WorldWideScience

Sample records for candu fuel bundle

  1. candu fuel bundle fabrication

    International Nuclear Information System (INIS)

    This paper describes works on CANDU fuel bundle fabrication in the Fuel Fabrication Development and Testing Section (FFDT) of AECL's Chalk River Laboratories. This work does not cover fuel design, pellet manufacturing, Zircaloy material manufacturing, but cover the joining of appendages to sheath tube, endcap preparation and welding, UO2 loading, end plate preparation and welding, and all inspections required in these steps. Materials used in the fabrication of CANDU fuel bundle are: 1)Ceramic UO2 Pellet 2)Zircaloy -4. Fuel Bundle Structural Material 3) Others (Zinc stearate, Colloidal graphite, Beryllium and Heium). Th fabrication of fuel element consist of three process: 1)pellet loading into the sheats, 2) endcap welding, and 3) the element profiling. Endcap welds is tested by metallography and He leak test. The endcaps of the elements are welded to the end plates to form the 37- element bundle assembly

  2. CANDU fuel bundle skin friction factor

    International Nuclear Information System (INIS)

    Single-phase, incompressible fluid flow skin friction factor correlations, primarily for CANDU 37-rod fuel bundles, were reviewed. The correlations originated from curve-fits to flow test data, mostly with new fuel bundles in new pressure tubes (flow tubes), without internal heating. Skin friction in tubes containing fuel bundles (noncircular flow geometry) was compared to that in equivalent diameter smooth circular tubes. At Reynolds numbers typical of normal flows in CANDU fuel channels, the skin friction in tubes containing bundles is 8 to 15% higher than in equivalent diameter smooth circular tubes. Since the correlations are based on scattered results from measurements, the skin friction with bundles may be even higher than indicated above. The information permits over- or under-prediction of the skin friction, or choosing an intermediate value of friction, with allowance for surface roughnesses, in thermal-hydraulic analyses of CANDU heat transport systems. (author) 9 refs., 2 figs

  3. CANFLEX - an advanced fuel bundle for CANDU

    International Nuclear Information System (INIS)

    The performance of CANDU pressurized heavy-water reactors, in terms of lifetime load factors, is excellent. More than 600 000 bundles containing natural-uranium fuel have been irradiated, with a low defect rate; reactor unavailability due to fuel incidents is typically zero. To maintain and improve CANDU's competitive position, Atomic Energy of Canada Limited (AECL) has an ongoing program comprising design, safety and availability improvements, advanced fuel concepts and schemes to reduce construction time. One key finding is that the introduction of slightly-enriched uranium (SEU, less than 1.5 wt% U-235 in U) offers immediate benefits for CANDU, in terms of fuelling and back-end disposal costs. The use of SEU places more demands on the fuel because of extended burnup, and an anticipated capability to load-follow also adds to the performance requirements. To ensure that the duty-cycle targets for SEU and load-following are achieved, AECL is developing a new fuel bundle, termed CANFLEX (CANdu FLEXible), where flexible refers to the versatility of the bundle with respect to operational and fuel-cycle options. Though the initial purpose of the new 43-element bundle is to introduce SEU into CANDU, CANFLEX is extremely versatile in its application, and is compatible with other fuel cycles of interest: natural uranium in existing CANDU reactors, recycled uranium and mixed-oxides from light-water reactors, and thoria-based fuels. Capability with a variety of fuel cycles is the key to future CANDU success in the international market. The improved performance of CANFLEX, particularly at high burnups, will ensure that the full economic benefits of advanced fuels cycles are achieved. A proof-tested CANFLEX bundle design will be available in 1993 for large-scale commercial-reactor demonstration

  4. Monitoring defective CANDU fuel bundles

    International Nuclear Information System (INIS)

    In 2005, it was proposed that a passive substance such as Nanocrystals could be used to monitor and locate defect fuel elements in-core. The experimental goal was to determine if Nanocrystals could be used for this application. Originally nanocrystals tagging was suggested for current operational CANDU-600 fuel. Other methods, including noble gas tagging, are also being investigated. Moreover, the scope of the project has been extended to include the identification of Dysprosium-doped fuel in the new ACR fuel design. The purpose of this paper is to discuss the experimental progress made at RMC on this project. (author)

  5. Using Advanced Fuel Bundles in CANDU Reactors

    International Nuclear Information System (INIS)

    Improving the exit fuel burnup in CANDU reactors was a long-time challenge for both bundle designers and performance analysts. Therefore, the 43-element design together with several fuel compositions was studied, in the aim of assessing new reliable, economic and proliferation-resistant solutions. Recovered Uranium (RU) fuel is intended to be used in CANDU reactors, given the important amount of slightly enriched Uranium (~0.96% w/o U235) that might be provided by the spent LWR fuel recovery plants. Though this fuel has a far too small U235 enrichment to be used in LWR's, it can be still used to fuel CANDU reactors. Plutonium based mixtures are also considered, with both natural and depleted Uranium, either for peacefully using the military grade dispositioned Plutonium or for better using Plutonium from LWR reprocessing plants. The proposed Thorium-LEU mixtures are intended to reduce the Uranium consumption per produced MW. The positive void reactivity is a major concern of any CANDU safety assessment, therefore reducing it was also a task for the present analysis. Using the 43-element bundle with a certain amount of burnable poison (e.g. Dysprosium) dissolved in the 8 innermost elements may lead to significantly reducing the void reactivity. The expected outcomes of these design improvements are: higher exit burnup, smooth/uniform radial bundle power distribution and reduced void reactivity. Since the improved fuel bundles are intended to be loaded in existing CANDU reactors, we found interesting to estimate the local reactivity effects of a mechanical control absorber (MCA) on the surrounding fuel cells. Cell parameters and neutron flux distributions, as well as macroscopic cross-sections were estimated using the transport code DRAGON and a 172-group updated nuclear data library. (author)

  6. Development of nuclear fuel. Development of CANDU advanced fuel bundle

    International Nuclear Information System (INIS)

    In order to develop CANDU advanced fuel, the agreement of the joint research between KAERI and AECL was made on February 19, 1991. AECL conceptual design of CANFLEX bundle for Bruce reactors was analyzed and then the reference design and design drawing of the advanced fuel bundle with natural uranium fuel for CANDU-6 reactor were completed. The CANFLEX fuel cladding was preliminarily investigated. The fabricability of the advanced fuel bundle was investigated. The design and purchase of the machinery tools for the bundle fabrication for hydraulic scoping tests were performed. As a result of CANFLEX tube examination, the tubes were found to be meet the criteria proposed in the technical specification. The dummy bundles for hydraulic scoping tests have been fabricated by using the process and tools, where the process parameters and tools have been newly established. (Author)

  7. Fabrication of PWR fuel assembly and CANDU fuel bundle

    International Nuclear Information System (INIS)

    For the project of localization of nuclear fuel fabrication, the R and D to establish the fabrication technology of CANDU fuel bundle as well as PWR fuel assembly was carried out. The suitable boss height and the prober Beryllium coating thickness to get good brazing condition of appendage were studied in the fabrication process of CANDU fuel rod. Basic Studies on CANLUB coating method also were performed. Problems in each fabrication process step and process flow between steps were reviewed and modified. The welding conditions for top and bottom nozzles, guide tube, seal and thimble screw pin were established in the fabrication processes of PWR fuel assembly. Additionally, some researches for a part of PWR grid brazing problems are also carried out

  8. Effect of Candu Fuel Bundle Modeling on Sever Accident Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Dupleac, D.; Prisecaru, I. [Power Plant Engineering Faculty, Politehnica University, 313 Splaiul Independentei, 060042, sect. 6, Bucharest (Romania); Mladin, M. [Institute for Nuclear Research, Pitesti-Mioveni, 115400 (Romania)

    2009-06-15

    In a Candu 6 nuclear power reactor fuel bundles are located in horizontal Zircaloy pressure tubes through which the heavy-water coolant flows. Each pressure tube is surrounded by a concentric calandria tube. Outside the calandria tubes is the heavy-water moderator contained in the calandria itself. The moderator is maintained at a temperature of 70 deg. C by a separate cooling circuit. The moderator surrounding the calandria tubes provides a potential heat sink following a loss of core heat removal. The calandria vessel is in turn contained within a shield tank (or reactor vault), which provides biological shielding during normal operation and maintenance. It is a large concrete tank filled with ordinary water. During normal operation, about 0.4% of the core's thermal output is deposited in the shield tank and end shields, through heat transfer from the calandria structure and fission heating. In a severe accident scenario, the shield tank could provide an external calandria vessel cooling which can be maintained until the shield tank water level drops below the debris level. The Candu system design has specific features which are important to severe accidents progression and requires selective consideration of models, methods and techniques of severe accident evaluation. Moreover, it should be noted that the mechanistic models for severe accident in Candu system are largely less well validated and as the result the level of uncertainty remains high in many instances. Unlike the light water reactors, for which are several developed computer codes to analyze severe accidents, for Candu severe accidents analysis two codes were developed: MAAP4-Candu and ISAAC. However, both codes started by using MAAP4/PWR as reference code and implemented Candu 6 specific models. Thus, these two codes had many common features. Recently, a joint project involving Romanian nuclear organizations and coordinated by Politehnica University of Bucharest has been started. The purpose

  9. Nanocrystal and noble gas tagging for monitoring defective CANDU fuel bundles

    International Nuclear Information System (INIS)

    The purpose of this paper is to discuss two possible defective fuel bundle tagging techniques that have been suggested for CANDU-6 nuclear reactors. The general design of a CANDU-6 reactor and fuel bundle is reviewed. Nanocrystal tagging is introduced. A current production method for CdTe nanocrystals and future experimental goals are outlined and noble gas tagging is reviewed. Considerations for the future implementation of these tagging methods for fuel in a CANDU-6 reactor is also discussed. (author)

  10. Subchannel analysis of CANDU 37-element fuel bundles

    International Nuclear Information System (INIS)

    The subchannel analysis codes COBRA-IV and ASSERT-4 have been used to predict the mass and enthalpy imbalance within a CANDU 37-element fuel channel under various system conditions. The objective of this study was to assess the various capabilities of the ASSERT code and highlight areas where further validation or development may be needed. The investigation indicated that the ASSERT code has all the basic models required to accurately predict the flow and enthalpy imbalance for complex rod bundles. The study also showed that the code modelling of void drift and diffusion requires refinement to some coefficients and that further validation is needed at high flow rate and high void fraction conditions, where ASSERT and COBRA are shown to predict significantly different trends. The results of a recent refinement of ASSERT modelling are also discussed

  11. Canflex: A fuel bundle to facilitate the use of enrichment and fuel cycles in CANDU reactors

    International Nuclear Information System (INIS)

    The neutron economy of the CANDU reactor results in it being an ideal host for a number of resource-conserving fuel cycles, as well as a number of potential ''symbiotic'' fuel cycles, in which fuel discharged from light-water cooled reactors is recycled to extract the maximum energy from the residual fissile material before it is sent for disposal. The resource conserving fuel cycles include the natural-uranium, slightly-enriched-uranium and thorium fuel cycles. The ''LWR-symbiotic'' cycles include recovered uranium and various options for the direct use of spent LWR fuel in CANDU reactors. However, to achieve the maximum economic potential of these fuel-cycle options requires irradiation to burnups higher than that possible with natural uranium. To provide a basis for the economic use of these fuel cycles, a program is underway to develop and demonstrate a CANDU fuel bundle capable of both higher burnups and greater operating margins. This new bundle design is being developed jointly by AECL and KAERI, and uses smaller-diameter fuel elements in the outer ring of a 43-element bundle to reduce the maximum element ratings in a CANDU fuel bundle by 20% compared to the 37-element bundle currently in use. This allows operation to burnups greater than 21 MWd/KgU. A combination of this lower peak-element rating, plus development work underway at AECL to enhance the thermalhydraulic characteristics of the bundle (including both critical heat flux and bundle pressure drop), provides a greater operating margin for the bundle. This new bundle design is called CANFLEX, and the program for its development in Canada and Korea is described in this paper. (author). 19 refs, 5 figs

  12. CANDU-6 fuel bundle fabrication and advanced fuels development in China

    International Nuclear Information System (INIS)

    In recent years, China North Nuclear Fuel Corporation (CNNFC) has introduced several modifications to the manufacturing processes and the production line equipment. This has been beneficial in achieving a very high level of quality in the production of fuel bundles. Since 2008 CNNFC has participated in a multi party project with the goal of developing advanced fuels for use in CANDU reactors. Other project team members include the Nuclear Power Institute of China (NPIC), Third Qinshan Nuclear Power Company (TQNPC) and Atomic Energy of Canada Ltd (AECL). This paper will present the improvements developed during the manufacture of natural fuel bundles and advanced fuels. (author)

  13. Fuel bundle geometry and composition influence on coolant void reactivity reduction in ACR and CANDU reactors

    International Nuclear Information System (INIS)

    It is very well known that the CANDU reactor has positive Coolant Void Reactivity (CVR), which is most important criticisms about CANDU. The most recent innovations based on using a thin absorbent Hafnium shell in the central bundle element were successfully been applied to the Advanced CANDU Reactor (ACR) project. The paper's objective is to analyze elementary lattice cell effects in applying such methods to reduce the CVR. Three basic fuel designs in their corresponding geometries were chosen to be compared: the ACR-1000TM, the RU-43 (developed in INR Pitesti) and the standard CANDU fuel. The bundle geometry influence on void effect was also evaluated. The WIMS calculations proved the Hafnium absorber suitability (in the latest 'shell design') to achieve the negative CVR target with great accuracy for the ACR-1000 fuel bundle design than for the other two projects. (authors)

  14. Study of the end flux peaking for the Candu fuel bundle types by transport methods

    International Nuclear Information System (INIS)

    The region separating the Candu fuel in two adjoining bundles in a channel is called the end region. The end of the last pellet in the fuel stack adjacent to the end region is called the fuel end. In the end region of the bundle the thermal neutron flux is higher than at the axial mid-point, because the end region of the bundle is made up of very low neutron absorption material: coolant and Zircaloy-4. For accurate evaluation of fuel performance, it is important to have capability to calculate the three dimensional spatial flux distributions in the fuel bundle, including the end region. The work reported here had two objectives. First, calculation of the flux distributions (axial and radial) and the end flux peaking factors for some Candu fuel bundles. Second objective is a comparative analysis of the obtained results. The Candu fuel bundles considered in this paper are NU37 (Natural Uranium, 37 elements) and SEU43 (Slightly Enriched Uranium, 43 elements, with 1.1wt% enrichment). For realization of the proposed objectives, a methodology based on WIMS, PIJXYZ and LEGENTR codes is used in this paper. WIMS is a standard lattice-cell code, based on transport theory and it is used for producing fuel cell multigroup macroscopic cross sections. For obtaining the flux distribution in Candu fuel bundles it is used PIJXYZ and LEGENTR respectively codes. These codes are consistent with WIMS lattice-cell calculations and allow a good geometrical representation of the Candu bundle in three dimensions. PIJXYZ is a 3D integral transport code using the first collision probability method and it has been developed for Candu cell geometry. LEGENTR is a 3D SN transport code based on projectors technique and can be used for 3D cell and 3D core calculations. (author)

  15. RU-43 a new uranium fuel bundle design for using in CANDU type reactors

    International Nuclear Information System (INIS)

    A unique feature of the CANDU reactor design is its ability to use alternative fuel cycles other than natural uranium (NU), without requiring major modifications to the basic reactor design. These alternative fuel cycles, which are known as advanced fuel cycles, utilize a variety of fissile materials, including Slightly Enriched Uranium (SEU) from enrichment facilities, and Recovered Uranium (RU) obtained from the reprocessing of the spent fuel of light-water reactors (LWR). A fissile content in the RU of 0.9 to 1.0 % makes it impossible for reuse in an LWR without re-enrichment, but CANDU reactors have a sufficient high neutron economy to use RU as fuel. RU from spent LWR fuel can be considered as a lower cost source of enrichment at the optimal enrichment level for CANDU fuel pellets. In Europe the feedstock of RU is approaching thousands tones and would provide sufficient fuel for hundreds CANDU-6 reactors years of operation. The use of RU fuel offers significant benefits to CANDU reactor operators. RU fuels improve fuel cycle economics by increasing the fuel burnup, which enables large cost reductions in fuel consumption and in spent fuel disposal. RU fuel offers enhanced operating margins that can be applied to increase reactor power. These benefits can be realized using existing fuel production technologies and practices, and with almost negligible changes to fuel receipt and handling procedures at the reactor. The application of RU fuel could be an important element in NPP Cernavoda from Romania. For this reason the Institute for Nuclear Research (INR), Pitesti has started a research programme aiming to develop a new fuel bundle RU-43 for extended burnup operation. The current version of the design is the result of a long process of analyses and improvements, in which successive preliminary design versions have been evaluated. The most relevant calculations performed on this fuel element design version are presented. Also, the stages of an experimental

  16. CANDU fuel performance

    International Nuclear Information System (INIS)

    The paper presents a review of CANDU fuel performance including a 28-element bundle for Pickering reactors, a 37-element bundle for the Bruce and Darlington reactors, and a 37-element bundle for the CANDU-6 reactors. Special emphasis is given to the analysis of fuel defect formation and propagation and definition of fuel element operating thresholds for normal operation and accident conditions. (author)

  17. Investigations on flow induced vibration of simulated CANDU fuel bundles in a pipe

    International Nuclear Information System (INIS)

    In this paper, vibration of a two-bundle string consisting of simulated CANDU fuel bundles subjected to turbulent liquid flow is investigated through numerical simulations and experiments. Large eddy simulation is used to solve the three-dimensional turbulent flow surrounding the fuel bundles for determining fluid excitations. The CFD model includes pipe flow, flow through the inlet fuel bundle along with its two endplates, half of the second bundle and its upstream endplate. The fluid excitation obtained from the fluid model is subsequently fed into a fuel bundle vibration code written in FORTRAN. Fluid structure interaction terms for the fuel elements are approximated using the slender body theory. Simulation results are compared to measurements conducted on the simulated fuel bundles in a testing hydraulic loop. (author)

  18. Development of Romanian SEU-43 fuel bundle for CANDU type reactors

    International Nuclear Information System (INIS)

    SEU-43 fuel bundle is a CANDU type fuel consisting of two element sizes, to reduce element ratings, while maintaining the same bundle power, and an uranium content very close to the uranium content of a standard 37-element bundle. In order to reduce the detrimental effects of the life limiting factors at extended burnup a set of solution have been adopted for fuel element design. As a part of the design verification program, experimental bundles have been fabricated and utilized in typical out of reactor tests conducted at the laboratories of INR, Pitesti. These tests simulated current CANDU-6 reactor normal operating conditions of flow, temperature and pressure. The results are in accordance with the specified acceptance criteria. (author)

  19. ASSERT-PV 3.2: Advanced subchannel thermalhydraulics code for CANDU fuel bundles

    International Nuclear Information System (INIS)

    Highlights: • Introduction to a new version of the Canadian subchannel code, ASSERT-PV 3.2. • Enhanced models for flow-distribution, CHF and post-dryout heat transfer prediction. • Model changes focused on unique features of horizontal CANDU bundles. • Detailed description of model changes for all major thermalhydraulics models. • Discussion on rationale and limitation of the model changes. - Abstract: Atomic Energy of Canada Limited (AECL) has developed the subchannel thermalhydraulics code ASSERT-PV for the Canadian nuclear industry. The most recent release version, ASSERT-PV 3.2 has enhanced phenomenon models for improved predictions of flow distribution, dryout power and CHF location, and post-dryout (PDO) sheath temperature in horizontal CANDU fuel bundles. The focus of the improvements is mainly on modeling considerations for the unique features of CANDU bundles such as horizontal flows, small pitch to diameter ratios, high mass fluxes, and mixed and irregular subchannel geometries, compared to PWR/BWR fuel assemblies. This paper provides a general introduction to ASSERT-PV 3.2, and describes the model changes or additions in the new version to improve predictions of flow distribution, dryout power and CHF location, and PDO sheath temperatures in CANDU fuel bundles

  20. Demonstrating the compatibility of Canflex fuel bundles with a CANDU 6 fuelling machine

    International Nuclear Information System (INIS)

    CANFLEX is a new 43-element fuel bundle, designed for high operating margins. It has many small-diameter elements in its two outer rings, and large-diameter elements in its centre rings. By this means, the linear heat ratings are lower than those of standard 37-element bundles for similar power outputs. A necessary part of the out-reactor qualification program for the CANFLEX fuel bundle design, is a demonstration of the bundle's compatibility with the mechanical components in a CANDU 6 Fuelling Machine (FM) under typical conditions of pressure, flow and temperature. The diameter of the CANFLEX bundle is the same as that of a 37-element bundle, but the smaller-diameter elements in the outer ring result in a slightly larger end-plate diameter. Therefore, to minimize any risk of unanticipated damage to the CANDU 6 FM sidestops, a series of measurements and static laboratory tests were undertaken prior to the fuelling machine tests. The tests and measurements showed that; a) the CANFLEX bundle end plate is compatible with the FM sidestops, b) all the dimensions of the CANFLEX fuel bundle are within the specified limits. (author). 3 tabs., 3 figs

  1. A finite element model for static strength analysis of CANDU fuel bundle

    Energy Technology Data Exchange (ETDEWEB)

    Horhoianu, G.; Ionescu, D.V. [Institute for Nuclear Research, Pitesti (Romania)

    2006-08-15

    A static strength analysis finite-element model has been developed using the ANSYS computer code in order to simulate the axial compression in CANDU type fuel bundle subject to hydraulic drag loads, deflection of fuel elements and stresses and displacements in the end plates. The validation of the finite-element model has been done by comparison with the out-reactor strength test results. Comparison of model predictions with the experimental results showed very good agreement. The comparative assessment reveals that SEU43 and SEU43L fuel bundles are able to withstand high flow rate without showing a significant geometric instability. (orig.)

  2. The Conflux Fuel bundle: An Economic and Pragmatic Route to the use of Advanced Fuel Cycles in CANDU Reactors

    International Nuclear Information System (INIS)

    The CANFLEX1 bundle is being developed jointly by AECL and KAERI as a vehicle for introducing the use of enrichment and advanced fuel cycles in CANDU2 reactors. The bundle design uses smaller diameter fuel elements in the outer ring of a 43-element bundle to reduce the maximum element ratings in a CANDU fuel bundle by 20% compared to the 37-element bundle currently in use. This facilitates burnups of greater than 21,000 MW d/TAU to optimize the economic benefit available from the use of enrichment and advanced fuel cycles. A combination of this lower fuel rating, plus development work underway at Aecl to enhance the thermalhydraulic characteristics of the bundle (including both CHF3 and bundle. This provides extra flexibility in the fuel management procedures required for fuel bundles with higher fissile contents. The different bundle geometry requires flow tests to demonstrate acceptable vibration and fretting behavior of the Conflux bundle. A program to undertake the necessary range of flow tests has started at KAERI, involving the fabrication of the required bundles, and setting up for the actual tests. A program to study the fuel management requirements for slightly enriched (0.9 wt % 235 in total U) Conflux fuel has been undertaken by both Aecl and KAERI staff, and further work has started for higher enrichments. Irradiation testing of the Conflux bundle started in the NUR reactor in 1989, and a second irradiation test is due to start shortly. This paper describes the program, and reviews the status of key parts of the program

  3. Metallographic examination of a CANDU fuel bundle heated under severe accident conditions

    International Nuclear Information System (INIS)

    Post-test metallographic examination of bundle cross sections of a 19-element modified CANDU fuel bundle was carried out. The bundle, HTBS-004, had been subjected to a severe temperature excursion to 1900 degrees Celsius in superheated steam. For this study, quantitative image analysis, Auger analysis and SEM-EDX techniques were applied. A significantly large quantity of molten (Zr, U, O) alloy was relocated in the bundle section 50 mm from the upstream end, whereas the 377-mm section showed little relocated material except at the inner element junctions. These variations in the molten material generation and relocation have been correlated with the corresponding axial and radial variations in the heatup rates

  4. Overview of methods to increase dryout power in CANDU fuel bundles

    Energy Technology Data Exchange (ETDEWEB)

    Groeneveld, D.C., E-mail: degroeneveld@gmail.com [Chalk River Laboratories, AECL, Chalk River (Canada); University of Ottawa, Department of Mechanical Engineering, Ottawa (Canada); Leung, L.K.H. [Chalk River Laboratories, AECL, Chalk River (Canada); Park, J.H. [Korean Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-06-15

    Highlights: • Small changes in bundle geometry can have noticeable effects on the bundle CHF. • Rod spacing devices can results in increases of over 200% in CHF. • CHF enhancement decays exponentially downstream from spacers. • CHF-enhancing bundle appendages also increase the post-CHF heat transfer. - Abstract: In CANDU reactors some degradation in the CCP (critical channel power, or power corresponding to the first occurrence of CHF in any fuel channel) will occur with time because of ageing effects such as pressure-tube diametral creep, increase in reactor inlet-header temperature, increased hydraulic resistance of feeders. To compensate for the ageing effects, various options for recovering the loss in CCP are described in this paper. They include: (i) increasing the bundle heated perimeter, (ii) optimizing the bundle configuration, (iii) optimizing core flow and flux distribution, (iv) reducing the bundle hydraulic resistance, (v) use of CHF-enhancing bundle appendages, (vi) more precise experimentation, and (vii) redefining CHF. The increase in CHF power has been quantified based on experiments on full-scale bundles and subchannel code predictions. The application of several of these CHF enhancement principles has been used in the development of the 43-rod CANFLEX bundle.

  5. A study of coolant thermal mixing within CANDU fuel bundles using ASSERT-PV

    International Nuclear Information System (INIS)

    This paper presents the results of a study of the thermal mixing of single-phase coolant in 28-element CANDU fuel bundles. The approach taken in the present work is to identify the physical mechanisms contributing to coolant mixing, and to systematically assess the importance of each mechanism. Coupled effects were also considered by flow simulation with mixing mechanisms modelled simultaneously. For the limited range of operating conditions considered and when all mixing mechanisms were modelled simultaneously, the flow was found to be very close to fully mixed. A preliminary model of coolant mixing, suitable for use in the fuel and fuel channel code FACTAR, is also presented. (author)

  6. Post-irradiation examination of CANDU MOX fuel bundle containing weapons grade plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Dimayuga, F.C.; Karam, M.; Montin, J. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2008-07-01

    The Parallex Project is an experiment designed to demonstrate the feasibility of dispositioning US and Russian weapons grade plutonium (WPu) in CANDU reactors as a mixed-oxide (MOX) fuel. The Parallex Project involved the fabrication, irradiation testing, and post-irradiation examination (PIE) of three experimental CANDU MOX fuel bundles containing WPu fuel elements that were manufactured in the US and Russia. Some of the bundles contained MOX fuel fabricated at Chalk River Laboratories (CRL) from civilian plutonium (CivPu). This paper will describe the irradiation testing and post-irradiation examination of the second Parallex bundle. The second Parallex bundle is a 37-element bundle with its centre element removed to accommodate its irradiation in the National Research Universal (NRU) reactor. The bundle was assembled at CRL using intermediate and inner elements containing WPu MOX fuel pellets fabricated by the Bochvar Institute (Russia) and CivPu MOX pellets fabricated by AECL. The 18 outer elements were fuelled with natural uranium oxide fuel pellets containing dysprosia (to reduce the neutron flux that the Pu-bearing elements would be exposed to). Half of the intermediate and inner elements contained MOX fuel pellets fabricated with depleted uranium containing 4.6 wt% WPu. The other half of the intermediate and inner elements contained MOX fuel pellets fabricated with depleted uranium containing 5.3 wt% CivPu. The irradiation testing of the second bundle was completed in NRU. The intermediate MOX elements experienced linear powers up to 49 kW/m and achieved a burnup of 294 MWh/kgHE (12 MWd/kgHE). The inner MOX elements experienced linear powers up to 23 kW/m and achieved a burnup of 130 MWh/kgHE (5 Wd/kgHE). There was a significant difference between the performance of AECL-made MOX fuel containing CivPu and Russian MOX fuel containing WPu in terms of fission gas release (FGR). This is attributed to the different fabrication processes used to manufacture the

  7. An experimental investigation of the temperature behavior of a CANDU 37-element spent fuel bundle with air backfill

    International Nuclear Information System (INIS)

    As part of the thermal analysis of a CANDU spent fuel dry storage system, a series of experiment has been conducted using a thermal mock-up of a simulated CANDU spent fuel bundle in a dry storage basket. The experimental system was designed to obtain the maximum fuel rod temperature along with the radial and axial temperature distributions within the fuel bundle. The main purpose of these experiments was to characterize the relevant heat transfer mechanisms in a dry, vertically oriented CANDU spent fuel bundle, and to verify the MAXROT code developed for the thermal analysis of a CANDU spent fuel bundle in a dry storage basket. A total of 48 runs were made with 8 different power inputs to the 37-element heater rod bundle ranging from 5 to 40 W, while using 6 different band heaters power inputs from 0 to 250 W to maintain the basket wall at a desired boundary condition temperature at the steady state. The temperature distribution in a heater rod bundle was measured and recorded at the saturated condition for each set of heater rod power and band heaters power. To characterize the heat transfer mechanism involved, the experimental data were corrected analytically for radiation heat transfer and presented as a Nusselt number correlation in terms of the Rayleigh number of the heater rod bundle. The results show that the Nusselt number remains nearly constant and all the experimental dada fall within a conduction regime. The experimental data were compared with the predictions of the MAXROT code to examine the code's accuracy and validity of assumptions used in the code. The MAXROT code explicitly models each representative fuel rod in a CANDU fuel bundle and couples the conductive and radiative heat transfer of the internal gas between rods. Comparisons between the measured and predicted maximum fuel rod temperatures of the simulated CANDU 37-element spent fuel bundle for all 48 tests show that the MAXROT code slightly over-predicts and the agreement is within 2

  8. Advanced CFD simulations of turbulent flows around appendages in CANDU fuel bundles

    International Nuclear Information System (INIS)

    Computational Fluid Dynamics (CFD) was used to simulate the coolant flow in a modified 37-element CANDU fuel bundle, in order to investigate the effects of the appendages on the flow field. First, a subchannel model was created to qualitatively analyze the capabilities of different turbulence models such as k.ε, Reynolds Normalization Group (RNG), Shear Stress Transport (SST) and Large Eddy Simulation (LES). Then, the turbulence model with the acceptable quality was used to investigate the effects of positioning appendages, normally used in CANDU 37-element Critical Heat Flux (CHF) experiments, on the flow field. It was concluded that the RNG and SST models both show improvements over the k.ε method by predicting cross flow rates closer to those predicted by the LES model. Also the turbulence effects in the k.ε model dissipate quickly downstream of the appendages, while in the RNG and SST models appear at longer distances similar to the LES model. The RNG method simulation time was relatively feasible and as a result was chosen for the bundle model simulations. In the bundle model simulations it was shown that the tunnel spacers and leaf springs, used to position the bundles inside the pressure tubes in the experiments, have no measureable dominant effects on the flow field. The flow disturbances are localized and disappear at relatively short streamwise distances. (author)

  9. Utilization of fluorescent uranium x-rays as verification tool for irradiated CANDU fuel bundles

    International Nuclear Information System (INIS)

    The use of fluorescent uranium x-rays for in-situ safeguards verification of irradiated CANDU fuel bundles is described. Room temperature CdZnTe (supergrade) semiconductor detector of low sensitivity coupled to charge sensitive pre-amplifier is used. This detector is characterized by moderate resolving power in the low energy region around 100 keV. It as such allows the separation of uranium x-rays in the close proximity of tungsten x-rays emanating from the shielding/collimator assembly. On account of strong attenuation, the detection of low energy x-rays requires the shielding to be of an optimized thickness. Further, in view of high intensity of this radiation the use of small volume detector is warranted. In dealing with the subject, this paper therefore presents an assessment, not only of the detector but also the shield-collimator assembly for the required verification of short cooling time fuel bundles. Results of the associated optimization measurements with respect to collimator aperture and detector sensitivity are consequently included. The future course of work from the viewpoint of development of a suitable x-ray spectrometer specifically for the purpose of verifying extremely short (< 1 month old) cooling time fuel bundles is moreover identified. (author)

  10. Fission product release assessment for end fitting failure in Candu reactor loaded with CANFLEX-NU fuel bundles

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Dirk Joo; Jeong, Chang Joon; Lee, Kang Moon; Suk, Ho Chun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    Fission product release (FPR) assessment for End Fitting Failure (EFF) in CANDU reactor loaded with CANFLEX-natural uranium (NU) fuel bundles has been performed. The predicted results are compared with those for the reactor loaded with standard 37-element bundles. The total channel I-131 release at the end of transient for EFF accident is calculated to be 380.8 TBq and 602.9 TBq for the CANFLEX bundle and standard bundle channel cases, respectively. They are 4.9% and 7.9% of total inventory, respectively. The lower total releases of the CANFLEX bundle O6 channel are attributed to the lower initial fuel temperatures caused by the lower linear element power of the CANFLEX bundle compared with the standard bundle. 4 refs., 1 fig., 4 tabs. (Author)

  11. Selection of instruments used for vibration measurement of fuel bundles in a pressure tube under CANDU reactor operating conditions

    International Nuclear Information System (INIS)

    Vibration characteristics of CANDU fuel bundle and fuel elements is a key parameter considered in the design of a fuel bundle. Out-reactor frequency and temperature sweep tests, under reactor operating conditions, are performed to verify vibration characteristics of CANDU fuel bundles. Several options have been considered in the selection of vibration instrumentation to perform out-reactor frequency and temperature sweep tests. This paper compares the benefits and disadvantages of various vibration instruments and summarizes the rationale behind the selection of instruments used for vibration measurements over a range of temperature and pressure pulsation frequencies. The conclusions are presented from the bench tests performed, which confirm the use of the selected instruments. (author)

  12. Performance of candu-6 fuel bundles manufactured in romania nuclear fuel plant

    International Nuclear Information System (INIS)

    The purpose of this article is to present the performance of nuclear fuel produced by Nuclear Fuel Plant (N.F.P.) - Pitesti during 1995 - 2012 and irradiated in units U1 and U2 from Nuclear Power Plant (N.P.P.) Cernavoda and also present the Nuclear Fuel Plant (N.F.P.) - Pitesti concern for providing technology to prevent the failure causes of fuel bundles in the reactor. This article presents Nuclear Fuel Plant (N.F.P.) - Pitesti experience on tracking performance of nuclear fuel in reactor and strategy investigation of fuel bundles notified as suspicious and / or defectives both as fuel element and fuel bundle, it analyzes the possible defects that can occur at fuel bundle or fuel element and can lead to their failure in the reactor. Implementation of modern technologies has enabled optimization of manufacturing processes and hence better quality stability of achieving components (end caps, chamfered sheath), better verification of end cap - sheath welding. These technologies were qualified by Nuclear Fuel Plant (N.F.P.) - Pitesti on automatic and Computer Numerical Control (C.N.C.) programming machines. A post-irradiation conclusive analysis which will take place later this year (2013) in Institute for Nuclear Research Pitesti (the action was initiated earlier this year by bringing a fuel bundle which has been reported defective by pool visual inspection) will provide additional information concerning potential damage causes of fuel bundles due to manufacturing processes. (authors)

  13. CANDU fuel cycle flexibility

    International Nuclear Information System (INIS)

    High neutron economy, on-power refuelling, and a simple bundle design provide a high degree of flexibility that enables CANDU (Canada Deuterium Uranium; registered trademark) reactors to be fuelled with a wide variety of fuel types. Near-term applications include the use of slightly enriched uranium (SEU), and recovered uranium (RU) from reprocessed spent Light Water Reactor (LWR) fuel. Plutonium and other actinides arising from various sources, including spent LWR fuel, can be accommodated, and weapons-origin plutonium could be destroyed by burning in CANDU. In the DUPIC fuel cycle, a dry processing method would convert spent Pressurized Water Reactor (PWR) fuel to CANDU fuel. The thorium cycle remains of strategic interest in CANDU to ensure long-term resource availability, and would be of specific interest to those countries possessing large thorium reserves, but limited uranium resources. (author). 21 refs

  14. Some aspects on security and safety in a potential transport of a CANDU spent nuclear fuel bundle, in Romania

    International Nuclear Information System (INIS)

    Each Member States (MS) is responsible for the security and safety of radioactive material during transport, since radioactive material is most vulnerable during transport. The paper presents some aspects on security and safety related to the potential transport of a CANDU Spent Nuclear Fuel (SNF) bundle from NPP CANDU Cernavoda to INR Pitesti. The possible environmental impact and radiological consequences following a potential event during transportation is analyzed, since the protection of the people and the environment is the essential goal to be achieved. Some testing for the package to be used for transportation will be also given. (author)

  15. Some aspects on security and safety in a potential transport of a CANDU spent nuclear fuel bundle, in Romania

    Energy Technology Data Exchange (ETDEWEB)

    Vieru, G., E-mail: gheorghe.vieru@nuclear.ro [Inst. for Nuclear Research, Pitesti (Romania)

    2010-07-01

    Each Member States (MS) is responsible for the security and safety of radioactive material during transport, since radioactive material is most vulnerable during transport. The paper presents some aspects on security and safety related to the potential transport of a CANDU Spent Nuclear Fuel (SNF) bundle from NPP CANDU Cernavoda to INR Pitesti. The possible environmental impact and radiological consequences following a potential event during transportation is analyzed, since the protection of the people and the environment is the essential goal to be achieved. Some testing for the package to be used for transportation will be also given. (author)

  16. Fuel bundle loss of cooling inside the fuelling machine at CANDU6 PHWR

    International Nuclear Information System (INIS)

    This article describes the that loss of forced circulation cooling flow of induce spent fuel bundle loss of cooling and fission product releasing, analyzes the effect of reactor building and environment due to the fuel bundle rupturing, discusses the countermeasure to deal with the event of loss of cooling of spent fuel bundle. (authors)

  17. Optimization of thorium-uranium content in a 54-element fuel bundle for use in a CANDU-SCWR

    International Nuclear Information System (INIS)

    A new 54-element fuel bundle design has been proposed for use in a pressure-tube supercritical water-cooled reactor, a pre-conceptual evolution of existing CANDU reactors. Pursuant to the goals of the Generation IV International Forum regarding advancement in nuclear fuel cycles, optimization of the thorium and uranium content in each ring of fuel elements has been studied with the objectives of maximizing the achievable fuel utilization (burnup) and total thorium content within the bundle, while simultaneously minimizing the linear element ratings and coolant void reactivity. The bundle was modeled within a reactor lattice cell using WIMS-AECL, and the uranium and thorium content in each ring of fuel elements was optimized using a weighted merit function of the aforementioned criteria and a metaheuristic search algorithm. (author)

  18. Investigation of coolant thermal mixing within 28-element CANDU fuel bundles using the ASSERT-PV thermal hydraulics code

    International Nuclear Information System (INIS)

    This paper presents the results of a study of the thermal mixing of single-phase coolant in 28-element CANDU fuel bundles under steady-state conditions. The study, which is based on simulations performed using the ASSERT-PV thermal hydraulic code, consists of two main parts. In the first part the various physical mechanisms that contribute to coolant mixing are identified and their impact is isolated via ASSERT-PV simulations. The second part is concerned with development of a preliminary model suitable for use in the fuel and fuel channel code FACTAR to predict the thermal mixing that occurs between flow annuli. (author)

  19. Post-irradiation examination of CANDU fuel bundles fuelled with (Th, Pu)O2

    International Nuclear Information System (INIS)

    AECL has extensive experience with thoria-based fuel irradiations as part of an ongoing R&D program on thorium within the Advanced Fuel Cycles Program. The BDL-422 experiment was one component of the thorium program that involved the fabrication and irradiation testing of six Bruce-type bundles fuelled with (Th, Pu)O2 pellets. The fuel was manufactured in the Recycle Fuel Fabrication Laboratories (RFFL) at Chalk River allowing AECL to gain valuable experience in fabrication and handling of thoria fuel. The fuel pellets contained 86.05 wt. % Th and 1.53 wt. % Pu in (Th, Pu)O2. The objectives of the BDL-422 experiment were to demonstrate the ability of 37-element geometry (Th, Pu)O2 fuel bundles to operate to high burnups up to 1000 MWh/kgHE (42 MWd/kgHE), and to examine the (Th, Pu)O2 fuel performance. This paper describes the post-irradiation examination (PIE) results of BDL-422 fuel bundles irradiated to burnups up to 856 MWh/kgHE (36 MWd/kgHE), with power ratings ranging from 52 to 67 kW/m. PIE results for the high burnup bundles (>1000 MWh/kgHE) are being analyzed and will be reported at a later date. The (Th, Pu)O2 fuel performance characteristics were superior to UO2 fuel irradiated under similar conditions. Minimal grain growth was observed and was accompanied by benign fission gas release and sheath strain. Other fuel performance parameters, such as sheath oxidation and hydrogen distribution, are also discussed. (author)

  20. Technology Development of Integrity Evaluation of Fuel Bundles and Fuel Channel in a Two-phase Flow CANDU-6 Fuel Channel

    International Nuclear Information System (INIS)

    Two phase flow induces dynamic fluid force that causes structural vibration. Enormous vibration may result in failures of components due to the fretting wear and the fatigue, which increases the maintenance cost of the plant. From this consideration, KINS required that fuel bundles and fuel channels be evaluated to assure their integrities in high flow of more than 24 kg/s and two phase condition. Because out-reactor test loop for the simulation of two phase high flow is not available, the Wolsong CANDU-6 reactor which is in operation was utilized for the test. In-bay inspection system for the under water inspection and measurement of irradiated fuel was developed. 36 fresh fuels were measured prior to the irradiation and loaded in the fuel channel. Besides, improved method for early detection and evaluation of defect fuel was suggested

  1. Status of the demonstration irradiation of the CANDU new fuel bundle CANFLEX-NU in Korea

    International Nuclear Information System (INIS)

    A demonstration irradiation (DI) of 24 KNFC made CANFLEX-NU fuel bundles in the Wolsong Power Generation Station-i has been conducted jointly by KEPRI/KHNP/KAERI since July 10, 2002. By selecting the Q07 (high power) and L21(low power) channels, the total 24 and 16 CANFLEX bundles were respectively loaded into and discharged from the reactor by 2003 August, and the final discharge of the other 8 CANFLEX bundles is expected on around February 2004. Tracking the reactor operation data, it is noted that the reactor has been stably operated during the DI. One CANFLEX bundle irradiated in the Q07 channel had a typical history of high power and high burnup, having the outer element power rating of ∼ 41 kW/m at the fuelling, ∼ 42 kW/m as a maximum power rating at the burnup of ∼ 50 MWh/kgU, and ∼ 35 kW/m at the discharge burnup of ∼ 210 MWh/kgU. While, another CANFLEX bundle also irradiated in the Q07 channel had a typical history of power ramping, having a outer element power rating of ∼ 7 kW/m from the fuelling to the burnup of ∼ 48 MWh/kgU at which the element powers were ramped to a ∼ 35 kW/m maximum element power rating, and ∼ 30 kW/m at the discharge burnup of 188 MWh/kgU. An unusual performance and integrity of the CANFLEX elements could not be found in the ELESTRES predictions. By looking at the discharged CANFLEX bundles in the bay, all the bundles were intact, free of defects and appeared to be in good condition. A detailed in-bay visual examinations and dimensional measurements of the discharged CANFLEX bundles will be made at the end of 2003. (author)

  2. The clearance potential index and hazard factors of CANDU fuel bundle and a comparison of experimental-calculated inventories

    International Nuclear Information System (INIS)

    In the field of radioactive waste management, the radiotoxicity can be characterized by two different approaches: 1) IAEA, 2004 RS-G-1.7 clearance concept and 2) US, 10CFR20 radioactivity concentration guides in terms of ingestion / inhalation hazard expressed in m3 of water/air. A comparison between the two existing safety concepts was made in the paper. The modeled case was a CANDU natural uranium, 37 elements fuel bundle with a reference burnup of 685 GJ/kgU (7928.24 MWd/tU). The radiotoxicity of the light nuclide inventories, actinide, and fission-products was calculated in the paper. The calculation was made using the ORIGEN-S from ORIGEN4.4a in conjunction with the activation-burnup library and an updated decay data library with clearance levels data in ORIGEN format produced by WIMS-AECL/SCALENEA-1 code system. Both the radioactivity concentration expressed in Curie and Becquerel, and the clearance index and ingestion / inhalation hazard were calculated for the radionuclides contained in 1 kg of irradiated fuel element at shutdown and for 1, 50, 1500 years cooling time. This study required a complex activity that consisted of various phases such us: the acquisition, setting up, validation and application of procedures, codes and libraries. For the validation phase of the study, the objective was to compare the measured inventories of selected actinide and fission products radionuclides in an element from a Pickering CANDU reactor with inventories predicted using a recent version of the ORIGEN-ARP from SCALE 5 coupled with the time dependent cross sections library, CANDU 28.lib, produced by the sequence SAS2H of SCALE 4.4a. In this way, the procedures, codes and libraries for the characterization of radioactive material in terms of radioactive inventories, clearance, and biological hazard factors are being qualified and validated, in support for the safety management of the radioactive wastes

  3. Korea's CANDU fuel R and D program

    International Nuclear Information System (INIS)

    As the first R and D activity led to the nuclear fuel industrialization in Korea, KAERI had successfully developed the CANDU-6 fuel bundle in the period of 1981 to 1986 and has commercially produced more than 35,000 fuel bundles for the use in Wolsong Unit 1 since 1987. The commercial production of the CANDU-6 fuel in KAERI will be terminated on the end of 1997 and KNFC will take over the mission of CANDU-6 fuel production with a capacity of 400 tons of uranium per year form 1998. (author)

  4. CANDU advanced fuel cycles

    International Nuclear Information System (INIS)

    This report is based on informal lectures and presentations made on CANDU Advanced Fuel Cycles over the past year or so, and discusses the future role of CANDU in the changing environment for the Canadian and international nuclear power industry. The changing perspectives of the past decade lead to the conclusion that a significant future market for a CANDU advanced thermal reactor will exist for many decades. Such a reactor could operate in a stand-alone strategy or integrate with a mixed CANDU-LWR or CANDU-FBR strategy. The consistent design focus of CANDU on enhanced efficiency of resource utilization combined with a simple technology to achieve economic targets, will provide sufficient flexibility to maintain CANDU as a viable power producer for both the medium- and long-term future

  5. Synergistic CANDU-LWR fuel cycles

    International Nuclear Information System (INIS)

    CANDU is the most neutron-efficient reactor available commercially, allowing utilization of a range of fuel cycles. The flexibility of on-line refuelling allows fuel management to accommodate these different fuels. A synergism with light-water reactors (LWR) is possible through the use in CANDU of uranium and/or plutonium recovered from spent LWR fuel. In the TANDEM fuel cycle, the unseparated uranium and plutonium (1.5% fissile) would give a burnup in CANDU of about 25 MW.d/kg HE, producing four times more energy than that available from simply recycling the plutonium in an LWR. In another potential fuel cycle, uranium recovered from spent LWR fuel during conventional reprocessing is also recycled in CANDU, without re-enrichment. An average recovered uranium (RU) enrichment of 0.9% in U-235 results in a CANDU burnup of at least 13 MW.d/kg U, allowing twice as much energy to be extracted, compared with that from an LWR. The fuelling cost for RU in CANDU are about 35% lower than for natural uranium. Additionally, direct use of spent LWR fuel in CANDU is theoretically possible, but requires practical demonstration. AECL and KAERI are developing the CANFLEX (CANDU Flexible Fuelling) advanced fuel bundle as the optimal carrier for all extended burnup fuel cycles envisaged for CANDU

  6. Advanced fuel cycles for CANDU reactors

    International Nuclear Information System (INIS)

    The current natural uranium-fuelled CANDU system is a world leader, both in terms of overall performance and uranium utilization. Moreover, the CANDU reactor is capable of using many different advanced fuel cycles, with improved uranium utilization relative to the natural uranium one-through cycle. This versatility would enable CANDU to maintain its competitive edge in uranium utilization as improvements are made by the competition. Several CANDU fuel cycles are symbiotic with LWRs, providing an economical vehicle for the recycle of uranium and/or plutonium from discharges LWR fuel. The slightly enriched uranium (SEU) fuel cycle is economically attractive now, and this economic benefit will increase with anticipated increases in the cost of natural uranium, and decreases in the cost of fuel enrichment. The CANFLEX fuel bundle, an advanced 43-element design, will ensure that the full benefits of SEU, and other advanced fuel cycles, can be achieved in the CANDU reactor. 25 refs

  7. Installation of an irradiated fuel bundle discharge counter at Bruce NGS-B 3 000 MW(e) CANDU power station

    International Nuclear Information System (INIS)

    Design, manufacture and installation of an irradiated fuel bundle discharge counter for the multi-unit CANDU Bruce NGS-B Generating Station involved contributions from the International Atomic Energy Agency (Agency), designers (AECL), contractors, manufacturers, utility and the regulatory agency. The installation at Bruce NGS-B was the first made by the Agency as a retrofit to a multi-unit CANDU reactor approaching its fist critical operation, where the whole project was the responsibility of the Agency and where the original design of the reactor had not had provision for the Agency equipment. The scheduling and integration of the installation into the normal activities involved in starting up a 3 000 MW(e) multi-unit generating station were successfully achieved. The Agency has demonstrated the capability and performance of the fuel discharge counter

  8. CANDU bundle junction. Misalignment probability and pressure-drop correlation

    International Nuclear Information System (INIS)

    The pressure drop over the bundle junction is an important component of the pressure drop in a CANDU (Canada Deuterium Uranium) fuel channel. This component can represent from ∼ 15% for aligned bundles to ∼ 26% for rotationally misaligned bundles, and is dependent on the degree of misalignment. The geometry of the junction increases the mixing between subchannels, and hence improves the thermal performance of the bundle immediately downstream. It is therefore important to model the junction's performance adequately. This paper summarizes a study sponsored by COG (CANDU Owners Group) and an NSERC (National Science and Engineering Research Council) Industrial Research Grant, undertaken, at CRL (Chalk River Laboratories) to identify and develop a bundle-junction model for potential implementation in the ASSERT (Advanced Solution of Subchannel Equations in Reactor Thermalhydraulics) subchannel code. The work reported in this paper consists of two components of this project: an examination of the statistics of bundle misalignment, demonstrating that there are no preferred positions for the bundles and therefore all misalignment angles are equally possible; and, an empirical model for the single-phase pressure drop across the junction as a function of the misalignment angle. The second section of this paper includes a brief literature review covering the experimental, analytical and numerical studies concerning the single-phase pressure drop across bundle junctions. 32 refs., 9 figs

  9. CANDU fuel-cycle vision

    International Nuclear Information System (INIS)

    The fuel-cycle path chosen by a particular country will depend on a range of local and global factors. The CANDU reactor provides the fuel-cycle flexibility to enable any country to optimize its fuel-cycle strategy to suit its own needs. AECL has developed the CANFLEX fuel bundle as the near-term carrier of advanced fuel cycles. A demonstration irradiation of 24 CANFLEX bundles in the Point Lepreau power station, and a full-scale critical heat flux (CHF) test in water are planned in 1998, before commercial implementation of CANFLEX fuelling. CANFLEX fuel provides a reduction in peak linear element ratings, and a significant enhancement in thermalhydraulic performance. Whereas natural uranium fuel provides many advantages, the use of slightly enriched uranium (SEU) in CANDU reactors offers even lower fuel-cycle costs and other benefits, such as uprating capability through flattening the channel power distribution across the core. Recycled uranium (RU) from reprocessing spent PWR fuel is a subset of SEU that has significant economic promise. AECL views the use of SEU/RU in the CANFLEX bundle as the first logical step from natural uranium. High neutron economy enables the use of low-fissile fuel in CANDU reactors, which opens up a spectrum of unique fuel-cycle opportunities that exploit the synergism between CANDU reactors and LWRs. At one end of this spectrum is the use of materials from conventional reprocessing: CANDU reactors can utilize the RU directly without re-enrichment, the plutonium as conventional Mixed-oxide (MOX) fuel, and the actinide waste mixed with plutonium in an inert-matrix carrier. At the other end of the spectrum is the DUPIC cycle, employing only thermal-mechanical processes to convert spent LWR fuel into CANDU fuel, with no purposeful separation of isotopes from the fuel, and possessing a high degree of proliferation resistance. Between these two extremes are other advanced recycling options that offer particular advantages in exploiting the

  10. CANDU fuel-cycle vision

    International Nuclear Information System (INIS)

    The fuel-cycle path chosen by a particular country will depend on a range of local and global factors. The CANDU reactor provides the fuel-cycle flexibility to enable any country to optimize its fuel-cycle strategy to suit its own needs. AECL has developed the CANFLEX fuel bundle as the near-term carrier of advanced fuel cycles. A demonstration irradiation of 24 CANFLEX bundles in the Point Lepreau power station, and a full-scale critical heat flux (CHF) test in water are planned in 1998, before commercial implementation of CANFLEX fuelling. CANFLEX fuel provides a reduction in peak linear element ratings, and a significant enhancement in thermalhydraulic performance. Whereas natural uranium fuel provides many advantages, the use of slightly enriched uranium (SEU) in CANDU reactors offers even lower fuel-cycle costs and other benefits, such as uprating capability through flattening the channel power distribution across the core. Recycled uranium (RU) from reprocessing spent PWR fuel is a subset of SEU that has significant economic promise. AECL views the use of SEU/RU in the CANFLEX bundle as the first logical step from natural uranium. High neutron economy enables the use of low-fissile fuel in CANDU reactors, which opens up a spectrum of unique fuel-cycle opportunities that exploit the synergism between CANDU reactors and LWRs. At one end of this spectrum is the use of materials from conventional reprocessing: CANDU reactors can utilize the RU directly without reenrichment, the plutonium as conventional mixed-oxide (MOX) fuel, and the actinide waste mixed with plutonium in an inert-matrix carrier. At the other end of the spectrum is the DUPIC cycle, employing only thermal-mechanical processes to convert spent LWR fuel into CANDU fuel, with no purposeful separation of isotopes from the fuel, and possessing a high degree of proliferation resistance. Between these two extremes are other advanced recycling options that offer particular advantages in exploiting the

  11. Canadian CANDU fuel development programs and recent fuel operating experience

    International Nuclear Information System (INIS)

    This paper summarizes the performance and operating experience of CANDU fuel in Canadian CANDU reactors in 1999 and 2000. The extremely low rate of fuel defects continues to demonstrate that CANDU fuel is performing exceptionally well. Over the 2-year period, the fuel bundle defect rate for all bundles irradiated in Canadian CANDU reactors has remained very low, between 0.011% (suspected defects) and 0.007% (confirmed defects). On a fuel element basis, this represents a rate of confirmed defects of about 0.0002%; this rate is approaching 2 defects per million fuel elements! This successful performance is the result of a number of contributing factors, including a simple and robust fuel design with conservative design margins, reliable and specialized manufacturing processes that have been developed over the years, and fuel operations that conform to the fuel operating limits. Strong linkages between plant operation, designers, and Canadian fuel research and development programs also contribute to the high performance of the current CANDU fuel. The Fuel Design and Performance program, funded by the CANDU Owners Group, addresses licensing and operational issues that are common to the Canadian CANDU utilities. In addition, AECL's Fuel and Fuel Cycles working group directs R and D to support evolutionary improvements to the fuel products, as well as longer-term R and D for advanced fuel concepts. This paper describes the development programs in 1999/2000. (author)

  12. Canadian CANDU fuel development programs and recent fuel operating experience

    International Nuclear Information System (INIS)

    This paper summarizes the performance and operating experience of CANDU fuel in Canadian CANDU reactors in 1999 and 2000. The extremely low rate of fuel defects continues to demonstrate that CANDU fuel is performing exceptionally well. Over the 2-year period, the fuel bundle defect rate for all bundles irradiated in Canadian CANDU reactors has remained very low, between 0.011% (suspected defects) and 0.007% (confirmed defects). On a fuel element basis, this represents a rate of confirmed defects of about 0.0002%; this rate is approaching 2 defects per million fuel elements. This successful performance is the result of a number of contributing factors, including a simple and robust fuel design with conservative design margins, reliable and specialized manufacturing processes that have been developed over the years, and fuel operations that conform to the fuel operating limits. Strong linkages between plant operation, designers, and Canadian fuel research and development programs also contribute to the high performance of the current CANDU fuel. The Fuel Design and Performance program, funded by the CANDU Owners Group, addresses licensing and operational issues that are common to the Canadian CANDU utilities. In addition, AECL's Fuel and Fuel Cycles working group directs R and D to support evolutionary improvements to the fuel products, as well as long-term R and D for advanced fuel concepts. This paper describes the development programs in 1999/2000. (author)

  13. Bringing the CANFLEX fuel bundle to market

    International Nuclear Information System (INIS)

    CANFLEX is a 43-element CANDU fuel bundle, under joint development by AECL and KAERI, to facilitate the use of various advanced fuel cycles in CANDU reactors through the provision of enhanced operating margins. The bundle uses two element diameters (13.5 and 11.5 mm ) to reduce element ratings by 20%, and includes the use of critical-heat-flux (CHF) enhancing appendages to increase the minimum CHF ratio or dryout margin of the bundle. Test programs are underway to demonstrate: the irradiation behaviour, hydraulic characteristics and reactor physics properties of the bundle, along with a test program to demonstrate the ability of the bundle to be handled by CANDU-6 fuelling machines. A fuel design manual and safety analysis reports have been drafted, and both analyses, plus discussions with utilities are underway for a demonstration irradiation in a CANDU-6 reactor. (author)

  14. fuel management in candu reactors: RFSP code

    International Nuclear Information System (INIS)

    The objective of in-core fuel management is to determine the required refuelling strategies for safe and reliable operation of the reactor with minimum total energy cost. CANDU reactors use natural uranium fuel and rely on semi-continuous on-power refuelling. For the purpose of fuel management, the CANDU core with 380 fuel channels is modelled dividing into inner-and outer core. Refuelling rate in the CANDU reactors is evaluated in three periods for the whole operating life: 1)From the initial core to refuelling onset (100-150 EFPD), 2) the intermediate period (400-500 EFPD), and 3)the equilibrium period (approximately 30 years). A channel in the CANDU-6 reactor contains 12 bundles, in the refuelling operation some bundles do not discharged, but are shifted to other place in the same channel. One of the methods used for selection the channel and determination the bundles to be discharged is simulation method one of which is the RFSP (reactor fuelling simulating program). RFSP is a computer programme to do neutronic calculations for CANDU reactors. It can calculate both static and time-dependent neutron flux and power distributions in the core. It is a modular program containing a lot of modules. RFSP can perform fuel-management calculations and simulate a reactor operating history at specified intervals, taking burnup steps and channel refuelling into account

  15. Application of Be-free Zr-based amorphous sputter coatings as a brazing filler metal in CANDU fuel bundle manufacture

    International Nuclear Information System (INIS)

    Amorphous sputter coatings of Be-free multi-component Zr-based alloys were applied as a novel brazing filler metal for Zircaloy-4 brazing. By applying the homogeneous and amorphous-structured layers coated by sputtering the crystalline targets, the highly reliable joints were obtained with the formation of predominantly grown α-Zr grains owing to a complete isothermal solidification, exhibiting high tensile and fatigue strengths as well as excellent corrosion resistance, which were comparable to those of Zircaloy-4 base metal. The present investigation showed that Be-free and Zr-based multi-component amorphous sputter coatings can offer great potential for brazing Zr alloys and manufacturing fuel rods in CANDU fuel bundle system. (author)

  16. Candu fuel and fuel cycles

    International Nuclear Information System (INIS)

    A primary rationale for Indonesia to proceed with a nuclear power program is to diversity its energy sources and achieve freedom from future resource constraints. While other considerations, such as economy of power supply, hedging against potential future increases in the price of fossil fuels, fostering the technological development of the Indonesia economy and minimizing greenhouse and other gaseous emissions are important, the strategic resource issue is key. In considering candidate nuclear power technologies upon which to base such a program, a major consideration will be the potential for those technologies to be economically sustained in the face of large future increases in demand for nuclear fuels. The technology or technologies selected should be amenable to evaluation in a rapidly changing technical, economic, resource and environmental policy. The world's proven uranium resources which can be economically recovered represent a fairly modest energy resource if utilization is based on the currently commercialized fuel cycles, even with the use of recovered plutonium in mixed oxide fuels. In the long term, fuel cycles relying solely on the use of light water reactors will encounter increasing fuel supply constraints. Because of its outstanding neutron economy and the flexibility of on-power refueling, CANDU reactors are the most fuel resource efficient commercial reactors and offer the potential for accommodating an almost unlimited variety of advanced and even more fuel efficient cycles. Most of these cycles utilize nuclear fuels which are too low grade to be used in light water reactors, including many products now considered to be waste, such as spent light water reactor fuel and reprocessing products such as recovered uranium. The fuel-cycle flexibility of the CANDU reactor provides a ready path to sustainable energy development in both the short and the long terms. Most of the potential CANDU fuel cycle developments can be accommodated in existing

  17. Fuel bundle

    International Nuclear Information System (INIS)

    This patent describes a method of forming a fuel bundle of a nuclear reactor. The method consists of positioning the fuel rods in the bottom plate, positioning the tie rod in the bottom plate with the key passed through the receptacle to the underside of the bottom plate and, after the tie rod is so positioned, turning the tie rod so that the key is in engagement with the underside of the bottom plate. Thereafter mounting the top plate is mounted in engagement with the fuel rods with the upper end of the tie rod extending through the opening in the top plate and extending above the top plate, and the tie rod is secured to the upper side of sid top plate thus simultaneously securing the key to the underside of the bottom plate

  18. CANDU fuel cycle options in Korea

    International Nuclear Information System (INIS)

    The easiest first step in CANDU fuel-cycle evolution may be the use of slightly enriched uranium (SEU), including recovered uranium from reprocessed LWR spent fuel. Relatively low enrichment (up to 1.2%) will result in a twoto three-fold reduction in the quantity of spent fuel per unit energy production, reductions in fuel-cycle costs, and greater flexibility in the design of new reactors. The CANFLEX (CANDU FLEXible) fuel bundle would be the optimal fuel carrier. A country that has both CANDU and PWR reactors can exploit the natural synergism between these two reactor types to minimize overall waste production, and maximize energy derived from the fuel. This synergism can be exploited through several different fuel cycles. A high burnup CANDU MOX fuel design could be used to utilize plutonium from conventional reprocessing or more advanced reprocessing options (such as co-processing). DUPIC (Direct Use of Spent PWR Fuel In CANDU) represents a recycle option that has a higher degree of proliferation resistance than does conventional reprocessing, since it uses only dry processes for converting spent PWR fuel into CANDU fuel, without separating the plutonium. Good progress is being made in the current KAERI, AECL, and U.S. Department of State program in demonstrating the technical feasibility of DUPIC. In the longer term, CANDU reactors offer even more dramatic synergistic fuel cycles with PWR or FBR reactors. If the objective of a national fuel-cycle program is the minimization of actinide waste or destruction of long-lived fission products, then studies have shown the superiority of CANDU reactors in meeting this objective. Long-term energy security can be assured either through the thorium cycle or through a CANDU 1 FBR system, in which the FBR would be operated as a 'fuel factory,' providing the fissile material to power a number of lower-cost, high efficiency CANDU reactors. In summary, the CANDU reactor's simple fuel design, high neutron economy, and on

  19. Fuel for advanced CANDU reactors

    International Nuclear Information System (INIS)

    The CANDU reactor system has proven itself to be a world leader in terms of station availability and low total unit energy cost. In 1985 for example, four of the top ten reactor units in the world were CANDU reactors operating in South Korea and Canada. This excellent operating record requires an equivalent performance record of the low-cost, natural uranium fuel. Future CANDU reactors will be an evolution of the present design. Engineering work is under way to refine the existing CANDU 600 and to incorporate state-of-the-art technology, reducing the capital cost and construction schedule. In addition, a smaller CANDU 300 plant has been designed using proven CANDU 600 technology and components but with an innovative new plant layout that makes it cost competitive with coal fired plants. For the long term, work on advanced fuel cycles and major system improvements is underway ensuring that CANDU plants will stay competitive well into the next century

  20. A prediction method of the effect of radial heat flux distribution on critical heat flux in CANDU fuel bundles

    International Nuclear Information System (INIS)

    Fuel irradiation experiments to study fuel behaviors have been performed in the experimental loops of the National Research Universal (NRU) Reactor at Atomic Energy of Canada Limited (AECL) Chalk River Laboratories (CRL) in support of the development of new fuel technologies. Before initiating a fuel irradiation experiment, the experimental proposal must be approved to ensure that the test fuel strings put into the NRU loops meet safety margin requirements in critical heat flux (CHF). The fuel strings in irradiation experiments can have varying degrees of fuel enrichment and burnup, resulting in large variations in radial heat flux distribution (RFD). CHF experiments performed in Freon flow at CRL for full-scale bundle strings with a number of RFDs showed a strong effect of RFD on CHF. A prediction method was derived based on experimental CHF data to account for the RFD effect on CHF. It provides good CHF predictions for various RFDs as compared to the data. However, the range of the tested RFDs in the CHF experiments is not as wide as that required in the fuel irradiation experiments. The applicability of the prediction method needs to be examined for the RFDs beyond the range tested by the CHF experiments. The Canadian subchannel code ASSERT-PV was employed to simulate the CHF behavior for RFDs that would be encountered in fuel irradiation experiments. The CHF predictions using the derived method were compared with the ASSERT simulations. It was observed that the CHF predictions agree well with the ASSERT simulations in terms of CHF, confirming the applicability of the prediction method in fuel irradiation experiments. (author)

  1. Improved CANDU fuel performance

    International Nuclear Information System (INIS)

    The fuel defect rate in CANDU power reactors has been very low (0.06 percent) since 1972. Most defects were caused by power ramping. The two measures taken to reduce the defect rate, by about an order of magnitude, were changes in the fuelling schemes and the introduction of thin coatings of graphite on the inside surface of the Zircaloy fuel cladding. Power ramping tests have demonstrated that graphite layers, and also baked poly-dimethyl-siloxane layers, between the UO2 pellets and Zircaloy cladding increase the tolerance of fuel to power ramps. These designs are termed graphite CANLUB and siloxane CANLUB; fuel performance depends on coating parameters such as thickness and wear resistance and on environmental and thermal conditions during the curing of coatings. (author)

  2. SEU43 fuel bundle shielding analysis during spent fuel transport

    Energy Technology Data Exchange (ETDEWEB)

    Margeanu, C. A.; Ilie, P.; Olteanu, G. [Inst. for Nuclear Research Pitesti, No. 1 Campului Street, Mioveni 115400, Arges County (Romania)

    2006-07-01

    The basic task accomplished by the shielding calculations in a nuclear safety analysis consist in radiation doses calculation, in order to prevent any risks both for personnel protection and impact on the environment during the spent fuel manipulation, transport and storage. The paper investigates the effects induced by fuel bundle geometry modifications on the CANDU SEU spent fuel shielding analysis during transport. For this study, different CANDU-SEU43 fuel bundle projects, developed in INR Pitesti, have been considered. The spent fuel characteristics will be obtained by means of ORIGEN-S code. In order to estimate the corresponding radiation doses for different measuring points the Monte Carlo MORSE-SGC code will be used. Both codes are included in ORNL's SCALE 5 programs package. A comparison between the considered SEU43 fuel bundle projects will be also provided, with CANDU standard fuel bundle taken as reference. (authors)

  3. Candu reactors with thorium fuel cycles

    International Nuclear Information System (INIS)

    Over the last decade and a half AECL has established a strong record of delivering CANDU 6 nuclear power plants on time and at budget. Inherently flexible features of the CANDU type reactors, such as on-power fuelling, high neutron economy, fuel channel based heat transport system, simple fuel bundle configuration, two independent shut down systems, a cool moderator and a defence-in-depth based safety philosophy provides an evolutionary path to further improvements in design. The immediate milestone on this path is the Advanced CANDU ReactorTM** (ACRTM**), in the form of the ACR-1000TM**. This effort is being followed by the Super Critical Water Reactor (SCWR) design that will allow water-cooled reactors to attain high efficiencies by increasing the coolant temperature above 5500C. Adaptability of the CANDU design to different fuel cycles is another technology advantage that offers an additional avenue for design evolution. Thorium is one of the potential fuels for future reactors due to relative abundance, neutronics advantage as a fertile material in thermal reactors and proliferation resistance. The Thorium fuel cycle is also of interest to China, India, and Turkey due to local abundance that can ensure sustainable energy independence over the long term. AECL has performed an assessment of both CANDU 6 and ACR-1000 designs to identify systems, components, safety features and operational processes that may need to be modified to replace the NU or SEU fuel cycles with one based on Thorium. The paper reviews some of these requirements and the associated practical design solutions. These modifications can either be incorporated into the design prior to construction or, for currently operational reactors, during a refurbishment outage. In parallel with reactor modifications, various Thorium fuel cycles, either based on mixed bundles (homogeneous) or mixed channels (heterogeneous) have been assessed for technical and economic viability. Potential applications of a

  4. Second International Conference on CANDU Fuel

    International Nuclear Information System (INIS)

    Thirty-four papers were presented at this conference in sessions dealing with international experience and programs relating to CANDU fuel; fuel manufacture; fuel behaviour; fuel handling, storage and disposal; and advanced CANDU fuel cycles. (L.L.)

