WorldWideScience

Sample records for cane bagasse generated

  1. Power generation using sugar cane bagasse: A heat recovery analysis

    Science.gov (United States)

    Seguro, Jean Vittorio

    The sugar industry is facing the need to improve its performance by increasing efficiency and developing profitable by-products. An important possibility is the production of electrical power for sale. Co-generation has been practiced in the sugar industry for a long time in a very inefficient way with the main purpose of getting rid of the bagasse. The goal of this research was to develop a software tool that could be used to improve the way that bagasse is used to generate power. Special focus was given to the heat recovery components of the co-generation plant (economizer, air pre-heater and bagasse dryer) to determine if one, or a combination, of them led to a more efficient co-generation cycle. An extensive review of the state of the art of power generation in the sugar industry was conducted and is summarized in this dissertation. Based on this models were developed. After testing the models and comparing the results with the data collected from the literature, a software application that integrated all these models was developed to simulate the complete co-generation plant. Seven different cycles, three different pressures, and sixty-eight distributions of the flue gas through the heat recovery components can be simulated. The software includes an economic analysis tool that can help the designer determine the economic feasibility of different options. Results from running the simulation are presented that demonstrate its effectiveness in evaluating and comparing the different heat recovery components and power generation cycles. These results indicate that the economizer is the most beneficial option for heat recovery and that the use of waste heat in a bagasse dryer is the least desirable option. Quantitative comparisons of several possible cycle options with the widely-used traditional back-pressure turbine cycle are given. These indicate that a double extraction condensing cycle is best for co-generation purposes. Power generation gains between 40 and

  2. Combustion of thermochemically torrefied sugar cane bagasse.

    Science.gov (United States)

    Valix, M; Katyal, S; Cheung, W H

    2017-01-01

    This study compared the upgrading of sugar bagasse by thermochemical and dry torrefaction methods and their corresponding combustion behavior relative to raw bagasse. The combustion reactivities were examined by non-isothermal thermogravimetric analysis. Thermochemical torrefaction was carried out by chemical pre-treatment of bagasse with acid followed by heating at 160-300°C in nitrogen environment, while dry torrefaction followed the same heating treatment without the chemical pretreatment. The results showed thermochemical torrefaction generated chars with combustion properties that are closer to various ranks of coal, thus making it more suitable for co-firing applications. Thermochemical torrefaction also induced greater densification of bagasse with a 335% rise in bulk density to 340kg/m(3), increased HHVmass and HHVvolume, greater charring and aromatization and storage stability. These features demonstrate the potential of thermochemical torrefaction in addressing the practical challenges in using biomass such as bagasse as fuel.

  3. Sugar cane bagasse prehydrolysis using hot water

    Directory of Open Access Journals (Sweden)

    D. Abril

    2012-03-01

    Full Text Available Results are presented on the hot water prehydrolysis of sugar cane bagasse for obtaining ethanol by fermentation. The experimental study consisted of the determination of the effect of temperature and time of prehydrolysis on the extraction of hemicelluloses, with the objective of selecting the best operating conditions that lead to increased yield of extraction with a low formation of inhibitors. The study, carried out in a pilot plant scale rotational digester, using a 3² experimental design at temperatures of 150-190ºC and times of 60-90 min, showed that it is possible to perform the hot water prehydrolysis process between 180-190ºC in times of 60-82 min, yielding concentrations of xylose > 35 g/L, furfural < 2.5 g/L, phenols from soluble lignin < 1.5 g/L, and concentrations < 3.0 g/L of hemicelluloses in the cellolignin residue. These parameters of temperature and prehydrolysis time could be used for the study of the later hydrolysis and fermentation stages of ethanol production from sugar cane bagasse.

  4. Techno-economic evaluation of 2nd generation bioethanol production from sugar cane bagasse and leaves integrated with the sugar-based ethanol process

    Directory of Open Access Journals (Sweden)

    Macrelli Stefano

    2012-04-01

    Full Text Available Abstract Background Bioethanol produced from the lignocellulosic fractions of sugar cane (bagasse and leaves, i.e. second generation (2G bioethanol, has a promising market potential as an automotive fuel; however, the process is still under investigation on pilot/demonstration scale. From a process perspective, improvements in plant design can lower the production cost, providing better profitability and competitiveness if the conversion of the whole sugar cane is considered. Simulations have been performed with AspenPlus to investigate how process integration can affect the minimum ethanol selling price of this 2G process (MESP-2G, as well as improve the plant energy efficiency. This is achieved by integrating the well-established sucrose-to-bioethanol process with the enzymatic process for lignocellulosic materials. Bagasse and leaves were steam pretreated using H3PO4 as catalyst and separately hydrolysed and fermented. Results The addition of a steam dryer, doubling of the enzyme dosage in enzymatic hydrolysis, including leaves as raw material in the 2G process, heat integration and the use of more energy-efficient equipment led to a 37 % reduction in MESP-2G compared to the Base case. Modelling showed that the MESP for 2G ethanol was 0.97 US$/L, while in the future it could be reduced to 0.78 US$/L. In this case the overall production cost of 1G + 2G ethanol would be about 0.40 US$/L with an output of 102 L/ton dry sugar cane including 50 % leaves. Sensitivity analysis of the future scenario showed that a 50 % decrease in the cost of enzymes, electricity or leaves would lower the MESP-2G by about 20%, 10% and 4.5%, respectively. Conclusions According to the simulations, the production of 2G bioethanol from sugar cane bagasse and leaves in Brazil is already competitive (without subsidies with 1G starch-based bioethanol production in Europe. Moreover 2G bioethanol could be produced at a lower cost if subsidies were used to compensate for the

  5. Implications of the new Brazilian electric sector model in the process of distributed generation using the sugar cane bagasse; Implicacoes do novo modelo do setor eletrico brasileiro no processo de geracao distribuida com a utilizacao do bagaco da cana-de-acucar

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Celso Eduardo Lins de [Universidade de Sao Paulo (USP), Pirassununga, SP (Brazil). Faculdade de Zootecnia e Engenharia de Alimentos (FZEA). Dept. de Engenharia de Alimentos]. E-mail: celsooli@fzea.usp.br; Halmeman, Maria Cristina Rodrigues; Massochin, Amauri [Universidade Estadual do Oeste do Parana, Cascavel, PR (Brazil). Programa de Pos Graduacao em Engenharia Agricola]. E-mail: cristhalmeman@gmail.com

    2006-07-01

    This articles study what are the main implications of the new electrical sector model as an alternative to improve the electric power generation by using the sugar cane bagasse in the process of cogeneration.

  6. Thermal properties of chipboard panels made of sugar cane bagasse (Saccharum officinarum L)

    OpenAIRE

    Carvalho,Sylvia Thaís Martins; Mendes, Lourival Marin; César,Antônia Amanda da Silva; Yanagi Junior,Tadayuki

    2013-01-01

    The sugar cane bagasse is the most abundant agricultural residue produced in Brazil. It can be used for the production of chipboard panels and as constructive components for several types of environments. The substitution of timber for the bagasse minimizes environmental impacts and contributes to the generation of a new product with lower density and lower thermal conductivity which can improve the thermal conditioning of buildings. This study aims at determining the heat flow through chipbo...

  7. The adhesive effect on the properties of particleboards made from sugar cane bagasse generated in the distiller

    Directory of Open Access Journals (Sweden)

    Rafael Farinassi Mendes

    2009-12-01

    Full Text Available The objective was to evaluate the effect of the adhesive type and its different contents on sugar cane bagasse particleboards. The panels were produced using Urea-Formaldehyde (UF and Phenol-Formaldehyde (PF adhesives. Three adhesive contents were tested: 6, 9 and 12%. The boards were made by using an 8-minute press closing time, pressure of 40kgf/cm², and temperature of 160ºC for the UF adhesive and 180ºC for the PF adhesive. It was concluded that: The UF adhesive was statistically equal or better than PF adhesive considering all properties evaluated. The adhesive contents of 9 and 12% were statistically equal, but both were superior to 6% considering the physical properties. The mechanical properties did not present statistical differences, except for rupture modulus. The best panels were produced using UF at 9%, but they did not attend the norm CS 236-66 for mechanical properties, therefore it is necessary manipulations of the processing variables.O objetivo foi avaliar o efeito do tipo de adesivo e de seus diferentes teores na produção de painéis aglomerados com bagaço de cana. Os painéis foram produzidos utilizando os adesivos Uréia-Formaldeido (UF e Fenol-Formaldeido (FF a 6, 9 e 12%. O ciclo de prensagem utilizado foi de 40kgf/cm², temperatura de 160ºC para UF e 180ºC para FF, por 8 minutos. Concluiu-se que: O adesivo UF se mostrou estatisticamente igual ou superior a FF em todas as propriedades avaliadas. Para os teores de adesivo, nas propriedades físicas, os teores 9 e 12% se mostraram estatisticamente iguais, mas superiores a 6%; já nas propriedades mecânicas não houve diferença estatística, com exceção do módulo de ruptura. Os melhores painéis foram produzidos com UF e 9% de teor de adesivo, sendo que estes não atenderam a norma CS 236-66 para propriedades mecânicas, sendo necessárias manipulações nas variáveis de processamento.

  8. Bagasse paper from squeezed sugar cane refuse; Satokibi no shiborikasu kara umareta bagasse shi ni suite

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimura, T.; Mochizuki, Y.; Hara, H. [Mishima Paper Co. Ltd., Tokyo (Japan)

    1998-07-01

    This paper describes paper making from sugar cane bagasse. Sugar cane stem includes water content of 70-75% and sugar content of nearly 20%. Squeezed sugar cane bagasse is composed of water content of 45%, cell content of 50% and sugar content of 5%. Chemical composition of bagasse is composed of cellulose of 46.0-62.9%, lignin of 16.4-22.5%, pentosan of 25.5-33.4% and ash of 1.0-5.4%, including rich lignin and hemicellulose as compared with flax. Bagasse fiber is featured by length of 0.5-2.5mm and weight average fiber length of nearly 1.5mm, showing a property more close to wood pulp than flax or cotton fiber. Under the same beating condition, non-wood pulp such as flax and kenaf (ambary) pulp forms bulky low-density sheet, while bagasse pulp generally forms high-density sheet. Bagasse paper with basic characteristics as printing paper can be manufactured through appropriate beating treatment of bagasse pulp after appropriate de-pith, digestion and bleaching treatments. 14 refs., 15 figs., 13 tabs.

  9. Alkali-based AFEX pretreatment for the conversion of sugarcane bagasse and cane leaf residues to ethanol.

    Science.gov (United States)

    Krishnan, Chandraraj; Sousa, Leonardo da Costa; Jin, Mingjie; Chang, Linpei; Dale, Bruce E; Balan, Venkatesh

    2010-10-15

    Sugarcane is one of the major agricultural crops cultivated in tropical climate regions of the world. Each tonne of raw cane production is associated with the generation of 130 kg dry weight of bagasse after juice extraction and 250 kg dry weight of cane leaf residue postharvest. The annual world production of sugarcane is approximately 1.6 billion tones, generating 279 MMT tones of biomass residues (bagasse and cane leaf matter) that would be available for cellulosic ethanol production. Here, we investigated the production of cellulosic ethanol from sugar cane bagasse and sugar cane leaf residue using an alkaline pretreatment: ammonia fiber expansion (AFEX). The AFEX pretreatment improved the accessibility of cellulose and hemicelluloses to enzymes during hydrolysis by breaking down the ester linkages and other lignin carbohydrate complex (LCC) bonds and the sugar produced by this process is found to be highly fermentable. The maximum glucan conversion of AFEX pretreated bagasse and cane leaf residue by cellulases was approximately 85%. Supplementation with hemicellulases during enzymatic hydrolysis improved the xylan conversion up to 95-98%. Xylanase supplementation also contributed to a marginal improvement in the glucan conversion. AFEX-treated cane leaf residue was found to have a greater enzymatic digestibility compared to AFEX-treated bagasse. Co-fermentation of glucose and xylose, produced from high solid loading (6% glucan) hydrolysis of AFEX-treated bagasse and cane leaf residue, using the recombinant Saccharomyces cerevisiae (424A LNH-ST) produced 34-36 g/L of ethanol with 92% theoretical yield. These results demonstrate that AFEX pretreatment is a viable process for conversion of bagasse and cane leaf residue into cellulosic ethanol.

  10. Corrosion of Modified Concrete with Sugar Cane Bagasse Ash

    Directory of Open Access Journals (Sweden)

    R. E. Núñez-Jaquez

    2012-01-01

    Full Text Available Concrete is a porous material and the ingress of water, oxygen, and aggressive ions, such as chlorides, can cause the passive layer on reinforced steel to break down. Additives, such as fly ash, microsilica, rice husk ash, and cane sugar bagasse ash, have a size breakdown that allows the reduction of concrete pore size and, consequently, may reduce the corrosion process. The objective of this work is to determine the corrosion rate of steel in reinforced concrete by the addition of 20% sugar cane bagasse ash by weight of cement. Six prismatic specimens (7×7×10 cm with an embedded steel rod were prepared. Three contained 20% sugar cane bagasse ash by weight of cement and the other three did not. All specimens were placed in a 3.5% NaCl solution and the corrosion rate was determined using polarization resistance. The results showed that reinforced concrete containing sugar cane bagasse ash has the lowest corrosion rates in comparison to reinforced concrete without the additive.

  11. Characterization of sugar cane bagasse ash as supplementary material for Portland cement

    OpenAIRE

    Janneth Torres Agredo; Ruby Mejía de Gutiérrez; Escandón Giraldo, Camilo E.; Luis Octavio González Salcedo

    2014-01-01

    Sugar Cane Bagasse is a by-product of the sugar agroindustry; it is partly used as fuel. However, bagasse ash (SCBA) is considered waste, which creates a disposal problem. Furthermore, if sugar cane bagasse is burned under controlled conditions, the SCBA can be potentially reused. This paper considers the technical viability of using SCBA as a partial replacement for cement. Two samples of SCBA from a Colombian sugar industry were characterized. The chemical composition of the samples shows h...

  12. Respiratory, allergy and eye problems in bagasse-exposed sugar cane workers in Costa Rica

    NARCIS (Netherlands)

    Gascon, M.; Kromhout, H.; Heederik, D.; Eduard, W.; van Wendel de Joode, B.N.

    2012-01-01

    AIMS: To evaluate bagasse (sugar cane fibres) and microbiological exposure among sugar cane refinery workers in Costa Rica and its relationships with respiratory, allergy and eye problems. METHODS: Ventilatory lung function and total serum IgE were measured in 104 sugar cane workers in five

  13. Comparative evaluation of hybrid systems of natural gas cogeneration and sugar cane bagasse; Avaliacao comparativa de sistemas hibridos de cogeracao a gas natutral e bagaco de cana

    Energy Technology Data Exchange (ETDEWEB)

    Zamboni, Leonardo Moneci; Tribess, Arlindo [Sao Paulo Univ., SP (Brazil). Escola Politecnica. Dept. de Engenharia Mecanica]. E-mail: leonardo.zamboni@poli.usp.br; atribess@usp.br

    2006-07-01

    The consumption of electricity in Brazil and mainly in the State of Sao Paulo is increasing gradually. On the other hand, the hydraulic potential is practically exhausted and the government has no resources for such new investments. One solution is the construction of thermo electrical plants with the use of the natural gas and sugar cane bagasse. The natural gas has the advantage of being available in great amount and less pollutant. And the sugar cane bagasse, besides being a by-product of low value, does not cause a global pollution. The work consists of the determination of the best option considering criterion of minimum cost for kWh of energy produced. For such, thermo economic analysis with electricity and steam production costs evaluation in exergetic basis, was accomplished. In the evaluations the consumption of natural gas and the costs of the sugar cane bagasse were varied. The results show that the cogeneration plant with combined cycle using natural gas and burning sugar cane bagasse in the recovery boiler presents the smallest cost of electricity and steam generation (even not being the cycle with larger exergetic efficiency). On the other hand, for a natural gas cost of 140 US$/t and a cost of sugar cane bagasse superior to 10,50 US$/t the cogeneration plant with combined cycle using only natural gas (and, therefore not burning or gasifying sugar cane bagasse) presented the smallest cost of electricity and steam generation. (author)

  14. Effect of partial replacement with thermally processed sugar cane bagasse on the properties of mortars

    Energy Technology Data Exchange (ETDEWEB)

    Bezerra, Augusto Cesar da Silva; Saraiva, Sergio Luis Costa; Lara, Luis Felipe dos Santos; Rodrigues, Conrado de Souza; Ferreira, Maria Cecilia Novaes Firmo, E-mail: augustobezerra@des.cefetmg.br [Centro Federal de Educacao Tecnologica de Minas Gerais (CEFET-MG), Belo Horizonte (Brazil); Castro, Laurenn Wolochate Aracema de, E-mail: laurenn@cemig.com [Companhia Energetica de Minas Gerais (CEMIG), Belo Horizonte (Brazil); Gomes, Romero Cesar, E-mail: romero@nugeo.ufop.br [Universidade Federal de Ouro Preto (UFOP), MG (Brazil); Aguilar, Maria Teresa Paulino, E-mail: teresa@ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte (Brazil)

    2017-01-15

    Sugar cane bagasse is a residue of the sugar-alcohol industry, and its main destination is represented by burning boilers for power generation. The bagasse cogeneration of power produces a sugar cane bagasse ash (SCBA) residue that does not have a useful destination. Ashes are commonly studied as pozzolan in Portland cement production. International Standards indicate the use of pozzolan with up to 50% substitution. In the present work, we investigate the use of SCBA as an addition in Portland cement. For this purpose, Portland cement was prepared by substituting cement with 0, 10, 20, and 30% processed SCBA in volume. The ashes were processed by re-burning and grinding and were then characterized by scanning electron microscopy, Xray diffraction, laser granulometry, X-ray fluorescence spectrometry, the Chapelle method, and pozollanic activity. To evaluate the cement with substitution, we used the mortar recommended by NBR 7215. The mechanical properties of the cements with replacement were analysed through tests of the compressive strength and flexural strength of mortars. The results appear interesting and support the possible use of SCBA in the production of cement from the aspect of mechanical properties evaluated. (author)

  15. Micro-analytical studies on sugar cane bagasse ash

    Indian Academy of Sciences (India)

    P Jagadesh; A Ramachandramurthy; R Murugesan; K Sarayu

    2015-08-01

    The worldwide production of sugar generates large volumes of bagasse wastes, which are burnt in uncontrolled manner for heating boiler, which are deposited in landfills, which create negative effects in the environment. The ash obtained by burning bagasse is generally used as Supplementary Cementing Material (SCM) in concrete production without proper knowledge of pozzolanic material characterization. This paper summarizes the results obtained from the various techniques to determine pozzolanic mineral profiles in sugarcane bagasse ash (SCBA). Techniques employed in the present study include X-Ray Diffraction (XRD), Energy-Dispersive X-ray Analysis (EDAX) spectrometer, Fourier Transform Infra-Red Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and Thermal Analysis [Thermo-Gravimetric Analysis (TGA) and Derivative Thermo-Gravimetric (DTG)] in order to understand the type, form, nature, morphology, concentration, etc. of pozzolanic minerals.

  16. Decomposition of lignin from sugar cane bagasse during ozonation process monitored by optical and mass spectrometries.

    Science.gov (United States)

    Souza-Corrêa, J A; Ridenti, M A; Oliveira, C; Araújo, S R; Amorim, J

    2013-03-21

    Mass spectrometry was used to monitor neutral chemical species from sugar cane bagasse that could volatilize during the bagasse ozonation process. Lignin fragments and some radicals liberated by direct ozone reaction with the biomass structure were detected. Ozone density was monitored during the ozonation by optical absorption spectroscopy. The optical results indicated that the ozone interaction with the bagasse material was better for bagasse particle sizes less than or equal to 0.5 mm. Both techniques have shown that the best condition for the ozone diffusion in the bagasse was at 50% of its moisture content. In addition, Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) were employed to analyze the lignin bond disruptions and morphology changes of the bagasse surface that occurred due to the ozonolysis reactions as well. Appropriate chemical characterization of the lignin content in bagasse before and after its ozonation was also carried out.

  17. Pretreatment of sugar cane bagasse for enhanced ruminal digestion.

    Science.gov (United States)

    Deschamps, F C; Ramos, L P; Fontana, J D

    1996-01-01

    Crop residues, such as sugar cane bagasse (SCB), have been largely used for cattle feeding. However, the close association that exists among the three major plant cell-wall components, cellulose, hemicellulose, and lignin, limits the efficiency by which ruminants can degrade these materials. Previously, we have shown that pretreatment with 3% (w/w) phosphoric acid, under relatively mild conditions, increased considerably the nutritional value for SCB. However, in this preliminary study, pretreated residues were not washed prior to in situ degradability assays because we wanted to explore the high initial solvability of lowmol-wt substances that were produced during pretreatment. We have now studied the suitability of water-and/or alkali-washed residues to in situ ruminal digestion. Alkali washing increased substrate cellulose content by removing most of the lignin and other residual soluble substances. As a result the ruminal degradability of these cleaner materials had first-order rate constants five times higher than those substrates with higher lignin content (e.g., stem-exploded bagasse). However, alkali washing also increased the time of ruminal lag phase of the cellulosic residue, probably because of hemicellulose and/or lignin removal and to the development of substrates with higher degree of crystallinity. Therefore, longer lag phases appear to be related to low microbial adherence after extensive water and alkali extraction, as Novell as to the slower process of cellulase induction during ruminal growth. The kinetic data on ruminal digestion were shown to be very well adjusted by a nonlinear model. Although pretreatment enhances substrate accessibility, the occurrence of an exceedingly high amount of lignin byproducts within the pretreated material reduces considerably its potential degradability.

  18. Sugar cane bagasse as a feedstock for an industrial fast pyrolysis process under development

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, R.; Magne, P.; Deglise, X.

    1987-11-01

    In order to determine if it is possible to use sugar cane bagasse in an industrial pyrolysis process (developed by the TNEE Company, a subsidiary of St. Gobain, France) to obtain a medium heating value gas, a comparative study of this material with pine bark, already used in the process, and with oak sawdust has been performed. The study showed only some minor differences between the three materials, essentially due to a difference of structure and a higher H/sub 2/ content for bagasse. In addition it is noticeable that the heating value of bagasse is higher than that of pine bark. Consequently sugar cane bagasse can be considered as a good feedstock for the TNEE industrial process. 20 figs., 2 tabs., 7 refs.

  19. Depithers for Efficient Preparation of Sugar Cane Bagasse Fibers in Pulp and Paper Industry

    OpenAIRE

    Lois-Correa J.A

    2012-01-01

    Among the by-products originated in the agro-industrial process of sugar cane, bagasse is one of the most relevant (Paturau, 1989). The negative influence of signifi cant amount of pith, or parenchymatous tissue, present in sugarcane bagasse is discussed. Since this non-fi brous material does not give any desired properties in the pulp and paper, agglomerated boards and polymer productions, it is remarked the importance of its maximum removal. A brief historical review in the development of b...

  20. The Penicillium echinulatum Secretome on Sugar Cane Bagasse

    Science.gov (United States)

    Ribeiro, Daniela A.; Cota, Júnio; Alvarez, Thabata M.; Brüchli, Fernanda; Bragato, Juliano; Pereira, Beatriz M. P.; Pauletti, Bianca A.; Jackson, George; Pimenta, Maria T. B.; Murakami, Mario T.; Camassola, Marli; Ruller, Roberto; Dillon, Aldo J. P.; Pradella, Jose G. C.; Paes Leme, Adriana F.; Squina, Fabio M.

    2012-01-01

    Plant feedstocks are at the leading front of the biofuel industry based on the potential to promote economical, social and environmental development worldwide through sustainable scenarios related to energy production. Penicillium echinulatum is a promising strain for the bioethanol industry based on its capacity to produce large amounts of cellulases at low cost. The secretome profile of P. echinulatum after grown on integral sugarcane bagasse, microcrystalline cellulose and three types of pretreated sugarcane bagasse was evaluated using shotgun proteomics. The comprehensive chemical characterization of the biomass used as the source of fungal nutrition, as well as biochemical activity assays using a collection of natural polysaccharides, were also performed. Our study revealed that the enzymatic repertoire of P. echinulatum is geared mainly toward producing enzymes from the cellulose complex (endogluganases, cellobiohydrolases and β-glucosidases). Glycoside hydrolase (GH) family members, important to biomass-to-biofuels conversion strategies, were identified, including endoglucanases GH5, 7, 6, 12, 17 and 61, β-glycosidase GH3, xylanases GH10 and GH11, as well as debranching hemicellulases from GH43, GH62 and CE2 and pectinanes from GH28. Collectively, the approach conducted in this study gave new insights on the better comprehension of the composition and degradation capability of an industrial cellulolytic strain, from which a number of applied technologies, such as biofuel production, can be generated. PMID:23227186

  1. The Penicillium echinulatum secretome on sugar cane bagasse.

    Directory of Open Access Journals (Sweden)

    Daniela A Ribeiro

    Full Text Available Plant feedstocks are at the leading front of the biofuel industry based on the potential to promote economical, social and environmental development worldwide through sustainable scenarios related to energy production. Penicillium echinulatum is a promising strain for the bioethanol industry based on its capacity to produce large amounts of cellulases at low cost. The secretome profile of P. echinulatum after grown on integral sugarcane bagasse, microcrystalline cellulose and three types of pretreated sugarcane bagasse was evaluated using shotgun proteomics. The comprehensive chemical characterization of the biomass used as the source of fungal nutrition, as well as biochemical activity assays using a collection of natural polysaccharides, were also performed. Our study revealed that the enzymatic repertoire of P. echinulatum is geared mainly toward producing enzymes from the cellulose complex (endogluganases, cellobiohydrolases and β-glucosidases. Glycoside hydrolase (GH family members, important to biomass-to-biofuels conversion strategies, were identified, including endoglucanases GH5, 7, 6, 12, 17 and 61, β-glycosidase GH3, xylanases GH10 and GH11, as well as debranching hemicellulases from GH43, GH62 and CE2 and pectinanes from GH28. Collectively, the approach conducted in this study gave new insights on the better comprehension of the composition and degradation capability of an industrial cellulolytic strain, from which a number of applied technologies, such as biofuel production, can be generated.

  2. The Penicillium echinulatum secretome on sugar cane bagasse.

    Science.gov (United States)

    Ribeiro, Daniela A; Cota, Júnio; Alvarez, Thabata M; Brüchli, Fernanda; Bragato, Juliano; Pereira, Beatriz M P; Pauletti, Bianca A; Jackson, George; Pimenta, Maria T B; Murakami, Mario T; Camassola, Marli; Ruller, Roberto; Dillon, Aldo J P; Pradella, Jose G C; Paes Leme, Adriana F; Squina, Fabio M

    2012-01-01

    Plant feedstocks are at the leading front of the biofuel industry based on the potential to promote economical, social and environmental development worldwide through sustainable scenarios related to energy production. Penicillium echinulatum is a promising strain for the bioethanol industry based on its capacity to produce large amounts of cellulases at low cost. The secretome profile of P. echinulatum after grown on integral sugarcane bagasse, microcrystalline cellulose and three types of pretreated sugarcane bagasse was evaluated using shotgun proteomics. The comprehensive chemical characterization of the biomass used as the source of fungal nutrition, as well as biochemical activity assays using a collection of natural polysaccharides, were also performed. Our study revealed that the enzymatic repertoire of P. echinulatum is geared mainly toward producing enzymes from the cellulose complex (endogluganases, cellobiohydrolases and β-glucosidases). Glycoside hydrolase (GH) family members, important to biomass-to-biofuels conversion strategies, were identified, including endoglucanases GH5, 7, 6, 12, 17 and 61, β-glycosidase GH3, xylanases GH10 and GH11, as well as debranching hemicellulases from GH43, GH62 and CE2 and pectinanes from GH28. Collectively, the approach conducted in this study gave new insights on the better comprehension of the composition and degradation capability of an industrial cellulolytic strain, from which a number of applied technologies, such as biofuel production, can be generated.

  3. Pyrolysis of olive residue and sugar cane bagasse: non-isothermal thermogravimetric kinetic analysis.

    Science.gov (United States)

    Ounas, A; Aboulkas, A; El Harfi, K; Bacaoui, A; Yaacoubi, A

    2011-12-01

    Thermal degradation and kinetics for olive residue and sugar cane bagasse have been evaluated under dynamic conditions in the presence of nitrogen atmosphere, using a non-isothermal thermogravimetric method (TGA). The effect of heating rate was evaluated in the range of 2-50 K min(-1) providing significant parameters for the fingerprinting of the biomass. The DTG plot for the olive residue and sugar cane bagasse clearly shows that the bagasse begins to degrade at 473 K and exhibits two major peaks. The initial mass-loss was associated with hemicellulose pyrolysis and responsible for the first peak (538-543 K) whereas cellulose pyrolysis was initiated at higher temperatures and responsible for the second peak (600-607 K). The two biomass mainly devolatilized around 473-673 K, with total volatile yield of about 70-75%. The char in final residue was about 19-26%. Mass loss and mass loss rates were strongly affected by heating rate. It was found that an increase in heating rate resulted in a shift of thermograms to higher temperatures. Ozawa-Flynn-Wall and Vyazovkin methods were applied to determine apparent activation energy to the olive residue and sugar cane bagasse. Two different steps were detected with apparent activation energies in the 10-40% conversion range have a value of 153-162 kJ mol(-1) and 168-180 kJ mol(-1) for the hemicellulose degradation of olive residue and sugar cane bagasse, respectively. In the 50-80% conversion range, this value is 204-215 kJ mol(-1) and 231-240 kJ mol(-1) for the cellulose degradation of olive residue and sugar cane bagasse, respectively.

  4. Experimental Evaluation of Sugar Cane Bagasse Storage in Bales System

    Directory of Open Access Journals (Sweden)

    J. Lois-Correa

    2010-12-01

    Full Text Available An experimental evaluation was carried out on three bagasse storage piles with the following characteristics: wetbaled raw bagasse, wet baled depithed bagasse and pre-dried baled depithed bagasse. In each of these formerlymentioned alternatives, the storage time influence was analyzed on temperature profile, humidity behavior,granulometry and morphology, with and without mechanical treatment, solubility in hot water, NaOH and alcoholbenzeneextractives. In the same way, the behavior of brightness in mechanical pulps produced from stored bagassewas studied. Storage losses were calculated for each alternative on the basis of obtained results and it wasdemonstrated that pre-dried bagasse as compared with wet bagasse storage, yields lower losses and betterconservation of its characteristics.

  5. REDUCTION OF THE ENVIRONMENTAL IMPACT OF OLEAGINUOS WATER BY MEANS OF A FIX BED COLUMN FILLED WITH SUGAR CANE BAGASSE

    Directory of Open Access Journals (Sweden)

    Pastora de la C. Martínez Nodal

    2016-01-01

    Full Text Available From the environmental assessment conducted in the centrifugation process fuel that is used as raw material for generating electricity in Power Plants (CE operating with diesel and the physicochemical characterization of oleaginuos water (ARO that it generates, it was performed the environmental impact assessment of these waters if they are discharged without any treatment. A matrix of importance was made, which allowed us to identify the impact on the actions and factors by the activity and the generated waste. From the physico-chemical characterization of ARO, a sustainable treatment is proposed with the use of a fixed-bed column filled with sugar cane bagasse as biosorbent material to minimize the environmental impact caused by oleaginous water if spilled. A physicochemical characterization was made to the natural sugar cane bagasse in terms of moisture, density, porosity and high adsorption capacity. The results allowed to define the fraction of interest (+1 -2 mm, given by the performance in the screening (41%, the homogeneity of this fraction and sorption capacity (2g diesel/g BN. The breakthrough curve was obtained by a continuous flow system 2 l/h of ARO through a fixed bed of 59.997 g of BN and an initial concentration of hydrocarbon of 1444.9 mg/l. Studies showed that the sugarcane bagasse has potential as biosorbent oil, achieving a significant removal of the indicator total hydrocarbon, of 65%.

  6. Volatilisation of alkali and alkaline earth metallic species during the pyrolysis of biomass: differences between sugar cane bagasse and cane trash.

    Science.gov (United States)

    Keown, Daniel M; Favas, George; Hayashi, Jun-ichiro; Li, Chun-Zhu

    2005-09-01

    Sugar cane bagasse and cane trash were pyrolysed in a novel quartz fluidised-bed/fixed-bed reactor. Quantification of the Na, K, Mg and Ca in chars revealed that pyrolysis temperature, heating rate, valence and biomass type were important factors influencing the volatilisation of these alkali and alkaline earth metallic (AAEM) species. Pyrolysis at a slow heating rate (approximately 10 K min(-1)) led to minimal (often biomass samples. Fast heating rates (>1000 K s(-1)), encouraging volatile-char interactions with the current reactor configuration, resulted in the volatilisation of around 80% of Na, K, Mg and Ca from bagasse during pyrolysis at 900 degrees C. Similar behaviour was observed for monovalent Na and K with cane trash, but the volatilisation of Mg and Ca from cane trash was always restricted. The difference in Cl content between bagasse and cane trash was not sufficient to fully explain the difference in the volatilisation of Mg and Ca.

  7. Hydrolysis of Ammonia-pretreated Sugar Cane Bagasse with Cellulase, β-Glucosidase, and Hemicellulase Preparations

    Science.gov (United States)

    Prior, Bernard A.; Day, Donal F.

    Sugar cane bagasse consists of hemicellulose (24%) and cellulose (38%), and bioconversion of both fractions to ethanol should be considered for a viable process. We have evaluated the hydrolysis of pretreated bagasse with combinations of cellulase, β-glucosidase, and hemicellulase. Ground bagasse was pretreated either by the AFEX process (2NH3: 1 biomass, 100 °C, 30 min) or with NH4OH (0.5 g NH4OH of a 28% [v/v] per gram dry biomass; 160 °C, 60 min), and composition analysis showed that the glucan and xylan fractions remained largely intact. The enzyme activities of four commercial xylanase preparations and supernatants of four laboratory-grown fungi were determined and evaluated for their ability to boost xylan hydrolysis when added to cellulase and β-glucosidase (10 filter paper units [FPU]: 20 cellobiase units [CBU]/g glucan). At 1% glucan loading, the commercial enzyme preparations (added at 10% or 50% levels of total protein in the enzyme preparations) boosted xylan and glucan hydrolysis in both pretreated bagasse samples. Xylanase addition at 10% protein level also improved hydrolysis of xylan and glucan fractions up to 10% glucan loading (28% solids loading). Significant xylanase activity in enzyme cocktails appears to be required for improving hydrolysis of both glucan and xylan fractions of ammonia pretreated sugar cane bagasse.

  8. Pyrolysis of sugar cane bagasse in a wire-mesh reactor

    Energy Technology Data Exchange (ETDEWEB)

    Drummond, A.R.F.; Drummond, I.W. [Univ. of London (United Kingdom)

    1996-04-01

    Improved experimental techniques are described, using a wire mesh reactor; for determining the pyrolysis yields of lignocellulosic materials. In this apparatus pyrolysis tars are rapidly swept from the hot zone of the reactor and quenched, secondary reactions are thereby greatly diminished. Particular emphasis is placed upon the measurement of the pyrolysis yields for sugar cane bagasse, an abundant agricultural waste product. The role of the important pyrolysis parameters, peak temperature and heating rate, in defining the ultimate tar yield is investigated, with the value for bagasse being 54.6% at 500 C and 1,000 C/s. The pyrolysis yields, under similar conditions, of another biomass material, silver birch, are also reported and compared to those of bagasse.

  9. Depithers for Efficient Preparation of Sugar Cane Bagasse Fibers in Pulp and Paper Industry

    Directory of Open Access Journals (Sweden)

    Lois-Correa J.A

    2012-10-01

    Full Text Available Among the by-products originated in the agro-industrial process of sugar cane, bagasse is one of the most relevant (Paturau, 1989. The negative influence of significant amount of pith, or parenchymatous tissue, present in sugarcane bagasse is discussed. Since this non-fibrous material does not give any desired properties in the pulp and paper, agglomerated boards and polymer productions, it is remarked the importance of its maximum removal. A brief historical review in the development of bagasse depithers and depithing systems is presented in this paper. Further results in the development of depither, named S.M. Caribe by its author, are described. The mechanical performance of first prototypes was evaluated in a test installation where vibration control values and temperatures in the upper and lower rotor bearings were monitored. For comparison it was made a vibrational analysis of other depithers that were in operation. For the technological evaluation the input capacity, the bagasse fiber quality obtained and the influence on the produced paper quality were controlled during two sugar cane crop seasons, as well. The results obtained were superior of those reached by most of depithers currently available in the market.

  10. A method for exergy analysis of sugar cane bagasse boilers

    Energy Technology Data Exchange (ETDEWEB)

    Cortez, L.A.B.; Gomez, E.O. [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Agricola

    1998-03-01

    This work presents a method to conduct a thermodynamic analysis of sugarcane bagasse boilers. The method is based on the standard and actual reactions which allows the calculation of the enthalpies of each process subequation and the exergies of each of the main flowrates participating in the combustion. The method is presented using an example with real data from a sugarcane bagasse boiler. A summary of the results obtained is also presented together based on the 1 st Law of Thermodynamics analysis, the exergetic efficiencies, and the irreversibility rates. The method presented is very rigorous with respect to data consistency, particularly for the flue gas composition. (author) 11 refs., 1 fig., 6 tabs.; e-mail: cortez at agr.unicamp.br

  11. Chemical torrefaction as an alternative to established thermal technology for stabilisation of sugar cane bagasse as fuel.

    Science.gov (United States)

    Valix, M; Katyal, S; Cheung, W H

    2016-10-11

    Dry and chemical torrefaction of sugar cane bagasse was examined in this study with the aim of stabilising and upgrading the fuel properties of bagasse. Dry torrefaction was conducted at temperatures from 160°C to 300°C under inert conditions, whilst chemical torrefaction incorporated a H2SO4 pre-treatment of bagasse. Chemical torrefaction imparted superior chemical and physical properties inducing morphological transformation and textural development with the potential to address issues in handling, feeding and processing bagasse. It increased the energy density of the chars with maximum HHVmass 21.5 MJ/kg and maximum HHVvolume of 7.4 GJ/m(3). Chemically torrefied bagasse demonstrated resistance against microbiological attack for 18 months. These features demonstrate the practical value of chemical torrefaction in advancing the utilisation of bagasse as fuel.

  12. Bagasse generation and power cogeneration in sugar cane industry; Geracao de bagaco e co-geracao de energia na industria sucroalcooleira

    Energy Technology Data Exchange (ETDEWEB)

    Gomazako, M.S. [Instituto Federal de Educacao, Ciencia e Tecnologia de Sao Paulo (IFSP), SP (Brazil); Oliveira, C.J. [Faculdade Municipal Professor Franco Montoro (FMPFM), Mogi Guacu, SP (Brazil)

    2009-07-01

    This work show, through technical elements, the experience of the electric power production generated at some sugar plants of the state of Sao Paulo, starting from it burns of the pulp in kettles. This production has been supplied to the state dealerships but, the supply is retreating in the last years, due to several problems of economical order, technique and politics. However, there are efforts on the part of the government from Sao Paulo in reactivating this supply, through changes in the energy politics. (author)

  13. Characterization of sugar cane bagasse ash as supplementary material for Portland cement

    Directory of Open Access Journals (Sweden)

    Janneth Torres Agredo

    2014-03-01

    Full Text Available Sugar Cane Bagasse is a by-product of the sugar agroindustry; it is partly used as fuel. However, bagasse ash (SCBA is considered waste, which creates a disposal problem. Furthermore, if sugar cane bagasse is burned under controlled conditions, the SCBA can be potentially reused. This paper considers the technical viability of using SCBA as a partial replacement for cement. Two samples of SCBA from a Colombian sugar industry were characterized. The chemical composition of the samples shows high percentages of silica, 76.3% and 63.2%. The mineralogical and morphological characteristics of the waste were determined by X-ray diffraction patterns (XRD, thermal analysis (TG/DTA and scanning electron microscopy (SEM. The pozzolanic activity of SCBA was evaluated using the Frattini test and the strength activity index test (SAI. The ASTM C618 defines an SAI of at least 75% as a requirement for classifying material as a pozzolan. This condition was achieved in the experiments performed. The results indicate that SCBA produced in the manufacture of commercial cements can be recycled for use as pozzolanic material. This supplementary material can partially replace cement and therefore reduce CO2 emissions.

  14. Mechanical behavior of cementitious composites with processed sugar cane bagasse ashes; Comportamento mecanico de cimento Portland com cinza de bagaco de cana-de-acucar processada

    Energy Technology Data Exchange (ETDEWEB)

    Bezerra, Augusto C.S.; Saraiva, Sergio L.C.; Sena, Natalia O.; Pereira, Gabriela M.; Rodrigues, Conrado S.; Ferreira, Maria C.N.F., E-mail: augustobezerra@des.cefetmg.br [Centro Federal de Educacao Tecnologica Minas Gerais (CEFET-MG), MG (Brazil); Castro, Laurenn W.A.; Silva, Marcos V.M.S. [Companhia Energetica de Minas Gerais, MG (Brazil); Gomes, Romero C. [Universidade Federal de Ouro Preto (UFOP), MG (Brazil); Aguilar, Maria T.P. [Universidade Federal de Minas Gerais (UFMG), MG (Brazil)

    2014-07-01

    Sugar cane bagasse is waste from the sugar and ethanol industry and is primarily intended for burning in boilers to generate energy. As waste from the cogeneration of energy, sugar cane bagasse ashes (SCBA) are produced with no honorable destination. This paper studies the use of SCBA to partially replace Portland cement in producing cementitious composites. The ashes were processed by reburning and grinding, and after processing were characterized by a scanning electron microscope, x-ray diffraction, laser granulometry, and x-ray fluorescence spectrometry. After characterization, cement compounds were fashioned, replacing 0, 10, 20 and 30% of the cement with SCBA. The composites were mechanically evaluated by means of compression strength tests, tensile strength tests by bending. The results proved significant, indicating the possible use of SCBA when added to the cement on manufacture. (author)

  15. Influence of calcination temperature in pozolanicity of gray sugar cane bagasse; Influencia da temperatura de calcinacao na pozolanicidade da cinza de bagaco de cana-de-acucar (CBCA))

    Energy Technology Data Exchange (ETDEWEB)

    Santos, T.A.; Argolo, R.A.; Andrade, H.M.C.; Ribeiro, D.V., E-mail: tiagoassuncao@hotmail.com [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil)

    2016-07-01

    BCA (Sugar Cane Bagasse) is burned in boilers in the process of electricity cogeneration causing the generation of CBCA (Gray Sugar Cane Bagasse), which is the final residue of sucroalcooeira industry. Currently, several studies seek alternative materials that can replace Portland cement, promoting discussions on the use of pozzolanic materials in cementitious matrices. Thus, this research seeks to analyze the pozzolanicity the CBCA, obtained by calcining the residue at different temperatures, to be determined by TG / DTG and DTA tests. For analysis of pozzolanicity these ashes were used electrical conductivity techniques, chemical titration NP EN 196-5, chapelle modified NBR 15895/2010 and the IAP method (Activity Index pozzolanic NBR:5752). The results obtained during the study demostraramm no difference between the ash calcined at temperatures of 500 ° C, 600 ° C and 700 ° C. (author)

  16. Thermoelectric power plant selection using natural gas and sugar cane bagasse; Selecao de centrais termoeletricas utilizando gas natural e bagaco de cana

    Energy Technology Data Exchange (ETDEWEB)

    Leite, Caio de Paula [UNIFei - Faculdade de Engenharia Industrial, Sao Bernardo do Campo, SP (Brazil). Dept. de Engenharia Mecanica]. E-mail: cleite@edu.fei.br; Tribess, Arlindo [Sao Paulo Univ., SP (Brazil). Escola Politecnica. Dept. de Engenharia Mecanica]. E-mail: atribess@usp.br

    2003-07-01

    The electric power consumption in Brazil is growing about 4.2% a year, according to ELETROBRAS Decenal Plan in 1999. The capacity of installed electrical power is approximately 50000 MW, of the which 75% are in the Southern, South eastern and Middle western regions of the country. The growth rate indicates the need of an increase of the installed capacity of 2100 MW a year to avoid the risk of the lack of energy. On the other hand, the hydraulic potential sources of the region are practically exhausted and the government budget is low for this kind of investment. Therefore the solution would be the construction of new thermoelectric plants, with the possibility using natural gas and cane bagasse. The present work consists of the evaluation of the best option considering criterion of minimum cost for kWh of energy produced for the thermo electrical plants selection. Thermo economic analysis was made evaluating the production costs of steam and electricity in exergetic basis. The results show that the power cycles and cogeneration plants that use natural gas and cane bagasse are much more economical than the ones that just use natural gas, with 48% reduction of steam cost, 40% reduction of electricity cost generated b the steam turbine in the power cycle and 37% reduction of electricity cost generated by the steam turbine in the cogeneration plant, for cane bagasse price at 4 US$ /t and natural gas price at 140 US$/t. (author)

  17. Effect of Different Pretreatment of Sugar Cane Bagasse on Cellulase and Xylanases Production by the Mutant Penicillium echinulatum 9A02S1 Grown in Submerged Culture

    OpenAIRE

    Marli Camassola; Dillon, Aldo J.P.

    2014-01-01

    The main limitation to the industrial scale hydrolysis of cellulose is the cost of cellulase production. This study evaluated cellulase and xylanase enzyme production by the cellulolytic mutant Penicillium echinulatum 9A02S1 using pretreated sugar cane bagasse as a carbon source. Most cultures grown with pretreated bagasse showed similar enzymatic activities to or higher enzymatic activities than cultures grown with cellulose or untreated sugar cane bagasse. Higher filter paper activity (1.25...

  18. Improvement on sugar cane bagasse hydrolysis using enzymatic mixture designed cocktail.

    Science.gov (United States)

    Bussamra, Bianca Consorti; Freitas, Sindelia; Costa, Aline Carvalho da

    2015-01-01

    The aim of this work was to study cocktail supplementation for sugar cane bagasse hydrolysis, where the enzymes were provided from both commercial source and microorganism cultivation (Trichoderma reesei and genetically modified Escherichia coli), followed by purification. Experimental simplex lattice mixture design was performed to optimize the enzymatic proportion. The response was evaluated through hydrolysis microassays validated here. The optimized enzyme mixture, comprised of T. reesei fraction (80%), endoglucanase (10%) and β-glucosidase (10%), converted, theoretically, 72% of cellulose present in hydrothermally pretreated bagasse, whereas commercial Celluclast 1.5L converts 49.11%±0.49. Thus, a rational enzyme mixture designed by using synergism concept and statistical analysis was capable of improving biomass saccharification.

  19. Extraction of lignin from sugar cane bagasse and its modification into a high performance dispersant for pesticide formulations

    OpenAIRE

    Li, Zhili; Ge, Yuanyuan

    2011-01-01

    In order to effectively utilize a by-product of non-wood material, lignin was extracted from sugar cane bagasse via acidification of black liquor. The extracted sugar cane bagasse lignin (EBL) was modified by oxidation, hydroxymethylation, and sulfonation into a water-soluble lignosulfonate (EBL-M). It was characterized by IR, UV, GPC and elemental analysis. The results showed that the aromatic units of EBL-M were kept well and it was effectively sulfonated, that the percentage of S was high ...

  20. Use of slag/sugar cane bagasse ash (SCBA) blends in the production of alkali-activated materials

    OpenAIRE

    María V. Borrachero; Jordi Payá; José Monzó; Lourdes Soriano; Mauro M. Tashima; José L.P. Melges; Jorge L. Akasaki; Vinícius N. Castaldelli

    2013-01-01

    Blast furnace slag (BFS)/sugar cane bagasse ash (SCBA) blends were assessed for the production of alkali-activated pastes and mortars. SCBA was collected from a lagoon in which wastes from a sugar cane industry were poured. After previous dry and grinding processes, SCBA was chemically characterized: it had a large percentage of organic matter (ca. 25%). Solutions of sodium hydroxide and sodium silicate were used as activating reagents. Different BFS/SCBA mixtures were studied, replacing part...

  1. Downstream processing for xylitol recovery from fermented sugar cane bagasse hydrolysate using aluminium polychloride.

    Science.gov (United States)

    Silva, S S; Ramos, R M; Rodrigues, D C; Mancilha, I M

    2000-01-01

    Xylitol, a sweetener comparable to sucrose, is anticariogenic and can be consumed by diabetics. This sugar has been employed successfully in many foods and pharmaceutical products. The discovery of microorganisms capable of converting xylose present in lignocellulosic biomass into xylitol offers the opportunity of producing this poliol in a simple way. Xylitol production by biotechnological means using sugar cane bagasse is under study in our laboratories, and fermentation parameters have already been established. However, the downstream processing for xylitol recovery is still a bottleneck on which there is only a few data available in the literature. The present study deals with xylitol recovery from fermented sugar cane bagasse hydrolysate using 5.2 g/l of aluminium polychloride associated with activated charcoal. The experiments were performed at pH 9, 50 degrees C for 50 min. The results showed that aluminium polychloride and activated charcoal promoted a 93.5% reduction in phenolic compounds and a 9.7% loss of xylitol from the fermented medium, which became more discoloured, facilitating the xylitol separation.

  2. Effect of ionic liquid pretreatment on the chemical composition, structure and enzymatic hydrolysis of energy cane bagasse.

    Science.gov (United States)

    Qiu, Zenghui; Aita, Giovanna M; Walker, Michelle S

    2012-08-01

    Ionic liquids (ILs) are promising solvents for the pretreatment of lignocellulose as they are thermally stable, environmentally friendly, recyclable, and have low volatility. This study evaluated the effect of 1-ethyl-3-methylimidazolium acetate ([EMIM][OAc]) for the pretreatment of energy cane bagasse in terms of biomass composition, structural changes and enzymatic digestibility. Energy cane bagasse was pretreated with [EMIM][OAc] (5% (w/w)) at 120 °C for 30 min followed by hydrolysis with commercially available enzymes, Spezyme CP and Novozyme 188. IL-treated energy cane bagasse resulted in significant lignin removal (32.0%) with slight glucan and xylan losses (8.8% and 14.0%, respectively), and exhibited a much higher enzymatic digestibility (87.0% and 64.3%) than untreated (5.5% and 2.8%) or water-treated (4.0% and 2.1%) energy cane bagasse in terms of both cellulose and hemicellulose digestibilities, respectively. The enhanced digestibilities of IL-treated biomass can be attributed to delignification and reduction of cellulose crystallinity as confirmed by FTIR and XRD analyses.

  3. Use of a new Trichoderma harzianum strain isolated from the Amazon rainforest with pretreated sugar cane bagasse for on-site cellulase production.

    Science.gov (United States)

    Delabona, Priscila da Silva; Farinas, Cristiane Sanchez; da Silva, Mateus Ribeiro; Azzoni, Sindelia Freitas; Pradella, José Geraldo da Cruz

    2012-03-01

    The on-site production of cellulases is an important strategy for the development of sustainable second-generation ethanol production processes. This study concerns the use of a specific cellulolytic enzyme complex for hydrolysis of pretreated sugar cane bagasse. Glycosyl hydrolases (FPase, xylanase, and β-glucosidase) were produced using a new strain of Trichoderma harzianum, isolated from the Amazon rainforest and cultivated under different conditions. The influence of the carbon source was first investigated using shake-flask cultures. Selected carbon sources were then further studied under different pH conditions using a stirred tank bioreactor. Enzymatic activities up to 121 FPU/g, 8000 IU/g, and 1730 IU/g of delignified steam-exploded bagasse+sucrose were achieved for cellulase, xylanase and β-glucosidase, respectively. This enzymatic complex was used to hydrolyze pretreated sugar cane bagasse. A comparative evaluation, using an enzymatic extract from Trichoderma reesei RUTC30, indicated similar performance of the T. harzianum enzyme complex, being a potential candidate for on-site production of enzymes.

  4. Cement replacement by sugar cane bagasse ash: CO2 emissions reduction and potential for carbon credits.

    Science.gov (United States)

    Fairbairn, Eduardo M R; Americano, Branca B; Cordeiro, Guilherme C; Paula, Thiago P; Toledo Filho, Romildo D; Silvoso, Marcos M

    2010-09-01

    This paper presents a study of cement replacement by sugar cane bagasse ash (SCBA) in industrial scale aiming to reduce the CO(2) emissions into the atmosphere. SCBA is a by-product of the sugar/ethanol agro-industry abundantly available in some regions of the world and has cementitious properties indicating that it can be used together with cement. Recent comprehensive research developed at the Federal University of Rio de Janeiro/Brazil has demonstrated that SCBA maintains, or even improves, the mechanical and durability properties of cement-based materials such as mortars and concretes. Brazil is the world's largest sugar cane producer and being a developing country can claim carbon credits. A simulation was carried out to estimate the potential of CO(2) emission reductions and the viability to issue certified emission reduction (CER) credits. The simulation was developed within the framework of the methodology established by the United Nations Framework Convention on Climate Change (UNFCCC) for the Clean Development Mechanism (CDM). The State of São Paulo (Brazil) was chosen for this case study because it concentrates about 60% of the national sugar cane and ash production together with an important concentration of cement factories. Since one of the key variables to estimate the CO(2) emissions is the average distance between sugar cane/ethanol factories and the cement plants, a genetic algorithm was developed to solve this optimization problem. The results indicated that SCBA blended cement reduces CO(2) emissions, which qualifies this product for CDM projects. 2010 Elsevier Ltd. All rights reserved.

  5. Environmental factors affecting sporulation of Fuligo septica (Myxomycetes on sugar cane bagasse

    Directory of Open Access Journals (Sweden)

    Chiappeta Alda de Andrade

    2003-01-01

    Full Text Available The influence of environmental factors on sporulation of Fuligo septica (L. Wigg. and the abundance of this species on sugar cane bagasse (Saccharum officinarum L., stored outdoors was studied.In Northeastern Brazil, between January/1997 and January/1998, a total of 29 specimens were collected through monthly collections of aethalia. The relationships between the abundance of aethalia and rainfall, temperature, relative humidity of the air and insolation were studied. Results indicated that on the substrate analyzed, F. septica was an abundant species. Sporulation occurred in all seasons of the year, with a well-defined peak at the end of winter and beginning of spring (August/September,which was strongly influenced by rainfall.

  6. Purification and properties of endoglucanase from a sugar cane bagasse hydrolyzing strain, Aspergillus glaucus XC9.

    Science.gov (United States)

    Tao, Yi-Ming; Zhu, Xiang-Zhi; Huang, Jian-Zhong; Ma, Su-Juan; Wu, Xiao-Bing; Long, Min-Nan; Chen, Qing-Xi

    2010-05-26

    An endoglucanase (EG) from Aspergillus glaucus XC9 grown on 0.3% sugar cane bagasse as a carbon source was purified from the culture filtrate using ammonium sulfate, an anion exchange DEAE Sepharose fast flow column, and a Sephadex G-100 column, with a purification fold of 21.5 and a recovery of 22.3%. The ideal time for EG production is on the fourth day at 30 degrees C using bagasse as a substrate. Results obtained indicate that the enzyme was a monomer protein, and the molecular weight was determined to be 31 kDa. The optimum pH and temperature of EG for the hydrolysis of carboxymethylcellulose sodium (CMC-Na) were pH 4.0 and 50 degrees C, respectively. EG was stable over the pH range from 3.5 to 7.5 and at temperatures below 55 degrees C. Kinetic behavior of EG in the hydrolysis of CMC-Na followed Michaelis-Menten kinetics with constant K(m) of 5.0 mg/mL at pH 4.0 and 50 degrees C. The enzyme activity was stimulated by Fe(2+) and Mn(2+) but inhibited by Cd(2+), Pb(2+), and Cu(2+). The EDC chemical modification suggested that at least one carboxyl group probably acted as a proton donor in the enzyme active site.

  7. Effect of different pretreatment of sugar cane bagasse on cellulase and xylanases production by the mutant Penicillium echinulatum 9A02S1 grown in submerged culture.

    Science.gov (United States)

    Camassola, Marli; Dillon, Aldo J P

    2014-01-01

    The main limitation to the industrial scale hydrolysis of cellulose is the cost of cellulase production. This study evaluated cellulase and xylanase enzyme production by the cellulolytic mutant Penicillium echinulatum 9A02S1 using pretreated sugar cane bagasse as a carbon source. Most cultures grown with pretreated bagasse showed similar enzymatic activities to or higher enzymatic activities than cultures grown with cellulose or untreated sugar cane bagasse. Higher filter paper activity (1.253 ± 0.147 U · mL(-1)) was detected in the medium on the sixth day of cultivation when bagasse samples were pretreated with sodium hydroxide, hydrogen peroxide, and anthraquinone. Endoglucanase enzyme production was also enhanced by pretreatment of the bagasse. Nine cultures grown with bagasse possessed higher β -glucosidase activities on the sixth day than the culture grown with cellulose. The highest xylanase activity was observed in cultures with cellulose and with untreated sugar cane bagasse. These results indicate that pretreated sugar cane bagasse may be able to serve as a partial or total replacement for cellulose in submerged fermentation for cellulase production using P. echinulatum, which could potentially reduce future production costs of enzymatic complexes capable of hydrolyzing lignocellulosic residues to form fermented syrups.

  8. Effect of Different Pretreatment of Sugar Cane Bagasse on Cellulase and Xylanases Production by the Mutant Penicillium echinulatum 9A02S1 Grown in Submerged Culture

    Directory of Open Access Journals (Sweden)

    Marli Camassola

    2014-01-01

    Full Text Available The main limitation to the industrial scale hydrolysis of cellulose is the cost of cellulase production. This study evaluated cellulase and xylanase enzyme production by the cellulolytic mutant Penicillium echinulatum 9A02S1 using pretreated sugar cane bagasse as a carbon source. Most cultures grown with pretreated bagasse showed similar enzymatic activities to or higher enzymatic activities than cultures grown with cellulose or untreated sugar cane bagasse. Higher filter paper activity (1.253 ± 0.147 U·mL−1 was detected in the medium on the sixth day of cultivation when bagasse samples were pretreated with sodium hydroxide, hydrogen peroxide, and anthraquinone. Endoglucanase enzyme production was also enhanced by pretreatment of the bagasse. Nine cultures grown with bagasse possessed higher β-glucosidase activities on the sixth day than the culture grown with cellulose. The highest xylanase activity was observed in cultures with cellulose and with untreated sugar cane bagasse. These results indicate that pretreated sugar cane bagasse may be able to serve as a partial or total replacement for cellulose in submerged fermentation for cellulase production using P. echinulatum, which could potentially reduce future production costs of enzymatic complexes capable of hydrolyzing lignocellulosic residues to form fermented syrups.

  9. Evaluation of partial clinker replacement by sugar cane bagasse ash: CO2 emission reductions and potential for carbon credits

    OpenAIRE

    E. M. R. Fairbairn; De Paula,T. P.; G. C. Cordeiro; Americano,B. B.; Toledo Filho,R. D.

    2012-01-01

    This work presents a study about the viability of possible CO2 emissions reductions scenarios for the cement manufacturing through the implementation of Clean Development Mechanisms (CDM) associated with the partial replacement of cement by sugar cane bagasse ash (SCBA). Studies on the thermal, chemical and mechanical behavior of concretes containing 5 to 20% of ash indicated that there is improvement on the performance of all analyzed properties and that the ash can be used as admixture on t...

  10. RESEARCH OF KINETIC AND DIFFUSIVE MECHANISMS IN THE ADSORPTION OF Cu (II IN SUGAR CANE BAGASSE ASH

    Directory of Open Access Journals (Sweden)

    Julio Omar Prieto García

    2016-10-01

    Full Text Available In this paper a kinetic and diffusive study regarding adsorption of ions Cu (II on a sample of sugar cane bagasse ash is made. The results show that the second-order kinetic model better adjusts the experimental data than the Elovich and first-order kinetic model. The diffusive mechanism study shows that the diffusion in the liquid pellicle and in the micro-pores of the adsorbent prevail in the adsorption phenomenon.

  11. Electricity cogeneration evaluation from cane bagasse in gasifier systems/gas turbine; Avaliacao da cogeracao de eletricidade a partir de bagaco de cana em sistemas de gaseificador/turbina a gas

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, Suani Teixeira

    1992-07-01

    Before the beginning of PROALCOOL in 1975, the first effective program in the world using biomass in large scale as an automotive fuel, sugar/alcohol industries already used sugar cane bagasse - a by-product of sugar/alcohol production - to generate energy for sugar production. Currently, besides the fact that they are self-sufficient in thermal/electrical energy, sugar/alcohol industries produce small electricity excess which is exported to local utilities. Gasifier/gas turbine systems are more advanced technologies which are being developed and shall be commercialized in eight to ten years approximately, presenting much higher efficiency, at low cost and inducing more exportable electricity. In this study, possibilities of gasifier/gas turbine systems are evaluated and projections of bagasse based electricity production are presented, until year 2010, for Sao Paulo state and Brazil. Generation costs of gasified bagasse based electricity are calculated: they shall be lower than electricity cost from fossil origin. Influence of electricity sale on the reduction of alcohol production cost are also evaluated for several opportunity costs of bagasse. Environmental and social impacts are analyzed, including evaluation of the cost of avoided carbon, related to the substitution of fossil fuel by sugar cane bagasse in thermoelectric power plants. (author)

  12. Analysis of electric power cogeneration using sugar cane bagasse; Uma analise da cogeracao de energia eletrica usando bagaco de cana-de-acucar

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Anna Cristina Barbosa Dias de

    1997-07-01

    Brazil impels its economy again. A development expected in 80 and 90 years it is real. This growth demands new technologies, new researches and bases that bear that growth. Electric power is in these bases, but Brazil is not ready for that. Electric power cogeneration possibility appears, using sugar cane bagasse. Alcohol and sugar plants have already that practice working with a low generation volume. With some investment this volume can be increased, adding about 10% to national energetic matrix. The aim of this work is to present a short time alternative for national electric matrix. It shows the energetic situation of the country, some experiences already implanted in some countries around the world and some options for equipment improvement used in alcohol and sugar plants. It is shown alternatives sources of electric power generation studied on Brazil, as well as the planning of National Energetic Program of ELETROBRAS. It analyses, in details, sugar cane bagasse use, which is used in Sao Paulo plants to generate electric power. Possible systems and troubles for its implantation in sugar and alcohol plants are discussed. (author)

  13. Simultaneous saccharification and co-fermentation of peracetic acid pretreated sugar cane bagasse

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, L.C. [Fundacao Centro Tecnologico de Minas Gerais, Belo Horizonte (Brazil); Linden, J.C.; Schroeder, H.A. [Colorado State University, Fort Collins, CO (United States)

    1999-07-01

    Previous work in our laboratory has demonstrated that peracetic acid improves the enzymatic digestibility of lignocellulosic materials. From the same studies, use of dilute alkali solutions as a pre-pretreatment prior to peracetic acid lignin oxidation increases sugar conversion yields in a synergistic, not additive, manner. Deacetylation of xylan is conducted easily by use of dilute alkali solutions at mild conditions. In this paper, the effectiveness of peracetic acid pretreatment of sugar cane bagasse combined with an alkaline pre-pretreatment, is evaluated through simultaneous saccharification and co-fermentation (SSCF) procedures. A practical 92% of theoretical ethanol yield using recombinant Zymomonas mobilis CP4/pZB5 is achieved using 6% NaOH/I5% peracetic acid pretreated substrate. No sugar accumulation is observed during SSCF; the recombinant microorganism exhibits greater glucose utilization rates than those of xylose. Acetate levels at the end of the co-fermentations are less than 0.2% (w/v). Based on demonstrated reduction of acetyl groups of the biomass, alkaline pre-pretreatments help to reduce peracetic acid requirements. The influence of deacetylation is more pronounced in combined pretreatments using lower peracetic acid loadings. Stereochemical impediments of the acetyl groups in hemicellulase on the activity of specific enzymes may be involved. (author)

  14. Use of steam explosion liquor from sugar cane bagasse for lignin peroxidase production by Phanerochaete chrysosporium.

    Science.gov (United States)

    Ferrara, Maria Antonieta; Bon, Elba P S; Araujo Neto, Julio Silva

    2002-01-01

    The possibility of using two by-products of the sugar cane industry, molasses and bagasse steam explosion liquor (SEL), for lignin peroxidase (LiP) production by Phanerochaete chrysosporium was investigated. For comparison, the fungus was initially cultivated in synthetic media containing either glucose, sucrose, xylose, or xylan as sole carbon sources. The effect of veratryl alcohol (VA) was also investigated in relation to the enzyme activity levels. Results showed that sucrose was not metabolized by this fungus, which precluded the use of molasses as a carbon source. Glucose, xylose, and xylan promoted equivalent cell growth. Enzyme levels in the absence of VA were lower than 28 UI/L and in the presence of VA reached 109 IU/L with glucose and 85 IU/L with xylose or xylan. SEL was adequate for P. chrysosporium LiP production as LiP activity reached 90 IU/L. When VA was added to this medium, enzyme concentration increased to 155 IU/L.

  15. Characterization of an exoinulinase produced by Aspergillus terreus CCT 4083 grown on sugar cane bagasse.

    Science.gov (United States)

    Coitinho, Juliana B; Guimarães, Valéria M; de Almeida, Maíra N; Falkoski, Daniel L; de Queiróz, José H; de Rezende, Sebastião T

    2010-07-28

    Exoinulinase (beta-d-fructan fructohydrolase, EC 3.2.1.80) secreted by Aspergillus terreus CCT4083 was obtained using sugar cane bagasse, an agroindustrial residue, as a carbon source. It was further purified from the supernatant culture in a rapid procedure. The enzyme presented 57 kDa on SDS-PAGE and 56 kDa on gel filtration chromatography. Inulin was hydrolyzed by the purified enzyme, yielding d-fructose as the main product. This enzyme showed maximum activity at pH 4.0 and 60 degrees C and maintained more than 90 and 75% of its original activity at 40 and 50 degrees C, respectively, after 3.5 h of preincubation. The K(M) values for inulin, sucrose, and raffinose were 11, 4.20, and 27.89 mM, respectively, and d-fructose was a competitive inhibitor (K(i) = 47.55 mM). The activation energies for sucrose, raffinose, and inulin were 10.4, 5.61, and 4.44 kcal/mol, respectively. The characteristics of A. terreus exoinulinase were compared to those of inulinases isolated from other organisms. The exoinulinase traits presented especially good thermostability and the ability to produce pure d-fructose, suggesting its application to the production of high-fructose syrup.

  16. EVALUATION OF COMPOSITION, CHARACTERIZATION AND ENZYMATIC HYDROLYSIS OF PRETREATED SUGAR CANE BAGASSE

    OpenAIRE

    A. A. Guilherme; Dantas,P. V. F.; Santos, E.S.; FERNANDES F. A. N.; G. R. Macedo

    2015-01-01

    Abstract Glucose production from sugarcane bagasse was investigated. Sugarcane bagasse was pretreated by four different methods: combined acid and alkaline, combined hydrothermal and alkaline, alkaline, and peroxide pretreatment. The raw material and the solid fraction of the pretreated bagasse were characterized according to the composition, SEM, X-ray and FTIR analysis. Glucose production after enzymatic hydrolysis of the pretreated bagasse was also evaluated. All these results were used to...

  17. Use of Slag/Sugar Cane Bagasse Ash (SCBA Blends in the Production of Alkali-Activated Materials

    Directory of Open Access Journals (Sweden)

    María V. Borrachero

    2013-07-01

    Full Text Available Blast furnace slag (BFS/sugar cane bagasse ash (SCBA blends were assessed for the production of alkali-activated pastes and mortars. SCBA was collected from a lagoon in which wastes from a sugar cane industry were poured. After previous dry and grinding processes, SCBA was chemically characterized: it had a large percentage of organic matter (ca. 25%. Solutions of sodium hydroxide and sodium silicate were used as activating reagents. Different BFS/SCBA mixtures were studied, replacing part of the BFS by SCBA from 0 to 40% by weight. The mechanical strength of mortar was measured, obtaining values about 60 MPa of compressive strength for BFS/SCBA systems after 270 days of curing at 20 °C. Also, microstructural properties were assessed by means of SEM, TGA, XRD, pH, electrical conductivity, FTIR spectroscopy and MIP. Results showed a good stability of matrices developed by means of alkali-activation. It was demonstrated that sugar cane bagasse ash is an interesting source for preparing alkali-activated binders.

  18. Structural evaluation of sugar cane bagasse steam pretreated in the presence of CO2 and SO2

    Directory of Open Access Journals (Sweden)

    Corrales Roberta Cristina Novaes Reis

    2012-05-01

    Full Text Available Abstract Background Previous studies on the use of SO2 and CO2 as impregnating agent for sugar cane bagasse steam treatment showed comparative and promising results concerning the cellulose enzymatic hydrolysis and the low formation of the inhibitors furfural and hydroxymethylfurfural for the use of CO2 at 205°C/15 min or SO2 at 190°C/5 min. In the present study sugar cane bagasse materials pretreated as aforementioned were analyzed by scanning and transmission electron microscopy (SEM and TEM, X-Ray Diffraction (XRD and Infrared (FTIR spectroscopy aiming a better understanding of the structural and chemical changes undergone by the pretreated materials. Results SEM and TEM data showed that the structural modifications undergone by the pretreatment with CO2 were less pronounced in comparison to that using SO2, which can be directly related to the combined severity of each pretreatment. According to XRD data, untreated bagasse showed, as expected, a lower crystallinity index (CI = 48.0% when compared to pretreated samples with SO2 (CI = 65.5% or CO2 (CI = 56.4%, due to the hemicellulose removal of 68.3% and 40.5%, respectively. FTIR spectroscopy supported SEM, TEM and XRD results, revealing a more extensive action of SO2. Conclusions The SEM, TEM, XRD and FTIR spectroscopy techniques used in this work contributed to structural and chemical analysis of the untreated and pretreated bagasse. The images from SEM and TEM can be related to the severity of SO2 pretreatment, which is almost twice higher. The crystallinity index values obtained from XRD showed that pretreated materials have higher values when compared with untreated material, due to the partial removal of hemicellulose after pretreatment. FTIR spectroscopy supported SEM, TEM and XRD results. CO2 can actually be used as impregnating agent for steam pretreatment, although the present study confirmed a more extensive action of SO2.

  19. 用旋风分离器干燥甘蔗渣%Cyclone as a Sugar Cane Bagasse Dryer

    Institute of Scientific and Technical Information of China (English)

    Jefferson Luiz Gomes Corr(e)a; Daniel Rezende Graminho; Maria Aparecida Silva; Silvia Azucena Nebra

    2004-01-01

    Drying of sugar cane bagasse was theoretically and experimentally studied in a cyclone. The experiments were carried out using hot air as drying agent. The influence of the cyclone conical part was studied. It was shown that the conical part has a great influence on the particle residence time and, consequently, on moisture reduction.Experimental results were alike industrial ones. CFX 4.4坰 from AEA Technology was used to simulate some experiments. Simulated and experimental results were close and showed that the presented model leads to a good prediction.

  20. Evaluation of sugar-cane bagasse as bioadsorbent in the textile wastewater treatment contaminated with carcinogenic congo red dye

    OpenAIRE

    Aline Sartório Raymundo; Romina Zanarotto; Marciela Belisário; Madson de Godoi Pereira; Joselito Nardy Ribeiro; Araceli Verónica Flores Nardy Ribeiro

    2010-01-01

    A methodology involving sugar cane bagasse bioadsorbent was developed in order to remove the carcinogenic congo red dye from aqueous medium. The results showed high efficiency with retention of 64 ± 6% in synthetic congo red solution and 94 ± 5% in effluent enriched with congo red, at 10.0 g of the bioadsorbent. The adsorption system provided a maximum adsorption capacity of 4.43 mg/g. Tests showed independence adsorption properties, when compared with the column flow rates. The treatment uni...

  1. Introduction of sugar cane bagasse pellets in diets devoid of long fiber for feedlots finished steers

    Directory of Open Access Journals (Sweden)

    Mikael Neumann

    2016-10-01

    Full Text Available The use of diets without roughage in beef feedlot has become common in recent years due to practicality, feasibility and availability of inputs. However, the introduction of roughage that does not harm the operation of the feeding management can bring health benefits to animals and economic gain. This study aimed to evaluate the productive and economic performance of steers finished in feedlot, fed three levels of sugar cane bagasse pellets (SBP in diets without long-fiber. The treatments consisted of 0%, 7% and 14% of SBP in a mixture of concentrate, comprising 80% whole corn grain plus 20% of a protein core. The experimental design was completely randomized with four replications. The diet with 0% of SBP promoted lower dry matter intake and weight gain. Feed conversion was similar between treatments, with an average of 6.21 kg-1. The lower dry matter digestibility was found in the diet with 14% of SBP. The introduction of SBP did not change the rumination, averaging 1.9 hours day-1. Animals fed 7% of SBP showed higher fat thickness. Due to the numerical differences between treatments for feed conversion in housing and daily cost of food, the profit margin was maximal in the diet with 0% of SBP, with values of R$ 338.1; R$ 311.6 and R$ 305,1 per animal, respectively 0%, 7% and 14% of SBP. The introduction of SBP promoted improvements in production performance, but did not improve the economic results of steers finished in feedlot.

