bonding. Straight microchannels were machined into PMMA using a Datron CAT3DM6 CNC machine with widths and depths across a range of 100 to 1000 microns. Prototype fluidic devices were prepared with channel pattern...

  5. Electromigration dispersion in Capillary Electrophoresis

    CERN Document Server

    Chen, Zhen; 10.1007/s11538-011-9708-7

    2012-01-01

    In a previous paper (S. Ghosal and Z. Chen Bull. Math. Biol. 2010, vol. 72, pg. 2047) it was shown that the evolution of the solute concentration in capillary electrophoresis is described by a nonlinear wave equation that reduced to Burger's equation if the nonlinearity was weak. It was assumed that only strong electrolytes (fully dissociated) were present. In the present paper it is shown that the same governing equation also describes the situation where the electrolytic buffer consists of a single weak acid (or base). A simple approximate formula is derived for the dimensionless peak variance which is shown to agree well with published experimental data.

  6. Microbeam-coupled capillary electrophoresis

    International Nuclear Information System (INIS)

    Within the first few microseconds following a charged particle traversal of a cell, numerous oxygen and nitrogen radicals are formed along the track. Presented here is a method, using capillary electrophoresis, for simultaneous measurement, within an individual cell, of specific reactive oxygen species, such as the superoxide radical (O2-*) as well as the native and oxidised forms of glutathione, an ubiquitous anti-oxidant that assists the cell in coping with these species. Preliminary data are presented as well as plans for integrating this system into the charged particle microbeam at Columbia University. (authors)

  7. Capillary electrophoresis theory and practice

    CERN Document Server

    Grossman, Paul D

    1992-01-01

    This book is designed to be a practical guide, used by wide audience, including those new to CE, those more experienced, routine users, those interested in technology development, and those involved with applications research. References have been emphasized to allow the reader to explore the detailed specifics and theoretical foundations.This book draws together the rapidly evolving, diverse, and multidisciplinary subject of capillary electrophoresis (CE). It is designed as a practical guide to be used by a wide audience, including those new to CE as well as more experienced users. T

  8. Exotic containers for capillary surfaces

    Science.gov (United States)

    Concus, Paul; Finn, Robert

    1991-01-01

    This paper discusses 'exotic' rotationally symmetric containers that admit an entire continuum of distinct equilibrium capillary free surfaces. The paper extends earlier work to a larger class of parameters and clarifies and simplifies the governing differential equations, while expressing them in a parametric form appropriate for numerical integration. A unified presentation suitable for both zero and nonzero gravity is given. Solutions for the container shapes are depicted graphically along with members of the free-surface continuum, and comments are given concerning possible physical experiments.

  9. Numerical and experimental study of capillary-driven flow of PCR solution in hybrid hydrophobic microfluidic networks.

    Science.gov (United States)

    Ramalingam, Naveen; Warkiani, Majid Ebrahimi; Ramalingam, Neevan; Keshavarzi, Gholamreza; Hao-Bing, Liu; Hai-Qing, Thomas Gong

    2016-08-01

    Capillary-driven microfluidics is essential for development of point-of-care diagnostic micro-devices. Polymerase chain reaction (PCR)-based micro-devices are widely developed and used in such point-of-care settings. It is imperative to characterize the fluid parameters of PCR solution for designing efficient capillary-driven microfluidic networks. Generally, for numeric modelling, the fluid parameters of PCR solution are approximated to that of water. This procedure leads to inaccurate results, which are discrepant to experimental data. This paper describes mathematical modeling and experimental validation of capillary-driven flow inside Poly-(dimethyl) siloxane (PDMS)-glass hybrid micro-channels. Using experimentally measured PCR fluid parameters, the capillary meniscus displacement in PDMS-glass microfluidic ladder network is simulated using computational fluid dynamic (CFD), and experimentally verified to match with the simulated data. PMID:27432321

  10. Capillary Two-Phase Thermal Devices for Space Applications

    Science.gov (United States)

    Ku, Jentung

    2016-01-01

    This is the presentation file for an invited seminar for Department of Mechanical and Aerospace Engineering at the Case Western Reserve University. The seminar is scheduled for April 1, 2016.Description: This presentation will discuss operating principles and performance characteristics of heat pipes (HPs) and loop heat pipes (LHPs) and their application for spacecraft thermal control. Topics include: 1) HP operating principles; 2) HP performance characteristics; 3) LHP pressure profiles; 4) LHP operating temperature; 5) LHP operating temperature control; and 6) Examples of using HPs and LHPs on NASA flight projects.

  11. Evaluation and refinement of a field-portable drinking water toxicity sensor utilizing electric cell-substrate impedance sensing and a fluidic biochip.

    Science.gov (United States)

    Widder, Mark W; Brennan, Linda M; Hanft, Elizabeth A; Schrock, Mary E; James, Ryan R; van der Schalie, William H

    2015-07-01

    The US Army's need for a reliable and field-portable drinking water toxicity sensor was the catalyst for the development and evaluation of an electric cell-substrate impedance sensing (ECIS) device. Water testing technologies currently available to soldiers in the field are analyte-specific and have limited capabilities to detect broad-based water toxicity. The ECIS sensor described here uses rainbow trout gill epithelial cells seeded on fluidic biochips to measure changes in impedance for the detection of possible chemical contamination of drinking water supplies. Chemicals selected for testing were chosen as representatives of a broad spectrum of toxic industrial compounds. Results of a US Environmental Protection Agency (USEPA)-sponsored evaluation of the field portable device were similar to previously published US Army testing results of a laboratory-based version of the same technology. Twelve of the 18 chemicals tested following USEPA Technology Testing and Evaluation Program procedures were detected by the ECIS sensor within 1 h at USEPA-derived human lethal concentrations. To simplify field-testing methods further, elimination of a procedural step that acclimated cells to serum-free media streamlined the test process with only a slight loss of chemical sensitivity. For field use, the ECIS sensor will be used in conjunction with an enzyme-based sensor that is responsive to carbamate and organophosphorus pesticides. PMID:25231170

  12. Joule heating effects in capillary electrophoresis - designing electrophoretic microchips

    Directory of Open Access Journals (Sweden)

    D. Witkowski

    2009-12-01

    Full Text Available Purpose: Computer simulations are widely used for designing, which contributes to a cheaper equipment developing process. In the last years computer simulations have begun to be also applied in different instances of microfluidics, especially in microchip electrophoresis (where an electrophoresis process takes place in the microcapillaries manufactured on the surface of the small plate which is interesting for us. However, there are no many commercial programs enabling simulations of microfluidics. The programs existing in the market are recently developed as microscale brings new possibilities but also unpredictable effects and challenging problems. The aim of this paper is to develop a mature technique helpful in designing electrophoretic microchips [1-4].Design/methodology/approach: Temperature distributions occurring during capillary electrophoresis because of Joule heating effects will be calculated with use of the CoventorWare™ software.Findings: Computer simulations with the model of capillary, with the same geometry as the real one, are presented. Numerical simulation results are compared with the real data from the capillary electrophoresis process.Practical implications: This is the first step to create a reliable tool for designing microfluidic devices.Originality/value: This comparison shows an ability of the CoventorWare™ software to design electrophoretic microchips.

  13. Configurable 3D-Printed millifluidic and microfluidic 'lab on a chip' reactionware devices.

    Science.gov (United States)

    Kitson, Philip J; Rosnes, Mali H; Sans, Victor; Dragone, Vincenza; Cronin, Leroy

    2012-09-21

    We utilise 3D design and 3D printing techniques to fabricate a number of miniaturised fluidic 'reactionware' devices for chemical syntheses in just a few hours, using inexpensive materials producing reliable and robust reactors. Both two and three inlet reactors could be assembled, as well as one-inlet devices with reactant 'silos' allowing the introduction of reactants during the fabrication process of the device. To demonstrate the utility and versatility of these devices organic (reductive amination and alkylation reactions), inorganic (large polyoxometalate synthesis) and materials (gold nanoparticle synthesis) processes were efficiently carried out in the printed devices. PMID:22875258

  14. STUDY OF CAPILLARY ELECTROPHORESIS ON MICROCHIP BASED ON MEMS

    Institute of Scientific and Technical Information of China (English)

    WangMing; LiWei; 等

    2002-01-01

    Using a standard photolithographical procedure,chenmical wet etching and thermal diffusion bonding technology,a chemical analysis device for Capillary Electrophoresis(CE) has been microfabricated on a planar glass substrate with a cross-column geometry.The channels on the microchip substrate are about 50um deep and 150um wide.By employing amino acids derived from 2,4-DiNitroFluoroBenzen(DNFB) on CE chip channels,the sample manipulating system is studied based on the principle of electrodynamics.

  15. Development of a neutron detector featuring high position resolution imaging using a capillary plate liquid scintillator

    International Nuclear Information System (INIS)

    In structural elucidation of the material, X rays and the neutron line are irradiated to the material, and the scattered X rays and the neutron line are measured with the imaging detector of two dimensions. When the structure of the living thing is analyzed, the neutron line is used well because the neutron is scattered well by a light element such as the hydrogen of the living thing, and the imaging detector of the neutron of high sensitivity is highly requested. Up to now, we have developed the gas proportional counters made a segment in detail by developing the device of capillary plate where the capillary of the glass was bundled, putting this on the gas chamber, and impressing the voltage the upper surface in the plate and downward for X-ray detection. The capillary plate was used as a liquid scintillation fiber detector for the neutron detection this time. It was attempted to manufacture the liquid scintillation fiber detector of length 800μm diameter 6μm level with one side of the capillary plate sucking up liquid scintillator by the capillary phenomenon, and the sealing of the edge side in the capillary plate to liquid scintillator. If the material for the neutron capture is doping to liquid scintillator, we want to give the position resolution of about 10μm and resolution of the time of several 100nsec with the neutron high sensitivity. (T.Tanaka)

  16. Recent advances in combination of capillary electrophoresis with mass spectrometry: Methodology and theory

    Czech Academy of Sciences Publication Activity Database

    Klepárník, Karel

    2015-01-01

    Roč. 36, č. 1 (2015), s. 159-179. ISSN 0173-0835 R&D Projects: GA ČR(CZ) GA14-28254S Institutional support: RVO:68081715 Keywords : capillary electrophoresis * electrospray * mass spectrometry * Microfluidic devices Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.028, year: 2014

  17. Sheathless interface for coupling capillary electrophoresis with mass spectrometry

    Science.gov (United States)

    Wang, Chenchen; Tang, Keqi; Smith, Richard D.

    2014-06-17

    A sheathless interface for coupling capillary electrophoresis (CE) with mass spectrometry is disclosed. The sheathless interface includes a separation capillary for performing CE separation and an emitter capillary for electrospray ionization. A portion of the emitter capillary is porous or, alternatively, is coated to form an electrically conductive surface. A section of the emitter capillary is disposed within the separation capillary, forming a joint. A metal tube, containing a conductive liquid, encloses the joint.

  18. Fluidic oscillator-mediated microbubble generation to provide cost effective mass transfer and mixing efficiency to the wastewater treatment plants.

    Science.gov (United States)

    Rehman, Fahad; Medley, Gareth J D; Bandulasena, Hemaka; Zimmerman, William B J

    2015-02-01

    Aeration is one of the most energy intensive processes in the waste water treatment plants and any improvement in it is likely to enhance the overall efficiency of the overall process. In the current study, a fluidic oscillator has been used to produce microbubbles in the order of 100 μm in diameter by oscillating the inlet gas stream to a pair of membrane diffusers. Volumetric mass transfer coefficient was measured for steady state flow and oscillatory flow in the range of 40-100l/min. The highest improvement of 55% was observed at the flow rates of 60, 90 and 100l/min respectively. Standard oxygen transfer rate and efficiency were also calculated. Both standard oxygen transfer rate and efficiency were found to be considerably higher under oscillatory air flow conditions compared to steady state airflow. The bubble size distributions and bubble densities were measured using an acoustic bubble spectrometer and confirmed production of monodisperse bubbles with approximately 100 μm diameters with fluidic oscillation. The higher number density of microbubbles under oscillatory flow indicated the effect of the fluidic oscillation in microbubble production. Visual observations and dissolved oxygen measurements suggested that the bubble cloud generated by the fluidic oscillator was sufficient enough to provide good mixing and to maintain uniform aerobic conditions. Overall, improved mass transfer coefficients, mixing efficiency and energy efficiency of the novel microbubble generation method could offer significant savings to the water treatment plants as well as reduction in the carbon footprint. PMID:25483415

  19. Diagnostics of a high current capillary discharge

    International Nuclear Information System (INIS)

    We have demonstrated that thin (10 to 25 μm diameter) capillaries can be fabricated in suitably configured insulators for use in pulse power machines. Large currents can be used to heat these capillaries which produce photons with an energies greater than 1 keV

  20. Pulmonary capillary haemangiomatosis in a premature infant

    International Nuclear Information System (INIS)

    Pulmonary capillary haemangiomatosis (PCH) is a rare disorder characterized by widespread capillary proliferation in the lung, infiltrating the interstitium and the alveolar walls. We present the HRCT features of PCH in a surviving ex-premature infant. To our knowledge, this is a unique case of the radiological features of PCH in a young living infant. (orig.)

  1. Pulmonary capillary haemangiomatosis in a premature infant

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Cicero J.T.A.; Massie, John; Mandelstam, Simone A. [University of Melbourne, Royal Children' s Hospital, Parkville, VIC (Australia)

    2005-06-01

    Pulmonary capillary haemangiomatosis (PCH) is a rare disorder characterized by widespread capillary proliferation in the lung, infiltrating the interstitium and the alveolar walls. We present the HRCT features of PCH in a surviving ex-premature infant. To our knowledge, this is a unique case of the radiological features of PCH in a young living infant. (orig.)

  2. Development of Two Color Fluorescent Imager and Integrated Fluidic System for Nanosatellite Biology Applications

    Science.gov (United States)

    Wu, Diana Terri; Ricco, Antonio Joseph; Lera, Matthew P.; Timucin, Linda R.; Parra, Macarena P.

    2012-01-01

    Nanosatellites offer frequent, low-cost space access as secondary payloads on launches of larger conventional satellites. We summarize the payload science and technology of the Microsatellite in-situ Space Technologies (MisST) nanosatellite for conducting automated biological experiments. The payload (two fused 10-cm cubes) includes 1) an integrated fluidics system that maintains organism viability and supports growth and 2) a fixed-focus imager with fluorescence and scattered-light imaging capabilities. The payload monitors temperature, pressure and relative humidity, and actively controls temperature. C. elegans (nematode, 50 m diameter x 1 mm long) was selected as a model organism due to previous space science experience, its completely sequenced genome, size, hardiness, and the variety of strains available. Three strains were chosen: two green GFP-tagged strains and one red tdTomato-tagged strain that label intestinal, nerve, and pharyngeal cells, respectively. The integrated fluidics system includes bioanalytical and reservoir modules. The former consists of four 150 L culture wells and a 4x5 mm imaging zone the latter includes two 8 mL fluid reservoirs for reagent and waste storage. The fluidic system is fabricated using multilayer polymer rapid prototyping: laser cutting, precision machining, die cutting, and pressure-sensitive adhesives it also includes eight solenoid-operated valves and one mini peristaltic pump. Young larval-state (L2) nematodes are loaded in C. elegans Maintenance Media (CeMM) in the bioanalytical module during pre-launch assembly. By the time orbit is established, the worms have grown to sufficient density to be imaged and are fed fresh CeMM. The strains are pumped sequentially into the imaging area, imaged, then pumped into waste. Reagent storage utilizes polymer bags under slight pressure to prevent bubble formation in wells or channels. The optical system images green and red fluorescence bands by excitation with blue (473 nm peak

  3. Visualization and measurement of capillary-driven blood flow using spectral domain optical coherence tomography

    OpenAIRE

    Cito, Salvatore; Ahn, Yeh-Chan; Pallares, Jordi; Duarte, Rodrigo Martinez; Chen, Zhongping; Madou, Marc; Katakis, Ioanis

    2012-01-01

    Capillary-driven flow (CD-flow) in microchannels plays an important role in many microfluidic devices. These devices, the most popular being those based in lateral flow, are becoming increasingly used in health care and diagnostic applications. CD-flow can passively pump biological fluids as blood, serum or plasma, in microchannels and it can enhance the wall mass transfer by exploiting the convective effects of the flow behind the meniscus. The flow behind the meniscus has not been experimen...

  4. High frequency fluidic and microfluidic sensors for contactless dielectric and in vitro cell culture measurement applications

    International Nuclear Information System (INIS)

    There is a widespread need for highly-sensitive robust sensors that operate without direct contact to the fluid for analysis of fluids in bioprocess technology. Measuring the variation of dielectric properties (conductivity and permittivity) in the microwave frequency band can be used as an approach to investigate biological and chemical matter and processes such as, cell growth, cell metabolism and the concentration of large aqueous based molecules. In comparison to measurement at lower frequencies, DC conductivity (σ) effects on material properties (permittivity ε) can be neglected with increasing of the frequency. This presentation describes a high frequency sensor, which combines detection in macro- or microfluidic networks with quick and precise analysis. It is composed of a fluidic channel placed contactless between a micro-strip line waveguide combined with resonant properties.

  5. Accelerating a hybrid continuum-atomistic fluidic model with on-the-fly machine learning

    CERN Document Server

    Stephenson, David; Lockerby, Duncan A

    2016-01-01

    We present a hybrid continuum-atomistic scheme which combines molecular dynamics (MD) simulations with on-the-fly machine learning techniques for the accurate and efficient prediction of multiscale fluidic systems. By using a Gaussian process as a surrogate model for the computationally expensive MD simulations, we use Bayesian inference to predict the system behaviour at the atomistic scale, purely by consideration of the macroscopic inputs and outputs. Whenever the uncertainty of this prediction is greater than a predetermined acceptable threshold, a new MD simulation is performed to continually augment the database, which is never required to be complete. This provides a substantial enhancement to the current generation of hybrid methods, which often require many similar atomistic simulations to be performed, discarding information after it is used once. We apply our hybrid scheme to nano-confined unsteady flow through a high-aspect-ratio converging-diverging channel, and make comparisons between the new s...

  6. Autonomous undulatory serpentine locomotion utilizing body dynamics of a fluidic soft robot

    International Nuclear Information System (INIS)

    Soft robotics offers the unique promise of creating inherently safe and adaptive systems. These systems bring man-made machines closer to the natural capabilities of biological systems. An important requirement to enable self-contained soft mobile robots is an on-board power source. In this paper, we present an approach to create a bio-inspired soft robotic snake that can undulate in a similar way to its biological counterpart using pressure for actuation power, without human intervention. With this approach, we develop an autonomous soft snake robot with on-board actuation, power, computation and control capabilities. The robot consists of four bidirectional fluidic elastomer actuators in series to create a traveling curvature wave from head to tail along its body. Passive wheels between segments generate the necessary frictional anisotropy for forward locomotion. It takes 14 h to build the soft robotic snake, which can attain an average locomotion speed of 19 mm s−1. (paper)

  7. Acousto-fluidic system assisting in-liquid self-assembly of microcomponents

    International Nuclear Information System (INIS)

    In this paper, we present the theoretical background, design, fabrication and characterization of a micromachined chamber assisting the fluidic self-assembly of micro-electro-mechanical systems in a bulk liquid. Exploiting bubble-induced acoustic microstreaming, several structurally-robust driving modes are excited inside the chamber. The modes promote the controlled aggregation and disaggregation of microcomponents relying on strong and reproducible fluid mixing effects achieved even at low Reynolds numbers. The functionality of the microfluidic chamber is demonstrated through the fast and repeatable geometrical pairing and subsequent unpairing of polymeric microcylinders. Relying only on drag and radiation forces and on the natural hydrophobicity of SU-8 in aqueous solutions, assembly yields of approximately 50% are achieved in no longer than ten seconds of agitation. The system can stochastically control the assembly process and significantly reduce the time-to-assembly of building blocks. (paper)

  8. A Fluidic Cell Embedded Electromagnetic Wave Sensor for Online Indication of Neurological Impairment during Surgical Procedures

    International Nuclear Information System (INIS)

    Lactate is known to be an indicator of neurological impairment during aortic aneurysm surgery. It is suggested that cerebrospinal fluid removed during such surgery could provide useful information in this regard. Medical professionals find the prospect of online detection of such analytes exciting, as current practice is time consuming and leads to multiple invasive procedures. Advancing from the current laboratory based analysis techniques to online methods could provide the basis for improved treatment regimes, better quality of care, and enhanced resource efficiency within hospitals. Accordingly, this article considers the use of a low power fluidic system with embedded electromagnetic wave sensor to detect varying lactate concentrations. Results are promising over the physiological range of 0 − 20 mmol/L with a calibration curve demonstrating an R2 value > 0.98.

  9. Geometry of the capillary net in human hearts.

    Science.gov (United States)

    Rakusan, K; Cicutti, N; Spatenka, J; Samánek, M

    1997-01-01

    The geometry of the coronary capillary bed in human hearts was studied using samples obtained during cardiac surgery of children operated for tetralogy of Fallot and samples from fresh normal hearts used for valve harvesting. The results revealed a similar coronary capillary density and heterogeneity of capillary spacing in samples from both groups. A double-staining method was used to distinguish between capillary segments close to the feeding arteriole (proximal capillaries) and segments distant from the arteriole (distal capillaries). In both groups of hearts, capillary segment length was consistently shorter on the venular than the arteriolar portion of the capillary. Similarly, capillary domain areas were also smaller and the resulting capillary supply unit was smaller along venular portions compared to arteriolar regions of the capillary bed. This distinctive geometry would provide advantageous geometric conditions for tissue oxygen supply. PMID:9176723

  10. A membrane-based serpentine-shape pneumatic micropump with pumping performance modulated by fluidic resistance

    International Nuclear Information System (INIS)

    This paper reports a new membrane-based pneumatic micropump with new serpentine-shape (S-shape) pneumatic channels intended for achieving high-throughput pumping in a microfluidic system at a relatively low pumping rate and a board flow rate range. The key feature of this design is the ability to modulate the pumping rates by fine-tuning the fluidic resistance of injected compressed air in the designed pneumatic microchannels and the chambers of the micropump. In the study, several S-shape pneumatic micropumps with various layouts were designed and fabricated based on thick-film photoresist lithography and polydimethylsiloxane (PDMS) replication processes. To investigate designs with a suitable pumping performance, S-shape pneumatic micropumps with varied lengths (1000, 5000 and 10 000 µm), varied widths (20, 40 and 200 µm) of the pneumatic microchannel bridging two rectangular pneumatic chambers, and different numbers of pneumatic channel bends (two and four U-shape bends) were designed and evaluated experimentally by using high-speed CCD-coupled microscopic observation of the movement of PDMS membrane pulsation and pumping rate measurements. The results revealed that under the experimental conditions studied, the layout of the S-shape pneumatic micropump with three rectangular pneumatic chambers, 5000 µm long and 40 µm wide pneumatic microchannel and four U-shape bends in the pneumatic microchannel was found to be capable of providing a broader pumping rate range from 0 to 539 µl h−1 compared to the other designs. As a whole, the experimental results demonstrate the use of fluidic resistance of injected air in a pneumatic micropump with S-shape layout to control its pumping performance, which largely expands the flexibility of its pumping application in a microfluidic system

  11. New Drop Fluidics Enabled by Magnetic-Field-Mediated Elastocapillary Transduction.

    Science.gov (United States)

    Biswas, Saheli; Pomeau, Yves; Chaudhury, Manoj K

    2016-07-12

    This research introduces a new drop fluidics that uses a deformable and stretchable elastomeric film as the platform instead of the commonly used rigid supports. Such a soft film impregnated with magnetic particles can be modulated with an external electromagnetic field that produces a vast array of topographical landscapes with varying surface curvature, which, in conjunction with capillarity, can direct and control the motion of water droplets efficiently and accurately. When a thin layer of oil is present on this film that is deformed locally, a centrosymmetric wedge is formed. A water droplet placed on this oil-laden film becomes asymmetrically deformed, thus producing a gradient of Laplace pressure within the droplet and setting it in motion. A simple theory is presented that accounts for the droplet speed in terms of such geometric variables as the volume of the droplet and the thickness of the oil film covering the soft elastomeric film as well as material variables such as the viscosity of the oil and the interfacial tension of the oil-water interfaces. Following the verification of the theoretical result using well-controlled model systems, we demonstrate how the electromagnetically controlled elastocapillary force can be used to manipulate the motion of single and/or multiple droplets on the surface of the elastomeric film and how elementary operations such as drop fusion and thermally addressed chemical transformation can be carried out in aqueous droplets. It is expected that the resulting drop fluidics would be suitable for the digital control of drop motion by simply switching on and off the electromagnetic fields applied at different positions underneath the elastomeric film in a Boolean sequence. We anticipate that this method of directing and manipulating water droplets is poised for application in various biochemical reaction engineering situations, an example of which is the polymerase chain reaction (PCR). PMID:27300489

  12. In Vivo Imaging of Intraocular Fluidics in Vitrectomized Swine Eyes Using a Digital Fluoroscopy System

    Science.gov (United States)

    Tandogan, Tamer; Khoramnia, Ramin; Auffarth, Gerd Uwe; Koss, Michael Janusz; Choi, Chul Young

    2016-01-01

    Purpose. To describe the characteristics of intraocular fluidics during cataract surgery in swine eyes with prior vitrectomy. Methods. We prepared three groups of enucleated swine eyes (nonvitrectomized, core, and totally vitrectomized). Irrigation and aspiration were performed (2.7 mm conventional sleeved phacosystem) using a balanced saline solution mixed with a water-soluble radiopaque contrast medium at 1 : 1 ratio. We imaged the eyes using a digital fluoroscopy system (DFS) during phacoemulsification and compared the characteristics of the intraocular fluid dynamics between the groups. Results. The anterior chamber depth (ACD) after the commencement of irrigation differed between groups (2.25 ± 0.06 mm; 2.33 ± 0.06 mm; 3.17 ± 0.11 mm), as well as the height of the fluid flowing from the anterior chamber into the posterior cavity that was identified by lifting up the iris to correct the infusion deviation syndrome (0.00 ± 0.00 mm; 0.41 ± 0.04 mm; 2.19 ± 0.35 mm). Conclusions. DFS demonstrated differences in fluid dynamics during phacoemulsification in swine eyes with or without prior vitrectomy. In completely vitrectomized eyes, the large ACD, which developed during phacoemulsification, could be reduced by lifting the iris and allowing the fluid to shift to the posterior cavity. Recognizing the differences in fluidics of vitrectomized eyes as compared to those of the nonvitrectomized eyes may reduce the frequency of intraoperative complications. PMID:27127645

  13. Cfd Simulation of Capillary Rise of Liquid in Cylindrical Container with Lateral Vanes

    Science.gov (United States)

    Liu, Xiaolin; Huang, Yiyong; Li, Guangyu

    2016-06-01

    Orbit refueling is one of the most significant technologies, which has vital strategic meaning. It can enhance the flexibility and prolong the lifetime of the spacecrafts. Space propellant management is one of the key technologies in orbit refueling. Based on the background of space propellant management, CFD simulations of capillary rise of liquid in Cylindrical container with lateral vanes in space condition were carried out in this paper. The influence of the size and the number of the vanes to the capillary flow were analyzed too. The results can be useful to the design and optimization of the propellant management device in the vane type surface tension tank.