  5. Disposal costs for advanced CANDU fuel cycles

    International Nuclear Information System (INIS)

    The CANDU reactor can 'burn' a wide range of fuels without modification to the reactor system, including natural uranium, slightly enriched uranium, mixed oxide and spent LWR fuels. The economic feasibility of the advanced fuel cycles requires consideration of their disposal costs. Preliminary cost analyses for the disposal of spent CANDU-SEU (Slightly Enriched Uranium) and CANDU-DUPIC (Direct Use of spent PWR fuel In CANDU) fuels have been performed and compared to the internationally published costs for the direct disposal of spent CANDU and LWR fuels. The analyses show significant economic advantages in the disposal costs of CANDU-SEU and CANDU-DUPIC fuels. (author)

  6. Candu 6: versatile and practical fuel technology

    International Nuclear Information System (INIS)

    CANDU reactor technology was originally developed in Canada as part of the original introduction of peaceful nuclear power in the 1960s and has been continuously evolving and improving ever since. The CANDU reactor system was defined with a requirement to be able to efficiently use natural uranium (NU) without the need for enrichment. This led to the adaptation of the pressure tube approach with heavy water coolant and moderator together with on-power fuelling, all of which contribute to excellent neutron efficiency. Since the beginning, CANDU reactors have used [NU] fuel as the fundamental basis of the design. The standard [NU] fuel bundle for CANDU is a very simple design and the simplicity of the fuel design adds to the cost effectiveness of CANDU fuelling because the fuel is relatively straightforward to manufacture and use. These characteristics -- excellent neutron efficiency and simple, readily-manufactured fuel -- together lead to the unique adaptability of CANDU to alternate fuel types, and advancements in fuel cycles. Europe has been an early pioneer in nuclear power; and over the years has accumulated various waste products from reactor fuelling and fuel reprocessing, all being stored safely but which with passing time and ever increasing stockpiles will become issues for both governments and utilities. Several European countries have also pioneered in fuel reprocessing and recycling (UK, France, Russia) in what can be viewed as a good neighbor policy to make most efficient use of fuel. The fact remains that CANDU is the most fuel efficient thermal reactor available today [NU] more efficient in MW per ton of U compared to LWR's and these same features of CANDU (on-power fuelling, D2O, etc) also enable flexibility to adapt to other fuel cycles, particularly recycling. Many years of research (including at ICN Pitesti) have shown CANDU capability: best at Thorium utilization; can use RU without re-enrichment; can readily use MOX. Our premise is that

  7. CANDU fuel performance and development

    International Nuclear Information System (INIS)

    The fuel defect rate in CANDU (Canada Deuterium Uranium) reactors continues to be very low, 0.06% since 1972. The power ramp defects, which constituted the majority of the early defects, have been virtually eliminated by changed fuelling schemes and through the introduction of graphite CANLUB coatings on the inside of the sheath. Laboratory and loop irradiations have demonstrated that the graphite CANLUB layers increase the tolerance to power ramps, but to obtain the maximum benefit, coating parameters such as thickness, adhesion and wear resistance must be optimized. Siloxane CANLUB coated fuel offers greater tolerance to power ramps than most graphite coatings; quality control appears simpler and no instance of localized sheath hydriding has been seen with cured and irradiated coatings. Limited testing has shown that fuel with graphite discs between fuel pellets also has high tolerance to power ramps, but it is more costly and has lower burnup. The number of defects due to faulty components has been extremely small (0.00014%), but improved quality control and welding procedures can lower this number even further. Defects from causes external to the bundle have also been very few. (author)

  8. CANDU fuel : safe, reliable and flexible. 12th international conference on CANDU fuel

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-01

    The Canadian Nuclear Society's 12th International Conference on CANDU Fuel was hosted by Royal Military College of Canada in Kingston, Ontario, Canada on September 15-18, 2013. The theme for the conference was 'CANDU Fuel : Safe, Reliable & Flexible' bringing together international experts of the nuclear fuel industry and academia involved in design, R and D, manufacturing, operation, modeling, safety analysis, and regulations. Over 100 delegates including representatives from other countries, including India, Romania, Argentina, Korea, United States, Austria, and Canada attended this truly successful international event. Although CANDU fuel has performed well a number of the presentations were on a modified design of the standard 37 element bundle called 37M which is now being loaded into the Darlington reactors. The renewed interest in thorium was also the focus of several presentations.

  9. Fuel condition in Canadian CANDU 6 reactors

    International Nuclear Information System (INIS)

    The cornerstone of the CANDU concept is its natural uranium fuel, and the success of its reactor operation hinges on the fuel condition in the reactor. Neutron economy, on power refuelling, and simple fuel design are among the unique characteristics of CANDU fuel. In Canadian CANDU 6 reactors (Gentilly 2 and Point Lepreau), the 37-element fuel has provided an enviable record of safe, economic and reliable plant operation for 29 reactor years to date. The fuelling cost is among the lowest in the world - a corollary of high neutron economy, simple fuel design, and judicial fuelling scheme. The reliability of fuel is high: only 21 of the 60000 bundles discharged from Gentilly 2 were confirmed defective and the five-year period from March 1992 to February 1997 saw no defect at all at Gentilly-2. Also, thanks to the inherent on-power refuelling capability and an effective defect detection and removal system, the primary coolant loops are kept extremely clean (very low activity level) - benefiting both maintenance and safety. Moreover, the inventories of fission products in the core and in the channel are maintained within the safety analysis envelope, due to on-power fuelling and sophisticated fuel management. In this paper, CANDU 6 fuel performance is reviewed against the feedback from post-irradiation examinations, and the findings from our ongoing R and D program. The results suggest that the fuel behavior m reactor are basically as originally anticipated, despite an evolutionary 3% increase in bundle uranium mass in the 1980's. For operating conditions within the CANDU 6 37-element experience, the average strains are typically 0.09%; and fission gas release, 2.7%. The UO2 fuel remains stoichiometric after irradiation. In-core measurements of pressure tube fitting are generally low. All these observations are consistent with the excellent fuel performance statistics coming out of the two Canadian CANDU 6 reactors. Additionally, this paper will briefly discuss our

  10. Modelling nuclear fuel vibrations in horizontal CANDU reactors

    International Nuclear Information System (INIS)

    Flow-induced fuel vibrations in the pressure tubes of CANDU reactors are of vital interest to designers because fretting damage may result. Computer simulation is being used to study how bundles vibrate and to identify bundle design features which will reduce vibration and hence fretting. (author)

  11. Development of fabrication technology for CANDU advanced fuel -Development of the advanced CANDU technology-

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chang Beom; Kim, Hyeong Soo; Kim, Sang Won; Seok, Ho Cheon; Shim, Ki Seop; Byeon, Taek Sang; Jang, Ho Il; Kim, Sang Sik; Choi, Il Kwon; Cho, Dae Sik; Sheo, Seung Won; Lee, Soo Cheol; Kim, Yoon Hoi; Park, Choon Ho; Jeong, Seong Hoon; Kang, Myeong Soo; Park, Kwang Seok; Oh, Hee Kwan; Jang, Hong Seop; Kim, Yang Kon; Shin, Won Cheol; Lee, Do Yeon; Beon, Yeong Cheol; Lee, Sang Uh; Sho, Dal Yeong; Han, Eun Deok; Kim, Bong Soon; Park, Cheol Joo; Lee, Kyu Am; Yeon, Jin Yeong; Choi, Seok Mo; Shon, Jae Moon [Korea Atomic Energy Res. Inst., Taejon (Korea, Republic of)

    1994-07-01

    The present study is to develop the advanced CANDU fuel fabrication technologies by means of applying the R and D results and experiences gained from localization of mass production technologies of CANDU fuels. The annual portion of this year study includes following: 1. manufacturing of demo-fuel bundles for out-of-pile testing 2. development of technologies for the fabrication and inspection of advanced fuels 3. design and munufacturing of fuel fabrication facilities 4. performance of fundamental studies related to the development of advanced fuel fabrication technology.

  12. CANDU spent fuel dry storage interim technique

    International Nuclear Information System (INIS)

    CANDU heavy water reactor is developed by Atomic Energy of Canada (AECL) it has 40 years of design life. During operation, the reactor can discharge a lot of spent fuels by using natural uranium. The spent fuel interim storage should be considered because the spent fuel bay storage capacity is limited with 6 years inventory. Spent fuel wet interim storage technique was adopted by AECL before 1970s, but it is diseconomy and produced extra radiation waste. So based on CANDU smaller fuel bundle dimension, lighter weight, lower burn-up and no-critical risk, AECL developed spent fuel dry interim storage technique which was applied in many CANDU reactors. Spent fuel dry interim storage facility should be designed base on critical accident prevention, decay heat removal, radiation protection and fissionable material containment. According to this introduction, analysis spent fuel dry interim storage facility and equipment design feature, it can be concluded that spent fuel dry interim storage could be met with the design requirement. (author)

  13. CANDU: The fuel conserving reactor

    International Nuclear Information System (INIS)

    Because of their high neutron economy and unique design features, CANDU heavy water moderated reactors are the only established commercial reactors able to use directly low fissile content fuels such as natural uranium or uranium recovered from spent light water reactor fuel (RU). These features also help them to achieve the highest fuel utilization of all commercially available reactors, whether the fuel is based on natural uranium or mixed oxides of plutonium, uranium or thorium. As nuclear capacity growth increases demands on the world's finite uranium resources, AECL envisages near term use in CANDU reactors of a fuel incorporating RU and fuels containing thorium, with either plutonium or low enriched uranium (LEU) as the fissile 'driver' fuel. In the long term, AECL proposes the use of future 'Generation X' CANDU reactors with enhanced neutron economy to achieve a near-Self-Sufficient Equilibrium Thorium (SSET) fuel cycle. This CANDU SSET would have a conversion ratio of unity and be able to produce power indefinitely, with the need for little additional fissile material once equilibrium is reached (the amount of 233U needed in the fresh fuel is the same as is present in the discharged fuel, including processing losses.) This would also enable a CANDU-Fast Breeder Reactor (FBR) synergism that would allow each fuel-generating, though expensive, FBR to supply the initial fissile requirements of several less-expensive, CANDU SSET reactors operating on the thorium cycle. The closer the approach to an SSET that CANDUs can achieve, the higher the ratio of CANDUs to breeders in an economically optimized reactor fleet. CANDU reactors thereby become natural partners of both light water-cooled thermal reactors and fast breeder reactors, in both cases making optimum use of their spent fuel components and enhancing the overall sustainability of nuclear power. (authors)

  14. Thorium fuel-cycle studies for CANDU reactors

    International Nuclear Information System (INIS)

    The high neutron economy of the CANDU reactor, its ability to be refuelled while operating at full power, its fuel channel design, and its simple fuel bundle provide an evolutionary path for allowing full exploitation of the energy potential of thorium fuel cycles in existing reactors. AECL has done considerable work on many aspects of thorium fuel cycles, including fuel-cycle analysis, reactor physics measurements and analysis, fuel fabrication, irradiation and PIE studies, and waste management studies. Use of the thorium fuel cycle in CANDU reactors ensures long-term supplies of nuclear fuel, using a proven, reliable reactor technology. (author)

  15. Performance testing of CANDU MOX fuel

    International Nuclear Information System (INIS)

    CANDU fuel bundles containing 0.5 wt % plutonium in natural uranium were fabricated at Chalk River Laboratories and were successfully irradiated in the NRU reactor at powers up to 65 Min and to burnups ranging from 13 to 23 MW·d/kg HE. Two of the bundles experienced power histories that bound the normal powers and burnups of natural UO2 CANDU fuel (2 fuel. Significantly more grain growth was observed than that typically expected for UO2 fuel; however, this increase in grain growth had no apparent effect on the overall performance of the fuel. Pellet-centre columnar grain growth was accompanied by plutonium homogenization. Two other MOX bundles operated to extended burnups of 19 to 23 MW·d/kg HE. Burnup extension above 15 MW·d/kg HE had no apparent effect on sheath strain or grain growth, and only a small effect on FGR and the amount of oxide observed on the inner surface of the sheath. (author)

  16. Performance testing of CANDU MOX fuel

    International Nuclear Information System (INIS)

    CANDU fuel bundles containing 0.5 wt % plutonium in natural uranium were fabricated at Chalk River Laboratories and were successfully irradiated in the NRU reactor at powers up to 65 kW/m and to burnups ranging from 13 to 23 MW·d/kg HE. Two of the bundles experienced power histories that bound the normal powers and burnups of natural UO2 CANDU fuel (2 fuel. Significantly more grain growth was observed than that typically expected for UO2 fuel; however, this increase in grain growth had no apparent effect on the overall performance of the fuel. Pellet-centre columnar grain growth was accompanied by plutonium homogenization. Two other MOX bundles operated to extended burnups of 19 to 23 MW·d/kg HE. Burnup extension above 15 MW·d/kg HE had no apparent effect on sheath strain or grain growth, and only a small effect on FGR and the amount of oxide observed on the inner surface of the sheath. (author)

  17. Fuel management simulation for CANFLEX-RU in CANDU 6

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Chang Joon; Suk, Ho Chun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    Fuel management simulations have been performed for CANFLEX-09% RU fuel in the CANDU 6 reactor. In this study, the bi-directional 4-bundle shift fuelling scheme was assumed. The lattice cell and time-average calculation were carried out. The refuelling simulation calculations were performed for 600 full power days. Time-averaged results show good axial power profile with the CANFLEX-RU fuel. During the simulation period, the maximum channel and bundle power were maintained below the licensing limit of CANDU 6 reactor. 7 refs., 4 figs. (Author)

  18. Characteristics of used CANDU fuel relevant to the Canadian nuclear fuel waste management program

    International Nuclear Information System (INIS)

    Literature data on the characteristics of used CANDU power reactor fuel that are relevant to its performance as a waste form have been compiled in a convenient handbook. Information about the quantities of used fuel generated, burnup, radionuclide inventories, fission gas release, void volume and surface area, fuel microstructure, fuel cladding properties, changes in fuel bundle properties due to immobilization processes, radiation fields, decay heat and future trends is presented for various CANDU fuel designs. (author). 199 refs., 39 tabs., 100 figs

  19. The CANDU 9 fuel transfer system

    International Nuclear Information System (INIS)

    The CANDU 9 fuel transfer system is based on the CANDU 6 and the Ontario Hydro Darlington NGD designs, modified to suit the CANDU 9 requirements. The CANDU 9 new fuel transfer system is very similar to the CANDU 6, with modifications to allow new fuel loading from outside containment, similar to Darlington. The CANDU 9 irradiated fuel transfer system is based on the Darlington irradiated fuel transfer system, with modifications to meet the more stringent containment requirements, improve performance, and match station layout. (author). 2 refs., 6 figs

  20. CANDU fuel behaviour under transient conditions

    International Nuclear Information System (INIS)

    The Canadian R and D program to understand CANDU fuel behaviour under transient conditions is described. Fuel sheath behaviour studies have led to the development of a model of transient plastic strain in inert gas, which integrates the deformation due to several mechanisms. Verification tests demonstrated that on average the model overpredicts strain by 20%. From oxidation kinetics studies a sheath failure embrittlement criterion based on oxygen distribution has been developed. We have also established a rate equation for high-temperature stress-dependent crack formation due to embrittlement of the sheath by beryllium. An electric, simulated fuel element is being used in laboratory tests to characterize the behaviour of fuel in the horizontal. In-reactor, post-dryout tests have been done for several years. There is an axially-segmented, axisymmetric fuel element model in place and a fully two-dimensional code is under development. Laboratory testing of bundles, in its early stages, deals with the effects of geometric distortion and sheath-to-sheath interaction. In-reactor, post-dryout tests of CANDU fuel bundles with extensive central UO2 melting did not result in fuel fragmentation nor damage to the pressure tube. (author)

  1. Numerical model for thermal and mechanical behaviour of a CANDU 37-element bundle

    International Nuclear Information System (INIS)

    Prediction of transient fuel bundle deformations is important for assessing the integrity of fuel and the surrounding structural components under different operating conditions including accidents. For numerical simulation of the interactions between fuel bundle and pressure tube, a reliable numerical bundle model is required to predict thermal and mechanical behaviour of the fuel bundle assembly under different thermal loading conditions. To ensure realistic representations of the bundle behaviour, this model must include all of the important thermal and mechanical features of the fuel bundle, such as temperature-dependent material properties, thermal viscoplastic deformation in sheath, fuel-to-sheath interactions, endplate constraints and contacts between fuel elements. In this paper, we present a finite element based numerical model for predicting macroscopic transient thermal-mechanical behaviour of a complete 37-element CANDU nuclear fuel bundle under accident conditions and demonstrate its potential for being used to investigate fuel bundle to pressure tube interaction in future nuclear safety analyses. This bundle model has been validated against available experimental and numerical solutions and applied to various simulations involving steady-state and transient loading conditions. (author)

  2. Enthalpy and void distributions in subchannels of PHWR fuel bundles

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. W.; Choi, H.; Rhee, B. W. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    Two different types of the CANDU fuel bundles have been modeled for the ASSERT-IV code subchannel analysis. From calculated values of mixture enthalpy and void fraction distribution in the fuel bundles, it is found that net buoyancy effect is pronounced in the central region of the DUPIC fuel bundle when compared with the standard CANDU fuel bundle. It is also found that the central region of the DUPIC fuel bundle can be cooled more efficiently than that of the standard fuel bundle. From the calculated mixture enthalpy distribution at the exit of the fuel channel, it is found that the mixture enthalpy and void fraction can be highest in the peripheral region of the DUPIC fuel bundle. On the other hand, the enthalpy and the void fraction were found to be highest in the central region of the standard CANDU fuel bundle at the exit of the fuel channel. This study shows that the subchannel analysis is very useful in assessing thermal behavior of the fuel bundle that could be used in CANDU reactors. 10 refs., 4 figs., 2 tabs. (Author)

  3. Explicit core-follow simulations for a CANDU 6 reactor fuelled with recovered-uranium CANFLEX bundles

    International Nuclear Information System (INIS)

    Recovered uranium (RU) is a by-product of many light-water reactor (LWR) fuel recycling programs. After fission products and plutonium (Pu) have been removed from spent LWR fuel, RU is left. A fissile content in the RU of 0.9 to 1.0% makes it impossible for reuse in an LWR without re-enrichment, but CANDU reactors have a sufficiently high neutron economy to use RU as fuel. Explicit core-follow simulations were run to analyse the viability of RU as a fuel for existing CANDU 6 cores. The core follow was performed with RFSP, using WIMS-AECL lattice properties. During the core follow, channel powers and bundle powers were tracked to determine the operating envelope for RU in a CANFLEX bundle. The results show that RU fits the operating criteria of a generic CANDU 6 core and is a viable fuel option in CANDU reactors. (author)

  4. Assessment of ASSERT-PV for prediction of post-dryout heat transfer in CANDU bundles

    International Nuclear Information System (INIS)

    Highlights: • Assessment of the new Canadian subchannel code ASSERT-PV 3.2 for PDO sheath temperature prediction. • CANDU 28-, 37- and 43-element bundle PDO experiments. • Prediction improvement of ASSERT-PV 3.2 over previous code versions. • Sensitivity study of the effect of PDO model options. - Abstract: Atomic Energy of Canada Limited (AECL) has developed the subchannel thermalhydraulics code ASSERT-PV for the Canadian nuclear industry. The recently released ASSERT-PV 3.2 provides enhanced models for improved predictions of subchannel flow distribution, critical heat flux (CHF), and post-dryout (PDO) heat transfer in horizontal CANDU fuel channels. This paper presents results of an assessment of the new code version against PDO tests performed during five full-size CANDU bundle experiments conducted between 1992 and 2009 by Stern Laboratories (SL), using 28-, 37- and 43-element bundles. A total of 10 PDO test series with varying pressure-tube creep and/or bearing-pad height were analyzed. The SL experiments encompassed the bundle geometries and range of flow conditions for the intended ASSERT-PV applications for existing CANDU reactors. Code predictions of maximum PDO fuel-sheath temperature were compared against measurements from the SL PDO tests to quantify the code's prediction accuracy. The prediction statistics using the recommended model set of ASSERT-PV 3.2 were compared to those from previous code versions. Furthermore, separate-effects sensitivity studies quantified the contribution of each PDO model change or enhancement to the improvement in PDO heat transfer prediction. Overall, the assessment demonstrated significant improvement in prediction of PDO sheath temperature in horizontal fuel channels containing CANDU bundles

  5. Assessment of ASSERT-PV for prediction of post-dryout heat transfer in CANDU bundles

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Z., E-mail: chengz@aecl.ca; Rao, Y.F., E-mail: raoy@aecl.ca; Waddington, G.M., E-mail: waddingg@aecl.ca

    2014-10-15

    Highlights: • Assessment of the new Canadian subchannel code ASSERT-PV 3.2 for PDO sheath temperature prediction. • CANDU 28-, 37- and 43-element bundle PDO experiments. • Prediction improvement of ASSERT-PV 3.2 over previous code versions. • Sensitivity study of the effect of PDO model options. - Abstract: Atomic Energy of Canada Limited (AECL) has developed the subchannel thermalhydraulics code ASSERT-PV for the Canadian nuclear industry. The recently released ASSERT-PV 3.2 provides enhanced models for improved predictions of subchannel flow distribution, critical heat flux (CHF), and post-dryout (PDO) heat transfer in horizontal CANDU fuel channels. This paper presents results of an assessment of the new code version against PDO tests performed during five full-size CANDU bundle experiments conducted between 1992 and 2009 by Stern Laboratories (SL), using 28-, 37- and 43-element bundles. A total of 10 PDO test series with varying pressure-tube creep and/or bearing-pad height were analyzed. The SL experiments encompassed the bundle geometries and range of flow conditions for the intended ASSERT-PV applications for existing CANDU reactors. Code predictions of maximum PDO fuel-sheath temperature were compared against measurements from the SL PDO tests to quantify the code's prediction accuracy. The prediction statistics using the recommended model set of ASSERT-PV 3.2 were compared to those from previous code versions. Furthermore, separate-effects sensitivity studies quantified the contribution of each PDO model change or enhancement to the improvement in PDO heat transfer prediction. Overall, the assessment demonstrated significant improvement in prediction of PDO sheath temperature in horizontal fuel channels containing CANDU bundles.

  6. CANDU: Shortest path to advanced fuel cycles

    International Nuclear Information System (INIS)

    Full text: The global nuclear renaissance exhibiting itself in the form of new reactor build programs is rapidly gaining momentum. Many countries are seeking to expand the use of economical and carbon-free nuclear energy to meet growing electricity demand and manage global climate change challenges. Nuclear power construction programs that are being proposed in many countries will dramatically increase the demand on uranium resources. The projected life-long uranium consumption rates for these reactors will surpass confirmed uranium reserves. Therefore, securing sufficient uranium resources and taking corresponding measures to ensure the availability of long-term and stable fuel resources for these nuclear power plants is a fundamental requirement for business success. Increasing the utilization of existing uranium fuel resources and implementing the use of alternate fuels in CANDU reactors is an important element to meet this challenge. The CANDU heavy water reactor has unequalled flexibility for using a variety of fuels, such as Natural Uranium (NU), Low Enriched Uranium (LEU), Recycled Uranium (RU), Mixed Oxide (MOX), and thorium. This CANDU feature has not been used to date simply due to lack of commercial drivers. The capability is anchored around a versatile pressure tube design, simple fuel bundle, on-power refuelling, and high neutron economy of the CANDU concept. Atomic Energy of Canada Limited (AECL) has carried out theoretical and experimental investigations on various advanced fuel cycles, including thorium, over many years. Two fuels are selected as the subject of this paper: Natural Uranium Equivalent (NUE) and thorium. NUE fuel is developed by combining RU and depleted uranium (DU) in such a manner that the resulting NUE fuel is neutronically equivalent to NU fuel. RU is recovered from reprocessed light water reactor (LWR) fuel and has a nominal 235U concentration of approximately 0.9 wt%. This concentration is higher than NU used in CANDU reactors

  7. Assessment of ASSERT-PV for prediction of critical heat flux in CANDU bundles

    International Nuclear Information System (INIS)

    Highlights: • Assessment of the new Canadian subchannel code ASSERT-PV 3.2 for CHF prediction. • CANDU 28-, 37- and 43-element bundle CHF experiments. • Prediction improvement of ASSERT-PV 3.2 over previous code versions. • Sensitivity study of the effect of CHF model options. - Abstract: Atomic Energy of Canada Limited (AECL) has developed the subchannel thermalhydraulics code ASSERT-PV for the Canadian nuclear industry. The recently released ASSERT-PV 3.2 provides enhanced models for improved predictions of flow distribution, critical heat flux (CHF), and post-dryout (PDO) heat transfer in horizontal CANDU fuel channels. This paper presents results of an assessment of the new code version against five full-scale CANDU bundle experiments conducted in 1990s and in 2009 by Stern Laboratories (SL), using 28-, 37- and 43-element (CANFLEX) bundles. A total of 15 CHF test series with varying pressure-tube creep and/or bearing-pad height were analyzed. The SL experiments encompassed the bundle geometries and range of flow conditions for the intended ASSERT-PV applications for CANDU reactors. Code predictions of channel dryout power and axial and radial CHF locations were compared against measurements from the SL CHF tests to quantify the code prediction accuracy. The prediction statistics using the recommended model set of ASSERT-PV 3.2 were compared to those from previous code versions. Furthermore, the sensitivity studies evaluated the contribution of each CHF model change or enhancement to the improvement in CHF prediction. Overall, the assessment demonstrated significant improvement in prediction of channel dryout power and axial and radial CHF locations in horizontal fuel channels containing CANDU bundles

  8. Proceedings of the fifth international conference on CANDU fuel. V.1,2

    Energy Technology Data Exchange (ETDEWEB)

    Lau, J.H. [ed.

    1997-07-01

    The First International Conference on CANDU Fuel was held in Chalk River in 1986. The CANDU Fuel community has gathered every three years since. The papers presented include topics on international experience, CANFLEX fuel bundles, Fuel design, Fuel modelling, Manufacturing and Quality assurance, Fuel performance and Safety, Fuel cycles and Spent Fuel management. Volume One was published in advance of the conference and Volume Two was printed after the conference.

  9. Proceedings of the fifth international conference on CANDU fuel. V.1,2

    International Nuclear Information System (INIS)

    The First International Conference on CANDU Fuel was held in Chalk River in 1986. The CANDU Fuel community has gathered every three years since. The papers presented include topics on international experience, CANFLEX fuel bundles, Fuel design, Fuel modelling, Manufacturing and Quality assurance, Fuel performance and Safety, Fuel cycles and Spent Fuel management. Volume One was published in advance of the conference and Volume Two was printed after the conference

  10. Basic research and industrialization of CANDU advanced fuel

    International Nuclear Information System (INIS)

    Wolsong Unit 1 as the first heavy water reactor in Korea has been in service for 17 years since 1983. It would be about the time to prepare a plan for the solution of problems due to aging of the reactor. The aging of CANDU reactor could lead especially to the steam generator cruding and pressure tube sagging and creep and then decreases the operation margin to make some problems on reactor operations and safety. The counterplan could be made in two ways. One is to repair or modify reactor itself. The other is to develop new advanced fuel to increase of CANDU operation margin effectively, so as to compensate the reduced operation margin. Therefore, the first objectives in the present R and D is to develop the CANFLEX-NU (CANDU Flexible fuelling-Natural Uranium) fuel as a CANDU advanced fuel. The second objectives is to develop CANDU advanced fuel bundle to utilize advanced fuel cycles such as recovered uranium, slightly enriched uranium, etc. and so to raise adaptability for change in situation of uranium market. Also, it is to develop CANDU advanced fuel technology which improve uranium utilization to cope with a world-wide imbalance between uranium supply and demand, without significant modification of nuclear reactor design and refuelling strategies. As the implementations to achieve the above R and D goal, the work contents and scope of technology development of CANDU advanced fuel using natural uranium (CANFLEX-NU) are the fuel element/bundle designs, the nuclear design and fuel management analysis, the thermalhydraulic analysis, the safety analysis, fuel fabrication technologies, the out-pile thermalhydraulic test and in-pile irradiation tests performed. At the next, the work scopes and contents of feasibility study of CANDU advanced fuel using recycled uranium (CANFLEX-RU) are the fuel element/bundle designs, the reactor physics analysis, the thermalhydraulic analysis, the basic safety analysis of a CANDU-6 reactor with CANFLEX-RU fuel, the fabrication and

  11. Basic research and industrialization of CANDU advanced fuel

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Suk Ho; Park, Joo Hwan; Jun, Ji Su [and others

    2000-04-01

    Wolsong Unit 1 as the first heavy water reactor in Korea has been in service for 17 years since 1983. It would be about the time to prepare a plan for the solution of problems due to aging of the reactor. The aging of CANDU reactor could lead especially to the steam generator cruding and pressure tube sagging and creep and then decreases the operation margin to make some problems on reactor operations and safety. The counterplan could be made in two ways. One is to repair or modify reactor itself. The other is to develop new advanced fuel to increase of CANDU operation margin effectively, so as to compensate the reduced operation margin. Therefore, the first objectives in the present R and D is to develop the CANFLEX-NU (CANDU Flexible fuelling-Natural Uranium) fuel as a CANDU advanced fuel. The second objectives is to develop CANDU advanced fuel bundle to utilize advanced fuel cycles such as recovered uranium, slightly enriched uranium, etc. and so to raise adaptability for change in situation of uranium market. Also, it is to develop CANDU advanced fuel technology which improve uranium utilization to cope with a world-wide imbalance between uranium supply and demand, without significant modification of nuclear reactor design and refuelling strategies. As the implementations to achieve the above R and D goal, the work contents and scope of technology development of CANDU advanced fuel using natural uranium (CANFLEX-NU) are the fuel element/bundle designs, the nuclear design and fuel management analysis, the thermalhydraulic analysis, the safety analysis, fuel fabrication technologies, the out-pile thermalhydraulic test and in-pile irradiation tests performed. At the next, the work scopes and contents of feasibility study of CANDU advanced fuel using recycled uranium (CANFLEX-RU) are the fuel element/bundle designs, the reactor physics analysis, the thermalhydraulic analysis, the basic safety analysis of a CANDU-6 reactor with CANFLEX-RU fuel, the fabrication and

  12. Core analysis during transition from 37-element fuel to CANFLEX-NU fuel in CANDU 6

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Chang Joon; Suk, Ho Chun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    An 1200-day time-dependent fuel-management for the transition from 37-element fuel to CANFLEX-NU fuel in a CANDU 6 reactor has been simulated to show the compatibility of the CANFLEX-NU fuel with the reactor operation. The simulation calculations were carried out with the RFSP code, provided by cell averaged fuel properties obtained from the POWDERPUFS-V code. The refueling scheme for both fuels was an eight bundle shift at a time. The simulation results show that the maximum channel and bundle powers were maintained below the license limit of the CANDU 6. This indicates that the CANFLEX-NU fuel bundle is compatible with the CANDU 6 reactor operation during the transition period. 3 refs., 2 figs., 1 tab. (Author)

  13. Fuel for CANDU pressurized heavy water reactors

    International Nuclear Information System (INIS)

    Unique properties, performance and evolution of CANDU fuel are described. The manufacturing conditions, uranium requirements, and fuel costs are discussed. The in-service performance of the fuel has been excellent and defect mechanisms and operating criterion are described. Evolutionary improvements in CANDU fuel and new fuel cycles such as plutonium and thorium are being explored to insure that the CANDU reactor remains competitive in the future. (author)

  14. Used CANDU fuel waste consumed and eliminated: environmentally responsible, economically sound, energetically enormous

    International Nuclear Information System (INIS)

    The 43,800 tonnes of currently stored CANDU nuclear fuel waste can all be consumed in fast-neutron reactors (FNRs) to reduce its long-term radioactive burden 100,000 times while extracting about 130 times more nuclear energy than the prodigious amounts that have already been gained from the fuel in CANDU reactors. The cost of processing CANDU fuel for use in FNRs plus the cost of recycling the FNR fuel is about 2.5 times less on a per kWh energy basis than the currently projected cost of disposal of 3.6 million used CANDU fuel bundles in a deep geological repository. (author)

  15. Fuel Temperature Characteristics for Fuel Channels using Burnable Poison in the CANDU reactor

    International Nuclear Information System (INIS)

    Although the CANFLEX RU fuel bundle loaded 11.0 wt% Er2O3 are originally designed focused on the safety characteristics, the fuel temperature characteristics is revealed to be not deteriorated but rather is slightly enhanced by the decreased fuel temperature in the outer ring compared with that of standard 37 fuel bundle. Recently, for an equilibrium CANDU core, the power coefficient was reported to be slightly positive when newly developed Industry Standard Tool set reactor physics codes were used. Therefore, it is required to find a new way to effectively decrease the positive power coefficient of CANDU reactor without seriously compromising the economy. In order to make the power coefficient of the CANDU reactor negative at the operating power, Roh et al. have evaluated the various burnable poison (BP) materials and its loading scheme in terms of the fuel performance and reactor safety characteristics. It was shown that reactor safety characteristics can be greatly improved by the use of the BP in the CANDU reactor. In a view of safety, the fuel temperature coefficient (FTC) is an important safety parameter and it is dependent on the fuel temperature. For an accurate evaluation of the safety-related physics parameters including FTC, the fuel temperature distribution and its correlation with the coolant temperature should be accurately identified. Therefore, we have evaluated the fuel temperature distribution of a CANFLEX fuel bundle loaded with a burnable poison and compared the standard 37 element fuel bundle and CANFELX-NU fuel bundle

  16. Burn up Analysis for Fuel Assembly Unit i n a Pressurized Heavy Water CANDU Reactor

    International Nuclear Information System (INIS)

    MCNPX code has been used for modeling a nd simulation of an assembly of CANDU Fuel bundle . The assembly is composed of a heterogeneous lattice of 37-element natural Uranium fuel, heavy water moderator and coolant. The fuel bundle is burnt in normal operation conditions of CANDU reactors. The effective multiplication factor (Keff ) of the bundle is calculated as a function of fuel burnup. The flux and power distribution are determined. Comparing t he concentrations of both Uranium and Plutonium isotopes are analyzed in the bundle. The results of the present model with the results of a benchmark problem, a good agreement was found PWR

  17. Recycled uranium: An advanced fuel for CANDU reactors

    International Nuclear Information System (INIS)

    The use of recycled uranium (RU) fuel offers significant benefits to CANDU reactor operators particularly if used in conjunction with advanced fuel bundle designs that have enhanced performance characteristics. Furthermore, these benefits can be realised using existing fuel production technologies and practices and with almost negligible change to fuel receipt and handling procedures at the reactor. The paper will demonstrate that the supply of RU as a ceramic-grade UO2 powder will increasingly become available as a secure option to virgin natural uranium and slightly enriched uranium(SEU). In the context of RU use in Canadian CANDU reactors, existing national and international transport regulations and arrangements adequately allow all material movements between the reprocessor, RU powder supplier, Canadian CANDU fuel manufacturer and Canadian CANDU reactor operator. Studies have been undertaken of the impact on personnel dose during fuel manufacturing operations from the increased specific activity of the RU compared to natural uranium. These studies have shown that this impact can be readily minimised without significant cost penalty to the acceptable levels recognised in modem standards for fuel manufacturing operations. The successful and extensive use of RU, arising from spent Magnox fuel, in British Energy's Advanced Gas-Cooled reactors is cited as relevant practical commercial scale experience. The CANFLEX fuel bundle design has been developed by AECL (Canada) and KAERI (Korea) to facilitate the achievement of higher bum-ups and greater fuel performance margins necessary if the full economic potential of advanced CANDU fuel cycles are to be achieved. The manufacture of a CANFLEX fuel bundle containing RU pellets derived from irradiated PWR fuel reprocessed in the THORP plant of BNFL is described. This provided a very practical verification of dose modelling calculations and also demonstrated that the increase of external activity is unlikely to require any

  18. The Preliminary Study for Numerical Computation of 37 Rod Bundle in CANDU Reactor

    International Nuclear Information System (INIS)

    A typical CANDU 6 fuel bundle consists of 37 fuel rods supported by two endplates and separated by spacer pads at various locations. In addition, the bearing pads are brazed to each outer fuel rod with the aim of reducing the contact area between the fuel bundle and the pressure tube. Although the recent progress of CFD methods has provided opportunities for computing the thermal-hydraulic phenomena inside of a fuel channel, it is yet impossible to reflect numerical computations on the detailed shape of rod bundle due to challenges with computing mesh and memory capacity. Hence, the previous studies conducted a numerical computation for smooth channels without considering spacers and bearing pads. But, it is well known that these components are an important factor to predict the pressure drop and heat transfer rate in a channel. In this study, the new computational method is proposed to solve complex geometry such as a fuel rod bundle. Before applying a solution to the problem of the 37 rod bundle, the validity and the accuracy of the method are tested by applying the method to simple geometry. The split channel method has been proposed with the aim of computing the fully shaped CANDU fuel channel with detailed components. The validity was tested by applying the method to the single channel problem. The average temperature have similar values for the considered two methods, while the local temperature shows a slight difference by the effect of conduction heat transfer in the solid region of a rod. Based on the present result, the calculation for the fully shaped 37-rod bundle is scheduled for future work

  19. Thorium fuel cycles in CANDU

    International Nuclear Information System (INIS)

    In recent years, Atomic Energy of Canada Limited has been examining in detail the implications of using thorium-based fuels tn the CANDU reactor. Various cycles initiated and enriched either with fissile plutonium or with enriched uranium, and with effective conversion ratios ranging up to 1.0, have been evaluated. We have concluded that: 1. Substantial quantities of uranium can be saved by adoption of the thorium fuel cycle, and the long-term security of fissile supply both for the domestic and overseas market can be considerably enhanced. The amount saved will depend on the details of the fuel cycle and the anticipated growth of nuclear power in Canada. 2. The fuel cycle can be introduced into the basic CANDU design without major modifications and without compromising current safety standards. 3. The economic conditions that make thorium competitive with the once-through natural uranium cycle depend a the price of uranium and on the costs both to fabricate α and γ-emitting fuels and to either enrich uranium or to extract fissile material from spent fuel. While timing is difficult to predict, we believe that competitive economic conditions will prevail toward the end of this century. 4. A twenty-year technological development program will be required to establish commercial confidence in the fuel cycle. (author)

  20. Development of the CANDU high-burnup fuel design/analysis technology

    International Nuclear Information System (INIS)

    This report contains all the information related to the development of the CANDU advanced fuel, so-called CANFLEX-NU, which is composed of 43 elements with natural uranium fuel. Also, it contains the compatibility study of CANFLEX-RU which is considered as a CANDU high burnup fuel. This report describes the mechanical design, thermalhydraulic and safety evaluations of CANFLEX fuel bundle. (author). 38 refs., 24 tabs., 74 figs

  1. CANDU fuel compression tests at elevated temperatures

    International Nuclear Information System (INIS)

    An inlet header large break loss of coolant accident (LOCA) in CANDU reactors with fuelling against flow can cause the fuel to shift in the channels with a consequent reactivity insertion. This results in an increased fuel power transient, and a potential increase in the mialyzed consequences for such events. As the reactor's age and the channel axial gaps increase, the magnitude of the predicted power u-dmient increases. A design solution to reduce the power transient is to limit the amount of fuel movement by reducing the channel axial gap. This solution was implemented into Ontario Hydro's Bruce B and Darlington reactors. A consequence of a reduced channel axial gap is the potential for the fuel column axial expansion to become constrained by the channel end components in large break LOCAs. This experimental program investigated the effects of pellet cracking and elevated sheath temperatures on the ability of the fuel elements, of the 37-element bundle design, to sustain axial loads. The unirradiated fuel elements tested were either in the as-received condition or with the U02 fuel pellets cracked in a mechanical process to simulate the effect of inufflation. The load deformation characteristics demonstrated that, for a given amount of axial compression. the loads sustainable by the elements at elevated sheath temperatures were low. As a result. excess axial expansion would be easily accommodated without further challenge to pressure tube integrity. (author)

  2. Recent advances in thorium fuel cycles for CANDU reactors

    International Nuclear Information System (INIS)

    The once-through thorium fuel cycle in CANDU reactors provides an evolutionary approach to exploiting the energy potential of thorium. In the 'mixed bundle' strategy, the central 8 elements in a CANFLEX fuel bundle contain thoria, while the outermost 35 elements contain slightly enriched uranium (SEU). Detailed full-core fuel-management simulations have shown that this approach can be successfully implemented in existing CANDU reactors. Uranium requirements are lower than for the natural uranium fuel cycle. Further energy can be derived from the thorium by recycling the irradiated thoria fuel elements, containing 233U, as-is without any processing, into the center of a new mixed bundle. There are several examples of such 'demountable' bundles. Recycle of the central 8 thoria elements results in an additional burnup of 20 MW·d/kgHE from the thoria elements, for each recycle. The reactivity of these thoria elements remains remarkably constant over irradiation for each recycle. The natural uranium requirements for the mixed bundle (which includes the natural uranium feed required for the outer SEU fuel elements), without recycle, is about 10% lower than for the natural uranium fuel cycle. After the first recycle, the uranium requirements are -35% lower than for the natural uranium cycle, and remain fairly constant with further recycling (the total uranium requirement averaged over a number of cycles is 30% lower than a natural uranium fuelled CANDU reactor). This thorium cycle strategy is a cost-effective means of reducing uranium requirements, while producing a stockpile of valuable 233U, safeguarded in the spent fuel, that can be recovered in the future when predicated by economic or resource considerations. (author)

  3. Thorium-Based Fuels Preliminary Lattice Cell Studies for Candu Reactors

    International Nuclear Information System (INIS)

    The choice of nuclear power as a major contributor to the future global energy needs must take into account acceptable risks of nuclear weapon proliferation, in addition to economic competitiveness, acceptable safety standards, and acceptable waste disposal options. Candu reactors offer a proven technology, safe and reliable reactor technology, with an interesting evolutionary potential for proliferation resistance, their versatility for various fuel cycles creating premises for a better utilization of global fuel resources. Candu reactors impressive degree of fuel cycle flexibility is a consequence of its channel design, excellent neutron economy, on-power refueling, and simple fuel bundle. These features facilitate the introduction and exploitation of various fuel cycles in Candu reactors in an evolutionary fashion. The main reasons for our interest in Thorium-based fuel cycles have been, globally, to extend the energy obtainable from natural Uranium and, locally, to provide a greater degree of energy self-reliance. Applying the once through Thorium (OTT) cycle in existing and advanced Candu reactors might be seen as an evaluative concept for the sustainable development both from the economic and waste management points of view. Two Candu fuel bundles project will be used for the proposed analysis, namely the Candu standard fuel bundle with 37 fuel elements and the CANFLEX fuel bundle with 43 fuel elements. Using the Canadian proposed scheme - loading mixed ThO2-SEU CANFLEX bundles in Candu 6 reactors - simulated at lattice cell level led to promising conclusions on operation at higher fuel burnups, reduction of the fissile content to the end of the cycle, minor actinide content reduction in the spent fuel, reduction of the spent fuel radiotoxicity, presence of radionuclides emitting strong gamma radiation for proliferation resistance benefit. The calculations were performed using the lattice codes WIMS and Dragon (together with the corresponding nuclear data

  4. Analysis of fuelling sequence and fatigue life for 4-bundle shift refuelling scheme in CANDU6 NPP

    International Nuclear Information System (INIS)

    A 4-bundle shift refuelling method of CANDU6 F/H (Fuel Handling) System is analyzed to assess the operational flexibility and capacity of F/H system. The current 8-bundle shift refuelling scheme requires to refuel eight fuel bundles from a single fuel channel, and to refuel 14 fuel channels in a week on average assuming that the reactor is in a steady state. The analysis showed that the 4-bundle shift refuelling method increases F/M (Fuelling Machine) duty cycle and operator load. However, the fuelling method change from the 8- to 4-bundle shift refuelling will not require additional team of operators. A marginal increase in the maintenance cost may be resulted in by the change of fuelling method and the increase of fatigue usage factors requires some components to be replaced during the F/M lifetime

  5. Fuel rod bundles proposed for advanced pressure tube nuclear reactors

    International Nuclear Information System (INIS)

    The paper aims to be a general presentation for fuel bundles to be used in Advanced Pressure Tube Nuclear Reactors (APTNR). The characteristics of such a nuclear reactor resemble those of known advanced pressure tube nuclear reactors like: Advanced CANDU Reactor (ACRTM-1000, pertaining to AECL) and Indian Advanced Heavy Water Reactor (AHWR). We have also developed a fuel bundle proposal which will be referred as ASEU-43 (Advanced Slightly Enriched Uranium with 43 rods). The ASEU-43 main design along with a few neutronic and thermalhydraulic characteristics are presented in the paper versus similar ones from INR Pitesti SEU-43 and CANDU-37 standard fuel bundles. General remarks regarding the advantages of each fuel bundle and their suitability to be burned in an APTNR reactor are also revealed. (authors)

  6. Future fuel cycle development for CANDU reactors

    International Nuclear Information System (INIS)

    The CANDU reactor has proven to be safe and economical and has demonstrated outstanding performance with natural uranium fuel. The use of on-power fuelling, coupled with excellent neutron economy, leads to a very flexible reactor system with can utilize a wide variety of fuels. The spectrum of fuel cycles ranges from natural uranium, through slightly enriched uranium, to plutonium and ultimately thorium fuels which offer many of the advantages of the fast breeder reactor system. CANDU can also burn the recycled uranium and/or the plutonium from fuel discharged from light water reactors. This synergistic relationship could obviate the need to re-enrich the reprocessed uranium and allow a simpler reprocessing scheme. Fule management strategies that will permit future fuel cycles to be used in existing CANDU reactors have been identified. Evolutionary design changes will lead to an even greater flexibility, which will guarantee the continued success of the CANDU system. (author)

  7. Filler metals for containers holding irradiated fuel bundles

    International Nuclear Information System (INIS)

    One of the procedures being considered for the disposal of Canadian deuterium uranium (CANDU) irradiated fuel bundles is to place the bundles in containers, fill the containers with metal, and place them underground. This investigation deals with the selection of the filler metal with particular reference to the reaction rate with, and bonding of the filler metal to, the fuel sheathing (Zircaloy 4) and potential container materials. Lead, zinc, and aluminium alloys were examined as potential filler metals. (U.K.)

  8. CANDU RU fuel manufacturing basic technology development and advanced fuel verification tests

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Chang Hwan; Chang, S.K.; Hong, S.D. [and others

    1999-04-01

    A PHWR advanced fuel named the CANFLEX fuel has been developed through a KAERI/AECL joint Program. The KAERI made fuel bundle was tested at the KAERI Hot Test Loop for the performance verification of the bundle design. The major test activities were the fuel bundle cross-flow test, the endurance fretting/vibration test, the freon CHF test, and the fuel bundle heat-up test. KAERI also has developing a more advanced PHWR fuel, the CANFLEX-RU fuel, using recovered uranium to extend fuel burn-up in the CANDU reactors. For the purpose of proving safety of the RU handling techniques and appraising feasibility of the CANFLEX-RU fuel fabrication in near future, a physical, chemical and radiological characterization of the RU powder and pellets was performed. (author). 54 refs., 46 tabs., 62 figs.

  9. CANDU RU fuel manufacturing basic technology development and advanced fuel verification tests

    International Nuclear Information System (INIS)

    A PHWR advanced fuel named the CANFLEX fuel has been developed through a KAERI/AECL joint Program. The KAERI made fuel bundle was tested at the KAERI Hot Test Loop for the performance verification of the bundle design. The major test activities were the fuel bundle cross-flow test, the endurance fretting/vibration test, the freon CHF test, and the fuel bundle heat-up test. KAERI also has developing a more advanced PHWR fuel, the CANFLEX-RU fuel, using recovered uranium to extend fuel burn-up in the CANDU reactors. For the purpose of proving safety of the RU handling techniques and appraising feasibility of the CANFLEX-RU fuel fabrication in near future, a physical, chemical and radiological characterization of the RU powder and pellets was performed. (author). 54 refs., 46 tabs., 62 figs

  10. Advanced CANDU reactors fuel analysis through optimal fuel management at approach to refuelling equilibrium

    International Nuclear Information System (INIS)

    The analysis of alternate CANDU fuels along with natural uranium-based fuel was carried out from the view point of optimal in-core fuel management at approach to refuelling equilibrium. The alternate fuels considered in the present work include thorium containing oxide mixtures (MOX), plutonium-based MOX, and Pressurised Water Reactor (PWR) spent fuel recycled in CANDU reactors (Direct Use of spent PWR fuel in CANDU (DUPIC)); these are compared with the usual natural UO2 fuel. The focus of the study is on the 'Approach to Refuelling Equilibrium' period which immediately follows the initial commissioning of the reactor. The in-core fuel management problem for this period is treated as an optimization problem in which the objective function is the refuelling frequency to be minimized by adjusting the following decision variables: the channel to be refuelled next, the time of the refuelling and the number of fresh fuel bundles to be inserted in the channel. Several constraints are also included in the optimisation problem which is solved using Perturbation Theory. Both the present 37-rod CANDU fuel bundle and the proposed CANFLEX bundle designs are part of this study. The results include the time to reach refuelling equilibrium from initial start-up of the reactor, the average discharge burnup, the average refuelling frequency and the average channel and bundle powers relative to natural UO2. The model was initially tested and the average discharge burnup for natural UO2 came within 2% of the industry accepted 199 MWh/kgHE. For this type of fuel, the optimization exercise predicted the savings of 43 bundles per full power year. In addition to producing average discharge burnups and other parameters for the advanced fuels investigated, the optimisation model also evidenced some problem areas like high power densities for fuels such as the DUPIC. Perturbation Theory has proven itself to be an accurate and valuable optimization tool in predicting the time between

  11. Container storage of CANDU fuel

    International Nuclear Information System (INIS)

    Each Ontario Hydro operating plant has bays or water pools large enough to handle about a decade's used fuel. For the long term, however, dry storage is a practical alternative, especially for CANDU fuel with its low decay heat. The economic attractiveness of dry storage has long been recognized. Prospects improve if the same container can be used for transporting the fuel to its final destination without any need for repackaging. There are many engineering, scientific and licensing problems to be dealt with, but Ontario Hydro has made a start with its Dry Storage Demonstration Program. The long term goal of this program is to develop a container that can be used for storage, transportation, and disposal of used fuel. This paper describes the stages in the development of Ontario Hydro's approach to dry storage. Efforts have converged on the concept of a Concrete Integrated Container. This is a self-contained, high-integrity structure designed to be loaded with fuel directly from the station pools, moved to a storage area and eventually transported off-site to a final disposal facility. 5 refs., 4 tabs., 8 figs

  12. The advanced carrier bundle - comprehensive irradiation of materials in CANDU power reactors

    International Nuclear Information System (INIS)

    Improved methods of measuring element profiles on new CANDU fuel bundles were developed at the Sheridan Park Engineering Laboratory, and have now been applied in the hot cells at Whiteshell Laboratories. For the first time, the outer element profiles have been compared between new, out-reactor tested, and irradiated fuel elements. The comparison shows that irradiated element deformation is similar to that observed on elements in out-reactor tested bundles. In addition to the restraints applied to the element via appendages, the element profile appears to be strongly influenced by gravity and the end loads applied by local deformation of the endplate. Irradiation creep in the direction of gravity also tends to be a dominant factor. (author)

  13. Development of the advanced PHWR technology -Verification tests for CANDU advanced fuel-

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jang Hwan; Suk, Hoh Chun; Jung, Moon Kee; Oh, Duk Joo; Park, Joo Hwan; Shim, Kee Sub; Jang, Suk Kyoo; Jung, Heung Joon; Park, Jin Suk; Jung, Seung Hoh; Jun, Ji Soo; Lee, Yung Wook; Jung, Chang Joon; Byun, Taek Sang; Park, Kwang Suk; Kim, Bok Deuk; Min, Kyung Hoh [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    This is the `94 annual report of the CANDU advanced fuel verification test project. This report describes the out-of pile hydraulic tests at CANDU-hot test loop for verification of CANFLEX fuel bundle. It is also describes the reactor thermal-hydraulic analysis for thermal margin and flow stability. The contents in this report are as follows; (1) Out-of pile hydraulic tests for verification of CANFLEX fuel bundle. (a) Pressure drop tests at reactor operation condition (b) Strength test during reload at static condition (c) Impact test during reload at impact load condition (d) Endurance test for verification of fuel integrity during life time (2) Reactor thermal-hydraulic analysis with CANFLEX fuel bundle. (a) Critical channel power sensitivity analysis (b) CANDU-6 channel flow analysis (c) Flow instability analysis. 61 figs, 29 tabs, 21 refs. (Author).

  14. The R and D program in support of advanced fuel cycles for CANDU

    International Nuclear Information System (INIS)

    Advanced fuel cycles for CANDU reactors are well on their way to being implemented. The first step is slightly enriched uranium (SEU) which is economical today. A new fuel bundle is seen as the vehicle for all fuels in CANDU. CANDU fuel fabricated from uranium recovered from fuel discharged from light-water reactors (LWR) is also economical today and readily achievable technically. Future fuel cycles would utilize plutonium recovered from light-water reactors or CANDU's and eventually thorium. R and D in support of these cycles focuses on those topics that require a high degree of confidence in their implementation such as fuel fabrication and defect-free performance to high burnup. Reactor physics codes and nuclear data for advanced fuel cycles will be validated against experiments. (author). 8 refs

  15. Safety assessment to support NUE fuel full core implementation in CANDU reactors

    International Nuclear Information System (INIS)

    The Natural Uranium Equivalent (NUE) fuel contains a combination of recycled uranium and depleted uranium, in such a manner that the resulting mixture is similar to the natural uranium currently used in CANDU® reactors. Based on successful preliminary results of 24 bundles of NUE fuel demonstration irradiation in Qinshan CANDU 6 Unit 1, the NUE full core implementation program has been developed in cooperation with the Third Qinshan Nuclear Power Company and Candu Energy Inc, which has recently received Chinese government policy and funding support from their National-Level Energy Innovation program. This paper presents the safety assessment results to technically support NUE fuel full core implementation in CANDU reactors. (author)

  16. Thorium fuel studies for CANDU reactors

    International Nuclear Information System (INIS)

    Applying the once-through Thorium (OTT) cycle in existing and advanced CANDU reactors might be seen as an evolved concept for the sustainable development both from the economic and waste management points of view. Using the Canadian proposed scheme - loading mixed ThO2-SEU CANFLEX bundles in CANDU 6 reactors - simulated at lattice cell level led to promising conclusions on higher burnup, lesser actinide inventory and proliferation resistance. The calculations were performed using the lattice codes WIMS and DRAGON (together with the corresponding nuclear data library based on ENDF/B-VII). (authors)

  17. Thermal-hydraulics analysis for advanced fuel to be used in Candu 600 nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Catana, Alexandru [RAAN, Institute for Nuclear Research, Str. Campului Nr. 1, Pitesti, Arges (Romania); Danila, Nicolae; Prisecaru, Ilie; Dupleac, Daniel [University POLITEHNICA of Bucharest (Romania)

    2008-07-01

    Two Candu 600 pressure tube nuclear reactors cover about 17% of Romania's electricity demand. These nuclear reactors are moderated/cooled with D{sub 2}O, fuelled on-power with Natural Uranium (NU) dioxide encapsulated in a standard (STD37) fuel bundle. High neutron economy is achieved using D{sub 2}O as moderator and coolant in separated systems. To reduce fuel cycle costs, programs were initiated in Canada, S.Korea, Argentina and Romania for the design and build new fuel bundles able to accommodate different fuel compositions. Candu core structure and modular fuel bundles, permits flexible fuel cycles. The main expected achievements are: reduced fuel cycle costs, increased discharge burn-up, plutonium and minor actinides management, thorium cycle, use of recycled PWR and in the same time waste minimization and operating cost reduction. These new fuel bundles are to be used in already operated Candu reactors. Advanced fuel bundle were proposed: CANFLEX bundle (Canada, S-Korea); the Romanian 'SEU43' bundle (Fig 1). In this paper thermal-hydraulic analysis in sub-channel approach is presented for SEU43. Comparisons with standard (STD37) fuel bundles are made using SEU-NU for NU fuel composition and SEU-0.96, for recycled uranium (RU) fuel with 0.96% U-235. Extended and comprehensive analysis must be made in order to assess the TH behaviour of SEU43. In this paper, considering STD37, SEU43-NU and SEU43-0.96 fuel bundles, main TH parameters were analysed: pressure drop, fuel highest temperatures, coolant density, critical heat flux. Differences between these fuel types are outlined. Benefits are: fuel costs reduction, spent fuel waste minimization, increase in competitiveness of nuclear power. Safety margins must be, at least, conserved. (authors)

  18. Temperature effect of DUPIC fuel in CANDU reactor

    International Nuclear Information System (INIS)

    The fuel temperature coefficient (FTC) of DUPIC fuel was calculated by WIMS-AECL with ENDF/B-V cross-section library. Compared to natural uranium CANDU fuel, the FTC of DUPIC fuel is less negative when fresh and is positive after 10,000 MWD/T of irradiation. The effect of FTC on the DUPIC core performance was analyzed using the pace-time kinetics module in RFSP for the refueling transient which occurs daily during normal operation of CANDU reactors. In this study, the motion of zoen controller units (ZCU) was modeled externally to describe the reactivity control during the refueling transient. Refueling operation was modeled as a linear function of time by changing the fuel burnup incrementally and the average fuel temperature was calculated based on the bundle power during the transient. The analysis showed that the core-wide FTC is negative and local positive FTC of the DUPIC fuel can be accommodated in the CANDU reactor because the FTC is very small, the refueling operation occurs slowly, and the channel-front-peaked axial power profile weakens the contribution of the positive FTC. (author). 11 refs., 31 tabs., 10 figs

  19. Development of the advanced PHWR technology -Verification tests for CANDU advanced fuel-

    International Nuclear Information System (INIS)

    This is final report of the CANDU advanced fuel (CANFLEX fuel) verification test project. This report describes performance verification tests performed for the development of the CANFLEX-NU bundle. The test items described in the report are as follows. - Fuel channel pressure drop test, -Fuel strength tests, - Fuel impact test, - Fuel endurance test (vibration test), - Compatibility test with fueling machine, - Critical heat flux test. 58 tabs., 60 figs., 32 refs. (Author)

  20. Shielding calculations for spent CANDU fuel transport cask

    International Nuclear Information System (INIS)

    CANDU spent fuel discharged from the reactor core contains Pu, so, a special attention must be focussed into two directions: tracing for the fuel reactivity in order to prevent critical mass formation and personnel protection during the spent fuel manipulation. Shielding analyses, an essential component of the nuclear safety, take into account the difficulties occurred during the manipulation, transport and storage of spent fuel bundles, both for personnel protection and impact on the environment. The main objective here consists in estimations on radiation doses in order to reduce them under specified limit values. In order to perform the shielding calculations for the spent fuel transport cask three different codes were used: XSDOSE code and MORSE-SGC code, both incorporated in the SCALE4.4a system, and PELSHIE-3 code, respectively. As source of radiation one spent standard CANDU fuel bundle was used. All the geometrical and material data, related to the transport casks, were considered according to the shipping cask type B model, whose prototype has been realized and tested in the Institute for Nuclear Research Pitesti. The radial gamma dose rates estimated to the cask wall and in air, at different distances from the cask, are presented together with a comparison between the dose rates values obtained by all three recipes of shielding calculations. (authors)

  1. Thermochemical modelling of advanced CANDU reactor fuel

    Science.gov (United States)

    Corcoran, Emily Catherine

    2009-04-01

    With an aging fleet of nuclear generating facilities, the imperative to limit the use of non-renewal fossil fuels and the inevitable need for additional electricity to power Canada's economy, a renaissance in the use of nuclear technology in Canada is at hand. The experience and knowledge of over 40 years of CANDU research, development and operation in Ontario and elsewhere has been applied to a new generation of CANDU, the Advanced CANDU Reactor (ACR). Improved fuel design allows for an extended burnup, which is a significant improvement, enhancing the safety and the economies of the ACR. The use of a Burnable Neutron Absorber (BNA) material and Low Enriched Uranium (LEU) fuel has created a need to understand better these novel materials and fuel types. This thesis documents a work to advance the scientific and technological knowledge of the ACR fuel design with respect to thermodynamic phase stability and fuel oxidation modelling. For the BNA material, a new (BNA) model is created based on the fundamental first principles of Gibbs energy minimization applied to material phase stability. For LEU fuel, the methodology used for the BNA model is applied to the oxidation of irradiated fuel. The pertinent knowledge base for uranium, oxygen and the major fission products is reviewed, updated and integrated to create a model that is applicable to current and future CANDU fuel designs. As part of this thesis, X-Ray Diffraction (XRD) and Coulombic Titration (CT) experiments are compared to the BNA and LEU models, respectively. From the analysis of the CT results, a number of improvements are proposed to enhance the LEU model and provide confidence in its application to ACR fuel. A number of applications for the potential use of these models are proposed and discussed. Keywords: CANDU Fuel, Gibbs Energy Mimimization, Low Enriched Uranium (LEU) Fuel, Burnable Neutron Absorber (BNA) Material, Coulometric Titration, X-Ray Diffraction

  2. Fuel management simulations for 0.9% SEU in CANDU 6 reactors

    International Nuclear Information System (INIS)

    Slightly Enriched Uranium (SEU) of 0.9 weight % 235U enrichment is a promising fuel cycle option for CANDU reactors. An important component of the investigation of this option is the demonstration of the feasibility of on-line refuelling with this fuel type in reactor physics fuel-management simulations. Two fuel-management schemes have been investigated in detail during 500-day core-follow simulations, these were a 2-bundle-shift and a 4-bundle-shift axial refuelling scheme. The 43-element CANFLEX fuel design has been used in these studies because of its improved fuel performance characteristics in this application. The results of the studies are discussed in detail in this paper. The most significant conclusion of this study was that both 2- and 4-bundle-shift refuelling schemes with CANFLEX fuel result in bundle power and bundle power boost envelopes that meet current fuel-performance requirements. (author)

  3. Development of the advanced CANDU technology -Development of CANDU advanced fuel fabrication technology-

    International Nuclear Information System (INIS)

    This project is carrying out jointly with AECL to develop CANFLEX fuel which can enhance reactor safety, fuel economy and can be used with various fuel cycles (natural U, slightly enriched U, other advanced fuel). The final goal of this research is to load the CANFLEX fuel in commercial CANDU reactor for demonstration irradiation. The annual portion of research activities performed during this year are followings ; The detail design of CANFLEX-NU fuel was determined. Based on this design, various fabrication drawings and process specifications were revised. The seventeen CANFLEX-NU fuel bundles for reactivity test in ZED-2 and out-pile test, two CANFLEX-SEU fuel bundles for demo-irradiation in NRU were fabricated. Advanced tack welding machine was designed and sequence control software of automatic assembly welder was developed. The basic researches related to fabrication processes, such as weld evaluation by ECT, effect of additives in UO2, thermal stabilities of Zr based metallic glasses, were curried out. 51 figs, 22 tabs, 42 refs. (Author)

  4. Development of the advanced CANDU technology -Development of CANDU advanced fuel fabrication technology-

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chang Bum; Park, Choon Hoh; Park, Chul Joo; Kwon, Woo Joo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    This project is carrying out jointly with AECL to develop CANFLEX fuel which can enhance reactor safety, fuel economy and can be used with various fuel cycles (natural U, slightly enriched U, other advanced fuel). The final goal of this research is to load the CANFLEX fuel in commercial CANDU reactor for demonstration irradiation. The annual portion of research activities performed during this year are followings ; The detail design of CANFLEX-NU fuel was determined. Based on this design, various fabrication drawings and process specifications were revised. The seventeen CANFLEX-NU fuel bundles for reactivity test in ZED-2 and out-pile test, two CANFLEX-SEU fuel bundles for demo-irradiation in NRU were fabricated. Advanced tack welding machine was designed and sequence control software of automatic assembly welder was developed. The basic researches related to fabrication processes, such as weld evaluation by ECT, effect of additives in UO{sub 2}, thermal stabilities of Zr based metallic glasses, were curried out. 51 figs, 22 tabs, 42 refs. (Author).