  2. Fractional study of alkali-soluble hemicelluloses obtained by graded ethanol precipitation from sugar cane bagasse.

    Science.gov (United States)

    Peng, Feng; Ren, Jun-Li; Xu, Feng; Bian, Jing; Peng, Pai; Sun, Run-Cang

    2010-02-10

    The two hemicellulosic fractions were subsequentially extracted with 5% and 8% NaOH aqueous solution at a solid to liquid ratio of 1:25 (g mL(-1)) at 50 degrees C for 3 h from the water, 1 and 3% NaOH-treated sugar cane bagasse, and subfractionated into six preparations by a graded ethanol precipitation method at concentrations of 15%, 30% and 60% (v/v). Sugar composition and molecular weight analysis showed that, with an increasing concentration of ethanol, hemicellulosic subfractions with both higher Ara/Xyl ratios and higher molecular weights were obtained. In other words, with an increasing ethanol concentration from 15% to 60%, the Ara/Xyl ratios increased from 0.043 in H(1) to 0.088 in H(3) and from 0.040 in H(4) to 0.088 in H(6), and the weight-average molecular weights of hemicellulosic subfractions increased from 42 430 (H(1)) to 85 510 (H(3)) g mol(-1) and from 46 130 (H(4)) to 64 070 (H(6)) g mol(-1), respectively. The results obtained by the analysis of Fourier transform infrared, sugar composition, and (1)H and (13)C nuclear magnetic spectroscopy showed that the alkali-soluble hemicelluloses had a backbone of xylose residues with a beta-(1-->4)-linkage and were branched mainly through arabinofuranosyl units at C-2 and/or C-3 of the main chain, whereas the differences may occur in the distribution of branches along the xylan backbone.

  3. Lignin from sugar cane bagasse: extraction, fabrication of nanostructured films, and application.

    Science.gov (United States)

    Pereira, A A; Martins, G F; Antunes, P A; Conrrado, R; Pasquini, D; Job, A E; Curvelo, A A S; Ferreira, M; Riul, A; Constantino, C J L

    2007-06-05

    Four lignin samples were extracted from sugar cane bagasse using four different alcohols (methanol, ethanol, n-propanol, and 1-butanol) via the organosolv-CO2 supercritical pulping process. Langmuir films were characterized by surface pressure vs mean molecular area (Pi-A) isotherms to exploit information at the molecular level carrying out stability tests, cycles of compression/expansion (hysteresis), subphase temperature variations, and metallic ions dissolved into the water subphase at different concentrations. Briefly, it was observed that these lignins are relatively stable on the water surface when compared to those obtained via different extraction processes. Besides, the Pi-A isotherms are shifted to smaller molecular areas at higher subphase temperatures and to larger molecular areas when the metallic ions are dissolved into the subphase. The results are related to the formation of stable aggregates (domains) onto the water subphase by these lignins, as shown in the Pi-A isotherms. It was found as well that the most stable lignin monolayer onto the water subphase is that extracted with 1-butanol. Homogeneous Langmuir-Blodgett (LB) films of this lignin could be produced as confirmed by UV-vis absorption spectroscopy and the cumulative transfer parameter. In addition, FTIR analysis showed that this lignin LB film is structured in a way that the phenyl groups are organized preferentially parallel to the substrate surface. Further, these LB films were deposited onto gold interdigitated electrodes and ITO and applied in studies involving the detection of Cd+2 ions in aqueous solutions at low concentration levels through impedance spectroscopy and electrochemical measurements. FTIR spectroscopy was carried out before and after soaking the thin films into Cd+2 aqueous solutions, revealing a possible physical interaction between the lignin phenyl groups and the heavy metal ions. The importance of using nanostructured systems is demonstrated as well by comparing

  4. Production and productivity of sugar cane bagasse during 2008/2009 crop season for electrical energy conservation; Producao e produtividade de bagaco de cana-de-acucar ao longo da safra 2008/2009, visando a cogeracao de energia

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Tulibio F. da; Silva Neto, Helio F. da; Tasso Junior, Luiz Carlos; Marques, Diogo; Marques, Marcos O. [Universidade Estadual Paulista (FCAV/UNESP), Jaboticabal, SP (Brazil). Fac. de Ciencias Agrarias e Veterinarias], E-mail: tulibio_fernandes@yahoo.com.br

    2010-07-01

    In order to diversify sources of energy generation, Brazil has encouraged cogeneration of energy from biomass. Among the various biomasses sources, sugar cane bagasse is one that combines the best economic attributes to be due mainly to industrial production in large quantities. This study aimed to evaluate the bagasse productive potential of two varieties of sugarcane during the harvest period. The experiment was conducted at UNESP, Jaboticabal County. The experimental design was completely randomized split plot, having the two sugarcane cultivars as plots, and the split times of the 11 tests during the season and 3 replications. Were estimated production (kg tc{sup -1}) and productivity (t ha{sup -1}) residue for each cultivar in their own times. The cultivars showed differences from the average production of mulch. However, obtained similar behavior throughout the season, characterized by progressive cuts. For bagasse Productivity, the cultivars showed differences in average values and behavior throughout the season. The cultivar IACSP95-5000 had the best performance in relation to production and productivity of bagasse, can be used for cogeneration for most of the season. The cultivar RB855536 presented a lower performance, achieving low production and productivity of bagasse, indicating its lower potential in relation to energy generation. (author)

  5. Effect of Storing of Sugar Cane Bagasse on Physical Properties from Cellulose for Paper

    OpenAIRE

    Aguilar-Rivera N.

    2011-01-01

    Sugarcane bagasse is now a major source of fibre for pulp and papermaking in Mexico, bagasse pulps are used for all grades of paper: writing, toilet tissue, towelling, glassine, and others. The storage and handling of fibres are critical factors in the resulting pulp yield and quality because bagasse is a fibrous residue that remains after crushing the stalks, and contains short fibres and is a seasonal raw material. The storage produced at harvest time becomes necessary when it is used for o...

  6. Effect of different pretreatments on egyptian sugar-cane bagasse saccharification and bioethanol production

    Directory of Open Access Journals (Sweden)

    Mervate A. Abo-State

    2013-06-01

    Separate biological hydrolysis and fermentation (SHF process for bagasse was done by the two selected fungal isolates; Trichoderma viride F-94 and Aspergillus terreus F-98 and the two yeast isolates identified as Candida tropicalis Y-26 and Saccharomyces cerevisiae Y-39. SHF processes by F-94 and Y-26 produced 226 kg of ethanol/ton bagasse while that of F-98 and Y-39 produced 185 kg of ethanol/ton bagasse.

  7. Particle geometry affects differentially substrate composition and enzyme profiles by Pleurotus ostreatus growing on sugar cane bagasse.

    Science.gov (United States)

    Membrillo, Isabel; Sánchez, Carmen; Meneses, Marcos; Favela, Ernesto; Loera, Octavio

    2011-01-01

    The growth of Pleurotus ostreatus was analyzed on three particle sizes of sugar cane bagasse: 0.92 mm and 1.68 mm in diameter, in addition to heterogeneous fibers (average 2.9 mm in diameter). Specific growth rate on heterogeneous particles was lower (μ=0.043 h(-1)), although soluble protein production was maximal (809 μg/g dry wt). Higher μ values were reached on the other two particles sizes (0.049-0.05 h(-1)) with less soluble protein (500 μg/g dry wt). Xylanases and laccases were favored in heterogeneous particles; while the highest selectivity for xylanases over cellulases was observed in 1.68 mm particles, corresponding with the maximal hemicellulose breakdown. Lignin and cellulose were preferentially degraded in smallest particles. This study shows that the geometrical ratio, shape and size of sugar cane bagasse fibers strongly influence packing density for SSF substrate, with an impact in the production of extracellular enzymes, growth rates and composition changes in substrate.

  8. Evaluation of sugar-cane bagasse as bioadsorbent in the textile wastewater treatment contaminated with carcinogenic congo red dye

    Directory of Open Access Journals (Sweden)

    Aline Sartório Raymundo

    2010-08-01

    Full Text Available A methodology involving sugar cane bagasse bioadsorbent was developed in order to remove the carcinogenic congo red dye from aqueous medium. The results showed high efficiency with retention of 64 ± 6% in synthetic congo red solution and 94 ± 5% in effluent enriched with congo red, at 10.0 g of the bioadsorbent. The adsorption system provided a maximum adsorption capacity of 4.43 mg/g. Tests showed independence adsorption properties, when compared with the column flow rates. The treatment units could be operated with flexibility. From the results, it was possible to conclude that sugar cane bagasse could be an adequate bioadsorbent.Neste trabalho foi desenvolvida uma metodologia de remoção do corante carcinogênico congo red de sistemas aquosos. Os resultados mostraram uma elevada eficiência de remoção sendo de 64 ± 6% para soluções sintéticas de vermelho congo, e 94 ± 5% para efluente industrial enriquecido com vermelho congo utilizando 10 g de bioadsorvente. A capacidade máxima adsotiva encontrada foi de 4,43 mg/g. Os testes de percolação revelaram independência das porcentagens adsortivas em relação às vazões das colunas. Estes resultados indicam viabilidade de uso do bagaço de cana-de-açucar no tratamento de efluentes contendo o congo red.

  9. Process Alternatives for Second Generation Ethanol Production from Sugarcane Bagasse

    DEFF Research Database (Denmark)

    F. Furlan, Felipe; Giordano, Roberto C.; Costa, Caliane B. B.

    2015-01-01

    on the economic feasibility of the process. For the economic scenario considered in this study, using bagasse to increase ethanol production yielded higher ethanol production costs compared to using bagasse for electric energy production, showing that further improvements in the process are still necessary.......In ethanol production from sugarcane juice, sugarcane bagasse is used as fuel for the boiler, to meet the steam and electric energy demand of the process. However, a surplus of bagasse is common, which can be used either to increase electric energy or ethanol production. While the first option uses...... already established processes, there are still many uncertainties about the techno-economic feasibility of the second option. In this study, some key parameters of the second generation ethanol production process were analyzed and their influence in the process feasibility assessed. The simulated process...

  10. Feasibility analysis of the use of sugar cane bagasse ash as mineral addition to cementitious mortars; Analise da viabilidade de utilizacao da cinza do bagaco de cana-de-acucar como adicao mineral em argamassas cimenticias

    Energy Technology Data Exchange (ETDEWEB)

    Fazzan, J.V.; Pereira, A.M.; Moraes, M.J.B. de; Akasaki, J.L.; Sanches, A.O.; Malmonge, J. A., E-mail: jvfazzan@hotmail.com [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Ilha Solteira, SP (Brazil). Faculdade de Engenharia. Departamento de Fisica e Quimica

    2014-07-01

    Currently, Brazil is experiencing an expansion of sugarcane plantations, which makes the country the world's largest producer of sugarcane. With the bagasse generated during the process, is generated the bagasse ash cane sugar (CBC) which consists mainly of silicon dioxide (SiO{sub 2}) and presents as potential alternative raw material for the production of cement composites. In this context, the objective of this study is to evaluate the reactivity of the CBC through physical and chemical analysis, for the production of mortars. The study of the CBC was performed by means of XRF testing, XRD, SEM and ADL. Mortar specimens with different percentages of CBC in partial replacement of Portland cement, for analysis of compressive strength were also produced. Despite the mixtures with additions have lower resistance to conventional mortars, the results showed the potential of the CBC as reactive mineral addition. (author)

  11. Evaluation of mixtures of sugar cane bagasse and charcoal to inject in the blast furnace tuyeres; Avaliacao do uso de mistura de bagaco de cana-de-acucar com carvao vegetal para injecao nas ventaneiras do alto-forno

    Energy Technology Data Exchange (ETDEWEB)

    Brum, Janaina Solvelino; Silva, Thiago Lucas da; Reis, Eric Rafael dos; Assis, Paulo Santos [Universidade Federal de Ouro Preto (UFOP), MG (Brazil). Escola de Minas; Silveira, Natalia Carolina da [Universidade Federal de Ouro Preto (UFOP), MG (Brazil). Escola de Minas

    2009-11-01

    This paper shows the possibilities for using mixtures of sugar cane bagasse and charcoal for injecting into tuyeres of blast furnaces. Mixtures varying by 20 % from 0 till 100 % of charcoal in these have been done. The Bagasse can be used for energy generation to produce steam, as electrical main source, and now it is proposed a possible use to be considered in powder to be injected into blast furnaces.. The main advantage is under the point of view of Environment, but in some cases and time, can be a good opportunity to reduce the cost for producing hot metal. Based on this idea, it is proved that fossil fuels can be partially substituted using this biomass, giving the concept of zero consumption and generation of CO{sub 2}. That means reducing the Green House Effect. (author)

  12. Optimizing peracetic acid pretreatment conditions for improved simultaneous saccharification and co-fermentation (SSCF) of sugar cane bagasse to ethanol fuel

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, Lincoln C. [Fundacao Centro Tecnologico de Minas Gerais, Setor de Biotecnologia e Tecnologia Quimica, Minas Geraid (Brazil); Linden, James C.; Schroeder, Herbert A. [Colorado State Univ., Dept. of Chemical and Bioresource Engineering, Fort Collins, CO (United States)

    1999-01-01

    The use of several lignocellulosic materials for ethanol fuel production has been studied exhaustively in the U.S.A. Strong environmental legislation has been driving efforts by enterprise, state agencies, and universities to make ethanol from biomass economically viable. Production costs for ethanol from biomass have been decreasing year by year as a consequence of this massive effort. Pretreatment, enzyme recovery, and development of efficient microorganisms are some promising areas of study for reducing process costs. Sugar cane bagasse constitutes the most important lignocellulosic material to be considered in Brazil as new technology such as the production of ethanol fuel. At present, most bagasse is burned, and because of its moisture content, has a low value fuel. Ethanol production would result in a value-added product. The bagasse is available at the sugar mill site at no additional cost because harvesting, transportation and storage costs are borne by the sugar production. The present paper presents an alternative pretreatment with low energy input where biomass is treated in a silo type system without need for expensive capitalisation. Experimentally, ground sugar cane bagasse is placed in plastic bags and a peracetic acid solution is added to the biomass at concetrations of 0, 6, 9, 15, 21, 30 and 60% w/w of peracetic acid based on over dried biomass. The ratio of solution to wood is 6:1; a seven day storage period had been used. Tests using hydrolysing enzymes as an indicator for SSCF have been performed to evaluated the pretreatment efficiency. As an auxiliary method, a series of pre-pretreatments using stoichiometric amounts of sodium hydroxide and ammonium hydroxide based on 4-methyl-glucuronic acid and acetate content in the sugar cane bagasse have been performed before addition of peracetic acid. The alkaline solutions are added to the raw bagasse in a ratio of 17:1 solution to biomass and mixed for 24 hours at room temperature. Biomass is filled

  13. Preliminary evaluation of organosolv pre-treatment of sugar cane bagasse for glucose production: Application of 2{sup 3} experimental design

    Energy Technology Data Exchange (ETDEWEB)

    Mesa, Leyanis; Gonzalez, Erenio [Centro de Analisis de Procesos, Facultad de Quimica-Farmacia, Universidad Central de Las Villas, Villa Clara (Cuba); Ruiz, Encarnacion; Romero, Inmaculada; Cara, Cristobal; Castro, Eulogio [Department of Chemical, Environmental and Materials Engineering, University of Jaen, 23071 Jaen (Spain); Felissia, Fernando [Programa de Celulosa y Papel, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Misiones, Misiones (Argentina)

    2010-01-15

    Sugar cane bagasse was submitted to ethanol organosolv pre-treatment using a 50 L pilot scale reactor. The influence of catalyst type (H{sub 2}SO{sub 4} or NaOH), catalyst concentration (1.25-1.50% w/w on dry fiber) and process time (60-90 min) on total solid recovery and solid composition (glucan, xylan and lignin contents) was evaluated by performing a 2{sup 3} full factorial experimental design. Pretreated sugar cane bagasse was further submitted to enzymatic hydrolysis using a commercial enzyme complex formed by cellulases and {beta}-glucosidases. Glucose concentration in the hydrolysates and glucose yield referred to initial raw material (g glucose/100 g sugar cane bagasse) were used to select the best operational conditions. Concerning the enzymatic hydrolysis, the resulting glucose concentration was found to be dependent on xylan contents of the pretreated material. The modelling equations for glucose concentration and glucose yield as a function of the pre-treatment variables and the statistical analysis are also discussed in this work. (author)

  14. An approach to the utilisation of CO2 as impregnating agent in steam pretreatment of sugar cane bagasse and leaves for ethanol production

    Directory of Open Access Journals (Sweden)

    Franke Ana

    2010-04-01

    Full Text Available Abstract Background The conditions for steam pretreatment of sugar cane bagasse and leaves were studied using CO2 as an impregnating agent. The following conditions were investigated: time (5 to 15 min and temperature (190 to 220°C. The pretreatment was assessed in terms of glucose and xylose yields after enzymatic hydrolysis and inhibitor formation (furfural and hydroxymethylfurfural in the pretreatment. Results from pretreatment using SO2 as impregnating agent was used as reference. Results For sugar cane bagasse, the highest glucose yield (86.6% of theoretical was obtained after pretreatment at 205°C for 15 min. For sugar cane leaves the highest glucose yield (97.2% of theoretical was obtained after pretreatment at 220°C for 5 min. The reference pretreatment, using impregnation with SO2 and performed at 190°C for 5 min, resulted in an overall glucose yield of 79.7% and 91.9% for bagasse and leaves, respectively. Conclusions Comparable pretreatment performance was obtained with CO2 as compared to when SO2 is used, although higher temperature and pressure were needed. The results are encouraging as some characteristics of CO2 are very attractive, such as high availability, low cost, low toxicity, low corrosivity and low occupational risk.

  15. Application of natural and modified sugar cane bagasse for the removal of dye from aqueous solution

    Directory of Open Access Journals (Sweden)

    Hajira Tahir

    2016-09-01

    Thermodynamic parameters ΔG°, ΔH° and ΔS° were also evaluated. The values of ΔG° show spontaneous behavior of the system. The modified bagasse C-SB shows about 89% removal, due to the formation of new modified surface and enhancement in its surface area. It could be employed as a low-cost alternative method for the removal of dyes and purification of textile effluents.

  16. Unidimensional heat transfer analysis of elephant grass and sugar cane bagasse slow pyrolysis in a fixed bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Mesa-Perez, J.M.; Cortez, L.A.B. [Faculdade de Engenharia Agricola-FEAGRI/UNICAMP, Cidade Universitaria ' Zeferino Vaz' , Barao Geraldo, CP 6011, 13084-971, Campinas SP (Brazil); Rocha, J.D.; Olivares-Gomez, E. [Nucleo Interdisciplinar de Planejamento Energetico, NIPE/UNICAMP, Cidade Universitaria ' Zeferino Vaz' , Barao Geraldo, CP 6086, 13084-971, Campinas SP (Brazil); Brossard-Perez, L.E. [Faculdad de Ingenieria Quimica, Universidade de Oriente Sede Mella, ave, Las Americas sn, Ampliacion de Terraza, Santiago de Cuba, CP 90 600 (Cuba)

    2005-02-25

    Elephant grass (Pennicetum purpureum) and sugar cane bagasse slow pyrolysis experiments was carried out in a fixed bed reactor. A 20-cm internal diameter and 12-cm-long reactor was used. Particulate biomass filled up the reactor volume. Biomass was loaded into the reactor and heated in the axial direction using an electrical resistance located at the reactor's bottom. In order to control the temperature variation during the biomass pyrolysis process, four thermocouples were installed inside of the reactor. The remain residual mass was constant approximately after 73 min of heating; the running was stopped and remain carbonised; material was manually removed from the reactor. The residue formed three layer of biomass visually different described in detail here. Proximate analysis and higher heating value (HHV) tests were carried out to the material in each layer. Mass loss against time was recorded during experiments. The results indicated that the carbonisation ratio decreases in time because the carbon layer has low thermal conductivity and it does not permit proper heat transfer to the upper layer of biomass. It means that technology that avoids high-temperature gradients during the pyrolysis of bulk-dispersed biomass could avoid the problems described before.

  17. Effect of frequency and reaction time in focused ultrasonic pretreatment of energy cane bagasse for bioethanol production.

    Science.gov (United States)

    Methrath Liyakathali, Niyaz Ahamed; Muley, Pranjali D; Aita, Giovanna; Boldor, Dorin

    2016-01-01

    Pretreatment of lignocellulosic biomass is a critical steps in bioethanol production. Ultrasonic pretreatment significantly improves cellulose hydrolysis increasing sugar yields, but current system designs have limitations related to efficiency and scalability. This study evaluates the ultrasonic pretreatment of energy cane bagasse in a novel scalable configuration and by maximizing coupling of ultrasound energy to the material via active modulation of frequency. Pretreatment was conducted in 28% ammonia water mixture at a sample:ammonia:water ratio of 1:0.5:8. Process performance was investigated as a function of frequency (20, 20.5, 21kHz), reaction time (30, 45, 60min), temperature, and power levels for multiple combinations of ammonia, water and sample mixture. Results indicated an increased enzymatic digestibility, with maximum glucose yield of 24.29g/100g dry biomass. Theoretical ethanol yields obtained ranged from 6.47 to a maximum of 24.29g/100g dry biomass. Maximum energy attainable was 886.34kJ/100g dry biomass.

  18. Bagasse production potential from late sugar cane cultivars; Potencial produtivo de bagaco por cultivares tardios de cana-de-acucar

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Tulibio F. da; Silva Neto, Helio F. da; Tasso Junior, Luiz C.; Marques, Diogo; Marques, Marcos O. [Universidade Estadual Paulista (FCAV/UNESP), Jaboticabal, SP (Brazil). Fac. de Ciencias Agrarias e Veterinarias], E-mail: tulibio_fernandes@yahoo.com.br

    2010-07-01

    In order to diversify energy sources, the residue of sugarcane gathers attributes that qualify its use. Therefore, this study was to evaluate the potential of bagasse production in late cultivars of sugarcane. The experimental design was a randomized block design with 6 treatments (cultivars) and 3 replications. The experiment was carried out at FCAV/UNESP Jaboticabal. To calculate the productivity, it was counted the number of stems in a row linear meter, it was obtained the weight of stems. The percentage of fiber for each cultivar was determined by a calculation of estimated production and productivity of mulch. Using these values to estimate the number of people who would benefit from the energy generated from the combustion of bagasse in a process of cogeneration power. The results were submitted to analysis of variance by F test and averages compared by Tukey test at 5% probability. Cultivars RB867515, RB72454 and CTC6 showed the best performance, indicating its greater potential for power cogeneration. Cultivars CTC IAC94-2 and 2101 were lower when considering the results obtained. (author)

  19. Thermoset phenolic matrices reinforced with unmodified and surface-grafted furfuryl alcohol sugar cane bagasse and curaua fibers: properties of fibers and composites.

    Science.gov (United States)

    Trindade, W G; Hoareau, W; Megiatto, J D; Razera, I A T; Castellan, A; Frollini, E

    2005-01-01

    Composites based on phenolic matrices and unmodified and chemically modified sugar cane bagasse and curaua fibers were prepared. The fibers were oxidized by chlorine dioxide, mainly phenolic syringyl and guaiacyl units of the lignin polymer, followed by grafting furfuryl alcohol (FA), which is a chemical obtained from a renewable source. The fibers were widely characterized by chemical composition analysis, crystallinity, UV-vis diffuse reflectance spectroscopy, SEM, DSC, TG, tensile strength, and 13C CP-MAS NMR. The composites were analyzed by SEM, impact strength, and DMA. The SEM images and DMA results showed that the oxidation of sugar cane bagasse fibers followed by reaction with FA favored the fiber/matrix interaction at the interface. The same chemical modification was less effective for curaua fibers, probably due to its lower lignin content, since the reaction considered touches mainly the lignin moiety. The tensile strength results obtained showed that the fibers were partially degraded by the chemical treatment, decreasing then the impact strength of the composites reinforced with them. In the continuity of the present project, efforts has been addressed to the optimization of fiber surface modification, looking for reagents preferably obtained from renewable resources and for chemical modifications that intensify the fiber/matrix interaction without loss of mechanical properties.

  20. Characterization of sugar cane bagasse ash as raw material for the production of ceramics; Caracterizacao de cinzas de bagaco de cana como materia prima para producao de ceramica

    Energy Technology Data Exchange (ETDEWEB)

    Fredericci, C.; Indelicato, R.L.; Ferreira Neto, J.B.; Ribeiro, T.R.; Landgraf, F.J.G., E-mail: catiaf@ipt.br [Instituto de Pesquisas Tecnologicas do Estado de Sao Paulo (IPT), Sao Paulo, SP (Brazil). Lab. de Metalurgia e Materiais Ceramicos; Silva, G.F.B. Lenz e [Universidade de Sao Paulo (Poli/USP), Sao Paulo, SP (Brazil). Escola Politecnica. Departamento de Engenharia Metalurgica e de Materiais

    2012-07-01

    The aim of this paper was to analyze the sugar cane bagasse ash from three Sugar and Alcohol Plant of the State of Sao Paulo - Brazil. We intend to show the discrepancies between them, so that this raw material could be used with greater quality control in ceramic industries. The bagasse were analyzed by differential scanning calorimetry (DSC), thermogravimetry (TG) and scanning electron microscopy. The ashes were analyzed by X-ray diffraction, X-ray fluorescence, scanning electron microscopy, energy dispersive spectroscopy, and granulometric separation. The results indicated that the content of SiO{sub 2} ranging from 50-80% by weight depends on the granulometry of the bagasse and on the region where it was collected. The analyses of X-ray diffraction indicate SiO{sub 2}, Fe{sub 2}O{sub 3}, K{sub 2}SO{sub 4} and Mg{sub 2}P{sub 2}O{sub 7} as crystalline phases. (author)

  1. Ethanol from sugar cane bagasse. Contribution to atmospheric CO[sub 2] decrease. El etanol de bagazo como combustible. Contribucion a la reduccion del CO[sub 2] atmosferico

    Energy Technology Data Exchange (ETDEWEB)

    Cardenas, G.J. (Estacion Experimental Agroindustrial Obispo Colombres. Tucuman (Argentina))

    1993-03-01

    The current problem related to the increasing concentration of atmospheric CO[sub 2] produced by the industrial use of fossil fuels is reviewed. An analysis of the contribution that the use of ethanol from sugar cane bagasse might have on CO[sub 2] decrease is described. (Author)

  2. Production of spores of Trichoderma harzianum on sugar cane molasses and bagasse pith in solid state fermentation for biocontrol

    Directory of Open Access Journals (Sweden)

    Jose A. Rodríguez-León

    1999-01-01

    Full Text Available Solid state fermentation was carried out for the production of spores from Trichoderma harzianum No 53 using sugar cane bagasse pith as solid matrix and sugar cane molasses as carbon and energy source. Different nitrogen sources such as urea, (NH42SO4 , NH4H2PO4 and (NH42HPO4 were added in the media to test their effect on spores production. Among these, urea was found most useful that resulted high no of spores (1x10(9/gDM. The influence of temperature and initial moisture of the substrate was studied through a 2² experimental plan design. No statistical differences were found within the range of 30-35ºC and 60-70% for temperature and moisture respectively. The biotechnological parameters of the process were derived from the Oxygen Uptake Rate (OUR pattern, which corresponded to the order of 10(9spores/g moist material. The specific growth rate, maintenance coefficient and the yield based on O2 consumption were 0.108 h-1, 0.001 g.O2/g.biomass.h and 2.7 g biomass/g O2 consumed, respectively.Esporos de Tricoderma harzianum Nº 53 foram produzidos por fermentação no estado sólido (FES utilizando bagaço de cana como suporte e melaço de cana como fonte de carbono. Diferentes fontes de nitrogênio foram testadas (uréia, (NH42 SO4 , NH4H2PO4 e (NH42HPO4 na produção de esporos. As mais elevadas concentrações de esporos (10(9 esporos/g de suporte úmido foram obtidas utilizando a uréia como fonte de nitrogênio. O efeito da temperatura e umidade inicial foram estudadas através da utilização da planificação experimental utilizando um modelo 2². Não foi encontrada diferença estatística na produção de esporos na faixa de temperatura compreendida entre 30-35 ° C e umidade inicial de 60-70%. Os parâmetros biotecnológicos foram determinados através da taxa de oxigênio consumido (OUR correspondente a uma produção de 10(9 esporos/g de suporte úmido. A taxa de crescimento especifico, coeficiente de manutenção e rendimento foram

  3. Fermentation strategy for second generation ethanol production from sugarcane bagasse hydrolyzate by Spathaspora passalidarum and Scheffersomyces stipitis.

    Science.gov (United States)

    Nakanishi, Simone C; Soares, Lauren B; Biazi, Luiz Eduardo; Nascimento, Viviane M; Costa, Aline C; Rocha, George Jackson M; Ienczak, Jaciane L

    2017-10-01

    Alcoholic fermentation of released sugars in pretreatment and enzymatic hydrolysis of biomass is a central feature for second generation ethanol (E2G) production. Saccharomyces cerevisiae used industrially in the production of first generation ethanol (E1G) convert sucrose, fructose, and glucose into ethanol. However, these yeasts have no ability to ferment pentose (xylose). Therefore, the present work has focused on E2G production by Scheffersomyces stipitis and Spathaspora passalidarum. The fermentation strategy with high pitch, cell recycle, fed-batch mode, and temperature decrease for each batch were performed in a hydrolyzate obtained from a pretreatment at 130°C with NaOH solution (1.5% w/v) added with 0.15% (w/w) of anthraquinone (AQ) and followed by enzymatic hydrolysis. The process strategy has increased volumetric productivity from 0.35 to 0.38 g · L(-1)  · h(-1) (first to third batch) for S. stipitis and from 0.38 to 0.81 g · L(-1)  · h(-1) for S. passalidarum (first to fourth batch). Mass balance for the process proposed in this work showed the production of 177.33 kg ethanol/ton of sugar cane bagasse for S. passalidarum compared to 124.13 kg ethanol/ton of sugar cane bagasse for S. stipitis fermentation. The strategy proposed in this work can be considered as a promising strategy in the production of second generation ethanol. Biotechnol. Bioeng. 2017;114: 2211-2221. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  4. Characterization of sugar cane bagasse: part 1: physical characteristics; Caracterizacion del bagazo de la cana de azucar: parte 1: caracteristicas fisicas

    Energy Technology Data Exchange (ETDEWEB)

    Alarcon, Guillermo A. Roca [Universidad de Oriente (UO/CEEFE), Santiago de Cuba (Cuba). Centro de Estudios de Eficiencia Energetica], Emails: roca@ceefe.uo.edu.cu, grocabayamon@hotmail.com; Sanchez, Caio Glauco [Universidade Estadual de Campinas (FEM/UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica], Email: caio@fem.unicamp.br; Gomez, Edgardo Olivares [Universidade Estadual de Campinas (NIPE/UNICAMP), SP (Brazil). Nucleo Interdisciplinar de Planejamento Energetico], Emails: gomez@bioware.com.br, egomez@energiabr.org.br; Cortez, Luis Augusto Barbosa [Universidade Estadual de Campinas (FEAGRI/UNICAMP), SP (Brazil). Fac. de Engenharia Agricola], Email: cortez@reitoria.unicamp.br

    2006-07-01

    Fine materials or particles are often encountered in many industrial processes and in our daily life. Some examples are: salt or sugar; sand; cleaning products; fertilizer; cement; calcium hydroxide; some residues of energy biomass, for instance, sugar cane bagasse, straw of sugar cane, saw dust, straw of rice, and even, other types of particulates as aerosols, and residual ash from combustion processes of conventional solids. During the preparation and handling of these materials and also for design and optimization of some multiphase processes and equipment associated with them, as classifying, transport and pneumatic drying, and thermo chemical conversion systems, in general, it is indispensable knowing the principal physical and fluid dynamic characteristics or properties, which not always are available or well established. In this paper the Ergun Method is employed, which is based on theoretical equations established for a fixed bed of porous particles when it is crossed by a gas flow. From this expression and measurements of pressure loss for a given flow of gas crossing the bed at different heights, it is possible to determine some physical characteristics, as bulk density, real density, porosity, sphericity, and specific surface of the bed particles. The technique used for obtaining experimental data is simple but rigorous and it is possible to reproduce these data. Were tested several fractions of bagasse obtained by the conventional sieving process. Finally it was statistically processed all experimental results obtaining the corresponding mathematical models for the desired properties as a function of the mean diameter of the particles. These empirical equations can be used to determine these properties in the range and conditions specified and also for modeling some processes where these fractions are employed. (author)

  5. Sugar cane bagasse pyrolysis: process optimization and products characterization; Pirolise do bagaco de cana: otimizacao do processo e caracterizacao dos produtos

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Sergio

    1994-07-01

    The ghost of drying of natural resources, mainly the petroleum, desolate the Earth. Although the concern with this fact is recent, it has motivated a run in search of the alternative sources that can replace their self. An alternative source that come earning special attention is biomass, whose research come increasing annually. In Brazil, an important form of biomass, that is rejected like waste and utilized to little noble aim, is the sugar cane bagasse. The objective of this work is to present a conversion process of the bagasse in fuels and raw materials for the chemistry industry. The conversion method adopted was the pyrolysis. To the realization of this conversion, it was constructed a horizontal bed oven, with continuous flow of nitrogen, which carried the pyrolised volatile material, for the trap, during the process. The pyrolysis study was done in the range of 400 deg C to 900 deg C and was optimized utilizing the factorial design. The char, which is a pyrolysis product, was characterized by thermogravimetric and spectroscopic techniques. The tar, which is another pyrolysis product, was characterized by chromatographic and spectroscopic techniques. The results obtained shows that the tar is abundant in organic acids, such fenols and carboxylic acids, which has great utility as raw materials in the chemistry industry. The char, obtained in the range of 400 deg C to 600 deg C, is rich inorganic material, making possible its posterior processing to obtain oils. (author)

  6. Anaerobic digestion of solid wastes of cane sugar industry

    Energy Technology Data Exchange (ETDEWEB)

    Dasgupta, A.

    1983-01-01

    The cane sugar manufacturing industry generates large quantities of lignocellulosic solid wastes, namely bagasse and cachaza. Bagasse is the fibrous residue of the cane after extracting the juice. Cachaza is the filter cake of the precipitated insoluble sugars. This research investigates the feasibility of anaerobic digestion of a mixture of bagasse and cachaza to produce methane. Two rations of bagasse-cachaza mix as substrates were investigated. The first one was 8:1 which represents the average ratio of bagasse and cachaza produced in a raw sugar mill. The second ratio investigated was 2.4:1 which represents the proportion of bagasse and cachaza wastes after 70% of the bagasse is burned in sugar mill boilers. An acclimated microbial culture for this substrate was developed. Organic Loading-Detention Time relationships were established for an optimum system. Pre-treatment techniques of the substrate were investigated as a means of enhancing the digestibility of the cellulosic substrate. Recirculation of the filtrate was evaluated as a method for increasing solids retention time without increasing hydraulic detention time. The kinetics of the digestion process for bagasse-cachaza mixed substrate was investigated and growth constants were determined. The bionutritional characteristics of the substrate used for the digestion were evaluated. Based on the results obtained, mass balances and preliminary economic analysis of the digestion system were developed.

  7. Preparation and characterization of sugar cane bagasse fiber modified with nanoparticles of zirconium oxide; Preparacao e caracterizacao de fibras de bagaco de cana modificadas com nanoparticulas de oxido de zirconio

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, K.C.C. de; Mulinari, D.R.; Voorwald, H.C.J.; Cioffi, M.O.H., E-mail: kcccarvalho@hotmail.com.b [UNESP, Guaratingueta, SP (Brazil). Fac. de Engenharia. Dept. de Materiais e Tecnologia(FEG)

    2010-07-01

    The sugar cane bagasse fiber are renewable materials and have great application potential when used as reinforcement in a polymer matrix to give rise to composite materials and as supports for adsorption of heavy metals. This paper therefore describes the preparation and characterization of bleached and hydrated zirconium oxide modified sugar cane bagasse fiber by conventional precipitation method. Through the technique of electron microscopy we observed the presence of oxide nanoparticles on the fiber surface, proving the efficiency of the conventional precipitation method. With the X-ray diffraction analysis it was determined a decrease of 6.2% in the crystallinity index of modified fibers when compared to the bleached fibers showing the deposition of amorphous zirconium oxide on the fiber surface. (author)

  8. optimisation of power generation in the local cane sugar factories

    African Journals Online (AJOL)

    cistvr

    This article looks at the contribution of electricity using the Biomass Integrated ... Heat and Power (CHP) system by investing in high pressure boilers and ... appropriate use of bagasse and CTL would have satisfied nearly half of the island.

  9. Characterization of a wollastonite glass-ceramic material prepared using sugar cane bagasse ash (SCBA) as one of the raw materials

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, Silvio R., E-mail: rainho@fct.unesp.br [Universidade Estadual Paulista — UNESP, Faculdade de Ciências e Tecnologia — FCT, 19060-900 Presidente Prudente — SP (Brazil); Souza, Agda E. [Universidade Estadual Paulista — UNESP, Faculdade de Ciências e Tecnologia — FCT, 19060-900 Presidente Prudente — SP (Brazil); Carvalho, Claudio L.; Reynoso, Victor C.S. [Universidade Estadual Paulista — UNESP, Faculdade de Engenharia de Ilha Solteira — FEIS, 15385-000 Ilha Solteira – SP (Brazil); Romero, Maximina; Rincón, Jesús Ma. [Instituto de Ciencias de la Construccion Eduardo Torroja — IETCC, CSIC, 28033 Madrid (Spain)

    2014-12-15

    Glass-ceramic material prepared with sugar cane bagasse ash as one of the raw materials was characterized to determine some important properties for its application as a coating material. X-ray diffraction patterns showed that wollastonite-2M (CaSiO{sub 3}) was the major glass-ceramic phase. The Rietveld method was used to quantify the crystalline (60 wt.%) and vitreous (40 wt.%) phases in the glass-ceramic. The microstructure (determined by scanning electron microscopy) of this material had a marble appearance, showing a microporous network of elongated crystals with some areas with dendritic, feather-like ordering. Microhardness data gave a mean hardness value of 564.4 HV (Vickers-hardness), and light microscopy disclosed a greenish brown colored material with a vitreous luster. - Highlights: • We studied the properties of a glass-ceramic material obtained from sugarcane ash. • This material has the appearance and hardness of natural stones. • A refining method gave information about its amorphous and crystalline phases. • This material has potential to be used as coating plates for buildings.

  10. Technical paradigm and power cogeneration with bagasse from sugar cane in Goias, Brazil; Paradigma tecnico e cogeracao de energia com bagaco de cana-de-acucar em Goias

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Josias Manoel [Centro Federal de Educacao Tecnologica de Goias, Goiania, GO (Brazil). Coord. de Saneamento Ambiental

    2006-07-01

    The article shows, through technical elements, the experience of producing electrical energy, generated in some sugar industrial plants of Goias state, by burning sugar cane husks in boilers. This production has supplied the state concessionaires, but the supply has declined in the past years, due to several issues, of economic, technical and political order. Despite of this, government has done some effort in reactivating the supply, by modifying the energy politics. (author)

  11. Fribrinolytic activity and gas production by Pleurotus ostreatus-IE8 and Fomes fomentarius - EUM1 in bagasse cane

    Directory of Open Access Journals (Sweden)

    Paulino Sánchez-Santillán

    2015-11-01

    Full Text Available Objective. To characterize the fibrolytic enzymatic activity of Pleurotus ostreatus-IE8 and Fomes fomentarius-EUM1 in sugarcane bagasse (BCA; to evaluation of the kinetics of in vitro production of BCA treated by solid fermentation (FS, crude enzyme extract (ECE of P. ostreatus-IE8 and Fibrozyme®. Materials and methods. In fungi measured radial growth rate ( Vcr and biomass production in two culture media (with or without nitrogen source; activity of xylanases, cellulases and FS on BCA at 0, 7 and 15 d. The chemical analysis and kinetic analysis of in vitro gas production in 4 treatments (ECE adding enzymes obtained from the direct addition FS or FS , witness (Fibrozyme® and a control without addition and analyzed by a was completely randomized design. Results. Xylanases (7 d showed 6.32 and 5.50 UI g-1 initial substrate dry weight (SSi for fungi P. ostreatus-IE8 and F. fomentarius-EUM1 , respectively ; P. ostreatus-IE8 scored higher activity of laccases (10.65 g -1 UI SSi and F. fomentarius-EUM1 (1.90 UI g-1 SSi cellulases. The ECE of P. ostreatus-IE8 and commercial enzyme did not differences (p>0.05. In the chemical composition or the gas production kinetics. The 4 treatments evaluated decreased values of the variables measured in the kinetics of gas production compared to the control (p≤0.05. Conclusions. The ECE of P. ostreatus-IE8 was similar to commercial enzyme degradation in vitro, so it is feasible to use pre-digest high fiber products.

  12. Laccase induction by synthetic dyes in Pycnoporus sanguineus and their possible use for sugar cane bagasse delignification.

    Science.gov (United States)

    Hernández, Christian; Farnet Da Silva, Anne-Marie; Ziarelli, Fabio; Perraud-Gaime, Isabelle; Gutiérrez-Rivera, Beatriz; García-Pérez, José Antonio; Alarcón, Enrique

    2017-02-01

    The use of synthetic dyes for laccase induction in vivo has been scarcely explored. We characterized the effect of adding different synthetic dyes to liquid cultures of Pycnoporus sanguineus on laccase production. We found that carminic acid (CA) can induce 722 % and alizarin yellow 317 % more laccase than control does, and they promoted better fungal biomass development in liquid cultures. Aniline blue and crystal violet did not show such positive effect. CA and alizarin yellow were degraded up to 95 % during P. sanguineus culturing (12 days). With this basis, CA was selected as the best inducer and used to evaluate the induction of laccase on solid-state fermentation (SSF), using sugarcane bagasse (SCB) as substrate, in an attempt to reach selective delignification. We found that laccase induction occurred in SSF, and a slight inhibition of cellulase production was observed when CA was added to the substrate; also, a transformation of SCB under SSF was followed by the (13)C cross polarization magic angle spinning (CPMAS) solid-state nuclear magnetic resonance (NMR). Results showed that P. sanguineus can selectively delignify SCB, decreasing aromatic C compounds by 32.67 % in 16 days; O-alkyl C region (polysaccharides) was degraded less than 2 %; delignification values were not correlated with laccase activities. Cellulose-crystallinity index was increased by 27.24 % in absence of CA and 15.94 % when 0.01 mM of CA was added to SCB; this dye also inhibits the production of fungal biomass in SSF (measured as alkyl C gain). We conclude that CA is a good inducer of laccase in liquid media, and that P. sanguineus is a fungus with high potential for biomass delignification.

  13. Effect of different filling materials on sugar cane bagasse compost maturity%不同填充料对甘蔗渣堆肥腐熟进程的影响

    Institute of Scientific and Technical Information of China (English)

    姚艳丽; 贺军军; 程儒雄; 罗萍; 李勤奋; 范武波

    2012-01-01

    This experiment was carried out to study the effects of different filling materials ( chicken manure, sheep fillers, cow dung, straw pole filler) on pH, OM, TN and EC of sugar cane bagasse during the whole decomposition process. The results showed that cow dung and sheep fillers had the best effects in accelerating the decomposition process of the sugar cane bagasse, followed by chicken manure, straw pole filler was the worst.%以鸡粪、羊粪、牛粪、稻草秆为填充料研究其对甘蔗渣堆肥腐熟进程中pH、有机质含量、全氮含量、电导率等指标的影响.结果表明,以牛粪和羊粪为填充料的处理能够加快甘蔗渣的腐熟进程,以鸡粪为填充料的处理效果次之,以稻草秆为填充料的效果较差.

  14. Prospective evaluation of biorefinery routes in Brazil, from sugar cane bagasse as a basic feedstock; Avaliacao prospectiva das rotas de biorefinaria no Brasil, a partir do bagaco de cana-de-acucar como materia-prima basica

    Energy Technology Data Exchange (ETDEWEB)

    Ely, Romulo Neves

    2009-12-15

    Bio refineries have been identified either as an alternative to oil refineries or as a supplement. This work seeks to understand these plants applied to the Brazilian case, which has in the alcohol-sugar sector a large number of lignocellulose material (sugar-cane bagasse) produced in large scale as a residue of the process of sugar and alcohol production. In this case, technological routes that are able to use this product as a basic feedstock for the industrial process will be described. Therefore, a model based on a set of economical and technological variables is applied to the routes. In this model, different profiles of bio refinery plants are described and compared with different hypothetical regions, which are characterized by a combination of both access to different amounts of raw material and different types of consumers. Overall, this work describes a model of both location and competition of the main bio refinery technological routes in Brazil that have the sugar-cane bagasse as the basic raw material. (author)

  15. Characteristics and properties of sugar cane trash; Caracteristicas e propriedades do palhico de cana-de-acucar

    Energy Technology Data Exchange (ETDEWEB)

    Innocente, Andreia F. [Universidade Estadual Paulista (UNESP), Botucatu, SP (Brazil); Saglietti, Jose R. C. [Universidade Estadual Paulista (IBB/UNESP), Botucatu, SP (Brazil). Inst. de Biociencias de Botucatu], E-mail: jroberto@ibb.unesp.br

    2010-07-01

    The sugar cane processing wastes (bagasse and trash) became an important energy source which may be used in the electrical energy co-generation. This work is aimed to determine the trash physical properties, define its energetic value and ideal combination of bagasse + trash to use in conventional boilers. The trash productivity (20 t/ha), green (14.9%) and dry (71.3%) leaves, and remaining material (8.3%) was found one day after the cane crop. The trash moisture content was measured for each component and the final average value was 28.7%. The bagasse showed a 49.81% moisture average content. The higher heating value (HHV) was found for the bagasse (19.27 MJ/kg), trash (17.90 MJ/kg) and bagasse + trash mixtures in different proportions. For the lower heating value (LHV), we observed that the released energy in the trash (12.11 MJ/kg) was higher than the one in the bagasse (8.55 MJ/kg). This result was expected due to the higher bagasse moisture content. From the analysed mixtures, the 50%-50% one had the highest LHV (10.08 MJ/kg), showing that the trash left in the field after the crop may be efficient for the energy production mixed to the bagasse in 50% proportion. (author)

  16. Energy potential of sugar cane biomass in Brazil

    Directory of Open Access Journals (Sweden)

    Rípoli Tomaz Caetano Cannavam

    2000-01-01

    Full Text Available Brazil is a developing tropical country with abundant biomass resources. Sugar cane (Saccahrum spp. is primarily produced to obtain sugar and alcohol. Presently sugar cane is burned before harvest. If the cane were not burned before harvest, the trash (tops and leaves could be collected and burned to produce steam to generate electricity, or be converted into alcohol fuel and decrease the severe air pollution problems caused by sugar cane burning. Based upon logical assumptions and appropriate data, we estimate the number of people that could be served each year by this biomass if its energy was converted into electricity. From trash and bagasse, 7.0x10(6 and 5.5x10(6 people y-1 could be served, respectively.

  17. Beneficiation of corncob and sugarcane bagasse for energy generation and materials development in Nigeria and South Africa: A short overview

    Directory of Open Access Journals (Sweden)

    Lesego M. Mohlala

    2016-09-01

    Full Text Available The challenges of increasing energy demand and advanced materials for infrastructural development in developing countries have necessitated the search for sustainable sources of raw materials. The high amount of agricultural residues generated in Africa owing to vast availability of arable land has been an impetus for solving some of these challenges. Therefore, this review article provides information on beneficiation and challenges of the two largely generated agricultural residues, corncobs and sugarcane bagasse, in Nigeria and South Africa. The estimated quantities of corncob and sugarcane bagasse generated by these countries are reported. The potentials of beneficiating corncob and sugarcane bagasse in energy generation, in materials development and in other purposes such as production of platform chemicals are reviewed and discussed. Various technologies deployable in the beneficiation of these wastes are enumerated, and the benefits and challenges that are associated with beneficiating these wastes are briefly discussed.

  18. Research progress of grafting technology for sugar cane bagasse%甘蔗渣接枝技术研究进展

    Institute of Scientific and Technical Information of China (English)

    戈明亮; 郑罗云; 周向阳; 贾志欣

    2014-01-01

    Sugar cane bagasse(SCB)grafting technology has attracted increasing attention by researchers,because SCB is an important kind of plant fiber and belongs to renewable resources. The SCB’s structure,physical and chemical properties as well as grafting mechanism are described,and the influence of pretreatment,monomer,solvent,initiation mode on SCB grafting is analyzed. Pretreatment destroys SCB’s supramolecular structures,improving the reactivity of SCB. General solvent cannot destroy SCB’s multiphase structure,therefore grafting only occur on the surface of SCB,but cellulose solvents and some binary solvents can dissolve SCB and make grafting occur at molecular level. Initiator concentration has an optimal range for the increase of grafting rate. The amount of grafting monomer affects grafting rate directly. SCB grafting polymer can be used as ion exchanger,heavy metal ion adsorbent,oil-absorptive materials,water absorbing &holding materials. Future research directions are proposed. SCB grafting polymerization should have higher percentage of grafting and be more stable,and grafting technology should be environmentally friendly and low-cost.%甘蔗渣(SCB)作为一种重要的植物纤维,是可再生资源,其接枝技术日益受到重视。本文先介绍了SCB的结构、物理化学性质以及接枝机理,再重点评述了预处理方式、不同的接枝单体和溶剂、引发方式对SCB接枝的影响。预处理破坏了SCB的超分子结构从而提高SCB的反应可及性;一般溶剂不能破坏SCB的多相结构,反应在SCB表面进行,纤维素溶剂和一些二元体系溶剂可溶解SCB而实现分子水平上的接枝;引发剂浓度对接枝率的提高有一个最佳范围;接枝单体用量直接影响接枝率。最后指出SCB接枝物在离子交换、重金属离子吸附、吸油和吸水保水等方面的应用前景,并建议SCB接枝技术应向着接枝效率高、接枝物性能稳定、工艺绿色环保

  19. Matriz termofixa fenólica em compósitos reforçados com fibras de bagaço de cana-de-açúcar Thermoset phenolic matrix in sugar cane bagasse fiber-reinforced composites

    Directory of Open Access Journals (Sweden)

    Jane Maria F. de Paiva

    1999-06-01

    Full Text Available Neste trabalho, a lignina extraída pelo processo organossolve do bagaço de cana-de-açúcar substituiu parcialmente fenol (40% em massa em matrizes termofixas reforçadas com fibras curtas de bagaço de cana-de-açúcar (30, 40, 50, 60 e 70%, v/v. Os compósitos obtidos foram caracterizados por TG, DSC, DMTA, Resistência ao Impacto Charpy, Dureza Shore D. Os resultados obtidos mostraram ser viável a substituição de fenol por lignina em matrizes fenólicas. No entanto, para que se obtenha compósitos com propriedades compatíveis com às exigidas para aplicações industriais, modificações devem ser feitas: modificação de fibras por meio de reações químicas, diversificação do comprimento das fibras vegetais, realização de etapas de cura em temperaturas superiores as consideradas no presente trabalho.In this work the performance of thermoset phenolic/sugar cane bagasse composites were ascertained as a function of fiber content and matrix modification. The matrix was modified by using lignin, extracted from sugar cane bagasse, as a partial (40% wt phenol substitute. The thermoset polymer matrices and related composites were compression moulded and the products were characterized by TG, DSC, DMTA, Impact Strength, Shore D Hardness. Our results indicate that phenol can be substituted by lignin in the synthesis of phenolic resins. However, further work is necessary if one is to obtain composites complying with the performance demanded for industrial applications. In this case, chemical modification of the fibers, varying lengths of the vegetables fibers and cure steps at higher temperatures than the ones considered here must be performed.

  20. Comparative hydrolysis and fermentation of sugarcane and agave bagasse.

    Science.gov (United States)

    Hernández-Salas, J M; Villa-Ramírez, M S; Veloz-Rendón, J S; Rivera-Hernández, K N; González-César, R A; Plascencia-Espinosa, M A; Trejo-Estrada, S R

    2009-02-01

    Sugarcane and agave bagasse samples were hydrolyzed with either mineral acids (HCl), commercial glucanases or a combined treatment consisting of alkaline delignification followed by enzymatic hydrolysis. Acid hydrolysis of sugar cane bagasse yielded a higher level of reducing sugars (37.21% for depithed bagasse and 35.37% for pith bagasse), when compared to metzal or metzontete (agave pinecone and leaves, 5.02% and 9.91%, respectively). An optimized enzyme formulation was used to process sugar cane bagasse, which contained Celluclast, Novozyme and Viscozyme L. From alkaline-enzymatic hydrolysis of sugarcane bagasse samples, a reduced level of reducing sugar yield was obtained (11-20%) compared to agave bagasse (12-58%). Selected hydrolyzates were fermented with a non-recombinant strain of Saccharomyces cerevisiae. Maximum alcohol yield by fermentation (32.6%) was obtained from the hydrolyzate of sugarcane depithed bagasse. Hydrolyzed agave waste residues provide an increased glucose decreased xylose product useful for biotechnological conversion.

  1. New model of Brazilian electric sector: implications of sugarcane bagasse on the distributed generation process

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Celso E.L. de; Rabi, Jose A. [Universidade de Sao Paulo (GREEN/FZEA/USP), Pirassununga, SP (Brazil). Fac. de Zootecnia e Engenharia de Alimentos. Grupo de Pesquisa em Reciclagem, Eficiencia Energetica e Simulacao Numerica], Emails: celsooli@usp.br, jrabi@usp.br; Halmeman, Maria Cristina [Universidade Estadual Paulista (FCA/UNESP), Botucatu, SP (Brazil). Fac. de Ciencias Agronomicas

    2008-07-01

    Distributed generation has become an alternative for the lack of resources to large energy projects and for recent facts that have changed the geopolitical panorama. The later have increased oil prices so that unconventional sources have become more and more feasible, which is an issue usually discussed in Europe and in USA. Brazil has followed such world trend by restructuring the electrical sector as well as major related institutions, from generation to commercialization and sector regulation while local legislation has enabled the increase of distributed generation. It regulates the role of the independent energy producer so as to provide direct business between the later and a great consumer, which is an essential step to enlarge energy market. Sugarcane bagasse has been used to produce both electric energy and steam and this paper analyzes and discusses the major implications of a new model for Brazilian electric sector based on sugarcane bagasse use as means to increase distributed generation process, particularly concerned with the commercialization of energy excess. (author)

  2. Evaluation of sugar cane bagasse subjected to haying and ensiling Avaliação do bagaço de cana-de-açúcar submetido à fenação e à ensilagem

    Directory of Open Access Journals (Sweden)

    Rosana Cristina Pereira

    2009-12-01

    Full Text Available This work aimed to evaluate sugar cane bagasse from cachaça production, subjected to hay-making and ensiling. The experiment was conduced at Universidade Federal de Lavras, MG, using the completely random delineation (CRD, with seven treatment and three repetitions. The treatments were constituted of in natura sugar cane bagasse (INB, manually hayed and baled sugar cane bagasse, mechanically hayed and baled, manually baled INB and mechanically baled INB, whole ensiled INB and chopped ensiled INB. Bromatological composition, tampon capacity (TC, pH values and total sugar rate of the INB were evaluated. For the ensilage, there were used cistern silos and for the baling, manual and mechanical balers. The bagasse was baled in natura, or after reaching 89% rate of DM, according to the treatments. The evaluated characteristics were dry matter rate (DM, crude protein (CP, fiber in neutral detergent (FND, fiber in acid detergent (FAD. The results went through variance analyses and the averages were compared by the Scott - Knott test (PNeste trabalho, objetivou-se avaliar o bagaço de cana-de-açúcar proveniente da produção de cachaça, submetido à fenação e à ensilagem. O experimento foi conduzido na Universidade Federal de Lavras, MG, utilizando-se o delineamento inteiramente casualizado (DIC, com sete tratamentos e três repetições. Os tratamentos foram constituídos por bagaço de cana in natura (BIN, bagaço de cana fenado e enfardado manualmente, bagaço de cana fenado e enfardado mecanicamente, BIN enfardado manualmente, BIN enfardado mecanicamente, BIN ensilado inteiro e BIN ensilado picado. Foram avaliadas a composição bromatológica, capacidade tampão (CT, valores de pH e os teores de açúcares totais do BIN. Para a ensilagem foram utilizados silos cisternas e para o enfardamento, enfardadoras manual e mecânica. O bagaço foi enfardado in natura, ou após atingir teor de 89% de MS, conforme os tratamentos. As caracter

  3. Effect of combined slow pyrolysis and steam gasification of sugarcane bagasse on hydrogen generation

    Energy Technology Data Exchange (ETDEWEB)

    Parthasarathy, Prakash; Narayanan, Sheeba [National Institute of Technology, Tamil Nadu (India)

    2015-11-15

    The present work aims at improving the generation of H2 from sugarcane bagasse in steam gasification process by incorporating slow pyrolysis technique. As a bench scale study, slow pyrolysis of sugarcane bagasse is performed at various pyrolysis temperature (350, 400, 450, 500 and 550 .deg. C) and feed particle size (90generation. In the combined process (slow pyrolysis of biomass followed by steam gasification of char), first slow pyrolysis is carried out at the effective conditions (pyrolysis temperature and particle size) of char generation (determined from bench scale study) and steam gasification is at varying gasification temperature (600, 650, 700, 750 and 800 .deg. C) and steam to biomass (S/B) ratio (1, 2, 3, 4, 5 and 6) to determine the effective conditions of H{sub 2} generation. The effect of temperature and S/B on gas product composition and overall product gas volume was also investigated. At effective conditions (gasification temperature and S/B) of H2 generation, individual slow pyrolysis and steam gasification were also experimented to evaluate the performance of combined process. The effective condition of H{sub 2} generation in combined process was found to be 800 .deg. C (gasification temperature) and 5 (S/B), respectively. The combined process produced 35.90% and 23.60% more gas volume (overall) than slow pyrolysis and steam gasification process, respectively. With respect to H{sub 2} composition, the combined process generated 72.37% more than slow pyrolysis and 17.91% more than steam gasification process.

  4. Use of rum and sugar cane bagasse in the removal of hydrocarbons in contaminated soil; Uso de cachaza y bagazo de cana de azucar en la remocion de hidrocarburos en suelo contaminado

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-02-15

    The objective of this work was to determine the removal efficiency of polycyclic aromatic hydrocarbons (PAH) and total petroleum hydrocarbons (TPH) from soil contaminated with hydrocarbons using two different types of agricultural residues, filter cake mud and the sugarcane bagasse pith, as amendment and bulking agents. To test these approaches, a microcosms test was applied to soil contaminated with 14 300 mg kg-1 of TPH and 23.14 mg kg-1 of PAH. The soil treatments consisted of the following ratios of soil to residue (%/%): 100:0, 98:2, 98:4 and 98:6, and macronutrient addition was based on a carbon/nitrogen/phosphorus ratio (C:N:P, %/ % / %) of 100:10:1. Statistical analysis indicated that there were significant differences between the filter cake mud and the sugarcane bagasse pith treatments, in which the TPH removal efficiency was 60.1% using sugar cane bagasse pith and 51.4% with filter cake mud. A filter cake mud ratio of 96:4 produced the highest observed removal efficiency of PAH (43%), and a sugarcane bagasse pith ratio of 98:2 resulted in a PAH removal efficiency of 41%. Filter cake mud treatment could be an alternative for use in the bioremediation process of soils polluted with hydrocarbons. [Spanish] El objetivo del presente trabajo fue determinar la eficiencia de remocion de hidrocarburos aromaticos policiclicos (HAP) y de hidrocarburos totales del petroleo (HTP) de un suelo contaminado con petroleo crudo, utilizando dos tipos de residuos agroindustriales, la cachaza y el bagazo de cana de azucar como enmiendas y texturizante. Para ello, se realizaron pruebas en microcosmos de cultivos solidos para la biorremediacion de un suelo contaminado con 14300 mg kg-1 de HTP y 23.14 mg kg-1 de HAP. Las relaciones suelo: residuo utilizadas en las pruebas fueron las siguientes (%): 100:0, 98:2, 96:4 y 94:6, y la adicion de macronutrimentos con base en la relacion carbono/nitrogeno/fosforo (%%%) de 100:10:1. El analisis estadistico indico que hay diferencias

  5. Utilization of molasses and sugar cane bagasse for production of fungal invertase in solid state fermentation using Aspergillus niger GH1

    Directory of Open Access Journals (Sweden)

    F. Veana

    2014-06-01

    Full Text Available Agro-industrial wastes have been used as substrate-support in solid state fermentation for enzyme production. Molasses and sugarcane bagasse are by-products of sugar industry and can be employed as substrates for invertase production. Invertase is an important enzyme for sweeteners development. In this study, a xerophilic fungus Aspergillus niger GH1 isolated of the Mexican semi-desert, previously reported as an invertase over-producer strain was used. Molasses from Mexico and Cuba were chemically analyzed (total and reducer sugars, nitrogen and phosphorous contents; the last one was selected based on chemical composition. Fermentations were performed using virgin and hydrolyzate bagasse (treatment with concentrated sulfuric acid. Results indicated that, the enzymatic yield (5231 U/L is higher than those reported by other A. niger strains under solid state fermentation, using hydrolyzate bagasse. The acid hydrolysis promotes availability of fermentable sugars. In addition, maximum invertase activity was detected at 24 h using low substrate concentration, which may reduce production costs. This study presents an alternative method for invertase production using a xerophilic fungus isolated from Mexican semi-desert and inexpensive substrates (molasses and sugarcane bagasse.

  6. Utilization of molasses and sugar cane bagasse for production of fungal invertase in solid state fermentation using Aspergillus niger GH1.

    Science.gov (United States)

    Veana, F; Martínez-Hernández, J L; Aguilar, C N; Rodríguez-Herrera, R; Michelena, G

    2014-01-01

    Agro-industrial wastes have been used as substrate-support in solid state fermentation for enzyme production. Molasses and sugarcane bagasse are by-products of sugar industry and can be employed as substrates for invertase production. Invertase is an important enzyme for sweeteners development. In this study, a xerophilic fungus Aspergillus niger GH1 isolated of the Mexican semi-desert, previously reported as an invertase over-producer strain was used. Molasses from Mexico and Cuba were chemically analyzed (total and reducer sugars, nitrogen and phosphorous contents); the last one was selected based on chemical composition. Fermentations were performed using virgin and hydrolyzate bagasse (treatment with concentrated sulfuric acid). Results indicated that, the enzymatic yield (5231 U/L) is higher than those reported by other A. niger strains under solid state fermentation, using hydrolyzate bagasse. The acid hydrolysis promotes availability of fermentable sugars. In addition, maximum invertase activity was detected at 24 h using low substrate concentration, which may reduce production costs. This study presents an alternative method for invertase production using a xerophilic fungus isolated from Mexican semi-desert and inexpensive substrates (molasses and sugarcane bagasse).

  7. Externalities associated with distributed generation of electric energy from biomass in the sugar cane industry; Externalidades associadas a geracao distribuida de energia eletrica a partir de biomassa na industria sucroalcooleira

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Jose Roberto; Coelho, Suani Teixeira; Almeida, Marcelo Costa; Pecora, Vanessa; Prado, Thiago Guilherme Ferreira [Centro Nacional de Referencia em Biomassa (CENBIO), Sao Paulo, SP (Brazil)

    2004-07-01

    The externalities related with projects of power generation, the cogeneration in the sugarcane industry including, traditionally are not present in the economic and technical evaluations that support decision making. Such fact implies in a distortion in the evaluation between traditional technologies and the ones based on renewable sources. The Brazilian sugarcane industry presents increasing potential for the participation in the segment of power generation. This study presents partial results from a work group project concerned on research of the externalities associated to the cogeneration using bagasse from sugar cane processing. Externalities are identified from the distributed generation consequences. The possibility of minimizing negative externalities from the sugarcane industry, caused by the production of sugar and alcohol, with positive externalities from the social benefits of distributed generation is the most important conclusion reached as so far. (author)

  8. Externalities associated with distributed generation of electric energy from biomass in the sugar cane industry; Externalidades associadas a geracao distribuida de energia eletrica a partir de biomassa na industria sucroalcooleira

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Jose Roberto; Coelho, Suani Teixeira; Almeida, Marcelo Costa; Pecora, Vanessa; Prado, Thiago Guilherme Ferreira [Centro Nacional de Referencia em Biomassa (CENBIO), Sao Paulo, SP (Brazil)

    2004-07-01

    The externalities related with projects of power generation, the cogeneration in the sugarcane industry including, traditionally are not present in the economic and technical evaluations that support decision making. Such fact implies in a distortion in the evaluation between traditional technologies and the ones based on renewable sources. The Brazilian sugarcane industry presents increasing potential for the participation in the segment of power generation. This study presents partial results from a work group project concerned on research of the externalities associated to the cogeneration using bagasse from sugar cane processing. Externalities are identified from the distributed generation consequences. The possibility of minimizing negative externalities from the sugarcane industry, caused by the production of sugar and alcohol, with positive externalities from the social benefits of distributed generation is the most important conclusion reached as so far. (author)

  9. Caracterização de cinza do bagaço de cana-de-açúcar para emprego como pozolana em materiais cimentícios Characterization of sugar cane bagasse ash for use as pozzolan in cementitious materials

    OpenAIRE

    Guilherme Chagas Cordeiro; Romildo Dias Toledo Filho; Eduardo Moraes Rego Fairbairn

    2009-01-01

    This work presents the results of morphological and physical-chemical characteristics of a sugar cane bagasse ash material sample produced under controlled burning conditions. The investigation was carried out by analyzing chemical composition, X-ray diffraction, 29Si nuclear magnetic resonance, morphology, thermal analysis, particle size, specific surface, and density. Moreover, the pozzolanic activity of the ash was evaluated by pozzolanic activity index and Chapelle's method. The results s...

  10. Characterization of sugar cane bagasse: part II: fluid dynamic characteristics; Caracterizacion del bagazo de la cana de azucar: parte II: caracteristicas fluidodinamicas

    Energy Technology Data Exchange (ETDEWEB)

    Alarcon, Guillermo A. Roca [Universidad de Oriente (CEEFE/UO), Santiago de Cuba (Cuba). Centro de Estudios de Eficiencia Energetica], Emails: roca@ceefe.uo.edu.cu, grocabayamon@hotmail.com; Sanchez, Caio Glauco [Universidade Estadual de Campinas (FEM/UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica], Email: caio@fem.unicamp.br; Gomez, Edgardo Olivares [Universidade Estadual de Campinas (NIPE/UNICAMP), SP (Brazil). Nucleo Interdisciplinar de Planejamento Energetico], Emails: gomez@bioware.com.br, egomez@energiabr.org.br; Cortez, Luis Augusto Barbosa [Universidade Estadual de Campinas (NIPE/FEAGRI/UNICAMP), SP (Brazil). Fac. de Engenharia Agricola. Nucleo Interdisciplinar de Planejamento Energetico], Email: cortez@reitoria.unicamp.br

    2006-07-01

    This paper is the second part of a general study about physic-geometrical and fluid-dynamics characteristic of the sugarcane bagasse particles. These properties has relevant importance on the dimensions and operation of the equipment for transport and treatment of solid particles. Was used the transport column method for the determination of the drag velocity and later on the drag coefficient of the sugarcane bagasse particles was calculated. Both, the installation and experimental technique used for materials of these characteristics are simple and innovations tools, but rigorous conceptually, thus the results obtained are reliable. Were used several sugarcane bagasse fractions of particles of known mean diameter. The properties determined were expressed as a function of Reynolds and Archimedes a dimensional criteria. The best considered model from statistical analysis (model from equation 8) was statistically validated for determined ranges of Reynolds and Archimedes. These empirical equations can be used to determine these properties in the range and conditions specified and also for modeling some processes where these fractions are employed. (author)

  11. Electricity generation from eucalyptus and bagasse by sugar mills in Nicaragua: A comparison with fuel oil electricity generation on the basis of costs, macroeconomic impacts and environmental emissions

    NARCIS (Netherlands)

    van den Broek, Richard; van der Burg, Tsjalle; van Wijk, Ad; Turkenburg, Wim

    2000-01-01

    Two sugar mills in Nicaragua plan to generate electricity from bagasse during the sugarcane season and eucalyptus during the rest of the year, and to sell it to the national grid. This study compared this concept with the most logical alternative at the moment, which is electricity generated from

  12. Ethanol from sugar cane with simultaneous production of electrical energy and biofertilizer

    Energy Technology Data Exchange (ETDEWEB)

    Filgueiras, G.

    1981-08-04

    A flexible nonpolluting industrial scheme is described for converting sugar cane into fuel-grade ethanol, fertilizer, and electric power. The cleaned cane is treated in a diffuser to separate the juice, which is enzymically hydrolyze d to ethanol, and bagasse containing 65-85% moisture, which is mechanically ground with the rest of the cane plant (leaves and buds) and biochemically digested to provide liquid and solid fertilizers as well as a methane-containing gas, which is burned in a gas turbine to generate electricity. The vinasse from the ethanol fermentation is also cycled to the digestion step. The process conditions can be varied depending upon the desired product ratio; if fuel is preferred, each ton of cane (dry weight) can produce 135 L ethanol, 50 kW electric power, and 150 kg fertilizer; if electric energy is preferred, each ton can give 75 L ethanol, 115 kW power, and 220 kg fertilizer.

  13. Efficient use of sugar cane bagasse by means of the separation of its component fractions in a new type of pneumatic classifier for polydisperse solid materials

    Energy Technology Data Exchange (ETDEWEB)

    Roca Alarcon, Guillermo A.; Perez, Luis E. Brossard [Universidad de Oriente, Santiago de Cuba (Cuba); Olivares Gomez, Edgardo; Cortez, Luis A. Barbosa [Universidade Estadual de Campinas (FEAGRI/UNICAMP), SP (Brazil). Fac. de Engenharia Agricola

    2008-07-01

    This paper highlights the importance of pneumatic classification to improve the performance of any process using solid polydisperse materials. It is presented a physical model, based on which, it is proposed an installation with new characteristics for the separation of solid materials into three fractions, whose main part is a classification column. The fractions classified will be designated as: coarse, medium and fine. The classification column of the pneumatic installation allows establishing the appropriate flow regimes during the classification process. To evaluate the process there were defined the following indicators: the purity index, the classification efficiency and the degree of separation. These magnitudes are experimentally determined and serve as a measure of the percentage of separation and homogeneity of any of the three fractions mentioned before. The bagasse fractions can be obtained with definite particles size ranges that can improve the practical applications of bagasse in processes such as acid or enzymatic hydrolysis for ethanol's obtaining, for combustion purposes and in general for classification of any solid polydisperse material of different size, shape and density. (author)

  14. Effect of feed source and pyrolysis conditions on properties of sugarcane bagasse biochar

    Science.gov (United States)

    Processing of sugarcane in sugar mills yield ca. 30% bagasse, a fibrous waste material composed mostly of crushed cane stalks. While 80-90% of the bagasse used on site as fuel, the remaining portion can be converted into a value-added product. One such option is thermal conversion of bagasse into bi...

  15. Usefulness of raw bagasse for oil absorption: a comparison of raw and acylated bagasse and their components.

    Science.gov (United States)

    Said, Abd El-Aziz A; Ludwick, Adriane G; Aglan, Heshmat A

    2009-04-01

    Raw bagasse or sugar cane cellulosic residues were modified using acylation grafting with fatty acid. The capability of the grafted bagasse to absorb oil from aqueous solution was studied and compared with the raw bagasse. It was found that the grafted material was significantly more hydrophobic than the raw bagasse. This grafted bagasse had little affinity for water and good affinity for oil. It was also found that bleaching of raw bagasse did not enhance its oil absorptivity. The grafted raw bagasse would be most suitable for applications where oil is to be removed from an aqueous environment. For oil absorbing applications in the absence of water, the raw bagasse was an excellent material.

  16. Accumulation of recombinant cellobiohydrolase and endoglucanase in the leaves of mature transgenic sugar cane.

    Science.gov (United States)

    Harrison, Mark D; Geijskes, Jason; Coleman, Heather D; Shand, Kylie; Kinkema, Mark; Palupe, Anthony; Hassall, Rachael; Sainz, Manuel; Lloyd, Robyn; Miles, Stacy; Dale, James L

    2011-10-01

    A major strategic goal in making ethanol from lignocellulosic biomass a cost-competitive liquid transport fuel is to reduce the cost of production of cellulolytic enzymes that hydrolyse lignocellulosic substrates to fermentable sugars. Current production systems for these enzymes, namely microbes, are not economic. One way to substantially reduce production costs is to express cellulolytic enzymes in plants at levels that are high enough to hydrolyse lignocellulosic biomass. Sugar cane fibre (bagasse) is the most promising lignocellulosic feedstock for conversion to ethanol in the tropics and subtropics. Cellulolytic enzyme production in sugar cane will have a substantial impact on the economics of lignocellulosic ethanol production from bagasse. We therefore generated transgenic sugar cane accumulating three cellulolytic enzymes, fungal cellobiohydrolase I (CBH I), CBH II and bacterial endoglucanase (EG), in leaves using the maize PepC promoter as an alternative to maize Ubi1 for controlling transgene expression. Different subcellular targeting signals were shown to have a substantial impact on the accumulation of these enzymes; the CBHs and EG accumulated to higher levels when fused to a vacuolar-sorting determinant than to an endoplasmic reticulum-retention signal, while EG was produced in the largest amounts when fused to a chloroplast-targeting signal. These results are the first demonstration of the expression and accumulation of recombinant CBH I, CBH II and EG in sugar cane and represent a significant first step towards the optimization of cellulolytic enzyme expression in sugar cane for the economic production of lignocellulosic ethanol.

  17. Validação de metodologia para a caracterização química de bagaço de cana-de-açúcar Validation of methodology for the chemical characterization of sugar cane bagasse

    Directory of Open Access Journals (Sweden)

    Ester Ribeiro Gouveia

    2009-01-01

    Full Text Available In this work, a methodology for the characterization of sugar cane bagasse was validated. Bagasse pre-treated with steam in a 5000 L reactor at a pressure of 15.3 kgf/cm², during 7 min, was used to test the methodology. The methodology consisted of the hydrolysis of the material with H2SO4 at 72% v/v, for the quantification of carbohydrates, organic acid, furfural and hydroxymethylfurfural by HPLC; insoluble lignin and ash by gravimetry; and soluble lignin by spectrophotometry. Linearity, repeatability, reproducibility and accuracy of the results obtained in two Research Laboratories were determined, and were considered to be suitable for the validation of the methodology.

