WorldWideScience

Sample records for canonical clock genes

  1. Transcriptional oscillation of canonical clock genes in mouse peripheral tissues

    Directory of Open Access Journals (Sweden)

    Nakahata Yasukazu

    2004-10-01

    Full Text Available Abstract Background The circadian rhythm of about 24 hours is a fundamental physiological function observed in almost all organisms from prokaryotes to humans. Identification of clock genes has allowed us to study the molecular bases for circadian behaviors and temporal physiological processes such as hormonal secretion, and has prompted the idea that molecular clocks reside not only in a central pacemaker, the suprachiasmatic nuclei (SCN of hypothalamus in mammals, but also in peripheral tissues, even in immortalized cells. Furthermore, previous molecular dissection revealed that the mechanism of circadian oscillation at a molecular level is based on transcriptional regulation of clock and clock-controlled genes. Results We systematically analyzed the mRNA expression of clock and clock-controlled genes in mouse peripheral tissues. Eight genes (mBmal1, mNpas2, mRev-erbα, mDbp, mRev-erbβ, mPer3, mPer1 and mPer2; given in the temporal order of the rhythm peak showed robust circadian expressions of mRNAs in all tissues except testis, suggesting that these genes are core molecules of the molecular biological clock. The bioinformatics analysis revealed that these genes have one or a combination of 3 transcriptional elements (RORE, DBPE, and E-box, which are conserved among human, mouse, and rat genome sequences, and indicated that these 3 elements may be responsible for the biological timing of expression of canonical clock genes. Conclusions The observation of oscillatory profiles of canonical clock genes is not only useful for physiological and pathological examination of the circadian clock in various organs but also important for systematic understanding of transcriptional regulation on a genome-wide basis. Our finding of the oscillatory expression of canonical clock genes with a temporal order provides us an interesting hypothesis, that cyclic timing of all clock and clock-controlled genes may be dependent on several transcriptional elements

  2. Circadian rhythms of fetal liver transcription persist in the absence of canonical circadian clock gene expression rhythms in vivo.

    Directory of Open Access Journals (Sweden)

    Chengwei Li

    Full Text Available The cellular circadian clock and systemic cues drive rhythmicity in the transcriptome of adult peripheral tissues. However, the oscillating status of the circadian clocks in fetal tissues, and their response to maternal cues, are less clear. Most clock genes do not cycle in fetal livers from mice and rats, although tissue level rhythms rapidly emerge when fetal mouse liver explants are cultured in vitro. Thus, in the fetal mouse liver, the circadian clock does not oscillate at the cellular level (but is induced to oscillate in culture. To gain a comprehensive overview of the clock status in the fetal liver during late gestation, we performed microarray analyses on fetal liver tissues. In the fetal liver we did not observe circadian rhythms of clock gene expression or many other transcripts known to be rhythmically expressed in the adult liver. Nevertheless, JTK_CYCLE analysis identified some transcripts in the fetal liver that were rhythmically expressed, albeit at low amplitudes. Upon data filtering by coefficient of variation, the expression levels for transcripts related to pancreatic exocrine enzymes and zymogen secretion were found to undergo synchronized daily fluctuations at high amplitudes. These results suggest that maternal cues influence the fetal liver, despite the fact that we did not detect circadian rhythms of canonical clock gene expression in the fetal liver. These results raise important questions on the role of the circadian clock, or lack thereof, during ontogeny.

  3. Identification, Characterization, and Diel Pattern of Expression of Canonical Clock Genes in Nephrops norvegicus (Crustacea: Decapoda Eyestalk.

    Directory of Open Access Journals (Sweden)

    Valerio Sbragaglia

    Full Text Available The Norway lobster, Nephrops norvegicus, is a burrowing decapod with a rhythmic burrow emergence (24 h governed by the circadian system. It is an important resource for European fisheries and its behavior deeply affects its availability. The current knowledge of Nephrops circadian biology is phenomenological as it is currently the case for almost all crustaceans. In attempt to elucidate the putative molecular mechanisms underlying circadian gene regulation in Nephrops, we used a transcriptomics approach on cDNA extracted from the eyestalk, a structure playing a crucial role in controlling behavior of decapods. We studied 14 male lobsters under 12-12 light-darkness blue light cycle. We used the Hiseq 2000 Illumina platform to sequence two eyestalk libraries (under light and darkness conditions obtaining about 90 millions 100-bp paired-end reads. Trinity was used for the de novo reconstruction of transcriptomes; the size at which half of all assembled bases reside in contigs (N50 was equal to 1796 (light and 2055 (darkness. We found a list of candidate clock genes and focused our attention on canonical ones: timeless, period, clock and bmal1. The cloning of assembled fragments validated Trinity outputs. The putative Nephrops clock genes showed high levels of identity (blastx on NCBI with known crustacean clock gene homologs such as Eurydice pulchra (period: 47%, timeless: 59%, bmal1: 79% and Macrobrachium rosenbergii (clock: 100%. We also found a vertebrate-like cryptochrome 2. RT-qPCR showed that only timeless had a robust diel pattern of expression. Our data are in accordance with the current knowledge of the crustacean circadian clock, reinforcing the idea that the molecular clockwork of this group shows some differences with the established model in Drosophila melanogaster.

  4. Identification, Characterization, and Diel Pattern of Expression of Canonical Clock Genes in Nephrops norvegicus (Crustacea: Decapoda) Eyestalk

    Science.gov (United States)

    Sbragaglia, Valerio; Lamanna, Francesco; M. Mat, Audrey; Rotllant, Guiomar; Joly, Silvia; Ketmaier, Valerio; de la Iglesia, Horacio O.; Aguzzi, Jacopo

    2015-01-01

    The Norway lobster, Nephrops norvegicus, is a burrowing decapod with a rhythmic burrow emergence (24 h) governed by the circadian system. It is an important resource for European fisheries and its behavior deeply affects its availability. The current knowledge of Nephrops circadian biology is phenomenological as it is currently the case for almost all crustaceans. In attempt to elucidate the putative molecular mechanisms underlying circadian gene regulation in Nephrops, we used a transcriptomics approach on cDNA extracted from the eyestalk, a structure playing a crucial role in controlling behavior of decapods. We studied 14 male lobsters under 12–12 light-darkness blue light cycle. We used the Hiseq 2000 Illumina platform to sequence two eyestalk libraries (under light and darkness conditions) obtaining about 90 millions 100-bp paired-end reads. Trinity was used for the de novo reconstruction of transcriptomes; the size at which half of all assembled bases reside in contigs (N50) was equal to 1796 (light) and 2055 (darkness). We found a list of candidate clock genes and focused our attention on canonical ones: timeless, period, clock and bmal1. The cloning of assembled fragments validated Trinity outputs. The putative Nephrops clock genes showed high levels of identity (blastx on NCBI) with known crustacean clock gene homologs such as Eurydice pulchra (period: 47%, timeless: 59%, bmal1: 79%) and Macrobrachium rosenbergii (clock: 100%). We also found a vertebrate-like cryptochrome 2. RT-qPCR showed that only timeless had a robust diel pattern of expression. Our data are in accordance with the current knowledge of the crustacean circadian clock, reinforcing the idea that the molecular clockwork of this group shows some differences with the established model in Drosophila melanogaster. PMID:26524198

  5. Diurnal rhythmicity of the canonical clock genes Per1, per2 and Bmal1 in the rat adrenal gland is unaltered after hypophysectomy

    DEFF Research Database (Denmark)

    Fahrenkrug, J.; Hannibal, J.; Georg, B.

    2008-01-01

    Circadian rhythms are generated by endogenous clocks in the central brain oscillator, the suprachiasmatic nucleus (SCN), and peripheral tissues. The molecular basis for the circadian clock consists of a number of genes and proteins that form transcriptional/translational feedback loops. Rhythmic...... expression of clock genes in the adrenal glands has previously been reported. Since the central clock in the SCN communicates with the adrenal glands via circadian release of adrenocorticotrophic hormone, we quantified the mRNAs for the canonical clock genes, Per1, Per2 and Bmal1 in the adrenal glands by...... real-time reverse transcription-polymerase chain reaction during a 24-h-cycle in normal and hypophysectomised rats. The mRNAs for all the three clock genes disclosed rhythmic oscillations with a period of 24 h and the phase did not differ between the hypophysectomised and intact rats. The expression...

  6. Clock Genes in Glia Cells

    Science.gov (United States)

    Chi-Castañeda, Donají

    2016-01-01

    Circadian rhythms are periodic patterns in biological processes that allow the organisms to anticipate changes in the environment. These rhythms are driven by the suprachiasmatic nucleus (SCN), the master circadian clock in vertebrates. At a molecular level, circadian rhythms are regulated by the so-called clock genes, which oscillate in a periodic manner. The protein products of clock genes are transcription factors that control their own and other genes’ transcription, collectively known as “clock-controlled genes.” Several brain regions other than the SCN express circadian rhythms of clock genes, including the amygdala, the olfactory bulb, the retina, and the cerebellum. Glia cells in these structures are expected to participate in rhythmicity. However, only certain types of glia cells may be called “glial clocks,” since they express PER-based circadian oscillators, which depend of the SCN for their synchronization. This contribution summarizes the current information about clock genes in glia cells, their plausible role as oscillators and their medical implications. PMID:27666286

  7. The Transcriptional Repressor ID2 Can Interact with the Canonical Clock Components CLOCK and BMAL1 and Mediate Inhibitory Effects on mPer1 Expression*

    OpenAIRE

    Ward, Sarah M.; Fernando, Shanik J.; Hou, Tim Y.; Duffield, Giles E.

    2010-01-01

    ID2 is a rhythmically expressed HLH transcriptional repressor. Deletion of Id2 in mice results in circadian phenotypes, highlighted by disrupted locomotor activity rhythms and an enhanced photoentrainment response. ID2 can suppress the transactivation potential of the positive elements of the clock, CLOCK-BMAL1, on mPer1 and clock-controlled gene (CCG) activity. Misregulation of CCGs is observed in Id2−/− liver, and mutant mice exhibit associated alterations in lipid homeostasis. These data s...

  8. Dopamine receptor-mediated regulation of neuronal "clock" gene expression.

    Science.gov (United States)

    Imbesi, M; Yildiz, S; Dirim Arslan, A; Sharma, R; Manev, H; Uz, T

    2009-01-23

    Using a transgenic mice model (i.e. "clock" knockouts), clock transcription factors have been suggested as critical regulators of dopaminergic behaviors induced by drugs of abuse. Moreover, it has been shown that systemic administration of psychostimulants, such as cocaine and methamphetamine regulates the striatal expression of clock genes. However, it is not known whether dopamine receptors mediate these regulatory effects of psychostimulants at the cellular level. Primary striatal neurons in culture express dopamine receptors as well as clock genes and have been successfully used in studying dopamine receptor functioning. Therefore, we investigated the role of dopamine receptors on neuronal clock gene expression in this model using specific receptor agonists. We found an inhibitory effect on the expression of mClock and mPer1 genes with the D2-class (i.e. D2/D3) receptor agonist quinpirole. We also found a generalized stimulatory effect on the expression of clock genes mPer1, mClock, mNPAS2 (neuronal PAS domain protein 2), and mBmal1 with the D1-class (i.e. D1) receptor agonist SKF38393. Further, we tested whether systemic administration of dopamine receptor agonists causes similar changes in striatal clock gene expression in vivo. We found quinpirole-induced alterations in mPER1 protein levels in the mouse striatum (i.e. rhythm shift). Collectively, our results indicate that the dopamine receptor system may mediate psychostimulant-induced changes in clock gene expression. Using striatal neurons in culture as a model, further research is needed to better understand how dopamine signaling modulates the expression dynamics of clock genes (i.e. intracellular signaling pathways) and thereby influences neuronal gene expression, neuronal transmission, and brain functioning. PMID:19017537

  9. Diurnal oscillations of soybean circadian clock and drought responsive genes.

    Directory of Open Access Journals (Sweden)

    Juliana Marcolino-Gomes

    Full Text Available Rhythms produced by the endogenous circadian clock play a critical role in allowing plants to respond and adapt to the environment. While there is a well-established regulatory link between the circadian clock and responses to abiotic stress in model plants, little is known of the circadian system in crop species like soybean. This study examines how drought impacts diurnal oscillation of both drought responsive and circadian clock genes in soybean. Drought stress induced marked changes in gene expression of several circadian clock-like components, such as LCL1-, GmELF4- and PRR-like genes, which had reduced expression in stressed plants. The same conditions produced a phase advance of expression for the GmTOC1-like, GmLUX-like and GmPRR7-like genes. Similarly, the rhythmic expression pattern of the soybean drought-responsive genes DREB-, bZIP-, GOLS-, RAB18- and Remorin-like changed significantly after plant exposure to drought. In silico analysis of promoter regions of these genes revealed the presence of cis-elements associated both with stress and circadian clock regulation. Furthermore, some soybean genes with upstream ABRE elements were responsive to abscisic acid treatment. Our results indicate that some connection between the drought response and the circadian clock may exist in soybean since (i drought stress affects gene expression of circadian clock components and (ii several stress responsive genes display diurnal oscillation in soybeans.

  10. The molecular clock regulates circadian transcription of tissue factor gene.

    Science.gov (United States)

    Oishi, Katsutaka; Koyanagi, Satoru; Ohkura, Naoki

    2013-02-01

    Tissue factor (TF) is involved in endotoxin-induced inflammation and mortality. We found that the circadian expression of TF mRNA, which peaked at the day to night transition (activity onset), was damped in the liver of Clock mutant mice. Luciferase reporter and chromatin immunoprecipitation analyses using embryonic fibroblasts derived from wild-type or Clock mutant mice showed that CLOCK is involved in transcription of the TF gene. Furthermore, the results of real-time luciferase reporter experiments revealed that the circadian expression of TF mRNA is regulated by clock molecules through a cell-autonomous mechanism via an E-box element located in the promoter region.

  11. Crosstalk of clock gene expression and autophagy in aging

    Science.gov (United States)

    Kalfalah, Faiza; Janke, Linda; Schiavi, Alfonso; Tigges, Julia; Ix, Alexander; Ventura, Natascia; Boege, Fritz; Reinke, Hans

    2016-01-01

    Autophagy and the circadian clock counteract tissue degeneration and support longevity in many organisms. Accumulating evidence indicates that aging compromises both the circadian clock and autophagy but the mechanisms involved are unknown. Here we show that the expression levels of transcriptional repressor components of the circadian oscillator, most prominently the human Period homologue PER2, are strongly reduced in primary dermal fibroblasts from aged humans, while raising the expression of PER2 in the same cells partially restores diminished autophagy levels. The link between clock gene expression and autophagy is corroborated by the finding that the circadian clock drives cell-autonomous, rhythmic autophagy levels in immortalized murine fibroblasts, and that siRNA-mediated downregulation of PER2 decreases autophagy levels while leaving core clock oscillations intact. Moreover, the Period homologue lin-42 regulates autophagy and life span in the nematode Caenorhabditis elegans, suggesting an evolutionarily conserved role for Period proteins in autophagy control and aging. Taken together, this study identifies circadian clock proteins as set-point regulators of autophagy and puts forward a model, in which age-related changes of clock gene expression promote declining autophagy levels. PMID:27574892

  12. Adrenergic regulation of clock gene expression in mouse liver

    OpenAIRE

    Terazono, Hideyuki; Mutoh, Tatsushi; Yamaguchi, Shun; Kobayashi, Masaki; Akiyama, Masashi; Udo, Rhyuta; Ohdo, Shigehiro; Okamura, Hitoshi; Shibata, Shigenobu

    2003-01-01

    A main oscillator in the suprachiasmatic nucleus (SCN) conveys circadian information to the peripheral clock systems for the regulation of fundamental physiological functions. Although polysynaptic autonomic neural pathways between the SCN and the liver were observed in rats, whether activation of the sympathetic nervous system entrains clock gene expression in the liver has yet to be understood. To assess sympathetic innervation from the SCN to liver tissue, we investigated whether inj...

  13. Absence of canonical active chromatin marks in developmentally regulated genes

    Science.gov (United States)

    Ruiz-Romero, Marina; Corominas, Montserrat; Guigó, Roderic

    2015-01-01

    The interplay of active and repressive histone modifications is assumed to play a key role in the regulation of gene expression. In contrast to this generally accepted view, we show that transcription of genes temporally regulated during fly and worm development occurs in the absence of canonically active histone modifications. Conversely, strong chromatin marking is related to transcriptional and post-transcriptional stability, an association that we also observe in mammals. Our results support a model in which chromatin marking is associated to stable production of RNA, while unmarked chromatin would permit rapid gene activation and de-activation during development. In this case, regulation by transcription factors would play a comparatively more important regulatory role. PMID:26280901

  14. Circadian clock components in the rat neocortex

    DEFF Research Database (Denmark)

    Rath, Martin Fredensborg; Rohde, Kristian; Fahrenkrug, Jan;

    2013-01-01

    have shown the presence of peripheral clocks in extra-hypothalamic areas of the central nervous system. However, knowledge on the clock gene network in the cerebral cortex is limited. We here show that the mammalian clock genes Per1, Per2, Per3, Cry1, Cry2, Bmal1, Clock, Nr1d1 and Dbp are expressed...... expression in the neocortex is dependent on the SCN. In situ hybridization and immunohistochemistry showed that products of the canonical clock gene Per2 are located in perikarya throughout all areas of the neocortex. These findings show that local circadian oscillators driven by the SCN reside within......The circadian master clock of the mammalian brain resides in the suprachiasmatic nucleus (SCN) of the hypothalamus. At the molecular level, the clock of the SCN is driven by a transcriptional/posttranslational autoregulatory network with clock gene products as core elements. Recent investigations...

  15. Altered expression pattern of clock genes in a rat model of depression

    DEFF Research Database (Denmark)

    Christiansen, Sofie; Bouzinova, Elena; Fahrenkrug, Jan;

    2016-01-01

    of clock gene expression in depressive patients many studies have reported single-nucleotide polymorphisms in clock genes in these patients. METHODS: In the present study we investigated whether a depression-like state in rats associates with alternations of the diurnal expression of clock genes......: The present results suggest that altered expression of investigated clock genes are likely to associate with the induction of a depression-like state in the CMS model...

  16. Altered circadian clock gene expression in patients with schizophrenia.

    Science.gov (United States)

    Johansson, Anne-Sofie; Owe-Larsson, Björn; Hetta, Jerker; Lundkvist, Gabriella B

    2016-07-01

    Impaired circadian rhythmicity has been reported in several psychiatric disorders. Schizophrenia is commonly associated with aberrant sleep-wake cycles and insomnia. It is not known if schizophrenia is associated with disturbances in molecular rhythmicity. We cultured fibroblasts from skin samples obtained from patients with chronic schizophrenia and from healthy controls, respectively, and analyzed the circadian expression during 48h of the clock genes CLOCK, BMAL1, PER1, PER2, CRY1, CRY2, REV-ERBα and DBP. In fibroblasts obtained from patients with chronic schizophrenia, we found a loss of rhythmic expression of CRY1 and PER2 compared to cells from healthy controls. We also estimated the sleep quality in these patients and found that most of them suffered from poor sleep in comparison with the healthy controls. In another patient sample, we analyzed mononuclear blood cells from patients with schizophrenia experiencing their first episode of psychosis, and found decreased expression of CLOCK, PER2 and CRY1 compared to blood cells from healthy controls. These novel findings show disturbances in the molecular clock in schizophrenia and have important implications in our understanding of the aberrant rhythms reported in this disease. PMID:27132483

  17. Osmotic stress at the barley root affects expression of circadian clock genes in the shoot.

    Science.gov (United States)

    Habte, Ermias; Müller, Lukas M; Shtaya, Munqez; Davis, Seth J; von Korff, Maria

    2014-06-01

    The circadian clock is an important timing system that controls physiological responses to abiotic stresses in plants. However, there is little information on the effects of the clock on stress adaptation in important crops, like barley. In addition, we do not know how osmotic stress perceived at the roots affect the shoot circadian clock. Barley genotypes, carrying natural variation at the photoperiod response and clock genes Ppd-H1 and HvELF3, were grown under control and osmotic stress conditions to record changes in the diurnal expression of clock and stress-response genes and in physiological traits. Variation at HvELF3 affected the expression phase and shape of clock and stress-response genes, while variation at Ppd-H1 only affected the expression levels of stress genes. Osmotic stress up-regulated expression of clock and stress-response genes and advanced their expression peaks. Clock genes controlled the expression of stress-response genes, but had minor effects on gas exchange and leaf transpiration. This study demonstrated that osmotic stress at the barley root altered clock gene expression in the shoot and acted as a spatial input signal into the clock. Unlike in Arabidopsis, barley primary assimilation was less controlled by the clock and more responsive to environmental perturbations, such as osmotic stress. PMID:24895755

  18. Regulation of intestinal lipid absorption by clock genes.

    Science.gov (United States)

    Hussain, M Mahmood

    2014-01-01

    Plasma levels of triacylglycerols and diacylglycerols, the lipoproteins that transport them, and proteins involved in their absorption from the intestinal lumen fluctuate in a circadian manner. These changes are likely controlled by clock genes expressed in the intestine that are probably synchronized by neuronal and humoral signals from the suprachiasmatic nuclei, which constitute a master clock entrained by light signals from the eyes and from the environment, e.g., food availability. Acute changes in circadian rhythms--e.g., due to nonsynchronous work schedules or a transcontinental flight--may trigger intestinal discomfort. Chronic disruptions in circadian control mechanisms may predispose the individual to irritable bowel syndrome, gastroesophageal reflux disease, and peptic ulcer disease. A more detailed understanding of the molecular mechanisms underlying temporal changes in intestinal activity might allow us to identify novel targets for developing therapeutic approaches to these disorders.

  19. Regulation of clock-controlled genes in mammals.

    Directory of Open Access Journals (Sweden)

    Katarzyna Bozek

    Full Text Available The complexity of tissue- and day time-specific regulation of thousands of clock-controlled genes (CCGs suggests that many regulatory mechanisms contribute to the transcriptional output of the circadian clock. We aim to predict these mechanisms using a large scale promoter analysis of CCGs.Our study is based on a meta-analysis of DNA-array data from rodent tissues. We searched in the promoter regions of 2065 CCGs for highly overrepresented transcription factor binding sites. In order to compensate the relatively high GC-content of CCG promoters, a novel background model to avoid a bias towards GC-rich motifs was employed. We found that many of the transcription factors with overrepresented binding sites in CCG promoters exhibit themselves circadian rhythms. Among the predicted factors are known regulators such as CLOCKratioBMAL1, DBP, HLF, E4BP4, CREB, RORalpha and the recently described regulators HSF1, STAT3, SP1 and HNF-4alpha. As additional promising candidates of circadian transcriptional regulators PAX-4, C/EBP, EVI-1, IRF, E2F, AP-1, HIF-1 and NF-Y were identified. Moreover, GC-rich motifs (SP1, EGR, ZF5, AP-2, WT1, NRF-1 and AT-rich motifs (MEF-2, HMGIY, HNF-1, OCT-1 are significantly overrepresented in promoter regions of CCGs. Putative tissue-specific binding sites such as HNF-3 for liver, NKX2.5 for heart or Myogenin for skeletal muscle were found. The regulation of the erythropoietin (Epo gene was analysed, which exhibits many binding sites for circadian regulators. We provide experimental evidence for its circadian regulated expression in the adult murine kidney. Basing on a comprehensive literature search we integrate our predictions into a regulatory network of core clock and clock-controlled genes. Our large scale analysis of the CCG promoters reveals the complexity and extensiveness of the circadian regulation in mammals. Results of this study point to connections of the circadian clock to other functional systems including

  20. Deep RNA profiling identified CLOCK and molecular clock genes as pathophysiological signatures in collagen VI myopathy.

    Science.gov (United States)

    Scotton, Chiara; Bovolenta, Matteo; Schwartz, Elena; Falzarano, Maria Sofia; Martoni, Elena; Passarelli, Chiara; Armaroli, Annarita; Osman, Hana; Rodolico, Carmelo; Messina, Sonia; Pegoraro, Elena; D'Amico, Adele; Bertini, Enrico; Gualandi, Francesca; Neri, Marcella; Selvatici, Rita; Boffi, Patrizia; Maioli, Maria Antonietta; Lochmüller, Hanns; Straub, Volker; Bushby, Katherine; Castrignanò, Tiziana; Pesole, Graziano; Sabatelli, Patrizia; Merlini, Luciano; Braghetta, Paola; Bonaldo, Paolo; Bernardi, Paolo; Foley, Reghan; Cirak, Sebahattin; Zaharieva, Irina; Muntoni, Francesco; Capitanio, Daniele; Gelfi, Cecilia; Kotelnikova, Ekaterina; Yuryev, Anton; Lebowitz, Michael; Zhang, Xiping; Hodge, Brian A; Esser, Karyn A; Ferlini, Alessandra

    2016-04-15

    Collagen VI myopathies are genetic disorders caused by mutations in collagen 6 A1, A2 and A3 genes, ranging from the severe Ullrich congenital muscular dystrophy to the milder Bethlem myopathy, which is recapitulated by collagen-VI-null (Col6a1(-/-)) mice. Abnormalities in mitochondria and autophagic pathway have been proposed as pathogenic causes of collagen VI myopathies, but the link between collagen VI defects and these metabolic circuits remains unknown. To unravel the expression profiling perturbation in muscles with collagen VI myopathies, we performed a deep RNA profiling in bothCol6a1(-/-)mice and patients with collagen VI pathology. The interactome map identified common pathways suggesting a previously undetected connection between circadian genes and collagen VI pathology. Intriguingly,Bmal1(-/-)(also known asArntl) mice, a well-characterized model displaying arrhythmic circadian rhythms, showed profound deregulation of the collagen VI pathway and of autophagy-related genes. The involvement of circadian rhythms in collagen VI myopathies is new and links autophagy and mitochondrial abnormalities. It also opens new avenues for therapies of hereditary myopathies to modulate the molecular clock or potential gene-environment interactions that might modify muscle damage pathogenesis. PMID:26945058

  1. Deep RNA profiling identified CLOCK and molecular clock genes as pathophysiological signatures in collagen VI myopathy.

    Science.gov (United States)

    Scotton, Chiara; Bovolenta, Matteo; Schwartz, Elena; Falzarano, Maria Sofia; Martoni, Elena; Passarelli, Chiara; Armaroli, Annarita; Osman, Hana; Rodolico, Carmelo; Messina, Sonia; Pegoraro, Elena; D'Amico, Adele; Bertini, Enrico; Gualandi, Francesca; Neri, Marcella; Selvatici, Rita; Boffi, Patrizia; Maioli, Maria Antonietta; Lochmüller, Hanns; Straub, Volker; Bushby, Katherine; Castrignanò, Tiziana; Pesole, Graziano; Sabatelli, Patrizia; Merlini, Luciano; Braghetta, Paola; Bonaldo, Paolo; Bernardi, Paolo; Foley, Reghan; Cirak, Sebahattin; Zaharieva, Irina; Muntoni, Francesco; Capitanio, Daniele; Gelfi, Cecilia; Kotelnikova, Ekaterina; Yuryev, Anton; Lebowitz, Michael; Zhang, Xiping; Hodge, Brian A; Esser, Karyn A; Ferlini, Alessandra

    2016-04-15

    Collagen VI myopathies are genetic disorders caused by mutations in collagen 6 A1, A2 and A3 genes, ranging from the severe Ullrich congenital muscular dystrophy to the milder Bethlem myopathy, which is recapitulated by collagen-VI-null (Col6a1(-/-)) mice. Abnormalities in mitochondria and autophagic pathway have been proposed as pathogenic causes of collagen VI myopathies, but the link between collagen VI defects and these metabolic circuits remains unknown. To unravel the expression profiling perturbation in muscles with collagen VI myopathies, we performed a deep RNA profiling in both Col6a1(-/-)mice and patients with collagen VI pathology. The interactome map identified common pathways suggesting a previously undetected connection between circadian genes and collagen VI pathology. Intriguingly, Bmal1(-/-)(also known as Arntl) mice, a well-characterized model displaying arrhythmic circadian rhythms, showed profound deregulation of the collagen VI pathway and of autophagy-related genes. The involvement of circadian rhythms in collagen VI myopathies is new and links autophagy and mitochondrial abnormalities. It also opens new avenues for therapies of hereditary myopathies to modulate the molecular clock or potential gene-environment interactions that might modify muscle damage pathogenesis.

  2. Divergent roles of clock genes in retinal and suprachiasmatic nucleus circadian oscillators.

    Directory of Open Access Journals (Sweden)

    Guo-Xiang Ruan

    Full Text Available The retina is both a sensory organ and a self-sustained circadian clock. Gene targeting studies have revealed that mammalian circadian clocks generate molecular circadian rhythms through coupled transcription/translation feedback loops which involve 6 core clock genes, namely Period (Per 1 and 2, Cryptochrome (Cry 1 and 2, Clock, and Bmal1 and that the roles of individual clock genes in rhythms generation are tissue-specific. However, the mechanisms of molecular circadian rhythms in the mammalian retina are incompletely understood and the extent to which retinal neural clocks share mechanisms with the suprachiasmatic nucleus (SCN, the central neural clock, is unclear. In the present study, we examined the rhythmic amplitude and period of real-time bioluminescence rhythms in explants of retina from Per1-, Per2-, Per3-, Cry1-, Cry2-, and Clock-deficient mice that carried transgenic PERIOD2::LUCIFERASE (PER2::LUC or Period1::luciferase (Per1::luc circadian reporters. Per1-, Cry1- and Clock-deficient retinal and SCN explants showed weakened or disrupted rhythms, with stronger effects in retina compared to SCN. Per2, Per3, and Cry2 were individually dispensable for sustained rhythms in both tissues. Retinal and SCN explants from double knockouts of Cry1 and Cry2 were arrhythmic. Gene effects on period were divergent with reduction in the number of Per1 alleles shortening circadian period in retina, but lengthening it in SCN, and knockout of Per3 substantially shortening retinal clock period, but leaving SCN unaffected. Thus, the retinal neural clock has a unique pattern of clock gene dependence at the tissue level that it is similar in pattern, but more severe in degree, than the SCN neural clock, with divergent clock gene regulation of rhythmic period.

  3. Daily rhythmicity of clock gene transcripts in atlantic cod fast skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Carlo C Lazado

    Full Text Available The classical notion of a centralized clock that governs circadian rhythmicity has been challenged with the discovery of peripheral oscillators that enable organisms to cope with daily changes in their environment. The present study aimed to identify the molecular clock components in Atlantic cod (Gadus morhua and to investigate their daily gene expression in fast skeletal muscle. Atlantic cod clock genes were closely related to their orthologs in teleosts and tetrapods. Synteny was conserved to varying degrees in the majority of the 18 clock genes examined. In particular, aryl hydrocarbon receptor nuclear translocator-like 2 (arntl2, RAR-related orphan receptor A (rora and timeless (tim displayed high degrees of conservation. Expression profiling during the early ontogenesis revealed that some transcripts were maternally transferred, namely arntl2, cryptochrome 1b and 2 (cry1b and cry2, and period 2a and 2b (per2a and per2b. Most clock genes were ubiquitously expressed in various tissues, suggesting the possible existence of multiple peripheral clock systems in Atlantic cod. In particular, they were all detected in fast skeletal muscle, with the exception of neuronal PAS (Per-Arnt-Single-minded domain-containing protein (npas1 and rora. Rhythmicity analysis revealed 8 clock genes with daily rhythmic expression, namely arntl2, circadian locomotor output cycles kaput (clock, npas2, cry2, cry3 per2a, nuclear receptor subfamily 1, group D, member 1 (nr1d1, and nr1d2a. Transcript levels of the myogenic genes myogenic factor 5 (myf5 and muscleblind-like 1 (mbnl1 strongly correlated with clock gene expression. This is the first study to unravel the molecular components of peripheral clocks in Atlantic cod. Taken together, our data suggest that the putative clock system in fast skeletal muscle of Atlantic cod has regulatory implications on muscle physiology, particularly in the expression of genes related to myogenesis.

  4. Feeding cues and injected nutrients induce acute expression of multiple clock genes in the mouse liver.

    Directory of Open Access Journals (Sweden)

    Hideaki Oike

    Full Text Available The circadian clock is closely associated with energy metabolism. The liver clock can rapidly adapt to a new feeding cycle within a few days, whereas the lung clock is gradually entrained over one week. However, the mechanism underlying tissue-specific clock resetting is not fully understood. To characterize the rapid response to feeding cues in the liver clock, we examined the effects of a single time-delayed feeding on circadian rhythms in the liver and lungs of Per2::Luc reporter knockin mice. After adapting to a night-time restricted feeding schedule, the mice were fed according to a 4, 8, or 13 h delayed schedule on the last day. The phase of the liver clock was delayed in all groups with delayed feeding, whereas the lung clock remained unaffected. We then examined the acute response of clock and metabolism-related genes in the liver using focused DNA-microarrays. Clock mutant mice were bred under constant light to attenuate the endogenous circadian rhythm, and gene expression profiles were determined during 24 h of fasting followed by 8 h of feeding. Per2 and Dec1 were significantly increased within 1 h of feeding. Real-time RT-PCR analysis revealed a similarly acute response in hepatic clock gene expression caused by feeding wild type mice after an overnight fast. In addition to Per2 and Dec1, the expression of Per1 increased, and that of Rev-erbα decreased in the liver within 1 h of feeding after fasting, whereas none of these clock genes were affected in the lung. Moreover, an intraperitoneal injection of glucose combined with amino acids, but not either alone, reproduced a similar hepatic response. Our findings show that multiple clock genes respond to nutritional cues within 1 h in the liver but not in the lung.

  5. The expression of melanopsin and clock genes in Xenopus laevis melanophores and their modulation by melatonin

    Energy Technology Data Exchange (ETDEWEB)

    Bluhm, A.P.C.; Obeid, N.N.; Castrucci, A.M.L.; Visconti, M.A. [Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP (Brazil)

    2012-05-25

    Vertebrates have a central clock and also several peripheral clocks. Light responses might result from the integration of light signals by these clocks. The dermal melanophores of Xenopus laevis have a photoreceptor molecule denominated melanopsin (OPN4x). The mechanisms of the circadian clock involve positive and negative feedback. We hypothesize that these dermal melanophores also present peripheral clock characteristics. Using quantitative PCR, we analyzed the pattern of temporal expression of Opn4x and the clock genes Per1, Per2, Bmal1, and Clock in these cells subjected to a 14-h light:10-h dark (14L:10D) regime or constant darkness (DD). Also, in view of the physiological role of melatonin in the dermal melanophores of X. laevis, we determined whether melatonin modulates the expression of these clock genes. These genes show a time-dependent expression pattern when these cells are exposed to 14L:10D, which differs from the pattern observed under DD. Cells kept in DD for 5 days exhibited overall increased mRNA expression for Opn4x and Clock, and a lower expression for Per1, Per2, and Bmal1. When the cells were kept in DD for 5 days and treated with melatonin for 1 h, 24 h before extraction, the mRNA levels tended to decrease for Opn4x and Clock, did not change for Bmal1, and increased for Per1 and Per2 at different Zeitgeber times (ZT). Although these data are limited to one-day data collection, and therefore preliminary, we suggest that the dermal melanophores of X. laevis might have some characteristics of a peripheral clock, and that melatonin modulates, to a certain extent, melanopsin and clock gene expression.

  6. Chronic mild stress alters circadian expressions of molecular clock genes in the liver.

    Science.gov (United States)

    Takahashi, Kei; Yamada, Tetsuya; Tsukita, Sohei; Kaneko, Keizo; Shirai, Yuta; Munakata, Yuichiro; Ishigaki, Yasushi; Imai, Junta; Uno, Kenji; Hasegawa, Yutaka; Sawada, Shojiro; Oka, Yoshitomo; Katagiri, Hideki

    2013-02-01

    Chronic stress is well known to affect metabolic regulation. However, molecular mechanisms interconnecting stress response systems and metabolic regulations have yet to be elucidated. Various physiological processes, including glucose/lipid metabolism, are regulated by the circadian clock, and core clock gene dysregulation reportedly leads to metabolic disorders. Glucocorticoids, acting as end-effectors of the hypothalamus-pituitary-adrenal (HPA) axis, entrain the circadian rhythms of peripheral organs, including the liver, by phase-shifting core clock gene expressions. Therefore, we examined whether chronic stress affects circadian expressions of core clock genes and metabolism-related genes in the liver using the chronic mild stress (CMS) procedure. In BALB/c mice, CMS elevated and phase-shifted serum corticosterone levels, indicating overactivation of the HPA axis. The rhythmic expressions of core clock genes, e.g., Clock, Npas2, Bmal1, Per1, and Cry1, were altered in the liver while being completely preserved in the hypothalamic suprachiasmatic nuculeus (SCN), suggesting that the SCN is not involved in alterations in hepatic core clock gene expressions. In addition, circadian patterns of glucose and lipid metabolism-related genes, e.g., peroxisome proliferator activated receptor (Ppar) α, Pparγ-1, Pparγ-coactivator-1α, and phosphoenolepyruvate carboxykinase, were also disturbed by CMS. In contrast, in C57BL/6 mice, the same CMS procedure altered neither serum corticosterone levels nor rhythmic expressions of hepatic core clock genes and metabolism-related genes. Thus, chronic stress can interfere with the circadian expressions of both core clock genes and metabolism-related genes in the liver possibly involving HPA axis overactivation. This mechanism might contribute to metabolic disorders in stressful modern societies.

  7. A survey of genomic studies supports association of circadian clock genes with bipolar disorder spectrum illnesses and lithium response.

    Directory of Open Access Journals (Sweden)

    Michael J McCarthy

    Full Text Available Circadian rhythm abnormalities in bipolar disorder (BD have led to a search for genetic abnormalities in circadian "clock genes" associated with BD. However, no significant clock gene findings have emerged from genome-wide association studies (GWAS. At least three factors could account for this discrepancy: complex traits are polygenic, the organization of the clock is more complex than previously recognized, and/or genetic risk for BD may be shared across multiple illnesses. To investigate these issues, we considered the clock gene network at three levels: essential "core" clock genes, upstream circadian clock modulators, and downstream clock controlled genes. Using relaxed thresholds for GWAS statistical significance, we determined the rates of clock vs. control genetic associations with BD, and four additional illnesses that share clinical features and/or genetic risk with BD (major depression, schizophrenia, attention deficit/hyperactivity. Then we compared the results to a set of lithium-responsive genes. Associations with BD-spectrum illnesses and lithium-responsiveness were both enriched among core clock genes but not among upstream clock modulators. Associations with BD-spectrum illnesses and lithium-responsiveness were also enriched among pervasively rhythmic clock-controlled genes but not among genes that were less pervasively rhythmic or non-rhythmic. Our analysis reveals previously unrecognized associations between clock genes and BD-spectrum illnesses, partly reconciling previously discordant results from past GWAS and candidate gene studies.

  8. Temporal dynamics of mouse hippocampal clock gene expression support memory processing.

    Science.gov (United States)

    Jilg, Antje; Lesny, Sandra; Peruzki, Natalie; Schwegler, Herbert; Selbach, Oliver; Dehghani, Faramarz; Stehle, Jörg H

    2010-03-01

    Hippocampal plasticity and mnemonic processing exhibit a striking time-of-day dependence and likely implicate a temporally structured replay of memory traces. Molecular mechanisms fulfilling the requirements of sensing time and capturing time-related information are coded in dynamics of so-called clock genes and their protein products, first discovered and described in the hypothalamic suprachiasmatic nucleus. Using real-time PCR and immunohistochemical analyses, we show that in wildtype mice core clock components (mPer1/PER1, mPer2/PER2, mCry1/CRY1, mCry2/CRY2, mClock/CLOCK, mBmal1/BMAL1) are expressed in neurons of all subregions of the hippocampus in a time-locked fashion over a 24-h (diurnal) day/night cycle. Temporal profiling of these transcriptional regulators reveals distinct and parallel peaks, at times when memory traces are usually formed and/or consolidated. The coordinated rhythmic expression of hippocampal clock gene expression is greatly disordered in mice deficient for the clock gene mPer1, a key player implicated in both, maintenance and adaptative plasticity of circadian clocks. Moreover, Per1-knockout animals are severely handicapped in a hippocampus-dependent long-term spatial learning paradigm. We propose that the dynamics of hippocampal clock gene expression imprint a temporal structure on memory processing and shape at the same time the efficacy of behavioral learning. PMID:19437502

  9. Acute light exposure suppresses circadian rhythms in clock gene expression.

    Science.gov (United States)

    Grone, Brian P; Chang, Doris; Bourgin, Patrice; Cao, Vinh; Fernald, Russell D; Heller, H Craig; Ruby, Norman F

    2011-02-01

    Light can induce arrhythmia in circadian systems by several weeks of constant light or by a brief light stimulus given at the transition point of the phase response curve. In the present study, a novel light treatment consisting of phase advance and phase delay photic stimuli given on 2 successive nights was used to induce circadian arrhythmia in the Siberian hamster ( Phodopus sungorus). We therefore investigated whether loss of rhythms in behavior was due to arrhythmia within the suprachiasmatic nucleus (SCN). SCN tissue samples were obtained at 6 time points across 24 h in constant darkness from entrained and arrhythmic hamsters, and per1, per2 , bmal1, and cry1 mRNA were measured by quantitative RT-PCR. The light treatment eliminated circadian expression of clock genes within the SCN, and the overall expression of these genes was reduced by 18% to 40% of entrained values. Arrhythmia in per1, per2, and bmal1 was due to reductions in the amplitudes of their oscillations. We suggest that these data are compatible with an amplitude suppression model in which light induces singularity in the molecular circadian pacemaker.

  10. C-terminal binding protein (CtBP activates the expression of E-box clock genes with CLOCK/CYCLE in Drosophila.

    Directory of Open Access Journals (Sweden)

    Taichi Q Itoh

    Full Text Available In Drosophila, CLOCK/CYCLE heterodimer (CLK/CYC is the primary activator of circadian clock genes that contain the E-box sequence in their promoter regions (hereafter referred to as "E-box clock genes". Although extensive studies have investigated the feedback regulation of clock genes, little is known regarding other factors acting with CLK/CYC. Here we show that Drosophila C-terminal binding protein (dCtBP, a transcriptional co-factor, is involved in the regulation of the E-box clock genes. In vivo overexpression of dCtBP in clock cells lengthened or abolished circadian locomotor rhythm with up-regulation of a subset of the E-box clock genes, period (per, vrille (vri, and PAR domain protein 1ε (Pdp1ε. Co-expression of dCtBP with CLK in vitro also increased the promoter activity of per, vri, Pdp1ε and cwo depending on the amount of dCtBP expression, whereas no effect was observed without CLK. The activation of these clock genes in vitro was not observed when we used mutated dCtBP which carries amino acid substitutions in NAD+ domain. These results suggest that dCtBP generally acts as a putative co-activator of CLK/CYC through the E-box sequence.

  11. Assignment of circadian function for the Neurospora clock gene frequency

    NARCIS (Netherlands)

    Merrow, Martha; Brunner, Michael; Roenneberg, Till

    1999-01-01

    Circadian clocks consist of three elements: entrainment pathways (inputs), the mechanism generating the rhythmicity (oscillator), and the output pathways that control the circadian rhythms. It is difficult to assign molecular clock components to any one of these elements. Experiments show that input

  12. Effect of light on expression of clock genes in Xenopus laevis melanophores.

    Science.gov (United States)

    Magalhães Moraes, Maria Nathália de Carvalho; de Oliveira Poletini, Maristela; Ribeiro Ramos, Bruno Cesar; de Lima, Leonardo Henrique Ribeiro Graciani; de Lauro Castrucci, Ana Maria

    2014-01-01

    Light-dark cycles are considered important cues to entrain biological clocks. A feedback loop of clock gene transcription and translation is the molecular basis underlying the mechanism of both central and peripheral clocks. Xenopus laevis embryonic melanophores respond to light with melanin granule dispersion, response possibly mediated by the photopigment melanopsin. To test whether light modulates clock gene expression in Xenopus melanophores, we used qPCR to evaluate the relative mRNA levels of Per1, Per2, Clock and Bmal1 in cultured melanophores exposed to light-dark (LD) cycle or constant darkness (DD). LD cycles elicited temporal changes in the expression of Per1, Per2 and Bmal1. A 10-min pulse of blue light was able to increases the expression of Per1 and Per2. Red light had no effect on the expression of these clock genes. These data suggest the participation of a blue-wavelength sensitive pigment in the light-dark cycle-mediated oscillation of the endogenous clock. Our results add an important contribution to the emerging field of peripheral clocks, which in nonmammalian vertebrates have been mostly studied in Drosophila and Danio rerio. Within this context, we show that X. laevis melanophores, which have already led to melanopsin discovery, represent an ideal model to understanding circadian rhythms.

  13. The clock genes Period 2 and Cryptochrome 2 differentially balance bone formation

    NARCIS (Netherlands)

    E. Maronde (Erik); A.F. Schilling (Arndt); S. Seitz (Sebastian); T. Schinke (Thorsten); I. Schmutz (Isabelle); G.T.J. van der Horst (Gijsbertus); M. Amling (Michael); U. Albrecht (Urs)

    2010-01-01

    textabstractBackground: Clock genes and their protein products regulate circadian rhythms in mammals but have also been implicated in various physiological processes, including bone formation. Osteoblasts build new mineralized bone whereas osteoclasts degrade it thereby balancing bone formation. To

  14. Messenger RNA expression of chicken CLOCK gene in the response to Campylobacter jejuni inoculation.

    Science.gov (United States)

    Liu, Xiaoyi; Liu, Liying; Zhang, Maozhi; Yang, Ning; Qi, Yukai; Sun, Yu; Li, Xianyao

    2015-09-01

    Campylobacter jejuni (C. jejuni) is a leading cause of human bacterial gastroenteritis worldwide. Previous research has shown that circadian rhythm plays a critical role in host response to C. jejuni colonization. The CLOCK gene is one of the core genes regulating circadian rhythms and shows significant expression on 7 d post-C. jejuni inoculation. The objective of this study was to investigate temporal and spatial expression of chicken CLOCK gene post-C. jejuni inoculation. Cecal and splenic RNA were isolated from 2 distinct chicken breeds and used to compare the mRNA expression of CLOCK gene between inoculated and noninoculated chickens within each breed and between breeds within each of inoculated and noninoculated groups. Our results showed that the CLOCK gene was significantly down-regulated at 20 h postinoculation (hpi) in cecum and spleen in Jiningbairi chicken. CLOCK gene was significantly down-regulated at 4 and 16 hpi and up-regulated at 8 hpi in cecum and spleen in specific pathogen free white leghorn noninoculated chicken. The findings suggested that expression of CLOCK gene was significantly changed post C. jejuin inoculation. This change was affected by genetic background, tissue, and time points postinoculation.

  15. Circadian Clock genes Per2 and clock regulate steroid production, cell proliferation, and luteinizing hormone receptor transcription in ovarian granulosa cells

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Takashi, E-mail: shimizut@obihiro.ac.jp [Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555 (Japan); Hirai, Yuko; Murayama, Chiaki; Miyamoto, Akio [Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555 (Japan); Miyazaki, Hitoshi [Gene Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8572 (Japan); Miyazaki, Koyomi [Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) Central 6, 1-1-1, Higashi, Tsukuba, Ibaraki 305-8566 (Japan)

    2011-08-19

    Highlights: {yields} Treatment with Per2 and Clock siRNAs decreased the number of granulosa cells and LHr expression. {yields}Per2 siRNA treatment did not stimulate the production of estradiol and expression of P450arom. {yields} Clock siRNA treatment inhibited the production of estradiol and expression of P450arom mRNA. {yields}Per2 and Clock siRNA treatment increased and unchanged, respectively, progesterone production in FSH-treated granulosa cells. {yields} The expression of StAR mRNA was increased by Per2 siRNA and unchanged by Clock siRNA. -- Abstract: Circadian Clock genes are associated with the estrous cycle in female animals. Treatment with Per2 and Clock siRNAs decreased the number of granulosa cells and LHr expression in follicle-stimulating hormone FSH-treated granulosa cells. Per2 siRNA treatment did not stimulate the production of estradiol and expression of P450arom, whereas Clock siRNA treatment inhibited the production of estradiol and expression of P450arom mRNA. Per2 and Clock siRNA treatment increased and unchanged, respectively, progesterone production in FSH-treated granulosa cells. Similarly, expression of StAR mRNA was increased by Per2 siRNA and unchanged by Clock siRNA. Our data provide a new insight that Per2 and Clock have different action on ovarian granulosa cell functions.

  16. Glucocorticoids affect 24 h clock genes expression in human adipose tissue explant cultures.

    Directory of Open Access Journals (Sweden)

    Purificación Gómez-Abellán

    Full Text Available AIMS: to examine firstly whether CLOCK exhibits a circadian expression in human visceral (V and subcutaneous (S adipose tissue (AT in vitro as compared with BMAL1 and PER2, and secondly to investigate the possible effect of the glucocorticoid analogue dexamethasone (DEX on positive and negative clock genes expression. SUBJECTS AND METHODS: VAT and SAT biopsies were obtained from morbid obese women (body mass index ≥ 40 kg/m(2 (n = 6. In order to investigate rhythmic expression pattern of clock genes and the effect of DEX on CLOCK, PER2 and BMAL1 expression, control AT (without DEX and AT explants treated with DEX (2 hours were cultured during 24 h and gene expression was analyzed at the following times: 10:00 h, 14:00 h, 18:00 h, 22:00 h, 02:00 h and 06:00 h, using qRT-PCR. RESULTS: CLOCK, BMAL1 and PER2 expression exhibited circadian patterns in both VAT and SAT explants that were adjusted to a typical 24 h sinusoidal curve. PER2 expression (negative element was in antiphase with respect to CLOCK and in phase with BMAL1 expression (both positive elements in the SAT (situation not present in VAT. A marked effect of DEX exposure on both positive and negative clock genes expression patterns was observed. Indeed, DEX treatment modified the rhythmicity pattern towards altered patterns with a period lower than 24 hours in all genes and in both tissues. CONCLUSIONS: 24 h patterns in CLOCK and BMAL1 (positive clock elements and PER2 (negative element mRNA levels were observed in human adipose explants. These patterns were altered by dexamethasone exposure.

  17. Synthesising gene clock with toggle switch and oscillator.

    Science.gov (United States)

    Lin, Chun-Liang; Chen, Po-Kuei; Cheng, Young-Yi

    2015-06-01

    The usefulness of a genetic clock lies in its role to stimulate a sequence of logic reactions for sequential biological circuits. A clock signal is a periodic square wave, its amplitude alternates at a steady frequency between fixed minimal and maximal levels. Transition between the minimum and the maximum is instantaneous for an ideal square wave; however, the function is unrealisable in physical bio-systems. This research develops a new genetic clock generator based on a genetic oscillator, in which, a sine wave generator is adopted as a signal oscillator. It is shown that combination of a genetic oscillator with a toggle switch is able to generate clock signals forming an efficient way to generate a near square wave. In silico study confirms the proposed idea.

  18. Association between circadian clock genes and diapause incidence in Drosophila triauraria.

    Directory of Open Access Journals (Sweden)

    Hirokazu Yamada

    Full Text Available Diapause is an adaptive response triggered by seasonal photoperiodicity to overcome unfavorable seasons. The photoperiodic clock is a system that controls seasonal physiological processes, but our knowledge about its physiological mechanisms and genetic architecture remains incomplete. The circadian clock is another system that controls daily rhythmic physiological phenomena. It has been argued that there is a connection between the two clocks. To examine the genetic connection between them, we analyzed the associations of five circadian clock genes (period, timeless, Clock, cycle and cryptochrome with the occurrence of diapause in Drosophila triauraria, which shows a robust reproductive diapause with clear photoperiodicity. Non-diapause strains found in low latitudes were compared in genetic crosses with the diapause strain, in which the diapause trait is clearly dominant. Single nucleotide polymorphism and deletion analyses of the five circadian clock genes in backcross progeny revealed that allelic differences in timeless and cryptochrome between the strains were additively associated with the differences in the incidence of diapause. This suggests that there is a molecular link between certain circadian clock genes and the occurrence of diapause.

  19. The Clock gene clone and its circadian rhythms in Pelteobagrus vachelli

    Science.gov (United States)

    Qin, Chuanjie; Shao, Ting

    2015-05-01

    The Clock gene, a key molecule in circadian systems, is widely distributed in the animal kingdom. We isolated a 936-bp partial cDNA sequence of the Clock gene ( Pva-clock) from the darkbarbel catfish Pelteobagrus vachelli that exhibited high identity with Clock genes of other species of fish and animals (65%-88%). The putative domains included a basic helix-loop-helix (bHLH) domain and two period-ARNT-single-minded (PAS) domains, which were also similar to those in other species of fish and animals. Pva-Clock was primarily expressed in the brain, and was detected in all of the peripheral tissues sampled. Additionally, the pattern of Pva-Clock expression over a 24-h period exhibited a circadian rhythm in the brain, liver and intestine, with the acrophase at zeitgeber time 21:35, 23:00, and 23:23, respectively. Our results provide insight into the function of the molecular Clock of P. vachelli.

  20. Altered Clock and Lipid Metabolism-Related Genes in Atherosclerotic Mice Kept with Abnormal Lighting Condition.

    Science.gov (United States)

    Zhu, Zhu; Hua, Bingxuan; Shang, Zhanxian; Yuan, Gongsheng; Xu, Lirong; Li, Ermin; Li, Xiaobo; Sun, Ning; Yan, Zuoqin; Qian, Ruizhe; Lu, Chao

    2016-01-01

    Background. The risk of atherosclerosis is elevated in abnormal lipid metabolism and circadian rhythm disorder. We investigated whether abnormal lighting condition would have influenced the circadian expression of clock genes and clock-controlled lipid metabolism-related genes in ApoE-KO mice. Methods. A mouse model of atherosclerosis with circadian clock genes expression disorder was established using ApoE-KO mice (ApoE-KO LD/DL mice) by altering exposure to light. C57 BL/6J mice (C57 mice) and ApoE-KO mice (ApoE-KO mice) exposed to normal day and night and normal diet served as control mice. According to zeitgeber time samples were acquired, to test atheromatous plaque formation, serum lipids levels and rhythmicity, clock genes, and lipid metabolism-related genes along with Sirtuin 1 (Sirt1) levels and rhythmicity. Results. Atherosclerosis plaques were formed in the aortic arch of ApoE-KO LD/DL mice. The serum lipids levels and oscillations in ApoE-KO LD/DL mice were altered, along with the levels and diurnal oscillations of circadian genes, lipid metabolism-associated genes, and Sirt1 compared with the control mice. Conclusions. Abnormal exposure to light aggravated plaque formation and exacerbated disorders of serum lipids and clock genes, lipid metabolism genes and Sirt1 levels, and circadian oscillation. PMID:27631008

  1. Altered Clock and Lipid Metabolism-Related Genes in Atherosclerotic Mice Kept with Abnormal Lighting Condition.

    Science.gov (United States)

    Zhu, Zhu; Hua, Bingxuan; Shang, Zhanxian; Yuan, Gongsheng; Xu, Lirong; Li, Ermin; Li, Xiaobo; Sun, Ning; Yan, Zuoqin; Qian, Ruizhe; Lu, Chao

    2016-01-01

    Background. The risk of atherosclerosis is elevated in abnormal lipid metabolism and circadian rhythm disorder. We investigated whether abnormal lighting condition would have influenced the circadian expression of clock genes and clock-controlled lipid metabolism-related genes in ApoE-KO mice. Methods. A mouse model of atherosclerosis with circadian clock genes expression disorder was established using ApoE-KO mice (ApoE-KO LD/DL mice) by altering exposure to light. C57 BL/6J mice (C57 mice) and ApoE-KO mice (ApoE-KO mice) exposed to normal day and night and normal diet served as control mice. According to zeitgeber time samples were acquired, to test atheromatous plaque formation, serum lipids levels and rhythmicity, clock genes, and lipid metabolism-related genes along with Sirtuin 1 (Sirt1) levels and rhythmicity. Results. Atherosclerosis plaques were formed in the aortic arch of ApoE-KO LD/DL mice. The serum lipids levels and oscillations in ApoE-KO LD/DL mice were altered, along with the levels and diurnal oscillations of circadian genes, lipid metabolism-associated genes, and Sirt1 compared with the control mice. Conclusions. Abnormal exposure to light aggravated plaque formation and exacerbated disorders of serum lipids and clock genes, lipid metabolism genes and Sirt1 levels, and circadian oscillation.

  2. Altered Clock and Lipid Metabolism-Related Genes in Atherosclerotic Mice Kept with Abnormal Lighting Condition

    Directory of Open Access Journals (Sweden)

    Zhu Zhu

    2016-01-01

    Full Text Available Background. The risk of atherosclerosis is elevated in abnormal lipid metabolism and circadian rhythm disorder. We investigated whether abnormal lighting condition would have influenced the circadian expression of clock genes and clock-controlled lipid metabolism-related genes in ApoE-KO mice. Methods. A mouse model of atherosclerosis with circadian clock genes expression disorder was established using ApoE-KO mice (ApoE-KO LD/DL mice by altering exposure to light. C57 BL/6J mice (C57 mice and ApoE-KO mice (ApoE-KO mice exposed to normal day and night and normal diet served as control mice. According to zeitgeber time samples were acquired, to test atheromatous plaque formation, serum lipids levels and rhythmicity, clock genes, and lipid metabolism-related genes along with Sirtuin 1 (Sirt1 levels and rhythmicity. Results. Atherosclerosis plaques were formed in the aortic arch of ApoE-KO LD/DL mice. The serum lipids levels and oscillations in ApoE-KO LD/DL mice were altered, along with the levels and diurnal oscillations of circadian genes, lipid metabolism-associated genes, and Sirt1 compared with the control mice. Conclusions. Abnormal exposure to light aggravated plaque formation and exacerbated disorders of serum lipids and clock genes, lipid metabolism genes and Sirt1 levels, and circadian oscillation.

  3. Circadian clock genes contribute to the regulation of hair follicle cycling.

    Directory of Open Access Journals (Sweden)

    Kevin K Lin

    2009-07-01

    Full Text Available Hair follicles undergo recurrent cycling of controlled growth (anagen, regression (catagen, and relative quiescence (telogen with a defined periodicity. Taking a genomics approach to study gene expression during synchronized mouse hair follicle cycling, we discovered that, in addition to circadian fluctuation, CLOCK-regulated genes are also modulated in phase with the hair growth cycle. During telogen and early anagen, circadian clock genes are prominently expressed in the secondary hair germ, which contains precursor cells for the growing follicle. Analysis of Clock and Bmal1 mutant mice reveals a delay in anagen progression, and the secondary hair germ cells show decreased levels of phosphorylated Rb and lack mitotic cells, suggesting that circadian clock genes regulate anagen progression via their effect on the cell cycle. Consistent with a block at the G1 phase of the cell cycle, we show a significant upregulation of p21 in Bmal1 mutant skin. While circadian clock mechanisms have been implicated in a variety of diurnal biological processes, our findings indicate that circadian clock genes may be utilized to modulate the progression of non-diurnal cyclic processes.

  4. Expression conservation within the circadian clock of a monocot: natural variation at barley Ppd-H1 affects circadian expression of flowering time genes, but not clock orthologs

    Directory of Open Access Journals (Sweden)

    Campoli Chiara

    2012-06-01

    Full Text Available Abstract Background The circadian clock is an endogenous mechanism that coordinates biological processes with daily changes in the environment. In plants, circadian rhythms contribute to both agricultural productivity and evolutionary fitness. In barley, the photoperiod response regulator and flowering-time gene Ppd-H1 is orthologous to the Arabidopsis core-clock gene PRR7. However, relatively little is known about the role of Ppd-H1 and other components of the circadian clock in temperate crop species. In this study, we identified barley clock orthologs and tested the effects of natural genetic variation at Ppd-H1 on diurnal and circadian expression of clock and output genes from the photoperiod-response pathway. Results Barley clock orthologs HvCCA1, HvGI, HvPRR1, HvPRR37 (Ppd-H1, HvPRR73, HvPRR59 and HvPRR95 showed a high level of sequence similarity and conservation of diurnal and circadian expression patterns, when compared to Arabidopsis. The natural mutation at Ppd-H1 did not affect diurnal or circadian cycling of barley clock genes. However, the Ppd-H1 mutant was found to be arrhythmic under free-running conditions for the photoperiod-response genes HvCO1, HvCO2, and the MADS-box transcription factor and vernalization responsive gene Vrn-H1. Conclusion We suggest that the described eudicot clock is largely conserved in the monocot barley. However, genetic differentiation within gene families and differences in the function of Ppd-H1 suggest evolutionary modification in the angiosperm clock. Our data indicates that natural variation at Ppd-H1 does not affect the expression level of clock genes, but controls photoperiodic output genes. Circadian control of Vrn-H1 in barley suggests that this vernalization responsive gene is also controlled by the photoperiod-response pathway. Structural and functional characterization of the barley circadian clock will set the basis for future studies of the adaptive significance of the circadian clock in

  5. In vivo imaging of clock gene expression in multiple tissues of freely moving mice.

    Science.gov (United States)

    Hamada, Toshiyuki; Sutherland, Kenneth; Ishikawa, Masayori; Miyamoto, Naoki; Honma, Sato; Shirato, Hiroki; Honma, Ken-Ichi

    2016-01-01

    Clock genes are expressed throughout the body, although how they oscillate in unrestrained animals is not known. Here, we show an in vivo imaging technique that enables long-term simultaneous imaging of multiple tissues. We use dual-focal 3D tracking and signal-intensity calibration to follow gene expression in a target area. We measure circadian rhythms of clock genes in the olfactory bulb, right and left ears and cortices, and the skin. In addition, the kinetic relationship between gene expression and physiological responses to experimental cues is monitored. Under stable conditions gene expression is in phase in all tissues. In response to a long-duration light pulse, the olfactory bulb shifts faster than other tissues. In Cry1(-/-) Cry2(-/-) arrhythmic mice circadian oscillation is absent in all tissues. Thus, our system successfully tracks circadian rhythms in clock genes in multiple tissues in unrestrained mice. PMID:27285820

  6. Chronotype and sleep quality as a subphenotype in association studies of clock genes in mood disorders.

    Science.gov (United States)

    Dmitrzak-Węglarz, Monika; Pawlak, Joanna; Wiłkość, Monika; Miechowicz, Izabela; Maciukiewicz, Małgorzata; Ciarkowska, Wanda; Zaremba, Dorota; Hauser, Joanna

    2016-01-01

    Genetic background and clinical picture of mood disorders (MD) are complex and may depend on many genes and their potential interactions as well as environmental factors. Therefore, clinical variations, or endophenotypes, were suggested for association studies. The aim of the study was to investigate association between the chronotype (CH) and quality of sleep characteristics with polymorphisms CLOCK, ARNTL, TIMELESS and PER3 genes in MD. We included a total sample of 111 inpatients and 126 healthy controls. To assess CH we applied Morningness-Eveningness Questionnaire (MEQ). Additionally, we defined the quality and patterns of sleep using The Pittsburgh Sleep Quality Index (PSQI) and Epworth Sleepiness Scale (ESS). We applied Kruskal-Wallis test to determine associations. The main positive findings refer to associations between selected polymorphisms and: 1) chronotype with the ARNTL gene (rs11824092 and rs1481892) and the CLOCK (rs1268271) 2) sleep duration with the CLOCK gene (rs3805148) and the TIM gene (rs2291739) 3) daytime dysfunction with the PER3 gene (rs228727, rs228642, rs10864315) 4) subjective sleep quality with the ARNTL gene (rs11824092, rs1982350) 5) sleep disturbances with the ARNTL gene (rs11600996) We also found the significant epistatic interactions between polymorphism of the PER3 gene (rs2640909) & the CLOCK gene (rs11932595) and following sleep quality variables: sleep duration, habitual sleep efficiency and subjective sleep quality. The present study suggests a putative role of the analyzed clock genes polymorphisms in chronotype in the control group and in sleep quality disturbances in the course of MD. The results indicate that PSQI variables can be used to refine phenotype in association studies of clock genes in MD. PMID:27102916

  7. Expression of Clock genes in the pineal glands of newborn rats with hypoxic-ischemic encephalopathy

    Institute of Scientific and Technical Information of China (English)

    Bin Sun; Xing Feng; Xin Ding; Li Bao; Yongfu Li; Jun He; Meifang Jin

    2012-01-01

    Clock genes are involved in circadian rhythm regulation,and surviving newborns with hypoxic-ischemic encephalopathy may present with sleep-wake cycle reversal.This study aimed to determine the expression of the clock genes Clock and Bmall,in the pineal gland of rats with hypoxic-ischemic brain damage.Results showed that levels of Clock mRNA were not significantly changed within 48 hours after cerebral hypoxia and ischemia.Expression levels of CLOCK and BMAL1 protein were significantly higher after 48 hours.The levels of Bmall mRNA reached a peak at 36 hours,but were significantly reduced at 48 hours.Experimental findings indicate that Clock and Bmall genes were indeed expressed in the pineal glands of neonatal rats.At the initial stage (within 36 hours) of hypoxic-ischemic brain damage,only slight changes in the expression levels of these two genes were detected,followed by significant changes at 36 48 hours.These changes may be associated with circadian rhythm disorder induced by hypoxic-ischemic brain damage.

  8. Phenotypic effects of genetic variability in human clock genes on circadian and sleep parameters

    Indian Academy of Sciences (India)

    Malcolm Von Schantz

    2008-12-01

    Circadian rhythms and sleep are two separate but intimately related processes. Circadian rhythms are generated through the precisely controlled, cyclic expression of a number of genes designated clock genes. Genetic variability in these genes has been associated with a number of phenotypic differences in circadian as well as sleep parameters, both in mouse models and in humans. Diurnal preferences as determined by the selfreported Horne–Östberg (HÖ) questionnaire, has been associated with polymorphisms in the human genes CLOCK, PER1, PER2 and PER3. Circadian rhythm-related sleep disorders have also been associated with mutations and polymorphisms in clock genes, with the advanced type cosegrating in an autosomal dominant inheritance pattern with mutations in the genes PER2 and CSNK1D, and the delayed type associating without discernible Mendelian inheritance with polymorphisms in CLOCK and PER3. Several mouse models of clock gene null alleles have been demonstrated to have affected sleep homeostasis. Recent findings have shown that the variable number tandem polymorphism in PER3, previously linked to diurnal preference, has profound effects on sleep homeostasis and cognitive performance following sleep loss, confirming the close association between the processes of circadian rhythms and sleep at the genetic level.

  9. Circadian dysregulation of clock genes: clues to rapid treatments in major depressive disorder.

    Science.gov (United States)

    Bunney, B G; Li, J Z; Walsh, D M; Stein, R; Vawter, M P; Cartagena, P; Barchas, J D; Schatzberg, A F; Myers, R M; Watson, S J; Akil, H; Bunney, W E

    2015-02-01

    Conventional antidepressants require 2-8 weeks for a full clinical response. In contrast, two rapidly acting antidepressant interventions, low-dose ketamine and sleep deprivation (SD) therapy, act within hours to robustly decrease depressive symptoms in a subgroup of major depressive disorder (MDD) patients. Evidence that MDD may be a circadian-related illness is based, in part, on a large set of clinical data showing that diurnal rhythmicity (sleep, temperature, mood and hormone secretion) is altered during depressive episodes. In a microarray study, we observed widespread changes in cyclic gene expression in six regions of postmortem brain tissue of depressed patients matched with controls for time-of-death (TOD). We screened 12 000 transcripts and observed that the core clock genes, essential for controlling virtually all rhythms in the body, showed robust 24-h sinusoidal expression patterns in six brain regions in control subjects. In MDD patients matched for TOD with controls, the expression patterns of the clock genes in brain were significantly dysregulated. Some of the most robust changes were seen in anterior cingulate (ACC). These findings suggest that in addition to structural abnormalities, lesion studies, and the large body of functional brain imaging studies reporting increased activation in the ACC of depressed patients who respond to a wide range of therapies, there may be a circadian dysregulation in clock gene expression in a subgroup of MDDs. Here, we review human, animal and neuronal cell culture data suggesting that both low-dose ketamine and SD can modulate circadian rhythms. We hypothesize that the rapid antidepressant actions of ketamine and SD may act, in part, to reset abnormal clock genes in MDD to restore and stabilize circadian rhythmicity. Conversely, clinical relapse may reflect a desynchronization of the clock, indicative of a reactivation of abnormal clock gene function. Future work could involve identifying specific small

  10. Nucleotide sequences of immunoglobulin epsilon genes of chimpanzee and orangutan: DNA molecular clock and hominoid evolution.

    OpenAIRE

    Sakoyama, Y; Hong, K J; Byun, S. M.; Hisajima, H; Ueda, S; Yaoita, Y; Hayashida, H; Miyata, T.; Honjo, T

    1987-01-01

    To determine the phylogenetic relationships among hominoids and the dates of their divergence, the complete nucleotide sequences of the constant region of the immunoglobulin epsilon-chain (C epsilon 1) genes from chimpanzee and orangutan have been determined. These sequences were compared with the human epsilon-chain constant-region sequence. A molecular clock (silent molecular clock), measured by the degree of sequence divergence at the synonymous (silent) positions of protein-encoding regio...

  11. Expression of core clock genes in colorectal tumour cells compared with normal mucosa

    DEFF Research Database (Denmark)

    Fonnes, S; Donatsky, A M; Gögenur, I

    2015-01-01

    correlation to clinicopathological features and survival. METHOD: A systematic review was conducted without meta-analysis according to the PRISMA guidelines on 24 March 2014 using PubMed and EMBASE. Eligibility criteria were: study design, original research article, English language, human subjects and gene...... expression of colorectal cancer cells compared with healthy mucosa cells from specimens analysed by real-time or quantitative real-time polymer chain reaction. The expression of the core clock genes Period, Cryptochrome, Bmal1 and Clock in colorectal tumours were compared with healthy mucosa and correlated...... with clinicopathological features and survival. RESULTS: Seventy-four articles were identified and 11 studies were included. Overall, gene expression of Period was significantly decreased in colorectal cancer cells compared with healthy mucosa cells. This tendency was also seen in the gene expression of Clock. Other core...

  12. The Circadian Clock Gene Period1 Connects the Molecular Clock to Neural Activity in the Suprachiasmatic Nucleus.

    Science.gov (United States)

    Kudo, Takashi; Block, Gene D; Colwell, Christopher S

    2015-01-01

    The neural activity patterns of suprachiasmatic nucleus (SCN) neurons are dynamically regulated throughout the circadian cycle with highest levels of spontaneous action potentials during the day. These rhythms in electrical activity are critical for the function of the circadian timing system and yet the mechanisms by which the molecular clockwork drives changes in the membrane are not well understood. In this study, we sought to examine how the clock gene Period1 (Per1) regulates the electrical activity in the mouse SCN by transiently and selectively decreasing levels of PER1 through use of an antisense oligodeoxynucleotide. We found that this treatment effectively reduced SCN neural activity. Direct current injection to restore the normal membrane potential partially, but not completely, returned firing rate to normal levels. The antisense treatment also reduced baseline [Ca(2+)]i levels as measured by Fura2 imaging technique. Whole cell patch clamp recording techniques were used to examine which specific potassium currents were altered by the treatment. These recordings revealed that the large conductance [Ca(2+)]i-activated potassium currents were reduced in antisense-treated neurons and that blocking this current mimicked the effects of the anti-sense on SCN firing rate. These results indicate that the circadian clock gene Per1 alters firing rate in SCN neurons and raise the possibility that the large conductance [Ca(2+)]i-activated channel is one of the targets.