  14. Capillary Self-Alignment of Microchips on Soft Substrates

    Directory of Open Access Journals (Sweden)

    Bo Chang

    2016-03-01

    Full Text Available Soft micro devices and stretchable electronics have attracted great interest for their potential applications in sensory skins and wearable bio-integrated devices. One of the most important steps in building printed circuits is the alignment of assembled micro objects. Previously, the capillary self-alignment of microchips driven by surface tension effects has been shown to be able to achieve high-throughput and high-precision in the integration of micro parts on rigid hydrophilic/superhydrophobic patterned surfaces. In this paper, the self-alignment of microchips on a patterned soft and stretchable substrate, which consists of hydrophilic pads surrounded by a superhydrophobic polydimethylsiloxane (PDMS background, is demonstrated for the first time. A simple process has been developed for making superhydrophobic soft surface by replicating nanostructures of black silicon onto a PDMS surface. Different kinds of PDMS have been investigated, and the parameters for fabricating superhydrophobic PDMS have been optimized. A self-alignment strategy has been proposed that can result in reliable self-alignment on a soft PDMS substrate. Our results show that capillary self-alignment has great potential for building soft printed circuits.

  15. A new beamstop for microfocus X-ray capillary beams

    Energy Technology Data Exchange (ETDEWEB)

    Englich, Ulrich, E-mail: ue22@cornell.edu [Cornell University, Macromolecular Diffraction at CHESS (MacCHESS), Cornell High Energy Synchrotron Source, 200L Wilson Laboratory, Ithaca, NY 14853 (United States); Revesz, Peter [Cornell University, Cornell High Energy Synchrotron Source, Ithaca, NY 14853 (United States); Miller, William [Cornell University, Macromolecular Diffraction at CHESS (MacCHESS), Cornell High Energy Synchrotron Source, 200L Wilson Laboratory, Ithaca, NY 14853 (United States)

    2011-09-01

    In order to accurately measure the photon flux and to assist in aligning the beam, we have designed a modified beamstop device based on a photo diode integrated with the beamstop. The beamstop contains a small CdWO{sub 4} crystal that completely stops the X-rays and at the same time produces photoluminescence proportional to the X-ray flux. The light is then guided to a photosensitive diode using a flexible light pipe to monitor the flux. With this device we achieve the goal of stopping the primary X-ray beam and simultaneously monitoring the X-ray intensity, thus eliminating the need for integrating ion-chambers into the capillary or collimator mount.

  16. "Getting the best sensitivity from on-capillary fluorescence detection in capillary electrophoresis" - A tutorial.

    Science.gov (United States)

    Galievsky, Victor A; Stasheuski, Alexander S; Krylov, Sergey N

    2016-09-01

    Capillary electrophoresis with Laser-Induced Fluorescence (CE-LIF) detection is being applied to new analytical problems which challenge both the power of CE separation and the sensitivity of LIF detection. On-capillary LIF detection is much more practical than post-capillary detection in a sheath-flow cell. Therefore, commercial CE instruments utilize solely on-capillary CE-LIF detection with a Limit of Detection (LOD) in the nM range, while there are multiple applications of CE-LIF that require pM or lower LODs. This tutorial analyzes all aspects of on-capillary LIF detection in CE in an attempt to identify means for improving LOD of CE-LIF with on-capillary detection. We consider principles of signal enhancement and noise reduction, as well as relevant areas of fluorophore photochemistry and fluorescent microscopy. PMID:27543015

  17. Preparation and Testing of Impedance-based Fluidic Biochips with RTgill-W1 Cells for Rapid Evaluation of Drinking Water Samples for Toxicity.

    Science.gov (United States)

    Brennan, Linda M; Widder, Mark W; McAleer, Michael K; Mayo, Michael W; Greis, Alex P; van der Schalie, William H

    2016-01-01

    This manuscript describes how to prepare fluidic biochips with Rainbow trout gill epithelial (RTgill-W1) cells for use in a field portable water toxicity sensor. A monolayer of RTgill-W1 cells forms on the sensing electrodes enclosed within the biochips. The biochips are then used for testing in a field portable electric cell-substrate impedance sensing (ECIS) device designed for rapid toxicity testing of drinking water. The manuscript further describes how to run a toxicity test using the prepared biochips. A control water sample and the test water sample are mixed with pre-measured powdered media and injected into separate channels of the biochip. Impedance readings from the sensing electrodes in each of the biochip channels are measured and compared by an automated statistical software program. The screen on the ECIS instrument will indicate either "Contamination Detected" or "No Contamination Detected" within an hour of sample injection. Advantages are ease of use and rapid response to a broad spectrum of inorganic and organic chemicals at concentrations that are relevant to human health concerns, as well as the long-term stability of stored biochips in a ready state for testing. Limitations are the requirement for cold storage of the biochips and limited sensitivity to cholinesterase-inhibiting pesticides. Applications for this toxicity detector are for rapid field-portable testing of drinking water supplies by Army Preventative Medicine personnel or for use at municipal water treatment facilities. PMID:27023147

  18. Rapid, Single-Molecule Assays in Nano/Micro-Fluidic Chips with Arrays of Closely Spaced Parallel Channels Fabricated by Femtosecond Laser Machining

    Directory of Open Access Journals (Sweden)

    Brian K. Canfield

    2014-08-01

    Full Text Available Cost-effective pharmaceutical drug discovery depends on increasing assay throughput while reducing reagent needs. To this end, we are developing an ultrasensitive, fluorescence-based platform that incorporates a nano/micro-fluidic chip with an array of closely spaced channels for parallelized optical readout of single-molecule assays. Here we describe the use of direct femtosecond laser machining to fabricate several hundred closely spaced channels on the surfaces of fused silica substrates. The channels are sealed by bonding to a microscope cover slip spin-coated with a thin film of poly(dimethylsiloxane. Single-molecule detection experiments are conducted using a custom-built, wide-field microscope. The array of channels is epi-illuminated by a line-generating red diode laser, resulting in a line focus just a few microns thick across a 500 micron field of view. A dilute aqueous solution of fluorescently labeled biomolecules is loaded into the device and fluorescence is detected with an electron-multiplying CCD camera, allowing acquisition rates up to 7 kHz for each microchannel. Matched digital filtering based on experimental parameters is used to perform an initial, rapid assessment of detected fluorescence. More detailed analysis is obtained through fluorescence correlation spectroscopy. Simulated fluorescence data is shown to agree well with experimental values.

  19. Rapid, single-molecule assays in nano/micro-fluidic chips with arrays of closely spaced parallel channels fabricated by femtosecond laser machining.

    Science.gov (United States)

    Canfield, Brian K; King, Jason K; Robinson, William N; Hofmeister, William H; Davis, Lloyd M

    2014-01-01

    Cost-effective pharmaceutical drug discovery depends on increasing assay throughput while reducing reagent needs. To this end, we are developing an ultrasensitive, fluorescence-based platform that incorporates a nano/micro-fluidic chip with an array of closely spaced channels for parallelized optical readout of single-molecule assays. Here we describe the use of direct femtosecond laser machining to fabricate several hundred closely spaced channels on the surfaces of fused silica substrates. The channels are sealed by bonding to a microscope cover slip spin-coated with a thin film of poly(dimethylsiloxane). Single-molecule detection experiments are conducted using a custom-built, wide-field microscope. The array of channels is epi-illuminated by a line-generating red diode laser, resulting in a line focus just a few microns thick across a 500 micron field of view. A dilute aqueous solution of fluorescently labeled biomolecules is loaded into the device and fluorescence is detected with an electron-multiplying CCD camera, allowing acquisition rates up to 7 kHz for each microchannel. Matched digital filtering based on experimental parameters is used to perform an initial, rapid assessment of detected fluorescence. More detailed analysis is obtained through fluorescence correlation spectroscopy. Simulated fluorescence data is shown to agree well with experimental values. PMID:25140634

  20. Burst behavior at a capillary tip: Effect of low and high surface tension.

    Science.gov (United States)

    Agonafer, Damena D; Lopez, Ken; Palko, James W; Won, Yoonjin; Santiago, Juan G; Goodson, Kenneth E

    2015-10-01

    Liquid retention in micron and millimeter scale devices is important for maintaining stable interfaces in various processes including bimolecular separation, phase change heat transfer, and water desalination. There have been several studies of re-entrant geometries, and very few studies on retaining low surface tension liquids such as fluorocarbon-based dielectric liquids. Here, we study retention of a liquid with very low contact angles using borosilicate glass capillary tips. We analyzed capillary tips with outer diameters ranging from 250 to 840 μm and measured Laplace pressures up to 2.9 kPa. Experimental results agree well with a numerical model that predicts burst pressure (the maximum Laplace pressure for liquid retention), which is a function of the outer diameter (D) and capillary exit edge radius of curvature (r). PMID:26046980

  1. Review on the development of truly portable and in-situ capillary electrophoresis systems

    Science.gov (United States)

    Lewis, A. P.; Cranny, A.; Harris, N. R.; Green, N. G.; Wharton, J. A.; Wood, R. J. K.; Stokes, K. R.

    2013-04-01

    Capillary electrophoresis (CE) is a technique which uses an electric field to separate a mixed sample into its constituents. Portable CE systems enable this powerful analysis technique to be used in the field. Many of the challenges for portable systems are similar to those of autonomous in-situ analysis and therefore portable systems may be considered a stepping stone towards autonomous in-situ analysis. CE is widely used for biological and chemical analysis and example applications include: water quality analysis; drug development and quality control; proteomics and DNA analysis; counter-terrorism (explosive material identification) and corrosion monitoring. The technique is often limited to laboratory use, since it requires large electric fields, sensitive detection systems and fluidic control systems. All of these place restrictions in terms of: size, weight, cost, choice of operating solutions, choice of fabrication materials, electrical power and lifetime. In this review we bring together and critique the work by researchers addressing these issues. We emphasize the importance of a holistic approach for portable and in-situ CE systems and discuss all the aspects of the design. We identify gaps in the literature which require attention for the realization of both truly portable and in-situ CE systems.

  2. Review on the development of truly portable and in-situ capillary electrophoresis systems

    International Nuclear Information System (INIS)

    Capillary electrophoresis (CE) is a technique which uses an electric field to separate a mixed sample into its constituents. Portable CE systems enable this powerful analysis technique to be used in the field. Many of the challenges for portable systems are similar to those of autonomous in-situ analysis and therefore portable systems may be considered a stepping stone towards autonomous in-situ analysis. CE is widely used for biological and chemical analysis and example applications include: water quality analysis; drug development and quality control; proteomics and DNA analysis; counter-terrorism (explosive material identification) and corrosion monitoring. The technique is often limited to laboratory use, since it requires large electric fields, sensitive detection systems and fluidic control systems. All of these place restrictions in terms of: size, weight, cost, choice of operating solutions, choice of fabrication materials, electrical power and lifetime. In this review we bring together and critique the work by researchers addressing these issues. We emphasize the importance of a holistic approach for portable and in-situ CE systems and discuss all the aspects of the design. We identify gaps in the literature which require attention for the realization of both truly portable and in-situ CE systems. (topical review)

  3. Capillary electrochromatography using fibers as stationary phases.

    Science.gov (United States)

    Jinno, K; Watanabe, H; Saito, Y; Takeichi, T

    2001-10-01

    Fiber-packed capillary columns have been evaluated in chromatographic performance in capillary electrochromatography (CEC). The change of electroosmotic flow (EOF) velocity and selectivity using different kinds of fiber materials was examined. Although the EOF velocity among the different fiber packed columns was almost the same, retention of parabens was larger on the Kevlar-packed column than on the Zylon-packed one, and was larger on the as-span-type fiber-packed column than on the high-modulus-type packed one. Using 200 microm ID x 5 cm Kevlar packed column combined with a 100 microm ID x 20 cm precolumn capillary and a 530 microm ID x 45 cm postcolumn capillary, the separation of three parabens within 30 s was achieved. Other compounds were also separated in a few minutes by the fiber-packed CEC method. PMID:11669512

  4. Uptake of water droplets by nonwetting capillaries

    CERN Document Server

    Willmott, Geoff R; Hendy, Shaun C

    2010-01-01

    We present direct experimental evidence that water droplets can spontaneously penetrate non-wetting capillaries, driven by the action of Laplace pressure due to high droplet curvature. Using high-speed optical imaging, microcapillaries of radius 50 to 150 micron, and water microdroplets of average radius between 100 and 1900 micron, we demonstrate that there is a critical droplet radius below which water droplets can be taken up by hydrophobised glass and polytetrafluoroethylene (PTFE) capillaries. The rate of capillary uptake is shown to depend strongly on droplet size, with smaller droplets being absorbed more quickly. Droplet size is also shown to influence meniscus motion in a pre-filled non-wetting capillary, and quantitative measurements of this effect result in a derived water-PTFE static contact angle between 96 degrees and 114 degrees. Our measurements confirm recent theoretical predictions and simulations for metal nanodroplets penetrating carbon nanotubes (CNTs). The results are relevant to a wide ...

  5. An Oxidase-Based Electrochemical Fluidic Sensor with High-Sensitivity and Low-Interference by On-Chip Oxygen Manipulation

    OpenAIRE

    Chang-Soo Kim; Jongwon Park; Nitin Radhakrishnan

    2012-01-01

    Utilizing a simple fluidic structure, we demonstrate the improved performance of oxidase-based enzymatic biosensors. Electrolysis of water is utilized to generate bubbles to manipulate the oxygen microenvironment close to the biosensor in a fluidic channel. For the proper enzyme reactions to occur, a simple mechanical procedure of manipulating bubbles was developed to maximize the oxygen level while minimizing the pH change after electrolysis. The sensors show improved sensitivities based on ...

  6. Capillary Electrophoresis coupled with Automated Fraction Collection

    OpenAIRE

    Huge, Bonnie Jaskowski; Flaherty, Ryan; Dada, Oluwatosin O.; Dovichi, Norman J.

    2014-01-01

    A fraction collector based on a drop-on-demand ink-jet printer was developed to interface capillary zone electrophoresis with a 96 well microtiter plate. We first evaluated the performance of the collector by using capillary zone electrophoresis to analyze a 1 mM solution of tetramethylrhodamine; a fluorescent microtiter plate reader was then used to detect the analyte and characterize fraction carryover between wells. Relative standard deviation in peak height was 20% and the relative standa...

  7. The capillary electrophoresis of the influenza viruses

    Czech Academy of Sciences Publication Activity Database

    Horká, Marie; Kubesová, Anna; Kubíček, O.; Kubíčková, Z.; Rosenbergová, K.; Šlais, Karel

    Tallinn: Tallinn University of Technology, 2009 - (Borissova, M.; Vaher, M.). s. 93 ISBN 978-9985-59-930-3. [Nordic Separation Science Society (NoSSS) International Conference /5./. 26.08.2009-29.08.2009, Tallinn] R&D Projects: GA AV ČR IAAX00310701 Institutional research plan: CEZ:AV0Z40310501 Keywords : capillary isoelectric focusing * capillary electrophoresis * influenza swine and equine viruses Subject RIV: CB - Analytical Chemistry, Separation

  8. Selectivity and detection in capillary electrophoresis

    OpenAIRE

    Khaled, Maha Yehia

    1994-01-01

    This work is a contribution to the minimization of some of the selectivity and detection limitations in capillary electrophoresis. A more practical design of an electrochemical detector is introduced with simultaneous on-line UV detection (1), for the selective detection of a number of pungent and neurological compounds, the piperines and the capsacinoids. Commercially available microelectrodes together with large 25 μm id fused silica capillary columns are used for the fir...

  9. A new simple and fast thermally-solvent assisted method to bond PMMA–PMMA in micro-fluidics devices

    Science.gov (United States)

    Bamshad, Arshya; Nikfarjam, Alireza; Khaleghi, Hossein

    2016-06-01

    A rapid and simple thermally-solvent assisted method of bonding was introduced for poly(methyl methacrylate) (PMMA) based microfluidic substrates. The technique is a low-temperature (68 {}^\\circ \\text{C} ), and rapid (15 \\min ) bonding technique; in addition, only a fan-assisted oven with some paper clamps are used. Two different solvents (ethanol and isopropyl alcohol) with two different methods of cooling (one-step and three steps) were employed to determine the best solvent and method of cooling (residual stresses may be released in different cooling methods) by considering bonding strength and quality. In this bonding technique, a thin film of solvent between two PMMA sheets disperses tends to dissolve a thin film of PMMA sheet surface, then evaporate, and finally reconnect monomers of the PMMA sheets at the specific operating temperature. The operating temperature of this method comes from the coincidence of the solubility parameter graph of PMMA with the solubility parameter graph of the solvents. Different tests such as tensile strength test, deformation test, leakage tests, and surface characteristics tests were performed to find the optimum conditions for this bonding strategy. The best bonding quality and the highest bonding strength (28.47 \\text{MPa} ) occurred when 70% isopropyl alcohol solution was employed with the one-step cooling method. Furthermore, the bonding reversibility was taken into account and critical percentages for irreversible bonding were obtained for both of the solvents and methods. This method provides a perfect bonding quality for PMMA substrates, and can be used in laboratories without needing any expensive and special instruments, because of its merits such as lower bonding time, lower-cost, and higher strength etc in comparison with the majority of other common bonding techniques.

  10. Blood Perfusion in Microfluidic Models of Pulmonary Capillary Networks: Role of Geometry and Hematocrit

    Science.gov (United States)

    Stauber, Hagit; Waisman, Dan; Sznitman, Josue; Technion-IIT Team; Department of Neonatology Carmel Medical Center; Faculty of Medicine-Technion IIT Collaboration

    2015-11-01

    Microfluidic platforms are increasingly used to study blood microflows at true physiological scale due to their ability to overcome manufacturing obstacle of complex anatomical morphologies, such as the organ-specific architectures of the microcirculation. In the present work, we utilize microfluidic platforms to devise in vitro models of the underlying pulmonary capillary networks (PCN), where capillary lengths and diameters are similar to the size of RBCs (~ 5-10 μm). To better understand flow characteristics and dispersion of red blood cells (RBCs) in PCNs, we have designed microfluidic models of alveolar capillary beds inspired by the seminal ``sheet flow'' model of Fung and Sobin (1969). Our microfluidic PCNs feature confined arrays of staggered pillars with diameters of ~ 5,7 and 10 μm, mimicking the dense structure of pulmonary capillary meshes. The devices are perfused with suspensions of RBCs at varying hematocrit levels under different flow rates. Whole-field velocity patterns using micro-PIV and single-cell tracking using PTV are obtained with fluorescently-labelled RBCs and discussed. Our experiments deliver a real-scale quantitative description of RBC perfusion characteristics across the pulmonary capillary microcirculation.

  11. Fluidic low-frequency oscillator consisting of load-switched diverter and a pair of vortex chambers

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav; Peszyński, K.; Smyk, E.

    Liberec: Polypress s.r.o, 2015 - (Dančová, P.; Veselý, M.), s. 792-799 [Experimental Fluid Mechanics 2015. Praha (CZ), 17.11.2015-20.11.2015] R&D Projects: GA ČR GA13-23046S Institutional support: RVO:61388998 Keywords : fluidic oscillator * vortex chamber * load-switched diverter Subject RIV: BK - Fluid Dynamics

  12. Fluidics: what it is, where it is heading - and how it will change the world we line in

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav

    Prague: Institute of Thermomechanics, Academy of Sciences of the Czech Republic, v. v. i., 2013 - (Zolotarev, I.), s. 3-12 ISBN 978-80-87012-47-5. ISSN 1805-8256. [ENGINEERING MECHANICS 2013 /19./. Svratka (CZ), 13.05.2013-16.05.2013] R&D Projects: GA TA ČR TA02020795; GA ČR GA13-23046S Institutional support: RVO:61388998 Keywords : fluidics * microfluidics * bioengineering Subject RIV: BK - Fluid Dynamics

  13. Interconnection blocks with minimal dead volumes permitting planar interconnection to thin microfluidic devices

    DEFF Research Database (Denmark)

    Sabourin, David; Snakenborg, Detlef; Dufva, Martin

    2010-01-01

    We have previously described 'Interconnection Blocks' which are re-usable, non-integrated PDMS blocks which allowing multiple, aligned and planar microfluidic interconnections. Here, we describe Interconnection Block versions with zero dead volumes that allow fluidic interfacing to flat or thin s...... applications. Additionally, the new Interconnection Block designs demonstrate that micromilling, a practical microfabrication method, can produce useful geometries not readily made through clean room-based approaches.......We have previously described 'Interconnection Blocks' which are re-usable, non-integrated PDMS blocks which allowing multiple, aligned and planar microfluidic interconnections. Here, we describe Interconnection Block versions with zero dead volumes that allow fluidic interfacing to flat or thin...... side-walled microfluidic devices. These designs increase the number of materials, types of devices and applications for which Interconnection Blocks can be used. Average leak pressures of 4.7 bar were recorded and all individual leak pressures recorded were above the 2-bar threshold for microfluidic...