  18. Digestibilidade do bagaço de cana-de-açúcar tratado com hidróxido de sódio em dietas para coelhos em crescimento Digestibility of sugar cane bagasse after a NaOH treatment in growing rabbit diets

    Directory of Open Access Journals (Sweden)

    Renata Apocalypse Nogueira Pereira

    2008-04-01

    Full Text Available Avaliou-se o bagaço de cana-de-açúcar não tratado (BN e tratado (BT com 2, 4 e 6% de hidróxido de sódio (NaOH na dieta para coelhos em crescimento. Os coeficientes de digestibilidade (CD dos nutrientes do BN e BT foram determinados em delineamento inteiramente casualizado, com cinco tratamentos (ração básica e rações com 40% de bagaço com 0, 2, 4 e 6% de NaOH e quatro repetições. Para obtenção dos valores de CD apenas do bagaço, e não da dieta total, adotou-se o método de substituição isométrica da dieta basal proposto por Matterson et al. (1965. A adição de NaOH ao bagaço não melhorou significativamente (P>0,05 os CD da matéria seca, proteína bruta, fibra em detergente neutro, fibra bruta e energia bruta e piorou significativamente (P=0,0023 o CD da fibra em detergente ácido (y = 20,042 - 2,7615x, r² = 0,984. Concluiu-se que o tratamento do bagaço de cana-de-açúcar com NaOH não trouxe vantagens práticas sobre os valores de CD que justificassem o seu uso, já que a adoção dessa técnica demanda aumento de mão-de-obra e do custo da alimentação.The NaOH treated sugar cane bagasse (BT (2, 4 e 6% and untreated cane bagasse (BN was evaluated as rabbit diet ingredients. The digestion coefficients (CD were determined in a completely randomized design, with five treatments (basic diet and 40% bagasse diets (0, 2, 4 e 6% NaOH and four replications, using substitution methodology (Matterson et al., 1965. The nutritive values of bagasse (DM, CP, NDF, CF and GE were not significantly (P>0,05 affected by NaOH treatment, whereas AFD was significantly (P = 0,0023 linearly decreased by the chemical treatment (y = 20,042 - 2,7615x , r² = 0,984. It was concluded that the treatment was not effective to improving the CD of sugar cane bagasse, being the practice not justifiable.

  19. Glass-Ceramic Material from the SiO2-Al2O3-CaO System Using Sugar-Cane Bagasse Ash (SCBA)

    Science.gov (United States)

    Teixeira, S. R.; Romero, M.; Ma Rincón, J.; Magalhães, R. S.; Souza, A. E.; Santos, G. T. A.; Silva, R. A.

    2011-10-01

    Brazil is the world's largest producer of alcohol and sugar from sugarcane. Currently, sugarcane bagasse is burned in boilers to produce steam and electrical energy, producing a huge volume of ash. The major component of the ash is SiO2, and among the minor components there are some mineralizing agents or fluxing. Published works have shown the potential of transforming silicate-based residues into glass-ceramic products of great utility. This work reports the research results of SCBA use to produce glass-ceramics with wollastonite, rankinite and gehlenite as the major phases. These silicates have important applications as building industry materials, principally wollastonite, due to their special properties: high resistance to weathering, zero water absorption, and hardness among others. The glasses (frits) were prepared mixing ash, calcium carbonate and sodium or potassium carbonates as flux agents, in different concentrations. X-ray fluorescence was used to determine the chemical composition of the glasses and their crystallization was assessed by using thermal analysis (DTA/DSC/TGA) and X-ray diffraction. The crystallization kinetics was evaluated using the Kissinger method, giving activation energies ranging from 200 to 600 kJ/mol.

  20. Efecto de la espiral normal en el movimiento vortiginoso con partículas de bagazo de caña//Effect of normal spiral in the vortex movement with small sugar cane bagasse particles

    Directory of Open Access Journals (Sweden)

    Eugenio Francisco Bombino-Matos

    2012-09-01

    Full Text Available Debido a la importancia que adquiere cada vez más el bagazo de caña, se estudia el movimiento vortiginoso de sus partículas transportadas por un gas y se comparan los resultados obtenidos experimentalmente con los simulados mediante un modelo matemático. La formación de la espiral se clasificó de tres formas, obteniéndose la velocidad y caída de presión en cada caso a través de un diseño de experimentos factorial multinivel con una réplica. Como variable dependiente cualitativa se tomó la formación de la espiral normal y como variables independientes cuantitativas la velocidad del gas, el tamaño de partículas y la concentración de la mezcla, obteniéndose una correlación que ajustó con84.64%. Se determinó el tamaño de muestra para comparar los valores de velocidades del gas y caídas de presión obtenidos experimentalmente con los simulados, los resultados experimentales cumplen una distribución normal y el modelo simula el proceso con error aceptable ingenierilmente.Palabras claves: movimiento de vórtice, secado neumático de bagazo, modelo matemático.______________________________________________________________________________AbstractThe vortex movement of sugar cane bagasse carry by a gas is study and the results obtained in the laboratory are compared with the ones simulated through a mathematical model. The formation of the hairspring was classified in three ways, being obtained the speed and fall of pressure in each case througha design of multilevel factorial experiments with a replica. The formation of the normal hairspring was taken as qualitative dependent variable, and as quantitative independent variables, the gas speed, particles sizeand the mixture concentration were taken, being obtained a correlation that adjusted with 84.64%. The sample size was determined to compare the values of gas speed and the falls of pressure experimentally obtained with those obtained by the simulation, the experimental results

  1. High conversion of sugarcane bagasse into monosaccharides based on sodium hydroxide pretreatment at low water consumption and wastewater generation.

    Science.gov (United States)

    Wang, Wen; Wang, Qiong; Tan, Xuesong; Qi, Wei; Yu, Qiang; Zhou, Guixiong; Zhuang, Xinshu; Yuan, Zhenhong

    2016-10-01

    The generation of a great quantity of black liquor (BL) and waste wash water (WWW) has been key problems of the alkaline pretreatment. This work tried to build a sustainable way to recycle the BL for pretreating sugarcane bagasse (SCB) and the WWW for washing the residual solid (RS) of alkali-treated SCB which would be subsequently hydrolysed and fermented. The enzymatic hydrolysis efficiency of the washed RS decreased with the recycling times of BL and WWW increasing. Tween80 at the loading of 0.25% (V/V) could notably improve the enzymatic hydrolysis and had no negative impact on the downstream fermentation. Compared with the non-recycling and BL recycling ways based on alkaline pretreatment, the BL-WWW recycling way could not only maintain high conversion of carbohydrate into monosaccharides and save alkali amount of 45.5%, but also save more than 80% water and generate less than 15% waste water.

  2. Compósito de resina de poliéster insaturado com bagaço de cana-de-açúcar: influência do tratamento das fibras nas propriedades Unsaturated polyester resin composite with sugar cane bagasse: influence of treatment on the fibers properties

    Directory of Open Access Journals (Sweden)

    Elisabete M. S. Sanchez

    2010-09-01

    Full Text Available Neste trabalho foi avaliada a influência do tratamento de fibras de bagaço de cana-de-açúcar nas propriedades mecânicas e dinâmico-mecânicas, na estabilidade térmica, na densidade e absorção de água, quando utilizadas na preparação de compósitos com resinas de poliéster insaturado em comparação com a resina sem reforço. As fibras foram submetidas a tratamento químico com solução alcalina de hidróxido de sódio. O tratamento melhorou as propriedades de impacto, aumentou o módulo de elasticidade em flexão, não alterou significativamente o módulo de elasticidade em tração dos compósitos em relação à resina sem reforço e melhorou a compatibilidade fibra matriz quando comparada com compósitos com a fibra sem tratamento, o que pode ser observado nas fraturas de impacto analisadas por microscopia eletrônica de varredura. As superfícies das fibras também foram avaliadas por microscopia eletrônica de varredura.The aim of this work is to evaluate the influence of the sugar cane bagasse NaOH treatment in the mechanical and dynamic-mechanical properties, in the thermal stability, density and water absorption, when used in unsaturated polyester resin/sugar cane bagasse composite. The sugar cane bagasse was submitted to the chemical treatment with alkaline solution of NaOH. The treatment improves the impact and flexural elasticity modulus when compared with resin without fibers, in addition to the adhesion of the fibers with the matrices, but does not improve significantly the tensile elasticity modulus. The surfaces of the impact fracture were analyzed by SEM.

  3. Optimization pretreatment condition of sweet sorghum bagasse for production of second generation bioethanol

    Science.gov (United States)

    Sudiyani, Yanni; Waluyo, Joko; Triwahyuni, Eka; Burhani, Dian; Muryanto, Primandaru, Prasetyo; Riandy, Andika Putra; Sumardi, Novia

    2017-01-01

    The bagasse residue of Sweet sorghum (Sorghum bicolor (L.) Moench) consist of cellulose 39.48%; hemicellulose 16.56% and lignin 24.77% that can be converted to ethanol. Pretreatment is of great importance to ethanol yield. In this study, pretreatment process was conducted in a 5-liter reactor using NaOH 10% at various temperature 110, 130, 150°C and reaction time 10, 20, 30 minutes and optimizing severity parameter (log R0 between 1.3 - 2.9). The statistical analysis using two way anova showed that third variations of temperature give different effects significant on lignin, hemicellulose and cellulose content at 95% the confidence level. The optimum pretreatment of bagasse sorghum were obtained with Log R0 value between 2.4-2.9. High severity value in pretreatment condition reduce lignin almost 84-86%, maximum reducing lignin content was 86% obtained at temperature 150°C for 20 minutes reaction time and cellulose increased almost two times the initial content.

  4. Bending Modulus of Elasticity of the Press Forming Composite Material from Bagasse Fiber and Biodegradable Resin

    OpenAIRE

    柴田, 信一; 曹, 勇; 福本, 功; Shibata, Shin-ichi; Cao, Yong; Fukumoto, Isao

    2005-01-01

    Bending modulus of elasticity of the composite material from bagasse fiber (remains after sugar cane squeezed) and biodegradable resin was investigated in view of the content of bagasse fiber and the fiber length. The result was validated by short fiber strengthen theory. The result is as followings. Bending modulus of elasticity increased with increasing the content of bagasse fiber. The increase of Bending modulus of elasticity is predicted by short fiber strengthen theory incorporated with...

  5. Níveis de bagaço de cana e uréia como substituto ao farelo de soja em dietas para bovinos leiteiros em crescimento Sugar cane bagasse and urea as replacement of soybean meal in the growing dairy cattle diets

    Directory of Open Access Journals (Sweden)

    Luciana Brandão Torres

    2003-06-01

    Full Text Available Com o objetivo de avaliar diferentes níveis de bagaço e uréia como substituto ao farelo de soja em dietas para bovinos leiteiros em crescimento, dois experimentos foram realizados. No primeiro, 20 bezerros mestiços Holandês x Zebu foram distribuídos em quatro tratamentos em delineamento inteiramente casualizado. Os animais receberam dietas à base de palma forrageira e bagaço de cana em níveis de 5,5; 14,4; 24,4 e 34% da matéria seca total. O ganho de peso diminuiu, enquanto a conversão alimentar, e os consumos de FDN e FDA aumentaram linearmente com a inclusão de bagaço. O consumo máximo de MS foi estimado em 2,73% do peso vivo com 30% de bagaço de cana. No segundo experimento foi avaliada a substituição do farelo de soja (FS por uréia mais milho moído (UM, em dietas à base de palma forrageira, sobre o desempenho de novilhas mestiças Holandês x Zebu. Vinte animais foram alimentados de acordo com os níveis de substituição do FS por UM (0, 20, 40 e 60% distribuídos em blocos ao acaso. Não houve efeito da substituição parcial do farelo de soja por milho e uréia sobre o desempenho de novilhas mestiças.In order to evaluate different levels of sugar cane bagasse and urea as replacement of soybean meal in growing dairy cattle diets, two trials were conducted. In the first, twenty crossbreed bull calves (Holstein x Zebu were allotted in a completely randomized design with four treatments. The animals were fed forage cactus based diets, containing levels of 5.5, 14.4, 24.4 and 34% of sugar cane bagasse on the dry matter basis. The liveweight gain decreased while the feed: gain ratio, FDN and FDA intakes increased linearly in function of the increased level of sugar cane bagasse. The maximum daily dry matter intake of 2.73% of LW was estimated with 30% of sugar cane bagasse in the diet. In the second, was evaluated the partial replacement of soybean meal (SM by urea plus corn cracked (UC in forage cactus based diets on the

  6. Screening of Xylanolytic Aspergillus fumigatus for Prebiotic Xylooligosaccharide Production Using Bagasse

    Directory of Open Access Journals (Sweden)

    Pedro de Oliva Neto

    2015-01-01

    Full Text Available Sugarcane bagasse is an important lignocellulosic material studied for the production of xylooligosaccharides (XOS. Some XOS are considered soluble dietary fibre, with low caloric value and prebiotic effect, but they are expensive and not easily available. In a screening of 138 fungi, only nine were shortlisted, and just Aspergillus fumigatus M51 (35.6 U/mL and A. fumigatus U2370 (28.5 U/mL were selected as the most significant producers of xylanases. These fungi had low β-xylosidase activity, which is desirable for the production of XOS. The xylanases from Trichoderma reesei CCT 2768, A. fumigatus M51 and A. fumigatus U2370 gave a significantly higher XOS yield, 11.9, 14.7 and 7.9 % respectively, in a 3-hour reaction with hemicellulose from sugarcane bagasse. These enzymes are relatively thermostable at 40–50 °C and can be used in a wide range of pH values. Furthermore, these xylanases produced more prebiotic XOS (xylobiose and xylotriose when compared with a commercial xylanase. The xylanases from A. fumigatus M51 reached a high level of XOS production (37.6 % in 48–72 h using hemicellulose extracted from sugarcane bagasse. This yield represents 68.8 kg of prebiotic XOS per metric tonne of cane bagasse. In addition, in a biorefinery, after hemicellulose extraction for XOS production, the residual cellulose could be used for the production of second-generation ethanol.

  7. DEVELOPMENT OF Annona crassiflora Mart. (ARATICUM SEEDLINGS IN SUBSTRATA WITH SUGAR CANE BAGASSE ASH DESENVOLVIMENTO DE MUDAS DE Annona crassiflora Mart. (ARATICUM EM SUBSTRATOS COM CINZA DE BAGAÇO DE CANA

    Directory of Open Access Journals (Sweden)

    Andréia Luiza Salgado

    2009-01-01

    Full Text Available

    The effect of five growing media, in different proportions of subsoil, limestone, and sugar cane bagasse ash, in the height, stem diameter, and fresh and dry weight of the aerial part and roots of araticum seedlings (Annona crassiflora Mart. was analyzed. The five growing media were

  8. Combined effects of sugarcane bagasse extract and Zinc(II) ions on the growth and bioaccumulation properties of yeast isolates.

    OpenAIRE

    Geetanjali Basak; CHARUMATHI D; NILANJANA DAS

    2011-01-01

    Bioaccumulation of zinc(II) ions by yeast isolates viz. Candida rugosa and Cryptococcus laurentii was investigated in different growth media. Both the isolates showed maximum bioaccumulation of zinc(II) in the medium prepared from sugarcane bagasse extract. The growth and zinc(II) bioaccumulation properties of yeasts in sugar cane bagasse extract were tested as a function of pH, temperature and initial metal concentrations. The combined effects of sugar extracted from bagasse and initial zinc...

  9. Semi-solid state fermentation of bagasse for hydrogen production; the cost-effective approach in Indian context

    Energy Technology Data Exchange (ETDEWEB)

    Singh, S.P.; Asthana, R.K.; Singh, A.P. [Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi-221005, (India)

    2006-07-01

    Semi-solid state fermentation route of hydrogen production from agro-waste sugar cane bagasse was tried using the photosynthetic bacterium Rhodopseudomonas (BHU strain-1) and the non-photosynthetic Enterobacter aerogenes MTCC2822. The process seems an alternative to submerged fermentation that requires high volumes of nutrient broth. Bagasse (10 g) pre-hydrolyzed with NaOH (2%, w/v) was coated with Ca-alginate (1.5%, v/v) containing Rhodopseudomonas and E. aerogenes in the co-immobilized state (300 {mu}g bacterial biomass ml{sup -1}). The fermenting medium was just 150 ml to sustain the moistened bagasse in a 0.5 L fermenter kept in light. A parallel set of free bacterial cells served as control. Hydrogen production by the immobilized sets reached 30 L within 60 h with the average rate of 0.177 L H{sub 2} h{sup -1}. For free cells, the values for hydrogen output (20 L) or the rate 0.1125 L H{sub 2} h{sup -1} were approximately 1.5-fold low. It is proposed that semi-solid fermentation route of hydrogen production from bagasse will be a cost-effective technology in countries generating this agro-waste. (authors)

  10. Modelación del secado neumático vortiginoso del bagazo de la caña de azúcar//Modulation of sugar cane bagasse pneumatic drying in a vortex

    Directory of Open Access Journals (Sweden)

    Eugenio F. Bombino-Matos

    2013-09-01

    Full Text Available Tomando en consideración los estudios realizados sobre la modelación del movimiento vortiginoso de partículas de bagazo, se realizó el estudio del secado neumático de esta importante biomasa teniendo en cuenta la transferencia de calor y de masa. Se modeló el proceso de secado a través de las ecuacionesfundamentales que describen la cinética del mismo y se compararon los resultados obtenidos con resultados reportados en la literatura especializada sobre mediciones de la variación del contenido de humedad en otros tipos de secadores neumáticos de bagazo para iguales condiciones de operación. Esta modelación permitió realizar simulaciones de este proceso las cuales arrojaron resultados aceptables en cuanto a los valores de disminución del contenido de humedad del bagazo lo que permitirá continuar profundizando en el desarrollo de próximos estudios sobre el tema ya que se evidencia que por esta vía es posible disminuir las dimensiones de los secadores de bagazo.Palabras claves: secado neumático vortiginoso, secado de bagazo, modelación matemática.______________________________________________________________________________AbstractTaking in account the studies carried out about the vortex movement of bagasse particles, the study of pneumatic drying of this important biomass was carried out considering the heat and mass transfer. The drying process was modeled through the fundamentals equations which describe the kinetic of it and theobtained results were compared with results reported in the specialized literature on drying measurements in others kinds of bagasse pneumatics dryers under the same conditions of operation. This modulation permitted to made simulations of this process which produced acceptable results about the decrease humidity values of bagasse and it will permit to continue in the development of next studies about this topic because it is evident that it is possible to reduce bagasse dryer dimensions.Key words

  11. Painéis de partículas à base de bagaço de cana e resina de mamona – produção e propriedades - doi: 10.4025/actascitechnol.v33i4.9615 Particleboards of sugar cane bagasse and castor oil resin – production and properties

    Directory of Open Access Journals (Sweden)

    Holmer Savastano Junior

    2011-09-01

    Full Text Available Este trabalho apresenta um estudo do potencial de utilização do bagaço de cana-de-açúcar para fabricação de painéis de partículas aglomeradas utilizando resina poliuretana à base de óleo de mamona. A qualidade dos produtos foi avaliada com base nas prescrições do documento normativo NBR 14810 (ABNT, 2006b, com a determinação da densidade, do inchamento, da absorção, do Módulo de Elasticidade (MOE e Módulo de Ruptura (MOR na flexão estática. Após análise dos resultados, os painéis avaliados apresentaram densidade média de 0,93 g cm-3, MOR e MOE médios 24,4 e 2432 MPa, sendo classificados, segundo os indicativos da norma ANSI A208.1 (1993, como material de alta densidade, recomendado para uso industrial. A resina à base de óleo de mamona mostrou-se eficiente como matriz polimérica para fabricação de compósito à base de bagaço de cana-de-açúcar.Here we present a study of the potential use of agro-industry residues (sugar cane bagasse in order to add value to these materials through the manufacture of particle boards and evaluation of the physical and mechanical performance. For this, we used polyurethane monocomponent and bicomponent resin based on castor oil. The quality of the products was evaluated based on the requirements of normative documents NBR 14810 (ABNT, 2006b, with determination of the density, swelling, absorption, elasticity modulus (MOE and strength in static bending (MOR. After analyzing the results, the panels presented average density 0.93 g cm-3, average MOR and MOE 24.4 and 2432 MPa, respectively, being classified according to the indicative of the ANSI A208.1 (1993, as material of high density, recommended for industrial use. The resin based on castor oil was efficient as a matrix polymer for making composites based on sugar cane bagasse.

  12. Efeito da granulometria do bagaço de cana sobre as características digestivas e a contribuição nutritiva dos cecotrofos Effect particle size of sugar cane bagasse on the digestive traits and the cecotrophes nutritive contribution

    Directory of Open Access Journals (Sweden)

    Flávia da Silva Vieira

    2003-08-01

    Full Text Available Foram realizados dois experimentos com coelhos mestiços Nova Zelândia Branco x Califórnia, com o objetivo de avaliar o efeito da granulometria da fonte de fibra sobre as características digestivas de coelhos em crescimento e sobre a produção, composição química e a contribuição nutritiva dos cecotrofos, em termos de matéria seca (MS e proteína bruta (PB. Quatro dietas foram elaboradas com diferentes granulometrias do bagaço de cana com diâmetro geométrico médio (DGM de 0,231, 0,506, 0,616 e 0,833 mm. O desempenho e os pesos do sistema digestivo cheio, sistema digestivo vazio, conteúdo do sistema digestivo, ceco cheio, ceco vazio e conteúdo cecal não foram afetados significativamente, entretanto o nitrogênio amoniacal do conteúdo cecal aumentou significativamente com o aumento da granulometria do bagaço de cana. Na avaliação da cecotrofia, foi observado efeito linear significativo da granulometria sobre a produção de cecotrofos e o teor de MS e PB ingerido por cecotrofia, porém sua composição química não foi afetada.Two experiments using New Zealand White x Californian rabbits were carried out with the objective of evaluating the effect of fiber source particle size on digestive traits of growing rabbit and the production, chemical composition and cecotrophes nutritive contribuition on dry matter (DM and crude protein (CP base. Four diets were prepared with different particle size of sugar cane bagasse with average geometric diameters of .231, .506, .616 and .833 mm. The productive performance and weight of the full and empty digestive tract, digestive tract content, full and empty cecum and cecum content were not affected, however the ammonia nitrogen percentage in the caecum content was significantly increased by increasing particle size of sugar cane bagasse. In cecotrophy evaluation, effects of particle size on cecotrophes production, DM and CP content ingested were observed, but the cecotrophes chemical

  13. Co-generation of microbial lipid and bio-butanol from corn cob bagasse in an environmentally friendly biorefinery process.

    Science.gov (United States)

    Cai, Di; Dong, Zhongshi; Wang, Yong; Chen, Changjing; Li, Ping; Qin, Peiyong; Wang, Zheng; Tan, Tianwei

    2016-09-01

    Biorefinery process of corn cob bagasse was investigated by integrating microbial lipid and ABE fermentation. The effects of NaOH concentration on the fermentations performance were evaluated. The black liquor after pretreatment was used as substrate for microbial lipid fermentation, while the enzymatic hydrolysates of the bagasse were used for ABE fermentation. The results demonstrated that under the optimized condition, the cellulose and hemicellulose in raw material could be effectively utilized. Approximate 87.7% of the polysaccharides were converted into valuable biobased products (∼175.7g/kg of ABE along with ∼36.6g/kg of lipid). At the same time, almost half of the initial COD (∼48.9%) in the black liquor could be degraded. The environmentally friendly biorefinery process showed promising in maximizing the utilization of biomass for future biofuels production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Enzyme hydrolysis and ethanol fermentation of dilute ammonia pretreated energy cane.

    Science.gov (United States)

    Aita, G A; Salvi, D A; Walker, M S

    2011-03-01

    This study is the first one ever to report on the use of high fiber sugarcane (a.k.a. energy cane) bagasse as feedstock for the production of cellulosic ethanol. Energy cane bagasse was pretreated with ammonium hydroxide (28% v/v solution), and water at a ratio of 1:0.5:8 at 160°C for 1h under 0.9-1.1 MPa. Approximately, 55% lignin, 30% hemicellulose, 9% cellulose, and 6% other (e.g., ash, proteins) were removed during the process. The maximum glucan conversion of dilute ammonia treated energy cane bagasse by cellulases was 87% with an ethanol yield (glucose only) of 23 g ethanol/100g dry biomass. The enzymatic digestibility was related to the removal of lignin and hemicellulose, perhaps due to increased surface area and porosity resulting in the deformation and swelling of exposed fibers as shown in the SEM pictures.

  15. USO DE HOJARASCA DE ROBLE y BAGAZO DE CAÑA EN LA PRODUCCIÓN DE Pleurotus ostreatus USO DA SERAPILHEIRA DE CARVALHO E BAGAÇO DA CANA NA PRODUÇÃO DO Pleurotus ostreatus USE OF THE OAK DEAD LEAVES AND SUGAR CANE BAGASSE IN THE Pleurotus ostreatus PRODUCTION

    Directory of Open Access Journals (Sweden)

    PILAR SUDIANY VARGAS

    2012-06-01

    carpóforos mostrou 5 a12 cm de diâmetro e contaminação causada por fungos competidores do gênero Trichoderma sp. Foram detectadas alterações na composição do substrato esgotado, principalmente aumento de minerais e proteínas e decresceu na fibra o bagaço de cana e folhas de carvalho, sendo apropriado para alimentar animais poligástricos, para à proteína micelial disponível, presença celulose e teor de lignina reduzido.In order to assess the use as growing substrate for the fungus Pleurotus ostreatus, falling of the oak dead leaves in a forest relict in La Capilla rural area, Cajibio (Cauca was evaluated during 6 months, choosing mature trees with a chest height diameter (DAP between 35 and 37 cm were chosen, getting an average of 7,41 kg of dead leaves per tree. Fungus growing in oak dead leaves mixed with sugar cane bagasse and 5 substrates: T1: bagasse 100%, T2: oak 100%, T3: oak 75% and bagasse 25%, T4: oak 50% and bagasse 50% and T5: oak 25% and bagasse 75% reaching biological efficiencies of 221,1%, 44,35%, 52,78%, 90,30% and 109,12% respectively. Was an inverse association between the content of oak leaf and efficiencies due to the nature leathery and waxy leaf. Most of the carpophores showed 5 and 12 cm and contamination caused by competing fungi of the Trichoderma sp. genus. Changes were detected in the depleted substrate composition, mainly minerals and protein increase and decrease of fiber in the bagasse and oak litter, being suitable for animal feed polygastric for mycelial protein content, presence of cellulose and lower lignin content.

  16. Glass-Ceramic Material from the SiO{sub 2}-Al{sub 2}O{sub 3}-CaO System Using Sugar-Cane Bagasse Ash (SCBA)

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, S R; Magalhaes, R S; Souza, A E; Santos, G T A; Silva, R A [Universidade Estadual Paulista - Unesp/FCT - Presidente Prudente, SP (Brazil); Romero, M; Ma Rincon, J, E-mail: rainho@fct.unesp.br [Instituto Eduardo Torroja de Ciencias de la Construccion - IETCC/CSIC, Madrid (Spain)

    2011-10-29

    Brazil is the world's largest producer of alcohol and sugar from sugarcane. Currently, sugarcane bagasse is burned in boilers to produce steam and electrical energy, producing a huge volume of ash. The major component of the ash is SiO{sub 2}, and among the minor components there are some mineralizing agents or fluxing. Published works have shown the potential of transforming silicate-based residues into glass-ceramic products of great utility. This work reports the research results of SCBA use to produce glass-ceramics with wollastonite, rankinite and gehlenite as the major phases. These silicates have important applications as building industry materials, principally wollastonite, due to their special properties: high resistance to weathering, zero water absorption, and hardness among others. The glasses (frits) were prepared mixing ash, calcium carbonate and sodium or potassium carbonates as flux agents, in different concentrations. X-ray fluorescence was used to determine the chemical composition of the glasses and their crystallization was assessed by using thermal analysis (DTA/DSC/TGA) and X-ray diffraction. The crystallization kinetics was evaluated using the Kissinger method, giving activation energies ranging from 200 to 600 kJ/mol.

  17. Carboximetilação de polpas de bagaço de cana-de-açúcar e caracterização dos materiais absorventes obtidos Carboxymethylation of pulps from sugar cane bagasse and characterization of the produced absorbent materials

    Directory of Open Access Journals (Sweden)

    Luís C. Morais

    1999-12-01

    Full Text Available Os processos soda/antraquinona e etanol/água foram aplicados à produção de polpas de fibras e de medulas de bagaço de cana-de-açúcar. Tais polpas foram carboximetiladas em suspensão de isopropanol/água (8/1 m/m por 4 horas a 80(0C, empregando a relação molar 8,5/5,4/1 para ácido monocloroacético/hidróxido de sódio/celulose. Os graus médios de susbtituição dos produtos carboximetilados foram determinados por espectroscopia ¹H R.M.N. e variaram entre 0,44 e 1,27 em função da polpa empregada na derivatização. Os derivados mais substituídos foram os melhores absorventes, sugerindo que a capacidade de retenção de água desses produtos está diretamente associada a seus graus de substituição.Two pulping methods were used on fibers and pith of sugar cane bagasse: soda/anthraquinone and ethanol/water. These pulps were submitted to carboxymethylation in a slurry of isopropanol/water (8/1 m/m at 80ºC for 4 hours using a molar relation 8,8/5,4/1 of monochloroacetic acid/sodium hydroxyde/cellulose. The average degrees of substitution of the carboxymethylated products, determined by ¹H N.M.R. spectroscopy, were between 0.44 and 1.27, depending on the pulp employed for derivatization. The more substituted pulps were the more absorbent products, suggesting that the water retention capacity of these products is closely associated to their degrees of substitution.

  18. Wear and Grip Loss Evaluation of High Chromium Welding Deposits Applied on Sugar Cane Rolls1

    OpenAIRE

    Diaz Millan, Sebastian; Rugbeño S.A.S; Aguilar Castro, Yesid; Escuela de Ingeniería de Materiales, Universidad del Valle, Cali, Colombia; Casanova García, Gonzalo Fernando; Escuela de Ingeniería Mecánica,Universidad del Valle, Cali, Colombia

    2015-01-01

    Wear on sugar cane rolls is an expensive maintenance problem for the sugar cane industry. Wear produces loss of sucrose extraction and loss of grip of the roll on the bagasse. This paper presents the evaluation of wear and loss of grip of hypoeutectic and hypereutectic high chromium welding deposits applied on ASTM A-36 steel and gray cast iron. A modified ASTM G-65 standard test was used. Wear was produced by the abrasive action of wet bagasse with three levels of mineral extraneous matter. ...

  19. Technical evaluation of biomass gasification technology integrated with combined cycle using bagasse as fuel; Avaliacao tecnica da tecnologia de gaseificacao de biomassa integrada a ciclos combinados utilizando bagaco como combustivel

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, Pablo Silva; Venturini, Osvaldo Jose; Lora, Electo Silva [Universidade Federal de Itajuba (NEST/UNIFEI), MG (Brazil). Nucleo de Excelencia em Geracao Termeletrica e Distribuida], email: pablo.silvaortiz@gmail.com; Campo, Andres Perez [Universidade Automona de Bucaramanga (UNAB) (Colombia). Fac. de Engenharia Fisico- Mecanica, Engenharia em Energia

    2010-07-01

    Biomass Integrated Gasification Combined Cycle (BIGCC) was identified as an advanced technology with potential to be competitive for electricity generation. The BIGCC technology uses biomass and the sub products of some industrial sectors processing, like sugar cane, as feedstock. The current Brazilian energy matrix is mainly based on renewable generation sources, making it important to assess these gasification technologies in the production of sugar, ethanol and electricity. In this work, a technical evaluation of the technologies incorporated in BIGCC power plants is done: the gasification process and the combined cycle power plant. On the other hand, the generated costs of these systems are analyzed, and the potential for implementation in Brazil plants from sugar cane bagasse is studied, in which a 10% increase in efficiency is obtained. (author)

  20. Engineering and economic analysis for the utilization of geothermal fluids in a cane sugar processing plant. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Humme, J.T.; Tanaka, M.T.; Yokota, M.H.; Furumoto, A.S.

    1979-07-01

    The purpose of this study was to determine the feasibility of geothermal resource utilization at the Puna Sugar Company cane sugar processing plant, located in Keaau, Hawaii. A proposed well site area was selected based on data from surface exploratory surveys. The liquid dominated well flow enters a binary thermal arrangement, which results in an acceptable quality steam for process use. Hydrogen sulfide in the well gases is incinerated, leaving sulfur dioxide in the waste gases. The sulfur dioxide in turn is recovered and used in the cane juice processing at the sugar factory. The clean geothermal steam from the binary system can be used directly for process requirements. It replaces steam generated by the firing of the waste fibrous product from cane sugar processing. The waste product, called bagasse, has a number of alternative uses, but an evaluation clearly indicated it should continue to be employed for steam generation. This steam, no longer required for process demands, can be directed to increased electric power generation. Revenues gained by the sale of this power to the utility, in addition to other savings developed through the utilization of geothermal energy, can offset the costs associated with hydrothermal utilization.

  1. Feasibility study on introduction of the bio-fuel power generation in tropical regions

    Science.gov (United States)

    1993-03-01

    Study is made on feasibility of introducing the bio-fuel power generation in tropical regions, especially in South East Asia including Okinawa and South America. Biomass promising as bio-fuel is bagasse and palm oil mill dregs; and bagasse is found to be advantageous to the use for large-scaled power generation. Prospective uses of bagasse are a combined use of gasification process and gas turbine power generation, an effective use of gas turbine exhaust heat at sugar cane factories, and a use of the system to be developed which totalizes these two. As to how to carry out the R and D project, since the gasification power generation process itself is a high technology and has partially unknown fields, it is desirable that research and development are conducted in such technologically developed countries as Japan (Okinawa). A developmental plan, therefore, is worked out as such that a pilot plant of approximately 3000kW is to be constructed in Okinawa because the period for bagasse production is at least 3 months there, and a commercial-scale plant is to be constructed and operated in such big bagasse-producing countries as Brazil.

  2. Desempenho e digestibilidade aparente dos nutrientes em ovinos alimentados com dietas contendo bagaço de cana-de-açúcar tratado com óxido de cálcio Performance and nutrients apparent digestibility in sheep fed diets containing sugar cane bagasse treated with calcium oxide

    Directory of Open Access Journals (Sweden)

    Rogério Mendes Murta

    2011-06-01

    Full Text Available Foram estudados os efeitos da adição de 0,0; 0,75; 1,5 e 2,25% de óxido de cálcio no bagaço de cana-de-açúcar (com base na matéria natural com o objetivo de avaliar o desempenho, o consumo de nutrientes e a digestibilidade aparente das dietas e dos nutrientes em ovinos mestiços da raça Santa Inês e raças nativas. Vinte e quatro ovinos, mantidos em total confinamento, foram distribuídos em delineamento inteiramente ao acaso, com quatro níveis de óxido de cálcio e seis repetições. Os animais foram mantidos em baias individuais, por 77 dias. Os primeiros 14 dias foram de adaptação e, então, seguiram-se três períodos de 21 dias de coleta de dados. Na determinação da digestibilidade, utilizou-se o método de coleta total de fezes, que foi realizada nos quatro últimos dias do período experimental. As fezes foram coletadas três vezes ao dia, às 7, 13 e 18 h. O uso do óxido de cálcio não influenciou os consumos de matéria seca, proteína bruta, fibra em detergente neutro, fibra em detergente ácido e nutrientes digestíveis totais, mas houve efeito linear sobre ganho de peso, com o aumento nas doses de óxido de cálcio, mas não sobre a conversão alimentar e os coeficientes de digestibilidade aparente da matéria seca, proteína bruta e fibra em detergente ácido. Entretanto, foi observado efeito quadrático para o coeficiente de digestibilidade aparente da fibra em detergente. A utilização do bagaço de cana hidrolisado com óxido de cálcio em níveis a partir de 1,5% da matéria natural promove melhoras no desempenho de ovinos e aumenta a digestibilidade apenas da fibra em detergente neutro.The addition effects of 0.0; 0.75; 1.5 and 2.25% of calcium oxide on sugar-cane bagasse (on natural matter basis were studied to evaluate the performance, nutrients intake and apparent digestibility of the diets and nutrients in crossbred sheep of Santa Inês and native breeds. Twenty-four sheep, maintened in total confinement

  3. Eighteen years of electric power generation by using sugar cane biomass in Cuba: retrospective, costs and environmental considerations; Dieciocho anos de generacion de electricidad con biomasa canera en Cuba: retrospectiva, costos y consideraciones ambientales

    Energy Technology Data Exchange (ETDEWEB)

    Alonso Pippo, Walrido; Del Rey Ocampo, Joaquin [Universidad de La Habana (Cuba). Inst. de Materiales y Reactivos]. E-mail: pippo@imre.oc.uh.cu

    2002-07-01

    From the data of the electric power cogeneration of the sugar industry behaviour , the utilization of the energy bagasse potential as industrial residue from the sugar production and the associated costs. A preliminary comparison is established on the costs of conventional electric power generation and the costa resulting from generation using bagasse. The paper also considers the industry operation regime as one of the determinant aspects for obtaining significant quantities of wastes to be used in electric power generation and also in the production of other energy carriers from the using of new thermochemical and thermo energetic conversion technologies. The paper performs a retrospective analysis of the environmental costs biomass use, under the twenty century modern criteria.

  4. Analysis of energy performance in two systems of cogeneration used in plants of sugar cane; Analise de desempenho energetico em dois sistemas de cogeracao empregados em usinas de cana de acucar

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Felipe A.A.; Rosa, Rodrigo A. [Cogeracao Sistemas de Energia Ltda., Recife, PE (Brazil)

    2004-07-01

    One of the options to overcome the current volatility in Brazil's power consumption outlook relates to the employment of other sources for power generation, namely solar energy, wind power or the use of biomass, namely the power generation through the cane bagasse. One should realize, however, that the economic accomplishment for launching a generation system should depend on the level of effectiveness of all processes and/or equipment comprising the system thereof. As far as the sugar-alcohol industry is concerned, the larger the system effectiveness is, the bigger the surplus of bagasse becomes and, hence, the better the chance of achieving financial earnings. Two generation systems shall be evaluated, aiming to thermo-dynamically identify the differences between the use of small equipment-driven turbines (like choppers, shredders and mills) and multi-stage turbo-generators, in order to replace the electric-powered drive units. Therefore, one shall follow thermodynamic-based criteria, namely the steam specific consumption, the equipment availability and effectiveness, thus allowing a comparison for each engine. Such survey shows that the effectiveness reaches nearly 68% for the turbo-generators and 43% for the small turbines. Under the economic perspective, one can find a saving of 89.500 tonnes per crop of bagasse, standing for an additional turnover of US$ 895.000,00 annually. (author)

  5. Balanço de compostos nitrogenados e produção de proteína microbiana em novilhas leiteiras alimentadas com palma forrageira, bagaço de cana-de-açúcar e uréia associados a diferentes suplementos Nitrogenous compounds balance and microbial protein production in crossbred heifers fed forage cactus, sugar cane bagasse and urea associated to different supplements

    Directory of Open Access Journals (Sweden)

    Ricardo Alexandre Silva Pessoa

    2009-05-01

    Full Text Available Objetivou-se avaliar o efeito da associação de palma forrageira ao bagaço de cana-de-açúcar e à uréia sobre o balanço de compostos nitrogenados e a produção de proteína microbiana em novilhas leiteiras recebendo ou não suplemento. Foram utilizadas 25 novilhas da raça Girolando, com peso vivo médio inicial de 227 kg, confinadas, distribuídas em delineamento experimental de blocos ao acaso, estabelecidos de acordo com o peso dos animais. A ração controle (sem suplemento foi composta de 64,0% de palma forrageira, 30,0% de bagaço de cana-de-açúcar, 4,0% de mistura uréia:sulfato de amônio (9:1 e 2,0% de mistura mineral, com base na matéria seca (MS, e as rações experimentais, de 57,0% de palma forrageira, 26,0% de bagaço de cana-de-açúcar, 3,5% de mistura uréia:sulfato de amônio, 1,8% de mistura mineral e 11,7% de suplemento (0,5% do PV dos animais. Os suplementos testados foram: farelo de trigo, farelo de soja, farelo de algodão ou caroço de algodão. O balanço de nitrogênio não foi influenciado pelas dietas e apresentou valor médio de 49,3 g/dia. A suplementação com farelo de algodão ou com farelo de soja aumentou a excreção de nitrogênio na urina, a concentração de uréia e nitrogênio uréico no plasma e a excreção urinária de uréia e nitrogênio uréico. A associação da palma forrageira ao bagaço de cana-de-açúcar e à uréia, sem o uso de suplementos, permite eficiência de síntese microbiana de 105 gPBmic/kg de NDT consumido. A suplementação com caroço de algodão proporciona maior excreção urinária de alantoína e derivados de purina e melhor eficiência de síntese microbiana, portanto, é a mais indicada nestas condições.The objective of this work was to evaluate the effect of association of forage cactus to sugar cane bagasse and urea on nitrogenous compounds balance and microbial protein synthesis in milk heifers supplemented or not. Twenty-five Holstein-Gir crossbred heifers

  6. Ozone decay on stainless steel and sugarcane bagasse surfaces

    Science.gov (United States)

    Souza-Corrêa, Jorge A.; Oliveira, Carlos; Amorim, Jayr

    2013-07-01

    Ozone was generated using dielectric barrier discharges at atmospheric pressure to treat sugarcane bagasse for bioethanol production. It was shown that interaction of ozone molecules with the pretreatment reactor wall (stainless steel) needs to be considered during bagasse oxidation in order to evaluate the pretreatment efficiency. The decomposition coefficients for ozone on both materials were determined to be (3.3 ± 0.2) × 10-8 for stainless steel and (2.0 ± 0.3) × 10-7 for bagasse. The results have indicated that ozone decomposition has occurred more efficiently on the biomass material.

  7. Energy use from sugar cane industry to generated electric surplus for public supply in El Salvador; Aproveitamento energetico da agroindustria da cana de acucar para geracao de excedentes de eletricidade na rede publica de El Salvador

    Energy Technology Data Exchange (ETDEWEB)

    Trabanino, Ana Maria Gonzalez

    1990-08-01

    The main purpose of this thesis is to demonstrate that the application of technological alternatives using high pressure (cogeneration or thermoelectric systems) and improving the efficiency of the whole energy cycle in sugar cane industry, it is possible to generate electric energy surplus for public electric network with technical and economical advantages. (author). 28 figs., 182 tabs., 53 refs

  8. Lime pretreatment and fermentation of enzymatically hydrolyzed sugarcane bagasse.

    Science.gov (United States)

    Rabelo, Sarita C; Maciel Filho, Rubens; Costa, Aline C

    2013-03-01

    Sugarcane bagasse was subjected to lime (calcium hydroxide) pretreatment and enzymatic hydrolysis for second-generation ethanol production. A central composite factorial design was performed to determine the best combination of pretreatment time, temperature, and lime loading, as well as to evaluate the influence of enzymatic loadings on hydrolysis conversion. The influence of increasing solids loading in the pretreatment and enzymatic hydrolysis stages was also determined. The hydrolysate was fermented using Saccharomyces cerevisiae in batch and continuous mode. In the continuous fermentation, the hydrolysates were concentrated with molasses. Lime pretreatment significantly increased the enzymatic digestibility of sugarcane bagasse without the need for prior particle size reduction. In the optimal pretreatment conditions (90 h, 90 °C, 0.47 glime/g bagasse) and industrially realistic conditions of hydrolysis (12.7 FPU/g of cellulase and 7.3 CBU/g of β-glucosidase), 139.6 kglignin/ton raw bagasse and 126.0 kg hemicellulose in the pretreatment liquor per ton raw bagasse were obtained. The hydrolysate from lime pretreated sugarcane bagasse presented low amounts of inhibitors, leading to ethanol yield of 164.1 kgethanol/ton raw bagasse.

  9. Sugarcane biomass for biorefineries: comparative composition of carbohydrate and non-carbohydrate components of bagasse and straw.

    Science.gov (United States)

    Szczerbowski, Danielle; Pitarelo, Ana Paula; Zandoná Filho, Arion; Ramos, Luiz Pereira

    2014-12-19

    Two fractions of sugarcane, namely bagasse and straw (or trash), were characterized in relation to their chemical composition. Bagasse presented values of glucans, hemicelluloses, lignin and ash of 37.74, 27.23, 20.57 and 6.53%, respectively, while straw had 33.77, 27.38, 21.28 and 6.23% of these same components. Ash content was relatively high in both cane biomass fractions. Bagasse showed higher levels of contaminating oxides while straw had a higher content of alkaline and alkaline-earth oxides. A comparison between the polysaccharide chemical compositions of these lignocellulosic materials suggests that similar amounts of fermentable sugars are expected to arise from their optimal pretreatment and enzymatic hydrolysis. Details about the chemical properties of cane biomass holocellulose, hemicelluloses A and B and α-cellulose are provided, and these may offer a good opportunity for designing more efficient enzyme cocktails for substrate saccharification.

  10. Influence of gamma radiation in the mechanical properties of partially biodegradable foams of PP/HMSP blends with sugar cane bagasse; Influencia da irradiacao gama nas propriedades mecanicas de espumas parcialmente biodegradaveis de blendas de PP/HMSPP com bagaco de cana-de-acucar

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Elizabeth C.L.; Scagliusi, Sandra R.; Mascarenha, Yago; Lugao, Ademar B., E-mail: eclcardo@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Polymers are used in various applications and in different market segments generating enormous amounts of wastes in environment. Among residues components in landfills are polymeric materials, as PP, contributing with 20 to 30% of total solids residues. As polymeric materials are immune to microbial degradation, remain in soil and in landfills as a semi-permanent residue. Environmental concerning toward residues reduction is nowadays directed to the development of renewable polymers for manufacturing of materials that degrade under environment, as biodegradable polymeric foams. High density structural foams are especially used in civil construction, replacing metals, woods and concrete, with a major purpose of materials cost reduction. This work aims to the study of biodegradability in PP/HMSPP blends with sugarcane bagasse at 10, 15, 30 and 50% further irradiated at 50, 100, 150 and 200 kGy doses. The biodegradability was assessed via Soil Burial Test. Tensile strength and elongation at break results proved that natural fibers reinforcement characteristic was not affected by gamma radiation, responsible by degradation and consequent biodegradability acceleration in structural foams. (author)

  11. Influence of gamma irradiation on mechanical properties of foams partially biodegradable of of PP/HMSPP blends with bagasse of sugar cane; Influencia da irradiacao gama nas propriedades mecanicas de espumas parcialmente biodegradaveis de blendas de PP/HMSPP com bagaco de cana-de-acucar

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Elizabeth C.L.; Scagliusi, Sandra R.; Mascarenha, Yago; Lugao, Ademar B., E-mail: eclcardo@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Polymers are used in various applications and in different market segments generating enormous amounts of wastes in environment. Among residues components in landfills are polymeric materials, as PP, contributing with 20 to 30% of total solids residues. As polymeric materials are immune to microbial degradation, remain in soil and in landfills as a semi-permanent residue. Environmental concerning toward residues reduction is nowadays directed to the development of renewable polymers for manufacturing of materials that degrade under environment, as biodegradable polymeric foams. High density structural foams are especially used in civil construction, replacing metals, woods and concrete, with a major purpose of materials cost reduction. This work aims to the study of biodegradability in PP/HMSPP blends with sugarcane bagasse at 10, 15, 30 and 50% further irradiated at 50, 100, 150 and 200 kGy doses. The biodegradability was assessed via Soil Burial Test. Tensile strength and elongation at break results proved that natural fibers reinforcement characteristic was not affected by gamma radiation, responsible by degradation and consequent biodegradability acceleration in structural foams. (author)

  12. Evaluation of Mechanical Properties of Injection Molding Composites Reinforced by Bagasse Fiber

    Science.gov (United States)

    Cao, Yong; Fukumoto, Isao

    BMC (Bulk Molding Compound) is composed of UP (Unsaturated Polyester) resin, glass fibers, and bagasse fibers which have been obtained after squeezing sugar cane. Our purpose is to use the bagasse fibers as reinforcement and filler in BMC to fabricate composites by injection molding and injection compression molding. The mechanical properties of injection molding composites were improved after adding the bagasse fibers. Observing the fracture surface of the tensile test specimen through SEM, we could notice the glass fibers were penetrated into the bagasse fibers longitudinally. Along with UP resin solidifying, the glass fibers were firmly fixed in the bagasse fibers and finally united with them. This phenomenon could bring on the same effect as the glass fibers length was prolonged, so that the adhesion interface between fiber and matrix resin became larger, which leads to the increase in the mechanical properties. Otherwise, it was observed that UP resin sufficiently permeated the bagasse fibers and solidified. This also contributes to enhancing the mechanical properties drastically.

  13. Utilization of agricultural sugar cane wastes as fuel in modern cogeneration systems applied in sugar cane mills; Aprovechamiento de los residuos agricolas caneras como combustible en sistemas de cogeneracion modernos aplicados a ingenios

    Energy Technology Data Exchange (ETDEWEB)

    Buendia Dominguez, Eduardo H. [Instituto de Investigaciones Electricas, Cuernavaca (Mexico); De Buen Rodriguez, Odon [Comision Nacional para el Ahorro de la Energia, Mexico, D. F. (Mexico)

    1998-12-31

    Considering the new legal frame on cogeneration in Mexico, the possibility of heat and electricity supply required by the sugar mills to be made by an independent cogenerator of the sugar mill, operating with the sugar cane bagasse and agricultural sugar cane wastes, has been evaluated. Such modern cogenerator would be characterized, besides operating in an independent way of the sugar mill, by the use of high efficiency equipment in its process of heat and electricity generation. In this sense the Comision Nacional para el Ahorro de Energia (CONAE) through its Coordination Program and the Instituto de Investigaciones Electricas (IIE) carried out a joint project to determine the technical and economical viability that the sugar industry maintains the present sugar production without the need of burning fuel oil, installing adjacent to every sugar mill, a modern cogeneration system, operated by independent producers, that using sugar cane bagasse and agricultural sugar cane wastes, allows the supply of all the steam and electricity required by the sugar mill, and additionally can add firm capacity and the supply of electric power to the national grid, during the grinding season as well as out of grinding season. [Espanol] En consideracion al nuevo marco juridico de la cogeneracion en Mexico se ha evaluado la posibilidad de que el suministro de calor y electricidad requerido por los ingenios azucareros sea proporcionado por un cogenerador independiente de la planta de azucar, el cual opere utilizando el bagazo y residuos agricolas caneras (biomasa canera). Dicho cogenerador moderno se caracterizaria, ademas de operar de manera independiente a la planta de azucar, por el uso de equipos de alta eficiencia en su proceso de produccion de calor y electricidad. En este sentido la Comision Nacional para el Ahorro de Energia (CONAE) a traves de la Coordinacion de Programacion y el Instituto de Investigaciones Electricas (IIE) realizaron un trabajo en conjunto para determinar

  14. Recovery of used frying sunflower oil with sugar cane industry waste and hot water.

    Science.gov (United States)

    Ali, Rehab F M; El Anany, A M

    2014-11-01

    The main goal of the current investigation was to use sugar cane bagasse ash (SCBA) and to compare its adsorption efficiency with Magnesol XL as synthetic adsorbents to regenerate the quality of used frying sunflower oil. In addition, to evaluate the effect of water washing process on the quality of used frying oil and the treated oil. The metal patterns of sugar cane bagasse ash and Magnesol XL were determined. Some physical and chemical properties of unused, used frying and used-treated sunflower oil were determined. Sunflower oil sample was heated at 180 °C + 5 °C, then frozen French fries potato were fried every 30 min. during a continuous period of 20 h. Oil samples were taken every 4 h. The filter aids were added individually to the used frying oil at levels 1, 2 and 3 % (w / v), then mechanically stirred for 60 min at 105 °C. The results indicate that all the filter aids under study were characterized by high levels of Si and variable levels of other minerals. The highest level of Si was recorded for sugar cane bagasse ash (SCBA) was 76.79 wt. %. Frying process caused significant (P ≤ 0.05) increases in physico-chemical properties of sunflower oil. The treatments of used frying sunflower oil with different levels of sugar cane bagasse ash and Magnesol XL caused significant (P ≤ 0.05) increase in the quality of treated oil, however the soap content of treated oil was increased, therefore, the effect of water washing process on the quality of used frying and used-treated sunflower oil was evaluated. The values of soap and Total polar compounds after water treatment were about 4.62 and 7.27 times as low as that for sunflower oil treated with 3 % sugar cane bagasse ash (SCBA). The results of the present study indicate that filtration treatment with different levels of sugar cane bagasse ash( SCBA) regenerated the quality of used sunflower oil and possess higher adsorbing effects than the synthetic filter aid ( Magnesol XL ) in

  15. Protein production by Arthrospira (Spirulina) platensis in solid state cultivation using sugarcane bagasse as support

    OpenAIRE

    2015-01-01

    The genus Arthrospira comprises a group of filamentous multicellular cyanobacteria and can be used for animal feed and human food. Solid state fermentation or cultivation (SSF) involves the use of a culture medium composed of solid material with given moisture content. No studies have been published about the cultivation of microalgae or cyanobacteria on solid medium. Furthermore, although sugar-cane bagasse is used as source of energy in alcohol distilleries in Brazil, the excess could be a ...

  16. Immunotherapeutic effects of some sugar cane (Saccharum officinarum L.) extracts against coccidiosis in industrial broiler chickens.

    Science.gov (United States)

    Awais, Mian Muhammad; Akhtar, Masood; Muhammad, Faqir; ul Haq, Ahsan; Anwar, M Irfan

    2011-06-01

    Present paper reports the effects of aqueous and ethanolic extracts of sugar cane (Saccharum officinarum L.) juice and bagasse, respectively on protective immune responses in industrial broiler chickens against coccidiosis. Immunotherapeutic efficacies of the extracts were measured by evaluating their effect on body weight gain, oocyst shedding, lesion score, anti-coccidial indices, per cent protection and elicited serum antibody responses against coccidiosis. Results revealed a significantly lower (P0.01). These results demonstrated that both ethanolic and aqueous extracts of sugar cane possess immune enhancing properties and their administration in chickens augments the protective immunity against coccidiosis. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Fossil energy savings potential of sugar cane bio-energy systems

    DEFF Research Database (Denmark)

    Nguyen, Thu Lan T; Hermansen, John Erik; Sagisaka, Masayuki

    2009-01-01

    One important rationale for bio-energy systems is their potential to save fossil energy. Converting a conventional sugar mill into a bio-energy process plant would contribute to fossil energy savings via the extraction of renewable electricity and ethanol substituting for fossil electricity...... and gasoline, respectively. This paper takes a closer look at the Thai sugar industry and examines two practical approaches that will enhance fossil energy savings. The first one addresses an efficient extraction of energy in the form of electricity from the excess bagasse and cane trash. The second while...... proposing to convert molasses or sugar cane to ethanol stresses the use of bagasse as well as distillery spent wash to replace coal in meeting ethanol plants' energy needs. The savings potential achieved with extracting ethanol from surplus sugar versus current practice in sugar industry in Thailand amounts...

  18. Technical and Economical Feasibility of Production of Ethanol from Sugar Cane and Sugar Cane Bagasse

    NARCIS (Netherlands)

    Efe, C.; Straathof, A.J.J.; Van der Wielen, L.A.M.

    2005-01-01

    The primary aim of this study is to investigate and analyze the sugar-ethanol plants operating in Brazil to construct a raw model to gain better understanding and insight about the technical and economical aspects of the currently operating plants. And, the secondary aim is to combine the knowledge

  19. Technical and Economical Feasibility of Production of Ethanol from Sugar Cane and Sugar Cane Bagasse

    NARCIS (Netherlands)

    Efe, C.; Straathof, A.J.J.; Van der Wielen, L.A.M.

    2005-01-01

    The primary aim of this study is to investigate and analyze the sugar-ethanol plants operating in Brazil to construct a raw model to gain better understanding and insight about the technical and economical aspects of the currently operating plants. And, the secondary aim is to combine the knowledge

  20. IMPROVED BIOREFINERY FOR THE PRODUCTION OF ETHANOL, CHEMICALS, ANIMAL FEED AND BIOMATERIALS FROM SUGAR CANE

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Donal F. Day

    2009-01-29

    The Audubon Sugar Institute (ASI) of Louisiana State University’s Agricultural Center (LSU AgCenter) and MBI International (MBI) sought to develop technologies that will lead to the development of a sugar-cane biorefinery, capable of supplying fuel ethanol from bagasse. Technology development focused on the conversion of bagasse, cane-leaf matter (CLM) and molasses into high value-added products that included ethanol, specialty chemicals, biomaterials and animal feed; i.e. a sugar cane-based biorefinery. The key to lignocellulosic biomass utilization is an economically feasible method (pretreatment) for separating the cellulose and the hemicellulose from the physical protection provided by lignin. An effective pretreatment disrupts physical barriers, cellulose crystallinity, and the association of lignin and hemicellulose with cellulose so that hydrolytic enzymes can access the biomass macrostructure (Teymouri et al. 2004, Laureano-Perez, 2005). We chose to focus on alkaline pretreatment methods for, and in particular, the Ammonia Fiber Expansion (AFEX) process owned by MBI. During the first two years of this program a laboratory process was established for the pretreatment of bagasse and CLM using the AFEX process. There was significant improvement of both rate and yield of glucose and xylose upon enzymatic hydrolysis of AFEX-treated bagasse and CLM compared with untreated material. Because of reactor size limitation, several other alkaline pretreatment methods were also co-investigated. They included, dilute ammonia, lime and hydroxy-hypochlorite treatments. Scale-up focused on using a dilute ammonia process as a substitute for AFEX, allowing development at a larger scale. The pretreatment of bagasse by an ammonia process, followed by saccharification and fermentation produced ethanol from bagasse. Simultaneous saccharification and fermentation (SSF) allowed two operations in the same vessel. The addition of sugarcane molasses to the hydrolysate

  1. Influence of a Third Set of Knives on the Efficiency of the Sucrose Extraction from Sugar Cane

    Directory of Open Access Journals (Sweden)

    Corrales-Suárez Jorge Michel

    2015-09-01

    Full Text Available The index of cane preparation is one of the variables that influence on efficiency the sucrose extraction process from sugar cane mills in tandem. This influence can be measured by the % sucrose (% Pol and % humidity in the final bagasse and power demand tandem, these three variables are the dependent variables on this research. The index of cane preparation was the independent variable. The objective of this research is to show the impact of an increased rate of cane preparation, achieved with addition of a third set of knives in tandem, on the efficiency of the extraction process and the tandem power demand. This research was carried out in two stages. A first stage where the tandem was operated with two sets of existing knives and a second stage where it was operated with the addition of a set of knives (that to say with three sets of knives, the third set of knives mounted to increase the rate of cane preparation. A statistical analysis concludes that with increasing the rate of cane preparation both in the final bagasse the % Pol and % Humidity decrease significantly and tandem power demand decreases by 2.87%.

  2. Applying functional metagenomics to search for novel lignocellulosic enzymes in a microbial consortium derived from a thermophilic composting phase of sugarcane bagasse and cow manure.

    Science.gov (United States)

    Colombo, Lívia Tavares; de Oliveira, Marcelo Nagem Valério; Carneiro, Deisy Guimarães; de Souza, Robson Assis; Alvim, Mariana Caroline Tocantins; Dos Santos, Josenilda Carlos; da Silva, Cynthia Canêdo; Vidigal, Pedro Marcus Pereira; da Silveira, Wendel Batista; Passos, Flávia Maria Lopes

    2016-09-01

    Environments where lignocellulosic biomass is naturally decomposed are sources for discovery of new hydrolytic enzymes that can reduce the high cost of enzymatic cocktails for second-generation ethanol production. Metagenomic analysis was applied to discover genes coding carbohydrate-depleting enzymes from a microbial laboratory subculture using a mix of sugarcane bagasse and cow manure in the thermophilic composting phase. From a fosmid library, 182 clones had the ability to hydrolyse carbohydrate. Sequencing of 30 fosmids resulted in 12 contigs encoding 34 putative carbohydrate-active enzymes belonging to 17 glycosyl hydrolase (GH) families. One third of the putative proteins belong to the GH3 family, which includes β-glucosidase enzymes known to be important in the cellulose-deconstruction process but present with low activity in commercial enzyme preparations. Phylogenetic analysis of the amino acid sequences of seven selected proteins, including three β-glucosidases, showed low relatedness with protein sequences deposited in databases. These findings highlight microbial consortia obtained from a mixture of decomposing biomass residues, such as sugar cane bagasse and cow manure, as a rich resource of novel enzymes potentially useful in biotechnology for saccharification of lignocellulosic substrate.

  3. Preliminary studies of the development of a direct compression cellulose excipient from bagasse.

    Science.gov (United States)

    Padmadisastra, Y; Gonda, I

    1989-06-01

    Bagasse is an unused by-product in cane sugar manufacture. Bagasse from sugar cane manually harvested in Indonesia was transformed to pulp by mechanical means and repeated autoclaving in 1.4% NaOH. It was then subjected to cycles of bleaching with hypochlorite and acid hydrolysis with 2.5 M HCl to produce 'microcrystalline' cellulose (MCC). Extraction of waxes by petroleum ether was necessary in order to improve the disintegration properties of tablets made from this material, DICEB III. When the bagasse-derived cellulose was reconstituted by recombining different proportions of selected sieve cuts to have a similar sieve size distribution as the commercially available MCC, Avicel PH102, it was found that the latter and DICEB III also had similar crystallinity as measured by X-ray powder diffraction (degree of crystallinity 2.8 +/- 0.2). The crystallinity and flow index were also relatively insensitive to most of the changes in the manufacturing procedure, indicating that the production process was quite robust. Directly compressed tablets were made containing 50 mg of caffeine and 500 mg of either Avicel PH102 or DICEB III to approximately the same hardness (11.6 +/- 1.1 and 13.7 +/- 0.5 kPa, respectively). They displayed similar satisfactory disintegration and dissolution behavior. However, DICEB III required greater compaction pressures than Avicel PH102, perhaps because the former was not spray dried to give spherical agglomerates of particles of uniform size as the commercial product. Rather, DICEB III consisted mainly of single irregular particles. Further work is required to improve the new excipient and to explore if the bagasse from mechanically harvested sugar cane (often contaminated by soil) could also be used for production of MCC.

  4. Pretreatment strategies for delignification of sugarcane bagasse: a review

    Directory of Open Access Journals (Sweden)

    Susan Grace Karp

    2013-08-01

    Full Text Available The valorization of agro-residues by biological routes is a key technology that contributes to the development of sustainable processes and the generation of value-added products. Sugarcane bagasse is an agro-residue generated by the sugar and alcohol industry in Brazil (186 million tons per year, composed essentially of cellulose (32-44%, hemicellulose (27-32% and lignin (19-24%. The conversion of sugarcane bagasse into fermentable sugars requires essentially two steps: pretreatment and hydrolysis. The aim of the pretreatment is to separate the lignin and break the structure of lignocellulose, and it is one of the most critical steps in the process of converting biomass to fermentable sugars. The aim of this review is to describe different pretreatment strategies to promote the delignification of the sugarcane bagasse by thermo-chemical and biological processes.

  5. Conversion of bagasse cellulose into ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Cuzens, J.E.

    1997-11-19

    The study conducted by Arkenol was designed to test the conversion of feedstocks such as sugar cane bagasse, sorghum, napier grass and rice straw into fermentable sugars, and then ferment these sugars using natural yeasts and genetically engineered Zymomonis mobilis bacteria (ZM). The study did convert various cellulosic feedstocks into fermentable sugars utilizing the patented Arkenol Concentrated Acid Hydrolysis Process and equipment at the Arkenol Technology Center in Orange, California. The sugars produced using this process were in the concentration range of 12--15%, much higher than the sugar concentrations the genetically engineered ZM bacteria had been developed for. As a result, while the ZM bacteria fermented the produced sugars without initial inhibition, the completion of high sugar concentration fermentations was slower and at lower yield than predicted by the National Renewable Energy Laboratory (NREL). Natural yeasts performed as expected by Arkenol, similar to the results obtained over the last four years of testing. Overall, at sugar concentrations in the 10--13% range, yeast produced 850090% theoretical ethanol yields and ZM bacteria produced 82--87% theoretical yields in 96 hour fermentations. Additional commercialization work revealed the ability to centrifugally separate and recycle the ZM bacteria after fermentation, slight additional benefits from mixed culture ZM bacteria fermentations, and successful utilization of defined media for ZM bacteria fermentation nutrients in lieu of natural media.

  6. Xylo-oligosaccharides and Ethanol Production from Liquid Hot Water Hydrolysate of Sugarcane Bagasse

    Directory of Open Access Journals (Sweden)

    Qiang Yu

    2014-11-01

    Full Text Available With the objective of maximizing the use of liquid hot water hydrolysate of sugarcane bagasse, xylo-oligosaccharides and ethanol were respectively produced by the methods of purification and microbial fermentation. The processes of purification with activated charcoal, overliming, solvent extraction, vacuum evaporation, and use of an ion exchange resin were evaluated, and the results indicated that anion exchange chromatography performed well in terms of by-product removal. The recovery and purity of xylo-oligosaccharides reached 92.0% and 90.4%, respectively, using column chromatography with the resin LS30 at a flow rate of 2 mL/min at 25 C. The hydrolysate was used in ethanol fermentation with Pichia stipitis CBS6054 followed by the production of fermentable saccharides and detoxification. The highest ethanol concentration was 4.12 g/L with a theoretical yield of 47.9% for the hydrolysate after xylanase digestion and resin detoxification, similar to the data of the control experiment, which had an ethanol concentration of 4.64 g/L and a yield of 49.6%. However, the former had a higher ethanol productivity of 0.0860 g/(L∙h, and the highest ethanol concentration appeared 12 to 24 h earlier compared to the control. This study suggests that combined generation of xylo-oligosaccharides and cellulosic ethanol could help maximize profits for a cane sugar factory.

  7. Two proposals to determine the efficiency of bagasse boiler

    Energy Technology Data Exchange (ETDEWEB)

    Sosa-Arnao, Juan Harold; Modesto, Marcelo [Universidade Estadual de Campinas (DE/FEM/UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica. Dept. de Energia], e-mail: jhsosa@fem.unicamp.br; Nebra, Silvia A. [State University of Campinas (NIPE/UNICAMP), SP (Brazil). Interdisciplinary Center of Energy Planning], e-mail: silvia.nebra@pesquisador.cnpq

    2006-07-01

    This work analyzes and compares two proposals for determination of the bagasse boiler efficiency, one of it based on bagasse higher heating value (HHV), the other one based on bagasse lower heating value (LHV). The methodology of calculation, for both proposals, uses the heat loss method. The results, obtained through the two proposal's, presented important differences; the boiler efficiency determined through the proposal of code ASME PTC 4.1, based on HHV, highlights the effect of bagasse moisture content upon boiler efficiency. This effect, in the Beaton and Lora proposal, is hidden, because the energy required to evaporate the bagasse moisture content and the water vapour from hydrogen contained in the fuel are discounted in the LHV calculation. Three types of boilers, with different capacity and leaving steam properties were analysed. Considering the boiler constituted by a sequential arrangement of a steam generator, an air heater and an economizer, a simulation was made determining the influence of the variation of the air heater exit gases temperature upon theirs performances. The performance analysis was based on the second law of thermodynamics. (author)

  8. Potential Uses of Bagasse for Ethanol Production Versus Electricity Production

    Directory of Open Access Journals (Sweden)

    Zumalacárregui-De Cárdenas Lourdes Margarita

    2015-07-01

    Full Text Available The procedure to carry out the energy balance for ethanol production by bagasse’s hydrolysis is presented. The loss of potentialities for electric power generation when bagasse is used to produce ethanol instead of electricity directly is calculated. Potential losses are 45-64% according to the efficiency of the lignocellulosic ethanol production. The relationship that exists between the volume of ethanol and the efficiency of Otto and Rankine cycles is analyzed. Those cycles are used to produce electricity from ethanol and bagasse, respectively.

  9. Use of agave bagasse for production of an organic fertilizer by pretreatment with Bjerkandera adusta and vermicomposting with Eisenia fetida.

    Science.gov (United States)

    Moran-Salazar, Rene G; Marino-Marmolejo, Erika N; Rodriguez-Campos, Jacobo; Davila-Vazquez, Gustavo; Contreras-Ramos, Silvia M

    2016-01-01

    Agave tequilana Weber is used in tequila and fructans production, with agave bagasse generated as a solid waste. The main use of bagasse is to produce compost in tequila factories with a long traditional composting that lasts 6-8 months. The aim of this study was to evaluate the degradation of agave bagasse by combining a pretreatment with fungi and vermicomposting. Experiments were carried out with fractionated or whole bagasse, sterilized or not, subjecting it to a pretreatment with Bjerkandera adusta alone or combined with native fungi, or only with native bagasse fungi (non-sterilized), for 45 days. This was followed by a vermicomposting with Eisenia fetida and sewage sludge, for another 45 days. Physicochemical parameters, lignocellulose degradation, stability and maturity changes were measured. The results indicated that up to 90% of the residual sugars in bagasse were eliminated after 30 days in all treatments. The highest degradation rate in pretreatment was observed in non-sterilized, fractionated bagasse with native fungi plus B. adusta (BNFns) (71% hemicellulose, 43% cellulose and 71% lignin) at 45 days. The highest total degradation rates after vermicomposting were in fractionated bagasse pre-treated with native fungi (94% hemicellulose, 86% cellulose and 91% lignin). However, the treatment BNFns showed better maturity and stability parameters compared to that reported for traditional composts. Thus, it seems that a process involving vermicomposting and pretreatment with B. adusta could reduce the degradation time of bagasse to 3 months, compared to the traditional composting process, which requires from 6 to 8 months.

  10. Simultaneous production of α-cellulose and furfural from bagasse by steam explosion pretreatment

    Directory of Open Access Journals (Sweden)

    Vittaya Punsuvon

    2008-02-01

    Full Text Available Sugar cane bagasse was pretreated by steam explosion for the simultaneous production of furfural and α-cellulose pulp. The components of bagasse were fractionated after steam explosion. The details of the process are as follows. Bagasse was soaked in water for one night and steamed at temperatures varying between 206 and 223 C for 4 minutes. The steam exploded pulp was strained and washed with hot water to yield a liquor rich in hemicellulose-derived mono- and oligosaccharides. The remaining pulp was delignified by alkali for 120 minutes at 170C using, separately, NaOH load of 15, 20 and 25% of weight of the pulp. The delignified pulp was further bleached twice with 4% H2O2 charge of weight of the pulp to produce high α-cellulose pulp. The water liquor was evaporated and further hydrolysed and dehydrated with diluted H2SO4 in a stainless steel reactor to produce furfural. The result shows that the optimal pretreatment of steam explosion for 4 min at 218C leads to the yield of α-cellulose pulp at 193-201 g∙kg-1 of the original bagasse, and that furfural can be produced from xylose present in the liquor with a maximum conversion factor of 0.16.

  11. Effect of ozonolysis parameters on the inhibitory compound generation and on the production of ethanol by Pichia stipitis and acetone-butanol-ethanol by Clostridium from ozonated and water washed sugarcane bagasse.

    Science.gov (United States)

    Travaini, Rodolfo; Barrado, Enrique; Bolado-Rodríguez, Silvia

    2016-10-01

    Sugarcane bagasse (SCB) was ozone pretreated and detoxified by water washing, applying a L9(3)(4) orthogonal array (OA) design of experiments to study the effect of pretreatment parameters (moisture content, ozone concentration, ozone/oxygen flow and particle size) on the generation of inhibitory compounds and on the composition of hydrolysates of ozonated-washed samples. Ozone concentration resulted the highest influence process parameter on delignification and sugar release after washing; while, for inhibitory compound formation, moisture content also had an important role. Ozone expended in pretreatment related directly with sugar release and inhibitory compound formation. Washing detoxification was effective, providing non-inhibitory hydrolysates. Maximum glucose and xylose release yields obtained were 84% and 67%, respectively, for ozonated-washed SCB. Sugar concentration resulted in the decisive factor for biofuels yields. Ethanol production achieved an 88% yield by Pichia stipitis, whereas Clostridium acetobutylicum produced 0.072gBUTANOL/gSUGAR and 0.188gABE/gSUGAR, and, Clostridium beijerinckii 0.165gBUTANOL/gSUGAR and 0.257gABE/gSUGAR.

  12. Self-heating and drying in two-dimensional bagasse piles

    Science.gov (United States)

    Sexton, M. J.; Macaskill, C.; Gray, B. F.

    2001-12-01

    This paper describes a two-dimensional model for self-heating and changes in water levels in bagasse piles of constant rectangular or triangular cross section. (Bagasse is the residue, mainly cellulose, that remains after sugar has been extracted from sugar-cane.) After milling, the bagasse has almost 50% water by weight, as hot water is used to remove the last of the sugar. The bagasse can be used as fuel in electrical power stations, but needs to be dried out before use. This paper discusses the way in which the drying out of a pile depends on the ambient conditions, and the shape and size of the pile. Accordingly, the energy equation, and equations for liquid water, water vapour and oxygen are solved numerically using the method of lines. The equations include terms describing heat conduction, diffusion of water vapour and oxygen, condensation and evaporation and an Arrhenius self-heating term. In addition, recent measurements show that there is also self-heating due to the presence of water in the bagasse, with a maximum effect near 60 °C, which is modelled by a modified Arrhenius expression. The local maximum in the heat release curve for the problem leads to approximate steady-state behaviour on short time scales that eventually is lost as the pile dries out. This interesting physical behaviour motivates an approximate analytical model for the rate at which liquid water is reduced in the pile. Analytical and numerical results are presented for a variety of pile configurations and some fairly general conclusions are drawn.