  13. Expression of the Circadian Clock Genes Pert, Per2 in Sporadic, Familial Breast Tumors

    Directory of Open Access Journals (Sweden)

    Sherry L. Winter

    2007-10-01

    Full Text Available There is a growing body of evidence implicating aberrant circadian clock expression in the development of cancer. Based on our initial experiments identifying a putative interaction between BRCA1, the clock proteins Per1, Per2, as well as the reported involvement of the circadian clock in the development of cancer, we have performed an expression analysis of the circadian clock genes Per1, Per2 in both sporadic, familial primary breast tumors, normal breast tissues using real-time polymerase chain reaction. Significantly decreased levels of Per1 were observed between sporadic tumors, normal samples (P < .00001, as well as a further significant decrease between familial, sporadic breast tumors for both Per1 (P < .00001, Per2 (P < .00001. Decreased Per1 was also associated with estrogen receptor negativity (53% vs 15%, P = .04. These results suggest a role for both Perl, Per2 in normal breast function, show for the first time that deregulation of the circadian clock may be an important factor in the development of familial breast cancer. Aberrant expression of circadian clock genes could have important consequences on the transactivation of downstream targets that control the cell cycle, on the ability of cells to undergo apoptosis, potentially promoting carcinogenesis.

  14. Restricted Feeding Phase Shifts Clock Gene and Sodium Glucose Cotransporter 1 (SGLT1) Expression in Rats1–4

    OpenAIRE

    Balakrishnan, Anita; Stearns, Adam T.; Ashley, Stanley W.; Tavakkolizadeh, Ali; Rhoads, David B.

    2010-01-01

    The intestine exhibits striking diurnal rhythmicity in glucose uptake, mediated by the sodium glucose cotransporter (SGLT1); however, regulatory pathways for these rhythms remain incompletely characterized. We hypothesized that SGLT1 rhythmicity is linked to the circadian clock. To investigate this, we examined rhythmicity of Sglt1 and individual clock genes in rats that consumed food ad libitum (AL). We further compared phase shifts of Sglt1 and clock genes in a second group of rats followin...

  15. Clock gene polymorphism and scheduling of migration: a geolocator study of the barn swallow Hirundo rustica.

    Science.gov (United States)

    Bazzi, Gaia; Ambrosini, Roberto; Caprioli, Manuela; Costanzo, Alessandra; Liechti, Felix; Gatti, Emanuele; Gianfranceschi, Luca; Podofillini, Stefano; Romano, Andrea; Romano, Maria; Scandolara, Chiara; Saino, Nicola; Rubolini, Diego

    2015-01-01

    Circannual rhythms often rely on endogenous seasonal photoperiodic timers involving 'clock' genes, and Clock gene polymorphism has been associated to variation in phenology in some bird species. In the long-distance migratory barn swallow Hirundo rustica, individuals bearing the rare Clock allele with the largest number of C-terminal polyglutamine repeats found in this species (Q8) show a delayed reproduction and moult later. We explored the association between Clock polymorphism and migration scheduling, as gauged by light-level geolocators, in two barn swallow populations (Switzerland; Po Plain, Italy). Genetic polymorphism was low: 91% of the 64 individuals tracked year-round were Q7/Q7 homozygotes. We compared the phenology of the rare genotypes with the phenotypic distribution of Q7/Q7 homozygotes within each population. In Switzerland, compared to Q7/Q7, two Q6/Q7 males departed earlier from the wintering grounds and arrived earlier to their colony in spring, while a single Q7/Q8 female was delayed for both phenophases. On the other hand, in the Po Plain, three Q6/Q7 individuals had a similar phenology compared to Q7/Q7. The Swiss data are suggestive for a role of genetic polymorphism at a candidate phenological gene in shaping migration traits, and support the idea that Clock polymorphism underlies phenological variation in birds. PMID:26197782

  16. Identification of putative circadian clock genes in the American horseshoe crab, Limulus polyphemus.

    Science.gov (United States)

    Chesmore, Kevin N; Watson, Winsor H; Chabot, Christopher C

    2016-09-01

    While the American horseshoe crab, Limulus polyphemus, has robust circadian and circatidal rhythms, virtually nothing is known about the molecular basis of these rhythms in this species or any other chelicerate. In this study, next generation sequencing was used to assemble transcriptomic reads and then putative homologs of known core and accessory circadian genes were identified in these databases. Homologous transcripts were discovered for one circadian clock input gene, five core genes, 22 accessory genes, and two possible output pathways. Alignments and functional domain analyses showed generally high conservation between the putative L. polyphemus clock genes and homologs from Drosophila melanogaster and Daphnia pulex. The presence of both cry1 and cry2 in the L. polyphemus transcriptome would classify its system as an "ancestral", type 2 clock system. In addition, a novel duplication of CYCLE, and a novel triplication of PERIOD were found. Investigations are currently underway to determine if any of these "circadian" genes also participate in the molecular processes that drive the Limulus circatidal clock. PMID:27341138

  17. Clock and clock-controlled genes are differently expressed in the retina, lamina and in selected cells of the visual system of Drosophila melanogaster

    OpenAIRE

    Milena eDamulewicz; Agnieszka eLoboda; Karolina eBukowska-Strakova; Alicja eJozkowicz; Jozef eDulak; Elzbieta M Pyza

    2015-01-01

    The retina and the first optic neuropil (lamina) of Drosophila show circadian rhythms in various processes. To learn about the regulation of circadian rhythms in the retina and lamina and in two cell types, glial and the lamina L2 interneurons, we examined expression of the following clock genes; per, tim, clk, and cry and clock-controlled genes; Atp, nrv2, brp, Pdfr. We found that the expression of gene studied is specific for the retina and lamina. The rhythms of per and tim expression in...

  18. Genetic dissection of psychopathological symptoms: insomnia in mood disorders and CLOCK gene polymorphism.

    Science.gov (United States)

    Serretti, Alessandro; Benedetti, Francesco; Mandelli, Laura; Lorenzi, Cristina; Pirovano, Adele; Colombo, Cristina; Smeraldi, Enrico

    2003-08-15

    We investigated the possible effect of the 3111T/C CLOCK gene polymorphism on sleep disorders in a sample of 620 patients affected by major depressive disorder (MDD) and bipolar disorder (BP). We detected a significantly higher recurrence of initial (P = 0.0001), middle (P = 0.0009), and early (P = 0.0008) insomnia in homozygotes for the C variant and a similar trend concerning decreased need of sleep in BP (P = 0.0074). Other demographic and clinical features were found not related with CLOCK polymorphisms. This preliminary observation leads to hypothesize a possible involvement of the CLOCK gene polymorphism in the sleep disregulations in MDD and BP. PMID:12898572

  19. Clock and clock-controlled genes are differently expressed in the retina, lamina and in selected cells of the visual system of Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Milena eDamulewicz

    2015-09-01

    Full Text Available The retina and the first optic neuropil (lamina of Drosophila show circadian rhythms in various processes. To learn about the regulation of circadian rhythms in the retina and lamina and in two cell types, glial and the lamina L2 interneurons, we examined expression of the following clock genes; per, tim, clk, and cry and clock-controlled genes; Atp, nrv2, brp, Pdfr. We found that the expression of gene studied is specific for the retina and lamina. The rhythms of per and tim expression in the retina and glial cells are similar to that observed in the whole head and in clock neurons, while they differ in the lamina and L2 cells. In both the retina and lamina, CRY seems to be a repressor of clk expression. In L2 interneurons per expression is not cyclic indicating the other function of PER in those cells than in the circadian molecular clock. In contrast to per and tim, the pattern of clk and cry expression is similar in both the retina and lamina. The retina holds the autonomous oscillators but the expression of cry and clock-controlled genes, Atp and nrv2, is also regulated by inputs from the pacemaker transmitted by PDF and ITP neuropeptides.

  20. Nucleotide sequences of immunoglobulin eta genes of chimpanzee and orangutan: DNA molecular clock and hominoid evolution

    International Nuclear Information System (INIS)

    To determine the phylogenetic relationships among hominoids and the dates of their divergence, the complete nucleotide sequences of the constant region of the immunoglobulin eta-chain (C/sub eta1/) genes from chimpanzee and orangutan have been determined. These sequences were compared with the human eta-chain constant-region sequence. A molecular clock (silent molecular clock), measured by the degree of sequence divergence at the synonymous (silent) positions of protein-encoding regions, was introduced for the present study. From the comparison of nucleotide sequences of α1-antitrypsin and β- and δ-globulin genes between humans and Old World monkeys, the silent molecular clock was calibrated: the mean evolutionary rate of silent substitution was determined to be 1.56 x 10-9 substitutions per site per year. Using the silent molecular clock, the mean divergence dates of chimpanzee and orangutan from the human lineage were estimated as 6.4 +/- 2.6 million years and 17.3 +/- 4.5 million years, respectively. It was also shown that the evolutionary rate of primate genes is considerably slower than those of other mammalian genes

  1. Nucleotide sequences of immunoglobulin eta genes of chimpanzee and orangutan: DNA molecular clock and hominoid evolution

    Energy Technology Data Exchange (ETDEWEB)

    Sakoyama, Y.; Hong, K.J.; Byun, S.M.; Hisajima, H.; Ueda, S.; Yaoita, Y.; Hayashida, H.; Miyata, T.; Honjo, T.

    1987-02-01

    To determine the phylogenetic relationships among hominoids and the dates of their divergence, the complete nucleotide sequences of the constant region of the immunoglobulin eta-chain (C/sub eta1/) genes from chimpanzee and orangutan have been determined. These sequences were compared with the human eta-chain constant-region sequence. A molecular clock (silent molecular clock), measured by the degree of sequence divergence at the synonymous (silent) positions of protein-encoding regions, was introduced for the present study. From the comparison of nucleotide sequences of ..cap alpha../sub 1/-antitrypsin and ..beta..- and delta-globulin genes between humans and Old World monkeys, the silent molecular clock was calibrated: the mean evolutionary rate of silent substitution was determined to be 1.56 x 10/sup -9/ substitutions per site per year. Using the silent molecular clock, the mean divergence dates of chimpanzee and orangutan from the human lineage were estimated as 6.4 +/- 2.6 million years and 17.3 +/- 4.5 million years, respectively. It was also shown that the evolutionary rate of primate genes is considerably slower than those of other mammalian genes.

  2. CLOCK Gene Variants Associate with Sleep Duration in Two Independent Populations

    NARCIS (Netherlands)

    Allebrandt, Karla V.; Teder-Laving, Maris; Akyol, Mahmut; Pichler, Irene; Mueller-Myhsok, Bertram; Pramstaller, Peter; Merrow, Martha; Meitinger, Thomas; Metspalu, Andreas; Roenneberg, Till; Müller-Myhsok, Bertram

    2010-01-01

    Background: Sleep is an active and complex behavior, yet it has two straightforward properties-timing and duration. Clock genes are associated with dysfunctional timing of sleep, mood, and obesity disorders, which are commonly associated with sleep duration. Methods: Sleep duration was assessed in C

  3. Absence of canonical marks of active chromatin in developmentally regulated genes.

    Science.gov (United States)

    Pérez-Lluch, Sílvia; Blanco, Enrique; Tilgner, Hagen; Curado, Joao; Ruiz-Romero, Marina; Corominas, Montserrat; Guigó, Roderic

    2015-10-01

    The interplay of active and repressive histone modifications is assumed to have a key role in the regulation of gene expression. In contrast to this generally accepted view, we show that the transcription of genes temporally regulated during fly and worm development occurs in the absence of canonically active histone modifications. Conversely, strong chromatin marking is related to transcriptional and post-transcriptional stability, an association that we also observe in mammals. Our results support a model in which chromatin marking is associated with the stable production of RNA, whereas unmarked chromatin would permit rapid gene activation and deactivation during development. In the latter case, regulation by transcription factors would have a comparatively more important regulatory role than chromatin marks.

  4. Circadian rhythmicity of active GSK3 isoforms modulates molecular clock gene rhythms in the suprachiasmatic nucleus.

    Science.gov (United States)

    Besing, Rachel C; Paul, Jodi R; Hablitz, Lauren M; Rogers, Courtney O; Johnson, Russell L; Young, Martin E; Gamble, Karen L

    2015-04-01

    The suprachiasmatic nucleus (SCN) drives and synchronizes daily rhythms at the cellular level via transcriptional-translational feedback loops comprising clock genes such as Bmal1 and Period (Per). Glycogen synthase kinase 3 (GSK3), a serine/threonine kinase, phosphorylates at least 5 core clock proteins and shows diurnal variation in phosphorylation state (inactivation) of the GSK3β isoform. Whether phosphorylation of the other primary isoform (GSK3α) varies across the subjective day-night cycle is unknown. The purpose of this study was to determine if the endogenous rhythm of GSK3 (α and β) phosphorylation is critical for rhythmic BMAL1 expression and normal amplitude and periodicity of the molecular clock in the SCN. Significant circadian rhythmicity of phosphorylated GSK3 (α and β) was observed in the SCN from wild-type mice housed in constant darkness for 2 weeks. Importantly, chronic activation of both GSK3 isoforms impaired rhythmicity of the GSK3 target BMAL1. Furthermore, chronic pharmacological inhibition of GSK3 with 20 µM CHIR-99021 enhanced the amplitude and shortened the period of PER2::luciferase rhythms in organotypic SCN slice cultures. These results support the model that GSK3 activity status is regulated by the circadian clock and that GSK3 feeds back to regulate the molecular clock amplitude in the SCN.

  5. Positive autoregulation delays the expression phase of mammalian clock gene Per2.

    Directory of Open Access Journals (Sweden)

    Yukino Ogawa

    Full Text Available In mammals, cellular circadian rhythms are generated by a transcriptional-translational autoregulatory network that consists of clock genes that encode transcriptional regulators. Of these clock genes, Period1 (Per1 and Period2 (Per2 are essential for sustainable circadian rhythmicity and photic entrainment. Intriguingly, Per1 and Per2 mRNAs exhibit circadian oscillations with a 4-hour phase difference, but they are similarly transactivated by CLOCK-BMAL1. In this study, we investigated the mechanism underlying the phase difference between Per1 and Per2 through a combination of mathematical simulations and molecular experiments. Mathematical analyses of a model for the mammalian circadian oscillator demonstrated that the slow synthesis and fast degradation of mRNA tend to advance the oscillation phase of mRNA expression. However, the phase difference between Per1 and Per2 was not reproduced by the model, which implemented a 1.1-fold difference in degradation rates and a 3-fold difference in CLOCK-BMAL1 mediated inductions of Per1 and Per2 as estimated in cultured mammalian cells. Thus, we hypothesized the existence of a novel transcriptional activation of Per2 by PER1/2 such that the Per2 oscillation phase was delayed. Indeed, only the Per2 promoter, but not Per1, was strongly induced by both PER1 and PER2 in the presence of CLOCK-BMAL1 in a luciferase reporter assay. Moreover, a 3-hour advance was observed in the transcriptional oscillation of the delta-Per2 reporter gene lacking cis-elements required for the induction by PER1/2. These results indicate that the Per2 positive feedback regulation is a significant factor responsible for generating the phase difference between Per1 and Per2 gene expression.

  6. Obesity alters the expression profile of clock genes in peripheral blood mononuclear cells

    Science.gov (United States)

    Tahira, Kazunobu; Fukuda, Noboru; Aoyama, Takahiko; Tsunemi, Akiko; Matsumoto, Siroh; Nagura, Chinami; Matsumoto, Taro; Soma, Masayoshi; Shimba, Shigeki; Matsumoto, Yoshiaki

    2011-01-01

    Introduction The aim of this study was to investigate the association between the variation in expression profile of clock genes and obesity using peripheral blood mononuclear (PMN) cells. Material and methods The subjects comprised 10 obese patients and 10 healthy volunteers. Blood was collected at different time-points during the day and levels of blood sugar, IRI, adiponectin and leptin were determined. Peripheral blood mononuclear cells were sampled, and expression levels of brain and muscle Arnt-like protein-1 (BMAL1), Period (PER)1, PER2, Cryptochrome (CRY)1, CRY2, and REV-ERBα mRNA were quantified. Results During the day, the expression levels of BMAL1, CRY1, CRY2 and PER2 genes in PMN cells of the obese group were all significantly higher compared to those in the non-obese group. In addition, expression of BMAL1, CRY1, CRY2 and PER2 genes in PMN cells increased between 12:00 and 21:00 in the obese group. In PMN cells of both groups, PER1 gene expression showed a bimodal pattern, with high expression at 9:00 and 18:00. Conclusions Differences were observed in the expression profile variation of clock genes between the obese and non-obese groups. This study reveals the differences in clock gene expression profiles between obese and non-obese subjects, with evidence for two distinct chronotypes, and suggests a contribution of these chronotypes to fat accumulation in humans. PMID:22328874

  7. Sleep disturbances and circadian CLOCK genes in borderline personality disorder.

    Science.gov (United States)

    Fleischer, Monika; Schäfer, Michael; Coogan, Andrew; Häßler, Frank; Thome, Johannes

    2012-10-01

    Borderline personality disorder (BPD) is characterised by a deep-reaching pattern of affective instability, incoherent identity, self-injury, suicide attempts, and disturbed interpersonal relations and lifestyle. The daily activities of BPD patients are often chaotic and disorganized, with patients often staying up late while sleeping during the day. These behavioural patterns suggest that altered circadian rhythms may be associated with BPD. Furthermore, BPD patients frequently report suffering from sleep disturbances. In this review, we overview the evidence that circadian rhythms and sleep are disturbed in BPD, and we explore the possibility that personality traits that are pertinent for BPD may be associated with circadian typology, and perhaps to circadian genotypes. With regards to sleep architecture, we review the evidence that BPD patients display altered non-REM and REM sleep. A possible cue to a deeper understanding of this temporal dysregulation might be an analysis of the circadian clock at the molecular and cellular level, as well as behavioural studies using actigraphy and we suggest avenues for further exploration of these factors. PMID:22806005

  8. Circadian Clock Genes Are Essential for Normal Adult Neurogenesis, Differentiation, and Fate Determination.

    Directory of Open Access Journals (Sweden)

    Astha Malik

    Full Text Available Adult neurogenesis creates new neurons and glia from stem cells in the human brain throughout life. It is best understood in the dentate gyrus (DG of the hippocampus and the subventricular zone (SVZ. Circadian rhythms have been identified in the hippocampus, but the role of any endogenous circadian oscillator cells in hippocampal neurogenesis and their importance in learning or memory remains unclear. Any study of stem cell regulation by intrinsic circadian timing within the DG is complicated by modulation from circadian clocks elsewhere in the brain. To examine circadian oscillators in greater isolation, neurosphere cultures were prepared from the DG of two knockout mouse lines that lack a functional circadian clock and from mPer1::luc mice to identify circadian oscillations in gene expression. Circadian mPer1 gene activity rhythms were recorded in neurospheres maintained in a culture medium that induces neurogenesis but not in one that maintains the stem cell state. Although the differentiating neural stem progenitor cells of spheres were rhythmic, evidence of any mature neurons was extremely sparse. The circadian timing signal originated in undifferentiated cells within the neurosphere. This conclusion was supported by immunocytochemistry for mPER1 protein that was localized to the inner, more stem cell-like neurosphere core. To test for effects of the circadian clock on neurogenesis, media conditions were altered to induce neurospheres from BMAL1 knockout mice to differentiate. These cultures displayed unusually high differentiation into glia rather than neurons according to GFAP and NeuN expression, respectively, and very few BetaIII tubulin-positive, immature neurons were observed. The knockout neurospheres also displayed areas visibly devoid of cells and had overall higher cell death. Neurospheres from arrhythmic mice lacking two other core clock genes, Cry1 and Cry2, showed significantly reduced growth and increased astrocyte

  9. Monitoring cell-autonomous circadian clock rhythms of gene expression using luciferase bioluminescence reporters.

    Science.gov (United States)

    Ramanathan, Chidambaram; Khan, Sanjoy K; Kathale, Nimish D; Xu, Haiyan; Liu, Andrew C

    2012-09-27

    In mammals, many aspects of behavior and physiology such as sleep-wake cycles and liver metabolism are regulated by endogenous circadian clocks (reviewed). The circadian time-keeping system is a hierarchical multi-oscillator network, with the central clock located in the suprachiasmatic nucleus (SCN) synchronizing and coordinating extra-SCN and peripheral clocks elsewhere. Individual cells are the functional units for generation and maintenance of circadian rhythms, and these oscillators of different tissue types in the organism share a remarkably similar biochemical negative feedback mechanism. However, due to interactions at the neuronal network level in the SCN and through rhythmic, systemic cues at the organismal level, circadian rhythms at the organismal level are not necessarily cell-autonomous. Compared to traditional studies of locomotor activity in vivo and SCN explants ex vivo, cell-based in vitro assays allow for discovery of cell-autonomous circadian defects. Strategically, cell-based models are more experimentally tractable for phenotypic characterization and rapid discovery of basic clock mechanisms. Because circadian rhythms are dynamic, longitudinal measurements with high temporal resolution are needed to assess clock function. In recent years, real-time bioluminescence recording using firefly luciferase as a reporter has become a common technique for studying circadian rhythms in mammals, as it allows for examination of the persistence and dynamics of molecular rhythms. To monitor cell-autonomous circadian rhythms of gene expression, luciferase reporters can be introduced into cells via transient transfection or stable transduction. Here we describe a stable transduction protocol using lentivirus-mediated gene delivery. The lentiviral vector system is superior to traditional methods such as transient transfection and germline transmission because of its efficiency and versatility: it permits efficient delivery and stable integration into the host

  10. Characterization and modeling of intermittent locomotor dynamics in clock gene-deficient mice.

    Directory of Open Access Journals (Sweden)

    Toru Nakamura

    Full Text Available The scale-invariant and intermittent dynamics of animal behavior are attracting scientific interest. Recent findings concerning the statistical laws of behavioral organization shared between healthy humans and wild-type mice (WT and their alterations in human depression patients and circadian clock gene (Period 2; Per2 mutant mice indicate that clock genes play functional roles in intermittent, ultradian locomotor dynamics. They also claim the clinical and biological importance of the laws as objective biobehavioral measures or endophenotypes for psychiatric disorders. In this study, to elucidate the roles of breakdown of the broader circadian regulatory circuit in intermittent behavioral dynamics, we studied the statistical properties and rhythmicity of locomotor activity in Per2 mutants and mice deficient in other clock genes (Bmal1, Clock. We performed wavelet analysis to examine circadian and ultradian rhythms and estimated the cumulative distributions of resting period durations during which locomotor activity levels are continuously lower than a predefined threshold value. The wavelet analysis revealed significant amplification of ultradian rhythms in the BMAL1-deficient mice, and instability in the Per2 mutants. The resting period distributions followed a power-law form in all mice. While the distributions for the BMAL1-deficient and Clock mutant mice were almost identical to those for the WT mice, with no significant differences in their parameter (power-law scaling exponent, only the Per2 mutant mice showed consistently and significantly lower values of the scaling exponent, indicating the increased intermittency in ultradian locomotor dynamics. Furthermore, based on a stochastic priority queuing model, we explained the power-law nature of resting period distributions, as well as its alterations shared with human depressive patients and Per2 mutant mice. Our findings lead to the development of a novel mathematical model for abnormal

  11. Glutamine synthetase gene evolution: A good molecular clock

    Energy Technology Data Exchange (ETDEWEB)

    Pesole, G.; Lanvave, C.; Saccone, C. (Consiglio Nazionale delle Richerche, Bari (Italy)); Bozzetti, M.P. (Univ. di Bari (Italy)); Preparata, G. (Univ. di Milano (Italy))

    1991-01-15

    Glutamine synthetase gene evolution in various animals, plants, and bacteria was evaluated by a general stationary Markov model. The evolutionary process proved to be unexpectedly regular even for a time span as long as that between the divergence of prokaryotes from eukaryotes. This enabled us to draw phylogenetic trees for species whose phylogeny cannot be easily reconstructed from the fossil record. The calculation of the times of divergence of the various organelle-specific enzymes led us to hypothesize that the pea and bean chloroplast genes for these enzymes originated from the duplication of nuclear genes as a result of the different metabolic needs of the various species. The data indicate that the duplication of plastid glutamine synthetase genes occurred long after the endosymbiotic events that produced the organelles themselves.

  12. Finding Clocks in Genes: A Bayesian Approach to Estimate Periodicity

    Directory of Open Access Journals (Sweden)

    Yan Ren

    2016-01-01

    Full Text Available Identification of rhythmic gene expression from metabolic cycles to circadian rhythms is crucial for understanding the gene regulatory networks and functions of these biological processes. Recently, two algorithms, JTK_CYCLE and ARSER, have been developed to estimate periodicity of rhythmic gene expression. JTK_CYCLE performs well for long or less noisy time series, while ARSER performs well for detecting a single rhythmic category. However, observing gene expression at high temporal resolution is not always feasible, and many scientists are interested in exploring both ultradian and circadian rhythmic categories simultaneously. In this paper, a new algorithm, named autoregressive Bayesian spectral regression (ABSR, is proposed. It estimates the period of time-course experimental data and classifies gene expression profiles into multiple rhythmic categories simultaneously. Through the simulation studies, it is shown that ABSR substantially improves the accuracy of periodicity estimation and clustering of rhythmic categories as compared to JTK_CYCLE and ARSER for the data with low temporal resolution. Moreover, ABSR is insensitive to rhythmic patterns. This new scheme is applied to existing time-course mouse liver data to estimate period of rhythms and classify the genes into ultradian, circadian, and arrhythmic categories. It is observed that 49.2% of the circadian profiles detected by JTK_CYCLE with 1-hour resolution are also detected by ABSR with only 4-hour resolution.

  13. Altered expression pattern of clock genes in a rat model of depression

    DEFF Research Database (Denmark)

    Christiansen, Sofie; Wiborg, Ove; Bouzinova, Elena

    2016-01-01

    . The validated chronic mild stress (CMS) animal model of depression was used to investigate rhythmic expression of three clock genes; Per1, Per2 and Bmal1. Brain and liver tissue was collected from 96 animals after 3.5 weeks of CMS (48 control and 48 depression-like rats) at 4 h sampling interval within 24 h. We......: The present results suggest that altered expression of investigated clock genes are likely to associate with the induction of a depression-like state in the CMS model.......Background: Abnormalities in circadian rhythms may be causal factors in development of major depressive disorder. The biology underlying a causal relationship between circadian rhythm disturbances and depression is slowly being unraveled. Although there is no direct evidence of dysregulation...

  14. Inferring bi-directional interactions between circadian clock genes and metabolism with model ensembles.

    Science.gov (United States)

    Grzegorczyk, Marco; Aderhold, Andrej; Husmeier, Dirk

    2015-04-01

    There has been much interest in reconstructing bi-directional regulatory networks linking the circadian clock to metabolism in plants. A variety of reverse engineering methods from machine learning and computational statistics have been proposed and evaluated. The emphasis of the present paper is on combining models in a model ensemble to boost the network reconstruction accuracy, and to explore various model combination strategies to maximize the improvement. Our results demonstrate that a rich ensemble of predictors outperforms the best individual model, even if the ensemble includes poor predictors with inferior individual reconstruction accuracy. For our application to metabolomic and transcriptomic time series from various mutagenesis plants grown in different light-dark cycles we also show how to determine the optimal time lag between interactions, and we identify significant interactions with a randomization test. Our study predicts new statistically significant interactions between circadian clock genes and metabolites in Arabidopsis thaliana, and thus provides independent statistical evidence that the regulation of metabolism by the circadian clock is not uni-directional, but that there is a statistically significant feedback mechanism aiming from metabolism back to the circadian clock. PMID:25719342

  15. The clock genes Period 2 and Cryptochrome 2 differentially balance bone formation.

    Directory of Open Access Journals (Sweden)

    Erik Maronde

    Full Text Available BACKGROUND: Clock genes and their protein products regulate circadian rhythms in mammals but have also been implicated in various physiological processes, including bone formation. Osteoblasts build new mineralized bone whereas osteoclasts degrade it thereby balancing bone formation. To evaluate the contribution of clock components in this process, we investigated mice mutant in clock genes for a bone volume phenotype. METHODOLOGY/PRINCIPAL FINDINGS: We found that Per2(Brdm1 mutant mice as well as mice lacking Cry2(-/- displayed significantly increased bone volume at 12 weeks of age, when bone turnover is high. Per2(Brdm1 mutant mice showed alterations in parameters specific for osteoblasts whereas mice lacking Cry2(-/- displayed changes in osteoclast specific parameters. Interestingly, inactivation of both Per2 and Cry2 genes leads to normal bone volume as observed in wild type animals. Importantly, osteoclast parameters affected due to the lack of Cry2, remained at the level seen in the Cry2(-/- mutants despite the simultaneous inactivation of Per2. CONCLUSIONS/SIGNIFICANCE: This indicates that Cry2 and Per2 affect distinct pathways in the regulation of bone volume with Cry2 influencing mostly the osteoclastic cellular component of bone and Per2 acting on osteoblast parameters.

  16. Differential effect of fructose on fat metabolism and clock gene expression in hepatocytes vs. myotubes.

    Science.gov (United States)

    Chapnik, Nava; Rozenblit-Susan, Sigal; Genzer, Yoni; Froy, Oren

    2016-08-01

    In the liver, fructose bypasses the main rate-limiting step of glycolysis at the level of phosphofructokinase, allowing it to act as an unregulated substrate for de novo lipogenesis. It has been reported that consumption of large amounts of fructose increases de novo lipogenesis in the liver. However, the effect of fructose on ectopic deposition of muscle fat has been under dispute. Our aim was to study the effect of fructose on levels of genes and proteins involved in fatty acid oxidation and synthesis in hepatocytes vs. muscle cells. In addition, as fat accumulation leads to disruption of daily rhythms, we tested the effect of fructose treatment on clock gene expression. AML-12 hepatocytes and C2C12 myotubes were treated with fructose or glucose for 2 consecutive 24-h cycles and harvested every 6h. In contrast to glucose, fructose disrupted clock gene rhythms in hepatocytes, but in myotubes, it led to more robust rhythms. Fructose led to low levels of phosphorylated AMP-activated protein kinase (pAMPK) and high levels of LIPIN1 in hepatocytes compared with glucose. In contrast, fructose led to high pAMPK and low LIPIN1 and microsomal triacylglycerol transfer protein (MTTP) levels in myotubes compared with glucose. Analysis of fat content revealed that fructose led to less fat accumulation in myotubes compared to hepatocytes. In summary, fructose shifts metabolism towards fatty acid synthesis and clock disruption in hepatocytes, but not in myotubes. PMID:27240446

  17. Circadian Clock Genes: Effects on Dopamine, Reward and Addiction

    OpenAIRE

    Parekh, Puja K.; Ozburn, Angela R; McClung, Colleen A.

    2015-01-01

    Addiction is a widespread public health issue with social and economic ramifications. Substance abuse disorders are often accompanied by disruptions in circadian rhythms including sleep/wake cycles, which can exacerbate symptoms of addiction and dependence. Additionally, genetic disturbance of circadian molecular mechanisms can predispose some individuals to substance abuse disorders. In this review, we will discuss how circadian genes can regulate midbrain dopaminergic activity and subsequen...

  18. Clock circadian regulator (CLOCK) gene network expression patterns in bovine adipose, liver, and mammary gland at 3 time points during the transition from pregnancy into lactation.

    Science.gov (United States)

    Wang, M; Zhou, Z; Khan, M J; Gao, J; Loor, J J

    2015-07-01

    The transition from late gestation to early lactation is the most critical phase of the lactation cycle for mammals. Research in rodents has revealed changes in the clock circadian regulator (CLOCK) gene network expression around parturition. However, their expression profiles and putative functions during the periparturient period in ruminants remain to be determined. The present study aimed to investigate the expression pattern of the CLOCK network and selected metabolic genes simultaneously in mammary gland (MG), liver (LIV), and subcutaneous adipose tissue (AT). Seven dairy cows were biopsied at -10 (±2), 7, and 21 d relative to parturition. A day × tissue interaction was observed for ARNTL, CRY1, and PER2 due to upregulation at 7 and 21 d postpartum, with their expression being greater in AT and MG compared with LIV. No interaction was detected for CLOCK, CRY2, PER1, and PER3. In general, the expression of NPAS2, NR1D1, NR2F2, ALAS1, FECH, FBXW11, CCRN4L, PPARA, PPARGC1A, and FGF21 was lower at -10 d but increased postpartum in all tissues. The interaction detected for CSNK1D was associated with increased expression postpartum in AT and MG but not LIV. The interaction detected for CPT1A was due to upregulation in AT and LIV postpartum without a change in MG. In contrast, the interaction for PPARG was due to upregulation in AT and MG postpartum but a downregulation in LIV. Leptin was barely detectable in LIV, but there was an interaction effect in AT and MG associated with upregulation postpartum in MG and downregulation in AT. Together, these results suggest that the control of metabolic adaptations in LIV, MG, and AT around parturition might be partly regulated through the CLOCK gene network. Although the present study did not specifically address rhythmic control of tissue metabolism via the CLOCK gene network, the difference in expression of genes studied among tissues confirms that the behavior of circadian-controlled metabolic genes around parturition

  19. Role for circadian clock genes in seasonal timing: testing the Bunning hypothesis.

    Directory of Open Access Journals (Sweden)

    Mirko Pegoraro

    2014-09-01

    Full Text Available A major question in chronobiology focuses around the "Bünning hypothesis" which implicates the circadian clock in photoperiodic (day-length measurement and is supported in some systems (e.g. plants but disputed in others. Here, we used the seasonally-regulated thermotolerance of Drosophila melanogaster to test the role of various clock genes in day-length measurement. In Drosophila, freezing temperatures induce reversible chill coma, a narcosis-like state. We have corroborated previous observations that wild-type flies developing under short photoperiods (winter-like exhibit significantly shorter chill-coma recovery times (CCRt than flies that were raised under long (summer-like photoperiods. Here, we show that arrhythmic mutant strains, per01, tim01 and ClkJrk, as well as variants that speed up or slow down the circadian period, disrupt the photoperiodic component of CCRt. Our results support an underlying circadian function mediating seasonal daylength measurement and indicate that clock genes are tightly involved in photo- and thermo-periodic measurements.

  20. Induction of the CLOCK Gene by E2-ERα Signaling Promotes the Proliferation of Breast Cancer Cells

    Science.gov (United States)

    Bi, Hailian; Li, Shujing; Wang, Miao; Xing, Xinrong; Wu, Huijian

    2014-01-01

    Growing genetic and epidemiological evidence suggests a direct connection between the disruption of circadian rhythm and breast cancer. Moreover, the expression of several molecular components constituting the circadian clock machinery has been found to be modulated by estrogen-estrogen receptor α (E2-ERα) signaling in ERα-positive breast cancer cells. In this study, we investigated the regulation of CLOCK expression by ERα and its roles in cell proliferation. Immunohistochemical analysis of human breast tumor samples revealed high expression of CLOCK in ERα-positive breast tumor samples. Subsequent experiments using ERα-positive human breast cancer cell lines showed that both protein and mRNA levels of CLOCK were up-regulated by E2 and ERα. In these cells, E2 promoted the binding of ERα to the EREs (estrogen-response elements) of CLOCK promoter, thereby up-regulating the transcription of CLOCK. Knockdown of CLOCK attenuated cell proliferation in ERα-positive breast cancer cells. Taken together, these results demonstrated that CLOCK could be an important gene that mediates cell proliferation in breast cancer cells. PMID:24789043

  1. Induction of the CLOCK gene by E2-ERα signaling promotes the proliferation of breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Liyun Xiao

    Full Text Available Growing genetic and epidemiological evidence suggests a direct connection between the disruption of circadian rhythm and breast cancer. Moreover, the expression of several molecular components constituting the circadian clock machinery has been found to be modulated by estrogen-estrogen receptor α (E2-ERα signaling in ERα-positive breast cancer cells. In this study, we investigated the regulation of CLOCK expression by ERα and its roles in cell proliferation. Immunohistochemical analysis of human breast tumor samples revealed high expression of CLOCK in ERα-positive breast tumor samples. Subsequent experiments using ERα-positive human breast cancer cell lines showed that both protein and mRNA levels of CLOCK were up-regulated by E2 and ERα. In these cells, E2 promoted the binding of ERα to the EREs (estrogen-response elements of CLOCK promoter, thereby up-regulating the transcription of CLOCK. Knockdown of CLOCK attenuated cell proliferation in ERα-positive breast cancer cells. Taken together, these results demonstrated that CLOCK could be an important gene that mediates cell proliferation in breast cancer cells.

  2. Acute melatonin treatment alters dendritic morphology and circadian clock gene expression in the hippocampus of Siberian hamsters.

    Science.gov (United States)

    Ikeno, Tomoko; Nelson, Randy J

    2015-02-01

    In the hippocampus of Siberian hamsters, dendritic length and dendritic complexity increase in the CA1 region whereas dendritic spine density decreases in the dentate gyrus region at night. However, the underlying mechanism of the diurnal rhythmicity in hippocampal neuronal remodeling is unknown. In mammals, most daily rhythms in physiology and behaviors are regulated by a network of circadian clocks. The central clock, located in the hypothalamus, controls melatonin secretion at night and melatonin modifies peripheral clocks by altering expression of circadian clock genes. In this study, we examined the effects of acute melatonin treatment on the circadian clock system as well as on morphological changes of hippocampal neurons. Male Siberian hamsters were injected with melatonin in the afternoon; 4 h later, mRNA levels of hypothalamic and hippocampal circadian clock genes and hippocampal neuron dendritic morphology were assessed. In the hypothalamus, melatonin treatment did not alter Period1 and Bmal1 expression. However, melatonin treatment increased both Period1 and Bmal1 expression in the hippocampus, suggesting that melatonin affected molecular oscillations in the hippocampus. Melatonin treatment also induced rapid remodeling of hippocampal neurons; melatonin increased apical dendritic length and dendritic complexity in the CA1 region and reduced the dendritic spine density in the dentate gyrus region. These data suggest that structural changes in hippocampal neurons are regulated by a circadian clock and that melatonin functions as a nighttime signal to coordinate the diurnal rhythm in neuronal remodeling.

  3. A Canonical Correlation Analysis of AIDS Restriction Genes and Metabolic Pathways Identifies Purine Metabolism as a Key Cooperator

    Directory of Open Access Journals (Sweden)

    Hanhui Ye

    2016-01-01

    Full Text Available Human immunodeficiency virus causes a severe disease in humans, referred to as immune deficiency syndrome. Studies on the interaction between host genetic factors and the virus have revealed dozens of genes that impact diverse processes in the AIDS disease. To resolve more genetic factors related to AIDS, a canonical correlation analysis was used to determine the correlation between AIDS restriction and metabolic pathway gene expression. The results show that HIV-1 postentry cellular viral cofactors from AIDS restriction genes are coexpressed in human transcriptome microarray datasets. Further, the purine metabolism pathway comprises novel host factors that are coexpressed with AIDS restriction genes. Using a canonical correlation analysis for expression is a reliable approach to exploring the mechanism underlying AIDS.

  4. Glucocorticoid ultradian rhythmicity directs cyclical gene pulsing of the clock gene period 1 in rat hippocampus.

    Science.gov (United States)

    Conway-Campbell, B L; Sarabdjitsingh, R A; McKenna, M A; Pooley, J R; Kershaw, Y M; Meijer, O C; De Kloet, E R; Lightman, S L

    2010-10-01

    In vivo glucocorticoid (GC) secretion exhibits a distinctive ultradian rhythmicity. The lipophilic hormone can rapidly diffuse into cells, although only the pulse peak is of sufficient amplitude to activate the low affinity glucocorticoid receptor (GR). Discrete pulses readily access brain regions such as the hippocampus where GR expression is enriched and known to regulate neuronal function, including memory and learning processes. In the present study, we have tested the hypothesis that GR brain targets are responsive to ultradian GC rhythmicity. We have used adrenalectomised rats replaced with pulses of corticosterone to determine the transcriptional effects of ultradian pulses in the hippocampus. Confocal microscopy confirmed that each GC pulse results in transient GR nuclear localisation in hippocampal CA1 neurones. Concomitant GR activation and DNA binding was demonstrated by synthetic glucocorticoid response element oligonucleotide binding, and verified for the Clock gene Period 1 promoter region by chromatin immunoprecipitation assays. Strikingly each GC pulse induced a 'burst' of transcription of Period 1 measured by heterogeneous nuclear RNA quantitative polymerase chain reaction. The net effect of pulsatile GC exposure on accumulation of the mature transcript was also assessed, revealing a plateau of mRNA levels throughout the time course of pulsatile exposure, indicating the pulse timing works optimally for steady state Per1 expression. The plateau dropped to baseline within 120 min of the final pulse, indicating a relatively short half-life for hippocampal Per1. The significance of this strict temporal control is that any perturbation to the pulse frequency or duration would have rapid quantitative effects on the levels of Per1. This in turn could affect hippocampal function, especially circadian related memory and learning processes.

  5. Glucocorticoid Ultradian Rhythmicity Directs Cyclical Gene Pulsing of the Clock Gene Period 1 in Rat Hippocampus

    Science.gov (United States)

    McKenna, M. A.; Pooley, J. R.; Kershaw, Y. M.; Meijer, O. C.; de Kloet, E. R.; Lightman, S. L.

    2016-01-01

    In vivo glucocorticoid (GC) secretion exhibits a distinctive ultradian rhythmicity. The lipophilic hormone can rapidly diffuse into cells, although only the pulse peak is of sufficient amplitude to activate the low affinity glucocorticoid receptor (GR). Discrete pulses readily access brain regions such as the hippocampus where GR expression is enriched and known to regulate neuronal function, including memory and learning processes. In the present study, we have tested the hypothesis that GR brain targets are responsive to ultradian GC rhythmicity. We have used adrenalectomised rats replaced with pulses of corticosterone to determine the transcriptional effects of ultradian pulses in the hippocampus. Confocal microscopy confirmed that each GC pulse results in transient GR nuclear localisation in hippocampal CA1 neurones. Concomitant GR activation and DNA binding was demonstrated by synthetic glucocorticoid response element oligonucleotide binding, and verified for the Clock gene Period 1 promoter region by chromatin immunoprecipitation assays. Strikingly each GC pulse induced a ‘burst’ of transcription of Period 1 measured by heterogeneous nuclear RNA quantitative polymerase chain reaction. The net effect of pulsatile GC exposure on accumulation of the mature transcript was also assessed, revealing a plateau of mRNA levels throughout the time course of pulsatile exposure, indicating the pulse timing works optimally for steady state Per1 expression. The plateau dropped to baseline within 120 min of the final pulse, indicating a relatively short half-life for hippocampal Per1. The significance of this strict temporal control is that any perturbation to the pulse frequency or duration would have rapid quantitative effects on the levels of Per1. This in turn could affect hippocampal function, especially circadian related memory and learning processes. PMID:20649850

  6. Melanopsin resets circadian rhythms in cells by inducing clock gene Period1

    Science.gov (United States)

    Yamashita, Shuhei; Uehara, Tomoe; Matsuo, Minako; Kikuchi, Yo; Numano, Rika

    2014-02-01

    The biochemical, physiological and behavioral processes are under the control of internal clocks with the period of approximately 24 hr, circadian rhythms. The expression of clock gene Period1 (Per1) oscillates autonomously in cells and is induced immediately after a light pulse. Per1 is an indispensable member of the central clock system to maintain the autonomous oscillator and synchronize environmental light cycle. Per1 expression could be detected by Per1∷luc and Per1∷GFP plasmid DNA in which firefly luciferase and Green Fluorescence Protein were rhythmically expressed under the control of the mouse Per1 promoter in order to monitor mammalian circadian rhythms. Membrane protein, MELANOPSIN is activated by blue light in the morning on the retina and lead to signals transduction to induce Per1 expression and to reset the phase of circadian rhythms. In this report Per1 induction was measured by reporter signal assay in Per1∷luc and Per1∷GFP fibroblast cell at the input process of circadian rhythms. To the result all process to reset the rhythms by Melanopsin is completed in single cell like in the retina projected to the central clock in the brain. Moreover, the phase of circadian rhythm in Per1∷luc cells is synchronized by photo-activated Melanopsin, because the definite peak of luciferase activity in one dish was found one day after light illumination. That is an available means that physiological circadian rhythms could be real-time monitor as calculable reporter (bioluminescent and fluorescent) chronological signal in both single and groups of cells.

  7. Maternal obesity disrupts circadian rhythms of clock and metabolic genes in the offspring heart and liver.

    Science.gov (United States)

    Wang, Danfeng; Chen, Siyu; Liu, Mei; Liu, Chang

    2015-06-01

    Early life nutritional adversity is tightly associated with the development of long-term metabolic disorders. Particularly, maternal obesity and high-fat diets cause high risk of obesity in the offspring. Those offspring are also prone to develop hyperinsulinemia, hepatic steatosis and cardiovascular diseases. However, the precise underlying mechanisms leading to these metabolic dysregulation in the offspring remain unclear. On the other hand, disruptions of diurnal circadian rhythms are known to impair metabolic homeostasis in various tissues including the heart and liver. Therefore, we investigated that whether maternal obesity perturbs the circadian expression rhythms of clock, metabolic and inflammatory genes in offspring heart and liver by using RT-qPCR and Western blotting analysis. Offspring from lean and obese dams were examined on postnatal day 17 and 35, when pups were nursed by their mothers or took food independently. On P17, genes examined in the heart either showed anti-phase oscillations (Cpt1b, Pparα, Per2) or had greater oscillation amplitudes (Bmal1, Tnf-α, Il-6). Such phase abnormalities of these genes were improved on P35, while defects in amplitudes still existed. In the liver of 17-day-old pups exposed to maternal obesity, the oscillation amplitudes of most rhythmic genes examined (except Bmal1) were strongly suppressed. On P35, the oscillations of circadian and inflammatory genes became more robust in the liver, while metabolic genes were still kept non-rhythmic. Maternal obesity also had a profound influence in the protein expression levels of examined genes in offspring heart and liver. Our observations indicate that the circadian clock undergoes nutritional programing, which may contribute to the alternations in energy metabolism associated with the development of metabolic disorders in early life and adulthood.

  8. A model of calcium-mediated coupling between membrane activity and clock gene expression in neurons of the suprachiasmatic nucleus

    CERN Document Server

    Casado, J M

    2015-01-01

    Rhythms in electrical activity in the membrane of cells in the suprachiasmatic nucleus (SCN) are crucial for the function of the circadian timing system, which is characterized by the expression of the so-called clock genes. Intracellular Ca$^{2+}$ ions seem to connect, at least in part, the electrical activity of SCN neurons with the expression of clock genes. In this paper, we introduce a simple mathematical model describing the linking of membrane activity to the transcription of one gene by means of a feedback mechanism based on the dynamics of intracellular calcium ions.

  9. Clock genes and their genomic distributions in three species of salmonid fishes: Associations with genes regulating sexual maturation and cell cycling

    Directory of Open Access Journals (Sweden)

    Ferguson Moira M

    2010-07-01

    Full Text Available Abstract Background Clock family genes encode transcription factors that regulate clock-controlled genes and thus regulate many physiological mechanisms/processes in a circadian fashion. Clock1 duplicates and copies of Clock3 and NPAS2-like genes were partially characterized (genomic sequencing and mapped using family-based indels/SNPs in rainbow trout (RT(Oncorhynchus mykiss, Arctic charr (AC(Salvelinus alpinus, and Atlantic salmon (AS(Salmo salar mapping panels. Results Clock1 duplicates mapped to linkage groups RT-8/-24, AC-16/-13 and AS-2/-18. Clock3/NPAS2-like genes mapped to RT-9/-20, AC-20/-43, and AS-5. Most of these linkage group regions containing the Clock gene duplicates were derived from the most recent 4R whole genome duplication event specific to the salmonids. These linkage groups contain quantitative trait loci (QTL for life history and growth traits (i.e., reproduction and cell cycling. Comparative synteny analyses with other model teleost species reveal a high degree of conservation for genes in these chromosomal regions suggesting that functionally related or co-regulated genes are clustered in syntenic blocks. For example, anti-müllerian hormone (amh, regulating sexual maturation, and ornithine decarboxylase antizymes (oaz1 and oaz2, regulating cell cycling, are contained within these syntenic blocks. Conclusions Synteny analyses indicate that regions homologous to major life-history QTL regions in salmonids contain many candidate genes that are likely to influence reproduction and cell cycling. The order of these genes is highly conserved across the vertebrate species examined, and as such, these genes may make up a functional cluster of genes that are likely co-regulated. CLOCK, as a transcription factor, is found within this block and therefore has the potential to cis-regulate the processes influenced by these genes. Additionally, clock-controlled genes (CCGs are located in other life-history QTL regions within

  10. Circadian control by the reduction/oxidation pathway: catalase represses light-dependent clock gene expression in the zebrafish.

    Science.gov (United States)

    Hirayama, Jun; Cho, Sehyung; Sassone-Corsi, Paolo

    2007-10-01

    Light is the key entraining stimulus for the circadian clock, but several features of the signaling pathways that convert the photic signal to clock entrainment remain to be deciphered. Here, we show that light induces the production of hydrogen peroxide (H(2)O(2)) that acts as the second messenger coupling photoreception to the zebrafish circadian clock. Treatment of light-responsive Z3 cells with H(2)O(2) triggers the induction of zCry1a and zPer2 genes and the subsequent circadian oscillation of zPer1. Remarkably, the induction kinetics and oscillation profile in response to H(2)O(2) are identical to those initiated by light. Catalase (Cat), an antioxidant enzyme degrading H(2)O(2), shows an oscillating pattern of expression and activity, antiphasic to zCry1a and zPer2. Interestingly, overexpression of zCAT results in a reduced light-dependent zCry1a and zPer2 gene induction. In contrast, inhibition of zCAT function enhances light-mediated inducibility of these clock genes. These findings implicate the enzymatic function of zCAT enzyme in the negative regulation of light-dependent clock gene transcriptional activation. Our findings provide an attractive link between the regulation of the cellular reduction/oxidation (redox) state and the photic signaling pathways implicated in circadian control.

  11. Ketamine influences CLOCK:BMAL1 function leading to altered circadian gene expression.

    Directory of Open Access Journals (Sweden)

    Marina M Bellet

    Full Text Available Major mood disorders have been linked to abnormalities in circadian rhythms, leading to disturbances in sleep, mood, temperature, and hormonal levels. We provide evidence that ketamine, a drug with rapid antidepressant effects, influences the function of the circadian molecular machinery. Ketamine modulates CLOCK:BMAL1-mediated transcriptional activation when these regulators are ectopically expressed in NG108-15 neuronal cells. Inhibition occurs in a dose-dependent manner and is attenuated after treatment with the GSK3β antagonist SB21673. We analyzed the effect of ketamine on circadian gene expression and observed a dose-dependent reduction in the amplitude of circadian transcription of the Bmal1, Per2, and Cry1 genes. Finally, chromatin-immunoprecipitation analyses revealed that ketamine altered the recruitment of the CLOCK:BMAL1 complex on circadian promoters in a time-dependent manner. Our results reveal a yet unsuspected molecular mode of action of ketamine and thereby may suggest possible pharmacological antidepressant strategies.

  12. Defining the robust behaviour of the plant clock gene circuit with absolute RNA timeseries and open infrastructure.

    Science.gov (United States)

    Flis, Anna; Fernández, Aurora Piñas; Zielinski, Tomasz; Mengin, Virginie; Sulpice, Ronan; Stratford, Kevin; Hume, Alastair; Pokhilko, Alexandra; Southern, Megan M; Seaton, Daniel D; McWatters, Harriet G; Stitt, Mark; Halliday, Karen J; Millar, Andrew J

    2015-10-01

    Our understanding of the complex, transcriptional feedback loops in the circadian clock mechanism has depended upon quantitative, timeseries data from disparate sources. We measure clock gene RNA profiles in Arabidopsis thaliana seedlings, grown with or without exogenous sucrose, or in soil-grown plants and in wild-type and mutant backgrounds. The RNA profiles were strikingly robust across the experimental conditions, so current mathematical models are likely to be broadly applicable in leaf tissue. In addition to providing reference data, unexpected behaviours included co-expression of PRR9 and ELF4, and regulation of PRR5 by GI. Absolute RNA quantification revealed low levels of PRR9 transcripts (peak approx. 50 copies cell(-1)) compared with other clock genes, and threefold higher levels of LHY RNA (more than 1500 copies cell(-1)) than of its close relative CCA1. The data are disseminated from BioDare, an online repository for focused timeseries data, which is expected to benefit mechanistic modelling. One data subset successfully constrained clock gene expression in a complex model, using publicly available software on parallel computers, without expert tuning or programming. We outline the empirical and mathematical justification for data aggregation in understanding highly interconnected, dynamic networks such as the clock, and the observed design constraints on the resources required to make this approach widely accessible. PMID:26468131

  13. Low Variation in the Polymorphic Clock Gene Poly-Q Region Despite Population Genetic Structure across Barn Swallow (Hirundo rustica) Populations

    Science.gov (United States)

    Dor, Roi; Lovette, Irby J.; Safran, Rebecca J.; Billerman, Shawn M.; Huber, Gernot H.; Vortman, Yoni; Lotem, Arnon; McGowan, Andrew; Evans, Matthew R.; Cooper, Caren B.; Winkler, David W.

    2011-01-01

    Recent studies of several species have reported a latitudinal cline in the circadian clock gene, Clock, which influences rhythms in both physiology and behavior. Latitudinal variation in this gene may hence reflect local adaptation to seasonal variation. In some bird populations, there is also an among-individual association between Clock poly-Q genotype and clutch initiation date and incubation period. We examined Clock poly-Q allele variation in the Barn Swallow (Hirundo rustica), a species with a cosmopolitan geographic distribution and considerable variation in life-history traits that may be influenced by the circadian clock. We genotyped Barn Swallows from five populations (from three subspecies) and compared variation at the Clock locus to that at microsatellite loci and mitochondrial DNA (mtDNA). We found very low variation in the Clock poly-Q region, as >96% of individuals were homozygous, and the two other alleles at this locus were globally rare. Genetic differentiation based on the Clock poly-Q locus was not correlated with genetic differentiation based on either microsatellite loci or mtDNA sequences. Our results show that high diversity in Clock poly-Q is not general across avian species. The low Clock variation in the background of heterogeneity in microsatellite and mtDNA loci in Barn Swallows may be an outcome of stabilizing selection on the Clock locus. PMID:22216124

  14. Low variation in the polymorphic Clock gene poly-Q region despite population genetic structure across barn swallow (Hirundo rustica populations.

    Directory of Open Access Journals (Sweden)

    Roi Dor

    Full Text Available Recent studies of several species have reported a latitudinal cline in the circadian clock gene, Clock, which influences rhythms in both physiology and behavior. Latitudinal variation in this gene may hence reflect local adaptation to seasonal variation. In some bird populations, there is also an among-individual association between Clock poly-Q genotype and clutch initiation date and incubation period. We examined Clock poly-Q allele variation in the Barn Swallow (Hirundo rustica, a species with a cosmopolitan geographic distribution and considerable variation in life-history traits that may be influenced by the circadian clock. We genotyped Barn Swallows from five populations (from three subspecies and compared variation at the Clock locus to that at microsatellite loci and mitochondrial DNA (mtDNA. We found very low variation in the Clock poly-Q region, as >96% of individuals were homozygous, and the two other alleles at this locus were globally rare. Genetic differentiation based on the Clock poly-Q locus was not correlated with genetic differentiation based on either microsatellite loci or mtDNA sequences. Our results show that high diversity in Clock poly-Q is not general across avian species. The low Clock variation in the background of heterogeneity in microsatellite and mtDNA loci in Barn Swallows may be an outcome of stabilizing selection on the Clock locus.

  15. There Is No Association Between the Circadian Clock Gene HPER3 and Cognitive Dysfunction After Noncardiac Surgery

    DEFF Research Database (Denmark)

    Voigt Hansen, Melissa; Simon Rasmussen, Lars; Jespersgaard, Cathrine;

    2012-01-01

    The specific clock-gene PERIOD3 is important with regard to circadian rhythmicity, sleep homeostasis, and cognitive function. The allele PER3(5/5) has been associated with worse cognitive performance in response to sleep deprivation. We hypothesized that patients with the PER3(5/5) genotype would...

  16. Differentiation of PC12 Cells Results in Enhanced VIP Expression and Prolonged Rhythmic Expression of Clock Genes

    DEFF Research Database (Denmark)

    Pretzmann, C.P.; Fahrenkrug, J.; Georg, B.

    2008-01-01

    To examine for circadian rhythmicity, the messenger RNA (mRNA) amount of the clock genes Per1 and Per2 was measured in undifferentiated and nerve-growth-factor-differentiated PC12 cells harvested every fourth hour. Serum shock was needed to induce circadian oscillations, which in undifferentiated...

  17. Modulation of learning and memory by the targeted deletion of the circadian clock gene Bmal1 in forebrain circuits.

    Science.gov (United States)

    Snider, Kaitlin H; Dziema, Heather; Aten, Sydney; Loeser, Jacob; Norona, Frances E; Hoyt, Kari; Obrietan, Karl

    2016-07-15

    A large body of literature has shown that the disruption of circadian clock timing has profound effects on mood, memory and complex thinking. Central to this time keeping process is the master circadian pacemaker located within the suprachiasmatic nucleus (SCN). Of note, within the central nervous system, clock timing is not exclusive to the SCN, but rather, ancillary oscillatory capacity has been detected in a wide range of cell types and brain regions, including forebrain circuits that underlie complex cognitive processes. These observations raise questions about the hierarchical and functional relationship between the SCN and forebrain oscillators, and, relatedly, about the underlying clock-gated synaptic circuitry that modulates cognition. Here, we utilized a clock knockout strategy in which the essential circadian timing gene Bmal1 was selectively deleted from excitatory forebrain neurons, whilst the SCN clock remained intact, to test the role of forebrain clock timing in learning, memory, anxiety, and behavioral despair. With this model system, we observed numerous effects on hippocampus-dependent measures of cognition. Mice lacking forebrain Bmal1 exhibited deficits in both acquisition and recall on the Barnes maze. Notably, loss of forebrain Bmal1 abrogated time-of-day dependent novel object location memory. However, the loss of Bmal1 did not alter performance on the elevated plus maze, open field assay, and tail suspension test, indicating that this phenotype specifically impairs cognition but not affect. Together, these data suggest that forebrain clock timing plays a critical role in shaping the efficiency of learning and memory retrieval over the circadian day. PMID:27091299

  18. Melatonin biosynthesizing enzyme genes and clock genes in ovary and whole brain of zebrafish (Danio rerio): Differential expression and a possible interplay.

    Science.gov (United States)

    Khan, Zeeshan Ahmad; Yumnamcha, Thangal; Rajiv, Chongtham; Devi, Haobijam Sanjita; Mondal, Gopinath; Devi, Sh Dharmajyoti; Bharali, Rupjyoti; Chattoraj, Asamanja

    2016-07-01

    The present study on zebrafish (Danio rerio) is the first attempt to demonstrate the circadian mRNA expression of melatonin biosynthesizing enzyme genes (Tph1a, Aanat1, Aanat2 and Hiomt) and clock associated genes (Bmal1a, Clock1a, Per1b, Per2 and Cry2a) in the ovary with a comparison to whole brain in normal (LD=12h L:12h D) and altered photic conditions (continuous dark, DD; continuous light, LL). Moreover, the present study also confirmed the ability of zebrafish ovary to biosynthesize melatonin both in vivo and in vitro with a significant difference at day and night. qRT-PCR analysis of genes revealed a dark acrophase of Aanat2 in both organs while Tph1 is in whole brain in LD condition. On the contrary, Bmal1a and Clock1a giving their peak in light, thereby showing a negative correlation with Tph1a and Aanat2. In LD-ovary, the acrophase of Tph1a, Bmal1a and Clock1a is in light and thus display a positive correlation. This trend of relationship in respect to Tph1a is not changing in altered photic conditions in both organs (except in DD-ovary). On the other hand this association for Aanat2 is varying in ovary under altered photic conditions but only in DD-whole brain. Both in LD and LL the expression of Aanat2 in brain presenting an opposite acrophase with both Bmal1a and Clock1a of ovary and consequently displaying a strong negative correlation among them. Interestingly, all ovarian clock associated genes become totally arrhythmic in DD, representing a loss of correlation between the melatonin synthesizing genes in brain and clock associated genes in ovary. The result is also indicating the formation of two heterodimers namely Clock1a:Bmal1a and Per2:Cry2a in the functioning of clock genes in both organs, irrespective of photic conditions, as they are exhibiting a strong significant positive correlation. Collectively, our data suggest that ovary of zebrafish is working as peripheral oscillator having its own melatonin biosynthesizing machinery and signifying a

  19. Expression of the clock genes Per1 and Bmal1 during follicle development in the rat ovary. Effects of gonadotropin stimulation and hypophysectomy

    DEFF Research Database (Denmark)

    Gräs, Søren; Georg, Birgitte; Jørgensen, Henrik L;

    2012-01-01

    rhythms in the rat ovary to the luteinising hormone receptor and suggest a functional link to androgen and progesterone production. In hypophysectomised animals, rhythmic clock gene expression is also observed in the corpora lutea and in secondary interstitial cells demonstrating that......Daily oscillations of clock genes have recently been demonstrated in the ovaries of several species. Clock gene knockout or mutant mice demonstrate a variety of reproductive defects. Accumulating evidence suggests that these rhythms act to synchronise the expression of specific ovarian genes...

  20. α1B-Adrenergic receptor signaling controls circadian expression of Tnfrsf11b by regulating clock genes in osteoblasts

    Directory of Open Access Journals (Sweden)

    Takao Hirai

    2015-11-01

    Full Text Available Circadian clocks are endogenous and biological oscillations that occur with a period of <24 h. In mammals, the central circadian pacemaker is localized in the suprachiasmatic nucleus (SCN and is linked to peripheral tissues through neural and hormonal signals. In the present study, we investigated the physiological function of the molecular clock on bone remodeling. The results of loss-of-function and gain-of-function experiments both indicated that the rhythmic expression of Tnfrsf11b, which encodes osteoprotegerin (OPG, was regulated by Bmal1 in MC3T3-E1 cells. We also showed that REV-ERBα negatively regulated Tnfrsf11b as well as Bmal1 in MC3T3-E1 cells. We systematically investigated the relationship between the sympathetic nervous system and the circadian clock in osteoblasts. The administration of phenylephrine, a nonspecific α1-adrenergic receptor (AR agonist, stimulated the expression of Tnfrsf11b, whereas the genetic ablation of α1B-AR signaling led to the alteration of Tnfrsf11b expression concomitant with Bmal1 and Per2 in bone. Thus, this study demonstrated that the circadian regulation of Tnfrsf11b was regulated by the clock genes encoding REV-ERBα (Nr1d1 and Bmal1 (Bmal1, also known as Arntl, which are components of the core loop of the circadian clock in osteoblasts.

  1. Clock gene variation is associated with breeding phenology and maybe under directional selection in the migratory barn swallow.

    Directory of Open Access Journals (Sweden)

    Manuela Caprioli

    Full Text Available BACKGROUND: In diverse taxa, photoperiodic responses that cause seasonal physiological and behavioural shifts are controlled by genes, including the vertebrate Clock orthologues, that encode for circadian oscillator mechanisms. While the genetic network behind circadian rhythms is well described, relatively few reports exist of the phenological consequences of and selection on Clock genes in the wild. Here, we investigated variation in breeding phenology in relation to Clock genetic diversity in a long-distance migratory bird, the barn swallow (Hirundo rustica. METHODOLOGY/PRINCIPAL FINDINGS: In a sample of 922 adult barn swallows from a single population breeding in Italy we found one very common (Q(7 and three rare (Q(5, Q(6, Q(8 length variants of a functionally significant polyglutamine repeat. Rare (2.9% Q(7/Q(8 heterozygous females, but not males, bred significantly later than common (91.5% Q(7/Q(7 females, consistent with the expectation that 'long' alleles cause late breeding, as observed in a resident population of another bird species. Because breeding date depends on arrival date from migration, present results suggest that the association between breeding date and Clock might be mediated by migration phenology. In addition, fecundity selection appears to be operating against Q(7/Q(8 because late migrating/breeding swallows have fewer clutches per season, and late breeding has additional negative selection effects via reduced offspring longevity. Genotype frequencies varied marginally non-significantly with age, as Q(7/Q(8 frequency showed a 4-fold reduction in old individuals. This result suggests negative viability selection against Q(7/Q(8, possibly mediated by costs of late breeding. CONCLUSIONS/SIGNIFICANCE: This is the first study of migratory birds showing an association between breeding phenology and Clock genotype and suggesting that negative selection occurs on a phenologically deviant genotype. Low polymorphism at Clock may

  2. Circadian expression of clock genes and angiotensin Ⅱ type 1 receptors in suprachiasmatic nuclei of sinoaortic-denervated rats

    Institute of Scientific and Technical Information of China (English)

    Hui LI; Ning-ling SUN; Jin WANG; Ai-jun LIU; Ding-feng SU

    2007-01-01

    Aim: To investigate whether the circadian expression of central clock genes and angiotensin Ⅱ type 1 (AT1) receptors was altered in sinoaortic-denervated (SAD)rats. Methods: Male Sprague-Dawley rats underwent sinoaortic denervation or a sham operation at the age of 12 weeks. Four weeks after the operation, blood pressure and heart period were measured in the conscious state in a group of sham-operated (n=10) and SAD rats (n=9). Rest SAD and sham-operated rats were divided into 6 groups (n=6 in each group). The suprachiasmatic nuclei (SCN)tissues were taken every 4 h throughout the day from each group for the determi-nation of the mRNA expression of clock genes (Per2 and Bmall) and the AT1receptor by RT-PCR; the protein expression of Per2 and Bmall was determined by Western blotting. Results: Blood pressure levels in the SAD rats were similar to those of the sham-operated rats. However, blood pressure variabilities signifi-cantly increased in the SAD rats compared with the sham-operated rats. The circadian variation of clock genes in the SCN of the sham-operated rats was char-acterized by a marked increase in the mRNA and protein expression during dark periods. Per2 and Bmall mRNA levels were significantly lower in the SAD rats,especially during dark periods. Western blot analysis confirmed an attenuation of the circadian rhythm of the 2 clock proteins in the SCN of the SAD rats. AT1 receptor mRNA expressions in the SCN were abnormally upregulated in the light phase, changed to a 12-h cycle in the SAD rats. Conclusion: The circadian varia-tion of the 2 central clock genes was attenuated in the SAD rats. Arterial baroreflex dysfunction also induced a disturbance in the expression of AT1 receptors in the SCN.

  3. Role of L1CAM in the Regulation of the Canonical Wnt Pathway and Class I MAGE Genes.

    Science.gov (United States)

    Shkurnikov, M Yu; Knyazev, E N; Wicklein, D; Schumacher, U; Samatov, T R; Tonevitskii, A G

    2016-04-01

    Molecule L1CAM is specific for nerve cells and tumors of various localizations. The expression of L1CAM is significantly higher in melanoma in comparison with benign nevi and correlates with the progress of melanoma and transition from radial to vertical growth. Monoclonal antibodies to L1CAM effectively and specifically attenuate melanoma growth, though stimulates the epithelial-mesenchymal transition. shRNA-mediated knock-down of L1CAM showed the involvement of L1CAM in regulation of activity of the canonical Wnt pathway and expression of genes of class I melanoma-associated antigens (MAGE). PMID:27165065

  4. Circadian rhythms of clock gene expression in Nile tilapia (Oreochromis niloticus) central and peripheral tissues: influence of different lighting and feeding conditions.

    Science.gov (United States)

    Costa, Leandro S; Serrano, Ignacio; Sánchez-Vázquez, Francisco J; López-Olmeda, Jose F

    2016-08-01

    The present research aimed to investigate the existence of clock gene expression rhythms in tilapia, their endogenous origin, and how light and feeding cycles synchronize these rhythms. In the first experiment, two groups of fish were kept under an LD cycle and fed at two different time points: in the middle of the light (ML) or in the middle of the dark (MD) phase. In the second experiment, fish fed at ML was fasted and kept under constant lighting (LL) conditions for 1 day. In both experiments, the samples from central (optic tectum and hypothalamus) and peripheral (liver) tissues were collected every 3 h throughout a 24 h cycle. The expression levels of clock genes bmal1a, clock1, per1b, cry2a, and cry5 were analyzed by quantitative PCR. All the clock genes analyzed in brain regions showed daily rhythms: clock1, bmal1a, and cry2a showed the acrophase approximately at the end of the light phase (ZT 8:43-11:22 h), whereas per1b and cry5 did so between the end of the dark phase and the beginning of the light phase, respectively (ZT 21:16-4:00 h). These rhythms persisted under constant conditions. No effect of the feeding time was observed in the brain. In the liver, however, the rhythms of clock1 and cry5 were influenced by feeding, and a shift was observed in the MD fish group (ZT 3:58 h for clock1 and 11:20 h for cry5). This study provides the first insights into the molecular clock of tilapia, a very important fish species for aquaculture. It also reveals the endogenous origin of clock gene rhythms and the ability of feeding time to shift the phase in some clock genes in the peripheral, but not the central, oscillator. PMID:27085855

  5. Functional conservation of clock-related genes in flowering plants: overexpression and RNA interference analyses of the circadian rhythm in the monocotyledon Lemna gibba.

    Science.gov (United States)

    Serikawa, Masayuki; Miwa, Kumiko; Kondo, Takao; Oyama, Tokitaka

    2008-04-01

    Circadian rhythms are found in organisms from cyanobacteria to plants and animals. In flowering plants, the circadian clock is involved in the regulation of various physiological phenomena, including growth, leaf movement, stomata opening, and floral transitions. Molecular mechanisms underlying the circadian clock have been identified using Arabidopsis (Arabidopsis thaliana); the functions and genetic networks of a number of clock-related genes, including CIRCADIAN CLOCK ASSOCIATED1, LATE ELONGATED HYPOCOTYL (LHY), TIMING OF CAB EXPRESSION1, GIGANTEA (GI), and EARLY FLOWERING3 (ELF3), have been analyzed. The degree to which clock systems are conserved among flowering plants, however, is still unclear. We previously isolated homologs for Arabidopsis clock-related genes from monocotyledon Lemna plants. Here, we report the physiological roles of these Lemna gibba genes (LgLHYH1, LgLHYH2, LgGIH1, and LgELF3H1) in the circadian system. We studied the effects of overexpression and RNA interference (RNAi) of these genes on the rhythmic expression of morning- and evening-specific reporters. Overexpression of each gene disrupted the rhythmicity of either or both reporters, suggesting that these four homologs can be involved in the circadian system. RNAi of each of the genes except LgLHYH2 affected the bioluminescence rhythms of both reporters. These results indicated that these homologs are involved in the circadian system of Lemna plants and that the structure of the circadian clock is likely to be conserved between monocotyledons and dicotyledons. Interestingly, RNAi of LgGIH1 almost completely abolished the circadian rhythm; because this effect appeared to be much stronger than the phenotype observed in an Arabidopsis gi loss-of-function mutant, the precise role of each clock gene may have diverged in the clock systems of Lemna and Arabidopsis. PMID:18281417

  6. Synchronized human skeletal myotubes of lean, obese and type 2 diabetic patients maintain circadian oscillation of clock genes

    Science.gov (United States)

    Hansen, Jan; Timmers, Silvie; Moonen-Kornips, Esther; Duez, Helene; Staels, Bart; Hesselink, Matthijs K. C.; Schrauwen, Patrick

    2016-01-01

    Cell and animal studies have demonstrated that circadian rhythm is governed by autonomous rhythmicity of clock genes. Although disturbances in circadian rhythm have been implicated in metabolic disease development, it remains unknown whether muscle circadian rhythm is altered in human models of type 2 diabetes. Here we used human primary myotubes (HPM) to investigate if rhythmicity of clock- and metabolic gene expression is altered in donors with obesity or type 2 diabetes compared to metabolically healthy donors. HPM were obtained from skeletal muscle biopsies of four groups: type 2 diabetic patients and their BMI- and age-matched obese controls and from lean, healthy and young endurance trained athletes and their age-matched sedentary controls. HPM were differentiated for 7 days before synchronization by serum shock followed by gene expression profiling over the next 72 hours. HPM display robust circadian rhythms in clock genes, but REVERBA displayed dampened rhythmicity in type 2 diabetes. Furthermore, rhythmicity in NAMPT and SIRT1 expression was only observed in HPM from trained athletes. Rhythmicity in expression of key-regulators of carbohydrate and lipid metabolism was modest. We demonstrate that in human skeletal muscle REVERBA/B, NAMPT and SIRT1 circadian rhythms are affected in donors of sedentary life style and poor health status. PMID:27756900

  7. Circadian Mechanisms of Food Anticipatory Rhythms in Rats Fed Once or Twice Daily: Clock Gene and Endocrine Correlates

    Science.gov (United States)

    Patton, Danica F.; Katsuyama, Ângela M.; Pavlovski, Ilya; Michalik, Mateusz; Patterson, Zachary; Parfyonov, Maksim; Smit, Andrea N.; Marchant, Elliott G.; Chung, John; Abizaid, Alfonso; Storch, Kai-Florian; de la Iglesia, Horacio; Mistlberger, Ralph E.