  14. Simulation of the fluidic features for diffuser/nozzle involved in a PZT-based valveless micropump

    Institute of Scientific and Technical Information of China (English)

    HouWensheng; Zheng Xiaolin; Biswajit Das; Jiang Yingtao; Qian Shizhi; Wu Xiaoying; Zheng Zhigao

    2008-01-01

    PZT-based valveless micropump is a microactuator that can be used for controlling and delivering tiny amounts of fluids, and diffuser/nozzle plays an important role when this type of micropump drives the fluid flowing along a specific direction. In this paper, a numerical model of micropump has been proposed, and the fluidic properties of diffuser/nozzle have been simulated with ANSYS. With the method of finite-element analysis, the increased pressure drop between inlet and outlet of diffuser/nozzle induces the increment of flow rate in both diffuser and nozzle simultaneously, but the increasing rate of diffuser is faster than that of nozzle. The L/R, ratio of L (length of cone pipe) and R (radius of minimal cross section of cone pipe) plays an important role in fluidic performance of diffuser and nozzle as well, and the mean flow rate will decrease with increment of L/R. The mean flow rate reaches its peak value when L/R with the value of 10 regardless the divergence angle of diffuser or nozzle. The simulation results indicate that the fluidic properties of diffuser/nozzle can be defined by its geometric structure, and accordingly determine the efficiency of micropump.

  15. Design and operation of a portable scanner for high performance microchip capillary array electrophoresis

    Science.gov (United States)

    Scherer, James R.; Liu, Peng; Mathies, Richard A.

    2010-11-01

    We have developed a compact, laser-induced fluorescence detection scanner, the multichannel capillary array electrophoresis portable scanner (McCAEPs) as a platform for electrophoretic detection and control of high-throughput, integrated microfluidic devices for genetic and other analyses. The instrument contains a confocal optical system with a rotary objective for detecting four different fluorescence signals, a pneumatic system consisting of two pressure/vacuum pumps and 28 individual addressable solenoid valves for control of on-chip microvalves and micropumps, four Polymerase Chain Reaction (PCR) temperature control systems, and four high voltage power supplies for electrophoresis. The detection limit of the instrument is ˜20 pM for on-chip capillary electrophoresis of fluorescein dyes. To demonstrate the system performance for forensic short tandem repeat (STR) analysis, two experiments were conducted: (i) electrophoretic separation and detection of STR samples on a 96-lane microfabricated capillary array electrophoresis microchip. Fully resolved PowerPlex® 16 STR profiles amplified from 1 ng of 9947A female standard DNA were successfully obtained; (ii) nine-plex STR amplification, sample injection, separation, and fluorescence detection of 100-copy 9948 male standard DNA in a single integrated PCR- capillary electrophoresis microchip. These results demonstrate that the McCAEPs can be used as a versatile control and detection instrument that operates integrated microfluidic devices for high-performance forensic human identification.

  16. Capillary fracture of soft gels.

    Science.gov (United States)

    Bostwick, Joshua B; Daniels, Karen E

    2013-10-01

    A liquid droplet resting on a soft gel substrate can deform that substrate to the point of material failure, whereby fractures develop on the gel surface that propagate outwards from the contact line in a starburst pattern. In this paper, we characterize (i) the initiation process, in which the number of arms in the starburst is controlled by the ratio of the surface tension contrast to the gel's elastic modulus, and (ii) the propagation dynamics showing that once fractures are initiated they propagate with a universal power law L[proportional]t(3/4). We develop a model for crack initiation by treating the gel as a linear elastic solid and computing the deformations within the substrate from the liquid-solid wetting forces. The elastic solution shows that both the location and the magnitude of the wetting forces are critical in providing a quantitative prediction for the number of fractures and, hence, an interpretation of the initiation of capillary fractures. This solution also reveals that the depth of the gel is an important factor in the fracture process, as it can help mitigate large surface tractions; this finding is confirmed with experiments. We then develop a model for crack propagation by considering the transport of an inviscid fluid into the fracture tip of an incompressible material and find that a simple energy-conservation argument can explain the observed material-independent power law. We compare predictions for both linear elastic and neo-Hookean solids, finding that the latter better explains the observed exponent. PMID:24229192

  17. Three-dimensional printing-based electro-millifluidic devices for fabricating multi-compartment particles

    OpenAIRE

    Chen, Qiu Lan; Liu, Zhou; Shum, Ho Cheung

    2014-01-01

    In this work, we demonstrate the use of stereolithographic 3D printing to fabricate millifluidic devices, which are used to engineer particles with multiple compartments. As the 3D design is directly transferred to the actual prototype, this method accommodates 3D millimeter-scaled features that are difficult to achieve by either lithographic-based microfabrication or traditional macrofabrication techniques. We exploit this approach to produce millifluidic networks to deliver multiple fluidic...

  18. Use of capillary electrophoresis and indirect detection to quantitate in-capillary enzyme-catalyzed microreactions.

    Science.gov (United States)

    Zhang, Y; el-Maghrabi, M R; Gomez, F A

    2000-04-01

    The use of capillary electrophoresis and indirect detection to quantify reaction products of in-capillary enzyme-catalyzed microreactions is described. Migrating in a capillary under conditions of electrophoresis, plugs of enzyme and substrate are injected and allowed to react. Capillary electrophoresis is subsequently used to measure the extent of reaction. This technique is demonstrated using two model systems: the conversion of fructose-1,6-bisphosphate to dihydroxyacetone phosphate and glyceraldehyde-3-phosphate by fructose-biphosphate aldolase (ALD, EC 4.1.2.13), and the conversion of fructose-1,6-bisphosphate to fructose-6-phosphate by fructose-1,6-bisphospatase (FBPase, EC 3.1.3.11). These procedures expand the use of the capillary as a microreactor and offer a new approach to analyzing enzyme-mediated reactions. PMID:10892022

  19. A Novel Polybrene/Chondroitin Sulfate C Double Coated Capillary and Its Application in Capillary Electrophoresis

    Institute of Scientific and Technical Information of China (English)

    DU,Ying-Xiang(杜迎翔); HONDA,Susumu; TAGA,Atsushi; LIU,Wen-Ying(刘文英); SUZUKI,Shigeo

    2002-01-01

    A new capillary coated by double polymer, polybrene/chondroitin sulfate C (P/CC), was developed using a simple procedure. The P/CC double coated capillary showed long lifetime,strong chemical stability and good reproducibility. It endured during more than 100 replicated analyses and was also tolerant to HCl (1 mol/L), NaOH (0.01 mol/L), CH3OH and CH3CN. The P/CC double coated capillary can be applied to basic drug analyses. The adsorption of basic drugs to the capillary wall was suppressed and the peak tailing greatly decreased. The use of the P/CC double coated capillary allowed excelent separation of the enantiomers of some basic drugs by using chondroitin sulfate C as the chiral selector, ami the peak symmetry of basic drugs was further improved under these conditions.

  20. Nanoparticle-based capillary electroseparation of proteins in polymer capillaries under physiological conditions

    DEFF Research Database (Denmark)

    Nilsson, C.; Harwigsson, I.; Becker, K.;

    2010-01-01

    of nanoparticles, i.e. in CE mode, the protein samples adsorbed completely to the capillary walls and could not be recovered. In contrast, nanoparticle-based capillary electroseparation resolved green fluorescent protein from several of its impurities within I min. Furthermore, a mixture of native green...... fluorescent protein and two of its single-amino-acid-substituted variants was separated within 2.5 min with efficiencies of 400 000 plates/m. The nanoparticles prevent adsorption by introducing a large interacting surface and by obstructing the attachment of the protein to the capillary wall. A one......Totally porous lipid-based liquid crystalline nanoparticles were used as pseudostationary phase for capillary electroseparation with LIF detection of proteins at physiological conditions using unmodified cyclic olefin copolymer capillaries (Topas (R), 6.7 cm effective length). In the absence...

  1. Capillary-Tube Model and Experiment of Multiphase Flow in Capillary Fringes

    Institute of Scientific and Technical Information of China (English)

    武晓峰; 唐杰; 吕贤弼

    2002-01-01

    Contamination of soil and groundwater by organic substances is causing more and more problems worldwide. Analysis of the movement and distribution of nonaqueous phase liquids (NAPLs) in subsurface domain is critical for contaminant remediation. Two-dimensional experiments were conducted in a transparent plexiglass trough (105.0 cm×70.0 cm×1.5 cm) to simulate the release and redistribution of gasoline and kerosene in porous media. The results show that before the contaminant distribution reaches equilibrium, the movement of light NAPLs (LNAPLs) can be divided into four sub-stages. After the contaminant front reaches the upper boundary of the capillary fringe, contaminant movement along the upper boundary of the capillary fringe is the primary transport process. Most of the contaminants then move into the capillary fringe except for the residual part. One-dimensional and two-dimensional capillary tube models were developed to analyze the movement of LNAPLs in the capillary fringe.

  2. Transient dynamics of the flow around a NACA 0015 airfoil using fluidic vortex generators

    International Nuclear Information System (INIS)

    The unsteady activation or deactivation of fluidic vortex generators on a NACA 0015 airfoil is studied to understand the transient dynamics of flow separation control. The Reynolds number is high enough and the boundary layer is tripped, so the boundary layer is fully turbulent prior to separation. Conditional PIV of the airfoil wake is obtained phase-locked to the actuator trigger signal, allowing reconstruction of the transient processes. When the actuators are impulsively turned on, the velocity field in the near wake exhibit a complex transient behavior associated with the formation and shedding of a starting vortex. When actuation is stopped, a more gradual process of the separation dynamics is found. These results are in agreement with those found in the literature in comparable configurations. Proper Orthogonal Decomposition of phase-locked velocity fields reveals low-dimensional transient dynamics for the attachment and separation processes, with 98% of the fluctuation energy captured by the first four modes. The behavior is quantitatively well captured by a four-dimensional dynamical system with the corresponding mode amplitudes. Analysis of the first temporal POD modes accurately determines typical time scales for attachment and separation processes to be respectively t+=10 and 20 in conventional non-dimensional values. This study adds to experimental investigations of this scale with essential insight for the targeted closed-loop control.

  3. Nanobiomimetic Active Shape Control - Fluidic and Swarm-Intelligence Embodiments for Planetary Exploration

    Science.gov (United States)

    Santoli, S.

    The concepts of Active Shape Control ( ASC ) and of Generalized Quantum Holography ( GQH ), respectively embodying a closer approach to biomimicry than the current macrophysics-based attempts at bioinspired robotic systems, and realizing a non-connectionistic, life-like kind of information processing that allows increasingly depths of mimicking of the biological structure-function solidarity, which have been formulated in physical terms in previous papers, are here further investigated for application to bioinspired flying or swimming robots for planetary exploration. It is shown that nano-to-micro integration would give the deepest level of biomimicry, and that both low and very low Reynolds number ( Re ) fluidics would involve GQH and Fiber Bundle Topology ( FBT ) for processing information at the various levels of ASC bioinspired robotics. While very low Re flows lend themselves to geometrization of microrobot dynamics and to FBT design, the general design problem is geometrized through GQH , i.e. made independent of dynamic considerations, thus allowing possible problems of semantic dyscrasias in highly complex hierarchical dynamical chains of sensing information processing actuating to be overcome. A roadmap to near- and medium-term nanostructured and nano-to-micro integration realizations is suggested.

  4. An angular fluidic channel for prism-free surface-plasmon-assisted fluorescence capturing

    Science.gov (United States)

    Nomura, Ken-Ichi; Gopinath, Subash C. B.; Lakshmipriya, Thangavel; Fukuda, Nobuko; Wang, Xiaomin; Fujimaki, Makoto

    2013-12-01

    Surface plasmon excitation provides stronger enhancement of the fluorescence intensity and better sensitivity than other sensing approaches but requires optimal positioning of a prism to ensure optimum output of the incident light. Here we describe a simple, highly sensitive optical sensing system combining surface plasmon excitation and fluorescence to address this limitation. V-shaped fluidic channels are employed to mimic the functions of a prism, sensing plate, and flow channel in a single setup. Superior performance is demonstrated for different biomolecular recognition reactions on a self-assembled monolayer, and the sensitivity reaches 100 fM for biotin-streptavidin interactions. Using an antibody as a probe, we demonstrate the detection of intact influenza viruses at 0.2 HA units ml-1 levels. The convenient sensing system developed here has the advantages of being prism-free and requiring less sample (1-2 μl), making this platform suitable for use in situations requiring low sample volumes.

  5. Transient dynamics of the flow around a NACA 0015 airfoil using fluidic vortex generators

    Energy Technology Data Exchange (ETDEWEB)

    Siauw, W.L. [Institut Pprime, CNRS - Universite de Poitiers - ENSMA, UPR 3346, Departement Fluides, Thermique, Combustion, ENSMA - Teleport 2, 1 Avenue Clement Ader, BP 40109, F-86961 Futuroscope Chasseneuil Cedex (France); Bonnet, J.-P., E-mail: Jean-Paul.Bonnet@univ-poitiers.f [Institut Pprime, CNRS - Universite de Poitiers - ENSMA, UPR 3346, Departement Fluides, Thermique, Combustion, CEAT, 43 rue de l' Aerodrome, F-86036 Poitiers Cedex (France); Tensi, J., E-mail: Jean.Tensi@lea.univ-poitiers.f [Institut Pprime, CNRS - Universite de Poitiers - ENSMA, UPR 3346, Departement Fluides, Thermique, Combustion, ENSMA - Teleport 2, 1 Avenue Clement Ader, BP 40109, F-86961 Futuroscope Chasseneuil Cedex (France); Cordier, L., E-mail: Laurent.Cordier@univ-poitiers.f [Institut Pprime, CNRS - Universite de Poitiers - ENSMA, UPR 3346, Departement Fluides, Thermique, Combustion, CEAT, 43 rue de l' Aerodrome, F-86036 Poitiers Cedex (France); Noack, B.R., E-mail: Bernd.Noack@univ-poitiers.f [Institut Pprime, CNRS - Universite de Poitiers - ENSMA, UPR 3346, Departement Fluides, Thermique, Combustion, CEAT, 43 rue de l' Aerodrome, F-86036 Poitiers Cedex (France); Cattafesta, L., E-mail: cattafes@ufl.ed [Florida Center for Advanced Aero-Propulsion (FCAAP), Department of Mechanical and Aerospace Engineering, University of Florida, 231 MAE-A, Gainesville, FL 32611 (United States)

    2010-06-15

    The unsteady activation or deactivation of fluidic vortex generators on a NACA 0015 airfoil is studied to understand the transient dynamics of flow separation control. The Reynolds number is high enough and the boundary layer is tripped, so the boundary layer is fully turbulent prior to separation. Conditional PIV of the airfoil wake is obtained phase-locked to the actuator trigger signal, allowing reconstruction of the transient processes. When the actuators are impulsively turned on, the velocity field in the near wake exhibit a complex transient behavior associated with the formation and shedding of a starting vortex. When actuation is stopped, a more gradual process of the separation dynamics is found. These results are in agreement with those found in the literature in comparable configurations. Proper Orthogonal Decomposition of phase-locked velocity fields reveals low-dimensional transient dynamics for the attachment and separation processes, with 98% of the fluctuation energy captured by the first four modes. The behavior is quantitatively well captured by a four-dimensional dynamical system with the corresponding mode amplitudes. Analysis of the first temporal POD modes accurately determines typical time scales for attachment and separation processes to be respectively t{sup +}=10 and 20 in conventional non-dimensional values. This study adds to experimental investigations of this scale with essential insight for the targeted closed-loop control.

  6. Alternative approach in 3D MEMS-IC integration using fluidic self-assembly techniques

    International Nuclear Information System (INIS)

    Nowadays, industries are investigating new, original and appropriate solutions to address challenges in 3D MEMS-IC large-scale integration. Self-assembly techniques are among those. We report on an alternative approach inspired from fluidic self-assembly and using the flip-chip method. Here, solder bumps are directly formed onto a MEMS chip using liquid solder solution in a bath. The self-alignment process is operated after surface treatment by plasma deposition to form high and low wettability selective patterns. Finally, MEMS and electronic chips are permanently bonded after low thermal heating without any pressure. Electrical contact is established and electromechanisms of the microsystems are proven. Compared to classic MEMS-IC flip-chip methods, this strategy presents many advantages: it is a low-cost and fast fabrication process requiring no specific equipment for deposition of solder bumps. Furthermore, it can be applied on different substrates and it does not require a specific pressure method during the bonding process. This strategy is also an appropriate fabrication method for large-scale MEMS integration where electronic connection density is high

  7. Nested, fixed-depth fluidic sampler supplementary testing - AEAT doc 2926-2-002

    Energy Technology Data Exchange (ETDEWEB)

    REICH, F.R.

    1999-03-11

    This report summarizes the results of cold testing, completed by AEAT, as part of the proof-of-principle testing for a proposed nested, fixed-depth fluidic sampling system. This sampling system will provide waste samples from the PHMC feed tank to support the privatization contract with BNFL. Proof-of-principle tests were completed with 2 wt% and 10 wt% sand/water and 25 wt% kaolin clay/water simulants with a test setup that spanned the 24 ft to 57 ft height required in the feed tank. The tests demonstrated that the system could pump and sample waste materials with low and with high solids content. In addition, the tests demonstrated a need for some design upgrades to the sampling system, as there was material loss when the sample bottle was removed from the sampling needle. These were complementary tests, completed as part of an EM-50 Tank Focus Area (TFA) to develop a sampling system for validating LAW and HLW waste batches for the Privatization Contract.

  8. Autonomous undulatory serpentine locomotion utilizing body dynamics of a fluidic soft robot.

    Science.gov (United States)

    Onal, Cagdas D; Rus, Daniela

    2013-06-01

    Soft robotics offers the unique promise of creating inherently safe and adaptive systems. These systems bring man-made machines closer to the natural capabilities of biological systems. An important requirement to enable self-contained soft mobile robots is an on-board power source. In this paper, we present an approach to create a bio-inspired soft robotic snake that can undulate in a similar way to its biological counterpart using pressure for actuation power, without human intervention. With this approach, we develop an autonomous soft snake robot with on-board actuation, power, computation and control capabilities. The robot consists of four bidirectional fluidic elastomer actuators in series to create a traveling curvature wave from head to tail along its body. Passive wheels between segments generate the necessary frictional anisotropy for forward locomotion. It takes 14 h to build the soft robotic snake, which can attain an average locomotion speed of 19 mm s(-1). PMID:23524383

  9. Nested, fixed-depth fluidic sampler supplementary testing - AEAT doc 2926-2-002

    International Nuclear Information System (INIS)

    This report summarizes the results of cold testing, completed by AEAT, as part of the proof-of-principle testing for a proposed nested, fixed-depth fluidic sampling system. This sampling system will provide waste samples from the PHMC feed tank to support the privatization contract with BNFL. Proof-of-principle tests were completed with 2 wt% and 10 wt% sand/water and 25 wt% kaolin clay/water simulants with a test setup that spanned the 24 ft to 57 ft height required in the feed tank. The tests demonstrated that the system could pump and sample waste materials with low and with high solids content. In addition, the tests demonstrated a need for some design upgrades to the sampling system, as there was material loss when the sample bottle was removed from the sampling needle. These were complementary tests, completed as part of an EM-50 Tank Focus Area (TFA) to develop a sampling system for validating LAW and HLW waste batches for the Privatization Contract

  10. Shear wave attenuation and micro-fluidics in water-saturated sand and glass beads.

    Science.gov (United States)

    Chotiros, Nicholas P; Isakson, Marcia J

    2014-06-01

    An improvement in the modeling of shear wave attenuation and speed in water-saturated sand and glass beads is introduced. Some dry and water-saturated materials are known to follow a constant-Q model in which the attenuation, expressed as Q(-1), is independent of frequency. The associated loss mechanism is thought to lie within the solid frame. A second loss mechanism in fluid-saturated porous materials is the viscous loss due to relative motion between pore fluid and solid frame predicted by the Biot-Stoll model. It contains a relaxation process that makes the Q(-1) change with frequency, reaching a peak at a characteristic frequency. Examination of the published measurements above 1 kHz, particularly those of Brunson (Ph.D. thesis, Oregon State University, Corvalis, 1983), shows another peak, which is explained in terms of a relaxation process associated with the squirt flow process at the grain-grain contact. In the process of deriving a model for this phenomenon, it is necessary to consider the micro-fluidic effects associated with the flow within a thin film of water confined in the gap at the grain-grain contact and the resulting increase in the effective viscosity of water. The result is an extended Biot model that is applicable over a broad band of frequencies. PMID:24907791

  11. Evaluation of fluidic thrust vectoring nozzle via thrust pitching angle and thrust pitching moment

    Science.gov (United States)

    Li, L.; Hirota, M.; Ouchi, K.; Saito, T.

    2016-03-01

    Shock vector control (SVC) in a converging-diverging nozzle with a rectangular cross-section is discussed as a fluidic thrust vectoring (FTV) method. The interaction between the primary nozzle flow and the secondary jet is examined using experiments and numerical simulations. The relationships between FTV parameters [nozzle pressure ratio (NPR) and secondary jet pressure ratio (SPR)] and FTV performance (thrust pitching angle and thrust pitching moment) are investigated. The experiments are conducted with an NPR of up to 10 and an SPR of up to 2.7. Numerical simulations of the nozzle flow are performed using a Navier-Stokes solver with input parameters set to match the experimental conditions. The thrust pitching angle and moment computed from the force-moment balance are used to evaluate FTV performance. The experiment and numerical results indicate that the FTV parameters (NPR and SPR) directly affect FTV performance. Conventionally, FTV performance evaluated by the common method using thrust pitching angle is highly dependent on the location of evaluation. Hence, in this study, we show that the thrust pitching moment, a parameter which is independent of the location, is the appropriate figure of merit to evaluate the performance of FTV systems.

  12. Bioengineering bacteriophages to enhance the sensitivity of phage amplification-based paper fluidic detection of bacteria.

    Science.gov (United States)

    Alcaine, S D; Law, K; Ho, S; Kinchla, A J; Sela, D A; Nugen, S R

    2016-08-15

    Bacteriophage (phage) amplification is an attractive method for the detection of bacteria due to a narrow phage-host specificity, short amplification times, and the phages' ability to differentiate between viable and non-viable bacterial cells. The next step in phage-based bacteria detection is leveraging bioengineered phages to create low-cost, rapid, and easy-to-use detection platforms such as lateral flow assays. Our work establishes the proof-of-concept for the use of bioengineered T7 phage strains to increase the sensitivity of phage amplification-based lateral flow assays. We have demonstrated a greater than 10-fold increase in sensitivity using a phage-based protein reporter, maltose-binding protein, over the detection of replicated T7 phage viron itself, and a greater then 100-fold increase in sensitivity using a phage-based enzymatic reporter, alkaline phosphatase. This increase in sensitivity enabled us to detect 10(3)CFU/mL of Escherichia coli in broth after 7h, and by adding a filter concentration step, the ability to detect a regulatory relevant E. coli concentration of 100CFU/100mL in inoculated river water after 9h, where the current standard requires days for results. The combination of the paper fluidic format with phage-based detection provides a platform for the development of novel diagnostics that are sensitive, rapid, and easy to use. PMID:27031186

  13. A simple approach for an optically transparent nanochannel device prototype.

    Science.gov (United States)

    Liang, Fupeng; Ju, An; Qiao, Yi; Guo, Jing; Feng, Haiqing; Li, Junji; Lu, Na; Tu, Jing; Lu, Zuhong

    2016-03-21

    Compared with microfluidic devices, the fabrication of structure-controllable and designable nanochannel devices has been considered to have high costs and complex procedures, which require expensive equipment and high-quality raw materials. Exploring fast, simple and inexpensive approaches in nanochannel fabrication will be greatly helpful to speed up laboratory studies of nanofluidics. Here we developed a simple and inexpensive approach to fabricate a nanochannel device with a glass/epoxy resin/glass structure. The grooves were engraved using a UV laser on an aluminum sacrificial layer on the substrate glass, and epoxy resin was coated on the substrate and stuffed fully into the grooves. Another glass plate with holes for fluidic inlets and outlets was bonded on the top of the resin layer. The nanochannels were formed by etching thin sacrificial layers electrochemically. Meanwhile, the microstructures of the fluidic outlets and inlets could be fabricated simultaneously to the nanochannel formation. The total processing time for the simple nanochannel device took less than 10 hours. Optically transparent nanochannels with a depth of up to 20 nm were achieved. Nanofluidic behaviors in the nanochannels were observed under both optical and fluorescence microscopes. PMID:26891717

  14. Capillary Ion Concentration Polarization for Power-Free Salt Purification

    Science.gov (United States)

    Park, Sungmin; Jung, Yeonsu; Cho, Inhee; Kim, Ho-Young; Kim, Sung Jae

    2014-11-01

    In this presentation, we experimentally and theoretically demonstrated the capillary based ion concentration polarization for power-free salt purification system. Traditional ion concentration polarization phenomenon has been studied for a decade for both fundamental nanoscale fluid dynamics and novel engineering applications such as desalination, preconcentration and energy harvesting devices. While the conventional system utilizes an external power source, the system based on capillary ion concentration polarization is capable of perm-selective ion transportation only by capillarity so that the same ion depletion zone can be formed without any external power sources. An ion concentration profile near the nanostructure was tracked using fluorescent probes and analyzed by solving the modified Nernst-Planck equation. As a result, the concentration in the vicinity of the nanostructure was at least 10 times lower than that of bulk electrolyte and thus, the liquid absorbed into the nanostructure had the low concentration. This mechanism can be used for the power free salt purification system which would be significantly useful in underdeveloped and remote area. This work was supported by Samsung Research Funding Center of Samsung Electronics under Project Number SRFC-MA1301-02.