  13. A smart cane with vibrotactile biofeedback improves cane loading for people with knee osteoarthritis.

    Science.gov (United States)

    Routson, Rebecca L; Bailey, Marcus; Pumford, Isabelle; Czerniecki, Joseph M; Aubin, Patrick M

    2016-08-01

    Nine million adults have symptomatic knee osteoarthritis (OA) in the U.S. and almost half of those people have a walking aid such as a cane. Proper cane loading (e.g. 15% body weight [BW]) can reduce knee loading and may slow OA progression. The purpose of this study was to investigate the efficacy of a novel smart cane with vibrotactile biofeedback that aims to facilitate increased cane loading. Ten subjects with knee OA performed a 50 m hallway walk test under four conditions: 1) naïve, 2) conventional cane with verbal instruction, 3) smart cane, and 4) conventional cane post smart cane. The cane load (% BW; mean ± 1 standard deviation) for the four conditions was 9.0 ± 1.9 (naïve), 12.7 ± 2.6 (conventional cane), 17.6 ± 2.4 (smart cane), and 15.6 ±3.1 (conventional cane post smart cane). These results indicate that the smart cane's vibrotactile biofeedback helped the users achieve the target cane loading of 15% BW or more as compared to naïve or verbal instruction alone. After using the smart cane, conventional cane loading was higher than the naïve and verbal instruction conditions demonstrating a potential smart cane training effect. Long term increased cane loading may reduce knee pain and improve joint function.

  14. Combattimenti col cane nero

    Directory of Open Access Journals (Sweden)

    Mario Bruno

    2015-07-01

    Full Text Available La depressione è stata definita in svariati modi: una volta si chiamava esaurimento nervoso, oggi è “il male oscuro”, “il male di vivere”, “umor nero” o, come l’aveva soprannominata Winston Churchill, “black dog”, un “cane nero” che ci divora. Sia come sia, oggi la depressione è riconosciuta come vera e propria malattia, una patologia subdola che colpisce a tradimento. Arriva silenziosa e devastante, preceduta o meno dai micidiali attacchi di panico, e taglia le gambe, chiude la persona sofferente in un limbo di silenzio e apatia; fa vedere tutto grigio, opaco, annienta interessi, desideri e, non di rado, la voglia di vivere. Tanti sono stati vittime della depressione. Anche fra le persone più note e di successo.

  15. Study of bagasse/tapioca starch film preparation and characterization

    Science.gov (United States)

    Chen, Yanyang; Wei, Xiaoyi; Chang, Gang; Fu, Tiaokun; Cui, Lihong; Li, Jihua

    2017-06-01

    Bagasse/tapioca starch films (BT) were prepared with various contents of bagasse (10, 20, 30, 40 and 50 wt% based on tapioca starch), and the effect of bagasse concentration was studied by the performance of the BT films. Then, the BT films characteristics were analyzed using the instruments about ultraviolet spectrophotometer (US), SEM, TGA and XRD. The dispersion of the bagasse became better with bagasse concentration increasing, the intermolecular hydrogen bonding became stronger while the transparency values of the films decreased.

  16. Utilization of bagasse and coconut fibers waste as fillers of sandwich composite for bridge railway sleepers

    Science.gov (United States)

    Soehardjo, K. A.; Basuki, A.

    2017-07-01

    The bridge railway sleepers is an essential component in the construction of railways, as the foundation of the rail support in order to withstand the load a train that runs above it. Sleepers used in bridge construction are expected to have a longer service life, lighter weight and durable so that can be used more efficient. This research was carried out to create a model of bridges railway sleepers made of sandwich structured composite from fiber glass, epoxy resin with fillers waste of bagasse (sugar cane pulp mill) or coconut fiberboard (copra industry) that using polyurethane as an adhesive. The process of making was conditioned for small and medium industrial applications. Railway sleepers’ specifications adapted to meet the requirements of end user. The process steps in this research include; lay-up fiberglass combined with bagasse/coconut fiberboard (as fillers), gluing with epoxy resin, molded it with pressure to be solid, curing after solidification process. The specimens of composite, bagasse and coconut fiber board were tested for tensile and compressive strength. The prototype were tested of mechanical test: flexural moment test to the stand rail, flexural moment test to the middle of the sleepers and tensile strength test on one side of the sleepers, in accordance to SNI 11-3388-1994 Method testing of single block concrete sleepers and bearing single rail fastening systems. The results of mechanical testing all variations meet the technical specifications of end user such as test results for flexural moment on all prototypes, after load test, there is no visible crack. While in the tensile strength test, it seem the prototype with coconut fiberboard filler, shows better performance than bagasse fiberboard filler, the decisions is just depended on techno economic and lifetime.

  17. Fossil energy savings potential of sugar cane bio-energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Thu Lan T. [Department of Agroecology, Aarhus University, Tjele (Denmark); The Joint Graduate School of Energy and Environment, King Mongkut' s University of Technology Thonburi, Bangkok (Thailand); Hermansen, John E. [Department of Agroecology, Aarhus University, Tjele (Denmark); Sagisaka, Masayuki [Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology, Tsukuba (Japan)

    2009-11-15

    One important rationale for bio-energy systems is their potential to save fossil energy. Converting a conventional sugar mill into a bio-energy process plant would contribute to fossil energy savings via the extraction of renewable electricity and ethanol substituting for fossil electricity and gasoline, respectively. This paper takes a closer look at the Thai sugar industry and examines two practical approaches that will enhance fossil energy savings. The first one addresses an efficient extraction of energy in the form of electricity from the excess bagasse and cane trash. The second while proposing to convert molasses or sugar cane to ethanol stresses the use of bagasse as well as distillery spent wash to replace coal in meeting ethanol plants' energy needs. The savings potential achieved with extracting ethanol from surplus sugar versus current practice in sugar industry in Thailand amounts to 15 million barrels of oil a year. Whether the saving benefits could be fully realized, however, depends on how well the potential land use change resulting from an expansion of ethanol production is managed. The results presented serve as a useful guidance to formulate strategies that enable optimum utilization of biomass as an energy source. (author)

  18. Some functional characteristics of extruded blends of fiber from sugarcane bagasse, whey protein concentrate, and corn starch

    OpenAIRE

    2011-01-01

    Blends of fiber from sugar cane bagasse, corn starch, and whey protein concentrate were extruded. A single screw extruder, equipped with a screw at a constant compression ratio of 1:1 and a die diameter of 3 mm, was used. The best processing conditions were determined according to a central composite rotatable design (α = 1.41) with 5 central points, which gives a total of 13 tests. During the extrusion process the content of insoluble fiber decreased and that of soluble fiber increased....

  19. Transcriptome analysis of Aspergillus niger grown on sugarcane bagasse

    Directory of Open Access Journals (Sweden)

    Goldman Gustavo H

    2011-10-01

    Full Text Available Abstract Background Considering that the costs of cellulases and hemicellulases contribute substantially to the price of bioethanol, new studies aimed at understanding and improving cellulase efficiency and productivity are of paramount importance. Aspergillus niger has been shown to produce a wide spectrum of polysaccharide hydrolytic enzymes. To understand how to improve enzymatic cocktails that can hydrolyze pretreated sugarcane bagasse, we used a genomics approach to investigate which genes and pathways are transcriptionally modulated during growth of A. niger on steam-exploded sugarcane bagasse (SEB. Results Herein we report the main cellulase- and hemicellulase-encoding genes with increased expression during growth on SEB. We also sought to determine whether the mRNA accumulation of several SEB-induced genes encoding putative transporters is induced by xylose and dependent on glucose. We identified 18 (58% of A. niger predicted cellulases and 21 (58% of A. niger predicted hemicellulases cellulase- and hemicellulase-encoding genes, respectively, that were highly expressed during growth on SEB. Conclusions Degradation of sugarcane bagasse requires production of many different enzymes which are regulated by the type and complexity of the available substrate. Our presently reported work opens new possibilities for understanding sugarcane biomass saccharification by A. niger hydrolases and for the construction of more efficient enzymatic cocktails for second-generation bioethanol.

  20. Development of the Specific Adaptation Mobility Cane.

    Science.gov (United States)

    Arrington, S.

    1995-01-01

    A travel cane was adapted for use by a 10-year-old boy with cortical blindness, severe mental retardation and cerebral palsy affecting his left arm and leg. The Specific Adaptation Mobility Cane utilizes the affected arm to hold the cane while leaving the other hand free for trailing walls, opening doors, carrying objects, and holding handrails.…

  1. Alkaline Pretreatment of Sugarcane Bagasse and Filter Mud Codigested to Improve Biomethane Production

    Science.gov (United States)

    Mehryar, Esmaeil; Bi, Jinhua

    2016-01-01

    To enhance the codigestion of degradation and improve biomethane production potential, sugarcane bagasse and filter mud were pretreated by sodium hydroxide NaOH 1 N at 100°C for 15, 30, and 45 minutes, respectively. Biomethane generation from 1-liter batch reactor was studied at mesophilic temperature (37 ± 1)°C, solid concentrations of 6%, and five levels of mixing proportion with and without pretreatment. The results demonstrate that codigestion of filter mud with bagasse produces more biomethane than fermentation of filter mud as single substrate; even codigested substrate composition presented a better balance of nutrients (C/N ratio of 24.70) when codigestion ratio between filter mud and bagasse was 25 : 75 in comparison to filter mud as single substrate (C/N ratio 9.68). All the pretreatments tested led to solubilization of the organic matter, with a maximum lignin reduction of 86.27% and cumulative yield of biomethane (195.8 mL·gVS−1, digestion of pretreated bagasse as single substrate) obtained after 45 minutes of cooking by NaOH 1 N at 100°C. Under this pretreatment condition, significant increase in cumulative methane yield was observed (126.2 mL·gVS−1) at codigestion ratio of 25 : 75 between filter mud and bagasse by increase of 81.20% from untreated composition.

  2. Square baler field test under different sugar cane crop residue conditions

    Energy Technology Data Exchange (ETDEWEB)

    Mello, Arthur Miola de; Ripoli, Tomaz Caetano Cannavan; Gadanha Junior, Casimiro [Escola Superior de Agricultura Luiz de Queiroz (ESALQ-USP), Piracicaba (Brazil). Dept. de Engenharia Rural], E-mail: ammello@esalq.usp.br; Ripoli, Marco Lorezzo Cunali [John Deere, Ribeirao Preto, SP (Brazil)

    2008-07-01

    The energy demand increase of the country allows the sugar cane business sector to be a major player in production and commercialization areas of electric energy using cogeneration powered by bagasse and sugar cane residues. The objective of the study was to evaluate some of the performance parameters of an Express 5040 baler, brand Nogueira, used to collect residues. The tests were conducted in a sugar cane mechanized harvest area. The baler was submitted to three different conditions of residues windrowing: 'in natura', under single and double raking operations. For all treatments soil sampling analyzes were done to find out ground homogeneity conditions were the test took place. The simple raking operation offered better conditions for the machine: Effective Capacity of 8.21 t.{sup h}-{sup 1} and 0.88 ha.h{sup -1}; average bale weight of 22.33 kg (SD=3.58, CV=16.01 %); costs of 7.45 R$.t{sup -1} of baled residue; 0.17 R$.fardo{sup -1} and 69.47 R$.ha{sup -1}. (author)

  3. Use of a Mixture of Thermophilic Enzymes Produced by the Fungus Thermoascus aurantiacus to Enhance the Enzymatic Hydrolysis of the Sugarcane Bagasse Cellulose

    Directory of Open Access Journals (Sweden)

    J. R. Monte

    2010-01-01

    Full Text Available Problem statement: The production of hydrolytic enzymes by T. aurantiacus has been performed under solid-state fermentations using lignocellulosic materials. The influences of the inoculum size and of the fermentation medium on the production of hemicellulases and cellulases were studied. Filtrates from the cultures were used to hydrolyze a pulp of sugarcane bagasse and the produced enzymes were shown to be candidates for use as co-adjuvants in plant saccharification. Aproach: The present study focuses on the effect of different culture conditions on production of cellulases and hemicellulases by T. aurantiacus. It is also provides a possible application of T. aurantiacus enzymes in the degradation of sugarcane bagasse pulp, considering that this thermophilic fungus is a potential source of thermostable enzymes. Results: T. aurantiacus was cultivated on four different agricultural residues: sugarcane bagasse, sugarcane straw, wheat straw and corn cob. Xylanase was produced with much more expressive activity than cellulases. The highest titre of xylanase was obtained on sugarcane straw at 9 days (1679.8 IU g−1; the same was observed for β- glucosidase (29.9 IU g−1 at 6 days. With an inoculum load of 108 spores g−1, the amount of exoglucanase produced by the fungus considerably exceeds that produced with 104 spores g−1. Xylanases and cellulases purified from filtrates of the cultures were investigated to hydrolyze a bagasse pulp prepared with alkaline peroxide. Xylanase or sulphuric acid were used as pretreatments for xylan removal, increasing the cellulase performance on pulp bagasse. However, results revealed that the removal of hemicellulose is not the only main factor limiting the cellulose hydrolysis. Conclusion: Results indicate that the xylanase action on alkaline-pretreated sugar cane bagasse enhances the cellulolytic effect promoted by a commercial cellulase. This study thus presents an evaluation of the

  4. Isolation and characterization of acetylated glucuronoarabinoxylan from sugarcane bagasse and straw.

    Science.gov (United States)

    Morais de Carvalho, Danila; Martínez-Abad, Antonio; Evtuguin, Dmitry V; Colodette, Jorge Luiz; Lindström, Mikael E; Vilaplana, Francisco; Sevastyanova, Olena

    2017-01-20

    Sugarcane bagasse and straw are generated in large volumes as by-products of agro-industrial production. They are an emerging valuable resource for the generation of hemicellulose-based materials and products, since they contain significant quantities of xylans (often twice as much as in hardwoods). Heteroxylans (yields of ca 20% based on xylose content in sugarcane bagasse and straw) were successfully isolated and purified using mild delignification followed by dimethyl sulfoxide (DMSO) extraction. Delignification with peracetic acid (PAA) was more efficient than traditional sodium chlorite (NaClO2) delignification for xylan extraction from both biomasses, resulting in higher extraction yields and purity. We have shown that the heteroxylans isolated from sugarcane bagasse and straw are acetylated glucuronoarabinoxylans (GAX), with distinct molecular structures. Bagasse GAX had a slightly lower glycosyl substitution molar ratio of Araf to Xylp to (0.5:10) and (4-O-Me)GlpA to Xylp (0.1:10) than GAX from straw (0.8:10 and 0.1:10 respectively), but a higher degree of acetylation (0.33 and 0.10, respectively). A higher frequency of acetyl groups substitution at position α-(1→3) (Xyl-3Ac) than at position α-(1→2) (Xyl-2Ac) was confirmed for both bagasse and straw GAX, with a minor ratio of diacetylation (Xyl-2,3Ac). The size and molecular weight distributions for the acetylated GAX extracted from the sugarcane bagasse and straw were analyzed using multiple-detection size-exclusion chromatography (SEC-DRI-MALLS). Light scattering data provided absolute molar mass values for acetylated GAX with higher average values than did standard calibration. Moreover, the data highlighted differences in the molar mass distributions between the two isolation methods for both types of sugarcane GAX, which can be correlated with the different Araf and acetyl substitution patterns. We have developed an empirical model for the molecular structure of acetylated GAX extracted from

  5. Etude des possibilités de valorisation agricole des écumes et de la bagasse de canne à sucre de SOSUHO (Gabon

    Directory of Open Access Journals (Sweden)

    Makita-Ngadi, J.

    1993-01-01

    Full Text Available Study on the possibilities of agricultural valorisation of sugarcane scums and bagasse of SOSUHO (Gabon. As a first step towards the general use of organic fertilizers in improving poor agricultural yields of soils in the province of Haut-Ogooue, in Gabon, we studied germination and growth of seven different types of plants (maize, Zea mays L. var. 60 ; rice Oryza sativa Var. 1345 ; cacao-tree, Theobroma cacao Var. Forastero ; gombo, Hibiscus esculantus Clenson Spineless var ; culin, Cucurbita pepo Basma var ; aubergine, Solanum melongena, Asgrow var ; soya-bean, Glycine max tropical var. on two six months old sugar cane residues. These residues, froth and bagasse were used by hemselves or mixed with earth or sand. By comparison with commercial compost, we found that froth and bagasse do not inhibit the germination of the seeds studied. However, we found that the growth of all species studied was better in froth than in bagasse. The results of chemical analysis carried out on these residues can explain partially the good growth observed in froth themselves or mixed with earth.

  6. Protein production by Arthrospira (Spirulina platensis in solid state cultivation using sugarcane bagasse as support

    Directory of Open Access Journals (Sweden)

    Lúcia Helena Pelizer

    2015-03-01

    Full Text Available The genus Arthrospira comprises a group of filamentous multicellular cyanobacteria and can be used for animal feed and human food. Solid state fermentation or cultivation (SSF involves the use of a culture medium composed of solid material with given moisture content. No studies have been published about the cultivation of microalgae or cyanobacteria on solid medium. Furthermore, although sugar-cane bagasse is used as source of energy in alcohol distilleries in Brazil, the excess could be a support to photosynthetic microorganism growth. The experimental design methodology was used to evaluate the protein production by Arthrospira platensis under SSF using sugarcane bagasse as support, taking into account the moisture content of the medium, light intensity and inoculum concentration. Moisture was found to have a strong influence on the performance of the process. The best conditions were: moisture of 98.8%; inoculum concentration of 0.15 g biomass·kg wet culture medium−1 and light intensity of 6.0 klx.

  7. Structural and composilional characterization of charcoal derived from wood and sugar cane bagasse

    OpenAIRE

    Rone Cesar Morales

    1999-01-01

    Resumo: A importância sempre crescente da biomassa e de seus subprodutos na área industrial, com destaque ao uso do carvão vegetal, para geração de energia ou termo-redução (agente desoxidante); requer pesquisas fundamentais visando amplo entendimento de suas características estruturais e composicionais. No Brasil, o bagaço de cana abre perspectivas bastante atraentes neste setor, visto que constitui-se numa matéria-prima usual, renovável de grande produção, podendo contribuir no sentido de s...

  8. Modeling, simulation and analyse of continuous reactors for enzymatic hydrolysis of sugar cane bagasse

    OpenAIRE

    Arturo Gonzalez Quiroga

    2009-01-01

    Resumo: Por mais de um século, a principal fonte de combustível e produtos químicos para a sociedade humana tem vindo a partir de recursos fósseis, os quais são limitados e estão concentrados em poucas regiões do mundo. Biomassa, como a única fonte de carbono renovável, mostra-se promissora para a produção de combustíveis e produtos químicos em grande escala. Na última década, a produção de bioetanol a partir de biomassa lignocelulósica através de hidrólise enzimática tem sido estudada intens...

  9. Consolidated Afloat Networks and Enterprise Services (CANES)

    Science.gov (United States)

    2016-03-01

    Intelligence , Surveillance and Reconnaissance, Information Operations, Logistics and Business domains require the CANES infrastructure to operate...2016 Major Automated Information System Annual Report Consolidated Afloat Networks and Enterprise Services (CANES) Defense Acquisition Management...Programs 3 Program Information 4 Responsible Office 4 References 4 Program Description 5 Business Case 6 Program Status 7

  10. Microbiological decomposition of bagasse after radiation pasteurization

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Hitoshi; Ishigaki, Isao

    1987-11-01

    Microbiological decomposition of bagasse was studied for upgrading to animal feeds after radiation pasteurization. Solid-state culture media of bagasse were prepared with addition of some amount of inorganic salts for nitrogen source, and after irradiation, fungi were infected for cultivation. In this study, many kind of cellulosic fungi such as Pleurotus ostreatus, P. flavellatus, Verticillium sp., Coprinus cinereus, Lentinus edodes, Aspergillus niger, Trichoderma koningi, T. viride were used for comparison of decomposition of crude fibers. In alkali nontreated bagasse, P. ostreatus, P. flavellatus, C. cinereus and Verticillium sp. could decompose crude fibers from 25 to 34 % after one month of cultivation, whereas other fungi such as A. niger, T. koningi, T. viride, L. edodes decomposed below 10 %. On the contrary, alkali treatment enhanced the decomposition of crude fiber by A. niger, T. koningi and T. viride to be 29 to 47 % as well as Pleurotus species or C. cinereus. Other species of mushrooms such as L. edodes had a little ability of decomposition even after alkali treatment. Radiation treatment with 10 kGy could not enhance the decomposition of bagasse compared with steam treatment, whereas higher doses of radiation treatment enhanced a little of decomposition of crude fibers by microorganisms.

  11. Physical and Mechanical Characterization of Sugarcane Bagasse Particleboards for Civil Construction

    Directory of Open Access Journals (Sweden)

    Rosane Battistelle

    2016-12-01

    Full Text Available In the worldwide market of particleboard production, the use of alternative raw materials is increasing, due to high demand and lack of traditional raw material, despite efforts of reforestation. In Brazil, the main agricultural commodity is sugarcane due to the copious production of sugar and ethanol. In the state of São Paulo alone approximately 140 million tons of sugarcane bagasse are produced every year, from which around 70% is burned for energy production, not adding value to the residue and generating pollution to the environment; and the other 30% is sold for composting. The objective of this work is to add value to the sugarcane bagasse by using it as a raw material for particleboard production to be employed as flooring in the area of civil construction. To achieve this, the present research characterized the physical and mechanical characteristics of the particleboards with the following alternative raw materials: sugarcane bagasse and leaves of bamboo. Particleboards were produced to reach high density (0.8g/cm3 using the resin (bi-component polyurethane castor oil. Tests for abrasion, roughness and resistance to denting and wear (Janka hardness verified that the addition of leaves of bamboo in the mixtures, contrary to what was expected, did not confer a greater degree of resistance to the particleboards. Lastly, the results showed that sugarcane bagasse is a viable raw material alternative for the production of particleboards, intended to be used as products and flooring.

  12. Effects of Extrusion Pretreatment Parameters on Sweet Sorghum Bagasse Enzymatic Hydrolysis and Its Subsequent Conversion into Bioethanol

    Directory of Open Access Journals (Sweden)

    Erick Heredia-Olea

    2015-01-01

    Full Text Available Second-generation bioethanol production from sweet sorghum bagasse first extruded at different conditions and then treated with cell wall degrading enzymes and fermented with I. orientalis was determined. The twin extruder parameters tested were barrel temperature, screws speed, and feedstock moisture content using surface response methodology. The best extrusion conditions were 100°C, 200 rpm, and 30% conditioning moisture content. This nonchemical and continuous pretreatment did not generate inhibitory compounds. The extruded feedstocks were saccharified varying the biocatalysis time and solids loading. The best conditions were 20% solids loading and 72 h of enzymatic treatment. These particular conditions converted 70% of the total fibrous carbohydrates into total fermentable C5 and C6 sugars. The extruded enzymatically hydrolyzed sweet sorghum bagasse was fermented with the strain I. orientalis at 12% solids obtaining a yield of 198.1 mL of ethanol per kilogram of bagasse (dw.

  13. Anaerobic digestion of hemicellulose hydrolysate produced after hydrothermal pretreatment of sugarcane bagasse in UASB reactor.

    Science.gov (United States)

    Ribeiro, Fernanda Resende; Passos, Fabiana; Gurgel, Leandro Vinícius Alves; Baêta, Bruno Eduardo Lobo; de Aquino, Sérgio Francisco

    2017-04-15

    In the context of a sugarcane biorefinery, sugarcane bagasse produced may be pretreated generating a solid and liquid fraction. The solid fraction may be used for 2G bioethanol production, while the liquid fraction may be used to produce biogas through anaerobic digestion. The aim of this study consisted in evaluating the anaerobic digestion performance of hemicellulose hydrolysate produced after hydrothermal pretreatment of sugarcane bagasse. For this, hydrothermal pretreatment was assessed in a continuous upflow anaerobic sludge blanket (UASB) reactor operated at a hydraulic retention time (HRT) of 18.4h. Process performance was investigated by varying the dilution of sugarcane bagasse hydrolysate with a solution containing xylose and the inlet organic loading rate (OLR). Experimental data showed that an increase in the proportion of hydrolysate in the feed resulted in better process performance for steps using 50% and 100% of real substrate. The best performance condition was achieved when increasing the organic loading rate (OLR) from 1.2 to 2.4gCOD/L·d, with an organic matter removal of 85.7%. During this period, the methane yield estimated by the COD removal would be 270LCH4/kg COD. Nonetheless, when further increasing the OLR to 4.8gCOD/L·d, the COD removal decreased to 74%, together with an increase in effluent concentrations of VFA (0.80gCOD/L) and furans (115.3mg/L), which might have inhibited the process performance. On the whole, the results showed that anaerobic digestion of sugarcane bagasse hydrolysate was feasible and may improve the net energy generation in a bioethanol plant, while enabling utilization of the surplus sugarcane bagasse in a sustainable manner. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Evaluating the bio-energy potential of groundnut shell and sugarcane bagasse waste composite

    Directory of Open Access Journals (Sweden)

    Olatunde Ajani Oyelaran

    2015-12-01

    Full Text Available An assessment has been carried out on bio-coal briquettes from coal with sugarcane bagasse and coal with groundnut shell. Proximate analyses and elemental compositions of the coal and biomasses were determined. Different samples of briquettes were produced by blending varying composition of the coal with the biomasses in the ratio of 100:0; 90:10, 80:20, 70:30, 60:40, 50:50, 40:60 and 0: 100, using calcium carbonate as a desulfurizing agent and cassava starch as a binder. A manual hydraulically operated briquetting machine was used with the pressure kept at 5MPa. The results of the properties evaluated shows that biomass increases the burning efficiency of briquettes with increase in the biomass material, increasing combustion rate, faster ignition, producing lesser ash and fewer pollutants. Results obtained shows that the calorific value of briquettes produced from coal-groundnut shells and coal-sugarcane bagasse ranges from 16.94 - 20.81 and 17.31 – 21.03 MJ/kg respectively. The ignition time ranges from 6.9 – 12.5 minutes for coal-groundnut shells briquettes while that of coal-sugarcane bagasse ranges from 6.5 – 11.1 minutes. The bio-coal blends with sugarcane bagasse were better than that of groundnut shells. However, both sugarcane bagasse and groundnut shells produce bio-coal briquettes that are very efficient, providing sufficient heat as at the time necessary, generating less smoke and gases (e.g sulphur that are harmful to environment, and generating less ash, as these have adverse effect during cooking.

  15. 锅炉烟道气余热干燥蔗渣应用研究%Application Research of Bagasse Drying by Boiler Flue Gas

    Institute of Scientific and Technical Information of China (English)

    周锡文; 农洲才; 罗寿民; 莫汉义

    2012-01-01

    甘蔗渣是制糖生产的副产物,是一种可再生的生物质燃料。甘蔗糖厂压榨机排出的蔗渣含水分一般在48%左右(低位热值约8100kJ/蝇),而干燥后蔗渣含水分低于40%(低位热值高于9738kJ/kg),作为锅炉燃料热效率提高20%以上。本文介绍利用锅炉烟道气干燥蔗渣技术及生产实践经验,探讨滚筒式蔗渣干燥器在使用过程中存在的一些问题以及改进措施。%Bagasse, a by-product of sugar production, is a renewable biomass fuel. The moisture content of bagasse is commonly about 48% produced by the squeezer of cane sugar factory, and the corresponding low calorific value is about 8100 kJ/kg, dried bagasse moisture content is below 40% (low calorific value higher than 9738 kJ/kg), increased by more than 20% thermal efficiency as boiler fuel. In this research, the production technology and practice experience of drying bagasse by boiler flue gas was introduced, and a few problems existed during the using of bagasse rotary-drum drier and the relevant improvement measures were also discussed.

  16. Effect of Cane Length on Drop-Off Detection Performance

    Science.gov (United States)

    Kim, Dae Shik; Emerson, Robert Wall

    2012-01-01

    Although individuals who are blind have used a stick or a cane for their independent travel since the early years of human history, designs for modern long canes did not appear until World War II, when the systematic long cane techniques were developed by Hoover (1962). Ergonomic factors, such as the length of the cane, may affect how well a cane…

  17. Development of Asbestos - Free Brake Pad Using Bagasse

    Directory of Open Access Journals (Sweden)

    V. S. Aigbodion

    2010-03-01

    Full Text Available Development of asbestos-free brake pad using bagasse was investigated with a view to replace the use of asbestos whose dust is carcinogenic. The bagasse were sieve into sieve grades of 100, 150, 250, 350 and 710µm. the sieve bagasse was used in production of brake pad in ratio of 70%bagasse-30%resin using compression moulding. The properties examined are microstructure analysis, hardness, compressive strength, density, flame resistance, water and oil absorption. The microstructure reveals uniform distribution of resin in the bagasse. The results obtained showed that the finer the sieve size the better the properties. The results obtained in this work were compared with that of commercial brake pad (asbestos based and optimum formulation laboratory brake pad Palm Kernel Shell based (PKS, the results are in close agreement. Hence bagasse can be used in production of asbestos-free brake pad.

  18. Conversion of Grazed Pastures to Energy Cane as a Biofuel Feedstock Alters Soil GHG Fluxes

    Science.gov (United States)

    Gomez-Casanovas, N.; DeLucia, N.; Bernacchi, C.; DeLucia, E. H.

    2013-12-01

    Changes in land use profoundly affect climate through variations in soil Greenhouse Gas (GHG) exchange. The need for alternative energies is accelerating land use change as marginal land or managed ecosystems are being converted to highly productive second-generation bioenergy crops such as energy cane (Saccharum spp. L). Although the deployment of energy cane is a promising strategy to meet global bioenergy industry demands, few studies have investigated soil GHG fluxes in these crops and sub-tropical low-intensity grazing pasture (bahiagrass, Paspalum notatum L., as forage for cattle, Bos taurus L.) with which they are competing for land. Here, we showed that soil N2O fluxes in bioenergy crops were higher (>250%) than those observed in pastures following fertilization when soil moisture and temperature were high. In the absence of recent fertilization, the N2O source strength in energy cane and pasture sites was similar. Under drier and cooler soil conditions, both pastures and bioenergy crops were weak sources of N2O even when energy cane plots were recently fertilized. Soils on grazed pastures were sources of CH4 during the wet season but became sinks under drier, colder conditions. Energy cane plantations were weak sources of CH4 over a complete wet-dry seasonal cycle. The heterotrophic component of soil respiration was larger (139-155%) in pastures than in energy cane crops, suggesting lower decomposition of SOC in bioenergy crops. In terms of global warming potential, grazed pastures were stronger (120-150%) soil GHG emitters than energy cane crops over a complete wet-dry seasonal cycle. Moreover, pastures became a substantial source of GHG emitters when including estimates of CH4 flux from cattle. Our results suggest that the conversion of pasture to energy cane will be beneficial in relation to GHGs emitted from soils and cattle. Improved understanding of land use impact on soil GHG dynamics will provide valuable information for decision makers debating

  19. Impact of oil and gas field in sugar cane condition using landsat 8 in Indramayu area and its surrounding, West Java province, Republic of Indonesia

    Science.gov (United States)

    Muji Susantoro, Tri; Wikantika, Ketut; Saskia Puspitasari, Alia; Saepuloh, Asep

    2017-01-01

    This study tried to monitor sugar cane condition surrounding of oil and gas field area. The spectral approaches were conducted for mapping sugar cane stress. As an initial stage Landsat-8 was corrected radiometrically and geometrically. Radiometric correction is an important stages for spectral approaching. Then all pixel values were transformed to the surface reflectance. Several vegetation indices were calculated to monitor vegetation stress surrounding of oil and gas field. NDVI, EVI, DVI, GVI, GRVI, GDVI and GNDVI were applied for generating tentative sugar cane stress images. The results indicated that sugar cane surrounding of oil and gas field has been influenced by oil and gas field.

  20. SILAGE CANE SUGAR ADDED WITH DRIED BREWER

    Directory of Open Access Journals (Sweden)

    W. J. R. Castro

    2015-02-01

    Full Text Available The objective of this experiment was to evaluate the fermentative parameters and chemical composition of silage cane sugar added with residue dried brewery. The experimental design was completely randomized with four treatments and four replications: 100% cane sugar; 90% of cane sugar + 10% residue dried brewer; 80% of cane sugar + 20% residue dried brewer and 70% cane sugar + 30% dried brewer based on natural matter, composed silages. The sugar cane was chopped in a stationary machine with forage particle size of approximately 2 cm, and homogenized manually with the additives. For storage chopped fresh weight were used in experimental silos capacity of about 4 liters. The results showed that the contents of dry matter and crude protein showed positive linear (P0.05 with mean value of 3.81, while for ether extract and ash results were positive linear (P0.05 for N ammonia presented average value of 4.18. It is concluded that the addition of brewer dehydrated improves the fermentation process of silage cane sugar, in addition to improving their nutritional characteristics.

  1. Improved molecular tools for sugar cane biotechnology.

    Science.gov (United States)

    Kinkema, Mark; Geijskes, Jason; Delucca, Paulo; Palupe, Anthony; Shand, Kylie; Coleman, Heather D; Brinin, Anthony; Williams, Brett; Sainz, Manuel; Dale, James L

    2014-03-01

    Sugar cane is a major source of food and fuel worldwide. Biotechnology has the potential to improve economically-important traits in sugar cane as well as diversify sugar cane beyond traditional applications such as sucrose production. High levels of transgene expression are key to the success of improving crops through biotechnology. Here we describe new molecular tools that both expand and improve gene expression capabilities in sugar cane. We have identified promoters that can be used to drive high levels of gene expression in the leaf and stem of transgenic sugar cane. One of these promoters, derived from the Cestrum yellow leaf curling virus, drives levels of constitutive transgene expression that are significantly higher than those achieved by the historical benchmark maize polyubiquitin-1 (Zm-Ubi1) promoter. A second promoter, the maize phosphonenolpyruvate carboxylate promoter, was found to be a strong, leaf-preferred promoter that enables levels of expression comparable to Zm-Ubi1 in this organ. Transgene expression was increased approximately 50-fold by gene modification, which included optimising the codon usage of the coding sequence to better suit sugar cane. We also describe a novel dual transcriptional enhancer that increased gene expression from different promoters, boosting expression from Zm-Ubi1 over eightfold. These molecular tools will be extremely valuable for the improvement of sugar cane through biotechnology.

  2. SINTESIS SILIKA AEROGEL DENGAN BAHAN DASAR ABU BAGASSE

    Directory of Open Access Journals (Sweden)

    Nazriati Nazriati

    2012-05-01

    Full Text Available SYNTHESIS OF SILICA AEROGEL FROM BAGASSE ASH. Synthesis of silica aerogel from bagasse ash was done by alkaline extraction followed by sol-gel. Bagasse ash was extracted with NaOH at its boiling temperature for one hour with continue stirring, to produce sodium silicate. Subsequently, sodium silicate was pass through ionic exchanger resin, to produces silicic acid (SA. Silicic acid solution was then added with TMCS and HMDS as surface modifier agent. In order to form gel pH must be adjusted to final pH of 8-9 by addition of NH4OH solution. The resulting gel then was aged and dried at ambient pressure and at a certain time and temperature. Characterization of products was done by measuring its pore volume, surface area, and hydrophobisity (contact angle. TMCS serves as water expeller from the pores and subsequently surface was modified by HMDS and TMCS. HMDS content will linearly increase surface area, pore volume, and the contact angle of the resulting silica aerogel. Characteristics of silica aerogel was generated by varying the composition of the SA:TMCS:HMDS resulting has a surface area of 50-488 m2/g, pore volume from 0.2 to 0.9 m3 /g, the contact angle of 48-119 and pore diameter ranging from 5.7-22.56 nm. Based on the resulting pore diameter, the synthesized of silica aerogel categorized as mesoporous.      Abstrak   Sintesis silika aerogel dari bahan dasar abu bagasse dilakukan dengan ekstraksi basa dan diikuti dengan sol-gel. Abu bagasse diekstrak dengan NaOH pada suhu didihnya sambil diaduk selama satu jam, menghasilkan sodium silikat. Selanjutnya, sodium silikat dilewatkan resin penukar ion, menghasilkan asam silicic (SA. Larutan asam silicic kemudian ditambahkan trimethy­l­chlorosilane (TMCS dan hexamethyldisilazane (HMDS sebagai agen pemodifikasi permukaan. Untuk terjadinya gel pH diatur hingga mencapai 8-9 dengan penambahan larutan NH4OH. Gel yang dihasilkan kemudian di-aging dan dikeringkan pada tekanan ambien pada suhu dan

  3. Mapping of combined heat and power systems in cane sugar industry

    Energy Technology Data Exchange (ETDEWEB)

    Bhatt, M.S.; Rajkumar, N. [Central Power Research Institute, Sreekariyam (India). Energy Research Centre

    2001-12-01

    Cogenerating systems based on steam turbines (1-20 MWt) are indispensable when the source of energy is a solid fuel such as bagasse as in a sugar industry. These systems provide a wide range of heat to power ratios from 0 to as high as 100. The energy productivity of sugar plants differ vastly because of variations in equipment efficiency, system configuration and operating steam conditions. In this paper a mapping of the entire operating range of steam based combined heat and power plants spanning pure back pressure to pure condensing environments, based on standard steam conditions in installations and efficiencies which are currently being achieved experimentally, is presented. This will enable the rational choice of combinations, which will yield the best economic advantage. As the operating steam pressure is increased (and consequently the matching superheated temperatures) the in-house steam requirement reduces drastically and simultaneously the exportable power increases. Improvements in the systems by the use of advanced designs of steam turbines and introduction of information technologies and associated supervision control and data acquisition, energy management system, multi-media interaction, etc., is also briefly highlighted. The maximum exportable electrical power from a sugar mill after meeting the internal requirement is around 146 kW h/t of cane. The maximum exportable of steam (no power export) is around 0.65 t/t of cane. (author)

  4. PHOSPHORUS BIOGEOCHEMICAL CYCLING IN A SUGAR CANE AGROECOSYSTEM

    Directory of Open Access Journals (Sweden)

    D. Lopez-Hernandez

    2012-01-01

    Full Text Available The annual harvest of sugarcane plantations together with the burning of the crop before harvest, a common practice of management of sugarcane plantations in South America, leads to the loss of significant amounts of nutrients in those agroecosystems. Thus prescribed burning operations could progressively diminish the level of soil organic matter and increase nutrient deficiency in soils of sugar cane agrosystems. This study is an attempt to quantify the P distribution during the period of growth in a plantation of sugar cane (Saccharum officinarum located near San Felipe, Yaracuy State, Central, Venezuela focusing on processes related to the cycling of the element as affected by burning operations. The work was performed in 4.5 ha experimental plots planted with the varieties Puerto Rico (PR 1028 and Venezuela (V 58-4. The principal flows of phosphorus, as well the quantities of this element in the soil-plant components were measured throughout the growing cycle of the crop (third ratoon. The inputs through precipitation (wet and dry were high, that was associated with the intense agricultural (prescribed burning and industrial activities occurring in the area. The annual balance for both varieties was negative (-17.31 and -23.63 kg ha–1 for V 58-4 and PR 1028, respectively. The negative budget is mainly due to the important amounts of P that are exported with the cane stems. The losses must be compensated through fertilization; nonetheless, preliminary results indicated no response to P dressing, suggesting that in the studied mollisols the internal processes e.g., Organic-P (Po mineralization and P solubilization efficiently operate generating important available P levels. It was also found that the burning of the sugar cane plantation plays an important role in the recycling of phosphorus, since 25-28 % of the P requirements of the varieties are reincorporated into the soil from the ashes coming as bulk deposition.

  5. Fungal rock phosphate solubilization using sugarcane bagasse.

    Science.gov (United States)

    Mendes, Gilberto O; Dias, Carla S; Silva, Ivo R; Júnior, José Ivo Ribeiro; Pereira, Olinto L; Costa, Maurício D

    2013-01-01

    The effects of different doses of rock phosphate (RP), sucrose, and (NH(4))(2)SO(4) on the solubilization of RP from Araxá and Catalão (Brazil) by Aspergillus niger, Penicillium canescens, Eupenicillium ludwigii, and Penicillium islandicum were evaluated in a solid-state fermentation (SSF) system with sugarcane bagasse. The factors evaluated were combined following a 2(3) + 1 factorial design to determine their optimum concentrations. The fitted response surfaces showed that higher doses of RP promoted higher phosphorus (P) solubilization. The addition of sucrose did not have effects on P solubilization in most treatments due to the presence of soluble sugars in the bagasse. Except for A. niger, all the fungi required high (NH(4))(2)SO(4) doses to achieve the highest level of P solubilization. Inversely, addition of (NH(4))(2)SO(4) was inhibitory to P solubilization by A. niger. Among the fungi tested, A. niger stood out, showing the highest solubilization capacity and for not requiring sucrose or (NH(4))(2)SO(4) supplementation. An additional experiment with A. niger showed that the content of soluble P can be increased by adding higher RP doses in the medium. However, P yield decreases with increasing RP doses. In this experiment, the maximal P yield (approximately 60 %) was achieved with the lower RP dose (3 g L(-1)). Our results show that SSF can be used to obtain a low cost biofertilizer rich in P combining RP, sugarcane bagasse, and A. niger. Moreover, sugarcane bagasse is a suitable substrate for SSF aiming at RP solubilization, since this residue can supply the C and N necessary for the metabolism of A. niger within a range that favors RP solubilization.

  6. Biodegradation of sugarcane bagasse by Pleurotus citrinopileatus.

    Science.gov (United States)

    Pandey, V K; Singh, M P; Srivastava, A K; Vishwakarma, S K; Takshak, S

    2012-12-22

    The chemically as well as hot water treated agrowaste sugarcane bagasse was subjected to degradation by Pleurotus citrinopileatus. The fungus degraded lignin, cellulose, hemicellulose, and carbon content of both chemically as well as hot water treated waste and produced in turn the edible and nutritious fruiting body. Biodegradation of the waste in terms of loss of lignin, cellulose and hemicellulose showed positive correlation with cellulases, xylanase, laccase and polyphenol oxidase (PPO) activity of the fungus. During mycelial growth of the fungus, lignin degradation was faster and during fructification, lignin degradation was slower than cellulose and hemicellulose. The carbon content of the sugarcane bagasse decreased while, nitrogen content increased during degradation of the waste. Hot water treated substrate supported better production of enzymatic activity and degraded more efficiently than chemically sterilized substrate. The total yield and biological efficiency of the mushroom was maximum on the hot water treated substrates. Degradation of the hot water treated sugarcane bagasse was better and faster than chemically treated substrates.

  7. Study of Sugar Cane Management Systems in Brazil Using Laser Induced Fluorescence

    Science.gov (United States)

    Cabral, Jader; Villas-Boas, Paulino; Carvalho, Camila; Corá, José Eduardo; Milori, Débora

    2014-05-01

    Brazil is the largest producer of cane sugar, consequently, is a leader in the production of bio-ethanol, a clean and renewable energy that fits the model of sustainable economy as discussed and pursued by our society. Our state of São Paulo concentrates 60% of national production, representing a sizeable share in the range of world production. All this economic potential is closely monitored by the scientific community, which develops numerous studies seeking an improvement in production efficiency and reduced environmental impacts caused by the planting. However, the study of soil samples, in plantation areas, demands results about the content and structural forms of organic matter (OM). Also, the soil carbon stocks depend on the type of management. Our goal is to study OM of soil samples from four sugar cane management systems: (i) unburned cane harvest, (ii) preharvest burned, (iii) addition of sugarcane bagasse ash and (iv) addition of residue from the extraction of sucrose, using Laser Induced Fluorescence Spectroscopy of solid state. All the emission spectra were acquired using the system called LIFS-405, which consists of a diode laser Coherent, model cube with excitation at 405 nm, maximum output power of 50mJ and a mini-spectrometer, Ocean Optics USB2000-high sensitivity, with range of 194-894 nm and a fiber-optic bundle design (six excitation fibers in a circular path and one central fiber the collect the fluorescence). In this work, we will present the preliminary results evolving the humification index (HLIFS) of soil OM and total carbon amount (TC) for the different types of management. HLIFS shows a close correlation with the humification index of humic acid in solution obtained by means 2D conventional fluorescence spectroscopy.

  8. Evaluation of chemical control of marsh cane

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report discusses the feasibility of effective spraying of marsh cane (Phragmites communus) with a plant herbicide Amino Triazole (Weedazol) at Fish Springs...

  9. CANE WEAVING IN ONITSHA: PROCESSES, TECHNIQUES AND ...

    African Journals Online (AJOL)

    printserver

    problem this study investigates cane weaving in Nigeria using Onitsha as a case study to understudy the ... In order to meet the demands of the Nigerian society, and take advantage of the existence of these abundant ... furnitures from abroad.

  10. High throughput screening of hydrolytic enzymes from termites using a natural substrate derived from sugarcane bagasse

    OpenAIRE

    2011-01-01

    Background The description of new hydrolytic enzymes is an important step in the development of techniques which use lignocellulosic materials as a starting point for fuel production. Sugarcane bagasse, which is subjected to pre-treatment, hydrolysis and fermentation for the production of ethanol in several test refineries, is the most promising source of raw material for the production of second generation renewable fuels in Brazil. One problem when screening hydrolytic activities is that th...

  11. High throughput screening of hydrolytic enzymes from termites using a natural substrate derived from sugarcane bagasse

    OpenAIRE

    2011-01-01

    Background: The description of new hydrolytic enzymes is an important step in the development of techniques which use lignocellulosic materials as a starting point for fuel production. Sugarcane bagasse, which is subjected to pre-treatment, hydrolysis and fermentation for the production of ethanol in several test refineries, is the most promising source of raw material for the production of second generation renewable fuels in Brazil. One problem when screening hydrolytic activities is that t...

  12. High throughput screening of hydrolytic enzymes from termites using a natural substrate derived from sugarcane bagasse

    OpenAIRE

    2011-01-01

    Abstract Background The description of new hydrolytic enzymes is an important step in the development of techniques which use lignocellulosic materials as a starting point for fuel production. Sugarcane bagasse, which is subjected to pre-treatment, hydrolysis and fermentation for the production of ethanol in several test refineries, is the most promising source of raw material for the production of second generation renewable fuels in Brazil. One problem when screening hydrolytic activities i...

  13. Pretreatment of sugarcane bagasse using the advanced oxidation process by electron beam for enzymatic hydrolysis of cellulose; Pre-tratamento do bagaco de cana utilizando o processo de oxidacao avancada por feixe de eletrons para hidrolise enzimatica da celulose

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Marcia Almeida

    2013-07-01

    The sugar cane bagasse is a renewable energy source and a raw material promise in the biofuel production, once represents about 30% of glucose contained in the plant with the potential to be hydrolyzed and then converted to ethanol. The bagasse is composed of cellulose, straight chain of glucose, of hemicellulose, an amorphous polymer consisting of xylose, arabinose, galactose, and mannose, and of lignin, a complex polymer consisting of fenilpropan units that acts as waterproof coating on the fibers, which is hard to remove due its recalcitrant nature. The aim of this work was to study the electron beam processing as a pretreatment of sugarcane bagasse to enzymatic hydrolysis of cellulose. The pretreatment of sugarcane bagasse is one of the most important steps to make this material economically viable and competitive on the energy production. As a pretreatment the electron beam processing can weak the hemicellulose and lignin structures by the action highly reactive radicals that breaks the links, reducing the degree of polymerization fibers. It was evaluated the chemical and structural modifications on fibers caused by the irradiation, the enzymatic hydrolysis of electron beam as the only pretreatment and combined to steam explosion. For enzymatic hydrolysis it was used the commercial enzymes from Novozymes. The radiation processing promotes changes in structure and composition of sugarcane bagasse, increasing the solubility, that is related to hemicellulose and cellulose cleavage, and also increasing the enzymatic conversion yield. In the case of exploded bagasse there is no changes in the enzymatic hydrolysis yield, however the electron beam processing promoted a 67% reduction of furfural, that is formed in the steam explosion process. (author)

  14. PENURUNAN KADAR PROTEIN LIMBAH CAIR TAHU DENGAN PEMANFAATAN KARBON BAGASSE TERAKTIVASI (Protein Reduction of Tofu Wastewater Using Activated Carbon Bagasse

    Directory of Open Access Journals (Sweden)

    Candra Purnawan

    2014-10-01

    Full Text Available ABSTRAK Penurunan kadar protein limbah tahu telah dilakukan dengan pemanfaatan karbon Bagasse teraktivasi. Tujuan dari penelitian ini adalah untuk mengetahui kondisi optimum dari karbon teraktivasi NaOH dan H2SO4 dalam menurunkan kadar protein limbah cair tahu dan mengetahui jenis isoterm adsorpsi dari karbon aktif yang digunakan untuk menyerap protein limbah cair tahu. Hasil penelitian menunjukkan konsentrasi NaOH yang optimum untuk aktivasi karbon aktif 15%, massa optimum karbon bagasse teraktivasi NaOH adalah 2 g dan penurunan kadar proteinnya 71,95%, sedangkan massa optimum karbon bagasse teraktivasi H2SO4 adalah 1 g dengan penurunan kadar protein sebesar 38,19%. Waktu kontak optimum karbon bagasse teraktivasi  NaOH dan H2SO4 adalah 12 jam. Adsorpsi protein oleh karbon bagasse teraktivasi NaOH mengikuti isoterm adsorpsi Langmuir dan Freundlich sedangkan karbon bagasse teraktivasi H2SO4 dominan mengikuti isoterm Freundlich.   ABSTRACT The protein reduction of tofu wastewater using activated carbon from bagasse  had been conducted. The purposes of this research were to analysis optimum condition of activated carbon bagsse using NaOH and H2SO4 for reduction protein in tofu wastewater, and analysis adsorption isotherm of activated carbon with protein. The result showed that optimum mass of carbon bagasse activated NaOH was  2 g with 71.95% protein reduction, while carbon bagasse activated H2SO4 has 1 g with 38.19% protein reduction. The optimum contact time between protein and activated carbon (with NaOH and H2SO4 was happened in 12 hours. Adsorption protein with carbon bagasse activated NaOH had followed Langmuir and Freundlich adsorption isotherm, while adsorption with carbon bagasse activated H2SO4 dominantlyhad followed Freundlich adsorption isotherm

  15. Oil spill sorption using raw and acetylated sugarcane bagasse

    Institute of Scientific and Technical Information of China (English)

    Reza Behnood; Bagher Anvaripour; Nematollah Jaafarzadeh; Masoome Farasati

    2016-01-01

    In the recent decades oil spills in the aquatic environments are one of the major sources of environmental pollutions, which are steadily growing with the increase in oil consumption. Adsorption is a rapid and cost effective processto minimize the environmental impacts of oil spills andcleanup these pollutants. In this work, the crude oil sorption capacity was examined with raw sugarcane bagasse and acetylated sugarcane bagasse. Results show that the acetylated bagasse was significantly more oleophilic than the raw bagasse and acetylation reaction can increase bagasse oil sorption ability by about 90%. The maximum sorption capacities of acetylated bagasse were obtained about 11.3 g and 9.1 g in dry system (crude oil sorption) and oil layer sorption, respectively. The physicochemical characteristics of the sorbents such as composition, water solubility, moisture content and density were measured according to ASTM standard methods. Also Fourier transform infrared spectroscopy (FTIR) of raw and acetylated bagasse was performed to investigate the effect of acetylation on sugarcane bagasse structure.

  16. classical optimization of bagasse ash content in cement- stabilized ...

    African Journals Online (AJOL)

    user

    Optimzation and the use of bagasse ash gave a cost benefit of 9.24% with a better mix. The classical .... more complex in that the minerals present in the soil and the bagasse ash .... unit coefficients, required to make up the left-hand side to the ...

  17. Partially acetylated sugarcane bagasse for wicking oil from contaminated wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Chung, S. [Samsung Engineering Co. Ltd., R and D Center, Suwon, Gyeonggi (Korea, Republic of); Suidan, M.T. [University of Cincinnati, School of Energy, Environmental, Biological and Medical Engineering, Cincinnati, OH (United States); Venosa, A.D. [NRMRL, U.S. EPA, Cincinnati, OH (United States)

    2011-12-15

    Sugarcane bagasse was partially acetylated to enhance its oil-wicking ability in saturated environments while holding moisture for hydrocarbon biodegradation. The water sorption capacity of raw bagasse was reduced fourfold after treatment, which indicated considerably increased hydrophobicity but not a limited capability to hold moisture for hydrocarbon biodegradation. Characterization results by Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), X-ray diffraction (XRD), and surface area analyzer suggested that treated bagasse exhibited enhanced hydrophobicity and surface area. Oil wicking test results indicate that treated bagasse is more effective in wicking oil from highly saturated environments than raw bagasse and suggest that application of this material in remediation of oil spills in highly saturated wetlands is promising. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Some functional characteristics of extruded blends of fiber from sugarcane bagasse, whey protein concentrate, and corn starch

    Directory of Open Access Journals (Sweden)

    Fernando Martínez-Bustos

    2011-12-01

    Full Text Available Blends of fiber from sugar cane bagasse, corn starch, and whey protein concentrate were extruded. A single screw extruder, equipped with a screw at a constant compression ratio of 1:1 and a die diameter of 3 mm, was used. The best processing conditions were determined according to a central composite rotatable design (α = 1.41 with 5 central points, which gives a total of 13 tests. During the extrusion process the content of insoluble fiber decreased and that of soluble fiber increased. An increase in the contents of fiber and in the barrel temperature resulted in a decrease in the expansion index values and an increase in the water absorption index values; whereas in blends with intermediate fiber contents the effects in these parameters were found to be the opposite. High fiber contents increased penetration force but decreased luminosity, water solubility index values and the adhesive force in gels. The extrusion process improved the functional properties of sugarcane fiber bagasse enabling its addition to diverse alimentary systems.

  19. Co-cultivation of Aspergillus nidulans recombinant strains produces an enzymatic cocktail as alternative to alkaline sugarcane bagasse pretreatment

    Directory of Open Access Journals (Sweden)

    Matheus Sanita Lima

    2016-04-01

    Full Text Available Plant materials represent a strategic energy source because they can give rise to sustainable biofuels through the fermentation of their carbohydrates. A clear example of a plant-derived biofuel resource is the sugar cane bagasse exhibiting 60 % - 80 % of fermentable sugars in its composition. However, the current methods of plant bioconversion employ severe and harmful chemical/physical pretreatments raising biofuel cost production and environmental degradation. Replacing these methods with co-cultivated enzymatic cocktails is an alternative. Here we propose a pretreatment for sugarcane bagasse using a multi-enzymatic cocktail from the co-cultivation of four Aspergillus nidulans recombinant strains. The co-cultivation resulted in the simultaneous production of GH51 arabinofuranosidase (AbfA, GH11 endo-1,4-xylanase (XlnA, GH43 endo-1,5-arabinanase (AbnA and GH12 xyloglucan specific endo-β-1,4-glucanase (XegA. This core set of recombinant enzymes was more efficient than the alternative alkaline method in maintaining the cellulose integrity and exposing this cellulose to the following saccharification process. Thermogravimetric and differential thermal analysis revealed residual byproducts on the alkali pretreated biomass, which were not found in the enzymatic pretreatment. Therefore, the enzymatic pretreatment was residue-free and seemed to be more efficient than the applied alkaline method, which makes it suitable for bioethanol production.

  20. Co-cultivation of Aspergillus nidulans Recombinant Strains Produces an Enzymatic Cocktail as Alternative to Alkaline Sugarcane Bagasse Pretreatment

    Science.gov (United States)

    Lima, Matheus S.; Damasio, André R. de L.; Crnkovic, Paula M.; Pinto, Marcelo R.; da Silva, Ana M.; da Silva, Jean C. R.; Segato, Fernando; de Lucas, Rosymar C.; Jorge, João A.; Polizeli, Maria de L. T. de M.

    2016-01-01

    Plant materials represent a strategic energy source because they can give rise to sustainable biofuels through the fermentation of their carbohydrates. A clear example of a plant-derived biofuel resource is the sugar cane bagasse exhibiting 60–80% of fermentable sugars in its composition. However, the current methods of plant bioconversion employ severe and harmful chemical/physical pretreatments raising biofuel cost production and environmental degradation. Replacing these methods with co-cultivated enzymatic cocktails is an alternative. Here we propose a pretreatment for sugarcane bagasse using a multi-enzymatic cocktail from the co-cultivation of four Aspergillus nidulans recombinant strains. The co-cultivation resulted in the simultaneous production of GH51 arabinofuranosidase (AbfA), GH11 endo-1,4-xylanase (XlnA), GH43 endo-1,5-arabinanase (AbnA) and GH12 xyloglucan specific endo-β-1,4-glucanase (XegA). This core set of recombinant enzymes was more efficient than the alternative alkaline method in maintaining the cellulose integrity and exposing this cellulose to the following saccharification process. Thermogravimetric and differential thermal analysis revealed residual byproducts on the alkali pretreated biomass, which were not found in the enzymatic pretreatment. Therefore, the enzymatic pretreatment was residue-free and seemed to be more efficient than the applied alkaline method, which makes it suitable for bioethanol production. PMID:27199917

  1. Production of cellulosic ethanol from sugarcane bagasse by steam explosion: Effect of extractives content, acid catalysis and different fermentation technologies.

    Science.gov (United States)

    Neves, P V; Pitarelo, A P; Ramos, L P

    2016-05-01

    The production of cellulosic ethanol was carried out using samples of native (NCB) and ethanol-extracted (EECB) sugarcane bagasse. Autohydrolysis (AH) exhibited the best glucose recovery from both samples, compared to the use of both H3PO4 and H2SO4 catalysis at the same pretreatment time and temperature. All water-insoluble steam-exploded materials (SEB-WI) resulted in high glucose yields by enzymatic hydrolysis. SHF (separate hydrolysis and fermentation) gave ethanol yields higher than those obtained by SSF (simultaneous hydrolysis and fermentation) and pSSF (pre-hydrolysis followed by SSF). For instance, AH gave 25, 18 and 16 g L(-1) of ethanol by SHF, SSF and pSSF, respectively. However, when the total processing time was taken into account, pSSF provided the best overall ethanol volumetric productivity of 0.58 g L(-1) h(-1). Also, the removal of ethanol-extractable materials from cane bagasse had no influence on the cellulosic ethanol production of SEB-WI, regardless of the fermentation strategy used for conversion.

  2. Co-cultivation of Aspergillus nidulans Recombinant Strains Produces an Enzymatic Cocktail as Alternative to Alkaline Sugarcane Bagasse Pretreatment.

    Science.gov (United States)

    Lima, Matheus S; Damasio, André R de L; Crnkovic, Paula M; Pinto, Marcelo R; da Silva, Ana M; da Silva, Jean C R; Segato, Fernando; de Lucas, Rosymar C; Jorge, João A; Polizeli, Maria de L T de M

    2016-01-01

    Plant materials represent a strategic energy source because they can give rise to sustainable biofuels through the fermentation of their carbohydrates. A clear example of a plant-derived biofuel resource is the sugar cane bagasse exhibiting 60-80% of fermentable sugars in its composition. However, the current methods of plant bioconversion employ severe and harmful chemical/physical pretreatments raising biofuel cost production and environmental degradation. Replacing these methods with co-cultivated enzymatic cocktails is an alternative. Here we propose a pretreatment for sugarcane bagasse using a multi-enzymatic cocktail from the co-cultivation of four Aspergillus nidulans recombinant strains. The co-cultivation resulted in the simultaneous production of GH51 arabinofuranosidase (AbfA), GH11 endo-1,4-xylanase (XlnA), GH43 endo-1,5-arabinanase (AbnA) and GH12 xyloglucan specific endo-β-1,4-glucanase (XegA). This core set of recombinant enzymes was more efficient than the alternative alkaline method in maintaining the cellulose integrity and exposing this cellulose to the following saccharification process. Thermogravimetric and differential thermal analysis revealed residual byproducts on the alkali pretreated biomass, which were not found in the enzymatic pretreatment. Therefore, the enzymatic pretreatment was residue-free and seemed to be more efficient than the applied alkaline method, which makes it suitable for bioethanol production.

  3. Carbonisation of bagasse in a fixed bed reactor: influence of process variables on char yield and characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Katyal, S.; Thambimuthu, K.; Valix, M. [University of Sydney (Australia). Dept. of Chemical Engineering

    2003-04-01

    Carbonisation experiments on samples of sugar cane bagasse were conducted in a static fixed bed reactor to determine the effect of process variables such as temperature, heating rate, inert sweep gas flow rate and particle size on the yield and composition of solid product char. Experiments were performed to the final temperatures of 250-700{sup o}C with heating rates from 5 to 30{sup o}C/min with nitrogen sweep gas flow rate of 350 cc/min. Additional tests were aimed at studying the effect of different flow rates of nitrogen sweep gas from 0 to 700 cc/min during carbonization and different particle size fractions of bagasse. The results showed that as the carbonisation temperature was increased, the yield of char decreased. The reduction in yield was rapid up to a final temperature of 500{sup o}C and was slower thereafter. The yield of char was relatively insensitive to the changes in heating rate and particle size. Increasing the sweep gas flow rate to 350 cc/min reduced the yield of char. It appears the presence of inert sweep gas reduced secondary reactions which promoted char formation. The proximate analysis of the char suggests that fixed carbon and ash content increased with temperature. The char obtained at temperatures higher than 500{sup o}C have high carbon content and is suitable as renewable fuel and for other applications. The carbonization of bagasse has the potential to produce environmental friendly fuels and can assist in reducing deforestation for the production of charcoal. (Author)

  4. Catalytic gasification of bagasse for the production of methanol

    Energy Technology Data Exchange (ETDEWEB)

    Baker, E.G.; Brown, M.D.; Robertus, R.J.

    1985-10-01

    The purpose of the study was to evaluate the technical and economic feasibility of catalytic gasification of bagasse to produce methanol. In previous studies, a catalytic steam gasification process was developed which converted wood to methanol synthesis gas in one step using nickel based catalysts in a fluid-bed gasifier. Tests in a nominal 1 ton/day process development unit (PDU) gasifier with these same catalysts showed bagasse to be a good feedstock for fluid-bed gasifiers, but the catalysts deactivated quite rapidly in the presence of bagasse. Laboratory catalyst screening tests showed K/sub 2/CO/sub 3/ doped on the bagasse to be a promising catalyst for converting bagasse to methanol synthesis gas. PDU tests with 10 wt % K/sub 2/CO/sub 3/ doped on bagasse showed the technical feasibility of this type of catalyst on a larger scale. A high quality synthesis gas was produced and carbon conversion to gas was high. The gasifier was successfully operated without forming agglomerates of catalyst, ash, and char in the gasifier. There was no loss of activity throughout the runs because catalysts is continually added with the bagasse. Laboratory tests showed about 80% of the potassium carbonate could be recovered and recycled with a simple water wash. An economic evaluation of the process for converting bagasse to methanol showed the required selling price of methanol to be significantly higher than the current market price of methanol. Several factors make this current evaluaton using bagasse as a feedstock less favorable: (1) capital costs are higher due to inflation and some extra costs required to use bagasse, (2) smaller plant sizes were considered so economies of scale are lost, and (3) the market price of methanol in the US has fallen 44% in the last six months. 24 refs., 14 figs., 16 tabs.

  5. The impacts of the generation of biomass power plants in the Brazilian hydrothermal dispatch and its influence on the formation of prices of electric power in Brazil; Os impactos da geracao de usinas a biomassa no despacho hidrotermico brasileiro e sua influencia na formacao do preco da energia eletrica no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Luiz Eduardo S.; Ribeiro, Paulo [Universidade Federal de Juiz de Fora (UFJF), MG (Brazil)], Emails: luizeduardo_jf@yahoo.com.br, pfribeiro@ieee.org; Tardin, Thiago V. [Engenho Pesquisa, Desenvolvimento e Consultoria Ltda., Rio de Janeiro, RJ (Brazil)], E-mail: thiago@engenho.com

    2009-07-01

    The positive and negative impacts of the electric energy generation from biomass of sugar in the Brazilian energy matrix are presented, as well as in the hydrothermal dispatch. Studies on the impacts of the generation sources using sugar cane bagasse in the operational planning and in the composition of the electric energy price are done. Computational implementations using optimized methods, as the stochastic dual dynamic programing, are done, to support the decision making and to compare the obtained results. It is, also presented the commercialization rules for energy in the Free Contracting Environment and in the Regulated Contracting Environment related to the alternative sources of energy, as well as the mechanisms of encouraged energy auction (reserve auction) and the rules for commercialization of energy applied to encouraged sources.

  6. 蔗渣碱法蒸煮甲醇发生量与木素溶出率和聚戊糖溶出率的关系%The Relationship between Generation of Methanol and Dissolution of Lignin and Pentosan in Bagasse Alkaline Pulping

    Institute of Scientific and Technical Information of China (English)

    刘秋娟; 邱昱桥

    2013-01-01

    甲醇是碱法蒸煮过程中产生的主要醇类大气污染物.研究了蔗渣烧碱-蒽醌法蒸煮过程中,不同蒸煮条件下甲醇发生量与木素溶出率和聚戊糖溶出率之间的关系.结果表明,在蔗渣烧碱-蒽醌法蒸煮过程中,甲醇发生量随木素溶出率和聚戊糖溶出率的增大而升高;若增加用碱量、提高蒸煮最高温度和延长保温时间,甲醇发生量的变化趋势与木素溶出率的变化趋势相近,而与聚戊糖溶出率的变化趋势有所不同;蒽醌用量为0.025%时,甲醇发生量最低.%Methanol is the main alcohol of air pollutants generated in alkaline pulping process. The relationships between the methanol generation and the dissolution of lignin and pentosan in bagasse alkaline cooking under different pulping conditions were investigated. The results showed that the quantity of the methanol generation increased with the increase of the dissolution of lignin and pentosan. The change trend of methanol generation was similar to that of the lignin dissolution, but unlike the dissolution of pentosan.

  7. Preliminary Biotic Survey of Cane Creek, Calhoun County, AL

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — A biotic survey of Cane Creek (Calhoun County, AL) was completed in the Fall (1992) and Winter (1993) at six sites within Cane Creek to determine the effects of...

  8. Cytogenetic biomonitoring of occupationally exposed workers to ashes from burning of sugar cane in Ahome, Sinaloa, México.

    Science.gov (United States)

    Martínez-Valenzuela, Carmen; Rodríguez-Quintana, Ana Rosa; Meza, Enrique; Waliszewski, Stefan M; Amador-Muñóz, Omar; Mora-Romero, Arlene; Calderón-Segura, María Elena; Félix-Gastélum, Rubén; Rodríguez-Romero, Isabel; Caba, Mario

    2015-09-01

    Burning the sugar cane field before harvesting has a negative impact on both air and human health, however this issue had not been explored in Mexico. The objective of this work was to determine the chromosomal damage in workers from sugar cane burning fields in Sinaloa, México. To this purpose, we analyzed 1000 cells of buccal exfoliated epithelia from 60 exposed workers and 60 non-exposed controls to determine micronucleus frequencies and other nuclear abnormalities. The results indicated significant higher values of micronucleus and nuclear abnormalities such as binucleate cells, pyknosis, karyolysis, chromatin condensation and nuclear buds frequencies in the exposed subjects compared to those that were not exposed. Our data indicates that sugar cane burning, that generates polycyclic aromatic hydrocarbons, represents a genotoxic risk for workers in this important sugar cane producing area in Mexico. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. CANE FIBERBOARD DEGRADATION WITHIN THE 9975 SHIPPING PACKAGE DURING LONG-TERM STORAGE APPLICATION

    Energy Technology Data Exchange (ETDEWEB)

    Daugherty, W.; Dunn, K.; Hackney, B.

    2013-06-19

    The 9975 shipping package is used as part of the configuration for long-term storage of special nuclear materials in the K Area Complex at the Savannah River Site. The cane fiberboard overpack in the 9975 package provides thermal insulation, impact absorption and criticality control functions relevant to this application. The Savannah River National Laboratory has conducted physical, mechanical and thermal tests on aged fiberboard samples to identify degradation rates and support the development of aging models and service life predictions in a storage environment. This paper reviews the data generated to date, and preliminary models describing degradation rates of cane fiberboard in elevated temperature – elevated humidity environments.

  10. Advanced Breeding, Development, and Release of High Biomass Energy Cane Cultivars in Florida

    Science.gov (United States)

    Research into alternative energy sources has been on the rise since the 1970s. Novel sources of carbon-neutral energy are currently in high demand, but can pose different challenges in their development. Energy cane is a relatively new generation crop being bred as a source for biofuel feedstock and...

  11. Olive bagasse (Olea europa L.) pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Sensoz, S.; Demiral, I. [Osmangazi Univ., Eskisehir (Turkey). Dept. of Chemical Engineering; Gercel, H.F. [Anadolu Univ., Eskisehir (Turkey). Dept. of Chemical Engineering

    2006-02-15

    Olive bagasse (Olea europea L.) was pyrolysed in a fixed-bed reactor. The effects of pyrolysis temperature, heating rate, particle size and sweep gas flow rates on the yields of the products were investigated. Pyrolysis runs were performed using pyrolysis temperatures between 350 and 550 {sup o}C with heating rates of 10 and 50 {sup o}C min{sup -} {sup 1}. The particle size and sweep gas flow rate varied in the ranges 0.224-1.8 mm and 50-200 cm{sup 3} min {sup -1}, respectively. The bio-oil obtained at 500 {sup o}C was analysed and at this temperature the liquid product yield was the maximum. The various characteristics of bio-oil obtained under these conditions were identified on the basis of standard test methods. The empirical formula of the bio-oil with heating value of 31.8 MJ kg{sup -1} was established as CH{sub 1.65}O{sub 0.25}N{sub 0.03}. The chemical characterization showed that the bio-oil obtained from olive bagasse may be potentially valuable as a fuel and chemical feedstock. (author)

  12. APPLICATION OF NSSC PULPING TO SUGARCANE BAGASSE

    Directory of Open Access Journals (Sweden)

    Alireza Khakifirooz

    2011-06-01

    Full Text Available The NSSC pulping process was investigated to produce pulp from bagasse for corrugating board manufacture. The chemical contents including cellulose, lignin, ash, and extractives soluble in alcohol-acetone measured 55.75, 20.5, 1.85, and 3.25, respectively. The average fiber length, fiber diameter, lumen width, and cell wall thickness of bagasse were 1.59 mm, 20.96, 9.72, and 5.64 μm, respectively. The optimum conditions, with a yield of 74.95%, were achieved using 20 percent chemicals on the basis of sodium oxide, cooking temperature of 170 °C, and cooking time of 30 minutes. Pulp was refined to freeness 345 and 433 mL CSF according to Canadian standards. 127 g m-2 handsheets from both pulps were made and strength properties measured. Statistical analysis of results indicated that paper derived from freeness 345 and 433 mL CSF had better strength properties in all indices in comparison with NSSC pulp from hardwoods produced at Mazandaran Pulp and Paper factory, Iran.

  13. Pembuatan dan Karakteristik Komposit Polimer Berpenguat Bagasse

    Directory of Open Access Journals (Sweden)

    Eqitha Dea Clareyna

    2013-09-01

    Full Text Available Bagasse memiliki kandungan serat yang cukup besar dan berpotensi digunakan sebagai bahan penguat dalam pembuatan komposit karena sifatnya yang kuat dan ringan. Dalam penelitian tugas akhir ini telah dibuat bahan komposit berpenguat bagasse dengan empat macam ukuran penguat yaitu serat chopped serta partikel berukuran 100 mesh, 140 mesh, dan 200 mesh. Pembuatan komposit menggunakan metode hand lay-up dan fraksi volume penguat divariasi dari 2,5% hingga 15%. Hasil karakterisasi yang telah dilakukan, menunjukkan bahwa kekuatan tarik dan densitas terbaik dimiliki oleh sampel komposit dengan penguat berukuran 200 mesh sebanyak 7,5% volume. Kekuatan tarik sampel tersebut adalah  28,83  MPa dan densitasnya adalah 1,15 gr/cm3. Adapun kekuatan impak terbesar dimiliki oleh sampel komposit dengan 2,5% volume sebesar 0,00271 J/mm2. Dengan demikian sampel komposit yang telah dibuat dapat digunakan sebagai alternatif bahan baku industri menggantikan tiang penyangga (scantlings pada struktur kayu (timber structure sesuai standar AS 1720.1.

  14. Gas hold-up and oxygen mass transfer in three pneumatic bioreactors operating with sugarcane bagasse suspensions.

    Science.gov (United States)

    Esperança, M N; Cunha, F M; Cerri, M O; Zangirolami, T C; Farinas, C S; Badino, A C

    2014-05-01

    Sugarcane bagasse is a low-cost and abundant by-product generated by the bioethanol industry, and is a potential substrate for cellulolytic enzyme production. The aim of this work was to evaluate the effects of air flow rate (QAIR), solids loading (%S), sugarcane bagasse type, and particle size on the gas hold-up (εG) and volumetric oxygen transfer coefficient (kLa) in three different pneumatic bioreactors, using response surface methodology. Concentric tube airlift (CTA), split-cylinder airlift (SCA), and bubble column (BC) bioreactor types were tested. QAIR and %S affected oxygen mass transfer positively and negatively, respectively, while sugarcane bagasse type and particle size (within the range studied) did not influence kLa. Using large particles of untreated sugarcane bagasse, the loop-type bioreactors (CTA and SCA) exhibited higher mass transfer, compared to the BC reactor. At higher %S, SCA presented a higher kLa value (0.0448 s−1) than CTA, and the best operational conditions in terms of oxygen mass transfer were achieved for %S 27.0 L min−1. These results demonstrated that pneumatic bioreactors can provide elevated oxygen transfer in the presence of vegetal biomass, making them an excellent option for use in three-phase systems for cellulolytic enzyme production by filamentous fungi.