    2014-01-01

    Circadian clocks in many brain regions and peripheral tissues are entrained by the daily rhythm of food intake. Clocks in one or more of these locations generate a daily rhythm of locomotor activity that anticipates a regular mealtime. Rats and mice can also anticipate two daily meals. Whether this involves 1 or 2 circadian clocks is unknown. To gain insight into how the circadian system adjusts to 2 daily mealtimes, male rats in a 12∶12 light-dark cycle were fed a 2 h meal either 4 h after lights-on or 4 h after lights-off, or a 1 h meal at both times. After 30 days, brain, blood, adrenal and stomach tissue were collected at 6 time points. Multiple clock genes from adrenals and stomachs were assayed by RT-PCR. Blood was assayed for corticosterone and ghrelin. Bmal1 expression was quantified in 14 brain regions by in situ hybridization. Clock gene rhythms in adrenal and stomach from day-fed rats oscillated in antiphase with the rhythms in night-fed rats, and at an intermediate phase in rats fed twice daily. Corticosterone and ghrelin in 1-meal rats peaked at or prior to the expected mealtime. In 2-meal rats, corticosterone peaked only prior the nighttime meal, while ghrelin peaked prior to the daytime meal and then remained elevated. The olfactory bulb, nucleus accumbens, dorsal striatum, cerebellum and arcuate nucleus exhibited significant daily rhythms of Bmal1 in the night-fed groups that were approximately in antiphase in the day-fed groups, and at intermediate levels (arrhythmic) in rats anticipating 2 daily meals. The dissociations between anticipatory activity and the peripheral clocks and hormones in rats anticipating 2 daily meals argue against a role for these signals in the timing of behavioral rhythms. The absence of rhythmicity at the tissue level in brain regions from rats anticipating 2 daily meals support behavioral evidence that circadian clock cells in these tissues may reorganize into two populations coupled to different meals. PMID:25502949

  8. Circadian mechanisms of food anticipatory rhythms in rats fed once or twice daily: clock gene and endocrine correlates.

    Directory of Open Access Journals (Sweden)

    Danica F Patton

    Full Text Available Circadian clocks in many brain regions and peripheral tissues are entrained by the daily rhythm of food intake. Clocks in one or more of these locations generate a daily rhythm of locomotor activity that anticipates a regular mealtime. Rats and mice can also anticipate two daily meals. Whether this involves 1 or 2 circadian clocks is unknown. To gain insight into how the circadian system adjusts to 2 daily mealtimes, male rats in a 12∶12 light-dark cycle were fed a 2 h meal either 4 h after lights-on or 4 h after lights-off, or a 1 h meal at both times. After 30 days, brain, blood, adrenal and stomach tissue were collected at 6 time points. Multiple clock genes from adrenals and stomachs were assayed by RT-PCR. Blood was assayed for corticosterone and ghrelin. Bmal1 expression was quantified in 14 brain regions by in situ hybridization. Clock gene rhythms in adrenal and stomach from day-fed rats oscillated in antiphase with the rhythms in night-fed rats, and at an intermediate phase in rats fed twice daily. Corticosterone and ghrelin in 1-meal rats peaked at or prior to the expected mealtime. In 2-meal rats, corticosterone peaked only prior the nighttime meal, while ghrelin peaked prior to the daytime meal and then remained elevated. The olfactory bulb, nucleus accumbens, dorsal striatum, cerebellum and arcuate nucleus exhibited significant daily rhythms of Bmal1 in the night-fed groups that were approximately in antiphase in the day-fed groups, and at intermediate levels (arrhythmic in rats anticipating 2 daily meals. The dissociations between anticipatory activity and the peripheral clocks and hormones in rats anticipating 2 daily meals argue against a role for these signals in the timing of behavioral rhythms. The absence of rhythmicity at the tissue level in brain regions from rats anticipating 2 daily meals support behavioral evidence that circadian clock cells in these tissues may reorganize into two populations coupled to different

  9. Sex-Specific Diurnal Immobility Induced by Forced Swim Test in Wild Type and Clock Gene Deficient Mice

    Directory of Open Access Journals (Sweden)

    Ningyue Li

    2015-03-01

    Full Text Available Objective: The link between alterations in circadian rhythms and depression are well established, but the underlying mechanisms are far less elucidated. We investigated the circadian characteristics of immobility behavior in wild type (WT mice and mice with mutations in core Clock genes. Methods: All mice were tested with forced swim test (FST at 4 h intervals. Results: These experiments revealed significant diurnal rhythms associated with immobility behavior in both male and female WT mice with sex-different circadian properties. In addition, male mice showed significantly less immobility during the night phase in comparison to female mice. Female Per1Brdm1 mice also showed significant rhythmicity. However, the timing of rhythmicity was very different from that observed in female wild type mice. Male Per1Brdm1 mice showed a pattern of rhythmicity similar to that of wild type mice. Furthermore, female Per1Brdm1 mice showed higher duration of immobility in comparison to male Per1Brdm1 mice in both daytime and early night phases. Neither Per2Brdm1 nor ClockΔ19 mice showed significant rhythmicity, but both female Per2Brdm1 and ClockΔ19 mice had lower levels of immobility, compared to males. Conclusions: This study highlights the differences in the circadian characteristics of immobility induced by FST in WT, ClockΔ19, Per1, and Per2 deficient mice.

  10. Diurnal Oscillation of Amygdala Clock Gene Expression and Loss of Synchrony in a Mouse Model of Depression

    OpenAIRE

    Savalli, Giorgia; Diao, Weifei; Schulz, Stefan; Todtova, Kristina; Pollak, Daniela D.

    2015-01-01

    Background: Disturbances in circadian rhythm-related physiological and behavioral processes are frequently observed in depressed patients and several clock genes have been identified as risk factors for the development of mood disorders. However, the particular involvement of the circadian system in the pathophysiology of depression and its molecular regulatory interface is incompletely understood. Methods: A naturalistic animal model of depression based upon exposure to chronic mild stress w...

  11. Altered Rhythm of Adrenal Clock Genes, StAR and Serum Corticosterone in VIP Receptor 2-Deficient Mice

    DEFF Research Database (Denmark)

    Fahrenkrug, Jan; Georg, Birgitte; Hannibal, Jens;

    2012-01-01

    a 24-h rhythmic expression in the adrenal of WT mice under L/D and dark conditions. During a L/D cycle, the adrenal clock gene rhythm in VPAC2-KO mice was phase-advanced by approximately 6 h compared to WT mice and became arrhythmic in constant darkness. A significant 24-h rhythmic variation...... oscillator based on a group of clock genes and their protein products. Mice lacking the VPAC2 receptor display disrupted circadian rhythm of physiology and behaviour, and therefore, we using real-time RT-PCR quantified (1) the mRNAs for the clock genes Per1 and Bmal1 in the adrenal gland and SCN, (2......) the adrenal Star mRNA and (3) the serum corticosterone concentration both during a light/dark (L/D) cycle and at constant darkness in wild type (WT) and VPAC2 receptor-deficient mice (VPAC2-KO). We also examined if PER1 and StAR were co-localised in the adrenal steroidogenic cells. Per1 and Bmal1 mRNA showed...

  12. Association study between a polymorphism at the 3'-untranslated region of CLOCK gene and attention deficit hyperactivity disorder

    Directory of Open Access Journals (Sweden)

    Xu Xiaohui

    2010-08-01

    Full Text Available Abstract Background The circadian locomotor output cycles kaput (CLOCK gene encodes protein regulation circadian rhythm and also plays some roles in neural transmitter systems including the dopamine system. Several lines of evidence implicate a relationship between attention-deficit hyperactivity disorder (ADHD, circadian rythmicity and sleeping disturbances. A recent study has reported that a polymorphism (rs1801260 at the 3'-untranslated region of the CLOCK gene is associated with adult ADHD. Methods To investigate the association between the polymorphism (rs1801260 in ADHD, two samples of ADHD probands from the United Kingdom (n = 180 and Taiwan (n = 212 were genotyped and analysed using within-family transmission disequilibrium test (TDT. Bonferroni correction procedures were used to just for multiple comparisons. Results We found evidence of increased transmission of the T allele of the rs1801260 polymorphism in Taiwanese samples (P = 0.010. There was also evidence of preferential transmission of the T allele of the rs1801260 polymorphism in combined samples from the Taiwan and UK (P = 0.008. Conclusion This study provides evidence for the possible involvement of CLOCK in susceptibility to ADHD.

  13. Circadian clocks and breast cancer

    OpenAIRE

    Blakeman, Victoria; Jack L. Williams; Meng, Qing-Jun; Streuli, Charles H

    2016-01-01

    Circadian clocks respond to environmental time cues to coordinate 24-hour oscillations in almost every tissue of the body. In the breast, circadian clocks regulate the rhythmic expression of numerous genes. Disrupted expression of circadian genes can alter breast biology and may promote cancer. Here we overview circadian mechanisms, and the connection between the molecular clock and breast biology. We describe how disruption of circadian genes contributes to cancer via multiple mechanisms, an...

  14. Rapid assessment of gene function in the circadian clock using artificial microRNA in Arabidopsis mesophyll protoplasts.

    Science.gov (United States)

    Kim, Jeongsik; Somers, David E

    2010-10-01

    Rapid assessment of the effect of reduced levels of gene products is often a bottleneck in determining how to proceed with an interesting gene candidate. Additionally, gene families with closely related members can confound determination of the role of even a single one of the group. We describe here an in vivo method to rapidly determine gene function using transient expression of artificial microRNAs (amiRNAs) in Arabidopsis (Arabidopsis thaliana) mesophyll protoplasts. We use a luciferase-based reporter of circadian clock activity to optimize and validate this system. Protoplasts transiently cotransfected with promoter-luciferase and gene-specific amiRNA plasmids sustain free-running rhythms of bioluminescence for more than 6 d. Using both amiRNA plasmids available through the Arabidopsis Biological Resource Center, as well as custom design of constructs using the Weigel amiRNA design algorithm, we show that transient knockdown of known clock genes recapitulates the same circadian phenotypes reported in the literature for loss-of-function mutant plants. We additionally show that amiRNA designed to knock down expression of the casein kinase II β-subunit gene family lengthens period, consistent with previous reports of a short period in casein kinase II β-subunit overexpressors. Our results demonstrate that this system can facilitate a much more rapid analysis of gene function by obviating the need to initially establish stably transformed transgenics to assess the phenotype of gene knockdowns. This approach will be useful in a wide range of plant disciplines when an endogenous cell-based phenotype is observable or can be devised, as done here using a luciferase reporter.

  15. Effects of Photoperiod Extension on Clock Gene and Neuropeptide RNA Expression in the SCN of the Soay Sheep.

    Directory of Open Access Journals (Sweden)

    Hugues Dardente

    Full Text Available In mammals, changing daylength (photoperiod is the main synchronizer of seasonal functions. The photoperiodic information is transmitted through the retino-hypothalamic tract to the suprachiasmatic nuclei (SCN, site of the master circadian clock. To investigate effects of day length change on the sheep SCN, we used in-situ hybridization to assess the daily temporal organization of expression of circadian clock genes (Per1, Per2, Bmal1 and Fbxl21 and neuropeptides (Vip, Grp and Avp in animals acclimated to a short photoperiod (SP; 8h of light and at 3 or 15 days following transfer to a long photoperiod (LP3, LP15, respectively; 16h of light, achieved by an acute 8-h delay of lights off. We found that waveforms of SCN gene expression conformed to those previously seen in LP acclimated animals within 3 days of transfer to LP. Mean levels of expression for Per1-2 and Fbxl21 were nearly 2-fold higher in the LP15 than in the SP group. The expression of Vip was arrhythmic and unaffected by photoperiod, while, in contrast to rodents, Grp expression was not detectable within the sheep SCN. Expression of the circadian output gene Avp cycled robustly in all photoperiod groups with no detectable change in phasing. Overall these data suggest that synchronizing effects of light on SCN circadian organisation proceed similarly in ungulates and in rodents, despite differences in neuropeptide gene expression.

  16. Entrainment Dissociates Transcription and Translation of a Circadian Clock Gene in Neurospora

    NARCIS (Netherlands)

    Tan, Ying; Dragovic, Zdravko; Roenneberg, Till; Merrow, Martha

    2004-01-01

    Circadian systems coordinate the daily sequence of events in cells, tissues, and organisms. In constant conditions, the biological clock oscillates with its endogenous period, whereas it is synchronized to the 24 hr light:dark cycle in nature. Here, we investigate light entrainment of Neurospora cra

  17. Inferring bi-directional interactions between circadian clock genes and metabolism with model ensembles

    NARCIS (Netherlands)

    Grzegorczyk, Marco; Aderhold, Andrej; Husmeier, Dirk

    2015-01-01

    There has been much interest in reconstructing bi-directional regulatory networks linking the circadian clock to metabolism in plants. A variety of reverse engineering methods from machine learning and computational statistics have been proposed and evaluated. The emphasis of the present paper is on

  18. A length polymorphism in the circadian clock gene Per3 influences age at onset of bipolar disorder.

    Science.gov (United States)

    Benedetti, Francesco; Dallaspezia, Sara; Colombo, Cristina; Pirovano, Adele; Marino, Elena; Smeraldi, Enrico

    2008-11-14

    Age at onset of bipolar disorder might represent the penetrance of the system for specific genetic liability involved in the genesis of the illness. Genetic factors influencing age at onset have been shown to play a role in shaping core characteristics of the illness, such as severity and pattern of recurrence. Genetic variants of genes regulating the circadian clock could contribute to define endophenotypes of bipolar disorder, and have been associated with clinical features of the disease. The coding region of Per3 gene contains a variable-number tandem-repeat (VNTR) polymorphism which has been associated with diurnal preference, sleep structure and sleep homeostasis in healthy subjects. In a homogeneous sample of 99 patients affected by bipolar disorder type I we observed that Per3 VNTR influenced age at onset of illness: earlier age at onset in homozygote carriers of Per35 variant, later in homozygotes for Per34, and intermediate in heterozygotes. Allele frequencies were not significantly different from those reported in healthy subjects. Results need to be confirmed in larger samples, but warrant interest for the variants of molecular clock genes as possible endophenotypes of bipolar disorder.

  19. HPRT deficiency coordinately dysregulates canonical Wnt and presenilin-1 signaling: a neuro-developmental regulatory role for a housekeeping gene?

    Directory of Open Access Journals (Sweden)

    Tae Hyuk Kang

    Full Text Available We have used microarray-based methods of global gene expression together with quantitative PCR and Western blot analysis to identify dysregulation of genes and aberrant cellular processes in human fibroblasts and in SH-SY5Y neuroblastoma cells made HPRT-deficient by transduction with a retrovirus stably expressing an shRNA targeted against HPRT. Analysis of the microarray expression data by Gene ontology (GO and Gene Set Enrichment Analysis (GSEA as well as significant pathway analysis by GeneSpring GX10 and Panther Classification System reveal that HPRT deficiency is accompanied by aberrations in a variety of pathways known to regulate neurogenesis or to be implicated in neurodegenerative disease, including the canonical Wnt/β-catenin and the Alzheimer's disease/presenilin signaling pathways. Dysregulation of the Wnt/β-catenin pathway is confirmed by Western blot demonstration of cytosolic sequestration of β-catenin during in vitro differentiation of the SH-SY5Y cells toward the neuronal phenotype. We also demonstrate that two key transcription factor genes known to be regulated by Wnt signaling and to be vital for the generation and function of dopaminergic neurons; i.e., Lmx1a and Engrailed 1, are down-regulated in the HPRT knockdown SH-SY5Y cells. In addition to the Wnt signaling aberration, we found that expression of presenilin-1 shows severely aberrant expression in HPRT-deficient SH-SY5Y cells, reflected by marked deficiency of the 23 kDa C-terminal fragment of presenilin-1 in knockdown cells. Western blot analysis of primary fibroblast cultures from two LND patients also shows dysregulated presenilin-1 expression, including aberrant proteolytic processing of presenilin-1. These demonstrations of dysregulated Wnt signaling and presenilin-1 expression together with impaired expression of dopaminergic transcription factors reveal broad pleitropic neuro-regulatory defects played by HPRT expression and suggest new directions for

  20. Inferring bi-directional interactions between circadian clock genes and metabolism with model ensembles

    OpenAIRE

    Grzegorczyk, Marco; Aderhold, Andrej; Husmeier, Dirk

    2015-01-01

    There has been much interest in reconstructing bi-directional regulatory networks linking the circadian clock to metabolism in plants. A variety of reverse engineering methods from machine learning and computational statistics have been proposed and evaluated. The emphasis of the present paper is on combining models in a model ensemble to boost the network reconstruction accuracy, and to explore various model combination strategies to maximize the improvement. Our results demonstrate that a r...

  1. Chronic ethanol consumption disrupts the core molecular clock and diurnal rhythms of metabolic genes in the liver without affecting the suprachiasmatic nucleus.

    Directory of Open Access Journals (Sweden)

    Ashley N Filiano

    Full Text Available Chronic ethanol consumption disrupts several metabolic pathways including β-oxidation and lipid biosynthesis, facilitating the development of alcoholic fatty liver disease. Many of these same metabolic pathways are directly regulated by cell autonomous circadian clocks, and recent studies suggest that disruption of daily rhythms in metabolism contributes to multiple common cardiometabolic diseases (including non-alcoholic fatty liver disease. However, it is not known whether ethanol disrupts the core molecular clock in the liver, nor whether this, in turn, alters rhythms in lipid metabolism. Herein, we tested the hypothesis that chronic ethanol consumption disrupts the molecular circadian clock in the liver and potentially changes the diurnal expression patterns of lipid metabolism genes. Consistent with previous studies, male C57BL/6J mice fed an ethanol-containing diet exhibited higher levels of liver triglycerides compared to control mice, indicating hepatic steatosis. Further, the diurnal oscillations of core clock genes (Bmal1, Clock, Cry1, Cry2, Per1, and Per2 and clock-controlled genes (Dbp, Hlf, Nocturnin, Npas2, Rev-erbα, and Tef were altered in livers from ethanol-fed mice. In contrast, ethanol had only minor effects on the expression of core clock genes in the suprachiasmatic nucleus (SCN. These results were confirmed in Per2(Luciferase knock-in mice, in which ethanol induced a phase advance in PER2::LUC bioluminescence oscillations in liver, but not SCN. Further, there was greater variability in the phase of PER2::LUC oscillations in livers from ethanol-fed mice. Ethanol consumption also affected the diurnal oscillations of metabolic genes, including Adh1, Cpt1a, Cyp2e1, Pck1, Pdk4, Ppargc1a, Ppargc1b and Srebp1c, in the livers of C57BL/6J mice. In summary, chronic ethanol consumption alters the function of the circadian clock in liver. Importantly, these results suggest that chronic ethanol consumption, at levels sufficient to

  2. Chronic ethanol consumption disrupts the core molecular clock and diurnal rhythms of metabolic genes in the liver without affecting the suprachiasmatic nucleus.

    Science.gov (United States)

    Filiano, Ashley N; Millender-Swain, Telisha; Johnson, Russell; Young, Martin E; Gamble, Karen L; Bailey, Shannon M

    2013-01-01

    Chronic ethanol consumption disrupts several metabolic pathways including β-oxidation and lipid biosynthesis, facilitating the development of alcoholic fatty liver disease. Many of these same metabolic pathways are directly regulated by cell autonomous circadian clocks, and recent studies suggest that disruption of daily rhythms in metabolism contributes to multiple common cardiometabolic diseases (including non-alcoholic fatty liver disease). However, it is not known whether ethanol disrupts the core molecular clock in the liver, nor whether this, in turn, alters rhythms in lipid metabolism. Herein, we tested the hypothesis that chronic ethanol consumption disrupts the molecular circadian clock in the liver and potentially changes the diurnal expression patterns of lipid metabolism genes. Consistent with previous studies, male C57BL/6J mice fed an ethanol-containing diet exhibited higher levels of liver triglycerides compared to control mice, indicating hepatic steatosis. Further, the diurnal oscillations of core clock genes (Bmal1, Clock, Cry1, Cry2, Per1, and Per2) and clock-controlled genes (Dbp, Hlf, Nocturnin, Npas2, Rev-erbα, and Tef) were altered in livers from ethanol-fed mice. In contrast, ethanol had only minor effects on the expression of core clock genes in the suprachiasmatic nucleus (SCN). These results were confirmed in Per2(Luciferase) knock-in mice, in which ethanol induced a phase advance in PER2::LUC bioluminescence oscillations in liver, but not SCN. Further, there was greater variability in the phase of PER2::LUC oscillations in livers from ethanol-fed mice. Ethanol consumption also affected the diurnal oscillations of metabolic genes, including Adh1, Cpt1a, Cyp2e1, Pck1, Pdk4, Ppargc1a, Ppargc1b and Srebp1c, in the livers of C57BL/6J mice. In summary, chronic ethanol consumption alters the function of the circadian clock in liver. Importantly, these results suggest that chronic ethanol consumption, at levels sufficient to cause steatosis

  3. Clock-controlled output gene Dbp is a regulator of Arnt/Hif-1β gene expression in pancreatic islet β-cells

    Energy Technology Data Exchange (ETDEWEB)

    Nakabayashi, Hiroko; Ohta, Yasuharu, E-mail: yohta@yamaguchi-u.ac.jp; Yamamoto, Masayoshi; Susuki, Yosuke; Taguchi, Akihiko; Tanabe, Katsuya; Kondo, Manabu; Hatanaka, Masayuki; Nagao, Yuko; Tanizawa, Yukio, E-mail: tanizawa@yamaguchi-u.ac.jp

    2013-05-03

    Highlights: •Arnt mRNA expressed in a circadian manner in mouse pancreatic islets. •Expressions of Dbp and Arnt damped in the islets of a diabetic model mouse. •DBP and E4BP4 regulate Arnt promoter activity by direct binding. •Arnt may have a role in connecting circadian rhythm and metabolism. -- Abstract: Aryl hydrocarbon receptor nuclear translocator (ARNT)/hypoxia inducible factor-1β (HIF-1β) has emerged as a potential determinant of pancreatic β-cell dysfunction and type 2 diabetes in humans. An 82% reduction in Arnt expression was observed in islets from type 2 diabetic donors as compared to non-diabetic donors. However, few regulators of Arnt expression have been identified. Meanwhile, disruption of the clock components CLOCK and BMAL1 is known to result in hypoinsulinemia and diabetes, but the molecular details remain unclear. In this study, we identified a novel molecular connection between Arnt and two clock-controlled output genes, albumin D-element binding protein (Dbp) and E4 binding protein 4 (E4bp4). By conducting gene expression studies using the islets of Wfs1{sup −/−} A{sup y}/a mice that develop severe diabetes due to β-cell apoptosis, we demonstrated clock-related gene expressions to be altered in the diabetic mice. Dbp mRNA decreased by 50%, E4bp4 mRNA increased by 50%, and Arnt mRNA decreased by 30% at Zeitgever Time (ZT) 12. Mouse pancreatic islets exhibited oscillations of clock gene expressions. E4BP4, a D-box negative regulator, oscillated anti-phase to DBP, a D-box positive regulator. We also found low-amplitude circadian expression of Arnt mRNA, which peaked at ZT4. Over-expression of DBP raised both mRNA and protein levels of ARNT in HEK293 and MIN6 cell lines. Arnt promoter-driven luciferase reporter assay in MIN6 cells revealed that DBP increased Arnt promoter activity by 2.5-fold and that E4BP4 competitively inhibited its activation. In addition, on ChIP assay, DBP and E4BP4 directly bound to D-box elements within the

  4. β-agonists selectively modulate proinflammatory gene expression in skeletal muscle cells via non-canonical nuclear crosstalk mechanisms.

    Directory of Open Access Journals (Sweden)

    Krzysztof Kolmus

    Full Text Available The proinflammatory cytokine Tumour Necrosis Factor (TNF-α is implicated in a variety of skeletal muscle pathologies. Here, we have investigated how in vitro cotreatment of skeletal muscle C2C12 cells with β-agonists modulates the TNF-α-induced inflammatory program. We observed that C2C12 myotubes express functional TNF receptor 1 (TNF-R1 and β2-adrenoreceptors (β2-ARs. TNF-α activated the canonical Nuclear Factor-κB (NF-κB pathway and Mitogen-Activated Protein Kinases (MAPKs, culminating in potent induction of NF-κB-dependent proinflammatory genes. Cotreatment with the β-agonist isoproterenol potentiated the expression of inflammatory mediators, including Interleukin-6 (IL-6 and several chemokines. The enhanced production of chemotactic factors upon TNF-α/isoproterenol cotreatment was also suggested by the results from migrational analysis. Whereas we could not explain our observations by cytoplasmic crosstalk, we found that TNF-R1-and β2-AR-induced signalling cascades cooperate in the nucleus. Using the IL-6 promoter as a model, we demonstrated that TNF-α/isoproterenol cotreatment provoked phosphorylation of histone H3 at serine 10, concomitant with enhanced promoter accessibility and recruitment of the NF-κB p65 subunit, cAMP-response element-binding protein (CREB, CREB-binding protein (CBP and RNA polymerase II. In summary, we show that β-agonists potentiate TNF-α action, via nuclear crosstalk, that promotes chromatin relaxation at selected gene promoters. Our data warrant further study into the mode of action of β-agonists and urge for caution in their use as therapeutic agents for muscular disorders.

  5. Expression patterns of a circadian clock gene are associated with age-related polyethism in harvester ants, Pogonomyrmex occidentalis

    Directory of Open Access Journals (Sweden)

    Ingram Krista K

    2009-04-01

    Full Text Available Abstract Background Recent advances in sociogenomics allow for comparative analyses of molecular mechanisms regulating the development of social behavior. In eusocial insects, one key aspect of their sociality, the division of labor, has received the most attention. Age-related polyethism, a derived form of division of labor in ants and bees where colony tasks are allocated among distinct behavioral phenotypes, has traditionally been assumed to be a product of convergent evolution. Previous work has shown that the circadian clock is associated with the development of behavior and division of labor in honeybee societies. We cloned the ortholog of the clock gene, period, from a harvester ant (Pogonomyrmex occidentalis and examined circadian rhythms and daily activity patterns in a species that represents an evolutionary origin of eusociality independent of the honeybee. Results Using real time qPCR analyses, we determined that harvester ants have a daily cyclic expression of period and this rhythm is endogenous (free-running under dark-dark conditions. Cyclic expression of period is task-specific; foragers have strong daily fluctuations but nest workers inside the nest do not. These patterns correspond to differences in behavior as activity levels of foragers show a diurnal pattern while nest workers tend to exhibit continuous locomotor activity at lower levels. In addition, we found that foragers collected in the early fall (relative warm, long days exhibit a delay in the nightly peak of period expression relative to foragers collected in the early spring (relative cold, short days. Conclusion The association of period mRNA expression levels with harvester ant task behaviors suggests that the development of circadian rhythms is associated with the behavioral development of ants. Thus, the circadian clock pathway may represent a conserved 'genetic toolkit' that has facilitated the parallel evolution of age-related polyethism and task allocation in

  6. Intermolecular recognition revealed by the complex structure of human CLOCK-BMAL1 basic helix-loop-helix domains with E-box DNA

    Institute of Scientific and Technical Information of China (English)

    Zixi Wang; Yaling Wu; Lanfen Li; Xiao-Dong Su

    2013-01-01

    CLOCK (circadian locomotor output cycles kaput) and BMAL1 (brain and muscle ARNT-like 1) are both transcription factors of the circadian core loop in mammals.Recently published mouse CLOCK-BMAL1 bHLH (basic helix-loop-helix)-PAS (period-ARNT-single-minded) complex structure sheds light on the mechanism for heterodimer formation,but the structural details of the protein-DNA recognition mechanisms remain elusive.Here we have elucidated the crystal structure of human CLOCK-BMAL1 bHLH domains bound to a canonical E-box DNA.We demonstrate that CLOCK and BMAL1 bHLH domains can be mutually selected,and that hydrogen-bonding networks mediate their E-box recognition.We identified a hydrophobic contact between BMAL1 Ile80 and a fianking thymine nucleotide,suggesting that CLOCK-BMAL1 actually reads 7-bp DNA and not the previously believed 6-bp DNA.To find potential non-canonical E-boxes that could be recognized by CLOCK-BMAL1,we constructed systematic single-nucleotide mutations on the E-box and measured their relevant affinities.We defined two non-canonical E-box patterns with high affinities,AACGTGA and CATGTGA,in which the flanking A7-T7' base pair is indispensable for recognition.These results will help us to identify functional CLOCK-BMAL1-binding sites in vivo and to search for clock-controlled genes.Furthermore,we assessed the inhibitory role of potential phosphorylation sites in bHLH regions.We found that the phospho-mimicking mutation on BMAL1 Ser78 could efficiently block DNA binding as well as abolish normal circadian oscillation in cells.We propose that BMAL1 Ser78 should be a key residue mediating input signal-regulated transcriptional inhibition for external cues to entrain the circadian clock by kinase cascade.

  7. Conserved expression profiles of circadian clock-related genes in two Lemna species showing long-day and short-day photoperiodic flowering responses.

    Science.gov (United States)

    Miwa, Kumiko; Serikawa, Masayuki; Suzuki, Sayaka; Kondo, Takao; Oyama, Tokitaka

    2006-05-01

    The Lemna genus is a group of monocotyledonous plants with tiny, floating bodies. Lemna gibba G3 and L. paucicostata 6746 were once intensively analyzed for physiological timing systems of photoperiodic flowering and circadian rhythms since they showed obligatory and sensitive photoperiodic responses of a long-day and a short-day plant, respectively. We attempted to approach the divergence of biological timing systems at the molecular level using these plants. We first employed molecular techniques to study their circadian clock systems. We developed a convenient bioluminescent reporter system to monitor the circadian rhythms of Lemna plants. As in Arabidopsis, the Arabidopsis CCA1 promoter produced circadian expression in Lemna plants, though the phases and the sustainability of bioluminescence rhythms were somewhat diverged between them. Lemna homologs of the Arabidopsis clock-related genes LHY/CCA1, GI, ELF3 and PRRs were then isolated as candidates for clock-related genes in these plants. These genes showed rhythmic expression profiles that were basically similar to those of Arabidopsis under light-dark conditions. Results from co-transfection assays using the bioluminescence reporter and overexpression effectors suggested that the LHY and GI homologs of Lemna can function in the circadian clock system like the counterparts of Arabidopsis. All these results suggested that the frame of the circadian clock appeared to be conserved not only between the two Lemna plants but also between monocotyledons and dicotyledons. However, divergence of gene numbers and expression profiles for LHY/CCA1 homologs were found between Lemna, rice and Arabidopsis, suggesting that some modification of clock-related components occurred through their evolution. PMID:16524874

  8. MiRNA-335 suppresses neuroblastoma cell invasiveness by direct targeting of multiple genes from the non-canonical TGF-β signalling pathway.

    Science.gov (United States)

    Lynch, Jennifer; Fay, Joanna; Meehan, Maria; Bryan, Kenneth; Watters, Karen M; Murphy, Derek M; Stallings, Raymond L

    2012-05-01

    Transforming growth factor-β (TGF-β) signaling regulates many diverse cellular activities through both canonical (SMAD-dependent) and non-canonical branches, which includes the mitogen-activated protein kinase (MAPK), Rho-like guanosine triphosphatase and phosphatidylinositol-3-kinase/AKT pathways. Here, we demonstrate that miR-335 directly targets and downregulates genes in the TGF-β non-canonical pathways, including the Rho-associated coiled-coil containing protein (ROCK1) and MAPK1, resulting in reduced phosphorylation of downstream pathway members. Specifically, inhibition of ROCK1 and MAPK1 reduces phosphorylation levels of the motor protein myosin light chain (MLC) leading to a significant inhibition of the invasive and migratory potential of neuroblastoma cells. Additionally, miR-335 targets the leucine-rich alpha-2-glycoprotein 1 (LRG1) messenger RNA, which similarly results in a significant reduction in the phosphorylation status of MLC and a decrease in neuroblastoma cell migration and invasion. Thus, we link LRG1 to the migratory machinery of the cell, altering its activity presumably by exerting its effect within the non-canonical TGF-β pathway. Moreover, we demonstrate that the MYCN transcription factor, whose coding sequence is highly amplified in a particularly clinically aggressive neuroblastoma tumor subtype, directly binds to a region immediately upstream of the miR-335 transcriptional start site, resulting in transcriptional repression. We conclude that MYCN contributes to neuroblastoma cell migration and invasion, by directly downregulating miR-335, resulting in the upregulation of the TGF-β signaling pathway members ROCK1, MAPK1 and putative member LRG1, which positively promote this process. Our results provide novel insight into the direct regulation of TGF-β non-canonical signaling by miR-335, which in turn is downregulated by MYCN.

  9. Circadian regulation of myocardial sarcomeric Titin-cap (Tcap, telethonin: identification of cardiac clock-controlled genes using open access bioinformatics data.

    Directory of Open Access Journals (Sweden)

    Peter S Podobed

    Full Text Available Circadian rhythms are important for healthy cardiovascular physiology and are regulated at the molecular level by a circadian clock mechanism. We and others previously demonstrated that 9-13% of the cardiac transcriptome is rhythmic over 24 h daily cycles; the heart is genetically a different organ day versus night. However, which rhythmic mRNAs are regulated by the circadian mechanism is not known. Here, we used open access bioinformatics databases to identify 94 transcripts with expression profiles characteristic of CLOCK and BMAL1 targeted genes, using the CircaDB website and JTK_Cycle. Moreover, 22 were highly expressed in the heart as determined by the BioGPS website. Furthermore, 5 heart-enriched genes had human/mouse conserved CLOCK:BMAL1 promoter binding sites (E-boxes, as determined by UCSC table browser, circadian mammalian promoter/enhancer database PEDB, and the European Bioinformatics Institute alignment tool (EMBOSS. Lastly, we validated findings by demonstrating that Titin cap (Tcap, telethonin was targeted by transcriptional activators CLOCK and BMAL1 by showing 1 Tcap mRNA and TCAP protein had a diurnal rhythm in murine heart; 2 cardiac Tcap mRNA was rhythmic in animals kept in constant darkness; 3 Tcap and control Per2 mRNA expression and cyclic amplitude were blunted in Clock(Δ19/Δ19 hearts; 4 BMAL1 bound to the Tcap promoter by ChIP assay; 5 BMAL1 bound to Tcap promoter E-boxes by biotinylated oligonucleotide assay; and 6 CLOCK and BMAL1 induced tcap expression by luciferase reporter assay. Thus this study identifies circadian regulated genes in silico, with validation of Tcap, a critical regulator of cardiac Z-disc sarcomeric structure and function.

  10. Genes associated with honey bee behavioral maturation affect clock-dependent and -independent aspects of daily rhythmic activity in fruit flies.

    Directory of Open Access Journals (Sweden)

    Chen Fu

    Full Text Available BACKGROUND: In the honey bee, the age-related and socially regulated transition of workers from in-hive task performance (e.g., caring for young to foraging (provisioning the hive is associated with changes in many behaviors including the 24-hour pattern of rhythmic activity. We have previously shown that the hive-bee to forager transition is associated with extensive changes in brain gene expression. In this study, we test the possible function of a subset of these genes in daily rhythmic activity pattern using neural-targeted RNA interference (RNAi of an orthologous gene set in Drosophila melanogaster. PRINCIPAL FINDINGS: Of 10 genes tested, knockdown of six affected some aspect of locomotor activity under a 12 h:h light:dark regime (LD. Inos affected anticipatory activity preceding lights-off, suggesting a possible clock-dependent function. BM-40-SPARC, U2af50 and fax affected peak activity at dawn without affecting anticipation or overall inactivity (proportion of 15-min intervals without activity, suggesting that these effects may depend on the day-night light cycle. CAH1 affected overall inactivity. The remaining gene, abl, affected peak activity levels but was not clearly time-of-day-specific. No gene tested affected length of period or strength of rhythmicity in constant dark (DD, suggesting that these genes do not act in the core clock. SIGNIFICANCE: Taking advantage of Drosophila molecular genetic tools, our study provides an important step in understanding the large set of gene expression changes that occur in the honey bee transition from hive bee to forager. We show that orthologs of many of these genes influence locomotor activity in Drosophila, possibly through both clock-dependent and -independent pathways. Our results support the importance of both circadian clock and direct environmental stimuli (apart from entrainment in shaping the bee's 24-hour pattern of activity. Our study also outlines a new approach to dissecting complex

  11. BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis.

    Directory of Open Access Journals (Sweden)

    R Daniel Rudic

    2004-11-01

    Full Text Available Circadian timing is generated through a unique series of autoregulatory interactions termed the molecular clock. Behavioral rhythms subject to the molecular clock are well characterized. We demonstrate a role for Bmal1 and Clock in the regulation of glucose homeostasis. Inactivation of the known clock components Bmal1 (Mop3 and Clock suppress the diurnal variation in glucose and triglycerides. Gluconeogenesis is abolished by deletion of Bmal1 and is depressed in Clock mutants, but the counterregulatory response of corticosterone and glucagon to insulin-induced hypoglycaemia is retained. Furthermore, a high-fat diet modulates carbohydrate metabolism by amplifying circadian variation in glucose tolerance and insulin sensitivity, and mutation of Clock restores the chow-fed phenotype. Bmal1 and Clock, genes that function in the core molecular clock, exert profound control over recovery from insulin-induced hypoglycaemia. Furthermore, asynchronous dietary cues may modify glucose homeostasis via their interactions with peripheral molecular clocks.

  12. Circadian influences on dopamine circuits of the brain: regulation of striatal rhythms of clock gene expression and implications for psychopathology and disease.

    Science.gov (United States)

    Verwey, Michael; Dhir, Sabine; Amir, Shimon

    2016-01-01

    Circadian clock proteins form an autoregulatory feedback loop that is central to the endogenous generation and transmission of daily rhythms in behavior and physiology. Increasingly, circadian rhythms in clock gene expression are being reported in diverse tissues and brain regions that lie outside of the suprachiasmatic nucleus (SCN), the master circadian clock in mammals. For many of these extra-SCN rhythms, however, the region-specific implications are still emerging. In order to gain important insights into the potential behavioral, physiological, and psychological relevance of these daily oscillations, researchers have begun to focus on describing the neurochemical, hormonal, metabolic, and epigenetic contributions to the regulation of these rhythms. This review will highlight important sites and sources of circadian control within dopaminergic and striatal circuitries of the brain and will discuss potential implications for psychopathology and disease . For example, rhythms in clock gene expression in the dorsal striatum are sensitive to changes in dopamine release, which has potential implications for Parkinson's disease and drug addiction. Rhythms in the ventral striatum and limbic forebrain are sensitive to psychological and physical stressors, which may have implications for major depressive disorder. Collectively, a rich circadian tapestry has emerged that forces us to expand traditional views and to reconsider the psychopathological, behavioral, and physiological importance of these region-specific rhythms in brain areas that are not immediately linked with the regulation of circadian rhythms. PMID:27635233

  13. Interaction of circadian clock proteins PER2 and CRY with BMAL1 and CLOCK

    OpenAIRE

    Bordon Alain; Tallone Tiziano; Langmesser Sonja; Rusconi Sandro; Albrecht Urs

    2008-01-01

    Abstract Background Circadian oscillation of clock-controlled gene expression is mainly regulated at the transcriptional level. Heterodimers of CLOCK and BMAL1 act as activators of target gene transcription; however, interactions of PER and CRY proteins with the heterodimer abolish its transcriptional activation capacity. PER and CRY are therefore referred to as negative regulators of the circadian clock. To further elucidate the mechanism how positive and negative components of the clock int...

  14. CLOCK gene is implicated in weight reduction in obese patients participating in a dietary programme based on the Mediterranean diet

    Science.gov (United States)

    Introduction: The success of obesity therapy is dependent on the genetic background of the patient. Circadian Locomotor Output Cycles Kaput (CLOCK), one of the transcription factors from the positive limb of the molecular clock, is involved in metabolic alterations. Objective: To investigate whethe...

  15. Influence of torpor on cardiac expression of genes involved in the circadian clock and protein turnover in the Siberian hamster (Phodopus sungorus).

    Science.gov (United States)

    Crawford, Fiona I J; Hodgkinson, Cassandra L; Ivanova, Elena; Logunova, Larisa B; Evans, Gary J; Steinlechner, Stephan; Loudon, Andrew S I

    2007-11-14

    The Siberian hamster exhibits the key winter adaptive strategy of daily torpor, during which metabolism and heart rate are slowed for a few hours and body temperature declines by up to 20 degrees C, allowing substantial energetic savings. Previous studies of hibernators in which temperature drops by >30 degrees C for many days to weeks have revealed decreased transcription and translation during hypometabolism and identified several key physiological pathways involved. Here we used a cDNA microarray to define cardiac transcript changes over the course of a daily torpor bout and return to normothermia, and we show that, in common with hibernators, a relatively small proportion of the transcriptome (<5%) exhibited altered expression over a torpor bout. Pathways exhibiting significantly altered gene expression included transcriptional regulation, RNA stability and translational control, globin regulation, and cardiomyocyte function. Remarkably, gene representatives of the entire ubiquitylation pathway were significantly altered over the torpor bout, implying a key role for cardiac protein turnover and translation during a low-temperature torpor bout. The circadian clock maintained rhythmic transcription during torpor. Quantitative PCR profiling of heart, liver, and lung and in situ hybridization studies of clock genes in the hypothalamic circadian clock in the suprachiasmatic nucleus revealed that many circadian regulated transcripts exhibited synchronous alteration in expression during arousal. Our data highlight the potential importance of genes involved in protein turnover as part of the adaptive strategy of low-temperature torpor in a seasonal mammal.

  16. Melatonin adjusts the expression pattern of clock genes in the suprachiasmatic nucleus and induces antidepressant-like effect in a mouse model of seasonal affective disorder.

    Science.gov (United States)

    Nagy, Andras David; Iwamoto, Ayaka; Kawai, Misato; Goda, Ryosei; Matsuo, Haruka; Otsuka, Tsuyoshi; Nagasawa, Mao; Furuse, Mitsuhiro; Yasuo, Shinobu

    2015-05-01

    Recently, we have shown that C57BL/6J mice exhibit depression-like behavior under short photoperiod and suggested them as an animal model for investigating seasonal affective disorder (SAD). In this study, we tested if manipulations of the circadian clock with melatonin treatment could effectively modify depression-like and anxiety-like behaviors and brain serotonergic system in C57BL/6J mice. Under short photoperiods (8-h light/16-h dark), daily melatonin treatments 2 h before light offset have significantly altered the 24-h patterns of mRNA expression of circadian clock genes (per1, per2, bmal1 and clock) within the suprachiasmatic nuclei (SCN) mostly by increasing amplitude in their expressional rhythms without inducing robust phase shifts in them. Melatonin treatments altered the expression of genes of serotonergic neurotransmission in the dorsal raphe (tph2, sert, vmat2 and 5ht1a) and serotonin contents in the amygdala. Importantly, melatonin treatment reduced the immobility in forced swim test, a depression-like behavior. As a key mechanism of melatonin-induced antidepressant-like effect, the previously proposed phase-advance hypothesis of the circadian clock could not be confirmed under conditions of our experiment. However, our findings of modest adjustments in both the amplitude and phase of the transcriptional oscillators in the SCN as a result of melatonin treatments may be sufficient to associate with the effects seen in the brain serotonergic system and with the improvement in depression-like behavior. Our study confirmed a predictive validity of C57BL/6J mice as a useful model for the molecular analysis of links between the clock and brain serotonergic system, which could greatly accelerate our understanding of the pathogenesis of SAD, as well as the search for new treatments. PMID:25515595

  17. Mathematical modeling of light-mediated HPA axis activity and downstream implications on the entrainment of peripheral clock genes.

    Science.gov (United States)

    Mavroudis, Panteleimon D; Corbett, Siobhan A; Calvano, Steven E; Androulakis, Ioannis P

    2014-10-15

    In this work we propose a semimechanistic model that describes the photic signal transduction to the hypothalamic-pituitary-adrenal (HPA) axis that ultimately regulates the synchronization of peripheral clock genes (PCGs). Our HPA axis model predicts that photic stimulation induces a type-1 phase response curve to cortisol's profile with increased cortisol sensitivity to light exposure in its rising phase, as well as the shortening of cortisol's period as constant light increases (Aschoff's first rule). Furthermore, our model provides insight into cortisol's phase and amplitude dependence on photoperiods and reveals that cortisol maintains highest amplitude variability when it is entrained by a balanced schedule of light and dark periods. Importantly, by incorporating the links between HPA axis and PCGs we were able to investigate how cortisol secretion impacts the entrainment of a population of peripheral cells and show that disrupted light schedules, leading to blunted cortisol secretion, fail to synchronize a population of PCGs which further signifies the loss of circadian rhythmicity in the periphery of the body.

  18. Assembling a clock for all seasons : Are there M and E oscillators in the genes?

    NARCIS (Netherlands)

    Daan, S; Albrecht, U; van der Horst, GTJ; Illnerova, H; Roenneberg, T; Wehr, TA; Schwartz, WJ

    2001-01-01

    The hypothesis is advanced that the circadian pacemaker in the mammalian suprachiasmatic nucleus (SCN) is composed at the molecular level of a nonredundant double complex of circadian genes (per1, cry1, and per2, cry2). Each one of these sets would be sufficient for the maintenance of endogenous rhy

  19. 小鼠纹状体时钟基因表达的生后发育%Postnatal ontogenesis of moleular clock genes in mouse striatum

    Institute of Scientific and Technical Information of China (English)

    左晓虹; 蔡彦宁; 李宁; 刘姝; 张燕莉; 陈彪

    2009-01-01

    Objective To study the mRNA expression profiles of clock genes in mouse striatum during postnatal ontogenesis. Methods C57 BL/6J male mice were grouped with development stages:early postnatal stage (postnatal day 3),pre-weaning stage (postnatal day 14) and adult (postnatal day 60). Animals were transferred into constant darkness for 24 hours and sacrificed at 6 h intervals beginning at 09:00 h local time (01 HALO=Hours after Light Onset). The striatum were dissected out. 24h mRNA oscillations of 5 principle clock genes (Bmal1,Clock,Cry1,Per1 and Rev-erbα) were examined using real time PCR. Results At P3,no daily oscillation was found for all clock genes. At P14,a significant time effect was identified only for Rev-erb α (P=0.027),with peak value at 19 to 01 HALO. At P60,the daily oscillations of these clock genes were at least borderline significant (Bmal1:P=0.004,Clock:P=0.004,Per1:P=0.004,Rev-erbα:P=0.004),with peak time at 01 HALO for Bmal1,Clock and Cry1; at 13 HALO for Per1; and at 07 HALO for Rev-erbα. In addition,the overall mean mRNA levels of these clock genes also underwent a dynamic change postnatally. For Bmal1,Clock,Per1 and Rev-erbα,the expression level increased throughout the postnatal ontogenesis from P3,P14 to P60. For Cry1,however,the abundance at P3 and P60 were similar while that at P14 was much lower. Conclusion The striatal molecular clock machinery,although works efficiently in adult,develops gradually after birth in mice.%目的 研究小鼠纹状体中时钟基因表达的生后发育.方法 选新生早期(P3)、断奶前期(P14)和成年(P60)小鼠,光照1h[01 Hour-After-Light-On (HALO)=09:00]起取纹状体,连续24h取材,取材时间间隔6h.实时定量RT-PCR检测时钟基因Bmal1,Clock,Cry1,Per1和Rev-erbα Mrna水平.结果 P3组中,5种时钟基因表达均无明显波动;P14组仅有Rev-erb αmRNA表达随时间变化(P=0.027),表达高峰在19-01HALO;而P60组,各基因表达均表现明显波动[Bmal1(P=0.004)、Clock

  20. The Clock Protein CCA1 and the bZIP Transcription Factor HY5 Physically Interact to Regulate Gene Expression in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Christos Andronis; Simon Barak; Stephen M.Knowles; Shoji Sugano; Elaine M.Tobin

    2008-01-01

    The circadian clock regulates the expression of an array of Arabidopsis genes such as those encoding the LIGHT-HARVESTING CHLOROPHYLL A/B (Lhcb) proteins. We have previously studied the promoters of two of these Arabidopsis genes-Lhcb1*1 and Lhcb1*3-and identified a sequence that binds the clock protein CIRCADIAN CLOCK ASSOCIATED 1 (CCA1). This sequence, designated CCAl-binding site (CBS), is necessary for phytochrome and circadian responsiveness of these genes. In close proximity to this sequence, there exists a G-box core element that has been shown to bind the bZIP transcription factor HY5 in other light-regulated plant promoters. In the present study, we examined the importance of the interaction of transcription factors binding the CBS and the G-box core element in the control of normal circadian rhythmic expression of Lhcb genes. Our results show that HY5 is able to specifically bind the G-box element in the Lhcb promoters and that CCA1 can alter the binding activity of HY5. We further show that CCA1 and HY5 can physically interact and that they can act synergistically on transcription in a yeast reporter gene assay. An absence of HY5 leads to a shorter period of Lhcb1*1 circadian expression but does not affect the circadian expression of CATALASE3 (CAT3), whose promoter lacks a G-box element. Our results suggest that interaction of the HY5 and CCA1 proteins on Lhcb promoters is necessary for normal circadian expression of the Lhcb genes.

  1. Polycomb group genes Psc and Su(z)2 restrict follicle stem cell self-renewal and extrusion by controlling canonical and noncanonical Wnt signaling.

    Science.gov (United States)

    Li, Xinghua; Han, Yue; Xi, Rongwen

    2010-05-01

    Stem cells are critical for maintaining tissue homeostasis and are commonly governed by their niche microenvironment, although the intrinsic mechanisms controlling their multipotency are poorly understood. Polycomb group (PcG) genes are epigenetic silencers, and have emerged recently as important players in maintaining stem cell multipotency by preventing the initiation of differentiation programs. Here we describe an unexpected role of specific PcG genes in allowing adult stem cell differentiation and preventing stem cell-derived tumor development. We show that Posterior sex combs (Psc), which encodes a core Polycomb-repressive complex 1 (PRC1) component, functions redundantly with a similar gene, Suppressor of zeste two [Su(z)2], to restrict follicle stem cell (FSC) self-renewal in the Drosophila ovary. FSCs carrying deletion mutations of both genes extrude basally from the epithelium and continue to self-propagate at ectopic sites, leading to the development of FSC-like tumors. Furthermore, we show that the propagation of the mutant cells is driven by sustained activation of the canonical Wnt signaling pathway, which is essential for FSC self-renewal, whereas the epithelial extrusion is mediated through the planar cell polarity pathway. This study reveals a novel mechanism of epithelial extrusion, and indicates a novel role of polycomb function in allowing adult stem cell differentiation by antagonizing self-renewal programs. Given evolutionary conservation of PcG genes from Drosophila to mammals, they could have similar functions in mammalian stem cells and cancer.

  2. Gender effects of single nucleotide polymorphisms and miRNAs targeting clock-genes in metastatic colorectal cancer patients (mCRC)

    Science.gov (United States)

    Garufi, Carlo; Giacomini, Elisa; Torsello, Angela; Sperduti, Isabella; Melucci, Elisa; Mottolese, Marcella; Zeuli, Massimo; Ettorre, Giuseppe Maria; Ricciardi, Teresa; Cognetti, Francesco; Magnani, Mauro; Ruzzo, Annamaria

    2016-01-01

    The circadian system is composed of a set of clock-genes including PERIOD, CLOCK, BMAL1 and CRY. Disrupting this system promotes cancer development and progression. The expression levels of miR-206, miR-219, miR-192, miR-194 and miR-132 regulating clock-genes and three functional polymorphisms rs11133373 C/G, rs1801260 T/C, rs11133391 T/C in CLOCK sequence were associated with the survival of 83 mCRC patients (50 males and 33 females). Longer overall survival (OS) was observed in women compared to men, 50 versus 31 months. This difference was associated with rs11133373 C/C genotype (p = 0.01), rs1801260 T/C+C/C genotype (p = 0.06) and rs11133391 T/T genotype (p = 0.06). Moreover women expressing high levels (H) of miR-192 (p = 0.03), miR-206 (p = 0.003), miR-194 (p = 0.02) and miR-219 (p = 0.002) had a longer OS compared to men. In women longer OS was reinforced by the simultaneous presence of two or more H-miR, 58 months versus 15 months (p = 0.0008); in this group of women an OS of 87 months was reached with the additional presence of rs11133391T/T genotype (p = 0.02). In this study we identified a subgroup of female patients who seems to have a better prognosis. Personalized medicine should prospectively take into account both genetic and gender differences. PMID:27666868

  3. Pinealectomy abolishes circadian behavior and interferes with circadian clock gene oscillations in brain and liver but not retina in a migratory songbird.

    Science.gov (United States)

    Trivedi, Amit Kumar; Malik, Shalie; Rani, Sangeeta; Kumar, Vinod

    2016-03-15

    In songbirds, the pineal gland is part of the multi-oscillatory circadian timing system, with participating component oscillators in the eyes and hypothalamus. This study investigated the role of the pineal gland in development of the nighttime migratory restlessness (Zugunruhe) and generation of circadian gene oscillations in the retina, brain and liver tissues in migratory redheaded buntings (Emberiza bruniceps). Pinealectomized (pinx) and sham-operated buntings entrained to short days (8h light: 16h darkness, 8L:16D) were sequentially exposed for 10days each to stimulatory long days (13L: 11D) and constant dim light (LLdim; a condition that tested circadian rhythm persistence). Whereas activity-rest pattern was monitored continuously, the mRNA expressions of clock genes (bmal1, clock, npas2, per2, cry1, rorα, reverα) were measured in the retina, hypothalamus, telencephalon, optic tectum and liver tissues at circadian times, CT, 1, 6, 13, 17 and 21 (CT 0, activity onset) on day 11 of the LLdim. The absence of the pineal gland did not affect the development of long-day induced Zugunruhe but caused decay of the circadian rhythm in Zugunruhe as well as the clock gene oscillations in the hypothalamus, but not in the retina. Further, there were variable effects of pinealectomy in the peripheral brain and liver tissue circadian gene oscillations, notably the persistence of per 2 and cry1 (optic tectum), rorα (telencephalon) and npas2 (liver) mRNA oscillations in pinx birds. We suggest the pineal gland dependence of the generation of circadian gene oscillations in the hypothalamus, not retina, and peripheral brain and liver tissues in migratory redheaded buntings. PMID:26801391

  4. Working around the clock: circadian rhythms and skeletal muscle

    OpenAIRE

    ZHANG, XIPING; Dube, Thomas J.; Esser, Karyn A.

    2009-01-01

    The study of the circadian molecular clock in skeletal muscle is in the very early stages. Initial research has demonstrated the presence of the molecular clock in skeletal muscle and that skeletal muscle of a clock-compromised mouse, Clock mutant, exhibits significant disruption in normal expression of many genes required for adult muscle structure and metabolism. In light of the growing association between the molecular clock, metabolism, and metabolic disease, it will also be important to ...

  5. Canonical simplicial gravity

    NARCIS (Netherlands)

    Dittrich, B.; Höhn, P.A.

    2011-01-01

    A general canonical formalism for discrete systems is developed which can handle varying phase space dimensions and constraints. The central ingredient is Hamilton's principle function which generates canonical time evolution and ensures that the canonical formalism reproduces the dynamics of the co

  6. Body Clock

    Institute of Scientific and Technical Information of China (English)

    刘洪毓

    2000-01-01

    “Body clocks” are biological methods of controling body activities.Every living thing has one. In humans, a body clock controls normal periods of sleeping and waking. It controls the time swhen you are most likely to feel pain.Eating, sleeping and exercising at about the same time each day will help keep body activities normal. But changes in your life, a new job, for example, destroy the balance and thus cause health problems.

  7. Circadian clock, cell cycle and cancer

    Directory of Open Access Journals (Sweden)

    Cansu Özbayer

    2011-12-01

    Full Text Available There are a few rhythms of our daily lives that we are under the influence. One of them is characterized by predictable changes over a 24-hour timescale called circadian clock. This cellular clock is coordinated by the suprachiasmatic nucleus in the anterior hypothalamus. The clock consist of an autoregulatory transcription-translation feedback loop compose of four genes/proteins; BMAL1, Clock, Cyrptochrome, and Period. BMAL 1 and Clock are transcriptional factors and Period and Cyrptochrome are their targets. Period and Cyrptochrome dimerize in the cytoplasm to enter the nucleus where they inhibit Clock/BMAL activity.It has been demonstrate that circadian clock plays an important role cellular proliferation, DNA damage and repair mechanisms, checkpoints, apoptosis and cancer.

  8. Circadian clock genes Per1 and Per2 regulate the response of metabolism-associated transcripts to sleep disruption.

    Directory of Open Access Journals (Sweden)

    Jana Husse

    Full Text Available Human and animal studies demonstrate that short sleep or poor sleep quality, e.g. in night shift workers, promote the development of obesity and diabetes. Effects of sleep disruption on glucose homeostasis and liver physiology are well documented. However, changes in adipokine levels after sleep disruption suggest that adipocytes might be another important peripheral target of sleep. Circadian clocks regulate metabolic homeostasis and clock disruption can result in obesity and the metabolic syndrome. The finding that sleep and clock disruption have very similar metabolic effects prompted us to ask whether the circadian clock machinery may mediate the metabolic consequences of sleep disruption. To test this we analyzed energy homeostasis and adipocyte transcriptome regulation in a mouse model of shift work, in which we prevented mice from sleeping during the first six hours of their normal inactive phase for five consecutive days (timed sleep restriction--TSR. We compared the effects of TSR between wild-type and Per1/2 double mutant mice with the prediction that the absence of a circadian clock in Per1/2 mutants would result in a blunted metabolic response to TSR. In wild-types, TSR induces significant transcriptional reprogramming of white adipose tissue, suggestive of increased lipogenesis, together with increased secretion of the adipokine leptin and increased food intake, hallmarks of obesity and associated leptin resistance. Some of these changes persist for at least one week after the end of TSR, indicating that even short episodes of sleep disruption can induce prolonged physiological impairments. In contrast, Per1/2 deficient mice show blunted effects of TSR on food intake, leptin levels and adipose transcription. We conclude that the absence of a functional clock in Per1/2 double mutants protects these mice from TSR-induced metabolic reprogramming, suggesting a role of the circadian timing system in regulating the physiological effects

  9. Housing under abnormal light-dark cycles attenuates day/night expression rhythms of the clock genes Per1, Per2, and Bmal1 in the amygdala and hippocampus of mice.

    Science.gov (United States)

    Moriya, Shunpei; Tahara, Yu; Sasaki, Hiroyuki; Ishigooka, Jun; Shibata, Shigenobu

    2015-10-01

    Although the results of previous studies have suggested that disruptions in circadian rhythms are involved in the pathogenesis of depression, no studies have examined the interaction of clock gene expression deficit and depression state. In this study, we examined clock gene expression levels and depressive-like behavior in mice housed under 3.5h light, 3.5h dark (T = 7) conditions to investigate the association between clock gene expression and depressive state. C57BL/6J mice were housed under a T = 24 cycle (12h light, 12h dark) or a T = 7 cycle and clock gene expression levels in the hippocampus and the amygdala were measured by real-time RT-PCR. Depressive state was evaluated by the forced swim test (FST). Although circadian rhythms of Per1 and Per2 clock gene expression in the hippocampus and amygdala were still detected under T = 7 conditions, rhythmicity and expression levels of both significantly decreased. Mice housed with a T = 7 cycle showed increased immobile time in the FST than those with a T = 24 cycle. The present results suggest that the presence of a depressive state around the early active phase of activity may be related to impairment of rhythmicity and expression levels of Per1 and Per2 genes under abnormal light-dark conditions.

  10. Binding of USF to a non-canonical E-box following stress results in a cell-specific derepression of the lama3 gene.

    Science.gov (United States)

    Virolle, Thierry; Coraux, Christelle; Ferrigno, Olivier; Cailleteau, Laurence; Ortonne, Jean-Paul; Pognonec, Philippe; Aberdam, Daniel

    2002-04-15

    Expression of the lama3 gene, encoding the laminin alpha3A chain, is restricted to specialized epithelia. We previously showed that lama3 gene expression is controlled by an epithelial enhancer through the cooperative effect of AP-1 binding sites. In fibroblasts, there is no lama3 expression because of the recruitment of a repressor complex absent or inactive in epithelial cells. In this paper, we show evidence that this repression of the lama3 gene is relieved by exogenous and UV-induced USF-1 through its interaction with a non-canonical E-box site. Using a chromatin immunoprecipitation assay, we find that UV stress induces USF to bind to the lama3 promoter in vivo. We further demonstrate that this loss of cell specificity is directly related to the accessibility of the E-box, resulting in a strong induction in fibroblasts, while expression remains constitutively high in keratinocytes. This accessibility appears to be dependent upon the recruitment of a fibroblastic repressor complex. Therefore, we speculate that anchorage of this repressor complex in fibroblasts modifies the enhancer geometry, allowing USF to interact under stress-inducing conditions with its heptameric binding site. PMID:11937633

  11. Genome-wide pathway analysis of memory impairment in the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort implicates gene candidates, canonical pathways, and networks.

    Science.gov (United States)

    Ramanan, Vijay K; Kim, Sungeun; Holohan, Kelly; Shen, Li; Nho, Kwangsik; Risacher, Shannon L; Foroud, Tatiana M; Mukherjee, Shubhabrata; Crane, Paul K; Aisen, Paul S; Petersen, Ronald C; Weiner, Michael W; Saykin, Andrew J

    2012-12-01

    Memory deficits are prominent features of mild cognitive impairment (MCI) and Alzheimer's disease (AD). The genetic architecture underlying these memory deficits likely involves the combined effects of multiple genetic variants operative within numerous biological pathways. In order to identify functional pathways associated with memory impairment, we performed a pathway enrichment analysis on genome-wide association data from 742 Alzheimer's Disease Neuroimaging Initiative (ADNI) participants. A composite measure of memory was generated as the phenotype for this analysis by applying modern psychometric theory to item-level data from the ADNI neuropsychological test battery. Using the GSA-SNP software tool, we identified 27 canonical, expertly-curated pathways with enrichment (FDR-corrected p-value consolidation, such as neurotransmitter receptor-mediated calcium signaling and long-term potentiation, were highly represented among the enriched pathways. In addition, pathways related to cell adhesion, neuronal differentiation and guided outgrowth, and glucose- and inflammation-related signaling were also enriched. Among genes that were highly-represented in these enriched pathways, we found indications of coordinated relationships, including one large gene set that is subject to regulation by the SP1 transcription factor, and another set that displays co-localized expression in normal brain tissue along with known AD risk genes. These results 1) demonstrate that psychometrically-derived composite memory scores are an effective phenotype for genetic investigations of memory impairment and 2) highlight the promise of pathway analysis in elucidating key mechanistic targets for future studies and for therapeutic interventions. PMID:22865056

  12. Conserved and divergent rhythms of crassulacean acid metabolism-related and core clock gene expression in the cactus Opuntia ficus-indica.

    Science.gov (United States)

    Mallona, Izaskun; Egea-Cortines, Marcos; Weiss, Julia

    2011-08-01

    The cactus Opuntia ficus-indica is a constitutive Crassulacean acid metabolism (CAM) species. Current knowledge of CAM metabolism suggests that the enzyme phosphoenolpyruvate carboxylase kinase (PPCK) is circadian regulated at the transcriptional level, whereas phosphoenolpyruvate carboxylase (PEPC), malate dehydrogenase (MDH), NADP-malic enzyme (NADP-ME), and pyruvate phosphate dikinase (PPDK) are posttranslationally controlled. As little transcriptomic data are available from obligate CAM plants, we created an expressed sequence tag database derived from different organs and developmental stages. Sequences were assembled, compared with sequences in the National Center for Biotechnology Information nonredundant database for identification of putative orthologs, and mapped using Kyoto Encyclopedia of Genes and Genomes Orthology and Gene Ontology. We identified genes involved in circadian regulation and CAM metabolism for transcriptomic analysis in plants grown in long days. We identified stable reference genes for quantitative polymerase chain reaction and found that OfiSAND, like its counterpart in Arabidopsis (Arabidopsis thaliana), and OfiTUB are generally appropriate standards for use in the quantification of gene expression in O. ficus-indica. Three kinds of expression profiles were found: transcripts of OfiPPCK oscillated with a 24-h periodicity; transcripts of the light-active OfiNADP-ME and OfiPPDK genes adapted to 12-h cycles, while transcript accumulation patterns of OfiPEPC and OfiMDH were arrhythmic. Expression of the circadian clock gene OfiTOC1, similar to Arabidopsis, oscillated with a 24-h periodicity, peaking at night. Expression of OfiCCA1 and OfiPRR9, unlike in Arabidopsis, adapted best to a 12-h rhythm, suggesting that circadian clock gene interactions differ from those of Arabidopsis. Our results indicate that the evolution of CAM metabolism could be the result of modified circadian regulation at both the transcriptional and posttranscriptional

  13. Circadian and Circalunar Clock Interactions in a Marine Annelid

    Directory of Open Access Journals (Sweden)

    Juliane Zantke

    2013-10-01

    Full Text Available Life is controlled by multiple rhythms. Although the interaction of the daily (circadian clock with environmental stimuli, such as light, is well documented, its relationship to endogenous clocks with other periods is little understood. We establish that the marine worm Platynereis dumerilii possesses endogenous circadian and circalunar (monthly clocks and characterize their interactions. The RNAs of likely core circadian oscillator genes localize to a distinct nucleus of the worm’s forebrain. The worm’s forebrain also harbors a circalunar clock entrained by nocturnal light. This monthly clock regulates maturation and persists even when circadian clock oscillations are disrupted by the inhibition of casein kinase 1δ/ε. Both circadian and circalunar clocks converge on the regulation of transcript levels. Furthermore, the circalunar clock changes the period and power of circadian behavior, although the period length of the daily transcriptional oscillations remains unaltered. We conclude that a second endogenous noncircadian clock can influence circadian clock function.

  14. Influence of night-shift and napping at work on urinary melatonin, 17-β-estradiol and clock gene expression in pre-menopausal nurses.

    Science.gov (United States)

    Bracci, M; Copertaro, A; Manzella, N; Staffolani, S; Strafella, E; Nocchi, L; Barbaresi, M; Copertaro, B; Rapisarda, V; Valentino, M; Santarelli, L

    2013-01-01

    Night-workers experience disruption of the sleep-wake cycle and light at night which may increase breast cancer risk by suppressing the nocturnal melatonin surge, resulting in higher levels of circulating estrogens. Night-work may also deregulate peripheral clock genes which have been found to be altered in breast cancer. This study investigated urinary 6-sulfatoxymelatonin (aMT6s), serum 17-beta-estradiol levels in premenopausal shift nurses at the end of the night-shift compared to a control group of daytime nurses. Peripheral clock gene expression in lymphocytes were also investigated. All participants were sampled in the follicular phase of the menstrual cycle. The effect of nurses’ ability to take a short nap during the night-shift was also explored. The shift-work group had significantly lower aMT6s levels than daytime nurses independently of a nap. Night-shift napping significantly influences 17-beta-estradiol levels resulting in higher outcomes in nurses who do not take a nap compared to napping group and daytime workers. Peripheral clock genes expression investigated was not significantly different among the groups. Our findings suggest that shift nurses experience changes in aMT6s levels after a night-shift. Napping habits influence 17-beta-estradiol levels at the end of a night-shift. These findings might be related to the increased cancer risk reported in night-shift workers and suggest that a short nap during night-shifts may exert a positive effect. PMID:23489707

  15. Intergeneric complementation of a circadian rhythmicity defect : phylogenetic conservation of structure and function of the clock gene frequency

    NARCIS (Netherlands)

    Merrow, Martha W.; Dunlap, Jay C.; Dover, G.

    1994-01-01

    The Neurospora crassa frequency locus encodes a 989 amino acid protein that is a central component, a state variable, of the circadian biological clock. We have determined the sequence of all or part of this protein and surrounding regulatory regions from additional fungi representing three genera a

  16. Hormones and clocks: do they disrupt the locks? Fluctuating estrogen levels during menopausal transition may influence clock genes and trigger chronic telogen effluvium.

    Science.gov (United States)

    Mirmirani, Paradi

    2016-01-01

    Chronic telogen effluvium describes the clinical condition noted mostly in middle-aged women of increased, diffuse scalp hair shedding that is prolonged and often presents with a fluctuating course that may continue for years but does not lead to visible hair thinning. Despite its description almost 20 years ago, the underlying pathologic cause of CTE is yet to be identified. However the culmination of research in the field of hair biology and the burgeoning field of chronobiology may lead to exciting breakthroughs in our understanding of CTE. In this paper the current literature on CTE is reviewed and a hypothesis is put forth that CTE may be triggered by hormonal fluctuations and alterations in circadian control genes. PMID:27617515

  17. A circadian clock in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Eelderink-Chen, Zheng; Mazzotta, Gabriella; Sturre, Marcel; Bosman, Jasper; Roenneberg, Till; Merrow, Martha

    2010-01-01

    Circadian timing is a fundamental biological process, underlying cellular physiology in animals, plants, fungi, and cyanobacteria. Circadian clocks organize gene expression, metabolism, and behavior such that they occur at specific times of day. The biological clocks that orchestrate these daily cha

  18. The circadian clock coordinates ribosome biogenesis.

    Directory of Open Access Journals (Sweden)

    Céline Jouffe

    Full Text Available Biological rhythms play a fundamental role in the physiology and behavior of most living organisms. Rhythmic circadian expression of clock-controlled genes is orchestrated by a molecular clock that relies on interconnected negative feedback loops of transcription regulators. Here we show that the circadian clock exerts its function also through the regulation of mRNA translation. Namely, the circadian clock influences the temporal translation of a subset of mRNAs involved in ribosome biogenesis by controlling the transcription of translation initiation factors as well as the clock-dependent rhythmic activation of signaling pathways involved in their regulation. Moreover, the circadian oscillator directly regulates the transcription of ribosomal protein mRNAs and ribosomal RNAs. Thus the circadian clock exerts a major role in coordinating transcription and translation steps underlying ribosome biogenesis.

  19. Circadian molecular clocks and cancer.

    Science.gov (United States)

    Kelleher, Fergal C; Rao, Aparna; Maguire, Anne

    2014-01-01

    Physiological processes such as the sleep-wake cycle, metabolism and hormone secretion are controlled by a circadian rhythm adapted to 24h day-night periodicity. This circadian synchronisation is in part controlled by ambient light decreasing melatonin secretion by the pineal gland and co-ordinated by the suprachiasmatic nucleus of the hypothalamus. Peripheral cell autonomous circadian clocks controlled by the suprachiasmatic nucleus, the master regulator, exist within every cell of the body and are comprised of at least twelve genes. These include the basic helix-loop-helix/PAS domain containing transcription factors; Clock, BMal1 and Npas2 which activate transcription of the periodic genes (Per1 and Per2) and cryptochrome genes (Cry1 and Cry2). Points of coupling exist between the cellular clock and the cell cycle. Cell cycle genes which are affected by the molecular circadian clock include c-Myc, Wee1, cyclin D and p21. Therefore the rhythm of the circadian clock and cancer are interlinked. Molecular examples exist including activation of Per2 leads to c-myc overexpression and an increased tumor incidence. Mice with mutations in Cryptochrome 1 and 2 are arrhythmic (lack a circadian rhythm) and arrhythmic mice have a faster rate of growth of implanted tumors. Epidemiological finding of relevance include 'The Nurses' Health Study' where it was established that women working rotational night shifts have an increased incidence of breast cancer. Compounds that affect circadian rhythm exist with attendant future therapeutic possibilities. These include casein kinase I inhibitors and a candidate small molecule KL001 that affects the degradation of cryptochrome. Theoretically the cell cycle and malignant disease may be targeted vicariously by selective alteration of the cellular molecular clock. PMID:24099911

  20. The circadian cycle of mPER clock gene products in the suprachiasmatic nucleus of the siberian hamster encodes both daily and seasonal time.

