WorldWideScience

Sample records for candida biofilm development

  1. Candida Biofilms: Development, Architecture, and Resistance.

    Science.gov (United States)

    Chandra, Jyotsna; Mukherjee, Pranab K

    2015-08-01

    Intravascular device-related infections are often associated with biofilms (microbial communities encased within a polysaccharide-rich extracellular matrix) formed by pathogens on the surfaces of these devices. Candida species are the most common fungi isolated from catheter-, denture-, and voice prosthesis-associated infections and also are commonly isolated from contact lens-related infections (e.g., fungal keratitis). These biofilms exhibit decreased susceptibility to most antimicrobial agents, which contributes to the persistence of infection. Recent technological advances have facilitated the development of novel approaches to investigate the formation of biofilms and identify specific markers for biofilms. These studies have provided extensive knowledge of the effect of different variables, including growth time, nutrients, and physiological conditions, on biofilm formation, morphology, and architecture. In this article, we will focus on fungal biofilms (mainly Candida biofilms) and provide an update on the development, architecture, and resistance mechanisms of biofilms.

  2. Miconazole activity against Candida biofilms developed on acrylic discs.

    Science.gov (United States)

    Gebremedhin, S; Dorocka-Bobkowska, B; Prylinski, M; Konopka, K; Duzgunes, N

    2014-08-01

    Oral candidiasis in the form of Candida-associated denture stomatitis (CaDS) is associated with Candida adhesion and biofilm formation on the fitting surface of poly (methyl methacrylate) (PMMA) dentures. Candida biofilms show considerable resistance to most conventional antifungal agents, a phenomenon that is considered a developmental-phase-specific event that may help explain the high recurrence rates associated with CaDS. The aim of this study was to examine the activity of miconazole towards in vitro-grown mature Candida biofilms formed on heat-cured PMMA discs as a standardized model. The effect of miconazole nitrate on Candida biofilms developed on acrylic discs was determined for C. albicans MYA-2732 (ATCC), C. glabrata MYA-275 (ATCC), and clinical isolates, C. albicans 6122/06, C. glabrata 7531/06, C. tropicalis 8122/06, and C. parapsilosis 11375/07. Candida biofilms were developed on heat-cured poly(methyl methacrylate) discs and treated with miconazole (0.5 - 96 μg/ml). The metabolic activity of the biofilms was measured by the XTT reduction assay. The minimum inhibitory concentrations (MICs) of miconazole against Candida species were determined by the microdilution method. The MICs for miconazole for the investigated strains ranged from 0.016-32 μg/ml. Treatment with miconazole resulted in a significant reduction of biofilm metabolic activity for all strains. The highest inhibition was observed at 96 μg/ml miconazole. In the case of C. glabrata MYA-275 and C. tropicalis 8122/06 this corresponded to 83.7% and 75.4% inhibition, respectively. The lowest reduction was observed for C. parapsilosis 11375/07-46.1%. For all Candida strains there was a strong correlation between MIC values and miconazole concentrations corresponding to a reduction of metabolic activity of the biofilm by 50%. Miconazole exhibits high antifungal activity against Candida biofilms developed on the surface of PMMA discs. The study provides support for the use of miconazole as an

  3. Development of a high-throughput Candida albicans biofilm chip.

    Directory of Open Access Journals (Sweden)

    Anand Srinivasan

    Full Text Available We have developed a high-density microarray platform consisting of nano-biofilms of Candida albicans. A robotic microarrayer was used to print yeast cells of C. albicans encapsulated in a collagen matrix at a volume as low as 50 nL onto surface-modified microscope slides. Upon incubation, the cells grow into fully formed "nano-biofilms". The morphological and architectural complexity of these biofilms were evaluated by scanning electron and confocal scanning laser microscopy. The extent of biofilm formation was determined using a microarray scanner from changes in fluorescence intensities due to FUN 1 metabolic processing. This staining technique was also adapted for antifungal susceptibility testing, which demonstrated that, similar to regular biofilms, cells within the on-chip biofilms displayed elevated levels of resistance against antifungal agents (fluconazole and amphotericin B. Thus, results from structural analyses and antifungal susceptibility testing indicated that despite miniaturization, these biofilms display the typical phenotypic properties associated with the biofilm mode of growth. In its final format, the C. albicans biofilm chip (CaBChip is composed of 768 equivalent and spatially distinct nano-biofilms on a single slide; multiple chips can be printed and processed simultaneously. Compared to current methods for the formation of microbial biofilms, namely the 96-well microtiter plate model, this fungal biofilm chip has advantages in terms of miniaturization and automation, which combine to cut reagent use and analysis time, minimize labor intensive steps, and dramatically reduce assay costs. Such a chip should accelerate the antifungal drug discovery process by enabling rapid, convenient and inexpensive screening of hundreds-to-thousands of compounds simultaneously.

  4. Development of a high-throughput Candida albicans biofilm chip.

    Science.gov (United States)

    Srinivasan, Anand; Uppuluri, Priya; Lopez-Ribot, Jose; Ramasubramanian, Anand K

    2011-04-22

    We have developed a high-density microarray platform consisting of nano-biofilms of Candida albicans. A robotic microarrayer was used to print yeast cells of C. albicans encapsulated in a collagen matrix at a volume as low as 50 nL onto surface-modified microscope slides. Upon incubation, the cells grow into fully formed "nano-biofilms". The morphological and architectural complexity of these biofilms were evaluated by scanning electron and confocal scanning laser microscopy. The extent of biofilm formation was determined using a microarray scanner from changes in fluorescence intensities due to FUN 1 metabolic processing. This staining technique was also adapted for antifungal susceptibility testing, which demonstrated that, similar to regular biofilms, cells within the on-chip biofilms displayed elevated levels of resistance against antifungal agents (fluconazole and amphotericin B). Thus, results from structural analyses and antifungal susceptibility testing indicated that despite miniaturization, these biofilms display the typical phenotypic properties associated with the biofilm mode of growth. In its final format, the C. albicans biofilm chip (CaBChip) is composed of 768 equivalent and spatially distinct nano-biofilms on a single slide; multiple chips can be printed and processed simultaneously. Compared to current methods for the formation of microbial biofilms, namely the 96-well microtiter plate model, this fungal biofilm chip has advantages in terms of miniaturization and automation, which combine to cut reagent use and analysis time, minimize labor intensive steps, and dramatically reduce assay costs. Such a chip should accelerate the antifungal drug discovery process by enabling rapid, convenient and inexpensive screening of hundreds-to-thousands of compounds simultaneously.

  5. Production of tyrosol by Candida albicans biofilms and its role in quorum sensing and biofilm development.

    Science.gov (United States)

    Alem, Mohammed A S; Oteef, Mohammed D Y; Flowers, T Hugh; Douglas, L Julia

    2006-10-01

    Tyrosol and farnesol are quorum-sensing molecules produced by Candida albicans which accelerate and block, respectively, the morphological transition from yeasts to hyphae. In this study, we have investigated the secretion of tyrosol by C. albicans and explored its likely role in biofilm development. Both planktonic (suspended) cells and biofilms of four C. albicans strains, including three mutants with defined defects in the Efg 1 and Cph 1 morphogenetic signaling pathways, synthesized extracellular tyrosol during growth at 37 degrees C. There was a correlation between tyrosol production and biomass for both cell types. However, biofilm cells secreted at least 50% more tyrosol than did planktonic cells when tyrosol production was related to cell dry weight. The addition of exogenous farnesol to a wild-type strain inhibited biofilm formation by up to 33% after 48 h. Exogenous tyrosol appeared to have no effect, but scanning electron microscopy revealed that tyrosol stimulated hypha production during the early stages (1 to 6 h) of biofilm development. Experiments involving the simultaneous addition of tyrosol and farnesol at different concentrations suggested that the action of farnesol was dominant, and 48-h biofilms formed in the presence of both compounds consisted almost entirely of yeast cells. When biofilm supernatants were tested for their abilities to inhibit or enhance germ tube formation by planktonic cells, the results indicated that tyrosol activity exceeds that of farnesol after 14 h, but not after 24 h, and that farnesol activity increases significantly during the later stages (48 to 72 h) of biofilm development. Overall, our results support the conclusion that tyrosol acts as a quorum-sensing molecule for biofilms as well as for planktonic cells and that its action is most significant during the early and intermediate stages of biofilm formation.

  6. Bioactivity and architecture of Candida albicans biofilms developed on poly(methyl methacrylate) resin surface.

    Science.gov (United States)

    da Silva, Wander José; Seneviratne, Jayampath; Samaranayake, Lakshman Perera; Del Bel Cury, Altair Antoninha

    2010-07-01

    The aim of this study was to evaluate the bioactivity and architecture of Candida albicans biofilms developed on the surface of poly(methyl methacrylate) (PMMA) resin. To do this, surface roughness (SR) and surface free energy of PMMA specimens were measured. Next, the biofilms of two different C. albicans strains (ATCC 90028 and SC5314) were allowed to develop on the PMMA surface and evaluated at 24, 48, and 72 h after adhesion. The bioactivity of the biofilms was measured by the XTT reduction assay. Biofilm topography was evaluated by scanning electron microscopy. Confocal microscopy was used to evaluate the architectural properties of bio-volume, average thickness, biofilm roughness, surface area/volume ratio and the proportion of live/dead cells in the different biofilm development stages. SR and SFE had no influence on biofilm development. Each strain exhibited a different biofilm activity (P < 0.001). Confocal images showed different architectures for the different biofilm development stages. We conclude that the main differences detected in biofilm bioactivity and architecture were related to the characteristics of each C. albicans strain and to biofilm development time.

  7. Exopolysaccharide matrix of developed candida albicans biofilms after exposure to antifungal agents

    OpenAIRE

    2012-01-01

    This study aimed to evaluate the effects of fluconazole or nystatin exposure on developed Candida albicans biofilms regarding their exopolysaccharide matrix. The minimal inhibitory concentration (MIC) against fluconazole or nystatin was determined for C. albicans reference strain (ATCC 90028). Poly(methlymethacrylate) resin (PMMA) specimens were fabricated according to the manufacturer's instructions and had their surface roughness measured. Biofilms were developed on specimens surfaces for 4...

  8. Candida albicans stimulates Streptococcus mutans microcolony development via cross-kingdom biofilm-derived metabolites

    Science.gov (United States)

    Kim, Dongyeop; Sengupta, Arjun; Niepa, Tagbo H. R.; Lee, Byung-Hoo; Weljie, Aalim; Freitas-Blanco, Veronica S.; Murata, Ramiro M.; Stebe, Kathleen J.; Lee, Daeyeon; Koo, Hyun

    2017-01-01

    Candida albicans is frequently detected with heavy infection of Streptococcus mutans in plaque-biofilms from children affected with early-childhood caries, a prevalent and costly oral disease. The presence of C. albicans enhances S. mutans growth within biofilms, yet the chemical interactions associated with bacterial accumulation remain unclear. Thus, this study was conducted to investigate how microbial products from this cross-kingdom association modulate S. mutans build-up in biofilms. Our data revealed that bacterial-fungal derived conditioned medium (BF-CM) significantly increased the growth of S. mutans and altered biofilm 3D-architecture in a dose-dependent manner, resulting in enlarged and densely packed bacterial cell-clusters (microcolonies). Intriguingly, BF-CM induced S. mutans gtfBC expression (responsible for Gtf exoenzymes production), enhancing Gtf activity essential for microcolony development. Using a recently developed nanoculture system, the data demonstrated simultaneous microcolony growth and gtfB activation in situ by BF-CM. Further metabolites/chromatographic analyses of BF-CM revealed elevated amounts of formate and the presence of Candida-derived farnesol, which is commonly known to exhibit antibacterial activity. Unexpectedly, at the levels detected (25–50 μM), farnesol enhanced S. mutans-biofilm cell growth, microcolony development, and Gtf activity akin to BF-CM bioactivity. Altogether, the data provide new insights on how extracellular microbial products from cross-kingdom interactions stimulate the accumulation of a bacterial pathogen within biofilms. PMID:28134351

  9. The effect of Streptococcus mutans and Candida glabrata on Candida albicans biofilms formed on different surfaces

    NARCIS (Netherlands)

    Pereira-Cenci, T.; Deng, D.M.; Kraneveld, E.A.; Manders, E.M.M.; Del Bel Cury, A.A.; ten Cate, J.M.; Crielaard, W.

    2008-01-01

    Although Candida containing biofilms contribute to the development of oral candidosis, the characteristics of multi-species Candida biofilms and how oral bacteria modulate these biofilms is poorly understood. The aim of this study was to investigate interactions between Candida albicans and either C

  10. Exopolysaccharide matrix of developed Candida albicans biofilms after exposure to antifungal agents.

    Science.gov (United States)

    da Silva, Wander José; Gonçalves, Letícia Machado; Seneviratne, Jayampath; Parahitiyawa, Nipuna; Samaranayake, Lakshman Perera; Del Bel Cury, Altair Antoninha

    2012-01-01

    This study aimed to evaluate the effects of fluconazole or nystatin exposure on developed Candida albicans biofilms regarding their exopolysaccharide matrix. The minimal inhibitory concentration (MIC) against fluconazole or nystatin was determined for C. albicans reference strain (ATCC 90028). Poly(methlymethacrylate) resin (PMMA) specimens were fabricated according to the manufacturer's instructions and had their surface roughness measured. Biofilms were developed on specimens surfaces for 48 h and after that were exposed during 24 h to fluconazole or nystatin prepared in a medium at MIC, 10 x MIC or 100 x MIC. Metabolic activity was evaluated using an XTT assay. Production of soluble and insoluble exopolysaccharide and intracellular polysaccharides was evaluated by the phenol-sulfuric method. Confocal laser scanning microscope was used to evaluate biofilm architecture and percentage of dead/live cells. Data were analyzed statistically by ANOVA and Tukey's test at 5% significance level. The presence of fluconazole or nystatin at concentrations higher than MIC results in a great reduction of metabolic activity (p0.05). The exposure to nystatin also did not alter the exopolysaccharide matrix at all the tested concentrations (p>0.05). Biofilm architecture was not affected by either of the antifungal agents (p>0.05). Nystatin promoted higher proportion of dead cells (p<0.05). It may be concluded that fluconazole and nystatin above the MIC concentration reduced the metabolic activity of C. albicans biofilms; however, they were not able to alter the exopolysaccharide matrix and biofilm architecture.

  11. Pseudomonas aeruginosa lipopolysaccharide inhibits Candida albicans hyphae formation and alters gene expression during biofilm development.

    Science.gov (United States)

    Bandara, H M H N; K Cheung, B P; Watt, R M; Jin, L J; Samaranayake, L P

    2013-02-01

    Elucidation of bacterial and fungal interactions in multispecies biofilms will have major impacts on understanding the pathophysiology of infections. The objectives of this study were to (i) evaluate the effect of Pseudomonas aeruginosa lipopolysaccharide (LPS) on Candida albicans hyphal development and transcriptional regulation, (ii) investigate protein expression during biofilm formation, and (iii) propose likely molecular mechanisms for these interactions. The effect of LPS on C. albicans biofilms was assessed by XTT-reduction and growth curve assays, light microscopy, scanning electron microscopy (SEM), and confocal laser scanning microscopy (CLSM). Changes in candidal hypha-specific genes (HSGs) and transcription factor EFG1 expression were assessed by real-time polymerase chain reaction and two-dimensional gel electrophoresis, respectively. Proteome changes were examined by mass spectrometry. Both metabolic activities and growth rates of LPS-treated C. albicans biofilms were significantly lower (P GDH1), CaO19.11135(PGK1), CaO19.9877(HNT1) by P. aeruginosa LPS. Our data imply that bacterial LPS inhibit C. albicans biofilm formation and hyphal development. The P. aeruginosa LPS likely target glycolysis-associated mechanisms during candidal filamentation.

  12. O-mannosylation in Candida albicans enables development of interkingdom biofilm communities.

    Science.gov (United States)

    Dutton, Lindsay C; Nobbs, Angela H; Jepson, Katy; Jepson, Mark A; Vickerman, M Margaret; Aqeel Alawfi, Sami; Munro, Carol A; Lamont, Richard J; Jenkinson, Howard F

    2014-04-15

    Candida albicans is a fungus that colonizes oral cavity surfaces, the gut, and the genital tract. Streptococcus gordonii is a ubiquitous oral bacterium that has been shown to form biofilm communities with C. albicans. Formation of dual-species S. gordonii-C. albicans biofilm communities involves interaction of the S. gordonii SspB protein with the Als3 protein on the hyphal filament surface of C. albicans. Mannoproteins comprise a major component of the C. albicans cell wall, and in this study we sought to determine if mannosylation in cell wall biogenesis of C. albicans was necessary for hyphal adhesin functions associated with interkingdom biofilm development. A C. albicans mnt1Δ mnt2Δ mutant, with deleted α-1,2-mannosyltransferase genes and thus defective in O-mannosylation, was abrogated in biofilm formation under various growth conditions and produced hyphal filaments that were not recognized by S. gordonii. Cell wall proteomes of hypha-forming mnt1Δ mnt2Δ mutant cells showed growth medium-dependent alterations, compared to findings for the wild type, in a range of protein components, including Als1, Als3, Rbt1, Scw1, and Sap9. Hyphal filaments formed by mnt1Δ mnt2Δ mutant cells, unlike wild-type hyphae, did not interact with C. albicans Als3 or Hwp1 partner cell wall proteins or with S. gordonii SspB partner adhesin, suggesting defective functionality of adhesins on the mnt1Δ mnt2Δ mutant. These observations imply that early stage O-mannosylation is critical for activation of hyphal adhesin functions required for biofilm formation, recognition by bacteria such as S. gordonii, and microbial community development. IMPORTANCE In the human mouth, microorganisms form communities known as biofilms that adhere to the surfaces present. Candida albicans is a fungus that is often found within these biofilms. We have focused on the mechanisms by which C. albicans becomes incorporated into communities containing bacteria, such as Streptococcus. We find that

  13. Candida/Candida biofilms. First description of dual-species Candida albicans/C. rugosa biofilm.

    Science.gov (United States)

    Martins, Carlos Henrique Gomes; Pires, Regina Helena; Cunha, Aline Oliveira; Pereira, Cristiane Aparecida Martins; Singulani, Junya de Lacorte; Abrão, Fariza; Moraes, Thais de; Mendes-Giannini, Maria José Soares

    2016-04-01

    Denture liners have physical properties that favour plaque accumulation and colonization by Candida species, irritating oral tissues and causing denture stomatitis. To isolate and determine the incidence of oral Candida species in dental prostheses, oral swabs were collected from the dental prostheses of 66 patients. All the strains were screened for their ability to form biofilms; both monospecies and dual-species combinations were tested. Candida albicans (63 %) was the most frequently isolated microorganism; Candida tropicalis (14 %), Candida glabrata (13 %), Candida rugosa (5 %), Candida parapsilosis (3 %), and Candida krusei (2 %) were also detected. The XTT assay showed that C. albicans SC5314 possessed a biofilm-forming ability significantly higher (p albicans Candida strains, after 6 h 37 °C. The total C. albicans CFU from a dual-species biofilm was less than the total CFU of a monospecies C. albicans biofilm. In contrast to the profuse hyphae verified in monospecies C. albicans biofilms, micrographies showed that the C. albicans/non-albicans Candida biofilms consisted of sparse yeast forms and profuse budding yeast cells that generated a network. These results suggested that C. albicans and the tested Candida species could co-exist in biofilms displaying apparent antagonism. The study provide the first description of C. albicans/C. rugosa mixed biofilm.

  14. A sticky situation: untangling the transcriptional network controlling biofilm development in Candida albicans.

    Science.gov (United States)

    Fox, Emily P; Nobile, Clarissa J

    2012-01-01

    Candida albicans is a commensal microorganism of the human microbiome; it is also the most prevalent fungal pathogen of humans. Many infections caused by C. albicans are a direct consequence of its proclivity to form biofilms--resilient, surface-associated communities of cells where individual cells acquire specialized properties that are distinct from those observed in suspension cultures. We recently identified the transcriptional network that orchestrates the formation of biofilms in C. albicans. These results set the stage for understanding how biofilms are formed and, once formed, how the specialized properties of biofilms are elaborated. This information will provide new insight for understanding biofilms in more detail and may lead to improvements in preventing and treating biofilm-based infections in the future.

  15. Probiotic lactobacilli inhibit early stages of Candida albicans biofilm development by reducing their growth, cell adhesion, and filamentation.

    Science.gov (United States)

    Matsubara, Victor Haruo; Wang, Yi; Bandara, H M H N; Mayer, Marcia Pinto Alves; Samaranayake, Lakshman P

    2016-07-01

    We evaluated the inhibitory effects of the probiotic Lactobacillus species on different phases of Candida albicans biofilm development. Quantification of biofilm growth and ultrastructural analyses were performed on C. albicans biofilms treated with Lactobacillus rhamnosus, Lactobacillus casei, and Lactobacillus acidophilus planktonic cell suspensions as well as their supernatants. Planktonic lactobacilli induced a significant reduction (p  0.05), but significantly reduced the early stages of Candida biofilm formation (p Candida hyphal differentiation, leading to a predominance of budding growth. All lactobacilli negatively impacted C. albicans yeast-to-hyphae differentiation and biofilm formation. The inhibitory effects of the probiotic Lactobacillus on C. albicans entailed both cell-cell interactions and secretion of exometabolites that may impact on pathogenic attributes associated with C. albicans colonization on host surfaces and yeast filamentation. This study clarifies, for the first time, the mechanics of how Lactobacillus species may antagonize C. albicans host colonization. Our data elucidate the inhibitory mechanisms that define the probiotic candicidal activity of lactobacilli, thus supporting their utility as an adjunctive therapeutic mode against mucosal candidal infections.

  16. Antibiofilm activity of carboxymethyl chitosan on the biofilms of non-Candida albicans Candida species.

    Science.gov (United States)

    Tan, Yulong; Leonhard, Matthias; Moser, Doris; Schneider-Stickler, Berit

    2016-09-20

    Although most cases of candidiasis have been attributed to Candida albicans, non-C. albicans Candida species have been isolated in increasing numbers in patients. In this study, we determined the inhibition of carboxymethyl chitosan (CM-chitosan) on single and mixed species biofilm of non-albicans Candida species, including Candida tropicalis, Candida parapsilosis, Candida krusei and Candida glabrata. Biofilm by all tested species in microtiter plates were inhibited nearly 70%. CM-chitosan inhibited mixed species biofilm in microtiter plates and also on medical materials surfaces. To investigate the mechanism, the effect of CM-chitosan on cell viability and biofilm growth was employed. CM-chitosan inhibited Candida planktonic growth as well as adhesion. Further biofilm formation was inhibited with CM-chitosan added at 90min, 12h or 24h after biofilm initiation. CM-chitosan was not only able to inhibit the metabolic activity of Candida cells, but was also active upon the establishment and the development of biofilms.

  17. A recently evolved transcriptional network controls biofilm development in Candida albicans.

    Science.gov (United States)

    Nobile, Clarissa J; Fox, Emily P; Nett, Jeniel E; Sorrells, Trevor R; Mitrovich, Quinn M; Hernday, Aaron D; Tuch, Brian B; Andes, David R; Johnson, Alexander D

    2012-01-20

    A biofilm is an organized, resilient group of microbes in which individual cells acquire properties, such as drug resistance, that are distinct from those observed in suspension cultures. Here, we describe and analyze the transcriptional network controlling biofilm formation in the pathogenic yeast Candida albicans, whose biofilms are a major source of medical device-associated infections. We have combined genetic screens, genome-wide approaches, and two in vivo animal models to describe a master circuit controlling biofilm formation, composed of six transcription regulators that form a tightly woven network with ∼1,000 target genes. Evolutionary analysis indicates that the biofilm network has rapidly evolved: genes in the biofilm circuit are significantly weighted toward genes that arose relatively recently with ancient genes being underrepresented. This circuit provides a framework for understanding many aspects of biofilm formation by C. albicans in a mammalian host. It also provides insights into how complex cell behaviors can arise from the evolution of transcription circuits.

  18. Rat indwelling urinary catheter model of Candida albicans biofilm infection.

    Science.gov (United States)

    Nett, Jeniel E; Brooks, Erin G; Cabezas-Olcoz, Jonathan; Sanchez, Hiram; Zarnowski, Robert; Marchillo, Karen; Andes, David R

    2014-12-01

    Indwelling urinary catheters are commonly used in the management of hospitalized patients. Candida can adhere to the device surface and propagate as a biofilm. These Candida biofilm communities differ from free-floating Candida, exhibiting high tolerance to antifungal therapy. The significance of catheter-associated candiduria is often unclear, and treatment may be problematic considering the biofilm drug-resistant phenotype. Here we describe a rodent model for the study of urinary catheter-associated Candida albicans biofilm infection that mimics this common process in patients. In the setting of a functioning, indwelling urinary catheter in a rat, Candida proliferated as a biofilm on the device surface. Characteristic biofilm architecture was observed, including adherent, filamentous cells embedded in an extracellular matrix. Similar to what occurs in human patients, animals with this infection developed candiduria and pyuria. Infection progressed to cystitis, and a biofilmlike covering was observed over the bladder surface. Furthermore, large numbers of C. albicans cells were dispersed into the urine from either the catheter or bladder wall biofilm over the infection period. We successfully utilized the model to test the efficacy of antifungals, analyze transcriptional patterns, and examine the phenotype of a genetic mutant. The model should be useful for future investigations involving the pathogenesis, diagnosis, therapy, prevention, and drug resistance of Candida biofilms in the urinary tract.

  19. Development and evaluation of different normalization strategies for gene expression studies in Candida albicans biofilms by real-time PCR

    Directory of Open Access Journals (Sweden)

    Deforce Dieter

    2006-08-01

    Full Text Available Abstract Background Candida albicans biofilms are commonly found on indwelling medical devices. However, the molecular basis of biofilm formation and development is not completely understood. Expression analysis of genes potentially involved in these processes, such as the ALS (Agglutinine Like Sequence gene family can be performed using quantitative PCR (qPCR. In the present study, we investigated the expression stability of eight housekeeping genes potentially useful as reference genes to study gene expression in Candida albicans (C. albicans biofilms, using the geNorm Visual Basic Application (VBA for Microsoft Excel. To validate our normalization strategies we determined differences in ALS1 and ALS3 expression levels between C. albicans biofilm cells and their planktonic counterparts. Results The eight genes tested in this study are ranked according to their expression stability (from most stable to least stable as follows: ACT1 (β-actin/PMA1 (adenosine triphosphatase, RIP (ubiquinol cytochrome-c reductase complex component, RPP2B (cytosolic ribosomal acidic protein P2B, LSC2 (succinyl-CoA synthetase β-subunit fragment, IMH3 (inosine-5'-monophosphate dehydrogenase fragment, CPA1 (carbamoyl-phosphate synthethase small subunit and GAPDH (glyceraldehyde-3-phosphate dehydrogenase. Our data indicate that five genes are necessary for accurate and reliable normalization of gene expression data in C. albicans biofilms. Using different normalization strategies, we found a significant upregulation of the ALS1 gene and downregulation of the ALS3 gene in C. albicans biofilms grown on silicone disks in a continous flow system, the CDC reactor (Centre for Disease Control, for 24 hours. Conclusion In conclusion, we recommend the use of the geometric mean of the relative expression values from the five housekeeping genes (ACT1, PMA1, RIP, RPP2B and LSC2 for normalization, when analysing differences in gene expression levels between C. albicans biofilm

  20. Novel role of a family of major facilitator transporters in biofilm development and virulence of Candida albicans.

    Science.gov (United States)

    Shah, Abdul Haseeb; Singh, Ashutosh; Dhamgaye, Sanjiveeni; Chauhan, Neeraj; Vandeputte, Patrick; Suneetha, Korivi Jyothiraj; Kaur, Rupinder; Mukherjee, Pranab K; Chandra, Jyotsna; Ghannoum, Mahmoud A; Sanglard, Dominique; Goswami, Shyamal K; Prasad, Rajendra

    2014-06-01

    The QDR (quinidine drug resistance) family of genes encodes transporters belonging to the MFS (major facilitator superfamily) of proteins. We show that QDR transporters, which are localized to the plasma membrane, do not play a role in drug transport. Hence, null mutants of QDR1, QDR2 and QDR3 display no alterations in susceptibility to azoles, polyenes, echinocandins, polyamines or quinolines, or to cell wall inhibitors and many other stresses. However, the deletion of QDR genes, individually or collectively, led to defects in biofilm architecture and thickness. Interestingly, QDR-lacking strains also displayed attenuated virulence, but the strongest effect was observed with qdr2∆, qdr3∆ and in qdr1/2/3∆ strains. Notably, the attenuated virulence and biofilm defects could be reversed upon reintegration of QDR genes. Transcripts profiling confirmed differential expression of many biofilm and virulence-related genes in the deletion strains as compared with wild-type Candida albicans cells. Furthermore, lipidomic analysis of QDR-deletion mutants suggests massive remodelling of lipids, which may affect cell signalling, leading to the defect in biofilm development and attenuation of virulence. In summary, the results of the present study show that QDR paralogues encoding MFS antiporters do not display conserved functional linkage as drug transporters and perform functions that significantly affect the virulence of C. albicans.

  1. Miltefosine inhibits Candida albicans and non-albicans Candida spp. biofilms and impairs the dispersion of infectious cells.

    Science.gov (United States)

    Vila, Taissa; Ishida, Kelly; Seabra, Sergio Henrique; Rozental, Sonia

    2016-11-01

    Candida spp. can adhere to and form biofilms over different surfaces, becoming less susceptible to antifungal treatment. Resistance of biofilms to antifungal agents is multifactorial and the extracellular matrix (ECM) appears to play an important role. Among the few available antifungals for treatment of candidaemia, only the lipid formulations of amphotericin B (AmB) and the echinocandins are effective against biofilms. Our group has previously demonstrated that miltefosine has an important effect against Candida albicans biofilms. Thus, the aim of this work was to expand the analyses of the in vitro antibiofilm activity of miltefosine to non-albicans Candida spp. Miltefosine had significant antifungal activity against planktonic cells and the development of biofilms of C. albicans, Candida parapsilosis, Candida tropicalis and Candida glabrata. The activity profile in biofilms was superior to fluconazole and was similar to that of AmB and caspofungin. Biofilm-derived cells with their ECM extracted became as susceptible to miltefosine as planktonic cells, confirming the importance of the ECM in the biofilm resistant behaviour. Miltefosine also inhibited biofilm dispersion of cells at the same concentration needed to inhibit planktonic cell growth. The data obtained in this work reinforce the potent inhibitory activity of miltefosine on biofilms of the four most pathogenic Candida spp. and encourage further studies for the utilisation of this drug and/or structural analogues on biofilm-related infections.

  2. The Host’s Reply to Candida Biofilm

    Directory of Open Access Journals (Sweden)

    Jeniel E. Nett

    2016-03-01

    Full Text Available Candida spp. are among the most common nosocomial fungal pathogens and are notorious for their propensity toward biofilm formation. When growing on a medical device or mucosal surface, these organisms reside as communities embedded in a protective matrix, resisting host defenses. The host responds to Candida biofilm by depositing a variety of proteins that become incorporated into the biofilm matrix. Compared to free-floating Candida, leukocytes are less effective against Candida within a biofilm. This review highlights recent advances describing the host’s response to Candida biofilms using ex vivo and in vivo models of mucosal and device-associated biofilm infections.

  3. Presence of extracellular DNA in the Candida albicans biofilm matrix and its contribution to biofilms.

    Science.gov (United States)

    Martins, Margarida; Uppuluri, Priya; Thomas, Derek P; Cleary, Ian A; Henriques, Mariana; Lopez-Ribot, José L; Oliveira, Rosário

    2010-05-01

    DNA has been described as a structural component of the extracellular matrix (ECM) in bacterial biofilms. In Candida albicans, there is a scarce knowledge concerning the contribution of extracellular DNA (eDNA) to biofilm matrix and overall structure. This work examined the presence and quantified the amount of eDNA in C. albicans biofilm ECM and the effect of DNase treatment and the addition of exogenous DNA on C. albicans biofilm development as indicators of a role for eDNA in biofilm development. We were able to detect the accumulation of eDNA in biofilm ECM extracted from C. albicans biofilms formed under conditions of flow, although the quantity of eDNA detected differed according to growth conditions, in particular with regards to the medium used to grow the biofilms. Experiments with C. albicans biofilms formed statically using a microtiter plate model indicated that the addition of exogenous DNA (>160 ng/ml) increases biofilm biomass and, conversely, DNase treatment (>0.03 mg/ml) decreases biofilm biomass at later time points of biofilm development. We present evidence for the role of eDNA in C. albicans biofilm structure and formation, consistent with eDNA being a key element of the ECM in mature C. albicans biofilms and playing a predominant role in biofilm structural integrity and maintenance.

  4. Melaleuca alternifolia nanoparticles against Candida species biofilms.

    Science.gov (United States)

    Souza, M E; Lopes, L Q S; Bonez, P C; Gündel, A; Martinez, D S T; Sagrillo, M R; Giongo, J L; Vaucher, R A; Raffin, R P; Boligon, A A; Santos, R C V

    2017-03-01

    Candida infection is an important cause of morbidity and mortality on immunosuppressed patients. This growing trend has been associated with resistance to the antimicrobial therapy and the ability of microorganism to form biofilms. TTO oil is used as antimicrobial which shows antibiofilm activity against Candida species. However, it presents problems due to its poor solubility and high volatility. The present study aimed to evaluate in vitro antibiofilm activity of TTO nanoparticles against many Candida species. It was performed the characterization of the oil and nanoparticles. The levels of exopolysaccharides, proteins, and the biomass of biofilms were measured. The chromatographic profile demonstrated that the TTO oil is in accordance with ISO 4730 with major constituents of 41.9% Terpinen-4-ol, 20.1% of γ-Terpinene, 9,8% of α-Terpinene, and 6,0% of 1,8-Cineole. The TTO nanoparticles showed pH of 6.3, mean diameter of 158.2 ± 2 nm, polydispersion index of 0.213 ± 0.017, and zeta potential of -8.69 ± 0.80 mV. The addition of TTO and its nanoparticles represented a significant reduction of biofilm formed by all Candida species, as well as a reduction of proteins and exopolysaccharides levels. It was possible to visualize the reduction of biofilm in presence of TTO nanoparticles by Calcofluor White method.

  5. An expanded regulatory network temporally controls Candida albicans biofilm formation.

    Science.gov (United States)

    Fox, Emily P; Bui, Catherine K; Nett, Jeniel E; Hartooni, Nairi; Mui, Michael C; Andes, David R; Nobile, Clarissa J; Johnson, Alexander D

    2015-06-01

    Candida albicans biofilms are composed of highly adherent and densely arranged cells with properties distinct from those of free-floating (planktonic) cells. These biofilms are a significant medical problem because they commonly form on implanted medical devices, are drug resistant and are difficult to remove. C. albicans biofilms are not static structures; rather they are dynamic and develop over time. Here we characterize gene expression in biofilms during their development, and by comparing them to multiple planktonic reference states, we identify patterns of gene expression relevant to biofilm formation. In particular, we document time-dependent changes in genes involved in adhesion and metabolism, both of which are at the core of biofilm development. Additionally, we identify three new regulators of biofilm formation, Flo8, Gal4, and Rfx2, which play distinct roles during biofilm development over time. Flo8 is required for biofilm formation at all time points, and Gal4 and Rfx2 are needed for proper biofilm formation at intermediate time points.

  6. Production of Tyrosol by Candida albicans Biofilms and Its Role in Quorum Sensing and Biofilm Development▿

    OpenAIRE

    Alem, M.A.S.; Oteef, M.D.Y.; Flowers, T; Douglas, L J

    2006-01-01

    Tyrosol and farnesol are quorum-sensing molecules produced by Candida albicans which accelerate and block, respectively, the morphological transition from yeasts to hyphae. In this study, we have investigated the secretion of tyrosol by C. albicans and explored its likely role in biofilm development. Both planktonic (suspended) cells and biofilms of four C. albicans strains, including three mutants with defined defects in the Efg 1 and Cph 1 morphogenetic signaling pathways, synthesized extra...

  7. Enteric Gram-negative bacilli suppress Candida biofilms on Foley urinary catheters.

    Science.gov (United States)

    Samaranayake, Y H; Bandara, H M H N; Cheung, B P K; Yau, J Y Y; Yeung, S K W; Samaranayake, L P

    2014-01-01

    Mixed Candida-bacterial biofilms in urinary catheters are common in hospitalized patients. (i) The aims of this study were to evaluate, quantitatively and qualitatively, the in vitro development of mono- and dual-species biofilms (MSBs and DSBs) of Candida albicans and two enteric gram-negative bacilli (EGNB; Pseudomonas aeruginosa or Escherichia coli) on Foley catheter (FC) discs, (ii) to determine the biofilm growth in tryptic soy broth or glucose supplemented artificial urine (AU) and (iii) to assess the inhibitory effects of EGNB and their lipopolysaccharides (LPS) on Candida biofilm growth. The growth of MSBs and DSBs on FC discs was monitored by cell counts and SEM. The metabolic activity of LPS-treated Candida biofilms was determined by the XTT reduction assay. Candida albicans and EGNB demonstrated significant inter- and intra-species differences in biofilm growth on FC discs (p Candida albicans significantly (p Candida biofilm growth, compared with Pseudomonas aeruginosa and its LPS (p Candida albicans and EGNB colonization in FC is significantly increased in AU with glucose, and variably modified by Escherichia coli, Pseudomonas aeruginosa and their corresponding LPS.

  8. Hyphal content determines the compression strength of Candida albicans biofilms

    NARCIS (Netherlands)

    Paramonova, Ekaterina; Krom, Bastiaan P.; van der Mei, Henny C.; Busscher, Henk J.; Sharma, Prashant K.

    2009-01-01

    Candida albicans is the most frequently isolated human fungal pathogen among species causing biofilm-related clinical infections. Mechanical properties of Candida biofilms have hitherto been given no attention, despite the fact that mechanical properties are important for selection of treatment or d

  9. Biofilm development

    DEFF Research Database (Denmark)

    Tolker-Nielsen, Tim

    2015-01-01

    During the past decade we have gained much knowledge about the molecular mechanisms that are involved in initiation and termination of biofilm formation. In many bacteria, these processes appear to occur in response to specific environmental cues and result in, respectively, induction or terminat......During the past decade we have gained much knowledge about the molecular mechanisms that are involved in initiation and termination of biofilm formation. In many bacteria, these processes appear to occur in response to specific environmental cues and result in, respectively, induction...... or termination of biofilm matrix production via the second messenger molecule c-di-GMP. In between initiation and termination of biofilm formation we have defined specific biofilm stages, but the currently available evidence suggests that these transitions are mainly governed by adaptive responses......, and not by specific genetic programs. It appears that biofilm formation can occur through multiple pathways and that the spatial structure of the biofilms is species dependent as well as dependent on environmental conditions. Bacterial subpopulations, e.g., motile and nonmotile subpopulations, can develop...

  10. Integrating Candida albicans metabolism with biofilm heterogeneity by transcriptome mapping

    Science.gov (United States)

    Rajendran, Ranjith; May, Ali; Sherry, Leighann; Kean, Ryan; Williams, Craig; Jones, Brian L.; Burgess, Karl V.; Heringa, Jaap; Abeln, Sanne; Brandt, Bernd W.; Munro, Carol A.; Ramage, Gordon

    2016-10-01

    Candida albicans biofilm formation is an important virulence factor in the pathogenesis of disease, a characteristic which has been shown to be heterogeneous in clinical isolates. Using an unbiased computational approach we investigated the central metabolic pathways driving biofilm heterogeneity. Transcripts from high (HBF) and low (LBF) biofilm forming isolates were analysed by RNA sequencing, with 6312 genes identified to be expressed in these two phenotypes. With a dedicated computational approach we identified and validated a significantly differentially expressed subnetwork of genes associated with these biofilm phenotypes. Our analysis revealed amino acid metabolism, such as arginine, proline, aspartate and glutamate metabolism, were predominantly upregulated in the HBF phenotype. On the contrary, purine, starch and sucrose metabolism was generally upregulated in the LBF phenotype. The aspartate aminotransferase gene AAT1 was found to be a common member of these amino acid pathways and significantly upregulated in the HBF phenotype. Pharmacological inhibition of AAT1 enzyme activity significantly reduced biofilm formation in a dose-dependent manner. Collectively, these findings provide evidence that biofilm phenotype is associated with differential regulation of metabolic pathways. Understanding and targeting such pathways, such as amino acid metabolism, is potentially useful for developing diagnostics and new antifungals to treat biofilm-based infections.

  11. In vitro activity of Caspofungin combined with Fluconazole on mixed Candida albicans and Candida glabrata biofilm.

    Science.gov (United States)

    Pesee, Siripen; Angkananuwat, Chayanit; Tancharoensukjit, Sudarat; Muanmai, Somporn; Sirivan, Pattaraporn; Bubphawas, Manita; Tanarerkchai, Nissara

    2016-05-01

    The objective of this study was to evaluate the antifungal effect of caspofungin (CAS) combined with fluconazole (FLU) on the biofilm biomass and cultivable viability and microstructure of Candida albicans and Candida glabrata mixed biofilm in vitro.Biofilms were formed in a 96-well microtiter plate for crystal violet assay and colony forming unit (CFU) method and grown on plastic coverslip disks for scanning electron microscopy. MIC50 of CAS and FLU against single Candida spp.and mixed Candida spp.biofilms were evaluated using crystal violet assay. Additional,C. albicans and C. glabrata mixed biofilms were incubated with subinhibitory CAS concentration plus FLU and their percentages of Candida biofilm reduction were calculated. We found that percentages of biofilm reduction were significantly decreased when CAS at 0.25MIC and FLU (0.25 or 0.5MIC) were combined (PCandida glabrata were demonstrated in every group, the total viable cells derived from CAS/FLU combination-treated biofilms at any ratio were not significantly different from positive control. Overall, CAS/FLU combinations appeared to affect the quantity and cell architecture, but number of viable cell, of Candida albicans and Candida glabrata mixed biofilm. This antifungal effect was CAS concentration dependent.

  12. Candida species biofilm and Candida albicans ALS3 polymorphisms in clinical isolates

    OpenAIRE

    Ariane Bruder-Nascimento; Carlos Henrique Camargo; Alessandro Lia Mondelli; Maria Fátima Sugizaki; Terue Sadatsune; Eduardo Bagagli

    2015-01-01

    Over the last decades, there have been important changes in the epidemiology of Candida infections. In recent years, Candida species have emerged as important causes of invasive infections mainly among immunocompromised patients. This study analyzed Candida spp. isolates and compared the frequency and biofilm production of different species among the different sources of isolation: blood, urine, vulvovaginal secretions and peritoneal dialysis fluid. Biofilm production was quantified in 327 Ca...

  13. Multi-species biofilm of Candida albicans and non-Candida albicans Candida species on acrylic substrate

    Directory of Open Access Journals (Sweden)

    Apurva K Pathak

    2012-02-01

    Full Text Available OBJECTIVE: In polymicrobial biofilms bacteria extensively interact with Candida species, but the interaction among the different species of the Candida is yet to be completely evaluated. In the present study, the difference in biofilm formation ability of clinical isolates of four species of Candida in both single-species and multi-species combinations on the surface of dental acrylic resin strips was evaluated. MATERIAL AND METHODS: The species of Candida, isolated from multiple species oral candidiasis of the neutropenic patients, were used for the experiment. Organisms were cultured on Sabouraud dextrose broth with 8% glucose (SDB. Biofilm production on the acrylic resins strips was determined by crystal violet assay. Student's t-test and ANOVA were used to compare in vitro biofilm formation for the individual species of Candida and its different multi-species combinations. RESULTS: In the present study, differences between the mean values of the biofilm-forming ability of individual species (C. glabrata>C. krusei>C. tropicalis>C. albicans and in its multi-species' combinations (the highest for C. albicans with C. glabrata and the lowest for all the four species combination were reported. CONCLUSIONS: The findings of this study showed that biofilm-forming ability was found greater for non-Candida albicans Candida species (NCAC than for C. albicans species with intra-species variation. Presence of C. albicans in multi-species biofilms increased, whereas; C. tropicalis decreased the biofilm production with all other NCAC species.

  14. Synergistic effect of amphotericin B and tyrosol on biofilm formed by Candida krusei and Candida tropicalis from intrauterine device users.

    Science.gov (United States)

    Shanmughapriya, Santhanam; Sornakumari, Haridevvenkatesan; Lency, Arumugam; Kavitha, Senthil; Natarajaseenivasan, Kalimuthusamy

    2014-11-01

    The presence of intrauterine contraceptive devices (IUDs) provides a solid surface for attachment of microorganisms and an ideal niche for the biofilm to form and flourish. Vaginal candidiasis is often associated with the use of IUDs. Treatment of vaginal candidiasis that develops in connection with IUD use requires their immediate removal. Here, we present in vitro evidence to support the use of combination therapy to inhibit Candida biofilm. Twenty-three clinical Candida isolates (10 C. krusei and 13 C. tropicalis) recovered from endocervical swabs obtained from IUD and non-IUD users were assessed for biofilm-formation ability. The rate of isolation of Candida did not differ significantly among IUD and non-IUD users (P = 0.183), but the biofilm-formation ability of isolates differed significantly (P = 0.02). An in vitro biofilm model with the obtained isolates was subjected to treatment with amphotericin B, tyrosol, and a combination of amphotericin B and tyrosol. Inhibition of biofilm by amphotericin B or tyrosol was found to be concentration dependent, with 50% reduction (P tyrosol and amphotericin B was studied. Interestingly, approximately 90% reduction in biofilm was observed with use of 80 μM tyrosol combined with 4 mg/l amphotericin B (P < 0.001). This represents a first step in establishing an appropriate antibiofilm therapy when yeasts are present.

  15. Candida species biofilm and Candida albicans ALS3 polymorphisms in clinical isolates

    Directory of Open Access Journals (Sweden)

    Ariane Bruder-Nascimento

    2014-12-01

    Full Text Available Over the last decades, there have been important changes in the epidemiology of Candida infections. In recent years, Candida species have emerged as important causes of invasive infections mainly among immunocompromised patients. This study analyzed Candida spp. isolates and compared the frequency and biofilm production of different species among the different sources of isolation: blood, urine, vulvovaginal secretions and peritoneal dialysis fluid. Biofilm production was quantified in 327 Candida isolates obtained from patients attended at a Brazilian tertiary public hospital (Botucatu, Sao Paulo. C. albicans ALS3 gene polymorphism was also evaluated by determining the number of repeated motifs in the central domain. Of the 198 total biofilm-positive isolates, 72 and 126 were considered as low and high biofilm producers, respectively. Biofilm production by C. albicans was significantly lower than that by non-albicans isolates and was most frequently observed in C. tropicalis. Biofilm production was more frequent among bloodstream isolates than other clinical sources,in urine, the isolates displayed a peculiar distribution by presenting two distinct peaks, one containing biofilm-negative isolates and the other containing isolates with intense biofilm production. The numbers of tandem-repeat copies per allele were not associated with biofilm production, suggesting the evolvement of other genetic determinants.

  16. Candida species biofilm and Candida albicans ALS3 polymorphisms in clinical isolates.

    Science.gov (United States)

    Bruder-Nascimento, Ariane; Camargo, Carlos Henrique; Mondelli, Alessandro Lia; Sugizaki, Maria Fátima; Sadatsune, Terue; Bagagli, Eduardo

    2014-01-01

    Over the last decades, there have been important changes in the epidemiology of Candida infections. In recent years, Candida species have emerged as important causes of invasive infections mainly among immunocompromised patients. This study analyzed Candida spp. isolates and compared the frequency and biofilm production of different species among the different sources of isolation: blood, urine, vulvovaginal secretions and peritoneal dialysis fluid. Biofilm production was quantified in 327 Candida isolates obtained from patients attended at a Brazilian tertiary public hospital (Botucatu, Sao Paulo). C. albicans ALS3 gene polymorphism was also evaluated by determining the number of repeated motifs in the central domain. Of the 198 total biofilm-positive isolates, 72 and 126 were considered as low and high biofilm producers, respectively. Biofilm production by C. albicans was significantly lower than that by non-albicans isolates and was most frequently observed in C. tropicalis. Biofilm production was more frequent among bloodstream isolates than other clinical sources, in urine, the isolates displayed a peculiar distribution by presenting two distinct peaks, one containing biofilm-negative isolates and the other containing isolates with intense biofilm production. The numbers of tandem-repeat copies per allele were not associated with biofilm production, suggesting the evolvement of other genetic determinants.

  17. Biofilms of non-Candida albicans Candida species: quantification, structure and matrix composition.

    Science.gov (United States)

    Silva, Sónia; Henriques, Mariana; Martins, António; Oliveira, Rosário; Williams, David; Azeredo, Joana

    2009-11-01

    Most cases of candidiasis have been attributed to C. albicans, but recently, non- Candida albicans Candida (NCAC) species have been identified as common pathogens. The ability of Candida species to form biofilms has important clinical repercussions due to their increased resistance to antifungal therapy and the ability of yeast cells within the biofilms to withstand host immune defenses. Given this clinical importance of the biofilm growth form, the aim of this study was to characterize biofilms produced by three NCAC species, namely C. parapsilosis, C. tropicalis and C. glabrata. The biofilm forming ability of clinical isolates of C. parapsilosis, C. tropicalis and C. glabrata recovered from different sources, was evaluated by crystal violet staining. The structure and morphological characteristics of the biofilms were also assessed by scanning electron microscopy and the biofilm matrix composition analyzed for protein and carbohydrate content. All NCAC species were able to form biofilms although these were less extensive for C. glabrata compared with C. parapsilosis and C. tropicalis. It was evident that C. parapsilosis biofilm production was highly strain dependent, a feature not evident with C. glabrata and C. tropicalis. Scanning electron microscopy revealed structural differences for biofilms with respect to cell morphology and spatial arrangement. Candida parapsilosis biofilm matrices had large amounts of carbohydrate with less protein. Conversely, matrices extracted from C. tropicalis biofilms had low amounts of carbohydrate and protein. Interestingly, C. glabrata biofilm matrix was high in both protein and carbohydrate content. The present work demonstrates that biofilm forming ability, structure and matrix composition are highly species dependent with additional strain variability occurring with C. parapsilosis.