  5. Analysis of F/M duty cycle and O/M cost for four-bundle shift refuelling scheme in CANDU6 NPP

    International Nuclear Information System (INIS)

    A four-bundle shift refuelling method, a refuelling scheme that can reduces local flux peak compared to the current eight-bundle shift refuelling method used in CANDU6 NPP, is analyzed to see how much Fuel Handling System load and management cost increase are required due to the change. The current eight-bundle shift refuelling method requires to refuel eight fuel bundles from a single fuel channel, and to refuel 14 fuel channels in a week on average assuming that the reactor is in a steady state. The four-bundle shift refuelling method increases Fuelling Machine duty cycle and operator load. The study showed that the refuelling scheme change from the eight-to four-bundle shift increases the operation and maintenance cost about 35% from the current figure by conservative estimate and that the Fuel Handling System has enough flexibility to meet the demand of a more frequent refuelling scheme

  6. The application of the goal programming to CANDU fuel management optimization

    International Nuclear Information System (INIS)

    A Goal Programming formulation to CANDU fuel management optimization is proposed. Four objectives are considered, respectively : the feed rate, CPPF (Channel Power Peaking Factor), BPPF (Bundle Power Peaking Factor) and CPR (Critical Power Ratio). This problem is investigated using a numerical approach to optimization established on STepMethod and the use of loss matrix. The optimization technique developed is more adequate for fuel management analysis for fissile enriched fuel cycles, in which cases the relative importance of the objectives could be modified. Numerical results are presented for 0.93% SEU fuelled CANDU 6Mk1 core and weapons-grade plutonium burning in CANDU 6Mk1 core, using standard 37 rod fuel bundle. (author). 12 refs., 3 tabs., 7 figs

  7. Romanian progress in the advanced CANDU fuel manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Ohai, D.; Benga, D. [RAAN, Inst. for Nuclear Research, Pitesti- Mioveni (Romania)]. E-mail: dohai@nuclear.ro

    2005-07-01

    The initial concept in developing an advanced fuel compatible with CANDU 6 Reactor, using part of Nuclear Fuel Plant (FCN) Pitesti facilities [1] should be revised. New aspects were considered: working within FCN area, a technological transfer suspicion appears (inobservance of AECL-FCN confidentiality agreement), and the enriched Uranium use on FCN area is prohibited (IAEA requirement). Under these conditions, the Institute for Nuclear Research (ICN) decided to develop or modernize its own facilities for nuclear fuel (CANDU type) manufacturing. The intention was to cover the main technological steps in fuel manufacturing, beginning with powder manufacturing and ending up with fuel bundle assembling. The development or modernization of own facilities for the nuclear fuel manufacturing open the possibilities for the collaboration with other entities interested in advanced fuel development. Having a Research Reactor for material testing and a Post Irradiation+ Facility, ICN can complete the irradiation and post-irradiation services with experimental fuel elements manufacturing, the services being completed. This can be a possibility to eliminate the interstates transport of nuclear materials. The new international requirements for the transport of the nuclear materials are drastic and need a lot of time and money for obtaining authorizations and for transport. It is financially advantageous to manufacture experimental fuel elements on the same site with the irradiation and post-irradiation facilities. (author)

  8. Assessing the impact of the 37M fuel bundle design on fuel safety parameters

    International Nuclear Information System (INIS)

    To improve the critical heat flux and margin to fuel dryout in aging CANDU nuclear generating stations, the 37-element bundle design '37R' fuel) has been modified by reducing the central fuel element diameter, producing the modified '37M' fuel bundle. The codes FACTARSS, ELESTRES, ELOCA-IST, and SOURCE have been used to compare fuel temperature, fission gas release, and element integrity in 37R and 37M fuel bundles for Bruce Power nuclear reactors. The assessment demonstrated that, relative to 37R fuel bundles, using 37M fuel bundles does not significantly impact the existing safety margins associated with fuel temperature, fission gas release, and element integrity during design basis accidents. (author)

  9. In-situ verification of CANDU spent fuel by the Cherenkov technique

    International Nuclear Information System (INIS)

    Multilayered and densely stacked irradiated CANDU fuel bundles in storage ponds make direct viewing of bundles in order to observe Cherenkov glow practically impossible. Ability to defect the source of Cherenkov glow by visual observation invariably suffers from subjective judgment. In the case of CANDU-type storage geometry, the difficulty in drawing conclusions is even greater for a number of reasons including the near neighbour effect. In this paper, the first results of Cherenkov photographic procedure without the isolation of individual trays are presented in which a new model of the Hungarian underwater telescope in combination with a lightmeter for Cherenkov intensity measurements has been used. It is demonstrated by this technique that photographs of bundles with cooling time of up to 2 a provide a satisfactory record for conclusive attribute verification result for irradiated fuel bundles stacked in multilayers. A distinct glow, with a brightness of higher intensity between the rod of a bundle compared to the surroundings of the bundle, is clearly shown by the pictures. Based on the results of the glow intensity measurements, the use of this photographic method for fuel bundles with longer cooling time of up to 15 a or more would require considerably longer exposure times or more sensitive film. Possible impact on IAEA safeguards of CANDU spent fuel bays by a system, which offers simultaneous item counting and NDA attribute test capabilities in a relatively low intrusive manner, is discussed. The limitations are also considered. (author)

  10. The R and D program in support of advanced fuel cycles for CANDU

    International Nuclear Information System (INIS)

    Advanced fuel cycles for CANDU reactors are well on their way to being implemented. The first step is slightly enriched uranium (SEU) which is economical today. A new fuel bundle is seen as the vehicle for all fuels in CANDU. CANDU fuel fabricated from uranium recovered from fuel discharged from light-water reactors (LWR) is also economical today and readily achievable technically. Future fuel cycles would utilize plutonium recovered from light-water reactors or CANDUs and eventually thorium. R and D in support of these cycles focuses on those topics that require a high degree of confidence in their implementation such as fuel fabrication and defect-free performance to high burnup. Reactor physics codes and nuclear data for advanced fuel cycles will be validated against experiments. (author).

  11. An analytical assessment of the longitudinal ridging of CANDU type fuel element

    International Nuclear Information System (INIS)

    There are 380 fuel channels in a CANDU-6 reactor, and twelve fuel bundles are loaded into each fuel channel. High-pressure, heavy water coolant passes through the fuel bundle string to remove heat generated from the fuel. Fuel sheath collapses down around the uranium dioxide pellet due to the coolant pressure when the fuel is loaded into the reactor. Longitudinal ridges may form in CANDU fuel element sheaths as a result of sheath collapse onto the pellets. A static analysis, finite-element (FE) model was developed to simulate the longitudinal ridging of the fuel element with use of the structural analysis computer code ABAQUS. Collapse pressures were calculated for the fifty-one cases for which test results of WCL in 1973 and 1975 are available. Calculation results under-predicted the critical collapse pressure but it showed significant relationship against test results

  12. Advanced Fuel Bundles for PHWRS

    International Nuclear Information System (INIS)

    The fuel used by NPCIL presently is natural uranium dioxide in the form of 19- element fuel bundles for 220 MWe PHWRs and 37-element fuel bundles for the TAPP-3&4 540 MWe units. The new 700 MWe PHWRs also use 37-element fuel bundles. These bundles are of short 0.5 m length of circular geometry. The cladding is of collapsible type made of Zircaloy-4 material. PHWRs containing a string of short length fuel bundles and the on-power refueling permit flexibility in using different advanced fuel designs and in core fuel management schemes. Using this flexibility, alternative fuel concepts are tried in Indian PHWRs. The advances in PHWR fuel designs are governed by the desire to use resources other than uranium, improve fuel economics by increasing fuel burnup and reduce overall spent nuclear fuel waste and improve reactor safety. The rising uranium prices are leading to a relook into the Thorium based fuel designs and reprocessed Uranium based and Plutonium based MOX designs and are expected to play a major role in future. The requirement of synergism between different type of reactors also plays a role. Increase in fuel burnup beyond 15 000 MW∙d/TeU in PHWRs, using higher fissile content materials like slightly enriched uranium, Mixed Oxide and Thorium Oxide in place of natural uranium in fuel elements, was studied many PHWR operating countries. The work includes reactor physics studies and test irradiation in research reactors and power reactors. Due to higher fissile content these bundles will be capable of delivering higher burnup than the natural uranium bundles. In India the fuel cycle flexibility of PHWRs is demonstrated by converting this type of technical flexibility to the real economy by irradiating these different types of advanced fuel materials namely Thorium, MOX, SEU, etc. The paper gives a review of the different advanced fuel design concepts studied for Indian PHWRs. (author)

  13. Development of CANDU Spent Fuel Disposal Concepts for the Improvement of Disposal Efficiency

    International Nuclear Information System (INIS)

    There are two types of spent fuels generated from nuclear power plants, CANDU type and PWR type. PWR spent fuels which include a lot of reusable material can be considered to be recycled. CANDU spent fuels are considered to directly disposed in deep geological formation, since they have little reusable material. In this study, based on the Korean Reference spent fuel disposal System(KRS) which is to dispose both PWR and CANDU spent fuels, the more effective CANDU spent fuel disposal systems have been developed. To do this, the disposal canister has been modified to hold the storage basket which can load 60 spent fuel bundles. From these modified disposal canisters, the disposal systems to meet the thermal requirement for which the temperature of the buffer materials should not be over have been proposed. These new disposals have made it possible to introduce the concept of long term storage and retrievability and that of the two-layered disposal canister emplacement in one disposal hole. These disposal concepts have been compared and analyzed with the KRS CANDU spent fuel disposal system in terms of disposal effectiveness. New CANDU spent fuel disposal concepts obtained in this study seem to improve thermal effectiveness, U-density, disposal area, excavation volume, and closure material volume up to 30 - 40 %.

  14. Locking means for fuels bundles

    International Nuclear Information System (INIS)

    A nuclear power reactor fuel bundle is described which has a plurality of fuel rods disposed between two end plates positioned by tie rods extending therebetween. The assembled bundle is secured by one or more locking forks which pass through slots in the tie rod ends. Springs mounted on the fuel rods and tie rods are compressed by assembling the bundle and forcing one end plate against the locking fork to maintain the fuel rods and tie rods in position between the end plates. Downward pressure on the end plate permits removal of the locking fork so that the end plates may be removed, thus giving access to the fuel rods. This construction facilitates disassembly of an irradiated fuel bundle under water

  15. Reducing the impact of used fuel by transmuting actinides in a CANDU reactor

    International Nuclear Information System (INIS)

    With world stockpiles of used nuclear fuel increasing, the need to address the long term utilization of this resource is being studied. Many of the transuranic (TRU) actinides in nuclear spent fuel produce decay heat for long durations, resulting in significant nuclear waste management challenges. These actinides can be transmuted to shorter-lived isotopes in CANDU reactors to reduce the decay heat period. Many of the design features of the CANDU reactor make it uniquely adaptable to actinide transmutation. The small, simple fuel bundle facilitates the fabrication and handling of active fuels. Online refueling allows precise management of core reactivity and separate insertion of the actinides and fuel bundles into the core. The high neutron economy of the CANDU reactor results in high TRU destruction to fissile-loading ratio. This paper provides a summary of actinide transmutation in CANDU reactors, including both recent and past activities. The transmutation schemes that are presented reflect several different partitioning schemes and include both homogeneous scenarios in which actinides are uniformly distributed in all fuel bundles in the reactor, as well as heterogeneous scenarios in which dedicated channels in the reactor are loaded with actinide targets and the rest of the reactor is loaded with fuel. (author)

  16. Five years of successful CANDU-6 fuel manufacturing in Romania

    International Nuclear Information System (INIS)

    This paper describes the evolution of CANDU-6 nuclear fuel manufacturing in Romania at FCN Pitesti, after the completion of the qualification in 1994. Commercial production was resumed early 1995 and fuel bundles produced were entirely delivered to Cernavoda Plant and charged in the reactor. More than 12,000 fuel bundles have been produced in the last five years and the fuel behaved very well. Defective bundles represents less than 0.06% from the total irradiated fuel, and the most defects are associated to the highest power positions. After qualification, FCN focused the effort to improve braze quality and also to maintain a low residual hydrogen content in graphite coated sheaths. The production capacity was increased especially for component manufacturing, appendages tack welding and brazing. A new graphite baking furnace with increased capacity, is under design. In the pelleting area, a rotating press will replace the older hydraulic presses used for pelleting. Plant development taken inter consideration the future demands for Cernavoda Unit 2. (author)

  17. Interactive hypermedia training manual for spent-fuel bundle counters

    International Nuclear Information System (INIS)

    Spent-fuel bundle counters, developed by the Canadian Safeguards Support Program for the International Atomic Energy Agency, provide a secure and independent means of counting the number of irradiated fuel bundles discharged into the fuel storage bays at CANDU nuclear power stations. Paper manuals have been traditionally used to familiarize IAEA inspectors with the operation, maintenance and extensive reporting capabilities of the bundle counters. To further assist inspectors, an interactive training manual has been developed on an Apple Macintosh computer using hypermedia software. The manual uses interactive animation and sound, in conjunction with the traditional text and graphics, to simulate the underlying operation and logic of the bundle counters. This paper presents the key features of the interactive manual and highlights the advantages of this new technology for training

  18. Experience in the manufacture and performance of CANDU fuel for KANUPP

    International Nuclear Information System (INIS)

    Karachi Nuclear Power Plant (KANUPP) a 137 MWe CANDU unit is In operation since 1971. Initially, it was fueled with Canadian fuel bundles. In July 1980 Pakistani manufactured fuel was introduced in the reactor core, irradiated to a burnup of about 7500 MWd-teU-1 and successfully discharged in May 1984. The core was progressively fuelled with Pakistani fuel and in August 1990 the reactor core contained all Pakistani made fuel. As of the present, 3 core equivalent Pakistani fuel bundles have been successfully discharged at an average bumup of 6500 MWd-teU-1. with a maximum burnup of ∼ 10,200 MWd-teU-1. No fuel failure of Pakistani bundles has been observed so far. This paper presents the indigenous efforts towards manufacture and operational aspects of KANUPP fuel and compares its behaviour with that of Canadian supplied fuel. The Pakistani fuel has performed well and is as good as the Canadian fuel. (author)

  19. Luncheon address: Early days of CANDU fuel

    International Nuclear Information System (INIS)

    I will briefly describe how the original dimensions of the fuel bundle were defined and how that early designs of fuel evolved. I will also touch on some of the historical events of the materials and experiments which effected the fuel programme. Also how I became with Canada's Nuclear Fuel programme. (author)

  20. CANFLEX fuel bundle impact test

    International Nuclear Information System (INIS)

    This document outlines the test results for the impact test of the CANFLEX fuel bundle. Impact test is performed to determine and verify the amount of general bundle shape distortion and defect of the pressure tube that may occur during refuelling. The test specification requires that the fuel bundles and the pressure tube retain their integrities after the impact test under the conservative conditions (10 stationary bundles with 31kg/s flow rate) considering the pressure tube creep. The refuelling simulator operating with pneumatic force and simulated shield plug were fabricated and the velocity/displacement transducer and the high speed camera were also used in this test. The characteristics of the moving bundle (velocity, displacement, impacting force) were measured and analyzed with the impact sensor and the high speed camera system. The important test procedures and measurement results were discussed as follows. 1) Test bundle measurements and the pressure tube inspections 2) Simulated shield plug, outlet flange installation and bundle loading 3) refuelling simulator, inlet flange installation and sensors, high speed camera installation 4) Perform the impact test with operating the refuelling simulator and measure the dynamic characteristics 5) Inspections of the fuel bundles and the pressure tube. (author). 8 refs., 23 tabs., 13 figs

  1. CANFLEX fuel bundle impact test

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Seok Kyu; Chung, C. H.; Park, J. S.; Hong, S. D.; Kim, B. D.

    1997-08-01

    This document outlines the test results for the impact test of the CANFLEX fuel bundle. Impact test is performed to determine and verify the amount of general bundle shape distortion and defect of the pressure tube that may occur during refuelling. The test specification requires that the fuel bundles and the pressure tube retain their integrities after the impact test under the conservative conditions (10 stationary bundles with 31kg/s flow rate) considering the pressure tube creep. The refuelling simulator operating with pneumatic force and simulated shield plug were fabricated and the velocity/displacement transducer and the high speed camera were also used in this test. The characteristics of the moving bundle (velocity, displacement, impacting force) were measured and analyzed with the impact sensor and the high speed camera system. The important test procedures and measurement results were discussed as follows. 1) Test bundle measurements and the pressure tube inspections 2) Simulated shield plug, outlet flange installation and bundle loading 3) refuelling simulator, inlet flange installation and sensors, high speed camera installation 4) Perform the impact test with operating the refuelling simulator and measure the dynamic characteristics 5) Inspections of the fuel bundles and the pressure tube. (author). 8 refs., 23 tabs., 13 figs.

  2. Feasibility study of CANDU-9 fuel handling system

    International Nuclear Information System (INIS)

    CANDU's combination of natural uranium, heavy water and on-power refuelling is unique in its design and remarkable for reliable power production. In order to offer more output, better site utilization, shorter construction time, improved station layout, safety enhancements and better control panel layout, CANDU-9 is now under development with design improvement added to all proven CANDU advantages or applicable technologies. One of its major improvement has been applied to fuel handling system. This system is very similar to that of CANDU-3, and some parts of the system are applied to those of the existing CANDU-6 or CANDU-9. Design concepts and design requirements of fuel handling system for CANDU-9 have been identified to compare with those of the existing CANDU and the design feasibilities have been evaluated. (author). 4 tabs., 13 figs., 9 refs

  3. Thermal-hydraulics performance optimization of Candu fuel using Assert subchannel code

    International Nuclear Information System (INIS)

    An optimization of fuel bundle geometry using the subchannel code ASSERT is performed in support of Candu fuel design to enhance the thermohydraulics performance. The new bundle design is based on a reference CANFLEX bundle with changes to the centre and inner-ring element diameters and pitch-circle diameters (PCDs) of various element rings. Different methods of varying the PCDs for reaching the optimized geometry are considered in an attempt to minimize the optimization effort. The optimized geometry in the present analysis is the one that maximizes the dryout power and that has simultaneous CHF (critical heat flux) initiation involving more than one subchannel rings. (authors)

  4. An assessment of thermal behavior of the DUPIC fuel bundle by subchannel analysis

    International Nuclear Information System (INIS)

    Thermal behavior of the standard DUPIC fuel has been assessed. The DUPIC fuel bundle has been modeled for a subchannel analysis using the ASSERT-IV code which was developed by AECL. From the calculated mixture enthalpy, equilibrium quality and void fraction distributions of the DUPIC fuel bundle, it is found that net buoyancy effect is pronounced in the central region of the DUPIC fuel bundle when compared with the standard CANDU fuel bundle. It is also found that the central region of the DUPIC fuel bundle can be cooled more efficiently than that of the standard fuel bundle. Based upon the subchannel modeling used in this study, the location of minimum CHFR in the DUPIC fuel bundle has been found to be very similar to that of the standard fuel. From the calculated mixture enthalpy distribution at the exit of the fuel channel, it is found that the mixture enthalpy and void fraction can be highest in the peripheral region of the DUPIC fuel bundle. On the other hand, the enthalpy and the void fraction was found to be highest in the central region of the standard CANDU fuel bundle at the exit of the fuel channel. Since the transverse interchange model between subchannels is important for the behavior of these variables, it is needed to put more effort in validating the transverse interchange model. For the purpose of investigating influence of thermal-hydraulic parameter variations of the DUPIC fuel bundle, four different values of the channel flow rates were used in the subchannel analysis. The effect of the channel flow reduction on thermal-hydraulic parameters have been presented. This study shows that the subchannel analysis is very useful in assessing thermal behavior of the fuel bundles in CANDU reactors. (author). 12 refs., 3 tabs., 17 figs

  5. Study on Unigraphics Drawing Modeling Method for 37-Element and CANFLEX Fuel Bundle

    International Nuclear Information System (INIS)

    The CANFLEX bundle contains 43 elements of two different diameters. It has two rings of small diameter elements on the outside, and eight elements (with diameter slightly larger than those in the standard 37-Element bundle) in the center. This larger number of small diameter elements on the outside of the CANFLEX bundle enhances thermo-hydraulic capability, resulting in a higher power capability and an improvement in operating safety margins. As a Result of advanced fuel design for CANFLEX fuel bundles, components consisting of fuel bundles are more complicated. Hence, the detailed modeling of components is inevitable in order to analyze the fuel performance by computational fluid dynamics. In this report, the basic design of the advanced fuel for CANDU reactors was carried out and the methodology for the modeling of fuel bundle were described. Firstly, the components consisting of fuel bundles were separately modeled and saved with different file names. The final feature of fuel bundle was accomplished by an assembling process of components. Since this report developed the modeling methodology based on the Unigraphics program, the basic explanations for the software were given first, and the complete modeling of 37-elements and CANFLEX fuel bundles were provided. The components of CANFLEX fuel bundles were also compared with that of 37-elements fuel bundles. Although, in this report, the modeling methodology is applied only to 37-elements and CANFLEX fuel bundles, this methodology may be applicable to the newly designed fuel bundles which are to be developed in the future

  6. Study on Unigraphics Drawing Modeling Method for 37-Element and CANFLEX Fuel Bundle

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Yu Mi; Park, Joo Hwan

    2010-03-15

    The CANFLEX bundle contains 43 elements of two different diameters. It has two rings of small diameter elements on the outside, and eight elements (with diameter slightly larger than those in the standard 37-Element bundle) in the center. This larger number of small diameter elements on the outside of the CANFLEX bundle enhances thermo-hydraulic capability, resulting in a higher power capability and an improvement in operating safety margins. As a Result of advanced fuel design for CANFLEX fuel bundles, components consisting of fuel bundles are more complicated. Hence, the detailed modeling of components is inevitable in order to analyze the fuel performance by computational fluid dynamics. In this report, the basic design of the advanced fuel for CANDU reactors was carried out and the methodology for the modeling of fuel bundle were described. Firstly, the components consisting of fuel bundles were separately modeled and saved with different file names. The final feature of fuel bundle was accomplished by an assembling process of components. Since this report developed the modeling methodology based on the Unigraphics program, the basic explanations for the software were given first, and the complete modeling of 37-elements and CANFLEX fuel bundles were provided. The components of CANFLEX fuel bundles were also compared with that of 37-elements fuel bundles. Although, in this report, the modeling methodology is applied only to 37-elements and CANFLEX fuel bundles, this methodology may be applicable to the newly designed fuel bundles which are to be developed in the future

  7. Post-irradiation examination of the 37M fuel bundle at Chalk River Laboratories (AECL)

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, J. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Daniels, T. [Ontario Power Generation, Pickering, Ontario (Canada); Montin, J. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2014-03-15

    The modified (-element (37M) fuel bundle was designed by Ontario Power Generation (OPG) to improve Critical Heat Flux (CHF) performance in ageing pressure tubes. A modification of the conventional 37-element fuel bundle design, the 37M fuel bundle allows more coolant flow through the interior sub-channels by way of a smaller central element. A demonstration irradiation (DI) of thirty-two fuel bundles was completed in 2011 at OPG's Darlington Nuclear Generating Station to confirm the suitability of the 37M fuel bundles for full core implementation. In support of the DI, fuel elements were examined in the Chalk River Laboratories Hot Cells. Inspection activities included: Bundle and element visual examination; Bundle and element dimensional measurements; Verification of bundle and element integrity; and Internal Gas Volume Measurements. The inspection results for 37M were comparable to that of conventional 37-element CANDU fuel. Fuel performance parameters of the 37M DI fuel bundle and fuel elements were within the range observed for similarly operated conventional 37-element CANDU fuel. Based on these Post Irradiation Examination (PIE) results, 37M fuel performed satisfactorily. (author)

  8. Improving the useful life of a 37-element fuel bundle

    International Nuclear Information System (INIS)

    Preliminary results indicate that CANDU burnup using 37-element fuel bundle with a slight enrichment can improve the useful life in the core. A slight enrichment in this study is increasing U-235 from 0.72 to 0.9 mass percent. A parametric study on criticality using Atomic Energy of Canada Limited’s WIMSAECL 3.1 and the Monte Carlo code, MCNP 5, developed by Los Alamos National Laboratory, is presented in this paper. (author)

  9. CANDU-PHW fuel channel replacement experience

    International Nuclear Information System (INIS)

    One of the main characteristics of the CANDU pressurized heavy water reactor is the use of pressure tubes rather than one large pressure vessel to contain the fuel and coolant. This provides an inherent design capability to permit their replacement in an expeditious manner, without seriously affecting the high capacity factors of the reactor units. Of th eight Ontario Hydro commercial nuclear generating units, the lifetime performance places seven of them (including two that have had some of their fuel channels replaced), in the top ten positions in the world's large nuclear-electric unit performance ranking. Pressure tube cracks in the rolled joint region have resulted in 70 fuel channels being replaced in three reactor units, the latest being at the Bruce Nuclear Generating Station 'A', Unit 2 in February 1982. The rolled joint design and rolling procedures have been modified to eliminate this problem on CANDU units subsequent to Bruce 'A'. This paper describes the CANDU pressure tube performance history and expectations, and the tooling and procedures used to carry out the fuel channel replacement

  10. Study on the use of slightly enriched uranium fuel cycle in an existing CANDU 6 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yeom, Choong Sub; Kim, Hyun Dae [Institute for Advanced Engineering, Seoul (Korea, Republic of)

    1997-12-31

    To test the viability of CANFLEX-SEU bundles in an existing CANDU 6 reactor, core follow-up simulation has been carried out using the reactor fueling simulation program of the CANDU 6, RFSP computer code, and a lattice physics code, WIMS-AECL. During the core follow-up, bundle and channel powers and zone levels have been checked against their operating limits at each simulation. It is observed from the simulation results that an equilibrium core loaded with 0.9 w/o CANFLEX-SEU bundles could be refueled and maintained for 550 FPD without any significant violations in the channel and bundle power limits and the permissible operating range of the liquid zone controllers. 8 refs., 2 figs., 1 tab. (Author)

  11. INR Recent Contributions to Thorium-Based Fuel Using in CANDU Reactors

    International Nuclear Information System (INIS)

    The paper summarizes INR Pitesti contributions and latest developments to the Thorium-based fuel (TF) using in present CANDU nuclear reactors. Earlier studies performed in INR Pitesti revealed the CANDU design potential to use Recovered Uranium (RU) and Slightly Enriched Uranium (SEU) as alternative fuels in PHWRs. In this paper, we performed both lattice and CANDU core calculations using TF, revealing the main neutron physics parameters of interest: k-infinity, coolant void reactivity (CVR), channel and bundle power distributions over a CANDU 6 reactor core similar to that of Cernavoda, Unit 1. We modelled the so called Once Through Thorium (OTT) fuel cycle, using the 3D finite-differences DIREN code, developed in INR. The INR flexible SEU-43 bundle design was the candidate for TF carrying. Preliminary analysis regarding TF burning in CANDU reactors has been performed using the finite differences 3D code DIREN. TFs showed safety features improvement regarding lower CVRs in the case of fresh fuel use. Improvements added to the INR ELESIMTORIU- 1 computer code give the possibility to fairly simulate irradiation experiments in INR TRIGA research reactor. Efforts are still needed in order to get better accuracy and agreement of simulations to the experimental results. (author)

  12. R and D activities at INR pitesti related to safety and reliability of CANDU type fuel

    International Nuclear Information System (INIS)

    The focus of Nuclear Fuel R and D Program of Institute for Nuclear Research (INR) Pitesti is to maintain and improve the reliability, economics and safety of 37-element natural uranium CANDU fuel bundles in Cernavoda Nuclear Generating Station (CNGS). The second requirement is to improve the CANDU fuel design and to develop 43-element advanced fuel bundle that will reduce capital and fuelling cost, increase the operating and safety margins, improve natural - uranium utilization, and provide synergy with other reactor systems to improve resource utilization and spent fuel management. An experimental database of fuel behaviour parameters including fission - gas release, sheath strain, power - burnup history etc. has been obtained using in-pile measurements and PIE results of CANDU fuel elements irradiated in the TRIGA Material Testing Reactor (MTR) of INR Pitesti. In last time the data base was updated to include the results of Power Pulse Tests performed in TRIGA - Annular Core Pulse Reactor (ACPR) of INR Pitesti. One of the current research objective of our fuel bahaviour studies is to investigate the reliability behaviour of CANDU type fuel during power cycling operation condition. The INR research programme also include the out pile separate effects experiments to evaluate properties of the UO2 and cladding and development of computer models to describe sheath deformation and gas release processes. A program for LOCA simulating in-reactor tests is in progress at INR Pitesti to provide a database for verification of transient fuel performance codes and demonstrate that the significant fuel behaviour phenomena have all been included in the models.This data base is used extensively for the validation of the fuel behaviour codes. This paper summarizes R and D activities of INR Pitesti, related to safety and reliability of CANDU type fuel and presents some of the recent results obtained from in reactor tests. (author)

  13. Photon dose rates estimation for CANDU spent fuel transport and intermediate dry storage

    International Nuclear Information System (INIS)

    The nuclear energy world wide development is accompanied by huge quantities of spent nuclear fuel accumulation. Shielding analyses are an essential component of the nuclear safety, the estimations of radiation doses in order to reduce them under specified limit values being the main task here. According to IAEA data, more than 10 millions packages containing radioactive materials are annually world wide transported. The radioactive material transport safety must be carefully settled. Last decade, both for operating reactors and future reactor projects, a general trend to raise the discharge fuel burnup has been world wide registered. For CANDU type reactors, one of the most attractive solutions seems to be SEU fuel utilization. In the paper there are estimated the CANDU spent fuel photon dose rates at the shipping cask/ storage basket wall for two different fuel projects after a defined cooling period in the NPP pools. The CANDU fuel projects considered were the CANDU standard 37 rod fuel bundle with natural UO2 and SEU fuels. In order to obtain radionuclide inventory and irradiated fuel characteristics, ORIGEN-S code has been used. The spent fuel characteristics are presented, comparatively, for both types of CANDU fuels. By means of the same code the photon source profiles have been calculated. The shielding calculations both for spent fuel transport and intermediate storage have been performed by using Monte Carlo MORSE-SGC code. The ORIGEN-S and MORSE-SGC codes are both included in ORNL's SCALE 4.4a program package. A photon dose rates comparison between the two types of CANDU fuels has been also performed, both for spent fuel transport and intermediate dry storage. (authors)

  14. Development of CANDU spent fuel verification system using optical fiber scintillator

    International Nuclear Information System (INIS)

    In CANDU, spent fuels discharge 16∼24 bundles from the reactor core at everyday. Those are contained on the tray and the tray is stacked in the spent fuel. Currently, the Agency uses the CANDU Bundle Verifier for Stack (CBVS). It consists of a CZT gamma spectrometric probe which moves vertically along the space in between the columns of trays. Somewhat, spent fuel verification by non-destructive assay has been implemented for safeguards purpose using various radiation detectors such as a gas type detector, a semiconductor detector and so on. However, due to the severe circumstance of spent fuel storage such as high temperature, high radiation intensity and difficult to access area, the applicable radiation detectors and measurement techniques are very limited. An optical fiber scintillator has been known to have a good radiation hardness and physical properties for high temperature and humidity. In order to verify spent fuels stored in difficult to access area, KINAC designed and developed a prototype which was a spent fuel verification equipment using an optical fiber scintillator. The field test was performed at Wolsung NPP (Nuclear Power Plant) pond storage area. And this system will be made an entry for IAEA's verification equipment. For registration, KINAC would be followed the IAEA's QA procedure. At now, KINAC/IAEA developed the user, functional requirement and design specification for System, Hardware and Software separately. After finishing the procedure, it will be used for verification of spent fuel in lieu of CANDU Bundle Verifier for Baskets (CBVS). (author)

  15. A study on the direct use of spent PWR fuel in CANDU reactors -Fuel management and safety analysis-

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyun Soo; Lee, Boh Wook; Choi, Hang Bok; Lee, Yung Wook; Cho, Jae Sun; Huh, Chang Wook [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    The reference DUPIC fuel composition was determined based on the reactor safety, thermal-hydraulics, economics, and refabrication aspects. The center pin of the reference DUPIC fuel bundle is poisoned with natural dysprosium. The worst LOCA analysis has shown that the transient power and heat deposition of the reference DUPIC core are the same as those of natural uranium CANDU core. The intra-code comparison has shown that the accuracy of DUPIC physics code system is comparable to the current CANDU core design code system. The sensitivity studies were performed for the refuelling schemes of DUPIC core and the 2-bundle shift refuelling scheme was selected as the standard refuelling scheme of the DUPIC core. The application of 4-bundle shift refuelling scheme will be studied in parallel as the auto-refuelling method is improved and the reference core parameters of the heterogeneous DUPIC core are defined. The heterogeneity effect was analyzed in a preliminary fashion using 33 fuel types and the random loading strategy. The refuelling simulation has shown that the DUPIC core satisfies the current CANDU 6 operating limits of channel and bundle power regardless of the fuel composition heterogeneity. The 33 fuel types used in the heterogeneity analysis was determined based on the initial enrichment and discharge burnup of the PWR fuel. 90 figs, 62 tabs, 63 refs. (Author).

  16. Studies at INR-Pitesti for developing fuels of high burnup suitable to CANDU 6 reactor

    International Nuclear Information System (INIS)

    Increasing burnup allows the utility to get the same kWh output with a diminished tonnage of fissile material and provides a saving in the cost of fuel manufacturing as well as of spent fuel disposal. The RU, SEU, MOX, DUPIC fuel cycles and CANFLEX fuel bundles concept compatible with CANDU 6 reactor are presented. INR projects for developing SEU 43 fuel bundles supported by IAEA-Vienna are also presented. Particularly, one gives an overlook of standard CANDU and advanced SEU 43 nuclear fuel cycles. The paper presents also the current and future directions of studies implied by the research program in the nuclear fuel field of RAAN (The Autonomous Authority for Nuclear Activities). Among these, mentioned are: working out of the manual of physics of CANDU core with slightly enriched uranium; technological studies aiming at reducing the effects of limiting factors of the fuel lifetime and at burnup extension; obtaining new fuels as vectors of advanced cycles; off reactor tests of SEU 43 clusters; in-reactor tests of SEU 43 experimental fuel elements; developing computer codes for analysis of SEU, MOX and DUPIC fuel behavior; in-reactor tests of experimental MOX and DUPIC elements

  17. Validation of the COBRA code for dry out power calculation in CANDU type advanced fuels

    International Nuclear Information System (INIS)

    Stern Laboratories perform a full scale CHF testing of the CANFLEX bundle under AECL request. This experiment is modeled with the COBRA IV HW code to verify it's capacity for the dry out power calculation . Good results were obtained: errors below 10 % with respect to all data measured and 1 % for standard operating conditions in CANDU reactors range . This calculations were repeated for the CNEA advanced fuel CARA obtaining the same performance as the CANFLEX fuel. (author)

  18. Technical feasibility of using RU-43 fuel in the CANDU-6 reactors of the Cernavoda NPP

    Energy Technology Data Exchange (ETDEWEB)

    Horhoianu, G.; Patrulescu, I. [Inst. for Nuclear Research, Pitesti (Romania). Physics

    2008-03-15

    Recovered uranium (RU) is a by-product of many light-water reactor (LWR) fuel recycling programs. A fissile content in the RU of 0.9 to 1.0% makes it impossible for reuse in an LWR without re-enrichment, but CANDU reactors have a sufficiently high neutron economy to use RU as fuel. The Institute for Nuclear Research (INR) Pitesti has analyzed the feasibility of using RU fuel with 0.9-1.1 w% {sup 235}U in the CANDU-6 reactors of the Cernavoda Nuclear Power Plant (Cernavoda NPP). Using RU fuel would produce a significant increase in the fuel discharge burnup, from 170 MWh/kgU currently achieves with natural-uranium (NU) fuel to about 355 MWh/kgU. This would lead to reduced fuel-cycle cost and a large reduction in spent-fuel volume per full-power-year of operation. The RU fuel bundle design with recovered uranium fuel, known as RU-43, is being developed by the INR Pitesti and is now at the stage of final design verification. Early work has been concentrated on RU-43 fuel bundle design optimization, safety and reactor physics assessment. The changes in fuel element and fuel bundle design contribute to the many advantages offered by the RU-43 bundle. Verification of the design of the RU-43 fuel bundle is performed in a way that shows that design criteria are met, and is mostly covered by proof tests such as flow and irradiation tests. The most relevant calculations performed on this fuel bundle design version are presented. Also, the stages of an experimental program aiming to verify the operating performance are briefly described in this paper. (orig.)

  19. Neutron measurements for CANDU-type fuel characterization at TRIGA-ACPR

    International Nuclear Information System (INIS)

    In order to measure the parameters for a CANDU cell it is important to determine thermal flux distribution in the cell, spectral indices (absolute values and distributions). If it has to be done in a critical assembly, the small flux value poses problems to the measurements. Also the measurements performed with detectors placed into the bundle have to be treated with care. In order to test the methods related to such measurements we decided to perform the most important of them using a CANDU bundle placed on the experiment loading tube of TRIGA-ACPR. The reactor was operated in stationary regime to give the necessary thermal flux at the experiment position. A set of activation and fissionable foil detectors was used and measurements for absolute reaction rate determinations, thermal flux distributions and spectral indices absolute values were performed. Also the sensitivity to heterogeneous poisoning of the bundle was measured in the same configuration. The sensitivity of the ACPR to heterogeneous poisoning of a CANDU - bundle placed in central hole is also determined. In conclusion a set of methods for neutronic measurements on CANDU type fuel were tested in TRIGA-ACPR, in spectral conditions which can be considered worse than in a D2O lattice. The source of error was investigated in detail. One can conclude that these methods will work in measurements upon a D2O - natural uranium lattice

  20. Canadian power reactor fuel

    International Nuclear Information System (INIS)

    The following subjects are covered: the basic CANDU fuel design, the history of the bundle design, the significant differences between CANDU and LWR fuel, bundle manufacture, fissile and structural materials and coolants used in the CANDU fuel program, fuel and material behaviour, and performance under irradiation, fuel physics and management, booster rods and reactivity mechanisms, fuel procurement, organization and industry, and fuel costs. (author)

  1. Behaviour of CANDU fuel during LOCA

    International Nuclear Information System (INIS)

    A large break loss-of-coolant accident (LOCA) in a CANDU nuclear reactor would result in a rapid increase of fuel and sheath temperatures. The temperature increase would, in turn, increase the gas pressure within the fuel and reduce the strength of the sheath material. Outside the fuel the loss of coolant from the primary heat transport system decreases pressure. The resulting pressure difference would cause deformation of the hot fuel sheath. Under certain circumstances, the deformation could be severe enough to fail the sheath thus releasing the fission products to the primary heat transport system. The computer code ELOCA-A is used to model the transient fuel behaviour following such an accident. ELOCA-A is a modified version of ELOCA.Mk 2 enabling us to consider the effects of axial variations in the microstructure of the sheath material caused by brazing of appendages to the sheath. The ELOCA-A code also features modelling of axial variations in neutron flux, pellet heat generation rate and heat transfer to the coolant. It predicts fuel pellet and sheath temperatures, sheath oxidation, sheath strain and probability of beryllium assisted cracking. A loss-of-coolant accident (LOCA) experiment was jointly sponsored by AECL and Ontario Hydro in the Power Burst Facility (PBF) at Idaho National Engineering Laboratories (INEL). This test was undertaken to provide an all-effects verification of the understanding of CANDU fuel behaviour during LOCA's. An extensive out-pile experimental program had provided single effects data which had been used for modelling such excursions. Integrated out-pile tests have confirmed our understanding of and accurate modelling of fuel under LOCA conditions. The integrated test in PBF provided the final proof that our understanding was complete and provided an experimental database for verification of transient fuel codes (4). The experiment was performed with modified CANDU fuel elements. The post-test measurements are compared with

  2. Feasible advanced fuel cycle options for CANDU reactors in the Republic of Korea

    International Nuclear Information System (INIS)

    Taking into account the view points on nuclear safety, nuclear waste, non-proliferation and economics from the public, international environment, and utilities, the SEU/RU and DUPIC fuel cycles would be feasible options of advanced fuel cycles for CANDU-PHWRs in the Republic of Korea in the mid- and long-terms, respectively. Comparing with NU fuel, 0.9 % or 1.2 % SEU fuel would increase fuel burnup and hence reduce the spent fuel arisings by a factor of 2 or 3, and also could reduce CANDU fuel cycle costs by 20 to 30%. RU offers similar benefits as 0.9% SEU and is very attractive due to the significantly improved fuel cycle economics, substantially increased burnups, large reduction in fuel requirements as well as in spent fuel arisings. For RU use in a CANDU reactor, re-enrichment is not required. There are 25,000 tes RU produced from reprocessing operations in Europe and Japan, which would theoretically provide sufficient fuel for 500 CANDU 6 reactor-years of operation. According to the physics, thermal-hydraulic and thermal-mechanical assessments of CANFLEX-0.9% RU fuel for a CANDU-6 reactor, the fuel could be introduced into the reactor in a straight-forward fashion. A series of assessments of CANFLEX-DUPIC physics on the compatibility of the fuel design in the existing CANDU 6 reactors has shown that the poisoning of the central element of DUPIC with, for example, natural dysprosium, reduces the void reactivity of the fuel, and that a 2 bundle shift refuelling scheme would be the most appropriate in-core fuel management scheme for a CANDU-6 reactor. The average discharge burnup is ∼15 MWd/kgHE. Although these results have shown promising results for the DUPIC fuel cycle, more in-depth studies are required in the areas of ROP system, large LOCA safety analyses, and so on. The recycling fuel cycles of RU and DUPIC for CANDU are expected to achieve the environmental 3R's (Reduce, Reuse, Recycle) as applied to global energy use in the short- and long

  3. Romania Monte Carlo Methods Application to CANDU Spent Fuel Comparative Analysis

    International Nuclear Information System (INIS)

    Romania has a single NPP at Cernavoda with 5 PHWR reactors of CANDU6 type of 705 MW(e) each, with Cernavoda Unit1, operational starting from December 1996, Unit2 under construction while the remaining Unit3-5 is being conserved. The nuclear energy world wide development is accompanied by huge quantities of spent nuclear fuel accumulation. Having in view the possible impact upon population and environment, in all activities associated to nuclear fuel cycle, namely transportation, storage, reprocessing or disposal, the spent fuel characteristics must be well known. The paper aim is to apply Monte Carlo methods to CANDU spent fuel analysis, starting from the discharge moment, followed by spent fuel transport after a defined cooling period and finishing with the intermediate dry storage. As radiation source 3 CANDU fuels have been considered: standard 37 rods fuel bundle with natural UO2 and SEU fuels, and 43 rods fuel bundle with SEU fuel. After a criticality calculation using KENO-VI code, the criticality coefficient and the actinides and fission products concentrations are obtained. By using ORIGEN-S code, the photon source profiles are calculated and the spent fuel characteristics estimation is done. For the shielding calculations MORSE-SGC code has been used. Regarding to the spent fuel transport, the photon dose rates to the shipping cask wall and in air, at different distances from the cask, are estimated. The shielding calculation for the spent fuel intermediate dry storage is done and the photon dose rates at the storage basket wall (active element of the Cernavoda NPP intermediate dry storage) are obtained. A comparison between the 3 types of CANDU fuels is presented. (authors)

  4. Design verification of the CANFLEX fuel bundle - quality assurance requirements for mechanical flow testing

    International Nuclear Information System (INIS)

    As part of the design verification program for the new fuel bundle, a series of out-reactor tests was conducted on the CANFLEX 43-element fuel bundle design. These tests simulated current CANDU 6 reactor normal operating conditions of flow, temperature and pressure. This paper describes the Quality Assurance (QA) Program implemented for the tests that were run at the testing laboratories of Atomic Energy of Canada Limited (AECL) and Korea Atomic energy Research Institute (KAERI). (author)

  5. Dry storage of irradiated CANDU fuel at Pickering NGS

    International Nuclear Information System (INIS)

    Ontario Hydro generates about 86 million MW-h/year from its 20 nuclear CANDU reactors. The combination of a large generating capacity and relatively low fuel burn-up means that Ontario Hydro must manage very large volume of its used fuel. Irradiated fuel bays at Pickering NGS will be full by mid 1995. Additional storage capacity will be required by this date for the station to continue operation. Several long term storage options to supplement existing on-site facilities were studied. The dry storage system, based on the modular storage container, as an option, was found to be economical and operationally simple. The dry storage facility at Pickering NGS is planned to provide additional on-site storage capacity for fuel generated from 1994 to the end of the station's operating life (year 2025). This paper describes the design and operation of the Dry Storage System at Ontario Hydro's Pickering Nuclear Power Generating Station. The facility is planned as a two phased project. Phase I will provide a storage space for 700 dry storage containers (268,800 fuel bundles) or about 12 years of station's operation. Phase II will have the capacity for additional 800 containers (307,200 fuel bundles) and will provide storage until station decommissioning in 2025. Seventy containers will be required annually to meet storage requirements of the station's operation at 100% capacity factor. Staff of six persons will be required to operate the facility. Normal operation includes activities such as receiving and commissioning new containers, loading them with 4 modules of used fuel in the bays, draining and drying the cavity, decontaminating the container surface and lid welding. A helium leak test is performed before the container is placed in the storage. (author) 6 refs., 6 tabs., 7 figs

  6. Research and development for CANDU fuel channels and fuel

    International Nuclear Information System (INIS)

    The CANDU nuclear reactor is distinctly different from BWR and PWR reactors in that it uses many small pressure tubes rather than one large pressure vessel to contain the fuel and coolant. To exploit the advantages of the natural uranium fuel, the pressure tubes, like other core components, are manufactured from zirconium alloys which have low neutron capture cross sections. Also, because natural uranium fuel only achieves a modest burnup, a simple and inexpensive fuel design has been developed. The present paper reviews the features and the research that have led to the very satisfactory performance of the pressure tubes and the fuel in CANDU reactors. Reference is made to current research and development that may lead to further economies in the design and operation of future power reactors. (author)

  7. Application of Sipping and Visual Inspection Systems for the Evaluation of Spent Fuel Bundle Integrity

    International Nuclear Information System (INIS)

    When CANDU reactor has defective fuel bundle during its operation, then the defective fuel bundle should be discharged by 2(two) fuel bundles at a time from the corresponding fuel channel until the failed fuel bundle is found. Existing fuel failure detection system GFP(Gaseous Fission Product) & DN(Delayed Neutron) Monitoring System can’t exactly distinguish fuel elements failure from each fuel bundle. Because of fuelling machine mechanism and discharge procedure, always two fuel bundles at a time are being inspected. In case visual inspection is available for inspecting fuel elements and suppose that there are no defects and damaged marks on the surface of outer fuel elements, 2(two) defective fuel bundles should be canned and kept in the separate region of spent fuel storage pool. Therefore, the purpose of this study was to develop a system which is capable of inspecting whether each fuel bundle is failed or not. KNF (KEPCO Nuclear Fuel Co. Ltd) developed two evaluation systems to investigate the integrity of CANDU spent fuel bundle. The first one is a sipping system that detects fission gases leaked from fuel element. The second one is a visual inspection system with radiation resistant underwater camera and remotely controlled devices. The sipping technology enables to analyze the leakage of fission products not only in gaseous state but also liquid state. The performance of developed systems was successfully demonstrated at Wolsong power plant this year. This paper describes the results of the development of the failed fuel detection technology and its application. (author)

  8. Analytical and experimental assessment of CANDU fuel sheath integrity under post dryout conditions

    International Nuclear Information System (INIS)

    The experiments that investigated the CANDU fuel sheath behavior under different pressures, temperatures, oxidizing environment, material structure (as-received or thermally treated to attach appendages), and heating rates were reviewed and assessed to determine the limits of post-dryout duration, sheath temperature, and pressure difference across the sheath required to ensure the fuel sheath integrity. A number of burst curves at different heating rates were studied. Time-at- temperature fuel sheath failure maps were developed based on temperature ramp and isothermal experiments for the 28-element fuel bundle. Analytical time-at-temperature fuel sheath failure maps were also developed for both of 28- and 37-element fuel bundles using the ELOCA fuel analysis computer code and were compared to the experimental time-at-temperature sheath failure maps. Time-at-temperature sheath failure maps could be used as a simple and effective screening tool to demonstrate fuel sheath integrity during postulated design basis accident. (author)

  9. Advanced fuel cycles in CANDU reactors

    International Nuclear Information System (INIS)

    This paper re-examines the rationale for advanced nuclear fuel cycles in general, and for CANDU advanced fuel cycles in particular. The traditional resource-related arguments for more uranium nuclear fuel cycles are currently clouded by record-low prices for uranium. However, the total known conventional uranium resources can support projected uranium requirements for only another 50 years or so, less if a major revival of the nuclear option occurs as part of the solution to the world's environmental problems. While the extent of the uranium resource in the earth's crust and oceans is very large, uncertainty in the availability and price of uranium is the prime resource-related motivation for advanced fuel cycles. There are other important reasons for pursuing advanced fuel cycles. The three R's of the environmental movement, reduce, recycle, reuse, can be achieved in nuclear energy production through the employment of advanced fuel cycles. The adoption of more uranium-conserving fuel cycles would reduce the amount of uranium which needs to be mined, and the environmental impact of that mining. Environmental concerns over the back end of the fuel cycle can be mitigated as well. Higher fuel burnup reduces the volume of spent fuels which needs to be disposed of. The transmutation of actinides and long-lived fission products into short-lived fission products would reduce the radiological hazard of the waste from thousands to hundreds of years. Recycling of uranium and/or plutonium in spent fuel reuses valuable fissile material, leaving only true waste to be disposed of. Advanced fuel cycles have an economical benefit as well, enabling a ceiling to be put on fuel cycle costs, which are

  10. The parallex project: CANDU MOX fuel testing with weapons-derived plutonium

    International Nuclear Information System (INIS)

    The Parallex Project consists of a parallel experiment in which weapons-derived plutonium (WPu) from the United States and from the Russian Federation will be tested as mixed-oxide (MOX) CANDU fuel in the National Research Universal (NRU) reactor at the Chalk River Laboratories in Canada. Plutonium derived from excess weapons will be fabricated into CANDU MOX fuel at the A.A. Bochvar Institute in Moscow and at the Los Alamos National Laboratory in the United States. The MOX fuel will be transported to CRL, where it will be characterized, assembled into fuel bundles and then irradiated in the NRU reactor. Following irradiation, the fuel will be examined in hot cells to assess its irradiation performance. This paper describes the scope, rationale and current status of the Parallex Project. (author)

  11. Inspection of Candu Nuclear Reactor Fuel Channels

    International Nuclear Information System (INIS)

    The Channel Inspection and Gauging Apparatus of Reactors (CIGAR) is a fully atomated, remotely operated inspection system designed to perform multi-channel, multi-task inspection of CANDU reactor fuel channels. Ultrasonic techniques are used for flaw detection, (with a sensitivity capable of detecting a 0.075 mm deep notch with a signal to noise ratio of 10 dB) and pressure tube wall thickness and diameter measurements. Eddy currrent systems are used to detect the presence of spacers between the coaxial pressure tube and calandria tube, as well as to measure their relative spacing. A servo-accelerometer is used to estimate the sag of the fuel channels. This advanced inspection system was commissioned and declared in service in September 1985. The paper describes the inspection systems themselves and discussed the results achieved to-date. (author)

  12. Fission Product Inventory in CANDU Fuel

    International Nuclear Information System (INIS)

    When the reactor is operated at power, fuel composition changes continuously. The fission reaction produces a large variety of fission fragments which are radioactive and decay into other isotopic species. For different accident analyses or operational events, detailed calculations of the fuel radioactive inventory (fission products and actinides) are needed. The present paper reviews two types of radioactive inventory calculations performed at Cernavoda NPP: one for determining the whole core inventory and one for determining the evolution of the inventory within fuel bundles stored in the Spent Fuel Bay. Two computer codes are currently used for radioactive inventory calculations: ORIGEN-S and ELESTRES-IST. The whole core inventory calculation was performed with both codes, the comparison showing that ELESTRES-IST gives a more conservative result. One of the challenges met during the analysis was to set a credible, yet conservative “image” of the in core fuel power/burnup distribution. Consequently, a statistical analysis was performed to find the best estimate plus uncertainties map for the power/burnup distribution of all in core fuel elements. For each power/burnup in the map, the fission product inventory was computed using a scaled irradiation history based on the Limiting Overpower Envelope. After the Fukushima accident, the problem of assessing the consequences of a loss of cooling event at the Spent Fuel Bay was raised. In order to estimate its impact, a calculation for determining the fission products inventory and decay heat evolution within the spent fuel bundles stored in the bay was performed. The calculation was done for a bay filled with fuel bundles up to its maximum capacity. The results obtained have provided a conservative estimation of the decay heat released and the expected evolution of the water temperature in the bay. This provided a technical basis for selecting the emergency actions required to cope with such events. (author)

  13. Development of the advanced PHWR technology -Design and analysis of CANDU advanced fuel-

    Energy Technology Data Exchange (ETDEWEB)

    Suk, Hoh Chun; Shim, Kee Sub; Byun, Taek Sang; Park, Kwang Suk; Kang, Heui Yung; Kim, Bong Kee; Jung, Chang Joon; Lee, Yung Wook; Bae, Chang Joon; Kwon, Oh Sun; Oh, Duk Joo; Im, Hong Sik; Ohn, Myung Ryong; Lee, Kang Moon; Park, Joo Hwan; Lee, Eui Joon [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    This is the `94 annual report of the CANDU advanced fuel design and analysis project, and describes CANFLEX fuel design and mechanical integrity analysis, reactor physics analysis and safety analysis of the CANDU-6 with the CANFLEX-NU. The following is the R and D scope of this fiscal year : (1) Detail design of CANFLEX-NU and detail analysis on the fuel integrity, reactor physics and safety. (a) Detail design and mechanical integrity analysis of the bundle (b) CANDU-6 refueling simulation, and analysis on the Xe transients and adjuster system capability (c) Licensing strategy establishment and safety analysis for the CANFLEX-NU demonstration demonstration irradiation in a commercial CANDU-6. (2) Production and revision of CANFLEX-NU fuel design documents (a) Production and approval of CANFLEX-NU reference drawing, and revisions of fuel design manual and technical specifications (b) Production of draft physics design manual. (3) Basic research on CANFLEX-SEU fuel. 55 figs, 21 tabs, 45 refs. (Author).

  14. Investigation of the Ru-43LV fuel behaviour under LOCA conditions in a CANDU reactor

    Energy Technology Data Exchange (ETDEWEB)

    Horhoianu, G.; Serbanel, M. [Institute for Nuclear Research, Pitesti (Romania); Diaconu, C.

    2012-11-15

    Presently, INR Pitesti is developing an advanced fuel design RU-43LV (recovered uranium fuel bundle with 43 elements and low void reactivity feature) based on recovered uranium from LWR. Compared with the current design of 37 natural uranium element (NU-37) fuel bundle, RU-43LV will have higher power capability and higher burn-up potential in CANDU reactors of Cernavoda-Romania Nuclear Power Plant (NPP). Fuel burn-up of RU-43LV fuel will be about two times the burn-up usually achieved in CANDU reactors fuelled with natural uranium fuel. The effect of the design changes of RU-43LV bundle on the reactor safety has been analyzed and the results are presented in this paper. As part of the conceptual design study, the performance of the RU-43LV fuelled core during a large loss-of-coolant accident (LLOCA) was assessed with the use of several computer codes. The most relevant calculations performed regarding RU-43 RV fuel safety are presented in this paper. Also, the stages of an experimental program aiming to study RU-43LV fuel behaviour in high temperature transients are briefly described. (orig.)

  15. General overview of CANDU advanced fuel cycles program

    International Nuclear Information System (INIS)

    The R and D program for CANDU advanced fuel cycles may be roughly divided into two components which have a near-and long-term focus, respectively. The near-term focus is on the technology to implement improved once-through cycles and mixed oxide (plutonium-uranium oxides) recycle in CANDU and on technologies to separate zirconium isotopes. Included is work on those technologies which would allow a CANDU-LWR strategy to be developed in a growing nuclear power system. For the longer-term, activities are focused on those technologies and fuel cycles which would be appropriate in a period when nuclear fuel demand significantly exceeds mined uranium supplies. Fuel cycles and systems under study are thorium recycle, CANDU fast breeder systems and electro-nuclear fissile breeders. The paper will discuss the rationale underlying these activities, together with a brief description of activities currently under way in each of the fuel cycle technology areas

  16. Overview of activities on CANDU fuel in Argentina

    International Nuclear Information System (INIS)

    This paper gives an outline of activities on CANDU fuel in Argentina. It discusses the nuclear activities and electricity production in Argentina, evolution of the activities in fuel engineering, fuel fabrication, fuel performance at Embalse nuclear power plant and spent fuel storage options.

  17. A comparative analysis of the linear powers of standard CANDU and SEU - 43 bundles computed by first collision probability procedure on the exact geometry

    International Nuclear Information System (INIS)

    The CP2D code (Constantin et al., 1999) was developed at INR Pitesti in the period 1997-2000. It is an integral transport code, based on the formalism of first collision probabilities. It is able to treat accurately a number of types of problems with complex geometry (as the CANDU cell, the TRIGA or PWR can, the problem of several CANDU bundle vicinity, etc). The idea underlying an exact geometrical treatment is decomposing the problem's geometry into a finite number of factor geometries (simple geometries in which the numerical integration may be carried out on the basis of simple and fast algorithms). The program allows accounting exactly for the individual structure of each fuel element and at the same time treats exactly the problem boundaries. The first CP2D version was developed and tested in 1998 while the next one, CP2D 2.0 was work out in 1999 and has the novelty of introducing supplementary factor geometries, capable of modelling many layer horizontal coolants. This multilayer model is devoted to a more accurate solution of the reactivity of the partial void effect in CANDU reactor. The third version, CP2D 3.0 (2000) embodies also a general burning scheme for evaluation the isotope inventory at the level of each geometrical region described in the input data. This work presents a thorough estimation of the linear powers (at the single pin level) for standard CANDU and SEU - 43 (enriched at 0.96%) bundles. The two types of bundles are comparatively analyzed from this point of view. In CP2D 3.0 the geometry of the two bundle types is treated exactly. To get the neutron cross sections with a 7 group energy cutting the WIMS program and its attached library were used. The results were obtained for fresh fuel and fuel of 6,211, 12,681, 19,150 and 25,621 MWd/tU and 0, 4,000 and 13,000 MWd/tU burnup degree for SEU - 43 bundle and standard bundle, respectively. The single pin linear powers were obtained without appealing to homogenizing supplementary techniques as

  18. The dependence of the global neutronic parameters on the fuel burnup for CANDU SEU43 core

    Energy Technology Data Exchange (ETDEWEB)

    Balaceanu, V. [Institute for Nuclear Research, Pitesti (Romania); Pavelescu, M. [Academy of Romanian Scientists, Bucharest (Romania)

    2010-05-15

    In order to reduce the total fuel costs for the CANDU reactors, mainly by extending the fuel burnup limits, some fuel bundle concepts have been developed in different CANDU owner countries. Therefore, in our Institute the SEU43 (Slightly Enriched Uranium with 43 fuel elements) project was started in early '90s. The neutronic behavior analysis of the CANDU core with SEU43 fuel was an important step in our project design. The objective of this paper is to highline an analysis of the neutronic behavior of the CANDU SEU43 core with the fuel burnup. More exactly, the study refers to the dependence of some global neutronic parameters, mainly the reactivity, on the fuel burnup. Two types of CANDU core were taken into consideration: reference core (without any reactivity devices) and perturbed core (with a strong reactivity system inserted). The considered reactivity system is the Mechanical Control Absorber (MCA) one. The performed parameters are: k{sub eff.} values, the MCA reactivity worth and flux distributions. The fuel bundles in the core are SEU43, with the fuel enrichment in U{sup 235} of 0.96% and at nominal power. For the fuel burnup the values are: 0.00 GWd/tU (fresh fuel); 8.00 GWd/tU and 25.00 GWd/tU. For reaching this objective, a global neutronic calculation system named WIMSPIJXYZ LEGENTR is used. Starting from a 69-groups ENDF/B-V based library, this system uses three transport codes: (1) the standard lattice-cell code WIMS, for generating macroscopic cross sections in supercell option and also for burnup calculations; (2) the PIJXYZ code for 3D simulation of the MCA reactivity devices and the 3D correction of the macroscopic cross sections; (3) the LEGENTR 3D transport code for estimating global neutronic parameters (CANDU core). The analysis of the neutronic parameters consists of comparing the obtained results with the similar results calculated with the DRAGON and DIREN codes. This comparison shows a good agreement between these results. (orig.)

  19. Ninth international conference on CANDU fuel, 'fuelling a clean future'

    International Nuclear Information System (INIS)

    The Canadian Nuclear Society's 9th International Conference on CANDU fuel took place in Belleville, Ontario on September 18-21, 2005. The theme for this year's conference was 'Fuelling a Clean Future' bringing together over 80 delegates ranging from: designers, engineers, manufacturers, researchers, modellers, safety specialists and managers to share the wealth of their knowledge and experience. This international event took place at an important turning point of the CANDU technology when new fuel design is being developed for commercial application, the Advanced CANDU Reactor is being considered for projects and nuclear power is enjoying a renaissance as the source energy for our future. Most of the conference was devoted to the presentation of technical papers in four parallel sessions. The topics of these sessions were: Design and Development; Fuel Safety; Fuel Modelling; Fuel Performance; Fuel Manufacturing; Fuel Management; Thermalhydraulics; and, Spent Fuel Management and Criticalty

  20. Proceedings of the international conference on CANDU fuel

    International Nuclear Information System (INIS)

    These proceedings contain full texts of all paper presented at the first International Conference on CANDU Fuel. The Conference was organized and hosted by the Chalk River Branch of the Canadian Nuclear Society and utilized Atomic Energy of Canada Limited's facilities at Chalk River Nuclear Laboratories. Previously, informal Fuel Information Meetings were used in Canada to allow the exchange of information and technology associated with CANDU. The Chalk River conference was the first open international forum devoted solely to CANDU and included representatives of overseas countries with current or potential CANDU programs, as well as Canadian participants. The keynote presentation was given by Dr. J.B. Slater, who noted the correlation between past successes in CANDU fuel cycle technology and the co-operation between researchers, fabricators and reactor owner/operators in all phases of the fuel cycle, and outlined the challenges facing the industry today. In the banquet address, Dr. R.E. Green described the newly restructured AECL Research Company and its mission which blends traditional R and D with commercial initiatives. Since this forum for fuel technology has proven to be valuable, a second International CANDU Fuel Conference is planned for the fall of 1989, again sponsored by the Canadian Nuclear Society

  1. Static stress analysis of CANFLEX fuel bundles

    International Nuclear Information System (INIS)

    The static stress analysis of CANFLEX bundles is performed to evaluate the fuel structural integrity during the refuelling service. The structure analysis is carried out by predicting the drag force, stress and displacements of the fuel bundle. By the comparison of strength tests and analysis results, the displacement values are well agreed within 15%. The analysis shows that the CANFLEX fuel bundle keep its structural integrity. 24 figs., 6 tabs., 12 refs. (Author) .new

  2. Hydraulic characteristics of HANARO fuel bundles

    Energy Technology Data Exchange (ETDEWEB)

    Cho, S.; Chung, H. J.; Chun, S. Y.; Yang, S. K.; Chung, M. K. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    This paper presents the hydraulic characteristics measured by using LDV (Laser Doppler Velocimetry) in subchannels of HANARO, KAERI research reactor, fuel bundle. The fuel bundle consists of 18 axially finned rods with 3 spacer grids, which are arranged in cylindrical configuration. The effects of the spacer grids on the turbulent flow were investigated by the experimental results. Pressure drops for each component of the fuel bundle were measured, and the friction factors of fuel bundle and loss coefficients for the spacer grids were estimated from the measured pressure drops. Implications regarding the turbulent thermal mixing were discussed. Vibration test results measured by using laser vibrometer were presented. 9 refs., 12 figs. (Author)

  3. Thermal analysis model for the temperature distribution of the CANDU spent fuel assembly

    International Nuclear Information System (INIS)

    The purpose of this technical is to introduce the methodology and experimental process for the experimental research work with the mock-up test performed to verify and validate the MAXROT code which is a thermal analysis method for Wolsong (CANDU) spent fuel dry storage canister. The experiment was conducted simulating the heat transfer characteristics of combinations of equilateral triangular and square pitch arrays of heater rods, similar to a CANDU spent fuel bundle. After assembly of the heater rod bundle into the containment vessel, the experimental apparatus was operated under the same operating and boundary conditions as an interim dry storage condition at the nuclear power plant site. The reduced data from this experiment has been utilized to verity a model developed to predict the maximum fuel rod surface temperature in a fuel bundle. These test procedures and the experiment can be utilized to establish the fine thermal analysis method applicable to dry storage system for the spent fuel. 12 figs., 5 tabs., 36 refs. (Author) .new

  4. Input modelling of ASSERT-PV V2R8M1 for RUFIC fuel bundle

    International Nuclear Information System (INIS)

    This report describes the input modelling for subchannel analysis of CANFLEX-RU (RUFIC) fuel bundle which has been developed for an advanced fuel bundle of CANDU-6 reactor, using ASSERT-PV V2R8M1 code. Execution file of ASSERT-PV V2R8M1 code was recently transferred from AECL under JRDC agreement between KAERI and AECL. SSERT-PV V2R8M1 which is quite different from COBRA-IV-i code has been developed for thermalhydraulic analysis of CANDU-6 fuel channel by subchannel analysis method and updated so that 43-element CANDU fuel geometry can be applied. Hence, ASSERT code can be applied to the subchannel analysis of RUFIC fuel bundle. The present report was prepared for ASSERT input modelling of RUFIC fuel bundle. Since the ASSERT results highly depend on user's input modelling, the calculation results may be quite different among the user's input models. The objective of the present report is the preparation of detail description of the background information for input data and gives credibility of the calculation results

  5. Economic and system aspects of CANDU advanced fuel cycles

    International Nuclear Information System (INIS)

    It is somewhat a paradox that Canada, which ranks as one of the world's leading uranium producers and has large economic uranium resources, should also have developed the CANDU reactor. This reactor is the most fuel efficient of all reactor types which are commercially available at the present time. The explanation of the paradox is that the design basis of the CANDU was established three decades ago when the full extent of Canadian uranium resources was unknown, and an early transition to recycle fuelling was anticipated as being necessary to sustain a growing power generation system. Consequently, the objectives of fuel efficiency and flexibility in using a variety of uranium, plutonium and thorium fuels were established at an early stage. One result of this is the ability to use the current design of CANDU in an advanced converter role with very little change in reactor design or operating procedures. As a result, in projections of future power costs, all major uncertainty is focused on fuel cycle parameters since the capital and operating costs are well defined by current commercial experience. The paper will examine the economic and resource characteristics of CANDU in an advanced converter role, both in terms of stand-alone technology and as a partner in a CANDU-light-water-reactor and in a CANDU-fast-breeder-reactor system. The use of results to establish cost targets to guide the current research and development program will be discussed, together with considerations of deployment strategy. (author)

  6. The effects of bearing-pad height on the critical heat flux of CANFLEX fuel bundle

    International Nuclear Information System (INIS)

    In CANDU-6 fuel channel, the geometrical eccentricity exists between fuel bundle and horizontal pressure tube. Based on the water CHF(critical heat flux) tests of the full-scale CANFLEX(CANDU Flexible) bundle string with the current bearing-pads of 1.4mm height, it was found that the increase of bypassing flow decreased significantly the CHF of fuel bundle with increasing the creep rate of pressure tube. So, the additional improvement of heat transfer performance is anticipated by increasing the hight of bearing-pads(about 0.3 mm) and reducing the eccentricity of fuel bundle. This paper presented the effects of bearing-pad height on the CHF by examining the water CHF test data of CANFLEX fuel strings equipped with 1.7 mm and 1.8 mm high bearing-pads. It also showed the data trends of the boiling-length-averaged CHF with respect to the test system flow parameters and local flow conditions. The high bearing-pad bundle is increased in dryout power by 7 to 10%, compared to the current CANFLEX fuel bundle

  7. The back end of the fuel cycle and CANDU

    International Nuclear Information System (INIS)

    CANDU reactor operators have benefited from several advantages of the CANDU system and from AECL's experience, with regard to spent fuel handling, storage and disposal. AECL has over 20 years experience in development and application of medium-term storage and research and development on the disposal of used fuel. As a result of AECL's experience, short-term and medium-term storage and the associated handling of spent CANDU fuel are well proven and economic, with an extremely high degree of public and environmental protection. In fact, both short-term (water-pool) and medium-term (dry canister) storage of CANDU fuel are comparable or lower in cost per unit of energy than for PWRs. Both pool storage and dry spent fuel storage are fully proven, with many years of successful, safe operating experience. AECL's extensive R and D on the permanent disposal of spent-fuel has resulted in a defined concept for Canadian fuel disposal in crystalline rock. This concept was recently confirmed as ''technically acceptable'' by an independent environmental review panel. Thus, the Canadian program represents an international demonstration of the feasibility and safety of geological disposal of nuclear fuel waste. Much of the technology behind the Canadian concept can be adapted to permanent land-based disposal strategies chosen by other countries. In addition, the Canadian development has established a baseline for CANDU fuel permanent disposal costs. Canadian and international work has shown that the cost of permanent CANDU fuel disposal is similar to the cost of LWR fuel disposal per unit of electricity produced. (author)

  8. CANDU fuel elements behaviour in the load following tests

    Energy Technology Data Exchange (ETDEWEB)

    Horhoianu, Grigore [Instiute for Nuclear Research, Pitesti (Romania). Nuclear Fuel Engineering Lab.; Palleck, Steve [Sheridan Park Research-AECL, Mississauga, ON (Canada). Fuel Deisgn Branch

    2011-08-15

    Two load following (LF) tests on CANDU type fuel elements were performed in TRIGA Research Reactor of INR Pitesti. In the first LF test the 78R fuel element has successfully experienced 367 power cycles, mostly between 23 and 56 kW/m average linear power. In the second LF test, the fuel element withstood 200 power cycles from 27 to 54 kW/m average linear power as well as additional ramps due to reactor trips and restarts during test period. New LF tests are planed to be performed in order to establish the limits and capabilities for CANDU fuel in LF conditions. This paper presents the results of the LF tests performed in TRIGA Research Reactor and their relation to CANDU fuel performance in LF conditions. (orig.)