    Science.gov (United States)

    Nuesslein-Hildesheim, B; O'Brien, J A; Ebling, F J; Maywood, E S; Hastings, M H

    2000-08-01

    The circadian clock in the hypothalamic suprachiasmatic nuclei (SCN) regulates the pattern of melatonin secretion from the pineal gland such that the duration of release reflects the length of the night. This seasonally specific endocrine cue mediates annual timing in photoperiodic mammals. The aim of this study was to investigate how changes in photoperiod influence the cyclic expression of recently identified clock gene products (mPER and mTIM) in the SCN of a highly seasonal mammal, the Siberian hamster (Phodopus sungorus). Immunocytochemical studies indicate that the abundance of both mPER1 and mPER2 (but not mTIM) in the SCN exhibits very pronounced, synchronous daily cycles, peaking approximately 12 h after lights-on. These rhythms are circadian in nature as they continue approximately under free-running conditions. Their circadian waveform is modulated by photoperiod such that the phase of peak mPER expression is prolonged under long photoperiods. mPER1 protein is also expressed in the pars tuberalis of Siberian hamsters. In hamsters adapted to long days, the expression of mPER1 is elevated at the start of the light phase. In contrast, there is no clear elevation in mPER1 levels in the pars tuberalis of hamsters held on short photoperiods. These results indicate that core elements of the circadian clockwork are sensitive to seasonal time, and that encoding and decoding of seasonal information may be mediated by the actions of these transcriptional modulators.

  1. Study of the association between 3111T/C polymorphism of the CLOCK gene and the presence of overweight in schoolchildren,

    Directory of Open Access Journals (Sweden)

    Nayara P. Giovaninni

    2014-09-01

    Full Text Available Objectives: To evaluate the association between 3111T/C polymorphism of the CLOCK gene and the presence of obesity and sleep duration in children aged 6-13 years. In adults, this genetic variant has been associated with duration of sleep, ghrelin levels, weight, and eating habits. Although short sleep duration has been linked to obesity in children, no study has aimed to identify the possible molecular mechanisms of this association to date. Methods: Weight, height, and circumferences were transformed into Z-scores for age and gender. Genotyping was performed using TaqMan methodology. A questionnaire regarding hours of sleep was provided to parents. The appropriate statistical tests were performed. Results: This study evaluated 370 children (45% males, 55% females, mean age 8.5 ± 1.5 years. The prevalence of overweight was 18%. The duration of sleep was, on average, 9.7 hours, and was inversely related to age (p < 0.001. Genotype distribution was: 4% CC, 31% CT, and 65% TT. There was a trend toward higher prevalence of overweight in children who slept less than nine hours (23% when compared to those who slept more than ten hours (16%, p = 0.06. Genotype was not significantly correlated to any of the assessed outcomes. Conclusions: The CLOCK 3111T/C polymorphism was not significantly associated with overweight or sleep duration in children in this city.

  2. Canonical Information Analysis

    DEFF Research Database (Denmark)

    Vestergaard, Jacob Schack; Nielsen, Allan Aasbjerg

    2015-01-01

    Canonical correlation analysis is an established multivariate statistical method in which correlation between linear combinations of multivariate sets of variables is maximized. In canonical information analysis introduced here, linear correlation as a measure of association between variables...... is replaced by the information theoretical, entropy based measure mutual information, which is a much more general measure of association. We make canonical information analysis feasible for large sample problems, including for example multispectral images, due to the use of a fast kernel density estimator...... for entropy estimation. Canonical information analysis is applied successfully to (1) simple simulated data to illustrate the basic idea and evaluate performance, (2) fusion of weather radar and optical geostationary satellite data in a situation with heavy precipitation, and (3) change detection in optical...

  3. Classifying Linear Canonical Relations

    OpenAIRE

    Lorand, Jonathan

    2015-01-01

    In this Master's thesis, we consider the problem of classifying, up to conjugation by linear symplectomorphisms, linear canonical relations (lagrangian correspondences) from a finite-dimensional symplectic vector space to itself. We give an elementary introduction to the theory of linear canonical relations and present partial results toward the classification problem. This exposition should be accessible to undergraduate students with a basic familiarity with linear algebra.

  4. Entrainment of the Neurospora circadian clock

    NARCIS (Netherlands)

    Merrow, M; Boesl, C; Ricken, J; Messerschmitt, M; Goedel, M; Roenneberg, T

    2006-01-01

    Neurospora crassa has been systematically investigated for circadian entrainment behavior. Many aspects of synchronization can be investigated in this simple, cellular system, ranging from systematic entrainment and drivenness to masking. Clock gene expression during entrainment and entrainment with

  5. Relations between canonical and non-canonical inflation

    Energy Technology Data Exchange (ETDEWEB)

    Gwyn, Rhiannon [Max-Planck-Institut fuer Gravitationsphysik (Albert-Einstein-Institut), Potsdam (Germany); Rummel, Markus [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Westphal, Alexander [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group

    2012-12-15

    We look for potential observational degeneracies between canonical and non-canonical models of inflation of a single field {phi}. Non-canonical inflationary models are characterized by higher than linear powers of the standard kinetic term X in the effective Lagrangian p(X,{phi}) and arise for instance in the context of the Dirac-Born-Infeld (DBI) action in string theory. An on-shell transformation is introduced that transforms non-canonical inflationary theories to theories with a canonical kinetic term. The 2-point function observables of the original non-canonical theory and its canonical transform are found to match in the case of DBI inflation.

  6. Researchers Discover Plants Biological Clock

    Institute of Scientific and Technical Information of China (English)

    王全良

    1996-01-01

    Scientists who created glow-in-the-dark plants by shooting up seedlingswith firefly DNA have identified the first biological clock gene in plants. Discovery of the timepiece gene, which controls such biological rhythmsas daily leaf movements and proe openings, flower-blooming schedules andphotosynthesis cycles, could lead to a host of applications in ornamental horti-culture, agriculture and even human health. Many researchers believe that

  7. Regulated DNA Methylation and the Circadian Clock: Implications in Cancer

    Directory of Open Access Journals (Sweden)

    Tammy M. Joska

    2014-09-01

    Full Text Available Since the cloning and discovery of DNA methyltransferases (DNMT, there has been a growing interest in DNA methylation, its role as an epigenetic modification, how it is established and removed, along with the implications in development and disease. In recent years, it has become evident that dynamic DNA methylation accompanies the circadian clock and is found at clock genes in Neurospora, mice and cancer cells. The relationship among the circadian clock, cancer and DNA methylation at clock genes suggests a correlative indication that improper DNA methylation may influence clock gene expression, contributing to the etiology of cancer. The molecular mechanism underlying DNA methylation at clock loci is best studied in the filamentous fungi, Neurospora crassa, and recent data indicate a mechanism analogous to the RNA-dependent DNA methylation (RdDM or RNAi-mediated facultative heterochromatin. Although it is still unclear, DNA methylation at clock genes may function as a terminal modification that serves to prevent the regulated removal of histone modifications. In this capacity, aberrant DNA methylation may serve as a readout of misregulated clock genes and not as the causative agent. This review explores the implications of DNA methylation at clock loci and describes what is currently known regarding the molecular mechanism underlying DNA methylation at circadian clock genes.

  8. Regulation of behavioral circadian rhythms and clock protein PER1 by the deubiquitinating enzyme USP2

    DEFF Research Database (Denmark)

    Yang, Yaoming; Duguay, David; Bédard, Nathalie;

    2012-01-01

    Endogenous 24-hour rhythms are generated by circadian clocks located in most tissues. The molecular clock mechanism is based on feedback loops involving clock genes and their protein products. Post-translational modifications, including ubiquitination, are important for regulating the clock...

  9. Variation in candidate genes CLOCK and ADCYAP1 does not consistently predict differences in migratory behavior in the songbird genus Junco [v1; ref status: indexed, http://f1000r.es/11p

    Directory of Open Access Journals (Sweden)

    Mark P Peterson

    2013-04-01

    Full Text Available Recent studies exploring the molecular genetic basis for migratory variation in animals have identified polymorphisms in two genes (CLOCK and ADCYAP1 that are linked to circadian rhythms and correlate with migratory propensity and phenology among individuals and populations. Results from these initial studies are mixed, however, and additional data are needed to assess the generality and diversity of the molecular mechanisms that regulate the biology of migration. We sequenced CLOCK and ADCYAP1 in 15 populations across the two species of the avian genus Junco, a North American lineage in which multiple recently diverged subspecies and populations range from sedentary to long-distance migrants. We found no consistent associations between allele length and migratory status across the genus for either CLOCK or ADCYAP1. However, within two subspecies groups, populations that migrate longer distances have longer CLOCK alleles on average. Additionally, there was a positive relationship between ADCYAP1 allele length and migratory restlessness (zugunruhe among individuals within one of two captive populations studied—a result similar to those reported previously within captive blackcaps (Sylvia atricapilla. We conclude that, while both ADCYAP1 and CLOCK may correlate with migratory propensity within or among certain populations or species, previously identified relationships between migratory behavior and sequence variants cannot be easily generalized across taxa.

  10. [Canon Busting and Cultural Literacy.

    Science.gov (United States)

    National Forum: Phi Kappa Phi Journal, 1989

    1989-01-01

    Articles on literary canon include: "Educational Anomie" (Stephen W. White); "Why Western Civilization?" (William J. Bennett); "Peace Plan for Canon Wars" (Gerald Graff, William E. Cain); "Canons, Cultural Literacy, and Core Curriculum" (Lynne V. Cheney); "Canon Busting: Basic Issues" (Stanley Fish); "A Truce in Curricular Wars" (Chester E. Finn,…

  11. Canonical field theory

    Science.gov (United States)

    You, Setthivoine

    2015-11-01

    A new canonical field theory has been developed to help interpret the interaction between plasma flows and magnetic fields. The theory augments the Lagrangian of general dynamical systems to rigourously demonstrate that canonical helicity transport is valid across single particle, kinetic and fluid regimes, on scales ranging from classical to general relativistic. The Lagrangian is augmented with two extra terms that represent the interaction between the motion of matter and electromagnetic fields. The dynamical equations can then be re-formulated as a canonical form of Maxwell's equations or a canonical form of Ohm's law valid across all non-quantum regimes. The field theory rigourously shows that helicity can be preserved in kinetic regimes and not only fluid regimes, that helicity transfer between species governs the formation of flows or magnetic fields, and that helicity changes little compared to total energy only if density gradients are shallow. The theory suggests a possible interpretation of particle energization partitioning during magnetic reconnection as canonical wave interactions. This work is supported by US DOE Grant DE-SC0010340.

  12. Circadian molecular clock in lung pathophysiology.

    Science.gov (United States)

    Sundar, Isaac K; Yao, Hongwei; Sellix, Michael T; Rahman, Irfan

    2015-11-15

    Disrupted daily or circadian rhythms of lung function and inflammatory responses are common features of chronic airway diseases. At the molecular level these circadian rhythms depend on the activity of an autoregulatory feedback loop oscillator of clock gene transcription factors, including the BMAL1:CLOCK activator complex and the repressors PERIOD and CRYPTOCHROME. The key nuclear receptors and transcription factors REV-ERBα and RORα regulate Bmal1 expression and provide stability to the oscillator. Circadian clock dysfunction is implicated in both immune and inflammatory responses to environmental, inflammatory, and infectious agents. Molecular clock function is altered by exposomes, tobacco smoke, lipopolysaccharide, hyperoxia, allergens, bleomycin, as well as bacterial and viral infections. The deacetylase Sirtuin 1 (SIRT1) regulates the timing of the clock through acetylation of BMAL1 and PER2 and controls the clock-dependent functions, which can also be affected by environmental stressors. Environmental agents and redox modulation may alter the levels of REV-ERBα and RORα in lung tissue in association with a heightened DNA damage response, cellular senescence, and inflammation. A reciprocal relationship exists between the molecular clock and immune/inflammatory responses in the lungs. Molecular clock function in lung cells may be used as a biomarker of disease severity and exacerbations or for assessing the efficacy of chronotherapy for disease management. Here, we provide a comprehensive overview of clock-controlled cellular and molecular functions in the lungs and highlight the repercussions of clock disruption on the pathophysiology of chronic airway diseases and their exacerbations. Furthermore, we highlight the potential for the molecular clock as a novel chronopharmacological target for the management of lung pathophysiology.

  13. Lego clocks : building a clock from parts

    NARCIS (Netherlands)

    Brunner, Michael; Simons, Mirre J. P.; Merrow, Martha

    2008-01-01

    A new finding opens up speculation that the molecular mechanism of circadian clocks in Synechococcus elongatus is composed of multiple oscillator systems (Kitayama and colleagues, this issue, pp. 1513-1521), as has been described in many eukaryotic clock model systems. However, an alternative intepr

  14. Optical Clocks in Space

    CERN Document Server

    Schiller, S; Nevsky, A; Koelemeij, J C J; Wicht, A; Gill, P; Klein, H A; Margolis, H S; Mileti, G; Sterr, U; Riehle, F; Peik, E; Tamm, C; Ertmer, W; Rasel, E; Klein, V; Salomon, C; Tino, G M; Lemonde, P; Holzwarth, R; Hänsch, T W; Tamm, Chr.

    2007-01-01

    The performance of optical clocks has strongly progressed in recent years, and accuracies and instabilities of 1 part in 10^18 are expected in the near future. The operation of optical clocks in space provides new scientific and technological opportunities. In particular, an earth-orbiting satellite containing an ensemble of optical clocks would allow a precision measurement of the gravitational redshift, navigation with improved precision, mapping of the earth's gravitational potential by relativistic geodesy, and comparisons between ground clocks.

  15. The influence of hepatitis B virus X protein on the clock genes in liver cells and its significance%乙肝病毒X蛋白对肝细胞生物钟基因的影响及其意义

    Institute of Scientific and Technical Information of China (English)

    Shengli Yang; Xiaoli Pan; Zhifan Xiong; Bo Wei; Hongyi Yao

    2011-01-01

    Objective: The aim of this study was to investigate the influence of hepatitis B virus X protein (HBx) on the clock genes in LO2 cells and its significance. Methods: A cell line LO2-HBx, Stably transfected with HBx gene, was established. The levels of mRNA and protein expression of CLOCK and BMAL1 were detected by real-time PCR and western blot. Results: The expression of CLOCK mRNA and protein were increased in cell line LO2-HBx (P < 0.05), while the expression of BMAL1 mRNA and protein were decreased in cell line LO2-HBx (P < 0.05). Conclusion: The expressions of core clock gene CLOCK and BMAL1 have been changed by HBx, which breaks down the previous circadian rhythm of liver cells. This maybe one of the reasons leads to the formation of liver cancer.

  16. Canonical affordances in context

    Directory of Open Access Journals (Sweden)

    Alan Costall

    2012-12-01

    Full Text Available James Gibson’s concept of affordances was an attempt to undermine the traditional dualism of the objective and subjective. Gibson himself insisted on the continuity of “affordances in general” and those attached to human artifacts. However, a crucial distinction needs to be drawn between “affordances in general” and the “canonical affordances” that are connected primarily to artifacts. Canonical affordances are conventional and normative. It is only in such cases that it makes sense to talk of the affordance of the object. Chairs, for example, are for sitting-on, even though we may also use them in many other ways. A good deal of confusion has arisen in the discussion of affordances from (1 the failure to recognize the normative status of canonical affordances and (2 then generalizing from this special case.

  17. Covariant canonical quantization

    Energy Technology Data Exchange (ETDEWEB)

    Hippel, G.M. von [University of Regina, Department of Physics, Regina, Saskatchewan (Canada); Wohlfarth, M.N.R. [Universitaet Hamburg, Institut fuer Theoretische Physik, Hamburg (Germany)

    2006-09-15

    We present a manifestly covariant quantization procedure based on the de Donder-Weyl Hamiltonian formulation of classical field theory. This procedure agrees with conventional canonical quantization only if the parameter space is d=1 dimensional time. In d>1 quantization requires a fundamental length scale, and any bosonic field generates a spinorial wave function, leading to the purely quantum-theoretical emergence of spinors as a byproduct. We provide a probabilistic interpretation of the wave functions for the fields, and we apply the formalism to a number of simple examples. These show that covariant canonical quantization produces both the Klein-Gordon and the Dirac equation, while also predicting the existence of discrete towers of identically charged fermions with different masses. Covariant canonical quantization can thus be understood as a ''first'' or pre-quantization within the framework of conventional QFT. (orig.)

  18. Covariant canonical quantization

    CERN Document Server

    Von Hippel, G M; Hippel, Georg M. von; Wohlfarth, Mattias N.R.

    2006-01-01

    We present a manifestly covariant quantization procedure based on the de Donder-Weyl Hamiltonian formulation of classical field theory. Covariant canonical quantization agrees with conventional canonical quantization only if the parameter space is d=1 dimensional time. In d>1 quantization requires a fundamental length scale, and any bosonic field generates a spinorial wave function, leading to the purely quantum-theoretical emergence of spinors as a byproduct. We provide a probabilistic interpretation of the wave functions for the fields, and apply the formalism to a number of simple examples. These show that covariant canonical quantization produces both the Klein-Gordon and the Dirac equation, while also predicting the existence of discrete towers of identically charged fermions with different masses.

  19. Daily rhythm variations of the clock gene PER1 and cancer-related genes during various stages of carcinogenesis in a golden hamster model of buccal mucosa carcinoma

    Directory of Open Access Journals (Sweden)

    Ye H

    2015-06-01

    Full Text Available Hua Ye, Kai Yang, Xue-Mei Tan, Xiao-Juan Fu, Han-Xue LiDepartment of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of ChinaBackground: Recent studies have demonstrated that the clock gene PER1 regulates various tumor-related genes. Abnormal expressions and circadian rhythm alterations of PER1 are closely related to carcinogenesis. However, the dynamic circadian variations of PER1 and tumor-related genes at different stages of carcinogenesis remain unknown. This study was conducted to investigate the daily rhythm variation of PER1 and expression of tumor-related genes VEGF, KI67, C-MYC, and P53 in different stages of carcinogenesis.Materials and methods: Dimethylbenzanthracene was used to establish a golden hamster model of buccal mucosa carcinogenesis. Hamsters with normal buccal mucosa, precancerous lesion, and cancerous lesion were sacrificed at six different time points during a 24-hour period of a day. Pathological examination was conducted using routine hematoxylin and eosin staining. PER1, VEGF, KI67, C-MYC, and P53 mRNAs were detected by real-time reverse transcriptase polymerase chain reaction, and a cosinor analysis was applied to analyze the daily rhythm.Results: PER1, VEGF, C-MYC, and P53 mRNA exhibited daily rhythmic expression in three carcinogenesis stages, and KI67 mRNA exhibited daily rhythmic expression in the normal and precancerous stages. The daily rhythmic expression of KI67 was not observed in cancerous stages. The mesor and amplitude of PER1 and P53 mRNA expression decreased upon the development of cancer (P<0.05, whereas the mesor and amplitude of VEGF, KI67, and C-MYC mRNA increased upon the development of cancer (P<0.05. Compared with the normal tissues, the acrophases of PER1, VEGF, and C-MYC mRNA occurred earlier, whereas the acrophases of P53 and KI67 mRNA lagged remarkably in the precancerous lesions. In the cancer stage, the acrophases

  20. Estimation of divergence times in litostomatean ciliates (Ciliophora: Intramacronucleata), using Bayesian relaxed clock and 18S rRNA gene.

    Science.gov (United States)

    Vďačný, Peter

    2015-08-01

    The class Litostomatea comprises a diverse assemblage of free-living and endosymbiotic ciliates. To understand diversification dynamic of litostomateans, divergence times of their main groups were estimated with the Bayesian molecular dating, a technique allowing relaxation of molecular clock and incorporation of flexible calibration points. The class Litostomatea very likely emerged during the Cryogenian around 680 Mya. The origin of the subclass Rhynchostomatia is dated to about 415 Mya, while that of the subclass Haptoria to about 654 Mya. The order Pleurostomatida, emerging about 556 Mya, was recognized as the oldest group within the subclass Haptoria. The order Spathidiida appeared in the Paleozoic about 442 Mya. The three remaining haptorian orders evolved in the Paleozoic/Mesozoic periods: Didiniida about 419 Mya, Lacrymariida about 269 Mya, and Haptorida about 194 Mya. The subclass Trichostomatia originated from a spathidiid ancestor in the Mesozoic about 260 Mya. A further goal of this study was to investigate the impact of various settings on posterior divergence time estimates. The root placement and tree topology as well as the priors of the rate-drift model, birth-death process and nucleotide substitution rate, had no significant effect on calculation of posterior divergence time estimates. However, removal of calibration points could significantly change time estimates at some nodes. PMID:26204556

  1. Estimation of divergence times in litostomatean ciliates (Ciliophora: Intramacronucleata), using Bayesian relaxed clock and 18S rRNA gene.

    Science.gov (United States)

    Vďačný, Peter

    2015-08-01

    The class Litostomatea comprises a diverse assemblage of free-living and endosymbiotic ciliates. To understand diversification dynamic of litostomateans, divergence times of their main groups were estimated with the Bayesian molecular dating, a technique allowing relaxation of molecular clock and incorporation of flexible calibration points. The class Litostomatea very likely emerged during the Cryogenian around 680 Mya. The origin of the subclass Rhynchostomatia is dated to about 415 Mya, while that of the subclass Haptoria to about 654 Mya. The order Pleurostomatida, emerging about 556 Mya, was recognized as the oldest group within the subclass Haptoria. The order Spathidiida appeared in the Paleozoic about 442 Mya. The three remaining haptorian orders evolved in the Paleozoic/Mesozoic periods: Didiniida about 419 Mya, Lacrymariida about 269 Mya, and Haptorida about 194 Mya. The subclass Trichostomatia originated from a spathidiid ancestor in the Mesozoic about 260 Mya. A further goal of this study was to investigate the impact of various settings on posterior divergence time estimates. The root placement and tree topology as well as the priors of the rate-drift model, birth-death process and nucleotide substitution rate, had no significant effect on calculation of posterior divergence time estimates. However, removal of calibration points could significantly change time estimates at some nodes.

  2. Interaction of circadian clock proteins PER2 and CRY with BMAL1 and CLOCK

    Directory of Open Access Journals (Sweden)

    Bordon Alain

    2008-04-01

    Full Text Available Abstract Background Circadian oscillation of clock-controlled gene expression is mainly regulated at the transcriptional level. Heterodimers of CLOCK and BMAL1 act as activators of target gene transcription; however, interactions of PER and CRY proteins with the heterodimer abolish its transcriptional activation capacity. PER and CRY are therefore referred to as negative regulators of the circadian clock. To further elucidate the mechanism how positive and negative components of the clock interplay, we characterized the interactions of PER2, CRY1 and CRY2 with BMAL1 and CLOCK using a mammalian two-hybrid system and co-immunoprecipitation assays. Results Both PER2 and the CRY proteins were found to interact with BMAL1 whereas only PER2 interacts with CLOCK. CRY proteins seem to have a higher affinity to BMAL1 than PER2. Moreover, we provide evidence that PER2, CRY1 and CRY2 bind to different domains in the BMAL1 protein. Conclusion The regulators of clock-controlled transcription PER2, CRY1 and CRY2 differ in their capacity to interact with each single component of the BMAL1-CLOCK heterodimer and, in the case of BMAL1, also in their interaction sites. Our data supports the hypothesis that CRY proteins, especially CRY1, are stronger repressors than PER proteins.

  3. Functional Implications of the CLOCK 3111T/C Single-Nucleotide Polymorphism.

    Science.gov (United States)

    Ozburn, Angela R; Purohit, Kush; Parekh, Puja K; Kaplan, Gabrielle N; Falcon, Edgardo; Mukherjee, Shibani; Cates, Hannah M; McClung, Colleen A

    2016-01-01

    Circadian rhythm disruptions are prominently associated with bipolar disorder (BD). Circadian rhythms are regulated by the molecular clock, a family of proteins that function together in a transcriptional-translational feedback loop. The CLOCK protein is a key transcription factor of this feedback loop, and previous studies have found that manipulations of the Clock gene are sufficient to produce manic-like behavior in mice (1). The CLOCK 3111T/C single-nucleotide polymorphism (SNP; rs1801260) is a genetic variation of the human CLOCK gene that is significantly associated with increased frequency of manic episodes in BD patients (2). The 3111T/C SNP is located in the 3'-untranslated region of the CLOCK gene. In this study, we sought to examine the functional implications of the human CLOCK 3111T/C SNP by transfecting a mammalian cell line (mouse embryonic fibroblasts isolated from Clock(-/-) knockout mice) with pcDNA plasmids containing the human CLOCK gene with either the T or C SNP at position 3111. We then measured circadian gene expression over a 24-h time period. We found that the CLOCK3111C SNP resulted in higher mRNA levels than the CLOCK 3111T SNP. Furthermore, we found that Per2, a transcriptional target of CLOCK, was also more highly expressed with CLOCK 3111C expression, indicating that the 3'-UTR SNP affects the expression, function, and stability of CLOCK mRNA. PMID:27148095

  4. The canonical and grand canonical models for nuclear multifragmentation

    Indian Academy of Sciences (India)

    G Chaudhuri; S Das Gupta

    2010-08-01

    Many observables seen in intermediate energy heavy-ion collisions can be explained on the basis of statistical equilibrium. Calculations based on statistical equilibrium can be implemented in microcanonical ensemble, canonical ensemble or grand canonical ensemble. This paper deals with calculations with canonical and grand canonical ensembles. A recursive relation developed recently allows calculations with arbitrary precision for many nuclear problems. Calculations are done to study the nature of phase transition in nuclear matter.

  5. Realizations of the Canonical Representation

    Indian Academy of Sciences (India)

    M K Vemuri

    2008-02-01

    A characterisation of the maximal abelian subalgebras of the bounded operators on Hilbert space that are normalised by the canonical representation of the Heisenberg group is given. This is used to classify the perfect realizations of the canonical representation.

  6. Dissection of quorum-sensing genes in Burkholderia glumae reveals non-canonical regulation and the new regulatory gene tofM for toxoflavin production.

    Directory of Open Access Journals (Sweden)

    Ruoxi Chen

    Full Text Available Burkholderia glumae causes bacterial panicle blight of rice and produces major virulence factors, including toxoflavin, under the control of the quorum-sensing (QS system mediated by the luxI homolog, tofI, and the luxR homolog, tofR. In this study, a series of markerless deletion mutants of B. glumae for tofI and tofR were generated using the suicide vector system, pKKSacB, for comprehensive characterization of the QS system of this pathogen. Consistent with the previous studies by other research groups, ΔtofI and ΔtofR strains of B. glumae did not produce toxoflavin in Luria-Bertani (LB broth. However, these mutants produced high levels of toxoflavin when grown in a highly dense bacterial inoculum (∼ 10(11 CFU/ml on solid media, including LB agar and King's B (KB agar media. The ΔtofI/ΔtofR strain of B. glumae, LSUPB201, also produced toxoflavin on LB agar medium. These results indicate the presence of previously unknown regulatory pathways for the production of toxoflavin that are independent of tofI and/or tofR. Notably, the conserved open reading frame (locus tag: bglu_2g14480 located in the intergenic region between tofI and tofR was found to be essential for the production of toxoflavin by tofI and tofR mutants on solid media. This novel regulatory factor of B. glumae was named tofM after its homolog, rsaM, which was recently identified as a novel negative regulatory gene for the QS system of another rice pathogenic bacterium, Pseudomonas fuscovaginae. The ΔtofM strain of B. glumae, LSUPB286, produced a less amount of toxoflavin and showed attenuated virulence when compared with its wild type parental strain, 336gr-1, suggesting that tofM plays a positive role in toxoflavin production and virulence. In addition, the observed growth defect of the ΔtofI strain, LSUPB145, was restored by 1 µM N-octanoyl homoserine lactone (C8-HSL.

  7. Rhythmic canons and modular tiling

    OpenAIRE

    Caure, Hélianthe

    2016-01-01

    This thesis is a contribution to the study of modulo p tiling. Many mathematical and computational tools were used for the study of rhythmic tiling canons. Recent research has mainly focused in finding tiling without inner periodicity, being called Vuza canons. Those canons are a constructive basis for all rhythmic tiling canons, however, they are really difficult to obtain. Best current method is a brut force exploration that, despite a few recent enhancements, is exponential. Many technics ...

  8. Canonical quantization of macroscopic electromagnetism

    CERN Document Server

    Philbin, T G

    2010-01-01

    Application of the standard canonical quantization rules of quantum field theory to macroscopic electromagnetism has encountered obstacles due to material dispersion and absorption. This has led to a phenomenological approach to macroscopic quantum electrodynamics where no canonical formulation is attempted. In this paper macroscopic electromagnetism is canonically quantized. The results apply to any linear, inhomogeneous, magnetoelectric medium with dielectric functions that obey the Kramers-Kronig relations. The prescriptions of the phenomenological approach are derived from the canonical theory.

  9. The molecular clock mediates leptin-regulated bone formation.

    Science.gov (United States)

    Fu, Loning; Patel, Millan S; Bradley, Allan; Wagner, Erwin F; Karsenty, Gerard

    2005-09-01

    The hormone leptin is a regulator of bone remodeling, a homeostatic function maintaining bone mass constant. Mice lacking molecular-clock components (Per and Cry), or lacking Per genes in osteoblasts, display high bone mass, suggesting that bone remodeling may also be subject to circadian regulation. Moreover, Per-deficient mice experience a paradoxical increase in bone mass following leptin intracerebroventricular infusion. Thus, clock genes may mediate the leptin-dependent sympathetic regulation of bone formation. We show that expression of clock genes in osteoblasts is regulated by the sympathetic nervous system and leptin. Clock genes mediate the antiproliferative function of sympathetic signaling by inhibiting G1 cyclin expression. Partially antagonizing this inhibitory loop, leptin also upregulates AP-1 gene expression, which promotes cyclin D1 expression, osteoblast proliferation, and bone formation. Thus, leptin determines the extent of bone formation by modulating, via sympathetic signaling, osteoblast proliferation through two antagonistic pathways, one of which involves the molecular clock.

  10. Canonical Strangeness Enhancement

    CERN Document Server

    Sollfrank, J; Redlich, Krzysztof; Satz, Helmut

    1998-01-01

    According to recent experimental data and theoretical developments we discuss three distinct topics related to strangeness enhancement in nuclear reactions. We investigate the compatibility of multi-strange particle ratios measured in a restricted phase space with thermal model parameters extracted recently in 4pi. We study the canonical suppression as a possible reason for the observed strangeness enhancement and argue that a connection between QGP formation and the undersaturation of strangeness is not excluded.

  11. Canonical quantization of macroscopic electromagnetism

    OpenAIRE

    Philbin, Thomas Gerard

    2010-01-01

    Application of the standard canonical quantization rules of quantum field theory to macroscopic electromagnetism has encountered obstacles due to material dispersion and absorption. This has led to a phenomenological approach to macroscopic quantum electrodynamics where no canonical formulation is attempted. In this paper macroscopic electromagnetism is canonically quantized. The results apply to any linear, inhomogeneous, magnetodielectric medium with dielectric functions that obey the Krame...

  12. The effect of chronic morphine or methadone exposure and withdrawal on clock gene expression in the rat suprachiasmatic nucleus and AA-NAT activity in the pineal gland.

    Science.gov (United States)

    Pačesová, D; Novotný, J; Bendová, Z

    2016-07-18

    The circadian rhythms of many behavioral and physiological functions are regulated by the major circadian pacemaker in the suprachiasmatic nucleus. Long-term opiate addiction and drug withdrawal may affect circadian rhythmicity of various hormones or the sleep/activity pattern of many experimental subjects; however, limited research has been done on the long-term effects of sustained opiate administration on the intrinsic rhythmicity in the suprachiasmatic nucleus and pineal gland. Here we compared the effects of repeated daily treatment of rats with morphine or methadone and subsequent naloxone-precipitated withdrawal on the expression of the Per1, Per2, and Avp mRNAs in the suprachiasmatic nucleus and on arylalkylamine N-acetyltransferase activity in the pineal gland. We revealed that 10-day administration and withdrawal of both these drugs failed to affect clock genes and Avp expression in the SCN. Our results indicate that opioid-induced changes in behavioral and physiological rhythms originate in brain structures downstream of the suprachiasmatic nucleus regulatory output pathway. Furthermore, we observed that acute withdrawal from methadone markedly extended the period of high night AA-NAT activity in the pineal gland. This suggests that withdrawal from methadone, a widely used drug for the treatment of opioid dependence, may have stronger impact on melatonin synthesis than withdrawal from morphine. PMID:27070740

  13. Molecular-clock methods for estimating evolutionary rates and timescales.

    Science.gov (United States)

    Ho, Simon Y W; Duchêne, Sebastián

    2014-12-01

    The molecular clock presents a means of estimating evolutionary rates and timescales using genetic data. These estimates can lead to important insights into evolutionary processes and mechanisms, as well as providing a framework for further biological analyses. To deal with rate variation among genes and among lineages, a diverse range of molecular-clock methods have been developed. These methods have been implemented in various software packages and differ in their statistical properties, ability to handle different models of rate variation, capacity to incorporate various forms of calibrating information and tractability for analysing large data sets. Choosing a suitable molecular-clock model can be a challenging exercise, but a number of model-selection techniques are available. In this review, we describe the different forms of evolutionary rate heterogeneity and explain how they can be accommodated in molecular-clock analyses. We provide an outline of the various clock methods and models that are available, including the strict clock, local clocks, discrete clocks and relaxed clocks. Techniques for calibration and clock-model selection are also described, along with methods for handling multilocus data sets. We conclude our review with some comments about the future of molecular clocks.

  14. Temperature regulates transcription in the zebrafish circadian clock.

    Directory of Open Access Journals (Sweden)

    2005-11-01

    Full Text Available It has been well-documented that temperature influences key aspects of the circadian clock. Temperature cycles entrain the clock, while the period length of the circadian cycle is adjusted so that it remains relatively constant over a wide range of temperatures (temperature compensation. In vertebrates, the molecular basis of these properties is poorly understood. Here, using the zebrafish as an ectothermic model, we demonstrate first that in the absence of light, exposure of embryos and primary cell lines to temperature cycles entrains circadian rhythms of clock gene expression. Temperature steps drive changes in the basal expression of certain clock genes in a gene-specific manner, a mechanism potentially contributing to entrainment. In the case of the per4 gene, while E-box promoter elements mediate circadian clock regulation, they do not direct the temperature-driven changes in transcription. Second, by studying E-box-regulated transcription as a reporter of the core clock mechanism, we reveal that the zebrafish clock is temperature-compensated. In addition, temperature strongly influences the amplitude of circadian transcriptional rhythms during and following entrainment by light-dark cycles, a property that could confer temperature compensation. Finally, we show temperature-dependent changes in the expression levels, phosphorylation, and function of the clock protein, CLK. This suggests a mechanism that could account for changes in the amplitude of the E-box-directed rhythm. Together, our results imply that several key transcriptional regulatory elements at the core of the zebrafish clock respond to temperature.

  15. Precision Clock Evaluation Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Tests and evaluates high-precision atomic clocks for spacecraft, ground, and mobile applications. Supports performance evaluation, environmental testing,...

  16. Photoperiodic plasticity in circadian clock neurons in insects

    Directory of Open Access Journals (Sweden)

    Sakiko eShiga

    2013-08-01

    Full Text Available Since Bünning’s observation of circadian rhythms and photoperiodism in the runner bean Phaseolus multiflorus in 1936, many studies have shown that photoperiodism is based on the circadian clock system. In insects, involvement of circadian clock genes or neurons has been recently shown in the photoperiodic control of developmental arrests, diapause. Based on molecular and neuronal studies in Drosophila melanogaster, photoperiodic changes have been reported for expression patterns of the circadian clock genes, subcellular distribution of clock proteins, fiber distribution, or the number of plausible clock neurons in different species. Photoperiod sets peaks of per or tim mRNA abundance at lights-off in Sarcophaga crassipalpis, Chymomyza costata and Protophormia terraenovae. Abundance of per and Clock mRNA changes by photoperiod in Pyrrhocoris apterus. Subcellular Per distribution in circadian clock neurons changes with photoperiod in P. terraenovae. Although photoperiodism is not known in Leucophaea maderae, under longer day length, more stomata and longer commissural fibers of circadian clock neurons have been found. These plastic changes in the circadian clock neurons could be an important constituent for photoperiodic clock mechanisms to integrate repetitive photoperiodic information and produce different outputs based on day length.

  17. Abnormal expression of key genes and proteins in the canonical Wnt/β-catenin pathway of articular cartilage in a rat model of exercise-induced osteoarthritis

    OpenAIRE

    LIU, SHEN-SHEN; ZHOU, PU; Zhang, Yanqiu

    2016-01-01

    To investigate the molecular pathogenesis of the canonical Wnt/β-catenin pathway in exercise-induced osteoarthritis (OA), 30 male healthy Sprague Dawley rats were divided into three groups (control, normal exercise-induced OA and injured exercise-induced OA groups) in order to establish the exercise-induced OA rat model. The mRNA and protein expression levels of Runx-2, BMP-2, Ctnnb1, Sox-9, collagen II, Mmp-13, Wnt-3a and β-catenin in chon-drocytes were detected by reverse transcription-quan...

  18. Circadian regulation of food-anticipatory activity in molecular clock-deficient mice.

    Directory of Open Access Journals (Sweden)

    Nana N Takasu

    Full Text Available In the mammalian brain, the suprachiasmatic nucleus (SCN of the anterior hypothalamus is considered to be the principal circadian pacemaker, keeping the rhythm of most physiological and behavioral processes on the basis of light/dark cycles. Because restriction of food availability to a certain time of day elicits anticipatory behavior even after ablation of the SCN, such behavior has been assumed to be under the control of another circadian oscillator. According to recent studies, however, mutant mice lacking circadian clock function exhibit normal food-anticipatory activity (FAA, a daily increase in locomotor activity preceding periodic feeding, suggesting that FAA is independent of the known circadian oscillator. To investigate the molecular basis of FAA, we examined oscillatory properties in mice lacking molecular clock components. Mice with SCN lesions or with mutant circadian periods were exposed to restricted feeding schedules at periods within and outside circadian range. Periodic feeding led to the entrainment of FAA rhythms only within a limited circadian range. Cry1(-/- mice, which are known to be a "short-period mutant," entrained to a shorter period of feeding cycles than did Cry2(-/- mice. This result indicated that the intrinsic periods of FAA rhythms are also affected by Cry deficiency. Bmal1(-/- mice, deficient in another essential element of the molecular clock machinery, exhibited a pre-feeding increase of activity far from circadian range, indicating a deficit in circadian oscillation. We propose that mice possess a food-entrainable pacemaker outside the SCN in which canonical clock genes such as Cry1, Cry2 and Bmal1 play essential roles in regulating FAA in a circadian oscillatory manner.

  19. Circadian regulation of food-anticipatory activity in molecular clock-deficient mice.

    Science.gov (United States)

    Takasu, Nana N; Kurosawa, Gen; Tokuda, Isao T; Mochizuki, Atsushi; Todo, Takeshi; Nakamura, Wataru

    2012-01-01

    In the mammalian brain, the suprachiasmatic nucleus (SCN) of the anterior hypothalamus is considered to be the principal circadian pacemaker, keeping the rhythm of most physiological and behavioral processes on the basis of light/dark cycles. Because restriction of food availability to a certain time of day elicits anticipatory behavior even after ablation of the SCN, such behavior has been assumed to be under the control of another circadian oscillator. According to recent studies, however, mutant mice lacking circadian clock function exhibit normal food-anticipatory activity (FAA), a daily increase in locomotor activity preceding periodic feeding, suggesting that FAA is independent of the known circadian oscillator. To investigate the molecular basis of FAA, we examined oscillatory properties in mice lacking molecular clock components. Mice with SCN lesions or with mutant circadian periods were exposed to restricted feeding schedules at periods within and outside circadian range. Periodic feeding led to the entrainment of FAA rhythms only within a limited circadian range. Cry1(-/-) mice, which are known to be a "short-period mutant," entrained to a shorter period of feeding cycles than did Cry2(-/-) mice. This result indicated that the intrinsic periods of FAA rhythms are also affected by Cry deficiency. Bmal1(-/-) mice, deficient in another essential element of the molecular clock machinery, exhibited a pre-feeding increase of activity far from circadian range, indicating a deficit in circadian oscillation. We propose that mice possess a food-entrainable pacemaker outside the SCN in which canonical clock genes such as Cry1, Cry2 and Bmal1 play essential roles in regulating FAA in a circadian oscillatory manner.

  20. Influence of simulated microgravity on clock genes expression rhythmicity and underlying blood circulating miRNAs-mRNA co-expression regulatory mechanism in C57BL/6J mice

    Science.gov (United States)

    Lv, Ke; Qu, Lina

    Purpose: It is vital for astronauts to maintain the optimal alertness and neurobehavioral function. Among various factors that exist in the space flight and long-duration mission environment, gravity changes may probably an essential environmental factor to interfere with internal circadian rhythms homeostasis and sleep quality, but the underlying mechanism is unclear. Mammals' biological clock is controlled by the suprachiasmatic nucleus (SCN), and peripheral organs adjust their own rhythmicity with the central signals. Nevertheless,the mechanism underlying this synchronizition process is still unknown. microRNAs (miRNAs) are about 19~22nt long regulatory RNAs that serve as critical modulators of post-transcriptional gene regulation. Recently, circulating miRNAs were found to have the regulatory role between cells and peripheral tissues, besides its function inside the cells. This study aims to investigate the regulatory signal transduction role of miRNAs between SCN and peripheral biological clock effecter tissues and to further decipher the mechanism of circadian disturbance under microgravity. Method: Firstly, based on the assumption that severe alterations in the expression of genes known to be involved in circadian rhythms may affect the expression of other genes, the labeled cDNA from liver and suprachiasmatic nucleus (SCN) of clock-knockout mice and control mice in different time points were cohybridized to microarrays. The fold change exceeding 2 (FC>2) was used to identify genes with altered expression levels in the knockout mice compared with control mice. Secondly, male C57BL/6J mice at 8 weeks of age were individually caged and acclimatized to the laboratory conditions (12h light/dark cycle) before being used for continuous core body temperature and activity monitoring. The mice were individually caged and tail suspended using a strip of adhesive surgical tape attached to a chain hanging from a pulley. Peripheral blood and liver tissues collection

  1. Active optical clock

    Institute of Scientific and Technical Information of China (English)

    CHEN JingBiao

    2009-01-01

    This article presents the principles and techniques of active optical clock, a special laser combining the laser physics of one-atom laser, bad-cavity gas laser, super-cavity stabilized laser and optical atomic clock together. As a simple example, an active optical clock based on thermal strontium atomic beam shows a quantum-limited linewidth of 0.51 Hz, which is insensitive to laser cavity-length noise, and may surpass the recorded narrowest 6.7 Hz of Hg ion optical clock and 1.5 Hz of very recent optical lattice clock. The estimated 0.1 Hz one-second instability and 0.27 Hz uncertainty are limited only by the rela-tivistic Doppler effect, and can be improved by cold atoms.

  2. A circadian clock in Antarctic krill: an endogenous timing system governs metabolic output rhythms in the euphausid species Euphausia superba.

    Directory of Open Access Journals (Sweden)

    Mathias Teschke

    Full Text Available Antarctic krill, Euphausia superba, shapes the structure of the Southern Ocean ecosystem. Its central position in the food web, the ongoing environmental changes due to climatic warming, and increasing commercial interest on this species emphasize the urgency of understanding the adaptability of krill to its environment. Krill has evolved rhythmic physiological and behavioral functions which are synchronized with the daily and seasonal cycles of the complex Southern Ocean ecosystem. The mechanisms, however, leading to these rhythms are essentially unknown. Here, we show that krill possesses an endogenous circadian clock that governs metabolic and physiological output rhythms. We found that expression of the canonical clock gene cry2 was highly rhythmic both in a light-dark cycle and in constant darkness. We detected a remarkable short circadian period, which we interpret as a special feature of the krill's circadian clock that helps to entrain the circadian system to the extreme range of photoperiods krill is exposed to throughout the year. Furthermore, we found that important key metabolic enzymes of krill showed bimodal circadian oscillations (∼9-12 h period in transcript abundance and enzymatic activity. Oxygen consumption of krill showed ∼9-12 h oscillations that correlated with the temporal activity profile of key enzymes of aerobic energy metabolism. Our results demonstrate the first report of an endogenous circadian timing system in Antarctic krill and its likely link to metabolic key processes. Krill's circadian clock may not only be critical for synchronization to the solar day but also for the control of seasonal events. This study provides a powerful basis for the investigation into the mechanisms of temporal synchronization in this marine key species and will also lead to the first comprehensive analyses of the circadian clock of a polar marine organism through the entire photoperiodic cycle.

  3. Shifting the circadian rhythm of feeding in mice induces gastrointestinal, metabolic and immune alterations which are influenced by ghrelin and the core clock gene Bmal1.

    Directory of Open Access Journals (Sweden)

    Jorien Laermans

    Full Text Available BACKGROUND: In our 24-hour society, an increasing number of people are required to be awake and active at night. As a result, the circadian rhythm of feeding is seriously compromised. To mimic this, we subjected mice to restricted feeding (RF, a paradigm in which food availability is limited to short and unusual times of day. RF induces a food-anticipatory increase in the levels of the hunger hormone ghrelin. We aimed to investigate whether ghrelin triggers the changes in body weight and gastric emptying that occur during RF. Moreover, the effect of genetic deletion of the core clock gene Bmal1 on these physiological adaptations was studied. METHODS: Wild-type, ghrelin receptor knockout and Bmal1 knockout mice were fed ad libitum or put on RF with a normal or high-fat diet (HFD. Plasma ghrelin levels were measured by radioimmunoassay. Gastric contractility was studied in vitro in muscle strips and in vivo (13C breath test. Cytokine mRNA expression was quantified and infiltration of immune cells was assessed histologically. RESULTS: The food-anticipatory increase in plasma ghrelin levels induced by RF with normal chow was abolished in HFD-fed mice. During RF, body weight restoration was facilitated by ghrelin and Bmal1. RF altered cytokine mRNA expression levels and triggered contractility changes resulting in an accelerated gastric emptying, independent from ghrelin signaling. During RF with a HFD, Bmal1 enhanced neutrophil recruitment to the stomach, increased gastric IL-1α expression and promoted gastric contractility changes. CONCLUSIONS: This is the first study demonstrating that ghrelin and Bmal1 regulate the extent of body weight restoration during RF, whereas Bmal1 controls the type of inflammatory infiltrate and contractility changes in the stomach. Disrupting the circadian rhythm of feeding induces a variety of diet-dependent metabolic, immune and gastrointestinal alterations, which may explain the higher prevalence of obesity and

  4. Adipose Clocks: Burning the Midnight Oil.

    Science.gov (United States)

    Henriksson, Emma; Lamia, Katja A

    2015-10-01

    Circadian clocks optimize the timing of physiological processes in synchrony with daily recurring and therefore predictable changes in the environment. Until the late 1990s, circadian clocks were thought to exist only in the central nervous systems of animals; elegant studies in cultured fibroblasts and using genetically encoded reporters in Drosophila melanogaster and in mice showed that clocks are ubiquitous and cell autonomous. These findings inspired investigations of the advantages construed by enabling each organ to independently adjust its function to the time of day. Studies of rhythmic gene expression in several organs suggested that peripheral organ clocks might play an important role in optimizing metabolic physiology by synchronizing tissue-intrinsic metabolic processes to cycles of nutrient availability and energy requirements. The effects of clock disruption in liver, pancreas, muscle, and adipose tissues support that hypothesis. Adipose tissues coordinate energy storage and utilization and modulate behavior and the physiology of other organs by secreting hormones known as "adipokines." Due to behavior- and environment-driven diurnal variations in supply and demand for chemical and thermal energy, adipose tissues might represent an important peripheral location for coordinating circadian energy balance (intake, storage, and utilization) over the whole organism. Given the complexity of adipose cell types and depots, the sensitivity of adipose tissue biology to age and diet composition, and the plethora of known and yet-to-be-discovered adipokines and lipokines, we have just begun to scratch the surface of understanding the role of circadian clocks in adipose tissues.

  5. The genetic basis of the circadian clock : identification of frq and FRQ as clock components in Neurospora

    NARCIS (Netherlands)

    Dunlap, Jay C.; Loros, Jennifer J.; Aronson, Benjamin D.; Merrow, Martha; Crosthwaite, Susan; Bell-Pedersen, Deborah; Johnson, Keith; Lindgren, Kristin; Garceau, Norman Y.

    1995-01-01

    Genetic approaches to the identification of clock components have succeeded in two model systems, Neurospora and Drosophila. In each organism, genes identified through screens for clock-affecting mutations (frq in Neurospora, per in Drosophila) have subsequently been shown to have characteristics of

  6. Stable clocks and general relativity

    CERN Document Server

    Will, C M

    1995-01-01

    We survey the role of stable clocks in general relativity. Clock comparisons have provided important tests of the Einstein Equivalence Principle, which underlies metric gravity. These include tests of the isotropy of clock comparisons (verification of local Lorentz invariance) and tests of the homogeneity of clock comparisons (verification of local position invariance). Comparisons of atomic clocks with gravitational clocks test the Strong Equivalence Principle by bounding cosmological variations in Newton's constant. Stable clocks also play a role in the search for gravitational radiation: comparision of atomic clocks with the binary pulsar's orbital clock has verified gravitational-wave damping, and phase-sensitive detection of waves from inspiralling compact binaries using laser interferometric gravitational observatories will facilitate extraction of useful source information from the data. Stable clocks together with general relativity have found important practical applications in navigational systems s...

  7. Phase Resetting Light Pulses Induce Per1 and Persistent Spike Activity in a Subpopulation of Biological Clock Neurons

    OpenAIRE

    Kuhlman, Sandra J.; Silver, Rae; Le Sauter, Joseph; Bult-Ito, Abel; McMahon, Douglas G.

    2003-01-01

    The endogenous circadian clock of the mammalian suprachiasmatic nucleus (SCN) can be reset by light to synchronize the biological clock of the brain with the external environment. This process involves induction of immediate-early genes such as the circadian clock gene Period1 (Per1) and results in a stable shift in the timing of behavioral and physiological rhythms on subsequent days. The mechanisms by which gene activation permanently alters the phase of clock neuron activity are unknown. T...

  8. CRY Drives Cyclic CK2-Mediated BMAL1 Phosphorylation to Control the Mammalian Circadian Clock

    NARCIS (Netherlands)

    T. Tamaru (Teruya); M. Hattori (Mitsuru); K. Honda (Kousuke); Y. Nakahata (Yasukazu); P. Sassone-Corsi (Paolo); G.T.J. van der Horst (Gijsbertus); T. Ozawa (Takeaki); K. Takamatsu (Ken)

    2015-01-01

    textabstractIntracellular circadian clocks, composed of clock genes that act in transcription-translation feedback loops, drive global rhythmic expression of the mammalian transcriptome and allow an organism to anticipate to the momentum of the day. Using a novel clock-perturbing peptide, we establi

  9. Postnatal ontogenesis of molecular clock in mouse striatum.

    Science.gov (United States)

    Cai, Yanning; Liu, Shu; Li, Ning; Xu, Shengli; Zhang, Yanli; Chan, Piu

    2009-04-01

    Striatum is an important brain area whose function is related to motor, emotion and motivation. Interestingly, biological and physiological circadian rhythms have been found in the striatum extensively, suggesting molecular clock machinery works efficiently therein. However, the striatal expression profiles of clock genes have not been characterized systematically. In addition, little is known about when the expression rhythms start during postnatal ontogenesis. In the present study, 24 h mRNA oscillations of 6 principle clock genes (Bmal1, Clock, Npas2, Cry1, Per1 and Rev-erb alpha) were examined in mouse striatum, at early postnatal stage (postnatal day 3), pre-weaning stage (postnatal day 14) and in adult (postnatal day 60). At P3, no daily oscillation was found for all clock genes. At P14, a significant time effect was identified only for Rev-erb alpha and Npas2. At P60, the daily oscillations of these clock genes were at least borderline significant, with peak time at Circadian time (CT) 01 for Bmal1, Clock, Npas2 and Cry1; at CT 13 for Per1; and at CT 07 for Rev-erb alpha. In addition, the overall mean mRNA levels of these clock genes also underwent a dynamic change postnatally. For Bmal1, Clock, Npas2, Per1 and Rev-erb alpha, the expression level increased throughout the postnatal ontogenesis from P3, P14 to P60. For Cry1, however, the abundance at P3 and P60 were similar while that at P14 was much lower. In conclusion, the striatal molecular clock machinery, although works efficiently in adult, develops gradually after birth in mice.

  10. The role of biological clock in glucose homeostasis 

    Directory of Open Access Journals (Sweden)

    Piotr Chrościcki

    2013-06-01

    Full Text Available The mechanism of the biological clock is based on a rhythmic expression of clock genes and clock-controlled genes. As a result of their transcripto-translational associations, endogenous rhythms in the synthesis of key proteins of various physiological and metabolic processes are created. The major timekeeping mechanism for these rhythms exists in the central nervous system. The master circadian clock, localized in suprachiasmatic nucleus (SCN, regulates multiple metabolic pathways, while feeding behavior and metabolite availability can in turn regulate the circadian clock. It is also suggested that in the brain there is a food entrainable oscillator (FEO or oscillators, resulting in activation of both food anticipatory activity and hormone secretion that control digestion processes. Moreover, most cells and tissues express autonomous clocks. Maintenance of the glucose homeostasis is particularly important for the proper function of the body, as this sugar is the main source of energy for the brain, retina, erythrocytes and skeletal muscles. Thus, glucose production and utilization are synchronized in time. The hypothalamic excited orexin neurons control energy balance of organism and modulate the glucose production and utilization. Deficiency of orexin action results in narcolepsy and weight gain, whereas glucose and amino acids can affect activity of the orexin cells. Large-scale genetic studies in rodents and humans provide evidence for the involvement of disrupted clock gene expression rhythms in the pathogenesis of obesity and type 2 diabetes. In general, the current lifestyle of the developed modern societies disturbs the action of biological clock

  11. Synergism between Hedgehog-GLI and EGFR signaling in Hedgehog-responsive human medulloblastoma cells induces downregulation of canonical Hedgehog-target genes and stabilized expression of GLI1.

    Directory of Open Access Journals (Sweden)

    Frank Götschel

    Full Text Available Aberrant activation of Hedgehog (HH signaling has been identified as a key etiologic factor in many human malignancies. Signal strength, target gene specificity, and oncogenic activity of HH signaling depend profoundly on interactions with other pathways, such as epidermal growth factor receptor-mediated signaling, which has been shown to cooperate with HH/GLI in basal cell carcinoma and pancreatic cancer. Our experimental data demonstrated that the Daoy human medulloblastoma cell line possesses a fully inducible endogenous HH pathway. Treatment of Daoy cells with Sonic HH or Smoothened agonist induced expression of GLI1 protein and simultaneously prevented the processing of GLI3 to its repressor form. To study interactions between HH- and EGF-induced signaling in greater detail, time-resolved measurements were carried out and analyzed at the transcriptomic and proteomic levels. The Daoy cells responded to the HH/EGF co-treatment by downregulating GLI1, PTCH, and HHIP at the transcript level; this was also observed when Amphiregulin (AREG was used instead of EGF. We identified a novel crosstalk mechanism whereby EGFR signaling silences proteins acting as negative regulators of HH signaling, as AKT- and ERK-signaling independent process. EGFR/HH signaling maintained high GLI1 protein levels which contrasted the GLI1 downregulation on the transcript level. Conversely, a high-level synergism was also observed, due to a strong and significant upregulation of numerous canonical EGF-targets with putative tumor-promoting properties such as MMP7, VEGFA, and IL-8. In conclusion, synergistic effects between EGFR and HH signaling can selectively induce a switch from a canonical HH/GLI profile to a modulated specific target gene profile. This suggests that there are more wide-spread, yet context-dependent interactions, between HH/GLI and growth factor receptor signaling in human malignancies.

  12. Beneficial effect of CLOCK gene polymorphism rs1801260 in combination with low-fat diet on insulin metabolism in the patients with metabolic syndrome

    Science.gov (United States)

    Genetic variation at the Circadian Locomotor Output Cycles Kaput (CLOCK) locus has been associated with lifestyle-related conditions such as obesity, metabolic syndrome (MetS) and cardiovascular diseases. In fact, it has been suggested that the disruption of the circadian system may play a causal ro...

  13. Oscillating perceptions: the ups and downs of the CLOCK protein in the mouse circadian system

    Indian Academy of Sciences (India)

    Jason P. Debruyne

    2008-12-01

    A functional mouse CLOCK protein has long been thought to be essential for mammalian circadian clockwork function, based mainly on studies of mice bearing a dominant negative, antimorphic mutation in the Clock gene. However, new discoveries using recently developed Clock-null mutant mice have shaken up this view. In this review, I discuss how this recent work impacts and alters the previous view of the role of CLOCK in the mouse circadian clockwork.

  14. Current Status of the Molecular Clock Hypothesis

    Science.gov (United States)

    Hermann, Gilbert

    2003-01-01

    Molecular genetics is a rapidly changing field with new developments almost from day to day. One interesting hypothesis that has come from everyone's ability to sequence proteins and/or genes is that of the molecular clock. This hypothesis postulates that homologous sequences of DNA and thus macro molecules evolve at a constant and invariable rate…

  15. Regulation of behavioral circadian rhythms and clock protein PER1 by the deubiquitinating enzyme USP2

    Directory of Open Access Journals (Sweden)

    Yaoming Yang

    2012-06-01

    Endogenous 24-hour rhythms are generated by circadian clocks located in most tissues. The molecular clock mechanism is based on feedback loops involving clock genes and their protein products. Post-translational modifications, including ubiquitination, are important for regulating the clock feedback mechanism. Previous work has focused on the role of ubiquitin ligases in the clock mechanism. Here we show a role for the rhythmically-expressed deubiquitinating enzyme ubiquitin specific peptidase 2 (USP2 in clock function. Mice with a deletion of the Usp2 gene (Usp2 KO display a longer free-running period of locomotor activity rhythms and altered responses of the clock to light. This was associated with altered expression of clock genes in synchronized Usp2 KO mouse embryonic fibroblasts and increased levels of clock protein PERIOD1 (PER1. USP2 can be coimmunoprecipitated with several clock proteins but directly interacts specifically with PER1 and deubiquitinates it. Interestingly, this deubiquitination does not alter PER1 stability. Taken together, our results identify USP2 as a new core component of the clock machinery and demonstrate a role for deubiquitination in the regulation of the circadian clock, both at the level of the core pacemaker and its response to external cues.

  16. Binding of USF to a non-canonical E-box following stress results in a cell-specific derepression of the lama3 gene

    OpenAIRE

    Virolle, Thierry; Coraux, Christelle; Ferrigno, Olivier; Cailleteau, Laurence; Ortonne, Jean-Paul; Pognonec, Philippe; Aberdam, Daniel

    2002-01-01

    Expression of the lama3 gene, encoding the laminin α3A chain, is restricted to specialized epithelia. We previously showed that lama3 gene expression is controlled by an epithelial enhancer through the cooperative effect of AP-1 binding sites. In fibroblasts, there is no lama3 expression because of the recruitment of a repressor complex absent or inactive in epithelial cells. In this paper, we show evidence that this repression of the lama3 gene is relieved by exogenous and UV-induced USF-1 t...

  17. Molecular clock hypothesis testing based on mitochondrial cytochrome b gene sequence of subfamily bovinae%以牛亚科家畜线粒体细胞色素b基因全序列检验分子钟假说

    Institute of Scientific and Technical Information of China (English)

    耿荣庆; 王兰萍; 常洪; 冀德君; 李永红; 常春芳

    2011-01-01

    To provide some objective data for accepting or refusing molecular clock hypothesis, non-parameter test method was employed based on mitochondrial cytochrome b gene sequence of six species of subfamily bovinae. The complete cytochrome b gene was 1 140 bp in length for all six bovine species and there was a little difference in base composition between species. Transition was the dominant base substitution model and the ratio of transition to transversion was 5.4. The testing results of relative evolution rate based on nucleotide sequences and amino acid sequences showed that molecular clock hypothesis was accepted absolutely within bovine species. The evolution of only a few sequences refused molecular clock hypothesis and evolution of most sequencesaccepted it among the species. It was easier to refuse molecular clock hypothesis based on the testing result from nucleotide sequence than the result from amino acid sequence. There was no obvious correlation between accepting or refusing molecular clock hypothesis and genetic distance between tested species. Molecular clock existed in some species. There was no nucleotide sequence or amino acid sequence varying in an absolutely stable rate in long evolution, and molecular clock was not unicersal.%在测定牛亚科家畜6个物种线粒体细胞色素b(Cyt b)基因全序列的基础上,以非参数检验法检验分子钟假说,提出肯定或否定分子钟假说的部分客观资料.结果表明,6个牛种的Cyt b基因全序列长度都是1140bp,牛种间序列的碱基组成差异较小,碱基替代以转换为主,转换/颠换比为5.4.基于核苷酸序列和氨基酸相对速率检验结果表明,牛种内序列的进化全部接受分子钟假说;牛种问大多数序列的进化接受分子钟假说,少数序列的进化拒绝分子钟假说.与基于氨基酸序列的检验结果相比较,基于核苷酸序列的检验结果更易于拒绝分子钟假说.进而推论,接受或者拒绝分子钟假说与所

  18. Circadian clock: linking epigenetics to aging.

    Science.gov (United States)

    Orozco-Solis, Ricardo; Sassone-Corsi, Paolo

    2014-06-01

    Circadian rhythms are generated by an intrinsic cellular mechanism that controls a large array of physiological and metabolic processes. There is erosion in the robustness of circadian rhythms during aging, and disruption of the clock by genetic ablation of specific genes is associated with aging-related features. Importantly, environmental conditions are thought to modulate the aging process. For example, caloric restriction is a very strong environmental effector capable of delaying aging. Intracellular pathways implicating nutrient sensors, such as SIRTs and mTOR complexes, impinge on cellular and epigenetic mechanisms that control the aging process. Strikingly, accumulating evidences indicate that these pathways are involved in both the modulation of the aging process and the control of the clock. Hence, innovative therapeutic strategies focused at controlling the circadian clock and the nutrient sensing pathways might beneficially influence the negative effects of aging. PMID:25033025

  19. Canonical phylogenetic ordination.

    Science.gov (United States)

    Giannini, Norberto P

    2003-10-01

    A phylogenetic comparative method is proposed for estimating historical effects on comparative data using the partitions that compose a cladogram, i.e., its monophyletic groups. Two basic matrices, Y and X, are defined in the context of an ordinary linear model. Y contains the comparative data measured over t taxa. X consists of an initial tree matrix that contains all the xj monophyletic groups (each coded separately as a binary indicator variable) of the phylogenetic tree available for those taxa. The method seeks to define the subset of groups, i.e., a reduced tree matrix, that best explains the patterns in Y. This definition is accomplished via regression or canonical ordination (depending on the dimensionality of Y) coupled with Monte Carlo permutations. It is argued here that unrestricted permutations (i.e., under an equiprobable model) are valid for testing this specific kind of groupwise hypothesis. Phylogeny is either partialled out or, more properly, incorporated into the analysis in the form of component variation. Direct extensions allow for testing ecomorphological data controlled by phylogeny in a variation partitioning approach. Currently available statistical techniques make this method applicable under most univariate/multivariate models and metrics; two-way phylogenetic effects can be estimated as well. The simplest case (univariate Y), tested with simulations, yielded acceptable type I error rates. Applications presented include examples from evolutionary ethology, ecology, and ecomorphology. Results showed that the new technique detected previously overlooked variation clearly associated with phylogeny and that many phylogenetic effects on comparative data may occur at particular groups rather than across the entire tree. PMID:14530135

  20. High accuracy measure of atomic polarizability in an optical lattice clock

    CERN Document Server

    Sherman, J A; Hinkley, N; Pizzocaro, M; Fox, R W; Ludlow, A D; Oates, C W

    2011-01-01

    Despite being a canonical example of quantum mechanical perturbation theory, as well as one of the earliest observed spectroscopic shifts, the Stark effect contributes the largest source of uncertainty in a modern optical atomic clock through blackbody radiation. By employing an ultracold, trapped atomic ensemble and high stability optical clock, we characterize the quadratic Stark effect with unprecedented precision. We report the ytterbium optical clock's sensitivity to electric fields (such as blackbody radiation) as the differential static polarizability of the ground and excited clock levels: 36.2612(7) kHz (kV/cm)^{-2}. The clock's fractional uncertainty due to room temperature blackbody radiation is reduced an order of magnitude to 3 \\times 10^{-17}.

  1. On clocks and clouds

    Directory of Open Access Journals (Sweden)

    M. K. Witte

    2013-09-01

    Full Text Available Cumulus clouds exhibit a life cycle that consists of: (a the growth phase (increasing size, most notably in the vertical direction; (b the mature phase (growth ceases; any precipitation that develops is strongest during this period; and (c the dissipation phase (cloud dissipates because of precipitation and/or entrainment; no more dynamical support. Although radar can track clouds over time and give some sense of the age of a cloud, most aircraft in situ measurements lack temporal context. We use large eddy simulations of trade wind cumulus cloud fields from cases during the Barbados Oceanographic and Meteorological Experiment (BOMEX and Rain In Cumulus over the Ocean (RICO campaigns to demonstrate a potential cumulus cloud "clock". We find that the volume-averaged total water mixing ratio rt is a useful cloud clock for the 12 clouds studied. A cloud's initial rt is set by the subcloud mixed-layer mean rt and decreases monotonically from the initial value due primarily to entrainment. The clock is insensitive to aerosol loading, environmental sounding and extrinsic cloud properties such as lifetime and volume. In some cases (more commonly for larger clouds, multiple pulses of buoyancy occur, which complicate the cumulus clock by replenishing rt. The clock is most effectively used to classify clouds by life phase.

  2. Canonical quantization of constrained systems

    Energy Technology Data Exchange (ETDEWEB)

    Bouzas, A.; Epele, L.N.; Fanchiotti, H.; Canal, C.A.G. (Laboratorio de Fisica Teorica, Departamento de Fisica, Universidad Nacional de La Plata, Casilla de Correo No. 67, 1900 La Plata, Argentina (AR))

    1990-07-01

    The consideration of first-class constraints together with gauge conditions as a set of second-class constraints in a given system is shown to be incorrect when carrying out its canonical quantization.

  3. Optical atomic clocks

    Science.gov (United States)

    Poli, N.; Oates, C. W.; Gill, P.; Tino, G. M.

    2013-12-01

    In the last ten years extraordinary results in time and frequency metrology have been demonstrated. Frequency-stabilization techniques for continuous-wave lasers and femtosecond optical frequency combs have enabled a rapid development of frequency standards based on optical transitions in ultra-cold neutral atoms and trapped ions. As a result, today's best performing atomic clocks tick at an optical rate and allow scientists to perform high-resolution measurements with a precision approaching a few parts in 1018. This paper reviews the history and the state of the art in optical-clock research and addresses the implementation of optical clocks in a possible future redefinition of the SI second as well as in tests of fundamental physics.

  4. Optical atomic clocks

    CERN Document Server

    Poli, N; Gill, P; Tino, G M

    2014-01-01

    In the last ten years extraordinary results in time and frequency metrology have been demonstrated. Frequency-stabilization techniques for continuous-wave lasers and femto-second optical frequency combs have enabled a rapid development of frequency standards based on optical transitions in ultra-cold neutral atoms and trapped ions. As a result, today's best performing atomic clocks tick at an optical rate and allow scientists to perform high-resolution measurements with a precision approaching a few parts in $10^{18}$. This paper reviews the history and the state of the art in optical-clock research and addresses the implementation of optical clocks in a possible future redefinition of the SI second as well as in tests of fundamental physics.

  5. Relativistic quantum clocks

    CERN Document Server

    Lock, Maximilian P E

    2016-01-01

    The conflict between quantum theory and the theory of relativity is exemplified in their treatment of time. We examine the ways in which their conceptions differ, and describe a semiclassical clock model combining elements of both theories. The results obtained with this clock model in flat spacetime are reviewed, and the problem of generalizing the model to curved spacetime is discussed, before briefly describing an experimental setup which could be used to test of the model. Taking an operationalist view, where time is that which is measured by a clock, we discuss the conclusions that can be drawn from these results, and what clues they contain for a full quantum relativistic theory of time.

  6. Components of the canonical and non-canonical Wnt pathways are not mis-expressed in pituitary tumors.

    Directory of Open Access Journals (Sweden)

    Leandro Machado Colli

    Full Text Available INTRODUCTION: Canonical and non-canonical Wnt pathways are involved in the genesis of multiple tumors; however, their role in pituitary tumorigenesis is mostly unknown. OBJECTIVE: This study evaluated gene and protein expression of Wnt pathways in pituitary tumors and whether these expression correlate to clinical outcome. MATERIALS AND METHODS: Genes of the WNT canonical pathway: activating ligands (WNT11, WNT4, WNT5A, binding inhibitors (DKK3, sFRP1, β-catenin (CTNNB1, β-catenin degradation complex (APC, AXIN1, GSK3β, inhibitor of β-catenin degradation complex (AKT1, sequester of β-catenin (CDH1, pathway effectors (TCF7, MAPK8, NFAT5, pathway mediators (DVL-1, DVL-2, DVL-3, PRICKLE, VANGL1, target genes (MYB, MYC, WISP2, SPRY1, TP53, CCND1; calcium dependent pathway (PLCB1, CAMK2A, PRKCA, CHP; and planar cell polarity pathway (PTK7, DAAM1, RHOA were evaluated by QPCR, in 19 GH-, 18 ACTH-secreting, 21 non-secreting (NS pituitary tumors, and 5 normal pituitaries. Also, the main effectors of canonical (β-catenin, planar cell polarity (JNK, and calcium dependent (NFAT5 Wnt pathways were evaluated by immunohistochemistry. RESULTS: There are no differences in gene expression of canonical and non-canonical Wnt pathways between all studied subtypes of pituitary tumors and normal pituitaries, except for WISP2, which was over-expressed in ACTH-secreting tumors compared to normal pituitaries (4.8x; p = 0.02, NS pituitary tumors (7.7x; p = 0.004 and GH-secreting tumors (5.0x; p = 0.05. β-catenin, NFAT5 and JNK proteins showed no expression in normal pituitaries and in any of the pituitary tumor subtypes. Furthermore, no association of the studied gene or protein expression was observed with tumor size, recurrence, and progressive disease. The hierarchical clustering showed a regular pattern of genes of the canonical and non-canonical Wnt pathways randomly distributed throughout the dendrogram. CONCLUSIONS: Our data reinforce previous reports

  7. A molecular clock regulates angiopoietin-like protein 2 expression.

    Science.gov (United States)

    Kadomatsu, Tsuyoshi; Uragami, Shota; Akashi, Makoto; Tsuchiya, Yoshiki; Nakajima, Hiroo; Nakashima, Yukiko; Endo, Motoyoshi; Miyata, Keishi; Terada, Kazutoyo; Todo, Takeshi; Node, Koichi; Oike, Yuichi

    2013-01-01

    Various physiological and behavioral processes exhibit circadian rhythmicity. These rhythms are usually maintained by negative feedback loops of core clock genes, namely, CLOCK, BMAL, PER, and CRY. Recently, dysfunction in the circadian clock has been recognized as an important foundation for the pathophysiology of lifestyle-related diseases, such as obesity, cardiovascular disease, and some cancers. We have reported that angiopoietin-like protein 2 (ANGPTL2) contributes to the pathogenesis of these lifestyle-related diseases by inducing chronic inflammation. However, molecular mechanisms underlying regulation of ANGPTL2 expression are poorly understood. Here, we assess circadian rhythmicity of ANGPTL2 expression in various mouse tissues. We observed that ANGPTL2 rhythmicity was similar to that of the PER2 gene, which is regulated by the CLOCK/BMAL1 complex. Promoter activity of the human ANGPTL2 gene was significantly induced by CLOCK and BMAL1, an induction markedly attenuated by CRY co-expression. We also identified functional E-boxes in the ANGPTL2 promoter and observed occupancy of these sites by endogenous CLOCK in human osteosarcoma cells. Furthermore, Cry-deficient mice exhibited arrhythmic Angptl2 expression. Taken together, these data suggest that periodic expression of ANGPTL2 is regulated by a molecular clock.