  18. Candida glabrata Biofilms: How Far Have We Come?

    Directory of Open Access Journals (Sweden)

    Célia F. Rodrigues

    2017-03-01

    Full Text Available Infections caused by Candida species have been increasing in the last decades and can result in local or systemic infections, with high morbidity and mortality. After Candida albicans, Candida glabrata is one of the most prevalent pathogenic fungi in humans. In addition to the high antifungal drugs resistance and inability to form hyphae or secret hydrolases, C. glabrata retain many virulence factors that contribute to its extreme aggressiveness and result in a low therapeutic response and serious recurrent candidiasis, particularly biofilm formation ability. For their extraordinary organization, especially regarding the complex structure of the matrix, biofilms are very resistant to antifungal treatments. Thus, new approaches to the treatment of C. glabrata’s biofilms are emerging. In this article, the knowledge available on C. glabrata’s resistance will be highlighted, with a special focus on biofilms, as well as new therapeutic alternatives to control them.

  19. Fusarium and Candida albicans biofilms on soft contact lenses: model development, influence of lens type and susceptibility to lens care solutions

    Science.gov (United States)

    Fungal keratitis is commonly caused by Fusarium species, while cases of Candida-associated keratitis are less frequent. Recent outbreaks of Fusarium keratitis were associated with contact lens wear and with MoistureLoc contact lens care solution, and biofilm formation on contact lens/lens cases was...

  20. A novel assay of biofilm antifungal activity reveals that amphotericin B and caspofungin lyse Candida albicans cells in biofilms.

    Science.gov (United States)

    DiDone, Louis; Oga, Duana; Krysan, Damian J

    2011-08-01

    The ability of Candida albicans to form drug-resistant biofilms is an important factor in its contribution to human disease. Assays to identify and characterize molecules with activity against fungal biofilms are crucial for the development of drugs with improved anti-biofilm activity. Here we report the application of an adenylate kinase (AK)-based cytotoxicity assay of fungal cell lysis to the characterization of agents active against C. albicans biofilms. We have developed three protocols for the AK assay. The first measures AK activity in the supernatants of biofilms treated with antifungal drugs and can be performed in parallel with a standard 2,3-bis-(2-methoxy-4-nitro-5-sulphophenyl)-2H-tetrazolium-5-caboxanilide-based biofilm susceptibility assay; a second, more sensitive protocol measures the AK activity present within the biofilm matrix; and a third procedure allows the direct visualization of lytic activity toward biofilms formed on catheter material. Amphotericin B and caspofungin, the two most effective anti-biofilm drugs currently used to treat fungal infections, both directly lyse planktonic C. albicans cells in vitro, leading to the release of AK into the culture medium. These studies serve to validate the AK-based lysis assay as a useful addition to the methods for the characterization of antifungal agents active toward biofilms and provide insights into the mode of action of amphotericin B and caspofungin against C. albicans biofilms.

  1. Biofilm formation and genotyping of Candida haemulonii, Candida pseudohaemulonii, and a proposed new species (Candida auris) isolates from Korea.

    Science.gov (United States)

    Oh, Bong Joon; Shin, Jong Hee; Kim, Mi-Na; Sung, Heungsup; Lee, Kyungwon; Joo, Min Young; Shin, Myung Geun; Suh, Soon Pal; Ryang, Dong Wook

    2011-01-01

    Emergence of Candida haemulonii and closely related species at five Korean hospitals has been recently described. We examined biofilm formation by these isolates and assessed their genotypic relatedness by pulsed-field gel electrophoresis (PFGE). This study is the first to show that all bloodstream isolates of Candida pseudohaemulonii can form significant biofilms in glucose-containing medium. PFGE of NotI-digested genomic DNA revealed that C. pseudohaemulonii isolates recovered from seven patients in two hospitals shared five patterns, and that 15 isolates of a proposed new species (Candida auris) obtained from patients at three hospitals shared seven patterns, suggesting that some of these isolates may be related to clonal transmission.

  2. Antifungal Susceptibility of Candida Biofilms: Unique Efficacy of Amphotericin B Lipid Formulations and Echinocandins

    OpenAIRE

    Kuhn, D M; T. George; CHANDRA, J; P. K. Mukherjee; Ghannoum, M A

    2002-01-01

    Biofilms, likely the predominant mode of device-related microbial infection, exhibit resistance to antimicrobial agents. Evidence suggests that Candida biofilms have dramatically reduced susceptibility to antifungal drugs. We examined antifungal susceptibilities of Candida albicans and Candida parapsilosis biofilms grown on a bioprosthetic model. In addition to conventional agents, we determined if new antifungal agents (triazoles, amphotericin B lipid formulations, and echinocandins) have ac...

  3. Sensitization of Candida albicans biofilms to fluconazole by terpenoids of plant origin.

    Science.gov (United States)

    Doke, Sonali Kashinath; Raut, Jayant Shankar; Dhawale, Shashikant; Karuppayil, Sankunny Mohan

    2014-01-01

    Infections associated with the biofilms of Candida albicans are a challenge to antifungal treatment. Combinatorial therapy involving plant molecules with antifungal drugs would be an effective complementary approach against drug-resistant Candida biofilms. The aim of this study was to evaluate the efficacy of three bioactive terpenoids (carvacrol, eugenol and thymol) in combination with fluconazole against planktonic cells, biofilm development and mature biofilms of C. albicans. Activities of the selected molecules were tested using a microplate-based methodology, while their combinations with fluconazole were performed in a checkerboard format. Biofilms were quantitated by XTT-metabolic assay and confirmed by microscopic observations. Combinations of carvacrol and eugenol with fluconazole were found synergistic against planktonic growth of C. albicans, while that of thymol with fluconazole did not have any interaction. Biofilm development and mature biofilms were highly resistant to fluconazole, but susceptible to three terpenoids. Sensitization of cells by sub-inhibitory concentrations of carvacrol and eugenol resulted in prevention of biofilm formation at low fluconazole concentrations, i.e. 0.032 and 0.002 mg ml(-1), respectively. Addition of thymol could not potentiate activity of fluconazole against biofilm formation by C. albicans. Fractional inhibitory concentration indices (FICI) for carvacrol-fluconazole and eugenol-fluconazole combinations for biofilm formation were 0.311 and 0.25, respectively. The FICI value of 1.003 indicated a status of indifference for the combination of thymol and fluconazole against biofilm formation. Eugenol and thymol combinations with fluconazole did not have useful interaction against mature biofilms of C. albicans, but the presence of 0.5 mg ml(-1) of carvacrol caused inhibition of mature biofilms at a significantly low concentration (i.e. 0.032 mg ml(-1)) of fluconazole. The study indicated that carvacrol and eugenol

  4. Co-occurence of filamentation defects and impaired biofilms in Candida albicans protein kinase mutants.

    Science.gov (United States)

    Konstantinidou, Nina; Morrissey, John Patrick

    2015-12-01

    Pathogenicity of Candida albicans is linked with its developmental stages, notably the capacity switch from yeast-like to hyphal growth, and to form biofilms on surfaces. To better understand the cellular processes involved in C. albicans development, a collection of 63 C. albicans protein kinase mutants was screened for biofilm formation in a microtitre plate assay. Thirty-eight mutants displayed some degree of biofilm impairment, with 20 categorised as poor biofilm formers. All the poor biofilm formers were also defective in the switch from yeast to hyphae, establishing it as a primary defect. Five genes, VPS15, IME2, PKH3, PGA43 and CEX1, encode proteins not previously reported to influence hyphal development or biofilm formation. Network analysis established that individual components of some processes, most interestingly MAP kinase pathways, are not required for biofilm formation, most likely indicating functional redundancy. Mutants were also screened for their response to bacterial supernatants and it was found that Pseudomonas aeruginosa supernatants inhibited biofilm formation in all mutants, regardless of the presence of homoserine lactones (HSLs). In contrast, Candida morphology was only affected by supernatant containing HSLs. This confirms the distinct HSL-dependent inhibition of filamentation and the HSL-independent impairment of biofilm development by P. aeruginosa.

  5. Ambroxol influences voriconazole resistance of Candida parapsilosis biofilm.

    Science.gov (United States)

    Pulcrano, Giovanna; Panellis, Dimitrios; De Domenico, Giovanni; Rossano, Fabio; Catania, Maria Rosaria

    2012-06-01

    The ability to form biofilm on different surfaces is typical of most Candida species. Microscopic structure and genetic aspects of fungal biofilms have been the object of many studies because of very high resistance to antimycotic agents because of the scarce permeability of the external matrix and to the alterations in cell metabolism. In our study, 31 isolates of Candida parapsilosis, isolated from bloodstream infections, were tested for their ability to produce biofilm and were found to be good producers. The susceptibility to voriconazole, assayed by colorimetrical XTT assay, revealed a very elevated minimum inhibitory concentrations for sessile cells in comparison with planktonic ones. The addition of ambroxol, a mucolytic agent, increased the susceptibility of biofilm forming cells to voriconazole. Expression of the efflux pump genes CDR and MDR was analyzed in biofilms alone or treated with ambroxol, evidencing a role of ambroxol in the expression of genes involved in azole resistance mechanisms of C. parapsilosis biofilms. In conclusion, our data seem to encourage the use of different substances in combination with classical antimycotics, with the aim of finding a solution to the increasing problem of the resistance of biofilms formed on medical devices by nonalbicans Candida species.

  6. Modulation of Candida albicans Biofilm by Different Carbon Sources.

    Science.gov (United States)

    Pemmaraju, Suma C; Pruthi, Parul A; Prasad, R; Pruthi, Vikas

    2016-06-01

    In the present investigation, the role of carbon sources (glucose, lactate, sucrose, and arabinose) on Candida albicans biofilm development and virulence factors was studied on polystyrene microtiter plates. Besides this, structural changes in cell wall component β-glucan in presence of different carbon sources have also been highlighted. Biofilm formation was analyzed by XTT (2,3-bis[2-Methoxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide) reduction assay. Glucose-grown cells exhibited the highest metabolic activity during adhesion among all carbon sources tested (p roughness measurements by atomic force microscopy. Exposure to lactate induced hyphal structures with the highest proteinase activity while arabinose-grown cells formed pseudohyphal structures possessing the highest phospholipase activity. Structural changes in β-glucan characterized by Fourier transform infrared (FTIR) spectroscopy displayed characteristic band of β-glucan at 892 cm(-1) in all carbon sources tested. The β(1→6) to β(1→3) glucan ratio calculated as per the band area of the peak was less in lactate (1.15) as compared to glucose (1.73), sucrose (1.62), and arabinose (2.85). These results signify that carbon sources influence C. albicans biofilm development and modulate virulence factors and structural organization of cell wall component β-glucan.

  7. Chloroquine sensitizes biofilms of Candida albicans to antifungal azoles

    Directory of Open Access Journals (Sweden)

    Ravikumar Bapurao Shinde

    2013-08-01

    Full Text Available Biofilms formed by Candida albicans, a human pathogen, are known to be resistant to different antifungal agents. Novel strategies to combat the biofilm associated Candida infections like multiple drug therapy are being explored. In this study, potential of chloroquine to be a partner drug in combination with four antifungal agents, namely fluconazole, voriconazole, amphotericin B, and caspofungin, was explored against biofilms of C. albicans. Activity of various concentrations of chloroquine in combination with a particular antifungal drug was analyzed in a checkerboard format. Growth of biofilm in presence of drugs was analyzed by XTT-assay, in terms of relative metabolic activity compared to that of drug free control. Results obtained by XTT-metabolic assay were confirmed by scanning electron microscopy. The interactions between chloroquine and four antifungal drugs were determined by calculating fractional inhibitory concentration indices. Azole resistance in biofilms was reverted significantly (p < 0.05 in presence of 250 µg/mL of chloroquine, which resulted in inhibition of biofilms at very low concentrations of antifungal drugs. No significant alteration in the sensitivity of biofilms to caspofungin and amphotericin B was evident in combination with chloroquine. This study for the first time indicates that chloroquine potentiates anti-biofilm activity of fluconazole and voriconazole.

  8. Protocol for Determination of the Persister Subpopulation in Candida Albicans Biofilms.

    Science.gov (United States)

    De Brucker, Katrijn; De Cremer, Kaat; Cammue, Bruno P A; Thevissen, Karin

    2016-01-01

    In contrast to planktonic cultures of the human fungal pathogen Candida albicans, C. albicans biofilms can contain a persister subpopulation that is tolerant to high concentrations of currently used antifungals. In this chapter, the method to determine the persister fraction in a C. albicans biofilm treated with an antifungal compound is described. To this end, a mature biofilm is developed and subsequently treated with a concentration series of the antifungal compound of interest. Upon incubation, the fraction of surviving biofilm cells is determined by plating and plotted versus the used concentrations of the antifungal compound. If a persister subpopulation in the biofilm is present, the dose-dependent killing of the biofilm cells results in a biphasic killing pattern.

  9. An easy and economical in vitro method for the formation of Candida albicans biofilms under continuous conditions of flow.

    Science.gov (United States)

    Uppuluri, Priya; Lopez-Ribot, Jose L

    2010-01-01

    Candida albicans can develop biofilms on medical devices and these biofilms are most often nourished by a continuous flow of body fluids and subjected to shear stress forces. While many C. albicans biofilm studies have been carried out using in vitro static models, more limited information is available for biofilms developed under conditions of flow. We have previously described a simple flow biofilm model (SFB) for the development of C. albicans biofilms under conditions of continuous media flow. Here, we recount in detail from a methodological perspective, this model that can be assembled easily using materials commonly available in most microbiological laboratories. The entire procedure takes approximately two days to complete. Biofilms developed using this system are robust, and particularly suitable for studies requiring large amounts of biofilm cells for downstream analyses. This methodology simplifies biofilm formation under continuous replenishment of nutrients. Moreover, this technique mimics in vivo flow conditions, thereby making it physiologically more relevant than the currently dominant static models.

  10. Effectiveness of disinfectants used in hemodialysis against both Candida orthopsilosis and C. parapsilosis sensu stricto biofilms.

    Science.gov (United States)

    Pires, Regina Helena; da Silva, Julhiany de Fátima; Gomes Martins, Carlos Henrique; Fusco Almeida, Ana Marisa; Pienna Soares, Christiane; Soares Mendes-Giannini, Maria José

    2013-05-01

    Biofilms have been observed in the fluid pathways of hemodialysis machines. The impacts of four biocides used for the disinfection of hemodialysis systems were tested against Candida parapsilosis sensu stricto and Candida orthopsilosis biofilms generated by isolates obtained from a hydraulic circuit that were collected in a hemodialysis unit. Acetic acid was shown to be the most effective agent against Candida biofilms. Strategies for effective disinfection procedures used for hemodialysis systems should also seek to kill and inhibit biofilms.

  11. Differential effects of antifungal agents on expression of genes related to formation of Candida albicans biofilms.

    Science.gov (United States)

    Chatzimoschou, Athanasios; Simitsopoulou, Maria; Antachopoulos, Charalampos; Walsh, Thomas J; Roilides, Emmanuel

    2016-01-01

    The purpose of this study was to analyse specific molecular mechanisms involved in the intrinsic resistance of C. albicans biofilms to antifungals. We investigated the transcriptional profile of three genes (BGL2, SUN41, ECE1) involved in Candida cell wall formation in response to voriconazole or anidulafungin after the production of intermediate and mature biofilms. C. albicans M61, a well-documented biofilm producer strain, was used for the development of intermediate (12 h and 18 h) and completely mature biofilms (48 h). After exposure of cells from each biofilm growth mode to voriconazole (128 and 512 mg l(-1)) or anidulafungin (0.25 and 1 mg l(-1)) for 12-24 h, total RNA samples extracted from biofilm cells were analysed by RT-PCR. The voriconazole and anidulafungin biofilm MIC was 512 and 0.5 mg l(-1) respectively. Anidulafungin caused significant up-regulation of SUN41 (3.7-9.3-fold) and BGL2 (2.2-2.8 fold) in intermediately mature biofilms; whereas, voriconazole increased gene expression in completely mature biofilms (SUN41 2.3-fold, BGL2 2.1-fold). Gene expression was primarily down-regulated by voriconazole in intermediately, but not completely mature biofilms. Both antifungals caused down-regulation of ECE1 in intermediately mature biofilms.

  12. Detection and quantification of fluconazole within Candida glabrata biofilms.

    Science.gov (United States)

    Rodrigues, Célia F; Silva, Sónia; Azeredo, Joana; Henriques, Mariana

    2015-06-01

    Candida infections are often associated with biofilms and consequent high resistance to most common drugs (e.g. azoles). These resistance mechanisms are not only associated with the biofilm yeast physiology, but also with the presence of a diffusional barrier imposed by the biofilm matrix; however, the real biochemical role of the biofilm components remains very unclear. So, in order to further clarify this issue, we intend to determine, for the first time, fluconazole in biofilms within both supernatants and matrices. Candida biofilms were formed in the presence of fluconazole, and it was recovered from both supernatant and matrix cell-free fractions. Then, high-pressure liquid chromatography was used to identify and quantify the amount of drug that was present in the two fractions. Moreover, this study also showed that the presence of fluconazole in both fractions indicated that the drug administrated did not completely reach the cells, so this phenomena can easily be associated with lower biofilm susceptibility, since the drug administered did not completely reach the cells.

  13. Inhibitory activity of hinokitiol against biofilm formation in fluconazole-resistant Candida species

    Science.gov (United States)

    Choi, Jeong Su; Lee, Seung Gwan; Park, Jee Yoon

    2017-01-01

    The aim of this study was to investigate the ability of hinokitiol to inhibit the formation of Candida biofilms. Biofilm inhibition was evaluated by quantification of the biofilm metabolic activity with XTT assay. Hinokitiol efficiently prevented biofilm formation in both fluconazole-susceptible and fluconazole-resistant strains of Candida species. We determined the expression levels of specific genes previously implicated in biofilm development of C. albicans cells by real-time RT-PCR. The expression levels of genes associated with adhesion process, HWP1 and ALS3, were downregulated by hinokitiol. Transcript levels of UME6 and HGC1, responsible for long-term hyphal maintenance, were also decreased by hinokitiol. The expression level of CYR1, which encodes the component of signaling pathway of hyphal formation-cAMP-PKA was suppressed by hinokitiol. Its upstream general regulator RAS1 was also suppressed by hinokitiol. These results indicate that hinokitiol may have therapeutic potential in the treatment and prevention of biofilm-associated Candida infections. PMID:28152096

  14. Lipopeptides from Bacillus strain AR2 inhibits biofilm formation by Candida albicans.

    Science.gov (United States)

    Rautela, Ria; Singh, Anil Kumar; Shukla, Abha; Cameotra, Swaranjit Singh

    2014-05-01

    The ability of the human fungal pathogen Candida albicans to reversibly switch between different morphological forms and establish biofilms is crucial for establishing infection. Targeting phenotypic plasticity and biofilm formation in C. albicans represents a new concept for antifungal drug discovery. The present study evaluated the influence of cyclic lipopeptide biosurfactant produced by Bacillus amyloliquefaciens strain AR2 on C. albicans biofilms. The biosurfactant was characterized as a mixture of iturin and fengycin by MALDI-TOF and amino acid analysis. The biosurfactant exhibited concentration dependent growth inhibition and fungicidal activity. The biosurfactant at sub-minimum growth inhibition concentration decreased cell surface hydrophobicity, hindered germ tube formation and reduced the mRNA expression of hyphae-specific gene HWP1 and ALS3 without exhibiting significant growth inhibition. The biosurfactants inhibited biofilm formation in the range of 46-100 % depending upon the concentration and Candida strains. The biosurfactant treatment dislodged 25-100 % of preformed biofilm from polystyrene plates. The biosurfactant retained its antifungal and antibiofilm activity even after exposure to extreme temperature. By virtue of the ability to inhibit germ tube and biofilm formation, two important traits of C. albicans involved in establishing infection, lipopeptides from strain AR2 may represent a potential candidate for developing heat stable anti-Candida drugs.

  15. Candida albicans biofilm on titanium: effect of peroxidase precoating

    Directory of Open Access Journals (Sweden)

    Mohamed Ahariz

    2010-08-01

    Full Text Available Mohamed Ahariz1, Philippe Courtois1,21Laboratory of Experimental Hormonology, Université Libre de Bruxelles, Brussels, 2UER de Biologie Médicale, Haute Ecole Francisco Ferrer, Brussels, BelgiumAbstract: The present study aimed to document Candida albicans biofilm development on titanium and its modulation by a peroxidase-precoated material which can generate antimicrobials, such as hypoiodite or hypothiocyanite, from hydrogen peroxide, iodide, or thiocyanate. For this purpose, titanium (powder or foil was suspended in Sabouraud liquid medium inoculated with C. albicans ATCC10231. After continuous stirring for 2–21 days at room temperature, the supernatant was monitored by turbidimetry at 600 nm and titanium washed three times in sterile Sabouraud broth. Using the tetrazolium salt MTT-formazan assay, the titanium-adherent fungal biomass was measured as 7.50 ± 0.60 × 106 blastoconidia per gram of titanium powder (n = 30 and 0.50 ± 0.04 × 106 blastoconidia per cm² of titanium foil (n = 12. The presence of yeast on the surface of titanium was confirmed by microscopy both on fresh preparations and after calcofluor white staining. However, in the presence of peroxidase systems (lactoperoxidase with substrates such as hydrogen peroxide donor, iodide, or thiocyanate, Candida growth in both planktonic and attached phases appeared to be inhibited. Moreover, this study demonstrates the possible partition of peroxidase systems between titanium material (peroxidase-precoated and liquid environment (containing peroxidase substrates to limit C. albicans biofilm formation.Keywords: adhesion, material, oral, yeast

  16. Silver colloidal nanoparticles: antifungal effect against adhered cells and biofilms of Candida albicans and Candida glabrata.

    Science.gov (United States)

    Monteiro, D R; Gorup, L F; Silva, S; Negri, M; de Camargo, E R; Oliveira, R; Barbosa, D B; Henriques, M

    2011-08-01

    The aim of this study was to evaluate the effect of silver nanoparticles (SN) against Candida albicans and Candida glabrata adhered cells and biofilms. SN (average diameter 5 nm) were synthesized by silver nitrate reduction with sodium citrate and stabilized with ammonia. Minimal inhibitory concentration (MIC) tests were performed for C. albicans (n = 2) and C. glabrata (n = 2) grown in suspension following the Clinical Laboratory Standards Institute microbroth dilution method. SN were applied to adhered cells (2 h) or biofilms (48 h) and after 24 h of contact their effect was assessed by enumeration of colony forming units (CFUs) and quantification of total biomass (by crystal violet staining). The MIC results showed that SN were fungicidal against all strains tested at very low concentrations (0.4-3.3 μg ml(-1)). Furthermore, SN were more effective in reducing biofilm biomass when applied to adhered cells (2 h) than to pre-formed biofilms (48 h), with the exception of C. glabrata ATCC, which in both cases showed a reduction ∼90%. Regarding cell viability, SN were highly effective on adhered C. glabrata and respective biofilms. On C. albicans the effect was not so evident but there was also a reduction in the number of viable biofilm cells. In summary, SN may have the potential to be an effective alternative to conventional antifungal agents for future therapies in Candida-associated denture stomatitis.

  17. Virulence and pathogenicity of Candida albicans is enhanced in biofilms containing oral bacteria.

    Science.gov (United States)

    Cavalcanti, Yuri Wanderley; Morse, Daniel James; da Silva, Wander José; Del-Bel-Cury, Altair Antoninha; Wei, Xiaoqing; Wilson, Melanie; Milward, Paul; Lewis, Michael; Bradshaw, David; Williams, David Wynne

    2015-01-01

    This study examined the influence of bacteria on the virulence and pathogenicity of candidal biofilms. Mature biofilms (Candida albicans-only, bacteria-only, C. albicans with bacteria) were generated on acrylic and either analysed directly, or used to infect a reconstituted human oral epithelium (RHOE). Analyses included Candida hyphae enumeration and assessment of Candida virulence gene expression. Lactate dehydrogenase (LDH) activity and Candida tissue invasion following biofilm infection of the RHOE were also measured. Candida hyphae were more prevalent (p biofilms also containing bacteria, with genes encoding secreted aspartyl-proteinases (SAP4/SAP6) and hyphal-wall protein (HWP1) up-regulated (p biofilm infections of RHOE. Multi-species infections exhibited higher hyphal proportions (p biofilms promoted Candida virulence, consideration should be given to the bacterial component when managing denture biofilm associated candidoses.

  18. Sensitization of Candida albicans biofilms to various antifungal drugs by cyclosporine A

    Directory of Open Access Journals (Sweden)

    Shinde Ravikumar B

    2012-10-01

    Full Text Available Abstract Background Biofilms formed by Candida albicans are resistant towards most of the available antifungal drugs. Therefore, infections associated with Candida biofilms are considered as a threat to immunocompromised patients. Combinatorial drug therapy may be a good strategy to combat C. albicans biofilms. Methods Combinations of five antifungal drugs- fluconazole (FLC, voriconazole (VOR, caspofungin (CSP, amphotericin B (AmB and nystatin (NYT with cyclosporine A (CSA were tested in vitro against planktonic and biofilm growth of C. albicans. Standard broth micro dilution method was used to study planktonic growth, while biofilms were studied in an in vitro biofilm model. A chequerboard format was used to determine fractional inhibitory concentration indices (FICI of combination effects. Biofilm growth was analyzed using XTT-metabolic assay. Results MICs of various antifungal drugs for planktonic growth of C. albicans were lowered in combination with CSA by 2 to 16 fold. Activity against biofilm development with FIC indices of 0.26, 0.28, 0.31 and 0.25 indicated synergistic interactions between FLC-CSA, VOR-CSA, CSP-CSA and AmB-CSA, respectively. Increase in efficacy of the drugs FLC, VOR and CSP against mature biofilms after addition of 62.5 μg/ml of CSA was evident with FIC indices 0.06, 0.14 and 0.37, respectively. Conclusions The combinations with CSA resulted in increased susceptibility of biofilms to antifungal drugs. Combination of antifungal drugs with CSA would be an effective prophylactic and therapeutic strategy against biofilm associated C. albicans infections.

  19. Genetic control of conventional and pheromone-stimulated biofilm formation in Candida albicans.

    Science.gov (United States)

    Lin, Ching-Hsuan; Kabrawala, Shail; Fox, Emily P; Nobile, Clarissa J; Johnson, Alexander D; Bennett, Richard J

    2013-01-01

    Candida albicans can stochastically switch between two phenotypes, white and opaque. Opaque cells are the sexually competent form of C. albicans and therefore undergo efficient polarized growth and mating in the presence of pheromone. In contrast, white cells cannot mate, but are induced - under a specialized set of conditions - to form biofilms in response to pheromone. In this work, we compare the genetic regulation of such "pheromone-stimulated" biofilms with that of "conventional" C. albicans biofilms. In particular, we examined a network of six transcriptional regulators (Bcr1, Brg1, Efg1, Tec1, Ndt80, and Rob1) that mediate conventional biofilm formation for their potential roles in pheromone-stimulated biofilm formation. We show that four of the six transcription factors (Bcr1, Brg1, Rob1, and Tec1) promote formation of both conventional and pheromone-stimulated biofilms, indicating they play general roles in cell cohesion and biofilm development. In addition, we identify the master transcriptional regulator of pheromone-stimulated biofilms as C. albicans Cph1, ortholog of Saccharomyces cerevisiae Ste12. Cph1 regulates mating in C. albicans opaque cells, and here we show that Cph1 is also essential for pheromone-stimulated biofilm formation in white cells. In contrast, Cph1 is dispensable for the formation of conventional biofilms. The regulation of pheromone- stimulated biofilm formation was further investigated by transcriptional profiling and genetic analyses. These studies identified 196 genes that are induced by pheromone signaling during biofilm formation. One of these genes, HGC1, is shown to be required for both conventional and pheromone-stimulated biofilm formation. Taken together, these observations compare and contrast the regulation of conventional and pheromone-stimulated biofilm formation in C. albicans, and demonstrate that Cph1 is required for the latter, but not the former.

  20. Modulation of Candida albicans virulence by bacterial biofilms on titanium surfaces.

    Science.gov (United States)

    Cavalcanti, Yuri Wanderley; Wilson, Melanie; Lewis, Michael; Del-Bel-Cury, Altair Antoninha; da Silva, Wander José; Williams, David W

    2016-01-01

    Whilst Candida albicans occurs in peri-implant biofilms, its role in peri-implantitis remains unclear. This study therefore examined the virulence of C. albicans in mixed-species biofilms on titanium surfaces. Biofilms of C. albicans (Ca), C. albicans with streptococci (Streptococcus sanguinis, S. mutans) (Ca-Ss-Sm) and those incorporating Porphyromonas gingivalis (Ca-Pg and Ca-Ss-Sm-Pg) were developed. Expression of C. albicans genes associated with adhesion (ALS1, ALS3, HWP1) and hydrolytic enzymes (SAP2, SAP4, SAP6, PLD1) was measured and hyphal production by C. albicans quantified. Compared with Ca biofilms, significant (palbicans expressed virulence factors in biofilms that could contribute to peri-implantitis, but this was dependent on associated bacterial species.

  1. Garcinia xanthochymus Benzophenones Promote Hyphal Apoptosis and Potentiate Activity of Fluconazole against Candida albicans Biofilms.

    Science.gov (United States)

    Jackson, Desmond N; Yang, Lin; Wu, ShiBiao; Kennelly, Edward J; Lipke, Peter N

    2015-10-01

    Xanthochymol and garcinol, isoprenylated benzophenones purified from Garcinia xanthochymus fruits, showed multiple activities against Candida albicans biofilms. Both compounds effectively prevented emergence of fungal germ tubes and were also cytostatic, with MICs of 1 to 3 μM. The compounds therefore inhibited development of hyphae and subsequent biofilm maturation. Xanthochymol treatment of developing and mature biofilms induced cell death. In early biofilm development, killing had the characteristics of apoptosis, including externalization of phosphatidyl serine and DNA fragmentation, as evidenced by terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) fluorescence. These activities resulted in failure of biofilm maturation and hyphal death in mature biofilms. In mature biofilms, xanthochymol and garcinol caused the death of biofilm hyphae, with 50% effective concentrations (EC50s) of 30 to 50 μM. Additionally, xanthochymol-mediated killing was complementary with fluconazole against mature biofilms, reducing the fluconazole EC50 from >1,024 μg/ml to 13 μg/ml. Therefore, xanthochymol has potential as an adjuvant for antifungal treatments as well as in studies of fungal apoptosis.

  2. Anticandidal efficacy of cinnamon oil against planktonic and biofilm cultures of Candida parapsilosis and Candida orthopsilosis.

    Science.gov (United States)

    Pires, Regina Helena; Montanari, Lilian Bueno; Martins, Carlos Henrique G; Zaia, José Eduardo; Almeida, Ana Marisa Fusco; Matsumoto, Marcelo T; Mendes-Giannini, Maria José S

    2011-12-01

    Candida parapsilosis is yeast capable of forming biofilms on medical devices. Novel approaches for the prevention and eradication of the biofilms are desired. This study investigated the anticandidal activity of sixteen essential oils on planktonic and biofilm cultures of C. parapsilosis complex. We used molecular tools, enumeration of colony-forming units, the colourimetric MTT assay, scanning electron microscopy (SEM) and a chequerboard assay coupled with software analyses to evaluate the growth kinetics, architecture, inhibition and reduction in biofilms formed from environmental isolates of the Candida parapsilosis complex; further, we also evaluated whether essential oils would interact synergistically with amphotericin B to increase their anticandidal activities. Of the environmental C. parapsilosis isolates examined, C. parapsilosis and C. orthopsilosis were identified. Biofilm growth on polystyrene substrates peaked within 48 h, after which growth remained relatively stable up to 72 h, when it began to decline. Details of the architectural analysis assessed by SEM showed that C. parapsilosis complex formed less complex biofilms compared with C. albicans biofilms. The most active essential oil was cinnamon oil (CO), which showed anticandidal activity against C. orthopsilosis and C. parapsilosis in both suspension (minimum inhibitory concentration-MIC-250 and 500 μg/ml) and biofilm (minimum biofilm reduction concentration-MBRC-1,000 and 2,000 μg/ml) cultures. CO also inhibited biofilm formation (MBIC) at concentrations above 250 μg/ml for both species tested. However, synergism with amphotericin B was not observed. Thus, CO is a natural anticandidal agent that can be effectively utilised for the control of the yeasts tested.

  3. EVALUATION OF CONGO RED AGAR FOR DETECTION OF BIOFILM PRODUCTION BY VARIOUS CLINICAL CANDIDA ISOLATES

    Directory of Open Access Journals (Sweden)

    Naveen

    2014-11-01

    Full Text Available BACKGROUND: Biofilm is one of the known virulence factors of Candida, an important pathogen and commensal. Microorganisms growing in a biofilm are associated with chronic and recurrent human infections and are highly resistant to antimicrobial agents. Early detection of biofilm production may be useful for clinical decision because of its suggestive property for potential pathogenic capacity of Candida isolates. There are various methods to detect biofilm production like Tissue Culture Plate (TCP, Tube method (TM, Congo Red Agar method (CRA, bioluminescent assay, piezoelectric sensors, and fluorescent microscopic examination. OBJECTIVE: This study was conducted to evaluate Congo Red Agar method for the detection of biofilms. METHOD: The study was carried out at the Department of Microbiology, Government Medical College, Kota (Rajasthan from April 2012 to June 2013. A total of 120 clinical Candida isolates were subjected to biofilm detection method. Isolates were identified by standard microbiological procedures. Biofilm detection was tested by CRA method. RESULTS: From the total of 120 clinical Candida isolates, CRA method detected 38.33% as biofilm positive and 61.66% cases as biofilm negative. Out of total biofilm positive Candida, 21.73% were strong biofilm producers and 78.27% were weak biofilm producers. CONCLUSION: We can conclude from our study that the CRA method is a quantitative and reliable method for the detection of biofilm forming microorganisms and it can be recommended as a general screening method for detection of biofilm producing Candida in laboratories.

  4. Influence of substratum position and acquired pellicle on Candida albicans biofilm

    Directory of Open Access Journals (Sweden)

    Indira Moraes Gomes Cavalcanti

    2013-11-01

    Full Text Available The purpose of this study was to evaluate the influence of the substratum position and the saliva acquired pellicle (AP on Candida albicans biofilm development. Poly(methylmethacrylate (PMMA disks were fabricated and randomly allocated to experimental groups: HNP (disks placed in a horizontal position and uncoated by pellicle, VNP (disks placed in a vertical position and uncoated by pellicle, HCP (disks placed in a horizontal position and coated by pellicle, and VCP (disks placed in a vertical position and coated by pellicle. Disks were placed in a 24-well plate and a suspension of 107 cells/mL of Candida albicans was added to each well for biofilm development. The plates were aerobically incubated at 35°C. The biofilms were evaluated at 1.5 (adhesion time point, 24, 48, 72, and 96 hours. The number of viable cells was quantified in terms of the colony-forming units per milliliter (CFU/mL. Metabolic activity was measured by the XTT assay. The biofilm structure was analyzed by scanning electron microscopy. The data were analyzed by three-way ANOVA followed by Tukey's test, with significance set at 5%. The vertical groups showed less biofilm formation and lower metabolic activity than the horizontal groups (ppp > 0.05. It can be concluded that the substratum position influenced biofilm development.

  5. Biofilm formation in clinical Candida isolates and its association with virulence

    OpenAIRE

    Hasan, Fahmi; Xess, Immaculata; Wang, Xiabo; Jain, Neena; Fries, Bettina C.

    2009-01-01

    Biofilm formation, an important virulence trait of Candida species was measured in 107 Candida isolates from 32 candidemic patients by XTT [2,3-bis (2-methoxy-4nitro-5-sulfo-phenyl)-2H-tetra-zolium-5-carboxanilide] activity and compared to biofilm formation of Candida isolates from oropharyngeal lesions of 19 AIDS patients. Biofilm formation by XTT varied among species and C. albicans; C. lusitaniae and C. krusei produced more biofilm than the other Candida species. C. tropicalis was the most...

  6. Control of Candida albicans metabolism and biofilm formation by Pseudomonas aeruginosa phenazines.

    Science.gov (United States)

    Morales, Diana K; Grahl, Nora; Okegbe, Chinweike; Dietrich, Lars E P; Jacobs, Nicholas J; Hogan, Deborah A

    2013-01-29

    Candida albicans has developmental programs that govern transitions between yeast and filamentous morphologies and between unattached and biofilm lifestyles. Here, we report that filamentation, intercellular adherence, and biofilm development were inhibited during interactions between Candida albicans and Pseudomonas aeruginosa through the action of P. aeruginosa-produced phenazines. While phenazines are toxic to C. albicans at millimolar concentrations, we found that lower concentrations of any of three different phenazines (pyocyanin, phenazine methosulfate, and phenazine-1-carboxylate) allowed growth but affected the development of C. albicans wrinkled colony biofilms and inhibited the fungal yeast-to-filament transition. Phenazines impaired C. albicans growth on nonfermentable carbon sources and led to increased production of fermentation products (ethanol, glycerol, and acetate) in glucose-containing medium, leading us to propose that phenazines specifically inhibited respiration. Methylene blue, another inhibitor of respiration, also prevented the formation of structured colony biofilms. The inhibition of filamentation and colony wrinkling was not solely due to lowered extracellular pH induced by fermentation. Compared to smooth, unstructured colonies, wrinkled colony biofilms had higher oxygen concentrations within the colony, and wrinkled regions of these colonies had higher levels of respiration. Together, our data suggest that the structure of the fungal biofilm promotes access to oxygen and enhances respiratory metabolism and that the perturbation of respiration by bacterial molecules such as phenazines or compounds with similar activities disrupts these pathways. These findings may suggest new ways to limit fungal biofilms in the context of disease. IMPORTANCE Many of the infections caused by Candida albicans, a major human opportunistic fungal pathogen, involve both morphological transitions and the formation of surface-associated biofilms. Through the

  7. Biofilm production and evaluation of antifungal susceptibility amongst clinical Candida spp. isolates, including strains of the Candida parapsilosis complex.

    Science.gov (United States)

    Melo, Analy S; Bizerra, Fernando C; Freymüller, Edna; Arthington-Skaggs, Beth A; Colombo, Arnaldo L

    2011-04-01

    Candida cells can form biofilms that frequently are sources of infections and are less susceptible to antifungal drugs. Some authors have reported that Candida orthopsilosis and Candida metapsilosis isolates are not able to produce biofilms in vitro and there are no studies available on biofilm susceptibility for these species to antifungals. The aims of this study were to (i) quantify Candida spp. biofilms in vitro, and (ii) test the in vitro susceptibilities of Candida spp. biofilms to fluconazole (FLC) and amphotericin B (AMB). Isolates studied included four Candida albicans, six C. tropicalis, seven C. parapsilosis, eight C. orthopsilosis, and five C. metapsilosis. We compared two different methods to evaluate biofilm production, i.e., crystal violet (CV) staining and XTT-reduction assays (XTT). Scanning electron microscopy (SEM) was used to observe high, medium and low biofilm producing isolates screened by these two methods. To determine the minimum biofilm eradication concentration (MBEC) for FLC and AMB, XTT-reduction assay was used to measure cell metabolic activity. Biofilm quantification by CV and XTT showed that C. tropicalis isolates were the highest biofilm producer, followed by C. albicans, C. parapsilosis, C. orthopsilosis and C. metapsilosis. Examination of SEM images revealed that the extent of biofilms formed by high, medium, and low producers was highly correlated to the results generated by CV assay. Biofilm of all the isolates evaluated were resistant to FLC (MBEC(80) ≥ 256 ug/ml) but, in general, susceptible to AMB, except for six C. parapsilosis strains (MBEC(80) ≥ 8 ug/ml).

  8. Antifungal susceptibility of Candida biofilms: unique efficacy of amphotericin B lipid formulations and echinocandins.

    Science.gov (United States)

    Kuhn, D M; George, T; Chandra, J; Mukherjee, P K; Ghannoum, M A

    2002-06-01

    Biofilms, likely the predominant mode of device-related microbial infection, exhibit resistance to antimicrobial agents. Evidence suggests that Candida biofilms have dramatically reduced susceptibility to antifungal drugs. We examined antifungal susceptibilities of Candida albicans and Candida parapsilosis biofilms grown on a bioprosthetic model. In addition to conventional agents, we determined if new antifungal agents (triazoles, amphotericin B lipid formulations, and echinocandins) have activities against Candida biofilms. We also explored effects of preincubation of C. albicans cells with subinhibitory concentrations (sub-MICs) of drugs to see if they could modify subsequent biofilm formation. Finally, we used confocal scanning laser microscopy (CSLM) to image planktonic- and biofilm-exposed blastospores to examine drug effects on cell structure. Candida biofilms were formed on silicone elastomer and quantified by tetrazolium and dry weight (DW) assays. Susceptibility testing of fluconazole, nystatin, chlorhexidine, terbenafine, amphotericin B (AMB), and the triazoles voriconazole (VRC) and ravuconazole revealed resistance in all Candida isolates examined when grown as biofilms, compared to planktonic forms. In contrast, lipid formulations of AMB (liposomal AMB and AMB lipid complex [ABLC]) and echinocandins (caspofungin [Casp] and micafungin) showed activity against Candida biofilms. Preincubation of C. albicans cells with sub-MIC levels of antifungals decreased the ability of cells to subsequently form biofilm (measured by DW; P formulations.

  9. Screening of pharmacologically active small molecule compounds identifies antifungal agents against Candida biofilms

    Directory of Open Access Journals (Sweden)

    Takao eWatamoto

    2015-12-01

    Full Text Available Candida species have emerged as important and common opportunistic human pathogens, particularly in immunocompromised individuals. The current antifungal therapies either have toxic side effects or are insufficiently effect. The aim of this study is develop new small-molecule antifungal compounds by library screening methods using C. albicans, and to evaluate their antifungal effects on Candida biofilms and cytotoxic effects on human cells. Wild-type C. albicans strain SC5314 was used in library screening. To identify antifungal compounds, we screened a small-molecule library of 1,280 pharmacologically active compounds (LOPAC1280TM using an antifungal susceptibility test (AST. To investigate the antifungal effects of the hit compounds, ASTs were conducted using Candida strains in various growth modes, including biofilms. We tested the cytotoxicity of the hit compounds using human gingival fibroblast (hGF cells to evaluate their clinical safety. Only 35 compounds were identified by screening, which inhibited the metabolic activity of C. albicans by >50%. Of these, 26 compounds had fungistatic effects and 9 compounds had fungicidal effects on C. albicans. Five compounds, BAY11-7082, BAY11-7085, sanguinarine chloride hydrate, ellipticine and CV-3988, had strong fungicidal effects and could inhibit the metabolic activity of Candida biofilms. However, BAY11-7082, BAY11-7085, sanguinarine chloride hydrate and ellipticine were cytotoxic to hGF cells at low concentrations. CV-3988 showed no cytotoxicity at a fungicidal concentration.Four of the compounds identified, BAY11-7082, BAY11-7085, sanguinarine chloride hydrate and ellipticine, had toxic effects on Candida strains and hGF cells. In contrast, CV-3988 had fungicidal effects on Candida strains, but low cytotoxic effects on hGF cells. Therefore, this screening reveals agent, CV-3988 that was previously unknown to be antifungal agent, which could be a novel therapies for superficial mucosal

  10. AI-2 of Aggregatibacter actinomycetemcomitans Inhibits Candida albicans Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Endang W. Bachtiar

    2014-07-01

    Full Text Available Aggregatibacter actinomycetemcomitans, a Gram-negative bacterium, and Candida albicans, a polymorphic fungus, are both commensals of the oral cavity but both are opportunistic pathogens that can cause oral diseases. A. actinomycetemcomitans produces a quorum-sensing molecule called autoinducer-2 (AI-2, synthesized by LuxS, that plays an important role in expression of virulence factors, in intra- but also in interspecies communication. The aim of this study was to investigate the role of AI-2 based signaling in the interactions between C. albicans and A. actinomycetemcomitans. A. actinomycetemcomitans adhered to C. albicans and inhibited biofilm formation by means of a molecule that was secreted during growth. C. albicans biofilm formation increased significantly when co-cultured with A. actinomycetemcomitans luxS, lacking AI-2 production. Addition of wild-type-derived spent medium or synthetic AI-2 to spent medium of the luxS strain, restored inhibition of C. albicans biofilm formation to wild-type levels. Addition of synthetic AI-2 significantly inhibited hypha formation of C. albicans possibly explaining the inhibition of biofilm formation. AI-2 of A. actinomycetemcomitans is synthesized by LuxS, accumulates during growth and inhibits C. albicans hypha- and biofilm formation. Identifying the molecular mechanisms underlying the interaction between bacteria and fungi may provide important insight into the balance within complex oral microbial communities.

  11. Exogenous tyrosol inhibits planktonic cells and biofilms of Candida species and enhances their susceptibility to antifungals.

    Science.gov (United States)

    Cordeiro, Rossana de A; Teixeira, Carlos E C; Brilhante, Raimunda S N; Castelo-Branco, Débora S C M; Alencar, Lucas P; de Oliveira, Jonathas S; Monteiro, André J; Bandeira, Tereza J P G; Sidrim, José J C; Moreira, José Luciano Bezerra; Rocha, Marcos F G

    2015-06-01

    Tyrosol is a quorum-sensing molecule of Candida albicans able to induce hyphal development in the early and intermediate stages of biofilm growth. In the present study, we evaluated the effect of high concentrations of exogenous tyrosol on planktonic cells and biofilms of C. albicans (n = 10) and C. tropicalis (n = 10), and investigated whether tyrosol could be synergic to antifungals that target cellular ergosterol. Antifungal susceptibility and drug interaction against planktonic cells were investigated by the broth microdilution method. Tyrosol was able to inhibit planktonic cells, with MIC values ranging from 2.5 to 5.0 mM for both species. Synergism was observed between tyrosol/amphotericin B (11/20 strains), tyrosol/itraconazole (18/20 strains) and tyrosol/fluconazole (18/20 strains). Exogenous tyrosol alone or combined with antifungals at both 10 × MIC and 50 × MIC were able to reduce biofilm of both Candida species. Mature biofilms were susceptible to tyrosol alone at 50 × MIC or combined with amphotericin at both 10 × MIC and 50 × MIC. On the other hand, tyrosol plus azoles at both 10 × MIC and 50 × MIC enhanced biofilm growth.

  12. The Structure-Activity Relationship of Pterostilbene Against Candida albicans Biofilms

    Directory of Open Access Journals (Sweden)

    Dan-Dan Hu

    2017-02-01

    Full Text Available Candida albicans biofilms contribute to invasive infections and dramatic drug resistance, and anti-biofilm agents are urgently needed in the clinic. Pterostilbene (PTE is a natural plant product with potentials to be developed as an anti-biofilm agent. In this study, we evaluated the structure-activity relationship (SAR of PTE analogues against C. albicans biofilms. XTT (Sodium 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl-2H-tetrazolium-5-carboxanilide inner salt reduction assay was used to evaluate the activity of the analogues against C. albicans biofilms. Knowing that hyphal formation is essential for C. albicans biofilms, anti-hyphal assay was further carried out. By comparing a series of compounds tested in this study, we found that compounds with para-hydroxy (–OH in partition A exhibited better activity than those with other substituents in the para position, and the double bond in partition B and meta-dimethoxy (–OCH3 in partition C both contributed to the best activity. Consistent results were obtained by anti-hyphal assay. Collectively, para-hydroxy (–OH, double bond and meta-dimethoxy (–OCH3 are all needed for the best activity of PTE against C. albicans biofilms.

  13. Biofilm formation in Candida glabrata: What have we learnt from functional genomics approaches?

    Science.gov (United States)

    d'Enfert, Christophe; Janbon, Guilhem

    2016-02-01

    Biofilms are a source of therapeutic failures because of their intrinsic tolerance to antimicrobials. Candida glabrata is one of the pathogenic yeasts that is responsible for life-threatening disseminated infections and able to form biofilms on medical devices such as vascular and urinary catheters. Recent progresses in the functional genomics of C. glabrata have been applied to the study of biofilm formation, revealing the contribution of an array of genes to this process. In particular, the Yak1 kinase and the Swi/Snf chromatin remodeling complex have been shown to relieve the repression exerted by subtelomeric silencing on the expression of the EPA6 and EPA7 genes, thus allowing the encoded adhesins to exert their key roles in biofilm formation. This provides a framework to evaluate the contribution of other genes that have been genetically linked to biofilm development and, based on the function of their orthologs in Saccharomyces cerevisiae, appear to have roles in adaptation to nutrient deprivation, calcium signaling, cell wall remodeling and adherence. Future studies combining the use of in vitro and animal models of biofilm formation, omics approaches and forward or reverse genetics are needed to expand the current knowledge of C. glabrata biofilm formation and reveal the mechanisms underlying their antifungal tolerance.

  14. Condições de crescimento influenciam as características estruturais e de virulência de biofilmes de Candida e Streptococcus formados sobre modelos in vitro de mucosa oral humana = : Growth conditions influence at strutural and virulence characterístics of Candida and Streptococcus biofilms developed on in vitro models of human oral mucosa

    OpenAIRE

    2015-01-01

    eno oportunista Candida albicans e Streptococcus do grupo Mitis formam comunidades complexas em múltiplos sítios da cavidade oral, nos quais o ambiente e a disponibilidade de nutrientes sofrem mudanças constantes. Objetivou-se estudar as características estruturais e de virulência de biofilmes de Candida albicans na presença e ausência de S. oralis crescendo sobre um modelo tri dimensional de mucosa oral humana, em diferentes condições: (1) umidade da superfície mucosa (molhada ou se...

  15. In vitro activity of xanthorrhizol isolated from the rhizome of Javanese turmeric (Curcuma xanthorrhiza Roxb.) against Candida albicans biofilms.