  15. Energy balance for steam generation system with biomass dryer

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Pedro A.R. [Instituto Superior Politecnico Jose Antonio Echeverria (CUJAE), Ciudad de La Habana (Cuba). Facultad Ingenieria Mecanica]. E-mail: pedro@economia.cujae.edu.cu; Lombardi, Geraldo; Santos, Antonio Moreira dos [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Escola de Engenharia]. E-mails: lombardi@sc.usp.br; asantos@sc.usp.br

    2008-07-01

    Water content is a major drainer of the energy available in the biomass, which justifies the proposal of a drying system with the potential to increase 80% of the biomass low heating value, also increasing the production of steam in the boiler and cogeneration of electricity. An example of biomass is the sugar cane bagasse of an alcohol mill producing 120,000 liters of alcohol per day, whose humidity from the extraction section is usually 50%. The present paper determines the increases in the mass flow rates of steam in the boiler, in the cogeneration of electricity and in the pay back time of the drying system and of the alcohol mill, as a consequence of the bagasse drying from 50 to 35%, considering 30% of air excess over the stoichiometric value admitted in the boiler for the bagasse burning. It also provides subsidies for the development and deployment of a drying system for the current boilers. (author)

  16. Evaluation of feeding steam treated bagasse pith on milk production and blood parameters of dairy buffaloes

    Directory of Open Access Journals (Sweden)

    H.M. Kasiri

    2010-02-01

    Full Text Available This study was conducted to evaluate the effects of feeding steam treated baggase pith of sugar cane (STP in feeding of buffalos. Eight milking buffaloes with the average live weight 541 ±47.5 kg were used in a complete randomized design with 4 treatments and 4 replications during 84 days. Diets contained forage: concentrate ratio 45:55. Concentrates were included amounts of 0,10,20 and 30 percent of steam treated pith bagasse (STP witch replaced with beet pulp sugar. Results indicted that, there were significant differences (P<0.05 affected by the diets. Diets included 20 and 30% STP had greater milk production with no differences in milk composition. Buffaloes fed 0 % STP had low milk fat and protein where as buffaloes had 30% had higher milk yield. The mean rumination times between treatment diets were significantly different (P<0.05. However, significant differences (P<0.05 were observed in plasma glucose and cholesterol concentrations in the experimental buffaloes cow. Buffaloes fed 30% STP had higher plasma insulin concentrates in response to a glucose challenge.

  17. Long-Term Variability in Sugarcane Bagasse Feedstock Compositional Methods: Sources and Magnitude of Analytical Variability

    Energy Technology Data Exchange (ETDEWEB)

    Templeton, David W.; Sluiter, Justin B.; Sluiter, Amie; Payne, Courtney; Crocker, David P.; Tao, Ling; Wolfrum, Ed

    2016-10-18

    In an effort to find economical, carbon-neutral transportation fuels, biomass feedstock compositional analysis methods are used to monitor, compare, and improve biofuel conversion processes. These methods are empirical, and the analytical variability seen in the feedstock compositional data propagates into variability in the conversion yields, component balances, mass balances, and ultimately the minimum ethanol selling price (MESP). We report the average composition and standard deviations of 119 individually extracted National Institute of Standards and Technology (NIST) bagasse [Reference Material (RM) 8491] run by seven analysts over 7 years. Two additional datasets, using bulk-extracted bagasse (containing 58 and 291 replicates each), were examined to separate out the effects of batch, analyst, sugar recovery standard calculation method, and extractions from the total analytical variability seen in the individually extracted dataset. We believe this is the world's largest NIST bagasse compositional analysis dataset and it provides unique insight into the long-term analytical variability. Understanding the long-term variability of the feedstock analysis will help determine the minimum difference that can be detected in yield, mass balance, and efficiency calculations. The long-term data show consistent bagasse component values through time and by different analysts. This suggests that the standard compositional analysis methods were performed consistently and that the bagasse RM itself remained unchanged during this time period. The long-term variability seen here is generally higher than short-term variabilities. It is worth noting that the effect of short-term or long-term feedstock compositional variability on MESP is small, about $0.03 per gallon. The long-term analysis variabilities reported here are plausible minimum values for these methods, though not necessarily average or expected variabilities. We must emphasize the importance of training and

  18. When a cane was the necessary complement of a physician.

    Science.gov (United States)

    Gibbs, D

    1999-01-01

    Although Dr John Radcliffe's gold-headed cane, presented to the Royal College of Physicians in 1825, became well-known following the publication two years later of Dr William Macmichael's book, The gold-headed cane, little consideration has previously been given either to medical canes, or to the custom of cane-carrying by doctors in the 18th century. This article makes a brief assessment of medical canes within the social and historical framework of the period, and views Macmichael's book in its literary context, with mention of other relevant examples of books in this genre.

  19. Alkaline Hydrolysis Kinetics Modeling of Bagasse Pentosan Dissolution

    Directory of Open Access Journals (Sweden)

    Yuxin Liu

    2013-11-01

    Full Text Available The main pentosan components of sugarcane bagasse, which can be subjected to alkaline hydrolysis, are xylose, arabinose, glucose, and galactose. The pentosan reaction mechanism was considered for alkali-treated bagasse with variation of temperature and time. The kinetics of pentosan degradation were studied concurrently at temperatures of 50 °C, 70 °C, and 90 °C, with a solid-liquid mass ratio of 1:15, a stirring speed of 500 revolutions/min, and different holding times for bagasse alkali pre-extraction. With respect to residual pentosan content and the losses of raw material, the hydrolysis rates of alkali pre-extraction and pentosan degradation reactions of bagasse all followed pseudo-first-order kinetic models. Finally, the main degradation activation energy was determined to be 20.86 KJ/mol, and the residual degradation activation energy was 28.75 KJ/mol according to the Arrhenius equation.

  20. Application of sugarcane bagasse ash as a partial cement ...

    African Journals Online (AJOL)

    The disposal of this material is already causing environmental problems ... shortage in most of concrete making materials especially cement, resulting in an ... This study examined the potential use of sugarcane bagasse ash as a partial ...

  1. First steps in translating human cognitive processes of cane pruning grapevines into AI rules for automated robotic pruning

    Directory of Open Access Journals (Sweden)

    Saxton Valerie

    2014-01-01

    Full Text Available Cane pruning of grapevines is a skilled task for which, internationally, there is a dire shortage of human pruners. As part of a larger project developing an automated robotic pruner, we have used artificial intelligence (AI algorithms to create an expert system for selecting new canes and cutting off unwanted canes. A domain and ontology has been created for AI, which reflects the expertise of expert human pruners. The first step in the creation of an expert system was to generate virtual vines, which were then ‘pruned’ by human pruners and also by the expert system in its infancy. Here we examined the decisions of 12 human pruners, for consistency of decision, on 60 virtual vines. 96.7% of the 12 pruners agreed on at least one cane choice after which there was diminishing agreement on which further canes to select for laying. Our results indicate that techniques developed in computational intelligence can be used to co-ordinate and synthesise the expertise of human pruners into a best practice format. This paper describes first steps in this knowledge elicitation process, and discusses the fit between cane pruning expertise and the expertise that can be elicited using AI based expert system techniques.

  2. Olive bagasse and nutshell as gamma shielding material

    Science.gov (United States)

    Inaç, Esra; Baytaş, A. Filiz

    2013-12-01

    Gamma ray linear attenuation coefficients have been measured experimentally for olive bagasse and nutshell by using narrow beam geometry for Co-60 and the values have been compared with soil. These values have been used calculate mean free path, half value layer and tenth value layer parameters. Besides, effect of multi-layered systems (soil + olive bagasse and soil + nutshell) has been analyzed in terms of half value layer.

  3. Growth of sugar cane varieties under salinity

    Directory of Open Access Journals (Sweden)

    Welson Lima Simões

    2016-04-01

    Full Text Available ABSTRACT Large salty areas in the Brazilian semi-arid region have limited farming in Northeastern Brazil. One example is the sugar cane cultivation, which reinforces the need of selecting varieties that are more tolerant to salinity. The objective of this study was to evaluate the effect of salinity on growth of ten varieties of sugar cane. The experiment was conducted in a greenhouse, set in the experimental field of Embrapa Semiárido, in Petrolina, Pernambuco State. The experimental design was randomized blocks arranged in a 6 X 10 factorial arrangement, comprised of six levels of salinity (0, 1.0, 2.0, 4.0, 6.0 and 8.0 dS m-1 and ten sugar cane varieties (VAT 90212; RB 72454; RB 867515; Q 124; RB 961003; RB 957508; SP791011; RB 835089; RB 92579 and SP 943206. Salt levels of irrigation water were obtained by adding NaCl, CaCl2.2H2O and MgSO4.7H2O to achieve an equivalent ratio among Na:Ca:Mg of 7:2:1. Sixty days later, plant height, stem diameter (base, number of leaves, stalks and sprouts, leaf area and fresh and dry mass of the aerial part and roots were all measured. The varieties of sugar cane showed similar responses for growth reduction as soil salinity increases, being considered moderately sensitive to salinity.

  4. Possible toxicity of boron on sugar cane

    Energy Technology Data Exchange (ETDEWEB)

    Bravo C., M.

    Analyses of necrotic and green leaf tissues from sugar cane grown in the Tambo Valley (Arequipa, Peru) have shown that the boron concentration in necrotic tissue (average 657.7 ppm) is several times higher than that in the green tissue (average 55.7 ppm). This suggests that the necrosis may be due to boron toxicity.

  5. Effect of Bagasse Chemical Pulping and Coupling Agent on the Physical - Mechanical Properties of Composites Based on Bagasse pulp/Low density polyethylene

    Directory of Open Access Journals (Sweden)

    maryam allahdadi

    2016-12-01

    Full Text Available In this research, effect of reinforcing bagasse pulp and raw bagasse fibers and applying coupling agent MAPE (Maleic Anhydride Polyethylene on physical-mechanical properties of low density polyethylene (LDPE composites were studided. Fresh bagasse were collected from an experimental field in Khuzestan and after investigating anatomy and chemical properties of Different pulp fibers including monoethanolamine (MEA bagasse pulp, alkaline sulfite-anthraquinone (AS bagasse pulp, bleached soda (BS bagasse pulp, unbleached soda (UNS bagasse pulp and raw bagasse fibers (B were prepared. Then, composites with 30wt.% fiber content were manufactured by twin-screw extrusion followed by compression molding processing. The mechanical and physical properties of these composites were analyzed and compared. Results revealed that the chemical pulping dissolved a fraction of lignin and hemicelluloses so that the linkage potential and aspect ratio of bagasse fibers was improved and consequently, as compared with the raw bagasse fibers, bagasse pulp fibers have better reinforcing capability. The best overall properties were achieved with MEA and AS/AQ fibers. Addition of 5% (wt/wt of coupling agent MAPE resulted in a significant enhancement in the tensile strength, tensile modulus and impact strength in line with the improvement of the fiber-matrix interfacial adhesion making more effective the transfer of stress from the matrix to the rigid reinforcement.

  6. ACID HYDROLYSIS OF HEMICELLULOSE FROM SUGARCANE BAGASSE

    Directory of Open Access Journals (Sweden)

    A. PESSOA JR.

    1997-09-01

    Full Text Available Hydrolysis of the hemicellulosic fraction of sugarcane bagasse by sulphuric acid was performed in laboratory (25 mL and semi-pilot (25 L reactors under different conditions of temperature, time and acid concentration. On the laboratory scale, the three highest recovery yields were obtained at: 140ºC for 10 min with 100 mgacid/gdm (yield=73.4%; 140ºC for 20 min with 100 mgacid/gdm (yield=73.9% and 150ºC for 20 min with 70 mgacid/gdm (yield=71.8%. These conditions were also used for hydrolysis in a semi-pilot reactor, and the highest xylose recovery yield (83.3% was obtained at 140ºC for 20 min with 100 mgacid/gdm

  7. Fermentable sugars from biopolymers of bagasse

    Energy Technology Data Exchange (ETDEWEB)

    Ramachandran, K.; Das, K.; Sharma, D.K.

    1987-11-01

    Ethanol can replace oil as a fuel and its use would help in the conservation of the meagre oil reserves in India. The article indicates some convenient and cost-effective processes for the production of ethanol from biopolymers available in bagasse, an agricultural residue. A two-stage acid hydrolysis process produced a maximum of fermentable sugars at 35%. Calcium chloride used as a promoter enhanced production by 3.5%. Other promoters are under investigation. Agitation had a significant effect on production, complete hydrolysis being possible between 10-45 minutes depending on temperature. The fermentable sugars obtained, xylose and glucose, can then be fermented to ethanol in an integrated three-stage process. 11 refs., 3 figs., 3 tabs.

  8. High-efficiency cogeneration boiler bagasse-ash geochemistry and mineralogical change effects on the potential reuse in synthetic zeolites, geopolymers, cements, mortars, and concretes

    Directory of Open Access Journals (Sweden)

    Malcolm W. Clark

    2017-04-01

    Full Text Available Sugarcane bagasse ash re-utilisation has been advocated as a silica-rich feed for zeolites, pozzolans in cements and concretes, and geopolymers. However, many papers report variable success with the incorporation of such materials in these products as the ash can be inconsistent in nature. Therefore, understanding what variables affect the ash quality in real mills and understanding the processes to characterise ashes is critical in predicting successful ash waste utilisation. This paper investigated sugarcane bagasse ash from three sugar mills (Northern NSW, Australia where two are used for the co-generation of electricity. Data shows that the burn temperatures of the bagasse in the high-efficiency co-generation boilers are much higher than those reported at the temperature measuring points. Silica polymorph transitions indicate the high burn temperatures of ≈1550 °C, produces ash dominated α −quartz rather than expected α-cristobilite and amorphous silica; although α-cristobilite, and amorphous silica are present. Furthermore, burn temperatures must be ≤1700 °C, because of the absence of lechatelierite where silica fusing and globulisation dominates. Consequently, silica-mineralogy changes deactivate the bagasse ash by reducing silica solubility, thus making bagasse ash utilisation in synthetic zeolites, geopolymers, or a pozzolanic material in mortars and concretes more difficult. For the ashes investigated, use as a filler material in cements and concrete has the greatest potential. Reported mill boiler temperatures discrepancies and the physical characteristics of the ash, highlight the importance of accurate temperature monitoring at the combustion seat if bagasse ash quality is to be prioritised to ensure a usable final ash product.

  9. UTILIZATION OF BAGASSE FIBER FOR PREPARATION OF BIODEGRADABLE FLAME RETARDING COMPOSITES (BFRCS)

    OpenAIRE

    2010-01-01

    Bagasse is a renewable resource characterized by its low cost and environmental friendliness. In this work a novel technological process was proposed to make flame retarding composites (BFRCs) by using bagasse fiber. The bagasse was disintegrated by twisting it up and applying high consistency refining, and then it was used to prepare BFRCs via hot pressure. Chemical groups and thermal properties of bagasse fiber were studied through the use of FTIR spectroscopy, a universal mechanical testin...

  10. NEWSPRINT FROM SODA BAGASSE PULP IN ADMIXTURE WITH HARDWOOD CMP PULP

    OpenAIRE

    Seed Rahman Jafari Petroudy; Hossein Resalati Mail; pejman Rezayati Charani Mail

    2011-01-01

    Based on global research and experiences producing newsprint from bagasse, the possibility of using bagasse chemical pulp in the furnish of local mill-made mixed hardwood CMP pulp was studied at laboratory scale, for making newsprint. Bagasse soda chemical pulp at digester yield of about 47% was bleached to about 60% brightness by single stage hydrogen peroxide. The effects of using up to 30% bagasse chemical pulp in a blend with hardwood CMP pulp, with or without softwood kraft pulp, were st...

  11. Biodegradation behaviors and color change of composites based on type of bagasse pulp/polylactic acid

    Directory of Open Access Journals (Sweden)

    maryam allahdadi

    2017-05-01

    Full Text Available In this research, appearance quality and decay resistance of polylactic acid (PLA based green composites made from monoethanolamine (MEA bagasse pulp, alkaline sulfite-anthraquinone (AS bagasse pulp, bleached soda (B S bagasse pulp, unbleached soda (UN S bagasse pulp (UN S bagasse pulp and raw bagasse fibers (B were investigated. For the investigation of biodegradation behaviors, effect of the white rot fungi (Coriolus versicolor on the neat PLA and composites with natural fibers during 30 and 60 days were studied. It is found that when the bagasse fibers were incorporated into composites matrix, percentage weight reduction and stiffness of samples have been increased. Also, the rate of loss mentioned of the composites made from bagasse pulp fibers were superior to the relevant raw bagase fibers. This can be explained by the removal of non-cellulosic components such as lignin and hemicelluloses from the fibers by pulping process. Also, the results indicates the inferior of surface qualities of fabricated composites regarding to neat PLA. Depending on the fiber type, different reductions of the surface qualities were attained. However, the degree of color change of the composites with any type of bagasse pulp fibers were lower compared with composite with raw bagasse fiber. Finally, as compared with the raw bagasse fibers, bagasse pulp fibers have better reinforcing capability.

  12. CANE: The Content Addressed Network Environment

    CERN Document Server

    Gardner-Stephen, Paul

    2007-01-01

    The fragmented nature and asymmetry of local and remote file access and network access, combined with the current lack of robust authenticity and privacy, hamstrings the current internet. The collection of disjoint and often ad-hoc technologies currently in use are at least partially responsible for the magnitude and potency of the plagues besetting the information economy, of which spam and email borne virii are canonical examples. The proposed replacement for the internet, Internet Protocol Version 6 (IPv6), does little to tackle these underlying issues, instead concentrating on addressing the technical issues of a decade ago. This paper introduces CANE, a Content Addressed Network Environment, and compares it against current internet and related technologies. Specifically, CANE presents a simple computing environment in which location is abstracted away in favour of identity, and trust is explicitly defined. Identity is cryptographically verified and yet remains pervasively open in nature. It is argued tha...

  13. Energy Cane: Its Concept, Development, Characteristics, and Prospects

    Directory of Open Access Journals (Sweden)

    Sizuo Matsuoka

    2014-01-01

    Full Text Available Unlike conventional sugar cane (Saccharum spp. energy cane is a cane selected to have more fiber than sucrose in its composition. This is obtained simply by altering the genetic contribution of the ancestral species of sugarcane using traditional breeding methods. The resulting key feature is a significant increase in biomass yield. This happens because accumulating sugar is not physiologically a simple process and results in penalty in the side of fiber and yield. This review paper describes the initial conception of fuel cane in Puerto Rico in the second half of 1970s, the present resurgence of interest in it, how to breed energy cane, and the main characteristics that make it one of the most favorable dedicated bioenergy crops. The present status of breeding for energy cane in the world is also reviewed. Its potential contribution to the renewable energy market is discussed briefly.

  14. Production of biohydrogen from hydrolyzed bagasse with thermally preheated sludge

    Energy Technology Data Exchange (ETDEWEB)

    Chairattanamanokorn, Prapaipid [Environmental Technology Unit, Department of Environmental Science, Kasetsart University, Bangkok (Thailand); Research Group for Development of Microbial Hydrogen Production Process from Biomass (Thailand); Penthamkeerati, Patthra [Environmental Technology Unit, Department of Environmental Science, Kasetsart University, Bangkok (Thailand); Reungsang, Alissara [Research Group for Development of Microbial Hydrogen Production Process from Biomass (Thailand); Department of Biotechnology, Khon Kaen University, Khon Kaen, Bangkok (Thailand); Lo, Yung-Chung [Department of Chemical Engineering, National Cheng Kung University, Tainan (China); Lu, Wei-Bin [Department of Cosmetic Science, Chung Hwa University of Medical Technology, Tainan (China); Chang, Jo-Shu [Department of Chemical Engineering, National Cheng Kung University, Tainan (China); Sustainable Environment Research Center, National Cheng Kung University, Tainan (China)

    2009-09-15

    Production of biohydrogen from dark fermentation is an interesting alternative to producing renewable fuels because of its low cost and various usable substrates. Cellulosic content in plentiful bagasse residue is an economically feasible feedstock for biohydrogen production. A statistical experimental design was applied to identify the optimal condition for biohydrogen production from enzymatically hydrolyzed bagasse with 60-min preheated seed sludge. The bagasse substrate was first heated at 100 C for 2 h and was then hydrolyzed with cellulase. Culture of the pretreated bagasse at 55 C provided a higher H{sub 2} production performance than that obtained from cultures at 45 C, 65 C, 35 C and 25 C. On the other hand, the culture at pH 5 resulted in higher H{sub 2} production than the cultures at pH 6, pH 4 and pH 7. The optimal culture condition for the hydrogen production rate was around 56.5 C and pH 5.2, which was identified using response surface methodology. Moreover, the pretreatment of bagasse under alkaline conditions gave a thirteen-fold increase in H{sub 2} production yield when compared with that from preheatment under neutral condition. (author)

  15. Wastewater management in a cane molasses distillery involving bioresource recovery.

    Science.gov (United States)

    Nandy, Tapas; Shastry, Sunita; Kaul, S N

    2002-05-01

    Waste management involving bioresource recovery in a cane molasses-based distillery engaged in the manufacture of rectified spirit (alcohol) is described. The spentwash generated from the distillation of fermenter wash is highly acidic (pH 4.0-4.3) with high rates of biochemical and chemical oxygen demand (BOD: 52-58, COD: 92-100 kg/m3) and suspended solids (2.0-2.5 kg/m3). Biogas is recovered from high strength raw spentwash through the full-scale application of a biomethanation system as pretreatment option, comprising anaerobic fixed film reactors. This, combined with subsequent concentration through multiple effect evaporators (MEE), and utilization of concentrated effluent for biocomposting of pressmud (another by-product of the industry) for production of biomanure contributes to the elimination of effluent discharges.

  16. High-energy electron irradiation of annual plants (bagasse) for an efficient production of chemi-mechanical pulp fibers

    Science.gov (United States)

    Pathak, Shailesh; Ray, A. K.; Großmann, Harald; Kleinert, Rene

    2015-12-01

    The paper industry is one of the largest consumers of energy and energy consumption has been increased several times in last few decades. Bagasse chemical pulping has very low yield about 45-55% and also generates high pollution load in the effluent as compared to mechanical pulping, g. Thermo-mechanical pulp (TMP). On the other hand,-->e.g. thermo-mechanical pulp (TMP). On the other hand, the specific energy consumption is very high for TMP pulps. ETMP (Energy efficient Thermo-Mechanical Pulping) or ECTMP (Energy efficient Chemi-Thermo Mechanical Pulping) is an innovative idea for reducing the energy demand in TMP refining. In the present investigation, energy efficient mechanical pulping potential of bagasse was studied using TMP, CTMP and ECTMP pulping methodology with electron irradiation pretreatment. It is evident from the results that more than 50% energy saving potential of irradiation pre-treatment was achieved.

  17. SUGARCANE BAGASSE PULPING AND BLEACHING: THERMAL AND CHEMICAL CHARACTERIZATION

    Directory of Open Access Journals (Sweden)

    Paulo Henrique Fernandes Pereira

    2011-05-01

    Full Text Available Cellulose fibers were isolated from sugarcane bagasse in three stages. Initially sugarcane bagasse was subjected to a pre-treatment process with hydrolyzed acid to eliminate hemicellulose. Whole cellulosic fibers thus obtained were then subjected to a two-stage delignification process and finally to a bleaching process. The chemical structure of the resulting cellulose fibers was studied by Fourier Transform Infrared (FTIR spectroscopy. Scanning Electron Microscopy (SEM and X-ray diffraction (XRD were used to analyze the effects of hydrolysis, delignification, and bleaching on the structure of the fibers. Two different thermal analysis techniques were used to study the bleaching cellulose fibers. These techniques confirmed that cellulose fibers were isolated from sugarcane bagasse. A future goal is to use these fibers as reinforcement elements in composites, organic-inorganic hybrid, and membranes for nanofiltration.

  18. Pyrolysis kinetics of bagasse at high heating rates

    Energy Technology Data Exchange (ETDEWEB)

    Stubington, J.F.; Aiman, S. (University of New South Wales, Kensington, NSW (Australia). Dept. of Fuel Technology)

    The rate of pyrolysis of bagasse was studied at high heating rates (200-10,000 [degree]C/s) to obtain engineering data for incorporation into computational fluid dynamic models of bagasse ignition and combustion in suspension-fired and swirl burners. Experiments were performed using an electrically-heated grid under a nitrogen atmosphere at atmosphere pressure. Yields of char, tar, individual gas components, and water were measured as a function of peak temperature, for ranges of heating rate, residence time at peak temperature, and particle size. At higher peak temperatures, significant tar cracking occurred so that tar yields passed through a maximum as peak temperature increased. For dry bagasse, this tar cracking produced gases with no change in char yield, suggesting that it occurred external to the particle. Moisture in the atmosphere increased the tar cracking in the vapor phase outside the bagasse particle producing more gases but did not affect the char yield. However, moisture in the bagasse reduced the char yield and further enhanced the tar cracking reactions, producing even more gases (predominantly carbon monoxide). These results suggested an interaction between water vapor and the tar cracking reactions. For the short residence times appropriate to such burners, a single, first-order reaction model gave the best fit to the total weight loss for the ranges of heating rate and particle sizes studied. However, the first-order kinetic parameters fitted to primary tar production were recommended for modeling purposes because the total weight loss included significant yields of noncombustible water and carbon dioxide. Different ultimate primary tar yields were recommended to fit the dry and wet bagasse pyrolysis results. No chemical significance should be attributed to the kinetic parameters, which were determined to provide the simplest and best fit to the pyrolysis data. 19 refs., 15 figs., 5 tabs.

  19. Saccharification of Sugarcane Bagasse by Enzymatic Treatment for bioethanol production

    Directory of Open Access Journals (Sweden)

    Ahmed, F. M.

    2012-06-01

    Full Text Available Aims: The escalating demands for traditional fossil fuels with unsecured deliverance and issues of climate change compel the researchers to develop alternative fuels like bioethanol. This study examines the prospect of biofuel production from high carbohydrate containing lignocellulosic material, e.g. sugarcane bagasse through biological means. Methodology and Results: Cellulolytic enzymes were collected from the culture filtrate of thermotolerant Trichodermaviride grown on variously pre-treated sugarcane bagasse. CMCase and FPase enzyme activities were determined as a measure of suitable substrate pre-treatment and optimum condition for cellulolytic enzyme production. The highest CMCase and FPase activity was found to be 1.217 U/ml and 0.109 U/ml respectively under the production conditions of 200 rpm, pH 4.0 and 50 °C using steamed NaOH treated bagasse as substrate. SEM was carried out to compare and confirm the activity of cellulolytic enzymes on sugarcane bagasse. Saccharification of pre-treated bagasse was carried out with crude enzymes together using a two-factor experimental design. Under optimized conditions the pre-treated bagasse was saccharified up to 42.7 % in 24 h. The hydrolysate was concentrated by heating to suitable concentration and then used for fermentation by an indigenous isolate of Saccharomyces cerevisiae. With 50 and 80 % brix containing liquor the concentration of alcohol was 0.579 % and 1.15 % respectively. Conclusion, significance and impact of study: This is the first report in Bangladesh for the production of cellulosicethanol using local isolates. Though the rate of alcohol production was very low, a great impetus in this field can maximize the production thereby meet the demand for fuel in future.

  20. Lithium storage into carbonaceous materials obtained from sugarcane bagasse

    Energy Technology Data Exchange (ETDEWEB)

    Matsubara, Elaine Y.; Lala, Stella M.; Rosolen, Jose Mauricio, E-mail: rosolen@ffclrp.usp.b [University of Sao Paulo (FFCLRP/USP), Ribeirao Preto, SP (Brazil). Dept. of Chemistry

    2010-07-01

    Carbonaceous materials with different structures are prepared by carbonization of sugarcane bagasse. Depending on carbonization conditions, it is possible to obtain soot rich in flakes or in honeycomb-shaped micrometric particles, whose concentration has large influence on lithium storage into electrodes. The soot rich in honeycomb-shaped particles provides the best electrochemical performance, with a reversible specific capacity of 310 mAh g{sup -1}. The results suggest that the sugarcane bagasse can be potentially used in the design of anodic materials for lithium ion batteries. (author)

  1. Effect of Bagasse ash reinforcement on the wear behaviour of Al-Cu-Mg/Bagasse ash particulate composites

    Institute of Scientific and Technical Information of China (English)

    V.S.; Aigbodion; S.B.; Hassan; G.B.; Nyior; T.; Ause

    2010-01-01

    The effect of Bagasse ash(BAp) particle reinforcement on the wear behavior of Al-CuMg alloy has been studied.Bagasse ash particles were varied from 0 wt pct-10 wt pct with interval of 2 wt pct.Unlubricated pin-on disc tests were conducted to examine the wear behaviour of the aluminium alloy/Bagasse ash particulate composites.The tests were conducted at varying loads,from 5 to 20 N and sliding speeds of 1.26 m/s,2.51 m/s,3.77 m/s and 5.02 m/s for a constant sliding distance of 5000 m.The results showed that ...

  2. Seasonal variation of prices of sugar cane, ethanol and electric power; Variacao estacional dos precos da cana-de-acucar, alcool combustivel e energia eletrica

    Energy Technology Data Exchange (ETDEWEB)

    Melo, Carmem Ozana de; Silva, Gerson Henrique da; Bueno, Osmar de Carvalho [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Botucatu, SP (Brazil); Esperancini, Maura Seiko Tsutsui [Universidade Estadual do Oeste do Parana (UNIOESTE), Francisco Beltrao, PR (Brazil)

    2010-07-01

    The aim of this study was to assess the seasonal price of sugar cane, fuel alcohol (hydrated and anhydrous) and electricity tariffs as a way of aiding tool for optimization of energy generation, using biomass originating from cane sugar. Using the method of moving average centered was concluded that cane and electricity rates were close to seasonal average, with low range of prices, suggesting the non-occurrence of seasonal variation in prices. Unlike the seasonal indices of ethanol showed seasonal variation of prices with greater amplitude of seasonal index. Thus, the results suggest that the utilization of by-products of sugar cane to produce electrical power points to the prospect of reducing risks associated with variations in the price of ethanol, thereby contributing to greater stability and possibility to those involved in planning alcohol sector. (author)

  3. Seasonal variation of prices of sugar cane, ethanol and electric power; Variacao estacional dos precos da cana-de-acucar, alcool combustivel e energia eletrica

    Energy Technology Data Exchange (ETDEWEB)

    Melo, Carmem Ozana de; Silva, Gerson Henrique da; Bueno, Osmar de Carvalho [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Botucatu, SP (Brazil); Esperancini, Maura Seiko Tsutsui [Universidade Estadual do Oeste do Parana (UNIOESTE), Francisco Beltrao, PR (Brazil)

    2010-07-01

    The aim of this study was to assess the seasonal price of sugar cane, fuel alcohol (hydrated and anhydrous) and electricity tariffs as a way of aiding tool for optimization of energy generation, using biomass originating from cane sugar. Using the method of moving average centered was concluded that cane and electricity rates were close to seasonal average, with low range of prices, suggesting the non-occurrence of seasonal variation in prices. Unlike the seasonal indices of ethanol showed seasonal variation of prices with greater amplitude of seasonal index. Thus, the results suggest that the utilization of by-products of sugar cane to produce electrical power points to the prospect of reducing risks associated with variations in the price of ethanol, thereby contributing to greater stability and possibility to those involved in planning alcohol sector. (author)

  4. Utilização do sorgo sacarino como matéria-prima complementar à cana-de-açúcar para obtenção de etanol em microdestilaria Sweet sorghum utilization as complementary raw material of sugar cane for ethanol production in microdistillery

    Directory of Open Access Journals (Sweden)

    Cyro Gonçalves TEIXEIRA

    1997-12-01

    Full Text Available O sorgo sacarino tem sido motivo de investigação como fonte complementar de matéria-prima para a produção de etanol em microdestilaria. Os seus colmos podem ser processados na mesma instalação destinada à produção de etanol de cana-de-açúcar, oferecendo também uma quantidade de resíduo fibroso (bagaço para gerar o vapor necessário para a operação industrial. Os resultados obtidos em dois anos de experimento mostraram que o sorgo sacarino cultivar Br 505 pode ser uma cultura complementar à cana-de-açúcar para produção de etanol. Os teores de açúcares redutores totais nos colmos não foi significativamente diferente do encontrado nos colmos de cana-de-açúcar cortados antecipadamente. Os colmos apresentaram um conteúdo em açúcares redutores totais de 33 a 40%, em base seca. Assim, o sorgo sacarino pode ser colhido na entressafra da cana-de-açúcar reduzindo o período de ociosidade da indústria e favorecendo o corte da matéria-prima após maturação completa. Além disso, os grãos e os resíduos e subprodutos da microdestilaria podem ser destinados a outras finalidades voltadas para a produção de alimentos na propriedade rural. A utilização das duas culturas, como matéria-prima para a produção de álcool, pode permitir um melhor uso dos colmos da cana-de-açúcar após atingirem a maturação completa, o que representa teores mais elevados de açúcares.Sweet Sorghum has been evaluated as a complementary source of raw material for ethanol production in microdistillery. Sorghum culms can be processed in the same installation utilized for the production of ethanol from sugar cane, giving an ample fiber residue (bagasse to generate enough steam for industrial operation. The results obtained in a two years experimental work showed that sweet sorghum cultivar Br 505 could be a recommendable alternate crop to complement sugar cane in the production of ethanol in microdistillery. The total reducing sugar content

  5. Sugar Cane Genome Numbers Assumption by Ribosomal DNA FISH Techniques

    NARCIS (Netherlands)

    Thumjamras, S.; Jong, de H.; Iamtham, S.; Prammanee, S.

    2013-01-01

    Conventional cytological method is limited for polyploidy plant genome study, especially sugar cane chromosomes that show unstable numbers of each cultivar. Molecular cytogenetic as fluorescent in situ hybridization (FISH) techniques were used in this study. A basic chromosome number of sugar cane

  6. 7 CFR 1435.304 - Beet and cane sugar allotments.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Beet and cane sugar allotments. 1435.304 Section 1435... For Sugar § 1435.304 Beet and cane sugar allotments. (a) The allotment for beet sugar will be 54.35... overall allotment quantity. (c) A sugar beet processor allocated a share of the beet sugar allotment...

  7. Fungi inhabiting healthy grapevine canes (Vitis spp. in some nurseries

    Directory of Open Access Journals (Sweden)

    Ewa Król

    2012-12-01

    Full Text Available The purpose of this study, conducted in the years 2000 - 2002, was to identify fungi species colonizing apparently healthy canes and to investigate whether canes storage modify the quantitative and qualitative composition of these fungi. The plant material was collected from 5 commercial plantations growing in various regions of Poland, taking into consideration 8 cultivars which were the most frequently cultivated. From each plantation and cultivar 20 apparently healthy canes were randomly sampled in two terms: before storage - November/December (term I and 3-4 months after storage - February/March (term II. The results showed that from asymptomatic canes 2746 isolates of fungi belonging to 23 species were obtained, but the majority of them origined from canes analysed after storage. It was found that P. viticola is able to live latently within grapevine tissue in Polish conditions because isolates of this fungus from visually healty canes the all studied plantations and terms were obtained. Among the other fungi species inhabiting grapevine canes Alternaria alternata and Fusarium spp. dominated. Moreover, both in term I and term II Botrytis cinerea, Phoma spp., Epicoccum purpurascens and Cladosporium cladosporioides were frequently isolated, whereas fungi from the genus Acremonium only in the term I. Each time isolates of Trichoderma spp. and Gliocladium spp. were also obtained. Inhabitation of grapevine canes by various fungi species shown in the present experiment indicate the danger of pathogens spread with propagation material on the new plantations.

  8. Microbial diversity in a bagasse-based compost prepared for the production of Agaricus brasiliensis.

    Science.gov (United States)

    Silva, Cristina Ferreira; Azevedo, Raquel Santos; Braga, Claudia; da Silva, Romildo; Dias, Eustáquio Souza; Schwan, Rosane Freitas

    2009-07-01

    Edible mushrooms are renowned for their nutritional and medicinal properties and are thus of considerable commercial importance. Mushroom production depends on the chemical composition of the basic substrates and additional supplements employed in the compost as well as on the method of composting. In order to minimise the cost of mushroom production, considerable interest has been shown in the use of agro-industrial residues in the preparation of alternative compost mixtures. However, the interaction of the natural microbiota present in agricultural residues during the composting process greatly influences the subsequent colonisation by the mushroom. The aim of the present study was to isolate and identify the microbiota present in a sugar cane bagasse and coast-cross straw compost prepared for the production of Agaricus brasilienses. Composting lasted for 14 days, during which time the substrates and additives were mixed every 2 days, and this was followed by a two-step steam pasteurisation (55 - 65°C; 15 h each step). Bacteria, (mainly Bacillus and Paenibacillus spp. and members of the Enterobacteriaceae) were the predominant micro-organisms present throughout the composting process with an average population density of 3 x 10(8) CFU/g. Actinomycetes, and especially members of the genus Streptomyces, were well represented with a population density of 2 - 3 x 10(8) CFU/g. The filamentous fungi, however, exhibited much lower population densities and were less diverse than the other micro-organisms, although Aspergillus fumigatus was present during the whole composting process and after pasteurisation.

  9. Downdraft gasification of pellets made of wood, palm-oil residues respective bagasse: Experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Erlich, Catharina; Fransson, Torsten H. [Department of Energy Technology, School of Industrial Technology and Management (ITM), Royal Institute of Technology (KTH), 100 44 Stockholm (Sweden)

    2011-03-15

    The downdraft gasification technology has an increased interest among researchers worldwide due to the possibility to produce mechanical and electrical power from biomass in small-scale to an affordable price. The research is generally focused on improvement of the performance and optimizing of a certain gasifier, on testing different fuels, on increasing the user-friendliness of the gasifier and on finding other uses for the product gas than in an IC-engine, for example liquid fuel production. The main objective with the gasification tests presented here is to further contribute in the field by studying the impact of the char bed properties such as char bed porosity and pressure drop on the gasification performance as well as the impact of fuel particle size and composition on the gasification process in one and the same gasifier. In addition, there is very little gasification data available in literature of ''before disregarded'' fuels such as sugar cane bagasse from sugar/alcohol production and empty fruit bunch (EFB) from the palm-oil production. By pelletizing these residues, it is possible to introduce them into downdraft gasification technology which has been done in this study. The results show that one and the same reactor can be used for a variety of fuels in pellet form, but at varying air-fuel ratios, temperature levels, gas compositions and lower heating values. Gasification of wood pellets results in a richer producer gas while EFB pellets give a poorer one with higher contents of non-combustible compounds. In this gasification study, there is almost linear relation between the air-fuel ratio and the cold-gas efficiency for the studied fuels: Higher air-fuel ratios result in better efficiency. The pressure drop in the char bed is higher for more reactive fuels, which in turn is caused by low porosity char beds. (author)

  10. Effect NaOH Concentration on Bagasse Ash Based Geopolymerization

    Directory of Open Access Journals (Sweden)

    Saloma

    2016-01-01

    Full Text Available Geopolymer is a natural adhesive material which can be developed as a substitute for cement. The natural ingredients which want to use should contain silica and alumina. This paper uses bagasse ash as a basic material of mortar geopolymer. As an adhesive, the bagasse ash should be mixed with water and another activator alkali such as sodium hydroxide (NaOH and sodium silicate (Na2SiO3. The NaOHs molarity variation are 8, 10, 12, 14 and 16 M with Na2SiO3/NaOH = 1,0 sand/bagasse ash = 2,75 and activator/bagasse ash = 0,42. This research use 50 × 50 × 50 mm cube sized specimen and conduct a compressive strength test with 3, 7, 14, 21 and 28 days. The fresh mortar test result showed that the use of NaOHs molarity variation influences the slump value and time setting. The bigger NaOH molarity variation that been used, the smaller slump value. But, the time setting is increased. While the result for density and compressive strength shown that the bigger NaOH molarity variation, the bigger density and the compressive strength. Maximum compressive strength resulted from the mixture of mortar geopolymer with 16 M concentration.

  11. Low Temperature Soda-Oxygen Pulping of Bagasse

    Directory of Open Access Journals (Sweden)

    Fengxia Yue

    2016-01-01

    Full Text Available Wood shortages, environmental pollution and high energy consumption remain major obstacles hindering the development of today’s pulp and paper industry. Energy-saving and environmental friendly pulping processes are still needed, especially for non-woody materials. In this study, soda-oxygen pulping of bagasse was investigated and a successful soda-oxygen pulping process for bagasse at 100 °C was established. The pulping parameters of choice were under active alkali charge of 23%, maximum cooking temperature 100 °C, time hold at maximum temperature 180 min, initial pressure of oxygen 0.6 MPa, MgSO4 charge 0.5%, and de-pithed bagasse consistency 12%. Properties of the resultant pulp were screened yield 60.9%, Kappa number 14, viscosity 766 dm3/kg, and brightness 63.7% ISO. Similar pulps were also obtained at 110 °C or 105 °C with a cooking time of 90 min. Compared with pulps obtained at higher temperatures (115–125 °C, this pulp had higher screened yield, brightness, and acceptable viscosity, while the delignification degree was moderate. These results indicated that soda-oxygen pulping at 100 °C, the lowest cooking temperature reported so far for soda-oxygen pulping, is a suitable process for making chemical pulp from bagasse. Pulping at lower temperature and using oxygen make it an environmental friendly and energy-saving pulping process.

  12. Low Temperature Soda-Oxygen Pulping of Bagasse.

    Science.gov (United States)

    Yue, Fengxia; Chen, Ke-Li; Lu, Fachuang

    2016-01-13

    Wood shortages, environmental pollution and high energy consumption remain major obstacles hindering the development of today's pulp and paper industry. Energy-saving and environmental friendly pulping processes are still needed, especially for non-woody materials. In this study, soda-oxygen pulping of bagasse was investigated and a successful soda-oxygen pulping process for bagasse at 100 °C was established. The pulping parameters of choice were under active alkali charge of 23%, maximum cooking temperature 100 °C, time hold at maximum temperature 180 min, initial pressure of oxygen 0.6 MPa, MgSO4 charge 0.5%, and de-pithed bagasse consistency 12%. Properties of the resultant pulp were screened yield 60.9%, Kappa number 14, viscosity 766 dm³/kg, and brightness 63.7% ISO. Similar pulps were also obtained at 110 °C or 105 °C with a cooking time of 90 min. Compared with pulps obtained at higher temperatures (115-125 °C), this pulp had higher screened yield, brightness, and acceptable viscosity, while the delignification degree was moderate. These results indicated that soda-oxygen pulping at 100 °C, the lowest cooking temperature reported so far for soda-oxygen pulping, is a suitable process for making chemical pulp from bagasse. Pulping at lower temperature and using oxygen make it an environmental friendly and energy-saving pulping process.

  13. Oxygen pitting failure of a bagasse boiler tube

    CSIR Research Space (South Africa)

    Heyes, AM

    2001-04-01

    Full Text Available Examination of a failed roof tube from a bagasse boiler showed transverse through-cracks and extensive pitting. The pitting was typically oxygen induced pitting and numerous fatigue cracks had started within these pits. It is highly probable...

  14. Wet explosion pretreatment of sugarcane bagasse for enhanced enzymatic hydrolysis

    DEFF Research Database (Denmark)

    Biswas, Rajib; Uellendahl, Hinrich; Ahring, Birgitte Kiær

    2014-01-01

    Wet explosion pretreatment of sugarcane bagasse was investigated in pilot-scale with the aim of obtaining the highest possible sugar yield after pretreatment. The temperatures used were 155, 170, 185 and 200 C with or without addition of oxygen (0.6 MPa pressure). Enzymatic hydrolysis of washed...

  15. Mechanical Properties and Morphological Study of Fly-Ash-Bagasse Composites

    Science.gov (United States)

    Verma, Deepak; Gope, Prakash Chandra; Maheshwari, Mohit Kumar; Sharma, Ravinder Kumar

    2012-10-01

    In recent years the natural fiber epoxy composite has attracted substantial importance as a potential structural material. The natural fiber composites can be very cost effective material. In the present investigation the development of a Fly ash—Bagasse fiber composite material has been discussed. The Bagasse fiber has been used in two different sizes for the developed material. In two developed composites, diameter of Bagasse fiber has been varied between 13-16 μm and 83-95 μm in length. Correspondingly in other two developed composites; length of Bagasse fiber has been varied from 1 to 5 mm. It was observed that the density decreases by mixing the fiber was more as compared to the composite having both Bagasse fiber and Fly ash. A Bagasse fiber composite with size in the range of μm exhibited better tensile strength than the composite having Bagasse fiber size in mm. The compressive strength of the material increases, if Fly ash alone is used for the composite material but, when Bagasse fiber was mixed with the Fly ash, it was found that there has been a decrease in the compressive strength. It was also observed that there has been a decrease in the flexural strength of the material by mixing the Bagasse fiber in the matrix. The microstructure of composite material was investigated by using Scanning Electron Microscope. The images from Scanning Electron Microscope demonstrated that the Fly ash and Bagasse fiber particles are uniformly distributed over the matrix.

  16. High throughput screening of hydrolytic enzymes from termites using a natural substrate derived from sugarcane bagasse

    Directory of Open Access Journals (Sweden)

    Lucena Severino A

    2011-11-01

    Full Text Available Abstract Background The description of new hydrolytic enzymes is an important step in the development of techniques which use lignocellulosic materials as a starting point for fuel production. Sugarcane bagasse, which is subjected to pre-treatment, hydrolysis and fermentation for the production of ethanol in several test refineries, is the most promising source of raw material for the production of second generation renewable fuels in Brazil. One problem when screening hydrolytic activities is that the activity against commercial substrates, such as carboxymethylcellulose, does not always correspond to the activity against the natural lignocellulosic material. Besides that, the macroscopic characteristics of the raw material, such as insolubility and heterogeneity, hinder its use for high throughput screenings. Results In this paper, we present the preparation of a colloidal suspension of particles obtained from sugarcane bagasse, with minimal chemical change in the lignocellulosic material, and demonstrate its use for high throughput assays of hydrolases using Brazilian termites as the screened organisms. Conclusions Important differences between the use of the natural substrate and commercial cellulase substrates, such as carboxymethylcellulose or crystalline cellulose, were observed. This suggests that wood feeding termites, in contrast to litter feeding termites, might not be the best source for enzymes that degrade sugarcane biomass.

  17. Optimization of media for bioethanol production by Pichia stipitis from sugarcane bagasse pretreated by dilute acid

    Directory of Open Access Journals (Sweden)

    Mohsen Ahi

    2014-04-01

    Full Text Available Introduction: Reduction of fossil fuels due to its increasing consumption caused the biofuels production as an important topic, today. Using resources that have not food application was regarded as the second generation biofuels and consisted of lignocelluloses. Since considerable amount of lignocellulosic material are pentoses, utilizing them is important for the production of biofuels. Materials and methods: Sugarcane bagasse was pretreated with dilute acid method. Pichia stipitis was used for the fermentation of released sugars. A L27 Taguchi orthogonal array was considered to optimize the fermentation process and increase the amount of ethanol. The eight factors with three levels considering nitrogen, phosphorus, zinc, sulfur, magnesium, and vitamins sources were considered in this study. Results: The analysis of the results shows that corn steep liquor, ammonium hydrogen phosphate, potassium di-hydrogen phosphate and magnesium sulfate have a significant effect on the production of ethanol, respectively. Confirmation of the optimal conditions shows that ethanol production was increased 97% relative to the mean of the observed results. The yield and productivity during 48 h of the fermentation were reached to 0.26 (g ethanol/g consumed sugar and 0.125g (L.h, respectively. Discussion and conclusion: At the optimum condition the production of ethanol from sugarcane bagasse hydrolysate had higher efficiency relative to previous studies. Results of medium optimization considering cheap resources showed showed an excellent potential toward an economical bioethanol production process.

  18. Catalyzed pyrolysis of grape and olive bagasse. Influence of catalyst type and chemical treatment

    Energy Technology Data Exchange (ETDEWEB)

    Encinar, J.M.; Beltran, F.J.; Ramiro, A.; Gonzalez, J.F. [Univ. de Extremadura, Badajoz (Spain). Dept. de Ingenieria Quimica y Energetica

    1997-10-01

    Catalyzed pyrolysis of grape and olive bagasse under different experimental conditions has been studied. Variables investigated were temperature and type and concentration of catalysts. Experiments were carried out in an isothermal manner. Products of pyrolysis are gases (H{sub 2}, CO, CO{sub 2}, and CH{sub 4}), liquids (methanol, acetone, furfurylic alcohol, phenol, furfural, naphthalene, and o-cresol), and solids (chars). Temperature is a significant variable, yielding increases of fixed carbon content, gases, and to a lesser extent, ash percentage. Catalyst presence also yields increases of solid phase content, but the amount of liquid components decrease. Among catalysts applied those of Fe and Zn are the most advisable to obtain gases. Chemical treatment of bagasses with sulfuric or phosphoric acid washing leads to lower char yields, although fixed carbon content is higher and ash presence diminishes with respect to catalyst pyrolysis without chemical pretreatment. A pyrolysis kinetic study based on gas generation from thermal decomposition of residues has been carried out. From the model proposed, rate constants for the formation of each gas, reaction order of the catalyst, and activation energies were determined.

  19. EFFECTS OF INJECTION TEMPERATURE ON MECHANICAL PROPERTIES OF BAGASSE/POLYPROPYLENE INJECTION MOLDING COMPOSITES

    Directory of Open Access Journals (Sweden)

    Shinichi Shibata

    2010-08-01

    Full Text Available Effects of injection temperature on thermal degradation and porosity of the bagasse/polypropylene injection molding composites were studied. Above 185 ºC, incomplete filling occurred. The incomplete filling increased with increase of injection temperature. It was found that the gas generated by thermal degradation of bagasse fibers was so accumulated in the injection cylinder that the injected composites ended up with incomplete filling. A modified injection method with the venting of gas increased the complete filling percentage. Mechanical properties decreased with increase of injection temperature from 165 ºC to 260 ºC. This was due to increase of porosity and fiber shortening. The calculated flexural modulus, which incorporated the effect of porosity and fiber length, agreed well with the experimental results. Composites with maleic acid anhydride grafted polypropylene (MAPP were also investigated. Flexural strength and impact strength were improved by 45% and 35%, respectively, by addition of 20wt% MAPP. In the MAPP composites, fiber breakages at their roots were observed in the fracture surface after an impact test, while pulled-off fibers were observed in those without MAPP.

  20. Environmental and technical feasibility of cellulose nanocrystal manufacturing from sugarcane bagasse.

    Science.gov (United States)

    Leão, Rosineide Miranda; Miléo, Patrícia Câmara; Maia, João M L L; Luz, Sandra Maria

    2017-11-01

    The environmental and technical feasibility of cellulose nanocrystal production from sugarcane bagasse fibers was evaluated. First, the life cycle assessment (LCA) is presented as a methodology to investigate the most feasible form of obtainment. The environmental impacts regarding climate change and water footprint were evaluated considering a gate-to-gate process and a functional unit of 1kg. The inventory data encompassed sugarcane plantation and pretreatment, bleaching and hydrolysis for bagasse generation. The twelve scenarios for extracting nanocrystals that were investigated consisted of treatment with sodium hydroxide or sodium chlorite followed by sulfuric acid hydrolysis. All products and processes were characterized by their yield and X-ray diffraction. As a result, all scenarios showed that the pretreatment stage was the most important contributor to the environmental impact. The comparison among the scenarios showed that nanocrystals produced by processes V - NaClO2/NaOH/H2SO4/30min/1x and IX - NaClO2/NaOH/HNO3/H2SO4/30min/1x presented low water consumption and minimal contributions to climate change. Therefore, considering the LCA, yield and crystallinity, the best processes were V and IX sequences. Finally, these cellulose nanocrystals were evaluated by their chemical composition, morphology and thermal stability, exhibiting hemicellulose and lignin removal, nanometric dimensions from 8 to 12nm, high crystallinity and low thermal stability. Copyright © 2017. Published by Elsevier Ltd.

  1. Effects of mass transfer and hydrogen pressure on the fixed-bed pyrolysis of sunflower bagasse

    Energy Technology Data Exchange (ETDEWEB)

    Putun, E.; Kockar, O.M.; Gercel, F. [Anadolu Univ., Eskisehir (Turkey)] [and others

    1994-12-31

    There are a number of waste and biomass sources being considered as potential sources of fuels and chemical feedstocks. The economics for biomass pyrolysis are generally considered to be most favourable for (1) plants which grow abundantly and require little cultivation in and lands and (2) wastes available in relatively large quantities from agricultural plants, for example, sunflower and hazel nuts. For the former, one such group of plants is Euphorbiaceae which are characterised by their ability to produce a milky latex, an emulsion of about 30% w/w terpenoids in water. One species in the family, Euphorbia Rigida from Southwestern Anatolia, Turkey is cultivated in close proximity to the sunflower growing regions and their oil extraction plants. The Turkish sunflower oil industry generates 800,000 tons of extraction residue (bagasse) per annum. Thus, both sunflower wastes and latex-producing plants are being considered as feedstocks for a future thermochemical demonstration unit in Turkey. Pyrolysis at relatively high hydrogen pressures (hydropyrolysis) has not been widely investigated for biomass. A potential advantage of hydropyrolysis is the ability to upgrade tar vapours over hydroprocessing catalysts. Fixed-bed pyrolysis and hydropyrolysis experiments have been conducted on sunflower bagasse to assess the effects of mass transfer and hydrogen pressure on oil yield and quality.

  2. Pyrolysis of sugarcane bagasse and co-pyrolysis with an Argentinean subbituminous coal

    Energy Technology Data Exchange (ETDEWEB)

    Bonelli, P.R.; Buonomo, E.L.; Cukierman, A.L. [University of Buenos Aires, Buenos Aires (Argentina)

    2007-07-01

    Physicochemical properties of the charcoal arising from pyrolysis of sugarcane bagasse at 600{sup o}C and 800{sup o}C were determined to evaluate potentialities for specific end uses. The charcoals were found fairly adequate as solid bio-fuels. Their quality was comparable to charcoals obtained from some other agro-industrial by-products, reportedly proposed as substitutes of wood-based ones. Surface properties of the charcoal generated at the higher temperature indicated that it is reasonably suited for potential use as low-cost rough adsorbent, soil amender, and/or for further upgrading to activated carbon. Moreover, kinetic measurements for pyrolysis of the sugarcane bagasse individually and mixed with an Argentinean subbituminous coal in equal proportions were conducted by thermogravimetry for the range 25 -900{sup o}C. Data modeling accounting for variations in the activation energy with process evolution provided a proper description of pyrolysis and co-pyrolysis over the entire temperature range.

  3. Synergistic effect and application of xylanases as accessory enzymes to enhance the hydrolysis of pretreated bagasse.

    Science.gov (United States)

    Gonçalves, Geisa A L; Takasugi, Yusaku; Jia, Lili; Mori, Yutaro; Noda, Shuhei; Tanaka, Tsutomu; Ichinose, Hirofumi; Kamiya, Noriho

    2015-05-01

    Recently, the new trend in the second-generation ethanol industry is to use mild pretreatments, in order to reduce costs and to keep higher content of hemicellulose in the biomass. Nevertheless, a high enzyme dosage is still required in the conversion of (hemi)cellulose. The interaction between cellulases and xylanases seems to be an effective alternative to reduce enzyme loading in the saccharification process. At first, to evaluate the synergism of xylanases on bagasse degradation, we have produced two xylanases from glycoside hydrolase family 10 (GH10) and three xylanases from glycoside hydrolase family 11 (GH11), from two thermophilic organisms, Thermobifida fusca and Clostridium thermocellum, and one mesophilic organism, Streptomyces lividans. Peracetic acid (PAA) pretreated bagasse was used as substrate. The combination of XynZ-C (GH10, from C. thermocellum), and XlnB (GH11, from S. lividans) presented the highest degree of synergy after 6h (3.62). However, the combination of XynZ-C and Xyn11A (GH11, from T. fusca) resulted in the highest total yield of reducing sugars. To evaluate the synergism between xylanases and cellulases, commercial cellulase preparation from Trichoderma reesei was combined with the selected xylanases, XynZ-C and Xyn11A. About 2-fold increase was observed in the concentration of reducing sugars, when both xylanases, XynZ-C and Xyn11A, were added together with T. reesei cellulases in the reaction mixture.

  4. Thermoeconomic and thermodynamics analysis of a sugarcane plant that produces surplus bagasse for commercialization; Analise termodinamica e termoeconomica de uma usina sucroalcooleira que produz excedente de bagaco para comercializacao

    Energy Technology Data Exchange (ETDEWEB)

    Uchoa, Thales Brandao; Beneduzzi, Anderson Henrique; Mashiba, Marcos Hideo da Silva; Maia, Cassio Roberto Macedo; Ramos, Ricardo Alan Verdu [Universidade Estadual Paulista (NUPLEN/UNESP), Ilha Solteira, SP (Brazil). Dept. de Engenharia Mecanica. Nucleo de Planejamento Energetico, Geracao e Cogeracao de Energia], e-mail: nuplen@dem.feis.unesp.br

    2006-07-01

    This work presents an analysis of a cogeneration plant of a sugarcane industry of Sao Paulo State (Iracema) that privileges the commercialization of the bagasse surplus because it is located in a region where the consume of bagasse by the local industries is intense. Th e plant is composed by five boilers that produce 470 ton/h of steam at pressure of 2,2 MPa and temperature of 300 deg C and back-pressure turbines of simple stage for energy generation and for driving the millings, cutters, shredders, pumps and exhaust fans. Part of the steam generated is also utilized to supply consume of an associated company (OMTEK) that it produces acid ribonucleic and the bagasse excess is commercialized. For this, a thermodynamic study is made, as well as a detailed analysis of the technical and economical viability, determining some performance indexes, the global efficiencies, as well as the costs of production of electric and thermal energy. (author)

  5. Production of d-lactate from sugarcane bagasse and corn stover hydrolysates using metabolic engineered Escherichia coli strains.

    Science.gov (United States)

    Utrilla, José; Vargas-Tah, Alejandra; Trujillo-Martínez, Berenice; Gosset, Guillermo; Martinez, Alfredo

    2016-11-01

    In this study, the lactogenic Escherichia coli strain JU15 was used and modified to produce d-lactate (d-LA) from plant hydrolysates with a minimal nutrient addition in pH controlled fermenters. Results showed that strain JU15 produces d-LA with high yield and productivity in laboratory simulated hydrolysate media and actual sugar cane bagasse hemicellulosic hydrolysate. Strain JU15 showed sequential carbon source utilization and acetic acid production. The l-lactic and acetic acid production pathways were deleted in JU15, resulting strain AV03 (JU15 ΔpoxB, ΔackA-pta, ΔmgsA), which showed simultaneous consumption of glucose and xylose and no acetic acid production in the simulated hydrolysate. The d-LA yield from hydrolysate sugars was close to 0.95gD-LA/gsugars in all cases. Our results show that d-LA can be produced from plant hydrolysates in simple batch fermentation processes with a high productivity using engineered E. coli strains at fermenter scales from 0.2 up to 10L. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Characterisation of Cassava Bagasse and Composites Prepared by Blending with Low-Density Polyethylene

    Directory of Open Access Journals (Sweden)

    Fabiane Oliveira Farias

    2014-12-01

    Full Text Available The main objective of this study was to characterise the cassava bagasse and to evaluate its addition in composites. Two cassava bagasse samples were characterised using physicochemical, thermal and microscopic techniques, and by obtaining their spectra in the mid-infrared region and analysing them by using x-ray diffraction. Utilising sorption isotherms, it was possible to establish the acceptable conditions of temperature and relative humidity for the storage of the cassava bagasse. The incorporation of cassava bagasse in a low-density polyethylene (LDP matrix was positive, increasing the elasticity modulus values from 131.90 for LDP to 186.2 for 70% LDP with 30% SP bagasse. These results were encouraging because cassava bagasse could serve as a structural reinforcement, as well as having environmental advantages for its application in packaging, construction and automotive parts.

  7. NEWSPRINT FROM SODA BAGASSE PULP IN ADMIXTURE WITH HARDWOOD CMP PULP

    Directory of Open Access Journals (Sweden)

    Seed Rahman Jafari Petroudy

    2011-05-01

    Full Text Available Based on global research and experiences producing newsprint from bagasse, the possibility of using bagasse chemical pulp in the furnish of local mill-made mixed hardwood CMP pulp was studied at laboratory scale, for making newsprint. Bagasse soda chemical pulp at digester yield of about 47% was bleached to about 60% brightness by single stage hydrogen peroxide. The effects of using up to 30% bagasse chemical pulp in a blend with hardwood CMP pulp, with or without softwood kraft pulp, were studied. The results showed that superior hand sheet properties could be achieved by using bagasse chemical pulp; in comparison with main mill pulp furnish (83% hardwood CMP pulp and 17% imported long fiber pulp. In other words, by using bagasse chemical pulp in a blend with local mill made hardwood CMP pulp, acceptable newsprint could be made with considerable reduction in the consumptions of hardwood species and softwood reinforcing kraft pulp.

  8. The role of sugar cane straw on soil reaction

    OpenAIRE

    Fioretto,Roberto Antunes; Carneiro, Cristine Elizabeth Alvarenga; Pavan,Marcos Antonio; Fioretto, Conrado Cagliari; Büll, Leonardo Theodoro

    2009-01-01

    Two laboratory experiments were carried out to evaluate the effects of sugar cane straw on soil acidity. Sugar cane straw residues were added on the surface of a Typic Harplortox in a polyvinyl chlorid (PVC) column at rates of 0, 20, 40, and 76 g kg-1, the soil was incubated to field capacity with distilled water and incubated for 0, 7, 14, 45, and 90 days. Soil samples were taken at 0-5, 5-10, 10-15, 15-20, and 20-25 cm depth. With the increase of sugar cane straw rates one verified the incr...

  9. Influence of sugarcane bagasse-derived biochar application on nitrate leaching in calcaric dark red soil.

    Science.gov (United States)

    Kameyama, K; Miyamoto, T; Shiono, T; Shinogi, Y

    2012-01-01

    Application of biochar has been suggested to improve water- and fertilizer-retaining capacity of agricultural soil. The objective of this study was to evaluate the effects of bagasse charcoal (sugarcane [ L.] bagasse-derived biochar) on nitrate (NO) leaching from Shimajiri Maji soil, which has low water- and fertilizer-retaining capacity. The nitrate adsorption properties of bagasse charcoal formed at five pyrolysis temperatures (400-800° C) were investigated to select the most suitable bagasse charcoal for NO adsorption. Nitrate was able to adsorb onto the bagasse charcoal formed at pyrolysis temperatures of 700 to 800° C. Nitrate adsorption by bagasse charcoal (formed at 800° C) that passed through a 2-mm sieve was in a state of nonequilibrium even at 20 h after the addition of 20 mg N L KNO solution. Measurements suggested that the saturated and unsaturated hydraulic conductivity of bagasse charcoal (800° C)-amended soils are affected by changes in soil tortuosity and porosity and the presence of meso- and micropores in the bagasse charcoal, which did not contribute to soil water transfer. In NO leaching studies using bagasse charcoal (800° C)-amended soils with different charcoal contents (0-10% [w/w]), the maximum concentration of NO in effluents from bagasse charcoal-amended soil columns was approximately 5% less than that from a nonamended soil column because of NO adsorption by bagasse charcoal (800° C). We conclude that application of bagasse charcoal (800°C) to the soil will increase the residence time of NO in the root zone of crops and provide greater opportunity for crops to absorb NO.

  10. Effects of forming processing conditions on the flexural properties of bagasse and bamboo plastic composites

    OpenAIRE

    2012-01-01

    The effects of processing conditions such as pressure, temperature, and holding time on the flexural properties of bagasse and bamboo biodegradable composites were investigated. Each sample of bagasse or bamboo was mixed with a corn-starch-based biodegradable resin and fabricated by a hot press forming method. The cross-sectional structure of the bagasse fiber was found to be porous and compressible, while that of bamboo was found to be more solid. The relationship between flexural strength, ...

  11. Performance Evaluation of Sugarcane Bagasse Ash-Based Cement for Durable Concrete

    OpenAIRE

    Bahurudeen, A.; Santhanam, Manu

    2014-01-01

    Sugarcane bagasse ash (SCBA) is obtained as a by-product from cogeneration combustion boilers in sugar industries. Bagasse ash is mainly composed of reactive silica and can be used as pozzolanic material in concrete. Previous studies have reported that the utilization of SCBA as pozzolanic material in concrete can significantly improve its performance. A comprehensive investigation of durability performance of bagasse ash in concrete is not available in existing literature. In all previous st...

  12. Influence of Torrefaction on the Conversion Efficiency of the Gasification Process of Sugarcane Bagasse.

    Science.gov (United States)

    Anukam, Anthony; Mamphweli, Sampson; Okoh, Omobola; Reddy, Prashant

    2017-03-10

    Sugarcane bagasse was torrefied to improve its quality in terms of properties prior to gasification. Torrefaction was undertaken at 300 °C in an inert atmosphere of N₂ at 10 °C·min(-1) heating rate. A residence time of 5 min allowed for rapid reaction of the material during torrefaction. Torrefied and untorrefied bagasse were characterized to compare their suitability as feedstocks for gasification. The results showed that torrefied bagasse had lower O-C and H-C atomic ratios of about 0.5 and 0.84 as compared to that of untorrefied bagasse with 0.82 and 1.55, respectively. A calorific value of about 20.29 MJ·kg(-1) was also measured for torrefied bagasse, which is around 13% higher than that for untorrefied bagasse with a value of ca. 17.9 MJ·kg(-1). This confirms the former as a much more suitable feedstock for gasification than the latter since efficiency of gasification is a function of feedstock calorific value. SEM results also revealed a fibrous structure and pith in the micrographs of both torrefied and untorrefied bagasse, indicating the carbonaceous nature of both materials, with torrefied bagasse exhibiting a more permeable structure with larger surface area, which are among the features that favour gasification. The gasification process of torrefied bagasse relied on computer simulation to establish the impact of torrefaction on gasification efficiency. Optimum efficiency was achieved with torrefied bagasse because of its slightly modified properties. Conversion efficiency of the gasification process of torrefied bagasse increased from 50% to approximately 60% after computer simulation, whereas that of untorrefied bagasse remained constant at 50%, even as the gasification time increased.

  13. Citrus pulp pellets as an additive for orange bagasse silage

    Directory of Open Access Journals (Sweden)

    R. K. Grizotto

    2017-03-01

    Full Text Available This study evaluated the fermentation profile of orange bagasse ensiled with three levels of dry matter (DM using citrus pulp pellets as a moisture-absorbing additive. Thirty experimental silos (3 treatments, 5 storage times, 2 replicates were prepared using 25-liter plastic buckets containing orange bagasse and three levels of pelleted citrus pulp (0, 6% and 20% as additive. A completely randomized design with repeated measures over time was used. The periods of anaerobic storage were 3, 7, 14, 28 and 56 days. Natural orange bagasse contained 13.9% DM, which increased to 19.1% and 25.5% with the inclusion of 6% and 20% citrus pulp pellets, respectively. The apparent density was inversely correlated with DM content and a higher level of compaction (982 kg/m3 was observed in the mass ensiled with the lowest DM level (13.9%. Additionally, lower compaction (910 kg/m3 was found in the mass ensiled with the additive. The chemical composition of the mass ensiled with or without citrus pulp pellets did not differ significantly in terms of protein, ether extract, neutral detergent fiber, lignin or in vitro DM digestibility (P≥0.05, as expected. Thus, it was possible to analyze only the effect of the inclusion of citrus pulp pellets on the increase in DM content. The inclusion of 20% of the additive reduced (P<0.01 losses due to effluent (98% less and gas production (81% less compared to the control treatment at the end of the anaerobic storage period. In this treatment, a higher (P≤0.05 log number of lactic acid bacteria (4.61 log CFU/g was also observed compared to the other treatments, indicating that the increase in DM favored the growth of these bacteria. In addition, the low yeast count (about 1 log CFU/g sample and the pH below 4.0, which were probably due to the production of lactic and acetic acids, show that the orange bagasse is rich in fermentable soluble carbohydrates and is indicated for ensiling. In conclusion, orange bagasse can be

  14. Homogeneous Modification of Sugarcane Bagasse by Graft Copolymerization in Ionic Liquid for Oil Absorption Application

    Directory of Open Access Journals (Sweden)

    Ming-Jie Chen

    2016-01-01

    Full Text Available Sugarcane bagasse, lignocellulosic residue from the sugar industry, is an abundant and renewable bioresource on the earth. The application of ionic liquids in sugarcane bagasse biorefinery is gaining increasing interest. The homogeneous modification of sugarcane bagasse by free radical initiated graft copolymerization of acrylate monomers using 1-allyl-3-methylimidazolium chloride as solvent was performed. A variety of sugarcane bagasse graft copolymers with different weight percent gain were prepared via adjusting the monomer dosage. FT-IR studies confirmed the success in attaching the poly(acrylate side chains onto sugarcane bagasse. Oil absorbency studies suggested that the sugarcane bagasse graft copolymers were potential biobased materials for effective treatment of ester-based oils. SEM studies showed that the sugarcane bagasse graft copolymers displayed a dense morphology structure. Thermogravimetric analysis demonstrated that the thermal stability of sugarcane bagasse decreased after the homogeneous modification by the graft copolymerization. The present study provides an alternative strategy to convert sugarcane bagasse into a value-added functional biobased material.

  15. Ultrasound-Assisted Extraction of Stilbenes from Grape Canes

    Directory of Open Access Journals (Sweden)

    Zulema Piñeiro

    2016-06-01

    Full Text Available An analytical ultrasound-assisted extraction (UAE method has been optimized and validated for the rapid extraction of stilbenes from grape canes. The influence of sample pre-treatment (oven or freeze-drying and several extraction variables (solvent, sample-solvent ratio and extraction time between others on the extraction process were analyzed. The new method allowed the main stilbenes in grape canes to be extracted in just 10 min, with an extraction temperature of 75 °C and 60% ethanol in water as the extraction solvent. Validation of the extraction method was based on analytical properties. The resulting RSDs (n = 5 for interday/intraday precision were less than 10%. Furthermore, the method was successfully applied in the analysis of 20 different grape cane samples. The result showed that grape cane byproducts are potentially sources of bioactive compounds of interest for pharmaceutical and food industries.

  16. Fratture e lussazioni della colonna vertebrale lombosacrale nel cane

    OpenAIRE

    Di Dona, Francesco

    2015-01-01

    Le fratture e le lussazioni della colonna vertebrale sono delle lesioni piuttosto comuni e sono la principale causa di disturbi neurologici nel cane (Jeffery, 2010) e circa il 25% delle lesioni traumatiche della colonna vertebrale riguardano la regione lombare caudale e sacrale (Bali, 2009). La frattura/lussazione della settima vertebra lombare nel cane è una lesione comune caratterizzata da una frattura obliqua o corta obliqua del corpo vertebrale di L7 con dislocazione cranio-ventrale de...

  17. Characterization of residues from plant biomass for use in energy generation

    Directory of Open Access Journals (Sweden)

    Luana Elis de Ramos e Paula

    2011-06-01

    Full Text Available The use of plant residues for energy purposes is already a reality, yet in order to ensure suitability and recommend a given material as being a good energy generator, it is necessary to characterize the material through chemical analysis and determine its calorific value. This research aimed to analyze different residues from plant biomass, characterizing them as potential sources for energy production. For the accomplishment of this study, the following residues were used: wood processing residue (sawdust and planer shavings; coffee bean parchment and coffee plant stem; bean stem and pod; soybean stem and pod; rice husk; corn leaf, stem, straw and cob; and sugar cane straw and bagasse. For residue characterization the following analyses were done: chemical analysis, immediate chemical analysis, calorific value and elemental analysis. All procedures were conducted at the Laboratory of Forest Biomass Energy of the Federal University of Lavras. In general, all residues showed potential for energetic use. Rice husk was found to have higher lignin content, which is an interesting attribute as far as energy production is concerned. Its high ash content, however, led to a reduction in calorific value and fixed carbon. The remaining residues were found to have similar energetic characteristics, with corn cob showing greater calorific value, followed by coffee plant stem, both also containing higher levels of carbon and fixed carbon. A high correlation was found of higher calorific value with volatile materials, carbon and hydrogen contents.

  18. Total condensable effluents yield in slow pyrolysis of bagasse briquettes

    Energy Technology Data Exchange (ETDEWEB)

    Brossard, L.E.; Penedo, M. [Universidade de Oriente, Dept. of Chemical Engineering, Santiago de Cuba (Cuba); Cortez, L.A.B.; Bezzon, G.; Olivares, E. [University of Campinas (UNICAMP), Interdisciplinary Energy Planning Center (NIPE), Campinas, SP (Brazil)

    2000-07-01

    A full 2{sup 3} experimental factorial design approach was applied to obtain a mathematical model relating the total condensable effluents in slow pyrolysis of bagasse briquettes to three independent variables. These were apparent density of pressed bagasse briquettes (231 and 371 kg/m{sup 3}), highest pyrolysis temperature (400 and 450degC) and residence time at highest pyrolysis temperature (0 and 30 min). Detailed data processing to obtain a model as well as the model's statistical evaluation are shown. The conclusions are that the studied response depends on all three factors, although it is believed that the particular conditions of the pyrolysis installation used could be the cause of the significant result found for the residence time variable. It is inferred that measurable amounts of very low boiling organic compounds are present in the bagasse's liquid effluents. These volatile substances should require effluents' cooling devices working at temperatures well below 0degC. (Author)

  19. Resolution of galactose, glucose, xylose and mannose in sugarcane bagasse employing a voltammetric electronic tongue formed by metals oxy-hydroxide/MWCNT modified electrodes

    OpenAIRE

    2016-01-01

    Second generation ethanol is produced from the carbohydrates released from the cell wall of bagasse and straw of sugarcane. The objective of this work is the characterization and application of a voltammetric electronic tongue using an array of glassy carbon electrodes modified with multi-walled carbon nanotubes containing metal (Paladium, Gold, Copper, Nickel and Cobalt) oxy-hydroxide nanoparticles (GCE/MWCNT/MetalsOOH) towards a simpler analysis of carbohydrates (glucose, xylose, galactose ...