  8. A molecular clock regulates angiopoietin-like protein 2 expression.

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Kadomatsu

    Full Text Available Various physiological and behavioral processes exhibit circadian rhythmicity. These rhythms are usually maintained by negative feedback loops of core clock genes, namely, CLOCK, BMAL, PER, and CRY. Recently, dysfunction in the circadian clock has been recognized as an important foundation for the pathophysiology of lifestyle-related diseases, such as obesity, cardiovascular disease, and some cancers. We have reported that angiopoietin-like protein 2 (ANGPTL2 contributes to the pathogenesis of these lifestyle-related diseases by inducing chronic inflammation. However, molecular mechanisms underlying regulation of ANGPTL2 expression are poorly understood. Here, we assess circadian rhythmicity of ANGPTL2 expression in various mouse tissues. We observed that ANGPTL2 rhythmicity was similar to that of the PER2 gene, which is regulated by the CLOCK/BMAL1 complex. Promoter activity of the human ANGPTL2 gene was significantly induced by CLOCK and BMAL1, an induction markedly attenuated by CRY co-expression. We also identified functional E-boxes in the ANGPTL2 promoter and observed occupancy of these sites by endogenous CLOCK in human osteosarcoma cells. Furthermore, Cry-deficient mice exhibited arrhythmic Angptl2 expression. Taken together, these data suggest that periodic expression of ANGPTL2 is regulated by a molecular clock.

  9. The peripheral clock regulates human pigmentation.

    Science.gov (United States)

    Hardman, Jonathan A; Tobin, Desmond J; Haslam, Iain S; Farjo, Nilofer; Farjo, Bessam; Al-Nuaimi, Yusur; Grimaldi, Benedetto; Paus, Ralf

    2015-04-01

    Although the regulation of pigmentation is well characterized, it remains unclear whether cell-autonomous controls regulate the cyclic on-off switching of pigmentation in the hair follicle (HF). As human HFs and epidermal melanocytes express clock genes and proteins, and given that core clock genes (PER1, BMAL1) modulate human HF cycling, we investigated whether peripheral clock activity influences human HF pigmentation. We found that silencing BMAL1 or PER1 in human HFs increased HF melanin content. Furthermore, tyrosinase expression and activity, as well as TYRP1 and TYRP2 mRNA levels, gp100 protein expression, melanocyte dendricity, and the number gp100+ HF melanocytes, were all significantly increased in BMAL1 and/or PER1-silenced HFs. BMAL1 or PER1 silencing also increased epidermal melanin content, gp100 protein expression, and tyrosinase activity in human skin. These effects reflect direct modulation of melanocytes, as BMAL1 and/or PER1 silencing in isolated melanocytes increased tyrosinase activity and TYRP1/2 expression. Mechanistically, BMAL1 knockdown reduces PER1 transcription, and PER1 silencing induces phosphorylation of the master regulator of melanogenesis, microphthalmia-associated transcription factor, thus stimulating human melanogenesis and melanocyte activity in situ and in vitro. Therefore, the molecular clock operates as a cell-autonomous modulator of human pigmentation and may be targeted for future therapeutic strategies. PMID:25310406

  10. The circadian clock regulates auxin signaling and responses in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Michael F Covington

    2007-08-01

    Full Text Available The circadian clock plays a pervasive role in the temporal regulation of plant physiology, environmental responsiveness, and development. In contrast, the phytohormone auxin plays a similarly far-reaching role in the spatial regulation of plant growth and development. Went and Thimann noted 70 years ago that plant sensitivity to auxin varied according to the time of day, an observation that they could not explain. Here we present work that explains this puzzle, demonstrating that the circadian clock regulates auxin signal transduction. Using genome-wide transcriptional profiling, we found many auxin-induced genes are under clock regulation. We verified that endogenous auxin signaling is clock regulated with a luciferase-based assay. Exogenous auxin has only modest effects on the plant clock, but the clock controls plant sensitivity to applied auxin. Notably, we found both transcriptional and growth responses to exogenous auxin are gated by the clock. Thus the circadian clock regulates some, and perhaps all, auxin responses. Consequently, many aspects of plant physiology not previously thought to be under circadian control may show time-of-day-specific sensitivity, with likely important consequences for plant growth and environmental responses.

  11. Decamp Clock Board Firmware

    Energy Technology Data Exchange (ETDEWEB)

    Vicente, J. de; Castilla, J.; Martinez, G.

    2007-09-27

    Decamp (Dark Energy Survey Camera) is a new instrument designed to explore the universe aiming to reveal the nature of Dark Energy. The camera consists of 72 CCDs and 520 Mpixels. The readout electronics of DECam is based on the Monsoon system. Monsoon is a new image acquisition system developed by the NOAO (National Optical Astronomical Observatory) for the new generation of astronomical cameras. The Monsoon system uses three types of boards inserted in a Eurocard format based crate: master control board, acquisition board and clock board. The direct use of the Monsoon system for DECam readout electronics requires nine crates mainly due to the high number of clock boards needed. Unfortunately, the available space for DECam electronics is constrained to four crates at maximum. The major drawback to achieve such desired compaction degree resides in the clock board signal density. This document describes the changes performed at CIEMAT on the programmable logic of the Monsoon clock board aiming to meet such restricted space constraints. (Author) 5 refs.

  12. Cyclotomic quantum clock

    CERN Document Server

    Rosu, H C

    2003-01-01

    In the wake of our recent work on cyclotomic effects in quantum phase locking [M. Planat and H. C. Rosu, Phys. Lett. A 315, 1 (2003)], we briefly discuss here a cyclotomic extension of the Salecker and Wigner quantum clock. We also hint on a possible cyclotomic structure of time at the Planck scales

  13. The promoter activities of sucrose phosphate synthase genes in rice, OsSPS1 and OsSPS11, are controlled by light and circadian clock, but not by sucrose

    Directory of Open Access Journals (Sweden)

    Madoka eYonekura

    2013-03-01

    Full Text Available Although sucrose plays a role in sugar sensing and its signaling pathway, little is known about the regulatory mechanisms of the expressions of plant sucrose-related genes. Our previous study on the expression of the sucrose phosphate synthase gene family in rice (OsSPSs suggested the involvement of sucrose sensing and/or circadian rhythm in the transcriptional regulation of OsSPS. To examine whether the promoters of OsSPSs can be controlled by sugars and circadian clock, we produced transgenic rice plants harboring a promoter–luciferase construct for OsSPS1 or OsSPS11 and analyzed the changes in the promoter activities by monitoring bioluminescence from intact transgenic plants in real time. Transgenic plants fed sucrose, glucose, or mannitol under continuous light conditions showed no changes in bioluminescence intensity; meanwhile, the addition of sucrose increased the concentration of sucrose in the plants, and the mRNA levels of OsSPS remained constant. These results suggest that these OsSPS promoters may not be regulated by sucrose levels in the tissues. Next, we investigated the changes in the promoter activities under 12-h light/12-h dark cycles and continuous light conditions. Under the light–dark cycle, both OsSPS1 and OsSPS11 promoter activities were low in the dark and increased rapidly after the beginning of the light period. When the transgenic rice plants were moved to the continuous light condition, both POsSPS1::LUC and POsSPS11::LUC reporter plants exhibited circadian bioluminescence rhythms; bioluminescence peaked during the subjective day with a 27-h period: in the early morning as for OsSPS1 promoter and midday for OsSPS11 promoter. These results indicate that these OsSPS promoters are controlled by both light illumination and circadian clock and that the regulatory mechanism of promoter activity differs between the 2 OsSPS genes.

  14. Periodicity, the Canon and Sport

    Directory of Open Access Journals (Sweden)

    Thomas F. Scanlon

    2015-10-01

    Full Text Available The topic according to this title is admittedly a broad one, embracing two very general concepts of time and of the cultural valuation of artistic products. Both phenomena are, in the present view, largely constructed by their contemporary cultures, and given authority to a great extent from the prestige of the past. The antiquity of tradition brings with it a certain cachet. Even though there may be peripheral debates in any given society which question the specifics of periodization or canonicity, individuals generally accept the consensus designation of a sequence of historical periods and they accept a list of highly valued artistic works as canonical or authoritative. We will first examine some of the processes of periodization and of canon-formation, after which we will discuss some specific examples of how these processes have worked in the sport of two ancient cultures, namely Greece and Mesoamerica.

  15. The role of the Wnt canonical signaling in neurodegenerative diseases.

    Science.gov (United States)

    Libro, Rosaliana; Bramanti, Placido; Mazzon, Emanuela

    2016-08-01

    The Wnt/β-catenin or Wnt canonical pathway controls multiple biological processes throughout development and adult life. Growing evidences have suggested that deregulation of the Wnt canonical pathway could be involved in the pathogenesis of neurodegenerative diseases. The Wnt canonical signaling is a pathway tightly regulated, which activation results in the inhibition of the Glycogen Synthase Kinase 3β (GSK-3β) function and in increased β-catenin activity, that migrates into the nucleus, activating the transcription of the Wnt target genes. Conversely, when the Wnt canonical pathway is turned off, increased levels of GSK-3β promote β-catenin degradation. Hence, GSK-3β could be considered as a key regulator of the Wnt canonical pathway. Of note, GSK-3β has also been involved in the modulation of inflammation and apoptosis, determining the delicate balance between immune tolerance/inflammation and neuronal survival/neurodegeneration. In this review, we have summarized the current acknowledgements about the role of the Wnt canonical pathway in the pathogenesis of some neurodegenerative diseases including Alzheimer's disease, cerebral ischemia, Parkinson's disease, Huntington's disease, multiple sclerosis and amyotrophic lateral sclerosis, with particular regard to the main in vitro and in vivo studies in this field, by reviewing 85 research articles about.

  16. Existence of log canonical closures

    CERN Document Server

    Hacon, Christopher D

    2011-01-01

    Let $f:X\\to U$ be a projective morphism of normal varieties and $(X,\\Delta)$ a dlt pair. We prove that if there is an open set $U^0\\subset U$, such that $(X,\\Delta)\\times_U U^0$ has a good minimal model over $U^0$ and the images of all the non-klt centers intersect $U^0$, then $(X,\\Delta)$ has a good minimal model over $U$. As consequences we show the existence of log canonical compactifications for open log canonical pairs, and the fact that the moduli functor of stable schemes satisfies the valuative criterion for properness.

  17. Canonical density matrix perturbation theory.

    Science.gov (United States)

    Niklasson, Anders M N; Cawkwell, M J; Rubensson, Emanuel H; Rudberg, Elias

    2015-12-01

    Density matrix perturbation theory [Niklasson and Challacombe, Phys. Rev. Lett. 92, 193001 (2004)] is generalized to canonical (NVT) free-energy ensembles in tight-binding, Hartree-Fock, or Kohn-Sham density-functional theory. The canonical density matrix perturbation theory can be used to calculate temperature-dependent response properties from the coupled perturbed self-consistent field equations as in density-functional perturbation theory. The method is well suited to take advantage of sparse matrix algebra to achieve linear scaling complexity in the computational cost as a function of system size for sufficiently large nonmetallic materials and metals at high temperatures. PMID:26764847

  18. Rethinking transcriptional activation in the Arabidopsis circadian clock.

    Science.gov (United States)

    Fogelmark, Karl; Troein, Carl

    2014-07-01

    Circadian clocks are biological timekeepers that allow living cells to time their activity in anticipation of predictable daily changes in light and other environmental factors. The complexity of the circadian clock in higher plants makes it difficult to understand the role of individual genes or molecular interactions, and mathematical modelling has been useful in guiding clock research in model organisms such as Arabidopsis thaliana. We present a model of the circadian clock in Arabidopsis, based on a large corpus of published time course data. It appears from experimental evidence in the literature that most interactions in the clock are repressive. Hence, we remove all transcriptional activation found in previous models of this system, and instead extend the system by including two new components, the morning-expressed activator RVE8 and the nightly repressor/activator NOX. Our modelling results demonstrate that the clock does not need a large number of activators in order to reproduce the observed gene expression patterns. For example, the sequential expression of the PRR genes does not require the genes to be connected as a series of activators. In the presented model, transcriptional activation is exclusively the task of RVE8. Predictions of how strongly RVE8 affects its targets are found to agree with earlier interpretations of the experimental data, but generally we find that the many negative feedbacks in the system should discourage intuitive interpretations of mutant phenotypes. The dynamics of the clock are difficult to predict without mathematical modelling, and the clock is better viewed as a tangled web than as a series of loops.

  19. Circadian Clock Regulates Bone Resorption in Mice.

    Science.gov (United States)

    Xu, Cheng; Ochi, Hiroki; Fukuda, Toru; Sato, Shingo; Sunamura, Satoko; Takarada, Takeshi; Hinoi, Eiichi; Okawa, Atsushi; Takeda, Shu

    2016-07-01

    The circadian clock controls many behavioral and physiological processes beyond daily rhythms. Circadian dysfunction increases the risk of cancer, obesity, and cardiovascular and metabolic diseases. Although clinical studies have shown that bone resorption is controlled by circadian rhythm, as indicated by diurnal variations in bone resorption, the molecular mechanism of circadian clock-dependent bone resorption remains unknown. To clarify the role of circadian rhythm in bone resorption, aryl hydrocarbon receptor nuclear translocator-like (Bmal1), a prototype circadian gene, was knocked out specifically in osteoclasts. Osteoclast-specific Bmal1-knockout mice showed a high bone mass phenotype due to reduced osteoclast differentiation. A cell-based assay revealed that BMAL1 upregulated nuclear factor of activated T cells, cytoplasmic, calcineurin-dependent 1 (Nfatc1) transcription through its binding to an E-box element located on the Nfatc1 promoter in cooperation with circadian locomotor output cycles kaput (CLOCK), a heterodimer partner of BMAL1. Moreover, steroid receptor coactivator (SRC) family members were shown to interact with and upregulate BMAL1:CLOCK transcriptional activity. Collectively, these data suggest that bone resorption is controlled by osteoclastic BMAL1 through interactions with the SRC family and binding to the Nfatc1 promoter. © 2016 American Society for Bone and Mineral Research. PMID:26841172

  20. Conveyor belt clock synchronization

    CERN Document Server

    Giovannetti, V; Maccone, L; Shapiro, J H; Wong, F N C; Giovannetti, Vittorio; Lloyd, Seth; Maccone, Lorenzo; Shapiro, Jeffrey H.; Wong, Franco N. C.

    2004-01-01

    A protocol for synchronizing distant clocks is proposed that does not rely on the arrival times of the signals which are exchanged, and an optical implementation based on coherent-state pulses is described. This protocol is not limited by any dispersion that may be present in the propagation medium through which the light signals are exchanged. Possible improvements deriving from the use of quantum-mechanical effects are also addressed.

  1. Clock is important for food and circadian regulation of macronutrient absorption in mice.

    Science.gov (United States)

    Pan, Xiaoyue; Hussain, M Mahmood

    2009-09-01

    Clock genes respond to external stimuli and exhibit circadian rhythms. This study investigated the expression of clock genes in the small intestine and their contribution in the regulation of nutrient absorption by enterocytes. We examined expression of clock genes and macronutrient transport proteins in the small intestines of wild-type and Clock mutant (Clk(mt/mt)) mice with free or limited access to food. In addition, we studied absorption of macronutrients in these mice. Intestinal clock genes show circadian expression and respond to food entrainment in wild-type mice. Dominant negative Clock in Clk(mt/mt) mice disrupts circadian expression and food entrainment of clock genes. The absorption of lipids and monosaccharides was high in Clk(mt/mt) mice whereas peptide absorption was reduced. Molecular studies revealed that Clock regulates several transport proteins involved in nutrient absorption. Clock plays an important role in light and food entrainment of intestinal functions by regulating nutrient transport proteins. Disruptions in intestinal circadian activity may contribute to hyperlipidemia and hyperglycemia.

  2. Interactions between the circadian clock and metabolism: there are good times and bad times

    Institute of Scientific and Technical Information of China (English)

    Mi Shi; Xiangzhong Zheng

    2013-01-01

    An endogenous circadian (~24 h) clock regulates rhythmic processes of physiology,metabolism and behavior in most living organisms.While able to free-run under constant conditions,the circadian clock is coupled to day:night cycles to increase its amplitude and align the phase of circadian rhythms to the right time of the day.Disruptions of the circadian clock are correlated with brain dysfunctions,cardiovascular diseases and metabolic disorders.In this review,we focus on the interactions between the circadian clock and metabolism.We discuss recent findings on circadian clock regulation of feeding behavior and rhythmic expression of metabolic genes,and present evidence of metabolic input to the circadian clock.We emphasize how misalignment of circadian clocks within the body and with environmental cycles or daily schedules leads to the increasing prevalence of metabolic syndromes in modern society.

  3. Romanticism, Sexuality, and the Canon.

    Science.gov (United States)

    Rowe, Kathleen K.

    1990-01-01

    Traces the Romanticism in the work and persona of film director Jean-Luc Godard. Examines the contradictions posed by Godard's politics and representations of sexuality. Asserts, that by bringing an ironic distance to the works of such canonized directors, viewers can take pleasure in those works despite their contradictions. (MM)

  4. Palmitate alters the rhythmic expression of molecular clock genes and orexigenic neuropeptide Y mRNA levels within immortalized, hypothalamic neurons.

    Science.gov (United States)

    Fick, Laura J; Fick, Gordon H; Belsham, Denise D

    2011-09-30

    The control of energy homeostasis within the hypothalamus is under the regulated control of homeostatic hormones, nutrients and the expression of neuropeptides that alter feeding behavior. Elevated levels of palmitate, a predominant saturated fatty acid in diet and fatty acid biosynthesis, alter cellular function. For instance, a key mechanism involved in the development of insulin resistance is lipotoxicity, through increased circulating saturated fatty acids. Although many studies have begun to determine the underlying mechanisms of lipotoxicity in peripheral tissues, little is known about the effects of excess lipids in the brain. To determine these mechanisms we used an immortalized, clonal, hypothalamic cell line, mHypoE-44, to demonstrate that palmitate directly alters the expression of molecular clock components, by increasing Bmal1 and Clock, or by decreasing Per2, and Rev-erbα, their mRNA levels and altering their rhythmic period within individual neurons. We found that these neurons endogenously express the orexigenic neuropeptides NPY and AgRP, thus we determined that palmitate administration alters the mRNA expression of these neuropeptides as well. Palmitate treatment causes a significant increase in NPY mRNA levels and significantly alters the phase of rhythmic expression. We explored the link between AMPK and the expression of neuropeptide Y using the AMPK inhibitor compound C and the AMP analog AICAR. AMPK inhibition decreased NPY mRNA. AICAR also elevated basal NPY, but prevented the palmitate-mediated increase in NPY mRNA levels. We postulate that this palmitate-mediated increase in NPY and AgRP synthesis may initiate a detrimental positive feedback loop leading to increased energy consumption.

  5. Significance of circadian genes clock protein in papillary thyroid carcinoma tissues%生物钟基因CLOCK蛋白对甲状腺乳头状癌的影响

    Institute of Scientific and Technical Information of China (English)

    韩昌; 刘冬良; 周峰; 张召辉; 李德本; 牛万成

    2016-01-01

    Objective To investigate the protein expression level of CLOCK gene in papillary thyroid carcinoma (PTC) tissues and the relationship between the expression level and pathological features of patients with PTC. Methods PTC patients undergoing radical surgery at Affliated PLA No. 97 Hospital from March 2012 to March 2015 were collected. Finally, seventy four cases were enrolled in this study. The expression level of CLOCK protein was analyzed by immunohistochemistry in PTC tissues and the paired adjacent normal thyroid tissues. The relationship between the expression level of CLOCK protein and clinicopathological features were also analyzed. Results The positive expression rates of CLOCK protein in PTC tissues and paired adjacent normal tissues were 68.9% (51/74) and 20.3% (15/74), respectively, with significant difference (χ2=35.44, P=0.000). The expression level of CLCOK protein in thyroid cancer was related to lymph node metastasis, diameter of tumor and TNM stage. Conclusion The CLOCK protein plays an important role in tumorigenesis, tumor invasion and metastasis.%目的:探讨生物钟基因CLOCK在甲状腺乳头状癌组织中的蛋白表达,并分析其与甲状腺癌病理特征的关系。方法收集2012年3月到2015年3月在中国人民解放军第九七医院手术切除的甲状腺乳头状癌标本74份,采用免疫组化方法检测CLOCK蛋白在甲状腺乳头状癌及配对癌旁组织中的表达水平,分析其表达与临床病理特征的关系。结果甲状腺乳头状癌组织与其配对的癌旁正常组织中CLOCK蛋白阳性表达分别为68.9%(51/74)、20.3%(15/74),两类组织中阳性率的差异有统计学意义(χ2=35.44,P=0.000)。CLOCK蛋白表达情况与甲状腺乳头状癌淋巴结转移情况、肿瘤直径及TNM分期有关(P<0.05)。结论 CLOCK蛋白可能与甲状腺乳头状癌的发生、肿瘤的侵袭和转移等关系密切,可为甲状腺癌的早期诊断提供依据。

  6. Microchip-Based Trapped-Atom Clocks

    CERN Document Server

    Vuletic, Vladan; Schleier-Smith, Monika H

    2011-01-01

    This is a chapter of a recently published book entitled Atom Chips, edited by Jakob Reichel and Vladan Vuletic. The contents of this chapter include: Basic Principles; Atomic-Fountain versus Trapped-Atom Clocks; Optical-Transition Clocks versus Microwave Clocks; Clocks with Magnetically Trapped Atoms--Fundamental Limits and Experimental Demonstrations; Readout in Trapped-Atom Clocks; and Spin Squeezing.

  7. Canonical and non-canonical pathways of osteoclast formation

    OpenAIRE

    Knowles, H.J.; Athanasou, N A

    2009-01-01

    Physiological and pathological bone resorption is mediated by osteoclasts, multinucleated cells which are formed by the fusion of monocyte / macrophage precursors. The canonical pathway of osteoclast formation requires the presence of the receptor activator for NFkB ligand (RANKL) and macrophage colony stimulating factor (M-CSF). Noncanonical pathways of osteoclast formation have been described in which cytokines / growth factors can substitute for RANKL or M-CSF to...

  8. Optical atomic clocks and metrology

    Science.gov (United States)

    Ludlow, Andrew

    2014-05-01

    The atomic clock has long demonstrated the capability to measure time or frequency with very high precision. Consequently, these clocks are used extensively in technological applications such as advanced synchronization or communication and navigation networks. Optical atomic clocks are next- generation timekeepers which reference narrowband optical transitions between suitable atomic states. Many optical time/frequency standards utilize state-of-the-art quantum control and precision measurement. Combined with the ultrahigh quality factors of the atomic resonances at their heart, optical atomic clocks have promised new levels of timekeeping precision, orders of magnitude higher than conventional atomic clocks based on microwave transitions. Such measurement capability enables and/or enhances many of the most exciting applications of these clocks, including the study of fundamental laws of physics through the measurement of time evolution. Here, I will highlight optical atomic clocks and their utility, as well as review recent advances in their development and performance. In particular, I will describe in detail the optical lattice clock and the realization of frequency measurement at the level of one part in 1018. To push the performance of these atomic timekeepers to such a level and beyond, several key advances are being explored worldwide. These will be discussed generally, with particular emphasis on our recent efforts at NIST in developing the optical lattice clock based on atomic ytterbium.

  9. Entrainment of the mouse circadian clock by sub-acute physical and psychological stress.

    Science.gov (United States)

    Tahara, Yu; Shiraishi, Takuya; Kikuchi, Yosuke; Haraguchi, Atsushi; Kuriki, Daisuke; Sasaki, Hiroyuki; Motohashi, Hiroaki; Sakai, Tomoko; Shibata, Shigenobu

    2015-01-01

    The effects of acute stress on the peripheral circadian system are not well understood in vivo. Here, we show that sub-acute stress caused by restraint or social defeat potently altered clock gene expression in the peripheral tissues of mice. In these peripheral tissues, as well as the hippocampus and cortex, stressful stimuli induced time-of-day-dependent phase-advances or -delays in rhythmic clock gene expression patterns; however, such changes were not observed in the suprachiasmatic nucleus, i.e. the central circadian clock. Moreover, several days of stress exposure at the beginning of the light period abolished circadian oscillations and caused internal desynchronisation of peripheral clocks. Stress-induced changes in circadian rhythmicity showed habituation and disappeared with long-term exposure to repeated stress. These findings suggest that sub-acute physical/psychological stress potently entrains peripheral clocks and causes transient dysregulation of circadian clocks in vivo.

  10. TNFα modulates Fibroblast Growth Factor Receptor 2 gene expression through the pRB/E2F1 pathway: identification of a non-canonical E2F binding motif.

    Directory of Open Access Journals (Sweden)

    Sirio D'Amici

    Full Text Available Interactions between epithelium and mesenchyme during wound healing are not fully understood, but Fibroblast Growth Factors (FGFs and their receptors FGFRs are recognized as key elements. FGFR2 gene encodes for two splicing transcript variants, FGFR2-IIIb or Keratinocyte Growth Factor Receptor (KGFR and FGFR2-IIIc, which differ for tissue localization and ligand specificity. Proinflammatory cytokines play an essential role in the regulation of epithelial-mesenchymal interactions, and have been indicated to stimulate FGFs production. Here we demonstrated that upregulation of FGFR2 mRNA and protein expression is induced by the proinflammatory cytokines Tumor Necrosis Factor-α, Interleukin-1β and Interleukin 2. Furthermore, we found that TNFα determines FGFR2 transcriptional induction through activation of pRb, mediated by Raf and/or p38 pathways, and subsequent release of the transcription factor E2F1. Experiments based on FGFR2 promoter serial deletions and site-directed mutagenesis allowed us to identify a minimal responsive element that retains the capacity to be activated by E2F1. Computational analysis indicated that this element is a non-canonical E2F responsive motif. Thus far, the molecular mechanisms of FGFR2 upregulation during wound healing or in pathological events are not known. Our data suggest that FGFR2 expression can be modulated by local recruitment of inflammatory cytokines. Furthermore, since alterations in FGFR2 expression have been linked to the pathogenesis of certain human cancers, these findings could also provide elements for diagnosis and potential targets for novel therapeutic approaches.

  11. Circadian rhythms, the molecular clock, and skeletal muscle.

    Science.gov (United States)

    Lefta, Mellani; Wolff, Gretchen; Esser, Karyn A

    2011-01-01

    Almost all organisms ranging from single cell bacteria to humans exhibit a variety of behavioral, physiological, and biochemical rhythms. In mammals, circadian rhythms control the timing of many physiological processes over a 24-h period, including sleep-wake cycles, body temperature, feeding, and hormone production. This body of research has led to defined characteristics of circadian rhythms based on period length, phase, and amplitude. Underlying circadian behaviors is a molecular clock mechanism found in most, if not all, cell types including skeletal muscle. The mammalian molecular clock is a complex of multiple oscillating networks that are regulated through transcriptional mechanisms, timed protein turnover, and input from small molecules. At this time, very little is known about circadian aspects of skeletal muscle function/metabolism but some progress has been made on understanding the molecular clock in skeletal muscle. The goal of this chapter is to provide the basic terminology and concepts of circadian rhythms with a more detailed review of the current state of knowledge of the molecular clock, with reference to what is known in skeletal muscle. Research has demonstrated that the molecular clock is active in skeletal muscles and that the muscle-specific transcription factor, MyoD, is a direct target of the molecular clock. Skeletal muscle of clock-compromised mice, Bmal1(-/-) and Clock(Δ19) mice, are weak and exhibit significant disruptions in expression of many genes required for adult muscle structure and metabolism. We suggest that the interaction between the molecular clock, MyoD, and metabolic factors, such as PGC-1, provide a potential system of feedback loops that may be critical for both maintenance and adaptation of skeletal muscle.

  12. Titchmarsh-Weyl theory for canonical systems

    Directory of Open Access Journals (Sweden)

    Keshav Raj Acharya

    2014-11-01

    Full Text Available The main purpose of this paper is to develop Titchmarsh- Weyl theory of canonical systems. To this end, we first observe the fact that Schrodinger and Jacobi equations can be written into canonical systems. We then discuss the theory of Weyl m-function for canonical systems and establish the relation between the Weyl m-functions of Schrodinger equations and that of canonical systems which involve Schrodinger equations.

  13. Clocks and cardiovascular function

    Science.gov (United States)

    McLoughlin, Sarah C.; Haines, Philip; FitzGerald, Garret A.

    2016-01-01

    Circadian clocks in central and peripheral tissues enable the temporal synchronization and organization of molecular and physiological processes of rhythmic animals, allowing optimum functioning of cells and organisms at the most appropriate time of day. Disruption of circadian rhythms, from external or internal forces, leads to widespread biological disruption and is postulated to underlie many human conditions, such as the incidence and timing of cardiovascular disease. Here, we describe in vivo and in vitro methodology relevant to studying the role of circadian rhythms in cardiovascular function and dysfunction PMID:25707279

  14. Three Dimensional Canonical Quantum Gravity

    OpenAIRE

    Matschull, Hans-Juergen

    1995-01-01

    General aspects of vielbein representation, ADM formulation and canonical quantization of gravity are reviewed using pure gravity in three dimensions as a toy model. The classical part focusses on the role of observers in general relativity, which will later be identified with quantum observers. A precise definition of gauge symmetries and a classification of inequivalent solutions of Einstein's equations in dreibein formalism is given as well. In the quantum part the construction of the phys...

  15. Functional Multiple-Set Canonical Correlation Analysis

    Science.gov (United States)

    Hwang, Heungsun; Jung, Kwanghee; Takane, Yoshio; Woodward, Todd S.

    2012-01-01

    We propose functional multiple-set canonical correlation analysis for exploring associations among multiple sets of functions. The proposed method includes functional canonical correlation analysis as a special case when only two sets of functions are considered. As in classical multiple-set canonical correlation analysis, computationally, the…

  16. Activation of the Canonical Wnt Signaling Pathway Induces Cementum Regeneration.

    Science.gov (United States)

    Han, Pingping; Ivanovski, Saso; Crawford, Ross; Xiao, Yin

    2015-07-01

    Canonical Wnt signaling is important in tooth development but it is unclear whether it can induce cementogenesis and promote the regeneration of periodontal tissues lost because of disease. Therefore, the aim of this study is to investigate the influence of canonical Wnt signaling enhancers on human periodontal ligament cell (hPDLCs) cementogenic differentiation in vitro and cementum repair in a rat periodontal defect model. Canonical Wnt signaling was induced by (1) local injection of lithium chloride; (2) local injection of sclerostin antibody; and (3) local injection of a lentiviral construct overexpressing β-catenin. The results showed that the local activation of canonical Wnt signaling resulted in significant new cellular cementum deposition and the formation of well-organized periodontal ligament fibers, which was absent in the control group. In vitro experiments using hPDLCs showed that the Wnt signaling pathway activators significantly increased mineralization, alkaline phosphatase (ALP) activity, and gene and protein expression of the bone and cementum markers osteocalcin (OCN), osteopontin (OPN), cementum protein 1 (CEMP1), and cementum attachment protein (CAP). Our results show that the activation of the canonical Wnt signaling pathway can induce in vivo cementum regeneration and in vitro cementogenic differentiation of hPDLCs. PMID:25556853

  17. Association of genetic variantions of circadian clock genes and risk of breast cancer%生物节律调控关键基因遗传变异与乳腺癌患病风险的相关性

    Institute of Scientific and Technical Information of China (English)

    王雯邈; 袁芃; 王佳玉; 马飞; 樊英; 李青; 张频; 徐兵河

    2013-01-01

    目的 研究生物节律调控关键基因Clock和Per2的遗传变异与乳腺癌发病风险的关系.方法 采用病例-对照研究,使用TaqMan荧光定量PCR法检测406例乳腺癌患者和412例健康对照者位于Clock基因(rs2070062)和Per2基因(rs2304672、rs2304669、rs934945)的4个位点的基因多态性,采用非条件Logistic回归模型分析不同基因型或等位基因与乳腺癌发病风险的关系.结果 携带rs2304669-TT基因型者发生乳腺癌的风险是携带rs2304669-CC+CT基因型者的2.33倍(P=0.001).单体型分析的结果也显示,所有含有rs2304669-T等位基因的单体型均可增加乳腺癌的发病风险.而另外3个位点未发现与乳腺癌的发病相关.结论 位于Per2基因上的rs2304669位点可能与乳腺癌的发病风险相关;生物节律调控关键基因Per2的遗传变异会增加乳腺癌的发病风险,可能可以作为乳腺癌易感性的重要分子生物标志物.%Objective To investigate the relationship between genetic variantions of circadian clock genes and risk of breast cancer.Methods A case-control study including 406 breast cancer patients and 412 controls was conducted and genes Clock (rs2070062) and Per2 (rs2304672,rs2304669,rs934945) were genotyped by TaqMan real-time PCR.Unconditional logistic regression model was used to analyze the association between the genetic polymorphisms and breast cancer.Results Individuals with the rs2304669-TT genotype showed significantly increased breast cancer risk with the OR of 2.33 when compared with the individuals with rs2304669-CC and CT genotypes (P =0.001).In addition,the three haplotypes containing the risk T allele of rs2304669 were identified to be associated with increased breast cancer risk.However,it was found that rs2304672,rs2070062 and rs934945 polymorphisms were not related with breast cancer risk.Conclusions The locus rs2304669 on Per2 gene is associated with breast cancer risk.Genetic variation of circadian clock genes may

  18. Age-associated disruption of molecular clock expression in skeletal muscle of the spontaneously hypertensive rat.

    Science.gov (United States)

    Miyazaki, Mitsunori; Schroder, Elizabeth; Edelmann, Stephanie E; Hughes, Michael E; Kornacker, Karl; Balke, C William; Esser, Karyn A

    2011-01-01

    It is well known that spontaneously hypertensive rats (SHR) develop muscle pathologies with hypertension and heart failure, though the mechanism remains poorly understood. Woon et al. (2007) linked the circadian clock gene Bmal1 to hypertension and metabolic dysfunction in the SHR. Building on these findings, we compared the expression pattern of several core-clock genes in the gastrocnemius muscle of aged SHR (80 weeks; overt heart failure) compared to aged-matched control WKY strain. Heart failure was associated with marked effects on the expression of Bmal1, Clock and Rora in addition to several non-circadian genes important in regulating skeletal muscle phenotype including Mck, Ttn and Mef2c. We next performed circadian time-course collections at a young age (8 weeks; pre-hypertensive) and adult age (22 weeks; hypertensive) to determine if clock gene expression was disrupted in gastrocnemius, heart and liver tissues prior to or after the rats became hypertensive. We found that hypertensive/hypertrophic SHR showed a dampening of peak Bmal1 and Rev-erb expression in the liver, and the clock-controlled gene Pgc1α in the gastrocnemius. In addition, the core-clock gene Clock and the muscle-specific, clock-controlled gene Myod1, no longer maintained a circadian pattern of expression in gastrocnemius from the hypertensive SHR. These findings provide a framework to suggest a mechanism whereby chronic heart failure leads to skeletal muscle pathologies; prolonged dysregulation of the molecular clock in skeletal muscle results in altered Clock, Pgc1α and Myod1 expression which in turn leads to the mis-regulation of target genes important for mechanical and metabolic function of skeletal muscle.

  19. Age-associated disruption of molecular clock expression in skeletal muscle of the spontaneously hypertensive rat.

    Directory of Open Access Journals (Sweden)

    Mitsunori Miyazaki

    Full Text Available It is well known that spontaneously hypertensive rats (SHR develop muscle pathologies with hypertension and heart failure, though the mechanism remains poorly understood. Woon et al. (2007 linked the circadian clock gene Bmal1 to hypertension and metabolic dysfunction in the SHR. Building on these findings, we compared the expression pattern of several core-clock genes in the gastrocnemius muscle of aged SHR (80 weeks; overt heart failure compared to aged-matched control WKY strain. Heart failure was associated with marked effects on the expression of Bmal1, Clock and Rora in addition to several non-circadian genes important in regulating skeletal muscle phenotype including Mck, Ttn and Mef2c. We next performed circadian time-course collections at a young age (8 weeks; pre-hypertensive and adult age (22 weeks; hypertensive to determine if clock gene expression was disrupted in gastrocnemius, heart and liver tissues prior to or after the rats became hypertensive. We found that hypertensive/hypertrophic SHR showed a dampening of peak Bmal1 and Rev-erb expression in the liver, and the clock-controlled gene Pgc1α in the gastrocnemius. In addition, the core-clock gene Clock and the muscle-specific, clock-controlled gene Myod1, no longer maintained a circadian pattern of expression in gastrocnemius from the hypertensive SHR. These findings provide a framework to suggest a mechanism whereby chronic heart failure leads to skeletal muscle pathologies; prolonged dysregulation of the molecular clock in skeletal muscle results in altered Clock, Pgc1α and Myod1 expression which in turn leads to the mis-regulation of target genes important for mechanical and metabolic function of skeletal muscle.

  20. Circadian oscillations of molecular clock components in the cerebellar cortex of the rat.

    Science.gov (United States)

    Rath, Martin F; Rohde, Kristian; Møller, Morten

    2012-12-01

    The central circadian clock of the mammalian brain resides in the suprachiasmatic nucleus (SCN) of the hypothalamus. At the molecular level, the circadian clockwork of the SCN constitutes a self-sustained autoregulatory feedback mechanism reflected by the rhythmic expression of clock genes. However, recent studies have shown the presence of extrahypothalamic oscillators in other areas of the brain including the cerebellum. In the present study, the authors unravel the cerebellar molecular clock by analyzing clock gene expression in the cerebellum of the rat by use of radiochemical in situ hybridization and quantitative real-time polymerase chain reaction. The authors here show that all core clock genes, i.e., Per1, Per2, Per3, Cry1, Cry2, Clock, Arntl, and Nr1d1, as well as the clock-controlled gene Dbp, are expressed in the granular and Purkinje cell layers of the cerebellar cortex. Among these genes, Per1, Per2, Per3, Cry1, Arntl, Nr1d1, and Dbp were found to exhibit circadian rhythms in a sequential temporal manner similar to that of the SCN, but with several hours of delay. The results of lesion studies indicate that the molecular oscillatory profiles of Per1, Per2, and Cry1 in the cerebellum are controlled, though possibly indirectly, by the central clock of the SCN. These data support the presence of a circadian oscillator in the cortex of the rat cerebellum.

  1. Derivation of Mayer Series from Canonical Ensemble

    Science.gov (United States)

    Wang, Xian-Zhi

    2016-02-01

    Mayer derived the Mayer series from both the canonical ensemble and the grand canonical ensemble by use of the cluster expansion method. In 2002, we conjectured a recursion formula of the canonical partition function of a fluid (X.Z. Wang, Phys. Rev. E 66 (2002) 056102). In this paper we give a proof for this formula by developing an appropriate expansion of the integrand of the canonical partition function. We further derive the Mayer series solely from the canonical ensemble by use of this recursion formula.

  2. 生物钟周期基因2与胰腺导管腺癌预后的相关性分析%Correlation analysis between period circadian clock 2 gene and the prognosis of pancreatic ductal adenocarcinoma

    Institute of Scientific and Technical Information of China (English)

    曾玮; 刘孟刚; 刘宏鸣; 谢斌; 袁涛; 杨俊涛; 蓝翔; 陈平

    2014-01-01

    Objective To explore the prognosis related genes of pancreatic ductal adenocarcinoma (PDAC)and investigate the molecular regulation mechanism.Methods Gene expression data of 102 PDAC patients with complete clinical survival data were selected from gene expression database of National Center for Biotechnology Information.The 106 transcription regulation gene collection was collected from Transfac database.The 715 microRNA (miRNA)target regulation gene collection was selected according to PicTar and TargetScanS method.Biological pathway data obtained from the Kyoto Encyclopedia of Genes and Genomes (KEGG).The known cancer genes were collected from the cancer gene census (CGC) database.Univariate Cox proportional hazards model was used to analyze the correlation between gene expression data and survival time,then obtained survival related candidate genes from the whole genome. Then the enriched genes were analyzed by hypergeometric distribution algorithm from three databases. Multiple correction testing was performed by BH-FDR method (FDR < 0.05 ).Kaplan-Meier was performed for survival curve analysis of PDAC.Results The results of data of 102 PDAC patients analyzed by univariate Cox proportional hazards model indicated that 273 genes were significantly related to the survival time of patients (P <0.000 1 ).After 273 survival genes were enrichment analyzed in 106 transcription factor regulation gene collection,12 survival genes enriched transcription factor target gene sets were found.After 273 survival genes were enrichment analyzed in 715 miRNA target regulation gene collection,11 survival genes enriched miRNAs target sets were discovered.After 273 survival genes were enrichment analyzed in pathway data of KEGG,15 survival genes enriched pathways were obtained. Period circadian clock 2 (PER2 )was regulated by CCAAT/enhancer binding protein (CEBPA)at transcription level and regulated by miRNA-32 after transcription.The prognosis of PDAC was affected by circadian

  3. Simulating Future GPS Clock Scenarios with Two Composite Clock Algorithms

    Science.gov (United States)

    Suess, Matthias; Matsakis, Demetrios; Greenhall, Charles A.

    2010-01-01

    Using the GPS Toolkit, the GPS constellation is simulated using 31 satellites (SV) and a ground network of 17 monitor stations (MS). At every 15-minutes measurement epoch, the monitor stations measure the time signals of all satellites above a parameterized elevation angle. Once a day, the satellite clock estimates the station and satellite clocks. The first composite clock (B) is based on the Brown algorithm, and is now used by GPS. The second one (G) is based on the Greenhall algorithm. The composite clock of G and B performance are investigated using three ground-clock models. Model C simulates the current GPS configuration, in which all stations are equipped with cesium clocks, except for masers at USNO and Alternate Master Clock (AMC) sites. Model M is an improved situation in which every station is equipped with active hydrogen masers. Finally, Models F and O are future scenarios in which the USNO and AMC stations are equipped with fountain clocks instead of masers. Model F is a rubidium fountain, while Model O is more precise but futuristic Optical Fountain. Each model is evaluated using three performance metrics. The timing-related user range error having all satellites available is the first performance index (PI1). The second performance index (PI2) relates to the stability of the broadcast GPS system time itself. The third performance index (PI3) evaluates the stability of the time scales computed by the two composite clocks. A distinction is made between the "Signal-in-Space" accuracy and that available through a GNSS receiver.

  4. Peripheral Circadian Clocks Mediate Dietary Restriction-Dependent Changes in Lifespan and Fat Metabolism in Drosophila.

    Science.gov (United States)

    Katewa, Subhash D; Akagi, Kazutaka; Bose, Neelanjan; Rakshit, Kuntol; Camarella, Timothy; Zheng, Xiangzhong; Hall, David; Davis, Sonnet; Nelson, Christopher S; Brem, Rachel B; Ramanathan, Arvind; Sehgal, Amita; Giebultowicz, Jadwiga M; Kapahi, Pankaj

    2016-01-12

    Endogenous circadian clocks orchestrate several metabolic and signaling pathways that are known to modulate lifespan, suggesting clocks as potential targets for manipulation of metabolism and lifespan. We report here that the core circadian clock genes, timeless (tim) and period (per), are required for the metabolic and lifespan responses to DR in Drosophila. Consistent with the involvement of a circadian mechanism, DR enhances the amplitude of cycling of most circadian clock genes, including tim, in peripheral tissues. Mass-spectrometry-based lipidomic analysis suggests a role of tim in cycling of specific medium chain triglycerides under DR. Furthermore, overexpression of tim in peripheral tissues improves its oscillatory amplitude and extends lifespan under ad libitum conditions. Importantly, effects of tim on lifespan appear to be mediated through enhanced fat turnover. These findings identify a critical role for specific clock genes in modulating the effects of nutrient manipulation on fat metabolism and aging. PMID:26626459

  5. The Molecular Circadian Clock and Alcohol-Induced Liver Injury

    Science.gov (United States)

    Udoh, Uduak S.; Valcin, Jennifer A.; Gamble, Karen L.; Bailey, Shannon M.

    2015-01-01

    Emerging evidence from both experimental animal studies and clinical human investigations demonstrates strong connections among circadian processes, alcohol use, and alcohol-induced tissue injury. Components of the circadian clock have been shown to influence the pathophysiological effects of alcohol. Conversely, alcohol may alter the expression of circadian clock genes and the rhythmic behavioral and metabolic processes they regulate. Therefore, we propose that alcohol-mediated disruption in circadian rhythms likely underpins many adverse health effects of alcohol that cut across multiple organ systems. In this review, we provide an overview of the circadian clock mechanism and showcase results from new studies in the alcohol field implicating the circadian clock as a key target of alcohol action and toxicity in the liver. We discuss various molecular events through which alcohol may work to negatively impact circadian clock-mediated processes in the liver, and contribute to tissue pathology. Illuminating the mechanistic connections between the circadian clock and alcohol will be critical to the development of new preventative and pharmacological treatments for alcohol use disorders and alcohol-mediated organ diseases. PMID:26473939

  6. The Molecular Circadian Clock and Alcohol-Induced Liver Injury

    Directory of Open Access Journals (Sweden)

    Uduak S. Udoh

    2015-10-01

    Full Text Available Emerging evidence from both experimental animal studies and clinical human investigations demonstrates strong connections among circadian processes, alcohol use, and alcohol-induced tissue injury. Components of the circadian clock have been shown to influence the pathophysiological effects of alcohol. Conversely, alcohol may alter the expression of circadian clock genes and the rhythmic behavioral and metabolic processes they regulate. Therefore, we propose that alcohol-mediated disruption in circadian rhythms likely underpins many adverse health effects of alcohol that cut across multiple organ systems. In this review, we provide an overview of the circadian clock mechanism and showcase results from new studies in the alcohol field implicating the circadian clock as a key target of alcohol action and toxicity in the liver. We discuss various molecular events through which alcohol may work to negatively impact circadian clock-mediated processes in the liver, and contribute to tissue pathology. Illuminating the mechanistic connections between the circadian clock and alcohol will be critical to the development of new preventative and pharmacological treatments for alcohol use disorders and alcohol-mediated organ diseases.

  7. Stroke in Canon of Medicine

    Science.gov (United States)

    Alorizi, Seyed Morteza Emami; Nimruzi, Majid

    2016-01-01

    Background: Stroke has a huge negative impact on the society and more adversely affect women. There is scarce evidence about any neuroprotective effects of commonly used drug in acute stroke. Bushnell et al. provided a guideline focusing on the risk factors of stroke unique to women, including reproductive factors, metabolic syndrome, obesity, atrial fibrillation, and migraine with aura. The ten variables cited by Avicenna in Canon of Medicine would compensate for the gaps mentioned in this guideline. The prescribed drugs should be selected qualitatively opposite to Mizaj (warm-cold and wet-dry qualities induced by disease state) of the disease and according to ten variables, including the nature of the affected organ, intensity of disease, sex, age, habit, season, place of living, occupation, stamina and physical status. Methods: Information related to stroke was searched in Canon of Medicine, which is an outstanding book in traditional Persian medicine written by Avicenna. Results: A hemorrhagic stroke is the result of increasing sanguine humor in the body. Sanguine has warm-wet quality, and should be treated with food and drugs that quench the abundance of blood in the body. An acute episode of ischemic stroke is due to the abundance of phlegm that causes a blockage in the cerebral vessels. Phlegm has cold-wet quality and treatment should be started with compound medicines that either solve the phlegm or eject it from the body. Conclusion: Avicenna has cited in Canon of Medicine that women have cold and wet temperament compared to men. For this reason, they are more prone to accumulation of phlegm in their body organs including the liver, joints and vessels, and consequently in the risk of fatty liver, degenerative joint disease, atherosclerosis, and stroke especially the ischemic one. This is in accordance with epidemiological studies that showed higher rate of ischemic stroke in women rather than hemorrhagic one. PMID:26722147

  8. 大鼠视交叉上核与松果体中Clock基因转录的昼夜节律性及不同光反应性%Circadian rhythms and different photoresponses of Clock gene transcription in the rat suprachiasmatic nucleus and pineal gland

    Institute of Scientific and Technical Information of China (English)

    王国卿; 傅春玲; 李建祥; 杜玉珍; 童建

    2006-01-01

    The aim of this study was to observe and compare the endogenous circadian rhythm and photoresponse of Clock gene transcription in the suprachiasmatic nucleus (SCN) and pineal gland (PG) of rats. With free access to food and water in special darkrooms, Sprague-Dawley rats were housed under the light regime of constant darkness (DD) for 8 weeks (n=36) or 12 hour-light:12 hour-dark cycle (LD) for 4 weeks (n=36), respectively. Then, their SCN and PG were dissected out every 4 h in a circadian day, 6rats at each time (n=6). All animal treatments and sampling during the dark phases were conducted under red dim light (<0.1 lux). The total RNA was extracted from each sample and the semi-quantitative RT-PCR was used to determine the temporal mRNA changes of Clock gene in the SCN and PG at different circadian times (CT) or zeitgeber times (ZT). The grayness ratio of Clock/H3.3 bands was served as the relative estimation of Clock gene expression. The experimental data were analyzed by the Cosine method and the Clock Lab software to fit original results measured at 6 time points and to simulate a circadian rhythmic curve which was then examined for statistical difference by the amplitude F test. The main results are as follows: (1) The mRNA levels of Clock gene in the SCN under DD regime displayed the circadian oscillation (P<0.05). The endogenous rhythmic profiles of Clock gene transcription in the PG were similar to those in the SCN (P>0.05) throughout the day with the peak at the subjective night (CT15 in the SCN or CT18 in the PG)and the trough during the subjective day (CT3 in the SCN or CT6 in the PG). (2) Clock gene transcription in the SCN under LD cycle also showed the circadian oscillation (P<0.05), and the rhythmic profile was anti-phasic to that under DD condition (P<0.05). The amplitude and the mRNA level at the peak of Clock gene transcription in the SCN under LD were significantly increased compared with that under DD (P<0.05), while the value of

  9. Canonical metrics on complex manifold

    Institute of Scientific and Technical Information of China (English)

    YAU Shing-Tung

    2008-01-01

    @@ Complex manifolds are topological spaces that are covered by coordinate charts where the Coordinate changes are given by holomorphic transformations. For example, Riemann surfaces are one dimensional complex manifolds. In order to understand complex manifolds, it is useful to introduce metrics that are compatible with the complex structure. In general, we should have a pair (M, ds2M) where ds2M is the metric. The metric is said to be canonical if any biholomorphisms of the complex manifolds are automatically isometries. Such metrics can naturally be used to describe invariants of the complex structures of the manifold.

  10. Canonical metrics on complex manifold

    Institute of Scientific and Technical Information of China (English)

    YAU; Shing-Tung(Yau; S.-T.)

    2008-01-01

    Complex manifolds are topological spaces that are covered by coordinate charts where the coordinate changes are given by holomorphic transformations.For example,Riemann surfaces are one dimensional complex manifolds.In order to understand complex manifolds,it is useful to introduce metrics that are compatible with the complex structure.In general,we should have a pair(M,ds~2_M)where ds~2_M is the metric.The metric is said to be canonical if any biholomorphisms of the complex manifolds are automatically isometries.Such metrics can naturally be used to describe invariants of the complex structures of the manifold.

  11. Dibaryons as canonically quantized biskyrmions

    CERN Document Server

    Krupovnickas, T; Riska, D O

    2000-01-01

    The characteristic feature of the ground state configuration of the Skyrme model description of nuclei is the absence of recognizable individual nucleons. The ground state of the skyrmion with baryon number 2 is axially symmetric, and is well approximated by a simple rational map, which represents a direct generalization of Skyrme's hedgehog ansatz for the nucleon. If the Lagrangian density is canonically quantized this configuration may support excitations that lie close and possible below the threshold for pion decay, and therefore describe dibaryons. The quantum corrections stabilize these solutions, the mass density of which have the correct exponential fall off at large distances.

  12. Muscle insulin sensitivity and glucose metabolism are controlled by the intrinsic muscle clock

    DEFF Research Database (Denmark)

    Dyar, Kenneth A.; Ciciliot, Stefano; Wright, Lauren E.;

    2014-01-01

    Circadian rhythms control metabolism and energy homeostasis, but the role of the skeletal muscle clock has never been explored. We generated conditional and inducible mouse lines with muscle-specific ablation of the core clock gene Bmal1. Skeletal muscles from these mice showed impaired insulin-s...

  13. Circadian oscillations of molecular clock components in the cerebellar cortex of the rat

    DEFF Research Database (Denmark)

    Rath, Martin Fredensborg; Rohde, Kristian; Møller, Morten

    2012-01-01

    , recent studies have shown the presence of extrahypothalamic oscillators in other areas of the brain including the cerebellum. In the present study, the authors unravel the cerebellar molecular clock by analyzing clock gene expression in the cerebellum of the rat by use of radiochemical in situ...

  14. Somitogenesis clock-wave initiation requires differential decay and multiple binding sites for clock protein.

    Directory of Open Access Journals (Sweden)

    Mark Campanelli

    2010-04-01

    Full Text Available Somitogenesis is a process common to all vertebrate embryos in which repeated blocks of cells arise from the presomitic mesoderm (PSM to lay a foundational pattern for trunk and tail development. Somites form in the wake of passing waves of periodic gene expression that originate in the tailbud and sweep posteriorly across the PSM. Previous work has suggested that the waves result from a spatiotemporally graded control protein that affects the oscillation rate of clock-gene expression. With a minimally constructed mathematical model, we study the contribution of two control mechanisms to the initial formation of this gene-expression wave. We test four biologically motivated model scenarios with either one or two clock protein transcription binding sites, and with or without differential decay rates for clock protein monomers and dimers. We examine the sensitivity of wave formation with respect to multiple model parameters and robustness to heterogeneity in cell population. We find that only a model with both multiple binding sites and differential decay rates is able to reproduce experimentally observed waveforms. Our results show that the experimentally observed characteristics of somitogenesis wave initiation constrain the underlying genetic control mechanisms.

  15. High-fat medium and circadian transcription factors (cryptochrome and clock) contribute to the regulation of cholesterogenic Cyp51 and Hmgcr genes in mouse embryonic fibroblasts

    OpenAIRE

    Rozman, Damjana; Španinger, Klemen; Fink, Martina; Prosenc, Uršula

    2015-01-01

    The aim of our research was to investigate how cholesterol, unsaturated fatty acids and circadian genes affect the expression of cholesterogenic genes, Cyp51 and Hmgcr, in somatic and in embryonic fibroblast cell lines. We found that in immortal Hepa1-6 cells cholesterol represses the transcription of Hmgcr and Cyp51 for 80%, while unsaturated fatty acids have different effects: Hmgcr was repressed for 50%, but Cyp51 was unaffected by the presence of linoloeic acid. In embryonic fibroblasts t...

  16. Chronopharmacological strategies: Intra- and inter-individual variability of molecular clock.

    Science.gov (United States)

    Ohdo, Shigehiro; Koyanagi, Satoru; Matsunaga, Naoya

    2010-07-31

    In all living organisms, one of the most indispensable biological functions is the circadian clock (suprachiasmatic nuclei; SCN), which acts like a multifunction timer to regulate homeostatic systems such as sleep and activity, hormone levels, appetite, and other bodily functions with 24h cycles. Circadian rhythms regulate diverse physiologic processes, including homeostatic functions of steroid hormones and their receptors. Perturbations of these rhythms are associated with pathogenic conditions such as depression, diabetes and cancer. Clock genes are identified as the genes that ultimately control a vast array of circadian rhythms in physiology and behavior. Clock gene regulates several diseases such as cancer, metabolic syndrome and sleep etc. CLOCK mutation affects the expression of rhythmic genes in wild-type (WT) tissue, but also affects that of non-rhythmic genes. On the other hand, the change of the drug pharmacodynamic and pharmacokinetic (PK/PD) parameters are influenced by not only inter-individual variability but also intra-individual variabilities of medications. Identification of a rhythmic marker for selecting dosing time will lead to improved progress and diffusion of chronopharmacotherapy. The mechanisms underlying chronopharmacological findings should be clarified from viewpoint of clock genes. On the other hand, several drugs have an effect on molecular clock. Thus, the knowledge of intra- and inter-individual variability of molecular clock should be applied for the clinical practice. Therefore, we introduce the regulatory system of biological rhythm from viewpoints of clock genes and the possibility of pharmacotherapy based on the intra- and inter-individual variability of clock genes.

  17. CLOCK promotes 3T3-L1 cell proliferation via Wnt signaling.

    Science.gov (United States)

    Zhu, Zhu; Hua, Bingxuan; Xu, Lirong; Yuan, Gongsheng; Li, Ermin; Li, Xiaobo; Sun, Ning; Yan, Zuoqin; Lu, Chao; Qian, Ruizhe

    2016-07-01

    Circadian genes control most of the physiological functions including cell cycle. Cell proliferation is a critical factor in the differentiation of progenitor cells. However, the role of Clock gene in the regulation of cell cycle via wingless-type (Wnt) pathway and the relationship between Clock and adipogenesis are unclear. We found that the circadian locomotor output cycles kaput (Clock) regulated the proliferation and the adipogenesis of 3T3-L1 preadipocytes. We found that Clock attenuation inhibited the viability of 3T3-L1 preadipocytes in the cell counting kit 8. The expression of c-Myc and Cyclin D1 decreased dramatically in 3T3-L1 when Clock was silenced with short interfering RNA and was also decreased in fat tissue and adipose tissue-derived stem cells of Clock(Δ19) mice. Clock directly controls the expression of the components of Wnt signal transduction pathway, which was verified by serum shock, chromatin immunoprecipitation, Western blot, and quantitative real-time polymerase chain reaction (qRT-PCR). Furthermore, IWR-1, a Wnt signal pathway inhibitor, inhibited the cell cycle promotion by CLOCK, which was detected by cell viability assay, flow cytometry, and qRT-PCR. Therefore, CLOCK transcription control of Wnt signaling promotes cell cycle progression in 3T3-L1 preadipocytes. Clock inhibited the adipogenesis on day 2 in 3T3-L1 cells via Oil Red O staining and qRT-PCR detection and probably related to cellular differentiation. These data provide evidence that the circadian gene Clock regulates the proliferation of preadipocytes and affects adipogenesis. © 2016 IUBMB Life, 68(7):557-568, 2016. PMID:27194636

  18. Pacemaker-neuron-dependent disturbance of the molecular clockwork by a Drosophila CLOCK mutant homologous to the mouse Clock mutation.

    Science.gov (United States)

    Lee, Euna; Cho, Eunjoo; Kang, Doo Hyun; Jeong, Eun Hee; Chen, Zheng; Yoo, Seung-Hee; Kim, Eun Young

    2016-08-16

    Circadian clocks are composed of transcriptional/translational feedback loops (TTFLs) at the cellular level. In Drosophila TTFLs, the transcription factor dCLOCK (dCLK)/CYCLE (CYC) activates clock target gene expression, which is repressed by the physical interaction with PERIOD (PER). Here, we show that amino acids (AA) 657-707 of dCLK, a region that is homologous to the mouse Clock exon 19-encoded region, is crucial for PER binding and E-box-dependent transactivation in S2 cells. Consistently, in transgenic flies expressing dCLK with an AA657-707 deletion in the Clock (Clk(out)) genetic background (p{dClk-Δ};Clk(out)), oscillation of core clock genes' mRNAs displayed diminished amplitude compared with control flies, and the highly abundant dCLKΔ657-707 showed significantly decreased binding to PER. Behaviorally, the p{dClk-Δ};Clk(out) flies exhibited arrhythmic locomotor behavior in the photic entrainment condition but showed anticipatory activities of temperature transition and improved free-running rhythms in the temperature entrainment condition. Surprisingly, p{dClk-Δ};Clk(out) flies showed pacemaker-neuron-dependent alterations in molecular rhythms; the abundance of dCLK target clock proteins was reduced in ventral lateral neurons (LNvs) but not in dorsal neurons (DNs) in both entrainment conditions. In p{dClk-Δ};Clk(out) flies, however, strong but delayed molecular oscillations in temperature cycle-sensitive pacemaker neurons, such as DN1s and DN2s, were correlated with delayed anticipatory activities of temperature transition. Taken together, our study reveals that the LNv molecular clockwork is more sensitive than the clockwork of DNs to dysregulation of dCLK by AA657-707 deletion. Therefore, we propose that the dCLK/CYC-controlled TTFL operates differently in subsets of pacemaker neurons, which may contribute to their specific functions. PMID:27489346

  19. Integral canonical models for Spin Shimura varieties

    OpenAIRE

    Pera, Keerthi Madapusi

    2012-01-01

    We construct regular integral canonical models for Shimura varieties attached to Spin groups at (possibly ramified) odd primes. We exhibit these models as schemes of 'relative PEL type' over integral canonical models of larger Spin Shimura varieties with good reduction. Work of Vasiu-Zink then shows that the classical Kuga-Satake construction extends over the integral model and that the integral models we construct are canonical in a very precise sense. We also construct good compactification...

  20. GRK2: putting the brakes on the circadian clock

    Science.gov (United States)

    Mendoza-Viveros, Lucia; Cheng, Arthur H.

    2016-01-01

    G protein-coupled receptor kinases (GRKs) are a family of serine/threonine protein kinases that terminate G protein-coupled receptor (GPCR) signaling by phosphorylating the receptor and inducing its internalization. In addition to their canonical function, some GRKs can phosphorylate non-GPCR substrates and regulate GPCR signaling in a kinase-independent manner. GPCRs are abundantly expressed in the suprachiasmatic nucleus (SCN), a structure in the mammalian brain that serves as the central circadian pacemaker. Various facets of circadian timekeeping are under the influence of GPCR signaling, and thus are potential targets for GRK regulation. Despite this, little attention has been given to the role of GRKs in circadian rhythms. In this research highlight, we discuss our latest findings on the functional involvement of GRK2 in mammalian circadian timekeeping in the SCN. Using grk2 knockout mice, we demonstrate that GRK2 is critical for maintaining proper clock speed and ensuring that the clock is appropriately synchronized to environmental light cycles. Although grk2 deficiency expectedly alters the expression of a key GPCR in the SCN, our study also reveals that GRK2 has a more direct function that touches the heart of the circadian clock. PMID:27088110

  1. The circadian clock in mammals

    OpenAIRE

    Zordan, Mauro; Kyriacou, Charalambos P

    2000-01-01

    The basic physiological and anatomical basis for circadian rhythms in mammalian behaviour and physiology is introduced. The pathways involved in photic entrainment of the circadian clock are discussed in relation of new findings that identify the molecules that are involved in signalling between the environment and the clock. The molecular basis of endogenous cycles is described in the mouse, and compared to the mechanism that is present in the fly. Finally we speculate on the relationship be...

  2. The circadian clock in mammals

    OpenAIRE

    Zordan, M. A.; Kyriacou, C P

    2005-01-01

    The basic physiological and anatomical basis for circadian rhythms in mammalian behaviour and physiology is introduced. The pathways involved in photic entrainment of the circadian clock are discussed in relation of new findings that identify the molecules that are involved in signalling between the environment and the clock. The molecular basis of endogenous cycles is described in the mouse, and compared to the mechanism that is present in the fly. Finally we speculate on the relationship be...

  3. Common activation of canonical Wnt signaling in pancreatic adenocarcinoma.

    Directory of Open Access Journals (Sweden)

    Marina Pasca di Magliano

    Full Text Available Pancreatic ductal adenocarcinoma (PDA is an extremely aggressive malignancy, which carries a dismal prognosis. Activating mutations of the Kras gene are common to the vast majority of human PDA. In addition, recent studies have demonstrated that embryonic signaling pathway such as Hedgehog and Notch are inappropriately upregulated in this disease. The role of another embryonic signaling pathway, namely the canonical Wnt cascade, is still controversial. Here, we use gene array analysis as a platform to demonstrate general activation of the canonical arm of the Wnt pathway in human PDA. Furthermore, we provide evidence for Wnt activation in mouse models of pancreatic cancer. Our results also indicate that Wnt signaling might be activated downstream of Hedgehog signaling, which is an early event in PDA evolution. Wnt inhibition blocked proliferation and induced apoptosis of cultured adenocarcinoma cells, thereby providing evidence to support the development of novel therapeutical strategies for Wnt inhibition in pancreatic adenocarcinoma.

  4. Estrogen-related receptor α, the molecular clock, and transcriptional control of metabolic outputs.

    Science.gov (United States)

    Giguère, V; Dufour, C R; Eichner, L J; Deblois, G; Cermakian, N

    2011-01-01

    Metabolism and circadian rhythms must be closely integrated to support the energetic needs of the organism linked to the daily timing of physiological and behavioral processes. Although components of the molecular clock can directly target some metabolic genes, the control of metabolic clock output is believed to be mediated mostly through the action of transcription factors whose patterns of expression are rhythmic in metabolic tissues. Our recent work has identified the orphan nuclear receptor estrogen-related receptor α (ERRα), a potent effector of metabolic gene networks, as a direct regulator of the molecular clock. Thus, by acting both upstream of and downstream from the molecular clock, ERRα serves as a key transcription factor linking the clock with metabolic control.

  5. Expression and clinical significance of clock genes PER1,PER2 in breast cancer%钟控基因 PER1、PER2在乳腺癌中的表达及临床意义

    Institute of Scientific and Technical Information of China (English)

    张寅斌; 焦菊凤; 梁亮; 刘梅; 管海涛; 马宇光

    2015-01-01

    Objective:To investigate the gene clocked PER1,PER2 expression in breast cancer and its clinical significance in breast cancer.Methods:All 60 cases of breast cancer patientswere detected by immunohistochemical methods to confirm PER1,PER2 protein gene expression inbreast cancer tissues and adjacent tissues,and pathological and clinical results were statistically analyzed.Results:Expression of PER1,PER2 gene in breast cancer cells and ad-jacent tissues were significantly different (P <0.01).PER1 protein expression in breast cancer was significantly cor-related with ER,PR,c -erbB2 expression,histological grade,not correlated with age,tumor size and stage.PER2 pro-tein expression in breast cancer was significantly correlated with c -erbB2,histological grade,not correlated with age, tumor size and stage age,ER,PR,tumor size and stage.Conclusion:Lost of clock gene PER1,PER2 expression has an important role in the development of breast cancer.%目的:研究钟控基因 PER1、PER2在乳腺癌中的表达,明确时钟基因表达在乳腺癌中的作用。方法:取60例乳腺癌患者癌组织和癌旁组织,分别用免疫组化办法检测 PER1、PER2基因蛋白表达,与病理和临床结果进行统计学分析。结果:PER1、PER2基因在乳腺癌细胞和癌旁组织中阳性表达率有显著差异(P<0.01)。乳腺癌 PER1蛋白表达和 ER、PR、c -erbB2表达、组织分级有显著相关性,和年龄、肿瘤大小和分期无相关性。PER2表达和 c -erbB2、组织分级有显著相关性,和年龄、ER、PR、肿瘤大小和分期无相关性。结论:钟控基因 PER1、PER2表达缺失和乳腺癌发生有关,在乳腺癌发生过程中具有重要作用。

  6. Circadian clock regulation of the cell cycle in the zebrafish intestine.

    Science.gov (United States)

    Peyric, Elodie; Moore, Helen A; Whitmore, David

    2013-01-01

    The circadian clock controls cell proliferation in a number of healthy tissues where cell renewal and regeneration are critical for normal physiological function. The intestine is an organ that typically undergoes regular cycles of cell division, differentiation and apoptosis as part of its role in digestion and nutrient absorption. The aim of this study was to explore circadian clock regulation of cell proliferation and cell cycle gene expression in the zebrafish intestine. Here we show that the zebrafish gut contains a directly light-entrainable circadian pacemaker, which regulates the daily timing of mitosis. Furthermore, this intestinal clock controls the expression of key cell cycle regulators, such as cdc2, wee1, p21, PCNA and cdk2, but only weakly influences cyclin B1, cyclin B2 and cyclin E1 expression. Interestingly, food deprivation has little impact on circadian clock function in the gut, but dramatically reduces cell proliferation, as well as cell cycle gene expression in this tissue. Timed feeding under constant dark conditions is able to drive rhythmic expression not only of circadian clock genes, but also of several cell cycle genes, suggesting that food can entrain the clock, as well as the cell cycle in the intestine. Rather surprisingly, we found that timed feeding is critical for high amplitude rhythms in cell cycle gene expression, even when zebrafish are maintained on a light-dark cycle. Together these results suggest that the intestinal clock integrates multiple rhythmic cues, including light and food, to function optimally.

  7. Circadian clock regulation of the cell cycle in the zebrafish intestine.

    Directory of Open Access Journals (Sweden)

    Elodie Peyric

    Full Text Available The circadian clock controls cell proliferation in a number of healthy tissues where cell renewal and regeneration are critical for normal physiological function. The intestine is an organ that typically undergoes regular cycles of cell division, differentiation and apoptosis as part of its role in digestion and nutrient absorption. The aim of this study was to explore circadian clock regulation of cell proliferation and cell cycle gene expression in the zebrafish intestine. Here we show that the zebrafish gut contains a directly light-entrainable circadian pacemaker, which regulates the daily timing of mitosis. Furthermore, this intestinal clock controls the expression of key cell cycle regulators, such as cdc2, wee1, p21, PCNA and cdk2, but only weakly influences cyclin B1, cyclin B2 and cyclin E1 expression. Interestingly, food deprivation has little impact on circadian clock function in the gut, but dramatically reduces cell proliferation, as well as cell cycle gene expression in this tissue. Timed feeding under constant dark conditions is able to drive rhythmic expression not only of circadian clock genes, but also of several cell cycle genes, suggesting that food can entrain the clock, as well as the cell cycle in the intestine. Rather surprisingly, we found that timed feeding is critical for high amplitude rhythms in cell cycle gene expression, even when zebrafish are maintained on a light-dark cycle. Together these results suggest that the intestinal clock integrates multiple rhythmic cues, including light and food, to function optimally.

  8. El canon de la periferia

    Directory of Open Access Journals (Sweden)

    Karina Beatriz Lemes

    2010-11-01

    Full Text Available Intentaremos mostrar cómo venimos trabajando con la reconstrucción de la memoria literaria de la provincia de Misiones a partir de la recopilación de los manuscritos de sus autores más representativos. Hemos utilizado para nuestra lectura, en cruce con la crítica genética, las relaciones que Fernando Ainsa establece entre canon y periferia,  espacios de la memoria y construcción de la utopía. Ainsa concibe la escritura como proceso genético que en su origen es personal, visceral y solitario, una búsqueda constante de identidad que se enriquece en contacto con el mundo, con la apertura de fronteras. Estas vinculaciones nos han permitido interpretar las prácticas sociales que fundaron actividades estéticas en la distancia de los centros de poder argentinos.This paper shows some findings of our ongoing research project dealing with the recuperation of literary memory in the province of Misiones by analysing a compilation of the literary manuscripts by the most representative authors of this northern region of Argentina. Here, we follow Fernado Ainsa’s notions of canon and periphery, of memory spaces and construction of utopias. Ainsa sees the act of writing as a genetic process for it originates within a personal, visceral, and solitary realm. For Ainsa, writing is also a permanent search for identity which becomes richer when in contact with the world, when frontiers open up. These concepts allow us to interpret the social practices that gave birth to these aesthetic projects far away from Argentina’s power centers.