  9. Conference proceedings of the 4. international conference on CANDU fuel. V. 1,2

    International Nuclear Information System (INIS)

    These proceedings contain the full texts of all 65 papers presented at the 4th International Conference on CANDU fuel. As such, they represent an update on the state-of-the-art in such important CANDU fuel topics as International Development Programs and Operating Experience with CANDU fuel, Performance Assessments and Fuel Behavior Modeling, Fuel Properties, Licensing and Accident Analyses for CANDU fuel, Design, Testing and Manufacturing, and Advanced Fuel Designs. The large number of papers required the use of parallel sessions for the first time at a CANDU Fuel Conference

  10. Fission gas release of (Th, Pu)O{sub 2} CANDU fuel

    Energy Technology Data Exchange (ETDEWEB)

    Karam, M.; Dimayuga, F.C.; Montin, J. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2008-07-01

    The use of thorium was identified, as early as the 1950s, as a promising fuel cycle in the CANDU development program because of its expected improved fuel performance (e.g., reduced fission gas release (FGR) due to thoria's enhanced thermal and chemical properties) and the relative abundance of thorium. AECL maintains an ongoing R and D program on thorium within the Advanced Fuel Cycles Program, which covers various aspects of the thorium fuel cycle including fabrication, irradiation testing, post-irradiation examination (PIE), and assessments of fuel performance. The BDL-422 experiment was one component of the thorium program that involved the fabrication and irradiation testing of six Bruce-type 37-element bundles fuelled with (Th, Pu)O{sub 2} pellets. Fuel fabrication was conducted in the Recycle Fuel Fabrication Laboratories (RFFL) at Chalk River allowing AECL to gain valuable experience in fabrication and handling of mixed oxide thoria fuel. The fuel pellets contained 1.53 wt. % Pu in (Th, Pu)O{sub 2}. The six bundles were irradiated in the NRU reactor loops under CANDU normal operating conditions to burnups ranging from about 450 MWh/kgHE (19 MWd/kgHE) to 1181 MWh/kgHE (49 MWd/kgHE) with peak element linear power ratings ranging from 52 kW/m to 73 kW/m. PIE results for the high burnup bundles (>1000 MWh/kgHE) are currently being analyzed. FGR of bundles irradiated to burnups up to 856 MWh/kgHE (36 MWd/kgHE) ranged from 1% to 5%. These FGR values are significantly lower than those observed for CANDU UO{sub 2} and (U, Pu)O{sub 2} fuel with similar power histories. The low FGR is attributed to low operating fuel temperatures resulting from high thermal conductivity of thoria. This demonstrates excellent performance of (Th, Pu)O{sub 2} fuels compared to UO{sub 2}. This paper focuses on FGR results for (Th, Pu)O{sub 2} fuel irradiated to burnups up to 856 MWh/kgHE (36 MWd/kgHE). (author)

  11. Subchannel Analysis for enhancing the fuel performance in CANDU reactor

    International Nuclear Information System (INIS)

    The effect of the fuel rod geometry in a fuel bundle using the subchannel code ASSERT has been evaluated to design the fuel bundle having the advanced fuel performance. Based on the configuration of standard 37-element fuel bundle, the element diameter of fuel rods in each ring has been changed while that of fuel rods in other rings is kept as the original size. The dryout power of each element in a fuel bundle has been obtained for the modified fuel bundle and compared with that of a standard fuel bundle. From the calculated mixture enthalpy and void fraction of each subchannel, it was found that the modification of element diameter largely affects to the thermal characteristics of the subchannel on the upper region of a modified element by the buoyancy drift effect. The optimized geometry in a fuel bundle has been suggested from the consideration of the change of void reactivity as well as the dryout power of a bundle. The dependency of the transverse interchange model on the present results has been checked by examining the dryout power of a bundle for the different mixing coefficient and buoyancy drift model

  12. Candu advanced fuel cycles: key to energy sustainability

    International Nuclear Information System (INIS)

    A primary rationale for Indonesia to proceed with a nuclear power program is to diversity its energy sources and achieve freedom from future resource constraints. While other considerations, such as economy of power supply, hedging against potential future increases in the price of fossil fuels, fostering the technological development of the Indonesia economy and minimizing greenhouse and other gaseous are important, the strategic resource issue is key. In considering candidate nuclear power technologies upon which to base such a program, a major consideration will be the potential for those technologies to be economically sustained in the face of large future increases in demand for nuclear fuels. the technology or technologies selected should be amenable to evaluation in a rapidly changing technical, economic, resource and environmental policy environment. the world's proven uranium resources which can be economically recovered represent a fairly modest energy resource if utilization is based on the currently commercialized fuel cycles, even with the use of recovered plutonium in mixed oxide fuels. In the long term, fuel cycles relying solely on the use of light water reactors will encounter increasing fuel supply constraints. Because of its outstanding neutron economy and the flexibility of on-power refueling, Candu reactors are the most fuel resource efficient commercial reactors and offer the potential for accommodating an almost unlimited variety of advanced and even more fuel efficient cycles. Most of these cycles utilize nuclear fuel which are too low grade to be used in light water reactors, including many products now considered to be waste, such as spent light water reactor fuel and reprocessing products such as recovered uranium. The fuel-cycle flexibility of the Candu reactor provides a ready path to sustainable energy development in both the short and the long terms. Most of the potential Candu fuel cycle developments can be accommodated in existing

  13. Improving the service life and performance of CANDU fuel channels

    International Nuclear Information System (INIS)

    The development objective for CANDU fuel channels is to produce a design that can operate for 40 years at 90% capacity. Steady progress toward this objective is being made. The factors that determine the life of a CANDU fuel channel are reviewed and the processes necessary to achieve the objectives are identified. Performance of future fuel channels will be enhanced by reduced operating costs and increased safety margins to postulated accident conditions compared with those for current channels. The approaches to these issues are discussed briefly in this report. (author)

  14. CANDU fuel quality and how it is achieved

    International Nuclear Information System (INIS)

    In this three part presentation CANDU fuel quality is reviewed from the point of view of a designer/operator and a fabricator. In Part 'A' fuel performance and quality considerations are discussed from the point of view of a designer-operator. In Parts 'B' and 'C' fuel quality is reviewed from the point of view of a fabricator. The presentation was divided in this way to convey the 'team effort' attitude which exists in the Canadian program; the team effort which is an essential part of the CANDU story. (auth)

  15. Assessment of CHF characteristics at subcooled conditions for the CANDU CANFLEX bundle

    International Nuclear Information System (INIS)

    An analysis has been performed to assess the Critical Heat Flux (CHF) characteristics for the CANFLEX bundle at subcooled conditions. CHF characteristics for CANDU bundles have been established from experiments using full-scale bundle simulators. These experiments covered flow conditions of interest to normal operation and postulated loss-of-flow and small break loss-of-coolant accidents. Experimental CHF values obtained from these experiments were applied to develop correlations for analyses of regional overpower protection and safety trips. These correlations are applicable to the saturated region in the reference uncrept channel and the slightly subcooled region in postulated high-creep channels. Expanding the CHF data to subcooled conditions facilitates the evaluation of the margin to dryout at upstream bundle locations, even though dryout occurrences are not anticipated there. In view of the lack of experimental data, the ASSERT-PV subchannel code has been applied to establish CHF values at low qualities and high subcoolings (thermodynamic qualities corresponding to -25%). These CHF values have been applied to extend the CHF correlation to the highly subcooled conditions. (author)

  16. Economic analysis of alternative options in CANDU fuel cycle

    International Nuclear Information System (INIS)

    In this study, fuel cycle options for CANDU reactor were studied. Three main options in a CANDU fuel cycle involve use of : (1) natural uranium (0.711 weight percent U-235) fuel, (2) slightly enriched uranium (1.2 weight percent U-235) fuel, and (3) recovered uranium (0.83 weight percent U-235) fuel from light water reactor spent fuel. ORIGEN-2 computer code was used to identify composition of the spent fuel for each option , including the standard LWR fuel (3.3 weight percent U-235). Uranium and plutonium credit calculations were performed by using ORIGEN-2 output. WIMSD-5 computer code was used to determine maximum discharge burnup values for each case. Cost estimations were carried out using specially-developed computer programs. Comparison of levelized costs for the fuel cycle options and sensitivity analysis for the cost components are also presented

  17. Spent fuel bundle counter sequence error manual - DARLINGTON NGS

    International Nuclear Information System (INIS)

    The Spent Fuel Bundle Counter (SFBC) is used to count the number and type of spent fuel transfers that occur into or out of controlled areas at CANDU reactor sites. However if the transfers are executed in a non-standard manner or the SFBC is malfunctioning, the transfers are recorded as sequence errors. Each sequence error message typically contains adequate information to determine the cause of the message. This manual provides a guide to interpret the various sequence error messages that can occur and suggests probable cause or causes of the sequence errors. Each likely sequence error is presented on a 'card' in Appendix A. Note that it would be impractical to generate a sequence error card file with entries for all possible combinations of faults. Therefore the card file contains sequences with only one fault at a time. Some exceptions have been included however where experience has indicated that several faults can occur simultaneously

  18. Utilization of spent PWR fuel-advanced nuclear fuel cycle of PWR/CANDU synergism

    Institute of Scientific and Technical Information of China (English)

    HUO Xiao-Dong; XIE Zhong-Sheng

    2004-01-01

    High neutron economy, on line refueling and channel design result in the unsurpassed fuel cycle flexibility and variety for CANDU reactors. According to the Chinese national conditions that China has both PWR and CANDU reactors and the closed cycle policy of reprocessing the spent PWR fuel is adopted, one of the advanced nuclear fuel cycles of PWR/CANDU synergism using the reprocessed uranium of spent PWR fuel in CANDU reactor is proposed, which will save the uranium resource (~22.5%), increase the energy output (~41%), decrease the quantity of spent fuels to be disposed (~2/3) and lower the cost of nuclear power. Because of the inherent flexibility of nuclear fuel cycle in CANDU reactor, and the low radiation level of recycled uranium(RU), which is acceptable for CANDU reactor fuel fabrication, the transition from the natural uranium to the RU can be completed without major modification of the reactor core structure and operation mode. It can be implemented in Qinshan Phase Ⅲ CANDU reactors with little or no requirement of big investment in new design. It can be expected that the reuse of recycled uranium of spent PWR fuel in CANDU reactor is a feasible and desirable strategy in China.

  19. CANDU type fuel behavior evaluation - a probabilistic approach

    International Nuclear Information System (INIS)

    In order to realistically assess the behavior of the fuel elements during in-reactor operation, probabilistic methods have recently been introduced in the analysis of fuel performance. The present paper summarizes the achievements in this field at the Institute for Nuclear Research (INR), pointing out some advantages of the utilized method in the evaluation of CANDU type fuel behavior in steady state conditions. The Response Surface Method (RSM) has been selected for the investigation of the effects of the variability in fuel element computer code inputs on the code outputs (fuel element performance parameters). A new developed version of the probabilistic code APMESRA based on RSM is briefly presented. The examples of application include the analysis of the results of an in-reactor fuel element experiment and the investigation of the calculated performance parameter distribution for a new CANDU type extended burnup fuel element design. (author)

  20. Validation of the ASSERT subchannel code: Prediction of critical heat flux in standard and nonstandard CANDU bundle geometries

    International Nuclear Information System (INIS)

    The ASSERT code has been developed to address the three-dimensional computation of flow and phase distribution and fuel element surface temperatures within the horizontal subchannels of Canada uranium deuterium (CANDU) pressurized heavy water reactor fuel channels and to provide a detailed prediction of critical heat flux (CHF) distribution throughout the bundle. The ASSERT subchannel code has been validated extensively against a wide repertoire of experiments; its combination of three-dimensional prediction of local flow conditions with a comprehensive method of predicting CHF at these local conditions makes it a unique tool for predicting CHF for situations outside the existing experimental database. In particular, ASSERT is an appropriate tool to systematically investigate CHF under conditions of local geometric variations, such as pressure tube creep and fuel element strain. The numerical methodology used in ASSERT, the constitutive relationships incorporated, and the CHF assessment methodology are discussed. The evolutionary validation plan is also discussed and early validation exercises are summarized. More recent validation exercises in standard and nonstandard geometries are emphasized

  1. Validation of the assert subchannel code: Prediction of CHF in standard and non-standard Candu bundle geometries

    International Nuclear Information System (INIS)

    The ASSERT code has been developed to address the three-dimensional computation of flow and phase distribution and fuel element surface temperatures within the horizontal subchannels of CANDU PHWR fuel channels, and to provide a detailed prediction of critical heat flux (CHF) distribution throughout the bundle. The ASSERT subchannel code has been validated extensively against a wide repertoire of experiments; its combination of three-dimensional prediction of local flow conditions with a comprehensive method of prediting CHF at these local conditions, makes it a unique tool for predicting CHF for situations outside the existing experimental data base. In particular, ASSERT is an appropriate tool to systematically investigate CHF under conditions of local geometric variations, such as pressure tube creep and fuel element strain. This paper discusses the numerical methodology used in ASSERT, the constitutive relationships incorporated, and the CHF assessment methodology. The evolutionary validation plan is discussed, and early validation exercises are summarized. The paper concentrates, however, on more recent validation exercises in standard and non-standard geometries

  2. Validation of the ASSERT subchannel code for prediction of CHF in standard and non-standard CANDU bundle geometries

    International Nuclear Information System (INIS)

    The ASSERT code has been developed to address the three-dimensional computation of flow and phase distribution and fuel element surface temperatures within the horizontal subchannels of CANDU PHWR fuel channels, and to provide a detailed prediction of critical heat flux distribution throughout the bundle. The ASSERT subchannel code has been validated extensively against a wide repertoire of experiments; its combination of three-dimensional prediction of local flow conditions with a comprehensive method of predicting critical heat flux (CHF) at these local conditions makes it a unique tool for predicting CHF for situations outside the existing experimental data base. In particular, ASSERT is the only tool available to systematically investigate CHF under conditions of local geometric variations, such as pressure tube creep and fuel element strain. This paper discusses the numerical methodology used in ASSERT, the constitutive relationships incorporated, and the CHF assessment methodology. The evolutionary validation plan is discussed, and early validation exercises are summarized. The paper concentrates, however, on more recent validation exercises in standard and non-standard geometries. 28 refs., 12 figs

  3. Nuclear fuel bundle disassembly and assembly tool

    International Nuclear Information System (INIS)

    A nuclear power reactor fuel bundle is described which has a plurality of tubular fuel rods disposed in parallel array between two transverse tie plates. It is secured against disassembly by one or more locking forks which engage slots in tie rods which position the transverse plates. Springs mounted on the fuel and tie rods are compressed when the bundle is assembled thereby maintaining a continual pressure against the locking forks. Force applied in opposition to the springs permits withdrawal of the locking forks so that one tie plate may be removed, giving access to the fuel rods. An assembly and disassembly tool facilitates removal of the locking forks when the bundle is to be disassembled and the placing of the forks during assembly of the bundle. (U.S.)

  4. Assembly mechanism for nuclear fuel bundles

    International Nuclear Information System (INIS)

    A description is given of a nuclear power reactor fuel bundle having tie rods fastened to a lower tie plate and passing through openings in the upper tie plate with the assembled bundle secured by rotatable locking sleeves which engage slots provided in the upper tie plate. Pressure exerted by helical springs mounted around each of the fuel rods urge the upper tie plate against the locking sleeves. The bundle may be disassembled after depressing the upper tie plate and rotating the locking sleeves to the unlocked position

  5. Remotely operated inspection equipment for the Candu fuel channels

    International Nuclear Information System (INIS)

    Equipment is described which has been successfully used for the nondestructive inspection of fuel channel components within Ontario Hydro's CANDU nuclear reactors. By the use of automated systems, significant savings in personnel radiation exposure and unit outage duration have been realized, with improved quality and quantity of nondestructive examination information. (author)

  6. In-pool damaged fuel bundle recovery

    International Nuclear Information System (INIS)

    While preparing to rerack the Oyster Creek Nuclear Generating Station, GPU Nuclear had need to move a damaged fuel bundle. This bundle had no upper tie plate and could not be moved in the normal manner. GPU Nuclear formed a small, dedicated project team to disassemble, package, and move this damaged bundle. The team was composed of key personnel from GPU Nuclear Fuels Projects, OCNGS Operations and Proto-Power/Bisco, a specialty contractor who has fuel bundle reconstitution and rod consolidation experience, remote tooling, underwater video systems and experienced technicians. Proven tooling, clear procedures and a simple approach were important, but the key element was the spirit of teamwork and leadership exhibited by the people involved. In spite of several emergent problems which a task of this nature presents, this small, close knit utility/vendor team completed the work on schedule and within the exposure and cost budgets

  7. In-pool damaged fuel bundle recovery

    International Nuclear Information System (INIS)

    While preparing to rerack the Oyster Creek Nuclear Generating Station, GPU Nuclear had need to move a damaged fuel bundle. This bundle had no upper tie plate and could not be moved in the normal manner. GPU Nuclear formed a small, dedicated project team to disassemble, package and move this damaged bundle. The team was composed of key personnel from GPU Nuclear Fuels Projects, OCNGS Operations and Proto-Power / Bisco, a specialty contractor who has fuel bundle reconstitution and rod consolidation experience, remote tooling, underwater video systems and experienced technicians. Proven tooling, clear procedures and a simple approach were important, but the key element was the spirit of teamwork and leadership exhibited by the people involved

  8. CANFLEX fuel bundle strength tests (test report)

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Seok Kyu; Chung, C. H.; Kim, B. D.

    1997-08-01

    This document outlines the test results for the strength tests of the CANFLEX fuel bundle. Strength tests are performed to determine and verify the amount of the bundle shape distortion which is against the side-stops when the bundles are refuelling. There are two cases of strength test; one is the double side-stop test which simulates the normal bundle refuelling and the other is the single side-stop test which simulates the abnormal refuelling. the strength test specification requires that the fuel bundle against the side-stop(s) simulators for this test were fabricated and the flow rates were controlled to provide the required conservative hydraulic forces. The test rig conditions of 120 deg C, 11.2 MPa were retained for 15 minutes after the flow rate was controlled during the test in two cases, respectively. The bundle loading angles of number 13- number 15 among the 15 bundles were 67.5 deg CCW and others were loaded randomly. After the tests, the bundle shapes against the side-stops were measured and inspected carefully. The important test procedures and measurements were discussed as follows. (author). 5 refs., 22 tabs., 5 figs.

  9. CANFLEX fuel bundle strength tests (test report)

    International Nuclear Information System (INIS)

    This document outlines the test results for the strength tests of the CANFLEX fuel bundle. Strength tests are performed to determine and verify the amount of the bundle shape distortion which is against the side-stops when the bundles are refuelling. There are two cases of strength test; one is the double side-stop test which simulates the normal bundle refuelling and the other is the single side-stop test which simulates the abnormal refuelling. the strength test specification requires that the fuel bundle against the side-stop(s) simulators for this test were fabricated and the flow rates were controlled to provide the required conservative hydraulic forces. The test rig conditions of 120 deg C, 11.2 MPa were retained for 15 minutes after the flow rate was controlled during the test in two cases, respectively. The bundle loading angles of number 13- number 15 among the 15 bundles were 67.5 deg CCW and others were loaded randomly. After the tests, the bundle shapes against the side-stops were measured and inspected carefully. The important test procedures and measurements were discussed as follows. (author). 5 refs., 22 tabs., 5 figs

  10. Thorium utilization in ACR (Advanced CANDU) and CANDU-6 reactors

    International Nuclear Information System (INIS)

    It is the main objective of this study to investigate fuel composition options for CANDU type of reactors that are capable of using a mixture of U-Th as fuel. A homogenous mixture of (U-Th)O2 was used in all elements of fuel bundles. The core of CANDU-6 and ACR (Advanced CANDU) were modeled using MCNP5. In equilibrium core, using MONTEBURNS2 code (coupled with MCNP5 and ORIGENS) for once-through uranium and once-through uranium-thorium fuel cycle of CANDU-6 and ACR, discharge burnups and spent fuel compositions were computed. For various enrichments of uranium and different fractions of thorium in a uranium-thorium fuel mixture, performing burnup calculations, relevant relations were derived; in addition, conversion ratio, fuel requirement, uranium resource utilization, and natural uranium savings were determined, and their changes with burnup were observed. Appropriate fuel compositions were discussed.

  11. Numerical study of the thermo-hydraulic behavior for the Candu type fuel channel

    International Nuclear Information System (INIS)

    Candu type reactors use fuel channel in a horizontal lattice. The fuel bundles are positioned in two Zircaloy tubes: the pressure tube surrounded by calandria tube. Inside the pressure tube the coolant heavy water flows. The coolant reaches high temperatures and pressures. Due to irregular neutron spatial distribution, the fuel channel stress differs from one channel to other. In one improbable event of severe accident, the fuel channel behaves differently according to its normal function history. Over the years, there have been many research projects trying to analyze thermal hydraulic performance of the design and to add some operational improvements in order to achieve an efficient thermal hydraulic distribution. This paper discusses the thermo hydraulic behavior (influence of the temperature and velocity distribution) of the most solicited channel, simulated with Fluent 6.X. Code. Moreover it will be commented the results obtained using different models and mesh applied. (authors)

  12. The manufacturing role in fuel performance

    International Nuclear Information System (INIS)

    Manufacturing companies have been involved in the CANDU fuel industry for more than 40 years. Early manufacturing contributions were the development of materials and processes used to fabricate the CANDU fuel bundle. As CANDU reactors were commissioned, the manufacturing contribution has been to produce economical, high quality fuel for the CANDU market. (author)

  13. Dynamic Analysis of the Thorium Fuel Cycle in CANDU Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Chang Joon; Park, Chang Je

    2006-02-15

    The thorium fuel recycle scenarios through the Canada deuterium uranium (CANDU) reactor have been analyzed for two types of thorium fuel: homogeneous ThO{sub 2}UO{sub 2} and ThO{sub 2}UO{sub 2}-DUPIC fuels. The recycling is performed through the dry process fuel technology which has a proliferation resistance. For the once-through fuel cycle model, the existing nuclear power plant construction plan was considered up to 2016, while the nuclear demand growth rate from the year 2016 was assumed to be 0%. After setting up the once-through fuel cycle model, the thorium fuel CANDU reactor was modeled to investigate the fuel cycle parameters. In this analysis, the spent fuel inventory as well as the amount of plutonium, minor actinides and fission products of the multiple recycling fuel cycle were estimated and compared to those of the once-through fuel cycle. From the analysis results, it was found that the closed or partially closed thorium fuel cycle can be constructed through the dry process technology. Also, it is known that both the homogeneous and heterogeneous thorium fuel cycles can reduce the SF accumulation and save the natural uranium resource compared with the once-through cycle. From the material balance view point, the heterogeneous thorium fuel cycle seems to be more feasible. It is recommended, however, the economic analysis should be performed in future.

  14. In-pile test of Qinshan PWR fuel bundle

    International Nuclear Information System (INIS)

    In-pile test of Qinshan Nuclear Power Plant PWR fuel bundle has been conducted in HWRR HTHP Test loop at CIAE. The test fuel bundle was irradiated to an average burnup of 25000 Mwd/tU. The authors describe the structure of (3 x 3-2) test fuel bundle, structure of irradiation rig, fuel fabrication, irradiation conditions, power and fuel burnup. Some comments on the in-pile performance for fuel bundle, fuel rod and irradiation rig were made

  15. TRIGA spent fuel bundles safe storage

    Energy Technology Data Exchange (ETDEWEB)

    Negut, G.; Covaci, St. [Institute for Nuclear Research, Research Reactor Dept., Pitesti (Romania); Prisecaru, I.; Dupleac, D. [Bucharest Univ. Politehnica, Power and Nuclear Engineering Dept., Bucharest (Romania)

    2007-07-01

    TRIGA-SSR is a steady state research and material test reactor that has been in operation since 1980. The original TRIGA fuel was HEU (highly enriched uranium) with a U{sup 235} enrichment of 93 per cent. Almost all TRIGA HEU fuel bundles are now burned-up. Part of the spent fuel was loaded and transferred to US, in a Romania - DOE arrangement. The rest of the TRIGA fuel bundles have to be temporarily stored in the TRIGA facility. As the storage conditions had to be established with caution, neutron and thermal hydraulic evaluations of the storage conditions were required. Some criticality evaluations were made based on the SAR (Safety Analysis Report) data. Fuel constant axial temperature approximation effect is usual for criticality computations. TRIGA-SSR fuel bundle geometry and materials model for SCALE5-CSAS module allows the introduction of a fuel temperature dependency for the entire fuel active height, using different materials for each fuel bundle region. Previous RELAP5 thermal hydraulic computations for an axial and radial power distribution in the TRIGA fuel pin were done. Fuel constant temperature approximation overestimates pin factors for every core operating at high temperatures. From the thermal hydraulic point of view the worst condition of the storage grid occurs when the transfer channel is accidentally emptied of water from the pool, or the bundle is handled accidentally to remain in air. All the residual heat from the bundles has to be removed without fuel overheating and clad failure. RELAP5 computer code for residual heat removal was used in the assessment of residual heat removal. We made a couple of evaluations of TRIGA bundle clad temperatures in air cooling conditions, with different residual heat levels. The criticality computations have shown that the spent TRIGA fuel bundles storage grid is strongly sub-critical with k(eff) = 0.5951. So, there is no danger for a criticality accident for this storage grid type. The assessment is done

  16. TRIGA spent fuel bundles safe storage

    International Nuclear Information System (INIS)

    TRIGA-SSR is a steady state research and material test reactor that has been in operation since 1980. The original TRIGA fuel was HEU (highly enriched uranium) with a U235 enrichment of 93 per cent. Almost all TRIGA HEU fuel bundles are now burned-up. Part of the spent fuel was loaded and transferred to US, in a Romania - DOE arrangement. The rest of the TRIGA fuel bundles have to be temporarily stored in the TRIGA facility. As the storage conditions had to be established with caution, neutron and thermal hydraulic evaluations of the storage conditions were required. Some criticality evaluations were made based on the SAR (Safety Analysis Report) data. Fuel constant axial temperature approximation effect is usual for criticality computations. TRIGA-SSR fuel bundle geometry and materials model for SCALE5-CSAS module allows the introduction of a fuel temperature dependency for the entire fuel active height, using different materials for each fuel bundle region. Previous RELAP5 thermal hydraulic computations for an axial and radial power distribution in the TRIGA fuel pin were done. Fuel constant temperature approximation overestimates pin factors for every core operating at high temperatures. From the thermal hydraulic point of view the worst condition of the storage grid occurs when the transfer channel is accidentally emptied of water from the pool, or the bundle is handled accidentally to remain in air. All the residual heat from the bundles has to be removed without fuel overheating and clad failure. RELAP5 computer code for residual heat removal was used in the assessment of residual heat removal. We made a couple of evaluations of TRIGA bundle clad temperatures in air cooling conditions, with different residual heat levels. The criticality computations have shown that the spent TRIGA fuel bundles storage grid is strongly sub-critical with k(eff) = 0.5951. So, there is no danger for a criticality accident for this storage grid type. The assessment is done for

  17. Development of defueling device for CANDU fuel channel (modeling)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. Y.; Yu, K. H.; Yang, J. S.; Lee, H. S.; Chang, K. J.; Kim, Y. J. [CNEC Technical Office, Taejon (Korea, Republic of); Lee, S. K. [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    2004-07-01

    Commercial CANDU reactors use D{sub 2}O for moderator and heat transfer material and also have Fueling Machines(F/M) and related system equipment in order to assist on-power refueling operation. A Defuelling Device(DFD) is developed for the proper defuelling of all fuels in all fuel channels during shutdown condition of plant. This device is considered more efficient in defuelling compared to the existing Fuel Grapple System for its use of existing D{sub 2}O flow in the fuel channel. In this study, computational fluid dynamic software is used for optimize and evaluation of the design for its applicability.

  18. Assembly mechanism for nuclear fuel bundles

    International Nuclear Information System (INIS)

    This invention relates to an assembly mechanism for nuclear power reactor fuel bundles using a novel, simple and inexpensive means. The mechanism is readily operable remotely, avoids separable parts and is applicable to fuel assemblies in which the upper tie plate is rigidly mounted on the tie rods which hold it in place. (UK)

  19. Integrity of spent CANDU fuel during and following dry storage

    International Nuclear Information System (INIS)

    This report examines the issue of CANDU fuel integrity at the back end of the fuel cycle and outlines a program designed to provide assurance that used CANDU fuel will retain its integrity over an extended period. In specific terms, the program is intended to provide assurance that during and following extended dry storage the fuel will remain fit to undergo, without loss of integrity, the handling, packaging and transportation operations that might be necessary until it is placed in disposal containers. The first step in the development of the program was a review of the available technical information on phenomena relevant to fuel integrity. The major conclusions from that review were the following: Under normal storage conditions it is unlikely that the spent fuel will suffer significant degradation during a one-hundred year period and it should be possible to retrieve, repackage and transport the fuel as required, using methods and systems similar to those used today. However, to provide increased confidence regarding the above conclusion, investigations should be conducted in areas where there is higher uncertainty in the prediction of fuel condition and on some degradation processes to which the fuel appears to present higher vulnerability. The proposed program includes, among other tasks, irradiated fuel tests, analytical studies on the most relevant fuel degradation processes and the development of a long-term fuel verification program. (Author)

  20. CFD analysis of the 37-element fuel channel for CANDU6 reactor

    International Nuclear Information System (INIS)

    We analyzed the thermal-hydraulic behavior of coolant flow along fuel bundles with appendages of end support plate, spacer pad, and bearing pad, which are the CANDU6 characteristic design. The computer code used is a commercial CFD code, CFX-12. The present CFD analysis model calculates the conjugate heat transfer between the fuel and coolant. Using the same volumetric heat source as the O6 channel, the CFD predictions of the axial temperature distributions of the fuel element are compared with those by the CATHENA (one-dimensional safety analysis code for CANDU6 reactor). It is shown that CFX-12 predictions are in good agreement with those by the CATHENA code for the single liquid convection region (especially before the axial position of the first half of the channel length). However, the CFD analysis at the second half of the fuel channel, where the two-phase flow is expected to occur, over-predicts the fuel temperature, since the wall boiling model is not considered in the present CFD model. (author)

  1. Study on advanced nuclear fuel cycle of PWR/CANDU synergism

    International Nuclear Information System (INIS)

    According to the concrete condition that China has both PWR and CANDU reactors, one of the advanced nuclear fuel cycle strategy of PWR/CANDU synergism ws proposed, i.e. the reprocessed uranium of spent PWR fuel was used in CANDU reactor, which will save the uranium resource, increase the energy output, decrease the quantity of spent fuels to be disposed and lower the cost of nuclear power. Because of the inherent flexibility of nuclear fuel cycle in CANDU reactor, the transition from the natural uranium to the recycled uranium (RU) can be completed without any changes of the structure of reactor core and operation mode. Furthermore, because of the low radiation level of RU, which is acceptable for CANDU reactor fuel fabrication, the present product line of fuel elements of CANDU reactor only need to be shielded slightly, also the conditions of transportation, operation and fuel management need not to be changed. Thus this strategy has significant practical and economical benefit

  2. Third international conference on CANDU fuel

    International Nuclear Information System (INIS)

    These proceedings contain full texts of all 49 papers from the ten sessions and the banquet address. The sessions were on the following subjects: International experience and programs; Fuel behaviour and operating experience; Fuel modelling; Fuel design; Advanced fuel and fuel cycle technology; AECL's concept for the disposal of nuclear fuel waste. The individual papers have been abstracted separately

  3. Optimizing in-bay fuel inspection capability to meet the needs of today's CANDU fleet

    International Nuclear Information System (INIS)

    With the recent return to service of many CANDU units, aging of all others, increasingly competitive energy market and aging hot cell infrastructure - there exists now a greater need for timely, cost-effective and reliable collection of irradiated fuel performance information from fuel bay inspections. The recent development of simple in-bay tools, used in combination with standardized technical specifications, inspection databases and assessment techniques, allows utilities to characterize the condition of irradiated fuel and any debris lodged in the bundle in a more timely fashion and more economically than ever. Use of these tools and 'advanced' techniques permits timely engineering review and disposition of emerging issues to support reliable operation of the CANDU fleet. (author)

  4. Telescope sipping - pinpointing leaking fuel bundles

    International Nuclear Information System (INIS)

    Given the top priority operators of nuclear power plants assign to safety, even the slightest sign of damage to the fuel assemblies has to be carefully monitored and analyzed. The detection of leaking fuel bundles also plays an important role in ensuring good availability and economy for the plants. ABB Atom has developed a new, highly accurate method, called 'telescope sipping', for identifying defective fuel assemblies. (orig.)

  5. Post-irradiation neutron emissions from CANDU fuels and their nuclear forensics applications

    International Nuclear Information System (INIS)

    Fissile materials within a fuel pellet can be discerned rapidly and non-destructively via the analysis of post-irradiation delayed neutron emissions. The delayed neutron counting technique is well established within the Canadian nuclear industry, and uses include the detection of defective CANDU fuel. This work discusses these neutron emissions from CANDU fuel in the context of detection and attribution. Monte Carlo simulations of these emissions from current and proposed CANDU fuels (thoria and mix oxide based) have been performed. These simulations are compared to measurements of delayed neutron emissions from 233U and 235U, and the feasibility of CANDU fuel characterization is discussed. (author)

  6. IFPE/AECL-BUNDLE, Fission Gas Release and Burnup Analysis, PHWR Fuel

    International Nuclear Information System (INIS)

    Description: Prototype Candu Fuel bundles for the CANDU6 (bundle NR) and Bruce (bundle JC) reactors were irradiated in the NRU experimental reactor at Chalk River Laboratories in experimental loop facilities under typical Candu reactor conditions, except that they were cooled using light water. NEA-1596/01 - Description: Bundle JC was a prototype 37-element fuel bundle for the Bruce-A Ontario Hydro reactors. This pressurized heavy water reactor (PHWR) design utilizes a heavy water moderator and pressurize heavy water coolant. For irradiation in the NRU reactor, the centre fuel element was removed and replaced by a central tie rod for irradiation purposes in the vertical test section. Coolant for the test was pressurized light water under typical PHWR conditions of 9 to 10.5 MPa and 300 deg. C. The fuel elements used 1.55 wt% U-235 in U uranium dioxide fuel and were clad with Zircaloy-4 material. The bundles' elements were coated with a graphite coating. The fuel is somewhat atypical of 37 element-type fuel since the length to diameter ratio (l/d) is large (1.73) due to the pellets being ground down from a OD of 14.3 mm to 12.12 mm. The outer element burnup averaged approximately 640 MWh/kgU on discharge. Outer element powers varied between 57 kW/m near the beginning of life and 23 kW/m at discharge. Due to the long irradiation, the bundle experienced 153 short shutdowns, and 129 longer duration shutdowns. No element instrumentation was used during the irradiation. However, the bundle was subjected to extensive post-irradiation examination (PIE) that included dimensional changes, fission gas release, fuel burnup analysis, and metallography that included grain size measurement. NEA-1596/02 - Description: Bundle NR was a prototype 37-element fuel bundle for the Candu 600 reactor. This pressurized heavy water reactor (PHWR) design utilizes a heavy water moderator and pressurized heavy water coolant. For irradiation in the NRU reactor, the centre fuel element was

  7. International collaboration to study the feasibility of implementing the use of slightly enriched uranium fuel in the Embalse CANDU reactor

    International Nuclear Information System (INIS)

    In the last few years, Nucleoelectrica Argentina S.A. and Atomic Energy of Canada Limited have collaborated on a study of the technical feasibility of implementing Slightly Enriched Uranium (SEU) fuel in the Embalse CANDU reactor in Argentina. The successful conversion to SEU fuel of the other Argentine heavy-water reactor, Atucha 1, served as a good example. SEU presents an attractive incentive from the point of view of fuel utilization: if fuel enriched to 0.9% 235U were used in Embalse instead of natural uranium, the average fuel discharge burnup would increase significantly (by a factor of about 2), with consequent reduction in fuel requirements, leading to lower fuel-cycle costs and a large reduction in spent-fuel volume per unit energy produced. Another advantage is the change in the axial power shape: with SEU fuel, the maximum bundle power in a channel decreases and shifts towards the coolant inlet end, consequently increasing the thermalhydraulics safety margin. Two SEU fuel carriers, the traditional 37-element bundle and the 43-element CANFLEX bundle, which has enhanced thermalhydraulic characteristics as well as lower peak linear element ratings, have been examined. The feasibility study gave the organizations an excellent opportunity to perform cooperatively a large number of analyses, e.g., in reactor physics, thermalhydraulics, fuel performance, and safety. A Draft Plan for a Demonstration Irradiation of SEU fuel in Embalse was prepared. Safety analyses have been performed for a number of hypothetical accidents, such as Large Loss of Coolant, Loss of Reactivity Control, and an off-normal condition corresponding to introducing 8 SEU bundles in a channel (instead of 2 or 4 bundles). There are concrete safety improvements which result from the reduced maximum bundle powers and their shift towards the inlet end of the fuel channel. Further improvements in safety margins would accrue with CANFLEX. In conclusion, the analyses identified no issues that would

  8. Advances in fuel channel technology for CANDU reactors

    International Nuclear Information System (INIS)

    The components of the CANDU fuel channels are being developed to have service lives of over 30 years with large margins of safety. Information from research programs and the examination of components removed from reactors has enable improvements to be made to pressure tubes, spacers, calandria tubes and end fittings. Improvements have also been made to the channel design to facilitate planned retubing. (author). 22 refs., 5 tabs., 31 figs

  9. Enrichment effects on CANDU-SEU spent fuel Monte Carlo shielding analysis

    International Nuclear Information System (INIS)

    Shielding analyses are an essential component of the nuclear safety, the estimations of radiation doses in order to reduce them under specified limitation values being the main task here. According to IAEA data, more than 10 millions packages containing radioactive materials are annually transported world wide. All the problems arisen from the safe radioactive materials transport assurance must be carefully settled. Last decade, both for operating reactors and future reactor projects, a general trend to raise the discharge fuel burnup has been recorded world wide. For CANDU type reactors, the most attractive solution seems to be SEU and RU fuels utilization. The basic tasks accomplished by the shielding calculations in a nuclear safety analysis consist in dose rates calculation, to prevent any risks both for personnel protection and impact on the environment during the spent fuel manipulation, transport and storage. The paper aims to study the effects induced by fuel enrichment variation on CANDU-SEU spent fuel photon dose rates for a Monte Carlo shielding analysis applied to spent fuel transport after a defined cooling period in the NPP pools. The fuel bundles projects considered here have 43 Zircaloy rods, filled with SEU fuel pellets, the fuel having different enrichment in U-235. All the geometrical and material data related on the cask were considered according to the shipping cask type B model. After a photon source profile calculation by using ORIGEN-S code, in order to perform the shielding calculations, Monte Carlo MORSE-SGC code has been used, both codes being included in the ORNL's SCALE 5 system. The photon dose rates to the shipping cask wall and in air, at different distances from the cask, have been estimated. Finally, a photon dose rates comparison for different fuel enrichments has been performed. (author)

  10. Fuel temperature characteristics of the 37-element and CANFLEX fuel bundle

    International Nuclear Information System (INIS)

    This report describes the fuel temperature characteristics of CANFLEX fuel bundles and 37-element fuel bundles for a different burnup of fuel. The program was consisted for seeking the fuel temperature of fuel bundles of CANFLEX fuel bundles and 37-element fuel bundles by using the method in NUCIRC. Fuel temperature has an increasing pattern with the burnup of fuel for CANFLEX fuel bundles and 37-element fuel bundles. For all the case of burnup, the fuel temperature of CANFLEX fuel bundles has a lower value than that of 37-element fuel bundles. Especially, for the high power channel, the CANFLEX fuel bundles show a lower fuel temperature as much as about 75 degree, and the core averaged fuel temperature has a lower fuel temperature of about 50 degree than that of 37-element fuel bundles. The lower fuel temperature of CANFLEX fuel bundles is expected to enhance the safety by reducing the fuel temperature coefficient. Finally, for each burnup of CANFLEX fuel bundles and 37-element fuel bundles, the equation was present for predicting the fuel temperature of a bundle in terms of a coolant temperature and bundle power

  11. Exporting technology for CANDU fuel manufacturing to the People's Republic of China - a stimulating experience for the Romanian nuclear fuel plant

    International Nuclear Information System (INIS)

    Adopting CANDU type reactors to produce nuclear-generated electricity, Romania has also developed his capability to produce nuclear fuel. Since 1995, FCN Pitesti is the unique nuclear fuel supplier for Cernavoda CANDU Power Station. Fuel plant upgrading and qualification was achieved in co-operation with AECL and Zircatec Precision Industries Inc. The fuel bundles manufactured at FCN Pitesti proved to be of excellent quality, operating with a very low defect rate, all defected fuel being reported in the first period of the reactor operation. It is a fact now that FCN has the capability to solve a wide variety of aspects one of the most significant being the development of new equipment and the increase of the capacity in order to cover the future nuclear fuel needs. On this basis FCN was invited to contribute with his potential to a supplying contract with China National Nuclear Corporation - 202 Plant, for CANDU nuclear fuel technology. Following an offer including several categories of equipment and technology, the option was for beryllium coaters and coating technology and training for end cap manufacturing. The arrangements consider Romanian company as a sub-supplier, this option ensuring the consistence with the largest part of the supply for CANDU fuel technology, offered by Zircatec. Two pieces of beryllium coaters have been produced and tested in Romania and the operating demonstration was made in the presence of Zircatec staff and Chinese delegates. The Chinese delegated were trained for complete operating modes and their ability to handle the equipment was certified accordingly. They also have been trained in the end cap technology and related quality inspection. The paper includes a short presentation of the equipment and associated work to fit the specified needs. The involvement of the Romanian fuel plant in this contract could be considered as an extension of the previous co-operation with the Canadian partners on CANDU nuclear fuel and finally

  12. Development of CANDU Spent Fuel Sipping System

    International Nuclear Information System (INIS)

    As the tendency is toward radioactivity zero-leakage on the reactor core for the safe operation of nuclear power plants, the importance of detecting radioactivity leaking from fuel assemblies irradiated in the core is being on the rise. Nuclear fuel, even though it is designed and fabricated in terms of excellent thermal performance and mechanical integrity, can be damaged under unexpected circumstances. An excessive hydriding on fuel rods and pellet-to-clad interaction., etc. can result in failed fuel rod. It is, thus, considered that a inspection process is prerequisite procedure to identify causes of such failed fuel rods for the safe operation of nuclear power plants. If a fuel rod failure occurs during the operation of a nuclear power plant, the coolant water becomes contaminated by leaked fission products, and the power level of the plant has to be lowered or the operation to be stopped. In addition, the spent fuel that have been stored in a spent fuel storage pool for a long time is now transferring to a dry storage. To maximize the integrity of the dry storage, all the fuels transferring to a dry storage should be examined their integrities exactly and efficiently. Therefore, the ultimate purpose of this study is to develop a system capable of judging whether the long-term stored fuel in spent fuel storage pool is failed or not. In this study, a spent fuel sipping system with wet leakage detection technology is developed to make it possible

  13. Advanced operator interface design for CANDU-3 fuel handling system

    International Nuclear Information System (INIS)

    The Operator Interface for the CANDU 3 Fuel Handling (F/H) System incorporates several improvements over the existing designs. A functionally independent sit-down CRT (cathode-ray tube) based Control Console is provided for the Fuel Handling Operator in the Main Control Room. The Display System makes use of current technology and provides a user friendly operator interface. Regular and emergency control operations can be carried out from this control console. A stand-up control panel is provided as a back-up with limited functionality adequate to put the F/H System in a safe state in case of an unlikely non-availability of the Plant Display System or the F/H Control System'. The system design philosophy, hardware configuration and the advanced display system features are described in this paper The F/H Operator Interface System developed for CANDU 3 can be adapted to CANDU 9 as well as to the existing stations. (author)

  14. CANDU 6 fuel channel stress analysis using ANSYS fatigue module

    International Nuclear Information System (INIS)

    Design reliability can be confirmed by the stress analysis, and its results become the basis of the structural integrity for components. The report presents the development of CANDU 6 fuel channel stress analysis methodology and procedure per ASME Code using the ANSYS fatigue module. Stress analysis was performed in accordance with the procedure developed on the basis of ASME Code Section III NB-3200. FORTRAN programs and ANSYS macros used in data processing were developed to systematized the analysis. Stresses were separately analyzed for mechanical and thermal load respectively, and then combined in the post-processing stage for the various conditions. Maximum stress intensity range was then calculated at selected nodes by using the ANSYS fatigue module for the sum of mechanical and thermal stress values. As a results, structural integrity of CANDU 6 fuel channel was proved in this report and analysis reliability for CANDU reactor was shown to be enhanced by the establishment of analysis procedure bases upon ASME Code. (Author) 11 refs., 11 figs., 6 tabs

  15. Developments in CANDU MOX fuel fabrication

    International Nuclear Information System (INIS)

    As a strategic component of its advanced fuel cycle program, AECL continues to implement the MOX fuel development program involving MOX fuel fabrication and characterization, irradiation testing, post-irradiation examination, as well as reactor physics and fuel management studies. AECL performs its MOX fuel fabrication activities in the Recycle Fuel Fabrication Laboratories (RFFL) located at the Chalk River site. The RFFL facility is designed to handle alpha-active fuel material and produce experimental quantities of MOX fuel for reactor physics tests and demonstration irradiations. From 1979 to 1988, several fabrication campaigns were conducted in the RFFL, producing close to two tonnes of MOX fuel with various compositions. RFFL operations were suspended from 1989 until 1994, at which time the facility was needed to fabricate MOX fuel for physics testing in the ZED-2 reactor. After completion of an extensive rehabilitation and re-commissioning of the RFFL, MOX operations were resumed in the facility in August 1996. An up-to-date description of the facility, including the fabrication process and the associated equipment, as well as the upgraded safety systems and laboratory services, is presented. Since the resumption of MOX operations in the RFFL in 1996, several MOX fuel fabrication campaigns have been conducted in the facility; increasing the total amount of MOX fuel fabricated to-date in the RFFL to about three tonnes of MOX fuel. An overview of each of the fabrication campaigns is discussed. The fabrication processes used to manufacture the fuel from the starting powders to the finished elements are summarized. The various fabrication campaigns involved different technical requirements mainly due to the different intended uses of the fuel, i.e., test irradiations in NRU, physics tests in ZED-2, and dissolution experiments in support of the waste management program. Fabrication data including production throughputs and typical inspection results are discussed

  16. Laser cutting for dismantling of PHWR fuel bundles

    International Nuclear Information System (INIS)

    Detailed investigation was carried out on laser cutting of zircaloy-2 PHWR fuel pin bundles. Initially, trials were done to standardize ten parameters for cutting of tie plates to which individual fuel pins are welded in a bundle. Using these parameters, the tie plates were cut into several pieces so that each fuel pin is individually separated out from the bundle. (author)

  17. Improving the service life and performance of CANDU fuel channels

    International Nuclear Information System (INIS)

    The development objective for CANDU fuel channels is to produce a design that can operate for 40 years at 90% capacity. Steady progress toward this objective is being made. The factors that determine the life of the channel are reviewed and the processes necessary to achieve the objectives identified. Performance of future fuel channels will be enhanced by reduced operating costs, increased safety margins to postulated accident conditions, and reduced retubing costs compared to current channels. The approaches to these issues are discussed briefly in the paper. (author)

  18. Public health risks associated with the CANDU nuclear fuel cycle

    International Nuclear Information System (INIS)

    This report analyzes in a preliminary way the risks to the public posed by the CANDU nuclear fuel cycle. Part 1 considers radiological risks, while part 2 (published as INFO-0141-2) evaluates non-radiological risks. The report concludes that, for radiological risks, maximum individual risks to members of the public are less than 10-5 per year for postulated accidents, are less than 1 percent of regulatory limits for normal operation and that collective doses are small, less than 3 person-sieverts. It is also concluded that radiological risks are much smaller than the non-radiological risks posed by activities of the nuclear fuel cycle

  19. Neutronic calculations regarding the new LEU 6 x 6 fuel bundle for 14 MW TRIGA - SSR, in order to increase the reactor power up to 21 MW

    Energy Technology Data Exchange (ETDEWEB)

    Iorgulis, C.; Ciocanescu, M.; Preda, M.; Mladin, M. [Institute of Nuclear Research, Pitesti (Romania)

    1998-07-01

    In order to meet the increasing demands of terminal flux for the experimental devices which will be loaded with CANDU natural uranium pins (or clusters), is necessary to rise the reactor power up to 21 MW. In this respect we consider in our evaluations a new 6x6 TRIGA fuel bundle geometry (the actual fuel bundle contains 5x5 pins). This paper will contain a comparative analysis regarding: flux and power distribution across the 29 fuel bundles standard core, and managements patters, in order to maximize the discharge fuel burnup and core lifetime. (author)

  20. Assembly mechanism for nuclear fuel bundles

    International Nuclear Information System (INIS)

    In a nuclear power reactor fuel bundle having tie rods fastened to a lower tie plate and passing through openings in the upper tie plate, the assembled bundle is secured by locking lugs fixed to rotatable locking sleeves which engage the upper tie plate. Pressure exerted by helical springs mounted around each of the tie rods urge retaining lugs fixed to a retaining sleeve associated with respective tie rods into a position with respect to the locking sleeve to prevent accidental disengagement of the upper plate from the locking lugs. The bundle may be disassembled by depressing the retaining sleeves and rotating the locking lugs to the disengaged position, and then removing the upper tie plate

  1. PIE of a CANDU fuel element irradiated for a load following test in the INR TRIGA reactor

    International Nuclear Information System (INIS)

    As part of the collaboration under the Romania - Canada Memorandum for co-operation in research and development of nuclear energy and technology, a load following test has been devised to demonstrate the load following capability of CANDU-6 fuel within the established design envelope for operating powers. A 37-element CANDU-6 fuel bundle element fabricated by AECL was irradiated in the TRIGA 14 MW(th) material testing reactor at the Institute for Nuclear Research (INR) in Pitesti, Romania. The load following cycle consisted of 200 daily cycles from 100% power to 50% power within the reference overpower envelope for fuel in a CANDU-6 reactor. Full power operation was 57 kW/m Element Linear Power. The paper provides the results obtained by post-irradiation examination of the fuel element in the INR hot cells. The following techniques were used: - Visual inspection and photography by periscope; - Profilometry; - Axial gamma scanning; - Fuel element puncturing and fission gas analysis; - Metallographic and ceramographic examinations by optical microscopy; - Burn-up measurement by mass spectrometry using the 235U depletion method. (authors)

  2. Development of a CANDU fuel channel model to assess the effect of a pressure tube creep on the safety related parameters

    International Nuclear Information System (INIS)

    Recently the effect of pressure tube creep on the reactor safety in CANDUs emerges as an important issue of safety analysis due to a need for an extended operation. The accident analysis for the aged plants needs to incorporate major degradations of the plant performance in the safety analysis. In this paper, a CATHENA fuel channel model for studying the effects of the vertical offset of the fuel bundles in a crept pressure tube on the fuel and pressure tube cooling is developed. The current practice of the CANDU safety analysis assumes that the fuel bundles stay in a manner concentric to the pressure tube centerline even in the crept pressure tubes, whereas in reality the bundles sit at the bottom of the pressure tube. With this point in mind, 37-pin models with and without vertical offset of the bundle in the crept fuel channel are developed and tested for Reactor Outlet Header (ROH) 100% break LOCA accident, and results compared. As a result, it was found that the difference between the uncrept fuel channel model and the two crept fuel channel models, a concentric one and another vertically offset one, is quite significant, whereas the difference between the two crept fuel channel models is insignificant. Therefore it is concluded that the use of the concentric crept fuel channel model for the aged CANDU-6 safety analysis is justifiable for the first 200 sec into an accident. (author)

  3. Considerations in recycling used natural uranium fuel from CANDU reactors in Canada

    International Nuclear Information System (INIS)

    This paper identifies the key factors that would affect the recycling of used natural uranium (NU) fuel from CANDU reactors which are in operation in Canada and in several other countries. There has been little analysis of those considerations over the past 25 years and this paper provides a framework for such analysis. In particular, the large energy potential of the plutonium in used CANDU NU fuel provides a driver for consideration of used-fuel recycling. There would be a long lead-time (at least 30 years) and a large investment required for establishing the infrastructure for used-fuel recycling. While this paper does not promote the recycling of used CANDU NU fuel in Canadian CANDU reactors, it does suggest that it is timely to start the analysis and to consider the key factors or circumstances that warrant the recycling of used CANDU NU fuel. (author)

  4. Integrity Assessment of CANDU Spent Fuel During Interim Dry Storage in MACSTOR

    International Nuclear Information System (INIS)

    This paper presents an assessment of the integrity of CANDU spent fuel during dry storage in MACSTOR. Based on review of the safety requirements for sheath integrity during dry storage, a fuel temperature limit for spent CANDU fuel stored in MACSTOR is specified. The spent fuel conditions prior to, and during dry storage are assessed. The safety margin for spent CANDU fuel stored in MACSTOR is assessed against various failure mechanisms using the probabilistic estimation approach derived from US LWR fuel data set. (author)

  5. Interim storage of CANDU spent fuel and safety performance

    International Nuclear Information System (INIS)

    'Full text:' Pickering Waste Management Facility (PWMF) is operational since November 1995 and safely storing spent fuel from Pickering 8 CANDU reactors. To date, equivalent to 22 reactor-years worth of spent fuel have been loaded, processed and stored in Dry Storage Containers (DSC). One DSC contains spent fuel from approximately one reactor-month of full power operation. The design life for the storage containers is 50 years. A Nuclear Waste Management Organization (NWMO) has been formed to advise on the long-term Canadian strategy for management of spent fuel. This paper will present the DSC processing steps, radiological hazard magnitude experienced during the DSC loading and processing for interim storage. A brief description of environmental and occupational safety performance will be presented. (author)

  6. Improved CANDU fuel performance. A summary of previous AECL publications

    International Nuclear Information System (INIS)

    The fuel defect rate in CANDU power reactors has been very low (0.06%) since 1972. Most defects were caused by power ramping. The two measures taken to reduce the defect rate, by about an order of magnitude, were changes in the fuelling schemes and the introduction of thin coatings of graphite on the inside surface of the Zircaloy fuel cladding. Power ramping tests have demonstrated that graphite layers, and also baked poly-dimethyl-siloxane layers, between the UO2 pellets and Zircaloy cladding, increase the tolerance of fuel to power ramps. These designs are termed graphite CANLUB and siloxane CANLUB; fuel performance depends on coating parameters such as thickness, wear resistance and on environmental and thermal conditions during the curing of coatings. (author)

  7. Drop Test of the Candu Spent Fuel Storage Basket in MACSTOR/KN-400

    International Nuclear Information System (INIS)

    The MACSTOR/KN-400 of Wolsung power plant in Korea is a dry interim storage facilities. There are 400 long slender cylinders in MACSTOR/KN-400. In one cylinder, ten baskets where Candu spent fuels are loaded are stacked and stored. For this MACSTOR/KN-400 facilities, analyses and tests for the hypothetical accident conditions that might happen during moving and storing baskets into a cylinder were performed. The hypothetical accident conditions to be considered are two cases. One is the case of basket dropping onto the bottom plate of a cylinder. The other is the case of basket dropping onto the other basket top plate stored in the cylinder. For the drop analyses, the case of hanging cylinder and the case of cylinder on the unyielding target surface were considered. Based on the dropping analysis, testing condition was determined as the latter case that is for the cylinder on the target surface. In a basket, 60 dummy fuel bundles are loaded which have the same weight of real spent fuel bundles. On the external surface of the basket, 8 strain gauges and 4 accelerometers were attached for the data acquisition. In order to measure the velocity when a basket impacts, three different devices were utilized. And the impact velocity results were compared and cross-checked. After the dropping tests, helium leak tests were conducted to evaluate the leakage rate. (authors)

  8. Drop Test of the Candu Spent Fuel Storage Basket in MACSTOR/KN-400

    Energy Technology Data Exchange (ETDEWEB)

    Choi, W.S.; Jeon, J.Y.; Seo, K.S. [KAERI, 1045 Daedeokdaero, Yuseong, Daejeon, 305-353 (Korea, Republic of); Park, J.E.; Yoo, G.S.; Park, W.G. [Korea Hydro Nuclear Power - KHNP (Korea, Republic of)

    2009-06-15

    The MACSTOR/KN-400 of Wolsung power plant in Korea is a dry interim storage facilities. There are 400 long slender cylinders in MACSTOR/KN-400. In one cylinder, ten baskets where Candu spent fuels are loaded are stacked and stored. For this MACSTOR/KN-400 facilities, analyses and tests for the hypothetical accident conditions that might happen during moving and storing baskets into a cylinder were performed. The hypothetical accident conditions to be considered are two cases. One is the case of basket dropping onto the bottom plate of a cylinder. The other is the case of basket dropping onto the other basket top plate stored in the cylinder. For the drop analyses, the case of hanging cylinder and the case of cylinder on the unyielding target surface were considered. Based on the dropping analysis, testing condition was determined as the latter case that is for the cylinder on the target surface. In a basket, 60 dummy fuel bundles are loaded which have the same weight of real spent fuel bundles. On the external surface of the basket, 8 strain gauges and 4 accelerometers were attached for the data acquisition. In order to measure the velocity when a basket impacts, three different devices were utilized. And the impact velocity results were compared and cross-checked. After the dropping tests, helium leak tests were conducted to evaluate the leakage rate. (authors)

  9. Safe, permanent disposal of used CANDU fuel

    International Nuclear Information System (INIS)

    AECL's assessment of nuclear fuel waste disposal deep in plutonic rock of the Canadian Precambrian Shield is now well advanced. A comprehensive understanding has evolved of the chemical and physical processes controlling the containment of radionuclides in used fuel. The following conclusions have been reached: containers with outer shells of titanium and copper can be expected to isolate used fuel from contact with groundwater for at least 500 years, the period during which the hazard is greatest; uranium oxide fuel can be expected to dissolve at a rate less than 10-8 per day, resulting in uranium concentrations less that 1 μg/L, which is consistent with observations of uranium oxide deposits in the earth's crust; movement of dissolved radionuclides away from the containers can be delayed for thousands of years by placing a compacted bentonite-clay layer between the container and the rock mass; and, the granite plutons of interest consist of relatively large rock volumes of low permeability separated by relatively thin fracture zones, and the low permeability volumes are sufficiently large to accommodate a vault design that will ensure radionuclides do not reach the surface in unacceptable concentrations

  10. Economic potential of advanced fuel cycles in CANDU

    International Nuclear Information System (INIS)

    Advanced fuel cycles in CANDU offer the potential of a many-fold increase in energy yield over that which can be obtained from uranium resources using the current once-through natural uranium cycle. This paper examines the associated economics of alternative once-through and recycle fuelling. Results indicate that these cycles will limit the impact of higher uranium prices and offer the potential of a period of stable constant-dollar generating costs that are only approximately 20% higher than current levels

  11. Procurement and supply of CANDU fuels

    International Nuclear Information System (INIS)

    In 1955 a decision was made to proceed with construction of a Nuclear Power Demonstration Station (NPD) near Rolfton, Ontario. This project, headed by Atomic Energy of Canada with major involvement of private industry, was the genesis for the development of nuclear electric generation in Canada. This paper reviews one aspect of the Canadian program: the evolution of fuel procurement and supply, which in itself has been a remarkable Canadian achievement. (author)

  12. Assembly mechanism for nuclear fuel bundles

    International Nuclear Information System (INIS)

    The invention relates to a nuclear power reactor fuel bundle of the type wherein several rods are mounted in parallel array between two tie plates which secure the fuel rods in place and are maintained in assembled position by means of a number of tie rods secured to both of the end plates. Improved apparatus is provided for attaching the tie rods to the upper tie plate by the use of locking lugs fixed to rotatable sleeves which engage the upper tie plate. (auth)

  13. A model for fission product distribution in CANDU fuel

    International Nuclear Information System (INIS)

    This paper describes a model to estimate the distribution of active fission products among the UO2 grains, grain-boundaries, and the free void spaces in CANDU fuel elements during normal operation. This distribution is required for the calculation of the potential release of activity from failed fuel sheaths during a loss-of-coolant accident. The activity residing in the free spaces (''free'' inventory) is available for release upon sheath rupture, whereas relatively high fuel temperatures and/or thermal shock are required to release the activity in the grain boundaries or grains. A preliminary comparison of the model with the data from in-reactor sweep-gas experiments performed in Canada yields generally good agreement, with overprediction rather than under prediction of radiologically important isotopes, such as I131. The model also appears to generally agree with the ''free'' inventory release calculated using ANS-5.4. (author)

  14. Leaching of used CANDU fuel: Results from a 19-year leach test under oxidizing conditions

    International Nuclear Information System (INIS)

    A fuel leaching experiment has been in progress since 1977 to study the dissolution behavior of used CANDU fuel in aerated aqueous solution. The experiment involves exposure of 50-mm clad segments of an outer element of a Pickering fuel bundle (burnup 610 GJ/kg U; linear and peak power ratings 53 and 58 kW/m, respectively), to deionized distilled water (DDH2O, ∼2 mg/L carbonate) and tapwater (∼50 mg/L carbonate). In 1992, it was observed that the fuel in at least one of the leaching solutions showed some signs of deterioration and, therefore, in 1993, parts of the fuel samples were sacrificed for a detailed analysis of the physical state of the fuel, using SEM and optical microscopy. Leaching results to date show that even after >6900 days only 5 to 7.7% of the total calculated inventory of 137Cs has leached out preferentially and that leach rates suggest a development towards congruent dissolution. Total amounts of 137Cs and 90Sr leached are slightly larger in tapwater than in DDH2O. SEM examinations of leached fuel surface fragments indicate that the fuel surface exposed to DDH2O is covered in a needle-like precipitate. The fuel surface exposed to tapwater shows evidence of leaching but no precipitate, likely because uranium is kept in solution by carbonate. Detailed optical and SEM microscopy examinations on fuel cross sections suggest that grain-boundary dissolution in DDH2O is not prevalent, and in tapwater appears to be limited to the outer ∼0.5 mm (pellet/cladding) region of the fuel. Grain boundary attack seems to be limited to microcracks at or near the surface of the fuel. It thus appears that grain-boundary attack occurs only near the fuel pellet surface and is prevalent only in the presence of carbonate in solution