    Science.gov (United States)

    Rukayadi, Yaya; Hwang, Jae-Kwan

    2013-07-01

    The purpose of this study was to investigate the activity of xanthorrhizol isolated from Curcuma xanthorrhiza Roxb. on Candida albicans biofilms at adherent, intermediate, and mature phase of growth. C. albicans biofilms were formed in flat-bottom 96-well microtiter plates. The biofilms of C. albicans at different phases of development were exposed to xanthorrhizol at different concentrations (0.5 µg/mL-256 µg/mL) for 24 h. The metabolic activity of cells within the biofilms was quantified using the XTT reduction assay. Sessile minimum inhibitory concentrations (SMICs) were determined at 50% and 80% reduction in the biofilm OD₄₉₀ compared to the control wells. The SMIC₅₀ and SMIC₈₀ of xanthorrhizol against 18 C. albicans biofilms were 4--16 µg/mL and 8--32 µg/mL, respectively. The results demonstrated that the activity of xanthorrhizol in reducing C. albicans biofilms OD₄₉₀ was dependent on the concentration and the phase of growth of biofilm. Xanthorrhizol at concentration of 8 µg/mL completely reduced in biofilm referring to XTT-colorimetric readings at adherent phase, whereas 32 µg/mL of xanthorrhizol reduced 87.95% and 67.48 % of biofilm referring to XTT-colorimetric readings at intermediate and mature phases, respectively. Xanthorrhizol displayed potent activity against C. albicans biofilms in vitro and therefore might have potential therapeutic implication for biofilm-associated candidal infections.

  16. The differences in the isoelectric points of biofilm-positive and biofilm-negative Candida parapsilosis strains.

    Science.gov (United States)

    Ruzicka, Filip; Horka, Marie; Hola, Veronika; Kubesova, Anna; Pavlik, Tomas; Votava, Miroslav

    2010-03-01

    The isoelectric points of 39 Candida parapsilosis strains were determined by means of capillary isoelectric focusing. The value of the isoelectric point corresponded well with cell surface hydrophobicity, as well as with the ability to form biofilm in these yeasts.

  17. Effect of ferrocene-substituted porphyrin RL-91 on Candida albicans biofilm formation.

    Science.gov (United States)

    Lippert, Rainer; Vojnovic, Sandra; Mitrovic, Aleksandra; Jux, Norbert; Ivanović-Burmazović, Ivana; Vasiljevic, Branka; Stankovic, Nada

    2014-08-01

    Ferrocene-substituted porphyrin RL-91 exhibits antifungal activity against opportune human pathogen Candida albicans. RL-91 efficiently inhibits growth of both planktonic C. albicans cells and cells within biofilms without photoactivation. The minimal inhibitory concentration for plankton form (PMIC) was established to be 100 μg/mL and the same concentration killed 80% of sessile cells in the mature biofilm (SMIC80). Furthermore PMIC of RL-91 efficiently prevents C. albicans biofilm formation. RL-91 is cytotoxic for human fibroblasts in vitro in concentration of 10 μg/mL, however it does not cause hemolysis in concentrations of up to 50 μg/mL. These findings open possibility for application of RL-91 as an antifungal agent for external antibiofilm treatment of medical devices as well as a scaffold for further development of porphyrin based systemic antifungals.

  18. Polymicrobial biofilm formation by Candida albicans, Actinomyces naeslundii, and Streptococcus mutans is Candida albicans strain and medium dependent.

    Science.gov (United States)

    Arzmi, Mohd Hafiz; Alnuaimi, Ali D; Dashper, Stuart; Cirillo, Nicola; Reynolds, Eric C; McCullough, Michael

    2016-11-01

    Oral biofilms comprise of extracellular polysaccharides and polymicrobial microorganisms. The objective of this study was to determine the effect of polymicrobial interactions of Candida albicans, Actinomyces naeslundii, and Streptococcus mutans on biofilm formation with the hypotheses that biofilm biomass and metabolic activity are both C. albicans strain and growth medium dependent. To study monospecific biofilms, C. albicans, A. naeslundii, and S. mutans were inoculated into artificial saliva medium (ASM) and RPMI-1640 in separate vials, whereas to study polymicrobial biofilm formation, the inoculum containing microorganisms was prepared in the same vial prior inoculation into a 96-well plate followed by 72 hours incubation. Finally, biofilm biomass and metabolic activity were measured using crystal violet and XTT assays, respectively. Our results showed variability of monospecies and polymicrobial biofilm biomass between C. albicans strains and growth medium. Based on cut-offs, out of 32, seven RPMI-grown biofilms had high biofilm biomass (HBB), whereas, in ASM-grown biofilms, 14 out of 32 were HBB. Of the 32 biofilms grown in RPMI-1640, 21 were high metabolic activity (HMA), whereas in ASM, there was no biofilm had HMA. Significant differences were observed between ASM and RPMI-grown biofilms with respect to metabolic activity (P biofilm biomass and metabolic activity were both C. albicans strain and growth medium dependent.

  19. The expression of genes involved in the ergosterol biosynthesis pathway in Candida albicans and Candida dubliniensis biofilms exposed to fluconazole.

    LENUS (Irish Health Repository)

    2009-03-01

    The expression of the ERG1, ERG3, ERG7, ERG9, ERG11 and ERG25 genes in response to incubation with fluconazole and biofilm formation was investigated using reverse-transcription PCR and real-time PCR in Candida albicans and Candida dubliniensis clinical isolates. The viability of biofilm was measured using an 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) reduction assay and confocal scanning laser microscopy (CSLM). Expression of the ERG11 gene was found to be low or moderate and it was regulated by fluconazole addition more so than by biofilm formation. Very low or non-detectable expression of ERG1, ERG7 and ERG25 genes was detected in C. albicans. The expression of the ERG9 increased in the presence of fluconazole in some isolates. Following incubation with fluconazole, formation of biofilm by C. dubliniensis was coupled with up-regulation of the ERG3 and ERG25 genes as have been observed previously in C. albicans. Planktonic cells of both Candida species released from biofilm displayed similar resistance mechanisms to fluconazole like attached cells. The XTT reduction assay and CSLM revealed that although incubation with fluconazole decreased the biofilm thickness, these were still comprised metabolically active cells able to disseminate and produce biofilm. Our data indicate that biofilm represents a highly adapted community reflecting the individuality of clinical isolates.

  20. Effects of ambroxol on Candida albicans growth and biofilm formation.

    Science.gov (United States)

    Rene, Hernandez-Delgadillo; José, Martínez-Sanmiguel Juan; Isela, Sánchez-Nájera Rosa; Claudio, Cabral-Romero

    2014-04-01

    Typically, the onset of candidiasis is characterised by the appearance of a biofilm of Candida albicans, which is associated with several diseases including oral candidiasis in young and elderly people. The objective of this work was to investigate the in vitro fungicidal activity as well as the antibiofilm activity of ambroxol (AMB) against C. albicans growth. In the present investigation, the fungicidal activity of AMB was established using the cell viability 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Also the minimum inhibitory concentration (MIC) of AMB required to inhibit the fungal growth was determined. Simultaneously, the antibiofilm activity of AMB was evaluated using fluorescence microscopy. The study revealed that 2 mg ml(-1) of AMB exhibited higher fungicidal activity than 3.3 mg ml(-1) of terbinafine, one of most common commercial antifungals. A MIC of 1 mg ml(-1) was determined for AMB to interfere with C. albicans growth. Furthermore, AMB was found to be effective in inhibiting the biofilm formation of C. albicans and exerted its fungicidal activity against the fungal cells interspersed in the preformed biofilm. The study suggests a potential role of the mucolytic agent, AMB, as an interesting therapeutic alternative in the treatment of oral candidiasis.

  1. [The influence of cell surface hydrophobicity Candida sp. on biofilm formation on different biomaterials].

    Science.gov (United States)

    Ciok-Pater, Emilia; Gospodarek, Eugenia; Prazyńska, Małgorzata; Bogiel, Tomasz

    2009-01-01

    The ability of yeasts to form biofilm is believed to play an important role in patomechanism of fungal infection. Candida sp. is considered to form biofilm on surfaces of biomaterials used in production of catheters, drains and prosthesis. Therefore this may lead to serious problems in patients with biomaterials used for diagnostic or therapeutic purposes. The aim of the study was to evaluate the influence of cell surface hydrophobicity (CSH) of Candida sp. on biofilm formation on different biomaterials. CSH was evaluated by two methods: Salt Aggregation Test (SAT) and Microbe Adhesion to Hydrocarbon Test (MATH). Biofilm formation on different biomaterials was measured by Richard's method after 72 hour incubation at 37 degrees C. Candida biofilm formation occurred more frequently in case of strains exhibiting hydrophobic than hydrophilic properties of cell surface. The statistically significant correlation between CSH and ability of biofilm formation on different biomaterials was observed (p < 0.05).

  2. Activity of antimicrobial peptide mimetics in the oral cavity: I. Activity against biofilms of Candida albicans.

    Science.gov (United States)

    Hua, J; Yamarthy, R; Felsenstein, S; Scott, R W; Markowitz, K; Diamond, G

    2010-12-01

    Naturally occurring antimicrobial peptides hold promise as therapeutic agents against oral pathogens such as Candida albicans but numerous difficulties have slowed their development. Synthetic, non-peptidic analogs that mimic the properties of these peptides have many advantages and exhibit potent, selective antimicrobial activity. Several series of mimetics (with molecular weight oral Candida strains as a proof-of-principle for their antifungal properties. One phenylalkyne and several arylamide compounds with reduced mammalian cytotoxicities were found to be active against C. albicans. These compounds demonstrated rapid fungicidal activity in liquid culture even in the presence of saliva, and demonstrated synergy with standard antifungal agents. When assayed against biofilms grown on denture acrylic, the compounds exhibited potent fungicidal activity as measured by metabolic and fluorescent viability assays. Repeated passages in sub-minimum inhibitory concentration levels did not lead to resistant Candida, in contrast to fluconazole. Our results demonstrate the proof-of principle for the use of these compounds as anti-Candida agents, and their further testing is warranted as novel anti-Candida therapies.

  3. Anaerobic bacteria grow within Candida albicans biofilms and induce biofilm formation in suspension cultures.

    Science.gov (United States)

    Fox, Emily P; Cowley, Elise S; Nobile, Clarissa J; Hartooni, Nairi; Newman, Dianne K; Johnson, Alexander D

    2014-10-20

    The human microbiome contains diverse microorganisms, which share and compete for the same environmental niches. A major microbial growth form in the human body is the biofilm state, where tightly packed bacterial, archaeal, and fungal cells must cooperate and/or compete for resources in order to survive. We examined mixed biofilms composed of the major fungal species of the gut microbiome, Candida albicans, and each of five prevalent bacterial gastrointestinal inhabitants: Bacteroides fragilis, Clostridium perfringens, Escherichia coli, Klebsiella pneumoniae, and Enterococcus faecalis. We observed that biofilms formed by C. albicans provide a hypoxic microenvironment that supports the growth of two anaerobic bacteria, even when cultured in ambient oxic conditions that are normally toxic to the bacteria. We also found that coculture with bacteria in biofilms induces massive gene expression changes in C. albicans, including upregulation of WOR1, which encodes a transcription regulator that controls a phenotypic switch in C. albicans, from the "white" cell type to the "opaque" cell type. Finally, we observed that in suspension cultures, C. perfringens induces aggregation of C. albicans into "mini-biofilms," which allow C. perfringens cells to survive in a normally toxic environment. This work indicates that bacteria and C. albicans interactions modulate the local chemistry of their environment in multiple ways to create niches favorable to their growth and survival.

  4. Polymicrobial Candida biofilms: friends and foe in the oral cavity.

    Science.gov (United States)

    O'Donnell, Lindsay E; Millhouse, Emma; Sherry, Leighann; Kean, Ryan; Malcolm, Jennifer; Nile, Christopher J; Ramage, Gordon

    2015-11-01

    The role of polymicrobial biofilm infections in medicine is becoming more apparent. Increasing number of microbiome studies and deep sequencing has enabled us to develop a greater understanding of how positive and negative microbial interactions influence disease outcomes. An environment where this is particularly pertinent is within the oral cavity, a rich and diverse ecosystem inhabited by both bacteria and yeasts, which collectively occupy and coexist within various niches as biofilm communities. Studies within this environment have however tended to be subject to extensive independent investigation, in the context of either polymicrobial bacterial communities or yeast biofilms, but rarely both together. It is clear however that they are not mutually exclusive. Therefore, this review aims to explore the influence of candidal populations on the composition of these complex aggregates and biofilm communities, to investigate their mechanistic interactions to understand how these impact clinical outcomes, and determine whether we can translate how this knowledge can be used to improve patient management.

  5. Micafungin triggers caspase-dependent apoptosis in Candida albicans and Candida parapsilosis biofilms, including caspofungin non-susceptible isolates.

    Science.gov (United States)

    Shirazi, F; Kontoyiannis, D P

    2015-01-01

    Candida biofilms play an important role in infections associated with medical devices and are resistant to antifungals. We hypothesized that the echinocandin micafungin (MICA) exerts an enhanced antifungal activity against caspofungin (CAS)-susceptible (CAS-S) and CAS-non-susceptible (CAS-NS) Candida albicans and Candida parapsilosis which is at least in part through apoptosis, even in the biofilm environment. Apoptosis was characterized by detecting reactive oxygen species (ROS) accumulation, depolarization of mitochondrial membrane potential (MMP), DNA fragmentation, lack of plasma membrane integrity, and metacaspase activation following exposure of Candida biofilm to MICA for 3h at 37°C in RPMI 1640 medium. The minimum inhibitory concentration was higher for CAS (2.0-16.0 μg/mL) than for MICA (1.0-8.0 μg/mL) for Candida biofilms. Elevated intracellular ROS levels and depolarization of MMP was evident in CAS-S C. albicans (3.0-4.2 fold) and C. parapsilosis (4.8-5.4 fold) biofilms compared with CAS-NS (1.2 fold) after exposure to MICA (0.25x-1xMIC). Elevated intracellular ROS levels and depolarization of MMP was evident in CAS-S C. albicans (3.0-4.2 fold) and C. parapsilosis (4.8-5.4 fold) biofilms compared with CAS-NS (1.2 fold) after exposure to MICA (0.25x-1xMIC). Finally higher ß-1, 3 glucan levels were seen in sessile cells compared to planktonic cells, especially in CAS-NS strains. MICA treatment might induce a metacaspase-dependent apoptotic process in biofilms of both CAS-S C. albicans and C. parapsilosis, and to some degree in CAS-NS strains.

  6. Antifungal effects of undecylenic acid on the biofilm formation of Candida albicans.

    Science.gov (United States)

    Shi, Dongmei; Zhao, Yaxin; Yan, Hongxia; Fu, Hongjun; Shen, Yongnian; Lu, Guixia; Mei, Huan; Qiu, Ying; Li, Dongmei; Liu, Weida

    2016-05-01

    Undecylenic acid can effectively control skin fungal infection, but the mechanism of its fungal inhibition is unclear. Hyphal growth of Candida albicans (C. albicans) and biofilm formation have been well recognized as important virulence factors for the initiation of skin infection and late development of disseminated infection. In this study, we seek to investigate antifungal mechanisms of undecylenic acid by evaluating the virulence factors of C. albicans during biofilm formation. We found that undecylenic acid inhibits biofilm formation of C. albicans effectively with optimal concentration above 3 mM. In the presence of this compound, the morphological transition from yeast to filamentous phase is abolished ultimately when the concentration of undecylenic acid is above 4 mM. Meanwhile, the cell surface is crumpled, and cells display an atrophic appearance under scanning electron microscopy even with low concentration of drug treatment. On the other hand, the drug treatment decreases the transcriptions of hydrolytic enzymes such as secreted aspartic protease, lipase, and phospholipase. Hyphal formation related genes, like HWP1, are significantly reduced in transcriptional level in drug-treated biofilm condition as well. The down-regulated profile of these genes leads to a poorly organized biofilm in undecylenic acid treated environment.

  7. Inhibition of Candida albicans biofilm formation and modulation of gene expression by probiotic cells and supernatant.

    Science.gov (United States)

    James, K M; MacDonald, K W; Chanyi, R M; Cadieux, P A; Burton, J P

    2016-04-01

    Oral candidiasis is a disease caused by opportunistic species of Candida that normally reside on human mucosal surfaces. The transition of Candida from budding yeast to filamentous hyphae allows for covalent attachment to oral epithelial cells, followed by biofilm formation, invasion and tissue damage. In this study, combinations of Lactobacillus plantarum SD5870, Lactobacillus helveticus CBS N116411 and Streptococcus salivarius DSM 14685 were assessed for their ability to inhibit the formation of and disrupt Candida albicans biofilms. Co-incubation with probiotic supernatants under hyphae-inducing conditions reduced C. albicans biofilm formation by >75 % in all treatment groups. Likewise, combinations of live probiotics reduced biofilm formation of C. albicans by >67 %. When live probiotics or their supernatants were overlaid on preformed C. albicans biofilms, biofilm size was reduced by >63 and >65 % respectively. Quantitative real-time PCR results indicated that the combined supernatants of SD5870 and CBS N116411 significantly reduced the expression of several C. albicans genes involved in the yeast-hyphae transition: ALS3 (adhesin/invasin) by 70 % (P biofilm formation) by >99 % (P formation of and removing preformed C. albicans biofilms. Our novel results point to the downregulation of several Candida genes critical to the yeast-hyphae transition, biofilm formation, tissue invasion and cellular damage.

  8. Contact-free inactivation of Candida albicans biofilms by cold atmospheric air plasma.

    Science.gov (United States)

    Maisch, Tim; Shimizu, Tetsuji; Isbary, Georg; Heinlin, Julia; Karrer, Sigrid; Klämpfl, Tobias G; Li, Yang-Fang; Morfill, Gregor; Zimmermann, Julia L

    2012-06-01

    Candida albicans is one of the main species able to form a biofilm on almost any surface, causing both skin and superficial mucosal infections. The worldwide increase in antifungal resistance has led to a decrease in the efficacy of standard therapies, prolonging treatment time and increasing health care costs. Therefore, the aim of this work was to demonstrate the applicability of atmospheric plasma at room temperature for inactivating C. albicans growing in biofilms without thermally damaging heat-sensitive materials. This so-called cold atmospheric plasma is produced by applying high voltage to accelerate electrons, which ionize the surrounding air, leading to the production of charged particles, reactive species, and photons. A newly developed plasma device was used, which exhibits a large plasma-generating surface area of 9 by 13 cm (117 cm(2)). Different time points were selected to achieve an optimum inactivation efficacy range of ≥3 log(10) to 5 log(10) reduction in CFU per milliliter, and the results were compared with those of 70% ethanol. The results obtained show that contact-free antifungal inactivation of Candida biofilms by cold atmospheric plasma is a promising tool for disinfection of surfaces (and items) in both health care settings and the food industry, where ethanol disinfection should be avoided.

  9. Terpenoids of plant origin inhibit morphogenesis, adhesion, and biofilm formation by Candida albicans.

    Science.gov (United States)

    Raut, Jayant S; Shinde, Ravikumar B; Chauhan, Nitin M; Karuppayil, S Mohan

    2013-01-01

    Biofilm-related infections caused by Candida albicans and associated drug resistant micro-organisms are serious problems for immunocompromised populations. Molecules which can prevent or remove biofilms are needed. Twenty-eight terpenoids of plant origin were analysed for their activity against growth, virulence attributes, and biofilms of C. albicans. Eighteen molecules exhibited minimum inhibitory concentrations of terpenoids resulted in significant (p terpenoids were identified as inhibitors of mature biofilms. This study demonstrated the antibiofilm potential of terpenoids, which need to be further explored as therapeutic strategy against biofilm associated infections of C. albicans.

  10. Antifungal Activity of 14-Helical β-Peptides against Planktonic Cells and Biofilms of Candida Species

    Directory of Open Access Journals (Sweden)

    Namrata Raman

    2015-08-01

    Full Text Available Candida albicans is the most prevalent cause of fungal infections and treatment is further complicated by the formation of drug resistant biofilms, often on the surfaces of implanted medical devices. In recent years, the incidence of fungal infections by other pathogenic Candida species such as C. glabrata, C. parapsilosis and C. tropicalis has increased. Amphiphilic, helical β-peptide structural mimetics of natural antimicrobial α-peptides have been shown to exhibit specific planktonic antifungal and anti-biofilm formation activity against C. albicans in vitro. Here, we demonstrate that β-peptides are also active against clinically isolated and drug resistant strains of C. albicans and against other opportunistic Candida spp. Different Candida species were susceptible to β-peptides to varying degrees, with C. tropicalis being the most and C. glabrata being the least susceptible. β-peptide hydrophobicity directly correlated with antifungal activity against all the Candida clinical strains and species tested. While β-peptides were largely ineffective at disrupting existing Candida biofilms, hydrophobic β-peptides were able to prevent the formation of C. albicans, C. glabrata, C. parapsilosis and C. tropicalis biofilms. The broad-spectrum antifungal activity of β-peptides against planktonic cells and in preventing biofilm formation suggests the promise of this class of molecules as therapeutics.

  11. Comparison of Switching and Biofilm Formation between MTL-Homozygous Strains of Candida albicans and Candida dubliniensis.

    Science.gov (United States)

    Pujol, Claude; Daniels, Karla J; Soll, David R

    2015-12-01

    Candida albicans and Candida dubliniensis are highly related species that share the same main developmental programs. In C. albicans, it has been demonstrated that the biofilms formed by strains heterozygous and homozygous at the mating type locus (MTL) differ functionally, but studies rarely identify the MTL configuration. This becomes a particular problem in studies of C. dubliniensis, given that one-third of natural strains are MTL homozygous. For that reason, we have analyzed MTL-homozygous strains of C. dubliniensis for their capacity to switch from white to opaque, the stability of the opaque phenotype, CO2 induction of switching, pheromone induction of adhesion, the effects of minority opaque cells on biofilm thickness and dry weight, and biofilm architecture in comparison with C. albicans. Our results reveal that C. dubliniensis strains switch to opaque at lower average frequencies, exhibit a far lower level of opaque phase stability, are not stimulated to switch by high CO2, exhibit more variability in biofilm architecture, and most notably, form mature biofilms composed predominately of pseudohyphae rather than true hyphae. Therefore, while several traits of MTL-homozygous strains of C. dubliniensis appear to be degenerating or have been lost, others, most notably several related to biofilm formation, have been conserved. Within this context, the possibility is considered that C. dubliniensis is transitioning from a hypha-dominated to a pseudohypha-dominated biofilm and that aspects of C. dubliniensis colonization may provide insights into the selective pressures that are involved.

  12. Cyclosporine A decreases the fluconazole minimum inhibitory concentration of Candida albicans clinical isolates but not biofilm formation and cell growth.

    Science.gov (United States)

    Wibawa, T; Nurrokhman; Baly, I; Daeli, P R; Kartasasmita, G; Wijayanti, N

    2015-03-01

    Among the genus Candida, Candida albicans is the most abundant species in humans. One of the virulent factors of C. albicans is its ability to develop biofilm. Biofilm forming microbes are characterized by decreasing of its susceptibility to antibiotics and antifungal. The fungicidal effect of fluconazole may be enhanced by cyclosporine A in laboratory engineered C. albicans strains. The aim of this work is to analyze the synergistic effect of cyclosporine A with fluconazole in C. albicans clinical isolates and the effect of cycolsporine A alone in the biofilm formation. Six fluconazole resistant and six sensitive C. albicans clinical isolates were analyzed for its minimum inhibitory concentration (MICs), biofilm formation, and cell growths. A semi-quantitative XTT [2,3-bis(2-methoxy-4-nitro-5- sulfo-phenyl)-2H-tetrazolium-5-carboxanilide] reduction assay was conducted to measure the biofilm formation. Cyclosporine A has synergistic effect with fluconazole that was shown by decreasing MICs of both fluconazole resistant and sensitive C. albicans clinical isolates. However, cyclosporine A alone did not influence the biofilm formation and cell growth of both fluconazole resistant and sensitive C. albicans clinical isolates. These results indicated that cyclosporine A might be a promising candidate of adjuvant therapy for fluconazole against both fluconazole resistant and sensitive C. albicans clinical isolates.

  13. Candida albicans biofilm chip (CaBChip) for high-throughput antifungal drug screening.

    Science.gov (United States)

    Srinivasan, Anand; Lopez-Ribot, Jose L; Ramasubramanian, Anand K

    2012-07-18

    Candida albicans remains the main etiological agent of candidiasis, which currently represents the fourth most common nosocomial bloodstream infection in US hospitals. These opportunistic infections pose a growing threat for an increasing number of compromised individuals, and carry unacceptably high mortality rates. This is in part due to the limited arsenal of antifungal drugs, but also to the emergence of resistance against the most commonly used antifungal agents. Further complicating treatment is the fact that a majority of manifestations of candidiasis are associated with the formation of biofilms, and cells within these biofilms show increased levels of resistance to most clinically-used antifungal agents. Here we describe the development of a high-density microarray that consists of C. albicans nano-biofilms, which we have named CaBChip. Briefly, a robotic microarrayer is used to print yeast cells of C. albicans onto a solid substrate. During printing, the yeast cells are enclosed in a three dimensional matrix using a volume as low as 50 nL and immobilized on a glass substrate with a suitable coating. After initial printing, the slides are incubated at 37 °C for 24 hours to allow for biofilm development. During this period the spots grow into fully developed "nano-biofilms" that display typical structural and phenotypic characteristics associated with mature C. albicans biofilms (i.e. morphological complexity, three dimensional architecture and drug resistance). Overall, the CaBChip is composed of ~750 equivalent and spatially distinct biofilms; with the additional advantage that multiple chips can be printed and processed simultaneously. Cell viability is estimated by measuring the fluorescent intensity of FUN1 metabolic stain using a microarray scanner. This fungal chip is ideally suited for use in true high-throughput screening for antifungal drug discovery. Compared to current standards (i.e. the 96-well microtiter plate model of biofilm formation

  14. Characterization of biofilms formed by Candida parapsilosis, C. metapsilosis, and C. orthopsilosis.

    Science.gov (United States)

    Lattif, Ali Abdul; Mukherjee, Pranab K; Chandra, Jyotsna; Swindell, Kim; Lockhart, Shawn R; Diekema, Daniel J; Pfaller, Michael A; Ghannoum, Mahmoud A

    2010-04-01

    Infections due to Candida parapsilosis have been associated with the ability of this fungus to form biofilms on indwelling medical devices. Recently, C. parapsilosis isolates were reclassified into 3 genetically non-identical classes: C. parapsilosis, C. orthopsilosis, and C. metapsilosis. Little information is available regarding the ability of these newly reclassified species to form biofilms on biomedical substrates. In this study, we characterized biofilm formation by 10 clinical isolates each of C. parapsilosis, C. orthopsilosis, and C. metapsilosis. Biofilms were allowed to form on silicone elastomer discs to early (6h) or mature (48 h) phases and quantified by tetrazolium (XTT) and dry weight assays. Surface topography and three-dimensional architecture of the biofilms were visualized using scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM), respectively. Metabolic activity assay revealed strain-dependent biofilm forming ability of the 3 species tested, while biomass determination revealed that all 3 species formed equivalent biofilms (P>0.05 for all comparisons). SEM analyses of representative isolates of these species showed biofilms with clusters of yeast cells adherent to the catheter surface. Additionally, confocal microscopy analyses showed the presence of cells embedded in biofilms ranging in thickness between 62 and 85 microm. These results demonstrate that similar to C. parapsilosis, the 2 newly identified Candida species (C. orthopsilosis and C. metapsilosis) were able to form biofilms.

  15. Silver colloidal nanoparticle stability: influence on Candida biofilms formed on denture acrylic.

    Science.gov (United States)

    Monteiro, Douglas Roberto; Takamiya, Aline Satie; Feresin, Leonardo Perina; Gorup, Luiz Fernando; de Camargo, Emerson Rodrigues; Delbem, Alberto Carlos Botazzo; Henriques, Mariana; Barbosa, Debora Barros

    2014-08-01

    Our aim in this study was to evaluate how the chemical stability of silver nanoparticles (SNs) influences their efficacy against Candida albicans and C. glabrata biofilms. Several parameters of SN stability were tested, namely, temperature (50ºC, 70ºC, and 100ºC), pH (5.0 and 9.0), and time of contact (5 h and 24 h) with biofilms. The control was defined as SNs without temperature treatment, pH 7, and 24 h of contact. These colloidal suspensions at 54 mg/L were used to treat mature Candida biofilms (48 h) formed on acrylic. Their efficacy was determined by total biomass and colony-forming unit quantification. Data were analyzed using analysis of variance and the Bonferroni post hoc test (α = 0.05). The temperature and pH variations of SNs did not affect their efficacy against the viable cells of Candida biofilms (P > 0.05). Moreover, the treatment periods were not decisive in terms of the susceptibility of Candida biofilms to SNs. These findings provide an important advantage of SNs that may be useful in the treatment of Candida-associated denture stomatitis.

  16. Effect of Eugenol on Cell Surface Hydrophobicity, Adhesion, and Biofilm of Candida tropicalis and Candida dubliniensis Isolated from Oral Cavity of HIV-Infected Patients

    Directory of Open Access Journals (Sweden)

    Suelen Balero de Paula

    2014-01-01

    Full Text Available Most Candida spp. infections are associated with biofilm formation on host surfaces. Cells within these communities display a phenotype resistant to antimicrobials and host defenses, so biofilm-associated infections are difficult to treat, representing a source of reinfections. The present study evaluated the effect of eugenol on the adherence properties and biofilm formation capacity of Candida dubliniensis and Candida tropicalis isolated from the oral cavity of HIV-infected patients. All isolates were able to form biofilms on different substrate surfaces. Eugenol showed inhibitory activity against planktonic and sessile cells of Candida spp. No metabolic activity in biofilm was detected after 24 h of treatment. Scanning electron microscopy demonstrated that eugenol drastically reduced the number of sessile cells on denture material surfaces. Most Candida species showed hydrophobic behavior and a significant difference in cell surface hydrophobicity was observed after exposure of planktonic cells to eugenol for 1 h. Eugenol also caused a significant reduction in adhesion of most Candida spp. to HEp-2 cells and to polystyrene. These findings corroborate the effectiveness of eugenol against Candida species other than C. albicans, reinforcing its potential as an antifungal applied to limit both the growth of planktonic cells and biofilm formation on different surfaces.

  17. Inhibitory Effect of Sophorolipid on Candida albicans Biofilm Formation and Hyphal Growth.

    Science.gov (United States)

    Haque, Farazul; Alfatah, Md; Ganesan, K; Bhattacharyya, Mani Shankar

    2016-03-31

    Candida albicans causes superficial and life-threatening systemic infections. These are difficult to treat often due to drug resistance, particularly because C. albicans biofilms are inherently resistant to most antifungals. Sophorolipid (SL), a glycolipid biosurfactant, has been shown to have antimicrobial and anticancer properties. In this study, we investigated the effect of SL on C. albicans biofilm formation and preformed biofilms. SL was found to inhibit C. albicans biofilm formation as well as reduce the viability of preformed biofilms. Moreover, SL, when used along with amphotericin B (AmB) or fluconazole (FLZ), was found to act synergistically against biofilm formation and preformed biofilms. Effect of SL on C. albicans biofilm formation was further visualized by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM), which revealed absence of hyphae, typical biofilm architecture and alteration in the morphology of biofilm cells. We also found that SL downregulates the expression of hypha specific genes HWP1, ALS1, ALS3, ECE1 and SAP4, which possibly explains the inhibitory effect of SL on hyphae and biofilm formation.

  18. A Candida biofilm-induced pathway for matrix glucan delivery: implications for drug resistance.

    Directory of Open Access Journals (Sweden)

    Heather T Taff

    Full Text Available Extracellular polysaccharides are key constituents of the biofilm matrix of many microorganisms. One critical carbohydrate component of Candida albicans biofilms, β-1,3 glucan, has been linked to biofilm protection from antifungal agents. In this study, we identify three glucan modification enzymes that function to deliver glucan from the cell to the extracellular matrix. These enzymes include two predicted glucan transferases and an exo-glucanase, encoded by BGL2, PHR1, and XOG1, respectively. We show that the enzymes are crucial for both delivery of β-1,3 glucan to the biofilm matrix and for accumulation of mature matrix biomass. The enzymes do not appear to impact cell wall glucan content of biofilm cells, nor are they necessary for filamentation or biofilm formation. We demonstrate that mutants lacking these genes exhibit enhanced susceptibility to the commonly used antifungal, fluconazole, during biofilm growth only. Transcriptional analysis and biofilm phenotypes of strains with multiple mutations suggest that these enzymes act in a complementary fashion to distribute matrix downstream of the primary β-1,3 glucan synthase encoded by FKS1. Furthermore, our observations suggest that this matrix delivery pathway works independently from the C. albicans ZAP1 matrix formation regulatory pathway. These glucan modification enzymes appear to play a biofilm-specific role in mediating the delivery and organization of mature biofilm matrix. We propose that the discovery of inhibitors for these enzymes would provide promising anti-biofilm therapeutics.

  19. Contact-Free Inactivation of Candida albicans Biofilms by Cold Atmospheric Air Plasma

    OpenAIRE

    Maisch, Tim; Shimizu, Tetsuji; Isbary, Georg; Heinlin, Julia; Karrer, Sigrid; Klämpfl, Tobias G.; Li, Yang-Fang; Morfill, Gregor; Julia L Zimmermann

    2012-01-01

    Candida albicans is one of the main species able to form a biofilm on almost any surface, causing both skin and superficial mucosal infections. The worldwide increase in antifungal resistance has led to a decrease in the efficacy of standard therapies, prolonging treatment time and increasing health care costs. Therefore, the aim of this work was to demonstrate the applicability of atmospheric plasma at room temperature for inactivating C. albicans growing in biofilms without thermally damagi...

  20. Miltefosine is effective against Candida albicans and Fusarium oxysporum nail biofilms in vitro.

    Science.gov (United States)

    Machado Vila, Taissa Vieira; Sousa Quintanilha, Natália; Rozental, Sonia

    2015-11-01

    Onychomycosis is a fungal nail infection that represents ∼50 % of all nail disease cases worldwide. Clinical treatment with standard antifungals frequently requires long-term systemic therapy to avoid chronic disease. Onychomycosis caused by non-dermatophyte moulds, such as Fusarium spp., and yeasts, such as Candida spp., is particularly difficult to treat, possibly due to the formation of drug-resistant fungal biofilms on affected areas. Here, we show that the alkylphospholipid miltefosine, used clinically against leishmaniasis and cutaneous breast metastases, has potent activity against biofilms of Fusarium oxysporum and Candida albicans formed on human nail fragments in vitro. Miltefosine activity was compared with that of commercially available antifungals in the treatment of biofilms at two distinct developmental phases: formation and maturation (pre-formed biofilms). Drug activity towards biofilms formed on nail fragments and on microplate surfaces (microdilution assays) was evaluated using XTT [2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide] assays, and drug effects on fingernail biofilms were analysed by scanning electron microscopy (SEM). For F. oxysporum, miltefosine at 8 μg ml- 1 inhibited biofilm formation by 93%, whilst 256 μg ml- 1 reduced the metabolic activity of pre-formed nail biofilms by 93%. Treatment with miltefosine at 1000 μg ml- 1 inhibited biofilm formation by 89% and reduced the metabolic activity of pre-formed C. albicans biofilms by 99%. SEM analyses of biofilms formed on fingernail fragments showed a clear reduction in biofilm biomass after miltefosine treatment, in agreement with XTT results. Our results show that miltefosine has potential as a therapeutic agent against onychomycosis and should be considered for in vivo efficacy studies, especially in topical formulations for refractory disease treatment.

  1. Pulsed light for the inactivation of fungal biofilms of clinically important pathogenic Candida species.

    Science.gov (United States)

    Garvey, Mary; Andrade Fernandes, Joao Paulo; Rowan, Neil

    2015-07-01

    Microorganisms are naturally found as biofilm communities more than planktonic free-floating cells; however, planktonic culture remains the current model for microbiological studies, such as disinfection techniques. The presence of fungal biofilms in the clinical setting has a negative impact on patient mortality, as Candida biofilms have proved to be resistant to biocides in numerous in vitro studies; however, there is limited information on the effect of pulsed light on sessile communities. Here we report on the use of pulsed UV light for the effective inactivation of clinically relevant Candida species. Fungal biofilms were grown by use of a CDC reactor on clinically relevant surfaces. Following a maximal 72 h formation period, the densely populated biofilms were exposed to pulsed light at varying fluences to determine biofilm sensitivity to pulsed-light inactivation. The results were then compared to planktonic cell inactivation. High levels of inactivation of C. albicans and C. parapsilosis biofilms were achieved with pulsed light for both 48 and 72 h biofilm structures. The findings suggest that pulsed light has the potential to provide a means of surface decontamination, subsequently reducing the risk of infection to patients. The research described herein deals with an important aspect of disease prevention and public health.

  2. Biofilm formation and Candida albicans morphology on the surface of denture base materials.

    Science.gov (United States)

    Susewind, Sabine; Lang, Reinhold; Hahnel, Sebastian

    2015-12-01

    Fungal biofilms may contribute to the occurrence of denture stomatitis. The objective of the study was to investigate the biofilm formation and morphology of Candida albicans in biofilms on the surface of denture base materials. Specimens were prepared from different denture base materials. After determination of surface properties and salivary pellicle formation, mono- and multispecies biofilm formation including Candida albicans ATCC 10231 was initiated. Relative amounts of adherent cells were determined after 20, 44, 68 and 188 h; C. albicans morphology was analysed employing selective fluorescence microscopic analysis. Significant differences were identified in the relative amount of cells adherent to the denture base materials. Highest blastospore/hyphae index suggesting an increased percentage of hyphae was observed in mono- and multispecies biofilms on the soft denture liner, which did not necessarily respond to the highest relative amount of adherent cells. For both biofilm models, lowest relative amount of adherent cells was identified on the methacrylate-based denture base material, which did not necessarily relate to a significantly lower blastospore/hyphae index. The results indicate that there are significant differences in both biofilm formation as well as the morphology of C. albicans cells in biofilms on the surface of different denture base materials.

  3. Candida tropicalis Biofilms: Biomass, Metabolic Activity and Secreted Aspartyl Proteinase Production.

    Science.gov (United States)

    Negri, Melyssa; Silva, Sónia; Capoci, Isis Regina Grenier; Azeredo, Joana; Henriques, Mariana

    2016-04-01

    According to epidemiological data, Candida tropicalis has been related to urinary tract infections and haematological malignancy. Several virulence factors seem to be responsible for C. tropicalis infections, for example: their ability to adhere and to form biofilms onto different indwelling medical devices; their capacity to adhere, invade and damage host human tissues due to enzymes production such as proteinases. The main aim of this work was to study the behaviour of C. tropicalis biofilms of different ages (24-120 h) formed in artificial urine (AU) and their ability to express aspartyl proteinase (SAPT) genes. The reference strain C. tropicalis ATCC 750 and two C. tropicalis isolates from urine were used. Biofilms were evaluated in terms of culturable cells by colony-forming units enumeration; total biofilm biomass was evaluated using the crystal violet staining method; metabolic activity was evaluated by XTT assay; and SAPT gene expression was determined by real-time PCR. All strains of C. tropicalis were able to form biofilms in AU, although with differences between strains. Candida tropicalis biofilms showed a decrease in terms of the number of culturable cells from 48 to 72 h. Generally, SAPT3 was highly expressed. C. tropicalis strains assayed were able to form biofilms in the presence of AU although in a strain- and time-dependent way, and SAPT genes are expressed during C. tropicalis biofilm formation.

  4. STUDY OF BIOFILM FORMATION AS A VIRULENCE MARKER IN CANDIDA SPECIES ISOLATED FROM VARIOUS CLINICAL SPEC IMENS

    Directory of Open Access Journals (Sweden)

    Saroj

    2012-12-01

    Full Text Available ABSTRACT: BACKGROUND: Candida species can be either commensals or opportunis tic pathogens with the ability to cause a variety of inf ections, ranging from superficial to life threatening. Nosocomial infections due to candida a re also becoming increasingly important. Early and prompt diagnosis, proper treatment and prevent ion of candidemia due to biofilms pose a major challenge for microbiologists and clini cians worldwide. Added to this is the emerging trend of antifungal drug resistance among the biofilm producing strains of Candida. AIMS: The aim of this study was to detect biofilm producti on in Candida species isolated from various clinical samples obtained from patients hospit alized in Dr. B.R Ambedkar Medical College and Hospital. MATERIALS AND METHODS: A total of 108 Candida species (Candida albicans49 and non-albicans Candida59 species isola ted from various specimens (urine, blood, respiratory tract, genital samples, plastic devices an d pus samples were included in the study.The various candida isolates were identified by using conventional methods and their ability to produce biofilm was detected by the tube method. RESULTS: Out of 108 candida species, non-albicans Candida 59(54.63% was the pred ominant species isolated. Biofilm positivity was seen with 71(65.74% isolates and the biofilm production was observed more with non-albicans Candida species 44(61.97% compare d to C.albicans species 27(38.03%. Among the non-albicans Candida species, strong biofi lm producers were C.krusei(80.77% and C.tropicalis(72.73%. Biofilm positivity was found to be higher in the bloodstream Candida isolates (81.82% compared to isolates from other si tes. CONCLUSION: The present study suggests an increasing prevalence of non-albicans Ca ndida species in the various clinical samples isolated and also shows them as strong biofi lm producers compared to C.albicans species. These data suggest that, biofilm formation as a potential virulence factor might

  5. Biofilm-Forming Capability of Highly Virulent, Multidrug-Resistant Candida auris

    Science.gov (United States)

    Sherry, Leighann; Ramage, Gordon; Kean, Ryan; Borman, Andrew; Johnson, Elizabeth M.; Richardson, Malcolm D.

    2017-01-01

    The emerging multidrug-resistant yeast pathogen Candida auris has attracted considerable attention as a source of healthcare–associated infections. We report that this highly virulent yeast has the capacity to form antifungal resistant biofilms sensitive to the disinfectant chlorhexidine in vitro. PMID:28098553

  6. Biofilms: a developing microscopic community

    Directory of Open Access Journals (Sweden)

    Rivera Sandra Patricia

    2004-09-01

    Full Text Available Biofilms are microbial communities composed by different microbiota embebbed in a special adaptive environment. These communities show different characteristics such as heterogeneity, diversity in microenvironments, capacity to resist antimicrobial therapy and ability to allow bacterial communication. These characteristics convert them in complex organizations that are difficult to eradicate in their own environment. In the man, biofilms are associated to a great number of slow-development infectious processes which greatly difficulties their eradication. In the industry and environment, biofilms are centered in processes known as biofouling and bioremediation. The former is the contamination of a system due to the microbial activity of a biofilm. The latter uses biofilms to improve the conditions of a contaminated system. The study of biofilms is a new and exciting field which is constantly evolving and whose implications in medicine and industry would have important repercussions for the humankind.

  7. Biofilm formation is a risk factor for mortality in patients with Candida albicans bloodstream infection—Scotland, 2012–2013

    Science.gov (United States)

    Rajendran, R.; Sherry, L.; Nile, C.J.; Sherriff, A.; Johnson, E.M.; Hanson, M.F.; Williams, C.; Munro, C.A.; Jones, B.J.; Ramage, G.

    2016-01-01

    Bloodstream infections caused by Candida species remain a significant cause of morbidity and mortality in hospitalized patients. Biofilm formation by Candida species is an important virulence factor for disease pathogenesis. A prospective analysis of patients with Candida bloodstream infection (n = 217) in Scotland (2012–2013) was performed to assess the risk factors associated with patient mortality, in particular the impact of biofilm formation. Candida bloodstream isolates (n = 280) and clinical records for 157 patients were collected through 11 different health boards across Scotland. Biofilm formation by clinical isolates was assessed in vitro with standard biomass assays. The role of biofilm phenotype on treatment efficacy was also evaluated in vitro by treating preformed biofilms with fixed concentrations of different classes of antifungal. Available mortality data for 134 patients showed that the 30-day candidaemia case mortality rate was 41%, with predisposing factors including patient age and catheter removal. Multivariate Cox regression survival analysis for 42 patients showed a significantly higher mortality rate for Candida albicans infection than for Candida glabrata infection. Biofilm-forming ability was significantly associated with C. albicans mortality (34 patients). Finally, in vitro antifungal sensitivity testing showed that low biofilm formers and high biofilm formers were differentially affected by azoles and echinocandins, but not by polyenes. This study provides further evidence that the biofilm phenotype represents a significant clinical entity, and that isolates with this phenotype differentially respond to antifungal therapy in vitro. Collectively, these findings show that greater clinical understanding is required with respect to Candida biofilm infections, and the implications of isolate heterogeneity. PMID:26432192

  8. The inhibitory activity of linalool against the filamentous growth and biofilm formation in Candida albicans.

    Science.gov (United States)

    Hsu, Chih-Chieh; Lai, Wen-Lin; Chuang, Kuei-Chin; Lee, Meng-Hwan; Tsai, Ying-Chieh

    2013-07-01

    Candida spp. are part of the natural human microbiota, but they also represent important opportunistic human pathogens. Biofilm-associated Candida albicans infections are clinically relevant due to their high levels of resistance to traditional antifungal agents. In this study, we investigated the ability of linalool to inhibit the formation of C. albicans biofilms and reduce existing C. albicans biofilms. Linalool exhibited antifungal activity against C. albicans ATCC 14053, with a minimum inhibitory concentration (MIC) of 8 mM. Sub-MIC concentrations of linalool also inhibited the formation of germ tubes and biofilms in that strain. The defective architecture composition of C. albicans biofilms exposed to linalool was characterized by scanning electron microscopy. The expression levels of the adhesin genes HWP1 and ALS3 were downregulated by linalool, as assessed by real-time RT-PCR. The expression levels of CYR1 and CPH1, which encode components of the cAMP-PKA and MAPK hyphal formation regulatory pathways, respectively, were also suppressed by linalool, as was the gene encoding their upstream regulator, Ras1. The expression levels of long-term hyphae maintenance associated genes, including UME6, HGC1, and EED1, were all suppressed by linalool. These results indicate that linalool may have therapeutic potential in the treatment of candidiasis associated with medical devices because it interferes with the morphological switch and biofilm formation of C. albicans.

  9. Application of benzo[a]phenoxazinium chlorides in Antimicrobial Photodynamic Therapy of Candida albicans biofilms.

    Science.gov (United States)

    Lopes, Marisa; Alves, Carlos Tiago; Rama Raju, B; Gonçalves, M Sameiro T; Coutinho, Paulo J G; Henriques, Mariana; Belo, Isabel

    2014-12-01

    The use of Antimicrobial Photodynamic Therapy (APDT) as a new approach to treat localized Candida infections is an emerging and promising field nowadays. The aim of this study was to verify the efficacy of photodynamic therapy using two new benzo[a]phenoxazinium photosensitizers against Candida albicans biofilms: N-(5-(3-hydroxypropylamino)-10-methyl-9H-benzo[a]phenoxazin-9-ylidene)ethanaminium chloride (FSc) and N-(5-(11-hydroxyundecylamino)-10-methyl-9H-benzo[a]phenoxazin-9-ylidene)ethanaminium chloride (FSd). The photodynamic activity of dyes against C. albicans biofilms was evaluated by incubating biofilms with dyes in the range of 100-300 μM for 3 or 18 h followed by illumination at 12 or 36 J cm(-2), using a xenon arc lamp (600 ± 2 nm). A total photoinactivation of C. albicans biofilm cells was achieved using 300 μM of FSc with 18 h of incubation, followed by illumination at 36 J cm(-2). Contrarily, FSd had insignificant effect on biofilms inactivation by APDT. The higher uptake of FSc than FSd dye by biofilms during the dark incubation may explain the greater photodynamic effectiveness achieved with FSc. The results obtained stresses out the FSc-mediated APDT potential use to treat C. albicans infections.

  10. A novel antifungal is active against Candida albicans biofilms and inhibits mutagenic acetaldehyde production in vitro.

    Directory of Open Access Journals (Sweden)

    Mikko T Nieminen

    Full Text Available The ability of C. albicans to form biofilms is a major virulence factor and a challenge for management. This is evident in biofilm-associated chronic oral-oesophageal candidosis, which has been shown to be potentially carcinogenic in vivo. We have previously shown that most Candida spp. can produce significant levels of mutagenic acetaldehyde (ACH. ACH is also an important mediator of candidal biofilm formation. We have also reported that D,L-2-hydroxyisocaproic acid (HICA significantly inhibits planktonic growth of C. albicans. The aim of the present study was to investigate the effect of HICA on C. albicans biofilm formation and ACH production in vitro. Inhibition of biofilm formation by HICA, analogous control compounds or caspofungin was measured using XTT to measure biofilm metabolic activity and PicoGreen as a marker of biomass. Biofilms were visualised by scanning electron microscopy (SEM. ACH levels were measured by gas chromatography. Transcriptional changes in the genes involved in ACH metabolism were measured using RT-qPCR. The mean metabolic activity and biomass of all pre-grown (4, 24, 48 h biofilms were significantly reduced after exposure to HICA (p40 µM of ACH were detected in 24 and 48 h biofilms at both pHs. Interestingly, no ACH production was detected from D-glucose in the presence of HICA at acidic pH (p<0.05. Expression of genes responsible for ACH catabolism was up-regulated by HICA but down-regulated by caspofungin. SEM showed aberrant hyphae and collapsed hyphal structures during incubation with HICA at acidic pH. We conclude that HICA has potential as an antifungal agent with ability to inhibit C. albicans cell growth and biofilm formation. HICA also significantly reduces the mutagenic potential of C. albicans biofilms, which may be important when treating bacterial-fungal biofilm infections.

  11. Antifungal, anti-biofilm and adhesion activity of the essential oil of Myrtus communis L. against Candida species.

    Science.gov (United States)

    Cannas, Sara; Molicotti, Paola; Usai, Donatella; Maxia, Andrea; Zanetti, Stefania

    2014-01-01

    Candida species belong to the normal microbiota of the oral cavity, gastrointestinal tract and vagina. The increasing incidence of drug-resistant pathogens and the toxicity of the antifungal compounds have drawn the attention towards the antimicrobial activity of natural products, an inexpensive alternative. The aim of this work was to evaluate the adhesion activity, the biofilm formation and the action of the Myrtus communis L. essential oil (EO) on the biofilm formation towards three species isolated from clinical samples: Candida albicans, Candida parapsilosis and Candida tropicalis. Furthermore, we evaluated the antimycotic activity of the EO towards the three species, and the results were compared with the minimum inhibitory concentration of six antimycotics. The activity of the EO against C. albicans and C. parapsilosis was better than that obtained against C. tropicalis; moreover, the strains used in the assay were adhesive and biofilm producer, and the effect of myrtle EO on the biofilm formation yielded encouraging results.