  9. Identification of Soybean Genes Involved in Circadian Clock Mechanism and Photoperiodic Control of Flowering Time by In Silico Analyses Flowering Time by In Silico Analyses

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Glycine max is a photoperiodic short-day plant and the practical consequence of the response is latitude and sowing period limitations to commercial crops.Genetic and physiological studies using the model plants Arabidopsis thaliana and rice (Oryza sativa)have uncovered several genes and genetic pathways controlling the process,however information about the corresponding pathways in legumes is scarce.Data mining prediction methodologies,Including multiple sequence alignment,phylogenetic analysis,bioinformatics expression and sequence motif pattern identification were used to identify soybean genes involved In day length perception and photoperiodic flowering induction.We have investigated approximately 330 000 sequences from open-access databases and have identified all bona fide central oscillator genes and circadian photoreceptors from A.thaliana in soybean sequence databases.We propose e working model for the photoperiodic control of flowering time in G.max,based on the identified key components.These results demonstrate the power of comparative genomics between model systems and crop species to elucidate the several aspects of plant physiology and metabolism.

  10. Clock and light regulation of the CREB coactivator CRTC1 in the suprachiasmatic circadian clock.

    Science.gov (United States)

    Sakamoto, Kensuke; Norona, Frances E; Alzate-Correa, Diego; Scarberry, Daniel; Hoyt, Kari R; Obrietan, Karl

    2013-05-22

    The CREB/CRE transcriptional pathway has been implicated in circadian clock timing and light-evoked clock resetting. To date, much of the work on CREB in circadian physiology has focused on how changes in the phosphorylation state of CREB regulate the timing processes. However, beyond changes in phosphorylation, CREB-dependent transcription can also be regulated by the CREB coactivator CRTC (CREB-regulated transcription coactivator), also known as TORC (transducer of regulated CREB). Here we profiled both the rhythmic and light-evoked regulation of CRTC1 and CRTC2 in the murine suprachiasmatic nucleus (SCN), the locus of the master mammalian clock. Immunohistochemical analysis revealed rhythmic expression of CRTC1 in the SCN. CRTC1 expression was detected throughout the dorsoventral extent of the SCN in the middle of the subjective day, with limited expression during early night, and late night expression levels intermediate between mid-day and early night levels. In contrast to CRTC1, robust expression of CRTC2 was detected during both the subjective day and night. During early and late subjective night, a brief light pulse induced strong nuclear accumulation of CRTC1 in the SCN. In contrast with CRTC1, photic stimulation did not affect the subcellular localization of CRTC2 in the SCN. Additionally, reporter gene profiling and chromatin immunoprecipitation analysis indicated that CRTC1 was associated with CREB in the 5' regulatory region of the period1 gene, and that overexpression of CRTC1 leads to a marked upregulation in period1 transcription. Together, these data raise the prospect that CRTC1 plays a role in fundamental aspects of SCN clock timing and entrainment.

  11. Methods to study the mechanism of the Neurospora Circadian Clock

    Science.gov (United States)

    Cha, Joonseok; Zhou, Mian; Liu, Yi

    2015-01-01

    Eukaryotic circadian clocks are comprised of interlocked auto-regulatory feedback loops that control gene expression at the levels of transcription and translation. The filamentous fungus Neurospora crassa is an excellent model for the complex molecular network of regulatory mechanisms that are common to all eukaryotes. In the heart of the network, post-translational regulations and functions of the core clock elements are of major interest. This chapter will discuss the methods that were recently used to study the Neurospora circadian oscillator mechanisms at the molecular level. PMID:25662455

  12. Does the core circadian clock in the moss Physcomitrella patens (Bryophyta comprise a single loop?

    Directory of Open Access Journals (Sweden)

    Hedman Harald

    2010-06-01

    Full Text Available Abstract Background The endogenous circadian clock allows the organism to synchronize processes both to daily and seasonal changes. In plants, many metabolic processes such as photosynthesis, as well as photoperiodic responses, are under the control of a circadian clock. Comparative studies with the moss Physcomitrella patens provide the opportunity to study many aspects of land plant evolution. Here we present a comparative overview of clock-associated components and the circadian network in the moss P. patens. Results The moss P. patens has a set of conserved circadian core components that share genetic relationship and gene expression patterns with clock genes of vascular plants. These genes include Myb-like transcription factors PpCCA1a and PpCCA1b, pseudo-response regulators PpPRR1-4, and regulatory elements PpELF3, PpLUX and possibly PpELF4. However, the moss lacks homologs of AtTOC1, AtGI and the AtZTL-family of genes, which can be found in all vascular plants studied here. These three genes constitute essential components of two of the three integrated feed-back loops in the current model of the Arabidopsis circadian clock mechanism. Consequently, our results suggest instead a single loop circadian clock in the moss. Possibly as a result of this, temperature compensation of core clock gene expression appears to be decreased in P. patens. Conclusions This study is the first comparative overview of the circadian clock mechanism in a basal land plant, the moss P. patens. Our results indicate that the moss clock mechanism may represent an ancestral state in contrast to the more complex and partly duplicated structure of subsequent land plants. These findings may provide insights into the understanding of the evolution of circadian network topology.

  13. Revisiting Interpretation of Canonical Correlation Analysis: A Tutorial and Demonstration of Canonical Commonality Analysis

    Science.gov (United States)

    Nimon, Kim; Henson, Robin K.; Gates, Michael S.

    2010-01-01

    In the face of multicollinearity, researchers face challenges interpreting canonical correlation analysis (CCA) results. Although standardized function and structure coefficients provide insight into the canonical variates produced, they fall short when researchers want to fully report canonical effects. This article revisits the interpretation of…

  14. De canon : een oude katholieke kerkstructuur?

    NARCIS (Netherlands)

    Smit, P.B.A.

    2011-01-01

    Op 30 november 2011 houdt theoloog prof. dr. Peter-Ben Smit zijn oratie aan de Universiteit Utrecht. Daarin gaat hij na hoe de canon van het Nieuwe Testament tot stand kwam binnen de vroege kerk, en wat de functie van de canon was bij de uitleg - oftewel exegese - van de Schrift. Dit onderwerp kwam

  15. CANONICAL EXTENSIONS OF SYMMETRIC LINEAR RELATIONS

    NARCIS (Netherlands)

    Sandovici, Adrian; Davidson, KR; Gaspar, D; Stratila, S; Timotin, D; Vasilescu, FH

    2006-01-01

    The concept of canonical extension of Hermitian operators has been recently introduced by A. Kuzhel. This paper deals with a generalization of this notion to the case of symmetric linear relations. Namely, canonical regular extensions of symmetric linear relations in Hilbert spaces are studied. The

  16. The Current Canon in British Romantics Studies.

    Science.gov (United States)

    Linkin, Harriet Kramer

    1991-01-01

    Describes and reports on a survey of 164 U.S. universities to ascertain what is taught as the current canon of British Romantic literature. Asserts that the canon may now include Mary Shelley with the former standard six major male Romantic poets, indicating a significant emergence of a feminist perspective on British Romanticism in the classroom.…

  17. A novel protein, CHRONO, functions as a core component of the mammalian circadian clock.

    Directory of Open Access Journals (Sweden)

    Akihiro Goriki

    2014-04-01

    Full Text Available Circadian rhythms are controlled by a system of negative and positive genetic feedback loops composed of clock genes. Although many genes have been implicated in these feedback loops, it is unclear whether our current list of clock genes is exhaustive. We have recently identified Chrono as a robustly cycling transcript through genome-wide profiling of BMAL1 binding on the E-box. Here, we explore the role of Chrono in cellular timekeeping. Remarkably, endogenous CHRONO occupancy around E-boxes shows a circadian oscillation antiphasic to BMAL1. Overexpression of Chrono leads to suppression of BMAL1-CLOCK activity in a histone deacetylase (HDAC -dependent manner. In vivo loss-of-function studies of Chrono including Avp neuron-specific knockout (KO mice display a longer circadian period of locomotor activity. Chrono KO also alters the expression of core clock genes and impairs the response of the circadian clock to stress. CHRONO forms a complex with the glucocorticoid receptor and mediates glucocorticoid response. Our comprehensive study spotlights a previously unrecognized clock component of an unsuspected negative circadian feedback loop that is independent of another negative regulator, Cry2, and that integrates behavioral stress and epigenetic control for efficient metabolic integration of the clock.

  18. The Mouse Clock Locus: Sequence and Comparative Analysis of 204 Kb from Mouse Chromosome 5

    OpenAIRE

    Wilsbacher, Lisa D.; Sangoram, Ashvin M.; Antoch, Marina P.; Takahashi, Joseph S.

    2000-01-01

    The Clock gene encodes a basic helix-loop-helix (bHLH)–PAS transcription factor that regulates circadian rhythms in mice. We previously cloned Clock in mouse and human using a battery of behavioral and molecular techniques, including shotgun sequencing of two bacterial artificial chromosome (BAC) clones. Here we report the finished sequence of a 204-kb region from mouse chromosome 5. This region contains the complete loci for the Clock and Tpardl (pFT27) genes, as well as the 3′ partial locus...

  19. Canon, Jubilees 23 and Psalm 90

    Directory of Open Access Journals (Sweden)

    Pieter M. Venter

    2014-02-01

    Full Text Available There never existed only one form of the biblical canon. This can be seen in the versions as well as editions of the Hebrew and Greek Bibles. History and circumstances played a central role in the gradual growth of eventually different forms of the biblical canon. This process can be studied using the discipline of intertextuality. There always was a movement from traditum to traditio in the growth of these variant forms of biblical canon. This can be seen in an analysis of the intertextuality in Jubilees 23:8–32. The available canon of the day was interpreted there, not according to a specific demarcated volume of canonical scriptures, but in line with the theology presented in those materials, especially that of Psalm 90.

  20. The circadian molecular clock creates epidermal stem cell heterogeneity.

    Science.gov (United States)

    Janich, Peggy; Pascual, Gloria; Merlos-Suárez, Anna; Batlle, Eduard; Ripperger, Jürgen; Albrecht, Urs; Cheng, Hai-Ying M; Obrietan, Karl; Di Croce, Luciano; Benitah, Salvador Aznar

    2011-11-09

    Murine epidermal stem cells undergo alternate cycles of dormancy and activation, fuelling tissue renewal. However, only a subset of stem cells becomes active during each round of morphogenesis, indicating that stem cells coexist in heterogeneous responsive states. Using a circadian-clock reporter-mouse model, here we show that the dormant hair-follicle stem cell niche contains coexisting populations of cells at opposite phases of the clock, which are differentially predisposed to respond to homeostatic cues. The core clock protein Bmal1 modulates the expression of stem cell regulatory genes in an oscillatory manner, to create populations that are either predisposed, or less prone, to activation. Disrupting this clock equilibrium, through deletion of Bmal1 (also known as Arntl) or Per1/2, resulted in a progressive accumulation or depletion of dormant stem cells, respectively. Stem cell arrhythmia also led to premature epidermal ageing, and a reduction in the development of squamous tumours. Our results indicate that the circadian clock fine-tunes the temporal behaviour of epidermal stem cells, and that its perturbation affects homeostasis and the predisposition to tumorigenesis.

  1. Multiplicity fluctuations in heavy-ion collisions using canonical and grand-canonical ensemble

    Energy Technology Data Exchange (ETDEWEB)

    Garg, P. [Indian Institute of Technology Indore, Discipline of Physics, School of Basic Science, Simrol (India); Mishra, D.K.; Netrakanti, P.K.; Mohanty, A.K. [Bhabha Atomic Research Center, Nuclear Physics Division, Mumbai (India)

    2016-02-15

    We report the higher-order cumulants and their ratios for baryon, charge and strangeness multiplicity in canonical and grand-canonical ensembles in ideal thermal model including all the resonances. When the number of conserved quanta is small, an explicit treatment of these conserved charges is required, which leads to a canonical description of the system and the fluctuations are significantly different from the grand-canonical ensemble. Cumulant ratios of total-charge and net-charge multiplicity as a function of collision energies are also compared in grand-canonical ensemble. (orig.)

  2. Thyroxine differentially modulates the peripheral clock: lessons from the human hair follicle.

    Directory of Open Access Journals (Sweden)

    Jonathan A Hardman

    Full Text Available The human hair follicle (HF exhibits peripheral clock activity, with knock-down of clock genes (BMAL1 and PER1 prolonging active hair growth (anagen and increasing pigmentation. Similarly, thyroid hormones prolong anagen and stimulate pigmentation in cultured human HFs. In addition they are recognized as key regulators of the central clock that controls circadian rhythmicity. Therefore, we asked whether thyroxine (T4 also influences peripheral clock activity in the human HF. Over 24 hours we found a significant reduction in protein levels of BMAL1 and PER1, with their transcript levels also decreasing significantly. Furthermore, while all clock genes maintained their rhythmicity in both the control and T4 treated HFs, there was a significant reduction in the amplitude of BMAL1 and PER1 in T4 (100 nM treated HFs. Accompanying this, cell-cycle progression marker Cyclin D1 was also assessed appearing to show an induced circadian rhythmicity by T4 however, this was not significant. Contrary to short term cultures, after 6 days, transcript and/or protein levels of all core clock genes (BMAL1, PER1, clock, CRY1, CRY2 were up-regulated in T4 treated HFs. BMAL1 and PER1 mRNA was also up-regulated in the HF bulge, the location of HF epithelial stem cells. Together this provides the first direct evidence that T4 modulates the expression of the peripheral molecular clock. Thus, patients with thyroid dysfunction may also show a disordered peripheral clock, which raises the possibility that short term, pulsatile treatment with T4 might permit one to modulate circadian activity in peripheral tissues as a target to treat clock-related disease.

  3. Circadian clocks, epigenetics, and cancer

    KAUST Repository

    Masri, Selma

    2015-01-01

    The interplay between circadian rhythm and cancer has been suggested for more than a decade based on the observations that shift work and cancer incidence are linked. Accumulating evidence implicates the circadian clock in cancer survival and proliferation pathways. At the molecular level, multiple control mechanisms have been proposed to link circadian transcription and cell-cycle control to tumorigenesis.The circadian gating of the cell cycle and subsequent control of cell proliferation is an area of active investigation. Moreover, the circadian clock is a transcriptional system that is intricately regulated at the epigenetic level. Interestingly, the epigenetic landscape at the level of histone modifications, DNA methylation, and small regulatory RNAs are differentially controlled in cancer cells. This concept raises the possibility that epigenetic control is a common thread linking the clock with cancer, though little scientific evidence is known to date.This review focuses on the link between circadian clock and cancer, and speculates on the possible connections at the epigenetic level that could further link the circadian clock to tumor initiation or progression.

  4. Evidence Suggesting that the Cardiomyocyte Circadian Clock Modulates Responsiveness of the Heart to Hypertrophic Stimuli in Mice

    OpenAIRE

    Durgan, David J.; Tsai, Ju-Yun; Grenett, Maximiliano H.; Pat, Betty M.; Ratcliffe, William F.; Villegas-Montoya, Carolina; Garvey, Merissa E.; Nagendran, Jeevan; Dyck, Jason R. B.; Bray, Molly S.; Gamble, Karen L.; Gimble, Jeffrey M.; Young, Martin E.

    2011-01-01

    Circadian dyssynchrony of an organism (at the whole body level) with its environment, either through light/dark cycle or genetic manipulation of clock genes, augments various cardiometabolic diseases. The cardiomyocyte circadian clock has recently been shown to influence multiple myocardial processes, ranging from transcriptional regulation and energy metabolism, to contractile function. We therefore reasoned that chronic dyssychrony of the cardiomyocyte circadian clock with its environment w...

  5. Comparative evolution of the recA gene of surface and deep subsurface microorganisms (an evolutionary clock of intermediate rate). Final report

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.V.

    1998-04-01

    Because of the ability of the recA protein product to maintain both DNA integrity and increase genetic diversity, this gene may be essential to the survival of microorganisms following the damaging effects of numerous environmental stresses such as exposure to solar UV radiation, exposure to gamma radiation, starvation, and changing environments. While the various activities and amino-acid sequence of recA have been highly conserved among the eubacteria and archaea, little is known as to whether a strict structure-function relationship has been conserved. In other words, are the same regions of this highly plastic, functionally heterogeneous protein involved in the same catalytic capacities throughout the bacterial kingdom? While it is reasonable to assume that this type of conservation has also occurred, we felt it necessary to test the assumption by demonstrating that mutations in different genera of bacteria which eliminate similar functions (i.e., lead to similar phenotypes) are caused by changes in the amino-acid sequence in the same regions of their recA proteins. Therefore, we located the changes in nucleotide sequence in two recA mutants of P. aeruginosa which displayed mutant phenotypes in recombination and UV resistance. Our assumption was that if structure-function relationships held, these mutations would be found in areas already identified as essential for the function of the E. coli recA protein.

  6. Synchronous clock stopper for microprocessor

    Science.gov (United States)

    Kitchin, David A. (Inventor)

    1985-01-01

    A synchronous clock stopper circuit for inhibiting clock pulses to a microprocessor in response to a stop request signal, and for reinstating the clock pulses in response to a start request signal thereby to conserve power consumption of the microprocessor when used in an environment of limited power. The stopping and starting of the microprocessor is synchronized, by a phase tracker, with the occurrences of a predetermined phase in the instruction cycle of the microprocessor in which the I/O data and address lines of the microprocessor are of high impedance so that a shared memory connected to the I/O lines may be accessed by other peripheral devices. The starting and stopping occur when the microprocessor initiates and completes, respectively, an instruction, as well as before and after transferring data with a memory. Also, the phase tracker transmits phase information signals over a bus to other peripheral devices which signals identify the current operational phase of the microprocessor.

  7. Sr+ single-ion clock

    Science.gov (United States)

    Dubé, P.; Madej, A. A.; Jian, B.

    2016-06-01

    The evaluated uncertainty of the 88Sr+ ion optical clock has decreased by several orders of magnitude during the last 15 years, currently reaching a level of 1.2 x 10-17. In this paper, we review the methods developed to control very effectively the largest frequency shifts that once were the main sources of uncertainty for the 88Sr+ single-ion clock. These shifts are the micromotion shifts, the electric quadrupole shift and the blackbody radiation shift. With further improvements to the evaluation of the systematic shifts, especially the blackbody radiation shift, it is expected that the total uncertainty of the single-ion clock transition frequency will reach the low 10-18 level in the near future.

  8. Function of the Shaw potassium channel within the Drosophila circadian clock.

    Directory of Open Access Journals (Sweden)

    James J Hodge

    Full Text Available BACKGROUND: In addition to the molecular feedback loops, electrical activity has been shown to be important for the function of networks of clock neurons in generating rhythmic behavior. Most studies have used over-expression of foreign channels or pharmacological manipulations that alter membrane excitability. In order to determine the cellular mechanisms that regulate resting membrane potential (RMP in the native clock of Drosophila we modulated the function of Shaw, a widely expressed neuronal potassium (K(+ channel known to regulate RMP in Drosophila central neurons. METHODOLOGY/PRINCIPAL FINDINGS: We show that Shaw is endogenously expressed in clock neurons. Differential use of clock gene promoters was employed to express a range of transgenes that either increase or decrease Shaw function in different clusters of clock neurons. Under LD conditions, increasing Shaw levels in all clock neurons (LNv, LNd, DN(1, DN(2 and DN(3, or in subsets of clock neurons (LNd and DNs or DNs alone increases locomotor activity at night. In free-running conditions these manipulations result in arrhythmic locomotor activity without disruption of the molecular clock. Reducing Shaw in the DN alone caused a dramatic lengthening of the behavioral period. Changing Shaw levels in all clock neurons also disrupts the rhythmic accumulation and levels of Pigment Dispersing Factor (PDF in the dorsal projections of LNv neurons. However, changing Shaw levels solely in LNv neurons had little effect on locomotor activity or rhythmic accumulation of PDF. CONCLUSIONS/SIGNIFICANCE: Based on our results it is likely that Shaw modulates pacemaker and output neuronal electrical activity that controls circadian locomotor behavior by affecting rhythmic release of PDF. The results support an important role of the DN clock neurons in Shaw-mediated control of circadian behavior. In conclusion, we have demonstrated a central role of Shaw for coordinated and rhythmic output from clock

  9. The canonical form of the Rabi hamiltonian

    CERN Document Server

    Szopa, M; Ceulemans, A; Szopa, Marek; Mys, Geert; Ceulemans, Arnout

    1996-01-01

    The Rabi Hamiltonian, describing the coupling of a two-level system to a single quantized boson mode, is studied in the Bargmann-Fock representation. The corresponding system of differential equations is transformed into a canonical form in which all regular singularities between zero and infinity have been removed. The canonical or Birkhoff-transformed equations give rise to a two-dimensional eigenvalue problem, involving the energy and a transformational parameter which affects the coupling strength. The known isolated exact solutions of the Rabi Hamiltonian are found to correspond to the uncoupled form of the canonical system.

  10. Mammalian circadian clock and metabolism - the epigenetic link.

    Science.gov (United States)

    Bellet, Marina Maria; Sassone-Corsi, Paolo

    2010-11-15

    Circadian rhythms regulate a wide variety of physiological and metabolic processes. The clock machinery comprises complex transcriptional-translational feedback loops that, through the action of specific transcription factors, modulate the expression of as many as 10% of cellular transcripts. This marked change in gene expression necessarily implicates a global regulation of chromatin remodeling. Indeed, various descriptive studies have indicated that histone modifications occur at promoters of clock-controlled genes (CCGs) in a circadian manner. The finding that CLOCK, a transcription factor crucial for circadian function, has intrinsic histone acetyl transferase (HAT) activity has paved the way to unraveling the molecular mechanisms that govern circadian chromatin remodeling. A search for the histone deacetylase (HDAC) that counterbalances CLOCK activity revealed that SIRT1, a nicotinamide adenin dinucleotide (NAD(+))-dependent HDAC, functions in a circadian manner. Importantly, SIRT1 is a regulator of aging, inflammation and metabolism. As many transcripts that oscillate in mammalian peripheral tissues encode proteins that have central roles in metabolic processes, these findings establish a functional and molecular link between energy balance, chromatin remodeling and circadian physiology. Here we review recent studies that support the existence of this link and discuss their implications for understanding mammalian physiology and pathology. PMID:21048160

  11. Reading the Molecular Clock.

    Science.gov (United States)

    McKean, Kevin

    1983-01-01

    Suggesting that the evolutionary record may be written in proteins and genes, discusses research in which species are compared by immunology, DNA, and radioimmunoassay. Molecular studies show that DNA from humans and chimps is 98 percent identical, a degree of similarity usually occurring only among animals of the same genus. (JN)

  12. Light and the human circadian clock

    NARCIS (Netherlands)

    Roenneberg, Till; Kantermann, Thomas; Juda, Myriam; Vetter, Céline; Allebrandt, Karla V

    2013-01-01

    The circadian clock can only reliably fulfil its function if it is stably entrained. Most clocks use the light-dark cycle as environmental signal (zeitgeber) for this active synchronisation. How we think about clock function and entrainment has been strongly influenced by the early concepts of the f

  13. The Literary Canon in the Age of New Media

    DEFF Research Database (Denmark)

    Backe, Hans-Joachim

    2015-01-01

    The article offers a comparative overview of the diverging courses of the canon debate in Anglophone and Germanophone contexts. While the Anglophone canon debate has focused on the politics of canon composition, the Germanophone canon debate has been more concerned with the malleability and media......The article offers a comparative overview of the diverging courses of the canon debate in Anglophone and Germanophone contexts. While the Anglophone canon debate has focused on the politics of canon composition, the Germanophone canon debate has been more concerned with the malleability...

  14. Molecular cloning and bioinformatic analysis of biological clock genes Bmcry1 and Bmcry2 in Bombyx mori%家蚕生物钟基因Bmcryl与Bmcry2的克隆及生物信息学分析

    Institute of Scientific and Technical Information of China (English)

    王文栋; 梁辉; 朱晓苏; 陶卉; 徐丽; 司马杨虎; 徐世清

    2011-01-01

    隐花色素基因(cryptochrome gene,Cry)是已确认的主要生物钟基因之一,它广泛分布于细菌和真核生物中.昆虫Cry基因分为Cry1,和Cry2两类,果蝇只有Cry1,蜜蜂等膜翅目昆虫只有Cry2.为了研究鳞翅目模式昆虫家蚕Bombyx mori的昼夜生物钟分子调控机制和昆虫CRY蛋白的进化,本研究克隆了家蚕Bmcry1与Bmcry2基因的全长cDNA序列,长度分别为2 166 bp和2 389 bp(GenBank登录号分别为HM747059和HM747060),拼接了全基因序列(GenBank 登录号分别为HM747057和HM747058).Bmcry1基因具有12个外显子和11个内含子,Bmcry2具有9个外显子,8个内含子.染色体定位表明Bmcry1和8mcry2分别位于第17号和15号染色体.通过同源建模获得了Bmcry1和Bmcry2蛋白的三维结构,其FAD入口大而深,这与CRY不与嘧啶二聚体结合相符;Bmcry1和Bmcry2表面多为负电荷,只在FAD人口位置有正电荷富集.多序列比对、蛋白质基序和功能域分析、聚类分析等结果显示,Bmcry1和Bmcry2分属昆虫的CRY1和CRY2,与柞蚕Antheraea pernyi等鳞翅目昆虫中CRY蛋白的亲缘关系最近.家蚕的两类CRY与其他昆虫CRY相似,也都具有DNA光解酶和FAD结合功能域,但保守位点和蛋白基序位点不同.本实验为进一步研究家蚕CRY1和CRY2的分子进化机制和功能创造了条件.%Cryptochrome gene (Cry) is one of the major biological clock genes which were widely distributed in bacteria and eukaryotes. Cry genes of insect species are clearly divided into two types, Cry1 and Cry2. Only Cry1 is expressed in Drosophila, while only Cry2 was expressed in bees and other hymenopteran insects. In order to explore the molecular mechanism of circadian clock in lepidopteran model insect Bombyx mori and the evolution of CRY proteins in insect species, we cloned the eDNA sequences of Bmcryl (2 166 bp, GenBank accession no. HM747059) and Bmcry2 (2 389 bp, GenBank accession no.HM747060), and obtained their gene sequences (Gen

  15. A generalized gravitomagnetic clock effect

    CERN Document Server

    Hackmann, Eva

    2014-01-01

    In General Relativity the rotation of a gravitating body like the Earth influences the motion of orbiting test particles or satellites in a non-Newtonian way. This causes e.g. a precession of the orbital plane, known as the Lense-Thirring effect, and a precession of the spin of a gyroscope, known as the Schiff effect. Here we discuss a third effect, first introduced by Cohen and Mashhoon, called the gravitomagnetic clock effect. It describes the difference in proper time of counter revolving clocks after a revolution of $2\\pi$. For two clocks on counter rotating equatorial circular orbits around the Earth the effect is about $10^{-7}$ seconds per revolution, which is quite large. We introduce a general relativistic definition of the gravitomagnetic clock effect which is valid for arbitrary pairs of orbits. This includes rotations in the same direction and different initial conditions, which is crucial if the effect can be detected with existing satellites or with payloads on non-dedicated missions. We also de...

  16. Biological clocks: riding the tides.

    Science.gov (United States)

    de la Iglesia, Horacio O; Johnson, Carl Hirschie

    2013-10-21

    Animals with habitats in the intertidal zone often display biological rhythms that coordinate with both the tidal and the daily environmental cycles. Two recent studies show that the molecular components of the biological clocks mediating tidal rhythms are likely different from the phylogenetically conserved components that mediate circadian (daily) rhythms.

  17. Regularized canonical correlation analysis with unlabeled data

    Institute of Scientific and Technical Information of China (English)

    Xi-chuan ZHOU; Hai-bin SHEN

    2009-01-01

    In standard canonical correlation analysis (CCA), the data from definite datasets are used to estimate their canonical correlation. In real applications, for example in bilingual text retrieval, it may have a great portion of data that we do not know which set it belongs to. This part of data is called unlabeled data, while the rest from definite datasets is called labeled data. We propose a novel method called regularized canonical correlation analysis (RCCA), which makes use of both labeled and unlabeled samples. Specifically, we learn to approximate canonical correlation as if all data were labeled. Then. we describe a generalization of RCCA for the multi-set situation. Experiments on four real world datasets, Yeast, Cloud, Iris, and Haberman, demonstrate that,by incorporating the unlabeled data points, the accuracy of correlation coefficients can be improved by over 30%.

  18. [Cognitive Function and Calcium. Ca2+-dependent regulatory mechanism of circadian clock oscillation and its relevance to neuronal function].

    Science.gov (United States)

    Kon, Naohiro; Fukada, Yoshitaka

    2015-02-01

    Circadian clock generates a variety of biological rhythms such as sleep/wake cycles and blood hormone rhythms. The circadian clock also bolsters daily mental activities. In fact, abnormalities of the circadian rhythms are found in several neurological disorders. The circadian clock has two important functions: (i) a cell-autonomous oscillatory function and (ii) a phase-adjusting function that synchronizes the clock oscillation with environmental cycling conditions such as light/dark cycle. Behavioral rhythms are controlled by the central clock in hypothalamic suprachiasmatic nucleus (SCN). The central clock orchestrates peripheral clocks in the other tissues via neuronal connection and/or actions of humoral factors. The molecular mechanism of the cell-autonomous clock is based on transcriptional feedback regulation of clock genes by their encoded products. Ca2+ is essential for not only the light response of the clock but also the cell autonomous oscillation mechanism. This article provides an overview of recent progress in studies of Ca2+-dependent regulatory mechanism of the molecular clockwork. PMID:25634045

  19. Subsets of configurations and canonical partition functions

    DEFF Research Database (Denmark)

    Bloch, J.; Bruckmann, F.; Kieburg, M.;

    2013-01-01

    We explain the physical nature of the subset solution to the sign problem in chiral random matrix theory: the subset sum over configurations is shown to project out the canonical determinant with zero quark charge from a given configuration. As the grand canonical chiral random matrix partition f...... function is independent of the chemical potential, the zero-quark-charge sector provides the full result. © 2013 American Physical Society....

  20. Canonical equations of Hamilton with beautiful symmetry

    OpenAIRE

    Liang, Guo; Guo, Qi

    2012-01-01

    The Hamiltonian formulation plays the essential role in constructing the framework of modern physics. In this paper, a new form of canonical equations of Hamilton with the complete symmetry is obtained, which are valid not only for the first-order differential system, but also for the second-order differential system. The conventional form of the canonical equations without the symmetry [Goldstein et al., Classical Mechanics, 3rd ed, Addison-Wesley, 2001] are only for the second-order differe...

  1. The biological clock is regulated by adrenergic signaling in brown fat but is dispensable for cold-induced thermogenesis.

    Directory of Open Access Journals (Sweden)

    Siming Li

    Full Text Available The biological clock plays an important role in integrating nutrient and energy metabolism with other cellular processes. Previous studies have demonstrated that core clock genes are rhythmically expressed in peripheral tissues, including the liver, skeletal muscle, pancreatic islets, and white and brown adipose tissues. These peripheral clocks are entrained by physiological cues, thereby aligning the circadian pacemaker to tissue functions. The mechanisms that regulate brown adipose tissue clock in response to physiological signals remain poorly understood. Here we found that the expression of core clock genes is highly responsive to cold exposure in brown fat, but not in white fat. This cold-inducible regulation of the clock network is mediated by adrenergic receptor activation and the transcriptional coactivator PGC-1α. Brown adipocytes in mice lacking a functional clock contain large lipid droplets accompanied by dysregulation of genes involved in lipid metabolism and adaptive thermogenesis. Paradoxically, the "clockless" mice were competent in maintaining core body temperature during cold exposure. These studies elucidated the presence of adrenergic receptor/clock crosstalk that appears to be required for normal thermogenic gene expression in brown fat.

  2. Cryptochromes define a novel circadian clock mechanism in monarch butterflies that may underlie sun compass navigation.

    Science.gov (United States)

    Zhu, Haisun; Sauman, Ivo; Yuan, Quan; Casselman, Amy; Emery-Le, Myai; Emery, Patrick; Reppert, Steven M

    2008-01-01

    The circadian clock plays a vital role in monarch butterfly (Danaus plexippus) migration by providing the timing component of time-compensated sun compass orientation, a process that is important for successful navigation. We therefore evaluated the monarch clockwork by focusing on the functions of a Drosophila-like cryptochrome (cry), designated cry1, and a vertebrate-like cry, designated cry2, that are both expressed in the butterfly and by placing these genes in the context of other relevant clock genes in vivo. We found that similar temporal patterns of clock gene expression and protein levels occur in the heads, as occur in DpN1 cells, of a monarch cell line that contains a light-driven clock. CRY1 mediates TIMELESS degradation by light in DpN1 cells, and a light-induced TIMELESS decrease occurs in putative clock cells in the pars lateralis (PL) in the brain. Moreover, monarch cry1 transgenes partially rescue both biochemical and behavioral light-input defects in cry(b) mutant Drosophila. CRY2 is the major transcriptional repressor of CLOCK:CYCLE-mediated transcription in DpN1 cells, and endogenous CRY2 potently inhibits transcription without involvement of PERIOD. CRY2 is co-localized with clock proteins in the PL, and there it translocates to the nucleus at the appropriate time for transcriptional repression. We also discovered CRY2-positive neural projections that oscillate in the central complex. The results define a novel, CRY-centric clock mechanism in the monarch in which CRY1 likely functions as a blue-light photoreceptor for entrainment, whereas CRY2 functions within the clockwork as the transcriptional repressor of a negative transcriptional feedback loop. Our data further suggest that CRY2 may have a dual role in the monarch butterfly's brain-as a core clock element and as an output that regulates circadian activity in the central complex, the likely site of the sun compass. PMID:18184036

  3. Refining inflation using non-canonical scalars

    Energy Technology Data Exchange (ETDEWEB)

    Unnikrishnan, Sanil; Sahni, Varun [Inter-University Centre for Astronomy and Astrophysics, Post Bag 4, Ganeshkhind, Pune 411 007 (India); Toporensky, Aleksey, E-mail: sanil@iucaa.ernet.in, E-mail: varun@iucaa.ernet.in, E-mail: atopor@rambler.ru [Sternberg Astronomical Institute, Moscow State University, Universitetsky Prospekt, 13, Moscow 119992 (Russian Federation)

    2012-08-01

    This paper revisits the Inflationary scenario within the framework of scalar field models possessing a non-canonical kinetic term. We obtain closed form solutions for all essential quantities associated with chaotic inflation including slow roll parameters, scalar and tensor power spectra, spectral indices, the tensor-to-scalar ratio, etc. We also examine the Hamilton-Jacobi equation and demonstrate the existence of an inflationary attractor. Our results highlight the fact that non-canonical scalars can significantly improve the viability of inflationary models. They accomplish this by decreasing the tensor-to-scalar ratio while simultaneously increasing the value of the scalar spectral index, thereby redeeming models which are incompatible with the cosmic microwave background (CMB) in their canonical version. For instance, the non-canonical version of the chaotic inflationary potential, V(φ) ∼ λφ{sup 4}, is found to agree with observations for values of λ as large as unity! The exponential potential can also provide a reasonable fit to CMB observations. A central result of this paper is that steep potentials (such as V∝φ{sup −n}) usually associated with dark energy, can drive inflation in the non-canonical setting. Interestingly, non-canonical scalars violate the consistency relation r = −8n{sub T}, which emerges as a smoking gun test for this class of models.

  4. Both canonical and non-canonical Wnt signaling independently promote stem cell growth in mammospheres.

    Directory of Open Access Journals (Sweden)

    Alexander M Many

    Full Text Available The characterization of mammary stem cells, and signals that regulate their behavior, is of central importance in understanding developmental changes in the mammary gland and possibly for targeting stem-like cells in breast cancer. The canonical Wnt/β-catenin pathway is a signaling mechanism associated with maintenance of self-renewing stem cells in many tissues, including mammary epithelium, and can be oncogenic when deregulated. Wnt1 and Wnt3a are examples of ligands that activate the canonical pathway. Other Wnt ligands, such as Wnt5a, typically signal via non-canonical, β-catenin-independent, pathways that in some cases can antagonize canonical signaling. Since the role of non-canonical Wnt signaling in stem cell regulation is not well characterized, we set out to investigate this using mammosphere formation assays that reflect and quantify stem cell properties. Ex vivo mammosphere cultures were established from both wild-type and Wnt1 transgenic mice and were analyzed in response to manipulation of both canonical and non-canonical Wnt signaling. An increased level of mammosphere formation was observed in cultures derived from MMTV-Wnt1 versus wild-type animals, and this was blocked by treatment with Dkk1, a selective inhibitor of canonical Wnt signaling. Consistent with this, we found that a single dose of recombinant Wnt3a was sufficient to increase mammosphere formation in wild-type cultures. Surprisingly, we found that Wnt5a also increased mammosphere formation in these assays. We confirmed that this was not caused by an increase in canonical Wnt/β-catenin signaling but was instead mediated by non-canonical Wnt signals requiring the receptor tyrosine kinase Ror2 and activity of the Jun N-terminal kinase, JNK. We conclude that both canonical and non-canonical Wnt signals have positive effects promoting stem cell activity in mammosphere assays and that they do so via independent signaling mechanisms.

  5. 大麦(Hordeum vulgare)昼夜节律钟基因CCA1的克隆及表达分析%Cloning and Expression Analysis of Circadian Clock Gene CCA1 in Barley (Hordeum vulgare)

    Institute of Scientific and Technical Information of China (English)

    邢国芳; 宋萌; 姚涵; 韩渊怀

    2012-01-01

    CCA 1 gene plays an important role in circadian clock sensitivity in rice (Oryza sativa L. ) and Arabidopsis thaliana. In this study, CCAl gene in barley was cloned by RT-PCR using homological primers based on the highly conserved region of the multiple alignments of the rice and Arabidopsis. The similarities of this sequence were up to 72% and 69%, respectively, to corresponding mRNA sequences of rice and maize in BLASTx of GenBank database. Using ORF Finder software, a 2157 bp open reading frame was found to code 718 amino acids. Using Compute pI/Mw tool, the amino acid sequence was analyzed, and it revealed that the molecular weight of this protein was about 77 769. 4 Da, and isoelectric point was about 6. 55. We established fluorescence quantitative RT-PCR system with barley inbred lines HUADAMAI 1 and HUADAMAI 2, and studied the expression of CCAl in leaf under 16h/8h (light/ dark) conditions. Expression analysis showed that the gene expression peaked at dawn (ZTO) then gradually declined from ZTO to ZT15, bottomed at ZT15, then increased and returned to the initial level at ZT24. This study will provide information of barley CCAl gene for further studying the function in regulating photoperiod sensitivity in barley, and provide scientific basis for clarifying the mechanism of the circadian synchronization in barley.%昼夜节律钟基因CCA1在调解水稻和拟南芥的光周期反应中起着重要作用.利用BLAST手段以玉米中的CCA1基因序列作为靶序列,调取Genbank数据库信息,并结合RT-PCR方法获得了大麦的cDNA同源序列.BLASTx分析发现其与水稻和玉米的序列相似性分别达到72%和69%.通过ORF Finder软件分析发现,该序列包含一个2157 bp的开放阅读框,编码一个由718个氨基酸残基组成的蛋白序列,其分子量为77769.4 Da,等电点为6.55.采用实时荧光定量PCR分析发现,随光照时间的变化,该基因在大麦叶片中的表达量呈现出白天不断降低而夜晚逐渐

  6. CLOCK基因与睡眠对男性注意缺陷多动障碍患儿注意抑制的影响%The role of CLOCK gene and sleep problems on inhibition in male children with attention-deficit/hyperac-tivity disorder

    Institute of Scientific and Technical Information of China (English)

    金嘉郦; 刘璐; 李海梅; 高倩; 王玉凤; 钱秋谨

    2016-01-01

    Objective To explore the correlation between circadian clock gene clock circadian regulator (CLOCK) and attention-deficit/hyperactivity disorder (ADHD) and the role of CLOCK and sleep problems on inhibition in male children with ADHD. Methods Two single nucleotide polymorphisms (SNPs) of CLOCK were genotyped in 854 male ADHD children and 320 male controls. Sleep problems were assessed using parent symptom questionnaire. In ADHD cases, the main effects and interaction of CLOCK SNPs and sleep problems on inhibition assessed by using Stroop Color and Word Test, were analyzed using the analysis of covariance (ANCOVA). Results No significant differences of allele and genotype frequencies were found for rs6832769 and rs11932595 in all case-control groups (P>0.05). In ADHD cas⁃es, the main effects of rs6832769 and rs11932595 genotypes and sleep problems on inhibition were not significant (P>0.05). However, the interaction of rs6832769 genotype and sleep problems was significant (F=6.71, P=0.01). When ac⁃companied with sleep problems, ADHD cases carrying the AA&AG genotype showed the longest time of word interfer⁃ ence (F=6.63, P=0.01). Conclusions Inhibition of male ADHD children can be modulated by the interaction of CLOCK rs6832769 and sleep problems.%目的:探讨生物钟(clock circadian regulator,CLOCK)基因与男性儿童注意缺陷多动障碍(atten⁃tion-deficit/hyperactivity disorder,ADHD)的关联,以及CLOCK基因与睡眠问题及其交互作用对ADHD男性患儿注意抑制的影响。方法对854例ADHD男性患儿与320名男性对照儿童的CLOCK基因rs6832769与rs11932595单核苷酸多态性位点(single nucleotide polymorphisms,SNPs)进行基因型检测。采用Conners父母症状问卷评估ADHD组与对照组的睡眠问题,通过Stroop色词命名测验评估ADHD组的注意抑制功能,通过协方差分析分别检验CLOCK基因2个SNPs和睡眠问题及其交互作用对ADHD男性患儿注

  7. Cloning and Expression Analysis of Circadian Clock Gene CCA1 in Maize%玉米昼夜节律钟基因CCA1的克隆及表达分析

    Institute of Scientific and Technical Information of China (English)

    邢国芳; 杜伟建; 张雁明; 韩浩坤; 韩渊怀

    2011-01-01

    昼夜节律钟基因CCA1在调解水稻和拟南芥的光周期反应中起着重要作用.本研究利用从水稻和拟南芥中分离到的CCA1基因序列作为靶序列BLAST获取Genbank中的信息,通过RT-PCR方法克隆获得了一条2326bp的玉米CCA1基因cDNA序列.BLAST比对发现其与水稻、大麦和拟南芥的序列相似性分别达73.7%、69.4%和39.8%.利用NCBI中的ORF Finder软件分析,发现该序列包含一个2163bp的开放阅读框,编码720个氨基酸残基,蛋白的分子量约为78819.17Da,等电点为6.468.推测其含有3个myb-DNA结合域、7个N-豆蔻酰化位点、1个G-box蛋白结合域以及1个蛋白跨膜结合域.采用实时荧光定量PCR分析发现,随光照时间的变化,该基因在玉米叶片中的表达量呈现出白天不断降低而夜晚逐渐升高的昼夜变化趋势.本研究为进一步研究玉米CCA1基因在调控玉米光周期敏感现象中的功能,阐明玉米光周期敏感机制提供了科学依据.%CCA 1 gene plays an important role in circadian clock sensitivity in rice (Oryza sative L. ) and Arabidopsis thaliana. In this study, CCA1 (2326 bp) was cloned by RT-PCR using homological primers based on the highly conserved region of the multiple alignment of the rice and Arabidopsis. CCA1 from GenBank of NCBI. The similarities of these sequences were up to 73. 7% ,69. 4 and 39. 8% , respectively, to corresponding mRNA sequences of rice, barley and Arabidopsis in BLAST/nr of GenBank database. Using ORF Finder software, a 2163 bp open reading frame was found to code 720 amino acids. Analyzing this ami no acid sequence by Compute pI/Mw tool revealed that the molecular weight of this protein was about 78819.17 Da , and isoelectric point was about 6. 468. The amino acid sequence contained three myb-DNA binding domains, seven N-myristoylation sites, one G-box binding domain and one putative transmembrane spanning region. We established fluorescence quantitative RT-PCR system with maize

  8. PPARs Integrate the Mammalian Clock and Energy Metabolism

    Directory of Open Access Journals (Sweden)

    Lihong Chen

    2014-01-01

    Full Text Available Peroxisome proliferator-activated receptors (PPARs are a group of nuclear receptors that function as transcription factors regulating the expression of numerous target genes. PPARs play an essential role in various physiological and pathological processes, especially in energy metabolism. It has long been known that metabolism and circadian clocks are tightly intertwined. However, the mechanism of how they influence each other is not fully understood. Recently, all three PPAR isoforms were found to be rhythmically expressed in given mouse tissues. Among them, PPARα and PPARγ are direct regulators of core clock components, Bmal1 and Rev-erbα, and, conversely, PPARα is also a direct Bmal1 target gene. More importantly, recent studies using knockout mice revealed that all PPARs exert given functions in a circadian manner. These findings demonstrated a novel role of PPARs as regulators in correlating circadian rhythm and metabolism. In this review, we summarize advances in our understanding of PPARs in circadian regulation.

  9. The Pentose Phosphate Pathway Regulates the Circadian Clock.

    Science.gov (United States)

    Rey, Guillaume; Valekunja, Utham K; Feeney, Kevin A; Wulund, Lisa; Milev, Nikolay B; Stangherlin, Alessandra; Ansel-Bollepalli, Laura; Velagapudi, Vidya; O'Neill, John S; Reddy, Akhilesh B

    2016-09-13

    The circadian clock is a ubiquitous timekeeping system that organizes the behavior and physiology of organisms over the day and night. Current models rely on transcriptional networks that coordinate circadian gene expression of thousands of transcripts. However, recent studies have uncovered phylogenetically conserved redox rhythms that can occur independently of transcriptional cycles. Here we identify the pentose phosphate pathway (PPP), a critical source of the redox cofactor NADPH, as an important regulator of redox and transcriptional oscillations. Our results show that genetic and pharmacological inhibition of the PPP prolongs the period of circadian rhythms in human cells, mouse tissues, and fruit flies. These metabolic manipulations also cause a remodeling of circadian gene expression programs that involves the circadian transcription factors BMAL1 and CLOCK, and the redox-sensitive transcription factor NRF2. Thus, the PPP regulates circadian rhythms via NADPH metabolism, suggesting a pivotal role for NADPH availability in circadian timekeeping.

  10. A wheel of time: the circadian clock, nuclear receptors, and physiology

    OpenAIRE

    Yang, Xiaoyong

    2010-01-01

    It is a long-standing view that the circadian clock functions to proactively align internal physiology with the 24-h rotation of the earth. Recent studies, including one by Schmutz and colleagues (pp. 345–357) in the February 15, 2010, issue of Genes & Development, delineate strikingly complex connections between molecular clocks and nuclear receptor signaling pathways, implying the existence of a large-scale circadian regulatory network coordinating a diverse array of physiological processes...

  11. Circadian rhythms of cyanobacteria: monitoring the biological clocks of individual colonies by bioluminescence.

    OpenAIRE

    Kondo, T.; Ishiura, M

    1994-01-01

    Reproducible circadian rhythms of bioluminescence from individual colonies of cyanobacteria (Synechococcus sp. strain PCC 7942) has been observed. Phenotypic monitoring of colonies on agar plates will enable us to genetically analyze the molecular mechanism of the circadian clock of cyanobacteria by screening for clock mutants. By the introduction of a bacterial luciferase gene, we previously developed a transformed cyanobacterial strain (AMC149) that expresses luciferase as a bioluminescent ...

  12. Muscle insulin sensitivity and glucose metabolism are controlled by the intrinsic muscle clock

    OpenAIRE

    Kenneth A. Dyar; Ciciliot, Stefano; Wright, Lauren E.; Biensø, Rasmus Sjørup; Tagliazucchi, Guidantonio M.; Patel, Vishal R.; Forcato, Mattia; Paz, Marcia I.P.; Gudiksen, Anders; Solagna, Francesca; Albiero, Mattia; Moretti, Irene; Eckel-Mahan, Kristin L.; Baldi, Pierre; Sassone-Corsi, Paolo

    2014-01-01

    Circadian rhythms control metabolism and energy homeostasis, but the role of the skeletal muscle clock has never been explored. We generated conditional and inducible mouse lines with muscle-specific ablation of the core clock gene Bmal1. Skeletal muscles from these mice showed impaired insulin-stimulated glucose uptake with reduced protein levels of GLUT4, the insulin-dependent glucose transporter, and TBC1D1, a Rab-GTPase involved in GLUT4 translocation. Pyruvate dehydrogenase (PDH) activit...

  13. Disruption of the somitic molecular clock causes abnormal vertebral segmentation.

    Science.gov (United States)

    Sparrow, Duncan B; Chapman, Gavin; Turnpenny, Peter D; Dunwoodie, Sally L

    2007-06-01

    Somites are the precursors of the vertebral column. They segment from the presomitic mesoderm (PSM) that is caudally located and newly generated from the tailbud. Somites form in synchrony on either side of the embryonic midline in a reiterative manner. A molecular clock that operates in the PSM drives this reiterative process. Genetic manipulation in mouse, chick and zebrafish has revealed that the molecular clock controls the activity of the Notch and WNT signaling pathways in the PSM. Disruption of the molecular clock impacts on somite formation causing abnormal vertebral segmentation (AVS). A number of dysmorphic syndromes manifest AVS defects. Interaction between developmental biologists and clinicians has lead to groundbreaking research in this area with the identification that spondylocostal dysostosis (SCD) is caused by mutation in Delta-like 3 (DLL3), Mesoderm posterior 2 (MESP2), and Lunatic fringe (LFNG); three genes that are components of the Notch signaling pathway. This review describes our current understanding of the somitic molecular clock and highlights how key findings in developmental biology can impact on clinical practice.

  14. Circadian clock dysfunction and psychiatric disease: could fruit flies have a say?

    Directory of Open Access Journals (Sweden)

    Mauro Agostino Zordan

    2015-04-01

    Full Text Available There is evidence of a link between the circadian system and psychiatric diseases. Studies in humans and mammals suggest that environmental and/or genetic disruption of the circadian system lead to an increased liability to psychiatric disease. Disruption of clock genes and/or the clock network might be related to the etiology of these pathologies; also, some genes, known for their circadian clock functions, might be associated to mental illnesses through clock-independent pleiotropy. Here we examine the features which we believe make Drosophila melanogaster a model apt to study the role of the circadian clock in psychiatric disease. Despite differences in the organization of the clock system, the molecular architecture of the Drosophila and mammalian circadian oscillators are comparable and many components are evolutionarily related. In addition, Drosophila has a rather complex nervous system, which shares much at the cell and neurobiological level with humans, i.e. a tripartite brain, the main neurotransmitter systems, and behavioral traits: circadian behavior, learning and memory, motivation, addiction, social behavior. There is evidence that the Drosophila brain shares some homologies with the vertebrate cerebellum, basal ganglia and hypothalamus-pituitary-adrenal axis, the dysfunctions of which have been tied to mental illness. We discuss Drosophila in comparison to mammals with reference to the: organization of the brain and neurotransmitter systems; architecture of the circadian clock; clock-controlled behaviors. We sum up current knowledge on behavioral endophenotypes which are amenable to modeling in flies, such as defects involving sleep, cognition, or social interactions and discuss the relationship of the circadian system to these traits. Finally, we consider if Drosophila could be a valuable asset to understand the relationship between circadian clock malfunction and psychiatric disease.

  15. Coordination of the maize transcriptome by a conserved circadian clock

    Directory of Open Access Journals (Sweden)

    Harmon Frank G

    2010-06-01

    Full Text Available Abstract Background The plant circadian clock orchestrates 24-hour rhythms in internal physiological processes to coordinate these activities with daily and seasonal changes in the environment. The circadian clock has a profound impact on many aspects of plant growth and development, including biomass accumulation and flowering time. Despite recent advances in understanding the circadian system of the model plant Arabidopsis thaliana, the contribution of the circadian oscillator to important agronomic traits in Zea mays and other cereals remains poorly defined. To address this deficit, this study investigated the transcriptional landscape of the maize circadian system. Results Since transcriptional regulation is a fundamental aspect of circadian systems, genes exhibiting circadian expression were identified in the sequenced maize inbred B73. Of the over 13,000 transcripts examined, approximately 10 percent displayed circadian expression patterns. The majority of cycling genes had peak expression at subjective dawn and dusk, similar to other plant circadian systems. The maize circadian clock organized co-regulation of genes participating in fundamental physiological processes, including photosynthesis, carbohydrate metabolism, cell wall biogenesis, and phytohormone biosynthesis pathways. Conclusions Circadian regulation of the maize genome was widespread and key genes in several major metabolic pathways had circadian expression waveforms. The maize circadian clock coordinated transcription to be coincident with oncoming day or night, which was consistent with the circadian oscillator acting to prepare the plant for these major recurring environmental changes. These findings highlighted the multiple processes in maize plants under circadian regulation and, as a result, provided insight into the important contribution this regulatory system makes to agronomic traits in maize and potentially other C4 plant species.

  16. Hanle detection for optical clocks

    CERN Document Server

    Zhang, Xiaogang; Pan, Duo; Chen, Peipei; Xue, Xiaobo; Zhuang, Wei; Chen, Jingbiao

    2014-01-01

    Considering the strong inhomogeneous spatial polarization and intensity distribution of spontaneous decay fluorescence due to the Hanle effect, we propose and demonstrate a universe Hanle detection configuration of electron-shelving method for optical clocks. Experimental results from Ca atomic beam optical frequency standard with 423 nm electron-shelving method show that a designed Hanle detection geometry with optimized magnetic field direction, detection laser beam propagation and polarization direction, and detector position can improve the fluorescence collection rate by more than one order of magnitude comparing with that of inefficient geometry. With the fixed 423 nm fluorescence, the improved 657 nm optical frequency standard signal intensity is presented. And the potential application of the Hanle detection geometry designed for facilitating the fluorescence collection for optical lattice clock with a limited solid angle of the fluorescence collection has been discussed. This Hanle detection configur...

  17. Design principles underlying circadian clocks.

    OpenAIRE

    Rand, D.A.; Shulgin, B. V.; D. Salazar; Millar, A. J.

    2004-01-01

    A fundamental problem for regulatory networks is to understand the relation between form and function: to uncover the underlying design principles of the network. Circadian clocks present a particularly interesting instance, as recent work has shown that they have complex structures involving multiple interconnected feedback loops with both positive and negative feedback. While several authors have speculated on the reasons for this, a convincing explanation is still lacking.We analyse both t...

  18. Hanle detection for optical clocks.

    Science.gov (United States)

    Zhang, Xiaogang; Zhang, Shengnan; Pan, Duo; Chen, Peipei; Xue, Xiaobo; Zhuang, Wei; Chen, Jingbiao

    2015-01-01

    Considering the strong inhomogeneous spatial polarization and intensity distribution of spontaneous decay fluorescence due to the Hanle effect, we propose and demonstrate a universe Hanle detection configuration of electron-shelving method for optical clocks. Experimental results from Ca atomic beam optical frequency standard with electron-shelving method show that a designed Hanle detection geometry with optimized magnetic field direction, detection laser beam propagation and polarization direction, and detector position can improve the fluorescence collection rate by more than one order of magnitude comparing with that of inefficient geometry. With the fixed 423 nm fluorescence, the improved 657 nm optical frequency standard signal intensity is presented. The potential application of the Hanle detection geometry designed for facilitating the fluorescence collection for optical lattice clock with a limited solid angle of the fluorescence collection has been discussed. The Hanle detection geometry is also effective for ion detection in ion optical clock and quantum information experiments. Besides, a cylinder fluorescence collection structure is designed to increase the solid angle of the fluorescence collection in Ca atomic beam optical frequency standard. PMID:25734183

  19. Hanle Detection for Optical Clocks

    Directory of Open Access Journals (Sweden)

    Xiaogang Zhang

    2015-01-01

    Full Text Available Considering the strong inhomogeneous spatial polarization and intensity distribution of spontaneous decay fluorescence due to the Hanle effect, we propose and demonstrate a universe Hanle detection configuration of electron-shelving method for optical clocks. Experimental results from Ca atomic beam optical frequency standard with electron-shelving method show that a designed Hanle detection geometry with optimized magnetic field direction, detection laser beam propagation and polarization direction, and detector position can improve the fluorescence collection rate by more than one order of magnitude comparing with that of inefficient geometry. With the fixed 423 nm fluorescence, the improved 657 nm optical frequency standard signal intensity is presented. The potential application of the Hanle detection geometry designed for facilitating the fluorescence collection for optical lattice clock with a limited solid angle of the fluorescence collection has been discussed. The Hanle detection geometry is also effective for ion detection in ion optical clock and quantum information experiments. Besides, a cylinder fluorescence collection structure is designed to increase the solid angle of the fluorescence collection in Ca atomic beam optical frequency standard.

  20. An epigenetic clock controls aging.

    Science.gov (United States)

    Mitteldorf, Josh

    2016-02-01

    We are accustomed to treating aging as a set of things that go wrong with the body. But for more than twenty years, there has been accumulating evidence that much of the process takes place under genetic control. We have seen that signaling chemistry can make dramatic differences in life span, and that single molecules can significantly affect longevity. We are frequently confronted with puzzling choices the body makes which benefit neither present health nor fertility nor long-term survival. If we permit ourselves a shift of reference frame and regard aging as a programmed biological function like growth and development, then these observations fall into place and make sense. This perspective suggests that aging proceeds under control of a master clock, or several redundant clocks. If this is so, we may learn to reset the clocks with biochemical interventions and make an old body behave like a young body, including repair of many of the modes of damage that we are accustomed to regard as independent symptoms of the senescent phenotype, and for which we have assumed that the body has no remedy. PMID:26608516

  1. Global canonical symmetry in a quantum system

    Institute of Scientific and Technical Information of China (English)

    李子平

    1996-01-01

    Based on the phase-space path integral for a system with a regular or singular Lagrangian the generalized canonical Ward identities under the global symmetry transformation in extended phase space are deduced respectively, thus the relations among Green functions can be found. The connection between canonical symmetries and conservation laws at the quantum level is established. It is pointed out that this connection in classical theories, in general, is no longer always preserved in quantum theories. The advantage of our formulation is that we do not need to carry out the integration over the canonical momenta in phase-space generating functional as usually performed. A precise discussion of quantization for a nonlinear sigma model with Hopf and Chern-Simons terms is reexamined. The property of fractional spin at quantum level has been clarified.

  2. Covariant Gauge Fixing and Canonical Quantization

    CERN Document Server

    McKeon, D G C

    2011-01-01

    Theories that contain first class constraints possess gauge invariance which results in the necessity of altering the measure in the associated quantum mechanical path integral. If the path integral is derived from the canonical structure of the theory, then the choice of gauge conditions used in constructing Faddeev's measure cannot be covariant. This shortcoming is normally overcome either by using the "Faddeev-Popov" quantization procedure, or by the approach of Batalin-Fradkin-Fradkina-Vilkovisky, and then demonstrating that these approaches are equivalent to the path integral constructed from the canonical approach with Faddeev's measure. We propose in this paper an alternate way of defining the measure for the path integral when it is constructed using the canonical procedure for theories containing first class constraints and that this new approach can be used in conjunction with covariant gauges. This procedure follows the Faddeev-Popov approach, but rather than working with the form of the gauge tran...

  3. Functional linear regression via canonical analysis

    CERN Document Server

    He, Guozhong; Wang, Jane-Ling; Yang, Wenjing; 10.3150/09-BEJ228

    2011-01-01

    We study regression models for the situation where both dependent and independent variables are square-integrable stochastic processes. Questions concerning the definition and existence of the corresponding functional linear regression models and some basic properties are explored for this situation. We derive a representation of the regression parameter function in terms of the canonical components of the processes involved. This representation establishes a connection between functional regression and functional canonical analysis and suggests alternative approaches for the implementation of functional linear regression analysis. A specific procedure for the estimation of the regression parameter function using canonical expansions is proposed and compared with an established functional principal component regression approach. As an example of an application, we present an analysis of mortality data for cohorts of medflies, obtained in experimental studies of aging and longevity.

  4. A Canonical Analysis of the Massless Superparticle

    CERN Document Server

    McKeon, D G C

    2012-01-01

    The canonical structure of the action for a massless superparticle is considered in d = 2 + 1 and d = 3 + 1 dimensions. This is done by examining the contribution to the action of each of the components of the spinor {\\theta} present; no attempt is made to maintain manifest covariance. Upon using the Dirac Bracket to eliminate the second class constraints arising from the canonical momenta associated with half of these components, we find that the remaining components have canonical momenta that are all first class constraints. From these first class constraints, it is possible to derive the generator of half of the local Fermionic {\\kappa}-symmetry of Siegel; which half is contingent upon the choice of which half of the momenta associated with the components of {\\theta} are taken to be second class constraints. The algebra of the generator of this Fermionic symmetry transformation is examined.

  5. Universal canonical entropy for gravitating systems

    Indian Academy of Sciences (India)

    Ashok Chatterjee; Parthasarathi Majumdar

    2004-10-01

    The thermodynamics of general relativistic systems with boundary, obeying a Hamiltonian constraint in the bulk, is determined solely by the boundary quantum dynamics, and hence by the area spectrum. Assuming, for large area of the boundary, (a) an area spectrum as determined by non-perturbative canonical quantum general relativity (NCQGR), (b) an energy spectrum that bears a power law relation to the area spectrum, (c) an area law for the leading order microcanonical entropy, leading thermal fluctuation corrections to the canonical entropy are shown to be logarithmic in area with a universal coefficient. Since the microcanonical entropy also has universal logarithmic corrections to the area law (from quantum space-time fluctuations, as found earlier) the canonical entropy then has a universal form including logarithmic corrections to the area law. This form is shown to be independent of the index appearing in assumption (b). The index, however, is crucial in ascertaining the domain of validity of our approach based on thermal equilibrium.

  6. Cardiovascular tissues contain independent circadian clocks

    Science.gov (United States)

    Davidson, A. J.; London, B.; Block, G. D.; Menaker, M.

    2005-01-01

    Acute cardiovascular events exhibit a circadian rhythm in the frequency of occurrence. The mechanisms underlying these phenomena are not yet fully understood, but they may be due to rhythmicity inherent in the cardiovascular system. We have begun to characterize rhythmicity of the clock gene mPer1 in the rat cardiovascular system. Luciferase activity driven by the mPer1 gene promoter is rhythmic in vitro in heart tissue explants and a wide variety of veins and arteries cultured from the transgenic Per1-luc rat. The tissues showed between 3 and 12 circadian cycles of gene expression in vitro before damping. Whereas peak per1-driven bioluminescence consistently occurred during the late night in the heart and all arteries sampled, the phases of the rhythms in veins varied significantly by anatomical location. Varying the time of the culture procedure relative to the donor animal's light:dark cycle revealed that, unlike some other rat tissues such as liver, the phases of in vitro rhythms of arteries, veins, and heart explants were affected by culture time. However, phase relationships among tissues were consistent across culture times; this suggests diversity in circadian regulation among components of the cardiovascular system.

  7. The Circadian Clock Is a Key Driver of Steroid Hormone Production in Drosophila.

    Science.gov (United States)

    Di Cara, Francesca; King-Jones, Kirst

    2016-09-26

    Biological clocks allow organisms to anticipate daily environmental changes such as temperature fluctuations, abundance of daylight, and nutrient availability. Many circadian-controlled physiological states are coordinated by the release of systemically acting hormones, including steroids and insulin [1-7]. Thus, hormones relay circadian outputs to target tissues, and disrupting these endocrine rhythms impairs human health by affecting sleep patterns, energy homeostasis, and immune functions [8-10]. It is largely unclear, however, whether circadian circuits control hormone levels indirectly via central timekeeping neurons or whether peripheral endocrine clocks can modulate hormone synthesis directly. We show here that perturbing the circadian clock, specifically in the major steroid hormone-producing gland of Drosophila, the prothoracic gland (PG), unexpectedly blocks larval development due to an inability to produce sufficient steroids. This is surprising, because classic circadian null mutants are viable and result in arrhythmic adults [4, 11-14]. We found that Timeless and Period, both core components of the insect clock [15], are required for transcriptional upregulation of steroid hormone-producing enzymes. Timeless couples the circadian machinery directly to the two canonical pathways that regulate steroid synthesis in insects, insulin and PTTH signaling [16], respectively. Activating insulin signaling directly modulates Timeless function, suggesting that the local clock in the PG is normally synced with systemic insulin cues. Because both PTTH and systemic insulin signaling are themselves under circadian control, we conclude that de-synchronization of a local endocrine clock with external circadian cues is the primary cause for steroid production to fail. PMID:27546572

  8. Evidence of non-canonical NOTCH signaling

    DEFF Research Database (Denmark)

    Traustadóttir, Gunnhildur Ásta; Jensen, Charlotte H; Thomassen, Mads;

    2016-01-01

    suggested to interact with NOTCH1 and act as an antagonist. This non-canonical interaction is, however controversial, and evidence for a direct interaction, still lacking in mammals. In this study, we elucidated the putative DLK1-NOTCH1 interaction in a mammalian context. Taking a global approach and using...... this interaction to occur between EGF domains 5 and 6 of DLK1 and EGF domains 10-15 of NOTCH1. Thus, our data provide the first evidence for a direct interaction between DLK1 and NOTCH1 in mammals, and substantiate that non-canonical NOTCH ligands exist, adding to the complexity of NOTCH signaling....

  9. Jordan Canonical Form Theory and Practice

    CERN Document Server

    Weintraub, Steven H

    2009-01-01

    Jordan Canonical Form (JCF) is one of the most important, and useful, concepts in linear algebra. The JCF of a linear transformation, or of a matrix, encodes all of the structural information about that linear transformation, or matrix. This book is a careful development of JCF. After beginning with background material, we introduce Jordan Canonical Form and related notions: eigenvalues, (generalized) eigenvectors, and the characteristic and minimum polynomials. We decide the question of diagonalizability, and prove the Cayley-Hamilton theorem. Then we present a careful and complete proof of t

  10. Canonical analysis based on mutual information

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg; Vestergaard, Jacob Schack

    2015-01-01

    combinations with the information theoretical measure mutual information (MI). We term this type of analysis canonical information analysis (CIA). MI allows for the actual joint distribution of the variables involved and not just second order statistics. While CCA is ideal for Gaussian data, CIA facilitates......Canonical correlation analysis (CCA) is an established multi-variate statistical method for finding similarities between linear combinations of (normally two) sets of multivariate observations. In this contribution we replace (linear) correlation as the measure of association between the linear...

  11. hClock gene mRNA and protein expression in colorectal tumor%hClock基因mRNA及其蛋白在结直肠肿瘤中表达的研究

    Institute of Scientific and Technical Information of China (English)

    邓香群; 刘保安

    2009-01-01

    目的 探讨人类生物钟基因hClock mRNA及其蛋白在不同Dukes分期结直肠肿瘤中的表达,研究它们的表达与结直肠肿瘤的侵袭及转移的关系.方法 采用原位杂交检测结直肠癌与相应癌旁组织中hClock基因mRNA的表达,并采用免疫组织化学检测相应标本中hClock基因蛋白产物(CLOCK蛋白)的表达.结果 21例结直肠肿瘤中hClock mRNA弱阳性表达率47.62%,中或强阳性表达率52.38%,且与Dukes分期相关(P<0.05);CLOCK蛋白均呈中或强阳性表达.相应癌旁组织中hClock mRNA及蛋白呈弱阳性表达(P<0.01).结论 hClock基因可能与结直肠肿瘤的发生、发展及侵袭、转移有相关性.

  12. Circadian proteins CLOCK and BMAL1 in the chromatoid body, a RNA processing granule of male germ cells.

    Directory of Open Access Journals (Sweden)

    Rita L Peruquetti

    Full Text Available Spermatogenesis is a complex differentiation process that involves genetic and epigenetic regulation, sophisticated hormonal control, and extensive structural changes in male germ cells. RNA nuclear and cytoplasmic bodies appear to be critical for the progress of spermatogenesis. The chromatoid body (CB is a cytoplasmic organelle playing an important role in RNA post-transcriptional and translation regulation during the late steps of germ cell differentiation. The CB is also important for fertility determination since mutations of genes encoding its components cause infertility by spermatogenesis arrest. Targeted ablation of the Bmal1 and Clock genes, which encode central regulators of the circadian clock also result in fertility defects caused by problems other than spermatogenesis alterations. We show that the circadian proteins CLOCK and BMAL1 are localized in the CB in a stage-specific manner of germ cells. Both BMAL1 and CLOCK proteins physically interact with the ATP-dependent DEAD-box RNA helicase MVH (mouse VASA homolog, a hallmark component of the CB. BMAL1 is differentially expressed during the spermatogenic cycle of seminiferous tubules, and Bmal1 and Clock deficient mice display significant CB morphological alterations due to BMAL1 ablation or low expression. These findings suggest that both BMAL1 and CLOCK contribute to CB assembly and physiology, raising questions on the role of the circadian clock in reproduction and on the molecular function that CLOCK and BMAL1 could potentially have in the CB assembly and physiology.

  13. Differential control of pre-invasive and post-invasive antibacterial defense by the Arabidopsis circadian clock.

    Science.gov (United States)

    Korneli, Christin; Danisman, Selahattin; Staiger, Dorothee

    2014-09-01

    Plants show a suite of inducible defense responses against bacterial pathogens. Here we investigate in detail the effect of the circadian clock on these reactions in Arabidopsis thaliana. The magnitude of immune responses elicited by flg22, by virulent and by avirulent Pseudomonas syringae strains depends on the time of day of inoculation. The oxidative burst is stronger when flg22 is infiltrated in the morning in wild-type plants but not in the arrhythmic clock mutant lux arrhythmo/phytoclock1 (pcl1), and thus is controlled by the endogenous clock. Similarly, when bacteria are syringe-infiltrated into the leaf, defense gene induction is higher and bacterial growth is suppressed more strongly after morning inoculation in wild-type but not in pcl1 plants. Furthermore, cell death associated with the hypersensitive response was found to be under clock control. Notably, the clock effect depends on the mode of infection: upon spray inoculation onto the leaf surface, defense gene induction is higher and bacterial growth is suppressed more strongly upon evening inoculation. This different phasing of pre-invasive and post-invasive defense relates to clock-regulated stomatal movement. In particular, TIME FOR COFFEE may impact pathogen defense via clock-regulated stomata movement apart from its known role in time-of-day-dependent jasmonate responses. Taken together, these data highlight the importance of the circadian clock for the control of different immune responses at distinct times of the day. PMID:24974385

  14. Molecular clock is involved in predictive circadian adjustment of renal function.

    Science.gov (United States)

    Zuber, Annie Mercier; Centeno, Gabriel; Pradervand, Sylvain; Nikolaeva, Svetlana; Maquelin, Lionel; Cardinaux, Léonard; Bonny, Olivier; Firsov, Dmitri

    2009-09-22

    Renal excretion of water and major electrolytes exhibits a significant circadian rhythm. This functional periodicity is believed to result, at least in part, from circadian changes in secretion/reabsorption capacities of the distal nephron and collecting ducts. Here, we studied the molecular mechanisms underlying circadian rhythms in the distal nephron segments, i.e., distal convoluted tubule (DCT) and connecting tubule (CNT) and the cortical collecting duct (CCD). Temporal expression analysis performed on microdissected mouse DCT/CNT or CCD revealed a marked circadian rhythmicity in the expression of a large number of genes crucially involved in various homeostatic functions of the kidney. This analysis also revealed that both DCT/CNT and CCD possess an intrinsic circadian timing system characterized by robust oscillations in the expression of circadian core clock genes (clock, bma11, npas2, per, cry, nr1d1) and clock-controlled Par bZip transcriptional factors dbp, hlf, and tef. The clock knockout mice or mice devoid of dbp/hlf/tef (triple knockout) exhibit significant changes in renal expression of several key regulators of water or sodium balance (vasopressin V2 receptor, aquaporin-2, aquaporin-4, alphaENaC). Functionally, the loss of clock leads to a complex phenotype characterized by partial diabetes insipidus, dysregulation of sodium excretion rhythms, and a significant decrease in blood pressure. Collectively, this study uncovers a major role of molecular clock in renal function.