  15. Evaluation on thermal-hydraulic characteristics for passive safety device of APR1400

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Seong Yeon; Lee, S. H.; Son, M. K. [Korea Association for Nuclear Technology, Taejon (Korea, Republic of); Jee, M. S.; Chung, M. H. [Chungnam National Univ., Taejon (Korea, Republic of)

    2001-07-15

    To establish evaluation and verification guideline for the APR1400, thermal-hydraulic characteristics for fuel rod bundle, reactor vessel and fluidic device is analyzed using FLUENT. Scope and major results of research are as follows : Thermal-hydraulic characteristics for nuclear fuel rod bundle: design data for nuclear fuel rod bundle and structure are surveyed, and 3 x 3 sub-channel model is adopted to investigate the fluid flow and heat transfer characteristics in fuel rod bundle. Computational results are compared with the heat transfer data measured by naphthalene sublimation method, and numerical analysis and evaluation are performed at various design conditions and flow conditions. Thermal-hydraulic characteristics for reactor vessel: reactor vessel design data are surveyed to develop numerical model. Porous media model is applied for fuel rod bundle, and full-scale, three dimensional simulation is performed at actual operating conditions. Distributions of velocity, pressure and temperature are discussed. Flow characteristics for fluidic device: three dimensional numerical model for fluidic device is developed, and numerical results are compared with experimental data obtained at KAERI in order to verify numerical simulation. In addition, variation of flow rate is investigated at various elapsed times after valve operating, and flow characteristics is analyzed at low and high flow rate conditions, respectively.

  16. The capillary hysteresis model HYSTR: User's guide

    International Nuclear Information System (INIS)

    The potential disposal of nuclear waste in the unsaturated zone at Yucca Mountain, Nevada, has generated increased interest in the study of fluid flow through unsaturated media. In the near future, large-scale field tests will be conducted at the Yucca Mountain site, and work is now being done to design and analyze these tests. As part of these efforts a capillary hysteresis model has been developed. A computer program to calculate the hysteretic relationship between capillary pressure φ and liquid saturation (S1) has been written that is designed to be easily incorporated into any numerical unsaturated flow simulator that computes capillary pressure as a function of liquid saturation. This report gives a detailed description of the model along with information on how it can be interfaced with a transport code. Although the model was developed specifically for calculations related to nuclear waste disposal, it should be applicable to any capillary hysteresis problem for which the secondary and higher order scanning curves can be approximated from the first order scanning curves. HYSTR is a set of subroutines to calculate capillary pressure for a given liquid saturation under hysteretic conditions

  17. Synthetic Capillaries to Control Microscopic Blood Flow

    Science.gov (United States)

    Sarveswaran, K.; Kurz, V.; Dong, Z.; Tanaka, T.; Penny, S.; Timp, G.

    2016-02-01

    Capillaries pervade human physiology. The mean intercapillary distance is only about 100 μm in human tissue, which indicates the extent of nutrient diffusion. In engineered tissue the lack of capillaries, along with the associated perfusion, is problematic because it leads to hypoxic stress and necrosis. However, a capillary is not easy to engineer due to its complex cytoarchitecture. Here, it is shown that it is possible to create in vitro, in about 30 min, a tubular microenvironment with an elastic modulus and porosity consistent with human tissue that functionally mimicks a bona fide capillary using “live cell lithography”(LCL) to control the type and position of cells on a composite hydrogel scaffold. Furthermore, it is established that these constructs support the forces associated with blood flow, and produce nutrient gradients similar to those measured in vivo. With LCL, capillaries can be constructed with single cell precision—no other method for tissue engineering offers such precision. Since the time required for assembly scales with the number of cells, this method is likely to be adapted first to create minimal functional units of human tissue that constitute organs, consisting of a heterogeneous population of 100-1000 cells, organized hierarchically to express a predictable function.

  18. EUV radiation from nitrogen capillary discharge

    Science.gov (United States)

    Frolov, Oleksandr; Kolacek, Karel; Schmidt, Jiri; Straus, Jaroslav

    2014-08-01

    In the last decade EUV sources attract interest from researchers over the world. One of the main motivations is EUV lithography, which could lead to further miniaturization in electronics. Nitrogen recombination laser at wavelength of 13.4 nm based on capillary discharge Z-pinch configuration could be used in experiments with testing of resolution of photoresist for EUV lithography (close to wavelength of 13.5 nm Si/Mo multilayer mirrors have a high reflectivity at normal incidence angles). In this work, pinching of nitrogen-filled capillary discharge is studied for the development of EUV laser, which is based on recombination pumping scheme. The goal of this study is achieving the required plasma conditions using a capillary discharge Z-pinch apparatus. In experiments with nitrogen, the capillary length was shortened from 232 mm to 90 mm and current quarter-period was changed from 60 ns to 50 ns in contrast with early experiments with Ne-like argon laser. EUV radiation from capillary discharge was registered by X-ray vacuum diode for different pressure, amplitude and duration of pre-pulse and charging voltage of the Marx generator.

  19. Novel absorption detection techniques for capillary electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Y.

    1994-07-27

    Capillary electrophoresis (CE) has emerged as one of the most versatile separation methods. However, efficient separation is not sufficient unless coupled to adequate detection. The narrow inner diameter (I.D.) of the capillary column raises a big challenge to detection methods. For UV-vis absorption detection, the concentration sensitivity is only at the {mu}M level. Most commercial CE instruments are equipped with incoherent UV-vis lamps. Low-brightness, instability and inefficient coupling of the light source with the capillary limit the further improvement of UV-vis absorption detection in CE. The goals of this research have been to show the utility of laser-based absorption detection. The approaches involve: on-column double-beam laser absorption detection and its application to the detection of small ions and proteins, and absorption detection with the bubble-shaped flow cell.

  20. Capillary filling in closed end nanochannels.

    Science.gov (United States)

    Phan, Vinh Nguyen; Nguyen, Nam-Trung; Yang, Chun; Joseph, Pierre; Djeghlaf, Lyes; Bourrier, David; Gue, Anne-Marie

    2010-08-17

    We investigated the interactions between liquid, gas, and solid phases in the capillary filling process of closed-end nanochannels. This paper presents theoretical models without and with absorption and diffusion of gas molecules in the liquid. Capillary filling experiments were carried out in closed-end silicon nanochannels with different lengths. The theoretical and measured characteristics of filling length versus time are compared. The results show that the filling process consists of two stages. The first stage resembles the capillary filling process in an open-end nanochannel. However, a remarkable discrepancy between the experimental results and the theory without gas absorption is observed in the second stage. A closer investigation of the second stage reveals that the dissolution of gas in the liquid is important and can be explained by the model with gas absorption and diffusion. PMID:20695566

  1. A capillary optical fiber modulator derivates from magnetic fluid

    Science.gov (United States)

    Yang, Xinghua; Liu, Yanxin; Zheng, Yao; Li, Shouzhu; Yuan, Libo; Yuan, Tingting; Tong, Chengguo

    2013-09-01

    A novel in-fiber integrated modulator based on magnetic fluid is proposed. The Fe3O4 magnetic fluid is encapsulated into a specially designed capillary optical fiber with a circular waveguide. Experimental results show that the light at 632.8 nm in the circular waveguide can be modulated by only 2.17×10-2 μL of the magnetic fluid under magnetic field. A wide range of modulation-depth from 44% to 75% can be obtained by adjusting the external magnetic field strength, temperature and the concentration of the magnetic fluid. In addition, the modulator shows good stability and repeatability. This work has great potentials in the integrated optical devices such as tunable in-fiber modulators, optical switches and magnetic sensors.

  2. Imaging characteristics of glass capillary plate gas detector

    International Nuclear Information System (INIS)

    A glass capillary plate (CP) gas detector with gas mixtures of He, Ne, Ar, and Xe has been successfully operated as a visible and near-infrared (NIR) scintillation proportional counter. Gas gains of up to 104 can be achieved using these gas mixtures. The scintillation light emitted during the generation of electron avalanches can be observed using a photomultiplier tube (PMT) and a compact optical imaging system that consists of a CP gas detector and a cooled CCD camera coupled to lens optics. Using this optical imaging system, clearer X-ray images have been obtained with the above gas mixtures. The dependence of the imaging quality on the pressure in the range 0.25-1 atm was also investigated for the Ar (90%)+CF4 (10%) gas mixture. The successful operations using these gas mixtures have allowed us to realize a novel imaging device with a CP gas detector for gaseous PMTs sensitive to visible light.

  3. Developments of optical imaging capillary plate gas detector

    International Nuclear Information System (INIS)

    An optical imaging capillary plate (CP) gas detector has been successfully developed for a gas mixture of Ar+CF4. Gas gains of up to 104 can be achieved with a single CP. Scintillation light simultaneously emitted during the development of electron avalanches can be observed using a photomultiplier tube (PMT) and optical imaging system which consists of a CP gas detector and a cooled CCD camera coupled to lens optics. The energy resolutions obtained for the charge signal and the light signal were 22% and 24% for 10 keV X-rays, respectively. Using the optical imaging system, clearer images of X-rays have been obtained with the gas mixture. Successful operation with this gas mixture has allowed us to realise a novel-imaging device with CP for X-ray imaging, cold neutron imaging, medical imaging, and cellular function analysis

  4. Linear stability analysis of capillary instabilities for concentric cylindrical shells

    CERN Document Server

    Liang, X; Nave, J -C; Johnson, S G

    2010-01-01

    Motivated by complex multi-fluid geometries currently being explored in fibre-device manufacturing, we study capillary instabilities in concentric cylindrical flows of N fluids with arbitrary viscosities, thicknesses, densities, and surface tensions in both the Stokes regime and for the full Navier--Stokes problem. Generalising previous work by Tomotika (N=2), Stone & Brenner (N=3, equal viscosities) and others, we present a full linear stability analysis of the growth modes and rates, reducing the system to a linear generalised eigenproblem in the Stokes case. Furthermore, we demonstrate by Plateau-style geometrical arguments that only axisymmetric instabilities need be considered. We show that the N=3 case is already sufficient to obtain several interesting phenomena: limiting cases of thin shells or low shell viscosity that reduce to N=2 problems, and a system with competing breakup processes at very different length scales. The latter is demonstrated with full 3-dimensional simulations. Many $N > 3$ c...

  5. Capillary interactions in nano-particle suspensions

    International Nuclear Information System (INIS)

    We have investigated the structures formed by colloidal particles suspended in solvents at volume fractions below 10% and interacting through capillary bridges. Such systems resemble colloidal gas of sticky nano-spheres that form pearl-necklace like chains that, in turn, induce strong viscoelasticity due to the formation of 3-D fractal network. The capillary force dominates the electrostatic and Van der Waals forces in solutions and can bridge multiple particles depending of the volume of the capillary bridge. We have investigated the morphology of the structures formed at different fractions of the bridging fluid. Small-angle neutron scattering (SANS) is used to study nanoparticles with an average diameter of 10 nm in polar and non-polar organic solvents at ambient temperatures. SANS intensity as a function of the scattering vector is analyzed as a product of a form factor, that depends on the particle shape, and a structure factor, that characterizes the interparticle inter reactions. The interaction of particles in polar solvents is considered to be through electrostatic repulsion and the data is successfully fitted by Hayter-Penfold mean spherical approximation (HPMSA). Computer simulations of a pearl necklace-like chain of spheres is conducted to explain the structure factor when capillary bridges are present. Alternatively, we have analyzed the slope of the intensity at low scattering vector in a double logarithmic plot to determine the dimension of the fractal structures formed by the particles at different volume fraction of the bridging fluid. We have also studied the properties of the capillary bridge between a pair of particles. The significance of this study is to explore the possibility of using capillary force as a tool to engineer new colloidal structures and materials in solutions and to optimize their viscoelastic properties. (author)

  6. Capillary Rise of Liquids in Nanopores

    CERN Document Server

    Huber, Patrick; Kityk, Andriy V

    2006-01-01

    We present measurements on the spontaneous imbibition (capillary rise) of water, a linear hydrocarbon (n-C16H34) and a liquid crystal (8OCB) into the pore space of monolithic, nanoporous Vycor glass (mean pore radius 5 nm). Measurements on the mass uptake of the porous hosts as a function of time, m(t), are in good agreement with the Lucas-Washburn square root of time prediction, typical of imbibition of liquids into porous hosts. The relative capillary rise velocities scale as expected from the bulk fluid parameters.

  7. A lymph nodal capillary-cavernous hemangioma.

    Science.gov (United States)

    Dellachà, A; Fulcheri, E; Campisi, C

    1999-09-01

    A capillary-cavernous hemangioma in an obturator lymph node was found incidentally in a 64 year-old woman who had undergone unilateral salpingo-oophorectomy and lymphadenectomy for an ovarian neoplasm. Vascular tumors of lymph nodes are briefly reviewed including eight previously described nodal capillary-cavernous hemangiomas. The association with other splanchnic hemangiomas is pointed out and the likelihood that the lesion is a hamartoma rather than a true neoplasm is addressed. Despite its rarity, this entity needs to be recognized by lymphologists who image lymph nodes by lymphangiography as well as by lymph nodal pathologists. PMID:10494525

  8. Intracerebral Capillary Hemangioma: A Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Youn, In Young; Kim, Jae Kyun; Byun, Jun Soo [Dept. of Radiology, Chung Ang University Medical Center, Chung Ang University College of Medicine, Seoul (Korea, Republic of); Park, Eon Sub [Dept. of Radiology, Chung Ang University Medical Center, Chung Ang University College of Medicine, Seoul (Korea, Republic of)

    2012-01-15

    Intracerebral capillary hemangiomas are very rare benign vascular tumors that mostly occur during infancy. We described a 69-year-old man with generalized tonic-clonic seizures who was diagnosed with an intracranial mass. Multidetector computed tomography, magnetic resonance imaging and digital subtraction angiography studies were performed for evaluation of brain, and there was a well-enhancing mass found in the right temporal lobe without a definite feeding vessel. The patient underwent surgery and the pathologic examination demonstrated marked proliferation of small vessels with a lobular pattern in the brain parenchyma, which was confirmed to be capillary hemangioma.

  9. TESTICULAR CAPILLARY HEMANGIOMA: DESCRIPTION OF A CASE

    Directory of Open Access Journals (Sweden)

    A. S. Markova

    2014-07-01

    Full Text Available The paper describes a clinical case of testicular capillary hemangioma in a 24-year-old man undergone a partial resection of the testis with the intraoperative morphological examination. Testicular capillary hemangioma is a rare benign tumor of a vascular origin, which can be similar to malignant testicular tumors on the clinical presentation, as well as on the imaging methods, in particular to seminoma. The intraoperative histological study can assist in avoiding organ-removing surgical interventions in diagnostically ambiguous cases if a benign testicular tumor is diagnosed.

  10. Quantification of nucleotides by ICPMS: coupling of ICPMS with capillary electrophoresis or capillary HPLC

    International Nuclear Information System (INIS)

    Full text: Quantification of nucleotides in small volumes of biological samples has eagerly been demanded. A method using ICPMS coupled with capillary electrophoresis or capillary liquid chromatography is reported. A new interface system, which consists of a double tube nebulizer inserted with a fused silica capillary tube and a cylinder mini-chamber with a sheath gas inlet, was designed. Moreover, the surface conditions of the sampling and skimmer cones, and the introduction of H2 gas into the plasma were found to significantly improve the signal/background ratio for phosphorus determination at m/z 31. (author)

  11. Multi-sample immunoassay inside optical fiber capillary enabled by evanescent wave detection

    Directory of Open Access Journals (Sweden)

    Chun-Wei Wang

    2016-03-01

    Full Text Available A novel evanescent wave-based (EW microfluidic capillary fiber-optic biosensor (MCFOB has been developed using capillaries as a transducer embedded in a multichannel device to enhance the collection efficiency of the fluorescence signal. The capillary serves dual roles as a waveguide and a container, enabling more straightforward, consistent, and compact biosensor packaging compared to conventional optical fiber biosensors and microfluidic systems. In order to detect multiple samples in one device, the biosensor incorporates a polydimethysiloxane (PDMS multi-channel device, which also serves as cladding for the biosensor. In addition, this biosensor only consumes 10 μl of a sample and does not require hydrofluoric acid etching in the fabrication process. The orientation for signal collection is optimized by comparing the lateral and normal signal directions for detected glyceraldehyde 3-phosphate dehydrogenase (GAPDH. C-reactive protein (CRP is used to validate the MCFOB, and the limit of detection (LOD for CRP in the MCFOB is 1.94 ng/ml (74 pM. Moreover, the real-time measurement is demonstrated to verify that the evanescent wave is the only exciting light source in the MCFOB, which gives the potential for real-time measurement applications.

  12. A Rare Association of Trigeminal Autonomic Cephalgia: Pontine Capillary Telangiectasia

    OpenAIRE

    Gocmen, Rahsan; Kurt, Erdal; Arslan, Sabina; Unal-Cevik, Isin; Karli Oguz, Kader; Tezer, F Irsel

    2015-01-01

    This report describes a case of pontine capillary telangiectasia in a 43-year-old woman with a clinical diagnosis of trigeminal autonomic cephalgia. The possible association with pontine capillary telangiectasia and trigeminal autonomic cephalgia is discussed.

  13. Water jet rebounds on hydrophobic surfaces : a first step to jet micro-fluidics.

    OpenAIRE

    Celestini, Franck; Kofman, R.; Noblin, Xavier; Pellegrin, Mathieu

    2010-01-01

    International audience When a water jet impinges upon a solid surface it produces a so called hydraulic jump that everyone can observe in the sink of its kitchen. It is characterized by a thin liquid sheet bounded by a circular rise of the surface due to capillary and gravitational forces. In this phenomenon, the impact induces a geometrical transition, from the cylindrical one of the jet to the bi-dimensional one of the film. A true jet rebound on a solid surface, for which the cylindrica...

  14. Psychicones: Visual Traces of the Soul in Late Nineteenth-Century Fluidic Photography

    Science.gov (United States)

    Pethes, Nicolas

    2016-01-01

    The article discusses attempts to visualise the soul on photographic plates at the end of the nineteenth century, as conducted by the French physician Hippolyte Baraduc in Paris. Although Baraduc refers to earlier experiments on fluidic photography in his book on The Human Soul (1896) and is usually mentioned as a precursor to parapsychological thought photography of the twentieth century, his work is presented as a genuine attempt at photographic soul-catching. Rather than producing mimetic representations of thoughts and imaginations, Baraduc claims to present the vital radiation of the psyche itself and therefore calls the images he produces psychicones. The article first discusses the difference between this method of soul photography and other kinds of occult media technologies of the time, emphasising the significance of its non-mimetic, abstract character: since the soul itself was considered an abstract entity, abstract traces seemed all the more convincing to the contemporary audience. Secondly, the article shows how the technological agency of photography allowed Baraduc’s psychicones to be tied into related discourses in medicine and psychology. Insofar as the photographic plates displayed actual visual traces, Baraduc and his followers no longer considered hallucinations illusionary and pathological but emphasised the physical reality and normality of imagination. Yet, the greatest influence of soul photography was not on science but on art. As the third part of the paper argues, the abstract shapes on Baraduc’s plates provided inspiration for contemporary avant-garde aesthetics, for example, Kandinsky’s abstract paintings and the random streams of consciousness in surrealistic literature. PMID:27292323

  15. Psychicones: Visual Traces of the Soul in Late Nineteenth-Century Fluidic Photography.

    Science.gov (United States)

    Pethes, Nicolas

    2016-07-01

    The article discusses attempts to visualise the soul on photographic plates at the end of the nineteenth century, as conducted by the French physician Hippolyte Baraduc in Paris. Although Baraduc refers to earlier experiments on fluidic photography in his book on The Human Soul (1896) and is usually mentioned as a precursor to parapsychological thought photography of the twentieth century, his work is presented as a genuine attempt at photographic soul-catching. Rather than producing mimetic representations of thoughts and imaginations, Baraduc claims to present the vital radiation of the psyche itself and therefore calls the images he produces psychicones. The article first discusses the difference between this method of soul photography and other kinds of occult media technologies of the time, emphasising the significance of its non-mimetic, abstract character: since the soul itself was considered an abstract entity, abstract traces seemed all the more convincing to the contemporary audience. Secondly, the article shows how the technological agency of photography allowed Baraduc's psychicones to be tied into related discourses in medicine and psychology. Insofar as the photographic plates displayed actual visual traces, Baraduc and his followers no longer considered hallucinations illusionary and pathological but emphasised the physical reality and normality of imagination. Yet, the greatest influence of soul photography was not on science but on art. As the third part of the paper argues, the abstract shapes on Baraduc's plates provided inspiration for contemporary avant-garde aesthetics, for example, Kandinsky's abstract paintings and the random streams of consciousness in surrealistic literature. PMID:27292323

  16. Nano-textured fluidic biochip as biological filter for selective survival of neuronal cells.

    Science.gov (United States)

    Han, Hsieh-Cheng; Lo, Hung-Chun; Wu, Chia-Yu; Chen, Kuei-Hsien; Chen, Li-Chyong; Ou, Keng-Liang; Hosseinkhani, Hossein

    2015-06-01

    This is an innovative study to engineer biological filter to evaluate the effect of template surface structure and physiochemical properties that can be used for wide variety of applications in biological, health care as well as environmental protection. Specifically, planar silicon (Si) wafer and arrayed Si nano-tips (SiNT) templates were fabricated and coated with gold for various lengths of time to study the effect of surface charge, surface roughness, and hydrophilicity on biological activity of rat pheochromocytoma cell lines PC12. The initial growth and proliferation of PC12 cells on Si and SiNT templates showed an antipathy for the ultra-sharp SiNTs templates. In contrast, the same cells demonstrated a preferable adherence to and proliferation on planar Si templates, resulting in higher cell densities by three orders of magnitude than those on SiNT templates. It is hypothesized that SiNTs array does generate nano-fluidic effect such that the effective contact region for aqueous solution on SiNTs is lower than that on planar Si templates, thus decreasing adsorbable area for cell viability and survival. Moreover, the effect of the gold coating on cell number density was analyzed in terms of the surface roughness, zeta potential and wetting properties of the templates. It was determined that surface charge, as measured by the zeta potential, strongly correlated with the trend observed in the surface cell density, whereas no such correlation was observed for surface roughness or wetting properties in the ranges of our experiment conditions. PMID:25256631

  17. Application of CHESS single-bounce capillaries at synchrotron beamlines

    Science.gov (United States)

    Huang, R.; Szebenyi, T.; Pfeifer, M.; Woll, A.; Smilgies, D.-M.; Finkelstein, K.; Dale, D.; Wang, Y.; Vila-Comamala, J.; Gillilan, R.; Cook, M.; Bilderback, D. H.

    2014-03-01

    Single-bounce capillaries are achromatic X-ray focusing optics that can provide efficient and high demagnification focusing with large numerical apertures. Capillary fabrication at CHESS can be customized according to specific application requirements. Exemplary applications are reviewed in this paper, as well as recent progress on condensers for high-resolution transmission X-ray microscopy and small focal size capillaries.