  12. Candida biofilm disrupting ability of di-rhamnolipid (RL-2) produced from Pseudomonas aeruginosa DSVP20.

    Science.gov (United States)

    Singh, Nivedita; Pemmaraju, Suma C; Pruthi, Parul A; Cameotra, Swaranjit S; Pruthi, Vikas

    2013-04-01

    Biosurfactant produced from Pseudomonas aeruginosa DSVP20 was evaluated for its potential to disrupt Candida albicans biofilm formed on polystyrene (PS) surfaces in this investigation. P. aeruginosa DSVP20 exhibited optimum production of biosurfactant (5.8 g L(-1)) after 96 h of growth with an ability to reduce surface tension of the aqueous solution from 72 to 28 mN m(-1). Analysis of purified biosurfactant with FT-IR, (1)H and (13)C NMR and MALDI-TOF MS revealed it to be di-rhamnolipid (RL-2) in nature. Biofilm disrupting ability of RL-2 (0.16 mg mL(-1)) on Candida cells when checked using XTT reduction assay revealed that about 50 % of the cells remain adhered to 96-well plate after 2 h of treatment, while up to 90 % reduction in pre-formed C. albicans biofilm on PS surface was observed with RL-2 (5.0 mg mL(-1)) in a dose-dependent manner. Microscopic analyses (SEM and CLSM) further confirm the influence of RL-2 on disruption of Candida biofilm extracellular matrix on PS surface which can be exploited as a potential alternative to the available conventional therapies.

  13. Comparison of biofilm formation in clinical isolates of Candida species in a tertiary care center, North India

    Directory of Open Access Journals (Sweden)

    Vivek Agwan

    2015-01-01

    Full Text Available Background and Objectives: Biofilms are colonies of microbial cells encased in a self-produced organic polymeric matrix. The biofilm production is more important for nonalbicans Candida (NAC; as C. albicans possess many other mechanisms to establish infections. Correct identification of Candida species has gained importance due to persistent rise in infections caused by NAC. We sought to isolate, identify Candida species in clinical isolates and study biofilm formation. Materials and Methods: Modified microtiter plate method was performed to study biofilm formation by isolates in Sabouraud's dextrose broth. It was then quantitatively assessed using a spectrophotometer. Biofilm formation was graded as negative, +1, +2, +3 and + 4 on the basis of percentage absorbance. Results: Biofilm formation was observed in 16 of 40 (40.0% isolates of C. albicans as compared to 39 of 78 (50.0% of isolates of NAC. Strong (+4 biofilm production was seen in maximum biofilm producers in C. tropicalis (12 of 27 followed by C. albicans (8 of 16. Total biofilm producers were significantly more among high vaginal swab isolates 63.2% (12 of 19 and urine isolates 59.2% (29 of 49, when compared to blood isolates 34.2% (13 of 38 as well as other isolates 27.5% (11 of 40. Interpretation and Conclusions: NAC species are qualitatively and quantitatively superior biofilm producers than C. albicans. Biofilm production is the most important virulence factor of NAC species and compared to other lesions, it is more significantly associated with luminal infections.

  14. Action of antimicrobial photodynamic therapy on heterotypic biofilm: Candida albicans and Bacillus atrophaeus.

    Science.gov (United States)

    Silva, Michelle Peneluppi; dos Santos, Thais Alves; de Barros, Patrícia Pimentel; de Camargo Ribeiro, Felipe; Junqueira, Juliana Campos; Jorge, Antonio Olavo Cardoso

    2016-05-01

    The increase in survival and resistance of microorganisms organized in biofilms demonstrates the need for new studies to develop therapies able to break this barrier, such as photodynamic therapy, which is characterized as an alternative, effective, and non-invasive treatment. The objective was to evaluate in vitro the effect of antimicrobial photodynamic therapy on heterotypic biofilms of Candida albicans and Bacillus atrophaeus using rose bengal (12.5 μM) and light-emitting diode (LED) (532 nm and 16.2 J). We used standard strains of B. atrophaeus (ATCC 9372) and C. albicans (ATCC 18804). The biofilm was formed in the bottom of the plate for 48 h. For the photodynamic therapy (PDT) experimental groups, we added 100 μL of rose bengal with LED (P+L+), 100 μL of rose bengal without LED (P+L-), 100 μL of NaCl 0.9 % solution with LED (P-L+), and a control group without photosensitizer or LED (P-L-). The plates remained in agitation for 5 min (pre-irradiation) and were irradiated with LED for 3 min, and the biofilm was detached using an ultrasonic homogenizer for 30 s. Serial dilutions were plated in BHI agar and HiChrom agar and incubated at 37 °C/48 h. There was a reduction of 33.92 and 29.31 % of colony-forming units per milliliter (CFU/mL) for C. albicans and B. atrophaeus, respectively, from the control group to the group subjected to PDT. However, statistically significant differences were not observed among the P+L+, P+L-, P-L+, and P-L- groups. These results suggest that antimicrobial photodynamic therapy using rose bengal (12.5 μM) with a pre-irradiation period of 5 min and LED for 3 min was not enough to cause a significant reduction in the heterotypic biofilms of C. albicans and B. atrophaeus.

  15. Oral Candida albicans isolates from HIV-positive individuals have similar in vitro biofilm-forming ability and pathogenicity as invasive Candida isolates

    Directory of Open Access Journals (Sweden)

    Rasteiro Vanessa MC

    2011-11-01

    Full Text Available Abstract Background Candida can cause mucocutaneous and/or systemic infections in hospitalized and immunosuppressed patients. Most individuals are colonized by Candida spp. as part of the oral flora and the intestinal tract. We compared oral and systemic isolates for the capacity to form biofilm in an in vitro biofilm model and pathogenicity in the Galleria mellonella infection model. The oral Candida strains were isolated from the HIV patients and included species of C. albicans, C. glabrata, C. tropicalis, C. parapsilosis, C. krusei, C. norvegensis, and C. dubliniensis. The systemic strains were isolated from patients with invasive candidiasis and included species of C. albicans, C. glabrata, C. tropicalis, C. parapsilosis, C. lusitaniae, and C. kefyr. For each of the acquired strains, biofilm formation was evaluated on standardized samples of silicone pads and acrylic resin. We assessed the pathogenicity of the strains by infecting G. mellonella animals with Candida strains and observing survival. Results The biofilm formation and pathogenicity in Galleria was similar between oral and systemic isolates. The quantity of biofilm formed and the virulence in G. mellonella were different for each of the species studied. On silicone pads, C. albicans and C. dubliniensis produced more biofilm (1.12 to 6.61 mg than the other species (0.25 to 3.66 mg. However, all Candida species produced a similar biofilm on acrylic resin, material used in dental prostheses. C. albicans, C. dubliniensis, C. tropicalis, and C. parapsilosis were the most virulent species in G. mellonella with 100% of mortality, followed by C. lusitaniae (87%, C. novergensis (37%, C. krusei (25%, C. glabrata (20%, and C. kefyr (12%. Conclusions We found that on silicone pads as well as in the Galleria model, biofilm formation and virulence depends on the Candida species. Importantly, for C. albicans the pathogenicity of oral Candida isolates was similar to systemic Candida isolates

  16. [In vitro biofilm formation and relationship with antifungal resistance of Candida spp. isolated from vaginal and intrauterine device string samples of women with vaginal complaints].

    Science.gov (United States)

    Calışkan, Seyda; Keçeli Özcan, Sema; Cınar, Selvi; Corakçı, Aydın; Calışkan, Eray

    2011-10-01

    as 14.8% (8/54) and 45.5% (30/66), with a statistically significant importance (p 0.05]. Fluconazole resistance was significantly higher in biofilm-producing vaginal Candida spp. than those of nonproducers (52.4% vs. 16.1%; p= 0.001), however, itraconazole resistance was found similar in biofilmproducer and non-producer isolates (47.6% vs. 32.3%; p> 0.05). Resistance rates for both fluconazole and itraconazole were higher in biofilm-producers (39.5% and 52.6%, respectively), than those of non-producers (10.6% and 29.8%, respectively), representing a statistical significance (p= 0.002 and p= 0.03, respectively) for Candida spp. strains isolated from IUD string samples. The overall resistance rates of C.albicans and non-albicans Candida spp. against fluconazole, were determined as 15% and 54.2%, respectively, while those rates were 24.2% and 68.7%, respectively, against itraconazole. MIC value of amphotericin B for all of the Candida spp. isolates was ≤ 1.5 µg/ml. In conclusion, the data obtained from this study revealed that Candida spp. May lead to vaginal infections by inducing biofilm formation in IUD strings and these biofilms may be related to resistance to antifungal agents. Thus, women using IUDs should be followed-up periodically for the development of biofilms in their IUD strings.

  17. Characteristics of Candida albicans biofilms grown in a synthetic urine medium.

    Science.gov (United States)

    Uppuluri, Priya; Dinakaran, Hemamalini; Thomas, Derek P; Chaturvedi, Ashok K; Lopez-Ribot, Jose L

    2009-12-01

    Urinary tract infections (UTIs) are the most common type of nosocomial infection, and Candida albicans is the most frequent organism causing fungal UTIs. Presence of an indwelling urinary catheter represents a significant risk factor for UTIs. Furthermore, these infections are frequently associated with the formation of biofilms on the surface of these catheters. Here, we describe the characterization of C. albicans biofilms formed in vitro using synthetic urine (SU) medium and the frequently used RPMI medium and compare the results. Biofilms of C. albicans strain SC5314 were formed in 96-well microtiter plates and on silicon elastomer pieces using both SU and RPMI media. Biofilm formation was monitored by microscopy and a colorimetric XTT [2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide] reduction assay. As in biofilms grown in RPMI medium, time course studies revealed that biofilm formation using SU medium occurred after an initial adherence phase, followed by growth, proliferation, and maturation. However, microscopy techniques revealed that the architectural complexity of biofilms formed in SU medium was lower than that observed for those formed using RPMI medium. In particular, the level of filamentation of cells within the biofilms formed in SU medium was diminished compared to those in the biofilms grown in RPMI medium. This observation was also corroborated by expression profiling of five filamentation-associated genes using quantitative real-time reverse transcriptase PCR. Sessile C. albicans cells were resistant to fluconazole and amphotericin B, irrespective of the medium used to form the biofilms. However, caspofungin exhibited potent in vitro activity at therapeutic levels against C. albicans biofilms grown in both SU and RPMI media.

  18. 氟康唑对近平滑念珠菌生物膜的影响%Effect of fluconazole on biofilm of Candida parapsilosis

    Institute of Scientific and Technical Information of China (English)

    丁秀荣; 苏建荣

    2014-01-01

    目的:研究近平滑念珠菌不同时期生物膜对氟康唑的药物敏感性及氟康唑对其生物膜生成的影响。方法甲基四氮盐( XTT)减低法检测不同阶段生物膜对氟康唑的敏感性及生物膜的生成量。结果对氟康唑敏感的近平滑念珠菌在生物膜生成12 h后即对氟康唑耐药。在12、24和48 h时间点,治疗浓度为8μg/mL的氟康唑均可显著抑制氟康唑耐药株生物膜的生成;浓度0.5μg/mL的氟康唑可显著抑制氟康唑敏感株生物膜形成,但要抑制耐药株生物膜的形成则需更高浓度的氟康唑(≥1μg/mL)。结论近平滑念珠菌不同阶段生物膜对氟康唑耐药性不同,氟康唑可显著抑制近平滑念珠菌敏感株和耐药株生物膜的生成。%Objective To explore the sensitivity of Candida parapsilosis cells grown in developing biofilm to fluconazole and the effect of different concentration of fluconazole on Candida parapsilosis biofilm formation .Methods XTT reduction assay was used to evaluate the effect of fluconazole on developing biofilm of Candida parapsilosis and the inhibition of fluconazole on Candida parapsilosis biofilm formation.Results Twelve-hours biofilms of fluconazole-susceptible strains were resistant to fluconazole .At 12 h, 24 h, and 48 h time points, biofilm formation by fluconazole-resistant strains was significantly inhibited when fluconazole ( 8 μg/mL ) was present. Concentration of 0.5 μg/mL of fluconazole could reduce the biofilm formation by fluconazole-susceptible strains, but the concentration of fluconazole was higher (≥1 μg/mL) for fluconazole-resistant strains .Conclusion The sensitivity to fluconazole of Candida parapsilosis cells grown in developing biofilms was different .Fluconazole inhibited biofilm formation by a variety of laboratory isolated strains .

  19. Influence of pH of Candida albicans biofilm in the susceptibility to fluconazole

    OpenAIRE

    2012-01-01

    Resumo: Na cavidade oral, a colonização por Candida albicans em nichos com valores distintos de pH contribui para o desenvolvimento de candidose associada ao uso de prótese. O tratamento dessa infecção tem sido facilitado utilizando-se o fluconazol (FLZ). Entretanto, não está claro se o pH dos biofilmes de C. albicans interfere na susceptibilidade destes ao FLZ. Dessa forma, neste trabalho foi avaliada a influência do pH de biofilmes de C. albicans na susceptibilidade ao FLZ. Testes de suscep...

  20. Commensal Protection of Staphylococcus aureus against Antimicrobials by Candida albicans Biofilm Matrix

    Science.gov (United States)

    Kong, Eric F.; Tsui, Christina; Kucharíková, Sona; Andes, David

    2016-01-01

    ABSTRACT Biofilm-associated polymicrobial infections, particularly those involving fungi and bacteria, are responsible for significant morbidity and mortality and tend to be challenging to treat. Candida albicans and Staphylococcus aureus specifically are considered leading opportunistic fungal and bacterial pathogens, respectively, mainly due to their ability to form biofilms on catheters and indwelling medical devices. However, the impact of mixed-species biofilm growth on therapy remains largely understudied. In this study, we investigated the influence of C. albicans secreted cell wall polysaccharides on the response of S. aureus to antibacterial agents in biofilm. Results demonstrated significantly enhanced tolerance for S. aureus to drugs in the presence of C. albicans or its secreted cell wall polysaccharide material. Fluorescence confocal time-lapse microscopy revealed impairment of drug diffusion through the mixed biofilm matrix. Using C. albicans mutant strains with modulated cell wall polysaccharide expression, exogenous supplementation, and enzymatic degradation, the C. albicans-secreted β-1,3-glucan cell wall component was identified as the key matrix constituent providing the bacteria with enhanced drug tolerance. Further, antibody labeling demonstrated rapid coating of the bacteria by the C. albicans matrix material. Importantly, via its effect on the fungal biofilm matrix, the antifungal caspofungin sensitized the bacteria to the drugs. Understanding such symbiotic interactions with clinical relevance between microbial species in biofilms will greatly aid in overcoming the limitations of current therapies and in defining potential new targets for treating polymicrobial infections. PMID:27729510

  1. Levorotatory carbohydrates and xylitol subdue Streptococcus mutans and Candida albicans adhesion and biofilm formation.

    Science.gov (United States)

    Brambilla, Eugenio; Ionescu, Andrei C; Cazzaniga, Gloria; Ottobelli, Marco; Samaranayake, Lakshman P

    2016-05-01

    Dietary carbohydrates and polyols affect the microbial colonization of oral surfaces by modulating adhesion and biofilm formation. The aim of this study was to evaluate the influence of a select group of l-carbohydrates and polyols on either Streptococcus mutans or Candida albicans adhesion and biofilm formation in vitro. S. mutans or C. albicans suspensions were inoculated on polystyrene substrata in the presence of Tryptic soy broth containing 5% of the following compounds: d-glucose, d-mannose, l-glucose, l-mannose, d- and l-glucose (raceme), d- and l-mannose (raceme), l-glucose and l-mannose, sorbitol, mannitol, and xylitol. Microbial adhesion (2 h) and biofilm formation (24 h) were evaluated using MTT-test and Scanning Electron Microscopy (SEM). Xylitol and l-carbohydrates induced the lowest adhesion and biofilm formation in both the tested species, while sorbitol and mannitol did not promote C. albicans biofilm formation. Higher adhesion and biofilm formation was noted in both organisms in the presence of d-carbohydrates relative to their l-carbohydrate counterparts. These results elucidate, hitherto undescribed, interactions of the individually tested strains with l- and d-carbohydrates, and how they impact fungal and bacterial colonization. In translational terms, our data raise the possibility of using l-form of carbohydrates and xylitol for dietary control of oral plaque biofilms.

  2. Biofilm formation by Candida albicans and Streptococcus mutans in the presence of farnesol: a quantitative evaluation.

    Science.gov (United States)

    Fernandes, Renan Aparecido; Monteiro, Douglas Roberto; Arias, Laís Salomão; Fernandes, Gabriela Lopes; Delbem, Alberto Carlos Botazzo; Barbosa, Debora Barros

    2016-01-01

    The aim of this study was to evaluate the effect of the QS molecule farnesol on single and mixed species biofilms formed by Candida albicans and Streptococcus mutans. The anti-biofilm effect of farnesol was assessed through total biomass quantification, counting of colony forming units (CFUs) and evaluation of metabolic activity. Biofilms were also analyzed by scanning electron microscopy (SEM). It was observed that farnesol reduced the formation of single and mixed biofilms, with significant reductions of 37% to 90% and 64% to 96%, respectively, for total biomass and metabolic activity. Regarding cell viability, farnesol treatment promoted significant log reductions in the number of CFUs, ie 1.3-4.2 log10 and 0.67-5.32 log10, respectively, for single and mixed species biofilms. SEM images confirmed these results, showing decreases in the number of cells in all biofilms. In conclusion, these findings highlight the role of farnesol as an alternative agent with the potential to reduce the formation of pathogenic biofilms.

  3. Commensal Protection of Staphylococcus aureus against Antimicrobials by Candida albicans Biofilm Matrix

    Directory of Open Access Journals (Sweden)

    Eric F. Kong

    2016-10-01

    Full Text Available Biofilm-associated polymicrobial infections, particularly those involving fungi and bacteria, are responsible for significant morbidity and mortality and tend to be challenging to treat. Candida albicans and Staphylococcus aureus specifically are considered leading opportunistic fungal and bacterial pathogens, respectively, mainly due to their ability to form biofilms on catheters and indwelling medical devices. However, the impact of mixed-species biofilm growth on therapy remains largely understudied. In this study, we investigated the influence of C. albicans secreted cell wall polysaccharides on the response of S. aureus to antibacterial agents in biofilm. Results demonstrated significantly enhanced tolerance for S. aureus to drugs in the presence of C. albicans or its secreted cell wall polysaccharide material. Fluorescence confocal time-lapse microscopy revealed impairment of drug diffusion through the mixed biofilm matrix. Using C. albicans mutant strains with modulated cell wall polysaccharide expression, exogenous supplementation, and enzymatic degradation, the C. albicans-secreted β-1,3-glucan cell wall component was identified as the key matrix constituent providing the bacteria with enhanced drug tolerance. Further, antibody labeling demonstrated rapid coating of the bacteria by the C. albicans matrix material. Importantly, via its effect on the fungal biofilm matrix, the antifungal caspofungin sensitized the bacteria to the drugs. Understanding such symbiotic interactions with clinical relevance between microbial species in biofilms will greatly aid in overcoming the limitations of current therapies and in defining potential new targets for treating polymicrobial infections.

  4. Al-2 of Aggregatibacter actinomycetemcomitans inhibits Candida albicans biofilm formation

    NARCIS (Netherlands)

    Bachtiar, Endang W.; Bachtiar, Boy M.; Jarosz, Lucja M.; Amir, Lisa R.; Sunarto, Hari; Ganin, Hadas; Meijler, Michael M.; Krom, Bastiaan P.

    2014-01-01

    Aggregatibacter actinomycetemcomitans, a Gram-negative bacterium, and Candida albicans, a polymorphic fungus, are both commensals of the oral cavity but both are opportunistic pathogens that can cause oral diseases. A. actinomycetemcomitans produces a quorum-sensing molecule called autoinducer-2 (Al

  5. Prostaglandin E2 from Candida albicans Stimulates the Growth of Staphylococcus aureus in Mixed Biofilms.

    Directory of Open Access Journals (Sweden)

    Jan Krause

    Full Text Available Previous studies showed that Staphylococcus aureus and Candida albicans interact synergistically in dual species biofilms resulting in enhanced mortality in animal models.The aim of the current study was to test possible candidate molecules which might mediate this synergistic interaction in an in vitro model of mixed biofilms, such as farnesol, tyrosol and prostaglandin (PG E2. In mono-microbial and dual biofilms of C.albicans wild type strains PGE2 levels between 25 and 250 pg/mL were measured. Similar concentrations of purified PGE2 significantly enhanced S.aureus biofilm formation in a mode comparable to that observed in dual species biofilms. Supernatants of the null mutant deficient in PGE2 production did not stimulate the proliferation of S.aureus and the addition of the cyclooxygenase inhibitor indomethacin blocked the S.aureus biofilm formation in a dose-dependent manner. Additionally, S. aureus biofilm formation was boosted by low and inhibited by high farnesol concentrations. Supernatants of the farnesol-deficient C. albicans ATCC10231 strain significantly enhanced the biofilm formation of S. aureus but at a lower level than the farnesol producer SC5314. However, C. albicans ATCC10231 also produced PGE2 but amounts were significantly lower compared to SC5314.In conclision, we identified C. albicans PGE2 as a key molecule stimulating the growth and biofilm formation of S. aureus in dual S. aureus/C. albicans biofilms, although C. albicans derived farnesol, but not tyrosol, may also contribute to this effect but to a lesser extent.

  6. Candida albicans and non-C. albicans Candida species: comparison of biofilm production and metabolic activity in biofilms, and putative virulence properties of isolates from hospital environments and infections.

    Science.gov (United States)

    Ferreira, A V; Prado, C G; Carvalho, R R; Dias, K S T; Dias, A L T

    2013-04-01

    Candida albicans and, more recently, non-C. albicans Candida spp. are considered the most frequent fungi in hospitals. This study analyzed Candida spp. isolates and compared the frequency of different species, that is, C. albicans and non-C. albicans Candida spp., and the origins of isolates, that is, from hospital environments or infections. Yeast virulence factors were evaluated based on biofilm production and metabolic activity. Hemolysin production and the antifungal susceptibility profiles of isolates were also evaluated. Candida spp. were highly prevalent in samples collected from hospital environments, which may provide a reservoir for continuous infections with these yeasts. There were no differences in the biofilm productivity levels and metabolic activities of the environmental and clinical isolates, although the metabolic activities of non-C. albicans Candida spp. biofilms were greater than those of the C. albicans biofilms (p albicans Candida spp. predominated in samples collected from hospital environments and infections (p albicans, which may explain the increased incidence of fungal infections with these yeasts during recent years.

  7. In vitro evaluation of antifungal activity of monolaurin against Candida albicans biofilms

    OpenAIRE

    Seleem, Dalia; Chen, Emily; Benso, Bruna; Pardi, Vanessa; Murata, Ramiro M.

    2016-01-01

    Monolaurin (also known as glycerol monolaurate) is a natural compound found in coconut oil and is known for its protective biological activities as an antimicrobial agent. The nature of oral candidiasis and the increased antifungal resistance demand the search for novel antifungal therapeutic agents. In this study, we examine the antifungal activity of monolaurin against Candida albicans biofilms (strain ATCC:SC5314/MYA2876) in vitro and investigate whether monolaurin can alter gene expressio...

  8. Integration of Posttranscriptional Gene Networks into Metabolic Adaptation and Biofilm Maturation in Candida albicans.

    Directory of Open Access Journals (Sweden)

    Jiyoti Verma-Gaur

    2015-10-01

    Full Text Available The yeast Candida albicans is a human commensal and opportunistic pathogen. Although both commensalism and pathogenesis depend on metabolic adaptation, the regulatory pathways that mediate metabolic processes in C. albicans are incompletely defined. For example, metabolic change is a major feature that distinguishes community growth of C. albicans in biofilms compared to suspension cultures, but how metabolic adaptation is functionally interfaced with the structural and gene regulatory changes that drive biofilm maturation remains to be fully understood. We show here that the RNA binding protein Puf3 regulates a posttranscriptional mRNA network in C. albicans that impacts on mitochondrial biogenesis, and provide the first functional data suggesting evolutionary rewiring of posttranscriptional gene regulation between the model yeast Saccharomyces cerevisiae and C. albicans. A proportion of the Puf3 mRNA network is differentially expressed in biofilms, and by using a mutant in the mRNA deadenylase CCR4 (the enzyme recruited to mRNAs by Puf3 to control transcript stability we show that posttranscriptional regulation is important for mitochondrial regulation in biofilms. Inactivation of CCR4 or dis-regulation of mitochondrial activity led to altered biofilm structure and over-production of extracellular matrix material. The extracellular matrix is critical for antifungal resistance and immune evasion, and yet of all biofilm maturation pathways extracellular matrix biogenesis is the least understood. We propose a model in which the hypoxic biofilm environment is sensed by regulators such as Ccr4 to orchestrate metabolic adaptation, as well as the regulation of extracellular matrix production by impacting on the expression of matrix-related cell wall genes. Therefore metabolic changes in biofilms might be intimately linked to a key biofilm maturation mechanism that ultimately results in untreatable fungal disease.

  9. Inhibition of Candida albicans biofilm formation by antimycotics released from modified polydimethyl siloxane.

    Science.gov (United States)

    De Prijck, Kristof; De Smet, Nele; Honraet, Kris; Christiaen, Steven; Coenye, Tom; Schacht, Etienne; Nelis, Hans J

    2010-03-01

    Unlike various disinfectants, antifungals have not been commonly incorporated so far in medical devices, such as catheters or prostheses, to prevent biofilm formation by Candida spp. In the present study, five antimycotics were added to polydimethyl siloxane (PDMS) disks via admixture (nystatin) or impregnation (trimethylsilyl-nystatin (TMS-nystatin), miconazole, tea tree oil (TTO), zinc pyrithione). Nystatin-medicated PDMS disks exhibited a concentration-dependent inhibitory effect on biofilm formation in a microtiter plate (MTP) but not in a Modified Robbins Device (MRD). This observation, together with HPLC data and agar diffusion tests, indicates that a small fraction of free nystatin is released, which kills Candida albicans cells in the limited volume of a MTP well. In contrast, biofilm inhibition amounted to more than one log unit in the MRD on disks impregnated with miconazole, TTO, and zinc pyrithione. It is hypothesized that the reduction in biofilm formation by these compounds in a flow system occurs through a contact-dependent effect.

  10. Action of Coriandrum sativum L. Essential Oil upon Oral Candida albicans Biofilm Formation

    Directory of Open Access Journals (Sweden)

    V. F. Furletti

    2011-01-01

    Full Text Available The efficacy of extracts and essential oils from Allium tuberosum, Coriandrum sativum, Cymbopogon martini, Cymbopogon winterianus, and Santolina chamaecyparissus was evaluated against Candida spp. isolates from the oral cavity of patients with periodontal disease. The most active oil was fractionated and tested against C. albicans biofilm formation. The oils were obtained by water-distillation and the extracts were prepared with macerated dried plant material. The Minimal Inhibitory Concentration—MIC was determined by the microdilution method. Chemical characterization of oil constituents was performed using Gas Chromatography and Mass Spectrometry (GC-MS. C. sativum activity oil upon cell and biofilm morphology was evaluated by Scanning Electron Microscopy (SEM. The best activities against planktonic Candida spp. were observed for the essential oil and the grouped F8–10 fractions from C. sativum. The crude oil also affected the biofilm formation in C. albicans causing a decrease in the biofilm growth. Chemical analysis of the F8–10 fractions detected as major active compounds, 2-hexen-1-ol, 3-hexen-1-ol and cyclodecane. Standards of these compounds tested grouped provided a stronger activity than the oil suggesting a synergistic action from the major oil constituents. The activity of C. sativum oil demonstrates its potential for a new natural antifungal formulation.

  11. Candida-streptococcal mucosal biofilms display distinct structural and virulence characteristics depending on growth conditions and hyphal morphotypes.

    Science.gov (United States)

    Bertolini, M M; Xu, H; Sobue, T; Nobile, C J; Del Bel Cury, A A; Dongari-Bagtzoglou, A

    2015-08-01

    Candida albicans and streptococci of the mitis group form communities in multiple oral sites, where moisture and nutrient availability can change spatially or temporally. This study evaluated structural and virulence characteristics of Candida-streptococcal biofilms formed on moist or semidry mucosal surfaces, and tested the effects of nutrient availability and hyphal morphotype on dual-species biofilms. Three-dimensional models of the oral mucosa formed by immortalized keratinocytes on a fibroblast-embedded collagenous matrix were used. Infections were carried out using Streptococcus oralis strain 34, in combination with a C. albicans wild-type strain, or pseudohyphal-forming mutant strains. Increased moisture promoted a homogeneous surface biofilm by C. albicans. Dual biofilms had a stratified structure, with streptococci growing in close contact with the mucosa and fungi growing on the bacterial surface. Under semidry conditions, Candida formed localized foci of dense growth, which promoted focal growth of streptococci in mixed biofilms. Candida biofilm biovolume was greater under moist conditions, albeit with minimal tissue invasion, compared with semidry conditions. Supplementing the infection medium with nutrients under semidry conditions intensified growth, biofilm biovolume and tissue invasion/damage, without changing biofilm structure. Under these conditions, the pseudohyphal mutants and S. oralis formed defective superficial biofilms, with most bacteria in contact with the epithelial surface, below a pseudohyphal mass, resembling biofilms growing in a moist environment. The presence of S. oralis promoted fungal invasion and tissue damage under all conditions. We conclude that moisture, nutrient availability, hyphal morphotype and the presence of commensal bacteria influence the architecture and virulence characteristics of mucosal fungal biofilms.

  12. Biofilm formation by and antifungal susceptibility of Candida isolates from urine.

    Science.gov (United States)

    Jain, N; Kohli, R; Cook, E; Gialanella, P; Chang, T; Fries, B C

    2007-03-01

    Biofilm formation (BF) in the setting of candiduria has not been well studied. We determined BF and MIC to antifungals in Candida spp. isolates grown from urine samples of patients and performed a retrospective chart review to examine the correlation with risk factors. A total of 67 Candida spp. isolates were grown from urine samples from 55 patients. The species distribution was C. albicans (54%), C. glabrata (36%), and C. tropicalis (10%). BF varied greatly among individual Candida isolates but was stable in sequential isolates during chronic infection. BF also depended on the growth medium and especially in C. albicans was significantly enhanced in artificial urine (AU) compared to RPMI medium. In nine of the C. albicans strains BF was 4- to 10-fold higher in AU, whereas in three of the C. albicans strains and two of the C. glabrata strains higher BF was measured in RPMI medium than in AU. Determination of the MICs showed that planktonic cells of all strains were susceptible to amphotericin B (AMB) and caspofungin (CASPO) and that three of the C. glabrata strains and two of the C. albicans strains were resistant to fluconazole (FLU). In contrast, all biofilm-associated adherent cells were resistant to CASPO and FLU. The biofilms of 14 strains (28%) were sensitive to AMB (MIC(50) of Candida strains that varies greatly among clinical strains and is dependent on the growth medium. Resistance to AMB is associated with higher BF in AU, which may represent the more physiologic medium to test BF. Future studies should address whether in vitro BF can predict treatment failure in vivo.

  13. A Candida albicans early stage biofilm detachment event in rich medium

    Directory of Open Access Journals (Sweden)

    Nantel Andre

    2009-02-01

    Full Text Available Abstract Background Dispersal from Candida albicans biofilms that colonize catheters is implicated as a primary factor in the link between contaminated catheters and life threatening blood stream infections (BSI. Appropriate in vitro C. albicans biofilm models are needed to probe factors that induce detachment events. Results Using a flow through system to culture C. albicans biofilms we characterized a detachment process which culminates in dissociation of an entire early stage biofilm from a silicone elastomer surface. We analyzed the transcriptome response at time points that bracketed an abrupt transition in which a strong adhesive association with the surface is weakened in the initial stages of the process, and also compared batch and biofilm cultures at relevant time points. K means analysis of the time course array data revealed categories of genes with similar patterns of expression that were associated with adhesion, biofilm formation and glycoprotein biosynthesis. Compared to batch cultures the biofilm showed a pattern of expression of metabolic genes that was similar to the C. albicans response to hypoxia. However, the loss of strong adhesion was not obviously influenced by either the availability of oxygen in the medium or at the silicone elastomer surface. The detachment phenotype of mutant strains in which selected genes were either deleted or overexpressed was characterized. The microarray data indicated that changes associated with the detachment process were complex and, consistent with this assessment, we were unable to demonstrate that transcriptional regulation of any single gene was essential for loss of the strong adhesive association. Conclusion The massive dispersal of the early stage biofilm from a biomaterial surface that we observed is not orchestrated at the level of transcriptional regulation in an obvious manner, or is only regulated at this level by a small subpopulation of cells that mediate adhesion to the

  14. Oral Candida albicans isolates from HIV-positive individuals have similar in vitro biofilm-forming ability and pathogenicity as invasive Candida isolates

    OpenAIRE

    Rasteiro Vanessa MC; Costa Anna CBP; Vilela Simone FG; Suleiman Jamal MAH; Coleman Jeffrey J; Muhammed Maged; Fuchs Beth B; Junqueira Juliana C; Jorge Antonio OC; Mylonakis Eleftherios

    2011-01-01

    Abstract Background Candida can cause mucocutaneous and/or systemic infections in hospitalized and immunosuppressed patients. Most individuals are colonized by Candida spp. as part of the oral flora and the intestinal tract. We compared oral and systemic isolates for the capacity to form biofilm in an in vitro biofilm model and pathogenicity in the Galleria mellonella infection model. The oral Candida strains were isolated from the HIV patients and included species of C. albicans, C. glabrata...

  15. The NDR/LATS kinase Cbk1 controls the activity of the transcriptional regulator Bcr1 during biofilm formation in Candida albicans.

    Directory of Open Access Journals (Sweden)

    Pilar Gutiérrez-Escribano

    Full Text Available In nature, many microorganisms form specialized complex, multicellular, surface-attached communities called biofilms. These communities play critical roles in microbial pathogenesis. The fungal pathogen Candida albicans is associated with catheter-based infections due to its ability to establish biofilms. The transcription factor Bcr1 is a master regulator of C. albicans biofilm development, although the full extent of its regulation remains unknown. Here, we report that Bcr1 is a phosphoprotein that physically interacts with the NDR kinase Cbk1 and undergoes Cbk1-dependent phosphorylation. Mutating the two putative Cbk1 phosphoacceptor residues in Bcr1 to alanine markedly impaired Bcr1 function during biofilm formation and virulence in a mouse model of disseminated candidiasis. Cells lacking Cbk1, or any of its upstream activators, also had reduced biofilm development. Notably, mutating the two putative Cbk1 phosphoacceptor residues in Bcr1 to glutamate in cbk1Δ cells upregulated the transcription of Bcr1-dependent genes and partially rescued the biofilm defects of a cbk1Δ strain. Therefore, our data uncovered a novel role of the NDR/LATS kinase Cbk1 in the regulation of biofilm development through the control of Bcr1.

  16. Antifungal susceptibility of Candida albicans biofilms on titanium discs with different surface roughness.

    Science.gov (United States)

    Tsang, C S P; Ng, H; McMillan, A S

    2007-12-01

    Although it is well known that fungal biofilms have increased resistance to antimicrobial agents, limited information is available on the formation of candidal biofilms on implant surfaces with different surface roughness and their resistance to conventional antifungal therapy. In the current study, the effect of increasing the surface roughness of titanium discs on the susceptibility of Candida albicans biofilms to amphotericin B was determined. Grade I commercially pure titanium discs were sandblasted with 99.6% aluminium oxide of different grit sizes, producing surface roughness of 0.90, 1.88 and 3.82 microm (Groups A, B and C), respectively (P XTT assay. The 50% reduction in metabolic activity (50% RMA) of planktonic C. albicans (0.5 microg/mL) was much lower than those from Groups A, B and C (2, 16, 2 microg/mL, respectively), while the 50% RMA from Group B was three-fold higher than those from Groups A and C. In conclusion, difference in titanium surface roughness was associated with variations in the antifungal resistance of the candidal biofilm. Group C appeared to have an optimum surface roughness for biofilm resistance.

  17. Candida albicans biofilm inhibition by synergistic action of terpenes and fluconazole.

    Science.gov (United States)

    Pemmaraju, Suma C; Pruthi, Parul A; Prasad, R; Pruthi, Vikas

    2013-11-01

    The current treatment options for Candida albicans biofilm-device related infections are very scarce due to their intrinsic increased tolerance to antimycotics. The aim of this work was to study synergistic action of terpenes (eugenol, menthol and thymol) with fluconazole (FLA) on C. albicans biofilm inhibition. The minimum inhibitory concentration (MIC) assayed using CLSI M27-A3 broth micro-dilution method showed antifungal activity against C. albicans MTCC 227 at a concentration of 0.12 % (v/v) for both thymol and eugenol as compared to 0.25 % (v/v) for menthol. FLA was taken as positive control. The effect of these terpenes on metabolic activity of preformed C. albicans biofilm cells was evaluated using 2,3-bis (2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) reduction assay in 96-well polystyrene microtiter plate. Thymol and eugenol were more effective at lower concentrations of > or = 1.0 % (v/v) than menthol. Synergistic studies using checkerboard micro-dilution assay showed fractional inhibitory concentration index (sigma FIC = 0.31) between thymol/FLA followed by eugenol/FLA (sigma FIC = 0.37) and menthol/FLA (sigma FIC terpenes with fluconazole on C. albicans biofilm, which could be future medications for biofilm infections.

  18. [The evaluation of relationship between the origin of Candida sp. and the ability of biofilm formation on surface of different biomaterials].

    Science.gov (United States)

    Ciok-Pater, Emilia; Gospodarek, Eugenia; Prazyńska, Małgorzata; Bogiel, Tomasz

    2009-01-01

    The increase of fungal infections in recent years is connected with the progress in medicine. The vast usage of biomaterials is an inseparable element of contemporary medicine but it also leads to development of infections. The ability to produce biofilm by those yeasts plays an important role in the pathogenesis of candidiasis. Candida biofilm can form on the surface of plastic materials (silicon, polychloride vinyl, polymethacrylate methyl) used to catheters, drains and dentures production that is why it is a serious problem in case of fungal infections in patients who during the diagnosis and treatment have contact with biomaterials. The aim of the study was the assessment of ability to form biofilm on the surface of different biomaterials (latex silicon, polychloride vinyl, polystyrene, nylon and polymethacrylate methyl). 150 strains of Candida sp. were examined: 85 (56.7%) C. albicans and 65 (43.3%) C. non-albicans. The examined yeasts produced biofilm on the surface of polymethacrylate methyl in 39.3%, latex silicone in 38.7%, polychloride vinyl in 38.0%, polystyrene in 35.3% and nylon in 30.7%. Biofilm was most frequently produced by the strains of C. albicans, C. tropicalis, C. glabrata, C. parapsilosis, C. krusei and C. lusitaniae species.

  19. Repeated applications of photodynamic therapy on Candida glabrata biofilms formed in acrylic resin polymerized.

    Science.gov (United States)

    de Figueiredo Freitas, Lírian Silva; Rossoni, Rodnei Dennis; Jorge, Antonio Olavo Cardoso; Junqueira, Juliana Campos

    2017-04-01

    Previous studies have been suggested that photodynamic therapy (PDT) can be used as an adjuvant treatment for denture stomatitis. In this study, we evaluated the effects of multiple sessions of PDT on Candida glabrata biofilms in specimens of polymerized acrylic resin formed after 5 days. Subsequently, four applications of PDT were performed on biofilms in 24-h intervals (days 6-9). Also, we evaluated two types of PDT, including application of laser and methylene blue or light-emitting diode (LED) and erythrosine. The control groups were treated with physiological solution. The effects of PDT on biofilm were evaluated after the first and fourth application of PDT. The biofilm analysis was performed by counting the colony-forming units. The results showed that between the days 6 and 9, the biofilms not treated by PDT had an increase of 5.53 to 6.05 log (p = 0.0271). Regarding the treatments, after one application of PDT, the biofilms decreased from 5.53 to 0.89 log. When it was done four applications, the microbial reduction ranged from 6.05 log to 0.11 log. We observed that one application of PDT with laser or LED caused a reduction of 3.36 and 4.64 compared to the control groups, respectively (p = 0.1708). When it was done four applications of PDT, the reductions achieved were 1.57 for laser and 5.94 for LED (p = 0.0001). It was concluded that repeated applications of PDT on C. glabrata biofilms showed higher antimicrobial activity compared to single application. PDT mediated by LED and erythrosine was more efficient than the PDT mediated by laser and methylene blue.

  20. Lipidomics of Candida albicans biofilms reveals phase-dependent production of phospholipid molecular classes and role for lipid rafts in biofilm formation.

    Science.gov (United States)

    Lattif, Ali Abdul; Mukherjee, Pranab K; Chandra, Jyotsna; Roth, Mary R; Welti, Ruth; Rouabhia, Mahmoud; Ghannoum, Mahmoud A

    2011-11-01

    Candida albicans-associated bloodstream infections are linked to the ability of this yeast to form biofilms. In this study, we used lipidomics to compare the lipid profiles of C. albicans biofilms and planktonic cells, in early and mature developmental phases. Our results showed that significant differences exist in lipid composition in both developmental phases. Biofilms contained higher levels of phospholipid and sphingolipids than planktonic cells (nmol per g biomass, Pbiofilms compared to planktonic cells (P≤0.05). The ratio of phosphatidylcholine to phosphatidylethanolamine was lower in biofilms compared to planktonic cells in both early (1.17 vs 2.52, P≤0.001) and late (2.34 vs 3.81, P≤0.001) developmental phases. The unsaturation index of phospholipids decreased with time, with this effect being particularly strong for biofilms. Inhibition of the biosynthetic pathway for sphingolipid [mannosyl diinositolphosphoryl ceramide, M(IP)₂C] by myriocin or aureobasidin A, and disruption of the gene encoding inositolphosphotransferase (Ipt1p), abrogated the ability of C. albicans to form biofilms. The differences in lipid profiles between biofilms and planktonic Candida cells may have important implications for the biology and antifungal resistance of biofilms.

  1. STUDY OF BIOFILM FORMATION AS A VIRULENCE MARKER IN CANDIDA SPECIES ISOLATED FROM VARIOUS CLINICAL SPEC IMENS

    OpenAIRE

    Saroj; Vivek; Sangeetha; Vasudha

    2012-01-01

    ABSTRACT: BACKGROUND: Candida species can be either commensals or opportunis tic pathogens with the ability to cause a variety of inf ections, ranging from superficial to life threatening. Nosocomial infections due to candida a re also becoming increasingly important. Early and prompt diagnosis, proper treatment and prevent ion of candidemia due to biofilms pose a major challenge for microbiologists and clini cians worldwide. Added to this is the emerging tren...

  2. [THE CHARACTERISTICS OF MORPHOLOGY OF BIOFILM OF PERIODONTIUM UNDER INFLAMMATORY DISEASES OF GUMS (CHRONIC CATARRHAL GINGIVITIS, CHRONIC PERIODONTITIS, CANDIDA-ASSOCIATED PERIODONTITIS) ACCORDING RESULTS OF ELECTRONIC MICROSCOPY].

    Science.gov (United States)

    Ippolitov, E V; Didenko, L V; Tzarev, V N

    2015-12-01

    The study was carried out to analyze morphology of biofilm of periodontium and to develop electronic microscopic criteria of differentiated diagnostic of inflammatory diseases of gums. The scanning electronic microscopy was applied to analyze samples of bioflm of periodont from 70 patients. Including ten patients with every nosologic form of groups with chronic catarrhal periodontitis. of light, mean and severe degree, chronic catarrhal gingivitis, Candida-associated paroperiodontitis and 20 healthy persons with intact periodontium. The analysis was implemented using dual-beam scanning electronic microscope Quanta 200 3D (FEI company, USA) and walk-through electronic micJEM 100B (JEOL, Japan). To detect marker DNA of periodont pathogenic bacteria in analyzed samples the kit of reagentsfor polymerase chain reaction "MultiDent-5" ("GenLab", Russia). The scanning electronic microscopy in combination with transmission electronic microscopy and polymerase chain reaction permits analyzing structure, composition and degree of development of biofilm of periodontium and to apply differentiated diagnostic of different nosologic forms of inflammatory diseases of periodontium, including light form of chronic periodontitis and gingivitis. The electronic microscopical indications of diseases ofperiodontium of inflammatory character are established: catarrhal gingivitis, (coccal morphological alternate), chronic periodontitis (bacillary morphological alternate), Candida-associated periodontitis (Candida morphological alternate of biofilm ofperiodontium).

  3. Biofilms of Candida albicans serotypes A and B differ in their sensitivity to photodynamic therapy.

    Science.gov (United States)

    Rossoni, Rodnei Dennis; Barbosa, Júnia Oliveira; de Oliveira, Felipe Eduardo; de Oliveira, Luciane Dias; Jorge, Antonio Olavo Cardoso; Junqueira, Juliana Campos

    2014-09-01

    Candida albicans is classified into different serotypes according to cell wall mannan composition and cell surface hydrophobicity. Since the effectiveness of photodynamic therapy (PDT) depends on the cell wall structure of microorganisms, the objective of this study was to compare the sensitivity of in vitro biofilms of C. albicans serotypes A and B to antimicrobial PDT. Reference strains of C. albicans serotype A (ATCC 36801) and serotype B (ATCC 36802) were used for the assays. A gallium-aluminum-arsenide laser (660 nm) was used as the light source and methylene blue (300 μM) as the photosensitizer. After biofilm formation on the bottom of a 96-well microplate for 48 h, each Candida strain was submitted to assays: PDT consisting of laser and photosensitizer application (L + P+), laser application alone (L + P-), photosensitizer application alone (L-P+), and application of saline as control (L-P-). After treatment, biofilm cells were scraped off and transferred to tubes containing PBS. The content of the tubes was homogenized, diluted, and seeded onto Sabouraud agar plates to determine the number of colony-forming units (CFU/mL). The results were compared by analysis of variance and Tukey test (p < 0.05). The two strains studied were sensitive to PDT (L + P+), with a log reduction of 0.49 for serotype A and of 2.34 for serotype B. Laser application alone only reduced serotype B cells (0.53 log), and the use of the photosensitizer alone had no effect on the strains tested. It can be concluded that in vitro biofilms of C. albicans serotype B were more sensitive to PDT.

  4. Propolis Is an Efficient Fungicide and Inhibitor of Biofilm Production by Vaginal Candida albicans

    Science.gov (United States)

    Capoci, Isis Regina Grenier; Bonfim-Mendonça, Patrícia de Souza; Arita, Glaucia Sayuri; Pereira, Raphaela Regina de Araújo; Consolaro, Marcia Edilaine Lopes; Negri, Melyssa; Svidzinski, Terezinha Inez Estivalet

    2015-01-01

    Vulvovaginal candidiasis (VVC) is one of the most common genital infections in women. The therapeutic arsenal remains restricted, and some alternatives to VVC treatment are being studied. The present study evaluated the influence of a propolis extractive solution (PES) on biofilm production by Candida albicans isolated from patients with VVC. Susceptibility testing was used to verify the minimum inhibitory concentration (MIC) of PES, with fluconazole and nystatin as controls. The biofilm formation of 29 vaginal isolates of C. albicans and a reference strain that were exposed to PES was evaluated using crystal violet staining. Colony-forming units were evaluated, proteins and carbohydrates of the matrix biofilm were quantified, and scanning electron microscopy was performed. The MIC of PES ranged from 68.35 to 546.87 μg/mL of total phenol content in gallic acid. A concentration of 546.87 μg/mL was able to cause the death of 75.8% of the isolates. PES inhibited biofilm formation by C. albicans from VVC. Besides antifungal activity, PES appears to present important antibiofilm activity on abiotic surfaces, indicating that it may have an additional beneficial effect in the treatment of VVC. PMID:25815029

  5. Analysis of Candida albicans mutants defective in the Cdk8 module of mediator reveal links between metabolism and biofilm formation.

    Directory of Open Access Journals (Sweden)

    Allia K Lindsay

    2014-10-01

    Full Text Available Candida albicans biofilm formation is a key virulence trait that involves hyphal growth and adhesin expression. Pyocyanin (PYO, a phenazine secreted by Pseudomonas aeruginosa, inhibits both C. albicans biofilm formation and development of wrinkled colonies. Using a genetic screen, we identified two mutants, ssn3Δ/Δ and ssn8Δ/Δ, which continued to wrinkle in the presence of PYO. Ssn8 is a cyclin-like protein and Ssn3 is similar to cyclin-dependent kinases; both proteins are part of the heterotetrameric Cdk8 module that forms a complex with the transcriptional co-regulator, Mediator. Ssn3 kinase activity was also required for PYO sensitivity as a kinase dead mutant maintained a wrinkled colony morphology in the presence of PYO. Furthermore, similar phenotypes were observed in mutants lacking the other two components of the Cdk8 module-Srb8 and Srb9. Through metabolomics analyses and biochemical assays, we showed that a compromised Cdk8 module led to increases in glucose consumption, glycolysis-related transcripts, oxidative metabolism and ATP levels even in the presence of PYO. In the mutant, inhibition of respiration to levels comparable to the PYO-treated wild type inhibited wrinkled colony development. Several lines of evidence suggest that PYO does not act through Cdk8. Lastly, the ssn3 mutant was a hyperbiofilm former, and maintained higher biofilm formation in the presence of PYO than the wild type. Together these data provide novel insights into the role of the Cdk8 module of Mediator in regulation of C. albicans physiology and the links between respiratory activity and both wrinkled colony and biofilm development.

  6. Berberine Antifungal Activity in Fluconazole-Resistant Pathogenic Yeasts: Action Mechanism Evaluated by Flow Cytometry and Biofilm Growth Inhibition in Candida spp.