  15. On the persistence of memory: soft clocks and terrestrial biosphere-atmosphere interactions.

    Science.gov (United States)

    Resco de Dios, Víctor

    2013-11-01

    The circadian clock is considered a central "orchestrator" of gene expression and metabolism. Concomitantly, the circadian clock is considered of negligible influence in the field and beyond leaf levels, where direct physiological responses to environmental cues are considered the main drivers of diel fluctuations. I propose to bridge the gap across scales by examining current evidence on whether circadian rhythmicity in gas exchange is relevant for field settings and at the ecosystem scale. Nocturnal stomatal conductance and water fluxes appear to be influenced by a "hard" clock that may override the direct physiological responses to the environment. Tests on potential clock controls over photosynthetic carbon assimilation and daytime transpiration are scant yet, if present, could have a large impact on our current understanding and modeling of the exchanges of carbon dioxide and water between terrestrial ecosystems and the atmosphere.

  16. Canonical Ensemble Model for Black Hole Radiation

    Indian Academy of Sciences (India)

    Jingyi Zhang

    2014-09-01

    In this paper, a canonical ensemble model for the black hole quantum tunnelling radiation is introduced. In this model the probability distribution function corresponding to the emission shell is calculated to second order. The formula of pressure and internal energy of the thermal system is modified, and the fundamental equation of thermodynamics is also discussed.

  17. Regularized Multiple-Set Canonical Correlation Analysis

    Science.gov (United States)

    Takane, Yoshio; Hwang, Heungsun; Abdi, Herve

    2008-01-01

    Multiple-set canonical correlation analysis (Generalized CANO or GCANO for short) is an important technique because it subsumes a number of interesting multivariate data analysis techniques as special cases. More recently, it has also been recognized as an important technique for integrating information from multiple sources. In this paper, we…

  18. Canonical Quantization of Higher-Order Lagrangians

    Directory of Open Access Journals (Sweden)

    Khaled I. Nawafleh

    2011-01-01

    Full Text Available After reducing a system of higher-order regular Lagrangian into first-order singular Lagrangian using constrained auxiliary description, the Hamilton-Jacobi function is constructed. Besides, the quantization of the system is investigated using the canonical path integral approximation.

  19. Part and Bipartial Canonical Correlation Analysis.

    Science.gov (United States)

    Timm, Neil H.; Carlson, James E.

    Part and bi-partial canonical correlations were developed by extending the definitions of part and bi-partial correlation to sets of variates. These coefficients may be used to help researchers explore relationships which exist among several sets of normally distributed variates. (Author)

  20. Kelvin's Canonical Circulation Theorem in Hall Magnetohydrodynamics

    CERN Document Server

    Shivamoggi, B K

    2016-01-01

    The purpose of this paper is to show that, thanks to the restoration of the legitimate connection between the current density and the plasma flow velocity in Hall magnetohydrodynamics (MHD), Kelvin's Circulation Theorem becomes valid in Hall MHD. The ion-flow velocity in the usual circulation integral is now replaced by the canonical ion-flow velocity.

  1. Canonical transformation method in classical electrodynamics

    Science.gov (United States)

    Pavlenko, Yu. G.

    1983-08-01

    The solutions of Maxwell's equations in the parabolic equation approximation is obtained on the basis of the canonical transformation method. The Hamiltonian form of the equations for the field in an anisotropic stratified medium is also examined. The perturbation theory for the calculation of the wave reflection and transmission coefficients is developed.

  2. Canonical Transformation to the Free Particle

    Science.gov (United States)

    Glass, E. N.; Scanio, Joseph J. G.

    1977-01-01

    Demonstrates how to find some canonical transformations without solving the Hamilton-Jacobi equation. Constructs the transformations from the harmonic oscillator to the free particle and uses these as examples of transformations that cannot be maintained when going from classical to quantum systems. (MLH)

  3. Infants' Recognition of Objects Using Canonical Color

    Science.gov (United States)

    Kimura, Atsushi; Wada, Yuji; Yang, Jiale; Otsuka, Yumiko; Dan, Ippeita; Masuda, Tomohiro; Kanazawa, So; Yamaguchi, Masami K.

    2010-01-01

    We explored infants' ability to recognize the canonical colors of daily objects, including two color-specific objects (human face and fruit) and a non-color-specific object (flower), by using a preferential looking technique. A total of 58 infants between 5 and 8 months of age were tested with a stimulus composed of two color pictures of an object…

  4. Kuidas Canon suureks kasvas / Andres Eilart

    Index Scriptorium Estoniae

    Eilart, Andres

    2004-01-01

    Jaapani kaamerate ja büroomasinate tootja Canon Groupi arengust, tegevusest kolmes regioonis - USA-s, Euroopas ja Aasias ning ettevõtte pikaajalise edu põhjustest - ärifilosoofiast ning ajastatud tootearendusest. Vt. samas: Firma esialgne nimi oli Kwanon; Konkurendid koonduvad

  5. Canonical brackets of a toy model for the Hodge theory without its canonical conjugate momenta

    CERN Document Server

    Shukla, D; Malik, R P

    2014-01-01

    We consider the toy model of a rigid rotor as an example of the Hodge theory within the framework of the Becchi-Rouet-Stora-Tyutin (BRST) formalism and show that the internal symmetries of this theory lead to the derivation of canonical brackets amongst the creation and annihilation operators of the dynamical variables where the definition of the canonical conjugate momenta is not required. We invoke only the spin-statistics theorem, normal ordering and basic concepts of continuous symmetries (and their generators) to derive the canonical brackets for the model of a one (0 + 1)-dimensional (1D) rigid rotor without using the definition of the canonical conjugate momenta anywhere. Our present method of derivation of the basic brackets is conjectured to be true for a class of theories that provide a set of tractable physical examples for the Hodge theory.

  6. Tectonic blocks and molecular clocks

    Science.gov (United States)

    2016-01-01

    Evolutionary timescales have mainly used fossils for calibrating molecular clocks, though fossils only really provide minimum clade age constraints. In their place, phylogenetic trees can be calibrated by precisely dated geological events that have shaped biogeography. However, tectonic episodes are protracted, their role in vicariance is rarely justified, the biogeography of living clades and their antecedents may differ, and the impact of such events is contingent on ecology. Biogeographic calibrations are no panacea for the shortcomings of fossil calibrations, but their associated uncertainties can be accommodated. We provide examples of how biogeographic calibrations based on geological data can be established for the fragmentation of the Pangaean supercontinent: (i) for the uplift of the Isthmus of Panama, (ii) the separation of New Zealand from Gondwana, and (iii) for the opening of the Atlantic Ocean. Biogeographic and fossil calibrations are complementary, not competing, approaches to constraining molecular clock analyses, providing alternative constraints on the age of clades that are vital to avoiding circularity in investigating the role of biogeographic mechanisms in shaping modern biodiversity. This article is part of the themed issue ‘Dating species divergences using rocks and clocks’. PMID:27325840

  7. Cold atom Clocks and Applications

    CERN Document Server

    Bize, S; Abgrall, M; Marion, H; Maksimovic, I; Cacciapuoti, L; Gruenert, J; Vian, C; Dos Santos, F P; Rosenbusch, P; Lemonde, P; Santarelli, G; Wolf, P; Clairon, A; Luiten, A; Tobar, M; Salomon, C

    2005-01-01

    This paper describes advances in microwave frequency standards using laser-cooled atoms at BNM-SYRTE. First, recent improvements of the $^{133}$Cs and $^{87}$Rb atomic fountains are described. Thanks to the routine use of a cryogenic sapphire oscillator as an ultra-stable local frequency reference, a fountain frequency instability of $1.6\\times 10^{-14}\\tau^{-1/2}$ where $\\tau $ is the measurement time in seconds is measured. The second advance is a powerful method to control the frequency shift due to cold collisions. These two advances lead to a frequency stability of $2\\times 10^{-16}$ at $50,000s for the first time for primary standards. In addition, these clocks realize the SI second with an accuracy of $7\\times 10^{-16}$, one order of magnitude below that of uncooled devices. In a second part, we describe tests of possible variations of fundamental constants using $^{87}$Rb and $^{133}$Cs fountains. Finally we give an update on the cold atom space clock PHARAO developed in collaboration with CNES. This ...

  8. Single electron relativistic clock interferometer

    Science.gov (United States)

    Bushev, P. A.; Cole, J. H.; Sholokhov, D.; Kukharchyk, N.; Zych, M.

    2016-09-01

    Although time is one of the fundamental notions in physics, it does not have a unique description. In quantum theory time is a parameter ordering the succession of the probability amplitudes of a quantum system, while according to relativity theory each system experiences in general a different proper time, depending on the system's world line, due to time dilation. It is therefore of fundamental interest to test the notion of time in the regime where both quantum and relativistic effects play a role, for example, when different amplitudes of a single quantum clock experience different magnitudes of time dilation. Here we propose a realization of such an experiment with a single electron in a Penning trap. The clock can be implemented in the electronic spin precession and its time dilation then depends on the radial (cyclotron) state of the electron. We show that coherent manipulation and detection of the electron can be achieved already with present day technology. A single electron in a Penning trap is a technologically ready platform where the notion of time can be probed in a hitherto untested regime, where it requires a relativistic as well as quantum description.

  9. Temperature influences in receiver clock modelling

    Science.gov (United States)

    Wang, Kan; Meindl, Michael; Rothacher, Markus; Schoenemann, Erik; Enderle, Werner

    2016-04-01

    In Precise Point Positioning (PPP), hardware delays at the receiver site (receiver, cables, antenna, …) are always difficult to be separated from the estimated receiver clock parameters. As a result, they are partially or fully contained in the estimated "apparent" clocks and will influence the deterministic and stochastic modelling of the receiver clock behaviour. In this contribution, using three years of data, the receiver clock corrections of a set of high-precision Hydrogen Masers (H-Masers) connected to stations of the ESA/ESOC network and the International GNSS Service (IGS) are firstly characterized concerning clock offsets, drifts, modified Allan deviations and stochastic parameters. In a second step, the apparent behaviour of the clocks is modelled with the help of a low-order polynomial and a known temperature coefficient (Weinbach, 2013). The correlations between the temperature and the hardware delays generated by different types of antennae are then analysed looking at daily, 3-day and weekly time intervals. The outcome of these analyses is crucial, if we intend to model the receiver clocks in the ground station network to improve the estimation of station-related parameters like coordinates, troposphere zenith delays and ambiguities. References: Weinbach, U. (2013) Feasibility and impact of receiver clock modeling in precise GPS data analysis. Dissertation, Leibniz Universität Hannover, Germany.

  10. Network properties of the mammalian circadian clock

    NARCIS (Netherlands)

    Rohling, Johannes Hermanus Theodoor

    2009-01-01

    The biological clock regulates daily and seasonal rhythms in mammals. This clock is located in the suprachiasmatic nuclei (SCN), which are two small nuclei each consisting of 10,000 neurons. The neurons of the SCN endogenously generate a rhythm of approximately 24 hours. Under the influence of the l

  11. Progress of the ~(87)Rb Fountain Clock

    Institute of Scientific and Technical Information of China (English)

    ZHOU Zi-Chao; WEI Rong; SHI Chun-Yan; LV De-Sheng; LI Tang; WANG Yu-Zhu

    2009-01-01

    A fountain atomic clock based on cold ~(87)Rb atoms has been in operation in our laboratory for several months.We therefore report the design of the rubidium fountain clock including its physical package,optical system and daily operation.Ramsey fringes have been attained with the signal to noise ratio of about 100.

  12. Could Atomic clocks be affected by neutrinos?

    CERN Document Server

    Hanafi, Hanaa

    2016-01-01

    An atomic clock is a clock device that uses an electronic transition frequency of the electromagnetic spectrum of atoms as a frequency standard in order to derive a time standard since time is the reciprocal of frequency. If the electronic transition frequencies are in an "optical region", we are talking in this case about optical atomic clocks. If they are in an "microwave region" these atomic clocks are made of the metallic element cesium so they are called Cesium atomic clocks. Atomic clocks are the most accurate time and frequency standards known despite the different perturbations that can affect them, a lot of researches were made in this domain to show how the transitions can be different for different type of perturbations..Since atomic clocks are very sensitive devices, based on coherent states (A coherent state tends to loose coherence after interacting). One question can arise (from a lot of questions) which is why cosmic neutrinos are not affecting these clocks? The answer to this question requir...

  13. A colorful model of the circadian clock.

    Science.gov (United States)

    Reppert, Steven M

    2006-01-27

    The migration of the colorful monarch butterfly provides biologists with a unique model system with which to study the cellular and molecular mechanisms underlying a sophisticated circadian clock. The monarch circadian clock is involved in the induction of the migratory state and navigation over long distances, using the sun as a compass. PMID:16439193

  14. Internal Clock Drift Estimation in Computer Clusters

    Directory of Open Access Journals (Sweden)

    Hicham Marouani

    2008-01-01

    Full Text Available Most computers have several high-resolution timing sources, from the programmable interrupt timer to the cycle counter. Yet, even at a precision of one cycle in ten millions, clocks may drift significantly in a single second at a clock frequency of several GHz. When tracing the low-level system events in computer clusters, such as packet sending or reception, each computer system records its own events using an internal clock. In order to properly understand the global system behavior and performance, as reported by the events recorded on each computer, it is important to estimate precisely the clock differences and drift between the different computers in the system. This article studies the clock precision and stability of several computer systems, with different architectures. It also studies the typical network delay characteristics, since time synchronization algorithms rely on the exchange of network packets and are dependent on the symmetry of the delays. A very precise clock, based on the atomic time provided by the GPS satellite network, was used as a reference to measure clock drifts and network delays. The results obtained are of immediate use to all applications which depend on computer clocks or network time synchronization accuracy.

  15. "Molecular Clock" Analogs: A Relative Rates Exercise

    Science.gov (United States)

    Wares, John P.

    2008-01-01

    Although molecular clock theory is a commonly discussed facet of evolutionary biology, undergraduates are rarely presented with the underlying information of how this theory is examined relative to empirical data. Here a simple contextual exercise is presented that not only provides insight into molecular clocks, but is also a useful exercise for…

  16. A clock synchronization skeleton based on RTAI

    NARCIS (Netherlands)

    Huang, Y.; Visser, P.M.; Broenink, J.F.

    2006-01-01

    This paper presents a clock synchronization skeleton based on RTAI (Real Time Application Interface). The skeleton is a thin layer that provides unified but extendible interfaces to the underlying operating system, the synchronization algorithms and the upper level applications in need of clock sync

  17. Fast Clock Recovery for Digital Communications

    Science.gov (United States)

    Tell, R. G.

    1985-01-01

    Circuit extracts clock signal from random non-return-to-zero data stream, locking onto clock within one bit period at 1-gigabitper-second data rate. Circuit used for synchronization in opticalfiber communications. Derives speed from very short response time of gallium arsenide metal/semiconductor field-effect transistors (MESFET's).

  18. Cost and Precision of Brownian Clocks

    CERN Document Server

    Barato, Andre C

    2016-01-01

    Brownian clocks are biomolecular networks that can count time. A paradigmatic example are proteins that go through a cycle thus regulating some oscillatory behaviour in a living system. Typically, such a cycle requires free energy often provided by ATP hydrolysis. We investigate the relation between the precision of such a clock and its thermodynamic costs. For clocks driven by a constant thermodynamic force, a given precision requires a minimal cost that diverges as the uncertainty of the clock vanishes. In marked contrast, we show that a clock driven by a periodic variation of an external protocol can achieve arbitrary precision at arbitrarily low cost. This result constitutes a fundamental difference between processes driven by a fixed thermodynamic force and those driven periodically. As a main technical tool, we map a periodically driven system with a deterministic protocol to one subject to an external protocol that changes in stochastic time intervals, which simplifies calculations significantly. In th...

  19. An introduction to the theory of canonical matrices

    CERN Document Server

    Turnbull, H W

    2004-01-01

    Thorough and self-contained, this penetrating study of the theory of canonical matrices presents a detailed consideration of all the theory's principal features. Topics include elementary transformations and bilinear and quadratic forms; canonical reduction of equivalent matrices; subgroups of the group of equivalent transformations; and rational and classical canonical forms. The final chapters explore several methods of canonical reduction, including those of unitary and orthogonal transformations. 1952 edition. Index. Appendix. Historical notes. Bibliographies. 275 problems.

  20. Introduction to Modern Canonical Quantum General Relativity

    CERN Document Server

    Thiemann, T

    2001-01-01

    This is an introduction to the by now fifteen years old research field of canonical quantum general relativity, sometimes called "loop quantum gravity". The term "modern" in the title refers to the fact that the quantum theory is based on formulating classical general relativity as a theory of connections rather than metrics as compared to in original version due to Arnowitt, Deser and Misner. Canonical quantum general relativity is an attempt to define a mathematically rigorous, non-perturbative, background independent theory of Lorentzian quantum gravity in four spacetime dimensions in the continuum. The approach is minimal in that one simply analyzes the logical consequences of combining the principles of general relativity with the principles of quantum mechanics. The requirement to preserve background independence has lead to new, fascinating mathematical structures which one does not see in perturbative approaches, e.g. a fundamental discreteness of spacetime seems to be a prediction of the theory provi...

  1. Robustness of circadian clocks to daylight fluctuations: hints from the picoeucaryote Ostreococcus tauri.

    Directory of Open Access Journals (Sweden)

    Quentin Thommen

    Full Text Available The development of systemic approaches in biology has put emphasis on identifying genetic modules whose behavior can be modeled accurately so as to gain insight into their structure and function. However, most gene circuits in a cell are under control of external signals and thus, quantitative agreement between experimental data and a mathematical model is difficult. Circadian biology has been one notable exception: quantitative models of the internal clock that orchestrates biological processes over the 24-hour diurnal cycle have been constructed for a few organisms, from cyanobacteria to plants and mammals. In most cases, a complex architecture with interlocked feedback loops has been evidenced. Here we present the first modeling results for the circadian clock of the green unicellular alga Ostreococcus tauri. Two plant-like clock genes have been shown to play a central role in the Ostreococcus clock. We find that their expression time profiles can be accurately reproduced by a minimal model of a two-gene transcriptional feedback loop. Remarkably, best adjustment of data recorded under light/dark alternation is obtained when assuming that the oscillator is not coupled to the diurnal cycle. This suggests that coupling to light is confined to specific time intervals and has no dynamical effect when the oscillator is entrained by the diurnal cycle. This intriguing property may reflect a strategy to minimize the impact of fluctuations in daylight intensity on the core circadian oscillator, a type of perturbation that has been rarely considered when assessing the robustness of circadian clocks.

  2. Canonical approach to 2D induced gravity

    CERN Document Server

    Popovic, D

    2001-01-01

    Using canonical method the Liouville theory has been obtained as a gravitational Wess-Zumino action of the Polyakov string. From this approach it is clear that the form of the Liouville action is the consequence of the bosonic representation of the Virasoro algebra, and that the coefficient in front of the action is proportional to the central charge and measures the quantum braking of the classical symmetry.

  3. On Complex Supermanifolds with Trivial Canonical Bundle

    CERN Document Server

    Groeger, Josua

    2016-01-01

    We give an algebraic characterisation for the triviality of the canonical bundle of a complex supermanifold in terms of a certain Batalin-Vilkovisky superalgebra structure. As an application, we study the Calabi-Yau case, in which an explicit formula in terms of the Levi-Civita connection is achieved. Our methods include the use of complex integral forms and the recently developed theory of superholonomy.

  4. Quaternion Fourier and Linear Canonical Inversion Theorems

    OpenAIRE

    Hu, Xiao Xiao; Kou, Kit Ian

    2016-01-01

    The Quaternion Fourier transform (QFT) is one of the key tools in studying color image processing. Indeed, a deep understanding of the QFT has created the color images to be transformed as whole, rather than as color separated component. In addition, understanding the QFT paves the way for understanding other integral transform, such as the Quaternion Fractional Fourier transform (QFRFT), Quaternion linear canonical transform (QLCT) and Quaternion Wigner-Ville distribution. The aim of this pa...

  5. Renal Hypodysplasia Associates with a Wnt4 Variant that Causes Aberrant Canonical Wnt Signaling

    Science.gov (United States)

    Vivante, Asaf; Mark-Danieli, Michal; Davidovits, Miriam; Harari-Steinberg, Orit; Omer, Dorit; Gnatek, Yehudit; Cleper, Roxana; Landau, Daniel; Kovalski, Yael; Weissman, Irit; Eisenstein, Israel; Soudack, Michalle; Wolf, Haike Reznik; Issler, Naomi; Lotan, Danny; Anikster, Yair

    2013-01-01

    Abnormal differentiation of the renal stem/progenitor pool into kidney tissue can lead to renal hypodysplasia (RHD), but the underlying causes of RHD are not well understood. In this multicenter study, we identified 20 Israeli pedigrees with isolated familial, nonsyndromic RHD and screened for mutations in candidate genes involved in kidney development, including PAX2, HNF1B, EYA1, SIX1, SIX2, SALL1, GDNF, WNT4, and WT1. In addition to previously reported RHD-causing genes, we found that two affected brothers were heterozygous for a missense variant in the WNT4 gene. Functional analysis of this variant revealed both antagonistic and agonistic canonical WNT stimuli, dependent on cell type. In HEK293 cells, WNT4 inhibited WNT3A induced canonical activation, and the WNT4 variant significantly enhanced this inhibition of the canonical WNT pathway. In contrast, in primary cultures of human fetal kidney cells, which maintain WNT activation and more closely represent WNT signaling in renal progenitors during nephrogenesis, this mutation caused significant loss of function, resulting in diminished canonical WNT/β-catenin signaling. In conclusion, heterozygous WNT4 variants are likely to play a causative role in renal hypodysplasia. PMID:23520208

  6. Canonical Energy is Quantum Fisher Information

    CERN Document Server

    Lashkari, Nima

    2015-01-01

    In quantum information theory, Fisher Information is a natural metric on the space of perturbations to a density matrix, defined by calculating the relative entropy with the unperturbed state at quadratic order in perturbations. In gravitational physics, Canonical Energy defines a natural metric on the space of perturbations to spacetimes with a Killing horizon. In this paper, we show that the Fisher information metric for perturbations to the vacuum density matrix of a ball-shaped region B in a holographic CFT is dual to the canonical energy metric for perturbations to a corresponding Rindler wedge R_B of Anti-de-Sitter space. Positivity of relative entropy at second order implies that the Fisher information metric is positive definite. Thus, for physical perturbations to anti-de-Sitter spacetime, the canonical energy associated to any Rindler wedge must be positive. This second-order constraint on the metric extends the first order result from relative entropy positivity that physical perturbations must sat...

  7. Symmetric Quartic Map in natural canonical coordinates

    Science.gov (United States)

    Baldwin, Danielle; Jones, Bilal; Settle, Talise; Ali, Halima; Punjabi, Alkesh

    2015-11-01

    The generating function for the simple map is modified by replacing the cubic term in canonical momentum by a quartic term. New parameters are introduced in the modified generating function to control the height and the width of ideal separatrix surface and the poloidal magnetic flux inside ideal separatrix. The new generating function is the generating function for the Symmetric Quartic Map (SQM). The new parameters in the generating function are chosen such that the height, width, elongation, and the poloidal flux inside the separatrix for the SQM are same as the simple map. The resulting generating function for the SQM is then transformed from the physical coordinates to the natural canonical coordinates. The equilibrium separatrix of the SQM is calculated in the natural canonical coordinates. The purpose of this research is to calculate the homoclinic tangle of the SQM and compare with the simple map. The separatrix of the simple map is open and unbounded; while the separatrix of the SQM is closed and compact. Motivation is to see what role the topology of the separatrix plays in its homoclinic tangle in single-null divertor tokamaks. This work is supported by grants DE-FG02-01ER54624, DE-FG02-04ER54793, and DE-FG02-07ER54937.

  8. CRY Drives Cyclic CK2-Mediated BMAL1 Phosphorylation to Control the Mammalian Circadian Clock

    Science.gov (United States)

    Tamaru, Teruya; Hattori, Mitsuru; Honda, Kousuke; Nakahata, Yasukazu; Sassone-Corsi, Paolo; van der Horst, Gijsbertus T. J.; Ozawa, Takeaki; Takamatsu, Ken

    2015-01-01

    Intracellular circadian clocks, composed of clock genes that act in transcription-translation feedback loops, drive global rhythmic expression of the mammalian transcriptome and allow an organism to anticipate to the momentum of the day. Using a novel clock-perturbing peptide, we established a pivotal role for casein kinase (CK)-2-mediated circadian BMAL1-Ser90 phosphorylation (BMAL1-P) in regulating central and peripheral core clocks. Subsequent analysis of the underlying mechanism showed a novel role of CRY as a repressor for protein kinase. Co-immunoprecipitation experiments and real-time monitoring of protein–protein interactions revealed that CRY-mediated periodic binding of CK2β to BMAL1 inhibits BMAL1-Ser90 phosphorylation by CK2α. The FAD binding domain of CRY1, two C-terminal BMAL1 domains, and particularly BMAL1-Lys537 acetylation/deacetylation by CLOCK/SIRT1, were shown to be critical for CRY-mediated BMAL1–CK2β binding. Reciprocally, BMAL1-Ser90 phosphorylation is prerequisite for BMAL1-Lys537 acetylation. We propose a dual negative-feedback model in which a CRY-dependent CK2-driven posttranslational BMAL1–P-BMAL1 loop is an integral part of the core clock oscillator. PMID:26562092

  9. CRY Drives Cyclic CK2-Mediated BMAL1 Phosphorylation to Control the Mammalian Circadian Clock.

    Directory of Open Access Journals (Sweden)

    Teruya Tamaru

    Full Text Available Intracellular circadian clocks, composed of clock genes that act in transcription-translation feedback loops, drive global rhythmic expression of the mammalian transcriptome and allow an organism to anticipate to the momentum of the day. Using a novel clock-perturbing peptide, we established a pivotal role for casein kinase (CK-2-mediated circadian BMAL1-Ser90 phosphorylation (BMAL1-P in regulating central and peripheral core clocks. Subsequent analysis of the underlying mechanism showed a novel role of CRY as a repressor for protein kinase. Co-immunoprecipitation experiments and real-time monitoring of protein-protein interactions revealed that CRY-mediated periodic binding of CK2β to BMAL1 inhibits BMAL1-Ser90 phosphorylation by CK2α. The FAD binding domain of CRY1, two C-terminal BMAL1 domains, and particularly BMAL1-Lys537 acetylation/deacetylation by CLOCK/SIRT1, were shown to be critical for CRY-mediated BMAL1-CK2β binding. Reciprocally, BMAL1-Ser90 phosphorylation is prerequisite for BMAL1-Lys537 acetylation. We propose a dual negative-feedback model in which a CRY-dependent CK2-driven posttranslational BMAL1-P-BMAL1 loop is an integral part of the core clock oscillator.

  10. Peripheral Skin Temperature and Circadian Biological Clock in Shift Nurses after a Day off.

    Science.gov (United States)

    Bracci, Massimo; Ciarapica, Veronica; Copertaro, Alfredo; Barbaresi, Mariella; Manzella, Nicola; Tomasetti, Marco; Gaetani, Simona; Monaco, Federica; Amati, Monica; Valentino, Matteo; Rapisarda, Venerando; Santarelli, Lory

    2016-01-01

    The circadian biological clock is essentially based on the light/dark cycle. Some people working with shift schedules cannot adjust their sleep/wake cycle to the light/dark cycle, and this may result in alterations of the circadian biological clock. This study explored the circadian biological clock of shift and daytime nurses using non-invasive methods. Peripheral skin temperature, cortisol and melatonin levels in saliva, and Per2 expression in pubic hair follicle cells were investigated for 24 h after a day off. Significant differences were observed in peripheral skin temperature and cortisol levels between shift and daytime nurses. No differences in melatonin levels were obtained. Per2 maximum values were significantly different between the two groups. Shift nurses exhibited lower circadian variations compared to daytime nurses, and this may indicate an adjustment of the circadian biological clock to continuous shift schedules. Non-invasive procedures, such as peripheral skin temperature measurement, determination of cortisol and melatonin in saliva, and analysis of clock genes in hair follicle cells, may be effective approaches to extensively study the circadian clock in shift workers. PMID:27128899

  11. Peripheral Skin Temperature and Circadian Biological Clock in Shift Nurses after a Day off

    Directory of Open Access Journals (Sweden)

    Massimo Bracci

    2016-04-01

    Full Text Available The circadian biological clock is essentially based on the light/dark cycle. Some people working with shift schedules cannot adjust their sleep/wake cycle to the light/dark cycle, and this may result in alterations of the circadian biological clock. This study explored the circadian biological clock of shift and daytime nurses using non-invasive methods. Peripheral skin temperature, cortisol and melatonin levels in saliva, and Per2 expression in pubic hair follicle cells were investigated for 24 h after a day off. Significant differences were observed in peripheral skin temperature and cortisol levels between shift and daytime nurses. No differences in melatonin levels were obtained. Per2 maximum values were significantly different between the two groups. Shift nurses exhibited lower circadian variations compared to daytime nurses, and this may indicate an adjustment of the circadian biological clock to continuous shift schedules. Non-invasive procedures, such as peripheral skin temperature measurement, determination of cortisol and melatonin in saliva, and analysis of clock genes in hair follicle cells, may be effective approaches to extensively study the circadian clock in shift workers.

  12. The ancestral circadian clock of monarch butterflies: role in time-compensated sun compass orientation.

    Science.gov (United States)

    Reppert, S M

    2007-01-01

    The circadian clock has a vital role in monarch butterfly (Danaus plexippus) migration by providing the timing component of time-compensated sun compass orientation, which contributes to navigation to the overwintering grounds. The location of circadian clock cells in monarch brain has been identified in the dorsolateral protocerebrum (pars lateralis); these cells express PERIOD, TIMELESS, and a Drosophila-like cryptochrome designated CRY1. Monarch butterflies, like all other nondrosophilid insects examined so far, express a second cry gene (designated insect CRY2) that encodes a vertebrate-like CRY that is also expressed in pars lateralis. An ancestral circadian clock mechanism has been defined in monarchs, in which CRY1 functions as a blue light photoreceptor for photic entrainment, whereas CRY2 functionswithin the clockwork as themajor transcriptional repressor of an intracellular negative transcriptional feedback loop. A CRY1-staining neural pathway has been identified that may connect the circadian (navigational) clock to polarized light input important for sun compass navigation, and a CRY2-positive neural pathway has been discovered that may communicate circadian information directly from the circadian clock to the central complex, the likely site of the sun compass. The monarch butterfly may thus use the CRY proteins as components of the circadian mechanism and also as output molecules that connect the clock to various aspects of the sun compass apparatus. PMID:18419268

  13. When clocks go bad: neurobehavioural consequences of disrupted circadian timing.

    Directory of Open Access Journals (Sweden)

    Alun R Barnard

    2008-05-01

    Full Text Available Progress in unravelling the cellular and molecular basis of mammalian circadian regulation over the past decade has provided us with new avenues through which we can explore central nervous system disease. Deteriorations in measurable circadian output parameters, such as sleep/wake deficits and dysregulation of circulating hormone levels, are common features of most central nervous system disorders. At the core of the mammalian circadian system is a complex of molecular oscillations within the hypothalamic suprachiasmatic nucleus. These oscillations are modifiable by afferent signals from the environment, and integrated signals are subsequently conveyed to remote central neural circuits where specific output rhythms are regulated. Mutations in circadian genes in mice can disturb both molecular oscillations and measurable output rhythms. Moreover, systematic analysis of these mutants indicates that they can express an array of abnormal behavioural phenotypes that are intermediate signatures of central nervous system disorders. Furthermore, the response of these mutants to psychoactive drugs suggests that clock genes can modify a number of the brain's critical neurotransmitter systems. This evidence has led to promising investigations into clock gene polymorphisms in psychiatric disease. Preliminary indications favour the systematic investigation of the contribution of circadian genes to central nervous system disease.

  14. Circadian clocks are designed optimally

    CERN Document Server

    Hasegawa, Yoshihiko

    2014-01-01

    Circadian rhythms are acquired through evolution to increase the chances for survival by synchronizing to the daylight cycle. Reliable synchronization is realized through two trade-off properties: regularity to keep time precisely, and entrainability to synchronize the internal time with daylight. Since both properties have been tuned through natural selection, their adaptation can be formalized in the framework of mathematical optimization. By using a succinct model, we found that simultaneous optimization of regularity and entrainability entails inherent features of the circadian mechanism irrespective of model details. At the behavioral level we discovered the existence of a dead zone, a time during which light pulses neither advance nor delay the clock. At the molecular level we demonstrate the role-sharing of two light inputs, phase advance and delay, as is well observed in mammals. We also reproduce the results of phase-controlling experiments and predict molecular elements responsible for the clockwork...

  15. Visualizing and Quantifying Intracellular Behavior and Abundance of the Core Circadian Clock Protein PERIOD2.

    Science.gov (United States)

    Smyllie, Nicola J; Pilorz, Violetta; Boyd, James; Meng, Qing-Jun; Saer, Ben; Chesham, Johanna E; Maywood, Elizabeth S; Krogager, Toke P; Spiller, David G; Boot-Handford, Raymond; White, Michael R H; Hastings, Michael H; Loudon, Andrew S I

    2016-07-25

    Transcriptional-translational feedback loops (TTFLs) are a conserved molecular motif of circadian clocks. The principal clock in mammals is the suprachiasmatic nucleus (SCN) of the hypothalamus. In SCN neurons, auto-regulatory feedback on core clock genes Period (Per) and Cryptochrome (Cry) following nuclear entry of their protein products is the basis of circadian oscillation [1, 2]. In Drosophila clock neurons, the movement of dPer into the nucleus is subject to a circadian gate that generates a delay in the TTFL, and this delay is thought to be critical for oscillation [3, 4]. Analysis of the Drosophila clock has strongly influenced models of the mammalian clock, and such models typically infer complex spatiotemporal, intracellular behaviors of mammalian clock proteins. There are, however, no direct measures of the intracellular behavior of endogenous circadian proteins to support this: dynamic analyses have been limited and often have no circadian dimension [5-7]. We therefore generated a knockin mouse expressing a fluorescent fusion of native PER2 protein (PER2::VENUS) for live imaging. PER2::VENUS recapitulates the circadian functions of wild-type PER2 and, importantly, the behavior of PER2::VENUS runs counter to the Drosophila model: it does not exhibit circadian gating of nuclear entry. Using fluorescent imaging of PER2::VENUS, we acquired the first measures of mobility, molecular concentration, and localization of an endogenous circadian protein in individual mammalian cells, and we showed how the mobility and nuclear translocation of PER2 are regulated by casein kinase. These results provide new qualitative and quantitative insights into the cellular mechanism of the mammalian circadian clock. PMID:27374340

  16. Time clock requirements for hospital physicians.

    Science.gov (United States)

    Shapira, Chen; Vilnai-Yavetz, Iris; Rafaeli, Anat; Zemel, Moran

    2016-06-01

    An agreement negotiated following a doctors' strike in 2011 introduced a requirement that physicians in Israel's public hospitals clock in and out when starting and leaving work. The press reported strong negative reactions to this policy and predicted doctors deserting hospitals en masse. This study examines physicians' reactions toward the clock-in/clock-out policy 6 months after its implementation, and assesses the relationship between these reactions and aspects of their employment context. 676 physicians in 42 hospitals responded to a survey assessing doctor's reactions toward the clock, hospital policy makers, and aspects of their work. Reactions to the clock were generally negative. Sense of calling correlated positively with negative reactions to the clock, and the latter correlated positively with quit intentions. However, overall, respondents reported a high sense of calling and low quit intentions. We suggest that sense of calling buffers and protects physicians from quit intentions. Differences in reactions to the clock were associated with different employment characteristics, but sense of calling did not vary by hospital size or type or by physicians' specialty. The findings offer insights into how physicians' working environment affects their reactions to regulatory interventions, and highlight medical professionalism as buffering reactions to unpopular regulatory policies. PMID:27142179

  17. The molecular clock as a metabolic rheostat.

    Science.gov (United States)

    Perelis, M; Ramsey, K M; Bass, J

    2015-09-01

    Circadian clocks are biologic oscillators present in all photosensitive species that produce 24-h cycles in the transcription of rate-limiting metabolic enzymes in anticipation of the light-dark cycle. In mammals, the clock drives energetic cycles to maintain physiologic constancy during the daily switch in behavioural (sleep/wake) and nutritional (fasting/feeding) states. A molecular connection between circadian clocks and tissue metabolism was first established with the discovery that 24-h transcriptional rhythms are cell-autonomous and self-sustained in most tissues and comprise a robust temporal network throughout the body. A major window in understanding how the clock is coupled to metabolism was opened with discovery of metabolic syndrome pathologies in multi-tissue circadian mutant mice including susceptibility to diet-induced obesity and diabetes. Using conditional transgenesis and dynamic metabolic testing, we have pinpointed tissue-specific roles of the clock in energy and glucose homeostasis, with our most detailed understanding of this process in endocrine pancreas. Here, we review evidence for dynamic regulation of insulin secretion and oxidative metabolic functions by the clock transcription pathway to regulate homeostatic responses to feeding and fasting. These studies indicate that clock transcription is a determinant of tissue function and provide a reference for understanding molecular pathologies linking circadian desynchrony to metabolic disease.

  18. Rev-erbα and Rev-erbβ coordinately protect the circadian clock and normal metabolic function

    DEFF Research Database (Denmark)

    Bugge, Anne Skovsø; Feng, Dan; Everett, Logan J;

    2012-01-01

    of binding sites across the genome, enriched near metabolic genes. Depletion of both Rev-erbs in liver synergistically derepresses several metabolic genes as well as genes that control the positive limb of the molecular clock. Moreover, deficiency of both Rev-erbs causes marked hepatic steatosis, in contrast...

  19. CLOCK基因T3111C多态性与儿童注意缺陷多动障碍及相关睡眠障碍的关联研究%Association of CLOCK gene T3111C polymorphism with attention deficit hyperactivity disorder and related sleep disturbances in children

    Institute of Scientific and Technical Information of China (English)

    曹银利; 崔勤涛; 唐成和; 常晓

    2012-01-01

    目的 探讨CLOCK基因3′非编码区SNP位点T3111C与儿童注意缺陷多动障碍(attention deficit hyperactivity disorder,ADHD)及相关睡眠障碍的关联性.方法 取无亲缘关系的ADHD患儿166名以及正常儿童(对照组)150名,根据睡眠障碍量表(Sleep Disturbance Scale for Children,SDSC)评分筛查睡眠障碍,采用聚合酶链反应-限制性片段长度多态性(PCR-RFLP)技术,检测ADHD组和对照组CLOCK基因的T3111C基因型和等位基因的频率分布.结果 CLOCK基因的T3111C基因型及等位基因频率分布在ADHD组和对照组之间差异有统计学意义(P<0.05),ADHD组中等位基因c频率显著高于对照组(x2=7.254,P=0.007,OR=1.740,95%口CI=1.160~2.612).伴有睡眠障碍的ADHD患儿等位基因c频率显著高于不伴有睡眠障碍者(x2=13.052,P<0.001,OR=2.766,95% CI=1.573 ~4.865).结论 CLOCK基因T3111C位点与ADHD易感性存在关联,也是影响ADHD患儿相关睡眠障碍的重要因素.携带C等位基因的个体罹患ADHD以及ADHD相关睡眠障碍的相对风险增高.%Objective To examine the association between CLOCK gene T3111C polymorphism with attention deficit hyperactivity disorder (ADHD) and ADHD related sleep disturbances in children. Methods One hundred and sixty-six unrelated children with ADHD diagnosed according to DSM-IV criteria and a contorol group of 150 normal children were enrolled in this study. Parents filled out the Sleep Disturbance Scale for Children ( SDSC ). Genotype and allele frequencies of T3111C of the CLOCK gene were examined by PCR-restriction fragment length polymorphisms (PCR-RFLP). Results There were significant differences in the genotype and allele frequencies of 13111C of the CLOCK gene between the ADHD and control groups (P <0.05). C allele frequency in the ADHD group was significantly higher than in the control group (χ2=7.254, P =0.007, OR = 1.740, 95%CI = 1.160-2.612). The ADHD children with sleep disturbances were found to have higher

  20. Explaining the imperfection of the molecular clock of hominid mitochondria.

    Directory of Open Access Journals (Sweden)

    Eva-Liis Loogväli

    Full Text Available The molecular clock of mitochondrial DNA has been extensively used to date various genetic events. However, its substitution rate among humans appears to be higher than rates inferred from human-chimpanzee comparisons, limiting the potential of interspecies clock calibrations for intraspecific dating. It is not well understood how and why the substitution rate accelerates. We have analyzed a phylogenetic tree of 3057 publicly available human mitochondrial DNA coding region sequences for changes in the ratios of mutations belonging to different functional classes. The proportion of non-synonymous and RNA genes substitutions has reduced over hundreds of thousands of years. The highest mutation ratios corresponding to fast acceleration in the apparent substitution rate of the coding sequence have occurred after the end of the Last Ice Age. We recalibrate the molecular clock of human mtDNA as 7990 years per synonymous mutation over the mitochondrial genome. However, the distribution of substitutions at synonymous sites in human data significantly departs from a model assuming a single rate parameter and implies at least 3 different subclasses of sites. Neutral model with 3 synonymous substitution rates can explain most, if not all, of the apparent molecular clock difference between the intra- and interspecies levels. Our findings imply the sluggishness of purifying selection in removing the slightly deleterious mutations from the human as well as the Neandertal and chimpanzee populations. However, for humans, the weakness of purifying selection has been further exacerbated by the population expansions associated with the out-of Africa migration and the end of the Last Ice Age.

  1. Explaining the imperfection of the molecular clock of hominid mitochondria.

    Science.gov (United States)

    Loogväli, Eva-Liis; Kivisild, Toomas; Margus, Tõnu; Villems, Richard

    2009-12-29

    The molecular clock of mitochondrial DNA has been extensively used to date various genetic events. However, its substitution rate among humans appears to be higher than rates inferred from human-chimpanzee comparisons, limiting the potential of interspecies clock calibrations for intraspecific dating. It is not well understood how and why the substitution rate accelerates. We have analyzed a phylogenetic tree of 3057 publicly available human mitochondrial DNA coding region sequences for changes in the ratios of mutations belonging to different functional classes. The proportion of non-synonymous and RNA genes substitutions has reduced over hundreds of thousands of years. The highest mutation ratios corresponding to fast acceleration in the apparent substitution rate of the coding sequence have occurred after the end of the Last Ice Age. We recalibrate the molecular clock of human mtDNA as 7990 years per synonymous mutation over the mitochondrial genome. However, the distribution of substitutions at synonymous sites in human data significantly departs from a model assuming a single rate parameter and implies at least 3 different subclasses of sites. Neutral model with 3 synonymous substitution rates can explain most, if not all, of the apparent molecular clock difference between the intra- and interspecies levels. Our findings imply the sluggishness of purifying selection in removing the slightly deleterious mutations from the human as well as the Neandertal and chimpanzee populations. However, for humans, the weakness of purifying selection has been further exacerbated by the population expansions associated with the out-of Africa migration and the end of the Last Ice Age.

  2. Maternal feeding controls fetal biological clock.

    Directory of Open Access Journals (Sweden)

    Hidenobu Ohta

    Full Text Available BACKGROUND: It is widely accepted that circadian physiological rhythms of the fetus are affected by oscillators in the maternal brain that are coupled to the environmental light-dark (LD cycle. METHODOLOGY/PRINCIPAL FINDINGS: To study the link between fetal and maternal biological clocks, we investigated the effects of cycles of maternal food availability on the rhythms of Per1 gene expression in the fetal suprachiasmatic nucleus (SCN and liver using a transgenic rat model whose tissues express luciferase in vitro. Although the maternal SCN remained phase-locked to the LD cycle, maternal restricted feeding phase-advanced the fetal SCN and liver by 5 and 7 hours respectively within the 22-day pregnancy. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that maternal feeding entrains the fetal SCN and liver independently of both the maternal SCN and the LD cycle. This indicates that maternal-feeding signals can be more influential for the fetal SCN and particular organ oscillators than hormonal signals controlled by the maternal SCN, suggesting the importance of a regular maternal feeding schedule for appropriate fetal molecular clockwork during pregnancy.

  3. Coupling cellular oscillators: a mechanism that maintains synchrony against developmental noise in the segmentation clock.

    Science.gov (United States)

    Ishimatsu, Kana; Horikawa, Kazuki; Takeda, Hiroyuki

    2007-06-01

    A unique feature of vertebrate segmentation is its strict periodicity, which is governed by the segmentation clock consisting of numerous cellular oscillators. These cellular oscillators, driven by a negative-feedback loop of Hairy transcription factor, are linked through Notch-dependent intercellular coupling and display the synchronous expression of clock genes. Combining our transplantation experiments in zebrafish with mathematical simulations, we review how the cellular oscillators maintain synchrony and form a robust system that is resistant to the effects of developmental noise such as stochastic gene expression and active cell proliferation. The accumulated evidence indicates that the segmentation clock behaves as a "coupled oscillators," a mechanism that also underlies the synchronous flashing seen in fireflies.

  4. Natural variation reveals that intracellular distribution of ELF3 protein is associated with function in the circadian clock

    OpenAIRE

    Anwer, M.; Boikoglou, E.; E. Herrero; Hallstein, M.; Davis, A; James, G.; Nagy, F; Davis, S.

    2014-01-01

    eLife digest Life on Earth tends to follow a daily rhythm: some animals are awake during the day and asleep at night, whilst others are more active at night, or during the twilight around dawn and dusk. For many living things, these cycles of activity are driven by an internal body clock that helps the organism to adapt to the daily cycle of light and dark—and similar internal clocks also exist in plants. These internal clocks define daily—or circadian—cycles whereby multiple genes are switch...

  5. Using Atomic Clocks to Detect Gravitational Waves

    CERN Document Server

    Loeb, Abraham

    2015-01-01

    Atomic clocks have recently reached a fractional timing precision of $<10^{-18}$. We point out that an array of atomic clocks, distributed along the Earth's orbit around the Sun, will have the sensitivity needed to detect the time dilation effect of mHz gravitational waves (GWs), such as those emitted by supermassive black hole binaries at cosmological distances. Simultaneous measurement of clock-rates at different phases of a passing GW provides an attractive alternative to the interferometric detection of temporal variations in distance between test masses separated by less than a GW wavelength, currently envisioned for the eLISA mission.

  6. Light clocks in strong gravitational fields

    CERN Document Server

    Punzi, Raffaele; Wohlfarth, Mattias N R

    2009-01-01

    We argue that the time measured by a light clock operating with photons rather than classical light requires a refinement of the standard clock postulate in general relativity. In the presence of a gravitational field, already the one-loop quantum corrections to classical Maxwell theory affect light propagation and the construction of observers' frames of reference. Carefully taking into account these kinematic effects, a concise geometric expression for the time shown by a light clock is obtained. This result has far-reaching implications for physics in strong gravitational fields.

  7. Transcripts from the Circadian Clock: Telling Time and Season

    NARCIS (Netherlands)

    K. Brand (Karl)

    2011-01-01

    textabstractWe all know it when we wake mere moments before an alarm clock is scheduled to wake us: our body clock made the alarm clock redundant. This phenomenon is driven by an endogenous timer known as the biological, or circadian clock. Each revolution of the Earth about its own axis produces pe

  8. Effects of different per translational kinetics on the dynamics of a core circadian clock model.

    Directory of Open Access Journals (Sweden)

    Paula S Nieto

    Full Text Available Living beings display self-sustained daily rhythms in multiple biological processes, which persist in the absence of external cues since they are generated by endogenous circadian clocks. The period (per gene is a central player within the core molecular mechanism for keeping circadian time in most animals. Recently, the modulation PER translation has been reported, both in mammals and flies, suggesting that translational regulation of clock components is important for the proper clock gene expression and molecular clock performance. Because translational regulation ultimately implies changes in the kinetics of translation and, therefore, in the circadian clock dynamics, we sought to study how and to what extent the molecular clock dynamics is affected by the kinetics of PER translation. With this objective, we used a minimal mathematical model of the molecular circadian clock to qualitatively characterize the dynamical changes derived from kinetically different PER translational mechanisms. We found that the emergence of self-sustained oscillations with characteristic period, amplitude, and phase lag (time delays between per mRNA and protein expression depends on the kinetic parameters related to PER translation. Interestingly, under certain conditions, a PER translation mechanism with saturable kinetics introduces longer time delays than a mechanism ruled by a first-order kinetics. In addition, the kinetic laws of PER translation significantly changed the sensitivity of our model to parameters related to the synthesis and degradation of per mRNA and PER degradation. Lastly, we found a set of parameters, with realistic values, for which our model reproduces some experimental results reported recently for Drosophila melanogaster and we present some predictions derived from our analysis.

  9. Hepatic circadian clock oscillators and nuclear receptors integrate microbiome-derived signals

    Science.gov (United States)

    Montagner, Alexandra; Korecka, Agata; Polizzi, Arnaud; Lippi, Yannick; Blum, Yuna; Canlet, Cécile; Tremblay-Franco, Marie; Gautier-Stein, Amandine; Burcelin, Rémy; Yen, Yi-Chun; Je, Hyunsoo Shawn; Maha, Al-Asmakh; Mithieux, Gilles; Arulampalam, Velmurugesan; Lagarrigue, Sandrine; Guillou, Hervé; Pettersson, Sven; Wahli, Walter

    2016-01-01

    The liver is a key organ of metabolic homeostasis with functions that oscillate in response to food intake. Although liver and gut microbiome crosstalk has been reported, microbiome-mediated effects on peripheral circadian clocks and their output genes are less well known. Here, we report that germ-free (GF) mice display altered daily oscillation of clock gene expression with a concomitant change in the expression of clock output regulators. Mice exposed to microbes typically exhibit characterized activities of nuclear receptors, some of which (PPARα, LXRβ) regulate specific liver gene expression networks, but these activities are profoundly changed in GF mice. These alterations in microbiome-sensitive gene expression patterns are associated with daily alterations in lipid, glucose, and xenobiotic metabolism, protein turnover, and redox balance, as revealed by hepatic metabolome analyses. Moreover, at the systemic level, daily changes in the abundance of biomarkers such as HDL cholesterol, free fatty acids, FGF21, bilirubin, and lactate depend on the microbiome. Altogether, our results indicate that the microbiome is required for integration of liver clock oscillations that tune output activators and their effectors, thereby regulating metabolic gene expression for optimal liver function. PMID:26879573

  10. Effects of diurnal variation of gut microbes and high-fat feeding on host circadian clock function and metabolism.

    Science.gov (United States)

    Leone, Vanessa; Gibbons, Sean M; Martinez, Kristina; Hutchison, Alan L; Huang, Edmond Y; Cham, Candace M; Pierre, Joseph F; Heneghan, Aaron F; Nadimpalli, Anuradha; Hubert, Nathaniel; Zale, Elizabeth; Wang, Yunwei; Huang, Yong; Theriault, Betty; Dinner, Aaron R; Musch, Mark W; Kudsk, Kenneth A; Prendergast, Brian J; Gilbert, Jack A; Chang, Eugene B

    2015-05-13

    Circadian clocks and metabolism are inextricably intertwined, where central and hepatic circadian clocks coordinate metabolic events in response to light-dark and sleep-wake cycles. We reveal an additional key element involved in maintaining host circadian rhythms, the gut microbiome. Despite persistence of light-dark signals, germ-free mice fed low or high-fat diets exhibit markedly impaired central and hepatic circadian clock gene expression and do not gain weight compared to conventionally raised counterparts. Examination of gut microbiota in conventionally raised mice showed differential diurnal variation in microbial structure and function dependent upon dietary composition. Additionally, specific microbial metabolites induced under low- or high-fat feeding, particularly short-chain fatty acids, but not hydrogen sulfide, directly modulate circadian clock gene expression within hepatocytes. These results underscore the ability of microbially derived metabolites to regulate or modify central and hepatic circadian rhythm and host metabolic function, the latter following intake of a Westernized diet. PMID:25891358

  11. 大鼠松果体Clock基因和芳烷脘N-乙酰基转移酶基因的昼夜节律性表达及光照影响%Circadian rhythms and light responses of clock gene and arylalkylamine N-acetyltransferase gene expressions in the pineal gland of rats

    Institute of Scientific and Technical Information of China (English)

    王国卿; 杜玉珍; 童建

    2005-01-01

    探讨12 h光照、12 h黑暗交替(12 h-light:12 h-dark cycle,LD)及持续黑暗(constant darkness,DD)光制下松果体Clock基因和芳烷脘N-乙酰基转移酶基因(arylalkylamine N-acetyltransferase gene,NAT)是否存在昼夜节律性表达及其光反应变化.Sprague-Dawley大鼠在LD和DD光制下分别被饲养4周(n=36)和8周(n=36)后,在一昼夜内每隔4 h采集一组松果体组织(n=6),提取总RNA,用竞争性定量RT-PCR测定不同昼夜时点样品中Clock及NAT基因的mRNA相对表达量,通过余弦法和ClockLab软件获取节律参数,并经振幅检验是否存在昼夜节律.结果如下:(1)在DD或LD光制下,松果体Clock和NAT基因mRNA的表达均呈现夜高昼低的节律性振荡(P<0.05).(2)与DD光制下比较,LD光制下松果体Clock和NAT基因的表达振幅及峰值相的mRNA水平均降低(P<0.05).(3)在DD或LD光制下,Clock和NAT基因之间显示相似的节律性表达(P>0.05).结果表明,Clock和NAT基因在松果体中存在同步的内源性昼夜节律表达,光照作用可使其表达下调.

  12. Remodeling the clock: coactivators and signal transduction in the circadian clockworks

    Science.gov (United States)

    Weber, Frank

    2009-03-01

    Most organisms on earth such as cyanobacteria, fungi, plants, insects, animals, and humans synchronize their physiological and behavioral activities with the environmental cycles of day and night. Significant progress has been made in unraveling the genetic components that constitute a molecular circadian clock, which facilitates the temporal control of physiology and behavior. Clock genes assemble interlocked transcriptional/translational feedback loops that underlie the circadian oscillations. Recent investigations revealed that posttranslational regulation of clock proteins is crucial for functioning of the molecular oscillator and for precise temporal control of circadian transcription. This review provides an overview of the homologous clockworks in Drosophila and mammals, with a special focus on recent insights in the posttranslational regulation of clock proteins as well as the role of coactivators, repressors, and signal transduction for circadian controlled genome-wide transcription. The emerging mechanisms of clock gene regulation provide an understanding of the temporal control of transcription in general and the circadian orchestration of physiology and behavior in particular.

  13. Defence responses of Arabidopsis thaliana to infection by Pseudomonas syringae are regulated by the circadian clock.

    Directory of Open Access Journals (Sweden)

    Vaibhav Bhardwaj

    Full Text Available The circadian clock allows plants to anticipate predictable daily changes in abiotic stimuli, such as light; however, whether the clock similarly allows plants to anticipate interactions with other organisms is unknown. Here we show that Arabidopsis thaliana (Arabidopsis has circadian clock-mediated variation in resistance to the virulent bacterial pathogen Pseudomonas syringae pv. tomato DC3000 (Pst DC3000, with plants being least susceptible to infection in the subjective morning. We suggest that the increased resistance to Pst DC3000 observed in the morning in Col-0 plants results from clock-mediated modulation of pathogen associated molecular pattern (PAMP-triggered immunity. Analysis of publicly available microarray data revealed that a large number of Arabidopsis defence-related genes showed both diurnal- and circadian-regulation, including genes involved in the perception of the PAMP flagellin which exhibit a peak in expression in the morning. Accordingly, we observed that PAMP-triggered callose deposition was significantly higher in wild-type plants inoculated with Pst DC3000 hrpA in the subjective morning than in the evening, while no such temporal difference was evident in arrhythmic plants. Our results suggest that PAMP-triggered immune responses are modulated by the circadian clock and that temporal regulation allows plants to anticipate and respond more effectively to pathogen challenges in the daytime.

  14. Interaction of MAGED1 with nuclear receptors affects circadian clock function

    Science.gov (United States)

    Wang, Xiaohan; Tang, Jing; Xing, Lijuan; Shi, Guangsen; Ruan, Haibin; Gu, Xiwen; Liu, Zhiwei; Wu, Xi; Gao, Xiang; Xu, Ying

    2010-01-01

    The circadian clock has a central role in physiological adaption and anticipation of day/night changes. In a genetic screen for novel regulators of circadian rhythms, we found that mice lacking MAGED1 (Melanoma Antigen Family D1) exhibit a shortened period and altered rest–activity bouts. These circadian phenotypes are proposed to be caused by a direct effect on the core molecular clock network that reduces the robustness of the circadian clock. We provide in vitro and in vivo evidence indicating that MAGED1 binds to RORα to bring about positive and negative effects on core clock genes of Bmal1, Rev-erbα and E4bp4 expression through the Rev-Erbα/ROR responsive elements (RORE). Maged1 is a non-rhythmic gene that, by binding RORα in non-circadian way, enhances rhythmic input and buffers the circadian system from irrelevant, perturbing stimuli or noise. We have thus identified and defined a novel circadian regulator, Maged1, which is indispensable for the robustness of the circadian clock to better serve the organism. PMID:20300063

  15. A disruption mechanism of the molecular clock in a MPTP mouse model of Parkinson's disease.

    Science.gov (United States)

    Hayashi, Akane; Matsunaga, Naoya; Okazaki, Hiroyuki; Kakimoto, Keisuke; Kimura, Yoshinori; Azuma, Hiroki; Ikeda, Eriko; Shiba, Takeshi; Yamato, Mayumi; Yamada, Ken-Ichi; Koyanagi, Satoru; Ohdo, Shigehiro

    2013-06-01

    Parkinson's disease (PD) is a common neurodegenerative disorder that is characterized by the degeneration of dopaminergic neurons in the substantia nigra and dopamine depletion in the striatum. Although the motor symptoms are still regarded as the main problem, non-motor symptoms in PD also markedly impair the quality of life. Several non-motor symptoms, such as sleep disturbances and depression, are suggested to be implicated in the alteration in circadian clock function. In this study, we investigated circadian disruption and the mechanism in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. MPTP-treated mice exhibited altered 24-h rhythms in body temperature and locomotor activity. In addition, MPTP treatment also affected the circadian clock system at the genetic level. The exposure of human neuroblastoma cells (SH-SY5Y) to 1-metyl-4-phenylpyridinium (MPP(+)) increased or decreased the mRNA levels of several clock genes in a dose-dependent manner. MPP(+)-induced changes in clock genes expression were reversed by Compound C, an inhibitor of AMP-activated protein kinase (AMPK). Most importantly, addition of ATP to the drinking water of MPTP-treated mice attenuated neurodegeneration in dopaminergic neurons, suppressed AMPK activation and prevented circadian disruption. The present findings suggest that the activation of AMPK caused circadian dysfunction, and ATP may be a novel therapeutic strategy based on the molecular clock in PD.

  16. Defence responses of arabidopsis thaliana to infection by pseudomonas syringae are regulated by the circadian clock

    KAUST Repository

    Bhardwaj, Vaibhav

    2011-10-31

    The circadian clock allows plants to anticipate predictable daily changes in abiotic stimuli, such as light; however, whether the clock similarly allows plants to anticipate interactions with other organisms is unknown. Here we show that Arabidopsis thaliana (Arabidopsis) has circadian clock-mediated variation in resistance to the virulent bacterial pathogen Pseudomonas syringae pv. tomato DC3000 (Pst DC3000), with plants being least susceptible to infection in the subjective morning. We suggest that the increased resistance to Pst DC3000 observed in the morning in Col-0 plants results from clock-mediated modulation of pathogen associated molecular pattern (PAMP)-triggered immunity. Analysis of publicly available microarray data revealed that a large number of Arabidopsis defence-related genes showed both diurnal- and circadian-regulation, including genes involved in the perception of the PAMP flagellin which exhibit a peak in expression in the morning. Accordingly, we observed that PAMP-triggered callose deposition was significantly higher in wild-type plants inoculated with Pst DC3000 hrpA in the subjective morning than in the evening, while no such temporal difference was evident in arrhythmic plants. Our results suggest that PAMP-triggered immune responses are modulated by the circadian clock and that temporal regulation allows plants to anticipate and respond more effectively to pathogen challenges in the daytime. © 2011 Bhardwaj et al.

  17. Micro Mercury Ion Clock (MMIC) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Demonstrate micro clock based on trapped Hg ions with more than 10x size reduction and power; Fractional frequency stability at parts per 1014 level, adequate for...

  18. The Mechanics of Mechanical Watches and Clocks

    CERN Document Server

    Du, Ruxu

    2013-01-01

    "The Mechanics of Mechanical Watches and Clocks" presents historical views and mathematical models of mechanical watches and clocks. Although now over six hundred years old, mechanical watches and clocks are still popular luxury items that fascinate many people around the world. However few have examined the theory of how they work as presented in this book. The illustrations and computer animations are unique and have never been published before. It will be of significant interest to researchers in mechanical engineering, watchmakers and clockmakers, as well as people who have an engineering background and are interested in mechanical watches and clocks. It will also inspire people in other fields of science and technology, such as mechanical engineering and electronics engineering, to advance their designs. Professor Ruxu Du works at the Chinese University of Hong Kong, China. Assistant Professor Longhan Xie works at the South China University of Technology, China.

  19. Programmable Clock Waveform Generation for CCD Readout

    Energy Technology Data Exchange (ETDEWEB)

    Vicente, J. de; Castilla, J.; Martinez, G.; Marin, J.

    2006-07-01

    Charge transfer efficiency in CCDs is closely related to the clock waveform. In this paper, an experimental framework to explore different FPGA based clock waveform generator designs is described. Two alternative design approaches for controlling the rise/fall edge times and pulse width of the CCD clock signal have been implemented: level-control and time-control. Both approaches provide similar characteristics regarding the edge linearity and noise. Nevertheless, dissimilarities have been found with respect to the area and frequency range of application. Thus, while the time-control approach consumes less area, the level control approach provides a wider range of clock frequencies since it does not suffer capacitor discharge effect. (Author) 8 refs.

  20. Canonical group quantization and boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Florian

    2012-07-16

    In the present thesis, we study quantization of classical systems with non-trivial phase spaces using the group-theoretical quantization technique proposed by Isham. Our main goal is a better understanding of global and topological aspects of quantum theory. In practice, the group-theoretical approach enables direct quantization of systems subject to constraints and boundary conditions in a natural and physically transparent manner -- cases for which the canonical quantization method of Dirac fails. First, we provide a clarification of the quantization formalism. In contrast to prior treatments, we introduce a sharp distinction between the two group structures that are involved and explain their physical meaning. The benefit is a consistent and conceptually much clearer construction of the Canonical Group. In particular, we shed light upon the 'pathological' case for which the Canonical Group must be defined via a central Lie algebra extension and emphasise the role of the central extension in general. In addition, we study direct quantization of a particle restricted to a half-line with 'hard wall' boundary condition. Despite the apparent simplicity of this example, we show that a naive quantization attempt based on the cotangent bundle over the half-line as classical phase space leads to an incomplete quantum theory; the reflection which is a characteristic aspect of the 'hard wall' is not reproduced. Instead, we propose a different phase space that realises the necessary boundary condition as a topological feature and demonstrate that quantization yields a suitable quantum theory for the half-line model. The insights gained in the present special case improve our understanding of the relation between classical and quantum theory and illustrate how contact interactions may be incorporated.

  1. Canonical group quantization and boundary conditions

    International Nuclear Information System (INIS)

    In the present thesis, we study quantization of classical systems with non-trivial phase spaces using the group-theoretical quantization technique proposed by Isham. Our main goal is a better understanding of global and topological aspects of quantum theory. In practice, the group-theoretical approach enables direct quantization of systems subject to constraints and boundary conditions in a natural and physically transparent manner -- cases for which the canonical quantization method of Dirac fails. First, we provide a clarification of the quantization formalism. In contrast to prior treatments, we introduce a sharp distinction between the two group structures that are involved and explain their physical meaning. The benefit is a consistent and conceptually much clearer construction of the Canonical Group. In particular, we shed light upon the 'pathological' case for which the Canonical Group must be defined via a central Lie algebra extension and emphasise the role of the central extension in general. In addition, we study direct quantization of a particle restricted to a half-line with 'hard wall' boundary condition. Despite the apparent simplicity of this example, we show that a naive quantization attempt based on the cotangent bundle over the half-line as classical phase space leads to an incomplete quantum theory; the reflection which is a characteristic aspect of the 'hard wall' is not reproduced. Instead, we propose a different phase space that realises the necessary boundary condition as a topological feature and demonstrate that quantization yields a suitable quantum theory for the half-line model. The insights gained in the present special case improve our understanding of the relation between classical and quantum theory and illustrate how contact interactions may be incorporated.

  2. Canonical Notch activation in osteocytes causes osteopetrosis.

    Science.gov (United States)

    Canalis, Ernesto; Bridgewater, David; Schilling, Lauren; Zanotti, Stefano

    2016-01-15

    Activation of Notch1 in cells of the osteoblastic lineage inhibits osteoblast differentiation/function and causes osteopenia, whereas its activation in osteocytes causes a distinct osteopetrotic phenotype. To explore mechanisms responsible, we established the contributions of canonical Notch signaling (Rbpjκ dependent) to osteocyte function. Transgenics expressing Cre recombinase under the control of the dentin matrix protein-1 (Dmp1) promoter were crossed with Rbpjκ conditional mice to generate Dmp1-Cre(+/-);Rbpjκ(Δ/Δ) mice. These mice did not have a skeletal phenotype, indicating that Rbpjκ is dispensable for osteocyte function. To study the Rbpjκ contribution to Notch activation, Rosa(Notch) mice, where a loxP-flanked STOP cassette is placed between the Rosa26 promoter and the NICD coding sequence, were crossed with Dmp1-Cre transgenic mice and studied in the context (Dmp1-Cre(+/-);Rosa(Notch);Rbpjκ(Δ/Δ)) or not (Dmp1-Cre(+/-);Rosa(Notch)) of Rbpjκ inactivation. Dmp1-Cre(+/-);Rosa(Notch) mice exhibited increased femoral trabecular bone volume and decreased osteoclasts and bone resorption. The phenotype was reversed in the context of the Rbpjκ inactivation, demonstrating that Notch canonical signaling was accountable for the phenotype. Notch activation downregulated Sost and Dkk1 and upregulated Axin2, Tnfrsf11b, and Tnfsf11 mRNA expression, and these effects were not observed in the context of the Rbpjκ inactivation. In conclusion, Notch activation in osteocytes suppresses bone resorption and increases bone volume by utilization of canonical signals that also result in the inhibition of Sost and Dkk1 and upregulation of Wnt signaling. PMID:26578715

  3. The interaction of sleep and clock circadian regulator gene on symptoms of children with attention-deficit/hyperactivity disorder%昼夜节律钟基因多态性与儿童注意缺陷多动障碍及睡眠问题的相关分析

    Institute of Scientific and Technical Information of China (English)

    金嘉郦; 刘璐; 李海梅; 高倩; 王玉凤; 钱秋谨

    2016-01-01

    目的 探讨昼夜节律钟(clock circadian regulator,CLOCK)基因多态性与儿童注意缺陷多动障碍(attention-deficit/hyperactivity disorder,ADHD)及其症状的关联,以及与睡眠问题的交互作用.方法 对977例ADHD患儿(患者组)和537名健康对照者(对照组)的CLOCK基因2个单核苷酸多态性位点(single nucleotide polymorphisms,SNPs)进行基因型检测.采用Conners父母症状问卷评估睡眠问题,ADHD症状评定量表评定ADHD患儿的临床核心症状,并通过协方差分析检验CLOCK基因与ADHD症状的关联及与睡眠问题的交互作用.结果 患者组较对照组睡眠问题出现的频率更高[(14.8%(145/977)与1.5%(8/537),x2=68,P<0.01].rs6832769、rs11932595的等位基因频率、基因型频率2组间差异无统计学意义.患者组CLOCK基因与ADHD症状的关联无统计学意义.rs6832769基因型与睡眠问题对ADHD患儿注意缺陷分(F=9.17,P<0.01)、全量表分(F=6.21,P=0.01)存在交互作用;伴睡眠问题组中,携带AA基因型较携带AG/GG基因型的患儿注意缺陷分[(20.3±3.9)分与(18.7±4.0)分,F=7.06,P<0.01]和全量表分[(37.3±8.0)分与(34.8±7.9)分,F=4.77,P=0.03]更高;在不伴睡眠问题组中,携带AG/GG基因型较携带AA基因型的患儿注意缺陷分更高[(19.4±4.3)分与(18.7±4.0)分,F=4.44,P=0.04].结论 CLOCK基因rs6832769与睡眠问题对ADHD患儿的核心症状存在交互作用,尤其是注意缺陷症状.%Objective To explore the association between polymorphisms of clock circadian regulator (CLOCK) gene and attention-deficit/hyperactivity disorder (ADHD),and ADHD symptoms,as well as its interaction with sleep problems.Methods Two single nucleotide polymorphisms (SNPs) of CLOCK were genotyped in 977 ADHD children and 537 healthy controls.Sleep problems were assessed using parent symptom questionnaire.The effects of CLOCK SNPs and its interaction with sleep problems on ADHD symptoms,which were assessed using ADHD Rating Scale

  4. Canonical formalism for coupled beam optics

    Energy Technology Data Exchange (ETDEWEB)

    Kheifets, S.A.

    1989-09-01

    Beam optics of a lattice with an inter-plane coupling is treated using canonical Hamiltonian formalism. The method developed is equally applicable both to a circular (periodic) machine and to an open transport line. A solution of the equation of a particle motion (and correspondingly transfer matrix between two arbitrary points of the lattice) are described in terms of two amplitude functions (and their derivatives and corresponding phases of oscillations) and four coupling functions, defined by a solution of the system of the first-order nonlinear differential equations derived in the paper. Thus total number of independent parameters is equal to ten. 8 refs.

  5. Kato expansion in quantum canonical perturbation theory

    Science.gov (United States)

    Nikolaev, Andrey

    2016-06-01

    This work establishes a connection between canonical perturbation series in quantum mechanics and a Kato expansion for the resolvent of the Liouville superoperator. Our approach leads to an explicit expression for a generator of a block-diagonalizing Dyson's ordered exponential in arbitrary perturbation order. Unitary intertwining of perturbed and unperturbed averaging superprojectors allows for a description of ambiguities in the generator and block-diagonalized Hamiltonian. We compare the efficiency of the corresponding computational algorithm with the efficiencies of the Van Vleck and Magnus methods for high perturbative orders.

  6. Cryptochromes define a novel circadian clock mechanism in monarch butterflies that may underlie sun compass navigation.

    Directory of Open Access Journals (Sweden)

    Haisun Zhu

    2008-01-01

    Full Text Available The circadian clock plays a vital role in monarch butterfly (Danaus plexippus migration by providing the timing component of time-compensated sun compass orientation, a process that is important for successful navigation. We therefore evaluated the monarch clockwork by focusing on the functions of a Drosophila-like cryptochrome (cry, designated cry1, and a vertebrate-like cry, designated cry2, that are both expressed in the butterfly and by placing these genes in the context of other relevant clock genes in vivo. We found that similar temporal patterns of clock gene expression and protein levels occur in the heads, as occur in DpN1 cells, of a monarch cell line that contains a light-driven clock. CRY1 mediates TIMELESS degradation by light in DpN1 cells, and a light-induced TIMELESS decrease occurs in putative clock cells in the pars lateralis (PL in the brain. Moreover, monarch cry1 transgenes partially rescue both biochemical and behavioral light-input defects in cry(b mutant Drosophila. CRY2 is the major transcriptional repressor of CLOCK:CYCLE-mediated transcription in DpN1 cells, and endogenous CRY2 potently inhibits transcription without involvement of PERIOD. CRY2 is co-localized with clock proteins in the PL, and there it translocates to the nucleus at the appropriate time for transcriptional repression. We also discovered CRY2-positive neural projections that oscillate in the central complex. The results define a novel, CRY-centric clock mechanism in the monarch in which CRY1 likely functions as a blue-light photoreceptor for entrainment, whereas CRY2 functions within the clockwork as the transcriptional repressor of a negative transcriptional feedback loop. Our data further suggest that CRY2 may have a dual role in the monarch butterfly's brain-as a core clock element and as an output that regulates circadian activity in the central complex, the likely site of the sun compass.

  7. Reduced Kalman Filters for Clock Ensembles

    Science.gov (United States)

    Greenhall, Charles A.