  18. Numerical simulations of capillary barrier field tests

    Energy Technology Data Exchange (ETDEWEB)

    Morris, C.E. [Univ. of Wollongong (Australia); Stormont, J.C. [Univ. of New Mexico, Albuquerque, NM (United States)

    1997-12-31

    Numerical simulations of two capillary barrier systems tested in the field were conducted to determine if an unsaturated flow model could accurately represent the observed results. The field data was collected from two 7-m long, 1.2-m thick capillary barriers built on a 10% grade that were being tested to investigate their ability to laterally divert water downslope. One system had a homogeneous fine layer, while the fine soil of the second barrier was layered to increase its ability to laterally divert infiltrating moisture. The barriers were subjected first to constant infiltration while minimizing evaporative losses and then were exposed to ambient conditions. The continuous infiltration period of the field tests for the two barrier systems was modelled to determine the ability of an existing code to accurately represent capillary barrier behavior embodied in these two designs. Differences between the field test and the model data were found, but in general the simulations appeared to adequately reproduce the response of the test systems. Accounting for moisture retention hysteresis in the layered system will potentially lead to more accurate modelling results and is likely to be important when developing reasonable predictions of capillary barrier behavior.

  19. Modeling of Throttling Process inside Capillary Tube

    Czech Academy of Sciences Publication Activity Database

    Vinš, Václav; Vacek, V.

    Praha : ČVUT, 2009, s. 250-251. ISBN 978-80-01-04286-1. [ANNUAL CTU UNIVERSITY-WIDE SEMINAR /18./. Praha (CZ), 16.02.2009-20.02.2009] Institutional research plan: CEZ:AV0Z20760514 Keywords : capillary tube * numerical model * metastable flow Subject RIV: BJ - Thermodynamics https://workshop.cvut.cz/2009/

  20. Planetary In Situ Capillary Electrophoresis System (PISCES)

    Science.gov (United States)

    Willis, P. A.; Stockton, A. M.; Mora, M. F.; Cable, M. L.; Bramall, N. E.; Jensen, E. C.; Jiao, H.; Lynch, E.; Mathies, R. A.

    2012-10-01

    We propose to develop PISCES, a 3-kg, 2W, flight-capable microfluidic lab-on-a-chip capillary electrophoresis analyzer capable of ingesting solid, liquid, or gas samples and performing a suite of chemical analyses with parts per trillion sensitivity.

  1. Analytical biotechnology: Capillary electrophoresis and chromatography

    International Nuclear Information System (INIS)

    The papers describe the separation, characterization, and equipment required for the electrophoresis or chromatography of cyclic nucleotides, pharmaceuticals, therapeutic proteins, recombinant DNA products, pheromones, peptides, and other biological materials. One paper, On-column radioisotope detection for capillary electrophoresis, has been indexed separately for inclusion on the data base

  2. Numerical simulations of capillary barrier field tests

    International Nuclear Information System (INIS)

    Numerical simulations of two capillary barrier systems tested in the field were conducted to determine if an unsaturated flow model could accurately represent the observed results. The field data was collected from two 7-m long, 1.2-m thick capillary barriers built on a 10% grade that were being tested to investigate their ability to laterally divert water downslope. One system had a homogeneous fine layer, while the fine soil of the second barrier was layered to increase its ability to laterally divert infiltrating moisture. The barriers were subjected first to constant infiltration while minimizing evaporative losses and then were exposed to ambient conditions. The continuous infiltration period of the field tests for the two barrier systems was modelled to determine the ability of an existing code to accurately represent capillary barrier behavior embodied in these two designs. Differences between the field test and the model data were found, but in general the simulations appeared to adequately reproduce the response of the test systems. Accounting for moisture retention hysteresis in the layered system will potentially lead to more accurate modelling results and is likely to be important when developing reasonable predictions of capillary barrier behavior

  3. Fission-fragment attachment to aerosols and their transport through capillary tubes

    International Nuclear Information System (INIS)

    The transport of radioactive aerosols was studied using equipment, collectively called the Helium jet, that has been constructed to provide basic nuclear physics data on fission product nuclides. The transport of the fission products in the system depends on their attachment to aerosol particles. The system consists of 1) a tube furnace which generates aerosols by the sublimation or evaporation of source material, 2) a helium stream used to transport the aerosols, 3) a 25 m settling tube to eliminate the larger aerosols and smaller aerosols that would deposit in the capillary, 4) a Californium-252 self-fissioning source of fission product nuclides, and 5) a small capillary to carry the radioactive aerosols from the hot cell to the laboratory. Different source materials were aerosolized but NaCl is generally used because it yielded the highest transport efficiencies through the capillary. Particle size measurments were made with NaCl aerosols by using a cascade impactor, an optical light scattering device, and the capillary itself as a diffusion battery by performing radiation measurements and/or electrical conductivity measurements. Both radioactive and nonradioactive aerosols were measured in order to investigate the possibility of a preferential size range for fission product attachment. The measured size distributions were then used to calculate attachment coefficients and finally an attachment time

  4. Capillary zone electrophoresis and capillary isotachophoresis applied to physicochemical characterization of oligo- and polypeptides

    Czech Academy of Sciences Publication Activity Database

    Kašička, Václav; Šolínová, Veronika; Tůmová, Tereza; Koval, Dušan; Ibrahim, A.; Chamieh, J.; Cottet, H.

    Helsinki: -, 2015. L4B. [International Symposium on Electro- and Liquid Phase-Separation Techniques (ITP2015) /22./ and Nordic Separation Science Symposium (NoSSS2015) /8./. 30.08.2015-03.09.2015, Helsinki] R&D Projects: GA ČR(CZ) GA13-17224S Institutional support: RVO:61388963 Keywords : capillary electrophoresis * capillary isotachophoresis * effective charge Subject RIV: CB - Analytical Chemistry, Separation

  5. Capillary isoelectric focusing of proteins and microorganisms in uncoated capillaries with UV and fluorimetric detection

    Czech Academy of Sciences Publication Activity Database

    Horká, Marie; Šlais, Karel; Růžička, F.; Holá, V.; Horký, J.

    Roma : Universita di Roma, 2004, P43. [ITP 2004. International Symposium on Capillary Electroseparation Techniques /14./. Roma (IT), 12.09.2004-15.09.2004] R&D Projects: GA AV ČR IAA4031302; GA AV ČR IBS4031201; GA ČR GA203/02/1447 Institutional research plan: CEZ:AV0Z4031919 Keywords : CIEF ioanalytes * uncoated capillaries Subject RIV: CB - Analytical Chemistry, Separation

  6. Engineering task plan for development, fabrication, and deployment of nested, fixed depth fluidic sampling and at-tank analysis systems

    Energy Technology Data Exchange (ETDEWEB)

    REICH, F.R.

    1999-05-18

    An engineering task plan was developed that presents the resources, responsibilities, and schedules for the development, test, and deployment of the nested, fixed-depth fluidic sampling and at-tank analysis system. The sampling system, deployed in the privatization contract double-shell tank feed tank, will provide waste samples for assuring the readiness of the tank for shipment to the privatization contractor for vitrification. The at-tank analysis system will provide ''real-time'' assessments of the sampled wastes' chemical and physical properties. These systems support the Hanford Phase 1B Privatization Contract.

  7. Engineering task plan for development, fabrication, and deployment of nested, fixed depth fluidic sampling and at-tank analysis systems

    International Nuclear Information System (INIS)

    An engineering task plan was developed that presents the resources, responsibilities, and schedules for the development, test, and deployment of the nested, fixed-depth fluidic sampling and at-tank analysis system. The sampling system, deployed in the privatization contract double-shell tank feed tank, will provide waste samples for assuring the readiness of the tank for shipment to the privatization contractor for vitrification. The at-tank analysis system will provide ''real-time'' assessments of the sampled wastes' chemical and physical properties. These systems support the Hanford Phase 1B Privatization Contract

  8. Size-dependent trajectories of DNA macromolecules due to insulative dielectrophoresis in submicrometer-deep fluidic channels

    OpenAIRE

    Parikesit, Gea O. F.; Markesteijn, Anton P.; Piciu, Oana M.; Bossche, Andre; Westerweel, Jerry; Young, Ian T; Garini, Yuval

    2008-01-01

    In this paper, we demonstrate for the first time that insulative dielectrophoresis can induce size-dependent trajectories of DNA macromolecules. We experimentally use λ (48.5 kbp) and T4GT7 (165.6 kbp) DNA molecules flowing continuously around a sharp corner inside fluidic channels with a depth of 0.4 μm. Numerical simulation of the electrokinetic force distribution inside the channels is in qualitative agreement with our experimentally observed trajectories. We discuss a possible physical me...

  9. An Oxidase-Based Electrochemical Fluidic Sensor with High-Sensitivity and Low-Interference by On-Chip Oxygen Manipulation

    Directory of Open Access Journals (Sweden)

    Chang-Soo Kim

    2012-06-01

    Full Text Available Utilizing a simple fluidic structure, we demonstrate the improved performance of oxidase-based enzymatic biosensors. Electrolysis of water is utilized to generate bubbles to manipulate the oxygen microenvironment close to the biosensor in a fluidic channel. For the proper enzyme reactions to occur, a simple mechanical procedure of manipulating bubbles was developed to maximize the oxygen level while minimizing the pH change after electrolysis. The sensors show improved sensitivities based on the oxygen dependency of enzyme reaction. In addition, this oxygen-rich operation minimizes the ratio of electrochemical interference signal by ascorbic acid during sensor operation (i.e., amperometric detection of hydrogen peroxide. Although creatinine sensors have been used as the model system in this study, this method is applicable to many other biosensors that can use oxidase enzymes (e.g., glucose, alcohol, phenol, etc. to implement a viable component for in-line fluidic sensor systems.

  10. An oxidase-based electrochemical fluidic sensor with high-sensitivity and low-interference by on-chip oxygen manipulation.

    Science.gov (United States)

    Radhakrishnan, Nitin; Park, Jongwon; Kim, Chang-Soo

    2012-01-01

    Utilizing a simple fluidic structure, we demonstrate the improved performance of oxidase-based enzymatic biosensors. Electrolysis of water is utilized to generate bubbles to manipulate the oxygen microenvironment close to the biosensor in a fluidic channel. For the proper enzyme reactions to occur, a simple mechanical procedure of manipulating bubbles was developed to maximize the oxygen level while minimizing the pH change after electrolysis. The sensors show improved sensitivities based on the oxygen dependency of enzyme reaction. In addition, this oxygen-rich operation minimizes the ratio of electrochemical interference signal by ascorbic acid during sensor operation (i.e., amperometric detection of hydrogen peroxide). Although creatinine sensors have been used as the model system in this study, this method is applicable to many other biosensors that can use oxidase enzymes (e.g., glucose, alcohol, phenol, etc.) to implement a viable component for in-line fluidic sensor systems. PMID:23012527

  11. Chemical modification of polymeric microchip devices.

    Science.gov (United States)

    Muck, Alexander; Svatos, Ales

    2007-12-15

    Analytical polymeric microchips in both fluidic and array formats offer short analysis times, coupling of many sample processing and chemical reaction steps on one platform with minimal sample and reagent consumption, as well as low cost, minimal fabrication times and disposability. However, the invariable bulk properties of most commercial polymers have driven researchers to develop new modification strategies. This article critically reviews the scope and development of chemical modifications of such polymeric chips since 2003. Surface modifications were based on chemical derivatization or activation of surface layers with reagent solutions, reactive gases and irradiation. Bulk modification of polymer chips used newly incorporation of monomers with selective chemical functionalities throughout the bulk polymer material and integrated the chip modification and fabrication into a single step. Such modifications hold a great promise for establishing a true 'lab-on-chip' as can be seen from many novel applications for modulating electroosmosis, suppressing protein adsorption in microchip capillary electrophoretic separations, extraction of analytes and for zone-specific binding of enzymes and other biomolecules. PMID:18371647

  12. ANALYSES OF QUINOLONE ANTIMICROBIALS IN HUMAN PLASMA BY CAPILLARY HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY/FAST ATOM BOMBARDMENT MASS SPECTROMETRY

    OpenAIRE

    Hattori, Hideki; Suzuki, Osamu; Seno, Hiroshi; Ishii, Akira; Yamada, Takamichi

    1993-01-01

    Capillary high-performance liquid chromatography (HPLC) was combined with frit fast atom bombardment (FAB)-mass spectrometry (MS) , and a detailed procedure has been established for on-line analysis of ten quinolone antimicrobials in human plasma by the HPLC/FAB-MS. A special column switching device for concentration enabled injection of as large as a 500 μl sample; and the capillary column (0.5 mm i. d.) enabled introduction of its entire effluent to the frit interface of FAB-MS. These condi...

  13. Advanced fluidic handling and use of two-phase flow for high throughput structural investigation of proteins on a microfluidic sample preparation platform

    DEFF Research Database (Denmark)

    Lafleur, Josiane P.; Snakenborg, Detlef; Møller, M.;

    2010-01-01

    Research on the structure of proteins can bring forth a wealth of information about biological function and can be used to better understand the processes in living cells. This paper reports a new microfluidic sample preparation system for the structural investigation of proteins by Small Angle X......-ray Scattering (SAXS). The system includes hardware and software features for precise fluidic control, synchrotron beamline control, UV absorbance measurements and automated data analysis. The precise fluidic handling capabilities are used to transport and precisely position samples as small as 500 nL into the...

  14. Fabrication of a hybrid plastic-silicon microfluidic device for high-throughput genotyping

    Science.gov (United States)

    Chartier, Isabelle; Sudor, J.; Fouillet, Yves; Sarrut, N.; Bory, C.; Gruss, A.

    2003-01-01

    The lab-on-a-chip approach has been increasingly present in biological research over the last ten years, high-throughput analyses being one of the promising utilization. The work presented here has consisted in developing an automated genotyping system based on a continuous flow analysis which integrates all the steps of the genotyping process (PCR, purification and sequencing). The genotyping device consists of a disposable hybrid silicon-plastic microfluidic chip, equipped with a permanent external, heating/cooling system, syringe-pumps based injection systems and on-line fluorescence detection. High throughput is obtained by performing the reaction in a continuous flow (1 reaction every 6min per channel) and in parallel (48 channels). We are presenting here the technical solutions developed to fabricate the hybrid silicon-plastic microfluidic device. It includes a polycarbonate substrate having 48 parallel grooves sealed by film lamination techniques to create the channels. Two different solutions for the sealing of the channels are compared in relation to their biocompatibility, fluidic behavior and fabrication process yield. Surface roughness of the surface of the channels is the key point of this step. Silicon fluidic chips are used for thermo-cycled reactions. A specific bonding technique has been developed to bond silicon chips onto the plastic part which ensures alignment and hermetic fluidic connexion. Surface coatings are studied to enhance the PCR biocompatibility and fluidic behavior of the two-phase liquid flow. We then demonstrate continuous operation over more than 20 hours of the component and validate PCR protocol on microliter samples in a continuous flow reaction.

  15. Capillary Interactions between a Probe Tip and a Nanoparticle

    Institute of Scientific and Technical Information of China (English)

    SUN Li-Ning; WANG Le-Feng; RONG Wei-Bin

    2008-01-01

    To understand capillary interactions between probe tips and nanoparticles under ambient conditions,a theoretical model of capillary forces between them is developed based on the geometric relations. It is found that the contribution of surface tension force to the total capillary force attains to similar order of magnitude as the capillary pressure force in many cases.It is also shown that the tip shape and the radial distance of the meniscus have great influence on the capillary force.The capillary force decreases with the increasing separation distances,and the variance of the contact angles may change the magnitudes of capillary forces several times at large radial distances.The applicability of the symmetric meniscus approximation is discussed.

  16. Capillary Penetration into Inclined Circular Glass Tubes.

    Science.gov (United States)

    Trabi, Christophe L; Ouali, F Fouzia; McHale, Glen; Javed, Haadi; Morris, Robert H; Newton, Michael I

    2016-02-01

    The spontaneous penetration of a wetting liquid into a vertical tube against the force of gravity and the imbibition of the same liquid into a horizontal tube (or channel) are both driven by capillary forces and described by the same fundamental equations. However, there have been few experimental studies of the transition from one orientation to the other. We report systematic measurements of capillary penetration of polydimethylsiloxane oils of viscosities 9.6, 19.2, and 48.0 mPa·s into glass capillary tubes. We first report the effect of tube radii R between 140 and 675 μm on the dynamics of spontaneous imbibition. We show that the data can be fitted using the exact numerical solution to the governing equations and that these are similar to fits using the analytical viscogravitational approximation. However, larger diameter tubes show a rate of penetration slower than expected using an equilibrium contact angle and the known value of liquid viscosity. To account for the slowness, an increase in viscosity by a factor (η/ρ)scaling is needed. We show full agreement with theory requires the ratio R/κ(-1) ∼ 0.1 or less, where κ(-1) is the capillary length. In addition, we propose an experimental method that enables the determination of the dynamic contact angle during imbibition, which gives values that agree with the literature values. We then report measurements of dynamic penetration into the tubes of R = 190 and 650 μm for a range of inclination angles to the horizontal, φ, from 5 to 90°. We show that capillary penetration can still be fitted using the viscogravitational solution, rather than the Bosanquet solution which describes imbibition without gravity, even for inclination angles as low as 10°. Moreover, at these low angles, the effect of the tube radius is found to diminish and this appears to relate to an effective capillary length, κ(-1)(φ) = (γLV/ρg sin φ)(1/2). PMID:26738739

  17. Label-free tracking of single extracellular vesicles in a nano-fluidic optical fiber (Conference Presentation)

    Science.gov (United States)

    van der Pol, Edwin; Weidlich, Stefan; Lahini, Yoav; Coumans, Frank A. W.; Sturk, Auguste; Nieuwland, Rienk; Schmidt, Markus A.; Faez, Sanli; van Leeuwen, Ton G.

    2016-03-01

    Background: Extracellular vesicles, such as exosomes, are abundantly present in human body fluids. Since the size, concentration and composition of these vesicles change during disease, vesicles have promising clinical applications, including cancer diagnosis. However, since ~70% of the vesicles have a diameter light-guiding silica fiber containing a 600 nm nano-fluidic channel. Light from a diode laser (660 nm wavelength) was coupled to the fiber, resulting in a strongly confined optical mode in the nano-fluidic channel, which continuously illuminated the freely diffusing vesicles inside the channel. The elastic light scattering from the vesicles, in the direction orthogonal to the fiber axis, was collected using a microscope objective (NA=0.95) and imaged with a home-built microscope. Results: We have tracked single urinary vesicles as small as 35 nm by elastic light scattering. Please note that vesicles are low-refractive index (nparticles, which we confirmed by combining data on thermal diffusion and light scattering cross section. Conclusions: For the first time, we have studied vesicles diffusing in suspension. The ease-of-use and performance of this technique support its potential for vesicle-based clinical applications.

  18. A novel covalent coating of capillaries for capillary electrophoresis coupled to matrix assisted laser desorption ionization

    International Nuclear Information System (INIS)

    Capillary electrophoresis (CE) offers the advantage of flexibility and method development. It excels in the area of separation of ions, chiral, polar, and biological compounds (especially proteins and peptides). Masking the active sites on the inner surface of a bare fused-silica capillary wall is often necessary for CE separations of basic compounds, proteins and peptides. The use of capillary surface coatings is an approach to prevent adsorption phenomena and improve the repeatability of these analytes. In this work, new capillary coatings consisting of (I) derivatized polystyrene nanoparticles (PS) and (II) derivatized fullerenes, were investigated for the analysis of peptides and protein digest by CE. The coated capillaries showed excellent run-to-run and batch-to-batch reproducibility (RSD of migration time ≤ 0.5 % for run to run and ≤ 9.5 % for batch-to-batch experiments). Furthermore, the capillaries offer high stability from pH 2.0 up to pH 10.0. The actual potential of the coated capillaries was tested by combining CE with matrix-assisted laser desorption ionisation (MALDI) mass spectrometry (MS) for analysing complex samples, such as peptides, whereas the overall performance of the CE-MALDI-TOF-MS system was investigated by analysing a five protein digest mixture. Subsequently, the peak list (peptide mass fingerprint) generated from the mass spectra of each fraction was entered into the Swiss Prot database in order to search for matching tryptic fragments using the Mascot software. The sequence coverage of analysed proteins was between 36-68%. The established technology benefits from the synergism of high separation efficiency and the structure selective identification via MS. (author)

  19. Dynamics and density distributions in a capillary-discharge waveguide with an embedded supersonic jet

    Energy Technology Data Exchange (ETDEWEB)

    Matlis, N. H., E-mail: nmatlis@gmail.com; Gonsalves, A. J.; Steinke, S.; Tilborg, J. van; Shaw, B.; Mittelberger, D. E.; Geddes, C. G. R. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Matlis, E. H. [Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556 (United States); Leemans, W. P. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Physics, University of California, Berkeley, California 94720 (United States)

    2015-11-28

    We present an analysis of the gas dynamics and density distributions within a capillary-discharge waveguide with an embedded supersonic jet. This device provides a target for a laser plasma accelerator which uses longitudinal structuring of the gas-density profile to enable control of electron trapping and acceleration. The functionality of the device depends sensitively on the details of the density profile, which are determined by the interaction between the pulsed gas in the jet and the continuously-flowing gas in the capillary. These dynamics are captured by spatially resolving recombination light from several emission lines of the plasma as a function of the delay between the jet and the discharge. We provide a phenomenological description of the gas dynamics as well as a quantitative evaluation of the density evolution. In particular, we show that the pressure difference between the jet and the capillary defines three regimes of operation with qualitatively different longitudinal density profiles and show that jet timing provides a sensitive method for tuning between these regimes.

  20. How to embed three-dimensional flexible electrodes in microfluidic devices for cell culture applications.

    Science.gov (United States)

    Pavesi, Andrea; Piraino, Francesco; Fiore, Gianfranco B; Farino, Kevin M; Moretti, Matteo; Rasponi, Marco

    2011-05-01

    This communication describes a simple, rapid and cost effective method of embedding a conductive and flexible material within microfluidic devices as a means to realize uniform electric fields within cellular microenvironments. Fluidic channels and electrodes are fabricated by traditional soft-lithography in conjunction with chemical etching of PDMS. Devices can be deformable (thus allowing for a combination of electro-mechanical stimulation), they are made from inexpensive materials and easily assembled by hand; this method is thus accessible to a wide range of laboratories and budgets. PMID:21437315

  1. a Comprehensive Model for Capillary Pressure Difference across a Drop/bubble Flowing Through a Constricted Capillary

    Science.gov (United States)

    Liang, Mingchao; Wei, Junhong; Han, Hongmei; Fu, Chengguo; Liu, Jianjun

    2015-09-01

    The capillary pressure is one of the crucial parameters in many science and engineering applications such as composite materials, interface science, chemical engineering, oil exploration, etc. The drop/bubble formation and its mechanisms that affect the permeability of porous media have steadily attracted much attention in the past. When a drop/bubble moves from a larger capillary to a smaller one, it is often obstructed by an additional pressure difference caused by the capillary force. In this paper, a comprehensive model is derived for the capillary pressure difference when a drop/bubble flows through a constricted capillary, i.e. a geometrically constricted passage with an abrupt change in radius. The proposed model is expressed as a function of the smaller capillary radius, pore-throat ratio, contact angle, surface tension and length of the drop/bubble in the smaller capillary. The model predictions are compared with the available experimental data, and good agreement is found between them.