    Science.gov (United States)

    da Silva, Anderson Ramos; de Andrade Neto, João Batista; da Silva, Cecília Rocha; Campos, Rosana de Sousa; Costa Silva, Rose Anny; Freitas, Daniel Domingues; do Nascimento, Francisca Bruna Stefany Aires; de Andrade, Larissa Nara Dantas; Sampaio, Letícia Serpa; Grangeiro, Thalles Barbosa; Magalhães, Hemerson Iury Ferreira; Cavalcanti, Bruno Coêlho; de Moraes, Manoel Odorico; Nobre Júnior, Hélio Vitoriano

    2016-06-01

    The incidence of fungal infections and, in particular, the incidence of fungal antibiotic resistance, which is associated with biofilm formation, have significantly increased, contributing to morbidity and mortality. Thus, new therapeutic strategies need to be developed. In this context, natural products have emerged as a major source of possible antifungal agents. Berberine is a protoberberine-type isoquinoline alkaloid isolated from the roots, rhizomes, and stem bark of natural herbs, such as Berberis aquifolium, Berberis vulgaris, Berberis aristata, and Hydrastis canadensis, and of Phellodendron amurense Berberine has been proven to have broad antibacterial and antifungal activity. In the present study, the potential antifungal effect of berberine against fluconazole-resistant Candida and Cryptococcus neoformans strains, as well as against the biofilm form of Candida spp., was assessed. The antifungal effect of berberine was determined by a broth microdilution method (the M27-A3 method of the Clinical and Laboratory Standards Institute) and flow cytometry techniques, in which the probable mechanism of action of the compound was also assessed. For biofilm assessment, a colorimetric 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was used to determine the susceptibility of sessile cells. The isolates used in the study belonged to the Laboratory of Bioprospection and Experiments in Yeast (LABEL) of the Federal University of Ceará. After 24 and 72 h, fluconazole-resistant Candida and Cryptococcus neoformans strains showed berberine MICs equal to 8 μg/ml and 16 μg/ml, respectively. Cytometric analysis showed that treatment with berberine caused alterations to the integrity of the plasma and mitochondrial membranes and DNA damage, which led to cell death, probably by apoptosis. Assessment of biofilm-forming isolates after treatment showed statistically significant reductions in biofilm cell activity (P < 0.001).

  7. In Vitro and In Vivo Antifungal Activity of Lichochalcone-A against Candida albicans Biofilms

    Science.gov (United States)

    Seleem, Dalia; Benso, Bruna; Noguti, Juliana; Pardi, Vanessa; Murata, Ramiro Mendonça

    2016-01-01

    Oral candidiasis (OC) is an opportunistic fungal infection with high prevalence among immunocompromised patients. Candida albicans is the most common fungal pathogen responsible for OC, often manifested in denture stomatitis and oral thrush. Virulence factors, such as biofilms formation and secretion of proteolytic enzymes, are key components in the pathogenicity of C. albicans. Given the limited number of available antifungal therapies and the increase in antifungal resistance, demand the search for new safe and effective antifungal treatments. Lichochalcone-A is a polyphenol natural compound, known for its broad protective activities, as an antimicrobial agent. In this study, we investigated the antifungal activity of lichochalcone-A against C. albicans biofilms both in vitro and in vivo. Lichochalcone-A (625 μM; equivalent to 10x MIC) significantly reduced C. albicans (MYA 2876) biofilm growth compared to the vehicle control group (1% ethanol), as indicated by the reduction in the colony formation unit (CFU)/ml/g of biofilm dry weight. Furthermore, proteolytic enzymatic activities of proteinases and phospholipases, secreted by C. albicans were significantly decreased in the lichochalcone-A treated biofilms. In vivo model utilized longitudinal imaging of OC fungal load using a bioluminescent-engineered C. albicans (SKCa23-ActgLUC) and coelenterazine substrate. Mice treated with lichochalcone-A topical treatments exhibited a significant reduction in total photon flux over 4 and 5 days post-infection. Similarly, ex vivo analysis of tongue samples, showed a significant decrease in CFU/ml/mg in tongue tissue sample of lichochalcone-A treated group, which suggest the potential of lichochalcone-A as a novel antifungal agent for future clinical use. PMID:27284694

  8. Streptococcus mutans Can Modulate Biofilm Formation and Attenuate the Virulence of Candida albicans.

    Science.gov (United States)

    Barbosa, Júnia Oliveira; Rossoni, Rodnei Dennis; Vilela, Simone Furgeri Godinho; de Alvarenga, Janaína Araújo; Velloso, Marisol dos Santos; Prata, Márcia Cristina de Azevedo; Jorge, Antonio Olavo Cardoso; Junqueira, Juliana Campos

    2016-01-01

    Streptococcus mutans and Candida albicans are found together in the oral biofilms on dental surfaces, but little is known about the ecological interactions between these species. Here, we studied the effects of S. mutans UA159 on the growth and pathogencity of C. albicans. Initially, the effects of S. mutans on the biofilm formation and morphogenesis of C. albicans were tested in vitro. Next, we investigate the influence of S. mutans on pathogenicity of C. albicans using in vivo host models, in which the experimental candidiasis was induced in G. mellonella larvae and analyzed by survival curves, C. albicans count in hemolymph, and quantification of hyphae in the host tissues. In all the tests, we evaluated the direct effects of S. mutans cells, as well as the indirect effects of the subproducts secreted by this microorganism using a bacterial culture filtrate. The in vitro analysis showed that S. mutans cells favored biofilm formation by C. albicans. However, a reduction in biofilm viable cells and inhibition of hyphal growth was observed when C. albicans was in contact with the S. mutans culture filtrate. In the in vivo study, injection of S. mutans cells or S. mutans culture filtrate into G. mellonella larvae infected with C. albicans increased the survival of these animals. Furthermore, a reduction in hyphal formation was observed in larval tissues when C. albicans was associated with S. mutans culture filtrate. These findings suggest that S. mutans can secrete subproducts capable to inhibit the biofilm formation, morphogenesis and pathogenicity of C. albicans, attenuating the experimental candidiasis in G. mellonella model.

  9. Lipopeptides from Bacillus subtilis AC7 inhibit adhesion and biofilm formation of Candida albicans on silicone.

    Science.gov (United States)

    Ceresa, Chiara; Rinaldi, Maurizio; Chiono, Valeria; Carmagnola, Irene; Allegrone, Gianna; Fracchia, Letizia

    2016-10-01

    Candida albicans is the major fungus that colonises medical implants, causing device-associated infections with high mortality. Antagonistic bacterial products with interesting biological properties, such as biosurfactants, have recently been considered for biofilm prevention. This study investigated the activity of lipopeptide biosurfactant produced by Bacillus subtilis AC7 (AC7 BS) against adhesion and biofilm formation of C. albicans on medical-grade silicone elastomeric disks (SEDs). Chemical analysis, stability, surface activities of AC7 BS crude extract and physicochemical characterisation of the coated silicone disk surfaces were also carried out. AC7 BS showed a good reduction of water surface tension, low critical micelle concentration, good emulsification activity, thermal resistance and pH stability. Co-incubation with 2 mg ml(-1) AC7 BS significantly reduced adhesion and biofilm formation of three C. albicans strains on SEDs in a range of 67-69 % and of 56-57 %, respectively. On pre-coated SEDs, fungal adhesion and biofilm formation were reduced by 57-62 % and 46-47 %, respectively. Additionally, AC7 BS did not inhibit viability of C. albicans strains in both planktonic and sessile form. Chemical analysis of the crude extract revealed the presence of two families of lipopeptides, principally surfactin and a lower percentage of fengycin. The evaluation of surface wettability indicated that AC7 BS coating of SEDs surface was successful although uneven. AC7 BS significantly prohibits the initial deposition of C. albicans and slows biofilm growth, suggesting a potential role of biosurfactant coatings for preventing fungal infection associated with silicone medical devices.

  10. [Investigation of the correlation between biofilm forming ability of urinary Candida isolates with the use of urinary catheters and change of antifungal susceptibility in the presence of biofilm].

    Science.gov (United States)

    Aslan, Hacer; Gülmez, Dolunay

    2016-04-01

    Frequency of Candida species causing urinary tract infections is increasing, and this increase is outstanding in nosocomial urinary tract infections especially in intensive care units. The ability of biofilm formation that is contributed to the virulence of the yeast, plays a role in the pathogenesis of biomaterial-related infections and also constitutes a risk for treatment failure. The aims of this study were to compare biofilm forming abilities of Candida strains isolated from urine cultures of patients with and without urinary catheters, and to investigate the change of antifungal susceptibility in the presence of biofilm. A total of 50 Candida strains isolated from urine cultures of 25 patients with urinary catheters (10 C.tropicalis, 6 C.glabrata, 4 C.albicans, 4 C.parapsilosis, 1 C.krusei) and 25 without urinary catheters (8 C.tropicalis, 6 C.albicans, 4 C.krusei, 3 C.parapsilosis, 2 C.kefyr, 1 C.glabrata, 1 C.lusitaniae) were included in the study. Biofilm forming ability was tested by Congo red agar (CRA) and microplate XTT [2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide] reduction methods. Fluconazole (FLU) and amphotericin B (AMP-B) susceptibilities of the isolates were determined by reference microdilution method recommended by Clinical and Laboratory Standards Institute for planktonic cells and by XTT reduction assay in case of biofilm presence. Biofilm formation was detected in 12 (24%) by CRA and 50 (100%) of the isolates by XTT reduction method. None of the C.albicans (n= 10) and C.tropicalis (n= 18) strains were detected as biofilm positive by CRA, however, these strains were strongly positive by XTT reduction method. No statistically significant correlation was detected between the presence of urinary catheter and biofilm forming ability of the isolate (p> 0.05). This might be caused by the advantage of biofilm forming strains in adhesion to bladder mucosa at the initial stages of infection. For all of the isolates in

  11. Gold nanoparticles enhance methylene blue-induced photodynamic therapy: a novel therapeutic approach to inhibit Candida albicans biofilm.

    Science.gov (United States)

    Khan, Shakir; Alam, Fahad; Azam, Ameer; Khan, Asad U

    2012-01-01

    This article explores the novel gold nanoparticle-enhanced photodynamic therapy of methylene blue against recalcitrant pathogenic Candida albicans biofilm. Physiochemical (X-ray diffraction, ultraviolet-visible absorption, photon cross-correlation, FTIR, and fluorescence spectroscopy) and electron microscopy techniques were used to characterize gold nanoparticles as well as gold nanoparticle-methylene blue conjugate. A 38.2-J/cm(2) energy density of 660-nm diode laser was applied for activation of gold nanoparticle-methylene blue conjugate and methylene blue against C. albicans biofilm and cells. Antibiofilm assays, confocal laser scanning, and electron microscopy were used to investigate the effects of the conjugate. Physical characteristics of the gold nanoparticles (21 ± 2.5 nm and 0.2 mg/mL) and methylene blue (20 μg/mL) conjugation were confirmed by physicochemical and electron microscopy techniques. Antibiofilm assays and microscopic studies showed significant reduction of biofilm and adverse effect against Candida cells in the presence of conjugate. Fluorescence spectroscopic study confirmed type I photo toxicity against biofilm. Gold nanoparticle conjugate-mediated photodynamic therapy may be used against nosocomially acquired refractory Candida albicans biofilm.

  12. Influence of artificial saliva in biofilm formation of Candida albicans in vitro

    Directory of Open Access Journals (Sweden)

    Michelle Peneluppi Silva

    2012-02-01

    Full Text Available Due to the increase in life expectancy, new treatments have emerged which, although palliative, provide individuals with a better quality of life. Artificial saliva is a solution that contains substances that moisten a dry mouth, thus mimicking the role of saliva in lubricating the oral cavity and controlling the existing normal oral microbiota. This study aimed to assess the influence of commercially available artificial saliva on biofilm formation by Candida albicans. Artificial saliva I consists of carboxymethylcellulose, while artificial saliva II is composed of glucose oxidase, lactoferrin, lysozyme and lactoperoxidase. A control group used sterile distilled water. Microorganisms from the oral cavity were transferred to Sabouraud Dextrose Agar and incubated at 37°C for 24 hours. Colonies of Candida albicans were suspended in a sterile solution of NaCl 0.9%, and standardisation of the suspension to 106 cells/mL was achieved. The acrylic discs, immersed in artificial saliva and sterile distilled water, were placed in a 24-well plate containing 2 mL of Sabouraud Dextrose Broth plus 5% sucrose and 0.1 mL aliquot of the Candida albicans suspension. The plates were incubated at 37°C for 5 days, the discs were washed in 2 mL of 0.9% NaCl and placed into a tube containing 10 mL of 0.9% NaCl. After decimal dilutions, aliquots of 0.1 mL were seeded on Sabouraud Dextrose Agar and incubated at 37°C for 48 hours. Counts were reported as CFU/mL (Log10. A statistically significant reduction of 29.89% (1.45 CFU/mL of Candida albicans was observed in saliva I when compared to saliva II (p = 0.002, considering p≤0.05.

  13. Molecular Basis for Saccharomyces cerevisiae Biofilm Development

    DEFF Research Database (Denmark)

    Andersen, Kaj Scherz

    of translation of FLO11. In conclusion, I have conducted the first global study of the genetic program for yeast biofilm formation on polystyrene. This work provide several target genes as good basis for further research of biofilm, that I believe can contribute to fields such as cell biology, genetics, system......In this study, I sought to identify genes regulating the global molecular program for development of sessile multicellular communities, also known as biofilm, of the eukaryotic microorganism, Saccharomyces cerevisiae (yeast). Yeast biofilm has a clinical interest, as biofilms can cause chronic......, but only a small subset is previously described as regulators of FLO11. These results reveal that the regulation of biofilm formation and FLO11 is even more complex than what has previously been described. I find that the molecular program for biofilm formation shares many essential components with two...

  14. In vitro evaluation of antifungal activity of monolaurin against Candida albicans biofilms.

    Science.gov (United States)

    Seleem, Dalia; Chen, Emily; Benso, Bruna; Pardi, Vanessa; Murata, Ramiro M

    2016-01-01

    Monolaurin (also known as glycerol monolaurate) is a natural compound found in coconut oil and is known for its protective biological activities as an antimicrobial agent. The nature of oral candidiasis and the increased antifungal resistance demand the search for novel antifungal therapeutic agents. In this study, we examine the antifungal activity of monolaurin against Candida albicans biofilms (strain ATCC:SC5314/MYA2876) in vitro and investigate whether monolaurin can alter gene expression of host inflammatory cytokines, IL-1α and IL-1β. In a co-culture model, oral fibroblast cells were cultured simultaneously with C. albicans for 24 hrs followed by the exposure to treatments of monolaurin (3.9-2,500 µM), positive control fluconazole (32.2 µM), and vehicle control group (1% ethanol), which was a model used to evaluate the cytotoxicity of monolaurin on fibroblasts as well as to analyze morphological characteristics of biofilms through fluorescence microscopy. In addition, the co-culture model was used for RNA extraction of oral fibroblasts to assess gene expression of host inflammatory cytokines, using quantitative real-time PCR. Our results showed the MIC and MFC of monolaurin were in the range 62.5-125 µM and 125-250 µM, respectively. Biofilm antifungal assay showed significant reduction in Log (CFU/ml) of biofilms treated with 1,250 and 2,500 µM of 1-monolaurin when compared to the control groups . There was also a significant down-regulation of IL-1α and IL-1β in the co-culture treated with monolaurin. It can be concluded that monolaurin has a potential antifungal activity against C. albicans and can modulate the pro-inflammatory response of the host.

  15. In vitro evaluation of antifungal activity of monolaurin against Candida albicans biofilms

    Directory of Open Access Journals (Sweden)

    Dalia Seleem

    2016-06-01

    Full Text Available Monolaurin (also known as glycerol monolaurate is a natural compound found in coconut oil and is known for its protective biological activities as an antimicrobial agent. The nature of oral candidiasis and the increased antifungal resistance demand the search for novel antifungal therapeutic agents. In this study, we examine the antifungal activity of monolaurin against Candida albicans biofilms (strain ATCC:SC5314/MYA2876 in vitro and investigate whether monolaurin can alter gene expression of host inflammatory cytokines, IL-1α and IL-1β. In a co-culture model, oral fibroblast cells were cultured simultaneously with C. albicans for 24 hrs followed by the exposure to treatments of monolaurin (3.9–2,500 µM, positive control fluconazole (32.2 µM, and vehicle control group (1% ethanol, which was a model used to evaluate the cytotoxicity of monolaurin on fibroblasts as well as to analyze morphological characteristics of biofilms through fluorescence microscopy. In addition, the co-culture model was used for RNA extraction of oral fibroblasts to assess gene expression of host inflammatory cytokines, using quantitative real-time PCR. Our results showed the MIC and MFC of monolaurin were in the range 62.5–125 µM and 125–250 µM, respectively. Biofilm antifungal assay showed significant reduction in Log (CFU/ml of biofilms treated with 1,250 and 2,500 µM of 1-monolaurin when compared to the control groups . There was also a significant down-regulation of IL-1α and IL-1β in the co-culture treated with monolaurin. It can be concluded that monolaurin has a potential antifungal activity against C. albicans and can modulate the pro-inflammatory response of the host.

  16. In vitro evaluation of antifungal activity of monolaurin against Candida albicans biofilms

    Science.gov (United States)

    Benso, Bruna; Pardi, Vanessa

    2016-01-01

    Monolaurin (also known as glycerol monolaurate) is a natural compound found in coconut oil and is known for its protective biological activities as an antimicrobial agent. The nature of oral candidiasis and the increased antifungal resistance demand the search for novel antifungal therapeutic agents. In this study, we examine the antifungal activity of monolaurin against Candida albicans biofilms (strain ATCC:SC5314/MYA2876) in vitro and investigate whether monolaurin can alter gene expression of host inflammatory cytokines, IL-1α and IL-1β. In a co-culture model, oral fibroblast cells were cultured simultaneously with C. albicans for 24 hrs followed by the exposure to treatments of monolaurin (3.9–2,500 µM), positive control fluconazole (32.2 µM), and vehicle control group (1% ethanol), which was a model used to evaluate the cytotoxicity of monolaurin on fibroblasts as well as to analyze morphological characteristics of biofilms through fluorescence microscopy. In addition, the co-culture model was used for RNA extraction of oral fibroblasts to assess gene expression of host inflammatory cytokines, using quantitative real-time PCR. Our results showed the MIC and MFC of monolaurin were in the range 62.5–125 µM and 125–250 µM, respectively. Biofilm antifungal assay showed significant reduction in Log (CFU/ml) of biofilms treated with 1,250 and 2,500 µM of 1-monolaurin when compared to the control groups . There was also a significant down-regulation of IL-1α and IL-1β in the co-culture treated with monolaurin. It can be concluded that monolaurin has a potential antifungal activity against C. albicans and can modulate the pro-inflammatory response of the host. PMID:27366648

  17. Transcription Factors Efg1 and Bcr1 Regulate Biofilm Formation and Virulence during Candida albicans-Associated Denture Stomatitis.

    Science.gov (United States)

    Yano, Junko; Yu, Alika; Fidel, Paul L; Noverr, Mairi C

    2016-01-01

    Denture stomatitis (DS) is characterized by inflammation of the oral mucosa in direct contact with dentures and affects a significant number of otherwise healthy denture wearers. The disease is caused by Candida albicans, which readily colonizes and form biofilms on denture materials. While evidence for biofilms on abiotic and biotic surfaces initiating Candida infections is accumulating, a role for biofilms in DS remains unclear. Using an established model of DS in immunocompetent animals, the purpose of this study was to determine the role of biofilm formation in mucosal damage during pathogenesis using C. albicans or mutants defective in morphogenesis (efg1-/-) or biofilm formation (bcr1-/-). For in vivo analyses, rats fitted with custom dentures, consisting of fixed and removable parts, were inoculated with wild-type C. albicans, mutants or reconstituted strains and monitored weekly for fungal burden (denture and palate), body weight and tissue damage (LDH) for up to 8 weeks. C. albicans wild-type and reconstituted mutants formed biofilms on dentures and palatal tissues under in vitro, ex vivo and in vivo conditions as indicated by microscopy demonstrating robust biofilm architecture and extracellular matrix (ECM). In contrast, both efg1-/- and bcr1-/- mutants exhibited poor biofilm growth with little to no ECM. In addition, quantification of fungal burden showed reduced colonization throughout the infection period on dentures and palates of rats inoculated with efg1-/-, but not bcr1-/-, compared to controls. Finally, rats inoculated with efg1-/- and bcr1-/- mutants had minimal palatal tissue damage/weight loss while those inoculated with wild-type or reconstituted mutants showed evidence of tissue damage and exhibited stunted weight gain. These data suggest that biofilm formation is associated with tissue damage during DS and that Efg1 and Bcr1, both central regulators of virulence in C. albicans, have pivotal roles in pathogenesis of DS.

  18. Transcription Factors Efg1 and Bcr1 Regulate Biofilm Formation and Virulence during Candida albicans-Associated Denture Stomatitis.

    Directory of Open Access Journals (Sweden)

    Junko Yano

    Full Text Available Denture stomatitis (DS is characterized by inflammation of the oral mucosa in direct contact with dentures and affects a significant number of otherwise healthy denture wearers. The disease is caused by Candida albicans, which readily colonizes and form biofilms on denture materials. While evidence for biofilms on abiotic and biotic surfaces initiating Candida infections is accumulating, a role for biofilms in DS remains unclear. Using an established model of DS in immunocompetent animals, the purpose of this study was to determine the role of biofilm formation in mucosal damage during pathogenesis using C. albicans or mutants defective in morphogenesis (efg1-/- or biofilm formation (bcr1-/-. For in vivo analyses, rats fitted with custom dentures, consisting of fixed and removable parts, were inoculated with wild-type C. albicans, mutants or reconstituted strains and monitored weekly for fungal burden (denture and palate, body weight and tissue damage (LDH for up to 8 weeks. C. albicans wild-type and reconstituted mutants formed biofilms on dentures and palatal tissues under in vitro, ex vivo and in vivo conditions as indicated by microscopy demonstrating robust biofilm architecture and extracellular matrix (ECM. In contrast, both efg1-/- and bcr1-/- mutants exhibited poor biofilm growth with little to no ECM. In addition, quantification of fungal burden showed reduced colonization throughout the infection period on dentures and palates of rats inoculated with efg1-/-, but not bcr1-/-, compared to controls. Finally, rats inoculated with efg1-/- and bcr1-/- mutants had minimal palatal tissue damage/weight loss while those inoculated with wild-type or reconstituted mutants showed evidence of tissue damage and exhibited stunted weight gain. These data suggest that biofilm formation is associated with tissue damage during DS and that Efg1 and Bcr1, both central regulators of virulence in C. albicans, have pivotal roles in pathogenesis of DS.

  19. The Beneficial Effect of Equisetum giganteum L. against Candida Biofilm Formation: New Approaches to Denture Stomatitis.

    Science.gov (United States)

    Alavarce, Rafaela A S; Saldanha, Luiz L; Almeida, Nara Ligia M; Porto, Vinicius C; Dokkedal, Anne L; Lara, Vanessa S

    2015-01-01

    Equisetum giganteum L. (E. giganteum), Equisetaceae, commonly called "giant horsetail," is an endemic plant of Central and South America and is used in traditional medicine as diuretic and hemostatic in urinary disorders and in inflammatory conditions among other applications. The chemical composition of the extract EtOH 70% of E. giganteum has shown a clear presence of phenolic compounds derived from caffeic and ferulic acids and flavonoid heterosides derived from quercitin and kaempferol, in addition to styrylpyrones. E. giganteum, mainly at the highest concentrations, showed antimicrobial activity against the relevant microorganisms tested: Escherichia coli, Staphylococcus aureus, and Candida albicans. It also demonstrated antiadherent activity on C. albicans biofilms in an experimental model that is similar to dentures. Moreover, all concentrations tested showed anti-inflammatory activity. The extract did not show cytotoxicity in contact with human cells. These properties might qualify E. giganteum extract to be a promising alternative for the topic treatment and prevention of oral candidiasis and denture stomatitis.

  20. Role of Bcr1-activated genes Hwp1 and Hyr1 in Candida albicans oral mucosal biofilms and neutrophil evasion.

    Science.gov (United States)

    Dwivedi, Prabhat; Thompson, Angela; Xie, Zhihong; Kashleva, Helena; Ganguly, Shantanu; Mitchell, Aaron P; Dongari-Bagtzoglou, Anna

    2011-01-25

    Candida albicans triggers recurrent infections of the oropharyngeal mucosa that result from biofilm growth. Prior studies have indicated that the transcription factor Bcr1 regulates biofilm formation in a catheter model, both in vitro and in vivo. We thus hypothesized that Bcr1 plays similar roles in the formation of oral mucosal biofilms and tested this hypothesis in a mouse model of oral infection. We found that a bcr1/bcr1 mutant did not form significant biofilm on the tongues of immunocompromised mice, in contrast to reference and reconstituted strains that formed pseudomembranes covering most of the tongue dorsal surface. Overexpression of HWP1, which specifies an epithelial adhesin that is under the transcriptional control of Bcr1, partly but significantly rescued the bcr1/bcr1 biofilm phenotype in vivo. Since HWP1 overexpression only partly reversed the biofilm phenotype, we investigated whether additional mechanisms, besides adhesin down-regulation, were responsible for the reduced virulence of this mutant. We discovered that the bcr1/bcr1 mutant was more susceptible to damage by human leukocytes when grown on plastic or on the surface of a human oral mucosa tissue analogue. Overexpression of HYR1, but not HWP1, significantly rescued this phenotype. Furthermore a hyr1/hyr1 mutant had significantly attenuated virulence in the mouse oral biofilm model of infection. These discoveries show that Bcr1 is critical for mucosal biofilm infection via regulation of epithelial cell adhesin and neutrophil function.

  1. Susceptibility of Candida albicans biofilms to caspofungin and anidulafungin is not affected by metabolic activity or biomass production.

    Science.gov (United States)

    Marcos-Zambrano, Laura Judith; Escribano, Pilar; Bouza, Emilio; Guinea, Jesús

    2016-02-01

    Micafungin is more active against biofilms with high metabolic activity; however, it is unknown whether this observation applies to caspofungin and anidulafungin and whether it is also dependent on the biomass production. We compare the antifungal activity of anidulafungin, caspofungin, and micafungin against preformed Candida albicans biofilms with different degrees of metabolic activity and biomass production from 301 isolates causing fungemia in patients admitted to Gregorio Marañon Hospital (January 2007 to September 2014). Biofilms were classified as having low, moderate, or high metabolic activity according XTT reduction assay or having low, moderate, or high biomass according to crystal violet assay. Echinocandin MICs for planktonic and sessile cells were measured using the EUCAST E.Def 7.2 procedure and XTT reduction assay, respectively. Micafungin showed the highest activity against biofilms classified according to the metabolic activity and biomass production (P caspofungin and anidulafungin was not dependent on the metabolic activity of the biofilm or the biomass production. These observations were confirmed by scanning electron microscopy. None of the echinocandins produced major changes in the structure of biofilms with low metabolic activity and biomass production when compared with the untreated biofilms. However, biofilm with high metabolic activity or high biomass production was considerably more susceptible to micafungin; this effect was not shown by caspofungin or anidulafungin.

  2. Synergistic Activity of the Plant Defensin HsAFP1 and Caspofungin against Candida albicans Biofilms and Planktonic Cultures.

    Directory of Open Access Journals (Sweden)

    Kim Vriens

    Full Text Available Plant defensins are small, cysteine-rich peptides with antifungal activity against a broad range of yeast and fungi. In this study we investigated the antibiofilm activity of a plant defensin from coral bells (Heuchera sanguinea, i.e. HsAFP1. To this end, HsAFP1 was heterologously produced using Pichia pastoris as a host. The recombinant peptide rHsAFP1 showed a similar antifungal activity against the plant pathogen Fusarium culmorum as native HsAFP1 purified from seeds. NMR analysis revealed that rHsAFP1 consists of an α-helix and a triple-stranded antiparallel β-sheet stabilised by four intramolecular disulfide bonds. We found that rHsAFP1 can inhibit growth of the human pathogen Candida albicans as well as prevent C. albicans biofilm formation with a BIC50 (i.e. the minimum rHsAFP1 concentration required to inhibit biofilm formation by 50% as compared to control treatment of 11.00 ± 1.70 μM. As such, this is the first report of a plant defensin exhibiting inhibitory activity against fungal biofilms. We further analysed the potential of rHsAFP1 to increase the activity of the conventional antimycotics caspofungin and amphotericin B towards C. albicans. Synergistic effects were observed between rHsAFP1 and these compounds against both planktonic C. albicans cells and biofilms. Most notably, concentrations of rHsAFP1 as low as 0.53 μM resulted in a synergistic activity with caspofungin against pre-grown C. albicans biofilms. rHsAFP1 was found non-toxic towards human HepG2 cells up to 40 μM, thereby supporting the lack of a general cytotoxic activity as previously reported for HsAFP1. A structure-function study with 24-mer synthetic peptides spanning the entire HsAFP1 sequence revealed the importance of the γ-core and its adjacent regions for HsAFP1 antibiofilm activity. These findings point towards broad applications of rHsAFP1 and its derivatives in the field of antifungal and antibiofilm drug development.

  3. Oral mucositis caused by Candida glabrata biofilms: failure of the concomitant use of fluconazole and ascorbic acid

    Science.gov (United States)

    Rodrigues, Célia F.; Henriques, Mariana

    2017-01-01

    Objectives: Candida glabrata is becoming one of the most prevalent pathogenic yeasts in cases of oral diseases. Mucositis is an recurrent oral infection in immunocompromised patients, and the actual guidelines recommend the use of fluconazole (Flu) for many cases. However, the azole resistance by C. glabrata is renowned, causing a reduced therapeutic response, especially when it occurs in biofilms. In this study, we performed an in vitro evaluation of an alternative pharmacotherapy for C. glabrata biofilm infections, combining ascorbic acid (AA) with Flu. AA is recognized for degrading β-glucans, an important compound of the biofilm matrices, which prevent drug diffusion. Materials and Methods: Routine clinical 30 or 40 mg/l doses of Flu were applied to C. glabrata biofilms simultaneously with 200 or 300 mg/l of AA. Results: The results showed that this combination effectively promoted the degradation of the biofilm network, but unfortunately, also stimulated the growth of the yeasts population due to release of several glucose monomers during β-glucans hydrolysis. Discussion: AA lead to the hydrolysis of the β-glucans of the matrix, liberating glucose molecules which are used as carbon souce by the yeasts, thus suppressing the desired antifungal effect of the drug combination with Flu. Conclusions: Unlike to what happens in treatment of bacterial infection, AA should not be used together with Flu in the treating oral mucositis caused by Candida. PMID:28357061

  4. Influence of culture media on biofilm formation by Candida species and response of sessile cells to antifungals and oxidative stress.

    Science.gov (United States)

    Serrano-Fujarte, Isela; López-Romero, Everardo; Reyna-López, Georgina Elena; Martínez-Gámez, Ma Alejandrina; Vega-González, Arturo; Cuéllar-Cruz, Mayra

    2015-01-01

    The aims of the study were to evaluate the influence of culture media on biofilm formation by C. albicans, C. glabrata, C. krusei, and C. parapsilosis and to investigate the responses of sessile cells to antifungals and reactive oxygen species (ROS) as compared to planktonic cells. For biofilm formation, the Candida species were grown at different periods of time in YP or YNB media supplemented or not with 0.2 or 2% glucose. Sessile and planktonic cells were exposed to increasing concentrations of antifungals, H2O2, menadione or silver nanoparticles (AgNPs). Biofilms were observed by scanning electron microscopy (SEM) and quantified by the XTT assay. C. albicans formed biofilms preferentially in YPD containing 2% glucose (YPD/2%), C. glabrata in glucose-free YNB or supplemented with 0.2% glucose (YNB/0.2%), while C. krusei and C. parapsilosis preferred YP, YPD/0.2%, and YPD/2%. Interestingly, only C. albicans produced an exopolymeric matrix. This is the first report dealing with the in vitro effect of the culture medium and glucose on the formation of biofilms in four Candida species as well as the resistance of sessile cells to antifungals, AgNPs, and ROS. Our results suggest that candidiasis in vivo is a multifactorial and complex process where the nutritional conditions, the human immune system, and the adaptability of the pathogen should be considered altogether to provide an effective treatment of the patient.

  5. The Effect of Essential Oils and Bioactive Fractions on Streptococcus mutans and Candida albicans Biofilms: A Confocal Analysis

    Science.gov (United States)

    Freires, Irlan Almeida; Bueno-Silva, Bruno; Galvão, Lívia Câmara de Carvalho; Duarte, Marta Cristina Teixeira; Sartoratto, Adilson; Figueira, Glyn Mara; de Alencar, Severino Matias; Rosalen, Pedro Luiz

    2015-01-01

    The essential oils (EO) and bioactive fractions (BF) from Aloysia gratissima, Baccharis dracunculifolia, Coriandrum sativum, Cyperus articulatus, and Lippia sidoides were proven to have strong antimicrobial activity on planktonic microorganisms; however, little is known about their effects on the morphology or viability of oral biofilms. Previously, we determined the EO/fractions with the best antimicrobial activity against Streptococcus mutans and Candida spp. In this report, we used a confocal analysis to investigate the effect of these EO and BF on the morphology of S. mutans biofilms (thickness, biovolume, and architecture) and on the metabolic viability of C. albicans biofilms. The analysis of intact treated S. mutans biofilms showed no statistical difference for thickness in all groups compared to the control. However, a significant reduction in the biovolume of extracellular polysaccharides and bacteria was observed for A. gratissima and L. sidoides groups, indicating that these BF disrupt biofilm integrity and may have created porosity in the biofilm. This phenomenon could potentially result in a weakened structure and affect biofilm dynamics. Finally, C. sativum EO drastically affected C. albicans viability when compared to the control. These results highlight the promising antimicrobial activity of these plant species and support future translational research on the treatment of dental caries and oral candidiasis. PMID:25821503

  6. The Effect of Essential Oils and Bioactive Fractions on Streptococcus mutans and Candida albicans Biofilms: A Confocal Analysis.

    Science.gov (United States)

    Freires, Irlan Almeida; Bueno-Silva, Bruno; Galvão, Lívia Câmara de Carvalho; Duarte, Marta Cristina Teixeira; Sartoratto, Adilson; Figueira, Glyn Mara; de Alencar, Severino Matias; Rosalen, Pedro Luiz

    2015-01-01

    The essential oils (EO) and bioactive fractions (BF) from Aloysia gratissima, Baccharis dracunculifolia, Coriandrum sativum, Cyperus articulatus, and Lippia sidoides were proven to have strong antimicrobial activity on planktonic microorganisms; however, little is known about their effects on the morphology or viability of oral biofilms. Previously, we determined the EO/fractions with the best antimicrobial activity against Streptococcus mutans and Candida spp. In this report, we used a confocal analysis to investigate the effect of these EO and BF on the morphology of S. mutans biofilms (thickness, biovolume, and architecture) and on the metabolic viability of C. albicans biofilms. The analysis of intact treated S. mutans biofilms showed no statistical difference for thickness in all groups compared to the control. However, a significant reduction in the biovolume of extracellular polysaccharides and bacteria was observed for A. gratissima and L. sidoides groups, indicating that these BF disrupt biofilm integrity and may have created porosity in the biofilm. This phenomenon could potentially result in a weakened structure and affect biofilm dynamics. Finally, C. sativum EO drastically affected C. albicans viability when compared to the control. These results highlight the promising antimicrobial activity of these plant species and support future translational research on the treatment of dental caries and oral candidiasis.

  7. The Effect of Essential Oils and Bioactive Fractions on Streptococcus mutans and Candida albicans Biofilms: A Confocal Analysis

    Directory of Open Access Journals (Sweden)

    Irlan Almeida Freires

    2015-01-01

    Full Text Available The essential oils (EO and bioactive fractions (BF from Aloysia gratissima, Baccharis dracunculifolia, Coriandrum sativum, Cyperus articulatus, and Lippia sidoides were proven to have strong antimicrobial activity on planktonic microorganisms; however, little is known about their effects on the morphology or viability of oral biofilms. Previously, we determined the EO/fractions with the best antimicrobial activity against Streptococcus mutans and Candida spp. In this report, we used a confocal analysis to investigate the effect of these EO and BF on the morphology of S. mutans biofilms (thickness, biovolume, and architecture and on the metabolic viability of C. albicans biofilms. The analysis of intact treated S. mutans biofilms showed no statistical difference for thickness in all groups compared to the control. However, a significant reduction in the biovolume of extracellular polysaccharides and bacteria was observed for A. gratissima and L. sidoides groups, indicating that these BF disrupt biofilm integrity and may have created porosity in the biofilm. This phenomenon could potentially result in a weakened structure and affect biofilm dynamics. Finally, C. sativum EO drastically affected C. albicans viability when compared to the control. These results highlight the promising antimicrobial activity of these plant species and support future translational research on the treatment of dental caries and oral candidiasis.

  8. In vitro Candida albicans biofilm induced proteinase activity and SAP8 expression correlates with in vivo denture stomatitis severity.

    Science.gov (United States)

    Ramage, Gordon; Coco, Brent; Sherry, Leighann; Bagg, Jeremy; Lappin, David F

    2012-07-01

    Denture stomatitis is a common inflammatory disorder of the palatal mucosa amongst denture wearers. The pathological changes are induced by Candida albicans biofilm on the fitting surface of the upper denture, and different individuals experience different levels of disease. C. albicans is known to produce secreted aspartyl proteinases (SAPs) to aid adhesion, invasion and tissue destruction. We hypothesised that differential expression and activity of SAPs from denture stomatitis isolates results in different levels of disease amongst denture wearers. We selected C. albicans isolates from asymptomatic controls and three different severities of disease [Newton’s type (NT) 0, I, II and III]. We assessed biofilm formation and proteinase activity for each biofilm and investigated the transcriptional profile of SAPs 1, 2, 5, 6 and 8 from early (12 h) and mature (24 h) biofilms. There were no significant differences between isolates with respect to biofilm formation, whereas proteinase activity normalised to biofilm growth was significantly increased in the diseased groups (p < 0.0001). Proteinase activity correlated strongly with SAP expression (p < 0.0001). SAP8 expression was the greatest, followed by SAP5, 6, 2 and 1. The diseased groups showed the greatest levels of SAP expression, with significant differences also observed between the groups (p < 0.005). All SAPs except SAP5 were expressed in greater amounts in the mature biofilms compared to early biofilms. Overall, this study suggests that SAP activity in biofilms determined in vitro may help to explain differences in disease severity. SAP8 has been shown for the first time to play a prominent role in biofilms.

  9. The Effect of Essential Oils and Bioactive Fractions on Streptococcus mutans and Candida albicans Biofilms: A Confocal Analysis

    OpenAIRE

    Irlan de Almeida Freires; Bruno Bueno-Silva; Lívia Câmara de Carvalho Galvão; Marta Cristina Teixeira Duarte; Adilson Sartoratto; Glyn Mara Figueira; Severino Matias de Alencar; Pedro Luiz Rosalen

    2015-01-01

    The essential oils (EO) and bioactive fractions (BF) from Aloysia gratissima, Baccharis dracunculifolia, Coriandrum sativum, Cyperus articulatus, and Lippia sidoides were proven to have strong antimicrobial activity on planktonic microorganisms; however, little is known about their effects on the morphology or viability of oral biofilms. Previously, we determined the EO/fractions with the best antimicrobial activity against Streptococcus mutans and Candida spp. In this report, we used a confo...

  10. 念珠菌黏附性与生物膜形成的对比研究%Comparison of adhesivity and biofilm formation among different Candida species

    Institute of Scientific and Technical Information of China (English)

    马海丽; 陈官芝; 王国英; 肖传顺; 王丽欣

    2011-01-01

    Objective To assess the relationship between Candida adhesivity and biofilm formation. Methods Eight Candida strains belonging to 8 species and 1 Saccharomyces cerevisiae strain were cultured in yeast peptone dextrose (YPD) fluid and agar medium respectively. The flocculation and adhesion of Candida were observed. Candida biofilm models were developed in 96-well microculture plates. The kinetics of biofilm formation was measured. Results All the 9 fungal strains had flocculation capability and could adhere to the surface of the yeast peptone dextrose agar medium. After mild shaking of the fluid medium, it is difficult for C. albicans, C. kefyr, C. glabrata and C. tropicalis to resuspend, but easy for Saccharomyces cerevisiae. The adhesivity of C. albicans, C. kefyr, C. glabrata and C. tropicalis was stronger than that of the other Candida strains. Common pathogenic Candida strains could form biofilm, and the metabolic activity of Candida cells in the biofilm increased over time. A significant increment was observed in the ability of C. albicans and C. kefyr to form biofilm compared with the other species (all P < 0.05), and in that of C. tropicalis and C. glabrata compared with C. krusei, C. parapsilosis and C. gulliermondii (all P < 0.05). The nonpathogenic Saccharomyces cerevisiae could not form biofilm. Conclusions Candida has the ability to adhere and form biofilm,and the ability varies with Candida species. Moreover, the ability to form biofilm positively correlates with the adhesivity of Candida.%目的 探讨念珠菌黏附性与生物膜形成的关系。方法 将8株念珠菌和1株酿酒酵母均分别在YPD液体培养基和琼脂培养基中培养,观察其絮凝沉淀和黏附现象,进一步在96孔微量培养皿中建立生物膜模型,测定生物膜的生长动力学变化。结果 9株菌株均具有絮凝沉淀的能力,经轻微振荡后白念珠菌、乳酒念珠菌、光滑念珠菌和热带念珠菌不易重新悬浮,而酿

  11. Roles of Candida albicans Gat2, a GATA-type zinc finger transcription factor, in biofilm formation, filamentous growth and virulence.

    Science.gov (United States)

    Du, Han; Guan, Guobo; Xie, Jing; Sun, Yuan; Tong, Yaojun; Zhang, Lixin; Huang, Guanghua

    2012-01-01

    Candida albicans is the most common human fungal pathogen, causing not only superficial infections, but also life-threatening systemic disease. C. albicans can grow in several morphological forms including unicellular yeast-form, elongated hyphae and pseudohyphae. In certain natural environments, C. albicans also exists as biofilms, which are structured and surface-attached microbial communities. Transcription factors play a critical role in morphogenesis and biofilm development. In this study, we identified four adhesion-promoting transcription factors (Tec1, Cph1, Ume6 and Gat2) by screening a transcription factor overexpression library. Sequence analysis indicates that Gat2 is a GATA-type zinc finger transcription factor. Here we showed that the gat2/gat2 mutant failed to form biofilms on the plastic and silicone surfaces. Overexpression of GAT2 gene promoted filamentous and invasive growth on agar containing Lee's medium, while deletion of this gene had an opposite effect. However, inactivation of Gat2 had no obvious effect on N-acetyl-glucosamine (GlcNAc) induced hyphal development. In a mouse model of systemic infection, the gat2/gat2 mutant showed strongly attenuated virulence. Our results suggest that Gat2 plays a critical role in C. albicans biofilm formation, filamentous growth and virulence.

  12. Microbial pathogenesis and biofilm development

    DEFF Research Database (Denmark)

    Reisner, A.; Høiby, N.; Tolker-Nielsen, Tim

    2004-01-01

    Microbial infections constitute a major cause of premature death in large parts of the world, and for several years we have seen an alarming tendency towards increasing problems of controlling such infections by antibiotic treatments. It is hoped that an improved understanding of the infectious...... a highly significant role in connection with chronic infections [1]. Bacterial growth on surfaces depends on several factors [2]. In nature, surfaces are probably often conditioned with a thin film of organic molecules, which may serve as attractants for bacterial chemotactic systems and which subsequently...... permit bacterial growth to occur. In laboratory model systems the growth of the surface-associated bacteria is supported by the nutrient supply in the moving or standing liquid. A benchmark of biofilm formation by several organisms in vitro is the development of three-dimensional structures that have...

  13. Hibiscus sabdariffa extract inhibits in vitro biofilm formation capacity of Candida albicans isolated from recurrent urinary tract infections

    Institute of Scientific and Technical Information of China (English)

    Issam Alshami; Ahmed E Alharbi

    2014-01-01

    Objective: To explore the prevention of recurrent candiduria using natural based approaches and to study the antimicrobial effect of Hibiscus sabdariffa (H. sabdariffa) extract and the biofilm forming capacity of Candida albicans strains in the present of the H. sabdariffa extract.Methods:In this particular study, six strains of fluconazole resistant Candida albicans isolated from recurrent candiduria were used. The susceptibility of fungal isolates, time-kill curves and biofilm forming capacity in the present of the H. sabdariffa extract were determined. Results: Various levels minimum inhibitory concentration of the extract were observed against all the isolates. Minimum inhibitory concentration values ranged from 0.5 to 2.0 mg/mL. Time-kill experiment demonstrated that the effect was fungistatic. The biofilm inhibition assay results showed that H. sabdariffa extract inhibited biofilm production of all the isolates. Conclusions: The results of the study support the potential effect of H. sabdariffa extract for preventing recurrent candiduria and emphasize the significance of the plant extract approach as a potential antifungal agent.

  14. The role of Bgl2p in the transition to filamentous cells during biofilm formation by Candida albicans.

    Science.gov (United States)

    Chen, Xinyue; Zhang, Ruoyu; Takada, Ayako; Iwatani, Shun; Oka, Chiemi; Kitamoto, Toshitaka; Kajiwara, Susumu

    2017-02-01

    The fungal pathogen Candida albicans undergoes a transition from yeast cells to filamentous cells that is related to its pathogenicity. The complex multicellular processes involved in biofilm formation by this fungus also include this transition. In this work, we investigated the morphological role of the Bgl2 protein (Bgl2p) in the transition to filamentous cells during biofilm formation by C. albicans. Bgl2p has been identified as a β-1, 3-glucosyltransferase, and transcription of the CaBGL2 gene is upregulated during biofilm formation. We used scanning electron microscopy to observe the microstructure of a bgl2 null mutant during biofilm formation and found a delay in the transition to filamentous cells in the premature phase (24 hours) of biofilm formation. Deletion of the CaBGL2 gene led to a decrease in the expression of CPH2 and TEC1, which encode transcription factors required for the transition to the filamentous form. These findings indicate that Bgl2p plays a role in the transition to filamentous cells during biofilm formation by C. albicans.

  15. Synergistic activity of the tyrocidines, antimicrobial cyclodecapeptides from Bacillus aneurinolyticus, with amphotericin B and caspofungin against Candida albicans biofilms.

    Science.gov (United States)

    Troskie, Anscha Mari; Rautenbach, Marina; Delattin, Nicolas; Vosloo, Johan Arnold; Dathe, Margitta; Cammue, Bruno P A; Thevissen, Karin

    2014-07-01

    Tyrocidines are cationic cyclodecapeptides from Bacillus aneurinolyticus that are characterized by potent antibacterial and antimalarial activities. In this study, we show that various tyrocidines have significant activity against planktonic Candida albicans in the low-micromolar range. These tyrocidines also prevented C. albicans biofilm formation in vitro. Studies with the membrane-impermeable dye propidium iodide showed that the tyrocidines disrupt the membrane integrity of mature C. albicans biofilm cells. This membrane activity correlated with the permeabilization and rapid lysis of model fungal membranes containing phosphatidylcholine and ergosterol (70:30 ratio) induced by the tyrocidines. The tyrocidines exhibited pronounced synergistic biofilm-eradicating activity in combination with two key antifungal drugs, amphotericin B and caspofungin. Using a Caenorhabditis elegans infection model, we found that tyrocidine A potentiated the activity of caspofungin. Therefore, tyrocidines are promising candidates for further research as antifungal drugs and as agents for combinatorial treatment.

  16. Lab-scale preparations of Candida albicans and dual Candida albicans-Candida glabrata biofilms on the surface of medical-grade polyvinyl chloride (PVC) perfusion tube using a modified gravity-supported free-flow biofilm incubator (GS-FFBI).

    Science.gov (United States)

    Shao, Jing; Lu, KeQiao; Tian, Ge; Cui, YanYan; Yan, YuanYuan; Wang, TianMing; Zhang, XinLong; Wang, ChangZhong

    2015-02-01

    The assembly of a man-made gravity-supported free-flow biofilm incubator (GS-FFBI) was described, which was composed of a gas cushion injector and four incubators. The GS-FFBI had the characteristics of (i) a bottom-up flow direction, and (ii) lab-scale biofilm preparation without the use of a multichannel pump. Two opportunistic fungal strains, namely Candida albicans and Candida glabrata, were employed to incubate C. albicans and dual C. albicans-C. glabrata biofilms on the surface of medical-grade polyvinyl chloride perfusion tube. In terms of the results from {2, 3-bis (2-methoxy-4-nitro-5-sulfo-phenyl)-2H-tetrazolium-5-carboxanilide} (XTT) assay, dry weight measurement, colony-forming unit counting, susceptibility test, and scanning electron microscopy, it was demonstrated that GS-FFBI could form both stable single and dual Candida biofilms with no significant variations among the four incubators or the three daily incubations within 21h, and could operate for at least 96h smoothly with no contamination of stock medium. The results also indicated, for the first time, that C. albicans and C. glabrata might be co-existent competitively and symbiotically in the dual biofilms with flowing media. GS-FFBI would be a useful device to study in vitro morphological and physiological features of microbial biofilms in the medical settings.

  17. The Beneficial Effect of Equisetum giganteum L. against Candida Biofilm Formation: New Approaches to Denture Stomatitis

    Directory of Open Access Journals (Sweden)

    Rafaela A. S. Alavarce

    2015-01-01

    Full Text Available Equisetum giganteum L. (E. giganteum, Equisetaceae, commonly called “giant horsetail,” is an endemic plant of Central and South America and is used in traditional medicine as diuretic and hemostatic in urinary disorders and in inflammatory conditions among other applications. The chemical composition of the extract EtOH 70% of E. giganteum has shown a clear presence of phenolic compounds derived from caffeic and ferulic acids and flavonoid heterosides derived from quercitin and kaempferol, in addition to styrylpyrones. E. giganteum, mainly at the highest concentrations, showed antimicrobial activity against the relevant microorganisms tested: Escherichia coli, Staphylococcus aureus, and Candida albicans. It also demonstrated antiadherent activity on C. albicans biofilms in an experimental model that is similar to dentures. Moreover, all concentrations tested showed anti-inflammatory activity. The extract did not show cytotoxicity in contact with human cells. These properties might qualify E. giganteum extract to be a promising alternative for the topic treatment and prevention of oral candidiasis and denture stomatitis.