    2011-01-01

    This paper summarizes the author's work ontimescales based on Kalman filters that act upon the clock comparisons. The natural Kalman timescale algorithm tends to optimize long-term timescale stability at the expense of short-term stability. By subjecting each post-measurement error covariance matrix to a non-transparent reduction operation, one obtains corrected clocks with improved short-term stability and little sacrifice of long-term stability.

  8. Circadian clock proteins in mood regulation

    Directory of Open Access Journals (Sweden)

    Timo ePartonen

    2015-01-01

    Full Text Available Mood regulation is known to be affected by the change of seasons. Recent research findings have suggested that mood regulation may be influenced by the function of circadian clocks. In addition, the activity of brown adipocytes has been hypothesized to contribute to mood regulation. Here, the overarching link to mood disorders might be the circadian clock protein NR1D1 (nuclear receptor subfamily 1, group D, member 1.

  9. Optical lattice clock with Strontium atoms

    International Nuclear Information System (INIS)

    This thesis presents the latest achievements regarding the optical lattice clock with Strontium atoms developed at LNE-SYRTE. After a review of the different types of optical clocks that are currently under development, we stress on the concept of optical lattice clock which was first imagined for Sr87 using the 1S0 → 3P0 transition. We exhibit the features of this atom, in particular the concept of magic wavelength for the trap, and the achievable performances for this kind of clock. The second part presents the experimental aspects, insisting particularly on the ultra-stable laser used for the interrogation of the atoms which is a central part of the experiment. Among the latest improvements, an optical pumping phase and an interrogation phase using a magnetic field have been added in order to refine the evaluation of the Zeeman effect. Finally, the last part presents the experimental results. The last evaluation of the clock using Sr87 atoms allowed us to reach a frequency accuracy of 2.6*10-15 and a measurement in agreement with the one made at JILA (Tokyo university) at the 10-15 level. On another hand, thanks to recent theoretical proposals, we made a measurement using the bosonic isotope Sr88 by adapting the experimental setup. This measurement represents the first evaluation for this type of clock, with a frequency accuracy of 7*10-14. (author)

  10. Canonical Transformations can Dramatically Simplify Supersymmetry

    CERN Document Server

    Dixon, John

    2016-01-01

    A useful way to keep track of the SUSY invariance of a theory is by formulating it with a BRST Poisson Bracket. It turns out that there is a crucial subtlety that is hidden in this formulation. When the theory contains a Chiral Multiplet, the relevant BRST Poisson Bracket has a very important Canonical Transformation that leaves it invariant. This Canonical Transformation takes all or part of the Scalar Field $A$ and replaces it with a Zinn Source $J_A$, and also takes the related Zinn Source $\\Gamma_A$ and replaces it with an `Antighost' Field $\\eta_A$. Naively, this looks like it is just a change of notation. But in fact the interpretation means that one has moved some of the conserved Noether SUSY current from the Field Action, and placed it partly in the Zinn Sources Action, and so the SUSY current in the Field part of the Action is no longer conserved, because the Zinn Sources do not satisfy any equations of motion. They are not quantized, because they are Sources. So it needs to be recognized that SUSY ...

  11. Face hallucination using orthogonal canonical correlation analysis

    Science.gov (United States)

    Zhou, Huiling; Lam, Kin-Man

    2016-05-01

    A two-step face-hallucination framework is proposed to reconstruct a high-resolution (HR) version of a face from an input low-resolution (LR) face, based on learning from LR-HR example face pairs using orthogonal canonical correlation analysis (orthogonal CCA) and linear mapping. In the proposed algorithm, face images are first represented using principal component analysis (PCA). Canonical correlation analysis (CCA) with the orthogonality property is then employed, to maximize the correlation between the PCA coefficients of the LR and the HR face pairs to improve the hallucination performance. The original CCA does not own the orthogonality property, which is crucial for information reconstruction. We propose using orthogonal CCA, which is proven by experiments to achieve a better performance in terms of global face reconstruction. In addition, in the residual-compensation process, a linear-mapping method is proposed to include both the inter- and intrainformation about manifolds of different resolutions. Compared with other state-of-the-art approaches, the proposed framework can achieve a comparable, or even better, performance in terms of global face reconstruction and the visual quality of face hallucination. Experiments on images with various parameter settings and blurring distortions show that the proposed approach is robust and has great potential for real-world applications.

  12. New constraints for canonical general relativity

    CERN Document Server

    Reisenberger, M

    1995-01-01

    Ashtekar's canonical theory of classical complex Euclidean GR (no Lorentzian reality conditions) is found to be invariant under the full algebra of infinitesimal 4-diffeomorphisms, but non-invariant under some finite proper 4-diffeos when the densitized dreibein, \\tilE^a_i, is degenerate. The breakdown of 4-diffeo invariance appears to be due to the inability of the Ashtekar Hamiltonian to generate births and deaths of \\tilE flux loops (leaving open the possibility that a new `causality condition' forbidding the birth of flux loops might justify the non-invariance of the theory). A fully 4-diffeo invariant canonical theory in Ashtekar's variables, derived from Plebanski's action, is found to have constraints that are stronger than Ashtekar's for rank\\tilE < 2. The corresponding Hamiltonian generates births and deaths of \\tilE flux loops. It is argued that this implies a finite amplitude for births and deaths of loops in the physical states of quantum GR in the loop representation, thus modifying this (part...

  13. Canon Fodder: Young Adult Literature as a Tool for Critiquing Canonicity

    Science.gov (United States)

    Hateley, Erica

    2013-01-01

    Young adult literature is a tool of socialisation and acculturation for young readers. This extends to endowing "reading" with particular significance in terms of what literature should be read and why. This paper considers some recent young adult fiction with an eye to its engagement with canonical literature and its representations of…

  14. [Huang Yizhou's study on Nei jing (Inner Canon)].

    Science.gov (United States)

    Hu, Benxiang; Huang, Youmei; Yu, Chengfen

    2002-01-01

    Being a great classical scholar of the late Qing dynasty, Huang Yizhou collated Nei jing (Inner Canon) by textual criticism. But most of his works were missing. By reviewing historical documents and literature, it has been found that his collated books include Huang di nei jing su wen jiao ben (Collated Edition of Huangdi's Inner Canon Plain Questions), Huang di nei jing su wen chong jiao zheng (Recollated Huangdi's Inner Canon Plain Questions), Nei jing zhen ci (Acupuncture in Inner Canon), Huang di nei jing jiu juan ji zhu (Variorum of Nine Volumes of Huangdi's Inner Canon), Huang di nei jing ming tang (Acupuncture Chart of Huangdi's Inner Canon), and Jiu chao tai su jiao ben (Old Extremely Plain Question Recension). Many of his disciples became famous scholars in the Republican period. PMID:12015056

  15. Molecular signatures reveal circadian clocks may orchestrate the homeorhetic response to lactation.

    Directory of Open Access Journals (Sweden)

    Theresa Casey

    Full Text Available Genes associated with lactation evolved more slowly than other genes in the mammalian genome. Higher conservation of milk and mammary genes suggest that species variation in milk composition is due in part to the environment and that we must look deeper into the genome for regulation of lactation. At the onset of lactation, metabolic changes are coordinated among multiple tissues through the endocrine system to accommodate the increased demand for nutrients and energy while allowing the animal to remain in homeostasis. This process is known as homeorhesis. Homeorhetic adaptation to lactation has been extensively described; however how these adaptations are orchestrated among multiple tissues remains elusive. To develop a clearer picture of how gene expression is coordinated across multiple tissues during the pregnancy to lactation transition, total RNA was isolated from mammary, liver and adipose tissues collected from rat dams (n = 5 on day 20 of pregnancy and day 1 of lactation, and gene expression was measured using Affymetrix GeneChips. Two types of gene expression analysis were performed. Genes that were differentially expressed between days within a tissue were identified with linear regression, and univariate regression was used to identify genes commonly up-regulated and down-regulated across all tissues. Gene set enrichment analysis showed genes commonly up regulated among the three tissues enriched gene ontologies primary metabolic processes, macromolecular complex assembly and negative regulation of apoptosis ontologies. Genes enriched in transcription regulator activity showed the common up regulation of 2 core molecular clock genes, ARNTL and CLOCK. Commonly down regulated genes enriched Rhythmic process and included: NR1D1, DBP, BHLHB2, OPN4, and HTR7, which regulate intracellular circadian rhythms. Changes in mammary, liver and adipose transcriptomes at the onset of lactation illustrate the complexity of homeorhetic adaptations

  16. Gated Clock Implementation of Arithmetic Logic Unit (ALU

    Directory of Open Access Journals (Sweden)

    Dr. Neelam R. Prakash

    2013-05-01

    Full Text Available Low power design has emerged as one of the challenging area in today’s ASIC (Application specific integrated circuit design. With continuous decrease in transistor size, power density is increasing and there is an urgent need for reduction in total power consumption. Clock gating is one most effective technique for low power synchronous circuit design. Clock gating technique in low power design is used to reduce the dynamic power consumption. Clock signal in a synchronous circuit is used for synchronization only and hence does not carry any important information. Since clock is applied to each block of a synchronous circuit, and clock switches for every cycle, clock power is the major part of dynamic power consumption in synchronous circuits. Clock gating is a well known technique to reduce clock power. In clock gating clock to an idle block is disabled. Thus significant amount of power consumption is reduced by employing clock gating. In this paper an ALU design is proposed employing Gated clock for its operation. Design simulation has been performed on Xilinx ISE design suite, and power calculation is done by Xilinx Xpower analyzer. Results show that approximately 17% of total clock power consumption is reduced by gated clock implementation.

  17. Peripheral CLOCK regulates target-tissue glucocorticoid receptor transcriptional activity in a circadian fashion in man.

    Directory of Open Access Journals (Sweden)

    Evangelia Charmandari

    Full Text Available CONTEXT AND OBJECTIVE: Circulating cortisol fluctuates diurnally under the control of the "master" circadian CLOCK, while the peripheral "slave" counterpart of the latter regulates the transcriptional activity of the glucocorticoid receptor (GR at local glucocorticoid target tissues through acetylation. In this manuscript, we studied the effect of CLOCK-mediated GR acetylation on the sensitivity of peripheral tissues to glucocorticoids in humans. DESIGN AND PARTICIPANTS: We examined GR acetylation and mRNA expression of GR, CLOCK-related and glucocorticoid-responsive genes in peripheral blood mononuclear cells (PBMCs obtained at 8 am and 8 pm from 10 healthy subjects, as well as in PBMCs obtained in the morning and cultured for 24 hours with exposure to 3-hour hydrocortisone pulses every 6 hours. We used EBV-transformed lymphocytes (EBVLs as non-synchronized controls. RESULTS: GR acetylation was higher in the morning than in the evening in PBMCs, mirroring the fluctuations of circulating cortisol in reverse phase. All known glucocorticoid-responsive genes tested responded as expected to hydrocortisone in non-synchronized EBVLs, however, some of these genes did not show the expected diurnal mRNA fluctuations in PBMCs in vivo. Instead, their mRNA oscillated in a Clock- and a GR acetylation-dependent fashion in naturally synchronized PBMCs cultured ex vivo in the absence of the endogenous glucocorticoid, suggesting that circulating cortisol might prevent circadian GR acetylation-dependent effects in some glucocorticoid-responsive genes in vivo. CONCLUSIONS: Peripheral CLOCK-mediated circadian acetylation of the human GR may function as a target-tissue, gene-specific counter regulatory mechanism to the actions of diurnally fluctuating cortisol, effectively decreasing tissue sensitivity to glucocorticoids in the morning and increasing it at night.

  18. 大鼠松果体钟基因Clock的内源性昼夜表达%Endogenous Circadian Expression of the Clock Gene in the Rat Pineal Gland

    Institute of Scientific and Technical Information of China (English)

    王国卿; 杜玉珍; 童建

    2004-01-01

    目的探讨松果体钟基因Clock表达是否存在内源性昼夜节律.方法持续黑暗(DD)光制下饲养SD大鼠8周后,在一昼夜内每隔4 h采集松果体组织,提取总RNA,进行竞争性定量RT-PCR,测定不同昼夜时点(CT)样品中Clock mRNA的相对表达量,用余弦函数获取节律参数,并经振幅检验分析是否存在昼夜节律.结果松果体Clock基因mRNA的表达呈现内源性节律振荡变化(P<0.05),峰值和谷值分别位于CT17和CT5,峰值相位-253.03±15.51,振幅0.30±0.10,中值0.87±0.09.结论 Clock基因在大鼠松果体中存在明显的内源性昼夜节律表达.

  19. DESIGN OF TWO-PHASE SINUSOIDAL POWER CLOCK AND CLOCKED TRANSMISSION GATE ADIABATIC LOGIC CIRCUIT

    Institute of Scientific and Technical Information of China (English)

    Wang Pengjun; Yu Junjun

    2007-01-01

    First the research is conducted on the design of the two-phase sinusoidal power clock generator in this paper. Then the design of the new adiabatic logic circuit adopting the two-phase sinusoidal power clocks-Clocked Transmission Gate Adiabatic Logic (CTGAL) circuit is presented. This circuit makes use of the clocked transmission gates to sample the input signals, then the output loads are charged and discharged in a fully adiabatic manner by using bootstrapped N-Channel Metal Oxide Semiconductor (NMOS) and Complementary Metal Oxide Semiconductor (CMOS) latch structure.Finally, with the parameters of Taiwan Semiconductor Manufacturing Company (TSMC) 0.25 μm CMOS device, the transient energy consumption of CTGAL, Bootstrap Charge-Recovery Logic (BCRL)and Pass-transistor Adiabatic Logic (PAL) including their clock generators is simulated. The simulation result indicates that CTGAL circuit has the characteristic of remarkably low energy consumption.

  20. Integral Canonical Models for Automorphic Vector Bundles of Abelian Type

    OpenAIRE

    Lovering, Tom

    2016-01-01

    We define and construct integral canonical models for automorphic vector bundles over Shimura varieties of abelian type. More precisely, we first build on Kisin's work to construct integral canonical models over rings of integers of number fields with finitely many primes inverted for Shimura varieties of abelian type with hyperspecial level at all primes we do not invert, compatible with Kisin's construction. We then define a notion of an integral canonical model for the standard principal b...

  1. Canonical symmetry properties of the constrained singular generalized mechanical system

    Institute of Scientific and Technical Information of China (English)

    李爱民; 江金环; 李子平

    2003-01-01

    Based on generalized Apell-Chetaev constraint conditions and to take the inherent constrains for singular Lagrangian into account, the generalized canonical equations for a general mechanical system with a singular higher-order Lagrangian and subsidiary constrains are formulated. The canonical symmetries in phase space for such a system are studied and Noether theorem and its inversion theorem in the generalized canonical formalism have been established.

  2. Canonical symmetry properties of the constrained singular generalized mechanical system

    Institute of Scientific and Technical Information of China (English)

    LiAi-Min; JiangJin-Huan; LiZi-Ping

    2003-01-01

    Based on generalized Apell-Chetaev constraint conditions and to take the inherent constrains for singular Lagrangian into account,the generalized canonical equations for a general mechanical system with a singular higher-order Lagrangian and subsidiary constrains are formulated. The canonical symmetries in phase space for such a system are studied and Noether theorem and its inversion theorem in the generalized canonical formalism have been established.

  3. Toward a detailed computational model for the mammalian circadian clock

    Science.gov (United States)

    Leloup, Jean-Christophe; Goldbeter, Albert

    2003-06-01

    We present a computational model for the mammalian circadian clock based on the intertwined positive and negative regulatory loops involving the Per, Cry, Bmal1, Clock, and Rev-Erb genes. In agreement with experimental observations, the model can give rise to sustained circadian oscillations in continuous darkness, characterized by an antiphase relationship between Per/Cry/Rev-Erb and Bmal1 mRNAs. Sustained oscillations correspond to the rhythms autonomously generated by suprachiasmatic nuclei. For other parameter values, damped oscillations can also be obtained in the model. These oscillations, which transform into sustained oscillations when coupled to a periodic signal, correspond to rhythms produced by peripheral tissues. When incorporating the light-induced expression of the Per gene, the model accounts for entrainment of the oscillations by light-dark cycles. Simulations show that the phase of the oscillations can then vary by several hours with relatively minor changes in parameter values. Such a lability of the phase could account for physiological disorders related to circadian rhythms in humans, such as advanced or delayed sleep phase syndrome, whereas the lack of entrainment by light-dark cycles can be related to the non-24h sleep-wake syndrome. The model uncovers the possible existence of multiple sources of oscillatory behavior. Thus, in conditions where the indirect negative autoregulation of Per and Cry expression is inoperative, the model indicates the possibility that sustained oscillations might still arise from the negative autoregulation of Bmal1 expression.

  4. Non-Canonical EZH2 Transcriptionally Activates RelB in Triple Negative Breast Cancer

    Science.gov (United States)

    Lawrence, Cortney L.; Baldwin, Albert S.

    2016-01-01

    Enhancer of zeste homology 2 (EZH2) is the methyltransferase component of the polycomb repressive complex (PRC2) which represses gene transcription via histone H3 trimethylation at lysine 23 (H3K27me3). EZH2 activity has been linked with oncogenesis where it is thought to block expression of certain tumor suppressors. Relative to a role in cancer, EZH2 functions to promote self-renewal and has been shown to be important for the tumor-initiating cell (TIC) phenotype in breast cancer. Recently a non-canonical role for EZH2 has been identified where it promotes transcriptional activation of certain genes. Here we show that EZH2, through a methyltransferase-independent mechanism, promotes the transcriptional activation of the non-canonical NF-κB subunit RelB to drive self-renewal and the TIC phenotype of triple-negative breast cancer cells. PMID:27764181

  5. The Geometry of Tangent Bundles: Canonical Vector Fields

    Directory of Open Access Journals (Sweden)

    Tongzhu Li

    2013-01-01

    Full Text Available A canonical vector field on the tangent bundle is a vector field defined by an invariant coordinate construction. In this paper, a complete classification of canonical vector fields on tangent bundles, depending on vector fields defined on their bases, is obtained. It is shown that every canonical vector field is a linear combination with constant coefficients of three vector fields: the variational vector field (canonical lift, the Liouville vector field, and the vertical lift of a vector field on the base of the tangent bundle.

  6. Circadian clocks and the regulation of virulence in fungi: Getting up to speed.

    Science.gov (United States)

    Hevia, Montserrat A; Canessa, Paulo; Larrondo, Luis F

    2016-09-01

    You cannot escape time. Therefore, it seems wise to learn how to keep track of it and use it to your advantage. Circadian clocks are molecular circuits that allow organisms to temporally coordinate a plethora of processes, including gene expression, with a close to 24h rhythm, optimizing cellular function in synchrony with daily environmental cycles. The molecular bases of these clocks have been extensively studied in the fungus Neurospora crassa, providing a detailed molecular description. Surprisingly, there is scarce molecular information of clocks in fungi other than Neurospora, despite the existence of rhythmic phenomena in many fungal species, including pathogenic ones. This review will comment on the overall importance of clocks, what is known in Neurospora and what has been described in other fungi including new insights on the evolution of fungal clock components. The molecular description of the circadian system of the phytopathogenic fungus Botrytis cinerea will be revisited, as well as time-of-the-day variation in host-pathogen interaction dynamics, utilizing an Arabidopsis-Botrytis system, including also what is known regarding circadian regulation of defense mechanisms in the Arabidopsis thaliana plant model. Finally, this review will mention how little is known about circadian regulation of human pathogenic fungi, commenting on potential future directions and the overall perspective of fungal circadian studies. PMID:27039027

  7. How does the body know how old it is? Introducing the epigenetic clock hypothesis.

    Science.gov (United States)

    Mitteldorf, Joshua

    2015-01-01

    Animals and plants have biological clocks that help to regulate circadian cycles, seasonal rhythms, growth, development and sexual maturity. If aging is not a stochastic process of attrition but is centrally orchestrated, it is reasonable to suspect that the timing of senescence is also influenced by one or more biological clocks. Evolutionary reasoning first articulated by G. Williams suggests that multiple, redundant clocks might influence organismal aging. Some aging clocks that have been proposed include the suprachiasmatic nucleus, the hypothalamus, involution of the thymus, and cellular senescence. Cellular senescence, mediated by telomere attrition, is in a class by itself, having recently been validated as a primary regulator of aging. Gene expression is known to change in characteristic ways with age, and in particular DNA methylation changes in age-related ways. Herein, I propose a new candidate for an aging clock, based on epigenetics and the state of chromosome methylation, particularly in stem cells. If validated, this mechanism would present a challenging but not impossible target for medical intervention. PMID:25341512

  8. GSK-3 and CK2 Kinases Converge on Timeless to Regulate the Master Clock

    Directory of Open Access Journals (Sweden)

    Deniz Top

    2016-07-01

    Full Text Available The molecular clock relies on a delayed negative feedback loop of transcriptional regulation to generate oscillating gene expression. Although the principal components of the clock are present in all circadian neurons, different neuronal clusters have varying effects on rhythmic behavior, suggesting that the clocks they house are differently regulated. Combining biochemical and genetic techniques in Drosophila, we identify a phosphorylation program native to the master pacemaker neurons that regulates the timing of nuclear accumulation of the Period/Timeless repressor complex. GSK-3/SGG binds and phosphorylates Period-bound Timeless, triggering a CK2-mediated phosphorylation cascade. Mutations that block the hierarchical phosphorylation of Timeless in vitro also delay nuclear accumulation in both tissue culture and in vivo and predictably change rhythmic behavior. This two-kinase phosphorylation cascade is anatomically restricted to the eight master pacemaker neurons, distinguishing the regulatory mechanism of the molecular clock within these neurons from the other clocks that cooperate to govern behavioral rhythmicity.

  9. Harmine lengthens circadian period of the mammalian molecular clock in the suprachiasmatic nucleus.

    Science.gov (United States)

    Kondoh, Daisuke; Yamamoto, Saori; Tomita, Tatsunosuke; Miyazaki, Koyomi; Itoh, Nanako; Yasumoto, Yuki; Oike, Hideaki; Doi, Ryosuke; Oishi, Katsutaka

    2014-01-01

    The circadian clock is a cell-autonomous endogenous system that generates circadian rhythms in the behavior and physiology of most organisms. We previously reported that the harmala alkaloid, harmine, lengthens the circadian period of Bmal1 transcription in NIH 3T3 fibroblasts. Clock protein dynamics were examined using real-time reporter assays of PER2::LUC to determine the effects of harmine on the central clock in the suprachiasmatic nucleus (SCN). Harmine significantly lengthened the period of PER2::LUC expression in embryonic fibroblasts, in neuronal cells differentiated from neuronal progenitor cells and in SCN slices obtained from PER2::LUC mice. Although harmine did not induce the transient mRNA expression of clock genes such as Per1, Per2 and Bmal1 in embryonic fibroblasts, it significantly extended the half-life of PER2::LUC protein in neuronal cells and SCN slices. Harmine might lengthen the circadian period of the molecular clock by increasing PER2 protein stability in the SCN.

  10. Consistency of canonical formulation of Horava gravity

    Energy Technology Data Exchange (ETDEWEB)

    Soo, Chopin, E-mail: cpsoo@mail.ncku.edu.tw [Department of Physics, National Cheng Kung University, Tainan, Taiwan (China)

    2011-09-22

    Both the non-projectable and projectable version of Horava gravity face serious challenges. In the non-projectable version, the constraint algebra is seemingly inconsistent. The projectable version lacks a local Hamiltonian constraint, thus allowing for an extra graviton mode which can be problematic. A new formulation (based on arXiv:1007.1563) of Horava gravity which is naturally realized as a representation of the master constraint algebra (instead of the Dirac algebra) studied by loop quantum gravity researchers is presented. This formulation yields a consistent canonical theory with first class constraints; and captures the essence of Horava gravity in retaining only spatial diffeomorphisms as the physically relevant non-trivial gauge symmetry. At the same time the local Hamiltonian constraint is equivalently enforced by the master constraint.

  11. Comments on the Canonical Measure in Cosmology

    CERN Document Server

    Kaya, Ali

    2012-01-01

    In the mini-superspace approximation to cosmology, the canonical measure can be used to compute probabilities when a cutoff is introduced in the phase space to regularize the divergent measure. However, the region initially constrained by a simple cutoff evolves non-trivially under the Hamiltonian flow. We determine the deformation of the regularized phase space along the orbits when a cutoff is introduced for the scale factor of the universe or for the Hubble parameter. In the former case, we find that the cutoff for the scale factor varies in the phase space and effectively decreases as one evolves backwards in time. In the later case, we calculate the probability of slow-roll inflation in a chaotic model with a massive scalar, which turns out to be cutoff dependent but not exponentially suppressed. We also investigate the measure problem for non-abelian gauge fields giving rise to inflation.

  12. The Deuteron as a Canonically Quantized Biskyrmion

    CERN Document Server

    Acus, A; Norvaisas, E; Riska, D O

    2003-01-01

    The ground state configurations of the solution to Skyrme's topological soliton model for systems with baryon number larger than 1 are well approximated with rational map ans"atze, without individual baryon coordinates. Here canonical quantization of the baryon number 2 system, which represents the deuteron, is carried out in the rational map approximation. The solution, which is described by the 6 parameters of the chiral group SU(2)$times$SU(2), is stabilized by the quantum corrections. The matter density of the variational quantized solution has the required exponential large distance falloff and the quantum numbers of the deuteron. Similarly to the axially symmetric semiclassical solution, the radius and the quadrupole moment are, however, only about half as large as the corresponding empirical values. The quantized deuteron solution is constructed for representations of arbitrary dimension of the chiral group.

  13. Linear canonical transforms theory and applications

    CERN Document Server

    Kutay, M; Ozaktas, Haldun; Sheridan, John

    2016-01-01

    This book provides a clear and accessible introduction to the essential mathematical foundations of linear canonical transforms from a signals and systems perspective. Substantial attention is devoted to how these transforms relate to optical systems and wave propagation. There is extensive coverage of sampling theory and fast algorithms for numerically approximating the family of transforms. Chapters on topics ranging from digital holography to speckle metrology provide a window on the wide range of applications. This volume will serve as a reference for researchers in the fields of image and signal processing, wave propagation, optical information processing and holography, optical system design and modeling, and quantum optics. It will be of use to graduate students in physics and engineering, as well as for scientists in other areas seeking to learn more about this important yet relatively unfamiliar class of integral transformations.

  14. Robustness from flexibility in the fungal circadian clock

    Directory of Open Access Journals (Sweden)

    Akman Ozgur E

    2010-06-01

    Full Text Available Abstract Background Robustness is a central property of living systems, enabling function to be maintained against environmental perturbations. A key challenge is to identify the structures in biological circuits that confer system-level properties such as robustness. Circadian clocks allow organisms to adapt to the predictable changes of the 24-hour day/night cycle by generating endogenous rhythms that can be entrained to the external cycle. In all organisms, the clock circuits typically comprise multiple interlocked feedback loops controlling the rhythmic expression of key genes. Previously, we showed that such architectures increase the flexibility of the clock's rhythmic behaviour. We now test the relationship between flexibility and robustness, using a mathematical model of the circuit controlling conidiation in the fungus Neurospora crassa. Results The circuit modelled in this work consists of a central negative feedback loop, in which the frequency (frq gene inhibits its transcriptional activator white collar-1 (wc-1, interlocked with a positive feedback loop in which FRQ protein upregulates WC-1 production. Importantly, our model reproduces the observed entrainment of this circuit under light/dark cycles with varying photoperiod and cycle duration. Our simulations show that whilst the level of frq mRNA is driven directly by the light input, the falling phase of FRQ protein, a molecular correlate of conidiation, maintains a constant phase that is uncoupled from the times of dawn and dusk. The model predicts the behaviour of mutants that uncouple WC-1 production from FRQ's positive feedback, and shows that the positive loop enhances the buffering of conidiation phase against seasonal photoperiod changes. This property is quantified using Kitano's measure for the overall robustness of a regulated system output. Further analysis demonstrates that this functional robustness is a consequence of the greater evolutionary flexibility conferred on

  15. Stochastic models of cellular circadian rhythms in plants help to understand the impact of noise on robustness and clock structure

    Directory of Open Access Journals (Sweden)

    Maria Luisa eGuerriero

    2014-10-01

    Full Text Available Rhythmic behavior is essential for plants; for example, daily (circadian rhythms control photosynthesis and seasonal rhythms regulate their life cycle. The core of the circadian clock is a genetic network that coordinates the expression of specific clock genes in a circadian rhythm reflecting the 24-hour day/night cycle.Circadian clocks exhibit stochastic noise due to the low copy numbers of clock genes and the consequent cell-to-cell variation: this intrinsic noise plays a major role in circadian clocks by inducing more robust oscillatory behavior. Another source of noise is the environment, which causes variation in temperature and light intensity: this extrinsic noise is part of the requirement for the structural complexity of clock networks.Advances in experimental techniques now permit single-cell measurements and the development of single-cell models. Here we present some modeling studies showing the importance of considering both types of noise in understanding how plants adapt to regular and irregular light variations. Stochastic models have proven useful for understanding the effect of regular variations. By contrast, the impact of irregular variations and the interaction of different noise sources are less studied.

  16. Direct laser cooling Al+ ions optical clocks

    CERN Document Server

    Zhang, J; Luo, J; Lu, Z H

    2016-01-01

    Al$^+$ ions optical clock is a very promising optical frequency standard candidate due to its extremely small blackbody radiation shift. It has been successfully demonstrated with indirect cooled, quantum-logic-based spectroscopy technique. Its accuracy is limited by second-order Doppler shift, and its stability is limited by the number of ions that can be probed in quantum logic processing. We propose a direct laser cooling scheme of Al$^+$ ions optical clocks where both the stability and accuracy of the clocks are greatly improved. In the proposed scheme, two Al$^+$ ions traps are utilized. The first trap is used to trap a large number of Al$^+$ ions to improve the stability of the clock laser, while the second trap is used to trap a single Al$^+$ ions to provide the ultimate accuracy. Both traps are cooled with a continuous wave 167 nm laser. The expected clock laser stability can reach $9.0\\times10^{-17}/\\sqrt{\\tau}$. For the second trap, in addition to 167 nm laser Doppler cooling, a second stage pulsed ...

  17. Circadian clock proteins control adaptation to novel environment and memory formation

    Science.gov (United States)

    A.Kondratova, Anna; V.Dubrovsky, Yuliya; Antoch, Marina P.; Kondratov, Roman V.

    2010-01-01

    Deficiency of the transcription factor BMAL1, a core component of the circadian clock, results in an accelerated aging phenotype in mice. The circadian clock regulates many physiological processes and was recently implicated in control of brain-based activities, such as memory formation and the regulation of emotions. Aging is accompanied by the decline in brain physiology, particularly decline in the response and adaptation to novelty. We investigated the role of the circadian clock in exploratory behavior and habituation to novelty using the open field paradigm. We found that mice with a deficiency of the circadian transcription factor BMAL1 display hyperactivity in novel environments and impaired intra- and intersession habituation, indicative of defects in short- and long-term memory formation. In contrast, mice double-deficient for the circadian proteins CRY1 and CRY2 (repressors of the BMAL1-mediated transcription) demonstrate reduced activity and accelerated habituation when compared to wild type mice. Mice with mutation in theClock gene (encoding the BMAL1 transcription partner) show normal locomotion, but increased rearing activity and impaired intersession habituation. BMAL1 is highly expressed in the neurons of the hippocampus - a brain region associated with spatial memory formation; BMAL1 deficiency disrupts circadian oscillation in gene expression and reactive oxygen species homeostasis in the brain, which may be among the possible mechanisms involved. Thus, we suggest that the BMAL1:CLOCK activity is critical for the proper exploratory and habituation behavior, and that the circadian clock prepares organism for a new round of everyday activities through optimization of behavioral learning. PMID:20519775

  18. Probing entrainment of Ostreococcus tauri circadian clock by green and blue light through a mathematical modeling approach.

    Science.gov (United States)

    Thommen, Quentin; Pfeuty, Benjamin; Schatt, Philippe; Bijoux, Amandine; Bouget, François-Yves; Lefranc, Marc

    2015-01-01

    Most organisms anticipate daily environmental variations and orchestrate cellular functions thanks to a circadian clock which entrains robustly to the day/night cycle, despite fluctuations in light intensity due to weather or seasonal variations. Marine organisms are also subjected to fluctuations in light spectral composition as their depth varies, due to differential absorption of different wavelengths by sea water. Studying how light input pathways contribute to circadian clock robustness is therefore important. Ostreococcus tauri, a unicellular picoplanktonic marine green alga with low genomic complexity and simple cellular organization, has become a promising model organism for systems biology. Functional and modeling approaches have shown that a core circadian oscillator based on orthologs of Arabidopsis TOC1 and CCA1 clock genes accounts for most experimental data acquired under a wide range of conditions. Some evidence points at putative light input pathway(s) consisting of a two-component signaling system (TCS) controlled by the only two histidine kinases (HK) of O. tauri. LOV-HK is a blue light photoreceptor under circadian control, that is required for circadian clock function. An involvement of Rhodopsin-HK (Rhod-HK) is also conceivable since rhodopsin photoreceptors mediate blue to green light input in animal circadian clocks. Here, we probe the role of LOV-HK and Rhod-HK in mediating light input to the TOC1-CCA1 oscillator using a mathematical model incorporating the TCS hypothesis. This model agrees with clock gene expression time series representative of multiple environmental conditions in blue or green light, characterizing entrainment by light/dark cycles, free-running in constant light, and resetting. Experimental and theoretical results indicate that both blue and green light can reset O. tauri circadian clock. Moreover, our mathematical analysis suggests that Rhod-HK is a blue-green light receptor and drives the clock together with LOV-HK.

  19. Probing entrainment of Ostreococcus tauri circadian clock by blue and green light through a mathematical modeling approach

    Directory of Open Access Journals (Sweden)

    Quentin eThommen

    2015-02-01

    Full Text Available Most organisms anticipate daily environmental variations and orchestrate cellular functions thanks to a circadian clock which entrains robustly to the day/night cycle, despite fluctuations in light intensity due to weather or seasonal variations. Marine organisms are also subjected to fluctuations in light spectral composition as their depth varies, due to differential absorption of different wavelengths by sea water. Studying how light input pathways contribute to circadian clock robustness is therefore important.Ostreococcus tauri, a unicellular picoplanktonic marine green alga with low genomic complexity and simple cellular organization, has become a promising model organism for systems biology. Functional and modeling approaches have shown that a core circadian oscillator based on orthologs of Arabidopsis TOC1 and CCA1 clock genes accounts for most experimental data acquired under a wide range of conditions. Some evidence points at putative light input pathway(s consisting of a two-component signaling system (TCS controlled by the only two histidine kinases (HK of O. tauri. LOVHK is a blue light photoreceptor under circadian control, that is required for circadian clock function. An involvement of Rhodopsin-HK (RhodHK is also conceivable since rhodopsin photoreceptors mediate blue to green light input in animal circadian clocks.Here, we probe the role of LOVHK and RhodHK in mediating light input to the TOC1-CCA1 oscillator using a mathematical model incorporating the TCS hypothesis. This model agrees with clock gene expression time series representative of multiple environmental conditions in blue or green light, characterizing entrainment by light/dark cycles, free-running in constant light, and resetting. Experimental and theoretical results indicate that both blue and green light can reset O. tauri circadian clock. Moreover, our mathematical analysis suggests that Rhod-HK is a blue-green light receptor and drives the clock together with

  20. The "cause of Jesus" (Sache Jesu as the Canon behind the Canon

    Directory of Open Access Journals (Sweden)

    Andries G. van Aarde

    2001-01-01

    Full Text Available God, and not the Bible as such, is the church's primary authority. Jesus of Nazareth is the manifestation of God in history. In a post-Aufkllirung environment one cannot escape the demand to think historically. To discern what could be seen as the "ground" offaith, one needs to distinguish the "proclaiming Jesus" from the "proclaimed Jesus", though these two aspects are dialectically intertwined. This dialeclic can be described as the "Jesus kerygma" or the "cause of Jesus". The aim of this article is to argue that if Christians focus only on the church's kerygma they base their ultimate trust upon assertions of faith, rather than upon the cause of faith. The dictum that the cause of Jesus is the canon behind the canon is explained in terms of the distinction between ''fides qua creditur" and "fides quae creditur", and postmodern historical Jesus research.

  1. Circadian oscillators in the mouse brain: molecular clock components in the neocortex and cerebellar cortex.

    Science.gov (United States)

    Rath, Martin F; Rovsing, Louise; Møller, Morten

    2014-09-01

    The circadian timekeeper of the mammalian brain resides in the suprachiasmatic nucleus of the hypothalamus (SCN), and is characterized by rhythmic expression of a set of clock genes with specific 24-h daily profiles. An increasing amount of data suggests that additional circadian oscillators residing outside the SCN have the capacity to generate peripheral circadian rhythms. We have recently shown the presence of SCN-controlled oscillators in the neocortex and cerebellum of the rat. The function of these peripheral brain clocks is unknown, and elucidating this could involve mice with conditional cell-specific clock gene deletions. This prompted us to analyze the molecular clockwork of the mouse neocortex and cerebellum in detail. Here, by use of in situ hybridization and quantitative RT-PCR, we show that clock genes are expressed in all six layers of the neocortex and the Purkinje and granular cell layers of the cerebellar cortex of the mouse brain. Among these, Per1, Per2, Cry1, Arntl, and Nr1d1 exhibit circadian rhythms suggesting that local running circadian oscillators reside within neurons of the mouse neocortex and cerebellar cortex. The temporal expression profiles of clock genes are similar in the neocortex and cerebellum, but they are delayed by 5 h as compared to the SCN, suggestively reflecting a master-slave relationship between the SCN and extra-hypothalamic oscillators. Furthermore, ARNTL protein products are detectable in neurons of the mouse neocortex and cerebellum, as revealed by immunohistochemistry. These findings give reason to further pursue the physiological significance of circadian oscillators in the mouse neocortex and cerebellum.

  2. Quantum clock: A critical discussion on spacetime

    CERN Document Server

    Burderi, Luciano; Iaria, Rosario

    2016-01-01

    We critically discuss the measure of very short time intervals. By means of a Gedankenexperiment, we describe an ideal clock based on the occurrence of completely random events. Many previous thought experiments have suggested fundamental Planck-scale limits on measurements of distance and time. Here we present a new type of thought experiment, based on a different type of clock, that provide further support for the existence of such limits. We show that the minimum time interval $\\Delta t$ that this clock can measure scales as the inverse of its size $\\Delta r$. This implies an uncertainty relation between space and time: $\\Delta r$ $\\Delta t$ $> G \\hbar / c^4$; where G, $\\hbar$ and c are the gravitational constant, the reduced Planck constant, and the speed of light, respectively. We outline and briefly discuss the implications of this uncertainty conjecture.

  3. Models of the Primordial Standard Clock

    CERN Document Server

    Chen, Xingang; Wang, Yi

    2014-01-01

    Oscillating massive fields in the primordial universe can be used as Standard Clocks. The ticks of these oscillations induce features in the density perturbations, which directly record the time evolution of the scale factor of the primordial universe, thus if detected, provide a direct evidence for the inflation scenario or the alternatives. In this paper, we construct a full inflationary model of primordial Standard Clock and study its predictions on the density perturbations. This model provides a full realization of several key features proposed previously. We compare the theoretical predictions from inflation and alternative scenarios with the Planck 2013 temperature data on Cosmic Microwave Background (CMB), and identify a statistically marginal but interesting candidate. We discuss how future CMB temperature and polarization data, non-Gaussianity analysis and Large Scale Structure data may be used to further test or constrain the Standard Clock signals.

  4. The Deep Space Atomic Clock Mission

    Science.gov (United States)

    Ely, Todd A.; Koch, Timothy; Kuang, Da; Lee, Karen; Murphy, David; Prestage, John; Tjoelker, Robert; Seubert, Jill

    2012-01-01

    The Deep Space Atomic Clock (DSAC) mission will demonstrate the space flight performance of a small, low-mass, high-stability mercury-ion atomic clock with long term stability and accuracy on par with that of the Deep Space Network. The timing stability introduced by DSAC allows for a 1-Way radiometric tracking paradigm for deep space navigation, with benefits including increased tracking via utilization of the DSN's Multiple Spacecraft Per Aperture (MSPA) capability and full ground station-spacecraft view periods, more accurate radio occultation signals, decreased single-frequency measurement noise, and the possibility for fully autonomous on-board navigation. Specific examples of navigation and radio science benefits to deep space missions are highlighted through simulations of Mars orbiter and Europa flyby missions. Additionally, this paper provides an overview of the mercury-ion trap technology behind DSAC, details of and options for the upcoming 2015/2016 space demonstration, and expected on-orbit clock performance.

  5. Biogeographic calibrations for the molecular clock.

    Science.gov (United States)

    Ho, Simon Y W; Tong, K Jun; Foster, Charles S P; Ritchie, Andrew M; Lo, Nathan; Crisp, Michael D

    2015-09-01

    Molecular estimates of evolutionary timescales have an important role in a range of biological studies. Such estimates can be made using methods based on molecular clocks, including models that are able to account for rate variation across lineages. All clock models share a dependence on calibrations, which enable estimates to be given in absolute time units. There are many available methods for incorporating fossil calibrations, but geological and climatic data can also provide useful calibrations for molecular clocks. However, a number of strong assumptions need to be made when using these biogeographic calibrations, leading to wide variation in their reliability and precision. In this review, we describe the nature of biogeographic calibrations and the assumptions that they involve. We present an overview of the different geological and climatic events that can provide informative calibrations, and explain how such temporal information can be incorporated into dating analyses.

  6. Sample-Clock Phase-Control Feedback

    Science.gov (United States)

    Quirk, Kevin J.; Gin, Jonathan W.; Nguyen, Danh H.; Nguyen, Huy

    2012-01-01

    To demodulate a communication signal, a receiver must recover and synchronize to the symbol timing of a received waveform. In a system that utilizes digital sampling, the fidelity of synchronization is limited by the time between the symbol boundary and closest sample time location. To reduce this error, one typically uses a sample clock in excess of the symbol rate in order to provide multiple samples per symbol, thereby lowering the error limit to a fraction of a symbol time. For systems with a large modulation bandwidth, the required sample clock rate is prohibitive due to current technological barriers and processing complexity. With precise control of the phase of the sample clock, one can sample the received signal at times arbitrarily close to the symbol boundary, thus obviating the need, from a synchronization perspective, for multiple samples per symbol. Sample-clock phase-control feedback was developed for use in the demodulation of an optical communication signal, where multi-GHz modulation bandwidths would require prohibitively large sample clock frequencies for rates in excess of the symbol rate. A custom mixedsignal (RF/digital) offset phase-locked loop circuit was developed to control the phase of the 6.4-GHz clock that samples the photon-counting detector output. The offset phase-locked loop is driven by a feedback mechanism that continuously corrects for variation in the symbol time due to motion between the transmitter and receiver as well as oscillator instability. This innovation will allow significant improvements in receiver throughput; for example, the throughput of a pulse-position modulation (PPM) with 16 slots can increase from 188 Mb/s to 1.5 Gb/s.

  7. Water-Powered Astronomical Clock Tower

    Science.gov (United States)

    Sun, Xiaochun

    The construction of water-powered astronomical instruments was a long tradition of instrument making that started in the second century AD with Zhang Heng's water-powered celestial globe. The technology reached a peak when, in the eleventh century, Su Song and his team constructed the Water-Powered Astronomical Clock Tower which combined the armillary sphere, the celestial globe, and the time-keeping mechanism into a large automatic structure. Su Song's instrument contained a mechanism for controlling the water-powered movements of its wheels that amounts to an "escapement mechanism" for a mechanical clock. A new reconstruction of the mechanism is introduced in this chapter.

  8. Clocking Scheme for Switched-Capacitor Circuits

    DEFF Research Database (Denmark)

    Steensgaard-Madsen, Jesper

    1998-01-01

    A novel clocking scheme for switched-capacitor (SC) circuits is presented. It can enhance the understanding of SC circuits and the errors caused by MOSFET (MOS) switches. Charge errors, and techniques to make SC circuits less sensitive to them are discussed.......A novel clocking scheme for switched-capacitor (SC) circuits is presented. It can enhance the understanding of SC circuits and the errors caused by MOSFET (MOS) switches. Charge errors, and techniques to make SC circuits less sensitive to them are discussed....

  9. Using GLONASS signal for clock synchronization

    Science.gov (United States)

    Gouzhva, Yuri G.; Gevorkyan, Arvid G.; Bogdanov, Pyotr P.; Ovchinnikov, Vitaly V.

    1994-01-01

    Although in accuracy parameters GLONASS is correlated with GPS, using GLONASS signals for high-precision clock synchronization was, up to the recent time, of limited utility due to the lack of specialized time receivers. In order to improve this situation, in late 1992 the Russian Institute of Radionavigation and Time (RMT) began to develop a GLONASS time receiver using as a basis the airborne ASN-16 receiver. This paper presents results of estimating user clock synchronization accuracy via GLONASS signals using ASN-16 receiver in the direct synchronization and common-view modes.

  10. The Asian American Fakeness Canon, 1972-2002

    Science.gov (United States)

    Oishi, Eve

    2007-01-01

    The year 1972 can be seen to inaugurate not a tradition of Asian American New York theater, but the rich and multigenre collection of writing that the author has called "the Asian American fakeness canon." The fakeness canon refers to a collection of writings that take as one of their central points of reference the question of cultural and ethnic…

  11. Iterative algorithms to approximate canonical Gabor windows: Computational aspects

    DEFF Research Database (Denmark)

    Janssen, A.J.E.M; Søndergaard, Peter Lempel

    In this paper we investigate the computational aspects of some recently proposed iterative methods for approximating the canonical tight and canonical dual window of a Gabor frame (g,a,b). The iterations start with the window g while the iteration steps comprise the window g, the k^th iterand...

  12. Stability of 2nd Hilbert points of canonical curves

    CERN Document Server

    Fedorchuk, Maksym

    2011-01-01

    We establish GIT semistability of the 2nd Hilbert point of every Gieseker-Petri general canonical curve by a simple geometric argument. As a consequence, we obtain an upper bound on slopes of general families of Gorenstein curves. We also explore the question of what replaces hyperelliptic curves in the GIT quotients of the Hilbert scheme of canonical curves.

  13. Canonical connection on a class of Riemannian almost product manifolds

    CERN Document Server

    Mekerov, Dimitar

    2009-01-01

    The canonical connection on a Riemannian almost product manifolds is an analogue to the Hermitian connection on an almost Hermitian manifold. In this paper we consider the canonical connection on a class of Riemannian almost product manifolds with nonintegrable almost product structure.

  14. Critical Literature Pedagogy: Teaching Canonical Literature for Critical Literacy

    Science.gov (United States)

    Borsheim-Black, Carlin; Macaluso, Michael; Petrone, Robert

    2014-01-01

    This article introduces Critical Literature Pedagogy (CLP), a pedagogical framework for applying goals of critical literacy within the context of teaching canonical literature. Critical literacies encompass skills and dispositions to understand, question, and critique ideological messages of texts; because canonical literature is often…

  15. Canonical Quantum Teleportation of Two-Particle Arbitrary State

    Institute of Scientific and Technical Information of China (English)

    HAO Xiang; ZHU Shi-Qun

    2005-01-01

    The canonical quantum teleportation of two-particle arbitrary state is realized by means of phase operator and number operator. The maximally entangled eigenstates between the difference of phase operators and the sum of number operators are considered as the quantum channels. In contrast to the standard quantum teleportation, the different unitary local operation of canonical teleportation can be simplified by a general expression.

  16. Canonical representation for approximating solution of fuzzy polynomial equations

    Directory of Open Access Journals (Sweden)

    M. Salehnegad

    2010-06-01

    Full Text Available In this paper, the concept of canonical representation is proposed to find fuzzy roots of fuzzy polynomial equations. We transform fuzzy polynomial equations to system of crisp polynomial equations, this transformation is perform by using canonical representation based on three parameters Value, Ambiguity and Fuzziness.

  17. Grand canonical potential of a magnetized neutron gas

    CERN Document Server

    Diener, Jacobus P W

    2015-01-01

    We compute the effective action for stationary and spatially constant magnetic fields, when coupled anomalously to charge neutral fermions, by integrating out the fermions. From this the grand canonical partition function and potential of the fermions and fields are computed. This also takes care of magnetic field dependent vacuum corrections to the grand canonical potential. Possible applications to neutron stars are indicated.

  18. Secure and self-stabilizing clock synchronization in sensor networks

    NARCIS (Netherlands)

    Hoepman, J.H.; Larsson, A.; Schiller, E.M.; Tsigas, P.

    2007-01-01

    In sensor networks, correct clocks have arbitrary starting offsets and nondeterministic fluctuating skews. We consider an adversary that aims at tampering with the clock synchronization by intercepting messages, replaying intercepted messages (after the adversary's choice of delay), and capturing no

  19. Improved Canonical Quantization Method of Self Dual Field

    Institute of Scientific and Technical Information of China (English)

    樊丰华; 黄永畅

    2012-01-01

    In this paper,the improved canonical quantization method of the self dual field is given in order to overcome linear combination problem about the second class constraint and the first class constraint number maximization problem in the Dirac method.In the improved canonical quantization method,there are no artificial linear combination and the first class constraint number maximization problems,at the same time,the stability of the system is considered.Therefore,the improved canonical quantization method is more natural and easier accepted by people than the usual Dirac method.We use the improved canonical quantization method to realize the canonical quantization of the self dual field,which has relation with string theory successfully and the results are equal to the results by using the Dirac method.

  20. Matrix product purifications for canonical ensembles and quantum number distributions

    Science.gov (United States)

    Barthel, Thomas

    2016-09-01

    Matrix product purifications (MPPs) are a very efficient tool for the simulation of strongly correlated quantum many-body systems at finite temperatures. When a system features symmetries, these can be used to reduce computation costs substantially. It is straightforward to compute an MPP of a grand-canonical ensemble, also when symmetries are exploited. This paper provides and demonstrates methods for the efficient computation of MPPs of canonical ensembles under utilization of symmetries. Furthermore, we present a scheme for the evaluation of global quantum number distributions using matrix product density operators (MPDOs). We provide exact matrix product representations for canonical infinite-temperature states, and discuss how they can be constructed alternatively by applying matrix product operators to vacuum-type states or by using entangler Hamiltonians. A demonstration of the techniques for Heisenberg spin-1 /2 chains explains why the difference in the energy densities of canonical and grand-canonical ensembles decays as 1 /L .

  1. Canonical correlations between chemical and energetic characteristics of lignocellulosic wastes

    Directory of Open Access Journals (Sweden)

    Thiago de Paula Protásio

    2012-09-01

    Full Text Available Canonical correlation analysis is a statistical multivariate procedure that allows analyzing linear correlation that may exist between two groups or sets of variables (X and Y. This paper aimed to provide canonical correlation analysis between a group comprised of lignin and total extractives contents and higher heating value (HHV with a group of elemental components (carbon, hydrogen, nitrogen and sulfur for lignocellulosic wastes. The following wastes were used: eucalyptus shavings; pine shavings; red cedar shavings; sugar cane bagasse; residual bamboo cellulose pulp; coffee husk and parchment; maize harvesting wastes; and rice husk. Only the first canonical function was significant, but it presented a low canonical R². High carbon, hydrogen and sulfur contents and low nitrogen contents seem to be related to high total extractives contents of the lignocellulosic wastes. The preliminary results found in this paper indicate that the canonical correlations were not efficient to explain the correlations between the chemical elemental components and lignin contents and higher heating values.

  2. The canon as text for a biblical theology

    Directory of Open Access Journals (Sweden)

    James A. Loader

    2005-10-01

    Full Text Available The novelty of the canonical approach is questioned and its fascination at least partly traced to the Reformation, as well as to the post-Reformation’s need for a clear and authoritative canon to perform the function previously performed by the church. This does not minimise the elusiveness and deeply contradictory positions both within the canon and triggered by it. On the one hand, the canon itself is a centripetal phenomenon and does play an important role in exegesis and theology. Even so, on the other hand, it not only contains many difficulties, but also causes various additional problems of a formal as well as a theological nature. The question is mooted whether the canonical approach alleviates or aggravates the dilemma. Since this approach has become a major factor in Christian theology, aspects of the Christian canon are used to gauge whether “canon” is an appropriate category for eliminating difficulties that arise by virtue of its own existence. Problematic uses and appropriations of several Old Testament canons are advanced, as well as evidence in the New Testament of a consciousness that the “old” has been surpassed(“Überbietungsbewußtsein”. It is maintained that at least the Childs version of the canonical approach fails to smooth out these and similar difficulties. As a method it can cater for the New Testament’s (superior role as the hermeneutical standard for evaluating the Old, but flounders on its inability to create the theological unity it claims can solve religious problems exposed by Old Testament historical criticism. It is concluded that canon as a category cannot be dispensed with, but is useful for the opposite of the purpose to which it is conventionally put: far from bringing about theological “unity” or producing a standard for “correct” exegesis, it requires different readings of different canons.

  3. Modeling light adaptation in circadian clock: prediction of the response that stabilizes entrainment.

    Science.gov (United States)

    Tsumoto, Kunichika; Kurosawa, Gen; Yoshinaga, Tetsuya; Aihara, Kazuyuki

    2011-01-01

    Periods of biological clocks are close to but often different from the rotation period of the earth. Thus, the clocks of organisms must be adjusted to synchronize with day-night cycles. The primary signal that adjusts the clocks is light. In Neurospora, light transiently up-regulates the expression of specific clock genes. This molecular response to light is called light adaptation. Does light adaptation occur in other organisms? Using published experimental data, we first estimated the time course of the up-regulation rate of gene expression by light. Intriguingly, the estimated up-regulation rate was transient during light period in mice as well as Neurospora. Next, we constructed a computational model to consider how light adaptation had an effect on the entrainment of circadian oscillation to 24-h light-dark cycles. We found that cellular oscillations are more likely to be destabilized without light adaption especially when light intensity is very high. From the present results, we predict that the instability of circadian oscillations under 24-h light-dark cycles can be experimentally observed if light adaptation is altered. We conclude that the functional consequence of light adaptation is to increase the adjustability to 24-h light-dark cycles and then adapt to fluctuating environments in nature.

  4. Navstar Global Positioning System (GPS) clock program: Present and future

    Science.gov (United States)

    Tennant, D. M.

    1981-01-01

    Global Positioning System (GPS) program status are discussed and plans for ensuring the long term continuation of the program are presented. Performance of GPS clocks is presented in terms of on orbit data as portrayed by GPS master control station kalman filter processing. The GPS Clock reliability program is reviewed in depth and future plans fo the overall clock program are published.

  5. El Escritor y las Normas del Canon Literario (The Writer and the Norms of the Literary Canon).

    Science.gov (United States)

    Policarpo, Alcibiades

    This paper speculates about whether a literary canon exists in contemporary Latin American literature, particularly in the prose genre. The paper points to Carlos Fuentes, Gabriel Garcia Marquez, and Mario Vargas Llosa as the three authors who might form this traditional and liberal canon with their works "La Muerte de Artemio Cruz" (Fuentes),…

  6. Assembly of a comprehensive regulatory network for the mammalian circadian clock: a bioinformatics approach.

    Directory of Open Access Journals (Sweden)

    Robert Lehmann

    Full Text Available By regulating the timing of cellular processes, the circadian clock provides a way to adapt physiology and behaviour to the geophysical time. In mammals, a light-entrainable master clock located in the suprachiasmatic nucleus (SCN controls peripheral clocks that are present in virtually every body cell. Defective circadian timing is associated with several pathologies such as cancer and metabolic and sleep disorders. To better understand the circadian regulation of cellular processes, we developed a bioinformatics pipeline encompassing the analysis of high-throughput data sets and the exploitation of published knowledge by text-mining. We identified 118 novel potential clock-regulated genes and integrated them into an existing high-quality circadian network, generating the to-date most comprehensive network of circadian regulated genes (NCRG. To validate particular elements in our network, we assessed publicly available ChIP-seq data for BMAL1, REV-ERBα/β and RORα/γ proteins and found strong evidence for circadian regulation of Elavl1, Nme1, Dhx6, Med1 and Rbbp7 all of which are involved in the regulation of tumourigenesis. Furthermore, we identified Ncl and Ddx6, as targets of RORγ and REV-ERBα, β, respectively. Most interestingly, these genes were also reported to be involved in miRNA regulation; in particular, NCL regulates several miRNAs, all involved in cancer aggressiveness. Thus, NCL represents a novel potential link via which the circadian clock, and specifically RORγ, regulates the expression of miRNAs, with particular consequences in breast cancer progression. Our findings bring us one step forward towards a mechanistic understanding of mammalian circadian regulation, and provide further evidence of the influence of circadian deregulation in cancer.

  7. Assembly of a comprehensive regulatory network for the mammalian circadian clock: a bioinformatics approach.

    Science.gov (United States)

    Lehmann, Robert; Childs, Liam; Thomas, Philippe; Abreu, Monica; Fuhr, Luise; Herzel, Hanspeter; Leser, Ulf; Relógio, Angela

    2015-01-01

    By regulating the timing of cellular processes, the circadian clock provides a way to adapt physiology and behaviour to the geophysical time. In mammals, a light-entrainable master clock located in the suprachiasmatic nucleus (SCN) controls peripheral clocks that are present in virtually every body cell. Defective circadian timing is associated with several pathologies such as cancer and metabolic and sleep disorders. To better understand the circadian regulation of cellular processes, we developed a bioinformatics pipeline encompassing the analysis of high-throughput data sets and the exploitation of published knowledge by text-mining. We identified 118 novel potential clock-regulated genes and integrated them into an existing high-quality circadian network, generating the to-date most comprehensive network of circadian regulated genes (NCRG). To validate particular elements in our network, we assessed publicly available ChIP-seq data for BMAL1, REV-ERBα/β and RORα/γ proteins and found strong evidence for circadian regulation of Elavl1, Nme1, Dhx6, Med1 and Rbbp7 all of which are involved in the regulation of tumourigenesis. Furthermore, we identified Ncl and Ddx6, as targets of RORγ and REV-ERBα, β, respectively. Most interestingly, these genes were also reported to be involved in miRNA regulation; in particular, NCL regulates several miRNAs, all involved in cancer aggressiveness. Thus, NCL represents a novel potential link via which the circadian clock, and specifically RORγ, regulates the expression of miRNAs, with particular consequences in breast cancer progression. Our findings bring us one step forward towards a mechanistic understanding of mammalian circadian regulation, and provide further evidence of the influence of circadian deregulation in cancer. PMID:25945798

  8. Evidence of a molecular clock in the ovine ovary and the influence of photoperiod.

    Science.gov (United States)

    Murphy, B A; Blake, C M; Brown, J A; Martin, A-M; Forde, N; Sweeney, L M; Evans, A C O

    2015-07-15

    The influence of the central circadian clock on reproductive timing is well established. Much less is known about the role of peripheral oscillators such as those in the ovary. We investigated the influence of photoperiod and timing of the LH surge on expression of circadian clock genes and genes involved in steroidogenesis in ovine ovarian stroma. Seventy-two Suffolk cross ewes were divided into two groups, and their estrous cycles were synchronized. Progestagen sponge removal was staggered by 12 hours between the groups such that expected LH peak would occur midway through either the light or dark phase of the photoperiodic cycle. Four animals from each group were killed, and their ovaries were harvested beginning 36 hours after sponge removal, at 6-hour intervals for 48 hours. Blood was sampled every 3 hours for the period 24 to 48 hours after sponge removal to detect the LH surge. The interval to peak LH did not differ between the groups (36.2 ± 1.2 and 35.6 ± 1.1 hours, respectively). There was an interaction between group and the time of sponge removal on the expression of the core clock genes ARNTL, PER1, CRY1, CLOCK, and DBP (P < 0.01, P < 0.05, P < 0.01, P < 0.01, and P < 0.01, respectively). As no significant interaction between group and time of day was detected, the datasets were combined. Statistically significant rhythmic oscillation was observed for ARNTL, CLOCK, CRY1 (P < 0.01, respectively), PTGS2, DBP, PTGER2, and CYP17A1 (P < 0.05, respectively), confirming the existence of a time-sensitive functionality within the ovary, which may influence steroidogenesis and is independent of the ovulatory cycle.

  9. Finite Canonical Measure for Nonsingular Cosmologies

    CERN Document Server

    Page, Don N

    2011-01-01

    The total canonical (Liouville-Henneaux-Gibbons-Hawking-Stewart) measure is finite for completely nonsingular Friedmann-Robertson-Walker classical universes with a minimally coupled massive scalar field and a positive cosmological constant. For a cosmological constant very small in units of the square of the scalar field mass, most of the measure is for nearly de Sitter solutions with no inflation at a much more rapid rate. However, if one restricts to solutions in which the scalar field energy density is ever more than twice the equivalent energy density of the cosmological constant, then the number of e-folds of rapid inflation must be large, and the fraction of the measure is low in which the spatial curvature is comparable to the cosmological constant at the time when it is comparable to the energy density of the scalar field. The measure for such classical FRW-Lambda-phi models with both a big bang and a big crunch is also finite. Only the solutions with a big bang that expand forever, or the time-revers...

  10. Canonical Coordinates for Retino-Cortical Magnification

    Directory of Open Access Journals (Sweden)

    Luc Florack

    2014-02-01

    Full Text Available A geometric model for a biologically-inspired visual front-end is proposed, based on an isotropic, scale-invariant two-form field. The model incorporates a foveal property typical of biological visual systems, with an approximately linear decrease of resolution as a function of eccentricity, and by a physical size constant that measures the radius of the geometric foveola, the central region characterized by maximal resolving power. It admits a description in singularity-free canonical coordinates generalizing the familiar log-polar coordinates and reducing to these in the asymptotic case of negligibly-sized geometric foveola or, equivalently, at peripheral locations in the visual field. It has predictive power to the extent that quantitative geometric relationships pertaining to retino-cortical magnification along the primary visual pathway, such as receptive field size distribution and spatial arrangement in retina and striate cortex, can be deduced in a principled manner. The biological plausibility of the model is demonstrated by comparison with known facts of human vision.

  11. An $OSp$ extension of Canonical Tensor Model

    CERN Document Server

    Narain, Gaurav

    2015-01-01

    Tensor models are generalizations of matrix models, and are studied as discrete models of quantum gravity for arbitrary dimensions. Among them, the canonical tensor model (CTM for short) is a rank-three tensor model formulated as a totally constrained system with a number of first-class constraints, which have a similar algebraic structure as the constraints of the ADM formalism of general relativity. In this paper, we formulate a super-extension of CTM as an attempt to incorporate fermionic degrees of freedom. The kinematical symmetry group is extended from $O(N)$ to $OSp(N,\\tilde N)$, and the constraints are constructed so that they form a first-class constraint super-Poisson algebra. This is a straightforward super-extension, and the constraints and their algebraic structure are formally unchanged from the purely bosonic case, except for the additional signs associated to the order of the fermionic indices and dynamical variables. However, this extension of CTM leads to the existence of negative norm state...

  12. Properties and kinetics of microRNA regulation through canonical seed sites

    OpenAIRE

    Chen, Jerry S.; Revilla, Arra C; Guerrero, Michael; Abygail M Gumbayan; Zeller, Robert W.

    2015-01-01

    MicroRNAs are a fundamental class of small RNAs involved in post-transcriptional gene regulation; however, the mechanism by which microRNAs regulate their gene targets in animals remains poorly understood. Practically, a mechanistic understanding of microRNA binding and regulation is crucial for the rational design of microRNA-based vectors for RNA interference. In this report, we focus on the largest known class of microRNA targets, the canonical seed targets, and explore the factors involve...

  13. Canonical cortical circuits: current evidence and theoretical implications

    Directory of Open Access Journals (Sweden)

    Capone F

    2016-04-01

    Full Text Available Fioravante Capone,1,2 Matteo Paolucci,1,2 Federica Assenza,1,2 Nicoletta Brunelli,1,2 Lorenzo Ricci,1,2 Lucia Florio,1,2 Vincenzo Di Lazzaro1,2 1Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy; 2Fondazione Alberto Sordi – Research Institute for Aging, Rome, ItalyAbstract: Neurophysiological and neuroanatomical studies have found that the same basic structural and functional organization of neuronal circuits exists throughout the cortex. This kind of cortical organization, termed canonical circuit, has been functionally demonstrated primarily by studies involving visual striate cortex, and then, the concept has been extended to different cortical areas. In brief, the canonical circuit is composed of superficial pyramidal neurons of layers II/III receiving different inputs and deep pyramidal neurons of layer V that are responsible for cortex output. Superficial and deep pyramidal neurons are reciprocally connected, and inhibitory interneurons participate in modulating the activity of the circuit. The main intuition of this model is that the entire cortical network could be modeled as the repetition of relatively simple modules composed of relatively few types of excitatory and inhibitory, highly interconnected neurons. We will review the origin and the application of the canonical cortical circuit model in the six sections of this paper. The first section (The origins of the concept of canonical circuit: the cat visual cortex reviews the experiments performed in the cat visual cortex, from the origin of the concept of canonical circuit to the most recent developments in the modelization of cortex. The second (The canonical circuit in neocortex and third (Toward a canonical circuit in agranular cortex sections try to extend the concept of canonical circuit to other cortical areas, providing some significant examples of circuit functioning in different cytoarchitectonic

  14. The cardiomyocyte molecular clock, regulation of Scn5a, and arrhythmia susceptibility.

    Science.gov (United States)

    Schroder, Elizabeth A; Lefta, Mellani; Zhang, Xiping; Bartos, Daniel C; Feng, Han-Zhong; Zhao, Yihua; Patwardhan, Abhijit; Jin, Jian-Ping; Esser, Karyn A; Delisle, Brian P

    2013-05-15

    The molecular clock mechanism underlies circadian rhythms and is defined by a transcription-translation feedback loop. Bmal1 encodes a core molecular clock transcription factor. Germline Bmal1 knockout mice show a loss of circadian variation in heart rate and blood pressure, and they develop dilated cardiomyopathy. We tested the role of the molecular clock in adult cardiomyocytes by generating mice that allow for the inducible cardiomyocyte-specific deletion of Bmal1 (iCSΔBmal1). ECG telemetry showed that cardiomyocyte-specific deletion of Bmal1 (iCSΔBmal1(-/-)) in adult mice slowed heart rate, prolonged RR and QRS intervals, and increased episodes of arrhythmia. Moreover, isolated iCSΔBmal1(-/-) hearts were more susceptible to arrhythmia during electromechanical stimulation. Examination of candidate cardiac ion channel genes showed that Scn5a, which encodes the principle cardiac voltage-gated Na(+) channel (Na(V)1.5), was circadianly expressed in control mouse and rat hearts but not in iCSΔBmal1(-/-) hearts. In vitro studies confirmed circadian expression of a human Scn5a promoter-luciferase reporter construct and determined that overexpression of clock factors transactivated the Scn5a promoter. Loss of Scn5a circadian expression in iCSΔBmal1(-/-) hearts was associated with decreased levels of Na(V)1.5 and Na(+) current in ventricular myocytes. We conclude that disruption of the molecular clock in the adult heart slows heart rate, increases arrhythmias, and decreases the functional expression of Scn5a. These findings suggest a potential link between environmental factors that alter the cardiomyocyte molecular clock and factors that influence arrhythmia susceptibility in humans.

  15. Role of Aryl Hydrocarbon Receptor in Circadian Clock Disruption and Metabolic Dysfunction.

    Science.gov (United States)

    Jaeger, Cassie; Tischkau, Shelley A

    2016-01-01

    The prevalence of metabolic syndrome, a clustering of three or more risk factors that include abdominal obesity, increased blood pressure, and high levels of glucose, triglycerides, and high-density lipoproteins, has reached dangerous and costly levels worldwide. Increases in morbidity and mortality result from a combination of factors that promote altered glucose metabolism, insulin resistance, and metabolic dysfunction. Although diet and exercise are commonly touted as important determinants in the development of metabolic dysfunction, other environmental factors, including circadian clock disruption and activation of the aryl hydrocarbon receptor (AhR) by dietary or other environmental sources, must also be considered. AhR binds a range of ligands, which prompts protein-protein interactions with other Per-Arnt-Sim (PAS)-domain-containing proteins and subsequent transcriptional activity. This review focuses on the reciprocal crosstalk between the activated AhR and the molecular circadian clock. AhR exhibits a rhythmic expression and time-dependent sensitivity to activation by AhR agonists. Conversely, AhR activation influences the amplitude and phase of expression of circadian clock genes, hormones, and the behavioral responses of the clock system to changes in environmental illumination. Both the clock and AhR status and activation play significant and underappreciated roles in metabolic homeostasis. This review highlights the state of knowledge regarding how AhR may act together with the circadian clock to influence energy metabolism. Understanding the variety of AhR-dependent mechanisms, including its interactions with the circadian timing system that promote metabolic dysfunction, reveals new targets of interest for maintenance of healthy metabolism. PMID:27559298

  16. Clock Synchronization for Multihop Wireless Sensor Networks

    Science.gov (United States)

    Solis Robles, Roberto

    2009-01-01

    In wireless sensor networks, more so generally than in other types of distributed systems, clock synchronization is crucial since by having this service available, several applications such as media access protocols, object tracking, or data fusion, would improve their performance. In this dissertation, we propose a set of algorithms to achieve…

  17. An Iodine Fluorescence Quenching Clock Reaction

    Science.gov (United States)

    Weinberg, Richard B.; Muyskens, Mark

    2007-01-01

    Clock reactions based upon competing oxidation and reduction reactions of iodine and starch as the most popular type of chemistry example is presented to illustrate the redox phenomena, reaction kinetics, and principles of chemical titration. The examination of the photophysical principles underlying the iodine fluorescence quenching clock…

  18. Analytic clock frequency selection for global DVFS

    NARCIS (Netherlands)

    Gerards, Marco E.T.; Hurink, Johann L.; Hölzenspies, Philip K.F.; Kuper, Jan; Smit, Gerard J.M.

    2014-01-01

    Computers can reduce their power consumption by decreasing their speed using Dynamic Voltage and Frequency Scaling (DVFS). A form of DVFS for multicore processors is global DVFS, where the voltage and clock frequency is shared among all processor cores. Because global DVFS is efficient and cheap to

  19. On accelerated clocks and the quantum theory

    International Nuclear Information System (INIS)

    It is shown that the locality hypothesis of relativity breaks down for large proper accelerations which are relevant to semiclassical phenomena. A general modification for the rate of accelerated clocks incorporating the effect of proper acceleration is thus proposed. Connection is made with Caianiello's quantum line element

  20. Maximum likelihood molecular clock comb: analytic solutions.

    Science.gov (United States)

    Chor, Benny; Khetan, Amit; Snir, Sagi

    2006-04-01

    Maximum likelihood (ML) is increasingly used as an optimality criterion for selecting evolutionary trees, but finding the global optimum is a hard computational task. Because no general analytic solution is known, numeric techniques such as hill climbing or expectation maximization (EM), are used in order to find optimal parameters for a given tree. So far, analytic solutions were derived only for the simplest model--three taxa, two state characters, under a molecular clock. Four taxa rooted trees have two topologies--the fork (two subtrees with two leaves each) and the comb (one subtree with three leaves, the other with a single leaf). In a previous work, we devised a closed form analytic solution for the ML molecular clock fork. In this work, we extend the state of the art in the area of analytic solutions ML trees to the family of all four taxa trees under the molecular clock assumption. The change from the fork topology to the comb incurs a major increase in the complexity of the underlying algebraic system and requires novel techniques and approaches. We combine the ultrametric properties of molecular clock trees with the Hadamard conjugation to derive a number of topology dependent identities. Employing these identities, we substantially simplify the system of polynomial equations. We finally use tools from algebraic geometry (e.g., Gröbner bases, ideal saturation, resultants) and employ symbolic algebra software to obtain analytic solutions for the comb. We show that in contrast to the fork, the comb has no closed form solutions (expressed by radicals in the input data). In general, four taxa trees can have multiple ML points. In contrast, we can now prove that under the molecular clock assumption, the comb has a unique (local and global) ML point. (Such uniqueness was previously shown for the fork.).