  15. CANDU improvement

    International Nuclear Information System (INIS)

    The evolution of the CANDU family of nuclear power plants is based on a continuous product development approach. Proven equipment and system concepts from operating stations are standardized and used in new products. Due to the modular nature of the CANDU reactor concept, product features developed for CANDU 9 can easily be incorporated in other CANDU products such as CANDU 6. Design concepts are being developed for advanced CANDU 6 or larger advanced CANDU, depending on the number of fuel channels and the fuel cycle selected. This paper provides a description of the design improvements being incorporated in CANDU 9 and further design enhancements being studied for future incorporation in CANDU 6 or larger advanced CANDU meeting the requirements of future CANDU owners. The design enhancement objectives are: To improve operational simplicity by applying modern information technology; to improve safety in a cost effective way; to improve system and component reliability and to increase plant life; to improve economics and to reduce owners' risks during all phases of a project using up-front licensing, an improved engineering process and project tools during design, construction and operation; to continue to exploit the neutron economy of CANDU with the development of advanced fuels and fuel cycles. (author)

  16. Assessment of CANDU-6 reactivity devices for DUPIC fuel

    International Nuclear Information System (INIS)

    Reactivity device characteristics for a CANDU 6 reactor loaded with DUPIC fuel have been assessed. The lattice parameters were generated by WIMS-AECL code and the core calculations were performed by RFSP code with a 3-dimensional full core model. The reactivity devices studied are the zone controller, adjusters, mechanical control absorber and shutoff rods. For the zone controller system, damping capability for spatial oscillation was investigated. For the adjusters, the restart capability was investigated. For the adjusters, the restart capability was investigated. The shin operation and power stepback calculation were also performed to confirm the compatibility of the current adjuster system. The mechanical control absorber was assessed for the function of compensating temperature reactivity feedback following a power reduction. And shutoff rods were also assessed to investigate the following a power reduction. And shutoff rods were also assessed to investigate the static reactivity worth. This study has shown that the current reactivity device system of CANDU-6 core with the DUPIC fuel. (author). 9 refs., 17 tabs., 7 figs

  17. Quality control of CANDU6 fuel element in fabrication process

    International Nuclear Information System (INIS)

    To enhance the fine control over all aspects of the production process, improve product quality, fuel element fabrication process for CANDU6 quality process control activities carried out by professional technical and management technology combined mode, the quality of the fuel elements formed around CANDU6 weak links - - end plug , and brazing processes and procedures associated with this aspect of strict control, in improving staff quality consciousness, strengthening equipment maintenance, improved tooling, fixtures, optimization process test, strengthen supervision, fine inspection operations, timely delivery carry out aspects of the quality of information and concerns the production environment, etc., to find the problem from the improvement of product quality and factors affecting the source, and resolved to form the active control, comprehensive and systematic analysis of the problem of the quality management concepts, effectively reducing the end plug weld microstructure after the failure times and number of defects zirconium alloys brazed, improved product quality, and created economic benefits expressly provided, while staff quality consciousness and attention to detail, collaboration department, communication has been greatly improved and achieved very good management effectiveness. (authors)

  18. Regulatory review of the CANDU fuel modification program in Canada

    International Nuclear Information System (INIS)

    Aging of a CANDU nuclear power plant affects various safety margins of the plant. Margin to fuel sheath dryout is one of the safety margins that have been detrimentally affected, leading to a reduced margin to dryout with time. If no proactive actions are taken, the plant will have to de-rate its operation at an earlier time. To postpone the de-rating, the Canadian nuclear Industry has taken multi-initiatives to restore, or partially restore the safety margins that have been eroded due to plant aging. One of the initiatives is modification/re-optimization of the current fuel design, in order to improve the fuel thermalhydraulic performance, i.e., to suppress fuel sheath dryout, whereby offset partially the erosion of margin to fuel sheath dryout. Several Canadian utilities have already proceeded with the fuel modification program and requested approval of the Canadian Nuclear Safety Commission (CNSC) to load the modified fuel into their reactors. This paper summarizes the CNSC requirements, the review processes, the current status, and the technical challenges associated with licensing review of the fuel modification in Canada. (author)

  19. Effect of bundle size on BWR fuel bundle critical power performance

    International Nuclear Information System (INIS)

    Effect of the bundle size on the BWR fuel bundle critical power performance was studied. For this purpose, critical power tests were conducted with both 6 x 6 (36 heater rods) and 12 x 12 (144 heater rods) size bundles in the GE ATLAS heat transfer test facility located in San Jose, California. All the bundle geometries such as rod diameter, rod pitch and rod space design are the same except size of flow channel. Two types of critical power tests were performed. One is the critical power test with uniform local peaking pattern for direct comparison of the small and large bundle critical power. Other is the critical power test for lattice positions in the bundle. In this test, power of a group of four rods (2 x 2 array) in a lattice region was peaked higher to probe the critical power of that lattice position in the bundle. In addition, the test data were compared to the COBRAG calculations. COBRAG is a detailed subchannel analysis code for BWR fuel bundle developed by GE Nuclear Energy. Based on these comparisons the subchannel model was refined to accurately predict the data obtained in this test program, thus validating the code capability of handling the effects of bundle size on bundle critical power for use in the study of the thermal hydraulic performance of the future advance BWR fuel bundle design. The author describes the experimental portion of the study program

  20. The next generation CANDU 6

    International Nuclear Information System (INIS)

    AECL's product line of CANDU 6 and CANDU 9 nuclear power plants are adapted to respond to changing market conditions, experience feedback and technological development by a continuous improvement process of design evolution. The CANDU 6 Nuclear Power Plant design is a successful family of nuclear units, with the first four units entering service in 1983, and the most recent entering service this year. A further four CANDU 6 units are under construction. Starting in 1996, a focused forward-looking development program is under way at AECL to incorporate a series of individual improvements and integrate them into the CANDU 6, leading to the evolutionary development of the next-generation enhanced CANDU 6. The CANDU 6 improvements program includes all aspects of an NPP project, including engineering tools improvements, design for improved constructability, scheduling for faster, more streamlined commissioning, and improved operating performance. This enhanced CANDU 6 product will combine the benefits of design provenness (drawing on the more than 70 reactor-years experience of the seven operating CANDU 6 units), with the advantages of an evolutionary next-generation design. Features of the enhanced CANDU 6 design include: Advanced Human Machine Interface - built around the Advanced CANDU Control Centre; Advanced fuel design - using the newly demonstrated CANFLEX fuel bundle; Improved Efficiency based on improved utilization of waste heat; Streamlined System Design - including simplifications to improve performance and safety system reliability; Advanced Engineering Tools, -- featuring linked electronic databases from 3D CADDS, equipment specification and material management; Advanced Construction Techniques - based on open top equipment installation and the use of small skid mounted modules; Options defined for Passive Heat Sink capability and low-enrichment core optimization. (author)

  1. CANDU spent fuel shielding analysis during intermediate dry storage by using Monte Carlo methodology

    International Nuclear Information System (INIS)

    Almost all the countries that operate or construct nuclear power plants have r and d programs for spent nuclear fuel and radioactive waste management. In these programs, optimal solutions for nuclear fuel cycle management are to be identified, geological disposal being one of the main goals here. Romania did not yet adopt a decision for final disposal. Nevertheless, researches and studies are in progress in order to select and characterize the geological formation for spent fuel final disposal. Currently, although there is no comprehensive EU policy in the field of safe spent fuel and radioactive waste management it is desirable to bring and keep the safety of radioactive waste management on a uniform high level among the Member States and the accession countries. The Romanian Cernavoda NPP, of CANDU type, has the following spent fuel management facilities: a spent fuel bay (for spent fuel wet storage) and a spent fuel interim dry storage facility. The dry storage technology is based on MACSTOR system consisting of storage modules located outdoors in the storage site, and equipment operated at the spent fuel storage bay for preparing the spent fuel for dry storage. The spent fuel is transferred from the preparation area to the storage site in a transfer flask. The concrete storage modules have two sealed barriers for storing the spent fuel: a seal welded stainless steel basket containing 60 spent fuel bundles and a seal welded cylinder containing 10 baskets. Twenty storage cylinders are in one storage module for a total capacity of 12,000 bundles per module. In 2003, the first storage module has become operational. The paper has the following contents: Introduction; The paper objectives; Theoretical model Set-Up; Results; Conclusions. In conclusions one notifies that SEU fuel leads to higher burnup degrees associated both with spent fuel and actinides mass reduction for 1 MWh generated electric power (from 7100 MWD/tU for UNAT to 20000 MWD/tU for SEU43

  2. Systems for transporting used CANDU fuel by road, rail and water

    International Nuclear Information System (INIS)

    Ontario Hydro's CANDU nuclear power stations are situated on the shores of the Great Lakes and are accessible by road, rail and water. For the off-site shipment of used CANDU fuel from the stations to a disposal, reprocessing or central storage facility, all three modes are being considered. This paper presents Ontario Hydro's 'reference transportation systems' for the shipment of used CANDU fuel as developed for the Nuclear Fuel Waste Management Program (NFWMP) in Canada. These are workable systems developed by Ontario Hydro for the purpose of showing modal feasibility. The systems have not yet been optimized

  3. Radioactive decay properties of CANDU fuel. Volume 1: the natural uranium fuel cycle

    International Nuclear Information System (INIS)

    The computer code CANIGEN was used to obtain the mass, activity, decay heat and toxicity of CANDU fuel and its component isotopes. Data are also presented on gamma spectra and neutron emissions. Part 1 presents these data for unirradiated fuel, uranium ore and uranium mill tailings. In Part 2 they have been computed for fuel irradiated to levels of burnup ranging from 140 GJ/kg U to 1150 GJ/kg U. (author)

  4. Fuel management optimization in CANDU reactors cooled with light water

    International Nuclear Information System (INIS)

    This research has two main goals. First, we wanted to introduce optimization tools in the diffusion code DONJON, mostly for fuel management. The second objective is more practical. The optimization capabilities are applied to the fuel management problem for different CANDU reactors at refueling equilibrium state. Two kinds of approaches are considered and implemented in this study to solve optimization problems in the code DONJON. The first methods are based on gradients and on the quasi-linear mathematical programming. The method initially developed in the code OPTEX is implemented as a reference approach for the gradient based methods. However, this approach has a major drawback. Indeed, the starting point has to be a feasible point. Then, several approaches have been developed to be more general and not limited by the initial point choice. Among the different methods we developed, two were found to be very efficient: the multi-step method and the mixte method. The second kind of approach are the meta-heuristic methods. We implemented the tabu search method. Initially, it was designed to optimize combinatory variable problems. However, we successfully used it for continuous variables. The major advantage of the tabu method over the gradient methods is the capability to exit from local minima. Optimisation of the average exit burnup has been performed for CANDU-6 and ACR-700 reactors. The fresh fuel enrichment has also been optimized for ACR-700. Results match very well what the reactor physics can predict. Moreover, a comparison of the two totally different types of optimization methods validated the results we obtained. (author)

  5. CANDU fuel research and development in Korea: current status and future prospects

    International Nuclear Information System (INIS)

    The current status and future prospect of CANDU fuel R and D in Korea is always subjected to the consideration of domestic and international environments concerning nuclear safety, nuclear waste, nonproliferation and economy in favor of the arguments from public acceptance, international environments, and utilities. Considering that, at the end of 2000, the procurement of additional CANDU units at the Shin Wolsong site was decided not to proceed, the current and future CANDU fuel R and D would be oriented to the safety and economy of fuel and reactor operations rather than the national strategy of nuclear fuel cycle and reactor programs in Korea. Therefore, the current CANDU advanced fuel R and D programs such as CANFLEX-NU fuel industrialization, CANFLEX-0.9% SEU/RU fuel R and D, and DUPIC fuel cycle development in a laboratory-scale will be continued for the time being as it was. But the R and D of CANDU innovative fuels such as CANFLEX-1.2% ∼ 1.5 % SEU fuel, thorium oxide fuel and DUPIC fuel would have some difficulties to continue in the mid- and long-term if they would not have the justifications in the points of the nonproliferation, economic and safety views of fuel, fuel cycle and reactor. (author)

  6. Current status and future prospect of Candu fuel research and development in Korea

    International Nuclear Information System (INIS)

    The current status and future prospect of CANDU fuel R and D in Korea is always subjected to the consideration of domestic and international environments concerning nuclear safety, nuclear waste, non-proliferation and economy in favor of the arguments from public acceptance, international environments, and utilities. Considering that, at the end of 2000, the procurement of additional CANDU units at the Shin Wolsong site was decided not to proceed, the current and future CANDU fuel R and D would be oriented to the safety and economy of fuel and reactor operations rather than the national strategy of nuclear fuel cycle and reactor programs in Korea. Therefore, the current CANDU advanced fuel R and D programs such as CANFLEX-NU fuel industrialization, CANFLEX-0.9% SEU/RU fuel R and D, and DUPIC fuel cycle development in a laboratory-scale will be continued for the time being as it was. But the R and D of CANDU innovative fuels such as CANFLEX- 1.2% ∼ 1.5 % SEU fuel, thorium oxide fuel and DUPIC fuel would have some difficulties to continue in the mid-and long-term if they would not have the justifications in the points of the non-proliferation, economic and safety views of fuel, fuel cycle and reactor. (author)

  7. The relationship between natural uranium and advanced fuel cycles in CANDU reactors

    International Nuclear Information System (INIS)

    CANDU is the most uranium-economic type of thermal power reactor, and is the only type used in Canada. CANDU reactors consume approximately 15% of Canadian uranium production and support a fuel service industry valued at ∼$250 M/a. In addition to their once-through, natural-uranium fuel cycle, CANDU reactors are capable of operating with slightly-enriched uranium (SEU), uranium-plutonium and thorium cycles, more efficiently than other reactors. Only SEU is economically attractive in Canada now, but the other cycles are of interest to countries without indigenous fuel resources. A program is underway to establish the fuel technologies necessary for the use of SEU and the other fuel cycles in CANDU reactors

  8. The relationship between natural uranium and advanced fuel cycles in CANDU reactors

    International Nuclear Information System (INIS)

    CANDU is the most uranium-economic type of thermal power reactor, and is the only type used in Canada. CANDU reactors consume approximately 15% of Canadian uranium production and support a fuel service industry valued at ∼$250 M/a. In addition to their once-through, natural-uranium fuel cycle, CANDU reactors are capable of operating with slightly-enriched uranium (SEU), uranium-plutonium and thorium cycles, more efficiently than other reactors. Only SEU is economically attractive in Canada now, but the other cycles are of interest to countries without indigenous fuel resources. A program is underway to establish the fuel technologies necessary for the use of SEU and the other fuel cycles in CANDU reactors. 22 refs

  9. CANDU advanced fuel cycles: key to energy sustainability

    International Nuclear Information System (INIS)

    In the fast-growing economies of the Pacific Basin region, sustainability is an important requisite for new energy development. Many countries in this region have seen, and continue to see, very large increases in energy and electricity demand. The investment in any nuclear technology is large. Countries making that investment want to ensure that the technology can be sustained and that it can evolve in an ever-changing environment. Three key aspects in ensuring a sustainable energy future are: technological sustainability; economic sustainability; and environmental sustainability (including resource utilization). The fuel-cycle flexibility of the CANDU reactor provides a ready path to sustainable energy development in both the short and the long term. (author). 23 refs

  10. Romanian-Canadian joint program for qualification of FCN as a CANDU fuel supplier

    International Nuclear Information System (INIS)

    RENEL (Romania Power Authority), the co-ordinator of Romanian Nuclear Program, have decided to improve, starting 1990 the existing capability to produce CANDU nuclear fuel at FCN Pitesti. The objective of the program was defined with AAC (AECL - ANSALDO Consortium) for the qualification of FCN fuel plant according to Canadian Z299.2 standard. The Qualification Program was performed under AAC Work Order C-003. The co-ordination was assumed by AECL, as overall Design Authority. ZPI (Zircatec Precision Industries Inc., Canada), were designated to supply technical assistance, equipments and know how where necessary. After a preliminary verification of the FCN fuel plant, including the processes and system investigation, performed under AECL and ZPI assistance, the Qualification Program was defined in all details. The upgrading of documentation on all aspects required by Z299.2 was performed. Few processes needed to be reconsidered and equipment was delivered by ZPI or other suppliers. This includes mainly welding equipments and special inspection equipments. Health Physics was practically fully reconsidered. New equipment and practice were adapted to provide adequate control on health conditions. Every manufacturing and inspection process was checked to determine their performance during a Qualification Run based on acceptance criteria which have been established in the Qualification Plan. Manufacturing Demonstration Run was an important step to prove that all plant functions have been accomplished during the fabrication of 200 fuel bundles. These bundles have been fully accepted and 66 of them have been loaded in the first charge of Unit 1 Cemavoda NPS. The surveillance and audit actions made by AECL and ZPI during this period confirmed the FCN capability to operate an adequate system meeting the to required quality assurance standard. The very open attitude of AECL, Zircatec and FCN staff have stimulated the progress of the project and a successful achievement of the

  11. Some physics aspects of the in-core fuel management analysis for CANDU-PHW type reactors

    International Nuclear Information System (INIS)

    The primary objective of the ''in-core fuel management'' studies for the CANDU core is to determine fuel loading and fuel replacement strategies which will result in minimum total unit energy cost while operating the reactor in a safe and reliable fashion. Two types of calculations are mainly required in fuel management analyses: a) those used to determine the nominal power and burnup distributions, and b) those used to determine instantaneous distributions which include the time varying fine structure of the power distribution. A method for equilibrium power and burnup distributions determination is presented for the first type of calculations, based on computing the macroscopic cross-sections from the bundle power and burnup history. The computation model presented was programmed into the SERA 3-D code, which was developed at INPR. A series of results for the second type of calculations are presented, which were obtained by applying the random age approximation and the autorefuel methods in determining the instantaneous power distributions. Some improvements are proposed for these models on the basis of the above mentioned results. For the sake of numerical illustration a CANDU slightly enriched uranium core configuration is presented, the physics parameters of which were evaluated on the basis of fuel management analyses. (author). 10 refs, 7 figs, 3 tabs

  12. Thermal analysis of dry concrete canister storage system for CANDU spent fuel

    International Nuclear Information System (INIS)

    This paper presents the results of a thermal analysis of the concrete canisters for interim dry storage of spent, irradiated Canadian Deuterium Uranium(CANDU) fuel. The canisters are designed to contain 6-year-old fuel safely for periods of 50 years in stainless steel baskets sealed inside a steel-lined concrete shield. In order to assure fuel integrity during the storage, fuel rod temperature shall not exceed the temperature limit. The contents of thermal analysis include the following : 1) Steady state temperature distributions under the conservative ambient temperature and insolation load. 2) Transient temperature distributions under the changes in ambient temperature and insolation load. Accounting for the coupled heat transfer modes of conduction, convection, and radiation, the computer code HEATING5 was used to predict the thermal response of the canister storage system. As HEATING5 does not have the modeling capability to compute radiation heat transfer on a rod-to-rod basis, a separate calculating routine was developed and applied to predict temperature distribution in a fuel bundle. Thermal behavior of the canister is characterized by the large thermal mass of the concrete and radiative heat transfer within the basket. The calculated results for the worst case (steady state with maximum ambient temperature and design insolation load) indicated that the maximum temperature of the 6 year cooled fuel reached to 182.4 .deg. C, slightly above the temperature limit of 180 .deg. C. However,the thermal inertia of the thick concrete wall moderates the internal changes and prevents a rise in fuel temperature in response to ambient changes. The maximum extent of the transient zone was less than 75% of the concrete wall thickness for cyclic insolation changes. When transient nature of ambient temperature and insolation load are considered, the fuel temperature will be a function of the long term ambient temperature as opposed to daily extremes. The worst design

  13. Overview of the CANDU fuel handling system for advanced fuel cycles

    International Nuclear Information System (INIS)

    Because of its neutron economies and on-power re-fuelling capabilities the CANDU system is ideally suited for implementing advanced fuel cycles because it can be adapted to burn these alternative fuels without major changes to the reactor. The fuel handling system is adaptable to implement advanced fuel cycles with some minor changes. Each individual advanced fuel cycle imposes some new set of special requirements on the fuel handling system that is different from the requirements usually encountered in handling the traditional natural uranium fuel. These changes are minor from an overall plant point of view but will require some interesting design and operating changes to the fuel handling system. Some preliminary conceptual design has been done on the fuel handling system in support of these fuel cycles. Some fuel handling details were studies in depth for some of the advanced fuel cycles. This paper provides an overview of the concepts and design challenges. (author)

  14. Assembly mechanism for nuclear fuel bundles

    International Nuclear Information System (INIS)

    A method of securing a fuel bundle to permit easy remote disassembly is described. Fuel rods are held loosely between end plates, each end of the rods fitting into holes in the end plates. At the upper end of each fuel rod there is a spring pressing against the end plate. Tie rods are used to hold the end plates together securely. The lower end of each tie rod is screwed into the lower end plate; the upper end of each tie rod is attached to the upper end plate by means of a locking assembly described in the patent. In order to remove the upper tie plate during the disassembly process, it is necessary only to depress the tie plate against the pressure of the springs surrounding the fuel rods and then to rotate each locking sleeve on the tie rods from its locked to its unlocked position. It is then possible to remove the tie plate without disassembling the locking assembly. (LL)

  15. Neutronics and thermalhydraulics characteristics of the CANDU core fueled with slightly enriched uranium 0.9% U235

    International Nuclear Information System (INIS)

    The interest concerning the slightly enriched uranium (SEU) fuel cycle is due to the possibility to adapt (to convert) the current reactor design using natural uranium fuel to this cycle. Preliminary evaluations based on discharged fuel burnup estimates versus enrichment and on Canadian experience in fuel irradiation suggest that for a 0.93% U-235 enrichment no design modifications are required, not even for the fuel bundle. The purpose of this paper is to resume the results of the studies carried on in order to clarify this problem. The calculation methodology used in reactor physics and thermal-hydraulics analyses that were performed adapted and developed the AECL suggested methodology. In order to prove the possibility to use the SEU 0.93% without any design modification, all the main elements from the CANDU Reactor Physics Design Manual were studied. Also, some thermal-hydraulics analyses were performed to ensure that the operating and safety parameters were respected. The estimations sustain the assumption that the current reactor and fuel bundle design is compatible to the using of the SEU 0.93% fuel. (author)

  16. Slightly enriched uranium in CANDU: An economic first step towards advanced fuel cycles

    International Nuclear Information System (INIS)

    The natural-uranium fuelled Canada Deuterium-Uranium (CANDU) nuclear reactor system has proven to be a safe, reliable and economical producer of electricity for over a quarter of a century. The CANDU system, however, is not restricted to the use of natural-uranium fuel; a wide range of advanced fuel cycles can be accommodated. In the short term, slightly enriched uranium (SEU) is the most promising of these advanced fuel cycles. SEU offers a reduction in the total fuel cycle cost of between 25 and 50% relative to natural-uranium fuel. Uranium consumption is decreased by 30 to 40%. In addition the volume of spent fuel is reduced by a factor of two to three, depending on the enrichment selected. SEU also offers greater flexibility in the design of future CANDU reactors. A variety of fuel management options can be employed in CANDU with slightly enriched fuels. Fuel performance is expected to be good for the burnups of interest, but further fuel testing is planned and is currently in progress in order to confirm this. Programs in place at Atomic Energy of Canada Limited (AECL) will lead to the demonstration and introduction of slightly enriched uranium in CANDU. Ontario Hydro, a Canadian utility with twenty CANDUs operating or under construction, is considering a program which could lead to the implementation of SEU in its nuclear generating stations. (author). 30 refs, 7 figs

  17. CANDU 300

    International Nuclear Information System (INIS)

    The CANDU nuclear power system is under continuous review by AECL in order to advance the CANDU concept in a manner that will assure competitiveness in both current and future markets. Over the past three years development effort has featured the CANDU 300, a CANDU nuclear generating station with a net output in the range of 320 MW9e) to 380 MW(e). At the outset AECL recognized that coal-fired power plants would be the primary competition for the CANDU advantages such as the use of natural uranium fuel and on-power refuelling, while enhancing capacity factor, reducing man-rem exposure, reducing capital cost, and minimizing construction schedules. AECL believes that the resulting CANDU 300 nuclear generating station will have substantial appeal to many utilities, in both developed and developing countries. The key features of the CANDU 300 are presented here, with particular attention to the station layout, construction methods, and construction schedules

  18. The Study of Nuclear Fuel Cycle Options Based On PWR and CANDU Reactors

    International Nuclear Information System (INIS)

    The study of nuclear fuel cycle options based on PWR and CANDU type reactors have been carried out. There are 5 cycle options based on PWR and CANDU reactors, i.e.: PWR-OT, PWR-OT, PWR-MOX, CANDU-OT, DUPIC, and PWR-CANDU-OT options. While parameters which assessed in this study are fuel requirement, generating waste and plutonium from each cycle options. From the study found that the amount of fuel in the DUPIC option needs relatively small compared the other options. From the view of total radioactive waste generated from the cycles, PWR-MOX generate the smallest amount of waste, but produce twice of high level waste than DUPIC option. For total plutonium generated from the cycle, PWR-MOX option generates smallest quantity, but for fissile plutonium, DUPIC options produce the smallest one. It means that the DUPIC option has some benefits in plutonium consumption aspects. (author)

  19. The next generation of CANDU technologies: profiling the potential for hydrogen fuel

    International Nuclear Information System (INIS)

    This report discusses the Next-generation CANDU Power Reactor technologies currently under development at AECL. The innovations introduced into proven CANDU technologies include a compact reactor core design, which reduces the size by a factor of one third for the same power output; improved thermal efficiency through higher-pressure steam turbines; reduced use of heavy water (one quarter of the heavy water required for existing plants), thus reducing the cost and eliminating many material handling concerns; use of slightly enriched uranium to extend fuel life to three times that of existing natural uranium fuel and additions to CANDU's inherent passive safety. With these advanced features, the capital cost of constructing the plant can be reduced by up to 40 per cent compared to existing designs. The clean, affordable CANDU-generated electricity can be used to produce hydrogen for fuel cells for the transportation sector, thereby reducing emissions from the transportation sector

  20. SCDAP/RELAP5 application to CANDU6 fuel channel analysis under postulated LLOCA/LOECC conditions

    Energy Technology Data Exchange (ETDEWEB)

    Mladin, M. [Reactor Physics and Nuclear Safety Department, Institute for Nuclear Research-Pitesti, P.O. Box 78, Campului No. 1, 115400 Mioveni, Arges (Romania)], E-mail: mirea_mladin@easynet.ro; Dupleac, D.; Prisecaru, I. [Power Engineering Department, University ' Politehnica' of Bucharest (Romania)

    2009-02-15

    Using SCDAP/RELAP5 (RELAP/SCDAPSIM Mod 3.4), a model with postulated boundary conditions has been developed to simulate the evolution of the fuel channel in a CANada Deuterium Uranium reactor type (CANDU6) during a large loss of coolant accident (LLOCA) with a coincidence of a loss of emergency cooling (LOECC). The accident simulation is initiated from the steady-state flow regime and different steam mass flow rates are imposed in order to run sensitivity calculations of the heatup phase. Results are compared to referenced CHAN II code results for the same accident boundary conditions, concerning the fuel and pressure tube temperatures, power components (generated and exchanged to the moderator) and hydrogen production. The input model is applied both to the intact and to the disassembled bundle with 37 fuel elements. The paper includes a brief discussion of the capabilities of the present SCDAP component models, dedicated to PWR-BWR reactor components, to treat the degradation phenomena in the fuel channel during severe accidents in CANDU reactors, and also of the developments needed to enhance the quality of the code predictions.

  1. Analysis of the Bundle Duct Interaction using the FBR fuel pin bundle deformation analysis code 'BAMBOO'

    International Nuclear Information System (INIS)

    PNC has been developing a computer code 'BAMBOO' to analyze the wire spaced FBR fuel pin bundle deformation under the BDI (Bundle Duct Interaction) condition by means of the three dimensional F.E.M. This code analyzes fuel pins' bowing and oval deformations which are dominant deformation behaviors of the fuel pin bundle under the BDI condition. In this study the 'BAMBOO' code is validated on the out-of-pile compression test of the FBR bundle (compression test) by comparing the results of the code analysis with the compression test results, and the highly irradiated (≥2.1x1027 n/m2, E > 0.1 MeV) bundle deformation behaviors are investigated from the viewpoint of the similarity to those in the compression test based on the analytical results of the code. (1) The calculated pin-to-duct minimum clearances as a function of the BDI levels in the compression test analysis agree with the experimental values evaluated from the CT image analysis of the bundle cross-section in the compression test within ±0.2 mm. And the calculated values of the fuel pins' oval deformations agree with the experimental values based on the pin diameter measurements done after the compression test within ±0.05 mm. (2) By comparing the irradiation induced bundle deformation with the bundle deformation in the compression test based on the code analysis, it is confirmed that the changes of the pin-to-duct minimum clearances with the BDI levels show equivalent trends between the both bundle deformations. And in this code analysis of the irradiation induced bundle deformation, contact loads between the fuel pins and the pacer wires are extremely small (below 10 kgf) even at about 3 dw of the BDI level compared to those in the compression test analysis. (J.P.N.)

  2. Computer simulation of the behaviour and performance of a CANDU fuel rod

    International Nuclear Information System (INIS)

    At the Argentine Atomic Energy Commission (Comision Nacional de Energia Atomica, CNEA) the BACO code (for 'BArra COmbustible', fuel rod) was developed. It allows the simulation of the thermo-mechanical performance of a cylindrical fuel rod in a Pressurized Heavy Water Reactor (PHWR). The standard present version of the code (2.30), is a powerful tool for a relatively easy and complete evaluation of fuel behaviour predictions. Input parameters and, therefore, output ones may include statistical dispersion. As a demonstration of BACO capabilities we include a review of CANDU fuel applications, and the calculation and a parametric analysis of a characteristic CANDU fuel. (author)

  3. Seismic Soil-Structure Interaction Analysis of a Consolidated Dry Storage Module for CANDU Spent Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Young Gon; Yoon, Jeong Hyoun; Cho, Chun Hyung; Lee, Heung Young [Korea Hydro and Nuclear Power Co., Ltd., Taejon (Korea, Republic of); Choi, Kyu Sup; Jeong, In Su; Kim, Jong Soo [KONES Co., Seoul (Korea, Republic of)

    2005-07-01

    The MACSTOR/KN-400 module has been developed as an effective alternative to the existing stand alone concrete canister for dry storage of CANDU spent fuel. The structure is a concrete monolith of 21.67 m long and 12.66 m wide and has a height equal to 7.518 m including the bottom slab. Inside of the concrete module are built 40 storage cylinders accommodating ten 60- bundle dry storage baskets, which are suspended from the top slab and eventually constrained at 10 cm above the bottom slab with horizontal seismic restraints. The main cooling process of the MACSTOR/KN-400 module is by air convection through air inlets and outlets. The civil design parameters, with respect to meteorological and seismic loads applied to the module are identical to those specified for the Wolsung CANDU 3 and 4 plants except for local geologic characteristics. As per USNRC SRP Section 3.7.2 and current US practices, Soil-Structure Interaction (SSI) effect shall be considered for all structures not supported by a rock or rock-like soil foundation materials. An SSI is a very complicated phenomenon of the structure coupled with the soil medium that is usually semi-infinite in extent and highly nonlinear in its behavior. And the effect of the SSI is noticeable especially for stiff and massive structures resting on relatively soft ground. Thus the SSI effect has to be considered in the seismic design of MACSTOR/KN-400 module resting on soil medium. The scope of the this paper is to carry out a seismic SSI analysis of the MACSTOR/KN-400 module, in order to show how much the SSI gives an effect on the structural responses by comparing with the fixed-base analysis.

  4. Eddy current detection of spacers in the fuel channels of CANDU nuclear reactors

    International Nuclear Information System (INIS)

    Garter Spring (GS) spacers in the fuel channels of CANDU nuclear reactors maintain separation between the hot pressure tube and surrounding moderator cooled calandria tube. Eddy current detection of the four GSs provides assurance that spacers are at or close to design positions and are performing their intended function of maintaining a non-zero gap between pressure tube and calandria tube. Pressure tube constrictions, resulting from relatively less diametral creep at end-of-fuel bundle locations, also produce large eddy current signals. Large constrictions, present in higher service pressure tubes, can produce signals that are 10 times larger than GS signals, reducing GS detectability to 30% in standard GS-detect probes. The introduction of field-focussing elements into the design of the standard GS detection eddy current probe has been used to recover the detectability of GS spacers by increasing the signal amplitude obtained from GSs relative to that from constrictions by a factor of 10. The work presented here compares laboratory, modelling and in-reactor measurements of GS and constriction signals obtained from the standard probe with that obtained from field-focussed eddy current probe designs. (author)

  5. A feasible approach to implement a commercial scale CANDU fuel manufacturing plant in Egypt

    International Nuclear Information System (INIS)

    Many planning scenarios have been examined to assess and evaluate the economic estimates for implementing a commercial scale CANDU fuel manufacturing plant in Egypt. The cost estimates indicated strong influence of the annual capital costs on total fuel manufacturing cost; this is particularly evident in a small initial plant where the proposed design output is only sufficient to supply reload fuel for a single CANDU-6 reactor. A modular approach is investigated as a possible way, to reduce the capital costs for a small initial fuel plant. In this approach the plant would do fuel assembly operations only and the remainder of a plant would be constructed and equipped in the stages when high production volumes can justify the capital expenses. Such approach seems economically feasible for implementing a small scale CANDU fuel manufacturing plant in developing countries such as Egypt and further improvement could be achieved over the years of operation. (author)

  6. Estimation of radiation doses characterizing CANDU spent fuel transport and intermediate dry storage

    International Nuclear Information System (INIS)

    Shielding analyses are an essential component of the nuclear safety. The estimations of radiation doses in order to reduce them under specified limitation values is the main task here. In the last decade, a general trend to raise the discharge fuel burnup has been world wide registered for both operating reactors and future reactor projects. For CANDU type reactors, one of the most attractive solutions seems to be SEU fuels utilization. The goal of this paper is to estimate CANDU spent fuel photon dose rates at the shipping cask/storage basket wall and in air, at different distances from the cask/ basket, for two different fuel projects, after a defined cooling period in the NPP pools. Spent fuel inventories and photon source profiles are obtained by means of ORIGEN-S code. The shielding calculations have been performed by using Monte Carlo MORSE-SGC code. A comparison between the two types of CANDU fuels has been also performed. (authors)

  7. Thermalhydraulic characteristics for fuel channels using burnable poison in the CANDU reactor

    International Nuclear Information System (INIS)

    The power coefficient is one of the most important physics parameters governing nuclear reactor safety and operational stability, and its sign and magnitude have a significant effect on the safety and control characteristics of the power reactor. Recently, for an equilibrium CANDU core, the power coefficient was reported to be slightly positive when newly developed Industry Standard Tool set reactor physics codes were used. Therefore, it is required to find a new way to effectively decrease the positive power coefficient of CANDU reactor without seriously compromising the economy. In order to make the power coefficient of the CANDU reactor negative at the operating power, Roh et al. have evaluated the various burnable poison (BP) materials and its loading scheme in terms of the fuel performance and reactor safety characteristics. It was shown that reactor safety characteristics can be greatly improved by the use of the BP in the CANDU reactor. However, the previous study has mainly focused on the safety characteristics by evaluating the power coefficient for the fuel channel using BP in the CANDU reactor. Together with the safety characteristics, the economic performance is also important in order to apply the newly designed fuel channel to the power plant. In this study, the economic performance has been evaluated by analyzing the thermal hydraulic characteristics for the fuel channel using BP in the CANDU reactor

  8. Fuel Management in Candu Reactors Using Tabu Search

    International Nuclear Information System (INIS)

    Meta-heuristic methods are perfectly suited to solve fuel management optimization problem in LWR. Indeed, they are originally designed for combinatorial or integer parameter problems which can represent the reloading pattern of the assemblies. For the Candu reactors the problem is however completely different. Indeed, this type of reactor is refueled online. Thus, for their design at fuel reloading equilibrium, the parameter to optimize is the average exit burnup of each fuel channel (which is related to the frequency at which each channel has to be reloaded). It is then a continuous variable that we have to deal with. Originally, this problem was solved using gradient methods. However, their major drawback is the potential local optimum into which they can be trapped. This makes the meta-heuristic methods interesting. In this paper, we have successfully implemented the Tabu Search (TS) method in the reactor diffusion code DONJON. The case of an ACR-700 using 7 burnup zones has been tested. The results have been compared to those we obtained previously with gradient methods. Both methods give equivalent results. This validates them both. The TS has however a major drawback concerning the computation time. A problem with the enrichment as an additional parameter has been tested. In this case, the feasible domain is very narrow, and the optimization process has encountered limitations. Actually, the TS method may not be suitable to find the exact solution of the fuel management problem, but it may be used in a hybrid method such as a TS to find the global optimum region coupled with a gradient method to converge faster on the exact solution. (authors)

  9. Diagnostic technology for degradation of feeder pipes and fuel channels in CANDU reactor

    International Nuclear Information System (INIS)

    Degradation of critical components of nuclear power plants has become important as the operating years of plants increase. The necessity of degradation study including detection and monitoring technology has raised its head. Because the feeder pipes and the fuel channels are particularly one of the critical components in CANDU nuclear plant, they are treated as a major research target in order to counteract the possible problems and establish the counterplan for the improvement of CANDU reactor safety. To ensure the integrity of feeder pipes and fuel channels in CANDU nuclear plant, the following 3 research tasks were performed in the first stage. - Development of a model for prediction of feeder wall thinning - Development of RFEC detection technology - Development of ICFD noise signal analysis. The technologies developed in this study could contribute to the nuclear safety and estimation of the remaining life of operating CANDU nuclear power plants

  10. System study of CANDU/LWR synergy in advanced nuclear fuel cycles

    International Nuclear Information System (INIS)

    This report proposes a study that will evaluate the effects of advanced nuclear fuel cycles on resource utilisation, repository capacity, waste streams, economics, and proliferation resistance. The proposed fuel cycles are designed to exploit the unique synergy that exists between light water and CANDU reactors. Also, several fuel cycle simulation codes have been proposed to be used. (author)

  11. Assessing CANDU requirements for irradiation - Research facilities

    International Nuclear Information System (INIS)

    The Canadian nuclear program needs ongoing access to irradiation-research facilities to support the safe operation of existing CANDU reactors and the evolutionary development of CANDU components and design features. The irradiation-research program must facilitate the testing of unique CANDU technology such as the fuel bundle, on-power refueling, the pressure tube, and the heavy-water coolant and moderator. Since 1957, NRU has operated as Canada's principal irradiation facility; however, it has become clear that NRU needs costly refurbishing if its lifetime is to be significantly extended. Accordingly, AECL has reviewed the requirements for CANDU irradiation research and is presently assessing alternatives for providing the necessary future access to irradiation-research facilities. Various options are under consideration, including renting space in existing research reactors, performing irradiations in CANDU power reactors, and building a new indigenous materials testing reactor specifically to meet essential program requirements

  12. Spent fuel bundle counter sequence error manual - KANUPP (125 MW) NGS

    International Nuclear Information System (INIS)

    The Spent Fuel Bundle Counter (SFBC) is used to count the number and type of spent fuel transfers that occur into or out of controlled areas at CANDU reactor sites. However if the transfers are executed in a non-standard manner or the SFBC is malfunctioning, the transfers are recorded as sequence errors. Each sequence error message may contain adequate information to determine the cause of the message. This manual provides a guide to interpret the various sequence error messages that can occur and suggests probable cause or causes of the sequence errors. Each likely sequence error is presented on a 'card' in Appendix A. Note that it would be impractical to generate a sequence error card file with entries for all possible combinations of faults. Therefore the card file contains sequences with only one fault at a time. Some exceptions have been included however where experience has indicated that several faults can occur simultaneously

  13. Spent fuel bundle counter sequence error manual - RAPPS (200 MW) NGS

    International Nuclear Information System (INIS)

    The Spent Fuel Bundle Counter (SFBC) is used to count the number and type of spent fuel transfers that occur into or out of controlled areas at CANDU reactor sites. However if the transfers are executed in a non-standard manner or the SFBC is malfunctioning, the transfers are recorded as sequence errors. Each sequence error message typically contains adequate information to determine the cause of the message. This manual provides a guide to interpret the various sequence error messages that can occur and suggests probable cause or causes of the sequence errors. Each likely sequence error is presented on a 'card' in Appendix A. Note that it would be impractical to generate a sequence error card file with entries for all possible combinations of faults. Therefore the card file contains sequences with only one fault at a time. Some exceptions have been included however where experience has indicated that several faults can occur simultaneously

  14. Status of the demonstration irradiation program of the new fuel bundle CANFLEX-NU in Korea

    International Nuclear Information System (INIS)

    In the late part of 1999, the Korea Electric Power Corporation has initiated a program CANFLEX-NU (Natural Uranium) fuel in the Wolsong Generating Station (WGS) - no.1 which has been operating since 1983, because the CANFLEX could be used to recover some of a CANDU heat transport system operation margins that had decreased due to The Korea Ministry of Science and Technology (MOST) has recognized the successful demonstration irradiation of 24 CANFLEX bundles at the Pt. Lepreau Generating Station in Canada, as final verification of the CANFLEX design in preparation for full core conversion. Therefore, MOST has pushed and gave a financial support to a KEPRI/KAERI Joint Industrialization Program of CANFLEX-NU Fuel, which will be for 3 years from 2000 November, to validate CANFLEX-NU fuel bundle performance in direct conditions of relevance under the Korean licensing requirements as well as to evaluate the fuel fabrication capability, and to produce a safety analysis report for the full-core implementation. The economic benefits of CANFLEX-NU fuel are directly dependent on the thermalhydraulic performance. Switching from the existing 37-element fuel to the CANFLEX fuel will be largely driven by the economic benefits to be realized. Showing a positive result in the economic evaluation as well as successfully demonstrating the CANFLEX fuel irradiation in WGS-no. 1, the full-core implementation of the fuel at the WGS-no.1 in Korea will proceed by starting the licensing process at around 2003 April because the safety report for the full-core conversion will be ready by 2003 March. This paper describes the status of CANFLEX-NU fuel industrialization program in Korea, as well as the fuel design features. It summarizes the plan of CANFLEX-NU fuel demonstration irradiation at the WGS-no. 1 in Korea and the status of documentation for the demonstration irradiation as well as for the CANFLEX-NU full-core implementation. (author)

  15. The evolution of Candu fuel cycles and their potential contribution to world peace

    International Nuclear Information System (INIS)

    The Candu(r) reactor is the most versatile commercial power reactor in the world. It has the potential to extend resource utilization significantly, to allow countries with developing industrial infrastructures access to clean and abundant energy, and to destroy long-lived nuclear waste or surplus weapons plutonium. These benefits are available by choosing from an array of possible fuel cycles. Several factors, including Canada's early focus on heavy-water technology, limited heavy-industry infrastructure at the time, and a desire for both technological autonomy and energy self-sufficiency, contributed to the creation of the first Candu reactor in 1962. With the maturation of the CANDU industry, the unique design features of the now-familiar product - on-power refuelling, high neutron economy, and simple fuel design - make possible the realization of its potential fuel-cycle versatility. Several fuel-cycle options currently under development are described. (authors)

  16. Design and fabrication of a remote fuel bundle welding system

    International Nuclear Information System (INIS)

    A remote fuel bundle welding system in the hot-cell was designed and fabricated. To achieve this, a preliminary investigation of a hands-on fuel fabrication outside the hot-cell was conducted with a consideration of the constraints caused by welding in the hot-cell. Some basic experiments were also carried out to improve the end-plate welding process for fuel bundle manufacturing. The resistance welding system using the end-plate welding was also improved. It was found that resistance welding was more suitable for joining and end-plate to end caps in the hot-cell. The optimum conditions for end-plate welding for remote operation were also obtained. Preliminary performances to improve the resistance welding process were also examined, and the resistance welding process was determined to be the best in the hot-cell environment for fuel bundle manufacturing. The greatest advantage of fuel bundle welding system would be a qualified process for resistance welding in which there is extensive production experience. This paper presents an outline of the developed welding system for fuel bundle manufacturing and reviews the conceptual design of remote welding system using a master-slave manipulator. The design of a remote welding system using the 3-dimensional modeling method was also designed. Furthermore the mechanical considerations and the mock-up simulation test were described. Finally, its performance test results were presented for a mock-up of a remote fuel bundle welding system. (Author)

  17. Spring and stop assembly for nuclear fuel bundle

    International Nuclear Information System (INIS)

    A removable spring and stop assembly is described for use with a nuclear fuel bundle in a nuclear reactor core. The assembly includes a bolt threaded through a top section of a stop member by which the assembly (and a flow channel) is secured to the fuel bundle, the adjacent end threads of the bolt. The stop member is upset or deformed by which the bolt is captured in the assembly. (U.S.)

  18. Proceedings of the 1. international conference on CANDU fuel handling systems

    International Nuclear Information System (INIS)

    Besides information on fuel loading and handling systems for CANDU and PHWR reactors, the 25 papers in these proceedings also include some on dry storage, modification to fuel strings at Bruce A, and on the SLAR (spacer location and repositioning) system for finding and moving garter springs. The individual papers have been abstracted separately

  19. Bundle duct interaction studies for fuel assemblies

    International Nuclear Information System (INIS)

    It is known that the wire-wrapped rods and duct in an LMFBR are undergoing a gradual structural distortion from the initially uniform geometry under the combined effects of thermal expansion and irradiation induced swelling and creep. These deformations have a significant effect on flow characteristics, thus causing changes in thermal behavior such as cladding temperature and temperature distribution within a bundle. The temperature distribution may further enhance or retard irradiation induced deformation of the bundle. This report summarizes the results of the continuing effort in investigating the bundle-duct interaction, focusing on the need for the large development plant

  20. Calculation of power coefficient in CANFLEX-NU fuel bundle

    Energy Technology Data Exchange (ETDEWEB)

    Min, Byung Joo; Jun, Ji Su; Suk, Ho Chun [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-11-01

    Changes in power level affect reactivity due to its dependence on fuel and coolant temperatures. The power coefficient of reactivity is related to the fuel temperature coefficient through the change in fuel temperature per percent change in power. In addition, power level changes are followed by changes in coolant temperature and density which contribute to the reactivity effect. In this report, the power coefficient of CANFLEX-NU was calculated and the result would be compared with that of CANDU-6 reactor which is operating. 8 refs., 43 figs., 2 tabs. (Author)

  1. Assessment of neutron transport codes for application to CANDU fuel lattices analysis

    Energy Technology Data Exchange (ETDEWEB)

    Roh, Gyu Hong; Choi, Hang Bok

    1999-08-01

    In order to assess the applicability of WIMS-AECL and HELIOS code to the CANDU fuel lattice analysis, the physics calculations has been carried out for the standard CANDU fuel and DUPIC fuel lattices, and the results were compared with those of Monte Carlo code MCNP-4B. In this study, in order to consider the full isotopic composition and the temperature effect, new MCNP libraries have been generated from ENDF/B-VI release 3 and validated for typical benchmark problems. The TRX-1,2,BAPL-1,2,3 pin -cell lattices and KENO criticality safety benchmark calculations have been performed for the new MCNP libraries, and the results have shown that the new MCNP library has sufficient accuracy to be used for physics calculation. Then, the lattice codes have been benchmarked by the MCNP code for the major physics parameters such as the burnup reactivity, void reactivity, relative pin power and Doppler coefficient, etc. for the standard CANDU fuel and DUPIC fuel lattices. For the standard CANDU fuel lattice, it was found that the results of WIMS-AECL calculations are consistent with those of MCNP. For the DUPIC fuel lattice, however, the results of WIMS-AECL calculations with ENDF/B-V library have shown that the discrepancy from the results of MCNP calculations increases when the fuel burnup is relatively high. The burnup reactivities of WIMS-ACEL calculations with ENDF/B-VI library have shown excellent agreements with those of MCNP calculation for both the standard CANDU and DUPIC fuel lattices. However, the Doppler coefficient have relatively large discrepancies compared with MCNP calculations, and the difference increases as the fuel burns. On the other hand, the results of HELIOS calculation are consistent with those of MCNP even though the discrepancy is slightly larger compared with the case of the standard CANDU fuel lattice. this study has shown that the WIMS-AECL products reliable results for the natural uranium fuel. However, it is recommended that the WIMS

  2. Simulation of CANDU Fuel Behaviour into In-Reactor LOCA Tests

    International Nuclear Information System (INIS)

    The purpose of this work is to simulate the behaviour of an instrumented, unirradiated, zircaloy sheathed UO2 fuel element assembly of CANDU type, subjected to a coolant depressurization transient in the X-2 pressurized water loop of the NRX reactor at the Chalk River Nuclear Laboratories in 1983. The high-temperature transient conditions are such as those associated with the onset of a loss of coolant accident (LOCA). The data and the information related to the experiment are those included in the OECD/NEA-IFPE Database (IFPE/CANDU-FIO-131 NEA-1783/01). As tool for this simulation is used the TRANSURANUS fuel performance code, developed at ITU, Germany, along with the corresponding fabrication and in-reactor operating conditions specific of the CANDU PHWR fuel. The results, analyzed versus the experimental ones, are encouraging and perfectible. (author)

  3. Analysis of CHF experiment data for finned fuel bundle

    International Nuclear Information System (INIS)

    The HANARO uses finned-element fuel bundles. For thermal-hydraulic safety analysis, used is the MATRA-h code which is a modified version of KAERI's MATRA-α. The subchannel analysis model was determined by using the in-core irradiation test results and hydraulic experiment results for fuel bundle. The validity of the analysis model was investigated by comparing the MATRA-h predictions with the experimental results from several bundle CHF tests. The comparison showed that the code predictions for the CHF power were very close to or less than the experimental results. Thus, it was confirmed that the subchannel analysis using MATRA-h is to be applicable to the prediction of CHF phenomenon in HANARO fuel bundle

  4. Destructive Examination of Experimental Candu Fuel Elements Irradiated in TRIGA-SSR Reactor

    International Nuclear Information System (INIS)

    The object of this work is the behaviour of CANDU fuel elements under power cycling conditions. The tests were run in the 14 MW(th) TRIGA-SSR (Steady State Reactor) reactor from Institute for Nuclear Research (INR) Pitesti. zircaloy-4 is the material used for CANDU fuel sheath. The importance of studying its behaviour results from the fact that the mechanical properties of the CANDU fuel sheath suffer modifications during normal and abnormal operation. In the nuclear reactor the fuel elements endure dimensional and structural changes as well as cladding oxidation, hydriding and corrosion. These changes can lead to defects and even to the loss of integrity of the cladding. This paper presents the results of examinations performed in the Post- irradiation Examination Laboratory (PIEL) from INR Pitesti, on samples from a fuel element irradiated in TRIGA-SSR reactor: (i) Dimensional and macrostructural characterization; (ii) Microstructural characterization by metallographic analyses; (iii) Determination of mechanical properties; (iv) Fracture surface analysis by scanning electron microscopy (SEM). The obtained data could be used to evaluate the security, reliability and nuclear fuel performance, and for CANDU fuel improvement. (author)

  5. Post Irradiation Examination of Experomental CANDU Fuel Elements Irradiated in TRIGA-SSR Reactor

    International Nuclear Information System (INIS)

    The object of this work is the behaviour of CANDU fuel elements under power cycling conditions. The tests were run in the 14 MW (th) TRIGA-SSR (Steady State Reactor) reactor from Institute for Nuclear Research (INR) Pitesti. Zircaloy-4 is the material used for CANDU fuel sheath. The importance of studying its behaviour results from the fact that the mechanical properties of the CANDU fuel sheath suffer modifications during normal and abnormal operation. In the nuclear reactor the fuel elements endure dimensional and structural changes as well as cladding oxidation, hydriding and corrosion. These changes can lead to defects and even to the loss of integrity of the cladding. This paper presents the results of examinations performed in the Post Irradiation Examination Laboratory (PIEL) from INR Pitesti, on samples from a fuel element irradiated in TRIGA-SSR reactor: (i) Dimensional and macrostructural characterization; (ii) Gamma scanning and tomography; (iii) Measurement of pressure, volume and isotopic composition of fission gas; (iv) Microstructural characterization by metallographic analyses; (v) Determination of mechanical properties; amd (vi) Fracture surface analysis by scanning electron microscopy (SEM). The obtained data could be used to evaluate the security, reliability and nuclear fuel performance, and for CANDU fuel improvement. (author)

  6. Study Of The PWR Fuel Bundle Characteristic With Borated Water

    International Nuclear Information System (INIS)

    Study of the PWR fuel bundle characteristic with 2,4, 2,6, 2,8, 3,0, 3,2 and 3,4 enrichment also with borated water 150 and 200 ppm has been done. The fuel bundle contained 264 fuel elements and water (no fuel elements) are arranged as 17 x 17 matrix and 30,294 cm. The fuel bundle characteristic can be seen from their group constants and the infinite multiplication factor whether more or less than one. The fuel bundle parameters can be found from cell calculation with WIMS PC version program. From the cell calculation shown that the infinite multiplication factor of the fuel bundle with 2,4% enrichment and 200 ppm borated water is 1, 01672, its shown that infinite multiplication factor will less than one with increasing borated water more than 200 ppm. From these result if we would like to design the reactor core with 2,4% minimum enrichment then the maximum borated water is 200 ppm

  7. Optimized CANDU-6 cell and reactivity device supercell models for advanced fuels reactor database generation

    International Nuclear Information System (INIS)

    Highlights: • Propose an optimize 2-D model for CANDU lattice cell. • Propose a new 3-D simulation model for CANDU reactivity devices. • Implement other acceleration techniques for reactivity device simulations. • Reactivity device incremental cross sections for advanced CANDU fuels with thorium. - Abstract: Several 2D cell and 3D supercell models for reactivity device simulation have been proposed along the years for CANDU-6 reactors to generate 2-group cross section databases for finite core calculations in diffusion. Although these models are appropriate for natural uranium fuel, they are either too approximate or too expensive in terms of computer time to be used for optimization studies of advanced fuel cycles. Here we present a method to optimize the 2D spatial mesh to be used for a collision probability solution of the transport equation for CANDU cells. We also propose a technique to improve the modeling and accelerate the evaluation, in deterministic transport theory, of the incremental cross sections and diffusion coefficients associated with reactivity devices required for reactor calculations

  8. ORIGEN-S cross section libraries for CANDU used-fuel characterization

    International Nuclear Information System (INIS)

    A code system for producing burn-up dependent cross-section libraries for CANDU used-fuel characterization for use with the ORIGEN-S isotope generation and depletion code system is described. Benchmark results against experimental isotopic data for three CANDU-PHW reactor stations are presented. The code system couples the WIMS-AECL reactor physics analysis code with an ORIGEN-S depletion analysis to produce application-specific libraries that can be used in subsequent used-fuel analyses. 11 refs., 1 fig., 3 tabs

  9. Next generation CANDU plants

    International Nuclear Information System (INIS)

    The CANDU Pressurized Heavy Water Reactors systems featuring horizontal fuel channels and heavy water moderator will continue to evolve, supported by AECL's strong commitment to comprehensive R and D programs. There are three key CANDU development strategic thrusts: improved economics, fuel cycle flexibility, and enhanced safety operation based on design feedback. Therefore, CANDU reactor products will continue to evolve by incorporating further improvements and advanced features that will be arising from our CANDU Technology R and D programs in areas such as heavy water and tritium, control and instrumentation, fuel and fuel cycles, systems and equipment and safety and constructability. Progressive CANDU development will continue in AECL to enhance the medium size product - CANDU 6, and to evolve the larger size product - CANDU 9. The development of features for CANDU 6 and CANDU 9 is carried out in parallel. Developments completed for one reactor size can then be applied to the other design with minimum costs and risk. (author)

  10. Load following tests on CANDU-type fuel elements in TRIGA research reactor of INR Pitesti

    International Nuclear Information System (INIS)

    Two load following (LF) tests on CANDU-type fuel elements were performed in the TRIGA Research Reactor of INR Pitesti, where the tests were designed to represent fuel in a CANDU reactor operating in a load following regime. In the first LF test the designated '78R' fuel element successfully experienced 367 power cycles, mostly between 23 and 56 kW/m average linear power. In the second LF test, developed under INR-AECL co-operation, the fuel element designated as 'ME01' withstood 200 power cycles from 27 to 54 kW/m average linear power, as well as additional ramps due to reactor trips and restarts during the test period. This experimental program is ongoing at INR Pitesti. Both LF tests were simulated with finite element computer codes in order to evaluate Stress Corrosion Fatigue (SCF) of the cladding arising from expansion and contraction of the pellets. New LF tests are planned to be performed in order to establish the limits and capabilities for CANDU fuel in LF conditions. This paper presents the results of the LF tests performed in the INR TRIGA Research Reactor compared with the analytical assessment for SCF conditions and their relation to CANDU fuel performance in LF conditions. (author)

  11. Load following tests on CANDU-type fuel elements in TRIGA research reactor of INR Pitesti

    Energy Technology Data Exchange (ETDEWEB)

    Horhoianu, G. [Inst. for Nuclear Research (INR), Pitesti (Romania); Palleck, S. [Atomic Energy of Canada Limited., Mississauga, Ontario (Canada); Ionescu, D. [Inst. for Nuclear Research (INR), Pitesti (Romania)

    2010-07-01

    Two load following (LF) tests on CANDU-type fuel elements were performed in the TRIGA Research Reactor of INR Pitesti, where the tests were designed to represent fuel in a CANDU reactor operating in a load following regime. In the first LF test the designated '78R' fuel element successfully experienced 367 power cycles, mostly between 23 and 56 kW/m average linear power. In the second LF test, developed under INR-AECL co-operation, the fuel element designated as 'ME01' withstood 200 power cycles from 27 to 54 kW/m average linear power, as well as additional ramps due to reactor trips and restarts during the test period. This experimental program is ongoing at INR Pitesti. Both LF tests were simulated with finite element computer codes in order to evaluate Stress Corrosion Fatigue (SCF) of the cladding arising from expansion and contraction of the pellets. New LF tests are planned to be performed in order to establish the limits and capabilities for CANDU fuel in LF conditions. This paper presents the results of the LF tests performed in the INR TRIGA Research Reactor compared with the analytical assessment for SCF conditions and their relation to CANDU fuel performance in LF conditions. (author)

  12. Study of advanced nuclear fuel cycles in Candu type power reactors

    International Nuclear Information System (INIS)

    The fuel burn up can be increased to a large extent, up to 14, 0000 MWD/te, by using the slightly enriched uranium or Pu mixed fuel in CANDU type power reactors. In the present study, the previous work was extended to compare the isotopic inventories and corresponding activities of important nuclides for different fuel cycles of a CANDU 600 type power reactor. The detail can be found in our studies. The calculations were performed using the computer code WIMSD4. The isotopic inventories and corresponding activities were calculated versus the fuel burn-up for the natural UO/sub 2/ fuel, 1.2 % enriched UO/sub 2/ fuel and 0.45 % PuO/sub 2/-UO/sub 2/ fuel. It was found that 1.2 % enriched uranium fuel has the lowest activity as compared to other two fuel cycles. It means that improvement in the fuel cycle technology of CANDU type power reactors can lead to high burn up which results in the reduction of actinide content in the spent fuel, and hence has a good environmental impact. (orig./A.B.)

  13. CANDU fuel cycle economic efficiency assessments using the IAEA-MESSAGE-V code

    International Nuclear Information System (INIS)

    The main goal of the paper is to evaluate different electricity generation costs in a CANDU Nuclear Power Plant (NPP) using different nuclear fuel cycles. The IAEA-MESSAGE code (Model for Energy Supply Strategy Alternatives and their General Environmental Impacts) will be used to accomplish these assessments. This complex tool was supplied by International Atomic Energy Agency (IAEA) in 2002 at 'IAEA-Regional Training Course on Development and Evaluation of Alternative Energy Strategies in Support of Sustainable Development' held in Institute for Nuclear Research Pitesti. It is worthy to remind that the sustainable development requires satisfying the energy demand of present generations without compromising the possibility of future generations to meet their own needs. Based on the latest public information in the next 10-15 years four CANDU-6 based NPP could be in operation in Romania. Two of them will have some enhancements not clearly specified, yet. Therefore we consider being necessary to investigate possibility to enhance the economic efficiency of existing in-service CANDU-6 power reactors. The MESSAGE program can satisfy these requirements if appropriate input models will be built. As it is mentioned in the dedicated issues, a major inherent feature of CANDU is its fuel cycle flexibility. Keeping this in mind, some proposed CANDU fuel cycles will be analyzed in the paper: Natural Uranium (NU), Slightly Enriched Uranium (SEU), Recovered Uranium (RU) with and without reprocessing. Finally, based on optimization of the MESSAGE objective function an economic hierarchy of CANDU fuel cycles will be proposed. The authors used mainly public information on different costs required by analysis. (authors)

  14. Thermo-mechanical analysis of SEU 43 fuel element in CANDU reactor normal operational conditions

    International Nuclear Information System (INIS)

    The main direction of developing the CANDU type fuel is designing a new type of fuel cluster with the number of elements increased from 37 to 43. This work presents results of the research done in INR Pitesti on the new concept of SEU 43 fuel cluster designed for burnups as high as 25 Mw·day/kgU using slightly enriched uranium (up to 1.1% U235). By using ROFEM 1.0 code the behaviour of two types of SEU 43 fuel was analyzed in normal conditions of CANDU 6 reactor operation. The main performance parameters of SEU fuel were analyzed. These are: temperature distribution; the volume and pressure of fission gases; stresses in the fuel can; can deformations. Comparisons with the standard CANDU fuel are done. The results show the adequacy of the design solutions implemented for the SEU 43 fuel. The power-burnup history required by the ROFEM computations was obtained from the overpower envelope of the fuel cluster, with the radial power distribution on cluster taken into account. Evolution of the main performance parameters during irradiation is given

  15. Automated refueling simulations of a CANDU for the exploitation of thorium fuels

    Science.gov (United States)

    Holmes, Bradford

    CANDU nuclear reactors are in a unique circumstance where they are able to utilize and exploit a number of different fuel options to provide power as a utility. Thorium, a fertile isotope found naturally, is one option that should be explored. Thorium is more abundant than uranium, which is the typical fuel in the reactor and the availability of thorium makes nuclear energy desirable to more countries. This document contains the culmination of a project that explores, tests, and analyzes the feasibility of using thorium in a CANDU reactor. The project first develops a set of twodimensional lattice and three dimensional control rod simulations using the DRAGON Version 4 nuclear physics codes. This step is repeated for many concentrations of thorium. The data generated in these steps is then used to determine a functional enrichment of thorium. This is done via a procedural elimination and optimization of certain key parameters including but not limited to average exit burnup and reactivity evolution. For the purposes of this project, an enrichment of 1 % thorium was found viable. Full core calculations were done using the DONJON 4 code. CANFUEL, a program which simulates the refueling operations of a CANDU reactor for this fuel type was developed and ran for a simulation period of one hundred days. The program and the fuel selection met all selected requirements for the entirety of the simulation period. CANFUEL requires optimization for fuel selection before it can be used extensively. The fuel selection was further scrutinized when a reactivity insertion event was simulated. The adjuster rod 11 withdrawal from the core was analyzed and compared to classical CANDU results in order to ensure no significant deviations or unwanted evolutions were encountered. For this case, the simulation results were deemed acceptable with no significant deviations from the classical CANDU case.

  16. A modal method for transient thermal analysis of CANDU fuel channel

    International Nuclear Information System (INIS)

    The classical modal expansion technique has been applied to predict transient fuel and coolant temperatures under on-power conditions in a CANDU fuel channel. The temperature profile across the fuel pellet is assumed to be parabolic and fuel and coolant temperatures are expanded with Fourier series. The coefficient derivatives are written in state space form and solved by the Runge-Kutta method of fifth order. To validate the present model, the calculated fuel temperatures for several sample cases were compared with HOTSPOT-II, which employs a more rigorous finite-difference model. The agreement was found to be reasonable for the operational transients simulated. The advantage of the modal method is the fast computation speed for application to the real-time system such as the CANDU simulator which is being currently developed at the Institute for Advanced Engineering (IAE). (author)

  17. Numerical simulation of cross-flow in tube-bundles to model flow circulation of the moderator in CANDU-6

    International Nuclear Information System (INIS)

    The knowledge of external wall temperature distributions around calandria tubes is a major concern during normal and off-normal operating conditions of CANDU power reactors. To this aim, the use of Computational Fluid Dynamics (CFD) techniques to model moderator local flow velocities and temperatures can largely help in performing nuclear safety analyses. However, present numerical codes applied for this purpose makes use of the well known porous media approach. This method necessitates a previous knowledge of distributed hydraulic resistances that must be obtained from appropriate scaled experiments. Within this framework, this paper presents a set of 2D CFD simulations of incompressible cross-flows along in-line and staggered tube bundles. The numerical results are validated against experimental data obtained from the open literature. Calculations are performed using FLUENT-6 code. The Reynolds-Average Navier Stokes (RANS) equations are used in conjunction with several turbulence models and both the SIMPLE (Semi-Implicit Pressure Linked Equation) as well as the coupled pressure-based algorithm. In general, it is observed that two-equation turbulence models are able to reproduce mean velocities. Even though reasonably good predictions of flow distributions along staggered tube set-ups are obtained, the predictions of the pressure drop along in-line tubes are in general not satisfactory. In most cases, the coupled pressure-based algorithm seems to perform better but requires longer computation time. In general, the standard κ-ε is superior to others κ-ε models. The κ-ω model behaves better for fairly well developed flows. (author)

  18. Designing and calculating the pressure loses for different geometries of CANDU type fuel clusters

    International Nuclear Information System (INIS)

    It is well known that circulation of the coolant through the pressure tube of a CANDU type reactor must ensure, through its flow rate values, the optimal conditions of heat transfer from the fuel clusters towards the heavy water. The flow rate through fuel channels differs from one another (up to 24 kg/s) depending on the fuel element sheath temperature, the latter depending in turn one the channels/clusters positions in the calandria vessel. In these conditions, one of the main problem of design in the CANDU type reactor plants is related to the hydraulic resistance represented by the fuel clusters loading the pressure tube or, in other words, the problem of pressure losses (pressure drops) over the length of the fuel cluster column. More precisely, this hydraulic resistance should not exceed a given value imposed by the performance calculations for the pumps used. A sustained activity of analysing comparatively the different geometry types of the fuel clusters was developed at INR Pitesti, a special attention being paid to their behavior as hydraulic resistances. The paper presents a set of computation programs devoted on one hand to the design of fuel clusters of different types and to an estimating computation of the pressure losses resulting from loading these clusters into a specific fuel channel of the CANDU type reactor, on the other hand. During the presentation of the work, different computing codes will be run for demonstration

  19. R and D activities on CANDU-type fuel in Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Suripto, A.; Badruzzaman, M.; Latief, A. [Nuclear Fuel Element Centre, National Atomic Energy Agency of Indonesia (BATAN), Puspiptek, Serpong (Indonesia)

    1997-07-01

    The status of R and D activities in Indonesia with respect of CANDU-type fuel development is presented. The activities have been started since the first feasibility study to introduce nuclear power plants was carried out in 1970s. The early research comprised the in-situ pilot production of yellow-cake in Kalimantan (Borneo) experimental mining site, uranium purification and pellet preparation. This program continued to gain a full support from the Government which culminated in the realisation of the construction by BATAN of a large fuel development laboratory in Serpong, starting from 1984 in co-operation with NIRA Ansaldo of Italy. The laboratory, which is called the Power Reactor Experimental Fuel Element Installation (EFEI) was originally designed as an experimental facility to integrate the acquired domestic R and D results gained so far on the CANDU-type fuel technology and the additional know-how received from NIRA Ansaldo which at that time was engaged, in developing a CANDU-type fuel, called the CIRENE fuel design. In the present days the facility houses the power reactor fuel development activities carried out to build up the national capability on power reactor fuel fabrication technology in anticipation to embark upon the nuclear energy era in the near future. (author)

  20. Chop-leach fuel bundle residues densification by melting

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, R.G.; Griggs, B.