  18. Candida albicans biofilms and MMA surface treatment influence the adhesion of soft denture liners to PMMA resin.

    Science.gov (United States)

    Mendonça e Bertolini, Martinna de; Cavalcanti, Yuri Wanderley; Bordin, Dimorvan; Silva, Wander José da; Cury, Altair Antoninha Del Bel

    2014-01-01

    The effect of Candida albicans biofilms and methyl methacrylate (MMA) pretreatment on the bond strength between soft denture liners and polymethyl methacrylate (PMMA) resin was analyzed. Specimens were prepared and randomly divided with respect to PMMA pretreatment, soft liner type (silicone-based or PMMA-based), and presence or absence of a C. albicans biofilm. Samples were composed of a soft denture liner bonded between two PMMA bars. Specimens (n = 10) were incubated to produce a C. albicans biofilm or stored in sterile PBS for 12 days. The tensile bond strength test was performed and failure type was determined using a stereomicroscope. Surface roughness (SR) and scanning electron microscopy (SEM) analysis were performed on denture liners (n = 8). Highest bond strength was observed in samples containing a silicone-based soft liner and stored in PBS, regardless of pretreatment (p PMMA-based liners predominantly underwent cohesive failures. The silicone-based specimens SR decreased after 12 days of biofilm accumulation or PBS storage, while the SR of PMMA-based soft liners increased (p PMMA-based soft liners surfaces presented sharp valleys and depressions, while silicone-based specimens surfaces exhibited more gentle features. In vitro exposure to C. albicans biofilms reduced the adhesion of denture liners to PMMA resin, and MMA pretreatment is recommended during relining procedures.

  19. Biofilm production and antifungal susceptibility of co-cultured Malassezia pachydermatis and Candida parapsilosis isolated from canine seborrheic dermatitis.

    Science.gov (United States)

    Bumroongthai, K; Chetanachan, P; Niyomtham, W; Yurayart, C; Prapasarakul, N

    2016-07-01

    The yeasts Malassezia (M.) pachydermatis and Candida (C.) parapsilosis are often co-isolated in case of canine seborrhea dermatitis (SD) and also are emerging as opportunistic pathogens of immunocompromised human beings. Increased information about how their relationship results in biofilm production and an antifungal response would be useful to inform treatment and control. This study was designed to investigate biofilm production derived from co-culture of M. pachydermatis and C. parapsilosis from dog skin and to determine their in vitro antifungal susceptibility. We demonstrated that regardless of yeast strain or origin all single and dual cultures produced biofilms within 24 hours, and the greatest amount was present after 72 hours. Biofilm production from mixed cultures was greater than for single strains (P < .05). All sessile forms of the single and dual cultures were resistant to the tested antifungals itraconazole and ketoconazole, whereas planktonic forms were susceptible. The study suggests that dual cultures produce stronger biofilms that are likely to enhance persistence in skin lesions in dogs and result in greater resistance to antifungal treatment.

  20. Candida albicans biofilms and MMA surface treatment influence the adhesion of soft denture liners to PMMA resin

    Directory of Open Access Journals (Sweden)

    Martinna de Mendonça e Bertolini

    2014-01-01

    Full Text Available The effect of Candida albicans biofilms and methyl methacrylate (MMA pretreatment on the bond strength between soft denture liners and polymethyl methacrylate (PMMA resin was analyzed. Specimens were prepared and randomly divided with respect to PMMA pretreatment, soft liner type (silicone-based or PMMA-based, and presence or absence of a C. albicans biofilm. Samples were composed of a soft denture liner bonded between two PMMA bars. Specimens (n = 10 were incubated to produce a C. albicans biofilm or stored in sterile PBS for 12 days. The tensile bond strength test was performed and failure type was determined using a stereomicroscope. Surface roughness (SR and scanning electron microscopy (SEM analysis were performed on denture liners (n = 8. Highest bond strength was observed in samples containing a silicone-based soft liner and stored in PBS, regardless of pretreatment (p < 0.01. Silicone-based specimens mostly underwent adhesive failures, while samples containing PMMA-based liners predominantly underwent cohesive failures. The silicone-based specimens SR decreased after 12 days of biofilm accumulation or PBS storage, while the SR of PMMA-based soft liners increased (p < 0.01. The PMMA-based soft liners surfaces presented sharp valleys and depressions, while silicone-based specimens surfaces exhibited more gentle features. In vitro exposure to C. albicans biofilms reduced the adhesion of denture liners to PMMA resin, and MMA pretreatment is recommended during relining procedures.

  1. The MP65 gene is required for cell wall integrity, adherence to epithelial cells and biofilm formation in Candida albicans

    Directory of Open Access Journals (Sweden)

    Girolamo Antonietta

    2011-05-01

    Full Text Available Abstract Background The MP65 gene of Candida albicans (orf19.1779 encodes a putative β-glucanase mannoprotein of 65 kDa, which plays a main role in a host-fungus relationship, morphogenesis and pathogenicity. In this study, we performed an extensive analysis of a mp65Δ mutant to assess the role of this protein in cell wall integrity, adherence to epithelial cells and biofilm formation. Results The mp65Δ mutant showed a high sensitivity to a range of cell wall-perturbing and degrading agents, especially Congo red, which induced morphological changes such as swelling, clumping and formation of hyphae. The mp65Δ mutant showed an activation of two MAPKs (Mkc1p and Cek1p, a high level of expression of two stress-related genes (DDR48 and SOD5, and a modulated expression of β-glucan epitopes, but no gross changes in cell wall polysaccharide composition. Interestingly, the mp65Δ mutant displayed a marked reduction in adhesion to BEC and Caco-2 cells and severe defects in biofilm formation when compared to the wild type. All of the mentioned properties were totally or partially recovered in a revertant strain, demonstrating the specificity of gene deletion. Conclusions We demonstrate that the MP65 gene of Candida albicans plays a significant role in maintaining cell wall integrity, as well as in adherence to epithelia and biofilm formation, which are major virulence attributes of this fungus.

  2. Paradoxical antifungal activity and structural observations in biofilms formed by echinocandin-resistant Candida albicans clinical isolates.

    Science.gov (United States)

    Walraven, Carla J; Bernardo, Stella M; Wiederhold, Nathan P; Lee, Samuel A

    2014-02-01

    Echinocandin-resistant clinical isolates of Candida albicans have been reported, and key-hot spot mutations in the FKS1 gene, which encodes a major glucan synthase subunit, have been identified in these (caspofungin-resistant [CAS-R]) strains. Although these mutations result in phenotypic resistance to echinocandins in planktonic cells, there is little data on antifungal susceptibilities of CAS-R C. albicans strains within biofilms. Thus, we analyzed biofilms formed by 12 C. albicans CAS-R clinical strains in which we previously identified FKS1 hot-spot mutations and compared the sessile antifungal and paradoxical activity of anidulafungin (ANID), caspofungin (CAS), and micafungin (MICA). Biofilms were formed in a 96-well static microplate model and assayed using both tetrazolium-salt reduction and crystal violet assays, as well as examination by scanning electron microscopy. We first sought to assess biofilm formation and structure in these fks1 mutants and found that the biofilm mass and metabolic activities were reduced in most of the fks1 mutants as compared with reference strain SC5314. Structural analyses revealed that the fks1 mutant biofilms were generally less dense and had a clear predominance of yeast and pseudohyphae, with unusual "pit"-like cell surface structures. We also noted that sessile minimum inhibitory concentrations (MICs) to ANID, CAS, and MICA were higher than planktonic MICs of all but one strain. The majority of strains demonstrated a paradoxical effect (PE) to particular echinocandins, in either planktonic or sessile forms. Overall, biofilms formed by echinocandin-resistant clinical isolates demonstrated varied PEs to echinocandins and were structurally characterized by a preponderance of yeast, pseudohyphae, and pit-like structures.

  3. Cross-feeding and interkingdom communication in dual-species biofilms of Streptococcus mutans and Candida albicans.

    Science.gov (United States)

    Sztajer, Helena; Szafranski, Szymon P; Tomasch, Jürgen; Reck, Michael; Nimtz, Manfred; Rohde, Manfred; Wagner-Döbler, Irene

    2014-11-01

    Polymicrobial biofilms are of large medical importance, but relatively little is known about the role of interspecies interactions for their physiology and virulence. Here, we studied two human pathogens co-occuring in the oral cavity, the opportunistic fungus Candida albicans and the caries-promoting bacterium Streptococcus mutans. Dual-species biofilms reached higher biomass and cell numbers than mono-species biofilms, and the production of extracellular polymeric substances (EPSs) by S. mutans was strongly suppressed, which was confirmed by scanning electron microscopy, gas chromatography-mass spectrometry and transcriptome analysis. To detect interkingdom communication, C. albicans was co-cultivated with a strain of S. mutans carrying a transcriptional fusion between a green fluorescent protein-encoding gene and the promoter for sigX, the alternative sigma factor of S. mutans, which is induced by quorum sensing signals. Strong induction of sigX was observed in dual-species biofilms, but not in single-species biofilms. Conditioned media from mixed biofilms but not from C. albicans or S. mutans cultivated alone activated sigX in the reporter strain. Deletion of comS encoding the synthesis of the sigX-inducing peptide precursor abolished this activity, whereas deletion of comC encoding the competence-stimulating peptide precursor had no effect. Transcriptome analysis of S. mutans confirmed induction of comS, sigX, bacteriocins and the downstream late competence genes, including fratricins, in dual-species biofilms. We show here for the first time the stimulation of the complete quorum sensing system of S. mutans by a species from another kingdom, namely the fungus C. albicans, resulting in fundamentally changed virulence properties of the caries pathogen.

  4. Mycobacterium biofilms: factors involved in development, dispersal, and therapeutic strategies against biofilm-relevant pathogens.

    Science.gov (United States)

    Xiang, Xiaohong; Deng, Wanyan; Liu, Minqiang; Xie, Jianping

    2014-01-01

    Many bacteria can develop biofilm (BF), a multicellular structure largely combining bacteria and their extracellular polymeric substances (EPS). The formation of biofilm results in an alternative existence in which microbes ensure their survival in adverse environments. Biofilm-relevant infections are more persistent, resistant to most antibiotics, and more recalcitrant to host immunity. Mycobacterium tuberculosis, the causative agent of tuberculosis, can develop biofilm, though whether M. tuberculosis can form biofilm within tuberculosis patients has yet to be determined. Here, we summarize the factors involved in the development and dispersal of mycobacterial biofilms, as well as underlying regulatory factors and inhibitors against biofilm to deepen our understanding of their development and to elucidate potential novel modes of action for future antibiotics. Key factors in biofilm formation identified as drug targets represent a novel and promising avenue for developing better antibiotics.

  5. Development of DNA probes for Candida albicans

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, L.L.; Hudson, J.B.

    1988-07-01

    An attempt was made to produce DNA probes that could be used as a rapid and efficient means of detecting candidiasis (invasive Candida infection) in immunocompromised patients. Whole DNA from Candida albicans was digested with restriction endonuclease, and the resulting fragments were randomly cloned into a plasmid vector. Several recombinant plasmids were evaluated for cross-hybridization to various other Candida species, other fungal DNAs, and to nonfungal DNAs. Cross reactions were observed between the probes and different yeasts, but none with unrelated DNAs. Some recombinants were genus-specific, and two of these were applied to the analysis of C. albicans growth curves. It became evident that, although both /sup 32/P- and biotin-labelled probes could be made quite sensitive, a possible limitation in their diagnostic potential was the poor liberation of Candida DNA from cells. Thus, better methods of treatment of clinical specimens will be required before such probes will be useful in routine diagnosis.

  6. Evaluation of caries-associated virulence of biofilms from Candida albicans isolated from saliva of pediatric patients with sickle-cell anemia

    OpenAIRE

    Brighenti,Fernanda Lourenção; Medeiros, Amanda Coelho; Bruno Mello MATOS; RIBEIRO,Zulene Eveline Abreu; Koga-Ito, Cristiane Yumi

    2014-01-01

    A previous study demonstrated that the amount of Candida spp. in saliva is higher in children with sickle-cell disease. The results from a recent study demonstrate its participation in the etiology of dental caries. Objective This study assessed caries-associated virulence (production of acid, extracellular polysaccharides, proteins and metabolic activity) of biofilms from Candida albicans isolated from saliva of patients with sickle-cell anemia in comparison to isolates obtained from matc...

  7. In vitro photodynamic inactivation effects of cationic benzylidene cyclopentanone photosensitizers on clinical fluconazole-resistant Candida albicans planktonic cells and biofilms

    Science.gov (United States)

    Zhou, Shaona; Fang, Yanyan; Ye, Zulin; Wang, Ying; Zhao, Yuxia; Gu, Ying

    2016-10-01

    Background: An increasing prevalence of Candida infections has emerged with the wide use of immune-suppressants and antibiotics. Photodynamic inactivation (PDI) as a new approach to treat localized Candida infections is an emerging and promising field nowadays. This study evaluated the efficacy of photodynamic therapy using two new Cationic benzylidene cyclopentanone photosensitizers(P1 and P2) against strains of clinical fluconazole-resistant Candida albicans. Methods: Suspensions and biofilms of Candida species were incubated with P1 and P2 concentrations (0.25 50 μM) for 30 min followed by 532nm laser irradiation. For planktonic suspensions, viability of cells was assayed by CFU counting. For biofilms, the metabolic activity was evaluated by XTT. Results: In PDI of a planktonic culture of clinical fluconazole-resistant Candida albicans, P2 showed the higher efficacy. After incubation with 25 μM of P2 for 30 min and irradiation with 532nm laser (36 J cm-2), the viability of C. albicans planktonic cells decreased by 3.84 log10. For biofilm cells, a higher light dose of 75 mW cm-2 was necessary to achieve 97.71% metabolic activity reduction. Conclusions: The results of this investigation demonstrated that benzylidene cyclopentanone photosensitizer, P2, is an efficient photosensitizer to kill C. albicans. Moreover, single-species biofilms were less susceptible to PDT than their planktonic counterparts.

  8. Development of Candida-associated denture stomatitis: new insights

    Directory of Open Access Journals (Sweden)

    Tatiana Pereira-Cenci

    2008-04-01

    Full Text Available Despite therapeutic progress, opportunistic oral fungal infectious diseases have increased in prevalence, especially in denture wearers. The combination of entrapment of yeast cells in irregularities in denture-base and denture-relining materials, poor oral hygiene and several systemic factors is the most probable cause for the onset of this infectious disease. Hence colonization and growth on prostheses by Candida species are of clinical importance. The purpose of this review is to critically discuss several key factors controlling the adhesion of Candida species which are relevant to denture-associated stomatitis. Although there is some consensus on the role of surface properties, studies on several other factors, as the use of denture liners, salivary properties and yeast-bacterial interactions, have shown contradictory findings. A comprehensive fundamental understanding is hampered by conflicting findings due to the large variations in experimental protocols, while other factors have never been thoroughly studied. Surface free energy and surface roughness control the initial adherence, but temporal changes have not been reported. Neither have in vivo studies shown if the substratum type is critical in dictating biofilm accumulation during longer periods in the oral environment. The contribution of saliva is unclear due to factors like variations in its collection and handling. Initial findings have disclosed that also bacteria are crucial for the successful establishment of Candida in biofilms, but the clinical significance of this observation is yet to be confirmed. In conclusion, there is a need to standardize experimental procedures, to bridge the gap between laboratory and in vivo methodologies and findings and - in general - to thoroughly investigate the factors that modulate the initial attachment and subsequent colonization of denture-base materials and the oral mucosa of patients subjected to Candida infections. Information on how

  9. Candida albicans SUR7 contributes to secretion, biofilm formation, and macrophage killing

    Directory of Open Access Journals (Sweden)

    Bernardo Stella M

    2010-04-01

    Full Text Available Abstract Background Candida albicans SUR7 has been shown to be required for plasma membrane organization and cell wall synthesis, but its role in virulence is not known. Using a bioinformatics strategy, we previously identified several novel putative secretion pathway proteins potentially involved in virulence, including the C. albicans homolog of the Saccharomyces cerevisiae endocytosis-related protein Sur7p. We therefore generated a C. albicans sur7Δ null mutant and examined its contribution to key virulence attributes. Results Structurally, the C. albicans sur7Δ mutant was impaired in response to filamentation-inducing conditions, and formed aberrant hyphae with extensive accumulation of plasma membrane-derived structures within the cell. Absence of SUR7 resulted in a temperature-sensitive growth defect at high temperatures (42°C, which was partially rescued by addition of NaCl. We next examined the role of the SUR7 paralog C. albicans FMP45 in this temperature-sensitive phenotype. Analysis of C. albicans Fmp45p-GFP demonstrated co-localization of Fmp45p with Sur7p and increased fluorescence in the plasma membrane in the presence of high salt. We next focused on key virulence-related phenotypes. The C. albicans sur7Δ null mutant exhibited secretory defects: reduced lipase secretion, and increased levels of secreted Sap2p. The null mutant was hyper-susceptible to sub-inhibitory concentrations of caspofungin, but not amphotericin B and 5-fluorocytosine. Functionally, the sur7Δ mutant demonstrated increased adhesion to polystyrene and of note, was markedly defective in biofilm formation. In an in vitro macrophage model of virulence, the sur7Δ mutant was impaired in macrophage killing. Conclusions Plasma membrane and cell wall organization are important for cell morphology, and alterations of these structures contributed to impairment of several key virulence-associated phenotypes in the C. albicans sur7Δ mutant.

  10. Bismuth oxide aqueous colloidal nanoparticles inhibit Candida albicans growth and biofilm formation

    Directory of Open Access Journals (Sweden)

    Hernandez-Delgadillo R

    2013-04-01

    Full Text Available Rene Hernandez-Delgadillo,1 Donaji Velasco-Arias,3 Juan Jose Martinez-Sanmiguel,2 David Diaz,3 Inti Zumeta-Dube,3 Katiushka Arevalo-Niño,1 Claudio Cabral-Romero2 1Facultad de Ciencias Biológicas, Instituto de Biotecnologia, Universidad Autonoma de Nuevo Leon, UANL, Monterrey, Mexico; 2Facultad de Odontología, Universidad Autonoma de Nuevo Leon, UANL, Monterrey, México; 3Facultad de Quimica, Universidad Nacional Autonoma de Mexico, UNAM, Distrito Federal, México Abstract: Multiresistance among microorganisms to common antimicrobials has become one of the most significant concerns in modern medicine. Nanomaterials are a new alternative to successfully treat the multiresistant microorganisms. Nanostructured materials are used in many fields, including biological sciences and medicine. Recently, it was demonstrated that the bactericidal activity of zero-valent bismuth colloidal nanoparticles inhibited the growth of Streptococcus mutans; however the antimycotic potential of bismuth nanostructured derivatives has not yet been studied. The main objective of this investigation was to analyze the fungicidal activity of bismuth oxide nanoparticles against Candida albicans, and their antibiofilm capabilities. Our results showed that aqueous colloidal bismuth oxide nanoparticles displayed antimicrobial activity against C. albicans growth (reducing colony size by 85% and a complete inhibition of biofilm formation. These results are better than those obtained with chlorhexidine, nystatin, and terbinafine, the most effective oral antiseptic and commercial antifungal agents. In this work, we also compared the antimycotic activities of bulk bismuth oxide and bismuth nitrate, the precursor metallic salt. These results suggest that bismuth oxide colloidal nanoparticles could be a very interesting candidate as a fungicidal agent to be incorporated into an oral antiseptic. Additionally, we determined the minimum inhibitory concentration for the synthesized

  11. Effect of caspofungin and micafungin in combination with farnesol against Candida parapsilosis biofilms.

    Science.gov (United States)

    Kovács, Renátó; Bozó, Aliz; Gesztelyi, Rudolf; Domán, Marianna; Kardos, Gábor; Nagy, Fruzsina; Tóth, Zoltán; Majoros, László

    2016-04-01

    The in vitro activities of caspofungin and micafungin were determined with and without farnesol against Candida parapsilosis biofilms. Drug interactions were examined using the XTT colorimetric assay-based broth microdilution chequerboard method. Drug-drug interactions were assessed utilising the FICI, Bliss independence models and time-kill experiments. Median sessile MICs of five C. parapsilosis clinical isolates ranged between 32-256 mg/L, 16-512 mg/L and >300 μM for caspofungin, micafungin and farnesol, respectively. Median MICs for caspofungin and micafungin in combination with farnesol showed 8-64- and 4-64-fold decreases, respectively. Paradoxical growth noticed with both echinocandins was eliminated by farnesol. Based on FICIs for sessile clinical isolates, synergism was observed for caspofungin (range of median FICIs, 0.155-0.5) and micafungin (range of median FICIs, 0.093-0.5). Concordantly, MacSynergy analysis and global fitting of non-linear regression based on a Bliss independence models also showed synergism for caspofungin and micafungin. In line with FICI findings and the Bliss independence model, synergistic interactions were confirmed by time-kill experiments. The metabolic activity of fungal cells was significantly inhibited by caspofungin+farnesol at all three tested combinations (4 mg/L+75 μM, 8 mg/L+75 μM and 16 mg/L+75 μM) between 3 and 24 h compared with the control (P<0.05-0.001). Significant inhibition was observed for micafungin+farnesol between 3 and 12h (P<0.001) but not at 24 h. Despite the favourable effect of farnesol in combination with echinocandins, further in vivo studies are needed to confirm its therapeutic advantage in catheter-associated infections caused by C. parapsilosis.

  12. Distribution of Candida Species in different clinical samples and their virulence: Biofilm formation, proteinase and phospholipase production: A study on hospitalized patients in Southern India

    Directory of Open Access Journals (Sweden)

    Vinitha Mohandas

    2011-01-01

    Full Text Available Introduction: Candida species are normal inhabitants of the skin and mucosa. The importance of epidemiological monitoring of yeasts involved in pathogenic processes is unquestionable due to the increase of these infections over the last decade; Materials and Methods: The clinical samples from the respiratory tract (sputum, bronchial wash, tracheal secretions, saliva, blood, urine, middle ear discharge, vitreous fluid, corneal ulcer, and plastic devices (endotracheal tube, catheter tip, suction tip were collected and cultured. The species of Candida isolated were identified. Results: A total of 111 isolates of Candida species were recovered from 250 diverse clinical sources. C. albicans (39.64% was the most isolated species, although the Candida non albicans species with 60.36% showed the major prevalence. In blood cultures, C. krusei (38.23% and C. albicans (20.58% were isolated frequently. C. albicans (63.27% was the predominant species in mucosal surface. Urinary tract infections caused by yeasts were more frequent in hospitalized patients, C. krusei (50.0% being commonly isolated, followed by C. albicans (25.0%. Discussion: Several virulence factors like, biofilm, proteinase, phospholipase, etc. contribute to the pathogenecity. Early detection of virulence factors by Candida is useful in clinical decision making. We therefore have aimed at demonstrating the formation of biofilm using the method proposed by Branchini et al, (1994. The proteinase produced by Candida was estimated as per the method of Staib et al, (1965. Phospholipase assay was carried out as per the method of Samaranayake et al, (2005. Conclusions : The data suggests that the capacity of Candida species to produce biofilm may be a reflection of the pathogenic potential of the isolates. C. krusei and C. tropicalis showed strong slime production. The non-Candida albicans produced more proteinase than C. albicans. C. albicans produced higher levels of phospholipase than non

  13. Acetylcholine Protects against Candida albicans Infection by Inhibiting Biofilm Formation and Promoting Hemocyte Function in a Galleria mellonella Infection Model.

    Science.gov (United States)

    Rajendran, Ranjith; Borghi, Elisa; Falleni, Monica; Perdoni, Federica; Tosi, Delfina; Lappin, David F; O'Donnell, Lindsay; Greetham, Darren; Ramage, Gordon; Nile, Christopher

    2015-08-01

    Both neuronal acetylcholine and nonneuronal acetylcholine have been demonstrated to modulate inflammatory responses. Studies investigating the role of acetylcholine in the pathogenesis of bacterial infections have revealed contradictory findings with regard to disease outcome. At present, the role of acetylcholine in the pathogenesis of fungal infections is unknown. Therefore, the aim of this study was to determine whether acetylcholine plays a role in fungal biofilm formation and the pathogenesis of Candida albicans infection. The effect of acetylcholine on C. albicans biofilm formation and metabolism in vitro was assessed using a crystal violet assay and phenotypic microarray analysis. Its effect on the outcome of a C. albicans infection, fungal burden, and biofilm formation were investigated in vivo using a Galleria mellonella infection model. In addition, its effect on modulation of host immunity to C. albicans infection was also determined in vivo using hemocyte counts, cytospin analysis, larval histology, lysozyme assays, hemolytic assays, and real-time PCR. Acetylcholine was shown to have the ability to inhibit C. albicans biofilm formation in vitro and in vivo. In addition, acetylcholine protected G. mellonella larvae from C. albicans infection mortality. The in vivo protection occurred through acetylcholine enhancing the function of hemocytes while at the same time inhibiting C. albicans biofilm formation. Furthermore, acetylcholine also inhibited inflammation-induced damage to internal organs. This is the first demonstration of a role for acetylcholine in protection against fungal infections, in addition to being the first report that this molecule can inhibit C. albicans biofilm formation. Therefore, acetylcholine has the capacity to modulate complex host-fungal interactions and plays a role in dictating the pathogenesis of fungal infections.

  14. Biofilm gene expression and biofilm-related genes of Candida albicans:an update%白念珠菌生物被膜的基因表达及相关基因研究进展

    Institute of Scientific and Technical Information of China (English)

    商庆华; 曹颖瑛; 苗浩; 姜远英

    2012-01-01

    Candida albicans is an opportunistic fungal pathogen with the ability to form biofilms on in-planted medical devices. Cells in biofilms display a phenotype that is markedly different from their pianktonic and free-living counterparts in both form and function. Recent advances in microarray and genetic manipulation have begun to clarify the mechanisms that govern C, albicans biofilm development and acquisition of such unique phenotype. These studies are considered to be important in finding new targets of antifungal drugs.%白念珠菌是一种条件性致病菌,可在人体植入性器械表面形成生物被膜.与浮游和以个体形式存在的白念珠菌相比,生物被膜在结构及功能上有很大差异,这种差异本质上是由基因表达决定的.近年来,研究者们试图通过芯片和基因敲除等技术手段,探索与白念珠菌生物被膜形成及耐药相关的基因,揭示其分子机制,寻找药物作用的新靶点.

  15. Putative Role of β-1,3 Glucans in Candida albicans Biofilm Resistance▿

    OpenAIRE

    Nett, Jeniel; Lincoln, Leslie; Marchillo, Karen; Massey, Randall; Holoyda, Kathleen; Hoff, Brian; VanHandel, Michelle; Andes, David

    2006-01-01

    Biofilms are microbial communities, embedded in a polymeric matrix, growing attached to a surface. Nearly all device-associated infections involve growth in the biofilm life style. Biofilm communities have characteristic architecture and distinct phenotypic properties. The most clinically important phenotype involves extraordinary resistance to antimicrobial therapy, making biofilm infections very difficulty to cure without device removal. The current studies examine drug resistance in Candid...

  16. Treatment of Candida albicans biofilms with low-temperature plasma induced by dielectric barrier discharge and atmospheric pressure plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Koban, Ina; Welk, Alexander; Meisel, Peter; Holtfreter, Birte; Kocher, Thomas [Unit of Periodontology, Dental School, University of Greifswald, Rotgerberstr. 8, 17475 Greifswald (Germany); Matthes, Rutger; Huebner, Nils-Olaf; Kramer, Axel [Institute for Hygiene and Environmental Medicine, University of Greifswald, Walther-Rathenau-Str. 49 a, 17487 Greifswald (Germany); Sietmann, Rabea [Institute of Microbiology, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 15, 17487 Greifswald (Germany); Kindel, Eckhard; Weltmann, Klaus-Dieter, E-mail: ina.koban@uni-greifswald.d [Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany)

    2010-07-15

    Because of some disadvantages of chemical disinfection in dental practice (especially denture cleaning), we investigated the effects of physical methods on Candida albicans biofilms. For this purpose, the antifungal efficacy of three different low-temperature plasma devices (an atmospheric pressure plasma jet and two different dielectric barrier discharges (DBDs)) on Candida albicans biofilms grown on titanium discs in vitro was investigated. As positive treatment controls, we used 0.1% chlorhexidine digluconate (CHX) and 0.6% sodium hypochlorite (NaOCl). The corresponding gas streams without plasma ignition served as negative treatment controls. The efficacy of the plasma treatment was determined evaluating the number of colony-forming units (CFU) recovered from titanium discs. The plasma treatment reduced the CFU significantly compared to chemical disinfectants. While 10 min CHX or NaOCl exposure led to a CFU log{sub 10} reduction factor of 1.5, the log{sub 10} reduction factor of DBD plasma was up to 5. In conclusion, the use of low-temperature plasma is a promising physical alternative to chemical antiseptics for dental practice.

  17. The composition and compression of biofilms developed on ultrafiltration membranes determine hydraulic biofilm resistance.

    Science.gov (United States)

    Derlon, Nicolas; Grütter, Alexander; Brandenberger, Fabienne; Sutter, Anja; Kuhlicke, Ute; Neu, Thomas R; Morgenroth, Eberhard

    2016-10-01

    This study aimed at identifying how to improve the level of permeate flux stabilisation during gravity-driven membrane filtration without control of biofilm formation. The focus was therefore on understanding (i) how the different fractions of the biofilms (inorganics particles, bacterial cells, EPS matrix) influence its hydraulic resistance and (ii) how the compression of biofilms impacts its hydraulic resistance, i.e., can water head be increased to increase the level of permeate flux stabilisation. Biofilms were developed on ultrafiltration membranes at 88 and 284 cm water heads with dead-end filtration for around 50 days. A larger water head resulted in a smaller biofilm permeability (150 and 50 L m(-2) h(-1) bar(-1) for biofilms grown at 88 cm and 284 cm water head, respectively). Biofilms were mainly composed of EPS (>90% in volume). The comparison of the hydraulic resistances of biofilms to model fouling layers indicated that most of the hydraulic resistance is due to the EPS matrix. The compressibility of the biofilm was also evaluated by subjecting the biofilms to short-term (few minutes) and long-term variations of transmembrane pressures (TMP). A sudden change of TMP resulted in an instantaneous and reversible change of biofilm hydraulic resistance. A long-term change of TMP induced a slow change in the biofilm hydraulic resistance. Our results demonstrate that the response of biofilms to a TMP change has two components: an immediate variation of resistance (due to compression/relaxation) and a long-term response (linked to biofilm adaptation/growth). Our results provide relevant information about the relationship between the operating conditions in terms of TMP, the biofilm structure and composition and the resulting biofilm hydraulic resistance. These findings have practical implications for a broad range of membrane systems.

  18. Dentinal Tubule Disinfection with Propolis & Two Extracts of Azadirachta indica Against Candida albicans Biofilm Formed on Tooth Substrate

    Science.gov (United States)

    Joy Sinha, Dakshita; Garg, Paridhi; Verma, Anurag; Malik, Vibha; Maccune, Edgar Richard; Vasudeva, Agrima

    2015-01-01

    Aim: This study evaluates the disinfection of dentinal tubules using Propolis, Azadirachta indica (alcoholic and aqueous extracts), 2% chlorhexidine gel and calcium hydroxide against Candida albicans biofilm formed on tooth substrate. Materials & Method: One hundred and five human teeth were infected with Candida albicans for 2 days. Samples were divided into 7 groups. Group I- Propolis, Group II- Alcoholic extract of Azadirachta indica, Group III- Aqueous extract of Azadirachta indica, Group IV- 2% Chlorhexidine, Group V- Calcium hydroxide, Group VI- Ethanol and Group VII- Saline (negative control). At the end of 1,3 and 5 days, the antimicrobial efficacy of medicaments against Candida albicans was assessed at the depths of 200 µm and 400 µm. Results: The overall percentage inhibition of fungal growth (at 200 µm and 400 µm depth) was 99.2% with 2% chlorhexidine gel. There was no statistical difference between propolis, alcoholic extract of Azadirachta indica (neem) and 2% chlorhexidine. Conclusion: Propolis and alcoholic extract of Azadirachta indica performed equally well as that of 2% Chlorhexidine. PMID:26962368

  19. Persea americana Glycolic Extract: In Vitro Study of Antimicrobial Activity against Candida albicans Biofilm and Cytotoxicity Evaluation

    Science.gov (United States)

    Jesus, D.; Oliveira, J. R.; Oliveira, F. E.; Higa, K. C.; Junqueira, J. C.; Jorge, A. O. C.; Back-Brito, G. N.; Oliveira, L. D.

    2015-01-01

    This study evaluated the antifungal activity of Persea americana extract on Candida albicans biofilm and its cytotoxicity in macrophage culture (RAW 264.7). To determine the minimum inhibitory concentration (MIC), microdilution in broth (CLSI M27-S4 protocol) was performed. Thereafter, the concentrations of 12.5, 25, 50, 100, and 200 mg/mL (n = 10) with 5 min exposure were analyzed on mature biofilm in microplate wells for 48 h. Saline was used as control (n = 10). After treatment, biofilm cells were scraped off and dilutions were plated on Sabouraud dextrose agar. After incubation (37°C/48 h), the values of colony forming units per milliliter (CFU/mL) were converted to log10 and analyzed (ANOVA and Tukey test, 5%). The cytotoxicity of the P. americana extract was evaluated on macrophages by MTT assay. The MIC of the extract was 6.25 mg/mL and with 12.5 mg/mL there was elimination of 100% of planktonic cultures. Regarding the biofilms, a significant reduction (P < 0.001) of the biofilm at concentrations of 50 (0.580 ± 0.209 log10), 100 (0.998 ± 0.508 log10), and 200 mg/mL (1.093 ± 0.462 log10) was observed. The concentrations of 200 and 100 mg/mL were cytotoxic for macrophages, while the concentrations of 50, 25, and 12.5 mg/mL showed viability higher than 55%. PMID:26605376

  20. Persea americana Glycolic Extract: In Vitro Study of Antimicrobial Activity against Candida albicans Biofilm and Cytotoxicity Evaluation

    Directory of Open Access Journals (Sweden)

    D. Jesus

    2015-01-01

    Full Text Available This study evaluated the antifungal activity of Persea americana extract on Candida albicans biofilm and its cytotoxicity in macrophage culture (RAW 264.7. To determine the minimum inhibitory concentration (MIC, microdilution in broth (CLSI M27-S4 protocol was performed. Thereafter, the concentrations of 12.5, 25, 50, 100, and 200 mg/mL (n=10 with 5 min exposure were analyzed on mature biofilm in microplate wells for 48 h. Saline was used as control (n=10. After treatment, biofilm cells were scraped off and dilutions were plated on Sabouraud dextrose agar. After incubation (37°C/48 h, the values of colony forming units per milliliter (CFU/mL were converted to log10 and analyzed (ANOVA and Tukey test, 5%. The cytotoxicity of the P. americana extract was evaluated on macrophages by MTT assay. The MIC of the extract was 6.25 mg/mL and with 12.5 mg/mL there was elimination of 100% of planktonic cultures. Regarding the biofilms, a significant reduction (P<0.001 of the biofilm at concentrations of 50 (0.580±0.209 log10, 100 (0.998±0.508 log10, and 200 mg/mL (1.093±0.462 log10 was observed. The concentrations of 200 and 100 mg/mL were cytotoxic for macrophages, while the concentrations of 50, 25, and 12.5 mg/mL showed viability higher than 55%.

  1. Persea americana Glycolic Extract: In Vitro Study of Antimicrobial Activity against Candida albicans Biofilm and Cytotoxicity Evaluation.

    Science.gov (United States)

    Jesus, D; Oliveira, J R; Oliveira, F E; Higa, K C; Junqueira, J C; Jorge, A O C; Back-Brito, G N; Oliveira, L D

    2015-01-01

    This study evaluated the antifungal activity of Persea americana extract on Candida albicans biofilm and its cytotoxicity in macrophage culture (RAW 264.7). To determine the minimum inhibitory concentration (MIC), microdilution in broth (CLSI M27-S4 protocol) was performed. Thereafter, the concentrations of 12.5, 25, 50, 100, and 200 mg/mL (n = 10) with 5 min exposure were analyzed on mature biofilm in microplate wells for 48 h. Saline was used as control (n = 10). After treatment, biofilm cells were scraped off and dilutions were plated on Sabouraud dextrose agar. After incubation (37°C/48 h), the values of colony forming units per milliliter (CFU/mL) were converted to log10 and analyzed (ANOVA and Tukey test, 5%). The cytotoxicity of the P. americana extract was evaluated on macrophages by MTT assay. The MIC of the extract was 6.25 mg/mL and with 12.5 mg/mL there was elimination of 100% of planktonic cultures. Regarding the biofilms, a significant reduction (P < 0.001) of the biofilm at concentrations of 50 (0.580 ± 0.209 log10), 100 (0.998 ± 0.508 log10), and 200 mg/mL (1.093 ± 0.462 log10) was observed. The concentrations of 200 and 100 mg/mL were cytotoxic for macrophages, while the concentrations of 50, 25, and 12.5 mg/mL showed viability higher than 55%.

  2. Candida parapsilosis complex water isolates from a haemodialysis unit: biofilm production and in vitro evaluation of the use of clinical antifungals

    Directory of Open Access Journals (Sweden)

    Regina Helena Pires

    2011-09-01

    Full Text Available Candida parapsilosis, currently divided into three distinct species, proliferates in glucose-rich solutions and has been associated with infections resulting from the use of medical devices made of plastic, an environment common in dialysis centres. The aims of this study were (i to screen for Candida orthopsilosis and Candida metapsilosis (100 environmental isolates previously identified as C. parapsilosis, (ii to test the ability of these isolates to form biofilm and (iii to investigate the in vitro susceptibility of Candida spp biofilms to the antifungal agents, fluconazole (FLC and amphotericin B (AMB. Isolates were obtained from a hydraulic circuit collected from a haemodialysis unit. Based on molecular criteria, 47 strains were re-identified as C. orthopsilosis and 53 as C. parapsilosis. Analyses using a formazan salt reduction assay and total viable count, together with microscopy studies, revealed that 72 strains were able to form biofilm that was structurally similar, but with minor differences in morphology. A microtitre-based colorimetric assay used to test the susceptibility of fungal biofilms to AMB and FLC demonstrated that the C. parapsilosis complex displayed an increased resistance to these antifungal agents. The results from these analyses may provide a basis for implementing quality controls and monitoring to ensure the microbiological purity of dialysis water, including the presence of yeast.

  3. Candidemia by species of the Candida parapsilosis complex in children's hospital: prevalence, biofilm production and antifungal susceptibility.

    Science.gov (United States)

    Ruiz, Luciana da Silva; Khouri, Sonia; Hahn, Rosane Christine; da Silva, Eriques Gonçalves; de Oliveira, Vanessa Krummer Perinazzo; Gandra, Rinaldo Ferreira; Paula, Claudete Rodrigues

    2013-04-01

    Opportunistic infections are an increasingly common problem in hospitals, and the yeast Candida parapsilosis has emerged as an important nosocomial pathogen. The aims of this study were to determine and compare (i) the prevalence rate among C. parapsilosis complex organisms isolated from blood in a public children's hospital in São Paulo state, (ii) the ability of the complex C. parapsilosis species identified to produce biofilm and (iii) the antifungal susceptibility profiles. Forty-nine (49) specimens of isolated blood yeast were analyzed, previously identified as C. parapsilosis by conventional methods. After the molecular analysis, the isolates were characterized as C. parapsilosis sensu stricto (83.7 %), C. orthopsilosis (10.2 %) and C. metapsilosis (6.1 %). All species were able to form biofilm. The species with the highest biofilm production was C. parapsilosis sensu stricto, followed by C. orthopsilosis and further by C. metapsilosis. All of the strains have demonstrated similar susceptibility to fluconazole, caspofungin, voriconazole, cetoconazole and 5-flucytosine. Only one strain of C. parapsilosis was resistant to amphotericin B. Regarding itraconazole, 66.6 and 43.9 % isolates of C. metapsilosis and C. parapsilosis, respectively, have demonstrated to be susceptible dose-dependent, with one isolate of the latter species resistant to the drug. Candida parapsilosis sensu stricto has demonstrated to be the less susceptible, mainly to amphotericin B, caspofungin and "azoles" such as fluconazole. Therefore, C. metapsilosis and C. orthopsilosis are still involved in a restricted number of infections, but these data have become essential for there are very few studies of these species in Latin America.

  4. Inhibitory effect of coated mannan against the adhesion of Candida biofilms to denture base resin.

    Science.gov (United States)

    Sato, Maki; Ohshima, Tomoko; Maeda, Nobuko; Ohkubo, Chikahiro

    2013-01-01

    The adherence of Candida on dentures is related to diseases such as denture stomatitis and aspiration pneumonia. Mannan is a major component of the Candida cell surface, and contributes to the cell adherence. A previous report indicated that the adherence of C. albicans to culture dishes was inhibited by the coating them with mannan. The purpose of this study was to examine the adhesion inhibitory effect of mannan coating on acrylic denture surfaces against C. albicans and C. glabrata. The amount of Candida attached on the acrylic surfaces coated with mannan was calibrated by culture methods. Mannan showed significant inhibitory effects on Candida adhesion in both the yeast and hyphal form in a concentration-dependent manner, and the durability of the inhibitory effect continued for three days. These results suggest that mannan coating on the denture base acrylic can prevent Candida adhesion on the denture.

  5. Effects of fluconazole treatment of mice infected with fluconazole-susceptible and -resistant Candida tropicalis on fungal cell surface hydrophobicity, adhesion and biofilm formation

    Directory of Open Access Journals (Sweden)

    R L Kanoshiki

    2015-01-01

    Full Text Available Background : The incidence of Candida tropicalis less susceptible to fluconazole (FLC has been reported in many parts of the world. Objectives : The aim of this study was to examine the changes of putative virulence attributes of Candida tropicalis accompanying the development of resistance to FLC in vitro and in vivo. Materials and Methods : A FLC-resistant strain (FLC-R was obtained after sequential exposure of a clinical isolate FLC-sensitive (FLC-S to increasing concentrations of the antifungal. The course of infection by both strains was analyzed in BALB/c mice. Analyses of gene expression were performed by real-time polymerase chain reaction PCR. The cell surface hydrophobicity, adhesion and biofilm formation were also determined. Results : Development of resistance to FLC could be observed after 15 days of subculture in azole-containing medium. Overexpression of MDR1 and ERG11 genes were observed in FLC-R, and this strain exhibited enhanced virulence in mice, as assessed by the mortality rate. All mice challenged with the FLC-R died and FLC-treatment caused earlier death in mice infected with this strain. All animals challenged with FLC-S survived the experiment, regardless of FLC-treatment. Overall, FLC-R derivatives strains were significantly more hydrophobic than FLC-S strains and showed greater adherence and higher capacity to form biofilm on polystyrene surface. Conclusions : The expression of virulence factors was higher in FLC-R-C. tropicalis and it was enhanced after FLC-exposure. These data alert us to the importance of identifying microorganisms that show resistance to the antifungals to establish an appropriate management of candidiasis therapy.

  6. Staphylococcus aureus biofilms: recent developments in biofilm dispersal.

    Science.gov (United States)

    Lister, Jessica L; Horswill, Alexander R

    2014-01-01

    Staphylococcus aureus is a major cause of nosocomial and community-acquired infections and represents a significant burden on the healthcare system. S. aureus attachment to medical implants and host tissue, and the establishment of a mature biofilm, play an important role in the persistence of chronic infections. The formation of a biofilm, and encasement of cells in a polymer-based matrix, decreases the susceptibility to antimicrobials and immune defenses, making these infections difficult to eradicate. During infection, dispersal of cells from the biofilm can result in spread to secondary sites and worsening of the infection. In this review, we discuss the current understanding of the pathways behind biofilm dispersal in S. aureus, with a focus on enzymatic and newly described broad-spectrum dispersal mechanisms. Additionally, we explore potential applications of dispersal in the treatment of biofilm-mediated infections.

  7. Pseudomonas aeruginosa produces aspirin insensitive eicosanoids and contributes to the eicosanoid profile of polymicrobial biofilms with Candida albicans.

    Science.gov (United States)

    Fourie, Ruan; Ells, Ruan; Kemp, Gabré; Sebolai, Olihile M; Albertyn, Jacobus; Pohl, Carolina H

    2017-02-01

    The interaction of clinically relevant microorganisms is the focus of various studies, e.g. the interaction between the pathogenic yeast, Candida albicans, and the bacterium, Pseudomonas aeruginosa. During infection both release arachidonic acid, which they can transform into eicosanoids. This study evaluated the production of prostaglandin E2, prostaglandin F2α and 15-hydroxyeicosatetraenoic acid by biofilms of P. aeruginosa and C. albicans. The influence of co-incubation, acetylsalicylic acid and nordihydroguaiaretic acid on biofilm formation and eicosanoid production was evaluated. Acetylsalicylic acid decreased colony forming units of P. aeruginosa, but increased metabolic activity and eicosanoid production of the cells. In contrast to prostaglandin E2, prostaglandin F2a production by C. albicans was insensitive to acetylsalicylic acid, indicating that different enzymes are responsible for their production in this yeast. Nordihydroguaiaretic acid inhibited biofilm formation by P. aeruginosa, however co-incubation provided protection against this inhibitor. Production of these eicosanoids could affect pathogen-clearance and infection dynamics and this previously uncharacterized facet of interaction could facilitate novel therapeutic intervention against polymicrobial infection.

  8. Alginate production affects Pseudomonas aeruginosa biofilm development and architecture, but is not essential for biofilm formation

    DEFF Research Database (Denmark)

    Stapper, A.P.; Narasimhan, G.; Oman, D.E.

    2004-01-01

    Extracellular polymers can facilitate the non-specific attachment of bacteria to surfaces and hold together developing biofilms. This study was undertaken to qualitatively and quantitatively compare the architecture of biofilms produced by Pseudomonas aeruginosa strain PAO1 and its alginate......-overproducing (mucA22) and alginate-defective (algD) variants in order to discern the role of alginate in biofilm formation. These strains, PAO1, Alg(+) PAOmucA22 and Alg(-) PAOalgD, tagged with green fluorescent protein, were grown in a continuous flow cell system to characterize the developmental cycles...... of their biofilm formation using confocal laser scanning microscopy. Biofilm Image Processing (BIP) and Community Statistics (COMSTAT) software programs were used to provide quantitative measurements of the two-dimensional biofilm images. All three strains formed distinguishable biofilm architectures, indicating...

  9. Polymicrobial Ventilator-Associated Pneumonia: Fighting In Vitro Candida albicans-Pseudomonas aeruginosa Biofilms with Antifungal-Antibacterial Combination Therapy

    Science.gov (United States)

    Pereira, Cláudia R.; Azevedo, Nuno F.; Lourenço, Anália; Henriques, Mariana; Pereira, Maria O.

    2017-01-01

    The polymicrobial nature of ventilator-associated pneumonia (VAP) is now evident, with mixed bacterial-fungal biofilms colonizing the VAP endotracheal tube (ETT) surface. The microbial interplay within this infection may contribute for enhanced pathogenesis and exert impact towards antimicrobial therapy. Consequently, the high mortality/morbidity rates associated to VAP and the worldwide increase in antibiotic resistance has promoted the search for novel therapeutic strategies to fight VAP polymicrobial infections. Under this scope, this work aimed to assess the activity of mono- vs combinational antimicrobial therapy using one antibiotic (Polymyxin B; PolyB) and one antifungal (Amphotericin B; AmB) agent against polymicrobial biofilms of Pseudomonas aeruginosa and Candida albicans. The action of isolated antimicrobials was firstly evaluated in single- and polymicrobial cultures, with AmB being more effective against C. albicans and PolyB against P. aeruginosa. Mixed planktonic cultures required equal or higher antimicrobial concentrations. In biofilms, only PolyB at relatively high concentrations could reduce P. aeruginosa in both monospecies and polymicrobial populations, with C. albicans displaying only punctual disturbances. PolyB and AmB exhibited a synergistic effect against P. aeruginosa and C. albicans mixed planktonic cultures, but only high doses (256 mg L-1) of PolyB were able to eradicate polymicrobial biofilms, with P. aeruginosa showing loss of cultivability (but not viability) at 2 h post-treatment, whilst C. albicans only started to be inhibited after 14 h. In conclusion, combination therapy involving an antibiotic and an antifungal agent holds an attractive therapeutic option to treat severe bacterial-fungal polymicrobial infections. Nevertheless, optimization of antimicrobial doses and further clinical pharmacokinetics/pharmacodynamics and toxicodynamics studies underpinning the optimal use of these drugs are urgently required to improve therapy

  10. Arachidonic acid affects biofilm formation and PGE2 level in Candida albicans and non-albicans species in presence of subinhibitory concentration of fluconazole and terbinafine.

    Science.gov (United States)

    Mishra, Nripendra Nath; Ali, Shakir; Shukla, Praveen K

    2014-01-01

    Candida albicans utilizes arachidonic acid (AA) released during the course of infection (Candidiasis) from phospholipids of infected host cell membranes and synthesizes extracellular prostaglandin(s) which play an important role in hyphae formation and host cell damage. C. albicans biofilms secrete significantly more prostaglandin(s) and evidence suggests that Candida biofilms have dramatically reduced susceptibility to majority of antifungal drugs. AA influences the saturation level of lipids and fluidity of yeast cell membranes. Therefore the aim of this study was to evaluate the effect of AA alone or in combination with antifungal agents on biofilm formation and production of prostaglandin (PGE2) in C. albicans, C. parapsilosis, C. glabrata, C. tropicalis, and C. albicans amphotericin B resistant strain (AmBR). Maximum biofilm formation was found to be in the case of C. albicans compared to C. non-albicans species. However, among the non-albicans species C. tropicalis exhibited highest biofilm formation. Treatment with AA in combination with subinhibitory concentrations of fluconazole and terbinafine separately exhibited significant (p<0.05) reduction in biofilm formation against C. glabrata, C. parapsilosis, C. tropicalis and AmBR as compared to their individual effect. Further, these two antifungal agents in combination with AA caused an increase in production of prostaglandin from fungal cell itself which was significant (p<0.05) in case of all the strains tested.

  11. Fungal β-1,3-glucan increases ofloxacin tolerance of Escherichia coli in a polymicrobial E. coli/Candida albicans biofilm.