  2. Transversally periodic solitary gravity-capillary waves.

    Science.gov (United States)

    Milewski, Paul A; Wang, Zhan

    2014-01-01

    When both gravity and surface tension effects are present, surface solitary water waves are known to exist in both two- and three-dimensional infinitely deep fluids. We describe here solutions bridging these two cases: travelling waves which are localized in the propagation direction and periodic in the transverse direction. These transversally periodic gravity-capillary solitary waves are found to be of either elevation or depression type, tend to plane waves below a critical transverse period and tend to solitary lumps as the transverse period tends to infinity. The waves are found numerically in a Hamiltonian system for water waves simplified by a cubic truncation of the Dirichlet-to-Neumann operator. This approximation has been proved to be very accurate for both two- and three-dimensional computations of fully localized gravity-capillary solitary waves. The stability properties of these waves are then investigated via the time evolution of perturbed wave profiles. PMID:24399922

  3. Capillary droplets on Leidenfrost micro-ratchets

    CERN Document Server

    Marin, Alvaro G; Römer, Gertwillem R B E; Pathiraj, B; Veld, Albertus Huis in 't; Lohse, Detlef

    2012-01-01

    Leidenfrost ratchets are structures with the ability of transporting liquid droplets when heated over the critical Leidenfrost temperature. Once this temperature is reached, the droplet levitates over the surface and moves in the direction marked by the slope of the ratchet at terminal velocities around 10 cm/s. Here we provide new experiments with micron-sized ratchets, which have been produced with picosecond pulse laser ablation. In the following work, we use a simple method to measure the thrust driving droplets of capillary size over the micro-ratchets. The mechanism responsible for the force acting on the drop on superheated ratchets has been recently under debate. We extend the recently proposed 'viscous mechanism' proposed by Dupeaux et al. [Europhys. Lett., 96, 58001 (2011)] to capillary droplets and find good agreement with our measurements.

  4. Capillary flow through heat-pipe wicks

    Science.gov (United States)

    Eninger, J. E.

    1975-01-01

    Theoretical expressions are obtained for the capillary-pressure limit and permeability of a fibrous wick in terms of the porosity and fiber diameter. Hysteresis in capillary pressure is included through the introduction of an empirical hysteresis constant. A partial-saturation model based on the statistical distribution of local porosity requires an additional empirical constant, the standard deviation. The theory is compared to results of a beta-ray absorption experiment that measured the liquid content of a partially saturated wick and to results of permeability measurements on partially and fully saturated wicks. A simple wick-weighing experiment is described that yields values for the empirical hysteresis constant and the standard deviation. Theoretical results are used to design an optimum wick.

  5. Capillary Hemangioma of the Fallopian Tube.

    Science.gov (United States)

    Katiyar, Richa; Patne, Shashikant C U; Bharti, Shreekant; Jain, Madhu

    2016-04-01

    Neoplastic lesions of the fallopian tube are rarely seen by surgical pathologists. Haemangioma of the fallopian tube is an extremely rare benign neoplasm. A 30-year-old lady with polymenorrhea and dysmenorrhea underwent hysterectomy and bilateral salpingo-oophorectomy. Her left fallopian tube showed a 2mm sized solid nodule in the wall. Histopathological examination revealed a well-defined vascular lesion in the left fallopian tube, consistent with capillary haemangioma. The vascular endothelium was highlighted by CD34 immunostaining. Our literature review has identified 10 cases of cavernous haemangioma of the fallopian tube. To the best of our knowledge, we report the first ever case of capillary haemangioma of the fallopian tube. This is also the smallest detected haemangioma in the fallopian tube. PMID:27190899

  6. Chemical Power for Microscopic Robots in Capillaries

    CERN Document Server

    Hogg, Tad

    2009-01-01

    The power available to microscopic robots (nanorobots) that oxidize bloodstream glucose while aggregated in circumferential rings on capillary walls is evaluated with a numerical model using axial symmetry and time-averaged release of oxygen from passing red blood cells. Robots about one micron in size can produce up to several tens of picowatts, in steady-state, if they fully use oxygen reaching their surface from the blood plasma. Robots with pumps and tanks for onboard oxygen storage could collect oxygen to support burst power demands two to three orders of magnitude larger. We evaluate effects of oxygen depletion and local heating on surrounding tissue. These results give the power constraints when robots rely entirely on ambient available oxygen and identify aspects of the robot design significantly affecting available power. More generally, our numerical model provides an approach to evaluating robot design choices for nanomedicine treatments in and near capillaries.

  7. The geometry and wetting of capillary folding

    CERN Document Server

    Péraud, Jean-Philippe

    2014-01-01

    Capillary forces are involved in a variety of natural phenomena, ranging from droplet breakup to the physics of clouds. The forces from surface tension can also be exploited in industrial application provided the length scales involved are small enough. Recent experimental investigations showed how to take advantage of capillarity to fold planar structures into three-dimensional configurations by selectively melting polymeric hinges joining otherwise rigid shapes. In this paper we use theoretical calculations to quantify the role of geometry and fluid wetting on the final folded state. Considering folding in two and three dimensions, studying both hydrophilic and hydrophobic situations with possible contact angle hysteresis, and addressing the shapes to be folded to be successively infinite, finite, curved, kinked, elastic, we are able to derive an overview of the geometrical parameter space available for capillary folding.

  8. Capillary solitons on a levitated medium.

    Science.gov (United States)

    Perrard, S; Deike, L; Duchêne, C; Pham, C-T

    2015-07-01

    A water cylinder deposited on a heated channel levitates on its own generated vapor film owing to the Leidenfrost effect. This experimental setup permits the study of the one-dimensional propagation of surface waves in a free-to-move liquid system. We report the observation of gravity-capillary waves under a dramatic reduction of gravity (up to a factor 30), leading to capillary waves at the centimeter scale. The generated nonlinear structures propagate without deformation and undergo mutual collisions and reflections at the boundaries of the domain. They are identified as Korteweg-de Vries solitons with negative amplitude and subsonic velocity. The typical width and amplitude-dependent velocities are in excellent agreement with theoretical predictions based on a generalized Korteweg-de Vries equation adapted to any substrate geometry. When multiple solitons are present, they interact and form a soliton turbulencelike spectrum. PMID:26274114

  9. Micro-electro-fluidic grids for nematodes: a lens-less, image-sensor-less approach for on-chip tracking of nematode locomotion.

    Science.gov (United States)

    Liu, Peng; Martin, Richard J; Dong, Liang

    2013-02-21

    This paper reports on the development of a lens-less and image-sensor-less micro-electro-fluidic (MEF) approach for real-time monitoring of the locomotion of microscopic nematodes. The technology showed promise for overcoming the constraint of the limited field of view of conventional optical microscopy, with relatively low cost, good spatial resolution, and high portability. The core of the device was microelectrode grids formed by orthogonally arranging two identical arrays of microelectrode lines. The two microelectrode arrays were spaced by a microfluidic chamber containing a liquid medium of interest. As a nematode (e.g., Caenorhabditis elegans) moved inside the chamber, the invasion of part of its body into some intersection regions between the microelectrodes caused changes in the electrical resistance of these intersection regions. The worm's presence at, or absence from, a detection unit was determined by a comparison between the measured resistance variation of this unit and a pre-defined threshold resistance variation. An electronic readout circuit was designed to address all the detection units and read out their individual electrical resistances. By this means, it was possible to obtain the electrical resistance profile of the whole MEF grid, and thus, the physical pattern of the swimming nematode. We studied the influence of a worm's body on the resistance of an addressed unit. We also investigated how the full-frame scanning and readout rates of the electronic circuit and the dimensions of a detection unit posed an impact on the spatial resolution of the reconstructed images of the nematode. Other important issues, such as the manufacturing-induced initial non-uniformity of the grids and the electrotaxic behaviour of nematodes, were also studied. A drug resistance screening experiment was conducted by using the grids with a good resolution of 30 × 30 μm(2). The phenotypic differences in the locomotion behaviours (e.g., moving speed and oscillation

  10. EUV radiation from nitrogen capillary discharge

    Czech Academy of Sciences Publication Activity Database

    Frolov, Oleksandr; Koláček, Karel; Štraus, Jaroslav; Schmidt, Jiří

    Vol. 32. Singapore: World Scientific Publishing Co, 2014, "1460329-1 "-"1460329-7". ISSN 2010-1945. [International Conference on Plasma Science and Applications, ICPSA 2013. Singapore (SG), 04.12.2013-06.12.2013] R&D Projects: GA MŠk(CZ) LG13029 Institutional support: RVO:61389021 Keywords : EUV radiation * capillary discharge * EUV source * Z-pinch Subject RIV: BL - Plasma and Gas Discharge Physics http://www. world scientific.com/doi/abs/10.1142/S2010194514603299

  11. Electrical resistance of muscle capillary endothelium.

    OpenAIRE

    Olesen, S P; Crone, C

    1983-01-01

    A recently developed technique for in vivo determination of the electrical resistance of vascular endothelium in microvessels was applied to the vessels in a thin frog muscle, m. cutaneus pectoris. The technique consists of injection of current via a glass micropipette into a capillary and measurement of the resulting intra- and extravascular potential profiles with another micropipette placed at various distances from the current source. The theory of Peskoff and Eisenberg (1974) was used to...

  12. Capillary Electrophoresis in the Presence of Fosfomycin

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Fosfomyein, a sodim salt of cis-(3-methyloxiranyl) phosphonic acid, was used as electrolyte in binary methanol-water media for capillary electrophoresis. The variety of electroosmotic flow with pH*,methanol concentration and ionic strength was investigated. The migration behavior of nine bases was examined under various conditions, and the separation of thymine, cytosine, 5-flurouracil, 4,6-diamino-pyrimidine, purine was accomplished.

  13. Subsidence and capillary effects in chalks

    OpenAIRE

    Delage, Pierre; Schroeder, Christian; Cui, Yu-Jun

    1996-01-01

    Based on the concepts of the mechanics of unsaturated soils where capillary phenomena arise between the wetting fluid (water) and the non-wetting one (air), the subsidence of chalks containing oil (non-wetting fluid) during water injection (wetting fluid) is analysed. It is shown that the collapse phenomenon of unsaturated soils under wetting provides a physical explanation and a satisfactory prediction of the order of magnitude of the subsidence of the chalk. The use of a well established co...

  14. Identifying kinetically stable proteins with capillary electrophoresis

    OpenAIRE

    Zhang, Songjie; Xia, Ke; Chung, Wai Keen; Cramer, Steven M; Colón, Wilfredo

    2010-01-01

    Unlike most proteins, which are in equilibrium with partially and globally unfolded conformations, kinetically stable proteins (KSPs) are trapped in their native conformations and are often resistant to harsh environment. Based on a previous correlation between kinetic stability (KS) and a protein's resistance to sodium dodecyl sulfate (SDS), we show here a simple method to identify KSPs by SDS-capillary electrophoresis (CE). Control non-KSPs were fully denatured by SDS and formed protein:SDS...

  15. Separation of Peptides by Pressurized Capillary Electrochromatography

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A novel gradient pressurized capillary electrochromatography (pCEC) instrument wasdeveloped to separate peptides. Two gradient elution modes, hydrophobic and hydrophilicinteraction mode in pCEC, were performed on this instrument. Baseline separation of sixpeptides was obtained on two gradient modes with C18 column and strong cationic exchangecolumn respectively. The effects of mixer volume and total flow rate of pumps on resolutionwere also discussed.

  16. Hydrogen peroxide production in capillary underwater discharges

    Czech Academy of Sciences Publication Activity Database

    De Baerdemaeker, F.; Šimek, Milan; Leys, C.

    2007-01-01

    Roč. 40, č. 9 (2007), s. 2801-2809. ISSN 0022-3727 R&D Projects: GA AV ČR IAA1043403 Institutional research plan: CEZ:AV0Z20430508 Keywords : water breakdown * capillary * AC discharge * conductive liquid * hydrogen peroxide formation * initial rate * energy yield Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.200, year: 2007

  17. Hydrogen peroxide production in capillary underwater discharges

    Czech Academy of Sciences Publication Activity Database

    De Baerdemaeker, F.; Šimek, Milan; Člupek, Martin; Lukeš, Petr; Leys, C.

    2006-01-01

    Roč. 56, suppl. B (2006), s. 1132-1139. ISSN 0011-4626. [Symposium on Plasma Physics and Technology/22nd./. Praha, 26.6.2006-29.6.2006] R&D Projects: GA AV ČR(CZ) IAA1043403 Institutional research plan: CEZ:AV0Z20430508 Keywords : water * capillary * AC discharge * hydrogen peroxide formation * initial rate Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.568, year: 2006

  18. Familial Pulmonary Capillary Hemangiomatosis Early in Life

    OpenAIRE

    Speer, Christian P.; Mark, Eugene J.; Johannes Wirbelauer; Alexander Marx; Helge Hebestreit

    2011-01-01

    Background. Pulmonary capillary hemangiomatosis (PCH) is a rare disease, especially in infancy. Four infants have been reported up to the age of 12 months. So far, no familial patients are observed at this age. Patients. We report three siblings, two female newborns and a foetus of 15-week gestation of unrelated, healthy parents suffering from histologically proven PCH. The first girl presented with increased O2 requirements shortly after birth and patent ductus arteriosus (PDA). She subseque...

  19. Hydrophilic polymer systems in capillary electrophoretic separations

    Czech Academy of Sciences Publication Activity Database

    Guryča, Vilém; Novotný, M. V.; Michálek, Jiří; Pacáková, V.

    Praha : Charles University, Department of Chemistry, Albertov, 2005, s. 8-12. ISBN 80-903103-1-1. [International Student Conference ‘Modern Analytical Chemistry’/2./. Praha (CZ), 26.09.2005-27.09.2005] Grant ostatní: National Institute of General Medical Sciences, U.S. Department of Health and Human Services(US) GM24349 Institutional research plan: CEZ:AV0Z40500505 Keywords : analytical glycobiology * capillary electrochromatography * hydrophilic acrylamide monoliths Subject RIV: CD - Macromolecular Chemistry

  20. Integrated optic/nanofluidic fluorescent detection device with plasmonic excitation

    Science.gov (United States)

    Varsanik, J. S.; Bernstein, J. J.

    2013-09-01

    Integrated optic/microfluidic devices have proven to be useful tools in many sensing applications. However, the resolution and sensitivity of existing devices is limited by the processes and materials chosen for their fabrication. A procedure for the production of a new family of low-noise, high-resolution integrated microfluidic optical detection devices is presented, along with results from a prototype device. The device architecture is presented, highlighting design choices made in fluidics and optical integration to minimize scattered light. Diffused waveguides were fabricated, characterized, and modeled. A plasmonic resonator is designed, simulated, and integrated into the system to achieve electric field enhancement and localization to sub-micron dimensions. The device was tested to demonstrate both field enhancement and localization. The procedure that was developed enables the creation of integrated devices capable of high-resolution detection of fluorescent samples. The interrogation region was 200 nm long in the direction of flow, achieving sub-wavelength resolution in an integrated device. Furthermore, discrete fluorescent particles 20 nm in diameter were individually detected, demonstrating the high resolution and sensitivity capabilities of this family of devices.

  1. Experimental study of capillary pumped loop for integrated power in gravity field

    International Nuclear Information System (INIS)

    Year after year, thermal dissipation due, for instance, to power electronics, is increasing. The efficiency demand is consequently growing for highly efficient cooling systems as classical solutions are becoming outdated. In this context, Capillary Pumped Loops (CPLs) appear as innovative and efficient heat transfer devices but there is still a lack of data concerning their operating characteristics in gravity field for terrestrial applications. Thus, in this work, a particular design of CPL (called CPLIP) with flat evaporator, designed by the Euro Heat Pipes society in Belgium, has been tested at steady state and transient regime in order to provide data and new insights into thermal and hydraulics couplings of these systems. - Highlights: ► We study a capillary pumped loop in gravity field. ► Test bench is thermal and hydraulic instrumented. ► Key phenomena for transient operation are highlighted. ► Sensitivity study at steady state is performed. ► Hysteresis phenomena appear at steady state.

  2. Study of Pinching Capillary Discharge for Nitrogen H-like Recombination Laser

    International Nuclear Information System (INIS)

    A computer model of EUV nitrogen laser pumped by pinching capillary discharge is presented. The model consists of magneto-hydrodynamics plasma description and subsequent ion kinetic evaluation. Quick changes of electron temperature during the pinch decay lead to ionisation and excitation non-equilibrium and result in inversion population on Balmer alpha transition. Validity of our model was proved via comparison of measured and evaluated spectra of our device with 15.5 kA peak current. High gain lasing system is predicted for 2 mm diam. capillary filled by 0.2 kPa nitrogen if 80 kA peak current and 30 ns pulse duration are taken into account

  3. The capillary pumped loop III (CAPL III) flight demonstration description and status

    Science.gov (United States)

    Kim, Jeong (Jake) H.; Cheung, Kwok-Hung; Butler, Dan; Ku, Jentung; Haught, Eric; Kroliczeck, Edward J.; Cullimore, Brent; Baumann, Jane

    1997-01-01

    To realize the full benefits of capillary pump loop (CPL) devices, for use in spacecraft thermal control subsystems, a reliable, load sharing, multiple evaporator system must be developed and successfully demonstrated in space. The Capillary Pumped Loop Flight Experiment 3 (CAPL III) will be the second attempt to flight demonstrate a multiple evaporator CPL in space environment. Using the lessons learned from CAPL I, which was flown aboard STS-60 in February 1994, new hardware and concepts are being developed for CAPL III to enable load sharing between evaporators, reliable system start-up/re-start, and reliable continuous operation. Started in May 1996, CAPL III is primarily a joint venture between the Naval Research Laboratory and the NASA-Goddard Space Flight Center, with Swales and Associates, Inc. as an industry partner. The program is scheduled to meet an STS flight opportunity in mid-1998. This paper will present the requirements and the preliminary design description of the CAPL III CPL system.

  4. Highly conductive, printable pastes from capillary suspensions

    Science.gov (United States)

    Schneider, Monica; Koos, Erin; Willenbacher, Norbert

    2016-08-01

    We have used the capillary suspension phenomenon to design conductive pastes for printed electronic applications, such as front side metallization of solar cells, without non-volatile, organic additives that often deteriorate electrical properties. Adding a small amount of a second, immiscible fluid to a suspension creates a network of liquid bridges between the particles. This capillary force-controlled microstructure allows for tuning the flow behavior in a wide range. Yield stress and low-shear viscosity can be adjusted such that long-term stability is provided by inhibiting sedimentation, and, even more importantly, narrow line widths and high aspect ratios are accessible. These ternary mixtures, called capillary suspensions, exhibit a strong degree of shear thinning that allows for conventional coating or printing equipment to be used. Finally, the secondary fluid, beneficial for stability and processing of the wet paste, completely evaporates during drying and sintering. Thus, we obtained high purity silver and nickel layers with a conductivity two times greater than could be obtained with state-of-the-art, commercial materials. This revolutionary concept can be easily applied to other systems using inorganic or even organic conductive particles and represents a fundamental paradigm change to the formulation of pastes for printed electronics.

  5. Spatial reconstruction of facial skin capillaries

    Directory of Open Access Journals (Sweden)

    Makarchuk O.I.

    2010-01-01

    Full Text Available To define structural and functional changes of skin capillaries in women of different age groups in this work intraoperational biopsy material of skin of 205 women at the age from 19 to 75 years, that was taken during standard surgery instrumentations for different defects of face and neck skin correction, was investigated. Skin material of cheek face region, temple region of head and anterior neck region was morphologically processed. To define parameters of dermal capillars and spatial reconstruction of intrapapillary capillary loops, serial sections was investigated with the help of morphometry. It was determined, that microcirculation age changes include structural disorders of intrapapillary capillary loops. Essential struc-tural and functional changes observed in skin of cheek region in women of 33-40 years and in temple region of head and anterior neck region in women of 41-50 years. It is typical at the patients with nicotinic dependence, ischemic heart disease, hypertonic disease, a diabetes, and also adiposity of a different degree essential infringement of microvessels bed structure of a skin that gives the basis for allocation of the given contingent of patients as group high intraoperative and postoperative risk at carrying out of operative interventions for correction of face skin involutive changes.

  6. The order of condensation in capillary grooves.

    Science.gov (United States)

    Rascón, Carlos; Parry, Andrew O; Nürnberg, Robert; Pozzato, Alessandro; Tormen, Massimo; Bruschi, Lorenzo; Mistura, Giampaolo

    2013-05-15

    We consider capillary condensation in a deep groove of width L. The transition occurs at a pressure p(co)(L) described, for large widths, by the Kelvin equation p(sat) - p(co)(L) = 2σ cosθ/L, where θ is the contact angle at the side walls and σ is the surface tension. The order of the transition is determined by the contact angle of the capped end θcap; it is continuous if the liquid completely wets the cap, and first-order otherwise. When the transition is first-order, corner menisci at the bottom of the capillary lead to a pronounced metastability, determined by a complementary Kelvin equation Δp(L) = 2σ sinθcap/L. On approaching the wetting temperature of the capillary cap, the corner menisci merge and a single meniscus unbinds from the bottom of the groove. Finite-size scaling shifts, crossover behaviour and critical singularities are determined at mean-field level and beyond. Numerical and experimental results showing the continuous nature of condensation for θcap = 0 and the influence of corner menisci on adsorption isotherms are presented. PMID:23611878

  7. Capillary-scale polarimetry for flowing streams.

    Science.gov (United States)

    Swinney, K; Nodorft, J; Bornhop, D J

    2001-05-01

    A micro-polarimeter with a 40 nL probe volume was configured so that it is compatible with capillary-scale flowing stream analysis. The optical configuration consists of two polarizing optics, a capillary, a laser source and a photodetector which is very simple to configure with low cost components. This unique polarimeter is based upon the interaction of a linearly polarized laser beam and a capillary tube, in this case one with an inner diameter of 250 microns. Side illumination of the tube results in a 360 degrees fan of scattered light, which contains a set of interference fringes that change in response to optically active solutes. Solutes that exhibit optical activity are quantifiable and are detected by analyzing the polarization state of the backscattered light. The ability of the instrument to make extremely sensitive optical activity measurements in flowing streams is shown by the determination of (R)-mandelic acid, with a detection limit of 66 x 10(-6) M (507 x 10(-12) g), and the non-optically active control, glycerol. Additionally, the detector was configured to minimize refractive index perturbations. PMID:11394312

  8. A Capillary-Based Static Phase Separator for Highly Variable Wetting Conditions

    Science.gov (United States)

    Thomas, Evan A.; Graf, John C.; Weislogel, Mark M.

    2010-01-01

    The invention, a static phase separator (SPS), uses airflow and capillary wetting characteristics to passively separate a two-phase (liquid and air) flow. The device accommodates highly variable liquid wetting characteristics. The resultant design allows for a range of wetting properties from about 0 to over 90 advancing contact angle, with frequent complete separation of liquid from gas observed when using appropriately scaled test conditions. Additionally, the design accommodates a range of air-to-liquid flow-rate ratios from only liquid flow to over 200:1 air-to-liquid flow rate. The SPS uses a helix input section with an ice-cream-cone-shaped constant area cross section (see figure). The wedge portion of the cross section is on the outer edge of the helix, and collects the liquid via centripetal acceleration. The helix then passes into an increasing cross-sectional area vane region. The liquid in the helix wedge is directed into the top of capillary wedges in the liquid containment section. The transition from diffuser to containment section includes a 90 change in capillary pumping direction, while maintaining inertial direction. This serves to impinge the liquid into the two off-center symmetrical vanes by the airflow. Rather than the airflow serving to shear liquid away from the capillary vanes, the design allows for further penetration of the liquid into the vanes by the air shear. This is also assisted by locating the air exit ports downstream of the liquid drain port. Additionally, any droplets not contained in the capillary vanes are re-entrained downstream by a third opposing capillary vane, which directs liquid back toward the liquid drain port. Finally, the dual air exit ports serve to slow the airflow down, and to reduce the likelihood of shear. The ports are stove-piped into the cavity to form an unfriendly capillary surface for a wetting fluid to carryover. The liquid drain port is located at the start of the containment region, allowing for

  9. Circumventing Imprecise Geometric Information and Development of a Unified Modeling Technique for Various Flow Regimes in Capillary Tubes

    Science.gov (United States)

    Abbasi, Bahman

    2012-11-01

    Owing to their manufacturability and reliability, capillary tubes are the most common expansion devices in household refrigerators. Therefore, investigating flow properties in the capillary tubes is of immense appeal in the said business. The models to predict pressure drop in two-phase internal flows invariably rely upon highly precise geometric information. The manner in which capillary tubes are manufactured makes them highly susceptible to geometric imprecisions, which renders geometry-based models unreliable to the point of obsoleteness. Aware of the issue, manufacturers categorize capillary tubes based on Nitrogen flow rate through them. This categorization method presents an opportunity to substitute geometric details with Nitrogen flow data as the basis for customized models. The simulation tools developed by implementation of this technique have the singular advantage of being applicable across flow regimes. Thus the error-prone process of identifying compatible correlations is eliminated. Equally importantly, compressibility and chocking effects can be incorporated in the same model. The outcome is a standalone correlation that provides accurate predictions, regardless of any particular fluid or flow regime. Thereby, exploratory investigations for capillary tube design and optimization are greatly simplified. Bahman Abbasi, Ph.D., is Lead Advanced Systems Engineer at General Electric Appliances in Louisville, KY. He conducts research projects across disciplines in the household refrigeration industry.