    1976-11-01

    Two melting processes were investigated for the densification of fuel bundle residues: Industoslag melting and graphite crucible melting. The Industoslag process, with prior decontamination and sorting, can produce ingots of Zircaloy, stainless steel and Inconel of a quality suitable for refabrication and reuse. The process can also melt oxidized mixtures of fuel bundle residues for direct storage. Eutectic mixtures of these materials can be melted in graphite at temperatures of 1300/sup 0/C. Hydrogen absorption experiments with the zirconium-rich alloys show the alloys to be potential tritium reservoirs. 13 figures.

  1. Status of the parallex project--testing CANDU MOX fuel with weapons-derived plutonium

    International Nuclear Information System (INIS)

    The Parallex project is a parallel experiment, the purpose of which is to demonstrate the use of weapons-derived plutonium (WPu) from the United States (U.S.) and the Russian Federation (R.F.) in CANDU mixed-oxide (MOX) fuel elements. The scope of the project includes the fabrication of CANDU MOX fuel in the R.F. and the U.S., the transporting of the fuel to Canada, and the testing of the fuel in the NRU research reactor at the Chalk River Laboratories (CRL). A significant milestone in the project was achieved earlier this year, with the start of the irradiation testing of the MOX elements received from both the U.S. and the R.F. This paper presents the status of the project, and highlights the major activities that lead to the commencement of this historic experiment. (author)

  2. Analytical assessment for stress corrosion fatigue of CANDU fuel elements under load following conditions

    Energy Technology Data Exchange (ETDEWEB)

    Horhoianu, Grigore; Ionescu, Dragos; Pauna, Eduard [Institute for Nuclear Research (INR), Pitesti (Romania)

    2011-07-01

    Two load following (LF) tests on CANDU type fuel elements were performed in TRIGA Research Reactor of INR Pitesti. In the first LF test the 78R fuel element has successfully experienced 367 power cycles, mostly between 23 and 56 kW/m average linear power. In the second LF test, the ME01 fuel element withstood 200 power cycles from 27 to 54 kW/m average linear power as well as additional ramps due to reactor trips and restarts during the test period. Both LF tests were simulated with finite elements computer codes in order to evaluate Stress Corrosion Fatigue (SCF) of the sheath arising from expansion and contraction of the pellets. This paper presents the analytical assessment for SCF conditions and their relation to CANDU fuel performance in LF conditions. (orig.)

  3. Analytical assessment for stress corrosion fatigue of CANDU fuel elements under load following conditions

    International Nuclear Information System (INIS)

    Two load following (LF) tests on CANDU type fuel elements were performed in TRIGA Research Reactor of INR Pitesti. In the first LF test the 78R fuel element has successfully experienced 367 power cycles, mostly between 23 and 56 kW/m average linear power. In the second LF test, the ME01 fuel element withstood 200 power cycles from 27 to 54 kW/m average linear power as well as additional ramps due to reactor trips and restarts during the test period. Both LF tests were simulated with finite elements computer codes in order to evaluate Stress Corrosion Fatigue (SCF) of the sheath arising from expansion and contraction of the pellets. This paper presents the analytical assessment for SCF conditions and their relation to CANDU fuel performance in LF conditions. (orig.)

  4. Interconnection of bundled solid oxide fuel cells

    Science.gov (United States)

    Brown, Michael; Bessette, II, Norman F; Litka, Anthony F; Schmidt, Douglas S

    2014-01-14

    A system and method for electrically interconnecting a plurality of fuel cells to provide dense packing of the fuel cells. Each one of the plurality of fuel cells has a plurality of discrete electrical connection points along an outer surface. Electrical connections are made directly between the discrete electrical connection points of adjacent fuel cells so that the fuel cells can be packed more densely. Fuel cells have at least one outer electrode and at least one discrete interconnection to an inner electrode, wherein the outer electrode is one of a cathode and and anode and wherein the inner electrode is the other of the cathode and the anode. In tubular solid oxide fuel cells the discrete electrical connection points are spaced along the length of the fuel cell.

  5. Thorium utilization in Candu reactors

    International Nuclear Information System (INIS)

    In this study, means of thorium utilization in a CANDU reactor are considered. A once through thorium-DUPIC cycle is analyzed in detail. CANDU has the best neutron economy among the commercially available power reactors, which makes it suitable for many different fuel cycle options. A review of the available fuel cycles is also done in the scope of this study to select an economically viable cycle which does not impose profound changes in the neutronic properties of the core that require remodeling of core and related systems. To create a good model ot the CANDU core for the necessary calculations, the steady state properties of CANDU reactor are analyzed. It is assumed that approximation ot refueling as moving the bundles at a constant velocity is valid. This approximation leads to a corollary; The average cross sections of two adjacent bidirectionally refueled channels are independent of axial location. This is also veritied. A result of this corollary the CANDU core can be modeled only in radial direction in cylindirical geometry. The steady state CANDU core model is prepared using the actual power values and these values are sought in the results. The control systems which effect the neutron flux shape are introduced into the model later in the form of additional absorption cross section and lower diffusion coefficient. The results are in good agreement with the actual values. Several different thorium-DUPIC fuel bundle configurations are considered and the one with 12 Th02 elements in the third ring is found to have similar burnup dependent cross-sections and location infinite multiplication factors. Using the model created, the bundle is tested also in the tull core model and it is tound that this bundle configuration complies with the current refueling scheme. That is, no changes are necessary in the refuelind rate or the control systems. A higher conversion ratio of 0.82 is attained, while the excess reactivity of the core is found to decrease by 0.01 Ak

  6. Coupling Systems of Five CARA Fuel Bundles for Atucha I

    International Nuclear Information System (INIS)

    This paper describe the mechanical design of two options for the coupling systems of five CARA fuel bundles, to be used in the Atucha I nuclear power plant. These systems will be hydraulic tested in a low pressure loop to know their hydraulic loss of pressure

  7. Validation of the ORIGEN-S code for predicting radionuclide inventories in used CANDU fuel

    International Nuclear Information System (INIS)

    The safety assessment being conducted by AECL Research for the concept of deep geological disposal of used CANDU UO2 fuel requires the calculation of radionuclide inventories in the fuel to provide source terms for radionuclide release. This report discusses the validation of selected actinide and fission-product inventories calculated using the ORIGEN-S code coupled with the WIMS-AECL lattice code, using data from analytical measurements of radioisotope inventories in Pickering CANDU reactor fuel. The recent processing of new ENDF/B-VI cross-section data has allowed the ORIGEN-S calculations to be performed using the most up-to-date nuclear data available. The results indicate that the code is reliably predicting actinide and the majority of fission-product inventories to within the analytical uncertainty. ((orig.))

  8. Economic Analysis on Direct Use of Spent Pressurized Water Reactor Fuel in CANDU Reactors - I: DUPIC Fuel Fabrication Cost

    International Nuclear Information System (INIS)

    A preliminary conceptual design of a Direct Use of spent Pressurized water reactor (PWR) fuel In Canada deuterium uranium (CANDU) reactors (DUPIC) fuel fabrication plant was studied, which annually converts spent PWR fuel of 400 tonnes heavy element (HE) into CANDU fuel. The capital and operating costs were estimated from the viewpoint of conceptual design. Assuming that the annual discount rate is 5% during the construction (5 yr) and operation period (40 yr) and contingency is 25% of the capital cost, the levelized unit cost (LUC) of DUPIC fuel fabrication was estimated to be 616 $/kg HE, which is mostly governed by annual operation and maintenance costs that correspond to 63% of LUC. Among the operation and maintenance cost components being considered, the waste disposal cost has the dominant effect on LUC (∼49%). From sensitivity analyses of production capacity, discount rate, and contingency, it was found that the production capacity of the plant is the major parameter that affects the LUC

  9. Performance evaluation of two CANDU fuel elements tested in the TRIGA reactor

    International Nuclear Information System (INIS)

    Nuclear Research Institute at Pitesti has a set of facilities, which allow the testing, manipulation and examination of nuclear fuel and structure materials irradiated in CANDU reactors from Cernavoda NPP. These facilities consist of TRIGA materials testing reactor and Post-Irradiation Examination Laboratory (LEPI). The purpose of this work is to describe the post-irradiation examination, of two experimental CANDU fuel elements (EC1 and EC2). The fuel elements were mounted into a pattern port, one in extension of the other in a measuring test for the central temperature evolution. The results of post-irradiation examination are obtained from: Visual inspection and photography of the outer appearance of sheath; Profilometry (diameter, bending, ovalization) and length measuring; Determination of axial and radial distribution of the fission products activity by gamma scanning; Measurement of pressure, volume and isotopic composition of fission gas; Microstructural characterization by metallographic and ceramographic analyzes; Isotopic composition and burn-up determination. The post-irradiation examination results are used, on one hand, to confirm the security, reliability and performance of the irradiated fuel, and on the other hand, for further development of CANDU fuel. (authors)

  10. Fuel cost analysis of CANDU-PHWR Wolsung Nuclear Power Plant unit 1

    International Nuclear Information System (INIS)

    Being based on the Segal method, calculation was carried out for the natural uranium nuclear fuel cost with Zircaloy-4 cladding having design parameters of Wolsung Nuclear Power Plant, CANDU-PHWR (Unit 1), currently under construction in Korea aiming at its completion in 1982. An attempt was also made for the sensitivity analysis of each fuel component; i.e., depreciation of fuel manufacturing plant caused by its life time, its load factor, production scale expansion of plant facilities, variations of construction and operating costs of fuel manufacturing plant, fluctuation of interest rates, extent of uranium ore price increases and effect of learning factor. (author)

  11. Aging effect on the fuel behaviors for CANDU fuel safety analysis

    International Nuclear Information System (INIS)

    Because of the aging of heat transport system components, the reactor thermalhydraulic conditions can vary, which may affect the safety response. In a recent safety analysis for the refurbished Wolsong 1 NPP, various aging effects were incorporated into the hydraulic models of the components in the primary heat transport system (PHTS) for conservatism. The aging data of the thermal-hydraulic components for an 11 EFPY of Wolsong 1 were derived based on the site operation data and were modified to the appropriate input data for the thermal-hydraulic code for a safety analysis of a postulated accident. This paper deals with the aging effect of the PHTS of the CANDU reactor on the fuel performance during normal operation and transient period following a postulated accident such as a feeder stagnation break. (author)

  12. Uranium's transformation from mineral to fuel bundles

    International Nuclear Information System (INIS)

    Uranium undergoes chemical transformation phases before it can be used in the nuclear power plant. In first phase uranium is transformed from mineral to yellow cake, in which uranium is in the form of U3O8. After that comes conversion (U3O8-UF6) and enrichment (0.7%-3% U-235). Finally, uranium is converted in fuel fabrication to uranium dioxide, UO2, and fuel pellets are made

  13. The behaviour of transuranic mixed oxide fuel in a Candu-900 reactor

    International Nuclear Information System (INIS)

    The production of transuranic actinide fuels for use in current thermal reactors provides a useful intermediary step in closing the nuclear fuel cycle. Extraction of actinides reduces the longevity, radiation and heat loads of spent material. The burning of transuranic fuels in current reactors for a limited amount of cycles reduces the infrastructure demand for fast reactors and provides an effective synergy that can result in a reduction of as much as 95% of spent fuel waste while reducing the fast reactor infrastructure needed by a factor of almost 13.5 [1]. This paper examines the features of actinide mixed oxide fuel, TRUMOX, in a CANDUR* nuclear reactor. The actinide concentrations used were based on extraction from 30 year cooled spent fuel and mixed with natural uranium in 3.1 wt% actinide MOX fuel. Full lattice cell modeling was performed using the WIMS-AECL code, super-cell calculations were analyzed in DRAGON and full core analysis was executed in the RFSP 2-group diffusion code. A time-average full core model was produced and analyzed for reactor coefficients, reactivity device worth and online fuelling impacts. The standard CANDU operational limits were maintained throughout operations. The TRUMOX fuel design achieved a burnup of 27.36 MWd/kg HE. A full TRUMOX fuelled CANDU was shown to operate within acceptable limits and provided a viable intermediary step for burning actinides. The recycling, reprocessing and reuse of spent fuels produces a much more sustainable and efficient nuclear fuel cycle. (authors)

  14. ZZ CANDULIB-AECL, Burnup-Dependent ORIGEN-S Cross-Section Libraries for Candu Reactor Fuels

    International Nuclear Information System (INIS)

    1 - Historical background and information: - 28-element fuel cross-section library: Format: Designed for use with the ORIGEN-S isotope generation and depletion code. Materials: Co, Ge, As, Se, Br, Kr, Rb, Sr, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Te, I, Xe, Cs, Ba, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Lu, Ta, W, Re, Au, Th, Pa, U, Np, Pu, Am, Cm. Origin: ENDSF, ENDF/B-IV, -V and -VI Weighting spectrum: determined using WIMS-AECL transport code. - 37-element fuel cross-section library: Format: Designed for use with the ORIGEN-S isotope generation and depletion code. Materials: Co, Ge, As, Se, Br, Kr, Rb, Sr, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Te, I, Xe, Cs, Ba, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Lu, Ta, W, Re, Au, Th, Pa, U, Np, Pu, Am, Cm. Origin: ENDSF, ENDF/B-IV, -V and -VI Weighting spectrum: determined using WIMS-AECL transport code. In 1995, updated ORIGEN-S cross-section libraries were created as part of a program to upgrade and standardize the computer codes and nuclear data employed for used fuel characterization. This effort was funded through collaboration between Atomic Energy of Canada Limited and the Canadian Nuclear Power Utilities, under the Candu Owners Group (COG). The updated cross sections were generated using the WIMS-AECL lattice code and ENDF/B-V and -VI based data to provide cross section consistency with reactor physics codes. 2 - Application of the data: The libraries in this data collection are designed for characterising used fuel from Candu pressurized heavy water reactors. Two libraries are provided: one for the standard 28-element fuel bundle design, the other for the 37-element fuel bundle design. The libraries were generated for typical reactor operating conditions. The libraries are designed for use with the ORIGEN-S isotope generation and depletion code. 3 - Source and scope of data: The Candu libraries are updated with cross sections from a variety of different sources. Capture

  15. The behaviour of transuranic mixed oxide fuel in a Candu-900 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Morreale, A. C.; Ball, M. R.; Novog, D. R.; Luxat, J. C. [Dept. of Engineering Physics, McMaster Univ., 1280 Main St. W, Hamilton, ON (Canada)

    2012-07-01

    The production of transuranic actinide fuels for use in current thermal reactors provides a useful intermediary step in closing the nuclear fuel cycle. Extraction of actinides reduces the longevity, radiation and heat loads of spent material. The burning of transuranic fuels in current reactors for a limited amount of cycles reduces the infrastructure demand for fast reactors and provides an effective synergy that can result in a reduction of as much as 95% of spent fuel waste while reducing the fast reactor infrastructure needed by a factor of almost 13.5 [1]. This paper examines the features of actinide mixed oxide fuel, TRUMOX, in a CANDU{sup R}* nuclear reactor. The actinide concentrations used were based on extraction from 30 year cooled spent fuel and mixed with natural uranium in 3.1 wt% actinide MOX fuel. Full lattice cell modeling was performed using the WIMS-AECL code, super-cell calculations were analyzed in DRAGON and full core analysis was executed in the RFSP 2-group diffusion code. A time-average full core model was produced and analyzed for reactor coefficients, reactivity device worth and online fuelling impacts. The standard CANDU operational limits were maintained throughout operations. The TRUMOX fuel design achieved a burnup of 27.36 MWd/kg HE. A full TRUMOX fuelled CANDU was shown to operate within acceptable limits and provided a viable intermediary step for burning actinides. The recycling, reprocessing and reuse of spent fuels produces a much more sustainable and efficient nuclear fuel cycle. (authors)

  16. Post irradiation tests on CANDU fuel irradiated in power ramp conditions

    International Nuclear Information System (INIS)

    Nuclear Research Branch Pitesti disposes of facilities, which allow the testing, manipulation and examination of nuclear fuel and of irradiated structure materials in CANDU reactor from Cernavoda NPP. These facilities imply the materials testing reactor TRIGA and the Post-Irradiation Examination Laboratory (PIEL). The purpose of this work is to determine by post-irradiate examination, the behavior of CANDU indigenous fuel, irradiated in 14 MW(th) TRIGA reactor into a multiple/various power ramp tests. The results of post-irradiate examination consist of: - Visual inspection and photography of the outer appearance of sheath; - Profilometry (diameter, bending, ovalization) and length measuring; - Determination of axial and radial distribution of the fission products activity by gamma scanning and tomography; - measurement of pressure, volume and isotopic composition of fission gas; - Microstructural characterization by metallographic and ceramographic analyzes; - Isotopic composition and burn-up determination; - Mechanical properties determination. The obtained data from the post-irradiate examinations are used, on one hand, in order to confirm the security, reliability and nuclear fuel performance, and on the other hand, for further optimization of the CANDU fuel. (authors)

  17. CAT reconstruction and potting comparison of a LMFBR fuel bundle

    International Nuclear Information System (INIS)

    A standard Liquid Metal Fast Breeder Reactor (LMFBR) subassembly used in the Experimental Breeder Reactor II (EBR-II) was investigated, by remote techniques, for fuel bundle distortion by both nondestructive and destructive methods, and the results from both methods were compared. The non-destructive method employed neutron tomography to reconstruct the locations of fuel elements through the use of a maximum entropy reconstruction algorithm known as MENT. The destructive method consisted of ''potting'' (a technique that embeds and permanently fixes the fuel elements in a solid matrix) the subassembly, and then cutting and polishing the individual sections. The comparison indicated that the tomography reconstruction provided good results in describing the bundle geometry and spacer-wire locations, with the overall resolution being on the order of a spacer-wire diameter. A dimensional consistency check indicated that the element and spacer-wire dimensions were accurately reproduced in the reconstruction

  18. The 24 CANFLEX-NU bundle demonstration irradiation at Wolsong-1 generating station-bundle manufacture and QA, fuel handling aspects, flasking and shipping and pie for the irradiated fuel, and follow-up documentation

    International Nuclear Information System (INIS)

    Korea Ministry of Science and Technology(MOST) has pushed and given a financial support to a KEPRI/KAERI Joint Industrialization Program of CANFLEX-NU Fuel as one of Korea's National Nuclear Mid- and Long Term R and D Program. The Industrialization Program will be conducted for 3 years from 2000 November to efficiently utilize the CANFLEX fuel technology developed by KAERI and AECL jointly, where the KAERI's works have been conducted under the Korea's national program of the mid- and long-term nuclear R and D programs since 1992. This document is a report to guideline the following activities on the safety assessment for the 24 CANFLEX-NU (CANDU Flexible fuelling-Natural Uranium) fuel bundle demonstration irradiation at Wolsong-1 Generating Station: 'bundle manufacture and QA', 'Fuel handling aspects such as loading fuel, de-fuelling and segregation, and visual in-bay examinations', 'Flasking and shipping', 'Post-irradiation examination', and 'Follow-up documentation to be produced'

  19. Study of CANDU thorium-based fuel cycles by deterministic and Monte Carlo methods

    International Nuclear Information System (INIS)

    In the framework of the Generation IV forum, there is a renewal of interest in self-sustainable thorium fuel cycles applied to various concepts such as Molten Salt Reactors [1, 2] or High Temperature Reactors [3, 4]. Precise evaluations of the U-233 production potential relying on existing reactors such as PWRs [5] or CANDUs [6] are hence necessary. As a consequence of its design (online refueling and D2O moderator in a thermal spectrum), the CANDU reactor has moreover an excellent neutron economy and consequently a high fissile conversion ratio [7]. For these reasons, we try here, with a shorter term view, to re-evaluate the economic competitiveness of once-through thorium-based fuel cycles in CANDU [8]. Two simulation tools are used: the deterministic Canadian cell code DRAGON [9] and MURE [10], a C++ tool for reactor evolution calculations based on the Monte Carlo code MCNP [11]. (authors)

  20. CANDU fuel attribution through the analysis of delayed neutron temporal behaviour

    International Nuclear Information System (INIS)

    Delayed Neutron Counting (DNC) is an established technique in the Canadian nuclear industry as it is used for the detection of defective fuel in several CANDU reactors and the assay of uranium in geological samples. This paper describes the possible expansion of DNC to the discipline of nuclear forensics analysis. The temporal behaviour of experimentally measured delayed neutron spectra were used to determine the relative contributions of 233U and 235U to the overall fissile content present in mixtures with average absolute errors of ±4 %. The characterization of fissile content in current and proposed CANDU fuels (natural UO2, thoria and mixed oxide (MOX) based) by DNC analysis is evaluated through Monte Carlo simulations. (author)

  1. Measurement of gap and grain-boundary inventories of 129I in used CANDU fuels

    International Nuclear Information System (INIS)

    Combined gap and grain-boundary inventories of 129I in 14 used CANDU fuel elements were measured by crushing and simultaneously leaching fuel segments for 4 h in a solution containing KI carrier. From analogy with previous work a near one-to-one correlation was anticipated between the amount of stable Xe and the amount of 128I in the combined gap and grain-boundary regions of the fuel. However, the results showed that such a correlation was only apparent for low linear power rating (LLPR) fuels with an average linear power rating of 44 kW/m), the 129I values were considerably smaller than expected. The combined gap and grain-boundary inventories of 129I in the 14 fuels tested varied from 1.8 to 11.0%, with an average value of 3.6 ± 2.4% which suggests that the average value of 8.1 ± 1% used in safety assessment calculations overestimates the instant release fraction for 129I. Segments of used CANDU fuels were leached for 92 d (samples taken at 5, 28 and 92 d) to determine the kinetics of 129I release. Results could be fitted tentatively to half-order reaction kinetics, implying that 129I release is a diffusion-controlled process for LLPR fuels, and also for HLPR fuels, once the gap inventory has been leached. However, more data are needed over longer leaching periods to gain more understanding of the processes that control grain-boundary release of 129I from used CANDU fuel

  2. Feasibility study of modeling a CANDU fuel element using a multiphysics object-oriented simulation environment

    Energy Technology Data Exchange (ETDEWEB)

    Gamble, K., E-mail: Kyle.Gamble@rmc.ca [Royal Military College of Ontario, Kingston, Ontario (Canada); Williams, A. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Chan, P.K. [Royal Military College of Ontario, Kingston, Ontario (Canada)

    2013-07-01

    The first phase of the feasibility study of using a Multiphysics Object-Oriented Simulation Environment (MOOSE) for modeling a CANDU fuel element is presented. A two-dimensional model of a fuel pellet sheath was created to examine the contact algorithm within MOOSE. The results obtained show the expected behaviour of contact pressure and penetration in 2D. Preliminary results for a 3D model of a quarter fuel pellet and sheath are provided but at present contain anomalies currently being investigated. The next steps in the feasibility study are outlined. (author)

  3. Feasibility study of modeling a CANDU fuel element using a multiphysics object-oriented simulation environment

    International Nuclear Information System (INIS)

    The first phase of the feasibility study of using a Multiphysics Object-Oriented Simulation Environment (MOOSE) for modeling a CANDU fuel element is presented. A two-dimensional model of a fuel pellet sheath was created to examine the contact algorithm within MOOSE. The results obtained show the expected behaviour of contact pressure and penetration in 2D. Preliminary results for a 3D model of a quarter fuel pellet and sheath are provided but at present contain anomalies currently being investigated. The next steps in the feasibility study are outlined. (author)

  4. The effect of radial power profile of DUPIC bundle on CHF

    International Nuclear Information System (INIS)

    The axial and ring power profiles of DUPIC bundle are much different from those of reference 37-element fuel bundle since a DUPIC fuel bundle is re-fabricated using spent PWR fuel and 2-bundle shift refuelling scheme is proposed to CANDU-6 reactor. In case that the ring power profile of a fuel bundle is altered, the flow and enthalpy distribution of subchannels and the radial position of CHF occurrence will be changed. Similarly, the axial power profile of a fuel channel affects CHF and axial position of CHF occurrence as well as axial enthalpy, quality and pressure distribution. The ring power profile of the DUPIC bundle as increasing burnup is altered and flattened compared to 37-element bundle and each fuel bundle in a fuel channel has a different ring power profile from the other bundles at different axial position in the same fuel channel. Therefore, how to consider the burnup or ring power effect on CHF is very important to DUPIC thermalhydraulic analysis. At present study, thermalhydraulic analysis of the DUPIC bundle was performed in consideration of ring power profile effect on CHF. The subchannel enthalpy, mass flux and CHF distribution for 0 burnup to discharged burnup (18,000 MWD/THM) of DUPIC bundle were evaluated using ASSERT subchannel code. The results were compared to those of 37-element bundle and the compatability of DUPIC bundle with an existing CANDU-6 was presented in a CHF point of view

  5. Silicon carbide TRIPLEX materials for CANDU fuel cladding and pressure tubes

    International Nuclear Information System (INIS)

    Ceramic Tubular Products has developed a superior silicon carbide (SiC) material TRIPLEX, which can be used for both fuel cladding and other zirconium alloy materials in light water reactor (LWR) and heavy water reactor (CANDU) systems. The fuel cladding can replace Zircaloy cladding and other zirconium based alloy materials in the reactor systems. It has the potential to provide higher fuel performance levels in currently operating natural UO2 (NEU) fuel design and in advanced fuel designs (UO2(SEU), MOX thoria) at higher burnups and power levels. In all the cases for fuel designs TRIPLEX has increased resistance to severe accident conditions. The interaction of SiC with steam and water does not produce an exothermic reaction to produce hydrogen as occurs with zirconium based alloys. In addition the absence of creep down eliminates clad ballooning during high temperature accidents which occurs with Zircaloy blocking water channels required to cool the fuel. (author)

  6. Economic Analysis on Direct Use of Spent Pressurized Water Reactor Fuel in CANDU Reactors - II: DUPIC Fuel-Handling Cost

    International Nuclear Information System (INIS)

    The Direct Use of spent Pressurized water reactor fuel In Canada deuterium uranium (CANDU) reactors (DUPIC) fuel-handling technique has been investigated through a conceptual design study to estimate the unit cost that can be used for the DUPIC fuel cycle cost calculation. The conceptual design study has shown that fresh DUPIC fuel can be transferred to the core following the existing spent-fuel discharge route, provided that new fuel-handling equipment, such as the manipulator, opening/sealing tool of shipping casks, new fuel magazine, new fuel ram, dryer, gamma-ray detector, etc., are installed. The reverse path loading option is known to minimize the number of additional pieces of equipment for fuel handling, because it utilizes the existing spent-fuel handling equipment, and the discharge of spent DUPIC fuel can be done through the existing spent-fuel handling system without any modification. However, because the decay heat of spent DUPIC fuel is much higher than that of spent natural uranium fuel, the extra cooling capacity should be supplemented in the spent-fuel storage bay. Based on the conceptual design study, the capital cost for DUPIC fuel handling and extra storage cooling capacity was estimated to be $3 750 000 (as of December 1999) per CANDU plant. The levelized unit cost of DUPIC fuel handling was then obtained by considering the amount of fuel that will be required during the lifetime of a plant, which is 5.13 $/kg heavy metal. Compared with the other unit costs of the fuel cycle components, it is expected that DUPIC fuel handling has only a minor effect on the overall fuel cycle cost

  7. Fuel element bundle shears with dust extraction when cutting

    International Nuclear Information System (INIS)

    To prevent deposits of dust when cutting in this very inaccessible area of the fuel element bundle shears, a grating is fitted, which is connected via extraction devices (a collecting funnel and extraction duct) to the downward shaft carrying flushing air for the pipe pieces cut off. The measures taken make it possible to remove dust during cutting by the joint action of flushing air and gravity. (orig./HP)

  8. Nuclear fuel element design and thermal-hydraulic analysis of Wolsung-1, 600 MWe CANDU-PHWR (Part II)

    International Nuclear Information System (INIS)

    The main objective of the present thermal hydraulic analysis is to determine the thermal hydraulic characteristics of Wolsung-1 600 MWe CANDU-PHW reactor under normal operation. This is to verify and expedite the development of the nuclear fuel design and fabrication as well as the management. The computer program package developed for the stated objective are DOD81, CANREPP, PLOC81 and COBRA-CANDU. (Author)

  9. Hydraulic reinforcement of channel at lower tie-plate in BWR fuel bundle

    International Nuclear Information System (INIS)

    This patent describes an apparatus in a fuel bundle for confining fuel rods for the generation of steam in a steam water mixture passing interior of the fuel bundle. The fuel bundle includes: a lower tie-plate for supporting the fuel rods and permitting flow from the lower exterior portion of the fuel bundle into the interior portion of the fuel bundle; a plurality of fuel rods. The fuel rods supported on the lower tie-plate extending upwardly to and towards the upper portion of the fuel bundle for the generation of steam in a passing steam and water mixture interior of the fuel bundle; an upper tie-plate for maintaining the fuel rods in side-by-side relation and permitting a threaded connection between a plurality of the fuel rods with the threaded connection being at the upper and lower tie-plate. The upper tie-plate permitting escape of a steam water mixture from the top of the fuel bundle; a fuel bundle channel; and a labyrinth seal configured in the lower tie-plate

  10. Power pulse tests on CANDU type fuel elements in TRIGA reactor of INR Pitesti

    International Nuclear Information System (INIS)

    Pulse irradiation tests on short fuel elements have been carried out in TRIGA Annular Core Pulse Reactor (TRIGA ACPR) of INR Pitesti to investigate aspects related to the thermal and mechanical behavior of CANDU type fuel elements under short duration and large amplitude power pulse conditions. Short test fuel elements were instrumented with thermocouples for cladding surface temperature measurements and pressure sensor for element internal pressure measurement. Transient histories of reactor power, cooling water pressure, fuel element internal pressure and cladding temperature were recorded during tests. The fuel elements were subjected to total energy deposition from 70 to 280cal g-1 UO2. Rapid fuel pellet expansion due to a power excursion caused radial and longitudinal deformation of the cladding. Cladding failure mechanism and the failure threshold have been established. This paper presents some recent results obtained from these power pulse tests performed in TRIGA ACPR of INR Pitesti. (author)

  11. Behavior of CANDU fuel under power pulse conditions at the TRIGA reactor of INR Pitesti

    International Nuclear Information System (INIS)

    Pulse irradiation tests on short fuel elements have been carried out in TRIGA Annular Core Pulse Reactor (TRIGA ACPR) of INR Pitesti to investigate aspects related to the thermal and mechanical behavior of CANDU type fuel elements under short duration and large amplitude power pulse conditions. Short test fuel elements were instrumented with thermocouples for cladding surface temperature measurements and pressure sensors for element internal pressure measurement. Transient histories of reactor power, cooling water pressure, fuel element internal pressure and cladding temperature were recorded during tests. The fuel elements were subjected to total energy deposition from 70 to 280 cal g-1 UO2. Rapid fuel pellet expansion due to a power excursion caused radial and longitudinal deformation of the cladding. Cladding failure mechanism and the failure threshold have been established. This paper presents some recent results obtained from these power pulse tests performed in TRIGA ACPR of INR Pitesti. (orig.)

  12. Behavior of CANDU fuel under power pulse conditions at the TRIGA reactor of INR Pitesti

    Energy Technology Data Exchange (ETDEWEB)

    Horhoianu, G.; Dobrea, D.; Parvan, M.; Stefan, V. [Institute for Nuclear Research, Pitesti (Romania)

    2009-04-15

    Pulse irradiation tests on short fuel elements have been carried out in TRIGA Annular Core Pulse Reactor (TRIGA ACPR) of INR Pitesti to investigate aspects related to the thermal and mechanical behavior of CANDU type fuel elements under short duration and large amplitude power pulse conditions. Short test fuel elements were instrumented with thermocouples for cladding surface temperature measurements and pressure sensors for element internal pressure measurement. Transient histories of reactor power, cooling water pressure, fuel element internal pressure and cladding temperature were recorded during tests. The fuel elements were subjected to total energy deposition from 70 to 280 cal g{sup -1} UO{sub 2}. Rapid fuel pellet expansion due to a power excursion caused radial and longitudinal deformation of the cladding. Cladding failure mechanism and the failure threshold have been established. This paper presents some recent results obtained from these power pulse tests performed in TRIGA ACPR of INR Pitesti. (orig.)

  13. Power pulse tests on CANDU type fuel elements in TRIGA reactor of INR Pitesti

    Energy Technology Data Exchange (ETDEWEB)

    Horhoianu, G.; Ionescu, D.; Olteanu, G. [Inst. for Nuclear Research, Pitesti (Romania)

    2008-07-01

    Pulse irradiation tests on short fuel elements have been carried out in TRIGA Annular Core Pulse Reactor (TRIGA ACPR) of INR Pitesti to investigate aspects related to the thermal and mechanical behavior of CANDU type fuel elements under short duration and large amplitude power pulse conditions. Short test fuel elements were instrumented with thermocouples for cladding surface temperature measurements and pressure sensor for element internal pressure measurement. Transient histories of reactor power, cooling water pressure, fuel element internal pressure and cladding temperature were recorded during tests. The fuel elements were subjected to total energy deposition from 70 to 280cal g{sup -1} UO{sub 2}. Rapid fuel pellet expansion due to a power excursion caused radial and longitudinal deformation of the cladding. Cladding failure mechanism and the failure threshold have been established. This paper presents some recent results obtained from these power pulse tests performed in TRIGA ACPR of INR Pitesti. (author)

  14. Quantification of factors affecting thermally-induced bow in a CANDU fuel element simulator

    International Nuclear Information System (INIS)

    Thermally induced bow, caused by a circumferential temperature distribution around a fuel element, was investigated in this study using a fuel element simulator. The objective was to identify the factors affecting CANDU fuel element bow induced by dryout as a result of some predicted reactor transients in which the maximum fuel temperature reaches 600 deg C. The results showed that circumferential temperature distribution, pellet-to-sheath mechanical interaction and creep were the major factors affecting bow. Transient bow increased with increasing diametral sheath temperature difference and with mechanical interaction between the pellet and the sheath. Permanent bow of the fuel element was observed in some tests which was the result of creep. Mechanical interaction between the sheath and pellet produced the stresses necessary for creep deformation. A simplified ABAQUS model was developed to explain the experimental findings and could be used to predict the bow behaviour of fuel elements during reactor transients, where the dry patches are of different sizes. (author)

  15. A study on the direct use of spent PWR fuel in CANDU reactors. DUPIC facility engineering

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyun Soo; Lee, Jae Sul; Choi, Jong Won [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    This report summarizes the second year progress of phase II of DUPIC program which aims to verify experimentally the feasibility of direct use of spent PWR fuel in CANDU reactors. The project is to provide the experimental facilities and technologies that are required to perform the DUPIC experiment. As an early part of the project, engineering analysis of those facilities and construction of mock-up facility are described. Another scope of the project is to assess the DUPIC fuel cycle system and facilitate international cooperation. The progresses in this scope of work made during the fiscal year are also summarized in the report. 38 figs, 44 tabs, 8 refs. (Author).

  16. CANDU-BLW-250

    International Nuclear Information System (INIS)

    The plant 'La Centrale nucleaire de Gentilly' is located between Montreal and Quebec City on the south shore of the St. Lawrence River and start-up is scheduled for 1971. A CANDU-BLW reactor is the nuclear steam generator. his reactor utilizes a heavy water moderator, natural uranium oxide fuel, and a boiling light water coolant. To be economic, this type of plant must have a minimum light water inventory in the reactor core. A minimum inventory is obtained (a) by reducing the cross-sectional area for coolant flow to a minimum, and (b) by operating at a low-coolant density. In CANDU-BLW-250, this is accomplished by operating a closed spaced fuel rod bundle at high steam quality. These features and others in the BLW concept lead to a number of areas of concern and they are summarized below: (1) Heat Transfer: It is intended that under normal operating conditions the fuel sheaths will always be wetted with coolant. (ii) Hydrodynamic Stability: Experiments and analysis indicate that the plant has a considerable over-power capacity before instability is predicted. (iii) Control: This plant does have a positive power coefficient and the transient performance with various disturbances are detailed. (iv) Safety: The positive power coefficient leads to concern over the loss of coolant accident. The results of some accident analysis are presented. (author)

  17. FEAT4.1: modeling of sheath oxidation and heat flow in CANDU fuel elements

    International Nuclear Information System (INIS)

    This paper describes recent developments in the AECL-developed computer program, FEAT (Finite Element Analysis for Temperature), which is used to assess the thermal integrity of CANDU ® fuel elements. The FEAT code is used to calculate temperatures in the fuel pellet and in the Zircaloy sheath of a CANDU fuel element under normal operating conditions (NOC), as well as the temperature peaking due to end flux peaking during a transient such as a postulated loss of coolant accident (LOCA). For normal operation of high burnup fuel, the Zircaloy oxidation effect on fuel temperatures needs to be considered due to the long residence time in the reactor. The oxide layer on the coolant side of the fuel sheath has a lower thermal conductivity than that of Zircaloy. Therefore, the heat flow from the fuel element to coolant will be reduced resulting in increased fuel pellet and sheath temperatures. To ensure that the FEAT code is suitable for application in analysis of advanced fuels such as the ACR®-1000 fuel, a number of model developments and code improvements were conducted based on the existing version FEAT 4.0, including the modeling of sheath oxidation and its effect on heat flow in the fuel element, time-dependence of end flux peaking during the postulated LOCA (Loss Of Coolant Accident) conditions, pre-processing and postprocessing of analysis data. This paper describes the theories for the models, as well as other improvements, and verification and validation of the new FEAT version (i.e., FEAT 4.1). (author)

  18. HLM fuel pin bundle experiments in the CIRCE pool facility

    Energy Technology Data Exchange (ETDEWEB)

    Martelli, Daniele, E-mail: daniele.martelli@ing.unipi.it [University of Pisa, Department of Civil and Industrial Engineering, Pisa (Italy); Forgione, Nicola [University of Pisa, Department of Civil and Industrial Engineering, Pisa (Italy); Di Piazza, Ivan; Tarantino, Mariano [Italian National Agency for New Technologies, Energy and Sustainable Economic Development, C.R. ENEA Brasimone (Italy)

    2015-10-15

    Highlights: • The experimental results represent the first set of values for LBE pool facility. • Heat transfer is investigated for a 37-pin electrical bundle cooled by LBE. • Experimental data are presented together with a detailed error analysis. • Nu is computed as a function of the Pe and compared with correlations. • Experimental Nu is about 25% lower than Nu derived from correlations. - Abstract: Since Lead-cooled Fast Reactors (LFR) have been conceptualized in the frame of GEN IV International Forum (GIF), great interest has focused on the development and testing of new technologies related to HLM nuclear reactors. In this frame the Integral Circulation Experiment (ICE) test section has been installed into the CIRCE pool facility and suitable experiments have been carried out aiming to fully investigate the heat transfer phenomena in grid spaced fuel pin bundles providing experimental data in support of European fast reactor development. In particular, the fuel pin bundle simulator (FPS) cooled by lead bismuth eutectic (LBE), has been conceived with a thermal power of about 1 MW and a uniform linear power up to 25 kW/m, relevant values for a LFR. It consists of 37 fuel pins (electrically simulated) placed on a hexagonal lattice with a pitch to diameter ratio of 1.8. The FPS was deeply instrumented by several thermocouples. In particular, two sections of the FPS were instrumented in order to evaluate the heat transfer coefficient along the bundle as well as the cladding temperature in different ranks of sub-channels. Nusselt number in the central sub-channel was therefore calculated as a function of the Peclet number and the obtained results were compared to Nusselt numbers obtained from convective heat transfer correlations available in literature on Heavy Liquid Metals (HLM). Results reported in the present work, represent the first set of experimental data concerning fuel pin bundle behaviour in a heavy liquid metal pool, both in forced and

  19. Thermal Analysis of CANDU Spent Fuel Bay Cooling System

    International Nuclear Information System (INIS)

    The spent fuel bay cooling and purification system for Wolsong Nuclear Power Plant (NPP) Units 2, 3 and 4 was designed to remove heat from the spent fuel bay generated by 10 years accumulation of spent fuel at an 80% capacity factor refueling rate plus an emergency discharge of one-half the core fuel inventory over a 20-day period for 25.5 .deg. C of the cooling sea water temperature. The heat load in the spent fuel bay depends on the capacity factor refueling rate and the amount of spent fuel accumulated at the spent fuel bay. An 80% capacity factor refueling rate was considered as a design condition, but the highest capacity factor refueling rate of 93.75% for Wolsong NPPs was calculated based on nine (9) years of operating experience from 2000 to 2008. For the abnormal operating condition, the operating temperature of spent fuel bay does not meet with the acceptance criterion of 49 .deg. C for the conditions of the capacity factor refueling rate of 93.75%. These operating modes are not recommended for the abnormal operating condition

  20. Thermal Analysis of CANDU Spent Fuel Bay Cooling System

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Mann; Jang, Ho Cheol; Jang, Jin A.; Kim, Eun Kee [KEPCO Engineering and Construction Company, Daejeon (Korea, Republic of); Park, WanGyu [KHNP, Uljingun (Korea, Republic of)

    2015-05-15

    The spent fuel bay cooling and purification system for Wolsong Nuclear Power Plant (NPP) Units 2, 3 and 4 was designed to remove heat from the spent fuel bay generated by 10 years accumulation of spent fuel at an 80% capacity factor refueling rate plus an emergency discharge of one-half the core fuel inventory over a 20-day period for 25.5 .deg. C of the cooling sea water temperature. The heat load in the spent fuel bay depends on the capacity factor refueling rate and the amount of spent fuel accumulated at the spent fuel bay. An 80% capacity factor refueling rate was considered as a design condition, but the highest capacity factor refueling rate of 93.75% for Wolsong NPPs was calculated based on nine (9) years of operating experience from 2000 to 2008. For the abnormal operating condition, the operating temperature of spent fuel bay does not meet with the acceptance criterion of 49 .deg. C for the conditions of the capacity factor refueling rate of 93.75%. These operating modes are not recommended for the abnormal operating condition.

  1. Advanced fuel development at AECL: What does the future hold for CANDU fuels/fuel cycles?

    International Nuclear Information System (INIS)

    This paper outlines advanced fuel development at AECL. It discusses expanding the limits of fuel utilization, deploy alternate fuel cycles, increase fuel flexibility, employ recycled fuels; increase safety and reliability, decrease environmental impact and develop proliferation resistant fuel and fuel cycle.

  2. Understanding CANDU fuel bowing in dryout: an industry approach

    International Nuclear Information System (INIS)

    Fuel element bow induced by dryout could potentially perturb the coolant flow distribution and heat transfer from the fuel element to the coolant. Some accident scenarios leading to dryout of the fuel element are: loss of power regulation pump trip, pump seizure, small and large break loss of coolant accidents. In these accidents, it is desirable to show with confidence that the fuel remains sufficiently cooled to maintain its geometry, even if it is in dryout. This can be demonstrated if fuel elements are separated from each other and from the pressure tube, with a sufficient (and stable) gap. Therefore, the prediction of the amount of bow, and its effect on heat transfer conditions is required for the assessments. The utilities have joined force in launching an experimental investigation at Stern Laboratories to characterize the bowing phenomena. This program will investigate the amount of deflection, transient and permanent, that results from accident conditions which cause a dry patch on one side of the sheath. This is expected to bound the consequences of fuel bowing due to dryout. Since the accident transients begin at full power and high coolant pressure (about 10 MPa) they generate sharp thermal gradients (dry patch) and it is necessary to develop a simulation with representative dry fuel sheath conditions initiated from a normal full power and coolant state. The amount of bow is driven by thermal gradients in both the fuel pellets and the sheath, therefore, the thermal gradients should be representative. This program is structured in a series of tests progressing from simple representation to complex simulation. It is divided into 3 experimental phases: Phase 1 - Thermalhydraulic simulation of fuel element bow by a heated tube; Phase 2 - Thermal and mechanical bow with a simulator which accounts for pellet / fuel sheath interaction with internal pellet temperature distributions; and Phase 3 - Fuel element bow with a simulator using Zircaloy-4 fuel sheath

  3. Enhanced CANDU 6 (EC6): a proven mid-sized reactor with fuel cycle capability

    International Nuclear Information System (INIS)

    Atomic Energy of Canada (AECL) is finalizing development of the Enhanced CANDU 6 (EC6), which incorporates the CANDU 6's well-proven features, and enhancements that make the reactor even more safe and easier to operate. The EC6 is the only mid-sized reactor (700 MWe class) with a proven pedigree that meets modern reactor expectations and regulatory standards. It is sized for smaller grids and also has outstanding fuel-cycle capability. Changes are incremental and consistent with the CANDU 6 project approach. The EC6 utilizes modern computers and a distributed control system housed in an advanced control room which, along with automated testing and on-line diagnostics, make the plant easier and safer to operate, with minimal operator intervention. Containment and seismic capability are upgraded to meet modern standards. The first deployment of the EC6 is anticipated in Canada; international markets are also being pursued. AECL is performing a comprehensive review of the EC6 design in the wake of the Fukushima accident, will review lessons learned, and incorporate any necessary improvements into new build design. (author)

  4. 'CANDU-fueling machine head tests' at the Institute for Nuclear Research - Pitesti

    International Nuclear Information System (INIS)

    The Fueling Machine (F/M) Head is the most complex equipment of the Fuel Handling System in the CANDU reactor and performs the change of the nuclear fuel during the reactor operation. Before the installation of the F/M Head at the Nuclear Power Plant, it was required to test its technical performances, to ensure that the equipment is ready for operation. Testing of the F/M Head at the Institute for Nuclear Research - Pitesti is a part of the overall program to assimilate in Romania the CANDU technology. There was an economic contract between GEC Canada and Nuclear Power Plant Cernavoda - Unit 2 to provide the Fueling Machines no. 4 and no. 5 untested. To perform testing of these machines at the Institute for Nuclear Research - Pitesti, a special testing rig was built and is available for this goal. Both the testing rig and staff have been successfully assessed by the AECL representatives during two visits, dated on December 2001 and March 2002. In 2003 the testing of the F/M Head no. 4 (RAM 5) was successfully completed. Today, in 2004, the functional test of the F/M Head no. 5 (RAM 6) is already performing. (authors)

  5. Data base for a CANDU-PHW operating on a once-through, natural uranium fuel cycle

    International Nuclear Information System (INIS)

    This report, prepared for INFCE, describes a standard 600 MW(e) CANDU-PHW reactor operating on a once-through natural uranium fuel cycle. Subsequently, data are given for an extrapolated 1000 MW(e) design (the nominal capacity adopted for the INFCE study) operating on the same fuel cycle. (author)

  6. Monte Carlo Few-Group Constant Generation for CANDU 6 Core Analysis

    OpenAIRE

    Seung Yeol Yoo; Hyung Jin Shim; Chang Hyo Kim

    2015-01-01

    The current neutronics design methodology of CANDU-PHWRs based on the two-step calculations requires determining not only homogenized two-group constants for ordinary fuel bundle lattice cells by the WIMS-AECL lattice cell code but also incremental two-group constants arising from the penetration of control devices into the fuel bundle cells by a supercell analysis code like MULTICELL or DRAGON. As an alternative way to generate the two-group constants necessary for the CANDU-PHWR core analys...

  7. Assessment of Welding System Modification of The Candu and PWR Fuel Element Types end Plug

    International Nuclear Information System (INIS)

    To anticipate future possibility of a nuclear fuel element industry in Indonesia, research on other types of nuclear fuel element beside Cirene type has to be done. It can be accomplished, one of them, by modifying the already available equipment. Based on the sheath material, the sheath dimension and the welding process parameters such as welding current and welding cycles, the available Magnetic Force Welding can be used for welding end plug of Candu nuclear fuel element by modifying some of its components (tube clamp, plug clamp, etc). The available Pellet drying and element filling furnace with its supporting system with includes helium gas filling, welding chamber, argon gas supply, vacuum system, sheath clamp and sheath driving system can be used for welding end plug with sheath of PWR nuclear fuel element by adding og Tungsten inert Gas (TIG) welding machine in the welding chamber and modifying a few components (seal clamp, sheath clamp)

  8. Research on nondestructive examination methods for CANDU fuel channel inspection

    International Nuclear Information System (INIS)

    The requirements of the 1994 edition of CAN/CSA-N285.4 Periodic Inspection Standard, which address all known and postulated degradation mechanisms and introduce material surveillance demands, involve a growing need for improved nondestructive examination (NDE) methods and technologies. In order to have a proper technical support in its decisions concerning fuel channel inspections at Cernavoda NPP, the Romanian Power Authority (RENEL) initiated a Research Program regarding the nondestructive characterization of the fuel channels structural integrity. The paper presents the most significant results obtained on this Research Program: the ENDUS experimental system for Laboratory simulation of the fuel channel inspection, ultrasonic Rayleigh-Lamb waves technique for pressure tubes examination, phase analysis technique for near-surface flaws, influence of the metallurgical state of the pressure tube material on the eddy current defectoscopic signals, characterization of plastic deformation and fracture of zirconium alloys by acoustic emission. (author)

  9. Public health risks associated with the CANDU nuclear fuel cycle

    International Nuclear Information System (INIS)

    This report has been prepared in the hope that it will calculate, apparently for the first time, the non-radiological risks associated with the use of nuclear fuels. The specific risks identified and evaluated in this work should be balanced against the benefits resulting from the use of nuclear fuels or against the risks inherent in other fuels. Due to lack of sufficient data in certain areas the results obtained are subject to a large degree of uncertainty and therefore the results indicate an order of magnitude rather than exact values of hazard. The total hazard can be expressed as 6.0 ± 4.8 x 10-3 fatalities and 4.8 ± 0.7 x l0-2 injuries per 1 GWy of electricity produced

  10. The CANDU irradiated fuel safeguards sealing system at the threshold of implementation

    International Nuclear Information System (INIS)

    The development of a safeguards containment and surveillance system for the irradiated fuel discharged from CANDU nuclear generating stations has inspired the development of three different sealing technologies. Each seal type utilizes a random seal identity of different design. The AECL Random Coil (ARC) Seal combines the identity and integrity elements in the ultrasonic signature of a wire coil. Two variants of an optical seal have been developed which features identity elements of crystalline zirconium and aluminum. The sealed cap-seal uses a conventional IAEA 'Type X Seal' (wire seal). The essential features and relative merits of each seal design are described

  11. ITER SAFETY TASK NID-10A:CANDU occupational exposure experience: ORE for ITER fuel cycle and cooling systems

    International Nuclear Information System (INIS)

    This report contains information on TRITIUM Occupational Exposure (Internal Dose) from typical CANDU Nuclear Generating Stations. In addition to dose, airborne tritium levels are provided, as these strongly influence operational exposure. The exposure dose data presented in this report cover a period of five years of operation and maintenance experience from four CANDU Reactors and are considered representative of other CANDU reactors. The data are broken down according to occupational function ( Operators, Maintenance and Support Service etc.). The referenced systems are mainly centered on CANDU Hear Transport System, Moderator System, Tritium Removal Facility and Heavy Water (D20) Upgrading System. These systems contain the bulk part of tritium contamination in the CANDU Reactor. Because of certain similarities between ITER and CANDU systems, this data can be used as the most relevant TRITIUM OCCUPATIONAL DOSE information for ITER COOLING and FUEL CYCLE systems dose assessment purpose, if similar design and operation principles as described in the report are adopted. (author). 16 refs., 8 tabs., 13 figs

  12. Neutronic performance of ({sup Reprocessed}U/Th)O{sub 2} fuel in CANDU 6 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Gholamzadeh, Z. [Talca Univ. (Chile). Dept. of Energy; Mirvakili, S.M. [Nuclear Science and Technology Research Institute, Reactor Research School, Tehran (Iran, Islamic Republic of); Feghhi, S.A.H. [Shahid Beheshti Univ., Dept. of Radiation Application, Tehran (Iran, Islamic Republic of)

    2015-07-15

    Utilization of thorium-based fuel in different reactors has been under investigation for several decades. In fact, excellent breeding features, rather flattened distribution of power as well as proliferation resistance of such fuel cycle draws the attention towards utilization of this type of fuel in nuclear power technology. In the present study, the neutronic performance of a typical thorium core loading is addressed. In this configuration, a mixed uranium and thorium oxide is loaded in CANDU 6 reactor. The obtained results determine a total peaking factor of 2.73 for the proposed configuration. The values obtained for the β and the β{sub eff} are 332 and 303 pcm respectively. The core reactivity coefficients were more negative comparing the CANDU 6 loaded with {sup nat}UO{sub 2}. The initial fissile material loaded in the core increased by a factor of 1.5 after 730 GWd burnup. The obtained burn-up results show the core reactivity variations were highly positive after 6 and 12 h shut down because of considerably high buildup of {sup 233}Pa after 1-year core operation at 2000 MW power.

  13. The simulation of CANDU fuel channel behavior in thermal transient conditions

    International Nuclear Information System (INIS)

    In certain LOCA conditions into the CANDU fuel channel, is possible the ballooning of the pressure tube and the contact with the calandria tube. After the contact moment, a radial heat transfer to the moderator through the contact area is occurs. When the temperature of channel walls increases, the contact area is drying and the heat transfer becomes inefficiently. Thus, the fuel channel could lose its integrity. This paper present a computer code, DELOCA, developed in INR, which simulate the transient thermo-mechanical behaviour of CANDU fuel channel before and after contact. The code contains few models: alloy creep, heat transfer by conduction through the cylindrical walls, channel failure criteria and calculus of heat transfer at the calandria tube - moderator interface. This code evaluates the contact and channel failure moments. It was verified step by step by Contact1 and Cathena codes. In this paper, the results obtained at different temperature increasing rates are presented. Also, the contact moment for a RIH 5% postulated accident was presented. The input data was furnished by the Cathena thermo-hydraulic code. (author)

  14. The economics of advanced fuel cycles in CANDU (PHW) reactors

    International Nuclear Information System (INIS)

    The economic assessments of advanced fuel cycles performed within Ontario Hydro are collated and summarized. The results of the analyses are presented in a manner designed to provide a broad perspective of the economic issues regarding the advanced cycles. The enriched uranium fuel cycle is shown to be close to competitive at today's uranium prices, and its relative position vis-a-vis the natural uranium cycle will improve as uranium prices continue to rise. In the longer term, the plutonium-topped thorium cycle is identified as being the most economically desirable. It is suggested that this cycle may not be commercially attractive until the second or third decade of the next century. (auth)

  15. CANDU 9 safety improvements

    International Nuclear Information System (INIS)

    The CANDU 9 is a family of single-unit Nuclear Power Plant designs based on proven CANDU concepts and equipment from operating CANDU plants capable of generating 900 MWe to 1300 MWe depending on the number of fuel channel used and the type of fuel, either natural uranium fuel or slightly enriched uranium fuel. The basic design, the CANDU 9 480/NU, uses the 480 fuel channel Darlington reactor and employs Natural Uranium (NU) fuel Darlington, the latest of the 900 MWe Class CANDU plants, consists of four integrated units with a total output of approximately 3740 MWe located in Ontario, Canada. AECL has completed the concept definition engineering for this design, and will be completing the design integration engineering by the end of 1996. AECL's design philosophy is to build-in product improvements in evolutionary from the initial prototype plants, NPD and Douglas Point, to today's operating CANDU's construction projects and advanced designs. CANDU 9 safety design follows the evolutionary path, including simple improvements based on existing well-proven CANDU safety concepts. The CANDU 9 builds on the experience base for the Darlington reference plant, and on AECL's extensive safety design experience with single unit CANDU 6 power plants. The latest CANDU 6 plants are being built in Korea by KEPCO at Wolsong 2,3 and 4. The Safety improvements for the CANDU 9 power plant are intended to provide the owner-operator with increased assurance of reliable, trouble-free operation, with greater safety margin, with improved public acceptance, and with ease of licensibility

  16. Evolution of procurement and supply conditions for CANDU fuels

    International Nuclear Information System (INIS)

    In 1955 a decision was made to proceed with construction of a Nuclear Power Demonstration Station (NPD) near Rolphton, Ontario. This project, headed by Atomic Energy of Canada with major involvement of private industry, was the genesis for the development of nuclear electric generation in Canada. This paper reviews one aspect of the Canadian program: the evolution of fuel procurement and supply, which in itself has been a remarkable Canadian achievement. (author)

  17. The vault model for the disposal of used CANDU fuel

    International Nuclear Information System (INIS)

    The Vault Model has been developed to assess the performance of engineered barriers in a conceptual disposal vault for used nuclear fuel. The disposal concept being assessed is that of a sealed vault mined at a depth of 500 to 1000 m in plutonic rock in the Canadian Shield. This report documents the conceptual and mathematical framework of the Vault Model. The model represents (i) failure modes for titanium-based containers, including short-term failures due to undetected manufacturing defects and long-term failures due to uniform and local corrosion; (ii) release and radionuclides from used fuel, including relatively fast release of soluble fission products from gap and grain boundaries, and slow, congruent release controlled by the dissolution of the fuel matrix itself; and (iii) mass transport of released radionuclides through the clay-based sealing materials surrounding the waste container, including diffusion, convection, retardation and radioactive decay effects. In addition, this report presents the results of preliminary scoping calculations carried out using the Vault Model. These calculations provide insight into the model and produce test cases for comparison with simple analytical estimates and with similar computer codes, as they become available. The analytic estimate generally support the Vault Model results and thus enhance our confidence in the accuracy of the Vault Model calculations

  18. ASSERT/NUCIRC commissioning for CANDU 6 fuel channel CCP analysis

    International Nuclear Information System (INIS)

    CANDU PHWR fuel channel pressure tubes will expand or creep under long-term (aging process) influence of temperature, pressure, and neutron flux. This diametral pressure tube creep will influence the critical channel power (CCP), or conditions that lead to dryout. In order to provide safety analysis models to quantify the effect of diametral pressure tube creep on CCP, a COG (AECL/NBP/HQ) project is underway to commission the ASSERT and NUCIRC codes to establish reliable production tools for the assessment of CANDU6 CCP in nominal (uncrept) and crept pressure tube fuel channels. This paper gives an overview of the background and objectives of the project along with a brief introduction into the subchannel analysis code ASSERT and the 1-D thermalhydraulics code NUCIRC. This project is a multistage endeavour, for which the first stage results are presented. A detailed cross-comparison of the 1-D (NUCIRC) and subchannel (ASSERT) models of pressure drop (ΔP) and critical heat flux (CHF) has been undertaken and has led to several enhancements and refinements to the respective models. These results are presented in addition to results of ASSERT commissioning against NUCIRC for a matrix of ΔP and dryout cases in a nominal pressure tube, which are based upon Gentilly 2 and Point Lepreau site area. Additionally, the initial results of an assessment, using ASSERT, of the effects of creep on ΔP are presented. In concluding, the status and future directions for ASSERT/NUCIRC CANDU 6 CCP analysis project are summarized. (author). 2 refs., 12 figs

  19. Progress in developing an on-line fuel-failure monitoring tool for CANDU reactors

    International Nuclear Information System (INIS)

    This paper describes the continued development of an on-line defected fuel diagnostic tool for CANDU reactors. One of the key capabilities of this tool is the ability to estimate the power and number of defects in the core based on the Gaseous Fission Product Monitoring System (GFP), and grab sample data. To perform this analysis, a clear understanding of the empirical diffusion coefficient D' [s-1] is required. This paper examines two existing models for D' and presents a new model based on 133Xe release data from commercial reactor experience. The new model is successfully applied to commercial data to demonstrate a novel technique for extracting defected fuel element power from GFP data during a reactor power change. The on-line defected fuel diagnostic tool is in a developmental stage, and this paper reports the latest enhancements. (author)

  20. A catalogue of advanced fuel cycles in CANDU-PHW reactors

    International Nuclear Information System (INIS)

    A catalogue raisonne is presented of various advanced fuel cycle options which have the potential of substantially improving the uranium utilization for CANDU-PHW reactors. Three categories of cycles are: once-through cycles without recovery of fissile materials, cycles that depend on the recovery and recycle of fissile materials in thorium or uranium, cycles that depend primarily on the production of fissile material in a fertile blanket by means of an intense neutron source other than fission, such as an accelerator breeder. Detailed tables are given of the isotopic compositions of the feed and discharge fuels, the logistics of materials and processes required to sustain each of the cycles, and tables of fuel cycle costs based on a method of continuous discounting of cash flow

  1. Measurement of krypton grain-boundary inventories in CANDU fuel

    International Nuclear Information System (INIS)

    A technique for measuring the Kr-85 grain-boundary inventory in irradiated fuel based on the conversion of UO2 to U3O8 at low temperatures has been improved. The improvements include: 1) the use of a tracer isotope to account for release from the matrix during measurement of the grain-boundary inventory and 2) the cutting of samples from known locations. With these improvements it is possible to measure radial variations in the grain-boundary inventory. The measurements of Kr-85 grain-boundary inventory can be combined with gamma mapping and ceramography to allow investigation of the connection between microstructure and fission-product distribution. (author)

  2. A model for fuel rod and tie rod elongations in boiling water reactor fuel bundles

    International Nuclear Information System (INIS)

    A structural model is developed to determine the relative axial displacements of the spring held fuel rods to the tie rods in Boiling Water Reactor fuel bundles. An irradiation dependent relaxation model, which considers a two stage relaxation process dependent upon the fast fluence is used for the compression springs. The changes in spring compression resulting from the change in the length of the zircaloy fuel cladding due to irradiation enhanced anisotropic creep and growth is also considered in determining the time dependent variation of the spring forces. The time dependence of the average linear heat generation rates and their axial distributions is taken into account in determining the fuel cladding temperatures and fast fluxes for the various fuel rod locations within each of the BWR fuel bundles whose relative displacements were measured and used in this verification study. (orig.)