  20. Use of Brazilian sugarcane bagasse ash in concrete as sand replacement.

    Science.gov (United States)

    Sales, Almir; Lima, Sofia Araújo

    2010-06-01

    Sugarcane today plays a major role in the worldwide economy, and Brazil is the leading producer of sugar and alcohol, which are important international commodities. The production process generates bagasse as a waste, which is used as fuel to stoke boilers that produce steam for electricity cogeneration. The final product of this burning is residual sugarcane bagasse ash (SBA), which is normally used as fertilizer in sugarcane plantations. Ash stands out among agroindustrial wastes because it results from energy generating processes. Many types of ash do not have hydraulic or pozzolanic reactivity, but can be used in civil construction as inert materials. The present study used ash collected from four sugar mills in the region of São Carlos, SP, Brazil, which is one of the world's largest producers of sugarcane. The ash samples were subjected to chemical characterization, sieve analysis, determination of specific gravity, X-ray diffraction, scanning electron microscopy, and solubilization and leaching tests. Mortars and concretes with SBA as sand replacement were produced and tests were carried out: compressive strength, tensile strength and elastic modulus. The results indicated that the SBA samples presented physical properties similar to those of natural sand. Several heavy metals were found in the SBA samples, indicating the need to restrict its use as a fertilizer. The mortars produced with SBA in place of sand showed better mechanical results than the reference samples. SBA can be used as a partial substitute of sand in concretes made with cement slag-modified Portland cement. Copyright 2010 Elsevier Ltd. All rights reserved.

  1. Effects of forming processing conditions on the flexural properties of bagasse and bamboo plastic composites

    Directory of Open Access Journals (Sweden)

    Shinichi Shibata

    2012-11-01

    Full Text Available The effects of processing conditions such as pressure, temperature, and holding time on the flexural properties of bagasse and bamboo biodegradable composites were investigated. Each sample of bagasse or bamboo was mixed with a corn-starch-based biodegradable resin and fabricated by a hot press forming method. The cross-sectional structure of the bagasse fiber was found to be porous and compressible, while that of bamboo was found to be more solid. The relationship between flexural strength, flexural modulus, and pressure in bagasse fiber was apparently different from that of bamboo due to the differences in the cross-sectional structure. In bagasse, the flexural strength and flexural modulus increased with the increase in pressure, whereas in bamboo those properties decreased. In bagasse, an increase in pressure made the fibers into a more compressed structure, increasing their flexural properties. In rigid bamboo, an increase in pressure caused the resin to extrude between fibers, and this resulted in lower flexural properties. At temperatures above 170 oC, the resin depolymerized thermally and the degree of polymerization decreased. Thus, the flexural modulus and strength decreased gradually with increase in holding temperature in both bagasse and bamboo composites. Furthermore, a maximum fiber volume fraction existed for both bagasse and bamboo plastic composites in the approximate range of 75% to 80%.

  2. Life cycle inventory of electricity cogeneration from bagasse in the South African sugar industry

    CSIR Research Space (South Africa)

    Mashoko, L

    2013-01-01

    Full Text Available crushed per year. Renewable energy sources like bagasse are generally regarded as cleaner energy sources as opposed to coal-derived energy. However, the environmental benefits of power production from bagasse must be verified using a systematic scientific...

  3. Production of fuel by pyrolysis of the bagasse of grapes: yield and high thermal power

    Energy Technology Data Exchange (ETDEWEB)

    Foussard, J.N.; Talayrach, B.; Besombes Vailhe, J.

    1979-01-01

    A liquid fuel of high calorific value was obtained by the pyrolysis of grape bagasse, with the pyrolysis temperature being the factor determining the product composition. Grape bagasse is produced in distilleries and is thus a practical and readily available material.

  4. Utilization of Chinese tallow tree and bagasse for medium density fiberboard

    Science.gov (United States)

    Sangyeob Lee; Todd F. Shupe; Chung Y. Hse

    2004-01-01

    The objective of this research was to investigate various adhesive systems and determine the best composite formulation for selected mechanical and physical properties of medium density fiberboard (MDF) made from wood and bagasse fibers. This study investigated opportunities ofbiomass utilization for natural fiber-based composites from agricultural (bagasse) and...

  5. 甘蔗糖厂入榨甘蔗蔗糖分采样测定方法%The Sampling Method for Measuring Sugar Content of Milling Sugar Cane in Sugar Factory

    Institute of Scientific and Technical Information of China (English)

    张彩霞

    2015-01-01

    In sugar factory, it is generally known that the traditional sampling methods of milling sugar cane have a disadvantage of poor representation due to the arbitrary and artificial factors, the method of calculating sugar content through continuously sampling of mixed juice and bagasse has long lag-time and cannot reflect sugar loss in pressing process, so there still exists some deviations in evaluating the quality of sugar cane. Analyzing sugar content of milling sugarcane can be more accurate and timely through continuously collecting defibrated cane from cane shredder, which provides a basis for sugarcane unhindered management and process management. This article introduces mainly the applications of technique in sugar industry during the milling campaign.%糖厂入榨甘蔗用传统的采样方法由于人为随意性导致样本代表性差,而班报用混合汁和蔗渣连续采样计算出甘蔗蔗糖分的方法存在滞后时间长和未反映压榨过程糖分损失的缺点,对评价甘蔗质量存在一定的偏差。连续采集撕解机蔗丝样的方法可以更及时准确分析入榨甘蔗蔗糖分,为农务甘蔗管理、制糖工艺管理提供依据。本文介绍这种方法在糖厂榨季生产中的应用情况。

  6. Wearable Virtual White Cane Network for navigating people with visual impairment.

    Science.gov (United States)

    Gao, Yabiao; Chandrawanshi, Rahul; Nau, Amy C; Tse, Zion Tsz Ho

    2015-09-01

    Navigating the world with visual impairments presents inconveniences and safety concerns. Although a traditional white cane is the most commonly used mobility aid due to its low cost and acceptable functionality, electronic traveling aids can provide more functionality as well as additional benefits. The Wearable Virtual Cane Network is an electronic traveling aid that utilizes ultrasound sonar technology to scan the surrounding environment for spatial information. The Wearable Virtual Cane Network is composed of four sensing nodes: one on each of the user's wrists, one on the waist, and one on the ankle. The Wearable Virtual Cane Network employs vibration and sound to communicate object proximity to the user. While conventional navigation devices are typically hand-held and bulky, the hands-free design of our prototype allows the user to perform other tasks while using the Wearable Virtual Cane Network. When the Wearable Virtual Cane Network prototype was tested for distance resolution and range detection limits at various displacements and compared with a traditional white cane, all participants performed significantly above the control bar (p Virtual Cane Network rather than the white cane. The obstacle course experiment also shows that the use of the white cane in combination with the Wearable Virtual Cane Network can significantly improve navigation over using either the white cane or the Wearable Virtual Cane Network alone (p < 0.05, paired t-test).

  7. Comparison of Microwave and Ozonolysis Effect as Pretreatment on Sugarcane Bagasse Enzymatic Hydrolysis

    Directory of Open Access Journals (Sweden)

    N Eqra

    2015-03-01

    Full Text Available Bioethanol production from agricultural residues is one of the promising methods. Pretreatment is the most important step in this type of bioethanol production. In this study, the saccharification percentage of sugarcane bagasse was investigated after two types of pretreatments including ozone steaming and microwave. Microwave pretreatment was studied with two factors of microwave radiation (170, 450, and 850 w and microwave duration (2, 6, and 10 min. The ozonolysis (ozone steaming pretreatment was surveyed with two factors of moisture content of bagasse (30, 40, and 50% and ozonolysis time (1.5, 2.5, 3.5, and 4.5 hr. After hydrolysis, the Saccharification percentage of sugarcane bagasse increased to 57.2% and 67.06% with microwave and ozonolysis pretreatments, respectively; compare to 20.85% in non-ozonated bagasse. It can be concluded that the ozonolysis is the most effective pretreatment regarding to saccharification percentage of sugarcane bagasse.

  8. THE SHEAR-THINNING PHENOMENON OF BAGASSE KRAFT BLACK LIQUOR FLUID

    Institute of Scientific and Technical Information of China (English)

    RendangYang; KefuChen; JunXu; HengZhang; QifengChen; JinWang

    2004-01-01

    The flow curvesshear-rate rangeby using theof bagasse Kraft black liquor over aof 10-1 s- 1-103s- 1 were investigatedRheometric RFSII rheometerExperimental results show that Bagasse black liquorsare non-Newtonian fluids instead of Newtonian fluidsat higher solids contents, and the viscosities of blackliquor would decrease about 2-3 orders of magnitudewith an increase in the shear rates. The apparentviscosity and flow behavior of bagasse black liquorare also affected by its solids content, and the highersolids content the more shear-thinning bagasse blackliquor fluid is. In addition, the power-law equationwas utilized to fit these flow curves at differentconditions. Finally, the significances ofshear-thinning properties of bagasse black liquor inthe chemical recovery system, such as frictioncalculation of pipe and design optimization of thewhole recovery system, were presented.

  9. Bioconversion of industrial solid waste--cassava bagasse for pullulan production in solid state fermentation.

    Science.gov (United States)

    Sugumaran, K R; Jothi, P; Ponnusami, V

    2014-01-01

    The purpose of the work was to produce commercially important pullulan using industrial solid waste namely cassava bagasse in solid state fermentation and minimize the solid waste disposal problem. First, influence of initial pH on cell morphology and pullulan yield was studied. Effect of various factors like fermentation time, moisture ratio, nitrogen sources and particle size on pullulan yield was investigated. Various supplementary carbon sources (3%, w/w) namely glucose, sucrose, fructose, maltose, mannose and xylose with cassava bagasse was also studied to improve the pullulan yield. After screening the suitable supplement, effect of supplement concentration on pullulan production was investigated. The pullulan from cassava bagasse was characterized by FTIR, (1)H-NMR and (13)C-NMR. Molecular weight of pullulan from cassava bagasse was determined by gel permeation chromatography. Thus, cassava bagasse emerged to be a cheap and novel substrate for pullulan production.

  10. Characterization of red ceramic pastes incorporated with sugarcane bagasse ash wastes; Caracterizacao de massa ceramica vermelha incorporada com residuo de cinzas de bagaco de cana-de-acucar

    Energy Technology Data Exchange (ETDEWEB)

    Faria, K.C.P.; Gurgel, R.F.; Holanda, J.N.F., E-mail: katiacpfaria@hotmail.co, E-mail: holanda@uenf.b [Universidade Estadual do Norte Fluminense (LAMAV/UENF), Campos dos Goytacazes, RJ (Brazil). Lab. de Materiais Avancados. Grupo de Materiais Ceramicos

    2010-07-01

    The alcohol industry is one sector that stands out most in the Brazilian agribusiness. Currently there is an increasing demand for sugar and ethanol for use as fuel. The processes of manufacturing these products generate large amounts of waste, the sugarcane bagasse ash waste one of the most abundant. For its chemical and mineralogical characteristics, this waste has aroused the interest of its reuse in the field of red ceramic. This study analyzes the characteristics of a red ceramic paste incorporated with up to 20 wt.% of waste. The following characteristics were performed: chemical composition, X-ray diffraction, particle size, morphology, and Atterberg limits. The results show that the incorporation of sugarcane bagasse ash waste influences the physical-chemical and mineralogical characteristics of red ceramic paste. (author)

  11. Advanced Augmented White Cane with obstacle height and distance feedback.

    Science.gov (United States)

    Pyun, Rosali; Kim, Yeongmi; Wespe, Pascal; Gassert, Roger; Schneller, Stefan

    2013-06-01

    The white cane is a widely used mobility aid that helps visually impaired people navigate the surroundings. While it reliably and intuitively extends the detection range of ground-level obstacles and drop-offs to about 1.2 m, it lacks the ability to detect trunk and head-level obstacles. Electronic Travel Aids (ETAs) have been proposed to overcome these limitations, but have found minimal adoption due to limitations such as low information content and low reliability thereof. Although existing ETAs extend the sensing range beyond that of the conventional white cane, most of them do not detect head-level obstacles and drop-offs, nor can they identify the vertical extent of obstacles. Furthermore, some ETAs work independent of the white cane, and thus reliable detection of surface textures and drop-offs is not provided. This paper introduces a novel ETA, the Advanced Augmented White Cane, which detects obstacles at four vertical levels and provides multi-sensory feedback. We evaluated the device in five blindfolded subjects through reaction time measurements following the detection of an obstacle, as well as through the reliability of dropoff detection. The results showed that our aid could help the user successfully detect an obstacle and identify its height, with an average reaction time of 410 msec. Drop-offs were reliably detected with an intraclass correlation > 0.95. This work is a first step towards a low-cost ETA to complement the functionality of the conventional white cane.

  12. Performance of dairy females fed dried yeast from sugar cane

    Directory of Open Access Journals (Sweden)

    Marcia de Oliveira Franco

    2016-05-01

    Full Text Available This study was performed in order to evaluate the effect of dried yeast from sugar cane when replacing soybean meal in dairy heifers’ diets. Twenty-four heifers, with an initial body weight (BW of 178 kg, were distributed in a completely randomized design. The treatments were four levels of inclusion of dried yeast from sugar cane replacing to soybean meal (0, 33, 67 and 100% on a dry matter (DM basis. While there was no difference in DM, neutral detergent fiber (NDF, metabolizable energy or roughage intakes, the intakes of non-fiber carbohydrates and concentrate were increased. The crude protein intake decreased according to the dried yeast from sugar cane when replacing soybean meal. The digestibility coefficients of DM and NDF showed no difference. Replacement of soybean meal with dried yeast from sugar cane had no effect on performance, because average daily gain and body measurements studied were similar for all animals and inclusion levels. Soybean meal can be completely replaced with dried yeast from sugar cane in diets for growing dairy heifers without restrictions; this will not affect the intake, digestibility, physical development of animals or metabolization of protein compounds.

  13. EVALUATION OF PHYSICO-CHEMICAL PARAMETERS OF AGRICULTURAL SOILS IRRIGATED BY THE WATERS OF THE HYDROLIC BASIN OF SEBOU RIVER AND THEIR INFLUENCES ON THE TRANSFER OF TRACE ELEMENTS INTO SUGAR CROPS (THE CASE OF SUGAR CANE

    Directory of Open Access Journals (Sweden)

    N. Benlkhoubi

    2016-05-01

    Full Text Available This research was conducted in Kenitra (northwestern Morocco to determine the physicochemical parameters and metallic concentrations at three levels: surface water of Sebou and Beht intended for irrigation, agricultural soils and sugarcane. The spectrometric analysis of source plasma emission (ICP has identified eight trace elements contained in the materials taken from zone 1 (As, Cd, Co, Zn, Ni, Pb, Cu and Cr.The obtained results showed that the interaction between the different physicochemical parameters of agricultural soils decides the transfer of the metal elements to the plants. Indeed, for the soil which is used in this agriculture (for sugar cane, its irrigation water, and the contents of Cr, Cd and As exceeds the accepted standards.The principal component analysis of the levels of trace metal supports in area 1, allowed to distinguish between the items with a high tolerance for bagasse (Zn, Cu, Ni, Cd and Pb, compared to Cr, Co, and As.

  14. Residual of fosforo in ratoon-cane for forage yield in the noth of Mato Grosso

    OpenAIRE

    Tiago de Lisboa Parente; Sheila Caioni; Anderson Lange; Charles Caioni; Antônio Carlos Silveiro da Silva; Oscar Mitsuo Yamashita; Alexandre Lavezo Neto

    2016-01-01

    The sugar cane can be used as bovine supplementation option in the Centro Oeste region during dry periods. However, the low phosphorus availability in the soil becomes a limiting factor in the development of culture, mainly for ratoon cane. Thus, the objective of this study was to evaluate the performance of ratoon cane under different levels of phosphorus, applied in corrective phosphate and of the maintenance in the plant cane. The experiment was conducted in Alta Floresta (MT), end the ex...

  15. 蒸发末效汁汽废热加热蔗汁的新工艺研究%Study on The New Technology of Waste Heat from the Last Effect Steam of Evaporation Heating the Cane Juice

    Institute of Scientific and Technical Information of China (English)

    罗英极

    2011-01-01

    This paper proposes a new technology of using waste heat from the last effect stream of evaporation to heat the cane juice.Using the direct injection heat exchanger,the thermal energy of the last effect steam of evaporation is absorbed by water.And then using the hot water absorbed thermal energy to heating the cane juice through the plate heat exchanger.When the temperature of the last effect stream maintains about 70 ℃,the tempreture of the water can be improved from 35 ℃ to 65 ℃,and the cane juice will be heated from 25 ℃ to 60 ℃ by the hot water.It satisfies the demand of the first heating temperature of the cane juice.In addition,the paper have analyzed the benefit for the new technology.According to a cane mills handling the cane 10 000 t a day,the new technology can save the bagasse 25 229 t/a in a milling season,namely saving the cost of fuel 12.61 millions yuan.The technology is to achieve the effect of energy saving and emission reduction,and the benefits are remarkable.%提出了蒸发末效汁汽废热加热蔗汁的新工艺。通过喷射式直接换热器,用水吸收蒸发末效汁汽的热能,然后采用板式换热器,利用吸收了热能的热水来加热蔗汁。如果把蒸发末效汁汽温度控制到70℃,汁汽可以将水的温度从30℃提升到65℃,热水可将蔗汁的温度从25℃提升到60℃,满足了蔗汁一次加热的温度要求。此外还对新工艺进行了效益分析,对于日榨10 000 t甘蔗的糖厂,一个榨季可节约蔗渣25 229 t/a,即节约燃料费1 261万元人民币。工艺达到了节能减排的效果,且效益显著。

  16. Energy saving in the sugar cane agroindustry; Ahorro de energia en la agroindustria azucarera canera

    Energy Technology Data Exchange (ETDEWEB)

    Zedillo Ponce de Leon, Luis [Grupo de paises Latinoamericanos y del Caribe exportadores de azucar (Mexico)

    1996-07-01

    The traditional sugar mill is inefficient from the energy point of view. Most of the sugar mills were designed to use all the available bagasse, due to the risk of spontaneous ignition and environmental pollution. Consequently, the steam generators, the turbines and other components were designed to work with low efficiencies. Each ton of sugar produced generates a power potential equivalent to four to six oil barrels (bagasse and residues). That is to say, a sugar mill is capable of producing 500 ton/day of sugar, equivalent to an oil well of 2000 to 3000 barrels/day and one thermoelectric power plant of 15,000 kW. Under this context an analysis is made of the sugar mills in Latin America and the Caribbean as one of the ways of increasing their efficiency and obtain great energy savings. As far as steam generation the appropriate use of energy is dictated by the boilers' efficiency. [Spanish] El ingenio azucarero tradicional es ineficiente desde el punto de vista energetico. La mayoria de los ingenios azucareros se disenaron para usar todo el bagazo disponible, debido al riesgo de ignicion espontanea y contaminacion. En consecuencia, los generadores de vapor, las turbinas y demas componentes fueron disenados para trabajar con bajas eficiencias. Cada tonelada de azucar producida genera una potencialidad energetica equivalente de cuatro a seis barriles de petroleo (bagazo y residuos). Es decir, un ingenio capaz de producir 500 ton/dia de azucar equivalente a un pozo de petroleo de 2000 a 3000 barriles/dia y una termoelectrica de 15000 kW. Bajo este contexto se hace un analisis del ingenio azucarero en Latinoamerica y el Caribe como una de las vias para incrementar su eficiencia y lograr grandes ahorros en la energia. En cuanto a generacion de vapor se refiere, el buen uso de la energia viene expresado por la eficiencia de las calderas.

  17. Climate Superiority of Sugar Cane Planting in Longzhou County of Guangxi

    Institute of Scientific and Technical Information of China (English)

    Aizhen; CHENG; Xingji; ZENG; Zhongxiong; HUANG

    2013-01-01

    According to meteorological conditions for sugar cane growth and development,surface meteorological observation data of Longzhou County in 1981-2010 were taken as basis,to analyze influence of local temperature,precipitation and sunshine conditions on sugar cane planting.Results show that unique climate of Longzhou County is extremely suitable for sugar cane planting and growth.

  18. Model-free kinetics applied to sugarcane bagasse combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ramajo-Escalera, B.; Espina, A.; Garcia, J.R. [Department of Organic and Inorganic Chemistry, University of Oviedo, 33006 Oviedo (Spain); Sosa-Arnao, J.H. [Mechanical Engineering Faculty, State University of Campinas (UNICAMP), P.O. Box 6122, 13083-970 Campinas, SP (Brazil); Nebra, S.A. [Interdisciplinary Center of Energy Planning, State University of Campinas (UNICAMP), R. Shigeo Mori 2013, 13083-770 Campinas, SP (Brazil)

    2006-09-15

    Vyazovkin's model-free kinetic algorithms were applied to determine conversion, isoconversion and apparent activation energy to both dehydration and combustion of sugarcane bagasse. Three different steps were detected with apparent activation energies of 76.1+/-1.7, 333.3+/-15.0 and 220.1+/-4.0kJ/mol in the conversion range of 2-5%, 15-60% and 70-90%, respectively. The first step is associated with the endothermic process of drying and release of water. The others correspond to the combustion (and carbonization) of organic matter (mainly cellulose, hemicellulose and lignin) and the combustion of the products of pyrolysis. (author)

  19. Enzyme loading dependence of cellulose hydrolysis of sugarcane bagasse

    Directory of Open Access Journals (Sweden)

    Carlos Martín

    2012-01-01

    Full Text Available The enzymatic hydrolysis of steam-pretreated sugarcane bagasse, either delignified or non-delignified, was studied as a function of enzyme loading. Hydrolysis experiments were carried out using five enzyme loadings (2.5 to 20 FPU/g cellulose and the concentration of solids was 2% for both materials. Alkaline delignification improved cellulose hydrolysis by increasing surface area. For both materials, glucose concentrations increased with enzyme loading. On the other hand, enzyme loadings higher than 15 FPU/g did not result in any increase in the initial rate, since the excess of enzyme adsorbed onto the substrate restricted the diffusion process through the structure.

  20. Analytical color analysis of irradiated sugar cane spirit with grapes

    Energy Technology Data Exchange (ETDEWEB)

    Pires, Juliana A.; Delabio, Aline S., E-mail: jujuba_angelo@yahoo.com.br, E-mail: aline_sd_timao@hotmail.com [Faculdade de Tecnologia em Piracicaba (FATEP), Piracicaba, SP (Brazil); Harder, Marcia N.C.; Moraes, Liz M.B.; Silva, Lucia C.A.; Arthur, Paula B.; Arthur, Valter, E-mail: mnharder@terra.com.br, E-mail: lizmarybueno@gmail.com, E-mail: lcasilva@cena.usp.br, E-mail: paula.arthur@hotmail.com, E-mail: arthur@cena.usp.br [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil)

    2013-07-01

    The aim of this work was to irradiate a Sugar Cane Spirit with grapes by gamma radiation (Co60) aiming the color alteration like an aging parameter. The Sugar Cane Spirit is a distilled beverage and in order that bouquet and flavor are enhanced, usually the Sugar Cane Spirit goes through a process of maturation in wooden barrels or in bottles with the presence of wood chips, which alters their appearance. However, is possible to get this same result with the use of gamma radiation from Co60 and there is a possibility of indicative the premature aging by the Sugar Cane Spirit color change, through the extraction of grape phenolic compounds. The Sugar Cane Spirit samples were prepared with grapes type Crimson in polypropylene bottles. The samples was irradiated at doses of 0 (control); 0.3KGy; 2kGy and 6kGy, subsequently were performed the colorimetric analyzes in periods of 5; 10; 20 and 50 days after the irradiation treatment. There was no significant statistical difference for the parameters L; a; b; Chrome and Hue-Angle, at 5; 10 and 20 days. On the 50th day only the parameter a shows significant statistical difference at the dose of 0.3kGy, that was higher than 2kGy and 6kGy doses, but not differ the between the control sample. So by the showed results was concluded that the irradiation at doses of 0.3Gy, 2kGy and 6kGy, do not change the color of the Sugar Cane Spirit. (author)

  1. Nitrogen dynamics in a soil-sugar cane system

    OpenAIRE

    2000-01-01

    Results of an organic matter management experiment of a sugar cane crop are reported for the first cropping year. Sugar cane was planted in October 1997, and labeled with a 15N fertilizer pulse to study the fate of organic matter in the soil-plant system. A nitrogen balance is presented, partitioning the system in plant components (stalk, tip and straw), soil components (five soil organic matter fractions) and evaluating leaching losses. The 15N label permitted to determine, at the end of the...

  2. The Impact of Cane Supply on Rattan Trade in China

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Rattan-related products from China are popular and well known in international market, but China is facing shortage of rattan cane supply, and extinction of some rattan species. The big gap between demand and supply of rattan canes in China market is urgent to be bridged. This paper makes a brief introduction on rattan in the world and analyzes the rattan trade in China. The loss of habitats, overexploitation and inadequate replenishment of rattan result in a depleting resource and there are many challe...

  3. Nitrogen dynamics in a soil-sugar cane system

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Julio Cesar Martins de; Reichardt, Klaus; Bacchi, Osny O.S.; Timm, Luis Carlos; Tominaga, Tania Toyomi; Castro Navarro, Roberta de; Cassaro, Fabio Augusto Meira [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Lab. de Fisica do Solo. E-mail: lctimm@carpa.ciagri.usp.br; Dourado-Neto, Durval [Sao Paulo Univ., Piracicaba, SP (Brazil). Escola Superior de Agricultura Luiz de Queiroz. Dept. de Producao Vegertal; Trivelin, Paulo Cesar Ocheuse [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Lab. de Isotopos Estaveis; Piccolo, Marisa de Cassia [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Lab. de Biogeoquimica

    2000-09-01

    Results of an organic matter management experiment of a sugar cane crop are reported for the first cropping year. Sugar cane was planted in October 1997, and labeled with a {sup 15}N fertilizer pulse to study the fate of organic matter in the soil-plant system. A nitrogen balance is presented, partitioning the system in plant components (stalk, tip and straw), soil components (five soil organic matter fractions) and evaluating leaching losses. The {sup 15}N label permitted to determine, at the end of the growing season, amounts of nitrogen derived from the fertilizer, present in the above mentioned compartments. (author)

  4. Co-processing of olive bagasse with crude rapeseed oil via pyrolysis.

    Science.gov (United States)

    Uçar, Suat; Karagöz, Selhan

    2017-05-01

    The co-pyrolysis of olive bagasse with crude rapeseed oil at different blend ratios was investigated at 500ºC in a fixed bed reactor. The effect of olive bagasse to crude rapeseed oil ratio on the product distributions and properties of the pyrolysis products were comparatively investigated. The addition of crude rapeseed oil into olive bagasse in the co-pyrolysis led to formation of upgraded biofuels in terms of liquid yields and properties. While the pyrolysis of olive bagasse produced a liquid yield of 52.5 wt %, the highest liquid yield of 73.5 wt % was obtained from the co-pyrolysis of olive bagasse with crude rapeseed oil at a blend ratio of 1:4. The bio-oil derived from olive bagasse contained 5% naphtha, 10% heavy naphtha, 30% gas oil, and 55% heavy gas oil. In the case of bio-oil obtained from the co-pyrolysis of olive bagasse with crude rapeseed oil at a blend ratio of 1:4, the light naphtha, heavy naphtha, and light gas oil content increased. This is an indication of the improved characteristics of the bio-oil obtained from the co-processing. The heating value of bio-oil from the pyrolysis of olive bagasse alone was 34.6 MJ kg(-1) and the heating values of bio-oils obtained from the co-pyrolysis of olive bagasse with crude rapeseed oil ranged from 37.6 to 41.6 MJ kg(-1). It was demonstrated that the co-processing of waste biomass with crude plant oil is a good alternative to improve bio-oil yields and properties.

  5. 甘蔗糖厂静压饱和浸渗提汁实验研究%Juice Extraction Progress of Static Pressure Saturated Infiltration in Cane Sugar Factory

    Institute of Scientific and Technical Information of China (English)

    孙潇; 陆浩; 高俊永; 黄向阳

    2011-01-01

    提出了一种适用于甘蔗糖厂的静压饱和浸渗提汁工艺,通过一定压力作用于蔗渣,采用回流饱和浸渗工艺,达到提汁的目的.实验结果表明:采用新工艺后可使蔗渣的水分、锤度、转光度比传统压榨降低6.6%、9.7%、5.8%,抽出率提高0.4%,可为甘蔗提汁领域提供新途径.%A new juice extraction process was presented using Static Pressure Saturated Infiltration method. In this method, a certain pressure was applied to bagasse, and saturated infiltration technique was employed to extract sugar juice. The results show that the new technology can decrease bagasse moisture, Brix, poi by 6.6%,9.7%, 5.8% respectively, and increase sucrose extraction by 0.4%, as compared to the traditional press. It can provide a new way for sugar cane juice extraction process.

  6. Description of the production process - agricultural phase; Descricao do processo produtivo - fase agricola

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-10-15

    This chapter presents the description of the state-of-art of the production process of sugar cane bio ethanol in Brazil also denominated of first generation, involving the improvements in the agricultural phase and also the aspects related to the second generation technologies. The different aspects related do the use of sugar cane bagasse and straw cape.

  7. Highly improved chromium (III uptake capacity in modified sugarcane bagasse using different chemical treatments

    Directory of Open Access Journals (Sweden)

    Vanessa Cristina Gonçalves Dos Santos

    2012-01-01

    Full Text Available The present paper focuses on improving chromium (III uptake capacity of sugarcane bagasse through its chemical modification with citric acid and/or sodium hydroxide. The chemical modifications were confirmed by infrared spectroscopy, with an evident peak observed at 1730 cm-1, attributed to carbonyl groups. Equilibrium was reached after 24 h, and the kinetics followed the pseudo-second-order model. The highest chromium (III maximum adsorption capacity (MAC value was found when using sugarcane bagasse modified with sodium hydroxide and citric acid (58.00 mg g-1 giving a MAC value about three times greater (20.34 mg g-1 than for raw sugarcane bagasse.

  8. Evaluation of Plasticity and Particle Size Distribution Characteristics of Bagasse Ash on Cement Treated Lateritic Soil

    Directory of Open Access Journals (Sweden)

    Mohammed Abdullahi MU'AZU

    2007-01-01

    Full Text Available Lateritic soil was treated with 1-4% cement contents and was admixtured with 2-8% bagasse ash content. The paper evaluated the plasticity and particle size distribution characteristic of bagasse ash on cement treated laterite. It was observed that liquid limit and plasticity index reduced while plastic limit increased. As regards the particle size distribution, the was reduction in the percentage of fines as a result of formation of heavier pseudo- and particle with percentage passing BS Sieve No. 200 reduced from 63% to almost zero. However the recommended percentage of bagasse ash should be between 4%-6%.

  9. Thermal Decomposition and Kinetics of Rigid Poly-urethane Foams Derived from Sugarcane Bagasse

    Institute of Scientific and Technical Information of China (English)

    YAN Yongbin; XU Jingwei; PANG Hao; ZHANG Rongli; LIAO Bing

    2009-01-01

    Rigid polyurethane foams were fabricated with five kinds of liquefied sugarcane bagasse polyols(LBP).The foams derived from sugarcane bagasse were investigated by thermogra-vimetric analysis(TGA),and the thermal degradation data were analyzed using the Coast-Redfern method and Ozawa method to obtain the reaction order and activation energy.The results indicate that the sugarcane bagasse-foams exhibit an excellent heat-resistant property,whereas their pyrolysis procedures are quite complicated.The reaction as first order only takes place from 250 to 400℃,and the pyrolysis activation energies vary from 20 to 140 kJ/mol during the whole pyrolysis process.

  10. IN SITU DEGRADABILITY OF DRY MATTER AND FIBROUS FRACTION SUGARCANE BAGASSE TREATED WITH UREA DEGRADABILIDADE IN SITU DA MATÉRIA SECA E DA FRAÇÃO FIBROSA DO BAGAÇO DE CANA-DE-AÇÚCAR TRATADO COM URÉIA

    Directory of Open Access Journals (Sweden)

    Fabrício Bacelar Lima Mendes

    2007-09-01

    Full Text Available

    The experiment was conducted to evaluate the in situ degradability of dry matter (iDMD, neutral detergent fiber (iNDFD, acid detergent fiber (iADFD and hemicel-lulosis of sugar cane bagasse submitted to ammoniation with urea. The treatments consisted of four urea levels (0%, 2.5%, 5.0% and 7.5% on dry matter – DM basis added to the sugar cane bagasse and addition of 1.2% (DM basis of ground soybean as urease source. Samples of 3 g of the bagasses were incubated in the rumen of three steers during periods of 0, 12, 24, 48, 72 and 96 hours. The urea addiction to sugar cane bagasse provided increase not only on the iDMD, but also in degradability of cell wall con-tents. The degradability increased of 73.6, 61.3, 45.6 and 65.7% for DM, NDF, ADF and hemicellulosis, respective-ly, at the longer incubation time (96 hours. The iDMD, iNDFD, iADFD and in situ hemicellusosis degradability of sugar cane bagasse were improved by urea treatment.

    KEY-WORDS: Ammoniation, by product, dry matter, cellular wall.

    O experimento foi desenvolvido para avaliar a de-gradabilidade in situ da matéria seca (DiMS, da fibra em detergente neutro (DiFDN, da fibra em detergente ácido (DiFDA e da hemicelulose do bagaço de cana-de-açúcar submetido à amonização com uréia. Os tratamentos cons-taram de quatro níveis de uréia (0%, 2,5%, 5,0% e 7,5% na base da matéria seca – MS adicionados ao bagaço de cana-de-açúcar e adição de 1,2% (base da MS de soja grão moída como fonte de urease. Amostras de 3 g dos bagaços foram incubadas no rúmen de três novilhos por períodos de 0, 12, 24, 48, 72 e 96 horas. A adição de uréia ao bagaço de cana-de-açúcar promoveu aumento tanto na DiMS como também na degradabilidade dos constituintes da parede celular. Houve incrementos nas degradabilidades de 73,6%, 61,3%, 45,6% e 65,7% para a MS, FDN, FDA e hemice-lulose, respectivamente, no maior tempo de incubação (96 horas. A DiMS, DiFDN, DiFDA e a

  11. Soil, water and nutrient losses by interrill erosion from green cane cultivation

    Directory of Open Access Journals (Sweden)

    Gilka Rocha Vasconcelos da Silva

    2012-06-01

    Full Text Available Interrill erosion occurs by the particle breakdown caused by raindrop impact, by particle transport in surface runoff, by dragging and suspension of particles disaggregated from the soil surface, thus removing organic matter and nutrients that are essential for agricultural production. Crop residues on the soil surface modify the characteristics of the runoff generated by rainfall and the consequent particle breakdown and sediment transport resulting from erosion. The objective of this study was to determine the minimum amount of mulch that must be maintained on the soil surface of a sugarcane plantation to reduce the soil, water and nutrient losses by decreasing interrill erosion. The study was conducted in Pradópolis, São Paulo State, in 0.5 x 1.0 m plots of an Oxisol, testing five treatments in four replications. The application rates were based on the crop residue production of the area of 1.4 kg m-2 (T1- no cane trash; T2-25 % of the cane trash; T3- 50 % trash; T4-75 % trash; T5-100 % sugarcane residues on the surface, and simulated rainfall was applied at an intensity of 65 mm h-1 for 60 min. Runoff samples were collected in plastic containers and soon after taken to the laboratory to quantify the losses of soil, water and nutrients. To minimize soil loss by interrill erosion, 75 % of the cane mulch must be maintained on the soil, to control water loss 50 % must be maintained and 25 % trash controls organic matter and nutrient losses. This information can contribute to optimize the use of this resource for soil conservation on the one hand and the production of clean energy in sugar and alcohol industries on the other.

  12. Bioethanol Production from Sugarcane Bagasse using Fermentation Process

    Directory of Open Access Journals (Sweden)

    Y. C. Wong

    2014-06-01

    Full Text Available The aim of this study is to produce bioethanol from sugarcane bagasse using fermentation process and to determine the effect of pH and temperature on bioethanol yield. Enzymes such as alpha- amylase and glucoamylase were used to breakdown the cellulose in sugarcane bagasse. Saccharomyces cerevisiea, (yeast also was used in the experiment for fermentation. Five samples were prepared at different pH was varied to determine the effects of pH on ethanol yield at 370 C and another five samples were prepared to determine the effect of temperature on ethanol yield, the pH was kept constant at 4.5. The ethanol concentrations were determined by running the samples in High Performance Liquid Chromatography (HPLC. The results showed that at highest ethanol concentration was obtained pH 4.5 and temperature 350C. This indicated that pH 4.5 and 350C was the optimum parameter for the yeast to produce ethanol.

  13. The pyrolysis kinetics of bagasse at low heating rates

    Energy Technology Data Exchange (ETDEWEB)

    Aiman, S.; Stubington, J.F. (New South Wales Univ., Kensington, NSW (Australia))

    1993-01-01

    Thermogravimetric Analysis (TGA) was used to study the thermal degradation of wet and dry bagasse at low heating rates (5 to 50[sup o]C min[sup -1]) under a nitrogen atmosphere. For engineering purposes, it was found that a single first-order reaction gave the simplest and best fit to the rapid pyrolysis zone between 195 and 395[sup o]C, with an activation energy of 93.2 kJ mol[sup -1] and pre-exponential factor of 4.33 x 10[sup 4]s[sup -1]. These values have no chemical significance, but have been derived for use in modelling studies of the ignition and combustion of bagasse. Sample moisture content up to 18% by weight had no effect on the degradation, because moisture evaporation was complete before pyrolysis commenced at these low heating rates. The choice of the final mass from the TGA curve significantly affected the deduced kinetic parameters. The final sample mass at the end of the rapid pyrolysis zone was 26.2% of the dry sample mass. (author)

  14. Kinetic study of the enzymatic hydrolysis of sugarcane bagasse

    Directory of Open Access Journals (Sweden)

    M. L. Carvalho

    2013-09-01

    Full Text Available This work presents a kinetic study of the enzymatic hydrolysis of three cellulosic substrates: filter paper (FP, used as a low recalcitrance substrate model; steam exploded sugarcane bagasse (SB; and weak acid pretreated SB (1:20 dry bagasse:H2SO4 solution 1% w/w, the last two delignified with 4% NaOH (w/w. The influence of substrate concentration was assessed in hydrolysis experiments in a shaker, using Accellerase® 1500, at pH 4.8, in 50 mM sodium citrate buffer. Cellulose loads (weight substrate/weight total were changed between 0.5%-13% (for FP and 0.99%-9.09% (for SB. For FP and low loads of steam exploded SB, it was possible to fit pseudo-homogeneous Michaelis-Menten models (with inhibition. For FP and higher loads of steam exploded SB, modified Michaelis-Menten models were fitted. Besides, it was observed that, after retuning of the model parameters, it is possible to apply a model fitted for one situation to a different case. Chrastil models were also fitted and they were the only feasible approach for the highly recalcitrant acid-treated SB.

  15. Reuse of sugarcane bagasse ash (SCBA) to produce ceramic materials.

    Science.gov (United States)

    Souza, A E; Teixeira, S R; Santos, G T A; Costa, F B; Longo, E

    2011-10-01

    Sugarcane bagasse ash (SCBA) is a residue resulting from the burning of bagasse in boilers in the sugarcane/alcohol industry. SCBA has a very high silica concentration and contains aluminum, iron, alkalis and alkaline earth oxides in smaller amounts. In this work, the properties of sintered ceramic bodies were evaluated based on the concentration of SCBA, which replaced non-plastic material. The ash was mixed (up to 60 wt%) with a clayed raw material that is used to produce roof tiles. Prismatic probes were pressed and sintered at different temperatures (up to 1200 °C). Technological tests of ceramic probes showed that the addition of ash has little influence on the ceramic properties up to 1000 °C. X-ray diffraction and thermal analysis data showed that, above this temperature the ash participates in the sintering process and in the formation of new important phases. The results reported show that the reuse of SCBA in the ceramic industry is feasible.

  16. Pozzolanic evaluation of the sugar cane leaf

    Directory of Open Access Journals (Sweden)

    Guzmán, A.

    2011-06-01

    Full Text Available This paper presents the results of the evaluation of the sugarcane leaf, burnt under controlled conditions in order to obtain a reactive ash with pozzolanic properties. Chemical analysis, amorphousity and surface structure of the sugar cane straw ash (SCSA were studied by X-ray diffraction, X-ray fluorescence spectroscopy and scanning electron microscope (SEM. The results of this research showed that SCSA has significant presence of amorphous material and a high content of silica (81.0%. The pozzolanic activity of the SCSA was evaluated by the Fratini test and the pozzolanic activity index. In order to interpretate the pozzolan activity, the Feret method was used. It is conclude that the SCSA presents pozzolanic characteristics for blending Portland cement.

    En el siguiente artículo se presenta una evaluación de la hoja de caña de azúcar calcinada bajo condiciones controladas en aras a obtener ceniza reactiva (con propiedades puzolánicas. La ceniza fue analizada mediante las técnicas de difracción de rayos X, fluorescencia de rayos X y microscopía electrónica de barrido. Los resultados del estudio mostraron que la ceniza de hoja de caña de azúcar sí contiene una significante presencia de material amorfo y un alto porcentaje de sílice (81,0%. Se valoró la aptitud de las cenizas obtenidas como puzolana mediante métodos químicos, como el ensayo de Frattini y métodos mecánicos, como el índice de actividad puzolánica. Como modelo a seguir para la interpretación de la puzolanicidad de la ceniza de hoja de caña se utilizó el método de Feret. Se concluye que la ceniza de hoja de caña sí es apta para ser utilizada como adición puzolánica.

  17. Quantification of long cane usage characteristics with the constant contact technique.

    Science.gov (United States)

    Kim, Yeongmi; Moncada-Torres, Arturo; Furrer, Jonas; Riesch, Markus; Gassert, Roger

    2016-07-01

    While a number of Electronic Travel Aids (ETAs) have been developed over the past decades, the conventional long cane remains the most widely utilized navigation tool for people with visual impairments. Understanding the characteristics of long cane usage is crucial for the development and acceptance of ETAs. Using optical tracking, cameras and inertial measurement units, we investigated grasp type, cane orientation and sweeping characteristics of the long cane with the constant contact technique. The mean cane tilt angle, sweeping angle, and grip rotation deviation were measured. Grasp type varied among subjects, but was maintained throughout the experiments, with thumb and index finger in contact with the cane handle over 90% of the time. We found large inter-subject differences in sweeping range and frequency, while the sweeping frequency showed low intra-subject variability. These findings give insights into long cane usage characteristics and provide critical information for the development of effective ETAs.

  18. Fermentation and epiphytic microflora dynamics in sugar cane silage

    Directory of Open Access Journals (Sweden)

    Pedroso André de Faria

    2005-01-01

    Full Text Available Sugar cane silages are characterized by extensive yeast activity, alcohol production and great dry matter - DM - losses. Better knowledge of the fermentation process is fundamental to the development of efficient ensilage techniques for this forage. This study evaluates temporal changes in chemical composition, DM losses and epiphytic microflora in sugar cane silage. Mature sugar cane, variety RB835486 (12 months of vegetative growth, was hand harvested, processed in a stationary chopper and ensiled in 20-L plastic buckets provided with valves for gas release and a device for effluent collection. Laboratory silos were kept at ambient temperature and sampled after fraction one-half, 1, 2, 3, 7, 15, 45, 90, 120 and 180 days. Ethanol concentration reached 6.4% in DM after 15 days of ensilage, followed by 71% water soluble carbohydrates - WSCs - disappearance. Gas and total DM losses reached a plateau on day 45 (16% and 29% of DM, respectively. Yeast count was higher on the second day (5.05 log cfu g-1. Silage pH declined to below 4.0 on the third day. Effluent yield was negligible (20 kg t-1. DM content in the forage decreased (35% to 26% from day 0 to day 45. The increase in ethanol concentration showed an opposite trend to WSCs and true in vitro dry matter digestibility reductions in the silage. Developing methods to control yeasts, most probably through the use of additives, will enable more efficient production of sugar cane silage by farmers.

  19. Estimation of fruit weight by cane traits for various raspberries ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-09-03

    Sep 3, 2008 ... found higher (better fit) than those of Nuburg and Tulameen cultivars. It was concluded that the ... Key words: Raspberry, cane traits, fruit weight estimation, multiple regression analysis. .... Regression coefficients can be estimated by Ordinary Least Square (OLS) ... Determination coefficient (R2). Number of ...

  20. Methane Potential and Enzymatic Saccharification of Steam-exploded Bagasse

    National Research Council Canada - National Science Library

    Vivekanand Vivekanand; Elisabeth F. Olsen; Vincent G.H. Eijsink; Svein Jarle Horn

    2014-01-01

    To evaluate the biofuel potential of bagasse, an abundant co-product in sugarcane-based industries, the effect of steam explosion on the efficiency of enzymatic saccharification and anaerobic digestion was studied...

  1. DETERMINATION OF MOISTURE CONTENT OF BAGASSE OF JAGGERY UNIT USING MICROWAVE OVEN

    Directory of Open Access Journals (Sweden)

    S.I. ANWAR

    2010-12-01

    Full Text Available In jaggery making furnaces, sugarcane bagasse is used as fuel. Moisture content of bagasse affects its calorific value. So burning of bagasse at suitable level of moisture is essential from the viewpoint of furnace performance. Moisture content can also be used for indirect calculation of fibre content in sugarcane. Normally gravimetric method is used for moisture content determination, which is time consuming. Therefore, an attempt has been made to use microwave oven for drying of bagasse. It took about 20 to 25 minutes for the determination as compared to 8-10 hours in conventional hot air drying method and the results were comparable to the values obtained from hot air drying method.

  2. Optimum Parameters for the Formulation of Charcoal Briquettes Using Bagasse and Clay as Binder

    National Research Council Canada - National Science Library

    M.S. Rao; B.N. Chikamai; J.M. Onchieku

    2012-01-01

    ... for the formulation of charcoal briquettes for household use tosupplement wood charcoal. In this study briquettes were formulated usingcarbonized bagasse, clay as a binder and molasses as a filler...

  3. Optimum Parameters for the Formulation of Charcoal Briquettes Using Bagasse and Clay as Binder

    National Research Council Canada - National Science Library

    J.M. Onchieku; B.N. Chikamai; M.S. Rao

    2014-01-01

    ... for the formulation of charcoal briquettes for household use tosupplement wood charcoal. In this study briquettes were formulated usingcarbonized bagasse, clay as a binder and molasses as a filler...

  4. Removal of petroleum hydrocarbons from aqueous solution using sugarcane bagasse as adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Brandao, Poliana C.; Souza, Tulio C.; Ferreira, Cintia A.; Hori, Carla E. [Federal University of Uberlandia, Av. Joao Naves de Avila, 2160, Bloco K, Campus Santa Monica, CEP: 38400-902 Uberlandia, MG (Brazil); Romanielo, Lucienne L., E-mail: lucienne@ufu.br [Federal University of Uberlandia, Av. Joao Naves de Avila, 2160, Bloco K, Campus Santa Monica, CEP: 38400-902 Uberlandia, MG (Brazil)

    2010-03-15

    In the present work, the adsorption ability of sugarcane bagasse to remove oil by-products from aqueous solution was evaluated. The objective was treating the contaminated wastewater while enriching the bagasse for its later use as fuel in boilers. Adsorption experiments were carried out in an agitated reactor at room temperature to obtain kinetic curves and adsorption isotherms of gasoline and n-heptane on sugarcane bagasse. The results showed the great potential of bagasse as an adsorbent, since it was able to adsorb up to 99% of gasoline and 90% of n-heptane in solutions containing about 5% of these contaminants. In the adsorption kinetics of gasoline, the equilibrium was reached after just 5 min. This result shows that the adsorption is very favorable. Langmuir, Freundlich, Temkin and D-R models did not describe well the adsorption behavior obtained for these systems.

  5. Influence of Compactive Effort on Bagasse Ash with Cement Treated Lateritic Soil

    Directory of Open Access Journals (Sweden)

    Mohammed Abdullahi MU'AZU

    2007-01-01

    Full Text Available The result of a laboratory study on the influence of British Standard Light (BSL, West African Standard (WAS and British Standard Heavy (BSH compactive effort on up to 8% bagasse ash content with up to 4% cement treated lateritic soil on compaction and shear strength characteristic of laterite. The result shows decreased in Maximum Dry Density with increased in bagasse ash content and in shear strength properties there was decreased in cohesion and an increased in angle internal friction. The decreased was greater with higher bagasse ash content. However, as compactive effort increased from BSL, WAS and BSH, the value of MDD increased and OMC decreased as a result of flocculation and agglomeration of clay particle occupying larger space with a corresponding drop in dry density and because of extra water required for the pozzalanic reaction of bagasse ash and hydration of cement respectively.

  6. Clarification properties of trash and stalk tissues from sugar cane.

    Science.gov (United States)

    Eggleston, Gillian; Grisham, Michael; Antoine, April

    2010-01-13

    The effect of the U.S. and worldwide change from burnt to unburnt (green) sugar cane harvesting on processing and the use of sugar cane leaves and tops as a biomass source has not been fully characterized. Sugar cane whole-stalks were harvested from the first ratoon (repeat) crop of five commercial, Louisiana sugar cane varieties (LCP 85-384, HoCP 96-540, L 97-128, L 99-226, and L 99-233). Replicated sample tissues of brown, dry leaves (BL), green leaves (GL), growing point region (GPR), and stalk (S) were separated. Composite juice from each tissue type was clarified following a hot lime clarification process operated by most U.S. factories. Only GPR and GL juices foamed on heating and followed the normal settling behavior of factory sugar cane juice, although GL was markedly slower than GPR. GPR juice aided settling. S juice tended to thin out rather than follow normal settling and exhibited the most unwanted upward motion of flocs. Most varietal variation in settling, mud, and clarified juice (CJ) characteristics occurred for GL. The quality rather than the quantity of impurities in the different tissues mostly affected the volume of mud produced: After 30 min of settling, mud volume per unit tissue juice degrees Brix (% dissolved solids) varied markedly among the tissues (S 1.09, BL 11.3, GPR 3.0, and GL 3.1 mL/degrees Brix). Heat transfer properties of tissue juices and CJs are described. Clarification was unable to remove all BL cellulosic particles. GL and BL increased color, turbidity, and suspended particles in CJs with BL worse than GL. This will make the future attainment of very high pol (VHP) raw sugar in the U.S. more difficult. Although optimization of factory unit processes will alleviate extra trash problems, economical strategies to reduce the amount of green and brown leaves processed need to be identified and implemented.

  7. Assessment of Cane Yields on Well-drained Ferralsols in the Sugar-cane Estate of Central Cameroon

    Directory of Open Access Journals (Sweden)

    Van Ranst, E.

    1999-01-01

    Full Text Available The potential yields of irrigated and of rainfed sugar-cane on three ferrallitic soil series, well represented in the Nkoteng sugar-cane estate of Central Cameroon, are estimated following different methods. The potential yield of irrigated sugar-cane is estimated from the total maximum evapotranspiration during the crop cycle. The potential yield of rainfed sugar-cane is estimated following two methods for the establishment of a water balance and for the determination of a yield reduction as a result of a water deficit. The calculated potential yields are higher than the observed ones. The yield reduction due to rain fed cropping can mainly be attributed to water shortage during the late yield formation and the ripening periods. A supplementary yield decline is due to a combined action of an acid soil reaction, a possible Al-toxicity a low base saturation, an inadequate CEC, organic matter content and P-availability which may adequately explain the actual yield level.

  8. Tensile Strength Assessment of Injection-Molded High Yield Sugarcane Bagasse-Reinforced Polypropylene

    OpenAIRE

    2016-01-01

    Sugarcane bagasse was treated to obtain sawdust, in addition to mechanical, thermomechanical, and chemical-thermomechanical pulps. The obtained fibers were used to obtain reinforced polypropylene composites prepared by injection molding. Coupling agent contents ranging from 2 to 10% w/w were added to the composite to obtain the highest tensile strength. All the composites included 30% w/w of reinforcing fibers. The tensile strength of the different sugarcane bagasse fiber composites were test...

  9. Effect of fiber loading on the mechanical properties of bagasse fiber–reinforced polypropylene composites

    OpenAIRE

    2016-01-01

    It is evident that sugarcane/bagasse is a highly potential natural composite fiber. In this study, the correlation of composition fiber amount to the mechanical strength was presented. Bagasse was treated with alkali and then reinforced in polypropylene by means of hot pressing. Fiber loading was set to be varied from 10 to 20 wt%. Composite samples were subjected to tensile, hardness, and flexural characterization. Composites with 30 wt% of fiber loading registered maximum tensile strength w...

  10. APPLICATION OF SURFACTANTS AS PULPING ADDITIVES IN SODA PULPING OF BAGASSE

    OpenAIRE

    2009-01-01

    The effects of several non-ionic commercial surfactants and their dosage on soda pulping and ECF bleaching of soda and soda-surfactant pulps of bagasse were investigated. The properties of bleachable pulps obtained with conventional soda and with soda-surfactants were studied and compared. The results showed application of surfactants during the soda pulping of bagasse decreased kappa number and improved the yield and brightness of resulting pulp. Using the surfactants reduced alkali consumpt...

  11. COMPARATIVE EXTRACTION OF PECTIC AND POLYPHENOLS FROM MEXICAN LIME POMACE AND BAGASSE

    OpenAIRE

    2013-01-01

    Mexican lime bagasse and pomace are rich in pectin and they also represent an important source of value-added compounds such as polyphenols. Two different options for the combined recovery of pectin and phenolic compounds from Mexican lime bagasse and pomace, two byproducts of industrial lime processing, were developed. Conventional and microwave-assisted extraction methods were used. All pectic extracts presented a degree of esterification in the range of 70%. Pomace extracts had the higher ...

  12. The Analysis Of Simple Additive Weighting With Topsis Method To Selection Superior Seed Of Sugar Cane

    Directory of Open Access Journals (Sweden)

    Heri Gunawan

    2016-02-01

    Full Text Available According to the results of observations on the PTP (Persero Nusantara II Kwala Madu Gardens sugarcane production is increasing but the results are not optimal, so that the determination of superior seed cane is apt to be one of the factors supporting the development of sugar cane production.Determining the appropriate sugarcane seedlings to the conditions as criteria: climate, rainfall, soil acidity (pH, soil type, drainage (water systems based on the type of sugarcane cultivated is still a classic problem. In this study, using a 4 (four alternative seed is PS58, BM13579, BZ134 and Kidang Kencana. In this research, the analysis by applying TOPSIS and SAW method to determine sugarcane seeds. Whether the results of the analysis can give the decision to determine the seeds of sugarcane using SAW and TOPSIS. From the analysis of the decision obtained as follows: From the rank of distance closeness to the ideal solution TOPSIS process can be generated as follows. For V1 (alternative 1: PS58 = 0.1836, V2 (alternative 2: BM 13579 = 0.7309, V3 (alternative 3: BZ134 = 0.8082, and V4 (alternative 4: Kidang Kecana. Then it can be decided which is the third alternative seed is BZ134.

  13. Co-pyrolysis of sugarcane bagasse with petroleum residue. Part 1: thermogravimetric analysis

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Perez, M.; Chaala, A.; Yang, J.; Roy, C. [Universite Laval, Ste-Foy, PQ (Canada). Departement de genie chimique

    2001-07-06

    Thermal decomposition under nitrogen of sugarcane bagasse, petroleum residue and their blends was studied by thermogravimetry (TG) at different heating rates (10, 20 and 60 deg C/min). Thermal decomposition kinetic parameters were determined. Sugarcane bagasse pyrolysis was described as the sum of cellulose, hemicellulose, and lignin individual contributions. First order equations were used to determine the bagasse component thermal decomposition kinetics. Activation energies calculated were 235, 105, and 26 kJ/mol for cellulose, hemiceullose and lignin, respectively. Thermal decomposition of petroleum residue can be explained by the additive effect of its three major fractions, following kinetic equation orders of 2.5, 2.3 and 1.5 with activation energies of 100, 180 and 220 kJ/mol respectively. It has been found that during thermal decomposition of bagasse/petroleum residue mixtures, no significant interaction occurred in the solid phase between the components under the experimental conditions investigated. The kinetic parameters associated with the bagasse/petroleum residue mixture involved the sum of bagasse and petroleum residue individual component kinetic parameters. The information obtained can be used to develop a correlation between the thermogravimetric data and the feedstock composition. 55 refs., 13 figs., 7 tabs.

  14. Effect of Acidic Environment (HCL on Concrete With Sugarcane Bagasse Ash As Pozzolona

    Directory of Open Access Journals (Sweden)

    P V Rambabu

    2015-11-01

    Full Text Available With increasing demand and consumption of cement, researchers and scientist are in search of developing alternate binders that are eco friendly and contribute towards waste management. The utilization of industrial and agricultural waste produced by industrial processes has been the focus on waste reduction. One of the agro waste sugarcane bagasse ash (SCBA which is a fibrous waste product obtained from sugar mills as byproduct is taken for study area. This experimental and analytical study investigates the durability of M35 concrete mix using Ordinary Portland Cement and Sugarcane Bagasse Ash as partial replacement in Ordinary Portland Cement. Sugarcane Bagasse Ash was obtained by burning of Sugarcane at 700 to 800 degree Centigrade in sugar refining industry, Bagasse Ash obtained from burning was grounded until the particles passing the 90 micron sieve. The disposal of this material is already causing environmental problems around the sugar factories. In this project objective is to study the influence of partial replacement of Portland cement with sugarcane bagasse ash in concrete subjected to different acidic Environments. The variable factors considered in this study were concrete grade of M35 & curing periods of 28, 60, 90 days of the concrete specimens in 1%, 3%, and 5% of hydrochloric acid in water for curing the specimens. Bagasse ash has been partially replaced in the ratio of 0%, 5%, 6%, 7%, 8%, 9%, and 10% by weight.

  15. Acid and enzymatic hydrolysis to recover reducing sugars from cassava bagasse: an economic study

    Directory of Open Access Journals (Sweden)

    Woiciechowski Adenise Lorenci

    2002-01-01

    Full Text Available The objective of this work was to study the acid and enzymatic hydrolysis of cassava bagasse for the recovery of reducing sugars and to establish the operational costs. A statistical program "Statistica", based on the surface response was used to optimize the recovery of reducing sugars in both the processes. The process economics was determined considering the values of reducing sugars obtained at laboratory scale, and the operations costs of a cylindrical reactor of 1500 L, with flat walls at the top and bottom. The reactor was operated with 150 kg of cassava bagasse and 1350 kg of water. The yield of the acid hydrolysis was 62.4 g of reducing sugars from 100 g of cassava bagasse containing 66% starch. It represented 94.5% of reducing sugar recovery. The yield of the enzymatic hydrolysis was 77.1 g of reducing sugars from 120 g of cassava bagasse, which represented 97.3% of reducing sugars recovery. Concerning to the time, a batch of acid hydrolysis required 10 minutes, plus the time to heat and cool the reactor, and a batch of the enzymatic hydrolysis needed 25 hours and 20 minutes, plus the time to heat and to cool the reactor. Thus, the acid hydrolysis of 150 kg of cassava bagasse required US$ 34.27, and the enzymatic hydrolysis of the same amount of cassava bagasse required US$ 2470.99.

  16. Characterization and evaluation of coconut aroma produced by Trichoderma viride EMCC-107 in solid state fermentation on sugarcane bagasse

    OpenAIRE

    Fadel,Hoda Hanem Mohamed; Mahmoud,Manal Gomaa; Asker,Mohsen Mohamed Selim; Lotfy,Shereen Nazeh

    2015-01-01

    Background Sugarcane bagasse was shown to be an adequate substrate for the growth and aroma production by Trichoderma species. In the present work the ability of Trichoderma viride EMCC-107 to produce high yield of coconut aroma in solid state fermentation (SSF) by using sugarcane bagasse as solid substrate was evaluated. The produced aroma was characterized. Results Total carbohydrates comprised the highest content (43.9% w/w) compared with the other constituents in sugarcane bagasse. The se...

  17. Genetic divergence among elite sugarcane clones (Saccharum officinarum L. based on cane yield and quality traits from Northern India

    Directory of Open Access Journals (Sweden)

    Kumar R, Tyagi V

    2015-04-01

    Full Text Available Genetic divergence among the twenty four sugarcane genotypes collected from various sugarcane research institutions of northern India were tested in a randomized complete block design with three replicates during the cropping seasons 2013 - 14. The assessment of the genetic diversity was based on the eighteen cane yield and quality characters. The results of the study indicated that, the genotypes were grouped into five clusters based on the genetic distance using Mahalanobis's statistics. Higher inter-cluster distance was recorded between cluster II and V (89.668 indicating high genetic diversity among these two clusters. Thus, exploitation of genotypes within these two clusters as parents for crossing could produce good sugarcane segregants. The lowest intra cluster distance was reported in the cluster III (14.897 revealed that clones are identical and can not to be used as parents in crossing that results hybrid not desirable for the characters studied. A critical analysis of cluster means for different traits indicated that cluster I was desirable for cane yield, CCS (t/ha, single cane weight, stalk diameter, germination (%, cluster II was better for juice extraction percentage, cluster III for better juice purity percent, brix (%, sucrose (% and CCS (% for 12 months and cluster V was the best source for NMC (000/ha, stalk length with other good cane and sugar yield traits. The average D2 values among clones ranged from 29.998 (CoH 08262 to 69.791 (CoPb 09214. The maximum genetic distance was noted between clone CoPb 09214 and Co 10039 (97.842 which was followed by clone CoPb 09214 & Co 10036 (96.609, CoPb 09214 & CoS 8436 (92.964 and clone CoH 09264 & Co 10036 (90.091. It is suggested that genotypes with high index for specific characters that fall into different clusters could be intercrossed to generate good number

  18. Comprehensive utilization of glycerol from sugarcane bagasse pretreatment to fermentation.

    Science.gov (United States)

    Jiang, Liqun; Zheng, Anqing; Zhao, Zengli; He, Fang; Li, Haibin

    2015-11-01

    In this study, the effects of glycerol pretreatment on subsequent glycerol fermentation and biomass fast pyrolysis were investigated. The liquid fraction from the pretreatment process was evaluated to be feasible for fermentation by Paenibacillus polymyxa and could be an economic substrate. The pretreated biomass was further utilized to obtain levoglucosan by fast pyrolysis. The pretreated sugarcane bagasse exhibited significantly higher levoglucosan yield (47.70%) than that of un-pretreated sample (11.25%). The promotion could likely be attributed to the effective removal of alkali and alkaline earth metals by glycerol pretreatment. This research developed an economically viable manufacturing paradigm to utilize glycerol comprehensively and enhance the formation of levoglucosan effectively from lignocellulose.

  19. Evaluation of Brazilian Sugarcane Bagasse Characterization: An Interlaboratory Comparison Study

    Energy Technology Data Exchange (ETDEWEB)

    Sluiter, Justin B.; Chum, Helena; Gomes, Absai C.; Tavares, Renata P.A.; Azevedo, Vinicius; Pimenta, Maria T.B.; Rabelo, Sarita C.; Marabezi, Karen; Curvelo, Antonio A.S.; Alves, Aparecido R.; Garcia, Wokimar T.; Carvalho, Walter; Esteves, Paula J.; Mendonca, Simone; Oliveira, Patricia A.; Ribeiro, Jose A.A.; Mendes, Thais D.; Vicentin, Marcos P.; Duarte, Celina L.; Mori, Manoel N.

    2016-05-01

    This paper describes a study of the variability of measured composition for a single bulk sugarcane bagasse conducted across eight laboratories using similar analytical methods, with the purpose of determining the expected variation for compositional analysis performed by different laboratories. The results show good agreement of measured composition within a single laboratory, but greater variability when results are compared among laboratories. These interlaboratory variabilities do not seem to be associated with a specific method or technique or any single piece of instrumentation. The summary censored statistics provide mean values and pooled standard deviations as follows: total extractives 6.7% (0.6%), whole ash 1.5% (0.2%), glucan 42.3% (1.2%), xylan 22.3% (0.5%), total lignin 21.3% (0.4%), and total mass closure 99.4% (2.9%).

  20. Investigating the possibility of chemi-mechanical pulping of bagasse

    Directory of Open Access Journals (Sweden)

    Alireza Khakifirooz

    2013-02-01

    Full Text Available Chemi-mechanical pulping was evaluated as a potential way to prepare sugarcane bagasse fibers for papermaking. Cellulose, lignin, ash, and extractives soluble in alcohol-acetone were measured as 55.75%, 20.5%, 1.85%, and 3.25%, respectively. Fiber length, diameter, lumen cavity, and cell wall thickness were measured as 1.59 mm, 20.96, 9.72, and 5.64 µm. The chemi-mechanical pulping conditions were selected as follows: three charging levels of 10, 15, and 20% sodium sulphite, and three pulping times of 20, 30, and 40 minutes after reaching the pulping temperature. Pulping temperature was held constant at 165 C. Different pulping conditions resulted in pulp yields between 65.38 and 84.28%. The highest yield (84.28% was obtained using a treatment combination of 20 minutes pulping time and 10% sodium sulphite. The lowest yield (65.38% was related to 40 minutes pulping time and 20% sodium sulphite. Pulps were refined to 300 ± 25 mL CSF, 60 gm-2 handsheets were made, and then strength indices and optical properties of the handsheets were measured. The results showed that 20% sodium sulphite, 40 minutes pulping time, at 165 ºC can be considered as the optimum pulping conditions for bagasse CMP pulping. Tensile, tear, and burst strength indices, as well as the opacity of this pulp were measured as 39.59 Nmg-1, 6.66 mNm2g-1, 2.1 KPa m2g-1, and 95.35%, respectively.

  1. Alkaline Pretreatment of Sweet Sorghum Bagasse for Bioethanol Production

    Directory of Open Access Journals (Sweden)

    Yanni Sudiyani

    2016-08-01

    Full Text Available Lignocellulosic material, which consist mainly of cellulose, hemicelluloses and lignin, are among the most promising renewable feedstocks for the production of energy and chemicals.   The bagasse residue of sweet sorghum can be utilized as raw material for alternative energy such as bioethanol.  Bioethanol production consists of pretreatment, saccharification, fermentation and purification process.  The pretreatment process was of great importance to ethanol yield.  In the present study, alkaline pretreatment was conducted using a steam explosion reactor at 1300C with concentrations of NaOH  6, and 10% (kg/L for 10, and 30 min.  For ethanol production separated hydrolysis and fermentation (SHF and simultaneous saccharification and fermentation (SSF process were conducted with 30 FPU of Ctec2 and Htec2 enzyme and yeast of Saccharomyces cerevisiae.   The results showed that maximum cellulose conversion to total glucose plus xylose were showed greatest with NaOH 10% for 30 min.  The highest yield of ethanol is 96.26% and high concentration of ethanol 66.88 g/L were obtained at SSF condition during 48 h process. Using SSF process could increase yields and concentration of ethanol with less energy process. Article History: Received January 16th 2016; Received in revised form May 25th 2016; Accepted June 28th 2016; Available online How to Cite This Article: Sudiyani, Y., Triwahyuni, E., Muryanto, Burhani, D., Waluyo, J. Sulaswaty, A. and Abimanyu, H. (2016 Alkaline Pretreatment of Sweet Sorghum Bagasse for Bioethanol Production. Int. Journal of Renewable Energy Development, 5(2, 113-118. http://dx.doi.org/10.14710/ijred.5.2.113-118 

  2. Chromatographic detection of sugar cane samples via polarimetry.

    Science.gov (United States)

    López, Juan Carlos; Fajer, Victor; Rodríguez, Carlos W.; Naranjo, Salvador; Mora, Luis; Ravelo, Justo; Cossio, Gladys; Avila, Norma

    2004-03-01

    The combination of molecular exclusion cromatography with the laser polarimetry has become a powerful technique to separate and evaluate some carbohydrates of sugar cane plants. In the following work it has been obtained chromatograms of carbohydrates standards, which has been used as comparison patterns in the studies of the juice quality in different cane varieties of different physiological stadiums and stress conditions. By means of the employment of this technique, it has also been determined the influence of carbohydrates of medium molecular mass in the determination of the apparent sucrose in the routine sugar analysis. On the other hand, discreet determination of the fractions causes time consuming and a troublesome manipulation. In the present work some modifications to the system are shown, obtaining a small volume sample (less than 1 ml) and angular readings on line, avoiding the employment of fraction collectors.

  3. Chemical composition of elephant grass silages supplemented with different levels of dehydrated cashew bagasse

    Directory of Open Access Journals (Sweden)

    Danillo Glaydson Farias Guerra

    2016-04-01

    Full Text Available The objective of the present study was to evaluate the chemical composition of elephant grass silages supplemented with different levels dried cashew bagasse (DCB. Our experiment used a randomized design replicated four times, each replicate consisting of the following five treatments: 100% elephant grass; 95% elephant grass + 5% DCB; 90% elephant grass + 10% DCB; 85% elephant grass + 15% DCB; and 80% elephant grass + 20% DCB. The elephant grass was cut manually to a residual height of 5 cm at 80 days of age, and cashew bagasse was obtained from the processing of cashew stalks used in fruit pulp manufacturing in Mossoró/RN. Plastic buckets were used as experimental silos, and 90 days after ensiling the experimental silos were opened and the contents analyzed. The addition of dried cashew bagasse to silage linearly increased the levels of dried matter and crude protein by 0.59% and 0.13%, respectively, for each 1% addition (P < 0.05. The neutral detergent fiber and acid detergent content of the silages was reduced by 0.22% and 0.09%, respectively, for each 1% addition of the bagasse. The total carbohydrate content was not influenced by the bagasse addition (P > 0.05, and averaged 82.29%. The levels of non-fiber carbohydrate showed linear growth (P < 0.05 as the dehydrated cashew bagasse was added, and pH and ammoniacal nitrogen levels were reduced. The addition of the dehydrated bagasse to elephant grass silage improves its chemical composition, and it can be effectively added up to the level of 20%.

  4. Value-added of used cooking oil using noni (Morinda citrofilia) extract and bagasse

    Science.gov (United States)

    Rahayu, Sri; Supriyatin

    2017-08-01

    This study aimed to investigate the effect of noni extract and bagasse to the number of free fatty acids and peroxide on used cooking oil. This study used a completely randomized design with factorial experiment consisting of two factors: noni extract and administration bagasse. The oil used was cooking oil that has been used 3 times to fry catfish. The study was conducted in the laboratory of Biochemistry, Department ofBiology Science UNJ. Data was analyzed by 2-way ANOVA (α Oil fortification analysis result in negative value of vit A, D and E on cooking oil used. Preliminary test results showed that the used cooking oil on catfish 3 times frying has a peroxide value of 20.2 MeK O2/kg and the number of free fatty acids of 2.2%, which is already quite high and out of SNI limit. This basis the reason of usingthe oil as a sample. Combination of noni and bagasse applied on cooking oil has shown the lowest peroxide value (0.533 mg-equivalen peroxide per kg sample (MeK O2/kg)) compared with administration of bagasse (0.8 MeK O2/kg) and noni alone (0.67 MeK O2/kg). Giving noni and bagasse also figured lower fatty acids (1,878%) compared to administration of noni (1.94%) and bagasse (2,191%) only on used cooking oil. Statistical analysis shows p cooking oil. It can be concluded that the administration of noni extract and bagasse gave effect on free fatty acids and peroxide on used oil.

  5. Improving green waste composting by addition of sugarcane bagasse and exhausted grape marc.

    Science.gov (United States)

    Zhang, Lu; Sun, Xiangyang

    2016-10-01

    The composting of lignocellulosic waste into compost is a potential way of sustainably disposing of a waste while generating a useful product. The current study determined whether the addition of sugarcane bagasse (SCB) (at 0, 15, and 25%) and/or exhausted grape marc (EGM) (at 0, 10, and 20%) improved the two-stage composting of green waste (GW). The combined addition of SCB and EGM improved composting conditions and the quality of the compost product in terms of temperature, water-holding capacity, particle-size distribution, coarseness index, pH, electrical conductivity, water-extractable organic carbon and nitrogen, microbial numbers, enzymatic activities, polysaccharide and lignin content, nutrient content, respiration, and phytotoxicity. The optimal two-stage composting and the best quality compost were obtained with the combined addition of 15% SCB and 20% EGM. With the optimized two-stage composting method, the compost matured in only 21days rather than in the 90-270days required for traditional composting.

  6. NUTRIENT DIGESTIBILITY OF THE WASTE OF SACCHARIFICATION PROCESS FROM CASSAVA BAGASSE ON THE LAYING HENS

    Directory of Open Access Journals (Sweden)

    W.M. Ali-Mursyid

    2014-10-01

    Full Text Available The objective of this research was to study the nutrient digestibility and the metabolizable energyvalue of the waste of saccharification process from cassava bagasse (WSPCB on the laying hens.Twenty ISA-Brown laying hens at the age of 72 weeks were randomly distributed into three feedingtreatments which consisted of cassava bagase (CB, WSPCB of solid state fermentation method(WSPCB-SSF, and WSPCB of sub merged fermentation method (WSPCB-SmF. All of the hens werefasted for 24 hours and 15 of them were fed with CB, WSPCB-SSF and WSPCB-SmF (five hens foreach test-diet. The other five hens were still fasted. Then, all of the hens were fasted again and theirexcreta were collected during 48 hours. The nutrient digestibilities which were measured consisted ofthe Apparent and True Digestibility of Dry matter (ADDM and TDDM, Crude Fiber (ADCF andTDCF, Starch (ADS and TDS, and the Apparent and True Metabolizable Energy (AME and TME.The result of this research showed that the saccharification process generated the solid waste with thenutrient digestibility value (ADDM, TDDM, ADS, TDS, AME, and TME which were significantlylower (P<0.05 than those of CB. The crude fiber digestibility value of the WSPCB has an opositephenomenon in which the ADCF and TDCF of WSPCB-SmF were greater than CB. In conclusion, thenutrient digestibility value, except for ADCF and TDCF, of the WSPCB on the laying hens were lowerin value than those CB.