    Science.gov (United States)

    De Brucker, Katrijn; Tan, Yulong; Vints, Katlijn; De Cremer, Kaat; Braem, Annabel; Verstraeten, Natalie; Michiels, Jan; Vleugels, Jef; Cammue, Bruno P A; Thevissen, Karin

    2015-01-01

    In the past, biofilm-related research has focused mainly on axenic biofilms. However, in nature, biofilms are often composed of multiple species, and the resulting polymicrobial interactions influence industrially and clinically relevant outcomes such as performance and drug resistance. In this study, we show that Escherichia coli does not affect Candida albicans tolerance to amphotericin or caspofungin in an E. coli/C. albicans biofilm. In contrast, ofloxacin tolerance of E. coli is significantly increased in a polymicrobial E. coli/C. albicans biofilm compared to its tolerance in an axenic E. coli biofilm. The increased ofloxacin tolerance of E. coli is mainly biofilm specific, as ofloxacin tolerance of E. coli is less pronounced in polymicrobial E. coli/C. albicans planktonic cultures. Moreover, we found that ofloxacin tolerance of E. coli decreased significantly when E. coli/C. albicans biofilms were treated with matrix-degrading enzymes such as the β-1,3-glucan-degrading enzyme lyticase. In line with a role for β-1,3-glucan in mediating ofloxacin tolerance of E. coli in a biofilm, we found that ofloxacin tolerance of E. coli increased even more in E. coli/C. albicans biofilms consisting of a high-β-1,3-glucan-producing C. albicans mutant. In addition, exogenous addition of laminarin, a polysaccharide composed mainly of poly-β-1,3-glucan, to an E. coli biofilm also resulted in increased ofloxacin tolerance. All these data indicate that β-1,3-glucan from C. albicans increases ofloxacin tolerance of E. coli in an E. coli/C. albicans biofilm.

  12. Critical role for CaFEN1 and CaFEN12 of Candida albicans in cell wall integrity and biofilm formation

    Science.gov (United States)

    Alfatah, Md.; Bari, Vinay K.; Nahar, Anubhav S.; Bijlani, Swati; Ganesan, K.

    2017-01-01

    Sphingolipids are involved in several cellular functions, including maintenance of cell wall integrity. To gain insight into the role of individual genes of sphingolipid biosynthetic pathway, we have screened Saccharomyces cerevisiae strains deleted in these genes for sensitivity to cell wall perturbing agents calcofluor white and congo red. Only deletants of FEN1 and SUR4 genes were found to be sensitive to both these agents. Candida albicans strains deleted in their orthologs, CaFEN1 and CaFEN12, respectively, also showed comparable phenotypes, and a strain deleted for both these genes was extremely sensitive to cell wall perturbing agents. Deletion of these genes was reported earlier to sensitise cells to amphotericin B (AmB), which is a polyene drug that kills the cells mainly by binding and sequestering ergosterol from the plasma membrane. Here we show that their AmB sensitivity is likely due to their cell wall defect. Further, we show that double deletant of C. albicans is defective in hyphae formation as well as biofilm development. Together this study reveals that deletion of FEN1 and SUR4 orthologs of C. albicans leads to impaired cell wall integrity and biofilm formation, which in turn sensitise cells to AmB. PMID:28079132

  13. Antibiotic resistance in Pseudomonas aeruginosa biofilms: towards the development of novel anti-biofilm therapies.

    Science.gov (United States)

    Taylor, Patrick K; Yeung, Amy T Y; Hancock, Robert E W

    2014-12-10

    The growth of bacteria as structured aggregates termed biofilms leads to their protection from harsh environmental conditions such as physical and chemical stresses, shearing forces, and limited nutrient availability. Because of this highly adapted ability to survive adverse environmental conditions, bacterial biofilms are recalcitrant to antibiotic therapies and immune clearance. This is particularly problematic in hospital settings where biofilms are a frequent cause of chronic and device-related infections and constitute a significant burden on the health-care system. The major therapeutic strategy against infections is the use of antibiotics, which, due to adaptive resistance, are often insufficient to clear biofilm infections. Thus, novel biofilm-specific therapies are required. Specific features of biofilm development, such as surface adherence, extracellular matrix formation, quorum sensing, and highly regulated biofilm maturation and dispersal are currently being studied as targets to be exploited in the development of novel biofilm-specific treatments. Using Pseudomonas aeruginosa for illustrative purposes, this review highlights the antibiotic resistance mechanisms of biofilms, and discusses current research into novel biofilm-specific therapies.

  14. Cell death in Pseudomonas aeruginosa biofilm development

    DEFF Research Database (Denmark)

    Webb, J.S.; Thompson, L.S.; James, S.

    2003-01-01

    . However, key developmental processes regulating these events are poorly understood. A normal component of multicellular development is cell death. Here we report that a repeatable pattern of cell death and lysis occurs in biofilms of P. aeruginosa during the normal course of development. Cell death....... We propose that prophage-mediated cell death is an important mechanism of differentiation inside microcolonies that facilitates dispersal of a subpopulation of surviving cells....

  15. Inactivation of Candida Strains in Planktonic and Biofilm Forms Using a Direct Current, Atmospheric-Pressure Cold Plasma Micro-Jet

    Science.gov (United States)

    Zhu, Wei-Dong; Sun, Peng; Sun, Yi; Yu, Shuang; Wu, Haiyan; Liu, Wei; Zhang, Jue; Fang, Jing

    A direct-current, atmospheric-pressure, He/O2 (2%) cold plasma ­microjet is applied to Candida species (C. glabrata, C. albicansand C. krusei). Effective inactivation is achieved both in air and in water within 5 min of plasma treatment. Same plasma treatment also successfully inactivated candida biofilms on Petri dish. The inactivation was verified by cell viability test (XTT assay). Severe deformation of Candida biofilms after the plasma treatment was observed through scanning electron microscope (SEM). Optical emission spectroscopy shows strong atomic oxygen emission at 777 nm. Hydroxyl radical (•OH), superoxide anion radical (•O2-) and singlet molecular oxygen (1O2) are detected by electron spin resonance (ESR) spectroscopy. The sessile minimal inhibitory concentrations (SMICs) of fluconazole, amphotericin B, and caspofungin against the Candida spp. biofilms were decreased to 2-6 fold dilutions in plasma microjet treated group in comparison with the controls. This novel approach may become a new tool for the treatment of clinical dermatosis

  16. A mucosal model to study microbial biofilm development and anti-biofilm therapeutics

    Science.gov (United States)

    Anderson, Michele J.; Parks, Patrick J.; Peterson, Marnie L.

    2013-01-01

    Biofilms are a sessile colony of bacteria which adhere to and persist on surfaces. The ability of bacteria to form biofilms is considered a virulence factor, and in fact is central to the pathogenesis of some organisms. Biofilms are inherently resistant to chemotherapy and host immune responses. Clinically, biofilms are considered a primary cause of a majority of infections, such as otitis media, pneumonia in cystic fibrosis patients and endocarditis. However, the vast majority of the data on biofilm formation comes from traditional microtiter-based or flow displacement assays with no consideration given to host factors. These assays, which have been a valuable tool in high-throughput screening for biofilm-related factors, do not mimic a host-pathogen interaction and may contribute to an inappropriate estimation of the role of some factors in clinical biofilm formation. We describe the development of a novel ex vivo model of biofilm formation on a mucosal surface by an important mucosal pathogen, methicillin resistant S. aureus (MRSA). This model is being used for the identification of microbial virulence factors important in mucosal biofilm formation and novel anti-biofilm therapies. PMID:23246911

  17. Application of post-discharge region of atmospheric pressure argon and air plasma jet in the contamination control of Candida albicans biofilms

    Directory of Open Access Journals (Sweden)

    Anelise Cristina Osório Cesar Doria

    Full Text Available Introduction:Candida species are responsible for about 80% of hospital fungal infections. Non-thermal plasmas operated at atmospheric pressure are increasingly used as an alternative to existing antimicrobial strategy. This work investigates the action of post-discharge region of a non-thermal atmospheric plasma jet, generated by a gliding arc reactor, on biofilms of standard strain of Candida albicans grown on polyurethane substrate. Methods Samples were divided into three groups: (i non-treated; (ii treated with argon plasma, and (iii treated with argon plus air plasma. Subsequently to plasma treatment, counting of colony-forming units (CFU/ml and cell viability tests were performed. In addition, the surface morphology of the samples was evaluated by scanning electron microscopy (SEM and optical profilometry (OP. Results Reduction in CFU/ml of 85% and 88.1% were observed in groups ii and iii, respectively. Cell viability after treatment also showed reduction of 33% in group ii and 8% in group iii, in comparison with group i (100%. The SEM images allow observation of the effect of plasma chemistry on biofilm structure, and OP images showed a reduction of its surface roughness, which suggests a possible loss of biofilm mass. Conclusion The treatment in post-discharge region and the chemistries of plasma jet tested in this work were effective in controlling Candida albicans biofilm contamination. Finally, it was evidenced that argon plus air plasma was the most efficient to reduce cell viability.

  18. Evaluation of Antimicrobial and Antifungal efficacy of Chitosan as endodontic irrigant against Enterococcus Faecalis and Candida Albicans Biofilm formed on tooth substrate

    Science.gov (United States)

    Yadav, Pankaj; Saxena, Rajendra K.; Talwar, Sangeeta; Yadav, Sudha

    2017-01-01

    Background Bacterial biofilms formed on the root canal wall are often difficult to remove. This study aimed to evaluate the cytotoxic effect and antibacterial efficacy of chitosan when used as root canal irrigant against E. Faecalis and Candida albicans biofilm formed on tooth substrate. Material and Methods The present study evaluated antibacterial effect of 0.25% Chitosan, 0.5% Chitosan, 2% chlorhexidine and 3% sodium hypochlorite against Enterococcus faecalis and Candida Albicans. Agar-well diffusion methods, minimal inhibitory concentration tests and biofilm susceptibility assays were used to determine antibacterial activity. Teeth specimens were sectioned to obtain a standardized tooth length of 12mm. Specimens were inoculated with 10 mL of the freshly prepared E. Faecalis suspension and Candida albicans for 4 weeks. The specimens were then instrumented with ProTaper rotary files F3 size. After irrigation with test solution, three sterile paper points were placed into one canal, left for 60 s and transferred to a test tube containing 1 mL of reduced transport fluid. The number of CFU in 1 mL was determined. Results 3-week biofilm qualitative assay showed complete inhibition of bacterial growth with 3% Sodium hypochlorite, 2% Chlorhexidine and Chitosan except saline, which showed presence of bacterial growth. Significant reduction of colony forming units (CFU)/mL was observed for the chitosan groups and the antibacterial activity of the chitosan groups was at par with 3% NaOCl and 2% Chlorhexidine. It was observed that the chitosan showed no cytotoxicity at 3mg/ml and 10% cytotoxicity at 6mg/ml. Conclusions The use of chitosan as a root canal irrigant might be an alternative considering the various undesirable properties of NaOCl and chlorhexidine. Key words:Biofilm, Candida albicans, Chitosan, Cytotoxicity, Enterococcus faecalis. PMID:28298975

  19. Successional development of biofilms in moving bed biofilm reactor (MBBR) systems treating municipal wastewater.

    Science.gov (United States)

    Biswas, Kristi; Taylor, Michael W; Turner, Susan J

    2014-02-01

    Biofilm-based technologies, such as moving bed biofilm reactor (MBBR) systems, are widely used to treat wastewater. Biofilm development is important for MBBR systems as much of the microbial biomass is retained within reactors as biofilm on suspended carriers. Little is known about this process of biofilm development and the microorganisms upon which MBBRs rely. We documented successional changes in microbial communities as biofilms established in two full-scale MBBR systems treating municipal wastewater over two seasons. 16S rRNA gene-targeted pyrosequencing and clone libraries were used to describe microbial communities. These data indicate a successional process that commences with the establishment of an aerobic community dominated by Gammaproteobacteria (up to 52 % of sequences). Over time, this community shifts towards dominance by putatively anaerobic organisms including Deltaproteobacteria and Clostridiales. Significant differences were observed between the two wastewater treatment plants (WWTPs), mostly due to a large number of sequences (up to 55 %) representing Epsilonproteobacteria (mostly Arcobacter) at one site. Archaea in young biofilms included several lineages of Euryarchaeota and Crenarchaeota. In contrast, the mature biofilm consisted entirely of Methanosarcinaceae (Euryarchaeota). This study provides new insights into the community structure of developing biofilms at full-scale WWTPs and provides the basis for optimizing MBBR start-up and operational parameters.

  20. Activity of scorpion venom-derived antifungal peptides against planktonic cells of Candida spp and Cryptococcus neoformans and Candida albicans biofilms.

    Directory of Open Access Journals (Sweden)

    Fernanda Guilhelmelli

    2016-11-01

    Full Text Available The incidence of fungal infections has been increasing in the last decades, while the number of available antifungal classes remains the same. The natural and acquired resistance of some fungal species to available therapies, associated with the high toxicity of these drugs on the present scenario and makes an imperative of the search for new, more efficient and less toxic therapeutic choices. Antimicrobial peptides (AMPs are a potential class of antimicrobial drugs consisting of evolutionarily conserved multifunctional molecules with both microbicidal and immunomodulatory properties being part of the innate immune response of diverse organisms. In this study, we evaluated 11 scorpion-venom derived non-disulfide-bridged peptides against Cryptococcus neoformans and Candida spp, which are important human pathogens. Seven of them, including two novel molecules, showed activity against both genera with MICs values ranging from 3.12 to 200 µM and an analogous activity against C. albicans biofilms. Most of the peptides presented low hemolytic and cytotoxic activity against mammalian cells. Modifications in the primary peptide sequence, as revealed by in silico and circular dichroism analyses of the most promising peptides, underscored the importance of cationicity for their antimicrobial activity as well the amphipathicity of these molecules and their tendency to form alpha helices. This is the first report of scorpion-derived AMPs against C. neoformans and our results underline the potential of scorpion venom as a source of antimicrobials. Further characterization of their mechanism of action, followed by molecular optimization to decrease their citotoxicity and increase antimicrobial activity, is needed to fully clarify their real potential as antifungals.

  1. Development and maturation of Escherichia coli K-12 biofilms

    DEFF Research Database (Denmark)

    Reisner, A.; Haagensen, J.A.J.; Schembri, Mark

    2003-01-01

    The development and maturation of E. coli biofilms in flow-chambers was investigated. We found that the presence of transfer constitutive IncF plasmids induced biofilm development forming structures resembling those reported for Pseudomonas aeruginosa . The development occurred in a step-wise pro...

  2. Evaluation of gene expression SAP5, LIP9, and PLB2 of Candida albicans biofilms after photodynamic inactivation.

    Science.gov (United States)

    Freire, Fernanda; de Barros, Patrícia Pimentel; da Silva Ávila, Damara; Brito, Graziella Nuernberg Back; Junqueira, Juliana Campos; Jorge, Antonio Olavo Cardoso

    2015-07-01

    With the increasing number of strains of Candida ssp. resistant to antifungal agents, the accomplishment of researches that evaluate the effects of new therapeutic methods, like photodynamic inactivation (PDI), becomes important and necessary. Thus, the objective of this study was to verify the effects of the PDI on Candida albicans biofilms, evaluating their effects on the expression of the gene hydrolytic enzymes aspartyl proteinase (SAP5), lipase (LIP9), and phospholipase (PLB2). Clinical strains of C. albicans (n = 9) isolated from patient bearers of the virus HIV and a pattern strain ATCC 18804 were used. The quantification of gene expression was related to the production of hydrolytic enzymes using the quantitative polymerase chain reaction (qPCR) assay. For PDI, we used laser-aluminum-gallium arsenide low power (red visible, 660 nm) as a light source and the methylene blue at 300 μM as a photosensitizer. We assessed two experimental groups for each strain: (a) PDI: sensitization with methylene blue and laser irradiation and (b) control: without sensitization with methylene blue and light absence. The PDI decreased gene expression in 60 % of samples for gene SAP5 and 50 % of the samples decreased expression of LIP9 and PLB2. When we compared the expression profile for of each gene between the treated and control group, a decrease in all gene expression was observed, however no statistically significant difference (Tukey's test/p = 0.12). It could be concluded that PDI (photosensitization with methylene blue followed by low-level laser irradiation) showed a slight reduction on the expression of hydrolytic enzymes of C. albicans, without statistical significance.

  3. Comparison of the effect of rose bengal- and eosin Y-mediated photodynamic inactivation on planktonic cells and biofilms of Candida albicans.

    Science.gov (United States)

    Freire, Fernanda; Costa, Anna Carolina Borges Pereira; Pereira, Cristiane Aparecida; Beltrame Junior, Milton; Junqueira, Juliana Campos; Jorge, Antonio Olavo Cardoso

    2014-05-01

    Candida albicans is an opportunistic yeast that can cause oral candidosis through the formation of a biofilm, an important virulence factor that compromises the action of antifungal agents. The objective of this study was to compare the effect of rose bengal (RB)- and eosin Y (EY)-mediated photodynamic inactivation (PDI) using a green light-emitting diode (LED; 532 ± 10 nm) on planktonic cells and biofilms of C. albicans (ATCC 18804). Planktonic cultures were treated with photosensitizers at concentrations ranging from 0.78 to 400 μM, and biofilms were treated with 200 μM of photosensitizers. The number of colony-forming unit per milliliter (CFU/mL) was compared by analysis of variance and Tukey's test (P ≤ 0.05). After treatment, one biofilm specimen of the control and PDI groups were examined by scanning electron microscopy. The photosensitizers (6.25, 25, 50, 200, and 400 μM of EY, and 6.25 μM of RB or higher) significantly reduced the number of CFU/mL in the PDI groups when compared to the control group. With respect to biofilm formation, RB- and EY-mediated PDI promoted reductions of 0.22 log10 and 0.45 log10, respectively. Scanning electron microscopy showed that the two photosensitizers reduced fungal structures. In conclusion, EY- and RB-mediated PDI using LED irradiation significantly reduced C. albicans planktonic cells and biofilms.

  4. In Vitro Activity of Miltefosine against Candida albicans under Planktonic and Biofilm Growth Conditions and In Vivo Efficacy in a Murine Model of Oral Candidiasis.

    Science.gov (United States)

    Vila, Taissa Vieira Machado; Chaturvedi, Ashok K; Rozental, Sonia; Lopez-Ribot, Jose L

    2015-12-01

    The generation of a new antifungal against Candida albicans biofilms has become a major priority, since biofilm formation by this opportunistic pathogenic fungus is usually associated with an increased resistance to azole antifungal drugs and treatment failures. Miltefosine is an alkyl phospholipid with promising antifungal activity. Here, we report that, when tested under planktonic conditions, miltefosine displays potent in vitro activity against multiple fluconazole-susceptible and -resistant C. albicans clinical isolates, including isolates overexpressing efflux pumps and/or with well-characterized Erg11 mutations. Moreover, miltefosine inhibits C. albicans biofilm formation and displays activity against preformed biofilms. Serial passage experiments confirmed that miltefosine has a reduced potential to elicit resistance, and screening of a library of C. albicans transcription factor mutants provided additional insight into the activity of miltefosine against C. albicans growing under planktonic and biofilm conditions. Finally, we demonstrate the in vivo efficacy of topical treatment with miltefosine in the murine model of oropharyngeal candidiasis. Overall, our results confirm the potential of miltefosine as a promising antifungal drug candidate, in particular for the treatment of azole-resistant and biofilm-associated superficial candidiasis.

  5. Competitive Interactions between C. albicans, C. glabrata and C. krusei during Biofilm Formation and Development of Experimental Candidiasis.

    Science.gov (United States)

    Rossoni, Rodnei Dennis; Barbosa, Júnia Oliveira; Vilela, Simone Furgeri Godinho; dos Santos, Jéssica Diane; de Barros, Patrícia Pimentel; Prata, Márcia Cristina de Azevedo; Anbinder, Ana Lia; Fuchs, Beth Burgwyn; Jorge, Antonio Olavo Cardoso; Mylonakis, Eleftherios; Junqueira, Juliana Campos

    2015-01-01

    In this study, we evaluated the interactions between Candida albicans, Candida krusei and Candida glabrata in mixed infections. Initially, these interactions were studied in biofilms formed in vitro. CFU/mL values of C. albicans were lower in mixed biofilms when compared to the single biofilms, verifying 77% and 89% of C. albicans reduction when this species was associated with C. glabrata and C. krusei, respectively. After that, we expanded this study for in vivo host models of experimental candidiasis. G. mellonella larvae were inoculated with monotypic and heterotypic Candida suspensions for analysis of survival rate and quantification of fungal cells in the haemolymph. In the groups with single infections, 100% of the larvae died within 18 h after infection with C. albicans. However, interaction groups achieved 100% mortality after 72 h of infection by C. albicans-C. glabrata and 96 h of infection by C. albicans-C. krusei. C. albicans CFU/mL values from larvae hemolymph were lower in the interacting groups compared with the monoespecies group after 12 h of infection. In addition, immunosuppressed mice were also inoculated with monotypic and heterotypic microbial suspensions to induce oral candidiasis. C. albicans CFU/mL values recovered from oral cavity of mice were higher in the group with single infection by C. albicans than the groups with mixed infections by C. albicans-C. glabrata and C. albicans-C. krusei. Moreover, the group with single infection by C. albicans had a higher degree of hyphae and epithelial changes in the tongue dorsum than the groups with mixed infections. We concluded that single infections by C. albicans were more harmful for animal models than mixed infections with non-albicans species, suggesting that C. albicans establish competitive interactions with C. krusei and C. glabrata during biofilm formation and development of experimental candidiasis.

  6. Candida albicans ethanol stimulates Pseudomonas aeruginosa WspR-controlled biofilm formation as part of a cyclic relationship involving phenazines.

    Directory of Open Access Journals (Sweden)

    Annie I Chen

    2014-10-01

    Full Text Available In chronic infections, pathogens are often in the presence of other microbial species. For example, Pseudomonas aeruginosa is a common and detrimental lung pathogen in individuals with cystic fibrosis (CF and co-infections with Candida albicans are common. Here, we show that P. aeruginosa biofilm formation and phenazine production were strongly influenced by ethanol produced by the fungus C. albicans. Ethanol stimulated phenotypes that are indicative of increased levels of cyclic-di-GMP (c-di-GMP, and levels of c-di-GMP were 2-fold higher in the presence of ethanol. Through a genetic screen, we found that the diguanylate cyclase WspR was required for ethanol stimulation of c-di-GMP. Multiple lines of evidence indicate that ethanol stimulates WspR signaling through its cognate sensor WspA, and promotes WspR-dependent activation of Pel exopolysaccharide production, which contributes to biofilm maturation. We also found that ethanol stimulation of WspR promoted P. aeruginosa colonization of CF airway epithelial cells. P. aeruginosa production of phenazines occurs both in the CF lung and in culture, and phenazines enhance ethanol production by C. albicans. Using a C. albicans adh1/adh1 mutant with decreased ethanol production, we found that fungal ethanol strongly altered the spectrum of P. aeruginosa phenazines in favor of those that are most effective against fungi. Thus, a feedback cycle comprised of ethanol and phenazines drives this polymicrobial interaction, and these relationships may provide insight into why co-infection with both P. aeruginosa and C. albicans has been associated with worse outcomes in cystic fibrosis.

  7. Synthetic antimicrobial β-peptide in dual-treatment with fluconazole or ketoconazole enhances the in vitro inhibition of planktonic and biofilm Candida albicans.

    Science.gov (United States)

    Mora-Navarro, Camilo; Caraballo-León, Jean; Torres-Lugo, Madeline; Ortiz-Bermúdez, Patricia

    2015-12-01

    Fungal infections are a pressing concern for human health worldwide, particularly for immunocompromised individuals. Current challenges such as the elevated toxicity of common antifungal drugs and the emerging resistance towards these could be overcome by multidrug therapy. Natural antimicrobial peptides, AMPs, in combination with other antifungal agents are a promising avenue to address the prevailing challenges. However, they possess limited biostability and susceptibility to proteases, which has significantly hampered their development as antifungal therapies. β-peptides are synthetic materials designed to mimic AMPs while allowing high tunability and increased biostability. In this work, we report for the first time the inhibition achieved in Candida albicans when treated with a mixture of a β-peptide model and fluconazole or ketoconazole. This combination treatment enhanced the biological activity of these azoles in planktonic and biofilm Candida, and also in a fluconazole-resistant strain. Furthermore, the in vitro cytotoxicity of the dual treatment was evaluated towards the human hepatoma cell line, HepG2, a widely used model derived from liver tissue, which is primarily affected by azoles. Analyses based on the LA-based method and the mass-action law principle, using a microtiter checkerboard approach, revealed synergism of the combination treatment in the inhibition of planktonic C. albicans. The dual treatment proved to be fungicidal at 48 and 72 h. Interestingly, it was also found that the viability of HepG2 was not significantly affected by the dual treatments. Finally, a remarkable enhancement in the inhibition of the highly azole-resistant biofilms and fluconazole resistant C. albicans strain was obtained.

  8. Secreted aspartic protease cleavage of Candida albicans Msb2 activates Cek1 MAPK signaling affecting biofilm formation and oropharyngeal candidiasis.

    Directory of Open Access Journals (Sweden)

    Sumant Puri

    Full Text Available Perception of external stimuli and generation of an appropriate response are crucial for host colonization by pathogens. In pathogenic fungi, mitogen activated protein kinase (MAPK pathways regulate dimorphism, biofilm/mat formation, and virulence. Signaling mucins, characterized by a heavily glycosylated extracellular domain, a transmembrane domain, and a small cytoplasmic domain, are known to regulate various signaling pathways. In Candida albicans, the mucin Msb2 regulates the Cek1 MAPK pathway. We show here that Msb2 is localized to the yeast cell wall and is further enriched on hyphal surfaces. A msb2Δ/Δ strain formed normal hyphae but had biofilm defects. Cek1 (but not Mkc1 phosphorylation was absent in the msb2Δ/Δ mutant. The extracellular domain of Msb2 was shed in cells exposed to elevated temperature and carbon source limitation, concomitant with germination and Cek1 phosphorylation. Msb2 shedding occurred differentially in cells grown planktonically or on solid surfaces in the presence of cell wall and osmotic stressors. We further show that Msb2 shedding and Cek1 phosphorylation were inhibited by addition of Pepstatin A (PA, a selective inhibitor of aspartic proteases (Saps. Analysis of combinations of Sap protease mutants identified a sap8Δ/Δ mutant with reduced MAPK signaling along with defects in biofilm formation, thereby suggesting that Sap8 potentially serves as a major regulator of Msb2 processing. We further show that loss of either Msb2 (msb2Δ/Δ or Sap8 (sap8Δ/Δ resulted in higher C. albicans surface β-glucan exposure and msb2Δ/Δ showed attenuated virulence in a murine model of oral candidiasis. Thus, Sap-mediated proteolytic cleavage of Msb2 is required for activation of the Cek1 MAPK pathway in response to environmental cues including those that induce germination. Inhibition of Msb2 processing at the level of Saps may provide a means of attenuating MAPK signaling and reducing C. albicans virulence.

  9. Alternative mating type configurations (a/α versus a/a or α/α of Candida albicans result in alternative biofilms regulated by different pathways.

    Directory of Open Access Journals (Sweden)

    Song Yi

    2011-08-01

    Full Text Available Similar multicellular structures can evolve within the same organism that may have different evolutionary histories, be controlled by different regulatory pathways, and play similar but nonidentical roles. In the human fungal pathogen Candida albicans, a quite extraordinary example of this has occurred. Depending upon the configuration of the mating type locus (a/α versus a/a or α/α, C. albicans forms alternative biofilms that appear similar morphologically, but exhibit dramatically different characteristics and are regulated by distinctly different signal transduction pathways. Biofilms formed by a/α cells are impermeable to molecules in the size range of 300 Da to 140 kDa, are poorly penetrated by human polymorphonuclear leukocytes (PMNs, and are resistant to antifungals. In contrast, a/a or α/α biofilms are permeable to molecules in this size range, are readily penetrated by PMNs, and are susceptible to antifungals. By mutational analyses, a/α biofilms are demonstrated to be regulated by the Ras1/cAMP pathway that includes Ras1→Cdc35→cAMP(Pde2-|→Tpk2(Tpk1→Efg1→Tec1→Bcr1, and a/a biofilms by the MAP kinase pathway that includes Mfα→Ste2→ (Ste4, Ste18, Cag1→Ste11→Hst7→Cek2(Cek1→Tec1. These observations suggest the hypothesis that while the upstream portion of the newly evolved pathway regulating a/a and α/α cell biofilms was derived intact from the upstream portion of the conserved pheromone-regulated pathway for mating, the downstream portion was derived through modification of the downstream portion of the conserved pathway for a/α biofilm formation. C. albicans therefore forms two alternative biofilms depending upon mating configuration.

  10. Properties of silver and copper nanoparticle-containing aqueous solutions and evaluation of their in vitro activity against Candida albicans and Staphylococcus aureus biofilms

    Science.gov (United States)

    Montes Aguirre, Melissa Mariluz

    Most microorganisms grow on surfaces as biofilms rather than as individual planktonic cells, and cells within biofilms show high levels of resistance against antimicrobial drugs. Thereby biofilm formation complicates treatment and contributes to high morbidity and mortality rates associated with infections. This study explores the physical, optical, and nano-structural properties of selected nanoparticles dispersed in aqueous solutions (nanoparticulate colloidal water or nanofluids) and examines their in vitro activity against microbial biofilms. Silver and copper nanofluids of various concentrations were prepared and studied. Their surface energies, surface charge and surface plasmonic resonance properties were obtained using contact angle measurement, zeta potential and optical spectrometer, respectively. The temperature dependence of the surface plasmon resonance behavior was also determined for the selected nanoparticulate aqueous solutions. A model of biofilm formation on the wells of microtiter plates was used to determine the in vitro activity of the nanoparticle preparations against both fungal (Candida albicans) and bacterial (Staphylococcus aureus) biofilms. Scanning electron microscopy (SEM) was used to observe the nanoparticle interactions with microbial cells. Results show that silver nanofluid has higher surface energy than that of the copper, the surface energy increases as the concentration of silver nanoparticles increases; and both nanoparticles in liquid are positively charged. The interaction between silver nanoparticles and water molecules produces notable changes on the usual temperature properties of water. Altogether, effectiveness of silver nanoparticle-containing liquids in controlling biofilm formation is observed and reported. For a given size of silver nanoparticles studied, it is found that the effective concentrations of silver nanoparticles against microbial biofilms are far lower than their cytotoxic concentrations, indicating an

  11. Mixed biofilms formed by C. albicans and non-albicans species: a study of microbial interactions.

    Science.gov (United States)

    Santos, Jéssica Diane dos; Piva, Elisabete; Vilela, Simone Furgeri Godinho; Jorge, Antonio Olavo Cardoso; Junqueira, Juliana Campos

    2016-01-01

    Most Candida infections are related to microbial biofilms often formed by the association of different species. The objective of this study was to evaluate the interactions between Candida albicans and non-albicans species in biofilms formed in vitro. The non-albicans species studied were:Candida tropicalis, Candida glabrata and Candida krusei. Single and mixed biofilms (formed by clinical isolates of C. albicans and non-albicans species) were developed from standardized suspensions of each strain (10(7) cells/mL), on flat-bottom 96-well microtiter plates for 48 hour. These biofilms were analyzed by counting colony-forming units (CFU/mL) in Candida HiChrome agar and by determining cell viability, using the XTT 2,3-bis (2-methoxy-4-nitro-5-sulphophenyl)-5-[(phenylamino) carbonyl]-2H-tetrazolium hydroxide colorimetric assay. The results for both the CFU/mL count and the XTT colorimetric assay showed that all the species studied were capable of forming high levels of in vitro biofilm. The number of CFU/mL and the metabolic activity of C. albicans were reduced in mixed biofilms with non-albicans species, as compared with a single C. albicans biofilm. Among the species tested, C. krusei exerted the highest inhibitory action against C. albicans. In conclusion, C. albicans established antagonistic interactions with non-albicans Candida species in mixed biofilms.

  12. The impact of manganese on biofilm development of Bacillus subtilis

    NARCIS (Netherlands)

    Mhatre, Eisha; Troszok, Agnieszka; Gallegos-Monterrosa, Ramses; Lindstädt, Stefanie; Hölscher, Theresa; Kuipers, Oscar P.; Kovács, Ákos T.

    2016-01-01

    Bacterial biofilms are dynamic and structurally complex communities, involving cell-to-cell interactions. In recent years, various environmental signals were identified that induce the complex biofilm development of the Gram-positive bacterium Bacillus subtilis. These signaling molecules are often m

  13. In vitro effectiveness of 455-nm blue LED to reduce the load of Staphylococcus aureus and Candida albicans biofilms in compact bone tissue.

    Science.gov (United States)

    Rosa, Luciano Pereira; da Silva, Francine Cristina; Viana, Magda Souza; Meira, Giselle Andrade

    2016-01-01

    The aim of this study was to evaluate the effectiveness of a 455-nm blue light-emitting diode (LED), at different application times, to reduce the load of Staphylococcus aureus and Candida albicans biofilms applied to compact bone tissue. The microorganisms S. aureus (ATCC 25923) and C. albicans (ATCC 18804) were used to form biofilms on 160 specimens of compact bones that had been divided into eight experimental groups (n = 10) for each microorganism, according to the times of application of the 455-nm blue LED (1, 2, 3, 4, 5, 7, and 10 min) with an irradiance of 75 mW/cm2. After LED application, decimal dilutions of microorganisms were performed, plated on BHI or Sabouraud agar and incubated for 24 h/35 °C to obtain CFU/mL counts. The findings were statistically analyzed using a ANOVA 5 %. For the group of S. aureus biofilms, all groups of 455-nm LED application differ compared with the control group (p albicans biofilms, only those samples receiving 3, 7, and 10 min of LED application presented a significant difference compared with the control group (p albicans biofilms, especially during 10 min of application.

  14. Bacteriophages as an alternative strategy for fighting biofilm development.

    Science.gov (United States)

    Parasion, Sylwia; Kwiatek, Magdalena; Gryko, Romuald; Mizak, Lidia; Malm, Anna

    2014-01-01

    The ability of microbes to form biofilms is an important element of their pathogenicity, and biofilm formation is a serious challenge for today's medicine. Fighting the clinical complications associated with biofilm formation is very difficult and linked to a high risk of failure, especially in a time of increasing bacterial resistance to antibiotics. Bacterial species most commonly isolated from biofilms include coagulase-negative staphylococci, Staphylococcus aureus, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Proteus mirabilis, Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter spp. The frequent failure of antibiotic therapy led researchers to look for alternative methods and experiment with the use of antibacterial factors with a mechanism of action different from that of antibiotics. Experimental studies with bacteriophages and mixtures thereof, expressing lytic properties against numerous biofilm-forming bacterial species showed that bacteriophages may both prevent biofilm formation and contribute to eradication of biofilm bacteria. A specific role is played here by phage depolymerases, which facilitate the degradation of extracellular polymeric substances (EPS) and thus the permeation of bacteriophages into deeper biofilm layers and lysis of the susceptible bacterial cells. Much hope is placed in genetic modifications of bacteriophages that would allow the equipping bacteriophages with the function of depolymerase synthesis. The use of phage cocktails prevents the development of phage-resistant bacteria.

  15. Real-time PCR expression profiling of genes encoding potential virulence factors in Candida albicans biofilms: identification of model-dependent and -independent gene expression

    Directory of Open Access Journals (Sweden)

    Řičicová Markéta

    2010-04-01

    Full Text Available Abstract Background Candida albicans infections are often associated with biofilm formation. Previous work demonstrated that the expression of HWP1 (hyphal wall protein and of genes belonging to the ALS (agglutinin-like sequence, SAP (secreted aspartyl protease, PLB (phospholipase B and LIP (lipase gene families is associated with biofilm growth on mucosal surfaces. We investigated using real-time PCR whether genes encoding potential virulence factors are also highly expressed in biofilms associated with abiotic surfaces. For this, C. albicans biofilms were grown on silicone in microtiter plates (MTP or in the Centres for Disease Control (CDC reactor, on polyurethane in an in vivo subcutaneous catheter rat (SCR model, and on mucosal surfaces in the reconstituted human epithelium (RHE model. Results HWP1 and genes belonging to the ALS, SAP, PLB and LIP gene families were constitutively expressed in C. albicans biofilms. ALS1-5 were upregulated in all model systems, while ALS9 was mostly downregulated. ALS6 and HWP1 were overexpressed in all models except in the RHE and MTP, respectively. The expression levels of SAP1 were more pronounced in both in vitro models, while those of SAP2, SAP4 and SAP6 were higher in the in vivo model. Furthermore, SAP5 was highly upregulated in the in vivo and RHE models. For SAP9 and SAP10 similar gene expression levels were observed in all model systems. PLB genes were not considerably upregulated in biofilms, while LIP1-3, LIP5-7 and LIP9-10 were highly overexpressed in both in vitro models. Furthermore, an elevated lipase activity was detected in supernatans of biofilms grown in the MTP and RHE model. Conclusions Our findings show that HWP1 and most of the genes belonging to the ALS, SAP and LIP gene families are upregulated in C. albicans biofilms. Comparison of the fold expression between the various model systems revealed similar expression levels for some genes, while for others model-dependent expression

  16. Assembly and development of the Pseudomonas aeruginosa biofilm matrix.

    Directory of Open Access Journals (Sweden)

    Luyan Ma

    2009-03-01

    Full Text Available Virtually all cells living in multicellular structures such as tissues and organs are encased in an extracellular matrix. One of the most important features of a biofilm is the extracellular polymeric substance that functions as a matrix, holding bacterial cells together. Yet very little is known about how the matrix forms or how matrix components encase bacteria during biofilm development. Pseudomonas aeruginosa forms environmentally and clinically relevant biofilms and is a paradigm organism for the study of biofilms. The extracellular polymeric substance of P. aeruginosa biofilms is an ill-defined mix of polysaccharides, nucleic acids, and proteins. Here, we directly visualize the product of the polysaccharide synthesis locus (Psl exopolysaccharide at different stages of biofilm development. During attachment, Psl is anchored on the cell surface in a helical pattern. This promotes cell-cell interactions and assembly of a matrix, which holds bacteria in the biofilm and on the surface. Chemical dissociation of Psl from the bacterial surface disrupted the Psl matrix as well as the biofilm structure. During biofilm maturation, Psl accumulates on the periphery of 3-D-structured microcolonies, resulting in a Psl matrix-free cavity in the microcolony center. At the dispersion stage, swimming cells appear in this matrix cavity. Dead cells and extracellular DNA (eDNA are also concentrated in the Psl matrix-free area. Deletion of genes that control cell death and autolysis affects the formation of the matrix cavity and microcolony dispersion. These data provide a mechanism for how P. aeruginosa builds a matrix and subsequently a cavity to free a portion of cells for seeding dispersal. Direct visualization reveals that Psl is a key scaffolding matrix component and opens up avenues for therapeutics of biofilm-related complications.

  17. Development of a contemporary animal model of Candida albicans-associated denture stomatitis using a novel intraoral denture system.

    Science.gov (United States)

    Johnson, Clorinda C; Yu, Alika; Lee, Heeje; Fidel, Paul L; Noverr, Mairi C

    2012-05-01

    Denture stomatitis (DS) is a fungal infection characterized by inflammation of the oral mucosa in direct contact with the denture and affects up to 50% of denture wearers. Despite the prevalence, very little is known about the role of fungal or host factors that contribute to pathogenesis. Recently, we developed a novel intraoral denture system for rodent research. This denture system consists of custom-fitted fixed and removable parts to allow repeated sampling and longitudinal studies. The purpose of this study was to use this denture system to develop a clinically relevant animal model of DS. To establish DS, rats were inoculated with pelleted Candida albicans, which resulted in sustained colonization of the denture and palate for 8 weeks postinoculation. Biofilm formation on the denture was observed by week 4 and on the palate by week 6 postinoculation. Rats were monitored for clinical signs of disease by assigning a clinical score after macroscopic examination of the palate tissue according to Newton's method. By week 4 postinoculation, the majority of inoculated rats with dentures exhibited a clinical score of 1 (pinpoint erythema). By week 6 and week 8 postinoculation, increasing percentages of rats exhibited a clinical score of 2 (diffuse erythema/edema). Histological analysis of palate tissue demonstrated progressively increasing inflammatory cell recruitment throughout the time course of the infection. Palatal biofilm formation was commensurate with development of palatal erythema, which suggests a role for biofilm in the inflammatory response.

  18. Influência das proteínas salivares e plasmáticas no desenvolvimento de biofilmes de Candida albicans

    OpenAIRE

    William Custodio

    2012-01-01

    Resumo: O desenvolvimento de biofilme de Candida albicans pode ser mediado pela expressão diferencial de sítios de ligação protéicos na película adquirida formada sobre as superfícies das próteses dentais. Assim, objetivo geral deste estudo foi verificar a influência das proteínas de origem salivar e plasmática na formação dos biofilmes de C. albicans. No primeiro capítulo foi revisado o estado da arte de metodologias aplicadas para análise de proteínas. A partir do conhecimento das metodolog...

  19. Role of mutation in Pseudomonas aeruginosa biofilm development.

    Directory of Open Access Journals (Sweden)

    Tim C R Conibear

    development, and may help to explain why structural and genetic heterogeneity are characteristic features of bacterial biofilm populations.

  20. Effects of tannins extracted from Terminalia chebula Retz on Candida albicans and its biofilm%诃子鞣质对白色念珠菌及其生物被膜的影响

    Institute of Scientific and Technical Information of China (English)

    向丽; 周铁军; 叶迎春; 王光西

    2013-01-01

    目的 研究诃子鞣质对生物被膜型白色念珠菌的抑制作用.方法 采用MTT法检测诃子鞣质对生物被膜形成的影响;光镜下观察生物被膜内白色念珠菌的形态学变化;采用荧光显微镜观察吖啶橙/溴化乙锭染色的生物被膜内白色念珠菌的死亡方式.结果 诃子鞣质对生物被膜的形成及成熟期生物被膜中的白色念珠菌有抑制作用,并存在时间和剂量依赖性;鞣质导致被膜内白色念珠菌细胞变形,形态结构改变,芽管和假菌丝形成抑制,但未见确切细胞凋亡.结论 诃子鞣质对白色念珠菌生物被膜的形成有抑制作用,它可能通过非凋亡途径导致生物被膜内白色念珠菌的死亡.%Objective To study the inhibitory effects of tannins extracted from Terminalia chebula Retz on Candida albicans in biofilm.Methods MTT assay was used to detect the effects of tannins extracted from Terminalia chebula Retz on biofilm formation.Light microscope was employed to observe the morphological changes of Candida albicans in biofilm,and fluorescence microscope was adopted to survey the death mode of Candida albicans in biofilm by acridine orange/ethidium bromide staining.Results Tannins extracted from Terminalia chebula Retz showed inhibitory effects on biofilm formation and Candida albicans in mature biofilm in a time-and dose-dependent manner.Tannins led to cellular deformation, morphological changes of Candida albicans in biofilm,and inhibited germ tubes and pseudohyphae formation, while there was no exact apoptosis was observed.Conclusion Tannins extracted from Terminalia chebula Retz possess inhibitory effect on biofilm formation of Candida albicans,and lead to Candida albicans in biofilm death probably via non-apoptosis pathway.

  1. Quercetin Assists Fluconazole to Inhibit Biofilm Formations of Fluconazole-Resistant Candida Albicans in In Vitro and In Vivo Antifungal Managements of Vulvovaginal Candidiasis

    Directory of Open Access Journals (Sweden)

    Mei Gao

    2016-11-01

    Full Text Available Background: Vulvovaginal candidiasis (VVC is a common gynecological disease. Candida albicans is believed to be mainly implicated in VVC occurrence, the biofilm of which is one of the virulence factors responsible for resistance to traditional antifungal agents especially to fluconazole (FCZ. Quercetin (QCT is a dietary flavonoid and has been demonstrated to be antifungal against C. albicans biofilm. Methods: 17 C. albicans isolates including 15 clinical ones isolated from VVC patients were employed to investigate the effects of QCT and/or FCZ on the inhibition of C. albicans biofilm. Results: We observed that 64 µg/mL QCT and/or 128 µg/mL FCZ could (i be synergistic against 10 FCZ-resistant planktonic and 17 biofilm cells of C. albicans, (ii inhibit fungal adherence, cell surface hydrophobicity (CSH, flocculation, yeast-to-hypha transition, metabolism, thickness and dispersion of biofilms; (iii down-regulate the expressions of ALS1, ALS3, HWP1, SUN41, UME6 and ECE1 and up-regulate the expressions of PDE2, NRG1 and HSP90, and we also found that (iv the fungal burden was reduced in vaginal mucosa and the symptoms were alleviated in a murine VVC model after the treatments of 5 mg/kg QCT and/or 20 mg/kg FCZ. Conclusion: Together with these results, it could be demonstrated that QCT could be a favorable antifungal agent and a promising synergist with FCZ in the clinical management of VVC caused by C. albicans biofilm.

  2. Als1 and Als3 regulate the intracellular uptake of copper ions when Candida albicans biofilms are exposed to metallic copper surfaces.

    Science.gov (United States)

    Zheng, Sha; Chang, Wenqiang; Li, Chen; Lou, Hongxiang

    2016-05-01

    Copper surfaces possess efficient antimicrobial effect. Here, we reported that copper surfaces could inactivate Candida albicans biofilms within 40 min. The intracellular reactive oxygen species in C. albicans biofilms were immediately stimulated during the contact of copper surfaces, which might be an important factor for killing the mature biofilms. Copper release assay demonstrated that the copper ions automatically released from the surface of 1 mm thick copper coupons with over 99.9% purity are not the key determinant for the copper-mediated killing action. The susceptibility test to copper surfaces by using C. albicans mutant strains, which were involved in efflux pumps, adhesins, biofilms formation or osmotic stress response showed that als1/als1 and als3/als3 displayed higher resistance to the copper surface contact than other mutants did. The intracellular concentration of copper ions was lower in als1/als1 and als3/als3 than that in wild-type strain. Transcriptional analysis revealed that the expression of copper transporter-related gene, CRP1, was significantly increased in als1/als1, als3/als3, suggesting a potential role of ALS1 and ALS3 in absorbing ions by regulating the expression of CRP1 This study provides a potential application in treating pathogenic fungi by using copper surfaces and uncovers the roles of ALS1 and ALS3 in absorbing copper ions for C. albicans.

  3. Rapid development of Candida krusei echinocandin resistance during caspofungin therapy.

    Science.gov (United States)

    Forastiero, A; Garcia-Gil, V; Rivero-Menendez, O; Garcia-Rubio, R; Monteiro, M C; Alastruey-Izquierdo, A; Jordan, R; Agorio, I; Mellado, E

    2015-11-01

    In invasive candidiasis, there has been an epidemiological shift from Candida albicans to non-albicans species infections, including infections with C. glabrata, C. parapsilosis, C. tropicalis, and C. krusei. Although the prevalence of C. krusei remains low among yeast infections, its intrinsic resistance to fluconazole raises epidemiological and therapeutic concerns. Echinocandins have in vitro activity against most Candida spp. and are the first-line agents in the treatment of candidemia. Although resistance to echinocandin drugs is still rare, individual cases of C. krusei resistance have been reported in recent years, especially with strains that have been under selective pressure. A total of 15 C. krusei strains, isolated from the blood, urine, and soft tissue of an acute lymphocytic leukemia patient, were analyzed. Strains developed echinocandin resistance during 10 days of caspofungin therapy. The molecular epidemiology of the isolates was investigated using two different typing methods: PCR-based amplification of the species-specific repetitive polymorphic CKRS-1 sequence and multilocus sequence typing. All isolates were genetically related, and the mechanism involved in decreased echinocandin susceptibility was characterized. Clinical resistance was associated with an increase in echinocandin MICs in vitro and was related to three different mutations in hot spot 1 of the target enzyme Fks1p. Molecular evidence of the rapid acquisition of resistance by different mutations in FKS1 highlights the need to monitor the development of resistance in C. krusei infections treated with echinocandin drugs.

  4. Effects of seawater ozonation on biofilm development in aquaculture tanks.

    Science.gov (United States)

    Wietz, Matthias; Hall, Michael R; Høj, Lone

    2009-07-01

    Microbial biofilms developing in aquaculture tanks represent a reservoir for opportunistic bacterial pathogens, and procedures to control formation and bacterial composition of biofilms are important for the development of commercially viable aquaculture industries. This study investigated the effects of seawater ozonation on biofilm development on microscope glass slides placed in small-scale aquaculture tanks containing the live feed organism Artemia. Fluorescence in situ hybridization (FISH) demonstrated that ozonation accelerated the biofilm formation cycle, while it delayed the establishment of filamentous bacteria. Gammaproteobacteria and Alphaproteobacteria were the most abundant bacterial groups in the biofilm for both water types, but ozonation influenced their dynamics. With ozonation, the bacterial community structure was relatively stable and dominated by Gammaproteobacteria throughout the experiment (21-66% of total bacteria). Without ozonation, the community showed larger fluctuations, and Alphaproteobacteria emerged as dominant after 18 days (up to 54% of total bacteria). Ozonation of seawater also affected the dynamics of less abundant populations in the biofilm such as Betaproteobacteria, Planctomycetales and the Cytophaga/Flavobacterium branch of phylum Bacteroidetes. The abundance of Thiothrix, a bacterial genus capable of filamentous growth and fouling of larvae, increased with time for both water types, while no temporal trend could be detected for the genus Vibrio. Denaturing gradient gel electrophoresis (DGGE) demonstrated temporal changes in the dominant bacterial populations for both water types. Sequencing of DGGE bands confirmed the FISH data, and sequences were related to bacterial groups commonly found in biofilms of aquaculture systems. Several populations were closely related to organisms involved in sulfur cycling. Improved Artemia survival rates in tanks receiving ozonated water suggested a positive effect of ozonation on animal

  5. Nitritation performance and biofilm development of co- and counter-diffusion biofilm reactors: Modeling and experimental comparison

    DEFF Research Database (Denmark)

    Wang, Rongchang; Terada, Akihiko; Lackner, Susanne

    2009-01-01

    A comparative study was conducted on the start-up performance and biofilm development in two different biofilm reactors with aim of obtaining partial nitritation. The reactors were both operated under oxygen limited conditions, but differed in geometry. While substrates (O-2, NH3) co......-diffused in one geometry, they counter-diffused in the other. Mathematical simulations of these two geometries were implemented in two 1-D multispecies biofilm models using the AQUASIM software. Sensitivity analysis results showed that the oxygen mass transfer coefficient (K-i) and maximum specific growth rate...... results showed that the counter-diffusion biofilms developed faster and attained a larger maximum biofilm thickness than the co-diffusion biofilms. Under oxygen limited condition (DO

  6. Beneficial biofilms

    Directory of Open Access Journals (Sweden)

    Sara R Robertson

    2015-10-01

    Full Text Available Surface-adherent biofilm growth is a common trait of bacteria and other microorganisms in nature. Within biofilms, organisms are present in high density and are enmeshed in an organic matrix containing polysaccharides and other molecules. The close proximity of organisms within biofilms facilitates microbial interactions and signaling, including many metabolic processes in which consortia rather than individual organisms participate. Biofilm growth also enables microorganisms to withstand chemical and biological stresses. Here, we review some current literature and document representative beneficial aspects of biofilms using examples from wastewater treatment, microbial fuel cells, biological repair (biocementation of stonework, and biofilm protection against Candida albicans infections. Finally, we address a chemical ecology strategy whereby desired microbial succession and beneficial biofilm formation can be encouraged via manipulation of culture conditions and bacterial signaling.