  3. The effects of actinide based fuels on incremental cross sections in a Candu reactor

    International Nuclear Information System (INIS)

    The reprocessing of spent fuel such as the extraction of actinide materials for use in mixed oxide fuels is a key component of reducing the end waste from nuclear power plant operations. Using recycled spent fuels in current reactors is becoming a popular option to help close the fuel cycle. In order to ensure safe and consistent operations in existing facilities, the properties of these fuels must be compatible with current reactor designs. This paper examines the features of actinide mixed oxide fuel, TRUMOX, in a CANDU reactor. Specifically, the effect of this fuel design on the incremental cross sections related to the use of adjuster rods is investigated. The actinide concentrations studied in this work were based on extraction from thirty year cooled spent fuel and mixed with natural uranium to yield a MOX fuel of 4.75% actinide by weight. The incremental cross sections were calculated using the DRAGON neutron transport code. The results for the actinide fuel were compared to those for standard natural uranium fuel and for a slightly enriched (1% U-235) fuel designed to reduce void reactivity. Adjuster reactivity effect calculations and void reactivity simulations were also performed. The impact of the adjuster on reactivity decreased by as much as 56% with TRUMOX fuel while the CVR was reduced by 71% due to the addition of central burnable poison. The incremental cross sections were largely affected by the use of the TRUMOX fuel primarily due to its increased level of fissile material (five times that of NU). The largest effects are in the thermal neutron group where the ΣT value is increased by 46.7%, the Σny) values increased by 13.0% and 9.9%. The value associated with thermal fission, υΣf, increased by 496.6% over regular natural uranium which is expected due to the much higher reactivity of the fuel. (author)

  4. Studies of a larger fuel bundle for the ABWR improved evolutionary reactor

    International Nuclear Information System (INIS)

    Studies for an Improved Evolutionary Reactor (IER) based on the Advanced Boiling Water Reactor (ABWR) were initiated in 1990. The author summarizes the current status of the core and fuel design. A core and fuel design based on a BWR K-lattice fuel bundle with a pitch larger than the conventional BWR fuel bundle pitch is under investigation. The core and fuel design has potential for improved core design flexibility and improved reactor transient response. Furthermore, the large fuel bundle, coupled with a functional control rod layout, can achieve improvement of operation and maintenance, as well as improvement of overall plant economy

  5. LVRF fuel bundle manufacture for Bruce - project update

    International Nuclear Information System (INIS)

    In response to the Power Uprate program at Bruce Power, Zircatec has committed to introduce, by Spring 2006 a new manufacturing line for the production of 43 element Bruce LVRF bundles containing Slightly Enriched Uranium (SEU) with a centre pin of blended dysprosia/urania (BDU). This is a new fuel design and is the first change in fuel design since the introduction of the current 37 element fuel over 20 years ago. Introduction of this new line has involved the introduction of significant changes to an environment that is not used to rapid changes with significant impact. At ZPI we have been able to build on our innovative capabilities in new fuel manufacturing, the strength and experience of our core team, and on our prevailing management philosophy of 'support the doer'. The presentation will discuss some of the novel aspects of this fuel introduction and the mix of innovative and classical project management methods that are being used to ensure that project deliverables are being met. Supporting presentations will highlight some of the issues in more detail. (author)

  6. Simulator for candu600 fuel handling system. the experimental model

    International Nuclear Information System (INIS)

    A main way to increase the nuclear plant safety is related to selection and continuous training of the operation staff. In this order, the computer programs for training, testing and evaluation of the knowledge get, or training simulators including the advanced analytical models of the technological systems are using. The Institute for Nuclear Research from Pitesti, Romania intend to design and build an Fuel Handling Simulator at his F/M Head Test Rig facility, that will be used for training of operating personnel. This paper presents simulated system, advantages to use the simulator, and the experimental model of simulator, that has been built to allows setting of the requirements and fabrication details, especially for the software kit that will be designed and implement on main simulator. (authors)

  7. Seismic Structure-Soil-Structure Interaction Analysis of a Consolidated Dry Storage Module for CANDU Spent Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Young Gon; Yoon, Jeong Hyoun; Kim, Sung Hwan; Yang, Ke Hyung; Lee, Heung Young; Cho, Chun Hyung [Korea Hydro and Nuclear Power Co., Ltd., Daejeon (Korea, Republic of); Choi, Kyu Sup; Jeong, In Su [KONES Corporation, Seoul (Korea, Republic of)

    2005-07-01

    The MACSTOR/KN-400 module has been developed as an effective alternative to the existing stand alone concrete canister for dry storage of CANDU spent fuel. The structure is a concrete monolith of 21.67 m long and 12.66 m wide and has a height equal to 7.518 m including the bottom slab. Inside the concrete module consists of 40 storage cylinders accommodating ten 60-bundle dry storage baskets, which are suspended from the top slab and eventually restrained at 10 cm above the bottom slab with horizontal seismic restraints. The main cooling process of the MACSTOR/KN-400 module shall be by air convection through air inlets and outlets. The civil design parameters, with respect to meteorological and seismic loads applied to the module are identical to those specified for the Wolsung CANDU 3 and 4 plants, except for local site characteristics required for soilstructure interaction (SSI) analysis. It is required for the structural integrity to fulfill the licensing requirements. As per USNRC SRP Section 3.7.2, it shall be reviewed how to consider the phenomenon of coupling of the dynamic response of adjacent structures through the soil, which is referred to as structure-soil-structure interaction (SSSI). The presence of closely spaced multiple structural foundations creates coupling between the foundations of individual structures . Some observations of the actual seismic response of structures have indicated that SSSI effects do exist, but they are generally secondary for the overall structural response motions. SSSI effects, however, may be important for a relatively small structure which is to be close to a relatively large structure, while they may be generally neglected for overall structural response of a large massive structure, such as nuclear power plant. As such the scope of the present paper is to carry out a seismic SSSI analysis in case of the MACSTOR/KN- 400 module, in order to investigate whether or not SSSI effect shall be included in the overall seismic

  8. Use of ELOCA.Mk5 to calculate transient fission product release from CANDU fuel elements

    International Nuclear Information System (INIS)

    A change in fuel element power output, or a change in heat transfer conditions, will result in an immediate change in the temperature distribution in a fuel element. The temperature distribution change will be accompanied by concomitant changes in fuel stress distribution that lead, in turn, to a release of fission products to the fuel-to-sheath gap. It is important to know the inventory of fission products in the fuel-to-sheath gap, because this inventory is a major component of the source term for many postulated reactor accidents. ELOCA.Mk5 is a FORTRAN-77 computer code that has been developed to estimate transient releases to the fuel-to-sheath gap in CANDU reactors. ELOCA.Mk5 is an integration of the FREEDOM fission product release model into the ELOCA fuel element thermo-mechanical code. The integration of FREEDOM into ELOCA allows ELOCA.Mk5 to model the feedback mechanisms between the fission product release and the thermo-mechanical response of the fuel element. This paper describes the physical model, gives details of the ELOCA.Mkt code, and describes the validation of the model. We demonstrate that the model gives good agreement with experimental results for both steady state and transient conditions

  9. LONGER: a computer program for longitudinal ridging and axial collapse assessment of CANDU fuel

    International Nuclear Information System (INIS)

    CANDU® fuel element sheath is designed to be thin and flexible for the benefit of enhanced heat transfer from the pellet to the coolant through the sheath. The flexibility of the sheath may allow the formation of longitudinal ridges on the sheath or collapse of the sheath into an axial gap under certain conditions. For both cases of deformations, the sheath may experience significant strains, and may result in sheath failure. To ensure the sheath mechanical integrity, the fuel element design needs to be assessed to preclude the conditions for longitudinal ridging and sheath collapse into the axial gap. The AECL developed LONGER computer program is used in fuel design analysis for such purpose. The LONGER code contains a number of models derived based on measurements (empirical models) and based on analytical equations, to predict the following parameters related to the deformations of CANDU nuclear fuel element sheaths. For longitudinal ridging: The critical diametral clearance for sheath longitudinal ridging, and The critical pressure for longitudinal ridging of the sheath. For axial collapse: The critical pressure for instantaneous sheath collapse into an axial gap. For circumferential collapse: The critical pressure for elastic collapse of the sheath, and The effective circumferential collapse pressure of the sheath by taking into account the axial and radial loads and the ovality of the sheath. The LONGER code has been qualified in accordance with the CSA standard N286.7-99 compliant AECL Software Quality Assurance (SQA) program. This paper describes the features and capabilities of the LONGER code that are used in CANDU fuel design analysis. (author)

  10. Optimized critical power in a fuel bundle with part length rods

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, E.B.; Matzner, B.; Dix, G.E.; Wolters, R.A. Jr.; Reese, A.P.

    1993-07-20

    In a boiling water reactor having discrete bundles of fuel rods confined within channel enclosed fuel assemblies wherein the fuel bundle includes: a plurality of fuel rods for placement within said channel, each fuel rod containing fissile material for producing nuclear reaction; a lower tie plate for supporting the bundle of fuel rods within said channel, the lower tie plate joining the bottom of the channel to close the bottom end of the channel, the lower tie plate providing defined apertures for the inflow of water coolant in the channel between the fuel rods for generation of steam; the plurality of fuel rods extending from the lower tie plate wherein a single phase region of the water in the bundle is defined to an upward portion of the bundle wherein an annular flow regime of the water and steam in the bundle is defined during nuclear steam generating reaction; an upper tie plate for supporting the upper end of the bundle of fuel rods, the upper tie plate joining the top of the channel, the upper tie plate providing apertures for the outflow of water and generated steam in the channel; spacers intermediate the upper and lower tie plates at preselected elevations along the fuel rods for maintaining the fuel rods in spaced apart location along the length of the fuel assembly including a first group of spacers in thelower region of the fuel bundle and a second group of spacers in the upper annular flow regime of the fuel bundle; a plurality of the fuel rods being part length extending from thelower tie plate towards the upper tie plate, the partial length fuel rods terminating at ends within the upper region of the fuel bundle before reaching the upper tie plate and causing deceased pressure drop in said annular flow regime of said fuel bundle during said nuclear steam generating reaction; the improvement to said bundle comprising: means in the annular flow regime of the fuel bundle for restoring at least some of the decreased pressure drop.

  11. Optimized critical power in a fuel bundle with part length rods

    International Nuclear Information System (INIS)

    In a boiling water reactor having discrete bundles of fuel rods confined within channel enclosed fuel assemblies wherein the fuel bundle includes: a plurality of fuel rods for placement within said channel, each fuel rod containing fissile material for producing nuclear reaction; a lower tie plate for supporting the bundle of fuel rods within said channel, the lower tie plate joining the bottom of the channel to close the bottom end of the channel, the lower tie plate providing defined apertures for the inflow of water coolant in the channel between the fuel rods for generation of steam; the plurality of fuel rods extending from the lower tie plate wherein a single phase region of the water in the bundle is defined to an upward portion of the bundle wherein an annular flow regime of the water and steam in the bundle is defined during nuclear steam generating reaction; an upper tie plate for supporting the upper end of the bundle of fuel rods, the upper tie plate joining the top of the channel, the upper tie plate providing apertures for the outflow of water and generated steam in the channel; spacers intermediate the upper and lower tie plates at preselected elevations along the fuel rods for maintaining the fuel rods in spaced apart location along the length of the fuel assembly including a first group of spacers in thelower region of the fuel bundle and a second group of spacers in the upper annular flow regime of the fuel bundle; a plurality of the fuel rods being part length extending from thelower tie plate towards the upper tie plate, the partial length fuel rods terminating at ends within the upper region of the fuel bundle before reaching the upper tie plate and causing deceased pressure drop in said annular flow regime of said fuel bundle during said nuclear steam generating reaction; the improvement to said bundle comprising: means in the annular flow regime of the fuel bundle for restoring at least some of the decreased pressure drop

  12. Modelling of fuel bundle deformation at high temperatures: requirements, models and steps for consideration

    International Nuclear Information System (INIS)

    To model thermal mechanical bundle deformation behaviour under high temperature conditions, several factors need to be considered. These are the sources of loads, deformation mechanisms, interactions within bundle components, bundle and pressure tube (PT) interaction, and boundary constraints on the fuel bundles under in-reactor conditions. This paper describes the modelling of the following three processes: Bundle slumping due to high temperature creep-sag of individual elements and endplates; Differential element expansion and fuel element bowing; and, Bundle distortion under axial loads. To model these processes, a number of key mechanisms for bundle deformation must be considered, which include: 1) Interaction of fuel elements in a bundle with their neighbours, 2) Endplate deformation, 3) Fuel elements lateral deformation under various loads and mechanisms, 4) Interaction within a fuel element, 5) Material property change at high temperatures, 6) Transient response of a bundle, and 7) Bundle configuration change. This paper summarises the new models needed for the mechanistic modelling of the key mechanisms mentioned above and provides an example to show how an endplate plasticity model is developed with results. (author)

  13. Fuel bundle examination techniques for the Phebus fission product test

    International Nuclear Information System (INIS)

    The paper develops the non-destructive examinations, with a special emphasis on transmission tomography, performed in the Phebus facility, using a linear accelerator associated with a line scan camera based on PCD components. This particular technique enabled the high level of penetration to be obtained, necessary for this high density application. Spatial resolution is not far from the theoretical limit and the density resolution is often adequate. This technique permitted: 1) to define beforehand the cuts on a precise basis, avoiding a long step-by-step choice as in previous in-pile tests; 2) to determine, at an early stage, mass balance, material relocations (in association with axial gamma spectrometry), and FP distribution, as an input into re-calculations of the bundle events. However, classical cuttings, periscopic visual examinations, macrographies, micrographies and EPMA analyses remain essential to give oxidation levels (in the less degraded zones), phase aspect and composition, to distinguish between materials of identical density, and, if possible, to estimate temperatures. Oxidation resistance of sensors (thermocouples or ultrasonic thermometers) is also traced. The EPMA gives access to the molten material chemical analyses, especially in the molten fuel blockage area. The first results show that an important part of the fuel bundle melted (which was one of the objectives of this test) and that the degradation level is close to TIMI-2 with a molten plug under a cavity surrounded by an uranium-rich crust. In lower and upper areas fuel rods are less damaged. Complementaries between these examination techniques and between international teams involved will be major advantages in the Phebus FPT0 test comprehension. 3 refs, 9 figs

  14. Development of a best estimate auditing code for CANDU thermal hydraulic safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chung, B.D.; Lee, W.J.; Lim, H.S. [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-03-01

    The main purpose of this study is to develop a thermal hydraulic auditing code for the CANDU reactor, modifying the model of existing PWR auditing tool , i.e. RELAP5/MOD3. This scope of project is a third step of the whole project, and expand the RELAP5/MOD3/CANDU version for implementation of LOCA Analysis. There are three main area of model development, i.e. Moody critical flow model, flow regime model of horizontal CANDU bundle, and fuel element heatup model when the stratification occurs. Newly developed version, namely RELAP5/MOD3/CANDU+ is applicable to CANDU plant analysis with keeping the function of light water reactor analysis. The limited validations of model installation were performed. Assessment of CHF model using AECL separated effect test and calculation for Wolsong 2 plant were performed also for the applicability test of the developed version. 15 refs., 37 figs., 8 tabs. (Author)

  15. Development of best estimate auditing code for CANDU thermal hydraulic safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chung, B. D.; Lee, W. J.; Lim, H. S. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2000-03-15

    The main purpose of this study is to develop a thermal hydraulic auditing code for the CANDU reactor, modifying the model if existing PWR auditing tool, i.e. RELAP5/MOD3. This scope of project is a third step of the whole project, and expand the RELAP5/MOD3/CANDU version for implementation of LOCA analysis. There are three main area of model development, i.e. moody critical flow model, flow regime model of horizontal CANDU bundle, and fuel element heatup model when the stratification occurs. Newly developed version, namely RELAP5/MOD3/CANDU+ is applicable to CANDU plant analysis with keeping the function of light water reactor analysis. The limited validations of model installation were performed. Assessment of CHF model using AECL separated effect test and calculation for Wolsong 2 plant were performed also for the applicability test of the developed version.

  16. Radiological assessment of 36Cl in the disposal of used CANDU fuel

    International Nuclear Information System (INIS)

    An assessment of the potential radiological impact of 36Cl in the disposal of used CANDU fuel has been performed. The assessment was based on new data on chlorine impurity levels in used fuel. Data bases for the vault, geosphere, and biosphere models used in the EIS postclosure assessment case study (Goodwin et al. 1994) were modified to include the necessary 36Cl data. The resulting safety analysis shows that estimated radiological risks from 36Cl are forty times lower than from 129I at 104 a; this, incorporation of 36Cl into the models does not change the overall conclusions of the study of Goodwin et al. (1994a). For human intrusion scenarios, an analysis using the methodology of Wuschke (1992) showed that the maximum risk is unaffected by the inclusion of 36Cl. (author). 51 refs., 5 tabs., 15 figs

  17. Analytical assessment for stress corrosion fatigue of CANDU fuel elements under load following conditions

    Energy Technology Data Exchange (ETDEWEB)

    Horhoianu, Grigore; Ionescu, Drags; Pauna, Eduard [Institute for Nuclear Research, Pitesti (Romania). Nuclear Fuel Engineering Lab.

    2012-03-15

    When nuclear power reactors are operated in a load following (LF) mode, the nuclear fuel may be subjected to step changes in power on weekly, daily, or even hourly basis, depending on the grid's needs. Two load following tests performed in TRIGA Research Reactor of Institute for Nuclear Research (INR) Pitesti were simulated with finite elements computer codes in order to evaluate Stress Corrosion Fatigue (SCF) of the sheath arising from expansion and contraction of the pellets in the corrosive environment. The 3D finite element analyses show that the cyclic strains give highly multiaxial stresses in the sheath at ridge region. This paper summarizes the results of the analytical assessment for SCF and their relation to CANDU fuel performance in LF tests conditions. (orig.)

  18. Benchmark calculations of a radiation heat transfer for a CANDU fuel channel analysis using the CFD code

    International Nuclear Information System (INIS)

    To justify the use of a commercial Computational Fluid Dynamics (CFD) code for a CANDU fuel channel analysis, especially for the radiation heat transfer dominant conditions, the CFX-10 code is tested against three benchmark problems which were used for the validation of a radiation heat transfer in the CANDU analysis code, a CATHENA. These three benchmark problems are representative of the CANDU fuel channel configurations from a simple geometry to a whole fuel channel geometry. For the solutions of the benchmark problems, the temperature or the net radiation heat flux boundary conditions are prescribed for each radiating surface to determine the radiation heat transfer rate or the surface temperature, respectively by using the network method. The Discrete Transfer Model (DTM) is used for the CFX-10 radiation model and its calculation results are compared with the solutions of the benchmark problems. The CFX-10 results for the three benchmark problems are in close agreement with those solutions, so it is concluded that the CFX-10 with a DTM radiation model can be applied to the CANDU fuel channel analysis where a surface radiation heat transfer is a dominant mode of the heat transfer. (author)

  19. CFD and DNS methodologies development for fuel bundle simulations

    International Nuclear Information System (INIS)

    Development and application of Computational Fluid Dynamics (CFD) and Direct Numerical Simulation (DNS) approaches to the simulation of coolant flow inside nuclear fuel bundles are presented, focusing on the advantages and limitations of the different methodologies and on their synergetic potential. High Reynolds number flow cases are analyzed with the adoption of an improved anisotropic turbulence modeling, which adopts a non-linear stress strain correlation and an improved near wall treatment. The capability of the model of predicting the coolant flow distribution inside the bundles is shown and discussed on the base of comparison with experimental data for a variety of geometrical and Reynolds number conditions. In particular wall shear stresses, velocity, and secondary flow distributions comparisons are shown. Moreover, DNS computations are performed adopting an algorithm based on the finite difference method, extended to boundary fitted coordinate systems in order to efficiently concentrate grids near the distorted wall boundaries. The validity and significance of the results is discussed underlying the importance of the insights into the turbulence structure. The calculations are further extended to higher Reynolds numbers, which cannot in general be treated with DNS approach, renouncing to the estimation of the higher-order moments, but limited to the evaluation of the averaged velocity profiles, turbulence intensities and Reynolds stresses. (authors)

  20. Intercomparison of safety evaluations for CANDU or LWR burned fuel disposed in a salt massive

    International Nuclear Information System (INIS)

    A safety analysis of a generic vault, located into a salt massive, was carried out for for spent fuel from CANDU or LWR NPPs. Three scenarios were considered for the evolution of the system: - sub-erosion, as normal evolution, - a combined process of water intrusion through an anhydrous vein and from brine bags (remaining undetected in the vicinity of the repository areas), - human intrusion. As key parameter in evaluation of long-term repository's safety the biosphere exposure (dose) was chosen. For the first scenario considered the maximum dose, due mainly to U-234, was found below the German standard value of 3 x 10-4 Sv/y. The effects of sub-erosion rate and salt concentration in ground water on the maximum dose were calculated and found rather serious. Although, having in view the rather excessive conservative assumptions adopted (the barrier effect of the geosphere was neglected) more conclusive results should be based upon a more realistic approach of the issue. In the case of human intrusion scenario the maximum exposure would be 8 x 10-5 Sv/y for CANDU fuel and 1.3 x 10-4 Sv/y for LWR fuel, as due mainly to Np-237. The analyses of local sensitivity carried out to investigate the influence of input parameters upon the release in geosphere took into consideration four parameters: a. the solubility limits; b. the diffusion coefficients; c. reference convergence rate, Kr; d. the maximum brine pressure pmax. Due to the low probability of the human intrusion scenario the effects appear to be acceptable. For the case of combined scenario the maximum doses,were found to be 9 x 10-6 Sv/y and 1 x 10-7 Sv/y for CANDU and LWR, respectively, mainly due to I-129 and Ra-225, and to I-129 and Cs-135, respectively. The effects of brine bags upon the temperature in the repository and the radiological consequences are presented for the two types of spent fuels

  1. Laser dismantling of PHWR spent fuel bundles and decladding of fuel pins in the highly radioactive hot cells

    International Nuclear Information System (INIS)

    Full text: For reprocessing of PHWR fuel, fuel bundles are at present chopped mechanically into small pieces of pins using high tonnage mechanical press before dissolution. The existing method of bundle dismantling is purely mechanical using very high force for chopping. A laser based automated bundle dismantling system is developed. In the system, end-plates of bundle, which holds the fuel pins together, are cut using Nd-YAG laser to separate the bundles into pins. In addition to pin separation, the pins are to be chopped into small pieces using a small mechanical chopper. Since the spent fuel is highly radioactive, all these operations are performed remotely in hot cells. Post irradiation examination also requires dismantling of bundles into pins so that they can select the pins for the further examinations. In both these applications laser dismantling remains the most. important step and this system has been developed and tested. This paper describes the experience gained during the development efforts

  2. Cap assembly for a bundled tube fuel injector

    Energy Technology Data Exchange (ETDEWEB)

    LeBegue, Jeffrey Scott; Melton, Patrick Benedict; Westmoreland, III, James Harold; Flanagan, James Scott

    2016-04-26

    A cap assembly for a bundled tube fuel injector includes an impingement plate and an aft plate that is disposed downstream from the impingement plate. The aft plate includes a forward side that is axially separated from an aft side. A tube passage extends through the impingement plate and the aft plate. A tube sleeve extends through the impingement plate within the tube passage towards the aft plate. The tube sleeve includes a flange at a forward end and an aft end that is axially separated from the forward end. A retention plate is positioned upstream from the impingement plate. A spring is disposed between the retention plate and the flange. The spring provides a force so as to maintain contact between at least a portion of the aft end of the tube sleeve and the forward side of the aft plate.

  3. MENT reconstruction and potting comparison of a LMFBR fuel bundle

    International Nuclear Information System (INIS)

    Since the advent of computer-assisted-tomography (CAT), the CAT techniques have been rapidly expanded to the nuclear industry. A number of investigators have applied these techniques to reconstruct the fuel bundle configuration inside a subassembly with various degrees of resolution; however, there has been little data available on the accuracy of these reconstructions, and no comparisons have been made with the internal structure of actual irradiated subassemblies. Some efforts have utilized pretest mock-ups to calibrate the CAT algorithms, but the resulting mock-up configurations do not necessarily represent an actual subassembly, so an exact comparison has been lacking. The purpose of this paper is to present the results of a comparison between a CAT reconstruction of an irradiated subassembly and the destructive examination of the same subassembly

  4. Optimization of the self-sufficient thorium fuel cycle for CANDU power reactors

    Directory of Open Access Journals (Sweden)

    Bergelson Boris R.

    2008-01-01

    Full Text Available The results of optimization calculations for CANDU reactors operating in the thorium cycle are presented in this paper. Calculations were performed to validate the feasibility of operating a heavy-water thermal neutron power reactor in a self-sufficient thorium cycle. Two modes of operation were considered in the paper: the mode of preliminary accumulation of 233U in the reactor itself and the mode of operation in a self-sufficient cycle. For the mode of accumulation of 233U, it was assumed that enriched uranium or plutonium was used as additional fissile material to provide neutrons for 233U production. In the self-sufficient mode of operation, the mass and isotopic composition of heavy nuclei unloaded from the reactor should provide (after the removal of fission products the value of the multiplication factor of the cell in the following cycle K>1. Additionally, the task was to determine the geometry and composition of the cell for an acceptable burn up of 233U. The results obtained demonstrate that the realization of a self-sufficient thorium mode for a CANDU reactor is possible without using new technologies. The main features of the reactor ensuring a self-sufficient mode of operation are a good neutron balance and moving of fuel through the active core.

  5. The button effect of CANFLEX bundle on the critical heat flux and critical channel power

    Energy Technology Data Exchange (ETDEWEB)

    Park, Joo Hwan; Jun, Jisu; Suk, Ho Chun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Dimmick, G. R.; Bullock, D. E.; Inch, W. [Atomic Energy of Canada Limited, Ontario (Canada)

    1997-12-31

    A CANFLEX (CANdu FLEXible fuelling) 43-element bundle has developed for a CANDU-6 reactor as an alternative of 37-element fuel bundle. The design has two diameter elements (11.5 and 13.5 mm) to reduce maximum element power rating and buttons to enhance the critical heat flux (CHF), compared with the standard 37-element bundle. The freon CHF experiments have performed for two series of CANFLEX bundles with and without buttons with a modelling fluid as refrigerant R-134a and axial uniform heat flux condition. Evaluating the effects of buttons of CANFLEX bundle on CHF and Critical Channel Power (CCP) with the experimental results, it is shown that the buttons enhance CCP as well as CHF. All the CHF`s for both the CANFLEX bundles are occurred at the end of fuel channel with the high dryout quality conditions. The CHF enhancement ratio are increased with increase of dryout quality for all flow conditions and also with increase of mass flux only for high pressure conditions. It indicates that the button is a useful design for CANDU operating condition because most CHF flow conditions for CANDU fuel bundle are ranged to high dryout quality conditions. 5 refs., 11 figs. (Author)

  6. CANDU 9 - Overview

    International Nuclear Information System (INIS)

    The CANDU 9 plants are single unit versions of the very successful four unit Bruce B design, incorporating relevant technical advances made in the CANDU 6 and the newer Dalington and CANDU 3 designs. The CANDU 9 plant described in this paper is the CANDU 9 480/SEU with a net electrical output in the range of 1050 MW. In this designation 480 refers to the number of fuel channels, and SEU refers to slightly enriched uranium. Emphasis is placed on evolutionary design and the use of well-proven design features to ensure minimum financial risk to utilities choosing a CANDU 9 plant by assuring regulatory licensability and reliable operation. In addition, the CANDU 9 power plants reflect the important lessons learned by utilities in the construction and operation of CANDU units and, indeed, relevant experience gained by the world nuclear community in its operation of over 400 reactors of a variety of types. As a results, the CANDU 9 plants offer a high level of investment security to the owner, together with relatively low energy costs. The latter results from reduced specific capital cost, reduced operation and maintenance cost, and reduced radiation exposure to plant staff. A high level of standardization has always been a feature of CANDU reactors. This theme is emphasized in the CANDU 9 plants; all key components (steam generators, heat transport pumps, pressure tubes, fuelling machines, etc.) are of the same design as those proven in-service on operating CANDU power stations. The CANDU 9 power plants are readily adaptable to the individual requirements of different utilities and are suitable for a range of site conditions. (author). 12 figs

  7. Development of the cooling technology on TRU fuel pin bundle during fuel fabrication process (4). Steady state cooling test of full mock up fuel pin bundle

    International Nuclear Information System (INIS)

    The development of the fast reactor cycle is being preceded in Japan to utilize plutonium and trans-uranium materials which come from the simplified PUREX reprocessing. But the TRU fuel bundle generates heat due to fission of TRU during the fabrication process of the wire wrapped Fast Breeder Reactor (FBR) fuel pin bundle. Then it is a big issue to develop an efficient cooling system for the horizontally laid bundle and to clarify its thermal behavior. Then in this paper the steady state full mock up test results are described. Inlet air velocity and heat generation rate were varied in the tests as the parameter. Then it is ascertained that the fuel can be cooled under the 473 K which is the criterion for the steady state cooling of this study to keep cladding soundness. The temperature and velocity fields of the bundle upper side were also measured by moving thermocouples to vertical and horizontal directions, by the infrared thermometer and by PIV (Particle Image Velocimetry). Then the temperature and velocity fields at outlet region are clarified. (author)

  8. Release of 14C from the gap and grain-boundary regions of used CANDU fuels to aqueous solutions

    International Nuclear Information System (INIS)

    This study was undertaken as part of the Canadian Nuclear Fuel Waste Management Program (CNFWMP), to measure 14C inventories of used CANDU fuel. Other objectives were to measure the fraction of the total 14C inventory that would be instantly released to solution from used CANDU fuels upon sheath failure and to determine if the assumptions made in safety assessment calculations of used fuel waste disposal regarding instant release of 14C were correct. Results showed that the measured 14C inventories were a factor of 11.5 ± 3.9 lower than the estimated 14C inventory values used in safety assessment calculations. Measured instant release values for 14C ranged from 0.06 to 5.04% (of total 14C inventories) with an average of 2.7 ± 1.6%, indicating that instant release fractions for 14C used in safety assessment calculations (1.2--25%) were overestimated

  9. Assessment of the performance of used CANDU fuel under disposal conditions

    International Nuclear Information System (INIS)

    Results of the work conducted since 1991 on determining gap and/or grain-boundary inventories for several important radionuclides such as 137Cs , 129I, 14C, 90Sr , 99Tc and 36Cl in used CANDU fuel and investigation of effect of parameters such as fuel power and burnup on their release rates is summarized in the report. Since the great majority of radionuclides are contained within the grains of the fuel pellets, the long-term release rate is governed by the dissolution rate of the uranium oxide matrix. Although UO2 is highly insoluble, the solubility of uranium increases by many orders of magnitude under oxidizing conditions. The rate of UO2 dissolution, and thus release of fission products from the fuel, is most sensitive to vault redox conditions, radiation field, groundwater composition and temperature and these factors have been investigated if justifiable assurances are to be given that radionuclide releases from a waste vault will be very limited. The redox conditions within a waste vault will evolve with time from initially oxidizing to eventually non-oxidizing as oxygen, trapped within the vault on sealing, is consumed and radiation fields, which can produce oxidants by the radiolysis of water, decay. Effective containment of the fuel should prevent its contact with groundwater until this redox evolution is complete. (author)

  10. Operation of CANDU power reactor in thorium self-sufficient fuel cycle

    Indian Academy of Sciences (India)

    B R Bergelson; A S Gerasimov; G V Tikhomirov

    2007-02-01

    This paper presents the results of calculations for CANDU reactor operation in thorium fuel cycle. Calculations are performed to estimate the feasibility of operation of heavy-water thermal neutron power reactor in self-sufficient thorium cycle. Parameters of active core and scheme of fuel reloading were considered to be the same as for standard operation in uranium cycle. Two modes of operations are discussed in the paper: mode of preliminary accumulation of 233U and mode of operation in self-sufficient cycle. For the mode of accumulation of 233U it was assumed for calculations that plutonium can be used as additional fissile material to provide neutrons for 233U production. Plutonium was placed in fuel channels, while 232Th was located in target channels. Maximum content of 233U in target channels was estimated to be ∼ 13 kg/t of ThO2. This was achieved by irradiation for six years. The start of the reactor operation in the self-sufficient mode requires 233U content to be not less than 12 kg/t. For the mode of operation in self-sufficient cycle, it was assumed that all channels were loaded with identical fuel assemblies containing ThO2 and certain amount of 233U. It is shown that nonuniform distribution of 233U in fuel assembly is preferable.

  11. The mode of operation of CANDU power reactor in thorium self-sufficient fuel cycle

    Directory of Open Access Journals (Sweden)

    Bergelson Boris R.

    2008-01-01

    Full Text Available This paper presents the results of calculations for CANDU reactor operation in the thorium fuel cycle. The calculations were performed to estimate feasibility of operation of a heavy-water thermal neutron power reactor in the self-sufficient thorium cycle. The parameters of the active core and the scheme of fuel reloading were considered to be the same as for the standard operation in the uranium cycle. Two modes of operation are discussed in the paper: the mode of preliminary accumulation of 233U and the mode of operation in the self-sufficient cycle. For calculations for the mode of accumulation of 233U, it was assumed that plutonium was used as the additional fissile material to provide neutrons for 233U production. Plutonium was placed in fuel channels, while 232Th was located in target channels. The maximum content of 233U in the target channels was about 13 kg/t of ThO2. This was achieved by six year irradiation. The start of reactor operation in the self-sufficient mode requires content of 233U not less than 12 kg/t. For the mode of operation in the self-sufficient cycle, it was assumed that all the channels were loaded with the identical fuel assemblies containing ThO2 and a certain amount of 233U. It was shown that the non-uniform distribution of 233U in a fuel assembly is preferable.

  12. Three Dimensional Finite Element Modelling of a CANDU Fuel Pin Using the ANSYS Finite Element Package

    International Nuclear Information System (INIS)

    The ANSYS finite element modelling package has been used to construct a three-dimensional, thermomechanical model of a CANDU fuel pin. The model includes individual UO2 pellets with end dishes and chamfers, and a Zircaloy-4 fuel cladding with end caps. Twenty node brick elements are used with both mechanical and thermal degrees of freedom, allowing for a full coupling between the thermal and mechanical solutions under both steady state and transient conditions. Each fuel pellet is modelled as a separate entity that interacts both thermally and mechanically with the cladding and other pellets via contact elements. The heat transfer between the pellets and cladding is dependent on both the interface pressure and temperature, and all material properties of both the pellets and the sheath are temperature dependant. Spatially and temporally varying boundary conditions for heat generation and convective cooling can be readily applied to the model. The model naturally exhibits phenomena such as pellet hour glassing and ridging of the cladding at the Pellet to pellet interfaces, allowing for the prediction of localized sheath stresses. The model also allows for the prediction of fuel pin bowing due to asymmetric thermal loads and fuel pin sagging due to overheating of the cladding, which may occur under accident conditions. (author)

  13. Application of Shuttle Remote Manipulator System technology to the replacement of fuel channels in the Pickering CANDU reactor

    International Nuclear Information System (INIS)

    Spar Aerospace Limited of Toronto was the prime contractor to the National Research Council of Canada for the design and development of the Shuttle Remote Manipulator (SRMS). Spar is presently under contract to Ontario Hydro to design and build a Remote Manipulation Control System to replace the fuel channels in the Pickering A Nuclear Generating Station. The equipment may be used to replace the fuel channels in six other early generation CANDU reactors

  14. Depleting a CANDU-6 fuel assembly using detailed burnup data and reactionwise energy release

    International Nuclear Information System (INIS)

    Temporal behavior of reactor fuel assembly due to neutron exposure is an integral part of lattice analysis. It is important to estimate the production of actinides and fission products as a function of burnup so as to decide the quality of fuel for further energy production. It is also important from the point of view of post irradiation behavior of fuel. The information on heat production during and after irradiation helps in determining the amount of time a fuel assembly needs to be cooled before taking it up for storage or reprocessing. In the present study we have considered the CANDU-6 fuel assembly as reference. Lattice analysis has been performed using development version of code DRAGON. A total of 192 nuclides have been selected as part of the analysis, of which 19 are actinides, 151 are fission products and the rest are structural elements. The fission products have been treated explicitly. There is no pseudo fission product. Using DRAGR module, a multigroup microscopic cross section library in DRAGLIB format has been generated. An important aspect of this library is the explicit treatment of most neutron induced reactions. We have for the first time attempted to perform power normalization due to energy from various neutron induced reactions including (n, γ), (n, f), (n, 2n), (n, 3n), (n, 4n), (n, α), (n, p), (n, 2α), (n, np), (n, d), (n, t). Energy due to decay has also been considered explicitly. Even though the decay energy contributes very little relative to the neutron induced reactions, the information will be very useful for post irradiation behavior of fuel. It was observed that the maximum contributing reactions for the power normalization are (n, f), (n, γ) and (n, 2n). We have assessed the contribution of fission products and actinides towards power normalization as a function of burnup. We have also studied the pinwise contribution towards power normalization in each ring of CANDU-6 fuel. We have attempted to compare the effect of

  15. Use of Utility Codes for Fuel Analysis during Off-Stagnation Feeder Break in CANDU

    International Nuclear Information System (INIS)

    Feeder break accident is regarded as one of the design basis accident in CANDU reactor which results in a fuel failure. For a particular range of inlet feeder break sizes, the flow in the channel is reduced sufficiently that the fuel and fuel channel integrity can be significantly affected to have damage in the affected channel, while the remainder of the core remains adequately cooled. The flow in the downstream channel can be more or less stagnated due to a balance between pressure at the break on the upstream side and the reverse driving pressure between the break and the downstream end. In the extreme, this can lead to rapid fuel heatup and fuel damage and failure of the fuel channel similar to that associated with a severe channel flow blockage. Such an inlet feeder break scenario is called a stagnation break. For an inlet feeder break which is slightly larger or smaller than that for the stagnation break case, the result is a channel flow which is low enough to result in fuel failure but high enough that the pressure tube remains intact. This event is identified as the off-stagnation break. In this report, the fuel analysis methodology and the usage of utility codes to evaluate the fission gas release during the off-stagnation feeder break are described. The accident was assumed to be occurred in the refurbished Wolsong unit 1 and the latest safety codes were used in the analysis. Fission product inventories during the steady state were calculated by using ELESTRES-IST 1.2 code. After starting the off-stagnation break, ELOCA code evaluated the timing of fuel failure and the following fission gas release due to the oxidation of the pellet are calculated by using several utility codes until the reactor trip. The calculated fission product releases are provided to the following dose assessment as a source term

  16. Cost analysis and economic comparison for alternative fuel cycles in the heavy water cooled canadian reactor (CANDU)

    International Nuclear Information System (INIS)

    Three main options in a CANDU fuel cycle involve use of: (1) natural uranium (0.711 weight percent U-235) fuel, (2) slightly enriched uranium (1.2 weight percent U-235) fuel, and (3) recovered uranium (0.83 weight percent U-235) fuel from light water reactor spent fuel. ORIGEN-2 computer code was used to identify composition of the spent fuel for each option, including the standard LWR fuel (3.3 weight percent U-235). Uranium and plutonium credit calculations were performed using ORIGEN-2 output. WIMSD-5 computer code was used to determine maximum discharge burnup values for each case. For the 3 cycles selected (natural uranium, slightly enriched uranium, recovered uranium), levelized fuel cycle cost calculations are performed over the reactor lifetime of 40 years, using unit process costs obtained from literature. Components of the fuel cycle costs are U purchase, conversion, enrichment, fabrication, SF storage, SF disposal, and reprocessing where applicable. Cost parameters whose effects on the fuel cycle cost are to be investigated are escalation ratio, discount rate and SF storage time. Cost estimations were carried out using specially developed computer programs. Share of each cost component on the total cost was determined and sensitivity analysis was performed in order to show how a change in a main cost component affects the fuel cycle cost. The main objective of this study has been to find out the most economical option for CANDU fuel cycle by changing unit prices and cost parameters

  17. Radical power profile effect of DUPIC bundle on critical heat flux

    International Nuclear Information System (INIS)

    The axial and ring power profiles of DUPIC bundle are much different from those of reference 37-element fuel bundle since a DUPIC fuel bundle is -re-fabricated under proliferation resistance using spent PWR fuel and 2-bundle shift refuelling scheme of DUPIC bundle is proposed to CANDU-6 reactor. In case that the ring power porfile of a fuel bundle is altered, the flow and enthalpy distribution of subchannels and the radial position of CHF occurrence will be changed. Similarly, the axial power profile of a fuel channel affects CHF, axial position of CHF occurrence, axial enthalpy, quality and pressure distribution. The ring power profile of the DUPIC bundle as increasing burnup is much altered and flattened at high burnup, compared to 37-element bundle. It caused that one fuel bundle has a different ring power profile from the other fuel bundles at the different axial positions even in the same fuel channel. Therefore, how to consider burnup or ring power effect on CHF is very important to DUPIC thermalhydraulic analysis. At present study, thermalhydraulic analysis of a DUPIC bundles was performed in order to evaluate the ring power profile effect on CHF. The subchannel enthalpy, mass flux and CHF distribution from 0 burnup to discharged burnup (18,000 MWd/tHM) of DUPIC bundle were evaluated using ASSERT-PV subchannel code. The results of DUPIC bundles were compared to those of 37-elemental bundle and the comparability of DUPIC bundle with an existing CANDU-6 was presented in a CHF point of view

  18. CANDU development: the next 25 years

    International Nuclear Information System (INIS)

    CANDU Pressurized Heavy Water Reactors have three main characteristics that ensure viability for the very long term. First, great care has been taken in designing the CANDU reactor core so that relatively few neutrons produced in the fission process are absorbed by structural or moderator materials. The result is a reactor with high neutron economy that can burn natural uranium and a core that operates with 2-3 times less fissile content than other, similarly-sized reactors. In addition to neutron economy, the use of a simple bundle design and on-power fuelling augment the ability of CANDU reactors to burn a variety of fuels with relatively low fissile content with high efficiency. This ensures that fuel supply will not limit the applicability of the technology over the long term. Second, the presence of large water reservoirs ensures that even the severest postulated accidents are mitigated by passive means. For example, the presence of the heavy water moderator, which operates at low pressure and temperature, acts as a passive heat sink for many postulated accidents. Third, the modular nature of the core (e.g., fuel channels) means that components can be relatively easily replaced for plant life extension and upgrading. Since these factors all influence the long-term sustainability of CANDU nuclear technology, it is logical to build on this base and to add improvements to CANDU reactors using an evolutionary approach. This paper reviews AECL's product development directions and shows how the above characteristics are being exploited to improve economics, enhance safety, and ensure fuel cycle flexibility for sustainable development. (author). 21 refs., 9 figs

  19. Investigation of the grain-boundary chemistry in used CANDU fuel by x-ray photoelectron spectroscopy (XPS)

    International Nuclear Information System (INIS)

    The grain-boundary chemistry of used CANDU fuel is being systematically investigated by X-ray photoelectron spectroscopy (XPS) using a McPherson ESCA-36 instrument that has been adapted for routine studies of highly radioactive materials. Initial stages of fuel corrosion under various storage and disposal conditions can be identified from chemical-shift effects for uranium. For example, pervasive but highly selective grain-boundary oxidation has been revealed in CANDU fuels exposed to moist air at 150 deg. C for extended periods, suggesting aggressive radiolytic processes operating in a thin film of adsorbed water. Pronounced segregation of a number of fission products to cracks and grain boundaries in used CANDU fuels has been explicitly demonstrated by XPS as well. Model calculations and composition depth profiles are indicative of near monolayer films. Some correlations between fuel power history and fission-product distributions have been established and possible evidence of migration during moist-air exposure has been obtained. The key advantages and limitations of XPS in this context are discussed and illustrated with selected results. (author). 23 refs, 8 figs, 1 tab

  20. Automation in inspection of PHWR fuel elements & bundles at Nuclear Fuel Complex

    International Nuclear Information System (INIS)

    Nuclear Fuel Complex (NFC), Hyderabad, a constituent of Department of Atomic Energy, India manufactures fuel for all Indian nuclear power reactors. Currently NFC manufactures both 19 element & 37 element bundles for catering to the requirement of 220 MWe & 540 MWe PHWRs. In order to meet the growing needs for the Nuclear Fuel, NFC engaged in expansion of the production facilities. This calls for enhanced throughput at various inspection stages keeping in tandem with the production & for achieving this objective, NFC has chosen automation. This paper deals with automation of the inspection line at NFC. (author)

  1. Formation of Corrosive Deposits and Their Impact on Operational Safety of Fuel Elements in Candu Reactor

    International Nuclear Information System (INIS)

    Interaction between fuel element cladding and water coolant plays an important role in normal operation, can have a dominant role in accidental situations and can lead to failure of fuel rods and activity release. For the future, the tendency will be to increase the coolant temperature, extend fuel residence time in the reactor core (for higher burnup) and increase the heat flux. This can lead to increased probability of fuel failures due to waterside corrosion, corrosion products accumulation and deposition. In order to prevent cladding failures, the coolant chemistry must be monitored and controlled in order to reduce the amount of deposited crud and the oxygen potential. Corrosive deposits together with aqueous corrosion influence the performance of fuel elements by increase of temperature on cladding surface or changes in the coolant chemistry (increase of water pH), phenomena which lead to cladding failures. The process of corrosion products formation on zircaloy-4 fuel cladding surface and their consequences was evidenced by performing of experiments in: autoclaves circuits assembled in a by-pass loop of a CANDU-6 Reactor at NPP Cernavoda; irradiation loop of the TRIGA Reactor, and in laboratory static autoclaves. The determination of corrosion and the characterization of crud deposits on the zircaloy-4 surfaces were performed using gravimetric method, metallographic and electronic microscopy, and gamma spectrometry analysis and impedance electrochemical spectroscopy (EIS) determinations. The experimental results showed that the composition, thickness and evolution of corrosive deposits on fuel assembly surfaces depend very much on operational conditions, such as steady state operation, water chemistry conditions (pH and oxygen concentration) and different oxidation conditions of cladding surface. (author)

  2. Upon local blockage formations in LMFBR fuel rod bundles with wire-wrapped spacers

    International Nuclear Information System (INIS)

    A theoretical and experimental study, to improve understanding of local particle depositions in a wire-wrapped LMFBR fuel bundle, has been performed. Theoretical considerations show, that a preferentially axial process of particle depositions occurs. The experiments confirm this and clarify that the blockages arise near the particle source and settle at the spatially arranged minimum gaps in the bundle. The results suggest that, considering flow reduction, cooling and DND-detection, such fuel particle blockages are less dangerous. With reference to these safety-relevant factors, wire-wrapped LMFBR fuel bundles seem to gain advantages compared to the grid design. (orig.)

  3. Testing and implementation program for the modified Darlington 37-element fuel bundle

    International Nuclear Information System (INIS)

    To mitigate the effects of reactor ageing, a design modification to the 37-element fuel is proposed in which the diameter of the centre element will be reduced to 11.5 mm from 13.1 mm. The testing and implementation phase for the 37-element fuel bundle modification is discussed in this paper. The initial plan for testing is to perform a set of out-reactor tests to assess the endurance, acoustic response and cross-flow behaviour of the revised fuel bundle design. The initial schedule outlines activities that will enable OPG to implement full core fuelling of the modified bundle within the next three to four years. (author)

  4. Full-Scale Irradiation Test of Hanaro U3Si Fuel Using Lead Bundle

    International Nuclear Information System (INIS)

    To verify the irradiation performances of HANARO fuel at a nominal power of 30 MW, a lead bundle was first loaded into the HANARO core after increasing the reactor power to the full power. The lead bundle is an actual fuel assembly with 18 fuel rods that was fabricated using an atomized manufacturing procedure. The lead bundle was irradiated during 188 operation days at full power in the HANARO core, and discharged after about 60 at% average and 75 at% peak burn-ups. The maximum linear power of the lead bundle was 98kW/m. Detailed non-destructive and destructive post-irradiation tests were performed. The measured results were analyzed and compared with the existing experimental data and the design criteria for the HANARO fuel. It was confirmed that the HANARO fuel has maintained proper in-pile performances and integrity during the nominal power operation and satisfies all the design requirements related to the irradiation performances. (author)

  5. Manufacturing of 37-element fuel bundles for PHWR 540 - new approach

    International Nuclear Information System (INIS)

    Nuclear Fuel Complex (NFC), established in early seventies, is a major industrial unit of Department of Atomic Energy. NFC is responsible for the supply of fuel bundles to all the 220 MWe PHWRs presently in operation. For supplying fuel bundles for the forthcoming 540 MWe PHWRs, NEC is dovetailing 37-element fuel bundle manufacturing facilities in the existing plants. In tune with the philosophy of self-reliance, emphasis is given to technology upgradation, higher customer satisfaction and application of modern quality control techniques. With the experience gained over the years in manufacturing 19-element fuel bundles, NEC has introduced resistance welding of appendages on fuel tubes prior to loading of UO2 pellets, use of bio-degradable cleaning agents, simple diagnostic tools for checking the equipment condition, on line monitoring of variables, built-in process control methods and total productive maintenance concepts in the new manufacturing facility. Simple material handling systems have been contemplated for handling of the fuel bundles. This paper highlights the flow-sheet adopted for the process, design features of critical equipment and the methodology for fabricating the 37-element fuel bundles, 'RIGHT FIRST TIME'. (author)

  6. Microchemical study of high-burnup CANDU fuel by imaging-XPS

    Energy Technology Data Exchange (ETDEWEB)

    Do, Than [Atomic Energy of Canada Limited, Chalk River Laboratories, Chalk River, Ontario, K0J 1J0 (Canada)], E-mail: dot@aecl.ca; Irving, Karen G. [Atomic Energy of Canada Limited, Chalk River Laboratories, Chalk River, Ontario, K0J 1J0 (Canada)], E-mail: irvingk@aecl.ca; Hocking, William H. [Atomic Energy of Canada Limited, Chalk River Laboratories, Chalk River, Ontario, K0J 1J0 (Canada)], E-mail: hockingw@aecl.ca

    2008-12-15

    An advanced facility for characterization of highly radioactive materials by Imaging X-ray Photoelectron Spectroscopy (XPS) has been developed at the Chalk River Laboratories (CRL), based upon over a decade of prior experience with a prototype system. Auxiliary electron and ion guns provide additional in situ capabilities for scanning electron microscopy (SEM), scanning Auger microscopy (SAM) and composition depth profiling. The application of this facility to the characterization of irradiated fuel materials will be illustrated with selected results taken from a detailed study of the microchemistry at the fuel-sheath interface in a CANDU fuel element that was irradiated to extended burnup in the NRU (National Research Universal) reactor at CRL. Inside surfaces of the end caps and the welds between the sheath and the end caps as well as the thin-walled Zircaloy-4 sheath were analyzed. The in situ SEM capability was essential for selecting different areas on each sample, such as sheath locations with and without a visible retained CANLUB graphite layer, for XPS analysis. Effective infiltration of segregated fission products, especially cesium, into the graphite was demonstrated by depth profiling. A richer chemistry of segregated fission products was found on the end caps than on the sheath with elevated levels of barium, strontium, tellurium, iodine and cadmium as well as cesium. The results are consistent with current understanding of the primary migration route for fission products to the sheath and also indicate that the CANLUB layer functions as a chemical rather than a physical barrier to segregated fission products.

  7. Analysis of the operational reliability of VVER-1000 fuel elements and bundles in a three-year fuel cycle

    International Nuclear Information System (INIS)

    At the Novo-Voronezh Nuclear Power Plant, the fifth VVER-1000 unit, which was operated at nominal power from February 1980, completed nine fuel cycles in July 1990. The first unit of the Kalinin Nuclear Power Plant has operated from April 1984; in October 1990 the sixth fuel loading was completed. To data these power units are operating in steady-state in three-year fuel cycles (from June 1986 and from September 1989, respectively). By the end of 1988, operational experience had been accumulated on 1407 fuel element bundles on the third to the sixth fuel loading at Kalinin and the fifth to the ninth at Novo-Voronezh, which are in the transient and steady-state regimes of a three-year cycle. Of the 561 fuel element bundles monitored for gamma radiation, 14 were designated as leaking, which was 2.5% of the total bundles or 0.008% of the total number of fuel elements. Thus, a high degree of reliability was attained with enriched fuel elements. Here the authors analyze the reliability of fuel element bundles in taking the VVER-1000s to a three-year fuel cycle, and also generalize and systematize information on the fundamental characteristics of a group of fuel element bundles in going to to steady-state conditions of the three-year fuel cycle

  8. The behaviour of Phenix fuel pin bundle under irradiation

    International Nuclear Information System (INIS)

    An entire Phenix sub-assembly has been mounted and sectioned after irradiation. The examination of cross-sections revealed the effects of mechanical interaction in the bundle (ovalisations and contacts between clads). According to analysis of the sodium channels, cooling of the pin bundle remained uniform. (author)

  9. Micro-focus x-ray inspection of the bearing pad welded by laser for CANDU fuel element

    International Nuclear Information System (INIS)

    To attach the bearing pads on the surface of CANDU fuel element, laser welding technique has been reviewed to replace brazing technology which is complicate process and makes use of the toxic beryllium. In this study, to evaluate the soundness of the weld of the bearing pad of CANDU fuel element, a precise X-ray inspection system was developed using a micro-focus X-ray generator with an image intensifier and a real time camera system. The weld of the bearing pad welded by Nd:YAG laser has been inspected by the developed inspection system. Image processing technique has been applied to reduce random noise and to enhance the contrast of the X-ray image. A few defects on the weld of the bearing pads have been detected by the X-ray inspection process

  10. Irradiation device for power cycling testing of CANDU type fuel elements

    International Nuclear Information System (INIS)

    At INR Pitesti an irradiation device (capsule-C9) was designed and realized for testing the fuel element behaviour at reactor power variations occurring during normal operation of CANDU reactors in load following regime. This device allows the study of the phenomena at which the fuel elements in CANDU reactor are subject in conditions of: - normal restarting after shutdown and reactor de-poisoning; - variations of reactor power within 50-100% rated power; - return to rated power after operation at reduced power to prevent xenon poisoning; - restart within 30 minutes from the shutdown to prevent xenon poisoning; - adjusting reactivity during the return to rated power after reactor operation at reduced power; - displacement of fuel clusters in the channel by reactor loading. The power cycling can entail failure mechanisms specific to reactor operation in load following regimes, such as: - deformation of fuel element can by fuel-can interaction; - stress crevice corrosion; - corrosion assisted can fatigue; - can thinning in the vicinity of cracked pellets; - can cracking due to relocation of pellet fragments. Power cycling on the fuel element subjected to irradiation in capsule C-9 is performed by displacing the tested section in the experimental channel. Displacing the tested section under flux allows obtaining the required power values on the tested fuel element while the capsule instrumentation allows the monitoring of irradiation parameters, namely: - the linear power on the fuel element; - instant neutron flux at the force tube level; - coolant pressure within the tested section; - coolant activity; - chemical characteristics of the coolant. The main thermal-hydraulic characteristics of the capsule C-9 are: - working fluid, demineralized and degassed water; - coolant pressure, 120 bar; - coolant temperature, 150-160 deg. C; - maximum temperature on fuel element can, 325 deg. C; - thermosyphon flow rate at the tested section level, 0.15 kg/s; - disposable maximum

  11. CANFLEX fuel bundle strength tests during normal and abnormal refuelling procedure

    International Nuclear Information System (INIS)

    As one of verifications of the CANFLEX fuel bundle, the strength tests were performed by the double side-stop test for the simulation of normal fuel loading and the single side-stop test for the simulation of abnormal fuel loading. In both tests the load was applied by controlling the flow to obtain a desired pressure drop across the whole fuel string resulting in a specified hydraulic drag force on the test bundle. The test rig conditions for each test were 120 .deg. C and 11.2 MPa for 15 minutes. The test bundles against the side-stop simulators were measured and inspected carefully after the tests according to the measurement procedures. The inspection results showed the test bundles were intact and met the acceptance criteria

  12. Modeling coupled bending, axial, and torsional vibrations of a CANDU fuel rod subjected to multiple frictional contact constraints

    International Nuclear Information System (INIS)

    In this paper, a finite element based dynamic model is presented for bending, axial, and torsional vibrations of an outer CANDU fuel element subjected to multiple unilateral frictional contact (MUFC) constraints. The Bozzak-Newmark relaxation-integration scheme is used to discretize the equations of motion in the time domain. At a time step, equations of state of the fuel element with MUFC constraints reduce to a linear complementarity problem (LCP). Results are compared with those available in the literature. Good agreement is achieved. The 2D sliding and stiction motion of a fuel element at points of contact is obtained for harmonic excitations. (author)

  13. Investigation of the CANLUB/sheath interface in CANDU fuel at extended burnup by XPS and SEM/WDX

    Energy Technology Data Exchange (ETDEWEB)

    Hocking, W.H. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Behnke, R.; Duclos, A.M.; Gerwing, A.F. [Atomic Energy of Canada Limited, Pinawa, Manitoba (Canada); Chan, P.K. [Atomic Energy of Canada Limited, Mississauga, Ontario (Canada)

    1997-07-01

    A systematic investigation of the fuel-sheath interface in CANDU fuel as a function of extended burnup has been undertaken by XPS and SEM/WDX analysis. Adherent deposits of UO{sub 2} and fission products, including Cs, Ba, Rb, I, Te, Cd and possibly Ru, have been routinely identified on CANLUB coated and bare Zircaloy surfaces. Some trends in the distribution and chemistry of key fission products have begun to emerge. Several potential mechanisms for degradation of the CANLUB graphite layer at high burnup have been practically excluded. New evidence of carbon relocation within the fuel element and limited reaction with excess oxygen has also been obtained. (author)

  14. Development of a spent fuel bay operator support system for PHWR-CANDU nuclear power plant

    International Nuclear Information System (INIS)

    The safety advantages of the CANDU 600 NPPs could be further enhanced by the supplementation of the Canadian experience on plant operation with Computerised Operator Support System (COSSs) adjusted to the actual plant configuration, the idiosyncrasies of the given equipment, the errors during engineering and construction phases and the psychological features of the operation personnel. One of the most relevant systems with an important decision component that involves relatively complex procedures - thereby related human errors - is Cernavoda NPP's Spent Fuel Bay Cooling and Purification System. Strong motivations to consider a flexible COSS, both for operation and for intervention purpose, are given by the global activity stored in the systems bays and the location of the bays outside the containment. A Spent Fuel Bay Operator Support System (SFOSS) is at a research-grade at the Institute of Atomic Physics and at the Center of Technology and Engineering for Nuclear Projects in compliance with the general principles of the expert systems and under a IAEA Co-ordinate Research Program. The paper illustrates a generic description of the system and also of the SFOSS structure. (Author) 10 Refs

  15. R and R programmes to advance CANDU technology

    International Nuclear Information System (INIS)

    A key characteristic of the CANDU reactor design is the ability to meet future requirements via incremental modifications as opposed to revolutionary design changes. The main objectives for advancing CANDU technology are 1) to reduce capital and operating costs, 2) to increase capacity factors, 3) to increase passive safety, and 4) to enhance fuel/fuel cycle flexibility. These objectives are being met by performing research and development in 6 key areas: fuel channels, fuel/fuel cycle technology, safety, heavy water production, plant systems and components, and information technology. Fuel channel improvements are gained through the elucidation and application of basic materials science for life extension. Fuel and fuel cycle work is focusing on advanced cycles, and on the development of a bundle to act as a carrier for advanced fuels that improves burnup and economics. In safety, the inherent features of CANDU are used to enhance passive or natural safety concepts, such as the use of the moderator as an effective heat sink, and the development of low temperature fuels. Heavy water processes are being developed that can be used with existing hydrogen sources (such as electrolytic hydrogen or steam reformers), or that can be used in a stand-alone mode. Plant systems and components work includes improvements to plant components such as steam generators, and the application of advanced control centre technology. Information technology is being developed to improve all aspects of CANDU design, construction, and operation. This paper gives an overview of some of the R and D in these areas that is supporting the incremental improvement of current and advanced CANDU designs. (author). 7 figs

  16. Investigation of CANDU reactors as a thorium burner

    International Nuclear Information System (INIS)

    Large quantities of plutonium have been accumulated in the nuclear waste of civilian LWRs and CANDU reactors. Reactor grade plutonium can be used as a booster fissile fuel material in the form of mixed ThO2/PuO2 fuel in a CANDU fuel bundle in order to assure reactor criticality. The paper investigates the prospects of exploiting the rich world thorium reserves in CANDU reactors. Two different fuel compositions have been selected for investigations: (1) 96% thoria (ThO2) + 4% PuO2 and (2) 91% ThO2 + 5% UO2 + 4% PuO2. The latter is used for the purpose of denaturing the new 233U fuel with 238U. The behavior of the reactor criticality k ∞ and the burn-up values of the reactor have been pursued by full power operation for >∼8 years. The reactor starts with k ∞ = ∼1.39 and decreases asymptotically to values of k ∞ > 1.06, which is still tolerable and useable in a CANDU reactor. The reactor criticality k ∞ remains nearly constant between the 4th year and the 7th year of plant operation, and then, a slight increase is observed thereafter, along with a continuous depletion of the thorium fuel. After the 2nd year, the CANDU reactor begins to operate practically as a thorium burner. Very high burn-up can be achieved with the same fuel (>160,000 MW D/MT). The reactor criticality would be sufficient until a great fraction of the thorium fuel is burned up, provided that the fuel rods could be fabricated to withstand such high burn-up levels. Fuel fabrication costs and nuclear waste mass for final disposal per unit energy could be reduced drastically

  17. Comparative Analysis of Thermohydraulic Margins in Embalse Power Station, CARA Vs. CANDU with Cobra IV-HW

    International Nuclear Information System (INIS)

    Comparative analysis of thermohydraulic margins were studied of the CANDU 37 and CARA fuel bundles (FB) in Embalse power station with COBRA IV-HW code ., the geometry of the bundle laying on the channel was particularly modeled and discussing the results in comparison with former calculations with 1/6 simetry .The CARA design with enriched uranium (0.9 %) and extended burn up lets maintain the current thermohydraulic nominal margins , while compared with CANDU 37 rods FB enriched , the CARA design permits widely improve the current margins

  18. Analysis of fuel handling system for fuel bundle safety during station blackout in 500 MWe PHWR unit of India

    International Nuclear Information System (INIS)

    Situations of Station Blackout (SBO) i.e. postulated concurrent unavailability of Class Ill and Class IV power, could arise for a long period, while on-power refuelling or other fuel handling operations are in progress with the hot irradiated fuel bundles being anywhere in the system from the Reactor Building to the Spent Fuel Storage Bay. The cooling provisions for these fuel bundles are diverse and specific to the various stages of fuel handling operations and are either on Class Ill or on Class II power with particular requirements of instrument air. Therefore, during SBO, due to the limited availability of Class II power and instrument air, it becomes difficult to maintain cooling to these fuel bundles. However, some minimal cooling is essential, to ensure the safety of the bundles. As discussed in the paper, safety of these fuel bundles in the system and/or for those lying in the liner tube region of the reactor end fitting is ensured, during SBO, by resorting to passive means like 'stay-put', 'gravity- fill', 'D20- steaming' etc. for cooling the bundles. The paper also describes various consequences emanating from these cooling schemes. (author). 6 refs., 2 tabs., 8 figs

  19. Cost and schedule reduction for next-generation Candu

    International Nuclear Information System (INIS)

    AECL has developed a suite of technologies for CanduR reactors that enable the next step in the evolution of the Candu family of heavy-water-moderated fuel-channel reactors. These technologies have been combined in the design for the Advanced Candu Reactor TM1 (ACRTM), AECL's next generation Candu power plant. The ACR design builds extensively on the existing Candu experience base, but includes innovations, in design and in delivery technology, that provide very substantial reductions in capital cost and in project schedules. In this paper, main features of next generation design and delivery are summarized, to provide the background basis for the cost and schedule reductions that have been achieved. In particular the paper outlines the impact of the innovative design steps for ACR: - Selection of slightly enriched fuel bundle design; - Use of light water coolant in place of traditional Candu heavy water coolant; - Compact core design with unique reactor physics benefits; - Optimized coolant and turbine system conditions. In addition to the direct cost benefits arising from efficiency improvement, and from the reduction in heavy water, the next generation Candu configuration results in numerous additional indirect cost benefits, including: - Reduction in number and complexity of reactivity mechanisms; - Reduction in number of heavy water auxiliary systems; - Simplification in heat transport and its support systems; - Simplified human-machine interface. The paper also describes the ACR approach to design for constructability. The application of module assembly and open-top construction techniques, based on Candu and other worldwide experience, has been proven to generate savings in both schedule durations and overall project cost, by reducing premium on-site activities, and by improving efficiency of system and subsystem assembly. AECL's up-to-date experience in the use of 3-D CADDS and related engineering tools has also been proven to reduce both engineering and

  20. Behavior of mixed-oxide fuel elements in a tight bundle under duty-cycle conditions

    International Nuclear Information System (INIS)

    The irradiation behavior of the TOB-10 fuel pins was comparable with that obtained in the single pin tests. There was no significant effect that could be directly attributed to tight bundle configuration. The postirradiation examination data provided information on the axial migration of cesium and its effect on cladding strain. Severe fuel/cladding chemical interaction (FCCI), which resulted in substantial cladding thinning and probably restricted venting of fission gas from the fuel column into the pin plena, apparently caused the earlier-than-expected cladding breaches in the D9-clad pins. No such severe FCCI was noted in the 316SS-clad pins. At the time of test termination, the overall cladding strain from creep and swelling was insufficient to cause bundle closure. Consequently, there would have been minimal pin bundle-duct interaction in the subassembly. Neither of the breaches appeared to be induced by pin bundle-duct interaction. (author)

  1. Parametric study of thermo-mechanical behaviour of 19-element PHWR fuel bundle having AHWR fuel material

    International Nuclear Information System (INIS)

    AHWR Th-LEU of 4.3 weight % 235U enrichment is a fuel design option for its trial irradiation in Indian PHWRs. The important component of this option is the large enhancement in the average discharge burn-up from the core. A parametric study of the 19-element fuel bundle, with natural uranium currently is being used in all operating 220 MWe PHWRs, has been carried out for AHWR Th-LEU fuel material by computer code FUDA MOD2. The important fuel parameters such as fuel temperature, fission gas release, fuel swelling and sheath strain have been analyzed for required fuel performance. With Th-LEU, average discharge burnups of about 25,000 MW-d/TeHE can be achieved. The FUDA code (Fuel Design Analysis code) MOD2 version has been used in the fuel element analysis. The code takes into account the inter-dependence of different parameters like fuel pellet temperatures, pellet expansions, fuel-sheath gap heat transfer, sheath strain and stresses, fission gas release and gas pressures, fuel densification etc. Thermo-mechanical analysis of fuel element having AHWR material is carried out for the bundle power histories reaching up to design burn-up 40000 MWd/TeHE. The resultant parameters such as fuel temperature, sheath plastic strain and fission gas pressure for AHWR fuel element were compared with respective thermo-mechanical parameters for similar fuel bundle element with natural uranium as fuel material. (author)

  2. Ultrasonic imaging methods for quality evaluation of the CANDU fuel bundle welds

    International Nuclear Information System (INIS)

    For more than 20 years, the quality control of the end-cap/end-plates welds and of the brazed appendage joints is made by destructive methods (metallographic examinations or mechanical tests) on specimens sampled from production. Having a very limited statistics, these destructive methods are useful only to indicate 'trends' of the production quality, not for detecting infrequent single defect events. It is recognized that nondestructive examination techniques are required to achieve sufficient 'visibility' of the production quality, at a statistically significant sampling rate. For this reason, the INR-Ultra-acoustics R and D has developed the MICROSCAN equipment family for high resolution ultrasonic imaging, with performances close to the Acoustic Microscopy domain. The paper makes a presentation of the performances of the MICROSCAN 02/03 equipment for B and C-scan high-frequency ultrasonic imaging. Experimental results are presented and comparisons are make with metallographic examinations. (Author) 8 Figs., 4 Refs

  3. System for supporting a bundled tube fuel injector within a combustor

    Energy Technology Data Exchange (ETDEWEB)

    LeBegue, Jeffrey Scott; Melton, Patrick Benedict; Westmoreland, III, James Harold; Flanagan, James Scott

    2016-06-21

    A combustor includes an end cover having an outer side and an inner side, an outer barrel having a forward end that is adjacent to the inner side of the end cover and an aft end that is axially spaced from the forward end. An inner barrel is at least partially disposed concentrically within the outer barrel and is fixedly connected to the outer barrel. A fluid conduit extends downstream from the end cover. A first bundled tube fuel injector segment is disposed concentrically within the inner barrel. The bundled tube fuel injector segment includes a fuel plenum that is in fluid communication with the fluid conduit and a plurality of parallel tubes that extend axially through the fuel plenum. The bundled tube fuel injector segment is fixedly connected to the inner barrel.