  7. Incorporation of sugarcane bagasse ash waste as an alternative raw material for red ceramic

    Directory of Open Access Journals (Sweden)

    K. C. P. Faria

    2013-09-01

    Full Text Available The sugarcane industry generates huge amounts of sugarcane bagasse ashes (SCBA. This work investigates the incorporation of a SCBA waste as an alternative raw material into a clay body, replacing natural clay material by up to 20 wt.%. Clay ceramic pieces were produced by uniaxial pressing and fired at temperatures varying from 700 to 1100 ºC. The technological properties of the clay ceramic pieces (linear shrinkage, apparent density, water absorption, and tensile strength as function of the firing temperature and waste addition are investigated. The phase evolution during firing was followed by X-ray diffraction. The results showed that the SCBA waste could be incorporated into red ceramics (bricks and roofing tiles in partial replacement for natural clay material. These results confirm the feasibility of valorisation of SCBA waste to produce red ceramic. This use of SCBA can also contribute greatly to reducing the environmental problems of the sugarcane industry, and also save the sources of natural raw materials used in the ceramic industry.

  8. Minerais em melados e em caldos de cana Minerals in sugar cane syrup and cane juice

    Directory of Open Access Journals (Sweden)

    Fernanda dos Santos Nogueira

    2009-12-01

    Full Text Available A cana-de-açúcar está entre as culturas que apresenta larga escala de adaptações às condições climáticas, sendo utilizada para a fabricação de diversos produtos. Dentre os produtos derivados da cana-de-açúcar, o melado é tido popularmente como um alimento rico em ferro. Este trabalho objetivou conhecer a concentração de alguns minerais em melados comerciais e em melados preparados com equipamentos de aço inoxidável. Ao todo foram 20 amostras, 10 de cada tipo. As amostras foram preparadas para análise por oxidação da matéria orgânica por via úmida e os teores de Ca, Mg, Cu, Mn, Zn e Fe foram determinados por espectroscopia de absorção atômica, Na e K por fotometria de chama e P por colorimetria. Concluiu-se, com este trabalho, que os teores médios dos minerais Fe, P, Na e Mg foram significativamente mais elevados nos melados comerciais do que nos melados feitos com equipamentos inox. O contrário foi encontrado para o mineral cálcio, que apresentou teor mais elevado nos melados feitos no laboratório, mas condizentes com os teores encontrados nos caldos de cana. Não houve diferença significativa nos teores dos demais minerais.Sugar cane is an easily adaptable crop to diverse climate conditions, and it is used in the manufacturing of many different products. Among those products is the syrup, which is popularly known to be good sources of iron. In this work, we aimed to measure the concentration of some minerals in commercial sugar cane syrup brands and syrup prepared in the laboratory using stainless steel equipment. A total of 20 samples were analyzed, 10 of commercial brands and ten prepared in the laboratory. The samples were prepared by wet-air oxidation of organic matter and the contents of Ca, Mg, Cu, Mn, Zn, and Fe were determined by atomic absorption. Na and K were determined by photometry and P by colorimetry. It was found that the mean concentration of Fe, P, Na, and Mn were higher in the commercial

  9. Direct Ethanol Production from Lignocellulosic Sugars and Sugarcane Bagasse by a Recombinant Trichoderma reesei Strain HJ48

    Directory of Open Access Journals (Sweden)

    Jun Huang

    2014-01-01

    Full Text Available Trichoderma reesei can be considered as a candidate for consolidated bioprocessing (CBP microorganism. However, its ethanol yield needs to be improved significantly. Here the ethanol production of T. reesei CICC 40360 was improved by genome shuffling while simultaneously enhancing the ethanol resistance. The initial mutant population was generated by nitrosoguanidine treatment of the spores, and an improved population producing more than fivefold ethanol than wild type was obtained by genome shuffling. The results show that the shuffled strain HJ48 can efficiently convert lignocellulosic sugars to ethanol under aerobic conditions. Furthermore, it was able to produce ethanol directly from sugarcane bagasse, demonstrating that the shuffled strain HJ48 is a suitable microorganism for consolidated bioprocessing.

  10. Crude glycerin combined with sugar cane silage in lamb diets.

    Science.gov (United States)

    de Oliveira Filho, Carlos Alberto Alves; Azevêdo, José Augusto Gomes; de Carvalho, Gleidson Giordano Pinto; da Silva, Camilla Flávia Portela Gomes; Cabral, Ícaro dos Santos; Pereira, Luiz Gustavo Ribeiro; dos Reis, Larissa Gomes; de Almeida, Flávio Moreira; Souza, Lígia Lins

    2016-02-01

    This study aimed to evaluate the effect of the level of crude glycerin (CG) on in vitro fermentation kinetics (0, 20, 40, 60, and 80 g/kg DM of sugar cane silage), on in vitro neutral detergent fiber (NDF) degradation (0, 30, 60, and 90 g/kg DM of sugar cane silage), and intake and digestibility of nutrients and nitrogen balance (0, 20, 55, 82, and 108 g/kg DM of sugar cane silage) in lambs. The in vitro trials were conducted in a completely randomized design with three repetitions. The in vivo trial was conducted in a Latin square design with five repetitions (5 × 5). For variables in which the F test was considered significant, the statistical interpretation of the effect of CG substitution levels was carried out through regression analyses. Kinetic parameters were not affected by CG inclusion. On in vitro NDF degradation, a significant effect of CG levels was observed on the potentially degradable fraction of NDF, the insoluble potentially degradable fraction of NDF, and the undegradable NDF fraction. The intake and digestibility of nutrients and nitrogen balance were not affected by CG inclusion. The CG levels change in vitro NDF degradability parameters; however, there were no changes in animal intake, digestibility, and nitrogen balance with the inclusion levels used.

  11. Efeito do teor de umidade sobre o pré-tratamento a vapor e a hidrólise enzimática do bagaço de cana-de-açúcar

    Directory of Open Access Journals (Sweden)

    Ana Paula Pitarelo

    2012-01-01

    Full Text Available The effect of moisture content in the steam treatment and enzymatic hydrolysis of sugarcane bagasse was evaluated. Steam treatment was perfomed at 195-210 ºC for 4-8 min using cane bagasse with moisture contents in the range 16-100 wt% (dry basis. Increased moisture contents not only had a positive influence in recovery of main cane biomass components but also resulted in better substrates for enzymatic hydrolysis. As a result, drying is not required for optimal pretreatment and enzymatic hydrolysis of sugarcane bagasse, which can be processed into second generation ethanol immediately after crushing and hot water washing.

  12. Produksi Biogas dari Campuran Feses Sapi dan Ampas Tebu (Bagasse dengan Rasio C/N yang Berbeda (Biogas Production from Mixture of Dairy Manure and Bagasse with Different C/N Ratio

    Directory of Open Access Journals (Sweden)

    Trisno Saputra

    2012-02-01

    COD value decrease, pH value, biogas temperature, and total biogas volume was different among treatment. The optimal mixture was C/N ratio 30 treatment. The results indicated that bagasse could be used as material mixture in biogas production. (Key words : Biogas, Dairy manure, Bagasse, C/N ratio, Methane

  13. Biogas production from mixtures of cattle slurry and pressed sugar cane stalk, with and without urea

    Energy Technology Data Exchange (ETDEWEB)

    Pound, B.; Done, F.; Preston, T.R.

    1981-01-01

    An integrated crop/livestock/energy system being investigated involves feeding cows with diets containing sugar cane and sugar cane juice and using slurry for biogas production and then as a fertilizer. In a laboratory scale trial 82-liter glass bottles were used as anaerobic digesters to compare biogas production from mixtures of cattle slurry with pressed sugar cane stalk. Addition of cane stalk decreased initial gas production and increased pH. Adding urea increased the pH and substantially reduced the length of the lag phase of cumulative biogas production curves. (Refs. 14).

  14. Effect of a cane on sit-to-stand transfer in subjects with hemiparesis.

    Science.gov (United States)

    Hu, Po-Ting; Lin, Kwan-Hwa; Lu, Tung-Wu; Tang, Pei-Fang; Hu, Ming-Hsia; Lai, Jin-Shin

    2013-03-01

    The aim of this study was to determine the effect of using a cane on movement time, joint moment, weight symmetry, and muscle activation patterns during sit-to-stand (STS) transfer in healthy subjects and subjects who have had a stroke. Nine subjects with hemiparesis (mean [SD] age, 61.11 [12.83] yrs) and nine healthy adults (mean [SD] age, 63.11 [10.54] yrs) were included. The subjects with hemiparesis performed STS transfer in two randomly assigned conditions: (1) without a cane and (2) with a cane. The healthy subjects performed only STS transfer without a cane. A three-dimensional motion system, force plates, and eletromyography were used to examine STS transfer. The symmetry index between the two limbs was calculated. The movement time of the subjects with hemiparesis in both conditions without a cane and with a cane was longer than that of the healthy subjects without a cane (P hemiparesis resulted in shorter movement time, greater knee extensor moment of the paretic limb, and more symmetry of weight bearing than in those without a cane (P hemiparesis. Cane use may promote more symmetrical STS transfers rather than compensation by the unaffected limb.

  15. Alkaline pretreatment and the synergic effect of water and tetralin enhances the liquefaction efficiency of bagasse.

    Science.gov (United States)

    Li, Zhixia; Cao, Jiangfei; Huang, Kai; Hong, Yaming; Li, Cunlong; Zhou, Xinxin; Xie, Ning; Lai, Fang; Shen, Fang; Chen, Congjin

    2015-02-01

    Bagasse liquefaction (BL) in water, tetralin, and water/tetralin mixed solvents (WTMS) was investigated, and effects of tetralin content in WTMS, temperature, and alkaline pretreatment of bagasse on liquefaction efficiency were studied. At 300°C, bagasse conversion in WTMS with tetralin content higher than 50 wt% was 86-87 wt%, whereas bagasse conversion in water or tetralin was 67 wt% or 84 wt%, respectively. Because the solid conversion from liquefaction in WTMS with tetralin content higher than 50 wt% was always higher than that in water or tetralin at temperatures between 250 and 300°C, a synergic effect between water and tetralin is suggested. Alkaline pretreatment of bagasse resulted in significantly higher conversion and heavy oil yield from BL in water or WTMS. The effect of deoxygenation by the present liquefaction method is demonstrated by lower oxygen contents (16.01-19.59 wt%) and higher heating values (31.9-34.8 MJ/kg) in the produced oils.

  16. UTILIZATION OF BAGASSE FIBER FOR PREPARATION OF BIODEGRADABLE FLAME RETARDING COMPOSITES (BFRCS

    Directory of Open Access Journals (Sweden)

    Wenjia Han

    2010-06-01

    Full Text Available Bagasse is a renewable resource characterized by its low cost and environmental friendliness. In this work a novel technological process was proposed to make flame retarding composites (BFRCs by using bagasse fiber. The bagasse was disintegrated by twisting it up and applying high consistency refining, and then it was used to prepare BFRCs via hot pressure. Chemical groups and thermal properties of bagasse fiber were studied through the use of FTIR spectroscopy, a universal mechanical testing machine, and TGA, while properties of BFRCs were also analyzed by SEM, and the surface water resistance and burning characteristics were measured. Results showed the pyrolysis temperature of bagasse fibers to be about 273oC. Chemical groups were not changed, while the content of groups was reduced a little during the manufacturing process. The BFRCs showed good performance for water resistance, and the optimum value was 1.7g. They also had good flame retardant performance. The index of flame spread was 13.6 and the smoke index was 108, which reaches Class A by the ASTM E84-08 Standard.

  17. Production of D-lactic acid from sugarcane bagasse using steam-explosion

    Science.gov (United States)

    Sasaki, Chizuru; Okumura, Ryosuke; Asakawa, Ai; Asada, Chikako; Nakamura, Yoshitoshi

    2012-03-01

    This study investigated the production of D-lactic acid from unutilized sugarcane bagasse using steam explosion pretreatment. The optimal steam pressure for a steaming time of 5 min was determined. By enzymatic saccharification using Meicellase, the highest recovery of glucose from raw bagasse, 73.7%, was obtained at a steam pressure of 20 atm. For residue washed with water after steam explosion, the glucose recovery increased up to 94.9% at a steam pressure of 20 atm. These results showed that washing with water is effective in removing enzymatic reaction inhibitors. After steam pretreatment (steam pressure of 20 atm), D-lactic acid was produced by Lactobacillus delbrueckii NBRC 3534 from the enzymatic hydrolyzate of steam-exploded bagasse and washed residue. The conversion rate of D-lactic acid obtained from the initial glucose concentration was 66.6% for the hydrolyzate derived from steam-exploded bagasse and 90.0% for that derived from the washed residue after steam explosion. These results also demonstrated that the hydrolyzate of steam-exploded bagasse (without washing with water) contains fermentation inhibitors and washing with water can remove them.

  18. Methane production from acid hydrolysates of Agave tequilana bagasse: evaluation of hydrolysis conditions and methane yield.

    Science.gov (United States)

    Arreola-Vargas, Jorge; Ojeda-Castillo, Valeria; Snell-Castro, Raúl; Corona-González, Rosa Isela; Alatriste-Mondragón, Felipe; Méndez-Acosta, Hugo O

    2015-04-01

    Evaluation of diluted acid hydrolysis for sugar extraction from cooked and uncooked Agave tequilana bagasse and feasibility of using the hydrolysates as substrate for methane production, with and without nutrient addition, in anaerobic sequencing batch reactors (AnSBR) were studied. Results showed that the hydrolysis over the cooked bagasse was more effective for sugar extraction at the studied conditions. Total sugars concentration in the cooked and uncooked bagasse hydrolysates were 27.9 g/L and 18.7 g/L, respectively. However, 5-hydroxymethylfurfural was detected in the cooked bagasse hydrolysate, and therefore, the uncooked bagasse hydrolysate was selected as substrate for methane production. Interestingly, results showed that the AnSBR operated without nutrient addition obtained a constant methane production (0.26 L CH4/g COD), whereas the AnSBR operated with nutrient addition presented a gradual methane suppression. Molecular analyses suggested that methane suppression in the experiment with nutrient addition was due to a negative effect over the archaeal/bacterial ratio.

  19. Mathematical modeling of thin-layer drying of fermented and non-fermented sugarcane bagasse

    Energy Technology Data Exchange (ETDEWEB)

    Mazutti, Marcio A.; Zabot, Giovani; Boni, Gabriela; Skovronski, Aline; de Oliveira, Debora; Di Luccio, Marco; Oliveira, J. Vladimir; Treichel, Helen [Department of Food Engineering, URI - Campus de Erechim, P.O. Box 743, CEP 99700-000, Erechim - RS (Brazil); Rodrigues, Maria Isabel; Maugeri, Francisco [Department of Food Engineering, Faculty of Food Engineering, University of Campinas - UNICAMP, P.O. Box 6121, CEP 13083-862, Campinas - SP (Brazil)

    2010-05-15

    This work reports hot-air convective drying of thin-layer fermented and non-fermented sugarcane bagasse. For this purpose, experiments were carried out in a laboratory-scale dryer assessing the effects of solid-state fermentation (SSF) on the drying kinetics of the processing material. The fermented sugarcane bagasse in SSF was obtained with the use of Kluyveromyces marxianus NRRL Y-7571. Drying experiments were carried out at 30, 35, 40 and 45 C, at volumetric air flow rates of 2 and 3 m{sup 3} h{sup -1}. The ability of ten different thin-layer mathematical models was evaluated towards representing the experimental drying profiles obtained. Results showed that the fermented sugarcane bagasse presents a distinct, faster drying, behavior from that verified for the non-fermented material at the same conditions of temperature and volumetric air flow rate. It is shown that the fermented sugarcane bagasse presented effective diffusion coefficient values of about 1.3 times higher than the non-fermented material. A satisfactory agreement between experimental data and model results of the thin-layer drying of fermented and non-fermented sugarcane bagasse was achieved at the evaluated experimental conditions. (author)

  20. Catalytic conversion of sugarcane bagasse to cellulosic ethanol: TiO2 coupled nanocellulose as an effective hydrolysis enhancer.

    Science.gov (United States)

    Jabasingh, S Anuradha; Lalith, D; Prabhu, M Arun; Yimam, Abubekker; Zewdu, Taye

    2016-01-20

    The present study deals with the production of cellulosic ethanol from bagasse using the synthesized TiO2 coupled nanocellulose (NC-TiO2) as catalyst. Aspergillus nidulans AJSU04 cellulase was used for the hydrolysis of bagasse. NC-TiO2 at various concentrations was added to bagasse in order to enhance the yield of reducing sugars. Complex interaction between cellulase, bagasse, NC-TiO2 and the reaction environment is thoroughly studied. A mathematical model was developed to describe the hydrolysis reaction. Ethanol production from enzymatically hydrolyzed sugarcane bagasse catalyzed with NC-TiO2 was carried out using Saccharomyces cerevisiae ATCC 20602. The glucose release rates and ethanol concentrations were determined. Ethanol produced was found to be strongly dependent on pretreatment given, hydrolysis and fermentation conditions. The study confirmed the promising accessibility of NC-TiO2, for enhanced glucose production rates and improved ethanol yield.

  1. 甘蔗渣在制糖中分离糠醛的初步研究%Primary Research on the Furfural Separation from the Bagasse Producing Sugar

    Institute of Scientific and Technical Information of China (English)

    刘婷婷; 申哲民; 欧阳创; 董宇

    2011-01-01

    [目的]初步研究甘蔗渣最佳超/亚临界水解液化反应条件和糠醛的分离.[方法]以甘蔗渣为原料,考察了反应温度、固液比(甘蔗渣/水)对还原糖浓度和糠醛百分含量的影响,以及温度对糠醛分离的影响.[结果]反应温度为368℃,固液比为1∶7.9为甘蔗渣最佳的产糖条件,且产生的糠醛少.在较高的温度下( >300℃)产生的糠醛较少.通过放气排出反应中产生的糠醛,第1个放气点排出的糠醛最多,放气效果最好.[结论]对于放气排出的混合液体,应该进一步研究分离其中的有用成分糠醛,实现秸秆资源的更好利用.%[Objective] The research aimed to initially study the best super/sub-critical liquefaction reaction condition of bagasse and the separation of furfural. [ Method ] The bagasse was as the material, the influences of reaction temperature and solid-liquid ratio ( bagasse/water) on the reducing sugar concentration and the percentage content of furfural were inspected. Moreover, the influence of temperature on the furfural separation was also inspected. [ Result] The best sugar production condition of bagasse was that the reaction temperature was 368 t, and the solid-liquid ratio was 1:7.9. Under the best condition, the furfural was less. At the high temperature ( >300 ℃) , the generated furfural was less. Via the deflation, the generated furfural in the reaction was discharged. The discharged furfural at the first deflation point was the most, and the deflation effect was the best. [Conclusion] For the discharged mixed liquid, the useful furfural should be further studied and separated, which realized the better utilization of straw resource.

  2. ENHANCEMENT OF OPTICAL PROPERTIES OF BAGASSE PULP BY IN-SITU FILLER PRECIPITATION

    Directory of Open Access Journals (Sweden)

    Pradeep Kumar

    Full Text Available In-situ precipitation of calcium carbonate in bagasse fibers resulted in a very significant increase in specific scattering coefficient and consequently large improvements in opacity and brightness of the handsheets made from such pulp. At the same level of filler loading, the scattering coefficient of in-situ precipitated pulp was much greater than for directly loaded pulp. In-situ precipitation of calcium carbonate caused a drop in strength properties of bagasse pulp, but such loss could be recovered to a large extent by blending with other pulps. The effect of in-situ precipitation of calcium carbonate on pulp fibers was quite different for bagasse pulp from hardwood pulp. In-situ precipitation of calcium carbonate on hardwood fibers showed neither much improvement in optical properties nor much reduction in strength properties.

  3. Hydrothermal carbonization of sugarcane bagasse via wet torrefaction in association with microwave heating.

    Science.gov (United States)

    Chen, Wei-Hsin; Ye, Song-Ching; Sheen, Herng-Kuang

    2012-08-01

    Hydrothermal carbonization of sugarcane bagasse using wet torrefaction is studied. The biomass is torrefied in water or dilute sulfuric acid solution and microwaves are employed to heat the solutions where the reaction temperature is fixed at 180 °C. The effects of acid concentration, heating time and solid-to-liquid ratio on the performance of wet torrefaction are investigated. It is found that the addition of sulfuric acid and increasing heating time are conducive to carbonizing bagasse. The calorific value of bagasse can be increased up to 20.3% from wet torrefaction. With the same improvement in calorific value, the temperature of wet torrefaction is lower than that of dry torrefaction around 100 °C, revealing that wet torrefaction is a promising method to upgrade biomass as fuel. The calorific value of torrefied biomass can be predicted well based on proximate, elemental or fiber analysis, and the last one gives the best estimation.

  4. Recycling of sugarcane bagasse ash waste in the production of clay bricks.

    Science.gov (United States)

    Faria, K C P; Gurgel, R F; Holanda, J N F

    2012-06-30

    This work investigates the recycling of sugarcane bagasse ash waste as a method to provide raw material for clay brick bodies, through replacement of natural clay by up 20 wt.%. Initially, the waste sample was characterized by its chemical composition, X-ray diffraction, differential thermal analysis, particle size, morphology and pollution potential. Clay bricks pieces were prepared, and then tested, so as to determine their technological properties (e.g., linear shrinkage, water absorption, apparent density, and tensile strength). The sintered microstructure was evaluated by scanning electron microscopy (SEM). It was found that the sugarcane bagasse ash waste is mainly composed by crystalline silica particles. The test results indicate that the sugarcane bagasse ash waste could be used as a filler in clay bricks, thus enhancing the possibility of its reuse in a safe and sustainable way.

  5. Enhancement of starting up anaerobic digestion of lignocellulosic substrate: fique's bagasse as an example.

    Science.gov (United States)

    Quintero, Mabel; Castro, Liliana; Ortiz, Claudia; Guzmán, Carolina; Escalante, Humberto

    2012-03-01

    In Colombia there are 20,000 ha of fique fields (Furcraea sp., family Agavaceae), that produce around 93,400 tons of fique's bagasse per year. These residuals are disposed into rivers and soil causing pollution. According to physicochemical characteristics, the lignocellulosic residues from fique crops (fique's bagasse) are appropriate carbon source to biogas production. Anaerobic digestion from fique's Bagasse (FB) requires a specialized microbial consortium capable of degrading its high lignocellulosic concentration. In this study, the capacities of seven microbial consortia for biomethane potential (BMP) from FB were evaluated. Inoculum of ruminal liquid achieved high hydrolytic activity (0.068 g COD/g VSS day), whereas pig waste sludge inoculum showed high methanogenic activity (0.146 g COD/g VSS day). Mixtures of these two inoculums (RL+PWS) showed the best yields for biomethane potential (0.3 m(3) CH4/Kg VS ad).

  6. Production of phenols and charcoal from bagasse by a rapid continuous pyrolysis process

    Energy Technology Data Exchange (ETDEWEB)

    Mobarak, F.; Fahmy, Y.; Schweers, W.

    1982-01-01

    Tar and charcoal could be produced in high yields from bagasse by applying a rapid continuous pyrolysis process at a relatively low temperature. The ether extractives of the pyrolytic tar and oil amounted to 9.4% based on bagasse. Phenols represented 79% of these extractives. Gas chromatographic separation showed that guaiacol and its derivatives constituted 38% of the identified simple phenols. There were much smaller amounts of syringol and none at high pyrolysis temperatures. Depithing did not reduce the ash content of the charcoal, but it yielded an environmentally clean charcoal containing practically no sulfur or nitrogen. It was necessary to remove the fine particle size fraction of the bagasse after grinding in order to reduce the ash content of the charcoal. The carbon content of the charcoal increased rapidly with increasing temperature, and reached 96% at 720/sup 0/C. The charcoal had a remarkably high adsorption capacity despite the fact that it had not been subjected to any activation treatment.

  7. Production of phenols and charcoal from bagasse by a rapid continuous pyrolysis process

    Energy Technology Data Exchange (ETDEWEB)

    Mobarak, F.; Fahmy, Y.

    1982-01-01

    Tar and charcoal could be produced in high yields from bagasse by applying a rapid continuous pyrolysis at a relatively low temperature. The ether extractives of the pyrolytic tar and oil amounted to 9.4% based on bagasse. Phenols represented 79% of these extractives. Gas chromatographic separation showed that guaiacol and its derivatives constituted 38% of the identified simple phenols. There were much smaller amounts of syringol and none at high pyrolysis temperatures. Depithing did not reduce the ash content of the charcoal, but it yielded an environmentally clean charcoal containing practically no sulfur or nitrogen. It was necessary to remove the fine particle size fraction of the bagasse after grinding in order to reduce the ash content of the charcoal. The carbon content of the charcoal increased rapidly with increasing temperature, and reached 96% at 720 degrees C. The charcoal had a remarkably high adsorption capacity despite the fact that it had not been subjected to any activation treatment.

  8. Evaluation of sugarcane bagasse acid hydrolysate treatments for xylitol production

    Energy Technology Data Exchange (ETDEWEB)

    Gurgel, P.V.; Mancilha, I.M. [Vicosa Univ., MG (Brazil). Dept. de Tecnologia de Alimentos; Furlan, S.A.; Martinez, S.E.R. [Faculdade de Engenharia Quimica de Lorena (FAENQUIL), SP (Brazil). Centro de Biotecnologia

    1998-09-01

    Acid sugarcane bagasse hydrolysate was submitted to pH shifts in order to remove toxic compounds from the medium. The hydrolysate was treated with bases containing mono-, di- or tri-valent cations and H{sub 2}SO{sub 4}, and its performance as a fermentation medium was evaluated by the production of xylitol by Candida guilliermondii FTI 20037. The use of bases containing mono-valent cations was not an efficient method of detoxification, and the use of a tri-valent cation did not show any detectable improvement in detoxification. The treated hydrolysate recovery (in volume) is greatly affected by the utilized base. Treatment using Al(OH){sub 3} and NaOH showed the best hydrolysate recovery (87.5%), while the others presented a recovery of about 45% of the original hydrolysate volume. Considering the whole process, best results were achieved by treatment using Al(OH){sub 3} and NaOH which allowed 0.55 g of xylitol produced from each gram of xylose in the raw hydrolysate. (author)

  9. Bagasse wastewater treatment using biopolymer: A novel approach

    Directory of Open Access Journals (Sweden)

    Thirugnanasambandham K.

    2014-01-01

    Full Text Available In this present study, the removal of turbidity, biological oxygen demand (BOD and chemical oxygen demand (COD were investigated under different operating conditions such as agitation time (X1: 15-25 min, initial pH (X2:4-8, chitosan dose (X3:1.2-2 g L-1 and settling time (X4:40-80 min to treat bagasse based paper and pulp industry wastewater via response surface methodology (RSM. The experimental data obtained were fitted to a second-order polynomial equation using multiple regression analysis and ANOVA (analysis of variance was used to examine the significance of the developed mathematical models. The 3-D response surface plots were derived from the mathematical models in order to study the interactive effects process variables on the treatment efficiency. Derringer’s desired function methodology were applied to determine the optimal conditions and it was found to be: agitation time of 20 min, initial pH of 6, chitosan dose of 1.8 gL-1 and settling time of 60 min. Under these conditions, the removal of turbidity, BOD and COD were found to be 84 %, 90 % and 93 % respectively.

  10. EVALUATION OF SUGARCANE BAGASSE ACID HYDROLYZATE TREATMENTS FOR XYLITOL PRODUCTION

    Directory of Open Access Journals (Sweden)

    P.V. GURGEL

    1998-09-01

    Full Text Available Acid sugarcane bagasse hydrolyzate was submitted to pH shifts in order to remove toxic compounds from the medium. The hydrolyzate was treated with bases containing mono-, di- or tri-valent cations and H2SO4, and its performance as a fermentation medium was evaluated by the production of xylitol by Candida guilliermondii FTI 20037. The use of bases containing mono-valent cations was not an efficient method of detoxification, and the use of a tri-valent cation did not show any detectable improvement in detoxification. The treated hydrolyzate recovery (in volume is greatly affected by the utilized base. Treatment using Al(OH3 and NaOH showed the best hydrolyzate recovery (87.5%, while the others presented a recovery of about 45% of the original hydrolyzate volume. Considering the whole process, best results were achieved by treatment using Al(OH3 and NaOH which allowed 0.55 g of xylitol produced from each gram of xylose in the raw hydrolyzate.

  11. Optimization of electrocoagulation process to treat biologically pretreated bagasse effluent

    Directory of Open Access Journals (Sweden)

    Thirugnanasambandham K.

    2014-01-01

    Full Text Available The main objective of the present study was to investigate the efficiency of electrocoagulation process as a post-treatment to treat biologically pretreated bagasse effluent using iron electrodes. The removal of chemical oxygen demand (COD and total suspended solids (TSS were studied under different operating conditions such as amount of dilution, initial pH, applied current and electrolyte dose by using response surface methodology (RSM coupled with four-factor three-level Box-Behnken experimental design (BBD. The experimental results were analyzed by Pareto analysis of variance (ANOVA and second order polynomial mathematical models were developed with high correlation of efficiency (R2 for COD, TSS removal and electrical energy consumption (EEC. The individual and combined effect of variables on responses was studied using three dimensional response surface plots. Under the optimum operating conditions, such as amount of dilution at 30 %, initial pH of 6.5, applied current of 8 mA cm-2 and electrolyte dose of 740 mg l-1 shows the higher removal efficiency of COD (98 % and TSS (93 % with EEC of 2.40 Wh, which were confirmed by validation experiments.

  12. Microbial production host selection for converting second-generation feedstocks into bioproducts

    Directory of Open Access Journals (Sweden)

    van Groenestijn Johan W

    2009-12-01

    Full Text Available Abstract Background Increasingly lignocellulosic biomass hydrolysates are used as the feedstock for industrial fermentations. These biomass hydrolysates are complex mixtures of different fermentable sugars, but also inhibitors and salts that affect the performance of the microbial production host. The performance of six industrially relevant microorganisms, i.e. two bacteria (Escherichia coli and Corynebacterium glutamicum, two yeasts (Saccharomyces cerevisiae and Pichia stipitis and two fungi (Aspergillus niger and Trichoderma reesei were compared for their (i ability to utilize monosaccharides present in lignocellulosic hydrolysates, (ii resistance against inhibitors present in lignocellulosic hydrolysates, (iii their ability to utilize and grow on different feedstock hydrolysates (corn stover, wheat straw, sugar cane bagasse and willow wood. The feedstock hydrolysates were generated in two manners: (i thermal pretreatment under mild acid conditions followed by enzymatic hydrolysis and (ii a non-enzymatic method in which the lignocellulosic biomass is pretreated and hydrolyzed by concentrated sulfuric acid. Moreover, the ability of the selected hosts to utilize waste glycerol from the biodiesel industry was evaluated. Results Large differences in the performance of the six tested microbial production hosts were observed. Carbon source versatility and inhibitor resistance were the major discriminators between the performances of these microorganisms. Surprisingly all 6 organisms performed relatively well on pretreated crude feedstocks. P. stipitis and A. niger were found to give the overall best performance C. glutamicum and S. cerevisiae were shown to be the least adapted to renewable feedstocks. Conclusion Based on the results obtained we conclude that a substrate oriented instead of the more commonly used product oriented approach towards the selection of a microbial production host will avoid the requirement for extensive metabolic

  13. Optimizing cellulase usage for improved mixing and rheological properties of acid-pretreated sugarcane bagasse.

    Science.gov (United States)

    Geddes, Claudia C; Peterson, James J; Mullinnix, Michael T; Svoronos, Spyros A; Shanmugam, K T; Ingram, Lonnie O

    2010-12-01

    Consolidation of bioprocessing steps with lignocellulose is limited by hydrolysate toxicity, the fibrous nature of suspensions, and low activity of cellulase enzymes. Combinations of enzyme dose and treatment conditions improved the flow properties and pumping of acid-pretreated sugarcane bagasse slurries (10% dry weight). Low levels of cellulase enzyme (0.1 and 0.5 FPU/g dry weight acid-pretreated bagasse) were found to reduce viscosities by 77-95% after 6 h, solubilizing 3.5% of the bagasse dry weight. Flow of slurries through small funnels was a useful predictor of success with centrifugal and diaphragm pumps. Equations were derived that describe viscosity and solubilized carbohydrates as a function of time and cellulase dosage. Blending of acid-pretreated bagasse (10% dry weight) with suspensions of acid-pretreated bagasse (10% dry weight) that had been previously digested with cellulase enzymes (low viscosity) did not increase viscosity in a linear fashion. Viscosity of these mixtures remained relatively constant until a threshold level of new fiber was reached, followed by a rapid increase with further additions. Up to 35% fresh acid-pretreated bagasse could be blended with enzyme-digested fiber (5.0 FPU/g dry weight acid-pretreated fiber; 6 h) with only a modest increase in viscosity. The smooth surfaces of enzyme-treated fiber are proposed to hinder the frequency and extent of interactions between fibrils of fresh fiber particles (acid-pretreated) until a threshold concentration is achieved, after which fiber interactions and viscosity increase dramatically. These results were used to model the viscosity in an ideal continuous stirred tank reactor (liquefaction) as a function of residence time and enzyme dosage.

  14. Microwave modification of sugar cane to enhance juice extraction during milling.

    Science.gov (United States)

    Brodie, Graham; Harris, Gerard; Jacob, Mohan V; Sheehan, Madoc; Yin, Ling

    2011-01-01

    Sugar extraction from cane requires shredding and crushing, both of which are energy intensive activities. Cane shredders account for almost 30% of the total power requirements for the juice extraction train in a sugar mill with four mills. Shredder hammers also wear quickly during the crushing season and need to be regularly maintained or replaced. Microwave pre-treatment of other plant based materials has resulted in significant reductions in total processing energy. This paper briefly reviews the underlying structure of sugar cane and how microwave pre-treatment may interact with sugar cane. Microwave treatment reduced the strength of sugar cane samples to 20% of its untreated value. This strength reduction makes it easier to crush the cane and leads to a 320% increase in juice yield compared with untreated cane when cane samples were crushed in a press. There was also a 68% increase in Brix %, a 58% increase in total dissolved solids, a 58% reduction in diffusion time, a 39% increase in Pol%, and a 7% increase in juice purity compared with the control samples after 60 minutes of diffusion in distilled water.

  15. Study of doping non-PMMA polymer fibre canes with UV photosensitive compounds

    DEFF Research Database (Denmark)

    Hassan, Hafeez Ul; Fasano, Andrea; Janting, Jakob;

    2016-01-01

    We propose a solution doping method for polycarbonate (PC) and TOPAS polymer optical fibre (POF) canes using different UV photosensitive dopants aiming to reduce the fibre Bragg grating inscription time at the typical Bragg grating inscription wavelength (325nm). Three-ring solid-core PC mPOF canes...

  16. How to manage cane in the field and factory following damaging freezes

    Science.gov (United States)

    The exposure of sugar cane to damaging frosts occurs in approximately 25% of the sugar cane producing countries world-wide. A series of damaging freezes, -2.6, -3.3 and -2.1°C, occurred in Morocco on 4, 5 and 13 February 2012, respectively, only 2 weeks after the commencement of the harvest season. ...

  17. The water footprint of sweeteners and bio-ethanol from sugar cane, sugar beet and maize

    NARCIS (Netherlands)

    Gerbens-Leenes, Winnie; Hoekstra, Arjen Ysbert

    2009-01-01

    Sugar cane and sugar beet are used for sugar for human consumption. In the US, maize is used, amongst others, for the sweetener High Fructose Maize Syrup (HFMS). Sugar cane, sugar beet and maize are also important for bio-ethanol production. The growth of crops requires water, a scarce resource. The

  18. The water footprint of sweeteners and bio-ethanol from sugar cane, sugar beet and maize

    NARCIS (Netherlands)

    Gerbens-Leenes, P.W.; Hoekstra, A.Y.

    2009-01-01

    Sugar cane and sugar beet are used for sugar for human consumption. In the US, maize is used, amongst others, for the sweetener High Fructose Maize Syrup (HFMS). Sugar cane, sugar beet and maize are also important for bio-ethanol production. The growth of crops requires water, a scarce resource. The

  19. Study of doping non-PMMA polymer fibre canes with UV photosensitive compounds

    DEFF Research Database (Denmark)

    Hassan, Hafeez Ul; Fasano, Andrea; Janting, Jakob

    2016-01-01

    and hollow-core TOPAS canes were doped with a solution of dopants in acetone/methanol and hexane/methanol, respectively. Doping time, solvent mixture concentration and doping temperature were optimised. A long and stepwise drying process was applied to the doped canes to ensure complete solvent removal...

  20. 76 FR 42160 - Allocation of Additional Fiscal Year (FY) 2011 In-Quota Volume for Raw Cane Sugar

    Science.gov (United States)

    2011-07-18

    ... TRADE REPRESENTATIVE Allocation of Additional Fiscal Year (FY) 2011 In-Quota Volume for Raw Cane Sugar... additional fiscal year (FY) 2011 in-quota quantity of the tariff-rate quota (TRQ) for imported raw cane sugar... the United States (HTS), the United States maintains TRQs for imports of raw cane and refined sugar...

  1. 76 FR 21418 - Fiscal Year 2011 Allocation of Additional Tariff-Rate Quota Volume for Raw Cane Sugar and...

    Science.gov (United States)

    2011-04-15

    ... Sugar and Reallocation of Unused Fiscal Year 2011 Tariff-Rate Quota Volume for Raw Cane Sugar AGENCY... Fiscal Year (FY) 2011 in-quota quantity of the tariff-rate quota (TRQ) for imported raw cane sugar and of... raw cane sugar. DATES: Effective Date: April 15, 2011. ADDRESSES: Inquiries may be mailed or delivered...

  2. 77 FR 25012 - Fiscal Year 2012 Allocation of Additional Tariff-Rate Quota Volume for Raw Cane Sugar and...

    Science.gov (United States)

    2012-04-26

    ... Sugar and Reallocation of Unused Fiscal Year 2012 Tariff-Rate Quota Volume for Raw Cane Sugar AGENCY... Fiscal Year (FY) 2012 in-quota quantity of the tariff-rate quota (TRQ) for imported raw cane sugar and of... raw cane sugar. DATES: Effective Date: April 26, 2012. ADDRESSES: Inquiries may be mailed or delivered...

  3. 75 FR 14479 - Reallocation of Unused Fiscal Year 2010 Tariff-Rate Quota Volume for Raw Cane Sugar

    Science.gov (United States)

    2010-03-25

    ... TRADE REPRESENTATIVE Reallocation of Unused Fiscal Year 2010 Tariff-Rate Quota Volume for Raw Cane Sugar... fiscal year (FY) 2010 in-quota quantity of the tariff-rate quota (TRQ) for imported raw cane sugar. DATES... maintains TRQs for imports of raw cane and refined sugar. Section 404(d)(3) of the Uruguay Round Agreements...

  4. 75 FR 26316 - Allocation of Additional Fiscal Year (FY) 2010 In-Quota Volume for Raw Cane Sugar

    Science.gov (United States)

    2010-05-11

    ... TRADE REPRESENTATIVE Allocation of Additional Fiscal Year (FY) 2010 In-Quota Volume for Raw Cane Sugar... additional fiscal year (FY) 2010 in-quota quantity of the tariff-rate quota (TRQ) for imported raw cane sugar... maintains TRQs for imports of raw cane and refined sugar. Section 404(d)(3) of the Uruguay Round Agreements...

  5. The performance of activated carbons from sugarcane bagasse, babassu, and coconut shells in removing residual chlorine

    Energy Technology Data Exchange (ETDEWEB)

    Jaguaribe, E.F.; Araujo, L.P. [Paraiba Univ., Joao Pessoa, PB (Brazil). Centro de Ciencias da Saude. Lab. de Carvao Ativado]. E-mail:emersonjaguaribe@globo.com; Medeiros, L.L.; Barreto, M.C.S. [Paraiba Univ., Joao Pessoa, PB (Brazil). Dept. de Quimica]. E-mail: luciana-lucena@bol.com.br

    2005-03-01

    The capacity of activated carbons obtained from different raw materials, such as sugarcane bagasse, babassu (Orbygnia speciosa), and coconut (Cocus nucifera) shells, to remove residual chlorine is studied. The influence of particle size and time of contact between particles of activated carbon and the chlorinated solution were taken into account. The adsorptive properties of the activated carbons were measured by gas adsorption (BET method), using an ASAP 2010 porosimeter, and liquid phase adsorption, employing iodine and methylene blue adsorbates. The activated carbon from sugarcane bagasse was the only adsorbent capable of removing 100% of the residual chlorine. (author)

  6. Characterization of the pyrolysis oil produced in the slow pyrolysis of sunflower-extracted bagasse

    Energy Technology Data Exchange (ETDEWEB)

    Yorgun, S.; Sensoz, S. [Osmangazi Univ., Eskisehir (Turkey). Dept. of Chemical Engineering; Kockar, O.M. [Anadolu Univ., Eskisehir (Turkey). Dept. of Chemical Engineering

    2001-07-01

    Sunflower (Helianthus annus L.)-extracted bagasse pyrolysis experiments were performed in a fixed-bed reactor. The effects of heating rate, final pyrolysis temperature, particle size and pyrolysis atmosphere on the pyrolysis product yields and chemical compositions have been investigated. The maximum oil yield of 23% was obtained in N{sub 2} atmosphere at a pyrolysis temperature of 550 {sup o}C and a heating rate of 7 {sup o}C min {sup -1}. The chemical characterisation has shown that the oil obtained from sunflower-extracted bagasse may be potentially valuable as fuel and chemical feedstocks. (Author)

  7. PREPARATION OF BAGASSE XANTHATES(BX)AND NICKEL REMOVAL FROM WASTEWATER BY BX

    Institute of Scientific and Technical Information of China (English)

    ZhongChanggeng; TangDonggong; 等

    1996-01-01

    Water-insoluble bagasse xanthates were prepared by xanthation of alkalified celluloses by treating bagasse with chromium hydroxide reaction effluent.The removel of nickel from both test solutions and electroplating industrial wastewater samples with BX was investigated.The process was studied taking into account such parameters as pH of water,precipitation time,xanthate dosage and storage time of BX.These products wrer found to be highly efficient in removing nickel.The residual concentration of nickel after treatment can be reduced to a value of the ordor of 0.01mg·l-1.

  8. Mineralization of sugar-cane straw in soil amended with vinasse (a sugar-cane alcohol industry byproduct) and nitrogen fertilizer

    OpenAIRE

    2006-01-01

    Cellulose is the most abundant vegetable organic compound, being derived mainly from plant residues. The decomposition of sugar-cane (Saccharum officinarum L.) straw was studied in a period up to 90 days, through variables related to the carbon cycle, such as respiratory activity and CM-cellulase (CM, cellulose microcrystalline) and CMC-cellulase (CMC, carboxymethylcellulose) activities. The treatments consisted of 0, 0.5 and 1.0% of straw, in the presence and absence of vinasse (a sugar-cane...

  9. The use of sugar cane on traditional ceremony in Tabanan, Bali

    Directory of Open Access Journals (Sweden)

    I WAYAN SUMANTERA

    2005-04-01

    Full Text Available Sugar cane or tebu (Saccharum officinarum L. is useful in Hinduism ceremonies in Bali, so that the people plant it in the home yard. Its population is not big but it spreads all over Bali. The farmers use it to be the merchandise at the markets, especially for the ritual ceremonies uses. The use of sugar cane in ritual ceremonies is very popular as symbolize of wedding ceremony. The sugar cane is put in front part of the cars when they go to the bride’s house for the permission. The sugar cane stem cut into two parts used as the parts of the offering, as the tegen-tegenan as the offering as the earth product, raka-raka fruit for canang/offering, pedangal for tooth ceremony etc. The research was conducted in Tabanan Bali to know the varieties of sugar cane and the function in ritual ceremony in Bali. The result showed that people used 8 kinds of sugar cane for the ceremonies such as: tebu ratu/raja, tebu tiying, tebu kuning, tebu selem/cemeng/hitam/ireng, tebu malem, tebu tawar, tebu salah, and tebu suwat. They had function as identities, offering, worship, protection, and food of white cows. This showed that Balinese people had a little knowledge of sugar cane as the offering and the plantation is not maximal. The belief of the sugar cane function in ritual ceremony in Bali supports its reservation. For that it needs to build reservation and introduce new varieties, the clearness of the sugar cane meaning as the facilities of the ceremony and the availability of young sugar cane.

  10. Energy expenditure during cane-assisted gait in patients with knee osteoarthritis

    Directory of Open Access Journals (Sweden)

    Anamaria Jones

    2008-01-01

    Full Text Available OBJECTIVE: To compare the energy expenditure in patients with unilateral knee osteoarthritis while walking with canes of different lengths. METHODS: A quasi-experimental study (single-group was carried out on thirty patients with unilateral knee osteoarthritis. An adjustable aluminum cane was used, and three different cane lengths were determined for each subject: C1 - length from the floor to the greater trochanter; C2 - length from the floor to the distal wrist crease; and C3 - length obtained by the formula: height x 0.45 + 0.87 m. Resting and walking heart rates were measured with a Polar hear rate meter. Walking speed was calculated by the time required for the patient to walk 10 m. Gait energy cost was estimated using the physiological cost index, and results were compared. RESULTS: The sample consisted of 25 women and five men (average age of 68 years. Statistically significant differences in physiological cost index measurements were observed between unassisted walking and assisted walking with a cane of any length (p<0.001, as well as between walking with a C2-length cane and unassisted walking, and walking with a C1-length cane and walking with a C3-length cane (p=0.001; p = 0.037; p=0.001; respectively. CONCLUSION: These data demonstrate that small alterations in the length of canes used for weight-bearing ambulation in patients with unilateral knee osteoarthritis increase the energy expenditure measured by the physiological cost index during walking. Further studies are needed for a more precise quantification of the increase in energy expenditure during cane-assisted gait and an assessment of the effectiveness of cane use in relieving pain and improving function in patients with knee osteoarthritis.

  11. Effect of use of citrus bagasse as functional product-extender on physicochemical and textural properties of cooked ham

    Directory of Open Access Journals (Sweden)

    José Antonio Aguilar-Rico

    2011-12-01

    Full Text Available The substitution effect of carrageenan, soy protein and potato starch by orange bagasse on physico-chemical characteristics of cooked ham was evaluated. A 33 factorial design was used, with substitution levels of 0, 50 and 100%. The results indicate that the substitution of potato starch for orange bagasse results in increase in the ham yield, but to replace the carrageenan and/or soy protein by orange bagasse, cause decrease in yield below that non-substituted ham. Moreover, if even yields increase with substitution of potato starch by orange bagasse, however, the textural characteristics of the product obtained showed deficiency in comparison with thenon-substituted ham. Apparently orange bagasse substitution does not alter the matrix stability formation in ham, so there was no significant difference in expressible moisture. Substitution of carrageenan, soy protein and potato starch by orange bagasse in ham has highest influence on pH and color parameters, this due probably to compounds presents in the fruit (citric acid and carotenoids. Orange bagasse has high potential as a novel source of dietary fiber in food industry.

  12. Structure of the Canes Venatici I cloud of galaxies

    Science.gov (United States)

    Makarov, Dmitry I.; Makarova, Lidia N.; Uklein, Roman I.

    2016-10-01

    We study the spatial distribution of the sparse cloud of galaxies in the Canes Venatici constellation. We determined distances of 30 galaxies using the tip of the red giant branch (TRGB) method. This homogeneous sample allows us to distinguish the zone of chaotic motions around the center of the system. A group of galaxies around M94 is characterized by the mass-luminosity ratio of M/L B=159 (M/L)⊙. It is significantly higher than the typical ratio M/L B=159 (M/L)⊙ for the nearby groups of galaxies. The CVn I cloud of galaxies contains 4-5 times less luminous matter compared with the well-known nearby groups, such as the Local Group, M 81 and Centaurus A. The central galaxy M 94 is at least 1 mag fainter than any other central galaxy of these groups. However, the concentration of galaxies in the Canes Venatici may have a comparable total mass.

  13. Decomposition of sugar cane crop residues under different nitrogen rates

    Directory of Open Access Journals (Sweden)

    Douglas Costa Potrich

    2014-09-01

    Full Text Available The deposition of organic residues through mechanical harvesting of cane sugar is a growing practice in sugarcane production system. The maintenance of these residues on the soil surface depends mainly on environmental conditions. Nitrogen fertilization on dry residues tend to retard decomposition of these, providing benefits such as increased SOM. Thus, the object of this research was to evaluate the effect of different doses of nitrogen on sugar cane crop residues, as its decomposition and contribution to carbon sequestration in soil. The experiment was conducted in Dourados-MS and consisted of a randomized complete block design. Dried residues were placed in litter bags and the treatments were arranged in a split plot, being the four nitrogen rates (0, 50, 100 and 150 kg ha-1 N the plots, and the seven sampling times (0, 30, 60, 90, 120, 150 and 180 the spit plots. Decomposition rates of residues, total organic carbon and labile carbon on soil were analysed. The application of increasing N doses resulted in an increase in their decomposition rates. Despite this, note also the mineral N application as a strategy to get higher levels of labile carbon in soil.

  14. Reducing sugar production of sweet sorghum bagasse kraft pulp

    Science.gov (United States)

    Solihat, Nissa Nurfajrin; Fajriutami, Triyani; Adi, Deddy Triyono Nugroho; Fatriasari, Widya; Hermiati, Euis

    2017-01-01

    Kraft pulping of sweet sorghum bagasse (SSB) has been used for effective delignification method for cellulose production. This study was conducted to evaluate the performance pulp kraft of SSB for reducing sugar production. The study intended to investigate the effect of active alkali and sulfidity loading variation of SSB pulp kraft on reducing sugar yield per biomass. The SSB pulp was prepared after pulping using three variations of active alkali (17, 19, and 22%) and sulfidity loading (20, 22, and 24%) at 170°C for 4 h with liquor to wood ratio of 10. A total of 9 pulps were obtained from these pretreatments. Delignification pretreatment has been succesfully removed lignin and hemicellulose more than 90% and 50%, respectively. Increasing active alkali and sulfidity loading has significantly increased lignin removal caused by disruption of the cell wall structure for releasing lignin into black liquor in the cellulose extraction. The enzymatic hydrolysis of pulp was carried out with cellulase loading of 40 FPU per g substrate in the shaking incubator at 50°C and 150 rpm for 78 h. For each 24 h, the reducing sugar yield (DNS assay) has been observed. Even though the lignin and hemicellulose loss occurred along with higher active alkali loading, this condition tends to decrease its yield. The reducing sugar concentration varied between 7-8 g/L. Increasing active alkali and sulfidity was significantly decreased the reducing sugar per biomass. Pulp delignified by 17% active alkali and 20% sulfidity has demonstrated the maximum reducing sugar yield per biomass of 45.57% resulted after 72 h enzymatic hydrolysis. These results indicated that kraft pulping was success to degrade more lignin and hemicellulose content to facilitate the enzyme for breaking down the cellulose into its sugar monomer. A high loss of lignin and hemicellulose are not single factor to improve digestibility of SSB. This sugar has potential for yeast fermented into bioethanol.

  15. Air pollution from biomass burning and asthma hospital admissions in a sugar cane plantation area in Brazil

    Science.gov (United States)

    Arbex, Marcos Abdo; Martins, Lourdes Conceição; de Oliveira, Regiani Carvalho; Pereira, Luiz Alberto Amador; Arbex, Flávio Ferlin; Cançado, José Eduardo Delfini; Saldiva, Paulo Hilário Nascimento; Braga, Alfésio Luís Ferreira

    2007-01-01

    Objective To evaluate the association between the total suspended particles (TSPs) generated from preharvest sugar cane burning and hospital admission due to asthma (asthma hospital admissions) in the city of Araraquara. Design An ecological time‐series study. Total daily records of asthma hospital admissions (ICD 10th J15) were obtained from one of the main hospitals in Araraquara, São Paulo State, Brazil, from 23 March 2003 to 27 July 2004. The daily concentration of TSP (μg/m3) was obtained using Handi‐vol equipment (Energética, Brazil) placed in downtown Araraquara. The local airport provided the daily mean figures of temperature and humidity. The daily number of asthma hospital admissions was considered as the dependent variable in Poisson's regression models and the daily concentration of TSP was considered the independent variable. The generalised linear model with natural cubic spline was adopted to control for long‐time trend. Linear terms were used for weather variables. Results TSP had an acute effect on asthma admissions, starting 1 day after TSP concentrations increased and remaining almost unchanged for the next four days. A 10 μg/m3 increase in the 5‐day moving average (lag1–5) of TSP concentrations was associated with an increase of 11.6% (95% CI 5.4 to 17.7) in asthma hospital admissions. Conclusion Increases in TSP concentrations were definitely associated with asthma hospital admissions in Araraquara and, despite using sugar cane alcohol to reduce air pollution from automotive sources in large Brazilian urban centres, the cities where sugar cane is harvested pay a high toll in terms of public health. PMID:17435205

  16. NUTRIENT DIGESTIBILITY OF THE WASTE OF SACCHARIFICATION PROCESS FROM CASSAVA BAGASSE ON THE LAYING HENS

    Directory of Open Access Journals (Sweden)

    W.M. Ali-Mursyid

    2011-12-01

    Full Text Available The objective of this research was to study the nutrient digestibility and the metabolizable energy value of the waste of saccharification process from cassava bagasse (WSPCB on the laying hens. Twenty ISA-Brown laying hens at the age of 72 weeks were randomly distributed into three feeding treatments which consisted of cassava bagase (CB, WSPCB of solid state fermentation method (WSPCB-SSF, and WSPCB of sub merged fermentation method (WSPCB-SmF. All of the hens were fasted for 24 hours and 15 of them were fed with CB, WSPCB-SSF and WSPCB-SmF (five hens for each test-diet. The other five hens were still fasted. Then, all of the hens were fasted again and their excreta were collected during 48 hours. The nutrient digestibilities which were measured consisted of the Apparent and True Digestibility of Dry matter (ADDM and TDDM, Crude Fiber (ADCF and TDCF, Starch (ADS and TDS, and the Apparent and True Metabolizable Energy (AME and TME. The result of this research showed that the saccharification process generated the solid waste with the nutrient digestibility value (ADDM, TDDM, ADS, TDS, AME, and TME which were significantly lower (P<0.05 than those of CB. The crude fiber digestibility value of the WSPCB has an oposite phenomenon in which the ADCF and TDCF of WSPCB-SmF were greater than CB. In conclusion, the nutrient digestibility value, except for ADCF and TDCF, of the WSPCB on the laying hens were lower in value than those CB.

  17. Treatment of purified terephthalic acid wastewater using a bio-waste-adsorbent bagasse fly ash (BFA).

    Science.gov (United States)

    Verma, Shilpi; Prasad, Basheshwar; Mishra, Indra Mani

    2017-01-01

    Purified terephthalic acid (PTA) plant of a petrochemical unit generates wastewater having high pollution load. Acid treatment of this wastewater reduces the chemical oxygen demand (COD) load by more than 50%, still leaving substantial COD load (>1500 mg/L) which should be removed. The present study reports on the use of a bio-waste-adsorbent bagasse fly ash (BFA) for the reduction of COD and other recalcitrant acids from this wastewater. The BFA showed basic character and was mesoporous with a BET specific surface area of 82.4 m(2)/g. Optimum conditions for the adsorptive treatment of acid-pretreated PTA wastewater were found to be as follows: initial pH (pHi) = 4, BFA dosage = 15 g/L, and contact time = 3 h. Adsorption treatment resulted in 58.2% removal of COD, 96.3% removal of terephthalic acid (TA), and 99.9% removal of benzoic acid (BA). TA and BA were removed from the pretreated PTA wastewater through precipitation and sedimentation of un-dissociated acid molecules inside the mesopores of the BFA. The results showed that the COD removed by the BFA followed pseudo-second-order kinetics. Equilibrium sorption data were best correlated by the Freundlich isotherm. The process of adsorptive removal of COD was found to be exothermic. The change in the Gibbs free energy was found to be negative, suggesting that the adsorption process is spontaneous and feasible for the treatment of PTA wastewater.

  18. Effect of use of citrus bagasse as functional product-extender on physicochemical and textural properties of cooked ham

    OpenAIRE

    2011-01-01

    The substitution effect of carrageenan, soy protein and potato starch by orange bagasse on physico-chemical characteristics of cooked ham was evaluated. A 33 factorial design was used, with substitution levels of 0, 50 and 100%. The results indicate that the substitution of potato starch for orange bagasse results in increase in the ham yield, but to replace the carrageenan and/or soy protein by orange bagasse, cause decrease in yield below that non-substituted ham. Moreover, if even yields i...

  19. Método para determinar la cantidad de agua de imbibición a utilizar en la caña // Methodology to determine the amount of imbibition water to use in the sugar cane industry.

    Directory of Open Access Journals (Sweden)

    Félix González-Pérez

    2010-01-01

    Full Text Available ResumenSe hizo un estudio del uso del agua de imbibición en la industria del azúcar de caña de Cuba y, serevisaron más de 200 fuentes bibliográficas llegándose a conclusiones importantes en cuanto a lacantidad y temperatura del agua de imbibición, así como la revisión del esquema de imbibición másutilizado.A partir de aquí se obtiene un procedimiento para determinar la cantidad óptima de agua deimbibición teniendo en cuenta los precios actualizados del azúcar y el bagazo como combustible ypara otros usos, Es utilizado para su validación en dos empresas azucareras de la provincia deCienfuegos, se obtuvo que en las condiciones económicas actuales, es recomendable utilizar entre10,4 – 15,4 % caña en dependencia del uso que se le dé al bagazo y no entre 18-22 % caña como seviene haciendo históricamente, lo que permitió lograr un ahorro de agua de 66670,1 t, esto haceque se ahorren 9531.77 kWh de energía eléctrica por bombeo, permitiendo un efecto económicototal entre 22939,92 – 218505,47 USD.Palabras claves: imbibición, ingenios azucareros, energía______________________________________________________________AbstractA study was performed of the use of the water of imbibition in the industry of the sugar cane ofCuba and internationally. More than 200 bibliographical sources were reviewed reaching importantconclusions as far as the amount and temperature from the imbibition water, as well as the schemeused of imbibition water most commonly used.A very simple procedure is obtained to determine the optimal amount of imbibition waterconsidering the updated prices of the sugar and the bagasse as fuel and for other uses. It is appliedfor his validation in two sugar companies of the province of Cienfuegos. In the present economicconditions the results showed that it is advisable to use an amount of imbibition water between10.4 -15,4 % of the amount of cane processed based on the use of the bagasse and not between18-22% as it

  20. Computer Simulation of the Mass and Energy Balance during Gasification of Sugarcane Bagasse

    Directory of Open Access Journals (Sweden)

    Anthony Anukam

    2014-01-01

    Full Text Available This paper investigated the mass and energy balance of the gasification of sugarcane bagasse using computer simulation. The key parameters and gasifier operating conditions were investigated in order to establish their impact on gas volume and conversion efficiency of the gasification process. The heating value of sugarcane bagasse was measured and found to be 17.8 MJ/kg which was used during calculation of the conversion efficiency of the gasification process. Fuel properties and gasifier design parameters were found to have an impact on conversion efficiency of the gasification process of sugarcane bagasse. The moisture content of sugarcane bagasse was varied by 1.14%, 15%, and 25%, respectively. Optimum conversion efficiency was achieved at low moisture content (1.14% after computer simulation of the gasification process. The volume of carbon monoxide increased at low moisture content. It was also found that maximum conversion efficiency was achieved at reduced particle diameter (6 cm and at reduced throat diameter (10 cm and throat angle (25°, respectively, after these parameters were varied. Temperature of input air was also found to have an impact on the conversion efficiency of the gasification process as conversion efficiency increased slightly with increasing temperature of input air.

  1. Shiitake (lentinula edodes production on a sterilized bagasse substrate enriched with rice bran and sugarcane molasses

    Directory of Open Access Journals (Sweden)

    Rossi Ivan Henrique

    2003-01-01

    Full Text Available This investigation was performed to evaluate the biological efficiency (BE, mean mushroom weight (MMW, mean number of mushroom (MNM and mushroom quality of Shiitake [ Lentinula edodes (Berk. Pegler] when grown on a sterilized substrate composed by sugarcane bagasse enriched with rice bran and sugarcane molasses. The proportions of rice bran were 0, 15, 20, 25 and 30% (dry weight/dry weight of bagasse; and the concentrations of sugarcane molasses were 0, 30 and 60 g/kg (dry weight/dry weight of bagasse plus rice bran. Four flushes were obtained during the production cycle, providing 3 accumulated productions which were used for production analysis. The substrate supplemented with 25 and 30% rice bran yielded the highest BE (98.42 and 99.84%, respectively, about 230 days after spawning and MNM and initially produced a lower MMW than the substrates supplemented with 15 and 20% rice bran. Any amount of rice bran added to the sugarcane bagasse improved mushroom quality, with the best production of marketable mushrooms obtained by the addition of 15% rice bran. The largest amount of sugarcane molasses (60 g/kg increased BE (90.3 and 23.6%, on first and second accumulated productions, respectively and MNM and no quantity affected mushroom quality.

  2. Fast pyrolysis of organic acid leached wood, straw, hay and bagasse: Improved oil and sugar yields

    NARCIS (Netherlands)

    Oudenhoven, S.R.G; Westerhof, R.J.M.; Kersten, S.R.A.

    2015-01-01

    Organic acid leaching of pine wood, straw, bagasse and hay effectively reduced the amount of catalytically active alkali and alkaline earth metals (AAEMs). Using the (acetic) acid produced by pyrolysis as leaching agent, the AAEMs content could be reduced to 90–600 mg/kg. Tests with AAEMs impregnate

  3. Obtaining nanofibers from curauá and sugarcane bagasse fibers using enzymatic hydrolysis followed by sonication

    DEFF Research Database (Denmark)

    Campos, Adriana de; Correa, Ana Carolina; Cannella, David

    2013-01-01

    This paper is an initial study of the implementation of two new enzymes, an endoglucanase and a concoction of hemicellulases and pectinases to obtain cellulosic nanoparticles. In this study, curauá and sugarcane bagasse were dewaxed and bleached prior to enzymatic action for 72 h at 50 °C, and th...

  4. Methane Potential and Enzymatic Saccharification of Steam-exploded Bagasse

    Directory of Open Access Journals (Sweden)

    Vivekanand Vivekanand

    2014-01-01

    Full Text Available To evaluate the biofuel potential of bagasse, an abundant co-product in sugarcane-based industries, the effect of steam explosion on the efficiency of enzymatic saccharification and anaerobic digestion was studied. Bagasse was steam exploded at four different severity levels, and the impact of pretreatment was evaluated by analyzing the release of glucose after enzymatic saccharification with Cellic CTec2 and by analyzing methane production during anaerobic batch digestions. Increasing the severity of pretreatment led to degradation of xylan and the formation of pseudo-lignin. The severity of pretreatment was correlated with the enzymatic release of glucose; at optimal conditions, > 90% of the glucan was released. The highest methane yield (216 mL/gVS was 1.3 times higher than the yield from untreated bagasse. More importantly, the pretreatment dramatically increased the rate of methane production; after 10 days, methane production from pretreated material was approximately twice that of the untreated material. To assess the possibility of developing combined processes, steam-exploded bagasse was enzymatically pre-hydrolyzed and, after the removal of released sugars, the remaining solid was subjected to anaerobic digestion. The results indicated that, in terms of total heating value, combined ethanol and biogas production is as beneficial as producing only biogas.

  5. Draft Genome Sequence of Kluyveromyces marxianus Strain DMB1, Isolated from Sugarcane Bagasse Hydrolysate.

    Science.gov (United States)

    Suzuki, Toshihiro; Hoshino, Tamotsu; Matsushika, Akinori

    2014-07-24

    We determined the genome sequence of a thermotolerant yeast, Kluyveromyces marxianus strain DMB1, isolated from sugarcane bagasse hydrolysate, and the sequence provides further insights into the genomic differences between this strain and other reported K. marxianus strains. The genome described here is composed of 11,165,408 bases and has 4,943 protein-coding genes.

  6. Impact of sugarcane field residue and mill bagasse on seed germination

    Science.gov (United States)

    Research indicates that sugarcane field residue and sugarcane mill bagasse may be allelopathic. Allelopathy is the chemical interaction between plants, which may result in the inhibition of plant growth and development. Previous research in Louisiana indicated that sugarcane field residue may inhibi...

  7. Optimization of Verticillium lecanii spore production in solid-state fermentation on sugarcane bagasse

    NARCIS (Netherlands)

    Shi, Y.; Xu, X.; Zhu, Y.

    2009-01-01

    Verticillium lecanii is an entomopathogen with high potential in biological control of pests. We developed a solid-state fermentation with sugarcane bagasse as carrier absorbing liquid medium to propagate V. lecanii spores. Using statistical experimental design, we optimized the medium composition f

  8. Analysis of user characteristics related to drop-off detection with long cane

    Directory of Open Access Journals (Sweden)

    Dae Shik Kim, PhD

    2010-05-01

    Full Text Available This study examined how user characteristics affect drop-off detection with the long cane. A mixed-measures design with block randomization was used for the study, in which 32 visually impaired adults attempted to detect the drop-offs using different cane techniques. Younger cane users detected drop-offs significantly more reliably (mean +/- standard deviation = 74.2% +/- 11.2% of the time than older cane users (60.9% +/- 10.8%, p = 0.009. The drop-off detection threshold of the younger participants (5.2 +/- 2.1 cm was also statistically significantly smaller than that of the older participants (7.9 +/- 2.2 cm, p = 0.007. Those with early-onset visual impairment (78.0% +/- 9.0% also detected drop-offs significantly more reliably than those with later-onset visual impairment (67.3% +/- 12.4%, p = 0.01. No interaction occurred between examined user characteristics (age and age at onset of visual impairment and the type of cane technique used in drop-off detection. The findings of the study may help orientation and mobility specialists select appropriate cane techniques in accordance with the cane user's age and onset of visual impairment.

  9. The use of Lactobacillus species as starter cultures for enhancing the quality of sugar cane silage.

    Science.gov (United States)

    Ávila, C L S; Carvalho, B F; Pinto, J C; Duarte, W F; Schwan, R F

    2014-02-01

    Sugar cane (Saccharum spp.) is a forage crop widely used in animal feed because of its high dry matter (DM) production (25 to 40 t/ha) and high energy concentration. The ensiling of sugar cane often incurs problems with the growth of yeasts, which leads to high losses of DM throughout the fermentative process. The selection of specific inoculants for sugar cane silage can improve the quality of the silage. The present study aimed to select strains of lactic acid bacteria (LAB) isolated from sugar cane silage and to assess their effects when used as additives on the same type of silage. The LAB strains were inoculated into sugar cane broth to evaluate their production of metabolites. The selected strains produced higher concentrations of acetic and propionic acids and resulted in better silage characteristics, such as low yeast population, lower ethanol content, and lesser DM loss. These data confirmed that facultative heterofermentative strains are not good candidates for sugar cane silage inoculation and may even worsen the quality of the silage fermentation by increasing DM losses throughout the process. Lactobacillus hilgardii strains UFLA SIL51 and UFLA SIL52 resulted in silage with the best characteristics in relation to DM loss, low ethanol content, higher LAB population, and low butyric acid content. Strains UFLA SIL51 and SIL52 are recommended as starter cultures for sugar cane silage.

  10. Development of the navigation system for the visually impaired by using white cane.

    Science.gov (United States)

    Hirahara, Yoshiaki; Sakurai, Yusuke; Shiidu, Yuriko; Yanashima, Kenji; Magatani, Kazushige

    2006-01-01

    A white cane is a typical support instrument for the visually impaired. They use a white cane for the detection of obstacles while walking. So, the area where they have a mental map, they can walk using white cane without help of others. However, they cannot walk independently in the unknown area, even if they use a white cane. Because, a white cane is a detecting device for obstacles and not a navigation device for there correcting route. Now, we are developing the navigation system for the visually impaired which uses indoor space. In Japan, sometimes colored guide lines to the destination are used for a normal person. These lines are attached on the floor, we can reach the destination, if we walk along one of these line. In our system, a developed new white cane senses one colored guide line, and makes notice to a user by vibration. This system recognizes the color of the line stuck on the floor by the optical sensor attached in the white cane. And in order to guide still more smoothly, infrared beacons (optical beacon), which can perform voice guidance, are also used.

  11. Potential of bagasse production from middle sugarcane cultivars; Potencial de producao de bagaco por cultivares medias de cana-de-acucar

    Energy Technology Data Exchange (ETDEWEB)

    Lebre, Antonio Carlos Pereira; Siva Neto, Helio Francisco da; Marques, Diogo; Marques, Marcos Omir; Tasso Junior, Luiz Carlos [Universidade Estadual Paulista (FCAV /UNESP), Jaboticabal, SP (Brazil). Fac. de Ciencias Agrarias e Veterinarias. Dept. de Tecnologia], E-mail: antoniocplebre8@hotmail.com

    2010-07-01

    In the search for sustainability a major concern relates to the sugarcane agroindustry waste, and their potential use as an energy source. In this sense, the objective was to identify the production and productivity of bagasse of different sugarcane cultivars, aimed at the completion of the cogeneration of electricity. The experimental design was a randomized block design with 6 treatments (cultivars) and 3 replications. The experiment was carried out at FCAV/UNESP-Jaboticabal. To calculate the productivity, the number of stems was counted in a meter, obtaining the weight of stems. The percentage of fiber for each cultivar was determined by calculating the estimated production and productivity of mulch. Using these values to estimate the potential number of people who could benefit from the electricity that would be produced by the combustion of bagasse generated within a system of cogeneration of electricity put in practice by the sugar mills and ethanol distilleries. Cultivars with the best performance IAC91-1099 and CEC 15 who obtained the highest production and productivity of mulch increases the number of people benefited. Cultivars IAC94-4004-5000 and IAC95 showed intermediate results and the cultivars SP81-3250 and RB855536 obtained less satisfactory results. (author)

  12. Bioethanol Production from Sugarcane Bagasse by a Novel Brazilian Pentose Fermenting Yeast Scheffersomyces shehatae UFMG-HM 52.2: Evaluation of Fermentation Medium

    Directory of Open Access Journals (Sweden)

    F. A. F. Antunes

    2014-01-01

    Full Text Available Bioconversion of hemicellulosic sugars into second generation (2G ethanol plays a pivotal role in the overall success of biorefineries. In this study, ethanol production performance of a novel xylose-fermenting yeast, Scheffersomyces shehatae UFMG-HM 52.2, was evaluated under batch fermentation conditions using sugarcane bagasse (SB hemicellulosic hydrolysate as carbon source. Dilute acid hydrolysis of SB was performed to obtain sugarcane bagasse hemicellulosic hydrolysate (SBHH. It was concentrated, detoxified, and supplemented with nutrients in different formulations to prepare the fermentation medium to the yeast evaluation performance. S. shehatae UFMG-HM 52.2 (isolated from Brazilian Atlantic rain forest ecosystem was used in fermentations carried out in Erlenmeyer flasks maintained in a rotator shaker at 30°C and 200 rpm for 72 h. The use of a fermentation medium composed of SBHH supplemented with 5 g/L ammonium sulfate, 3 g/L yeast extract, and 3 g/L malt extract resulted in 0.38 g/g of ethanol yield and 0.19 g L.h of volumetric productivity after 48 h of incubation time.

  13. Judging hardness of an object from the sounds of tapping created by a white cane.

    Science.gov (United States)

    Nunokawa, K; Seki, Y; Ino, S; Doi, K

    2014-01-01

    The white cane plays a vital role in the independent mobility support of the visually impaired. Allowing the recognition of target attributes through the contact of a white cane is an important function. We have conducted research to obtain fundamental knowledge concerning the exploration methods used to perceive the hardness of an object through contact with a white cane. This research has allowed us to examine methods that enhance accuracy in the perception of objects as well as the materials and structures of a white cane. Previous research suggest considering the roles of both auditory and tactile information from the white cane in determining objects' hardness is necessary. This experimental study examined the ability of people to perceive the hardness of an object solely through the tapping sounds of a white cane (i.e., auditory information) using a method of magnitude estimation. Two types of sounds were used to estimate hardness: 1) the playback of recorded tapping sounds and 2) the sounds produced on-site by tapping. Three types of handgrips were used to create different sounds of tapping on an object with a cane. The participants of this experiment were five sighted university students wearing eye masks and two totally blind students who walk independently with a white cane. The results showed that both sighted university students and totally blind participants were able to accurately judge the hardness of an object solely by using auditory information from a white cane. For the blind participants, different handgrips significantly influenced the accuracy of their estimation of an object's hardness.