  10. Heatable sample holder for capillary experiments

    International Nuclear Information System (INIS)

    Complete text of publication follows. The transmission of charged particles through various types of capillaries has been recently in the center of interest. The observed ion guiding phenomenon offered new possibilities for fundamental investigations, characterization of the inner walls of the insulating tube and also holds various possible applications. Thereafter an intensive experimental investigation started to understand the basic properties of the guiding for ions using several insulating materials like PET, SiO2, and Al2O3. Another viewpoint of the experiments was how the guiding effect changes with the length or with the inner diameter of the capillary. Recently guiding of slow highly charged ions through a single glass macrocapillary has been studied, showing that guiding occurs even for macroscopic dimensions. As a completely new aspect we would like to measure the temperature dependence of the ion-guiding. The investigation of the temperature dependence of the guiding gives new possibilities both for a fundamental understanding of the guiding phenomenon and applications. The guiding maybe adjustable by changing the temperature of the capillary, namely it may improve the efficiency of the guiding power. In our future experiments we try to find the answer how the ion guiding ability of an insulating capillary changes as a function of temperature. For these experiments a completely new heatable sample holder was designed (see Fig. 1). Our preliminary results shows that the ion guiding ability of the capillary strongly decreases, when the temperature of the glass is raised from 20degC (room temperature) to 80degC. Acknowledgements The financial support received from the ITS-LEIF Project (RII3 026015) is gratefully acknowledged. This work was supported by the 'Stiftung Aktion Oesterreich-Ungarn', the grant 'Bolyai' from the Hungarian Academy of Sciences, the TeT Grant no. AT-7/2007, the Hungarian National Office for Research and Technology, as well as

  11. A covalent modified hydrophilic capillary for enhanced capillary electrophoresis of biopolymers

    Institute of Scientific and Technical Information of China (English)

    Lian Guo Shan; Xue Yu; Yin Mao Wei; Xiao Hui Zheng; Jian Bin Zheng

    2009-01-01

    δ-Gluconolactone was covalently coupled to aminopropyl derivatized capillary,which created hydrophilic brushes on the inner wall of the capillary.The coated capillary was shown to generate a stable electroosmotic flow(EOF)in the investigated pH range of 2.0-9.0 and to suppress effectively the adsorption of proteins.And it enabled separation of some biopolymer mixtures including basic proteins,DNA and tryptic digested bovine serum albumin(BSA)within 15 min with efficiencies up to 450,000 plates/m.The intra-and inter-day reproducibility of the coating referring to the retention times of proteins were satisfactory with mean relative standard deviations(R.S.D.)of 0.8 and 1.7%,respectively.

  12. Capillary electrophoresis in tapered capillary manufactured by etching with sub-supercritical water

    Czech Academy of Sciences Publication Activity Database

    Karásek, Pavel; Horká, Marie; Šlais, Karel; Roth, Michal; Planeta, Josef

    Messina : Chromaleont S.r.L, 2012 - (Sandra, P.; Mondello, L.). s. 254 [International Symposium on Capillary Chromatography /36./ and GC x GC Symposium /9./. 27.5.2012-01.06.2012, Riva del Garda] R&D Projects: GA ČR(CZ) GAP206/11/0138; GA ČR(CZ) GAP106/12/0522; GA MV VG20112015021 Institutional research plan: CEZ:AV0Z40310501 Keywords : electrophoresis in tapered capillaries * supercritical water * complex samples Subject RIV: CB - Analytical Chemistry, Separation

  13. A neuron-in-capillary platform for facile collection and mass spectrometric characterization of a secreted neuropeptide

    Science.gov (United States)

    Lee, Chang Young; Fan, Yi; Rubakhin, Stanislav S.; Yoon, Sook; Sweedler, Jonathan V.

    2016-06-01

    The integration of microfluidic devices—which efficiently handle small liquid volumes—with separations/mass spectrometry (MS) is an effective approach for profiling the neurochemistry occurring in selected neurons. Interfacing the microfluidic cell culture to the mass spectrometer is challenging because of geometric and scaling issues. Here we demonstrate the hyphenation of a neuron-in-capillary platform to a solid phase extraction device and off-line MS. A primary neuronal culture of Aplysia californica neurons was established directly inside a cylindrical polyimide capillary. The approach also uses a particle-embedded monolith to condition neuropeptide releasates collected from several Aplysia neurons cultured in the capillary, with the subsequent characterization of released peptides via MS. This system presents a number of advances compared to more traditional microfluidic devices fabricated with polydimethylsiloxane. These include low cost, easy access to cell culture, rigidity, ease of transport, and minimal fluid handling. The cylindrical geometry of the platform allows convenient interface with a wide range of analytical tools that utilize capillary columns.

  14. Generation of arbitrary monotonic concentration profiles by a serial dilution microfluidic network composed of microchannels with a high fluidic-resistance ratio.

    Science.gov (United States)

    Hattori, Koji; Sugiura, Shinji; Kanamori, Toshiyuki

    2009-06-21

    This paper reports a serial dilution microfluidic network composed of microchannels with a high fluidic-resistance ratio for generating linear concentration profiles as well as logarithmic concentration profiles spanning 3 and 6 orders of magnitude. The microfluidic networks were composed of thin fluidic-resistance microchannels with 160 to 730 microm(2) cross-sectional areas and thick diffusion-mixing microchannels with 3,600 to 17,000 microm(2) cross-sectional areas, and were fabricated from polydimethylsiloxane by multilayer photolithography and replica molding. We proposed a design algorithm of the microfluidic network for an arbitrary monotonic concentration profile by means of a hydrodynamic calculation. Because of the high fluidic-resistance ratio of the fluidic-resistance microchannels to the diffusion-mixing microchannels, appropriate geometry and dimensions of the fluidic-resistance microchannels allowed us to obtain desired concentration profiles. The fabricated microfluidic network was compact, occupying a 8 x 18 to 21.0 x 13.5 mm(2) area on the microchip. Both the linear and the logarithmic concentration profiles were successfully generated with the error less than 15% for the linear concentration profile, 22% and 35% for the logarithmic concentration profiles of 3 and 6 orders of magnitude, respectively. The generated linear concentration profiles of the small molecule, calcein, were independent of the flow rate within the range of 0.009 to 0.23 microL/min. The concentration profiles of the large molecules, dextrans, depended on the flow rate and molecular weight. The required residence time of large molecules in the diffusion-mixing microchannel was correlated with dimensionless diffusion time, Fick number, and was discussed based on the scaling law. These compact, stable serial dilution microfluidic networks are expected to be applied to various integrated on-chip analyses. PMID:19495461

  15. Capillary remodeling in bleomycin-induced pulmonary fibrosis.

    OpenAIRE

    Schraufnagel, D. E.; Mehta, D.; Harshbarger, R.; Treviranus, K.; Wang, N. S.

    1986-01-01

    Lung fibrosis is a process in which collagen is laid down and the delicate capillary-alveolar relationship is disturbed. The architectural changes which occur in the capillaries, a main element of the oxygen transferring unit, are difficult to illustrate without a three-dimensional tool, such as scanning electron microscopy. Therefore, a scanning electron microscopic study was undertaken to show the capillary changes of lung fibrosis. Fibrosis was induced in rats by intratracheal instillation...

  16. Nicked-sleeve interface for two-dimensional capillary electrophoresis

    OpenAIRE

    Flaherty, Ryan J.; Huge, Bonnie J.; Bruce, Spencer M.; Dada, Oluwatosin O.; Dovichi, Norman J.

    2013-01-01

    We report an improved interface for two-dimensional capillary electrophoresis. This interface is based on capillary tubing and a Plexiglas chip, both of which were milled using a micro-dicing saw. The interface was evaluated and compared to a traditional interface design for both pseudo one-dimensional and two-dimensional capillary electrophoresis. We observe less than 70% transfer efficiency for the traditional design and greater than 90% transfer efficiency with this new interface.

  17. Modified monolithic silica capillary for preconcentration of catecholamines

    Institute of Scientific and Technical Information of China (English)

    Wei Chang; Tusyo-shi Komazu

    2009-01-01

    Preconcentration of catecholamines by the modified monolithic silica in the capillary was investigated in this study. In order to achieve a microchip-based method for determining catecholamines in the saliva, the monolithic silica was fabricated in the capillary and the monolithic silica was chemically modified by on-column reaction with phenylboronate. Different modified methods were compared. The concentration conditions were optimized. This study indicates the applicability of the modified monolithic silica capillary when it was used to concentrate catecholamines.

  18. Functional capillary rarefaction in mild blood pressure elevation

    OpenAIRE

    Cheng, Cynthia; Diamond, James J.; Falkner, Bonita

    2008-01-01

    Capillary rarefaction is described in patients with moderate to severe hypertension. The study objective was to determine if structural and/or functional capillary rarefaction is detectable and associated with endothelial dysfunction in patients with mild blood pressure elevation (HBP: Systolic blood pressure 130 – 160 mm Hg). Capillary density was quantified by direct capillaroscopy in 110 nondiabetic black and non-black subjects. Endothelial function was quantified by plethysmographic measu...

  19. Interaction of Treponema pallidum with isolated rabbit capillary tissues.

    OpenAIRE

    Quist, E E; Repesh, L A; Zeleznikar, R; Fitzgerald, T J

    1983-01-01

    Within infected tissue Treponema pallidum shows a characteristic predilection for perivascular areas. After intact capillaries had been prepared from rabbit brain tissue treponemes were incubated with isolated capillaries and visualised by darkfield, phase contrast, and scanning electron microscopy. The organisms rapidly attached to the surface of the capillaries at the tip of the treponeme; attached organisms retained motility for longer periods than unattached organisms. Treponema pertenue ...

  20. Photovoltaic device

    Science.gov (United States)

    Reese, Jason A.; Keenihan, James R.; Gaston, Ryan S.; Kauffmann, Keith L.; Langmaid, Joseph A.; Lopez, Leonardo C.; Maak, Kevin D.; Mills, Michael E.; Ramesh, Narayan; Teli, Samar R.

    2015-06-02

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device with a multilayered photovoltaic cell assembly and a body portion joined at an interface region and including an intermediate layer, at least one interconnecting structural member, relieving feature, unique component geometry, or any combination thereof.

  1. Photovoltaic device

    Science.gov (United States)

    Reese, Jason A.; Keenihan, James R.; Gaston, Ryan S.; Kauffmann, Keith L.; Langmaid, Joseph A.; Lopez, Leonardo C.; Maak, Kevin D.; Mills, Michael E.; Ramesh, Narayan; Teli, Samar R.

    2015-09-01

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device (10) with a multilayered photovoltaic cell assembly (100) and a body portion (200) joined at an interface region (410) and including an intermediate layer (500), at least one interconnecting structural member (1500), relieving feature (2500), unique component geometry, or any combination thereof.

  2. Concentration device

    DEFF Research Database (Denmark)

    2013-01-01

    A concentration device (2) for filter filtration concentration of particles (4) from a volume of a fluid (6). The concentration device (2) comprises a filter (8) configured to filter particles (4) of a predefined size in the volume of the fluid (6). The concentration device (2) comprises...

  3. Fast, label-free tracking of single viruses and weakly scattering nanoparticles in a nano-fluidic optical fiber

    CERN Document Server

    Faez, Sanli; Weidlich, Stefan; Garmann, Rees F; Wondraczek, Katrin; Zeisberger, Matthias; Schmidt, Markus A; Orrit, Michel; Manoharan, Vinothan N

    2015-01-01

    High-speed tracking of single particles is a gateway to understanding physical, chemical, and biological processes at the nanoscale. It is also a major experimental challenge, particularly for small, nanometer-scale particles. Although methods such as confocal or fluorescence microscopy offer both high spatial resolution and high signal-to-background ratios, the fluorescence emission lifetime limits the measurement speed, while photobleaching and thermal diffusion limit the duration of measurements. Here we present a tracking method based on elastic light scattering that enables long-duration measurements of nanoparticle dynamics at rates of thousands of frames per second. We contain the particles within a single-mode silica fiber containing a sub-wavelength, nano-fluidic channel and illuminate them using the fiber's strongly confined optical mode. The diffusing particles in this cylinderical geometry are continuously illuminated inside the collection focal plane. We show that the method can track unlabeled d...

  4. What governs the fluidic behavior of water near single DNA molecules at the micro/nano scale

    CERN Document Server

    Zhang, Y; Lei, X; Lv, J; Ai, X; Jun, H; Zhang, Yi; Li, Huabing; Lei, Xiaoling; Lv, Junhong; Ai, Xiaobai; Jun, Hu

    2006-01-01

    The fluidic behavior of water at the micro/nano scale is studied by using of single DNA molecules as a model system. Stable curved DNA patterns with spans about one micron were generated by using of water flows, and observed by Atomic Force Microscopy. By rigorously comparing the numerical simulation results with these patterns, it is suggested that the form of the macroscopic hydrodynamic equation still works quantitatively well on the fluid flows at the nanoscale. The molecular effects, however, are still apparent that the effective viscosity of the adjacent water is considerably larger than its bulk value. Our observation is also helpful to understand of the dynamics of biomolecules in solutions from nanoscale to microscale.

  5. Capillary Micro-Flow Through a Fiber Bundle(Ⅰ)

    Institute of Scientific and Technical Information of China (English)

    ZHU Ying-dan; WANG Ji-hui; TAN Hua; GAO Guo-qiang

    2004-01-01

    The present work considered the capillary micro-flow through a fiber bundle. The resin heights in the fiber bundle as a function of time were used to determine the experimental values of capillary pressure and the permeability by the nonlinear regression fitting method. The fitting curves showed a good agreement with experiments. However, these values of capillary pressure from short- time experiments were much lower than the theoretical results from the Yang-Laplace Equation. More accurate capillary pressure was predicted from the presented long-run experiment.

  6. High Performance Wafer-Based Capillary Electrochromatography Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Phase II research comprises designing, constructing, and testing a chip-based capillary electrochromatography (CEC) prototype for separation and analysis of...

  7. Creeping motion of long bubbles and drops in capillary tubes

    DEFF Research Database (Denmark)

    Westborg, Henrik; Hassager, Ole

    1989-01-01

    The flow of inviscid bubbles and viscous drops in capillary tubes has been simulated by a Galerkin finite element method with surface tension included at the bubble/liquid interface. The results show good agreement with published experimental results. At low capillary numbers the front and the rear...... disappear at high capillary numbers. Furthermore the flow of a viscous drop through a doughnut shaped constriction in a capillary tube has been simulated. The simulations show that snap-off may be initiated by a sudden drop in the flow rate after the drops have protruded for some distance beyond the throat...

  8. Novel Micro-Capillary Electrochromatography for Mars Organic Detector Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Los Gatos Research proposes to develop a powerful new technology - next generation Micro-Capillary Electrochromatography - a high performance and low power...

  9. Novel Micro-Capillary Electrochromatography for Mars Organic Detector Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Los Gatos Research proposes to develop a powerful new technology - next generation Micro-Capillary Electrochromatography ? a high performance and low power...

  10. Capillary pericytes regulate cerebral blood flow in health and disease

    DEFF Research Database (Denmark)

    Hall, Catherine N; Reynell, Clare; Gesslein, Bodil;

    2014-01-01

    that neuronal activity and the neurotransmitter glutamate evoke the release of messengers that dilate capillaries by actively relaxing pericytes. Dilation is mediated by prostaglandin E2, but requires nitric oxide release to suppress vasoconstricting 20-HETE synthesis. In vivo, when sensory input...... increases blood flow, capillaries dilate before arterioles and are estimated to produce 84% of the blood flow increase. In pathology, ischaemia evokes capillary constriction by pericytes. We show that this is followed by pericyte death in rigor, which may irreversibly constrict capillaries and damage the...

  11. Capacitive Coulter counting: detection of metal wear particles in lubricant using a microfluidic device

    International Nuclear Information System (INIS)

    A microfluidic device based on the capacitance Coulter counting principle to detect metal debris particles in lubricant oil is presented. The device scans each individual metal debris particle as they pass through a microfluidic channel by monitoring the capacitance change. We first proved the feasibility of using the capacitance Coulter counting principle for detecting metal particles in a fluidic channel. Next, we tested the microfluidic device with aluminum abrasive particles ranging from 10 to 25 µm; the testing results show the microfluidic device is capable of detecting metal wear particles in low-conductive lubricant oil. The design concept demonstrated here can be extended to a device with multiple microchannels for rapid detection of metal wear particles in a large volume of lubricant oil. (technical note)

  12. Quality Control Method for a Micro-Nano-Channel Microfabricated Device

    Science.gov (United States)

    Grattoni, Alessandro; Ferrari, Mauro; Li, Xuewu

    2012-01-01

    A variety of silicon-fabricated devices is used in medical applications such as drug and cell delivery, and DNA and protein separation and analysis. When a fluidic device inlet is connected to a compressed gas reservoir, and the outlet is at a lower pressure, a gas flow occurs through the membrane toward the outside. The method relies on the measurement of the gas pressure over the elapsed time inside the upstream and downstream environments. By knowing the volume of the upstream reservoir, the gas flow rate through the membrane over the pressure drop can be calculated. This quality control method consists of measuring the gas flow through a device and comparing the results with a standard curve, which can be obtained by testing standard devices. Standard devices can be selected through a variety of techniques, both destructive and nondestructive, such as SEM, AFM, and standard particle filtration.

  13. Flow control using audio tones in resonant microfluidic networks: towards cell-phone controlled lab-on-a-chip devices.

    Science.gov (United States)

    Phillips, Reid H; Jain, Rahil; Browning, Yoni; Shah, Rachana; Kauffman, Peter; Dinh, Doan; Lutz, Barry R

    2016-08-16

    Fluid control remains a challenge in development of portable lab-on-a-chip devices. Here, we show that microfluidic networks driven by single-frequency audio tones create resonant oscillating flow that is predicted by equivalent electrical circuit models. We fabricated microfluidic devices with fluidic resistors (R), inductors (L), and capacitors (C) to create RLC networks with band-pass resonance in the audible frequency range available on portable audio devices. Microfluidic devices were fabricated from laser-cut adhesive plastic, and a "buzzer" was glued to a diaphragm (capacitor) to integrate the actuator on the device. The AC flowrate magnitude was measured by imaging oscillation of bead tracers to allow direct comparison to the RLC circuit model across the frequency range. We present a systematic build-up from single-channel systems to multi-channel (3-channel) networks, and show that RLC circuit models predict complex frequency-dependent interactions within multi-channel networks. Finally, we show that adding flow rectifying valves to the network creates pumps that can be driven by amplified and non-amplified audio tones from common audio devices (iPod and iPhone). This work shows that RLC circuit models predict resonant flow responses in multi-channel fluidic networks as a step towards microfluidic devices controlled by audio tones. PMID:27416111

  14. Label-free tracking of single extracellular vesicles in a nano-fluidic optical fiber (Conference Presentation)

    Science.gov (United States)

    van der Pol, Edwin; Weidlich, Stefan; Lahini, Yoav; Coumans, Frank A. W.; Sturk, Auguste; Nieuwland, Rienk; Schmidt, Markus A.; Faez, Sanli; van Leeuwen, Ton G.

    2016-03-01

    Background: Extracellular vesicles, such as exosomes, are abundantly present in human body fluids. Since the size, concentration and composition of these vesicles change during disease, vesicles have promising clinical applications, including cancer diagnosis. However, since ~70% of the vesicles have a diameter <70 nm, detection of single vesicles remains challenging. Thus far, vesicles <70 nm have only be studied by techniques that require the vesicles to be adhered to a surface. Consequently, the majority of vesicles have never been studied in their physiological environment. We present a novel label-free optical technique to track single vesicles <70 nm in suspension. Method: Urinary vesicles were contained within a single-mode light-guiding silica fiber containing a 600 nm nano-fluidic channel. Light from a diode laser (660 nm wavelength) was coupled to the fiber, resulting in a strongly confined optical mode in the nano-fluidic channel, which continuously illuminated the freely diffusing vesicles inside the channel. The elastic light scattering from the vesicles, in the direction orthogonal to the fiber axis, was collected using a microscope objective (NA=0.95) and imaged with a home-built microscope. Results: We have tracked single urinary vesicles as small as 35 nm by elastic light scattering. Please note that vesicles are low-refractive index (n<1.4) particles, which we confirmed by combining data on thermal diffusion and light scattering cross section. Conclusions: For the first time, we have studied vesicles <70 nm freely diffusing in suspension. The ease-of-use and performance of this technique support its potential for vesicle-based clinical applications.

  15. Three-dimensional paper-based slip device for one-step point-of-care testing

    Science.gov (United States)

    Han, Kwi Nam; Choi, Jong-Soon; Kwon, Joseph

    2016-05-01

    In this study, we developed a new type of paper-based analytical device (PAD), the three-dimensional (3D) slip-PAD, to detect infectious human norovirus for global healthcare. The 3D configuration of the papers combined with a slip design provides unique features and versatility that overcome the limitations of fluidic manipulation and sensitivity in point-of-care (POC) tests. The assay can be carried out in a single step based on a moveable slip design, making it suitable for unskilled users. The 3D fluidic network developed by layered construction of wax-patterned papers provides different fluidic paths for the sequential delivery of multiple fluids without the need for peripheral equipment. The release and mixing of enhancement reagents on the device improved the sensitivity and detection limit. The assay results could be visualized by naked eye within 10 min, with subsequent amplification of the signal over time (human norovirus. These results demonstrate that the 3D slip-PAD is a sensitive diagnostic assay for detecting human norovirus infection that is particularly suitable for POC testing in regions where resources are scarce.

  16. Capacitively coupled contactless conductivity detection and sequential injection analysis in capillary electrophoresis and capillary electro-chromatography

    OpenAIRE

    Mai, Thanh Duc

    2011-01-01

    This thesis focuses on the applications of capacitively coupled contactless conductivity detection (C4D) in capillary electrophoresis (CE) hybridized with high-performance liquid chromatography (HPLC), i.e. in capillary electrochromatography and pressure-assisted capillary electrophoresis, as well as on the development and applications of an extension of CE-C4D with sequential injection analysis (SIA). At first, the in-house built C4D was used for electro-chromatographic determinations of...

  17. Determination of glycyrrhizin in liqueurs by on-line coupled capillary isotachophoresis with capillary zone electrophoresis.

    Science.gov (United States)

    Kvasnicka, Frantisek; Voldrich, Michal; Vyhnálek, Josef

    2007-10-26

    An on-line coupled capillary isotachophoresis-capillary zone electrophoresis method for the determination of glycyrrhizin in liqueurs is described. The optimised electrolyte system was 5 mM HCl+11 mM epsilon-aminocaproic acid+0.05% hydroxyethylcellulose+30% methanol (leading electrolyte), 5 mM caproic acid+30% methanol (terminating electrolyte) and 20 mM caproic acid+10 mM histidine+0.1% hydroxyethylcellulose+30% methanol (background electrolyte). Method characteristics, i.e., linearity (20-500 ng/ml), accuracy (recovery 99+/-4%), intra-assay repeatability (2%), intermediate repeatability (3.8%) and detection limit (8 ng/ml) were determined. Speed of analysis, low laboriousness, high sensitivity and low-running cost are the typical attributes of the capillary isotachophoresis-capillary zone electrophoresis method. Developed method was successfully applied to analysis of liqueurs with liquorice extract and some foods (sweets and food supplements) containing liquorice. Found levels of glycyrrhizin in liqueurs, sweets and food supplements varied between 1-16 mg/l, 850-1050 mg/kg and 1.6-1.8 g/kg, respectively. PMID:17875310

  18. Capillary zone electrophoresis and packed capillary column liquid chromatographic analysis of recombinant human interleukin-4.