  4. Scratch preventing method of assembling nuclear fuel bundles, and the assembly

    International Nuclear Information System (INIS)

    This patent describes a method of assembling a bundle of nuclear fuel elements for service in a nuclear reactor. It comprises a group of fuel rod elements each arranged in a space apart, parallel array and thus secured by each element traversing through a series of spacing units positioned at intervals along the length of the grouped fuel rod elements and having openings for receiving the fuel rod elements traversing therethrough, consisting essentially of the steps of: providing a scratch resisting, temporary protective barrier consisting of a water soluble coating of sodium silicate covering the outer surface of the fuel rod elements, then assembling the fuel bundle by passing each of the fuel rod elements through the openings of a series of spacing units positioned at intervals to fit together an adjoined composite fuel bundle assembly of a spaced apart parallel array of the fuel rod elements secured with spacing units, and removing the scratch resisting, temporary protective barrier consisting of water soluble coating of sodium silicate from the assembled fuel bundle with hot water

  5. Next generation CANDU plants

    International Nuclear Information System (INIS)

    Future CANDU designs will continue to meet the emerging design and performance requirements expected by the operating utilities. The next generation CANDU products will integrate new technologies into both the product features as well as into the engineering and construction work processes associated with delivering the products. The timely incorporation of advanced design features is the approach adopted for the development of the next generation of CANDU. AECL's current products consist of 700MW Class CANDU 6 and 900 MW Class CANDU 9. Evolutionary improvements are continuing with our CANDU products to enhance their adaptability to meet customers ever increasing need for higher output. Our key product drivers are for improved safety, environmental protection and improved cost effectiveness. Towards these goals we have made excellent progress in Research and Development and our investments are continuing in areas such as fuel channels and passive safety. Our long term focus is utilizing the fuel cycle flexibility of CANDU reactors as part of the long term energy mix

  6. CFD simulations of the single-phase and two-phase coolant flow of water inside the original and modified CANDU 37-element bundles

    International Nuclear Information System (INIS)

    Single-phase (inlet temperature of 180° C, outlet pressure of 9 MPa, total power of 2 MW and flow rate of 13.5 Kg/s), and two-phase (inlet temperature of 265° C, outlet pressure of 10 MPa, total power of 7.126 MW and flow rate of 19 Kg/s) water flows inside a CANDU thirty seven element fuel string are simulated using a Computational Fluid Dynamics (CFD) code with parallel processing and results are presented in this paper. The analyses have been performed for the original and modified (11.5 mm center element diameter) designs with skewed cosine axial heat flux distribution and 5.1% diametral creep of the pressure tube. The CFD results are in good agreement with the expected temperature and velocity cross-sectional distributions. The effect of the pressure tube creep on the flow bypass is detected, and the CHF improvement in the core region of the modified design is confirmed. The two-phase flow model reasonably predicted the void distribution and the role of interfacial drag on increasing the pressure drop. In all CFD models, the appendages were shown to enhance the production of cross flows and their corresponding flow mixing and asymmetry. (author)

  7. An elasto-plastic model for mechanical contact between the pellets and sheath in CANDU nuclear fuel elements

    International Nuclear Information System (INIS)

    During high-temperature transients, increased mechanical contact can occur between the fuel stack and the sheath in the axial and/or radial direction. As well, there is an axial linear power gradient and an axial gradient in mechanical properties of the sheath specific to a CANDU-type fuel element. This requires a code with the capability to treat multiple axial segments. This paper describes a contact model that allows the elasto-plastic mechanical contact in radial/axial direction for multiple axial segments. (14 figs., 5 refs.)

  8. The volumes of wastes resulting from the direct disposal or recycling of CANDU used fuel

    International Nuclear Information System (INIS)

    This report summarizes and compares the volumes of wastes that would be generated for disposal in the cases of the direct disposal of CANDU used fuel and the disposal of reprocessing wastes if the fuel were recycled. It is shown that the best estimates of these waste volumes are as follows: From direct disposal of fuel: 649 m3/a; From recycle with used U as waste: 1039 m3/a; From recycle with used U as resource: 854 m3/a. Modifications to the procedures in the reference cases are discussed, based on known or feasible technology, with the object of reducing the volumes of waste. The estimates of waste volumes that would result from reprocessing are compared with information on the waste arisings in the U.S., U.K. and French programs, together with a multi-program estimate derived by the International Atomic Energy Agency. The volumes are adjusted for the differences in burnup in the different programs and for the different levels of fission-product loading in the high-level waste glass. Most of the estimates are within a factor of 3 of each other, the exception being the arisings from the transuranic and low-level wastes. Th conclusions that can be drawn from this study are the following: 1 The volumes of wastes arising from the disposal of used fuel without recycle and the volumes of wastes arising from the reprocessing of used fuel, internationally and in the Canadian reference cases, are much the same when expressed on a common basis; 2. Any absolute differences in waste volumes are a consequence of different burnups, or of the choices of how a particular recycle process is operated; 3. Modification and optimization of the processes considered in reference Canadian programs, both for the direct disposal of used fuel and for the disposal of reprocessing wastes, could bring about a reduction in disposal volumes of factors of between 2 and 3. (author). 45 refs., 8 tabs., 8 figs

  9. The fission gas release and gas pressure calculation for 19 element fuel bundle irradiated in KAPS-1 (Bundle no-56504)

    International Nuclear Information System (INIS)

    The thermo-mechanical analysis of fuel bundle is done using FUDA software program to calculate the fission gas release and pin pressure. The fission gas release analysis was done for the average fuel dimensions. In addition, a parametric study was also performed by varying the different parameters within their specified tolerances. The thermal conductivity calculation in the present analysis accounts for the density changes and temperature variation. The feed back of gap conductance change due to fission gas accumulation in pellet clad gap is considered in fuel temperature calculations. The present paper discusses the inputs to the FUDA, mathematical model used in calculation of fission gas release and results of gas release from the FUDA runs for the above discussed analysis. (author)

  10. CFD study on coolant mixing in VVER-440 fuel rod bundles and fuel assembly heads

    International Nuclear Information System (INIS)

    A CFD model of VVER-440 fuel assembly heads was developed based on the technical documentation of a full-scale test facility built in the Kurchatov Institute, Russia. Steady-state and transient calculations were performed to validate the model with a measurement set. Effects of the spatial resolution, turbulence models, difference schemes and different inlet boundary conditions were investigated. Inlet boundary conditions were determined with both the COBRA subchannel code and a fuel rod bundle CFD model that was built for this special purpose. The results were compared against experimental data. The sensitivity studies showed that a grid of about 8 million cells, high resolution scheme and BSL Reynolds stress model are suitable sets to provide accurate prediction for the signal of the in-core thermocouple. The best prediction was achieved with transient calculation using inlet boundary conditions generated with the CFD fuel rod bundle model. The results indicated that the coolant mixing is intensive but not perfect in the assembly head. Besides, the significant role of the outflow from the central tube was also proven. The transient runs revealed relatively large temperature fluctuations near the in-core thermocouple housing.

  11. Research reactor fuel bundle design review by means of hydrodynamic testing

    International Nuclear Information System (INIS)

    During the design steps of a fuel bundle for a nuclear reactor, some vibration tests are usually necessary to verify the prototype dynamical response characteristics and the structural integrity. To perform these tests, the known hydrodynamic loop facilities are used to evaluate the vibrational response of the bundle under the different flow conditions that may appear in the reactor. This paper describes the tests performed on a 19 plate fuel bundle prototype designed for a low power research reactor. The tests were done in order to know the dynamical characteristics of the plates and also of the whole bundle under different flow rate conditions. The paper includes a description of the test facilities and the results obtained during the dynamical characterization tests and some preliminary comments about the tests under flowing water are also presented. (author)

  12. Post-test examination of the VVER-1000 fuel rod bundle CORA-W2

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, P.; Noack, V.; Burbach, J.; Metzger, H.; Schanz, G.; Hagen, S.; Sepold, L.

    1995-08-01

    The upper half of the bundle is completely oxidized, the lower half has kept the fuel rods relatively intact. The post-test examination results show the strong impact of the B{sub 4}C absorber rod and the stainless steel grid spacers on the `low-temperature` bundle damage initiation and progression. The B{sub 4}C absorber rod completely disappeared in the upper half of the bundle. The multicomponent melts relocated and formed coolant channel blockages on solidification with a maximum extent of about 30% in the lower part of the bundle. At temperatures above the melting point of the ZrNb1 cladding extensive fuel dissolution occured. (orig./HP)

  13. Simulation of LOCA type accident for CANDU fuel in TRIGA materials testing reactor and its associated facilities at INR-Pitesti

    International Nuclear Information System (INIS)

    The specific objective of the experiment regards the simulation of a LOCA type accident in an irradiation facility in order to characterize the behaviour of a CANDU fuel element with respect to fuel-cladding interaction and fission product release in the case of clad failure occurrence. The work belongs to 'Nuclear Safety Program' contributing to computer codes qualification used for safety assessment of Cernavoda NPP. The experimental results of these tests will be used, among other input reference data, for evaluating the realistic safety limits for CANDU fuel element in case of anticipated transients. (Author)

  14. Specifications for reactor physics experiments on CANFLEX-RU fuel

    International Nuclear Information System (INIS)

    This is to describe reactor physics experiments to be performed in the ZED-2 reactor to study CANFLEX-RU fuel bundles in CANDU-type fuel channels. The experiments are to provide benchmark quality validation data for the computer codes and associated nuclear databases used for physics calculations, in particular WIMS-AECL. Such validation data is likely to be a requirement by the regulator as condition for licensing a CANDU reactor based on an enriched fuel cycle

  15. CANDU 9 design

    International Nuclear Information System (INIS)

    AECL has made significant design improvements in the latest CANDU nuclear power plant (NPP) - the CANDU 9. The CANDU 9 operates with the energy efficient heavy water moderated reactor and natural uranium fuel and utilizes proven technology. The CANDU 9 NPP design is similar to the world leading CANDU 6 but is based upon the single unit adaptation of the 900 MWe class reactors currently operating in Canada as in integrated four-unit configurations. The evolution of the CANDU family of heavy water reactors (HAIR) is based on a continuous product improvement approach. Proven equipment and systems from operating stations are standardized and used in new products. As a result of the flexibility of the technology, evolution of the current design will ensure that any new requirements can be met, and there is no need to change the basic concept. This paper will provide an overview for some of the key features of the CANDU 9 NPP such as nuclear systems and equipment, advanced control and computer systems, safety design and protection features, and plant layout. The safety enhancements and operability improvements implemented in this design are described and some of the advantages that can be expected by the operating utility are highlighted. (author)

  16. Total evaluation of in bundle void fraction measurement test of PWR fuel assembly

    International Nuclear Information System (INIS)

    Nuclear Power Engineering Corporation is performing the various proof or verification tests on safety and reliability of nuclear power plants under the sponsorship of the Ministry of International Trade and Industry. As one program of these Japanese national projects, an in bundle void fraction measurement test of a pressurized water reactor (PWR) fuel assembly was started in 1987 and finished at the end of 1994. The experiments were performed using the 5 x 5 square array rod bundle test sections. The rod bundle test section simulates the partial section and full length of a 17 x 17 type Japanese PWR fuel assembly. A distribution of subchannel averaged void fraction in a rod bundle test section was measured by the gamma-ray attenuation method using the stationary multi beam systems. The additional single channel test was performed to obtain the required information for the calibration of the rod bundle test data and the assessment of the void prediction method. Three test rod bundles were prepared to analyze an axial power distribution effect, an unheated rod effect, and a grid spacer effect. And, the obtained data were used for the assessment of the void prediction method relevant to the subchannel averaged void fraction of PWR fuel assemblies. This paper describes the outline of the experiments, the evaluation of the experimental data and the assessment of void prediction method

  17. Moving towards sustainable thorium fuel cycles

    International Nuclear Information System (INIS)

    The CANDU reactor has an unsurpassed degree of fuel-cycle flexibility as a consequence of its fuel-channel design, excellent neutron economy, on-power refueling, and simple fuel bundle design. These features facilitate the introduction and full exploitation of thorium fuel cycles in CANDU reactors in an evolutionary fashion. Thoria (ThO2) based fuel offers both fuel performance and safety advantages over urania (UO2) based fuel, due its higher thermal conductivity which results in lower fuel-operating temperatures at similar linear element powers. Thoria fuel has demonstrated lower fission gas release than UO2 under similar operating powers during test irradiations. In addition, thoria has a higher melting point than urania and is far less reactive in hypothetical accident scenarios owing to the fact that it has only one oxidation state. This paper examines one possible strategy for the introduction of thorium fuel cycles into CANDU reactors. In the short term, the initial fissile material would be provided in a heterogeneous bundle of low-enriched uranium and thorium. The medium term scenario uses homogeneous Pu/Th bundles in the CANDU reactor, further increasing the energy derived from the thorium. In the long term, the full energy potential from thorium would be realized through the recycle of the U-233 in the used fuel. With U-233 recycle in CANDU reactors, plutonium would then only be required to top up the fissile content to achieve the desired burnup. (author)

  18. The thermalhydraulic behavior of CANDU 600 reactor core fuelled with SEU 43

    International Nuclear Information System (INIS)

    CANDU 600 nuclear reactors are usually fuelled with Standard 37 rods fuel bundles, and natural uranium (NU) dioxide (UO2) is used as fuel composition. A new fuel bundle geometry is proposed with 43 rods and slightly enriched uranium fuel (SEU 43 with 0.96% enrichment of 235U). In this paper a comparative analysis of the behavior of the primary circuit during a LOCA 35% RIH accident is performed for two core types (normal core 37 pin/bundles and a 43 pin/bundles proposed core). This kind of accident is considered to be a severe accident for CANDU type fuel elements. This analysis uses FIREBIRD code coupled with bipoint kinetics module. The bipoint kinetics module includes the models for the neutronic measurement instrumentation (the platinum detectors and the ion chambers) and the RRS (Reactor Regulating System) module. For the large LOCA, the RRS is of no effect, therefore the RRS option was not used for this analysis. The main conclusions of the analysis are the following: in this case of 35% RIH, LOCA, the thermalhydraulic behavior of the 43 pin/bundles core is better than the normal core. while the fuel and the sheath temperature reached not the melting point. (authors)

  19. Temperature Distributions in LMR Fuel Pin Bundles as Modeled by COBRA-IV-I

    Science.gov (United States)

    Wright, Steven A.; Stout, Sherry

    2005-02-01

    Most pin type reactor designs for space power or terrestrial applications group the fuel pins into a number of relatively large fuel pin bundles or subassemblies. Fuel bundles for terrestrial liquid metal fast breeders reactors typically use 217 - 271 pins per sub-assembly, while some SP100 designs use up to 331 pins in a central subassembly that was surrounded by partial assemblies. Because thermal creep is exponentially related to temperature, small changes in fuel pin cladding temperature can make large differences in the lifetime in a high temperature liquid metal reactor (LMR). This paper uses the COBRA-IV-I computer code to determine the temperature distribution within LMR fuel bundles. COBRA-IV-I uses the sub-channel analysis approach to determine the enthalpy (or temperature) and flow distribution in rod bundles for both steady-state and transient conditions. The COBRA code runs in only a few seconds and has been benchmarked and tested extensively over a wide range of flow conditions. In this report the flow and temperature distributions for two types of lithium cooled space reactor core designs were calculated. One design uses a very tight fuel pin packing that has a pitch to diameter ratio of 1.05 (small wire wrap with a diameter of 392 μm) as proposed in SP100. The other design uses a larger pitch to diameter ratio of 1.09 with a larger more conventional sized wire wrap diameter of 1 mm. The results of the COBRA pin bundle calculations show that the larger pitch-to-diameter fuel bundle designs are more tolerant to local flow blockages, and in addition they are less sensitive to mal-flow distributions that occur near the edges of the subassembly.

  20. Flow-induced vibration and acoustic behaviour of CANFLEX-LVRF bundles in a Bruce B NGS fuel channel

    International Nuclear Information System (INIS)

    Frequency/temperature sweep tests were performed in a high-temperature/high-pressure test channel to determine the acoustic and flow-induced vibration characteristics of the CANFLEX-LVRF bundle. The vibratory response of CANFLEX-LVRF bundles was compared with that of 37-element fuel bundles under Bruce B NGS fuel channel normal operating conditions. The tests were performed with a 12-bundle string of CANFLEX-LVRF bundles as well as a mixed string for the transition core. The tests showed that the LVRF bundles performed as required without failure or gross geometry changes. The mixed fuel strings behaved in a manner similar to that of a string of CANFLEX-LVRF bundles. (author)

  1. Measurement and CFD calculation of spacer loss coefficient for a tight-lattice fuel bundle

    International Nuclear Information System (INIS)

    Highlights: • Experiment and CFD analysis evaluated the pressure drop in a spacer grid. • The measurement and CFD errors for the spacer loss coefficient were estimated. • The spacer loss coefficient for the dual-cooled annular fuel bundle was determined. • The CFD prediction agrees with the measured spacer loss coefficient within 8%. - Abstract: An experiment and computational fluid dynamics (CFD) analysis were performed to evaluate the pressure drop in a spacer grid for a dual-cooled annular fuel (DCAF) bundle. The DCAF bundle for the Korean optimum power reactor (OPR1000) is a 12 × 12 tight-lattice rod array with a pitch-to-diameter ratio of 1.08 owing to a larger outer diameter of the annular fuel rod. An experiment was conducted to measure the pressure drop in spacer grid for the DCAF bundle. The test bundle is a full-size 12 × 12 rod bundle with 11 spacer grid. The test condition covers a Reynolds number range of 2 × 104–2 × 105 by changing the temperature and flow rate of water. A CFD analysis was also performed to predict the pressure drop through a spacer grid using the full-size and partial bundle models. The pressure drop and loss coefficient of a spacer grid were predicted and compared with the experimental results. The CFD predictions of spacer pressure drop and loss coefficient agree with the measured values within 8%. The spacer loss coefficient for the DCAF bundle is estimated to be approximately 1.50 at a nominal operating condition of OPR1000, i.e., Re = 4 × 105

  2. Transmutation of minor actinides in a Candu thorium borner

    International Nuclear Information System (INIS)

    The paper investigates the prospects of exploitation of rich world thorium reserves in CANDU reactors. Large quantities of plutonium have been accumulated in the nuclear waste of civilian LWRs and CANDU reactors. Reactor grade plutonium can be used as a booster fissile fuel material in form of mixed ThO2/PuO2 fuel in a CANDU fuel bundle in order to assure reactor criticality. Two different fuel compositions have been selected for investigations: 1) 96% thoria (ThO2) + 4% PuO2 and 2) 91% ThO2 + 5% UO2 + 4 PuO2. The latter is used for the purpose of denaturing the new 233U fuel with 238U. The behavior of the criticality k∞ and the burn-up values of the reactor have been pursued by full power operation for > ∼ 8 years. The reactor starts with k∞ = ∼ 1.39 and the criticality drops down asymptotically to values k∞ > 1.06, still tolerable and usable in a CANDU reactor. Reactor criticality k∞ remains nearly constant between the 4th year and 7th year of plant operation and then a slight increase is observed thereafter, along with a continuous depletion of thorium fuel. After the 2nd year, the CANDU reactor begins to operate practically as a thorium burner. Very high burn up can be achieved with the same fuel (> 160 000 MW.D/MT). The reactor criticality would be sufficient until a great fraction of the thorium fuel is burnt up, provided that the fuel rods could be fabricated to withstand such high burn up levels. Fuel fabrication costs and nuclear waste mass for final disposal per unit energy could be reduced drastically. There is a great quantity of weapon grade plutonium accumulated in nuclear stockpiles. In the second phase of investigations, weapon grade plutonium is used as a booster fissile fuel material in form of mixed ThO2/PuO2 fuel in a CANDU fuel bundle in order to assure the initial criticality at startup. Two different fuel compositions have been used: 1) 97% thoria (ThO2) + 3% PuO2 and 2) 92% ThO2 + 5% UO2 + 3% PuO2. The latter is used for

  3. Analysis of Fuel Temperature Reactivity Coefficients According to Burn-up and Pu-239 Production in CANDU Reactor

    International Nuclear Information System (INIS)

    The resonances for some kinds of nuclides such as U-238 and Pu-239 are not easy to be accurately processed. In addition, the Pu-239 productions from burnup are also significant in CANDU, where the natural uranium is used as a fuel. In this study, the FTCs were analyzed from the viewpoints of the resonance self-shielding methodology and Pu-239 build-up. The lattice burnup calculations were performed using the TRITON module in the SCALE6 code system, and the BONAMI module was executed to obtain self-shielded cross sections using the Bondarenko approach. Two libraries, ENDF/B-VI.8 and ENDF/B-VII.0, were used to compare the Pu-239 effect on FTC, since the ENDF/B-VII has updated the Pu-239 cross section data. The FTCs of the CANDU reactor were newly analyzed using the TRITON module in the SCALE6 code system, and the BONAMI module was executed to apply the Bondarenko approach for self-shielded cross sections. When compared with some reactor physics codes resulting in slightly positive FTC in the specific region, the FTCs evaluated in this study showed a clear negativity over the entire fuel temperature range on fresh/equilibrium fuel. In addition, the FTCs at 960.15 K were slightly negative during the entire burnup. The effects on FTCs from the library difference between ENDF/B-VI.8 and ENDF/B-VII.0 are recognized to not be large; however, they appear more positive when more Pu-239 productions with burnup are considered. This feasibility study needs an additional benchmark evaluation for FTC calculations, but it can be used as a reference for a new FTC analysis in CANDU reactors

  4. Visual observations of a degraded bundle of irradiated fuel: the Phebus FPT1 test

    International Nuclear Information System (INIS)

    The international Phebus-FP (Fission Product) project is managed by the Institut de Protection et Surete Nucleaire in collaboration with Electricite de France (EDF), the European Commission (EC), the USNRC (USA), COG (Canada), NUPEC and JAERI (Japan), KAERI (South Korea), PSI and HSK (Switzerland). It is designed to measure the source-term and to study the degradation of irradiated UO2 fuel in conditions typical of a severe loss of coolant accident in a pressurised water reactor (PWR). In the first test (FPT0), performed in December '93, a bundle of 20 fresh fuel rods and a central Ag-In-Cd control rod underwent a short 15-day irradiation to generate fission products before testing in the Phebus reactor in Cadarache. The second test (FPT1) was performed in July '96, in the same conditions and geometry, but using irradiated fuel (-23 GWd/tU). In the FPT1 test, the bundle was heated to an estimated 3000 K over a period of 30 minutes in order to induce a substantial liquefaction of the bundle. After the test, the bundle was embedded in epoxy and cut at different levels to investigate the mechanisms of the core degradation. This paper reports the visual observations of the degraded FPT1 bundle, very preliminary interpretations about the scenario of degradation and a comparison between the behaviour of the fuel in the FPT0 and FPT1 tests. (author)

  5. RU fuel development program for an advanced fuel cycle in Korea

    International Nuclear Information System (INIS)

    Korea is a unique country, having both PWR and CANDU reactors. Korea can therefore exploit the natural synergism between the two reactor types to minimize overall waste production, and maximize energy derived from the fuel, by ultimately burning the spent fuel from its PWR reactors in CANDU reactors. As one of the possible fuel cycles, Recovered Uranium (RU) fuel offers a very attractive alternative to the use of Natural Uranium (NU) and slightly enriched uranium (SEU) in CANDU reactors. Potential benefits can be derived from a number of stages in the fuel cycle: no enrichment required, therefore no enrichment tails, direct conversion to UO2, lower sensitivity to 234U and 236U absorption in the CANDU reactor, and expected lower cost relative to NU and SEU. These benefits all fit well with the PWR-CANDU fuel cycle synergy. RU arising from the conventional reprocessing of European and Japanese oxide spent fuel by 2000 is projected to be approaching 25,000 te. The use of RU fuel in a CANDU 6 reactor should result in no serious radiological difficulties and no requirements for special precautions and should not require any new technologies for the fuel fabrication and handling. The use of the CANDU Flexible Fueling (CANFLEX) bundle as the carrier for RU will be fully compatible with the reactor design, current safety and operational requirements, and there will be improved fuel performance compared with the CANDU 37-element NU fuel bundle. Compared with the 37-element NU bundle, the RU fuel has significantly improved fuel cycle economics derived from increased burnups, a large reduction in both fuel requirements and spent fuel, arisings, and the potential lower cost for RU material. There is the potential for annual fuel cost savings in the range of one-third to two-thirds, with enhanced operating margins using RU in the CANFLEX bundle design. These benefits provide the rationale for justifying R and D efforts on the use of RU fuel for advanced fuel cycles in CANDU

  6. The Mechanical Control Absorber reactivity dependence on the enrichment and burn-up in Candu-SEU super-cells

    Energy Technology Data Exchange (ETDEWEB)

    Balaceanu, Victoria; Constantin, Marin [Institute for Nuclear research, Pitesti (Romania)

    2008-07-01

    The objective of this work is to highlight some aspects of the local neutronic behaviour of the Candu SEU-43 fuel bundles (Slightly Enriched Uranium fuel bundles with 43 fuel elements). More exactly, the study refers to the dependence of some local neutronic parameters, mainly the reactivity, on the enrichment and the burn-up of the fuel. It was taken in consideration two types of super-cells: reference supercell (containing only fuel bundle and moderator) and perturbed supercell (containing fuel bundle, moderator and additionally a strong reactivity device). The considered reactivity device is the Mechanical Control Absorber (MCA). The performed parameters are: k{sub eff}. values, MCA reactivities and flux distributions. For reaching this objective, it is used a local neutronic calculation methodology based on WIMS and PIJXYZ codes. The paper ends with an analysis of the obtained results. (authors)

  7. Detector response in a CANDU low void reactivity core

    International Nuclear Information System (INIS)

    The response of the in-core flux detectors to the CANFLEX Low-Void-Reactivity Fuel (LVRF) [1] bundles for use in the CANDU reactor at Bruce nuclear generation station has been studied. The study was based on 2 detector types - platinum (Pt)-clad Inconel and pure Inconel detectors, and 2 fuel types - LVRF bundles and natural-uranium (NU) bundles. Both detectors show a decrease of thermal-neutron-flux to total-photon-flux ratio when NU fuel bundles are replaced by LVRF bundles in the reactor core (7% for Inconel and 9% for Pt-clad detectors). The ratio of the prompt component of the net electron current to the total net electron current (PFe) of the detectors however shows a different response. The use of LVRF bundles in place of NU fuel bundles in the reactor core did not change the PFe of the Pt-clad Inconel detector but increased the PFe of the pure Inconel detector by less than 2%. The study shows that the Inconel detector has a larger prompt-detector response than that of the platinum-clad detector; it reacts to the change of fluxes in the reactor core more readily. On the other hand, the Pt-clad detector is less sensitive to perturbations of the neutron-to-gamma ratio. Nevertheless the changes in an absolute sense are minimal; one does not anticipate a change of the flux-monitoring system if the NU fuel bundles are replaced with the CANFLEX LVRF bundles in the core of the Bruce nuclear generating station. (authors)

  8. Enhancing the seismic capability of the on-power refueling system of the CANDU reactor

    International Nuclear Information System (INIS)

    The CANDU reactor assembly includes several hundred horizontal fuel channels, each containing twelve fuel bundles, arranged in a square lattice, and supported by the reactor structures. CANDU operates on natural uranium or other low fissile content fuel, and is refueled on-power, with either four or eight fuel bundles in a channel being replaced during each refueling operation. The fueling machines clamp onto the opposite ends of the fuel channel to be refueled. The seismic capacity of this refueling system is evaluated in terms of its dynamic response during an earthquake. This paper describes the approach adopted to enhance the seismic capability of the fueling machine and calandria assembly for earthquakes of O.3g ground acceleration covering a broad range of soil conditions ranging from soft to hard. A detailed, 3-D finite element seismic model of the fueling machine and calandria assembly system is developed to calculate the seismic responses of the structure. Some relatively simple hardware design changes have been considered to increase the seismic capacity of the CANDU 6 reactor. These changes in the fueling machine and calandria assembly of the CANDU 6 reactor are briefly described. They have been incorporated into the finite element seismic model of the system. Most of these design changes have already been considered and implemented in other CANDU reactor projects. The current CANDU 6 reactor design fully meets the requirements of seismic qualification for sites with potential for O.2g ground acceleration where the seismic loads need to be combined with the other design loads for the support and pressure boundary components to demonstrate compliance with the applicable Code requirements. In the present study it is demonstrated that, with relatively simple hardware changes, the fueling machine and calandria assembly of the CANDU 6 reactor can withstand earthquakes of O.3g ground acceleration. Based on the current study and some preliminary analysis of the

  9. Joint studies on large CANDU

    International Nuclear Information System (INIS)

    CANDU PHWRs have demonstrated generic benefits which will be continued in future designs. These include economic benefits due to low operating costs, business potential, strategic benefits due to fuel cycle flexibility and operational benefits. These benefits have been realized in Korea through the operation of Wolsong 1, resulting in further construction of PHWRs at the same site. The principal benefit, low electricity cost, is due to the high capacity factor and the low fuel cost for CANDU. The CANDU plant at Wolsong has proven to be a safe, reliable and economical electricity producer. The ability of PHWR to burn natural uranium ensures security of fuel supply. Following successful Technology Transfer via the Wolsong 2,3 and 4 project, future opportunity exists between Korea and Canada for continuing co-operation in research and development to improve the technology base, for product development partnerships, and business opportunities in marketing and building PHWR plants in third countries. High reliability, through excellent design, well-controlled operation, efficient maintenance and low operating costs is critical to the economic viability of nuclear plants. CANDU plants have an excellent performance record. The four operating CANDU 6 plants, operated by four utilities in three countries, are world performance leaders. The CANDU 9 design, with higher output capacity, will help to achieve better site utilization and lower electricity costs. Being an evolutionary design, CANDU 9 assures high performance by utilizing proven systems, and component designs adapted from operating CANDU plants (Bruce B, Darlington and CANDU 6). All system and operating parameters are within the operating proven range of current plants. KAERI and AECL have an agreement to perform joint studies on future PHWR development. The objective of the joint studies is to establish the requirements for the design of future advanced CANDU PHWR including the utility need for design improvements

  10. Incentives for improvement of CANDU

    International Nuclear Information System (INIS)

    CANDU is a relatively young technology which has demonstrated many achievements as an electrical power generation system. These achievements include an unsurpassed safety record, high annual and lifetime capacity factors, low electricity cost and a broad range of other performance strengths which together indicate that the CANDU technology is fundamentally sound. Known capabilities not yet fully exploited, such as advanced fuel cycle options, indicate that CANDU technology will continue to pay strong dividends on research, development and design investment. This provides a strong incentive for the improvement of CANDU on a continuing basis

  11. CANDU 9 fuelling machine carriage

    International Nuclear Information System (INIS)

    Continuous, on-power refuelling is a key feature of all CANDU reactor designs and is essential to maintaining high station capacity factors. The concept of a fuelling machine carriage can be traced to the early CANDU designs, such as the Douglas Point Nuclear Generating Station. In the CANDU 9 480NU unit, the combination of a mobile carriage and a proven fuelling machine head design comprises an effective means of transporting fuel between the reactor and the fuel transfer ports. It is a suitable alternative to the fuelling machine bridge system that has been utilized in the CANDU 6 reactor units. The CANDU 9 480NU fuel handling system successfully combines features that meet the project requirements with respect to fuelling performance, functionality, seismic qualification and the use of proven components. The design incorporates improvements based on experience and applicable current technologies. (author). 4 figs

  12. Spectroscopic verification of fuel bundles at Embalse using CdZnTe

    International Nuclear Information System (INIS)

    The Central Nuclear Embalse is a Candu-6 nuclear power station in Argentina. In support of the International Atomic Energy Agency plan to implement remote monitoring at this site, we have developed and tested a prototype underwater spent-fuel verification system based on coplanar-grid cadmium-zinc-telluride (CdZnTe) technology. The system uses the 137 Cs gamma ray signature, and is designed for minimal interference to the operator and eventual unattended operation: Test results suggest that the method is very likely to succeed. (author)

  13. Posttest examination of the VVER-1000 fuel rod bundle CORA-W2

    International Nuclear Information System (INIS)

    The bundle meltdown experiment CORA-W2, representing the behavior of a Russian type VVER-1000 fuel element, with one B4C/stainless steel absorber rod was selected by the OECD/CSNI as International Standard Problem (ISP-36). The experimental results of CORA-W2 serve as data base for comparison with analytical predictions of the high-temperature material behavior by various code systems. The first part of the experimental results is described in KfK 5363 (1994), the second part is documented in this report which contains the destructive post-test examination results. The metallographical and analytical (SEM/EDX) post-test examinations were performed in Germany and Russia and are summarized in five individual contributions. The upper half of the bundle is completely oxidized, the lower half has kept the fuel rods relatively intact. The post-test examination results show the strong impact of the B4C absorber rod and the stainless steel grid spacers on the ''low-temperature'' bundle damage initiation and progression. The B4C absorber rod completely disappeared in the upper half of the bundle. The multicomponent melts relocated and formed coolant channel blockages on solidification with a maximum extent of about 30% in the lower part of the bundle. At temperatures above the melting point of the ZrNb1 cladding extensive fuel dissolution occurred. (orig.)

  14. The effect of fuel power on the leaching of cesium and iodine from used CANDU fuel

    International Nuclear Information System (INIS)

    The safety assessment of the concept of geological disposal of used fuel requires a source term for the instantaneous release of long-lived radionuclides from used fuel. Preferential release of the gap inventories of Cs-137 and I-129 from used fuel with a variety of linear power ratings (LPR) was studied. A one-to-one and ten-to-one correlation exists between measured gap inventories of stable xenon and the amount of Cs-137 and I-129 in the gap, for high-LPR and low-LPR fuels, respectively, as obtained from 5-day leaching experiments. These differences in release patterns for high- and low-LPR fuels can be explained by differences in the microstructure, and disappear when longer leaching times (i.e. 3 months) are used. These results imply that, on a geological time scale, the entire inventory of the long-lived isotopes of cesium and iodine must be considered as part of the instantaneous release source term. Attempts to quantify inventories of cesium and technetium at grain boundaries by comparing the short-term leaching behaviour of oxidized and non-oxidized fuel indicated that either very insoluble cesium-uranium compounds may exist at the grain boundaries, or that cesium and stable xenon grain boundary inventories are not similar. More research is needed before a firm conclusion can be reached as to whether the entire grain boundary inventories of Cs-137 (and Tc-99), as estimated from power histories, should be part of the instantaneous release source term

  15. A Model to Reproduce the Response of the Gaseous Fission Product Monitor (GFPM) in a CANDU{sup R} 6 Reactor (An Estimate of Tramp Uranium Mass in a Candu Core)

    Energy Technology Data Exchange (ETDEWEB)

    Mostofian, Sara; Boss, Charles [AECL Atomic Energy of Canada Limited, 2251 Speakman Drive, Mississauga Ontario L5K 1B2 (Canada)

    2008-07-01

    In a Canada Deuterium Uranium (Candu) reactor, the fuel bundles produce gaseous and volatile fission products that are contained within the fuel matrix and the welded zircaloy sheath. Sometimes a fuel sheath can develop a defect and release the fission products into the circulating coolant. To detect fuel defects, a Gaseous Fission Product Monitoring (GFPM) system is provided in Candu reactors. The (GFPM) is a gamma ray spectrometer that measures fission products in the coolant and alerts the operator to the presence of defected fuel through an increase in measured fission product concentration. A background fission product concentration in the coolant also arises from tramp uranium. The sources of the tramp uranium are small quantities of uranium contamination on the surfaces of fuel bundles and traces of uranium on the pressure tubes, arising from the rare defected fuel element that released uranium into the core. This paper presents a dynamic model that reproduces the behaviour of a GFPM in a Candu 6 plant. The model predicts the fission product concentrations in the coolant from the chronic concentration of tramp uranium on the inner surface of the pressure tubes (PT) and the surface of the fuel bundles (FB) taking into account the on-power refuelling system. (authors)

  16. Romanian concern for advanced fuels development

    International Nuclear Information System (INIS)

    The Institute for Nuclear Research (ICN), a subsidiary of Romanian Authority for Nuclear Activities, at Pitesti - Romania, has developed a preliminary design of a fuel bundle with 43 elements named SEU 43 for high burnup in CANDU Reactor. A very high experience in nuclear fuels manufacturing and control has also been accumulated. Additionally, on the nuclear site Pitesti there is the Nuclear Fuel Plant (NFP) qualified to manufacturing CANDU 6 type fuel, the main fuel supplier for NPP Cernavoda. A very good collaboration of ICN with NFP can lead to a low cost upgrading the facilities which ensure at present the CANDU standard fuel fabrication to be able of manufacturing also SEU 43 fuel for extended burnup. The financial founds are allocated by Romanian Authority for Nuclear Activities of the Ministry of Industry and Resources to sustain the departmental R and D program 'Nuclear Fuel'. This Program has the main objective to establish a technology for manufacturing a new CANDU fuel type destined for extended burnup. It is studied the possibility to use the Recovered Uranium (RU) resulted from LWR spent fuel reprocessing facility existing in stockpiles. The International Agency for Atomic Energy (IAEA) sustains also this program. By ROM/4/025/ Model Project, IAEA helps ICN to solve the problems regarding materials (RU, Zircaloy 4 tubes) purchasing, devices' upgrading and personnel training. The paper presents the main actions needing to be create the technical base for SEU 43 fuel bundle manufacturing. First step, the technological experiments and experimental fuel element manufacturing, will be accomplished in ICN installations. Second step, the industrial scale, need thorough studies for each installation from NFP to determine tools and technology modification imposed by the new CANDU fuel bundle manufacturing. All modifications must be done such as to the NFP, standard CANDU and SEU fuel bundles to be manufactured alternatively. (author)

  17. The evolution of Candu fuel cycles and their potential contribution to world peace

    International Nuclear Information System (INIS)

    This paper describes how several factors, including Canada's early focus on heavy-water reactor technology, limited heavy-industry infrastructure, and desire for both technological autonomy and energy self- sufficiency, contributed to the creation of the first Candu reactor in 1962. (author)

  18. Results of international standard problem No. 36 severe fuel damage experiment of a VVER fuel bundle

    International Nuclear Information System (INIS)

    International Standard Problems (ISP) organized by the OECD are defined as comparative exercises in which predictions with different computer codes for a given physical problem are compared with each other and with a carefully controlled experimental study. The main goal of ISP is to increase confidence in the validity and accuracy of analytical tools used in assessing the safety of nuclear installations. In addition, it enables the code user to gain experience and to improve his competence. This paper presents the results and assessment of ISP No. 36, which deals with the early core degradation phase during an unmitigated severe LWR accident in a Russian type VVER. Representatives of 17 organizations participated in the ISP using the codes ATHLET-CD, ICARE2, KESS-III, MELCOR, SCDAP/RELAP5 and RAPTA. Some participants performed several calculations with different codes. As experimental basis the severe fuel damage experiment CORA-W2 was selected. The main phenomena investigated are thermal behavior of fuel rods, onset of temperature escalation, material behavior and hydrogen generation. In general, the calculations give the right tendency of the experimental results for the thermal behavior, the hydrogen generation and, partly, for the material behavior. However, some calculations deviate in important quantities - e.g. some material behavior data - showing remarkable discrepancies between each other and from the experiments. The temperature history of the bundle up to the beginning of significant oxidation was calculated quite well. Deviations seem to be related to the overall heat balance. Since the material behavior of the bundle is to a great extent influenced by the cladding failure criteria a more realistic cladding failure model should be developed at least for the detailed, mechanistic codes. Regarding the material behavior and flow blockage some models for the material interaction as well as for relocation and refreezing requires further improvement

  19. Results of international standard problem No. 36 severe fuel damage experiment of a VVER fuel bundle

    Energy Technology Data Exchange (ETDEWEB)

    Firnhaber, M. [Gesellschaft fuer Anlagen-und Reaktorsicherheit, Koeln (Germany); Yegorova, L. [Nuclear Safety Institute of Russian Research Center, Moscow (Russian Federation); Brockmeier, U. [Ruhr-Univ. of Bochum (Germany)] [and others

    1995-09-01

    International Standard Problems (ISP) organized by the OECD are defined as comparative exercises in which predictions with different computer codes for a given physical problem are compared with each other and with a carefully controlled experimental study. The main goal of ISP is to increase confidence in the validity and accuracy of analytical tools used in assessing the safety of nuclear installations. In addition, it enables the code user to gain experience and to improve his competence. This paper presents the results and assessment of ISP No. 36, which deals with the early core degradation phase during an unmitigated severe LWR accident in a Russian type VVER. Representatives of 17 organizations participated in the ISP using the codes ATHLET-CD, ICARE2, KESS-III, MELCOR, SCDAP/RELAP5 and RAPTA. Some participants performed several calculations with different codes. As experimental basis the severe fuel damage experiment CORA-W2 was selected. The main phenomena investigated are thermal behavior of fuel rods, onset of temperature escalation, material behavior and hydrogen generation. In general, the calculations give the right tendency of the experimental results for the thermal behavior, the hydrogen generation and, partly, for the material behavior. However, some calculations deviate in important quantities - e.g. some material behavior data - showing remarkable discrepancies between each other and from the experiments. The temperature history of the bundle up to the beginning of significant oxidation was calculated quite well. Deviations seem to be related to the overall heat balance. Since the material behavior of the bundle is to a great extent influenced by the cladding failure criteria a more realistic cladding failure model should be developed at least for the detailed, mechanistic codes. Regarding the material behavior and flow blockage some models for the material interaction as well as for relocation and refreezing requires further improvement.

  20. A general computing code devoted to the analysis of bending vibrations specific to the CANDU type fuel channel

    International Nuclear Information System (INIS)

    It is known that circulation of the coolant through the pressure tube of a CANDU type reactor initiates and maintains bending vibrations in: individual fuel elements, fuel cluster, cluster column and in the pressure tube. The driving forces are either aleatory, due to turbulent flow, or harmonical due to the pressure pulsations from the circulation pumps. The vibrations induced by laminar flow in case of excessive intensities may induce both a acceleration of the fretting wear phenomena in the fuel elements and pressure tubes and a premature aging of the latter. In these conditions an important problem in the cluster design is that of obtaining, based on knowledge of laminar flow frequency structure, the eigenfrequencies for the four categories of oscillatory systems mentioned above and thus to avoid by construction the resonance phenomenon or at least to diminish its impairing effects. An activity of comparative analysis in different fuel cluster types is underway at INR Pitesti, a special attention being of course directed toward their vibrational behavior. The paper presents a general computational code devoted to characterization of bending vibration for: individual fuel elements, fuel element cluster, pressure tube loaded or not with fuel clusters and filled or not with coolant; fuel channel. During the presentation of the work the computing code will be run for demonstration

  1. An integrated CANDU system

    International Nuclear Information System (INIS)

    Twenty years of experience have shown that the early choices of heavy water as moderator and natural uranium as fuel imposed a discipline on CANDU design that has led to outstanding performance. The integrated structure of the industry in Canada, incorporating development, design, supply, manufacturing, and operation functions, has reinforced this performance and has provided a basis on which to continue development in the future. These same fundamental characteristics of the CANDU program open up propsects for further improvements in economy and resource utilization through increased reactor size and the development of the thorium fuel cycle

  2. Measurement of Quasi-periodic Oscillating Flow Motion in Simulated Dual-cooled Annular Fuel Bundle

    International Nuclear Information System (INIS)

    In order to increase a significant amount of reactor power in OPR1000, KAERI (Korea Atomic Energy Research Institute) has been developing a dual-cooled annular fuel. The dual-cooled annular fuel is simultaneously cooled by the water flow through the inner and the outer channels. KAERI proposed the 12x12 dual-cooled annular fuel array which was designed to be structurally compatible with the 16x16 cylindrical solid fuel array by maintaining the same array size and the guide tubes in the same locations, as shown in Fig. 1. In such a case, due to larger outer diameter of dual-cooled annular fuel than conventional solid fuel, a P/D (Pitch-to-Diameter ratio) of dual cooled annular fuel assembly becomes smaller than that of cylindrical solid fuel. A change in P/D of fuel bundle can cause a difference in the flow mixing phenomena between the dual-cooled annular and conventional cylindrical solid fuel assemblies. In this study, the rod bundle flow motion appearing in a small P/D case is investigated preliminarily using PIV (Particle Image Velocimetry) for dual-cooled annular fuel application

  3. Prediction of temperature distribution in a fast reactor spent fuel bundle

    International Nuclear Information System (INIS)

    A simple mathematical model is described for predicting temperature distribution in a spent fuel bundle. The model takes into account γ-ray leakage, radiant and conductive heat transports between the various fuel pins arranged in a triangular array and enclosed in a hexagonal shaped tube containing gaseous medium. With the geometry of the fuel bundle the configuration factors between various fuel pins can be calculated. The configuration factors along with the heat generation rates, net γ-ray leakage, surface emissivity, conductivity of the enclosed medium and the temperature of the hexagonal tube can be used to estimate the temperature distribution with the help of the computer code TICOFUSA developed on the basis of this model. (author)

  4. An analytical method for predicting the temperature distribution in an irradiated fuel pin bundle

    International Nuclear Information System (INIS)

    A simple analytical model is described for predicting the temperature distribution in a spent fuel bundle. The model takes into account gamma-ray transport, radiant and conductive heat transports between the various fuel pins arranged in a triangular array and enclosed in a hexagonal shaped tubes containing gaseous medium. With the geometry of the fuel bundle the configuration factors between various fuel pins can be calculated from the relations presented in this report. The configuration factors along with the heat generation rates, net gamma ray leakage, surface emissivity, conductivity of the enclosed medium and the temperature of the hexagonal tube can be used to estimate the temperature distribution with the help of the computer code developed on the basis of this model. (orig.)

  5. The enhanced CANDU 6 reactor - Generation III CANDU medium size global reactor

    International Nuclear Information System (INIS)

    power and water systems; Other improvements to meet higher safety goals consistent with Canadian and International standards based on PSA studies; - Additional reactor trip coverage, based on refurbishment projects experience, to meet current Canadian Regulations. - Both CANDU 6 and EC6 offer flexible fuel cycle options including use of slightly enriched uranium from reprocessed LWR spent fuel, high burnup MOX fuel, thorium etc in a more efficient 43 element fuel bundle carrier called CANFLEX. - A target life up to 60 years with one mid-life refurbishment of critical equipment such as fuel channels and feeders. - Project elements have been optimized through feedback from past construction projects to arrive at an EC6 'in-service' schedule of 57 months from first concrete. Open-top construction method using a very-heavy-lift crane, concurrent construction, modularization and prefabrication and use of advanced computer technologies to minimize interferences are the key contributing elements for achieving this schedule. - State-of-the-art electronic tools for engineering, safety, licensing, procurement, drawing and project management are integrated to provide complete document control during all phases of the project, including construction and commissioning. This information, in electronic format, will be turned over to the Owner for operational and configuration management needs during plant life. - Advanced MACSTOR design for efficient dry spent fuel storage with optimized space usage. Summary. Capitalizing on the proven features of CANDU technology, AECL has designed the EC6 to be competitive with all forms of energy, including nuclear, while achieving high safety and performance standards. (author)

  6. The post-irradiation examination of CANDU type fuel irradiated in the Institute for Nuclear Research TRIGA Reactor

    International Nuclear Information System (INIS)

    The INR hot cells have 10 years of practice in post-irradiation examination (PIE) on experimental nuclear fuel elements and structure materials. This paper summarises the result of a typical PIE work carried out on an experimental CANDU type fuel element irradiated in an assembly of six rods in a power ramp test in the TRIGA 14 MV (th) materials testing reactor. The fuel element has attained practically a burnup of 188.4 MWh/kg U (10% accuracy) as determined by nondestructive gamma scanning method, and of 194.3 MWh/kg U (3 % accuracy) as determined by destructive mass spectrometry method. These results determined by nondestructive and destructive methods are in agreement. The eddy current control for clad integrity has revealed the integrity of the fuel element, a fact also confirmed by the fuel puncture for internal gas pressure measurement. The metallography control of the cladding has revealed good quality welding and an acceptable quality brazing of a bearing pad. The ceramographic control of the fuel revealed an expected two-zone structure, except one end of the fuel element where a three-zone structure was found, due to the higher thermal rating induced by the flux peak. The results are presented in measurement worksheets and are accompanied by diagrams and pictures. (author)

  7. Enhanced CANDU 6 Reactor

    International Nuclear Information System (INIS)

    operating plants. The EC6 will utilize modern computers and control systems housed in an Advanced Control Room which along with automated testing will make the plants much easier to operate with minimal operator intervention. Improvements to the fire protection system and enhanced security features will further protect the assets. And given the CANDU 6's inherent ability to utilize different fuel cycles and the Advanced MACSTOR module to store spent dry fuel further add to the attractiveness of the EC6 product. This paper describes the various enhancements that are being made to the EC6 and explains these features in more detail. (authors)

  8. Feasibility of Accident-Tolerant FCM Replacement Fuel for CANDUs

    International Nuclear Information System (INIS)

    For enhanced accident tolerance, an innovative fuel concept, the fully ceramic microencapsulated (FCM) fuel based on the particle fuel concept of a gas-cooled reactor, is proposed to replace the conventional UO2 fuel bundle of existing and advanced CANDU reactors. In this study, the feasibility of replacing conventional UO2 fuel bundle with the accident-tolerant FCM fuel bundle has been assessed in view of core neutronics compatibility, accident-tolerance, and fuel cycle management. From the study, it was demonstrated that the FCM replacement fuel can provide resolution to CANDU generic issues by ensuring not only enhanced accident tolerance, but also an improved fuel cycle management. The accident-tolerant FCM fuel concept is proposed for replacing the conventional UO2 fuel bundle in CANDUs. The FCM fuel is shown to be neutronically compatible with existing core and the core residence time can be increased by more than 100 days. Accident-tolerance is remarkably enhanced by key features of the FCM fuel: it is refractory, thermo-mechanically and chemically stable, and fission product retentive. Less fuel feed and discharge obtained with the FCM fuel provide large savings in the spent fuel management burden charge and reduces the burden to the spent fuel storage facility in the long run. The smaller amount of minor actinides in the discharge bundles, together with the fission product retention and corrosion resistant features of the FCM fuel, should facilitate the long-term dry disposals of the spent fuel. From this study, it has been demonstrated that the CANDU FCM fuel is a feasible and viable option for CANDU reactors. The technology readiness level of the FCM fuel design and manufacturing is close to a lead test bundle loading for near-term deployment

  9. CANFLEX-RU fuel development programs as one option of advanced fuel cycles in Korea

    International Nuclear Information System (INIS)

    As one of the possible fuel cycles in Korea, RU (Recycled Uranium) fuel offers a very attractive alternative to the use of NU (Natural Uranium) and SEU in the CANDU reactors, because Korea is a unique country having both PWR and CANDU reactors. Korea can therefore exploit the natural synergism between the two reactor types to minimise overall waste production, and maximise energy derived from the fuel, by burning the spent fuel from its PWR reactors in CANDU reactors. Potential benefits can be derived from a number of stages in the fuel cycle: no enrichment required, no enrichment tails, direct conversion to UO2 lower sensitivity to 234U and 236U absorption in the CANDU reactor, expected lower cost relative to NU and SEU. These benefits all fit well with the PWR-CANDU fuel cycle synergy. RU arising from the reprocessing of European and Japanese oxide spent fuel by 2000 is projected to be approaching 25,000 te. The use of RU fuel in a CANDU-6 reactor should result in no serious radiological difficulties and no requirements for special precautions and should not require any new technologies for the fuel fabrication and handling. A KAERI's feasibility shows that the use of the CANFLEX bundle as the carrier for RU will be compatible with the reactor design, current safety and operational requirements, and there will be no significant fuel performance difference from the CANDU 37-element NU fuel bundle. Compared with the 37-element NU bundle, the RU fuel has significantly improved fuel cycle economics derived from increased burnups, a large reduction in fuel requirements and spent fuel arisings and the potential lower cost for RU material. There is the potential for annual fuel cost savings to be in the range of one-third to two-thirds, with enhanced operating margins using RU in the CANFLEX bundle design. These benefits provide the rationale for justifying R and D effort on the use of RU fuel for advanced fuel cycles in the CANDU reactors of Korea. The RU fuel

  10. Pre-licensing of the Advanced CANDU Reactor

    International Nuclear Information System (INIS)

    Atomic Energy of Canada Limited (AECL) developed the Advanced CANDU Reactor-700 (ACR-700) as an evolutionary advancement of the current CANDU 6 reactor. As further advancement of the ACR design, AECL is currently developing the ACR-1000 for the Canadian and international market. The ACR-1000 is aimed at producing electrical power for a capital cost and a unit-energy cost significantly less than that of the current generation of operating nuclear plants, while achieving shorter construction schedule, high plant capacity factor, improved operations and maintenance, increased operating life, and enhanced safety features. The reference ACR-1000 plant design is based on an integrated two-unit plant, using enriched fuel and light-water coolant, with each unit having a nominal gross electrical output of 1165 MWe. The ACR-1000 design has evolved from AECL's in-depth knowledge of CANDU systems, components, and materials, as well as the experience and feedback received from owners and operators of CANDU plants. The ACR design retains the proven strengths and features of CANDU reactors, while incorporating innovations and state-of-the-art technology. It also features major improvements in economics, inherent safety characteristics, and performance, while retaining the proven benefits of the CANDU family of nuclear power plants. The CANDU system is ideally suited to this evolutionary approach since the modular fuel channel reactor design can be modified, through a series of incremental changes in the reactor core design, to increase the power output and improve the overall safety, economics, and performance. The safety enhancements made in ACR-1000 encompass improved safety margins, performance and reliability of safety related systems. In particular, the use of the CANFLEX-ACR fuel bundle, with lower linear rating and higher critical heat flux, provides increased operating and safety margins. Safety features draw from those of the existing CANDU plants (e.g., the two

  11. Optimising welding and assembling processes for manufacturing PHWR fuel element and bundle

    International Nuclear Information System (INIS)

    In PHWR fuel fabrication, end-cap joint formed by Zircaloy fuel tube and cap is one of the most critical welds as it is expected to offer a hermetically sealed joint to contain the radioactive fission products. In view of their highly demanding function during reactor operation, these welds have to be produced to a high degree of reliability by careful selection of process and parameters. PHWR fuel bundle is manufactured by joining end plates to elements at both ends. Resistance projection welding technique is used to weld the element ends to end plates. This being the final operation in PHWR fuel fabrication route, it plays very important role with respect to bundle dimensions and integrity. Jigs and Fixtures are used to assemble fuel elements and end plates. The quality of these fixtures affect the bundle dimensions, inter element spacing and orientation of fuel elements/end-plates. While welding Zircaloy material, properties like coefficient of thermal expansion, thermal conductivity and thin oxide layers have to be considered. Generally high conductive material requires pre-heating before welding, while post-treatment of the weld is carried out if the metallurgical properties are changing in the Heat Affected Zone (HAZ). In resistance welding, selecting a suitable weld cycle pattern involves optimization of current, time, number of on/off cycles and current slope. Different current cycle patterns offer distinct advantages and certain disadvantages too with respect to weld bonding, sparking, HAZ etc. State-of-the-art technology is being used to have better control on weld parameters and monitor them as well for further analysis. The paper discusses the effect of welding parameters including different weld cycle patterns like on/off cycle, up-slope cycle and constant current cycle. Improvements carried out to ensure dimensional integrity of the bundle are also dealt with in the paper. (author)

  12. Modeling CANDU-type fuel behaviour during extended burnup irradiations using a revised version of the ELESIM code

    International Nuclear Information System (INIS)

    The high burnup database for CANDU fuel includes several cases from both power station and experimental reactor irradiations, with achieved burnups of up to 800 MW.h/kgU. The power history for each of these cases is different, encompassing low steady-state, declining, and power-ramps. This variety offers a good opportunity to check the models of fuel behaviour, and to identify areas for improvement. The main parameters for comparing calculated versus measured data are the fission gas release and the sheath hoop strain. Good agreement of calculated values of these two parameters with experimental data indicates that the global behaviour of the fuel element is adequately simulated by our codes. The ELESIM computer code was used as the simulation tool. The models for fission gas release, swelling and for fuel pellet expansion were thoroughly analysed. Changes were proposed for both models. The fuel pellet expansion model was modified to account for gaseous swelling, which becomes very important at high burnups. As well, the mathematics of the fission gas release model was upgraded for the diffusional release of fission gas atoms to the grain boundaries. A revised version of the ELESIM computer code was used to simulate the cases from the high burnup database. Satisfactory agreement was found for most cases. The discrepancies are discussed in view of alternative mechanisms that can operate and be enhanced at high burnup. These include stoichiometry changes with burnup that affects fission gas release, and also outer pellet rim fission gas release by a grain boundary diffusion process. The main conclusion of this study is that the revised version of the ELESIM code is able to simulate with reasonable accuracy high burnup as well as low burnup CANDU fuel. This includes irradiations of steady-state, declining, or ramped fuel power histories with a prolonged hold at high power. However, future improvements to ELESIM are needed to model fuel power histories with short dwell

  13. CANDU market prospects

    International Nuclear Information System (INIS)

    This 1994 survey of prospective markets for CANDU reactors discusses prospects in Turkey, Thailand, the Philippines, Korea, Indonesia, China and Egypt, and other opportunities, such as in fuel cycles and nuclear safety. It was concluded that foreign partners would be needed to help with financing

  14. Exceptional crud build-up in Loviisa-2 fuel bundles

    International Nuclear Information System (INIS)

    Anomalous primary coolant outlet temperatures at Loviisa 2 unit were first discovered in October, 1994, one month after the start of the 15. cycle. The reason for increased outlet temperatures was soon found out to be decreased coolant flow through part of the fuel assemblies. This phenomenon was most pronounced in six first cycle fuel assemblies with spacer grids made of Zr1%Nb (ZR assemblies). Due to continuously increasing outlet temperature the reactor was shut down at the end of January, 1995. The six ZR assemblies were discharged from the reactor. Towards the end of cycle no. 15 the rate of outlet temperature increase slowed down and essentially stopped in the remaining assemblies, which had spacer grids made of stainless steel (SS assemblies). One of the ZR assemblies was visually inspected using the pool-side inspection equipment at Loviisa 2 unit. This inspection showed that the reason for the decreased coolant flow was deposition of crud in the spacer grids, especially in the lower parts of the assembly. Based on data of coolant outlet temperatures, flow resistance measurements were carried out for eighty SS assemblies during the refuelling outage between cycles no. 15 and no. 16. As a result thirty assemblies, which had the most clogged spacer grids, were discharged from the reactor before their planned end of life. The cycle no. 16 started with an indication of a small leakage in September, 1995. Primary coolant activity kept increasing steadily, indicating more fuel failures, up to values never reached before at Loviisa NPP. The estimated number of leaking rods varied from approximately 10 rods up to ca. 70 rods. Finally, Loviisa 2 unit was decided to be shut down in late October, 1995. Sipping of the core indicated that there were seven leaking fuel assemblies in the reactor. All leaking assemblies had earlier been identified as being slightly clogged due to the deposition of crud in the spacer grids. Altogether thirty-two slightly clogged assemblies

  15. The demonstration irradiation of the CANFLEX-NU fuel bundle in Wolsong NGS 1

    International Nuclear Information System (INIS)

    A demonstration irradiation (DI) of 24 CANFLEX-NU fuel bundles in the high power Q07 channel and low power L21 channel of Wolsong Power Generation Station-1 had been successfully conducted jointly by KEPRI/KHNP/KAERI in the period of 2002 July to 2004 January. The tracking of the reactor operation data showed that the reactor has been stably operated during the DI. One CANFLEX bundle irradiated in the Q07 channel had a typical history of high power and high burnup, where the maximum element linear power rating was ∼ 42 kW/m at the burnup of ∼ 50 MWh/kgU and ∼ 35 kW/m at the discharge element burnup of ∼ 210 MWh/kgU. While, another CANFLEX bundles also irradiated in the Q07 channel had a typical history of power ramping, where the maximum element power ramping-up or -down rate was 28 kW/m. The unusual performance and integrity of the CANFLEX elements could not be found in the ELESTRES predictions and also the in-bay visual examinations showed that all the bundles were intact, free of defects and appeared to be in good condition as expected. Therefore, it is concluded that the demonstration irradiation shows the validation of the CANFLEX bundle performance with direct conditions of relevance under the Korean licensing requirements and the KNFC fuel fabrication capability, and provides the rationale for the decision to perform the full-conversion of CANFLEX fuel in WPGS-1. (author)

  16. Mechanistic modeling of bearing pad to pressure tube contact under localized high temperature conditions in a CANDU fuel channel

    International Nuclear Information System (INIS)

    During a postulated critical break LOCA (loss of coolant accident) in a CANDU reactor the coolant flow rates in the fuel channels of the flow pass of the reactor core downstream of the pipe break can rapidly reduce to very low values and remain very low for a period of tens of seconds following the break. Under the sustained low flow conditions, the fuel sheath (cladding) temperature in the affected channels rapidly increases and the coolant in the channels becomes significantly voided. The pressure tubes in the affected pass heat up under a combination of convection heat transfer from the low flows of superheated seam and thermal radiation heat transfer from the hot fuel. Additionally, hot spots may develop on the inner surface of pressure tubes at locations where the fuel bearing pads are in direct contact with the pressure tube. Localized thermal creep strain deformation at the hot spots is a potential pressure tube failure mechanism which could challenge fuel channel integrity. This paper evaluates the local thermal-mechanical deformation of a pressure tube in a CANDU reactor under critical break LOCA conditions tube using a coupled thermal-mechanical finite element COMSOL multi-physics model and investigates the conditions resulting in fuel channel failure due to localized contact between bearing pad and pressure. The mechanistic models are validated against data obtained from COG funded experiments performed at WRL (Whiteshell Research Laboratory). Multiphysics calculations are performed in which the heat transfer, thermal-mechanical and creep strain equations are solved, simultaneously. Heat conduction from bearing pads to the inner surface of the pressure tube is modeled with appropriate convective and radiation heat transfer boundary conditions. Thermal creep strain deformation of the Zr-2.5%Nb pressure tube is modeled using correlations derived from separate uniaxial tests that are reported in the literature. Contact conductance models based on

  17. Numerical simulation of fluid flow and heat transfer of supercritical fluids in fuel bundles

    International Nuclear Information System (INIS)

    A supercritical water-cooled reactor (SCWR) was proposed as a kind of generation IV reactor in order to improve the efficiency of nuclear reactors. Although investigations on the thermal-hydraulic behavior in SCWR have attracted much attention, there is still a lack of CFD study on the heat transfer of supercritical water in fuel channels. In order to understand the thermal-hydraulic behavior of supercritical fluids in nuclear reactors, the local fluid flow and heat transfer of supercritical water in a 37-element fuel bundle has been studied numerically in this work. Results show that secondary flow appears and the cladding surface temperature (CST) is very nonuniform in the fuel bundle. The maximum cladding surface temperature (MaxCST), which is an important design parameter for SCWR, can be predicted and analyzed using the CFD method. Due to a very large circumferential temperature gradient in cladding surfaces of the fuel bundle, the precise cladding temperature distributions using the CFD method is highly recommended. (author)

  18. Development of neural network for analysis of local power distributions in BWR fuel bundles

    International Nuclear Information System (INIS)

    A neural network model has been developed to learn the local power distributions in a BWR fuel bundle. A two layers neural network with total 128 elements is used for this model. The neural network learns 33 cases of local power peaking factors of fuel rods with given enrichment distribution as the teacher signals, which were calculated by a fuel bundle nuclear analysis code based on precise physical models. This neural network model studied well the teacher signals within 1 % error. It is also able to calculate the local power distributions within several % error for the different enrichment distributions from the teacher signals when the average enrichment is close to 2 %. This neural network is simple and the computing speed of this model is 300 times faster than that of the precise nuclear analysis code. This model was applied to survey the enrichment distribution to meet a target local power distribution in a fuel bundle, and the enrichment distribution with flat power shape are obtained within short computing time. (author)

  19. Air-water two-phase flow pressure drop across various components of AHWR fuel bundle

    International Nuclear Information System (INIS)

    Single-phase (water) and two-phase (air-water) experiments were carried out for the measurement of pressure drops across various components of a prototype full scale 54-rod fuel bundle of proposed AHWR (Advanced Heavy Water Reactor). From the measured values of pressure drops, the friction factor for fuel bundle and the loss coefficients for the tie plates and spacers were estimated. The single-phase experimental data were compared with different existing correlations. Correlations have been proposed based on the data generated with the air-water mixture which can be used for prediction of pressure drop across fuel channel (with 54 rod fuel bundle) of AHWR under normal operating conditions with appropriate correction factor for steam-water flow. Also a heuristic approach to predict the Lockhart-Martinelli parameter has been presented. Further, a new correlation for two-phase friction multiplier applicable to 54-rod cluster geometry has been developed based on two-phase experimental pressure drop data. The effect of mixture mass flux on the two-phase friction multiplier has been probed and the assessment of existing friction multiplier correlations has also been carried out with the test data. (author)

  20. The disposal of Canada's nuclear fuel waste: a study of postclosure safety of in-room emplacement of used CANDU fuel in copper containers in permeable plutonic rock. Volume 2: vault model

    International Nuclear Information System (INIS)

    A study has been undertaken to evaluate the design and long-term performance of a nuclear fuel waste disposal vault based on a concept of in-room emplacement of copper containers at a depth of 500 m in plutonic rock in the Canadian Shield. The containers, each with 72 used CANDU fuel bundles, would be surrounded by clay-based buffer and backfill materials in an array of parallel rooms, with the excavation boundary assumed to have an excavation-disturbed zone (EDZ) with a higher permeability than the surrounding rock. In the anoxic conditions of deep rock of the Canadian Shield, the copper containers are expected to survive for >106 a. Thus container manufacturing defects, which are assumed to affect approximately 1 in 5000 containers, would be the only potential source of radionuclide release in the vault. The vault model is a computer code that simulates the release of radionuclides that would occur upon contact of the used fuel with groundwater, the diffusive transport of these radionuclides through the defect in the container shell and the surrounding buffer, and their dispersive and convective transport through the backfill and EDZ into the surrounding rock. The vault model uses a computationally efficient boundary integral model (BIM) that simulates radionuclide mass transport in the engineered barrier system as a point source (representing the defective container) that releases radionuclides into concentric cylinders, that represent the buffer, backfill and EDZ. A 3-dimensional finite-element model is used to verify the accuracy of the BIM. The results obtained in the present study indicates the effectiveness of a design using in-room emplacement of long-lived containers in providing a safe disposal system even under permeable geosphere conditions. (author). refs., tabs., figs