  14. Removal of reactive dyes from aqueous solution using bagasse fly ash

    Directory of Open Access Journals (Sweden)

    Sumate Teachakulwiroj

    2004-02-01

    Full Text Available Bagasse fly ash, a waste from the sugar industry, was investigated as a replacement for the current expensive methods of removing reactive dyes (Remazol Black B; RBB, Remazol Brilliant Blue R; RBBR, and Remazol Brilliant Red F3B; RBRF3B from aqueous solutions. Bagasse fly ash was collected from a local sugar factory in Saraburi province, Thailand. It was oven dried at 110ºC overnight and sieved to the desired particle size of 150 µm or smaller. The 50 mL plastic conical tubes containing solution and bagasse fly ash were shaken at room temperature (27±2ºC. The pH values of solutions were adjusted by addition of HNO3 and NaOH. The batch study indicated that initial pH of aqueous solutions did not affect dye removal. While the removal efficiency decreased with increasing initial concentration, it increased with increasing adsorbent concentration. The best adsorptions were obtained under condition of 50 mg/L concentration, original pH solution of about 5, and 240, 300, and 240 minutes contact time for RBB, RBBR, and RBRF3B, respectively. Most adsorption experiments showed in the range of about 50% to 98% removal; that is, the efficiencies of RBB, RBBR, and RBRF3B adsorption were found to be between 58.48-98.03%, 46.15-93.47%, and 46.30- 94.60%, respectively. For the linear and nonlinear forms of the Langmuir and Freundlich models, the results indicated that the Langmuir adsorption isotherm fitted the data better than the Freundlich adsorption isotherm. Adsorption of these dyes onto bagasse fly ash was favorable sorption. Therefore, bagasse fly ash, the low-cost agricultural waste in Thailand, is suitable for use as adsorbent for RBB, RBBR, and RBRF3B under this investigation.

  15. Water Absorption and Thermomechanical Characterization of Extruded Starch/Poly(lactic acid)/Agave Bagasse Fiber Bioplastic Composites

    National Research Council Canada - National Science Library

    Aranda-García, F. J; González-Núñez, R; Jasso-Gastinel, C. F; Mendizábal, E

    2015-01-01

    ...) are presented in this work, wherein the concentration of agave bagasse fibers (ABF, 0-15 wt%) and poly(lactic acid) (PLA, 0-30 wt%) is varied. Glycerol (G) is used as starch (S) plasticizer to form TPS...

  16. Iron-binding properties of sugar cane yeast peptides.

    Science.gov (United States)

    de la Hoz, Lucia; Ponezi, Alexandre N; Milani, Raquel F; Nunes da Silva, Vera S; Sonia de Souza, A; Bertoldo-Pacheco, Maria Teresa

    2014-01-01

    The extract of sugar-cane yeast (Saccharomyces cerevisiae) was enzymatically hydrolysed by Alcalase, Protex or Viscozyme. Hydrolysates were fractionated using a membrane ultrafiltration system and peptides smaller than 5kDa were evaluated for iron chelating ability through measurements of iron solubility, binding capacity and dialyzability. Iron-chelating peptides were isolated using immobilized metal affinity chromatography (IMAC). They showed higher content of His, Lys, and Arg than the original hydrolysates. In spite of poor iron solubility, hydrolysates of Viscozyme provided higher iron dialyzability than those of other enzymes. This means that more chelates of iron or complexes were formed and these kept the iron stable during simulated gastro-intestinal digestion in vitro, improving its dialyzability.

  17. Thermal ageing on the microstructure and mechanical properties of Al–Cu–Mg alloy/bagasse ash particulate composites

    Directory of Open Access Journals (Sweden)

    V.S. Aigbodion

    2014-07-01

    Full Text Available Thermal ageing on the microstructure and mechanical properties of Al–Cu–Mg alloy/bagasse ash(BAp particulate composites was investigated. The composites were produced by a double stir-casting method by varying bagasse ash from 2 to 10 wt.%. After casting the samples were solution heat-treated at a temperature of 500 °C in an electrically heated furnace, soaked for 3 h at this temperature and then rapidly quenched in water and thermal aged at temperatures of 100, 200 and 300 °C. The ageing characteristics of these grades of composites were evaluated using scanning electron microscopy (SEM, hardness and tensile test samples obtained from solution heat-treated composites samples subjected to the temperature conditions mentioned above. The results show that the uniform distribution of the bagasse ash particles in the microstructure of both the as-cast and age-hardened Al–Cu–Mg/BAp composites is the major factor responsible for the improvement in mechanical properties. The presence of the bagasse ash particles in the matrix alloy results in a much smaller grain size in the cast composites compared to the matrix alloy. The addition of bagasse ash particles to Al–Cu–Mg (A2009 does not alter the thermal ageing sequence, but it alters certain aspects of the precipitation reaction. Although thermal ageing is accelerated in the composites the presence of bagasse ash particles in A2009 reduces the peak temperatures.

  18. Chemistry Based on Renewable Raw Materials: Perspectives for a Sugar Cane-Based Biorefinery

    Directory of Open Access Journals (Sweden)

    Murillo Villela Filho

    2011-01-01

    Full Text Available Carbohydrates are nowadays a very competitive feedstock for the chemical industry because their availability is compatible with world-scale chemical production and their price, based on the carbon content, is comparable to that of petrochemicals. At the same time, demand is rising for biobased products. Brazilian sugar cane is a competitive feedstock source that is opening the door to a wide range of bio-based products. This essay begins with the importance of the feedstock for the chemical industry and discusses developments in sugar cane processing that lead to low cost feedstocks. Thus, sugar cane enables a new chemical industry, as it delivers a competitive raw material and a source of energy. As a result, sugar mills are being transformed into sustainable biorefineries that fully exploit the potential of sugar cane.

  19. Sugar cane fresh or ensiled with or without bacterial additive in diets for dairy cows

    Directory of Open Access Journals (Sweden)

    Jeruzia Vitória Moreira

    2014-09-01

    Full Text Available This study evaluated the effect of using fresh sugar cane, sugar cane silage with or without Lactobacillus buchneri, and burnt sugar cane silage with or without L. buchneri on ingestive behavior, nitrogen balance and synthesis of microbial nitrogen compounds of dairy cows. Five ¾ Holstein x Gir crossbred cows, assigned to a 5 x 5 Latin square design, were given diets with a 60:40 forage: concentrate ratio on a dry matter basis, to meet an average body weight of 550 kg and production of 15 kg of milk per day. The treatment with fresh sugar cane showed higher values (p 0.05 the nitrogen intake and balance, but led to a greater (p 0.05, and showed an average value of 204.32 g microbial crude protein kg-1 total digestible nutrients.

  20. Interaction of Azospirillum brasilense and Glomus intrarradix in Sugar Cane Roots.

    Science.gov (United States)

    Bellone, Carlos H; de Bellone Silvia, Carrizo

    2012-03-01

    Fifteen-day-old variety NA 56-79 sugar cane seedlings were inoculated with Azospirillum brasilense and Glomus intrarradix. This article aims at examining changes in sugar cane root seedlings inoculated with Glomus intrarradix and Azospirillum brasilense, the increase in microbial biomass and the acetylene reduction process as well. The internal root colonization was studied 20 days after inoculation using scanning and a transmission electron microscope. Both microorganisms entered the sugar cane root through the emergent lateral roots. The microorganisms were capable of coexisting both intra and intercellularly, producing changes in the cell wall, thus allowing colonization and interaction between the organisms. These changes increased the number of microorganisms inside the root as well as acetylene nitrogen reduction. Sugar cane plant biomass increased with joint-inoculation. The number of endophytic microorganisms and nitrogen fixing activity increased when they were colonized by Azospirillum and Glomus together.

  1. Generations.

    Science.gov (United States)

    Chambers, David W

    2005-01-01

    Groups naturally promote their strengths and prefer values and rules that give them an identity and an advantage. This shows up as generational tensions across cohorts who share common experiences, including common elders. Dramatic cultural events in America since 1925 can help create an understanding of the differing value structures of the Silents, the Boomers, Gen Xers, and the Millennials. Differences in how these generations see motivation and values, fundamental reality, relations with others, and work are presented, as are some applications of these differences to the dental profession.

  2. Utilization of distillery slop for sugar cane production and environmental pollution reduction

    OpenAIRE

    2010-01-01

    The research aimed to study the effect of distillery slop and chemical fertilizer on soil fertility, growth and yield of sugar cane. The field experiment was conducted on Mahasarakam soil series, using the K 88-92 variety of sugar cane. The results showed that distillery slop significantly increased some nutrients in soil, particularly potassium, magnesium, sulfur and chloride. The results also showed that application of distillery slop did not affect most of the physical properties of soil. ...

  3. Utilization of Boron (10B) derived from fertilizer by sugar cane

    OpenAIRE

    2009-01-01

    The response to B in agricultural systems of sugar cane is still an unexplored issue; B application has however recently been widely publicized and used with a certain degree of frequency. The use of 10B-labeled fertilizers may further contribute to clarify this practice. With the objective of evaluating sugar cane use of B (10B) derived from fertilizer (boric acid), an experiment was conducted under field conditions in the 2005/2006 growing season. The experiment consisted of the installatio...

  4. Diffusion of moisture in drying of sugar cane fibers and bundles

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Ramirez, J.; Quintana-Hernandez, P.A.; Mendez-Lagunas, L.; Martinez-Gonzalez, G.; Gonzalez-Alatorre, G.

    2000-05-01

    Sugar cane fibers and arrangements of fibers in cylindrical bundles were dried in a thermoanalyzer and their diffusive coefficients were calculated using the slope method. The effect of temperature, moisture content as well as structural changes were analyzed. Diffusion coefficients changed nonlinearly with moisture content and followed an Arrhenius-like functionality with temperature. The analysis of these effects suggested a liquid diffusion transport mechanism of moisture transfer inside sugar cane fibers and bundles.

  5. Case-control study of lung cancer among sugar cane farmers in India

    OpenAIRE

    Amre, D. K.; Infante-Rivard, C; Dufresne, A; Durgawale, P. M.; Ernst, P

    1999-01-01

    OBJECTIVES: To investigate the risk of lung cancer among sugar cane farmers and sugar mill workers. METHODS: A case-control study was conducted based in six hospitals in the predominantly sugar cane farming districts of the province of Maharashtra in India. Newly diagnosed, histologically confirmed cases were identified from these hospitals between May 1996 and April 1998. Other cancers were chosen as controls and matched to cases by age, sex, district of residence, and timing of diagno...

  6. Residual of fosforo in ratoon-cane for forage yield in the noth of Mato Grosso

    Directory of Open Access Journals (Sweden)

    Tiago de Lisboa Parente

    2016-08-01

    Full Text Available The sugar cane can be used as bovine supplementation option in the Centro Oeste region during dry periods. However, the low phosphorus availability in the soil becomes a limiting factor in the development of culture, mainly for ratoon cane. Thus, the objective of this study was to evaluate the performance of ratoon cane under different levels of phosphorus, applied in corrective phosphate and of the maintenance in the plant cane. The experiment was conducted in Alta Floresta (MT, end the experimental design was a randomized block with split plots, being four doses of corrective phosphate and five of maintenance. The corrective phosphating was carried out in the entire area with natural reactive phosphate Arad in the doses of 0, 90, 180 and 270 kg ha-1 of P2O5, and the maintenance done in the furrow with triple superphosphate, at rates of 0, 50, 100, 150 and 200 kg ha-1 of P2O5. The fertilization in plant cane promoted residual effect for cane ratoon, however, only the Arad phosphate promoted significant differences in green mass productivity, occurring linear increase for the tested doses.

  7. Experiencias para el incremento de la vida útil de los martillos de los desmeduladores de bagazo de caña. // Experiences for the increment of useful life of hammers for cane trash depither.

    Directory of Open Access Journals (Sweden)

    F. Diez Torres

    2004-05-01

    Full Text Available El presente trabajo describe las experiencias llevadas a cabo por la División de Desarrollo del ICIDCA (Instituto Cubano deInvestigaciones de los Derivados de la caña de Azúcar, con el objetivo de incrementar la vida útil de los martillos de losdesmeduladores de bagazo, cuyo desgaste afecta la eficiencia en separación de médula de dichos equipos, utilizando elmétodo de recargue duro por soldadura por arco eléctrico. Se explican además los mecanismos de desgaste que tienenlugar, los métodos utilizados para la evaluación del desgaste en los recubrimientos ensayados, los resultados obtenidos y sebrindan soluciones concretas para atenuar éste fenómeno.Palabras claves: Desgaste, recuperación, industria azucarera, soldadura._______________________________________________________________________________Abstract.This paper describes the experiences obtained in the Development Division of ICIDCA ( Cuban Research Institute forSugar Cane Derivatives, to increase the useful life of bagasse depither hammers using arc welding hard surfacing method.The wear of these hammers affects the efficiency directly in the pith separation in these equipment. Besides, we explain thewear mechanisms which take place, the methods used to evaluate the wear in the tested coatings and the obtained results.Concrete solutions to diminish this phenomenon are given.Key words: Wear, recovery, sugar industry, welding.

  8. Fast pyrolysis of sunflower-pressed bagasse: effects of sweeping gas flow rate

    Energy Technology Data Exchange (ETDEWEB)

    Gercel, H.F.; Putun, E.

    2002-05-01

    Sunflower (Helianthus annus L.)-pressed bagasse pyrolysis experiments were performed in a fixed-bed tubular reactor. The effects of nitrogen flow rate and final pyrolysis temperature on the pyrolysis product yields and chemical compositions have been investigated. The maximum bio-oil yield of 52.85 wt% was obtained in a nitrogen atmosphere and a nitrogen flow rate of 50 cm{sup 3} min{sup -1} and at a pyrolysis temperature of 550{sup o}C and heating rate of 5{sup o}C s{sup -1}. The chemical characterization has shown that the oil obtained from sunflower-pressed bagasse may be potentially valuable as fuel and chemical feedstocks. (author)

  9. Production and characterization of pyrolysis liquids from sunflower-pressed bagasse

    Energy Technology Data Exchange (ETDEWEB)

    Gercel, H.F. [Anadolu University (Turkey). Dept. of Chemical Engineering

    2002-11-01

    Pyrolysis experiments on sunflower (Helianthus annus L.)-pressed bagasse were performed in a fixed-bed tubular reactor. The effects of nitrogen flow rate and final pyrolysis temperature on the pyrolysis product yields and chemical compositions were investigated. The maximum bio-oil yield of 52.10 wt.% was obtained in a nitrogen atmosphere with flow rate of 50 ml min{sup -1} and at a pyrolysis temperature of 550{sup o}C with a heating rate of 5{sup o}C s{sup -1}. The chemical characterization results showed that the oil obtained from sunflower-pressed bagasse may be a potentially valuable source as fuel or chemical feedstocks. (author)

  10. All-cellulose nanocomposite film made from bagasse cellulose nanofibers for food packaging application.

    Science.gov (United States)

    Ghaderi, Moein; Mousavi, Mohammad; Yousefi, Hossein; Labbafi, Mohsen

    2014-04-15

    All-cellulose nanocomposite (ACNC) film was produced from sugarcane bagasse nanofibers using N,N-dimethylacetamide/lithium chloride solvent. The average diameter of bagasse fibers (14 μm) was downsized to 39 nm after disk grinding process. X-ray diffraction showed that apparent crystallinity and crystallite size decreased relatively to an increased duration of dissolution time. Thermogravimetric analysis confirmed that thermal stability of the ACNC was slightly less than that of the pure cellulose nanofiber sheet. Tensile strength of the fiber sheet, nanofiber sheet and ACNC prepared with 10 min dissolution time were 8, 101 and 140 MPa, respectively. Water vapor permeability (WVP) of the ACNC film increased relatively to an increased duration of dissolution time. ACNC can be considered as a multi-performance material with potential for application in cellulose-based food packaging owing to its promising properties (tough, bio-based, biodegradable and acceptable levels of WVP).

  11. Effect of fiber loading on the mechanical properties of bagasse fiber–reinforced polypropylene composites

    Directory of Open Access Journals (Sweden)

    Sivarao Subramonian

    2016-08-01

    Full Text Available It is evident that sugarcane/bagasse is a highly potential natural composite fiber. In this study, the correlation of composition fiber amount to the mechanical strength was presented. Bagasse was treated with alkali and then reinforced in polypropylene by means of hot pressing. Fiber loading was set to be varied from 10 to 20 wt%. Composite samples were subjected to tensile, hardness, and flexural characterization. Composites with 30 wt% of fiber loading registered maximum tensile strength while with 10 wt% fiber loading registered the minimum. Hardness increases with the amount of fiber. Flexural strength and flexural modulus were found to be greater than original polypropylene. Scanning electron microscopy examination revealed the mechanisms of the strength gain in morphological point of view. The findings give manufactures and engineers a sound basis decision whether to apply the use of this composite for weight reduction especially in automotive applications or not.

  12. EFFECT OF SURFACE TREATMENT ON THE MECHANICAL PROPERTIES OF BAGASSE FIBER REINFORCED POLYMER COMPOSITE

    Directory of Open Access Journals (Sweden)

    Samir Kumar Acharya

    2011-06-01

    Full Text Available Bagasse is a by-product of the sugarcane milling process, and it also is an important fuel resource for that industry. In this study an attempt has been made to utilize this by-product to prepare a composite using epoxy resin. The fibers surface was modified by alkali treatment with 5% NaOH solution for 0, 2, 4 and 6 hrs. The effect of fiber surface modification on the mechanical properties such as flexural strength of the composites was investigated with the fibers as received from the milling process. It was found that alkali-treated bagasse/epoxy composites significantly improved the flexural strength of the composite. An SEM investigation also indicated that the surface modifications improved the fiber–matrix interaction.

  13. Influence of sugarcane bagasse variability on sugar recovery for cellulosic ethanol production.

    Science.gov (United States)

    Andrade, Liliane Pires; Crespim, Elaine; de Oliveira, Nilton; de Campos, Rafael Carinha; Teodoro, Juliana Conceição; Galvão, Célia Maria Araújo; Maciel Filho, Rubens

    2017-10-01

    In the context of cellulosic ethanol production, special attention must be given to the raw material, as it affects final product yield. As observed for sugarcane, bagasse variations may derive from several elements, for instance edaphoclimatic factors, seasonality, maturation stage and harvesting techniques. Therefore, in the present work, to investigate the impact of raw material characteristics on process performance, sugarcane bagasse from four harvests from October/2010 to October/2011 was pretreated by steam explosion and had its soluble and insoluble solids contents measured, following enzymatic hydrolysis to assess glucan conversion. As confirmed by ANOVA, glucose concentration was related to the solids content in the reactor, whereas glucan conversion was related to the enzymatic load. Variations in raw material composition were indeed observed to significantly interfere in the final sugar recovery, probably due to the increase in the impurities observed as a result of the type of harvest performed in 2011. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Development of ice cream based sugar cane juice and sensory evaluation with children

    Directory of Open Access Journals (Sweden)

    Vanessa Pedro da Silva

    2014-02-01

    Full Text Available Ice cream is a tasty and nutritious source of protein and calcium, but it is deficient in some minerals, as iron, but it is found in sugar cane juice, which is a source of minerals such as iron, phosphorus, calcium, sodium among others. The objective of the present study are: to develop sugar cane juice ice cream, in order to increase the mineral content replacing refined sugar and water during the manufacturing process by sugar cane juice; to analyze its physical-chemical composition; to check your sensory acceptance with children. Three formulations were prepared from sugar cane juice ice cream: sugar cane juice ice cream (SC, sugar cane juice ice cream with molasses (SCM and sugar cane juice ice cream with brown sugar (SCR. Sensory evaluation was conducted with 120 children (62 boys and 58 girls from 8 to 10 years old, students from 3rd to 5th years of primary school. Sensory tests were ordering-preference, intention to use and acceptance with facial hedonic scale of 7 points. The results of physico-chemical and acceptance testing were statistically analyzed by analysis of variance (ANOVA, the scores compared by Tukey test (p ? 0.05 and the result of the sensory test ordering-preference were assessed using the Friedman. The ice cream it presents has a reduced fat content because it was formulated with palm trans-fat free. The use of sugar cane juice in the formulation of the ice cream increased the amount of minerals when compared to ordinary ice cream. Therefore, sugar cane juice ice cream demonstrated to be more healthy and nutritious compared with traditional ice cream, besides being source of calcium, iron and phosphorus; serving the needs of the recommended daily intake (IDR for children from 7 to 10 years old. About the sensory evaluation, all formulations of sugar cane juice ice cream obtained great sensory acceptance among children in all sensory attributes evaluated, showing excellent percentages of acceptance and intention to use by

  15. Sugarcane Bagasse Pyrolysis in a Carbon Dioxide Atmosphere with Conventional and Microwave-Assisted Heating

    OpenAIRE

    Lin, Bo-Jhih; Chen, Wei-Hsin

    2015-01-01

    Pyrolysis is an important thermochemical method to convert biomass into bio-oil. In this study, the pyrolysis of sugarcane bagasse in a CO2 atmosphere under conventional and microwave-assisted heating is investigated to achieve CO2 utilization. In the microwave pyrolysis, charcoal is used as the microwave absorber to aid in pyrolysis reactions. The results indicate that the yields of pyrolysis products are greatly influenced by the heating modes. In the conventional heating, the prime product...

  16. Sugarcane bagasse pyrolysis in a carbon dioxide atmosphere with conventional and microwave-assisted heating

    OpenAIRE

    Bo-Jhih eLin; Wei-Hsin eChen

    2015-01-01

    Pyrolysis is an important thermochemical method to convert biomass into bio-oil. In this study, the pyrolysis of sugarcane bagasse in a CO2 atmosphere under conventional and microwave-assisted heating is investigated to achieve CO2 utilization. In the microwave pyrolysis, charcoal is used as the microwave absorber to aid in pyrolysis reactions. The results indicate that the yields of pyrolysis products are greatly influenced by the heating modes. In the conventional heating, the prime product...

  17. Einsatz von Ernteruckstanden von Bagasse, Rapsstroh und Hanfschaben bei der Herstellung von dreischichtigen Spanplatten

    OpenAIRE

    Nikvash, Neda; Kraft, Redelf; Kharazipour, Alireza; Euring, Markus

    2010-01-01

    Abstract Residues of Bagasse (Saccharum officinarum L.), canola (Brassica napus L.) and hemp (Cannabissativa L.) as well as industrial wood chips in various proportions from 0?100% were used as raw materials for the main component of the middle layer in urea formaldehyde bonded particle boards. The results reveal that most of the investigated mechanical-technological properties of the boards achieved the requirements of EN 312-2 (2003). Only increasing the percentage of ...

  18. Modification of Adsorptive Properties of Bagasse Fly Ash for Uptaking Cadmium from Aqueous Solution

    OpenAIRE

    El-Sherif, Iman Y; Nady Attia Fathy

    2013-01-01

    Novel low-cost adsorbents were developed from industrial bagasse fly ash (BFA) waste using facile chemical modification. The uptaking of cadmium from wastewater using pretreated BFA adsorbents was investigated. The influence of solution pH, contact time, initial metal concentration, adsorbent dosage, and temperature on the adsorption performance of Cd (II) onto natural and modified BFA adsorbents was examined by a batch method. Surface properties of developed BFA adsorbents were characterized...

  19. Potential for the use of pyrolytic tar from bagasse in industry

    Energy Technology Data Exchange (ETDEWEB)

    Perez, L.E.B. [Oriente Univ., Chemical Engineering Faculty, Santiago de Cuba (Cuba); Cortez, L.A.B. [State Univ. of Campinas, Agricultural Engineering Faculty, Campinas, SP (Brazil)

    1997-12-01

    Tar from pyrolyzed bagasse was characterized according to its main structural features. Its solubility in NaOH solutions results in an alkaline tar solution (ATS) that exhibits surface active properties. The prepared ATS was successfully used as a foam flotation agent in copper mining, as a foaming agent in foam concrete formation, and as a fluidization agent for Portland cement manufacture. The potentialities of by-products of conventional pyrolysis and carbonization processed are stressed. (Author)

  20. Physical and Mechanical Characterization of Sugarcane Bagasse Particleboards for Civil Construction

    OpenAIRE

    Rosane Battistelle; Danielle Fujino; Ana Luiza Silva; Barbara Bezerra; Ivaldo Valarelli

    2016-01-01

    In the worldwide market of particleboard production, the use of alternative raw materials is increasing, due to high demand and lack of traditional raw material, despite efforts of reforestation. In Brazil, the main agricultural commodity is sugarcane due to the copious production of sugar and ethanol. In the state of São Paulo alone approximately 140 million tons of sugarcane bagasse are produced every year, from which around 70% is burned for energy production, not adding value to th...

  1. COMPARISON BETWEEN WET OXIDATION AND STEAM EXPLOSION AS PRETREATMENT METHODS FOR ENZYMATIC HYDROLYSIS OF SUGARCANE BAGASSE

    OpenAIRE

    Carlos Martín; Marcelo Marcet; Anne Belinda Thomsen

    2008-01-01

    Alkaline wet oxidation and steam explosion pretreatments of sugarcane bagasse were compared with regard to biomass fractionation, formation of by-products, and enzymatic convertibility of the pretreated material. Wet oxidation led to the solubilisation of 82% of xylan and 50% of lignin, and to a two-fold increase of cellulose content in the pretreated solids, while steam explosion solubilised only 60% of xylan and 35% of lignin and increased cellulose content in the solid material by one thir...

  2. A digital image method of spot tests for determination of copper in sugar cane spirits

    Science.gov (United States)

    Pessoa, Kenia Dias; Suarez, Willian Toito; dos Reis, Marina Ferreira; de Oliveira Krambeck Franco, Mathews; Moreira, Renata Pereira Lopes; dos Santos, Vagner Bezerra

    2017-10-01

    In this work the development and validation of analytical methodology for determination of copper in sugarcane spirit samples is carried out. The digital image based (DIB) method was applied along with spot test from the colorimetric reaction employing the RGB color model. For the determination of copper concentration, it was used the cuprizone - a bidentate organic reagent - which forms with copper a blue chelate in an alkaline medium. A linear calibration curve over the concentration range from 0.75 to 5.00 mg L- 1 (r2 = 0.9988) was obtained and limits of detection and quantification of 0.078 mg L- 1 and 0.26 mg L- 1 were acquired, respectively. For the accuracy studies, recovery percentages ranged from 98 to 104% were obtained. The comparison of cooper concentration results in sugar cane spirits using the DIB method and Flame Atomic Absorption Spectrometry as reference method showed no significant differences between both methods, which were performed using the paired t-test in 95% of confidence level. Thus, the spot test method associated with DIB allows the use of devices as digital cameras and smartphones to evaluate colorimetric reaction with low waste generation, practicality, quickness, accuracy, precision, high portability and low-cost.

  3. PERTUMBUHAN, PRODUKTIVITAS, DAN RENDEMEN PERTANAMAN TEBU PERTAMA (PLANT CANE PADA BERBAGAI PAKET PEMUPUKAN

    Directory of Open Access Journals (Sweden)

    Nunik Eka Diana

    2016-12-01

    Full Text Available Fertilization is an effort improving soil fertility to obtain optimal results. fertilization with the right amount and type can increase growth, productivity, and yield. The study aims to understand the response of growth, productivity, and yield of sugarcane crop (plant cane against various packages fertilization. The activities carried out in KP. Asembagus, Situbondo began November 2012-October 2013. Seven package dose of fertilizer, namely: 1 600 kg of new inorganic compound fertilizer + 100 kg ZA; 2 900 kg of new inorganic compound fertilizer 900 kg + 150 kg ZA; 3 1.200 kg of new inorganic compound fertilizer + 150 kg ZA; 4 900 kg of new inorganic compound fertilizer + 3 tons of organic fertilizer A; 5 900 kg of new inorganic compound fertilizer + 3 tons of organic fertilizer B; 6 600 kg of old inorganic compound fertilizer type I + 300 kg ZA; 7 600 kg old inorganic compound fertilizer type II + 500 kg ZA arranged in a randomized block design was repeated three times. The results showed that the fertilizer package 2, 3, and 7 generates growth and productivity tends to be higher, while the fertilizer package (except packet 5 produces yields tend to be higher. The fertilizer package 1, 2, and 3 resulted in the production of crystal tends to be higher

  4. Techno-economic comparison of biojet fuel production from lignocellulose, vegetable oil and sugar cane juice.

    Science.gov (United States)

    Diederichs, Gabriel Wilhelm; Ali Mandegari, Mohsen; Farzad, Somayeh; Görgens, Johann F

    2016-09-01

    In this study, a techno-economic comparison was performed considering three processes (thermochemical, biochemical and hybrid) for production of jet fuel from lignocellulosic biomass (2G) versus two processes from first generation (1G) feedstocks, including vegetable oil and sugar cane juice. Mass and energy balances were constructed for energy self-sufficient versions of these processes, not utilising any fossil energy sources, using ASPEN Plus® simulations. All of the investigated processes obtained base minimum jet selling prices (MJSP) that is substantially higher than the market jet fuel price (2-4 fold). The 1G process which converts vegetable oil, obtained the lowest MJSPs of $2.22/kg jet fuel while the two most promising 2G processes- the thermochemical (gasification and Fischer-Tropsch synthesis) and hybrid (gasification and biochemical upgrading) processes- reached MJSPs of $2.44/kg and $2.50/kg jet fuel, respectively. According to the economic sensitivity analysis, the feedstock cost and fixed capital investment have the most influence on the MJSP.

  5. Sweet sorghum as feedstock for ethanol production: enzymatic hydrolysis of steam-pretreated bagasse.

    Science.gov (United States)

    Sipos, Bálint; Réczey, Jutka; Somorai, Zsolt; Kádár, Zsófia; Dienes, Dóra; Réczey, Kati

    2009-05-01

    Sweet sorghum is an attractive feedstock for ethanol production. The juice extracted from the fresh stem is composed of sucrose, glucose, and fructose and can therefore be readily fermented to alcohol. The solid fraction left behind, the so-called bagasse, is a lignocellulosic residue which can also be processed to ethanol. The objective of our work was to test sweet sorghum, the whole crop, as a potential raw material of ethanol production, i.e., both the extracted sugar juice and the residual bagasse were tested. The juice was investigated at different harvesting dates for sugar content. Fermentability of juices extracted from the stem with and without leaves was compared. Sweet sorghum bagasse was steam-pretreated using various pretreatment conditions (temperatures and residence times). Efficiency of pretreatments was characterized by the degree of cellulose hydrolysis of the whole pretreated slurry and the separated fiber fraction. Two settings of the studied conditions (190 degrees C, 10 min and 200 degrees C, 5 min) were found to be efficient to reach conversion of 85-90%.

  6. Kinetics of lime pretreatment of sugarcane bagasse to enhance enzymatic hydrolysis.

    Science.gov (United States)

    Fuentes, Laura L G; Rabelo, Sarita C; Filho, Rubens Maciel; Costa, Aline C

    2011-03-01

    The objective of this work was to determine the optimum conditions of sugarcane bagasse pretreatment with lime to increase the enzymatic hydrolysis of the polysaccharide component and to study the delignification kinetics. The first stage was an evaluation of the influence of temperature, reaction time, and lime concentration in the pretreatment performance measured as glucose release after hydrolysis using a 2(3) central composite design and response surface methodology. The maximum glucose yield was 228.45 mg/g raw biomass, corresponding to 409.9 mg/g raw biomass of total reducing sugars, with the pretreatment performed at 90°C, for 90 h, and with a lime loading of 0.4 g/g dry biomass. The enzymes loading was 5.0 FPU/dry pretreated biomass of cellulase and 1.0 CBU/dry pretreated biomass of β-glucosidase. Kinetic data of the pretreatment were evaluated at different temperatures (60°C, 70°C, 80°C, and 90°C), and a kinetic model for bagasse delignification with lime as a function of temperature was determined. Bagasse composition (cellulose, hemicellulose, and lignin) was measured, and the study has shown that 50% of the original material was solubilized, lignin and hemicellulose were selectively removed, but cellulose was not affected by lime pretreatment in mild temperatures (60-90°C). The delignification was highly dependent on temperature and duration of pretreatment.

  7. Production of bio-oil from fixed bed pyrolysis of bagasse

    Energy Technology Data Exchange (ETDEWEB)

    M. Asadullah; M.A. Rahman; M.M. Ali; M.S. Rahman; M.A. Motin; M.B. Sultan; M.R. Alam [University of Rajshahi, Rajshahi (Bangladesh). Department of Applied Chemistry and Chemical Technology

    2007-11-15

    The objective of this work was to produce renewable liquid fuel (bio-oil) from locally produced bagasse by pyrolysis in a batch feeding and fixed bed reactor. The experiments were performed at different temperatures ranging from 300 to 600{sup o}C. The bio-oil was collected from two condensers of different temperatures and defined as oil-1 and oil-2. The maximum total yield of bio-oil was found to be 66.0 wt% based on bagasse. The carbon based non-condensable gases were CO, CO{sub 2}, methane, ethane, ethene, propane and propene. The density and viscosity of oil-1 were found to be 1130 kg/m{sup 3} and 19.32 centipoise and that were 1050 kg/m{sup 3} and 4.25 centipoise for oil-2, respectively. The higher heating values (HHV) of them were 17.25 and 19.91 MJ/kg, respectively. The pH of the bio-oils was found to be around 3.5 and 4.5 for oil-1 and oil-2, respectively. The water, solid and ash contents of oil-1 and oil-2 were determined and found to be around 15, 0.02 and 0.03 wt% and 11, 0.01 and 0.02 wt%, respectively based on bagasse. 22 refs., 2 figs., 4 tabs.

  8. THERMOMECHANICAL PROPERTIES OF JUTE/BAGASSE HYBRID FIBRE REINFORCED EPOXY THERMOSET COMPOSITES

    Directory of Open Access Journals (Sweden)

    Sudhir Kumar Saw

    2009-11-01

    Full Text Available Natural fibres are partly replacing currently used synthetic fibres as reinforcement for polymer composites. Jute fibre bundles were high-cellulose-content modified by alkali treatment, while the bagasse fibre bundles were modified by creating quinones in the lignin portions of fibre surfaces and reacting them with furfuryl alcohol (FA to increase their adhesiveness. The effects of different fibre bundle loading and modification of bagasse fibre surfaces in hybrid fibre reinforced epoxy composites have been studied. The role of fibre/matrix interactions in chemically modified hybrid composites were investigated using Differential Scanning Calorimeter, Differential Thermo Gravimetry, and a Universal Tensile Machine and compared with those of unmodified bagasse fibre bundles incorporated with modified jute fibre bundles reinforced hybrid composites. Fibre surface modification reduced the hydrophilicity of fibre bundles, and significantly increased mechanical properties of hybrid composites were observed in conjunction with SEM images. The SEM analysis of the fibre and the composite fractured surfaces have confirmed the FA grafting and shown a better compatibility at the interface between chemically modified fibre bundles and epoxy resin. This paper incorporates interesting results of thermomechanical properties and evaluation of fibre/matrix interactions.

  9. APPLICATION OF SURFACTANTS AS PULPING ADDITIVES IN SODA PULPING OF BAGASSE

    Directory of Open Access Journals (Sweden)

    Yahya Hamzeh

    2009-11-01

    Full Text Available The effects of several non-ionic commercial surfactants and their dosage on soda pulping and ECF bleaching of soda and soda-surfactant pulps of bagasse were investigated. The properties of bleachable pulps obtained with conventional soda and with soda-surfactants were studied and compared. The results showed application of surfactants during the soda pulping of bagasse decreased kappa number and improved the yield and brightness of resulting pulp. Using the surfactants reduced alkali consumption during pulping. The bleaching experiments showed that the pulps obtained with the three types of applied surfactants namely, ELA-2, FAE-20, and PEG1000 could be easily bleached with D0ED1 or D0EpD1 sequences. The addition of most used surfactants in soda pulping of bagasse led to higher brightness in comparison to reference pulp with the same bleaching sequence. Strength properties of bleached pulps obtained with surfactants were higher than the pulp obtained with conventional soda pulping.

  10. PARAMETERS OF PROTEIN METABOLISM IN GOATS FED DIETS WITH DIFFERENT PORTION OF SUGARCANE BAGASSE

    Directory of Open Access Journals (Sweden)

    S.A. Ariyani

    2015-04-01

    Full Text Available Fifteen Jawarandu male goats were used to study the effect of different portion of sugarcanebagasse in diets on some parameters of protein metabolism. Goats had average of body weight of 18 kgand aged at 18 months. Animals were housed in metabolic cages and were alloted to a completelyrandomized design receiving three experimental diets with sugarcane bagasse portions of 15, 25, and35% (dry matter basis, respectively. After eight weeks of adjustment period to experimental diets andenvironment, each group of treatment was subjected to ten days of digestion trial, and followed bycollection of rumen liquid samples. Parameters observed were feed digestibility, nitrogen retention,ruminal feed fermentation, and excretion of urinary allantoin to estimate microbial protein synthesis.Data were tested using one way analysis of variance, and followed by Duncan’s mulitiple range test. Drymatter and protein intakes lowered (P<0.05 as the increasing of sugarcane bagasse in diets. Proteindigestibility and retention were unaffected by the treatment of bagasse portion. The dietary treatment didnot change ruminal ammonia, total VFA, acetate, propionate, and butyrate concentrations. Microbialnitrogen synthesis and efficiency of microbial nitrogen synthesis were unaffected by the dietarytreatment.

  11. Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode.

    Science.gov (United States)

    Hao, Pin; Zhao, Zhenhuan; Tian, Jian; Li, Haidong; Sang, Yuanhua; Yu, Guangwei; Cai, Huaqiang; Liu, Hong; Wong, C P; Umar, Ahmad

    2014-10-21

    Renewable, cost-effective and eco-friendly electrode materials have attracted much attention in the energy conversion and storage fields. Bagasse, the waste product from sugarcane that mainly contains cellulose derivatives, can be a promising candidate to manufacture supercapacitor electrode materials. This study demonstrates the fabrication and characterization of highly porous carbon aerogels by using bagasse as a raw material. Macro and mesoporous carbon was first prepared by carbonizing the freeze-dried bagasse aerogel; consequently, microporous structure was created on the walls of the mesoporous carbon by chemical activation. Interestingly, it was observed that the specific surface area, the pore size and distribution of the hierarchical porous carbon were affected by the activation temperature. In order to evaluate the ability of the hierarchical porous carbon towards the supercapacitor electrode performance, solid state symmetric supercapacitors were assembled, and a comparable high specific capacitance of 142.1 F g(-1) at a discharge current density of 0.5 A g(-1) was demonstrated. The fabricated solid state supercapacitor displayed excellent capacitance retention of 93.9% over 5000 cycles. The high energy storage ability of the hierarchical porous carbon was attributed to the specially designed pore structures, i.e., co-existence of the micropores and mesopores. This research has demonstrated that utilization of sustainable biopolymers as the raw materials for high performance supercapacitor electrode materials is an effective way to fabricate low-cost energy storage devices.

  12. Microcystin-LR removal from Microcystis aeruginosa using in natura sugarcane bagasse and activated carbon

    Directory of Open Access Journals (Sweden)

    Aline Rafaela de Almeida

    2016-03-01

    Full Text Available Microcystin-LR is a type of toxin released by the Microcystis aeruginosa cyanobacteria found in water sources used for human consumption. It can cause illness and even death if not completely removed in conventional water treatment. The retention of this toxin is often accomplished by the adsorption process in activated carbon in water treatment plants. In this study, a comparison was made between the retention of microcystin-LR by activated carbon and by sugarcane bagasse in natura applied as a bio-adsorbent. Adsorption experiments were performed after the physical and chemical properties of the bio adsorbent and the activated carbon were characterized. The adsorption performance was evaluated by the toxin removal efficiency and the maximum adsorption capacity. Average removal efficiencies of the toxin resulted in 65.25; 41.74 and 11.75% for the activated carbon and 24.15; 18.92 and 12.27% for the sugarcane bagasse for concentrations of 2.36, 3.33 and 3.83 µg L-1, respectively. The bio adsorbent presented removal efficiency for the toxin similar to that observed in the activated carbon for the concentration of 3.83 µg L-1. Maximum adsorption capacity obtained with better linear adjustment to the Freundlich isotherm was 6,047.84 µg g-1 (toxin concentration of 3.83 µg L-1 for sugarcane bagasse and 338.61 µg g-1 (toxin concentration of 2.36 µg L-1 for activated carbon.

  13. Effect of chitosan and cationic starch on the surface chemistry properties of bagasse paper.

    Science.gov (United States)

    Ashori, Alireza; Cordeiro, Nereida; Faria, Marisa; Hamzeh, Yahya

    2013-07-01

    The use of non-wood fibers in the paper industry has been an economical and environmental necessity. The application of dry-strength agents has been a successful method to enhance the strength properties of paper. The experimental results evidencing the potential of chitosan and cationic starch utilization in bagasse paper subjected to hot water pre-extraction has been presented in this paper. The research analyzes the surface properties alterations due to these dry-strength agents. Inverse gas chromatography was used to evaluate the properties of surface chemistry of the papers namely the surface energy, active sites, surface area as well as the acidic/basic character. The results of the study revealed that the handsheets process causes surface arrangement and orientation of chemical groups, which induce a more hydrophobic and basic surface. The acid-base surface characteristics after the addition of dry-strength agents were the same as the bagasse handsheets with and without hot water pre-extraction. The results showed that the dry-strength agent acts as a protecting film or glaze on the surfaces of bagasse paper handsheets.

  14. COMPARATIVE EXTRACTION OF PECTIC AND POLYPHENOLS FROM MEXICAN LIME POMACE AND BAGASSE

    Directory of Open Access Journals (Sweden)

    Daniela Sanchez-Aldana

    2013-01-01

    Full Text Available Mexican lime bagasse and pomace are rich in pectin and they also represent an important source of value-added compounds such as polyphenols. Two different options for the combined recovery of pectin and phenolic compounds from Mexican lime bagasse and pomace, two byproducts of industrial lime processing, were developed. Conventional and microwave-assisted extraction methods were used. All pectic extracts presented a degree of esterification in the range of 70%. Pomace extracts had the higher pectin yield and the lower polyphenol content. Among the bioactive compounds identified by HPLC were two flavonones, naringin and hesperidin, all compounds were present in low concentration in the pectic extracts. Microwave pectic extracts presented depolymerization, as observed by molecular weight determination (12 KDa and compared against conventional pectic extracts which presented a molecular weight of 670 KDa. The film forming capacity of pectic extracts was also evaluated. Antioxidant activity of pectic extracts was also assessed by three different methods; all extracts showed a better activity in Fe2+ chelating assay (62.85-73.32% and lipid oxidation inhibition (63.07-72.28% than in DPPH radical inhibition (5.32-6.65%. These findings indicate a correlation between the amount of phenolic compounds and the antioxidative capacity. Conventional pectic extracts from Mexican lime bagasse and pomace presented bioactive compounds with potential application for edible films and coatings in food industry.

  15. Pretreatment of sweet sorghum bagasse for hydrogen production by Caldicellulosiruptor saccharolyticus

    Energy Technology Data Exchange (ETDEWEB)

    Panagiotopoulos, I.A. [Bioresource Technology Unit, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, Athens, GR 15700 (Greece); Wageningen UR Food and Biobased Research, P.O. Box 17, 6700 AA Wageningen (Netherlands); Bakker, R.R.; de Vrije, T.; Claassen, P.A.M. [Wageningen UR Food and Biobased Research, P.O. Box 17, 6700 AA Wageningen (Netherlands); Koukios, E.G. [Bioresource Technology Unit, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, Athens, GR 15700 (Greece)

    2010-08-15

    Pretreatment of sweet sorghum bagasse, an energy crop residue, with NaOH for the production of fermentable substrates, was investigated. Optimal conditions for the alkaline pretreatment of sweet sorghum bagasse were realized at 10% NaOH (w/w dry matter). A delignification of 46% was then observed, and improved significantly the efficiency of enzymatic hydrolysis. Under hydrolysis conditions without pH control, up to 50% and 41% of the cellulose and hemicellulose contained in NaOH-pretreated sweet sorghum bagasse were converted by 24 h enzymatic hydrolysis to soluble monomeric sugars. The extreme thermophilic bacterium Caldicellulosiruptor saccharolyticus showed normal growth on hydrolysates of NaOH-pretreated biomass up to a sugar concentration of 20 g/L. Besides hydrogen, the main metabolic products detected in the fermentations were acetic and lactic acid. The maximal hydrogen yield observed in batch experiments under controlled conditions was 2.6 mol/mol C6 sugar. The maximal volumetric hydrogen production rate ranged from 10.2 to 10.6 mmol/(L h). At higher substrate concentrations the production of lactic acid increased at the expense of hydrogen production. (author)

  16. NEAR INFRARED SPECTROSCOPY FOR ESTIMATING SUGARCANE BAGASSE CONTENT IN MEDIUM DENSITY FIBERBOARD

    Directory of Open Access Journals (Sweden)

    Ugo Leandro Belini

    2011-04-01

    Full Text Available Medium density fiberboard (MDF is an engineered wood product formed by breaking down selected lignin-cellulosic material residuals into fibers, combining it with wax and a resin binder, and then forming panels by applying high temperature and pressure. Because the raw material in the industrial process is ever-changing, the panel industry requires methods for monitoring the composition of their products. The aim of this study was to estimate the ratio of sugarcane (SC bagasse to Eucalyptus wood in MDF panels using near infrared (NIR spectroscopy. Principal component analysis (PCA and partial least square (PLS regressions were performed. MDF panels having different bagasse contents were easily distinguished from each other by the PCA of their NIR spectra with clearly different patterns of response. The PLS-R models for SC content of these MDF samples presented a strong coefficient of determination (0.96 between the NIR-predicted and Lab-determined values and a low standard error of prediction (~1.5% in the cross-validations. A key role of resins (adhesives, cellulose, and lignin for such PLS-R calibrations was shown. PLS-DA model correctly classified ninety-four percent of MDF samples by cross-validations and ninety-eight percent of the panels by independent test set. These NIR-based models can be useful to quickly estimate sugarcane bagasse vs. Eucalyptus wood content ratio in unknown MDF samples and to verify the quality of these engineered wood products in an online process.

  17. An novel immobilization method of Saccharomyces cerevisiae to sorghum bagasse for ethanol production.

    Science.gov (United States)

    Yu, Jianliang; Zhang, Xu; Tan, Tianwei

    2007-05-01

    Natural sorghum bagasse without any treatment was used to immobilize Saccharomyces cerevisiae at 0.6+/-0.2g dry cell weight (DCW)/g dry sorghum bagasse weight (DSW) through solid-state or semi-solid state incubation. The scanning electron microscopy (SEM) of the carriers revealed the friendship between yeast cells and sorghum bagasse are adsorption and embedding. The ethanol productivity of the immobilized cells was 2.24 times higher than the free cells. In repeated batch fermentation with an initial sugar concentration of 200g/L, nearly 100% total sugar was consumed after 16 h. The ethanol yield and productivity were 4.9 g/g consumed sugar on average and 5.72 g/(Lh), respectively. The immobilized cell reactor was operated over a period of 20 days without breakage of the carriers, while the free cell concentration in the effluent remained less than 5 g/L thoughout the fermentation. The maximum ethanol productivity of 16.68 g/(Lh) appeared at the dilution rate of 0.3h(-1).

  18. Synergistic effect of Aspergillus niger and Trichoderma reesei enzyme sets on the saccharification of wheat straw and sugarcane bagasse.

    Science.gov (United States)

    van den Brink, Joost; Maitan-Alfenas, Gabriela Piccolo; Zou, Gen; Wang, Chengshu; Zhou, Zhihua; Guimarães, Valéria Monteze; de Vries, Ronald P

    2014-10-01

    Plant-degrading enzymes can be produced by fungi on abundantly available low-cost plant biomass. However, enzymes sets after growth on complex substrates need to be better understood, especially with emphasis on differences between fungal species and the influence of inhibitory compounds in plant substrates, such as monosaccharides. In this study, Aspergillus niger and Trichoderma reesei were evaluated for the production of enzyme sets after growth on two "second generation" substrates: wheat straw (WS) and sugarcane bagasse (SCB). A. niger and T. reesei produced different sets of (hemi-)cellulolytic enzymes after growth on WS and SCB. This was reflected in an overall strong synergistic effect in releasing sugars during saccharification using A. niger and T. reesei enzyme sets. T. reesei produced less hydrolytic enzymes after growth on non-washed SCB. The sensitivity to non-washed plant substrates was not reduced by using CreA/Cre1 mutants of T. reesei and A. niger with a defective carbon catabolite repression. The importance of removing monosaccharides for producing enzymes was further underlined by the decrease in hydrolytic activities with increased glucose concentrations in WS media. This study showed the importance of removing monosaccharides from the enzyme production media and combining T. reesei and A. niger enzyme sets to improve plant biomass saccharification.

  19. Efficient chemical and enzymatic saccharification of the lignocellulosic residue from Agave tequilana bagasse to produce ethanol by Pichia caribbica.

    Science.gov (United States)

    Saucedo-Luna, Jaime; Castro-Montoya, Agustin Jaime; Martinez-Pacheco, Mauro Manuel; Sosa-Aguirre, Carlos Ruben; Campos-Garcia, Jesus

    2011-06-01

    Bagasse of Agave tequilana (BAT) is the residual lignocellulosic waste that remains from tequila production. In this study we characterized the chemical composition of BAT, which was further saccharified and fermented to produce ethanol. BAT was constituted by cellulose (42%), hemicellulose (20%), lignin (15%), and other (23%). Saccharification of BAT was carried out at 147 °C with 2% sulfuric acid for 15 min, yielding 25.8 g/l of fermentable sugars, corresponding to 36.1% of saccharificable material (cellulose and hemicellulose contents, w/w). The remaining lignocellulosic material was further hydrolyzed by commercial enzymes, ~8.2% of BAT load was incubated for 72 h at 40 °C rendering 41 g/l of fermentable sugars corresponding to 73.6% of the saccharificable material (w/w). Mathematic surface response analysis of the acid and enzymatic BAT hydrolysis was used for process optimization. The results showed a satisfactory correlation (R (2) = 0.90) between the obtained and predicted responses. The native yeast Pichia caribbica UM-5 was used to ferment sugar liquors from both acid and enzymatic hydrolysis to ethanol yielding 50 and 87%, respectively. The final optimized process generated 8.99 g ethanol/50 g of BAT, corresponding to an overall 56.75% of theoretical ethanol (w/w). Thus, BAT may be employed as a lignocellulosic raw material for bioethanol production and can contribute to BAT residue elimination from environment.

  20. Fungal Staining of Daemonorops margaritae Canes%黄藤材的真菌变色

    Institute of Scientific and Technical Information of China (English)

    吕文华; 刘杏娥; 刘君良

    2011-01-01

    The new felled fresh cane of Daemonorops margaritae is attractive yellowish white or creamy, but often change color during the course of transportation, storage, processing and utilization. Through the chemical composition analysis, the scanning electron microscope observation and the stain-fungi inoculation test of normal cane, the causes and types of the rattan cane are discussed, which is important for further research in preventing and removing the cane discoloration. Results showed that: 1 ) The cane' s yellow discoloration was mainly chemical discoloration or photodiscoloration. The cane' s blue, dark-brown and red stains were mainly caused by fungi, since there were always much fungus mycelia in the vessel and basic parenchyma tissue cells of the stained canes. 2) Compared with the normal cane, the extractive contents in all items of the fungal stained cane were decreased, and the pH value, the content of moisture, pentosan, holocellulose and ash were all increased. The chemical compositions of the core had greater change than the cortex, which indicated that the stain-fungi had greater influence on the core than on the cortex. 3 ) Fifteen fungi species were mainly isolated from the stained canes. After being inoculated with these fungi respectively, weight loss of all the normal canes was a little, but changed color greatly. The discoloration of the inoculated cane was consistent with the color of the stained cane from which the inoculating fungi were separated. Considering the stain-fungal cultivating characteristics, the blue, dark-brown and red discolorations of D. margaritae cane were mainly resulted from the colors of the stain-fungal mycelia or the pigments secreted by the stain-fungi such as melanin.%黄藤(Daemonorops margaritae),是我国热带和南亚热带森林中的主要伴生植物,是我国的优良商品棕榈藤种,为中国特有种(许煌灿等,1994a).天然分布以海南岛为中心,延伸至23°30′N以南的广东和广西南

  1. Effect of incorporating alum in cane juice clarification efficiency and sucrose losses

    Directory of Open Access Journals (Sweden)

    Benard M. Kimatu

    2015-04-01

    Full Text Available The effect of incorporating alum in the clarification stage of raw juice in sugarcane processing on the juice quality and sucrose loss was investigated. Alum was incorporated in both intermediate and hot liming clarification processes of cane juicing. One portion of the cane juice was used for With Pre-treatment Treatment (WPT while the other portion constituted No Pre-treatment (NPT juice. Alum at levels of 0 mg L-1, 50 mg L-1, 100 mg L-1 and 150 mg L-1 was incorporated in both intermediate and hot liming clarification processes in each of the two cane juice portions. Sugar concentration (sucrose, glucose and fructose, oBrix, pH, colour, settling performance (initial settling rates (ISR, final mud volume (MV∞, and turbidity and residual aluminium ion concentration were evaluated. Any significant variations (p < 0.05 in these parameters were assessed. The study found significantly lower (p < 0.05 sucrose losses in clarified juice from intermediate liming of WPT after alum treatment than in the rest of the clarified juices. Colour and turbidity in the pre-treated cane juice of intermediate liming was reduced by 36.9% and 98.1%, respectively at 150 mg L-1 alum level. An initial settling rate of 260 mL min-1 in WPT cane juice of intermediate liming at 150 mg L-1 alum level resulted in the most compact final mud volume of 10.3%. The residual aluminium concentration (0.025 to 0.048 mg L-1 in alum treated clarified juices was lower than the natural aluminium concentration (0.088 mg L-1 in untreated cane juice. This study showed the potential for the use of alum in cane juice clarification to improve on clarification efficiency and lower sucrose loss.

  2. Effect of organic matter and Si liquid fertilizer on growth and yield of sugar cane

    Directory of Open Access Journals (Sweden)

    Djajadi Djajadi

    2017-02-01

    Full Text Available Sugarcane is known to absorb more Si than any other nutrient from the soil; therefore continuous cropping of the plant at the same soil would bring consequences of more Si and organic matter depletion. Silicon (Si is considered as a beneficial nutrient for sugarcane production while organic matter is well known as soil amendment. Field study was carried out to know the effect of organic and Si liquid fertilizer on growth, Si and N uptake, and yield of cane variety of PSBM 901. The study field was located at Kempleng village, Purwoasri, East Java and the study was done from May 2013 up to September 2014. Split plot design with three replicates was employed to arrange treatments. Organic matter types (no organic matter, Crotalaria juncea and manure were set as main plots while Si liquid fertilizer concentration (0, 15% Si and 30% S were arranged as sub plots. C juncea was planted at 15 days before planting of sugar cane, and after 35 days the C juncea were chopped and mixed into the soil. Manure was added one week before sugar cane was planted. Si liquid fertilizer was sprayed to the whole part of sugar cane plant at 30 and 50 days after sugar cane was planted. All treatments received basal fertilizer of 800 kg ZA/ha, 200 kg SP 36/ha and 300 kg KCl/ha. Results showed that interaction between organic matter and Si liquid fertilizer significantly affected on Si and N absorption, length of stem, yield and rendement of sugar cane. Addition of manure and followed by spraying of 30% Si liquid fertilizer gave the highest value of S and N absorption (869 g SiO2/plant and 720 g N/plant, cane yield (155.74 tons/ha and rendement (8.15%.

  3. Description of the production process - industrial phase; Descricao do processo produtivo - fase industrial

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-10-15

    This chapter presents the description of the present state-of-art, in this paper called first generation of the productive process of sugar-cane bio ethanol in Brazil, related to the industrial phase involving their improvements and also the aspects related to the second generation technologies, particularly the hydrolysis and gasification of the biomass technologies. The chapter also approaches the aspects referred to the use of sugar cane bagasse and the straw cape, and also the production of electric power surplus.

  4. Invasive cane toads: social facilitation depends upon an individual's personality.

    Science.gov (United States)

    González-Bernal, Edna; Brown, Gregory P; Shine, Richard

    2014-01-01

    Individual variation in behavioural traits (including responses to social cues) may influence the success of invasive populations. We studied the relationship between sociality and personality in invasive cane toads (Rhinella marina) from a recently established population in tropical Australia. In our field experiments, we manipulated social cues (the presence of a feeding conspecific) near a food source. We captured and compared toads that only approached feeding sites where another toad was already present, with conspecifics that approached unoccupied feeding sites. Subsequent laboratory trials showed correlated personality differences (behavioural syndromes) between these two groups of toads. For example, toads that approached already-occupied rather than unoccupied feeding sites in the field, took longer to emerge from a shelter-site in standardized trials, suggesting these individuals are 'shy' (whereas toads that approached unoccupied feeding stations tended to be 'bold'). Manipulating hunger levels did not abolish this difference. In feeding trials, a bold toad typically outcompeted a shy toad under conditions of low prey availability, but the outcome was reversed when multiple prey items were present. Thus, both personality types may be favored under different circumstances. This invasive population of toads contains individuals that exhibit a range of personalities, hinting at the existence of a wide range of social dynamics in taxa traditionally considered to be asocial.

  5. Sugar cane tip silage with cassava agroindustry residue

    Directory of Open Access Journals (Sweden)

    Odnei Francisco Gargantini

    2013-03-01

    Full Text Available The study aimed to determine the effects of adding levels of 0; 5; 10; 15 and 20% of cassava natural matter, peel dried in the sun or bran scan cassava over the nutritional value of sugarcane tip silage. To reach the proposal, 36 experimental silos were used. They were weighed at closing and after 60 days of fermentation, before opening to obtain the gas and effluent losses. Samples were collected for pH determination and chemical composition. Values of dry matter, crude protein, neutral detergent fiber, acid detergent fiber, mineral matter and total digestible nutrients were determined. There were differences between silages for all variables, except for crude protein when cassava peel or cassava bran scan was used. The pH values and effluent production were not affected by the use of the residues. However, the gas losses were lower when cassava peel was added. To improve the quality of sugar cane tip silage, it is recommended the use of cassava peel dried in the sun or cassava bran scan at the level of 20% in natural matter, upon ensilage.

  6. Development of Powered Disk Type Sugar Cane Stubble Saver

    Directory of Open Access Journals (Sweden)

    Radite P.A.S.

    2009-04-01

    Full Text Available The objective of this research was to design, fabricate and test a prototype of sugar cane stubble saver based on powered disk mechanism. In this research, a heavy duty disk plow or disk harrow was used as a rotating knife to cut the sugarcane stubble. The parabolic disk was chosen because it is proven reliable as soil working tools and it is available in the market as spare part of disk plow or disk harrow unit. The prototype was mounted on the four wheel tractor’s three point hitch, and powered by PTO of the tractor. Two kinds of disks were used in these experiments, those were disk with regular edge or plain disk and disk with scalloped edge or scalloped disk. Both disks had diameter of 28 inch. Results of field test showed that powered disk mechanism could satisfy cut sugar cane’s stubble. However, scalloped disk type gave smoother stubble cuts compared to that of plain disk. Plain disk type gave broken stubble cut. Higher rotation (1000 rpm resulted better cuts as compared to lower rotation (500 rpm both either on plain disk and scalloped disk. The developed prototype could work below the soil surface at depth of 5 to 10 cm. With tilt angle setting 20O and disk angle 45O the width of cut was about 25 cm.

  7. Geothermal resource utilization: paper and cane sugar industries. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hornburg, C.D.; Morin, O.J.

    1975-03-01

    This study was made as a specific contribution to an overall report by the United States in the area of industrial utilization of geothermal resources. This is part of an overall study in non-electrical uses of geothermal resources for a sub-committee of the North Atlantic Treaty Organization. This study was restricted to the geopressured zone along the Northern Gulf of Mexico Coast. Also, it was limited to utilizing the thermal energy of this ''geoenergy'' resource for process use in the Pulp and Paper Industry and Cane Sugar Industry. For the selected industries and resource area, this report sets forth energy requirements; identifies specific plant and sites; includes diagrams of main processes used; describes process and equipment modifications required; describes energy recovery systems; sets forth waste disposal schemes and problems; and establishes the economics involved. The scope of work included considerable data collection, analysis and documentation. Detailed technical work was done concerning existing processes and modifications to effectively utilize geothermal energy. A brief survey was made of other industries to determine which of these has a high potential for utilizing geothermal energy.

  8. Le processus de sublimation du cyclododécane

    Directory of Open Access Journals (Sweden)

    Stefanie Bruhin

    2010-11-01

    Full Text Available De par sa capacité à se volatiliser à température ambiante, le cyclododécane constitue une solution temporaire très utile pour les consolidations, les renforcements et les couches de protection. Afin de mieux comprendre le processus de sublimation qui est en jeu, nous avons réalisé une série de tests gravimétriques et thermoanalytiques qui nous ont permis de préciser comment la vitesse de sublimation peut être fortement ralentie ou accélérée selon les variations de température, de volume et de pression.Due to its capability of becoming volatile at room temperature, cyclododecane offers a temporary solution for consolidation, support and surface protection. For a better comprehension of the sublimation process, gravimetric and thermoanalytic investigations have been performed. Both investigations have lead to specific information on the way the sublimation process can be highly accelerated or slowed down using  the factors of temperature, volume and pressure.

  9. Body measurements and morphological evaluation of Italian Cane Corso

    Directory of Open Access Journals (Sweden)

    M. Polli

    2011-03-01

    Full Text Available Mastiff-like breeds are getting more and more popular due to their appearance and behaviour; within Italian breeds Cane Corso (CC, light mastiff-like type, is the one with the most positive entry trend in the last decade. CC is the 14th Italian breed; his original area is southern Italy. His standard has been officially recognised in 1994. CC standard, as every Italian dog breed standard, is very precise and objective giving a mathematical description of the main body region dimensions. The aim of this work is, through breed standard analysis and CC population study, to verify the closeness of the actual population to the standard mean values. Biometric investigation was applied as statistic method for biological problem analysis (Balasini, 1988. Collected data consist in body measurements and linear scoring applied to those anatomic regions and aspects difficult to be measured. A biometric study of a canine population could represent a valuable method to describe the breed condition in a given moment and could create a data bank for subsequent continuous studying to verify the morphological evolution of the breed..........

  10. Distances to Dwarf Galaxies of the Canes Venatici I Cloud

    CERN Document Server

    Makarov, D I; Uklein, R I

    2013-01-01

    We determined the spatial structure of the scattered concentration of galaxies in the Canes Venatici constellation. We redefined the distances for 30 galaxies of this region using the deep images from the Hubble Space Telescope archive with the WFPC2 and ACS cameras. We carried out a high-precision stellar photometry of the resolved stars in these galaxies, and determined the photometric distances by the tip of the red giant branch (TRGB) using an advanced technique and modern calibrations. High accuracy of the results allows us to distinguish the zone of chaotic motions around the center of the system. A group of galaxies around M94 is characterized by the median velocity VLG=287 km/s, distance D=4.28 Mpc, internal velocity dispersion sigma=51 km/s and total luminosity LB=1.61x10^10 Lo. The projection mass of the system amounts to Mp=2.56x10^12 Mo, which corresponds to the mass-luminosity ratio of (M/L)p=159 (M/L)o. The estimate of the mass-luminosity ratio is significantly higher than the typical ratio M/LB...

  11. Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility

    Directory of Open Access Journals (Sweden)

    Rezende Camila

    2011-11-01

    Full Text Available Abstract Background In recent years, biorefining of lignocellulosic biomass to produce multi-products such as ethanol and other biomaterials has become a dynamic research area. Pretreatment technologies that fractionate sugarcane bagasse are essential for the successful use of this feedstock in ethanol production. In this paper, we investigate modifications in the morphology and chemical composition of sugarcane bagasse submitted to a two-step treatment, using diluted acid followed by a delignification process with increasing sodium hydroxide concentrations. Detailed chemical and morphological characterization of the samples after each pretreatment condition, studied by high performance liquid chromatography, solid-state nuclear magnetic resonance, diffuse reflectance Fourier transformed infrared spectroscopy and scanning electron microscopy, is reported, together with sample crystallinity and enzymatic digestibility. Results Chemical composition analysis performed on samples obtained after different pretreatment conditions showed that up to 96% and 85% of hemicellulose and lignin fractions, respectively, were removed by this two-step method when sodium hydroxide concentrations of 1% (m/v or higher were used. The efficient lignin removal resulted in an enhanced hydrolysis yield reaching values around 100%. Considering the cellulose loss due to the pretreatment (maximum of 30%, depending on the process, the total cellulose conversion increases significantly from 22.0% (value for the untreated bagasse to 72.4%. The delignification process, with consequent increase in the cellulose to lignin ratio, is also clearly observed by nuclear magnetic resonance and diffuse reflectance Fourier transformed infrared spectroscopy experiments. We also demonstrated that the morphological changes contributing to this remarkable improvement occur as a consequence of lignin removal from the sample. Bagasse unstructuring is favored by the loss of cohesion between

  12. Do wood-based panels made with agro-industrial residues provide environmentally benign alternatives? An LCA case study of sugarcane bagasse addition to particle board manufacturing

    DEFF Research Database (Denmark)

    Silva, Diogo Aparecido Lopes; Lahr, Francisco Antonio Rocco; Pavan, Ana Laura Raymundo

    2014-01-01

    environmental impacts? Could it substitute wood as raw material? Accordingly, this paper presents a life cycle assessment (LCA) study of particle board manufactured with sugarcane bagasse residues.The cradle-to-gate assessment of 1 m3 of particle board made with sugarcane bagasse (PSB) considered three main...

  13. Structural characterisation of pretreated solids from flow-through liquid hot water treatment of sugarcane bagasse in a fixed-bed reactor

    CSIR Research Space (South Africa)

    Reddy, P

    2015-05-01

    Full Text Available Untreated sugarcane bagasse and sugarcane bagasse pretreated with flow-through liquid hot water (LHW) treatment (170-207°C and 204-250 ml/min) in a fixed-bed reactor have been structurally characterised. Field emission gun scanning electron...

  14. Analysis of by-product formation and sugar monomerization in sugarcane bagasse pretreated at pilot plant scale: Differences between autohydrolysis, alkaline and acid pretreatment

    NARCIS (Netherlands)

    Pol, van der E.C.; Bakker, R.; Zeeland, van A.N.T.; Sanchez Garcia, D.; Punt, A.M.; Eggink, G.

    2015-01-01

    Sugarcane bagasse is an interesting feedstock for the biobased economy since a large fraction is polymerized sugars. Autohydrolysis, alkaline and acid pretreatment conditions combined with enzyme hydrolysis were used on lignocellulose rich bagasse to acquire monomeric. By-products found after pretre

  15. Effects of inoculum to substrate ratio and co-digestion with bagasse on biogas production of fish waste.

    Science.gov (United States)

    Xu, Jie; Mustafa, Ahmed M; Sheng, Kuichuan

    2017-10-01

    To overcome the biogas inhibition in anaerobic digestion of fish waste (FW), effects of inoculum to substrate ratio (I/S, based on VS) and co-digestion with bagasse on biogas production of FW were studied in batch reactors. I/S value was from 0.95 to 2.55, bagasse content in co-digestion (based on VS) was 25%, 50% and 75%. The highest biogas yield (433.4 mL/gVS) with 73.34% methane content was obtained at an I/S value of 2.19 in mono-digestion of FW; the biogas production was inhibited and the methane content was below 70% when I/S was below 1.5. Co-digestion of FW and bagasse could improve the stability and biogas potential, also reducing the time required to obtain 70% of the total biogas production, although the total biogas yield and methane content decreased with the increase in bagasse content in co-digestion. Biogas yield of 409.5 mL/gVS was obtained in co-digestion of 75% FW and 25% bagasse; simultaneously 78.46% of the total biogas production was achieved after 10 days of digestion.

  16. Effect of Subsequent Dilute Acid and Enzymatic Hydrolysis on Reducing Sugar Production from Sugarcane Bagasse and Spent Citronella Biomass

    Directory of Open Access Journals (Sweden)

    Robinson Timung

    2016-01-01

    Full Text Available This work was aimed at investigating the effect of process parameters on dilute acid pretreatment and enzymatic hydrolysis of spent citronella biomass (after citronella oil extraction and sugarcane bagasse on total reducing sugar (TRS yield. In acid pretreatment, the parameters studied were acid concentration, temperature, and time. At the optimized condition (0.1 M H2SO4, 120°C, and 120 min, maximum TRS obtained was 452.27 mg·g−1 and 487.50 mg·g−1 for bagasse and citronella, respectively. Enzymatic hydrolysis of the pretreated biomass using Trichoderma reesei 26291 showed maximum TRS yield of 226.99 mg·g−1 for citronella and 282.85 mg·g−1 for bagasse at 10 FPU, 50°C, and 48 hr. The maximum crystallinity index (CI of bagasse and citronella after acid pretreatment obtained from X-ray diffraction analysis was 64.41% and 56.18%, respectively. Decreased CI after enzymatic hydrolysis process to 37.28% and 34.16% for bagasse and citronella, respectively, revealed effective conversion of crystalline cellulose to glucose. SEM analysis of the untreated and treated biomass revealed significant hydrolysis of holocellulose and disruption of lignin.

  17. COMPLETE CHARACTERIZATION OF BAGASSE OF EARLY SPECIES OF SACCHARUM OFFICINERUM-CO 89003 FOR PULP AND PAPER MAKING

    Directory of Open Access Journals (Sweden)

    Swarnima Agnihotri

    2010-04-01

    Full Text Available Bagasse from early species of Saccharum officinerum-Co 89003 has 71.36% useful, long, and thick-walled fibers with good slenderness ratio, but the rigidity coefficient is less than that of Eucalyptus tereticornis and Leucaena leucocephala. The kink index and kink per mm length are lower in bagasse fiber than E. terticornis, which gives rise to fewer weak points in the fiber. Low alcohol–benzene soluble substances in bagasse induce less pitch problems and favor more homogeneity in the paper. Lignin content in bagasse is comparable to Eucalyptus globulus and Leucaena leucocephala, but α-cellulose, and pentosans are slightly lower. A higher proportion of carbon content compared to hydrogen and oxygen increases the energy value of bagasse. It produces 42.2% pulp yield of kappa number 28.2 at optimum cooking conditions, such as active alkali 12% (as Na2O, temperature 150oC, and time (at temperature 60 min. An addition of 0.1% anthraquinone at the optimum condition improves pulp yield by 2.6% and mitigates kappa number by 3.9 units.

  18. The effect of dietary bagasse on the activities of some key enzymes of carbohydrate and lipid metabolism in mouse liver.

    Science.gov (United States)

    Stanley, J C; Newsholme, E A

    1985-09-01

    The effects of a 100 g/kg diet substitution of bagasse on the body-weight gain, food consumption and faecal dry weight of mice given a high-sucrose diet and on the activities of hepatic glucose-6-phosphate dehydrogenase (EC I.I.I.49), 6-phosphogluconate dehydrogenase (EC I.I.I.44), malate dehydrogenase (oxaloacetate-decarboxylating) (NADP+) (EC I.I.I.40), ATP-citrate (pro-3S) lyase (EC 4.I.3.8), 6-phosphofructokinase EC 2.7.I.II), pyruvate kinase (EC 2.7.I.40) and fructose-1,6-bisphosphatase (EC 3.I.3.II) were studied. Bagasse had no effect on body-weight gain, food consumption or faecal dry weight. Bagasse decreased the activities of glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase and phosphofructokinase expressed on a wet weight basis and on a protein basis. Bagasse decreased the activities of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase expressed on a body-weight basis. These results suggest that bagasse decreases the flux through some pathways of hepatic lipogenesis when mice are given high-sucrose diets.

  19. Rapid Preparation of Biosorbents with High Ion Exchange Capacity from Rice Straw and Bagasse for Removal of Heavy Metals

    Directory of Open Access Journals (Sweden)

    Supitcha Rungrodnimitchai

    2014-01-01

    Full Text Available This work describes the preparation of the cellulose phosphate with high ion exchange capacity from rice straw and bagasse for removal of heavy metals. In this study, rice straw and bagasse were modified by the reaction with phosphoric acid in the presence of urea. The introduced phosphoric group is an ion exchangeable site for heavy metal ions. The reaction by microwave heating yielded modified rice straw and modified bagasse with greater ion exchange capacities (∼3.62 meq/g and shorter reaction time (1.5–5.0 min than the phosphorylation by oil bath heating. Adsorption experiments towards Pb2+, Cd2+, and Cr3+ ions of the modified rice straw and the modified bagasse were performed at room temperature (heavy metal concentration 40 ppm, adsorbent 2.0 g/L. The kinetics of adsorption agreed with the pseudo-second-order model. It was shown that the modified rice straw and the modified bagasse could adsorb heavy metal ions faster than the commercial ion exchange resin (Dowax. As a result of Pb2+ sorption test, the modified rice straw (RH-NaOH 450W removed Pb2+ much faster in the initial step and reached 92% removal after 20 min, while Dowax (commercial ion exchange resin took 90 min for the same removal efficiency.

  20. Energy and exergy analysis of cookstove by using Cedrus deodara (deodar wood) and saccharum officinarum (sugar cane) waste

    Science.gov (United States)

    Chouhan, A. P. Singh; Yaseen, S.; Pruthi, A.

    2017-07-01

    Deodar (Cedrus deodara) wood collected from the Kashmir region in India. This study is focused on energy and exergy analysis of cook stove by using deodar wood, demand of a cookstove is higher in rural areas. In ancient time U-shaped and three stone cook stove was used, but they emitted greenhouse gases CO and CO2 in the environment and these toxic emissions are also dangerous for human being and the environment. Sampada model cook stove used for the analysis of energy an exergy by using water boiling test with using deodar wood and bagasse samples and a mixture of wood and bagasse also used. Wood and bagasse characterized for the ultimate, proximate, calorific value before the water boiling test of the cookstove. Results carried out that the efficiency of cook stove with deodar wood was 33.33 % and exergy calculated 2.1 % and energy efficiency and energy efficiency by using bagasse were 23.23 % and 0.43 %, respectively, and wood and bagasse mixture ratio given energy and exergy efficiencies for ratios 75:25 is the best ratio of energy production. These results indicated that deodar wood is more stable because thermal stability of wood is greater than bagasse. Deodar is a suitable source for the combustion purposes of higher energy production.