    Science.gov (United States)

    Bullock, J

    1993-02-24

    Capillary zone electrophoresis (CZE) and packed capillary column liquid chromatography (micro-LC) have been applied to the analysis of the recombinant human protein interleukin-4 (rhIL-4). Separations for both the parent protein and its enzymatic digest were developed for the purpose of characterizing protein purity and identity. CZE separations of the intact protein were investigated over the pH range of 4.5 to 8.0 using uncoated fused silica capillaries. Gradient reversed-phase micro-LC was performed using 0.32 mm packed capillary columns at flow-rates of 5-6 microliters/min. Emphasis was placed on the ability of these methods to separate close structural variants and degradation products of the protein. Peptide mapping of the tryptic digest of rhIL-4 using a combination of CZE and micro-LC provided complimentary high resolution methods for establishing protein identity. Reproducible separations were achieved using sub-picomol amounts of sample. The advantages and problems encountered with these two techniques for characterizing rhIL-4 were assessed. PMID:8450025

  19. Electroviscous effects in capillary filling of nanochannels

    DEFF Research Database (Denmark)

    Mortensen, Asger; Kristensen, Anders

    2008-01-01

    maximum in the mesoscopic regime where the channel height (or more generally the hydraulic radius) is comparable to the screening length. However, for realistic estimates of central parameters, we find that the electroviscous contribution to the apparent viscosity is at most a 1% effect.......We theoretically examine the widespread hypothesis of an electroviscous origin of the increase in apparent viscosity observed in recent experiments on capillary filling of nanochannels. Including Debye-layer corrections to the hydraulic resistance, we find that the apparent viscosity reaches a...

  20. Gas-Filled-Capillary Discharge Experiment

    Czech Academy of Sciences Publication Activity Database

    Schmidt, Jiří; Koláček, Karel; Frolov, Oleksandr; Prukner, Václav; Štraus, Jaroslav; Sobota, Jaroslav; Fořt, Tomáš

    Washington, DC: IEEE, 2010, s. 707-709. (IEEE Xplore). ISBN 978-1-4244-4064-1. [IEEE International Pulsed Power Conference/17th./. Washington, D.C. (US), 28.06.2010-02.07.2010] R&D Projects: GA MŠk(CZ) LC528; GA MŠk LA08024; GA AV ČR KJB100430702; GA AV ČR KAN300100702 Institutional research plan: CEZ:AV0Z20430508; CEZ:AV0Z20650511 Keywords : Capillary discharge * x-ray * laser Subject RIV: BL - Plasma and Gas Discharge Physics http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5386405

  1. XUV Radiation Emitted by Capillary Pinching Discharge

    Czech Academy of Sciences Publication Activity Database

    Vrbová, M.; Jančárek, A.; Vrba, Pavel; Nevrkla, M.; Kolař, P.

    Vol. 136. Dordrecht: Springer Proceedings in Physics , 2010 - (Lee, J.; Nam, C.; Janulewicz, K.), s. 257-262. (Springer Proceedings in Physics . 136). ISBN 978-94-007-1185-3. ISSN 0930-8989. [International Conference on X-Ray Laser s 2010/12th./. Gwangju (KR), 30.05.2010-04.06.2010] R&D Projects: GA MŠk LA08024 Institutional research plan: CEZ:AV0Z20430508 Keywords : Capillary Z-pinch * water window radiation source * RHMD Z engine Subject RIV: BH - Optics, Masers, Laser s http://www.springer.com/series/361

  2. Analysis of antimicrobial peptides by capillary electrophoresis

    Czech Academy of Sciences Publication Activity Database

    Ehala, Sille; Niederhafner, Petr; Čeřovský, Václav; Řezanka, P.; Sýkora, D.; Král, V.; Kašička, Václav

    Praha : Institute of Organic Chemistry and Biochemistry AS CR, v. v. i, 2011 - (Slaninová, J.), s. 37-40 ISBN 978-80-86241-44-9. - (Collection Symposium Series. 13). [Biologically Active Peptides /12./. Praha (CZ), 27.04.2011-29.04.2011] R&D Projects: GA ČR(CZ) GA203/09/0675; GA ČR(CZ) GA203/08/1428 Institutional research plan: CEZ:AV0Z40550506 Keywords : capillary electrophoresis * antimicrobial peptides * gold nanoparticles Subject RIV: CC - Organic Chemistry

  3. High sensitivity radiation detector for capillary electrophoresis

    International Nuclear Information System (INIS)

    Capillary electrophoresis is an important new instrumental technique capable of high resolution separation and analysis of small quantities of nucleotides, amino acids, peptides, and proteins with very high efficiency and throughput. The unprecedented sensitivity of this technique will be useful for such new applications as in vivo labeling and identification of trace substances and single cell work. The principle limitation of this technique for radiolabeled molecules has been identified as the sensitivity of the detector, primarily due to the small sample volume (32P-labeled biomolecules with unprecedented sensitivity. This detector can be easily retrofitted into existing CE apparatus

  4. Study of antimicrobial peptides by capillary electrophoresis

    Czech Academy of Sciences Publication Activity Database

    Tůmová, Tereza; Monincová, Lenka; Čeřovský, Václav; Kašička, Václav

    Sofia: Bulgarian Peptide Society, 2015 - (Naydenova, E.; Pajpanova, T.; Danalev, D.), s. 304-305 ISBN 978-619-90427-2-4. [Peptides 2014. European Peptide Symposium /33./. Sofia (BG), 31.08.2014-05.09.2014] R&D Projects: GA ČR(CZ) GAP206/12/0453; GA ČR(CZ) GA13-17224S Institutional support: RVO:61388963 Keywords : peptides * antimicrobial activity * capillary electrophoresis Subject RIV: CB - Analytical Chemistry, Separation http://bulpepsoc.info/wp-content/uploads/2015/06/PEPTIDES-2014-electronic-version.pdf

  5. Gas-Filled-Capillary Discharge Experiment

    Czech Academy of Sciences Publication Activity Database

    Schmidt, Jiří; Koláček, Karel; Frolov, Oleksandr; Prukner, Václav; Štraus, Jaroslav

    Vol. IEEE Catalog Number: CFP09PPC. Piscataway : Institute of Electrical and Electronics Engineers, Inc, 2009. s. 245-245. ISBN 978-1-4244-4065-8. [IEEE International Pulsed Power Conference/17th./. 28.06.2009-02.07.2009, Washington, D.C.] R&D Projects: GA MŠk LA08024; GA AV ČR KJB100430702; GA AV ČR KAN300100702; GA MŠk(CZ) LC528 Institutional research plan: CEZ:AV0Z20430508 Keywords : Capillary discharge * x-ray * laser Subject RIV: BL - Plasma and Gas Discharge Physics http://ppc.missouri.edu/Abstracts.pdf

  6. Capillary Network, Cancer and Kleiber Law

    CERN Document Server

    Dattoli, G; Licciardi, S; Guiot, C; Deisboeck, T S

    2014-01-01

    We develop a heuristic model embedding Kleiber and Murray laws to describe mass growth, metastasis and vascularization in cancer. We analyze the relevant dynamics using different evolution equations (Verhulst, Gompertz and others). Their extension to reaction diffusion equation of the Fisher type is then used to describe the relevant metastatic spreading in space. Regarding this last point, we suggest that cancer diffusion may be regulated by Levy flights mechanisms and discuss the possibility that the associated reaction diffusion equations are of the fractional type, with the fractional coefficient being determined by the fractal nature of the capillary evolution.

  7. Bacterial surface layer proteins as a novel capillary coating material for capillary electrophoretic separations.

    Science.gov (United States)

    Moreno-Gordaliza, Estefanía; Stigter, Edwin C A; Lindenburg, Petrus W; Hankemeier, Thomas

    2016-06-01

    A novel concept for stable coating in capillary electrophoresis, based on recrystallization of surface layer proteins on hydrophobized fused silica capillaries, was demonstrated. Surface layer protein A (SlpA) from Lactobacillus acidophilus bacteria was extracted, purified and used for coating pre-silanized glass substrates presenting different surface wettabilities (either hydrophobic or hydrophilic). Contact angle determination on SlpA-coated hydrophobic silica slides showed that the surfaces turned to hydrophilic after coating (53 ± 5°), due to a protein monolayer formation by protein-surface hydrophobic interactions. Visualization by atomic force microscopy demonstrated the presence of a SlpA layer on methylated silica slides displaying a surface roughness of 0.44 ± 0.02 nm. Additionally, a protein layer was visualized by fluorescence microscopy in methylated silica capillaries coated with SlpA and fluorescein isothiocyanate-labeled. The SlpA-coating showed an outstanding stability, even after treatment with 20 mM NaOH (pH 12.3). The electroosmotic flow in coated capillaries showed a partial suppression at pH 7.50 (3.8 ± 0.5 10(-9) m(2) V(-1) s(-1)) when compared with unmodified fused silica (5.9 ± 0.1 10(-8) m(2) V(-1) s(-1)). To demonstrate the potential of this novel coating, the SlpA-coated capillaries were applied for the first time for electrophoretic separation, and proved to be very suitable for the isotachophoretic separation of lipoproteins in human serum. The separations showed a high degree of repeatability (absolute migration times with 1.1-1.8% coefficient-of-variation (CV) within a day) and 2-3% CV inter-capillary reproducibility. The capillaries were stable for more than 100 runs at pH 9.40, and showed to be an exceptional alternative for challenging electrophoretic separations at long-term use. PMID:27155306

  8. Engineering anastomosis between living capillary networks and endothelial cell-lined microfluidic channels.

    Science.gov (United States)

    Wang, Xiaolin; Phan, Duc T T; Sobrino, Agua; George, Steven C; Hughes, Christopher C W; Lee, Abraham P

    2016-01-21

    This paper reports a method for generating an intact and perfusable microvascular network that connects to microfluidic channels without appreciable leakage. This platform incorporates different stages of vascular development including vasculogenesis, endothelial cell (EC) lining, sprouting angiogenesis, and anastomosis in sequential order. After formation of a capillary network inside the tissue chamber via vasculogenesis, the adjacent microfluidic channels are lined with a monolayer of ECs, which then serve as the high-pressure input ("artery") and low pressure output ("vein") conduits. To promote a tight interconnection between the artery/vein and the capillary network, sprouting angiogenesis is induced, which promotes anastomosis of the vasculature inside the tissue chamber with the EC lining along the microfluidic channels. Flow of fluorescent microparticles confirms the perfusability of the lumenized microvascular network, and minimal leakage of 70 kDa FITC-dextran confirms physiologic tightness of the EC junctions and completeness of the interconnections between artery/vein and the capillary network. This versatile device design and its robust construction methodology establish a physiological transport model of interconnected perfused vessels from artery to vascularized tissue to vein. The system has utility in a wide range of organ-on-a-chip applications as it enables the physiological vascular interconnection of multiple on-chip tissue constructs that can serve as disease models for drug screening. PMID:26616908

  9. Sapphire capillaries for laser-driven wakefield acceleration in plasma. Fs-laser micromachining and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Schwinkendorf, Jan-Patrick

    2012-08-15

    Plasma wakefields are a promising approach for the acceleration of electrons with ultrahigh (10 to 100 GV/m) electric fields. Nowadays, high-intensity laser pulses are routinely utilized to excite these large-amplitude plasma waves. However, several detrimental effects such as laser diffraction, electron-wake dephasing and laser depletion may terminate the acceleration process. Two of these phenomena can be mitigated or avoided by the application of capillary waveguides, e.g. fabricated out of sapphire for longevity. Capillaries may compensate for laser diffraction like a fiber and allow for the creation of tapered gas-density profiles working against the dephasing between the accelerating wave and the particles. Additionally, they offer the possibility of controlled particle injection. This thesis is reporting on the set up of a laser for fs-micromachining of capillaries of almost arbitrary shapes and a test stand for density-profile characterization. These devices will permit the creation of tailored gas-density profiles for controlled electron injection and acceleration inside plasma.

  10. fs-micromachining and characterization of sapphire capillaries for laser-driven wakefield acceleration in plasma

    Energy Technology Data Exchange (ETDEWEB)

    Schwinkendorf, Jan-Patrick; Schnepp, Matthias; Kleinwaechter, Tobias; Schaper, Lucas; Osterhoff, Jens [Institut fuer Experimentalphysik, Universitaet Hamburg (Germany); Schmidt, Bernhard [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany)

    2012-07-01

    Plasma wakefields are a promising approach for the acceleration of electrons with ultrahigh (10 to 100 GV/m) electric field gradients. Nowadays, high-intensity laser pulses are routinely utilized to excite these large-amplitude plasma waves. However, several detrimental effects such as laser diffraction, electron-wake dephasing and laser depletion may terminate the acceleration process. Two of these phenomena can be mitigated or avoided by the application of a capillary waveguide, e.g. fabricated out of sapphire for longevity. Capillaries may compensate for laser diffraction like a fiber and allow for the creation of tapered gas-density profiles working against the dephasing between the accelerating wave and the particles. We are reporting on the set up of a laser for fs-micromachining of capillaries of almost arbitrary shapes and a test stand for density-profile characterization. These devices will permit the creation of tailored gas-density profiles for controlled electron-beam injection and acceleration inside plasma.

  11. fs-micromachining and characterization of sapphire capillaries for laser-driven wakefield acceleration in plasma

    International Nuclear Information System (INIS)

    Plasma wakefields are a promising approach for the acceleration of electrons with ultrahigh (10 to 100 GV/m) electric field gradients. Nowadays, high-intensity laser pulses are routinely utilized to excite these large-amplitude plasma waves. However, several detrimental effects such as laser diffraction, electron-wake dephasing and laser depletion may terminate the acceleration process. Two of these phenomena can be mitigated or avoided by the application of a capillary waveguide, e.g. fabricated out of sapphire for longevity. Capillaries may compensate for laser diffraction like a fiber and allow for the creation of tapered gas-density profiles working against the dephasing between the accelerating wave and the particles. We are reporting on the set up of a laser for fs-micromachining of capillaries of almost arbitrary shapes and a test stand for density-profile characterization. These devices will permit the creation of tailored gas-density profiles for controlled electron-beam injection and acceleration inside plasma.

  12. Sapphire capillaries for laser-driven wakefield acceleration in plasma. Fs-laser micromachining and characterization

    International Nuclear Information System (INIS)

    Plasma wakefields are a promising approach for the acceleration of electrons with ultrahigh (10 to 100 GV/m) electric fields. Nowadays, high-intensity laser pulses are routinely utilized to excite these large-amplitude plasma waves. However, several detrimental effects such as laser diffraction, electron-wake dephasing and laser depletion may terminate the acceleration process. Two of these phenomena can be mitigated or avoided by the application of capillary waveguides, e.g. fabricated out of sapphire for longevity. Capillaries may compensate for laser diffraction like a fiber and allow for the creation of tapered gas-density profiles working against the dephasing between the accelerating wave and the particles. Additionally, they offer the possibility of controlled particle injection. This thesis is reporting on the set up of a laser for fs-micromachining of capillaries of almost arbitrary shapes and a test stand for density-profile characterization. These devices will permit the creation of tailored gas-density profiles for controlled electron injection and acceleration inside plasma.

  13. Qualitative analysis of complex mixtures of VOCs using the inside needle capillary adsorption trap

    Energy Technology Data Exchange (ETDEWEB)

    Shojania, S.; McComb, M.E.; Perreault, H.; Gesser, H.D.; Chow, A. [Manitoba Univ., Dept. of Chemistry, Winnipeg, MB (Canada); Oleschuk, R.D. [Alberta Univ., Dept. of Chemistry, Edmonton, AB (Canada)

    1999-11-01

    Static headspace sampling of complex mixtures is very useful for fingerprint identification of mixtures when liquid samples are not available, and sampling of the headspace above samples can be achieved without solvent extraction. The inside needle capillary adsorption trap (INCAT) device can be employed to sample the headspace of a sample and concentrate the analysis inside the device. Thermal desorption of the analytes from the INCAT directly into the gas chromatograph (GC) simplifies the extraction and analysis method. The INCAT device permits reproducible GC fingerprints of complex mixtures of volatile organic compounds (VOCs), with an average relative standard deviation of 9.8%. Using the INCAT device, the distinction between different classes of accelerants was attained using only five target peaks corresponding to BTEX compounds. The INCAT device yields a new approach to the characterization of complex mixtures for fingerprint analysis, and concentration of the headspace analytes inside the device allows for larger volumes to be sampled without requiring cryogenic focusing. The INCAT sampling method provides a sensitive alternative to the conventional methods of direct headspace sampling, like CLS and P and T methods. The solventless extraction aspect of active sampling with the INCAT device simplifies the sampling method without requiring time to each an equilibrium with the headspace analytes. 14 refs., 11 figs., 3 tabs.

  14. 3D nanoporous optofluidic device for high sensitivity SERS detection

    Science.gov (United States)

    H. Yazdi, Soroush; White, Ian M.

    2012-03-01

    We report the demonstration of an optofluidic surface enhanced Raman spectroscopy (SERS) device that leverages nanoporous microfluidics to dramatically increase the SERS performance. A number of optofluidic approaches have been used to improve the detection limit of SERS in microfluidic channels, including active concentration of nanoparticles and/or analyte and passive concentration of nanoparticles. Previous reports have used a single nanofabricated fluidic channel to trap metal nanoparticles and adsorbed analytes. In this work, we utilize a significantly simpler fabrication approach by packing silica beads in a microfluidic channel to create a 3D nanofluidic concentration matrix. The device is fabricated using polydimethylsiloxane (PDMS) on glass using typical soft lithography methods. Due to the larger area of the nanoporous fluidic channel, this approach should be less prone to clogging than single nanofluidic inlets, and the loading time is decreased compared to previous reports. Using this microfluidic device, we achieved a detection limit of 4 femtomoles of Rhodamine 6G in 2 minutes. Compared to an open microfluidic channel, the 3D nanoporous concentration matrix increased the SERS signal by a factor of 250 due to the trapping of silver nanoclusters. Fiber optic cables are integrated into the PDMS to deliver excitation light directly to the detection volume and to collect Raman-scattered photons. As a result, the use of a laser diode and alignment-free integrated fiber optics implies the potential for the device to be used in portable and automated applications, such as the on-site detection of pesticides, water contaminants, and explosives.

  15. Focusing cold neutrons using capillary optics for analytical nuclear methods

    International Nuclear Information System (INIS)

    The authors demonstrate improved detection limits and lateral resolution for prompt gamma activation analysis (PGAA) by using a neutron focusing device to increase the neutron intensity. The neutron lens, made of glass fibers with hollow polycapillaries, was designed and constructed by X-Ray Optical Systems, Inc. It has been characterized and used for preliminary experiments at the PGAA station of the Cold Neutron Research Facility (CNRF) at NIST. The lens accepts a polychromatic cold neutron beam (wavelengths longer than 0.4 run) from a neutron guide 50 mm x 45 mm in cross section, and delivers a focused beam of 0.5 mm in diameter (full width at half maximum) at 52 mm from the exit of the capillaries. The average neutron current density at the focus within the FWHM is 80 times higher than that of the direct incident beam. Test samples of 2% gadolinium glass particles of size about 0.1 to 0.2 mm, and cylindrical glass samples of 0.5 mm and 1 mm in diameter containing 15 % boron have been scanned across the focal plane to determine the spatial response as well as the peak count rate. Results from both sets of measurements show promise for higher detection sensitivity on small samples, and for two-dimensional mapping of samples with lateral compositional variation. Problems associated with neutron background will be addressed

  16. Microfabricated capillary electrophoresis amino acid chirality analyzer for extraterrestrial exploration

    Science.gov (United States)

    Hutt, L. D.; Glavin, D. P.; Bada, J. L.; Mathies, R. A.

    1999-01-01

    Chiral separations of fluorescein isothiocyanate-labeled amino acids have been performed on a microfabricated capillary electrophoresis chip to explore the feasibility of using such devices to analyze for extinct or extant life signs in extraterrestrial environments. The test system consists of a folded electrophoresis channel (19.0 cm long x 150 microns wide x 20 microns deep) that was photolithographically fabricated in a 10-cm-diameter glass wafer sandwich, coupled to a laser-excited confocal fluorescence detection apparatus providing subattomole sensitivity. Using a sodium dodecyl sulfate/gamma-cyclodextrin pH 10.0 carbonate electrophoresis buffer and a separation voltage of 550 V/cm at 10 degrees C, baseline resolution was observed for Val, Ala, Glu, and Asp enantiomers and Gly in only 4 min. Enantiomeric ratios were determined for amino acids extracted from the Murchison meteorite, and these values closely matched values determined by HPLC. These results demonstrate the feasibility of using microfabricated lab-on-a-chip systems to analyze extraterrestrial samples for amino acids.

  17. Water Tank with Capillary Air/Liquid Separation

    Science.gov (United States)

    Ungar, Eugene K.; Smith, Frederick; Edeen, Gregg; Almlie, Jay C.

    2010-01-01

    A bladderless water tank (see figure) has been developed that contains capillary devices that allow it to be filled and emptied, as needed, in microgravity. When filled with water, the tank shields human occupants of a spacecraft against cosmic radiation. A membrane that is permeable by air but is hydrophobic (neither wettable nor permeable by liquid water) covers one inside surface of the tank. Grooves between the surface and the membrane allow air to flow through vent holes in the surface as the tank is filled or drained. A margin of wettable surface surrounds the edges of the membrane, and all the other inside tank surfaces are also wettable. A fill/drain port is located in one corner of the tank and is covered with a hydrophilic membrane. As filling begins, water runs from the hydrophilic membrane into the corner fillets of the tank walls. Continued filling in the absence of gravity will result in a single contiguous air bubble that will be vented through the hydrophobic membrane. The bubble will be reduced in size until it becomes spherical and smaller than the tank thickness. Draining the tank reverses the process. Air is introduced through the hydrophobic membrane, and liquid continuity is maintained with the fill/drain port through the corner fillets. Even after the tank is emptied, as long as the suction pressure on the hydrophilic membrane does not exceed its bubble point, no air will be drawn into the liquid line.

  18. A new injection method for soil nutrient analysis in capillary electrophoresis

    Science.gov (United States)

    Smolka, M.; Puchberger-Enengl, D.; Bipoun, M.; Fercher, G.; Klasa, A.; Krutzler, C.; Keplinger, F.; Vellekoop, M. J.

    2013-05-01

    We present a new method for the direct injection of liquid sample into a capillary electrophoresis (CE) device. Instead of a double-T injection mechanism, a single inlet provided with a membrane filter is used. From a reservoir on top of this inlet, the liquid directly enters the separation channel through the membrane. The driving force is a short electrical pulse. This avoids an additional sample channel, so that the chip needs only three microfluidic connects and no mechanical sample pumping is demanded. The high injection reproducibility and the comparatively simple setup open up the way for mobile application of soil analysis.

  19. A neuron-in-capillary platform for facile collection and mass spectrometric characterization of a secreted neuropeptide

    OpenAIRE

    Chang Young Lee; Yi Fan; Rubakhin, Stanislav S.; Sook Yoon; Sweedler, Jonathan V.

    2016-01-01

    The integration of microfluidic devices—which efficiently handle small liquid volumes—with separations/mass spectrometry (MS) is an effective approach for profiling the neurochemistry occurring in selected neurons. Interfacing the microfluidic cell culture to the mass spectrometer is challenging because of geometric and scaling issues. Here we demonstrate the hyphenation of a neuron-in-capillary platform to a solid phase extraction device and off-line MS. A primary neuronal culture of Aplysia...

  20. CMOS absorbance detection system for capillary electrophoresis

    International Nuclear Information System (INIS)

    This paper presents a cost-effective portable photodetection system for capillary electrophoresis absorptiometry. By using a CMOS BDJ (buried double p-n junction) detector, a dual-wavelength method for absorbance measurement is implemented. This system includes associated electronics for low-noise pre-amplification and A/D conversion, followed by digital signal acquisition and processing. Two signal processing approaches are adopted to enhance the signal to noise ratio. One is variable time synchronous detection, which optimizes the sensitivity and measuring rate compared to a conventional synchronous detection technique. The other is a statistical approach based on principal component analysis, which allows optimal estimation of detected signal. This system has been designed and tested in capillary electrophoresis conditions. Its operation has been verified with performances comparable to those of a commercialized spectrophotometric system (HP-3D CE). With potential on-chip integration of associated electronics, it may be operated as an integrable detection module for microchip electrophoresis and other microanalysis systems