  7. Carbohydrate derived fulvic acid (CHD-FA: an in vitro investigation of a novel membrane active antiseptic agent against Candida albicans biofilms

    Directory of Open Access Journals (Sweden)

    Leighann eSherry

    2012-03-01

    Full Text Available Carbohydrate derived fulvic acid (CHD-FA is a heat stable low molecular weight, water soluble, cationic, colloidal material with proposed therapeutic properties. The aim of this study was to evaluate the antifungal activity of CHD-FA against Candida albicans, and to characterise its mode of action. A panel of C. albicans isolates (n=50 derived from a range of clinical specimens were grown planktonically and as biofilms, and the minimum inhibitory concentrations (MICs determined. Scanning electron microscopy was performed to examine ultrastructural changes and different cell membrane assays were used to determine its mode of action. In addition, the role of C. albicans biofilm resistance mechanisms were investigated to determine their effects of CHD-FA activity. CHD-FA was active against planktonic and sessile C. albicans at concentrations 0.125% and 0.25% respectively, and was shown to be fungicidal, acting through disruption of the cell membrane activity. Resistance mechanisms, including matrix, efflux and stress, had a limited role upon CHD-FA activity. Overall, based on the promising in vitro spectrum of activity and minimal biofilm resistance of the natural and cheap antiseptic CHD-FA, further studies are required to determine its applicability for clinical use.

  8. Fungal Biofilms: In Vivo Models for Discovery of Anti-Biofilm Drugs.

    Science.gov (United States)

    Nett, Jeniel E; Andes, David R

    2015-06-01

    During infection, fungi frequently transition to a biofilm lifestyle, proliferating as communities of surface-adherent aggregates of cells. Phenotypically, cells in a biofilm are distinct from free-floating cells. Their high tolerance of antifungals and ability to withstand host defenses are two characteristics that foster resilience. Biofilm infections are particularly difficult to eradicate, and most available antifungals have minimal activity. Therefore, the discovery of novel compounds and innovative strategies to treat fungal biofilms is of great interest. Although many fungi have been observed to form biofilms, the most well-studied is Candida albicans. Animal models have been developed to simulate common Candida device-associated infections, including those involving vascular catheters, dentures, urinary catheters, and subcutaneous implants. Models have also reproduced the most common mucosal biofilm infections: oropharyngeal and vaginal candidiasis. These models incorporate the anatomical site, immune components, and fluid dynamics of clinical niches and have been instrumental in the study of drug resistance and investigation of novel therapies. This chapter describes the significance of fungal biofilm infections, the animal models developed for biofilm study, and how these models have contributed to the development of new strategies for the eradication of fungal biofilm infections.

  9. Investigating biofilm structure developing on carriers from lab-scale moving bed biofilm reactors based on light microscopy and optical coherence tomography.

    Science.gov (United States)

    Li, Chunyan; Felz, Simon; Wagner, Michael; Lackner, Susanne; Horn, Harald

    2016-01-01

    This study focused on characterizing the structure of biofilms developed on carriers used in lab-scale moving bed biofilm reactors. Both light microscopy (2D) and optical coherence tomography (OCT) were employed to track the biofilm development on carriers of different geometry and under different aeration rates. Biofilm structure was further characterized with respect to average biofilm thickness, biofilm growth velocity, biomass volume, compartment filling degree, surface area, etc. The results showed that carriers with a smaller compartment size stimulated a quick establishment of biofilms. Low aeration rates favored fast development of biofilms. Comparison between the results derived from 2D and 3D images revealed comparable results with respect to average biofilm thickness and compartment filling degree before the carrier compartments were fully willed with biomass. However, 3D imaging with OCT was capable of visualizing and quantifying the heterogeneous structure of biofilms, which cannot be achieved using 2D imaging.

  10. Susceptibility of Candida albicans, Staphylococcus aureus, and Streptococcus mutans biofilms to photodynamic inactivation: an in vitro study.

    Science.gov (United States)

    Pereira, Cristiane Aparecida; Romeiro, Rogério Lima; Costa, Anna Carolina Borges Pereira; Machado, Ana Karina Silva; Junqueira, Juliana Campos; Jorge, Antonio Olavo Cardoso

    2011-05-01

    The purpose of this study was to evaluate specific effects of photodynamic inactivation (PDI) using methylene blue as photosensitizer and low-power laser irradiation on the viability of single-, dual-, and three-species biofilms formed by C. albicans, S. aureus, and S. mutans. Biofilms were grown in acrylic discs immersed in sterile brain heart infusion broth (BHI) containing 5% sucrose, inoculated with microbial suspension (10(6) cells/ml) and incubated for 5 days. On the fifth day, the effects of the methylene blue (MB) photosensitizer at a concentration of 0.1 mg/ml for 5 min and InGaAlP laser (660 nm) for 98 s, alone and conjugated were evaluated. Next, the discs were placed in tubes with sterile physiological solution [0.9% sodium chloride (NaCl)] and sonicated for to disperse the biofilms. Ten-fold serial dilutions were carried and aliquots seeded in selective agar, which were then incubated for 48 h. Then the numbers CFU/ml (log(10)) were counted and analyzed statistically (ANOVA, Tukey test, p biofilms groups was performed. Significant decreases in the viability of all microorganisms were observed for biofilms exposed to PDI mediated by MB dye. Reductions (log(10)) of single-species biofilms were greater (2.32-3.29) than the association of biofilms (1.00-2.44). Scanning electron microscopy micrographs suggested that lethal photosensitization occurred predominantly in the outermost layers of the biofilms. The results showed that PDI mediated by MB dye, might be a useful approach for the control of oral biofilms.

  11. Combating biofilms

    DEFF Research Database (Denmark)

    Yang, Liang; Liu, Yang; Wu, Hong;

    2012-01-01

    Biofilms are complex microbial communities consisting of microcolonies embedded in a matrix of self-produced polymer substances. Biofilm cells show much greater resistance to environmental challenges including antimicrobial agents than their free-living counterparts. The biofilm mode of life...... is believed to significantly contribute to successful microbial survival in hostile environments. Conventional treatment, disinfection and cleaning strategies do not proficiently deal with biofilm-related problems, such as persistent infections and contamination of food production facilities. In this review......, strategies to control biofilms are discussed, including those of inhibition of microbial attachment, interference of biofilm structure development and differentiation, killing of biofilm cells and induction of biofilm dispersion....

  12. Applying insights from biofilm biology to drug development - can a new approach be developed?

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Ciofu, Oana; Molin, Søren

    2013-01-01

    Most of the research on bacterial pathogenesis has focused on acute infections, but much less is known about the pathogenesis of infections caused by bacteria that grow as aggregates in biofilms. These infections tend to be chronic as they resist innate and adaptive immune defence mechanisms as w...... and pathology, and discuss how a deep insight into the physical and biological characteristics of biofilms can inform therapeutic strategies and molecular targets for the development of anti-biofilm drugs....

  13. Candida glabrata Binding to Candida albicans Hyphae Enables Its Development in Oropharyngeal Candidiasis.

    Science.gov (United States)

    Tati, Swetha; Davidow, Peter; McCall, Andrew; Hwang-Wong, Elizabeth; Rojas, Isolde G; Cormack, Brendan; Edgerton, Mira

    2016-03-01

    Pathogenic mechanisms of Candida glabrata in oral candidiasis, especially because of its inability to form hyphae, are understudied. Since both Candida albicans and C. glabrata are frequently co-isolated in oropharyngeal candidiasis (OPC), we examined their co-adhesion in vitro and observed adhesion of C. glabrata only to C. albicans hyphae microscopically. Mice were infected sublingually with C. albicans or C. glabrata individually, or with both species concurrently, to study their ability to cause OPC. Infection with C. glabrata alone resulted in negligible infection of tongues; however, colonization by C. glabrata was increased by co-infection or a pre-established infection with C. albicans. Furthermore, C. glabrata required C. albicans for colonization of tongues, since decreasing C. albicans burden with fluconazole also reduced C. glabrata. C. albicans hyphal wall adhesins Als1 and Als3 were important for in vitro adhesion of C. glabrata and to establish OPC. C. glabrata cell wall protein coding genes EPA8, EPA19, AWP2, AWP7, and CAGL0F00181 were implicated in mediating adhesion to C. albicans hyphae and remarkably, their expression was induced by incubation with germinated C. albicans. Thus, we found a near essential requirement for the presence of C. albicans for both initial colonization and establishment of OPC infection by C. glabrata.

  14. Casein Phosphopeptide-Amorphous Calcium Phosphate Reduces Streptococcus mutans Biofilm Development on Glass Ionomer Cement and Disrupts Established Biofilms

    Science.gov (United States)

    Liu, Sze-Wei; Myroforidis, Helen; Zalizniak, Ilya; Palamara, Joseph E. A.; Huq, N. Laila; Reynolds, Eric C.

    2016-01-01

    Glass ionomer cements (GIC) are dental restorative materials that are suitable for modification to help prevent dental plaque (biofilm) formation. The aim of this study was to determine the effects of incorporating casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) into a GIC on the colonisation and establishment of Streptococcus mutans biofilms and the effects of aqueous CPP-ACP on established S mutans biofilms. S. mutans biofilms were either established in flow cells before a single ten min exposure to 1% w/v CPP-ACP treatment or cultured in static wells or flow cells with either GIC or GIC containing 3% w/w CPP-ACP as the substratum. The biofilms were then visualised using confocal laser scanning microscopy after BacLight LIVE/DEAD staining. A significant decrease in biovolume and average thickness of S. mutans biofilms was observed in both static and flow cell assays when 3% CPP-ACP was incorporated into the GIC substratum. A single ten min treatment with aqueous 1% CPP-ACP resulted in a 58% decrease in biofilm biomass and thickness of established S. mutans biofilms grown in a flow cell. The treatment also significantly altered the structure of these biofilms compared with controls. The incorporation of 3% CPP-ACP into GIC significantly reduced S. mutans biofilm development indicating another potential anticariogenic mechanism of this material. Additionally aqueous CPP-ACP disrupted established S. mutans biofilms. The use of CPP-ACP containing GIC combined with regular CPP-ACP treatment may lower S. mutans challenge. PMID:27589264

  15. Casein Phosphopeptide-Amorphous Calcium Phosphate Reduces Streptococcus mutans Biofilm Development on Glass Ionomer Cement and Disrupts Established Biofilms.

    Science.gov (United States)

    Dashper, Stuart G; Catmull, Deanne V; Liu, Sze-Wei; Myroforidis, Helen; Zalizniak, Ilya; Palamara, Joseph E A; Huq, N Laila; Reynolds, Eric C

    2016-01-01

    Glass ionomer cements (GIC) are dental restorative materials that are suitable for modification to help prevent dental plaque (biofilm) formation. The aim of this study was to determine the effects of incorporating casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) into a GIC on the colonisation and establishment of Streptococcus mutans biofilms and the effects of aqueous CPP-ACP on established S mutans biofilms. S. mutans biofilms were either established in flow cells before a single ten min exposure to 1% w/v CPP-ACP treatment or cultured in static wells or flow cells with either GIC or GIC containing 3% w/w CPP-ACP as the substratum. The biofilms were then visualised using confocal laser scanning microscopy after BacLight LIVE/DEAD staining. A significant decrease in biovolume and average thickness of S. mutans biofilms was observed in both static and flow cell assays when 3% CPP-ACP was incorporated into the GIC substratum. A single ten min treatment with aqueous 1% CPP-ACP resulted in a 58% decrease in biofilm biomass and thickness of established S. mutans biofilms grown in a flow cell. The treatment also significantly altered the structure of these biofilms compared with controls. The incorporation of 3% CPP-ACP into GIC significantly reduced S. mutans biofilm development indicating another potential anticariogenic mechanism of this material. Additionally aqueous CPP-ACP disrupted established S. mutans biofilms. The use of CPP-ACP containing GIC combined with regular CPP-ACP treatment may lower S. mutans challenge.

  16. Comparison of antimicrobial efficacy of propolis, Morinda citrifolia, Azadirachta indica (Neem) and 5% sodium hypochlorite on Candida albicans biofilm formed on tooth substrate: An in-vitro study

    Science.gov (United States)

    Tyagi, Shashi Prabha; Sinha, Dakshita Joy; Garg, Paridhi; Singh, Udai Pratap; Mishra, Chandrakar Chaman; Nagpal, Rajni

    2013-01-01

    Introduction: Endodontic infections are polymicrobial in nature. Candida albicans is the most common fungus isolated from failed endodontic cases. The constant increase in antibiotic resistant strains and side-effects caused by synthetic drugs has prompted researchers to look for herbal alternatives such as propolis, Morinda citrifolia and Azadirachta indica (Neem) etc., since, the gold standard for irrigation, i.e., sodium hypochlorite has many disadvantages. Materials and Methods: Extracted human mandibular premolars were biomechanically prepared, vertically sectioned, placed in tissue culture wells exposing the root canal surface to C. albicans grown on Sabouraud Dextrose Agar to form a biofilm. At the end of 2 days, all groups were treated with test solutions and control for 10 min and evaluated for Candida growth and number of colony forming units. The readings were subjected to statistical analysis using analysis of variance and post hoc Tukey tests. Results: Sodium hypochlorite and propolis groups exhibited highest antimicrobial efficacy against C. albicans with no statistically significant difference. It was followed by the A. indica (Neem) group. M. citrifolia had limited antifungal action followed by the negative control group of saline. Conclusion: According to the results of this study, propolis can be used as an effective antifungal agent similar to that of sodium hypochlorite, although long-term in vivo studies are warranted. PMID:24347888

  17. Comparison of antimicrobial efficacy of propolis, Morinda citrifolia, Azadirachta indica (Neem and 5% sodium hypochlorite on Candida albicans biofilm formed on tooth substrate: An in-vitro study

    Directory of Open Access Journals (Sweden)

    Shashi Prabha Tyagi

    2013-01-01

    Full Text Available Introduction: Endodontic infections are polymicrobial in nature. Candida albicans is the most common fungus isolated from failed endodontic cases. The constant increase in antibiotic resistant strains and side-effects caused by synthetic drugs has prompted researchers to look for herbal alternatives such as propolis, Morinda citrifolia and Azadirachta indica (Neem etc., since, the gold standard for irrigation, i.e., sodium hypochlorite has many disadvantages. Materials and Methods: Extracted human mandibular premolars were biomechanically prepared, vertically sectioned, placed in tissue culture wells exposing the root canal surface to C. albicans grown on Sabouraud Dextrose Agar to form a biofilm. At the end of 2 days, all groups were treated with test solutions and control for 10 min and evaluated for Candida growth and number of colony forming units. The readings were subjected to statistical analysis using analysis of variance and post hoc Tukey tests. Results: Sodium hypochlorite and propolis groups exhibited highest antimicrobial efficacy against C. albicans with no statistically significant difference. It was followed by the A. indica (Neem group. M. citrifolia had limited antifungal action followed by the negative control group of saline. Conclusion: According to the results of this study, propolis can be used as an effective antifungal agent similar to that of sodium hypochlorite, although long-term in vivo studies are warranted.

  18. Herpes Simplex Virus (HSV) Modulation of Staphylococcus aureus and Candida albicans Initiation of HeLa 299 Cell-Associated Biofilm.

    Science.gov (United States)

    Plotkin, Balbina J; Sigar, Ira M; Tiwari, Vaibhav; Halkyard, Scott

    2016-05-01

    Although herpes simplex virus type-1 (HSV-1), and type-2 (HSV-2), Staphylococcus aureus and Candida albicans co-habit the oral and genital mucosa, their interaction is poorly understood. We determined the effect HSV has on bacterial and/or fungal adherence, the initial step in biofilm formation. HeLa229 cells were infected with HSV-1 (KOS) gL86 or HSV-2 (KOS) 333gJ (-) at a multiplicity of infection (MOI) of 50 and 10. S. aureus (ATCC 25923) and/or C. albicans (yeast forms or germ tube forms) were co-incubated for 30 min (37 °C; 5 % CO2; 5:1 organism: HeLa cell ratio; n = 16) with virus-infected HeLa cells or uninfected HeLa cell controls. Post-incubation, the monolayers were washed (3x; PBS), lysed (RIPA), and the lysate plated onto Fungisel and/or mannitol salts agar for standard colony count. The level of HeLa-associated S. aureus was significantly decreased (P HSV-1- and HSV-2-infected cells, as compared to virus-free HeLa cell controls (38 and 59 % of control, respectively). In contrast, HSV-1 and HSV-2 significantly (P HSV-1- and HSV-2-infected cells was specific for the Candida phenotype tested. Our study suggests that HSV, while antagonist towards S. aureus adherence enhances Candida adherence. Furthermore, the combination of the three pathogens results in S. aureus adherence that is either unaffected, or partially restored depending on both the herpes viral species and the fungal phenotype present.

  19. A semi-quantitative approach to assess biofilm formation using wrinkled colony development.

    Science.gov (United States)

    Ray, Valerie A; Morris, Andrew R; Visick, Karen L

    2012-06-07

    Biofilms, or surface-attached communities of cells encapsulated in an extracellular matrix, represent a common lifestyle for many bacteria. Within a biofilm, bacterial cells often exhibit altered physiology, including enhanced resistance to antibiotics and other environmental stresses. Additionally, biofilms can play important roles in host-microbe interactions. Biofilms develop when bacteria transition from individual, planktonic cells to form complex, multi-cellular communities. In the laboratory, biofilms are studied by assessing the development of specific biofilm phenotypes. A common biofilm phenotype involves the formation of wrinkled or rugose bacterial colonies on solid agar media. Wrinkled colony formation provides a particularly simple and useful means to identify and characterize bacterial strains exhibiting altered biofilm phenotypes, and to investigate environmental conditions that impact biofilm formation. Wrinkled colony formation serves as an indicator of biofilm formation in a variety of bacteria, including both Gram-positive bacteria, such as Bacillus subtilis, and Gram-negative bacteria, such as Vibrio cholerae, Vibrio parahaemolyticus, Pseudomonas aeruginosa, and Vibrio fischeri. The marine bacterium V. fischeri has become a model for biofilm formation due to the critical role of biofilms during host colonization: biofilms produced by V. fischeri promote its colonization of the Hawaiian bobtail squid Euprymna scolopes. Importantly, biofilm phenotypes observed in vitro correlate with the ability of V. fischeri cells to effectively colonize host animals: strains impaired for biofilm formation in vitro possess a colonization defect, while strains exhibiting increased biofilm phenotypes are enhanced for colonization. V. fischeri therefore provides a simple model system to assess the mechanisms by which bacteria regulate biofilm formation and how biofilms impact host colonization. In this report, we describe a semi-quantitative method to assess

  20. Synergistic effect of fluconazole and doxycycline against Candida albicans biofilms resulting from calcium fluctuation and downregulation of fluconazole-inducible efflux pump gene overexpression.

    Science.gov (United States)

    Gao, Yuan; Li, Hui; Liu, Shuyuan; Zhang, Xiang; Sun, Shujuan

    2014-07-01

    Candida albicans biofilms are intrinsically resistant to antimicrobial agents. Previous work demonstrated that the antifungal activity of fluconazole against C. albicans biofilms is notably enhanced by doxycycline. In order to explore the synergistic mechanism of fluconazole and doxycycline, we investigated the changes of efflux pump gene expression, intracellular calcium concentration and cell cycle distribution after drug intervention in this study. The expression levels of CDR1, CDR2 and MDR1 were determined by real-time PCR, and the results showed that fluconazole alone could stimulate the high expression of CDR1, CDR2 and MDR1, and the combination of doxycycline and fluconazole downregulated the gene overexpression induced by fluconazole. Intracellular calcium concentration was determined using Fluo-3/AM by observing the fluorescence with flow cytometry. A calcium fluctuation, which started 4 h and peaked 8 h after the treatment with fluconazole, was observed. The combined drugs also initiated a calcium fluctuation after 4 h treatment and showed a peak at 16 h, and the peak was higher than that stimulated by fluconazole alone. The cell cycle was measured using flow cytometry. Fluconazole alone and the combined drugs both induced a reduction in the percentages of S-phase cells and an elevation in the percentages of cells in the G2/M phase. The results of this research showed that the synergism of fluconazole and doxycycline against C. albicans biofilms is associated with blockade of the efflux pump genes CDR1, CDR2 and MDR1, and stimulation of high intracellular calcium concentration. The findings of this study are of great significance in the search for new antifungal mechanisms.

  1. Tyrosol和Farnesol对白念珠菌生物被膜形成作用初探%Preliminary study on the effect of tyrosol and farnesol on biofilm formation of Candida albicans

    Institute of Scientific and Technical Information of China (English)

    潘(王争); 魏昕; 刘卫红

    2008-01-01

    目的 研究密度感应分子(quorum sensing molecule)tyrosol(对羟基苯乙醇)和farnesol(法呢醇)对白念珠菌生物被膜形成的调控作用.方法 在tyrosol和farnesol干预下构建白念珠菌临床株和标准株生物被膜,在倒置显微镜下观察细胞形态,应用RT-PCR技术检测密度感应分子对白念珠菌HTA1和EFG1基因表达的调控作用,并采用MTT法观察密度感应分子对细胞活性的影响.结果 tyrosol对白念珠菌生物被膜的菌丝发生和细胞活性无明显促进作用,也无法中和farnesol对菌丝发生和细胞活性的抑制作用.tyrosol使白念珠菌生物被膜内细胞HTA1的表达增强,对EFG1的表达并无明显影响;tyrosol不能改变famesol对HTA1和EFG1表达的抑制作用.结论 tyrosol能在一定程度恢复口腔白念珠菌生物被膜内细胞的活跃状态,但当tyrosol与famesol同时存在时,tyrosol的作用被后者的抑制效应所掩盖,细胞对farnesol更敏感.%Objective To study the regulation of quorum sensing molecule tyrosol and farnesol on biofilm formation of Candida albicans. Methods Candida albicans biofilms of clinic isolates and standard strain SC5314 were built when quorum sensing molecule existed. And inverted microscope was used to observe the morphology of C. albicans cells. RT-PCR and MTT assay were carried out to investigate the effect of quorum sensing molecule on expression of the two genes (HTA1 and EFG1) and cytoactive. Results Tyrosol could not promote hyphae development and cytoactive of C. albicans biofilms. The expression of HTA1 of C. albicans in biofilms was up-regulated by tyrosol but EFG1 was not. The inhibitory effect of farnesol on hyphae development, cytoactive and gene expression were not changed by addition of tyrosol. Conclusion Tyrosol can make C. albicans biofilms active in early stage. But when tyrosol and farnesol were simultaneously added, the effect of tyrosol were masked by farnesol. And C. albicans cells were more sensitive

  2. How Staphylococcus aureus biofilms develop their characteristic structure

    OpenAIRE

    Periasamy, Saravanan; Joo, Hwang-Soo; Anthony C. Duong; Bach, Thanh-Huy L.; Tan, Vee Y.; Chatterjee, Som S; Cheung, Gordon Y. C.; Otto, Michael

    2012-01-01

    Biofilms cause significant problems in the environment and during the treatment of infections. However, the molecular mechanisms underlying biofilm formation are poorly understood. There is a particular lack of knowledge about biofilm maturation processes, such as biofilm structuring and detachment, which are deemed crucial for the maintenance of biofilm viability and the dissemination of cells from a biofilm. Here, we identify the phenol-soluble modulin (PSM) surfactant peptides as key biofi...

  3. Study on Biofilm Inhibit Mechanism of Streptococcus Sanguis Bacteriocin on Candida Albicans.%血链球菌细菌素对白色念珠菌生物膜抑制作用的研究

    Institute of Scientific and Technical Information of China (English)

    马晟利; 王琪波; 李旭明

    2011-01-01

    Objective: To extract bacteriocin effective antimicrobial substances the standard strains of Streptococcus sanguis ATCC10556 and to study the action mechanism of Streptococcus sanguis bacteriocin on Candida albicans biofilms. Methods.. By ultrasonic, salt precipitation and sephadex G-25 column desalting through dialysis, sanguicin of the streptococcus bacteria isolated elements, the Candida albicans biofilms. After 2h, 6h, 12h, 24h, 48h, 72h,changes observed in BF. Results: After 24h, Candida albicans biofilms changed significantly, then was 12h. Conclusion: Streptococcus sanguis bacteriocin biofilms of Candida albicans strains were significantly inhibited.%目的:提取血链球菌标准株ATCC10556的有效抗菌物质细菌素,进一步研究血链球菌细菌素对白色念珠菌生物膜的作用机理.方法:通过超声破碎、盐析、sephadex G-25过柱脱盐、透析、浓缩的方法分离血链球菌细菌素,使之作用于白色念珠菌生物膜,并在2 h、6 h、12 h、24 h、48 h、72 h观察白色念珠菌生物膜厚度的变化.结果:24 h内白色念珠菌生物膜厚度有明显改变,12 h效果最为显著.结论:血链球菌细菌素对白色念株菌生物膜具有显著的抑制作用.

  4. Development of a Standard Test to Assess the Resistance of Staphylococcus aureus Biofilm Cells to Disinfectants

    NARCIS (Netherlands)

    Luppens, S.B.I.; Reij, M.W.; Heijden, van der R.W.; Rombouts, F.M.; Abee, T.

    2002-01-01

    A standardized disinfectant test for Staphylococcus aureus cells in biofilms was developed. Two disinfectants, the membrane-active compound benzalkonium chloride (BAC) and the oxidizing agent sodium hypochlorite, were used to evaluate the biofilm test. S. aureus formed biofilms on glass, stainless s

  5. Intervention Effects of Tannins from Galla chinensis against Candida albicans in Biofilm%五倍子鞣质对生物被膜型白假丝酵母的干预作用

    Institute of Scientific and Technical Information of China (English)

    向丽; 李蓉; 周铁军; 叶迎春; 王光西

    2012-01-01

    [Objective] To study the inhibition action of tannins from Galla chinensis against Candida albicans in biofilm in vitro. [ Method] At early stage, middle stage and mature stage of biofilm formation, Candida albicans biofilm was incubated with different concentrations of tannins extracts for 48 h, and mature Candida albicans biofilm was incubated with different concentration of tannins extracts for 24, 48 and 72 h, the cells inhibition rate was tested by MIT method. The morphology of Candida albicans in biofilm was observed by light microscope and the death mode was observed in the staining of AO/EB by fluorescence microscope, [ Result] Tannins from Galla chinensis could inhibit biofilm formation and mature biofilm, and the inhibition was time-and-dose-dependent during the mature stage. Tannins extracts led to the biofilm deforma-tion, morphology and structure change of Candida albicans, but without obvious apoptosis. The tannins also inhibited the budding and formation of pseudohypha. [ Conclusion ] Tannins from Galla chinensis could efficiently inhibit biofilm information and mature biofilm, and possibly lead to Candida albicans death by non-apoptosis pathway.%[目的]研究五倍子鞣质对生物被膜型白假丝酵母的抑制作用.[方法]在生物被膜形成的早期、中期和成熟期以不同浓度药物干预48 h,采用MTT法检测药物对膜型白假丝酵母的抑制率;以不同浓度药物干预成熟生物被膜24、48、72 h,再用MTT法检测抑制率;光镜直接观察生物被膜内白假丝酵母的形态结构变化;用吖啶橙/溴化乙锭染色,通过荧光显微镜观察生物被膜内白假丝酵母的死亡方式.[结果]五倍子鞣质对生物被膜的形成具有抑制作用,对成熟期生物被膜中白假丝酵母的抑制作用具时间和剂量依赖性;鞣质导致被膜内白假丝酵母细胞变形,形态结构改变,但未见确切细胞凋亡,同时抑制细胞芽管和假菌丝形成.[结论]五倍子鞣质对

  6. Bacterial community of biofilms developed under different water supply conditions in a distribution system.

    Science.gov (United States)

    Sun, Huifang; Shi, Baoyou; Bai, Yaohui; Wang, Dongsheng

    2014-02-15

    In order to understand the bacterial community characteristics of biofilms developed under different finished water supply histories in drinking water distribution systems (DWDS), biofilm samples on different type of iron corrosion scales in a real DWDS were collected and systematically investigated using 454 pyrosequencing of 16S rRNA gene. The richness and diversity estimators showed that biofilms formed in DWDS transporting finished groundwater (GW) had the lowest level of bacterial diversity. From phylum to genus level, the dominant bacterial groups found in the biofilms under finished surface water (SW) and GW conditions were distinct. Proteobacteria was the dominant group in all biofilm samples (in the range of 40%-97%), but was relatively higher in biofilms with GW. The relative abundance of Firmicutes in biofilms with SW (28%-35%) was significantly higher (psupply condition. Several potential opportunistic pathogens, such as Burkholderia fungorum, Mycobacterium neoaurum, Mycobacterium frederiksbergense were detected in the biofilms.

  7. ALS1 and ALS3 gene expression and biofilm formation in Candida albicans isolated from vulvovaginal candidiasis

    Directory of Open Access Journals (Sweden)

    Shahla Roudbarmohammadi

    2016-01-01

    Conclusion: The results attained indicated that there is an association between the expression of ALS1 and ALS3 genes and fluconazole resistance in C. albicans. A considerable percent of the isolates expressing the ALS1 and ALS3 genes may have contributed to their adherence to vagina and biofilm formation.

  8. Candida albicans susceptibility to lactoperoxidase-generated hypoiodite

    Directory of Open Access Journals (Sweden)

    Mohamed Ahariz

    2010-08-01

    Full Text Available Mohamed Ahariz1, Philippe Courtois21Laboratory of Experimental Hormonology, Université Libre de Bruxelles, Brussels, Belgium; 2Laboratory of Experimental Hormonology, Université Libre de Bruxelles, Brussels, Belgium and UER de Biologie Médicale, Haute Ecole Francisco Ferrer, Brussels, BelgiumAbstract: In vivo, lactoperoxidase produces hypothiocyanite (OSCN- from thiocyanate (SCN- in the presence of hydrogen peroxide (H2O2; in vitro, iodide (I- can be oxidized into hypoiodite (OI- by this enzyme. The aim of this study was to compare in vitro the anti-Candida effect of iodide versus thiocyanate used as lactoperoxidase substrate to prevent Candida biofilms development. Candida albicans ATCC 10231 susceptibility upon both peroxidase systems was tested in three different experimental designs: (i in a liquid culture medium, (ii in an interface model between solid culture medium and gel containing the enzymic systems, (iii in a biofilm model onto titanium and acrylic resin. Yeast growth in liquid medium was monitored by turbidimetry at 600 nm. Material-adherent yeast biomass was evaluated by the tetrazolium salt MTT method. The iodide-peroxidase system has been shown to inhibit Candida biofilm formation at lower substrate concentrations (~200 fold less H2O2 donor and for longer incubation periods than the thiocyanate-peroxidase system. In conclusion, efficiency of lactoperoxidase-generated OI- to prevent C. albicans biofilm development allows refining iodine antifungal use in ex vivo conditions.Keywords: denture, iodide, oral, peroxidase, saliva, titanium

  9. APPLICATIONS OF BIOTECHNOLOGY IN DEVELOPMENT OF BIOMATERIALS: NANOTECHNOLOGY AND BIOFILMS

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R.; Berry, T.; Narayan, R.

    2010-11-29

    Biotechnology is the application of biological techniques to develop new tools and products for medicine and industry. Due to various properties including chemical stability, biocompatibility, and specific activity, e.g. antimicrobial properties, many new and novel materials are being investigated for use in biosensing, drug delivery, hemodialysis, and other medical applications. Many of these materials are less than 100 nanometers in size. Nanotechnology is the engineering discipline encompassing designing, producing, testing, and using structures and devices less than 100 nanometers. One of the challenges associated with biomaterials is microbial contamination that can lead to infections. In recent work we have examined the functionalization of nanoporous biomaterials and antimicrobial activities of nanocrystalline diamond materials. In vitro testing has revealed little antimicrobial activity against Pseudomonas fluorescens bacteria and associated biofilm formation that enhances recalcitrance to antimicrobial agents including disinfectants and antibiotics. Laser scanning confocal microscopy studies further demonstrated properties and characteristics of the material with regard to biofilm formation.

  10. Effects of Iron Chelators on the Formation and Development of Aspergillus fumigatus Biofilm.

    Science.gov (United States)

    Nazik, Hasan; Penner, John C; Ferreira, Jose A; Haagensen, Janus A J; Cohen, Kevin; Spormann, Alfred M; Martinez, Marife; Chen, Vicky; Hsu, Joe L; Clemons, Karl V; Stevens, David A

    2015-10-01

    Iron acquisition is crucial for the growth of Aspergillus fumigatus. A. fumigatus biofilm formation occurs in vitro and in vivo and is associated with physiological changes. In this study, we assessed the effects of Fe chelators on biofilm formation and development. Deferiprone (DFP), deferasirox (DFS), and deferoxamine (DFM) were tested for MIC against a reference isolate via a broth macrodilution method. The metabolic effects (assessed by XTT [2,3-bis[2-methoxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide inner salt]) on biofilm formation by conidia were studied upon exposure to DFP, DFM, DFP plus FeCl3, or FeCl3 alone. A preformed biofilm was exposed to DFP with or without FeCl3. The DFP and DFS MIC50 against planktonic A. fumigatus was 1,250 μM, and XTT gave the same result. DFM showed no planktonic inhibition at concentrations of ≤2,500 μM. By XTT testing, DFM concentrations of biofilms forming in A. fumigatus or preformed biofilms (P biofilm formation (P Biofilm formation with 625 μM DFP plus any concentration of FeCl3 was lower than that in the controls (P biofilms, DFP in the range of ≥625 to 1,250 μM was inhibitory compared to the controls (P biofilm formation (P biofilm increased with 2,500 μM FeCl3 only (P biofilms of A. fumigatus clinical isolates to DFP were noted. In conclusion, iron stimulates biofilm formation and preformed biofilms. Chelators can inhibit or enhance biofilms. Chelation may be a potential therapy for A. fumigatus, but we show here that chelators must be chosen carefully. Individual isolate susceptibility assessments may be needed.

  11. 白色念珠菌生物膜对消毒剂抵抗性的研究%A study on resistance of Candida albicans biofilm to disinfectants

    Institute of Scientific and Technical Information of China (English)

    张薇; 王丹敏; 董小青; 梁慧; 刘丽萍

    2011-01-01

    Objective To study the resistance of biofilm - forming fungi to common disinfectants using Candida albicans biofilm as the object of study. Methods The carrier quantitative test method was used for experimental observation. Results The 2% glutaral solution and 5% 84 disinfection solution had the strongest killing effect on the biofilm of Candida albicans, followed by anerdian while 75% ethanol and 3% benzalkonium bromide had a weaker effect. Conclusion The five disinfectants have different killing effects on the biofilm of Candida sp.%目的 了解白色念珠菌生物膜对常用消毒剂的抵抗性.方法 采用载体定量试验方法观察不同作用时间下75%乙醇、安尔碘、5%"84"消毒液、3%苯扎溴铵和2%戊二醛对生物膜中白色念珠菌的杀灭作用.结果 2%戊二醛和5%"84"消毒液对生物膜念珠菌杀灭作用最强,安尔碘次之, 75%乙醇和3%苯扎溴铵杀灭作用较弱.结论 五种消毒剂对念珠菌生物膜的杀灭作用不同,形成生物膜的白色念珠菌对常用消毒剂的抵抗力比游离菌强.

  12. Structural Properties and Antifungal Activity against Candida albicans Biofilm of Different Composite Layers Based on Ag/Zn Doped Hydroxyapatite-Polydimethylsiloxanes

    Directory of Open Access Journals (Sweden)

    Andreea Groza

    2016-04-01

    Full Text Available Modern medicine is still struggling to find new and more effective methods for fighting off viruses, bacteria and fungi. Among the most dangerous and at times life-threatening fungi is Candida albicans. Our work is focused on surface and structural characterization of hydroxyapatite, silver doped hydroxyapatite and zinc doped hydroxyapatite deposited on a titanium substrate previously coated with polydimethylsiloxane (HAp-PDMS, Ag:HAp-PDMS, Zn:HAp-PDMS by different techniques: Scanning Electron Microscopy (SEM, Glow Discharge Optical Emission Spectroscopy (GDOES and Fourier Transform Infrared Spectroscopy (FTIR. The morphological studies revealed that the use of the PDMS polymer as an interlayer improves the quality of the coatings. The structural characterizations of the thin films revealed the basic constituents of both apatitic and PDMS structure. In addition, the GD depth profiles indicated the formation of a composite material as well as the successful embedding of the HAp, Zn:HAp and Ag:HAp into the polymer. On the other hand, in vitro evaluation of the antifungal properties of Ag:HAp-PDMS and Zn:HAp-PDMS demonstrated the fungicidal effects of Ag:HAp-PDMS and the potential antifungal effect of Zn:HAp-PDMS composite layers against C. albicans biofilm. The results acquired in this research complete previous research on the potential use of new complex materials produced by nanotechnology in biomedicine.

  13. Porphyromonas gingivalis and Treponema denticola synergistic polymicrobial biofilm development.

    Directory of Open Access Journals (Sweden)

    Ying Zhu

    Full Text Available Chronic periodontitis has a polymicrobial biofilm aetiology and interactions between key bacterial species are strongly implicated as contributing to disease progression. Porphyromonas gingivalis, Treponema denticola and Tannerella forsythia have all been implicated as playing roles in disease progression. P. gingivalis cell-surface-located protease/adhesins, the gingipains, have been suggested to be involved in its interactions with several other bacterial species. The aims of this study were to determine polymicrobial biofilm formation by P. gingivalis, T. denticola and T. forsythia, as well as the role of P. gingivalis gingipains in biofilm formation by using a gingipain null triple mutant. To determine homotypic and polymicrobial biofilm formation a flow cell system was employed and the biofilms imaged and quantified by fluorescent in situ hybridization using DNA species-specific probes and confocal scanning laser microscopy imaging. Of the three species, only P. gingivalis and T. denticola formed mature, homotypic biofilms, and a strong synergy was observed between P. gingivalis and T. denticola in polymicrobial biofilm formation. This synergy was demonstrated by significant increases in biovolume, average biofilm thickness and maximum biofilm thickness of both species. In addition there was a morphological change of T. denticola in polymicrobial biofilms when compared with homotypic biofilms, suggesting reduced motility in homotypic biofilms. P. gingivalis gingipains were shown to play an essential role in synergistic polymicrobial biofilm formation with T. denticola.

  14. Root canal filling material added with tea polyphenols inhibits the generation of Candida albicans biofilm%根管充填材料加入茶多酚抑制白色念珠菌生物膜的生成

    Institute of Scientific and Technical Information of China (English)

    许颖; 吕庆; 康梁; 张慧明

    2013-01-01

    BACKGROUND: Candida albicans biofilms can influence the prognosis of root canal fil ing, and tea polyphenols can in vitro inhibit the Candida albicans biofilm, while the antibacterial mechanism may play the role through influencing or interfering the expression of resistance gene. OBJECTIVE: To investigate the inhibitory effect of root canal fil ing material added with tea polyphenols on Candida albicans biofilm. METHODS: Constant broth dilution method was used to determine the minimal inhibitory concentration of tea polyphenols in vitro inhibited Candida albicans biofilms, in order to identify the inhibitory effect. Then the expressions of Candida albicans resistance genes CDR1, CDR2 and MDR1 were detected with reverse transcriptase polymerase chain reaction after inhibited with tea polyphenols. RESULTS AND CONCLUSION: The minimum inhibitory concentration of tea polyphenols used to inhibit Candida albicans biofilm was 11.5 mg/mL. Reverse transcriptase polymerase chain reaction results showed that expressions of related resistance genes CDR1 and CDR2 were decreased with the gradient increasing of drug concentration, and when the concentration reached to 25 mg/mL or above, the mRNA expression level was completely inhibited, while the concentration of the resistance drug has less effect on the expression of resistance drug MDR1. Tea polyphenols has inhibitory effect on Candida albicans biofilm, and has significant inhibitory effect on the expressions of experimental selected resistance genes CDR1 and CDR2.%  背景:白色念珠菌生物膜是根管充填治疗预后的影响因素,茶多酚体外可能对白色念珠菌生物膜有抑菌作用,其抑菌机制可能通过影响或干扰相关耐药基因的表达而实现。目的:探讨根管充填材料加入茶多酚对白色念珠菌生物膜的抑制作用。方法:采用常量肉汤稀释法确定茶多酚体外对白色念珠菌生物膜的最小抑菌浓度,以此判断抑菌效果,然后用

  15. Distinct roles of long/short fimbriae and gingipains in homotypic biofilm development by Porphyromonas gingivalis

    Directory of Open Access Journals (Sweden)

    Tribble Gena D

    2009-05-01

    Full Text Available Abstract Background Porphyromonas gingivalis, a periodontal pathogen, expresses a number of virulence factors, including long (FimA and short (Mfa fimbriae as well as gingipains comprised of arginine-specific (Rgp and lysine-specific (Kgp cysteine proteinases. The aim of this study was to examine the roles of these components in homotypic biofilm development by P. gingivalis, as well as in accumulation of exopolysaccharide in biofilms. Results Biofilms were formed on saliva-coated glass surfaces in PBS or diluted trypticase soy broth (dTSB. Microscopic observation showed that the wild type strain formed biofilms with a dense basal monolayer and dispersed microcolonies in both PBS and dTSB. A FimA deficient mutant formed patchy and small microcolonies in PBS, but the organisms proliferated and formed a cohesive biofilm with dense exopolysaccharides in dTSB. A Mfa mutant developed tall and large microcolonies in PBS as well as dTSB. A Kgp mutant formed markedly thick biofilms filled with large clumped colonies under both conditions. A RgpA/B double mutant developed channel-like biofilms with fibrillar and tall microcolonies in PBS. When this mutant was studied in dTSB, there was an increase in the number of peaks and the morphology changed to taller and loosely packed biofilms. In addition, deletion of FimA reduced the autoaggregation efficiency, whereas autoaggregation was significantly increased in the Kgp and Mfa mutants, with a clear association with alteration of biofilm structures under the non-proliferation condition. In contrast, this association was not observed in the Rgp-null mutants. Conclusion These results suggested that the FimA fimbriae promote initial biofilm formation but exert a restraining regulation on biofilm maturation, whereas Mfa and Kgp have suppressive and regulatory roles during biofilm development. Rgp controlled microcolony morphology and biovolume. Collectively, these molecules seem to act coordinately to regulate

  16. Continuous Drip Flow System to Develop Biofilm of E. faecalis under Anaerobic Conditions

    Directory of Open Access Journals (Sweden)

    Ana Maria Gonzalez

    2014-01-01

    Full Text Available Purpose. To evaluate a structurally mature E. faecalis biofilm developed under anaerobic/dynamic conditions in an in vitro system. Methods. An experimental device was developed using a continuous drip flow system designed to develop biofilm under anaerobic conditions. The inoculum was replaced every 24 hours with a fresh growth medium for up to 10 days to feed the system. Gram staining was done every 24 hours to control the microorganism purity. Biofilms developed under the system were evaluated under the scanning electron microscope (SEM. Results. SEM micrographs demonstrated mushroom-shaped structures, corresponding to a mature E. faecalis biofilm. In the mature biofilm bacterial cells are totally encased in a polymeric extracellular matrix. Conclusions. The proposed in vitro system model provides an additional useful tool to study the biofilm concept in endodontic microbiology, allowing for a better understanding of persistent root canal infections.

  17. Recent Taxonomic Developments with Candida and Other Opportunistic Yeasts.

    Science.gov (United States)

    Brandt, Mary E; Lockhart, Shawn R

    2012-09-01

    Increases in susceptible patient populations and advances in identification methods have resulted in the continued recognition of novel yeasts as agents of human infection. Most of these agents are members of the well-recognized genera Candida, Cryptococcus, Trichosporon, and Rhodotorula. Some of these agents are "cryptic species," members of species complexes, and may not be detectable using classical carbohydrate assimilation-based methods of yeast identification. Such species require DNA- or MALDI-based methods for correct identification, although sporadic isolates may not routinely require delineation to the individual species level. The coming end of the fungal taxonomy rules requiring separate names for sexual and asexual forms of the same fungus will hopefully allow greater clarity, as names for medically important yeast can now be based on the needs of the medical mycology community and the common goal of better communication between laboratory and clinician.

  18. Chemoinformatics-assisted development of new anti-biofilm compounds

    DEFF Research Database (Denmark)

    Dürig, Anna; Kouskoumvekaki, Irene; Vejborg, Rebecca Munk

    2010-01-01

    Bacterial biofilms are associated with a large number of infections. Biofilm-dwelling bacteria are particularly resistant to antibiotics, making it hard to eradicate biofilm-associated infections. Here, we use a novel cross-disciplinary approach combining microbiology and chemoinformatics to iden...

  19. Extracellular DNA formation during biofilm development by freshwater bacteria

    DEFF Research Database (Denmark)

    Tang, Lone; Schramm, Andreas; Revsbech, Niels Peter

    2011-01-01

    of eDNA is most important. In this study, we investigated the significance of eDNA during biofilm formation in four freshwater isolates. The aim was to relate the quantity and timing of eDNA production to the isolates’ ability to form biofilms. eDNA and biofilm biomass was quantified over time during...

  20. Development of a real-time PCR assay for the direct detection of Candida species causing Vulvovaginal candidiasis.

    Science.gov (United States)

    Tardif, Keith D; Schlaberg, Robert

    2017-01-25

    Identification of Candida species by traditional methods can be time-consuming and have limited analytical sensitivity. We developed a multiplex real-time PCR assay for detection and differentiation of Candida species causing vulvovaginal candidiasis (VVC). Overall, this PCR assay is a powerful diagnostic tool offering superior accuracy, sensitivity, and specificity.

  1. QUORUM SENSING AND ITS ROLE IN ORAL BIOFILMS DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Boy M. Bachtiar

    2006-04-01

    Full Text Available Quorum sensing systems has been identified as one of mechanism carried out by numerous Gram-positive and Gram-negative bacteria to coordinate virulence and biofilm development. Using quorum sensing bacterial colonies synchronize gene expression and phenotype change allowing them to protect their niche. The purpose of this review is to present a synopsis of the literature on bacterial quorum sensing and we highlight the role of specific signaling molecules that might be used as a target of inhibitor agent in dental preventive perspective.

  2. The inhibitory effect of farnesol on Candida albicans biofilms using the XTT reduction assay%XTT减低法检测法尼醇对白念珠菌生物被膜的抑制作用

    Institute of Scientific and Technical Information of China (English)

    钱芳; 魏昕; 许雯倩; 曹雪蛟; 花荣; 吴亚娟

    2014-01-01

    目的:体外研究法尼醇对白念珠菌生物被膜的抑制作用。方法:采用微量平板法制备12和24 h白念株菌生物被膜,每组膜分别加入不同浓度法尼醇(100~900μmol/L)培养24 h,甲基四氮盐(XTT)减低法检测法尼醇对白念珠菌生物被膜的抑制作用效果,倒置显微镜下观察生物被膜形态。结果:不同浓度的法尼醇对白念珠菌生物被膜均有抑制作用(P<0.05),法尼醇浓度增加,抑制强度呈上升趋势。培养12 h,抑制白念株菌生物被膜50%活性的最低药物浓度(sessile minimal inhibitory concentration 50%,SMIC50)为600μmol/L;培养24 h,SMIC50为200μmol/L。结论:法尼醇对白念珠菌生物被膜生长具有明显抑制作用。法尼醇对白念珠菌生物被膜抑制强度与法尼醇浓度和生物被膜时相相关,高浓度法尼醇的抑制效果高于低浓度法尼醇。%Objective:To evaluate the inhibitory activity of farnesol to the Candida albicans biofilms in vitro.Methods:Candida al-bicans biofilms were formed on flat-bottom 96-well microtiter plates and two study groups (12 h and 24 h Group)were noted,then re-spectively incubated in the RPMI 1640 with different concentration of farnesol (100-900 μmol/L)for 24 h.The XTT reduction assay was employed to evaluate the inhibitory effect of farnesol to the biofilms.Biofilm morphology was observed by inverted microscope.Re-sults:Farnesol (100-900 μmol/L)has inhibitory effect on Candida albicans biofilms.With the increase of concentration of farnesol,the inhibition rate tends to increas.The sessile minimal inhibitory concentration 50%(SMIC50 )of 12 h biofilm is 200 μmol/L;the SMIC50 of 24 h biofilm is 200 μmol/L.Conclusions:The inhibitory effect of Farnesol on Candida albicans biofilms was obvious.The inhibitory po-tency of farnesol was associated with its concentration and the phase of biofilms,and the farnesol of higher concentration are more effec

  3. α-Mangostin disrupts the development of Streptococcus mutans biofilms and facilitates its mechanical removal.

    Science.gov (United States)

    Nguyen, Phuong Thi Mai; Falsetta, Megan L; Hwang, Geelsu; Gonzalez-Begne, Mireya; Koo, Hyun

    2014-01-01

    α-Mangostin (αMG) has been reported to be an effective antimicrobial agent against planktonic cells of Streptococcus mutans, a biofilm-forming and acid-producing cariogenic organism. However, its anti-biofilm activity remains to be determined. We examined whether αMG, a xanthone purified from Garcinia mangostana L grown in Vietnam, disrupts the development, acidogenicity, and/or the mechanical stability of S. mutans biofilms. Treatment regimens simulating those experienced clinically (twice-daily, 60 s exposure each) were used to assess the bioactivity of αMG using a saliva-coated hydroxyapatite (sHA) biofilm model. Topical applications of early-formed biofilms with αMG (150 µM) effectively reduced further biomass accumulation and disrupted the 3D architecture of S. mutans biofilms. Biofilms treated with αMG had lower amounts of extracellular insoluble and intracellular iodophilic polysaccharides (30-45%) than those treated with vehicle control (Pbiofilm, facilitating its removal from the sHA surface when subjected to a constant shear stress of 0.809 N/m2 (>3-fold biofilm detachment from sHA vs. vehicle-treated biofilms; Pbiofilms was disrupted following αMG treatments (vs. vehicle-control, Pbiofilms, at least in part via inhibition of key enzymatic systems associated with exopolysaccharide synthesis and acidogenicity. αMG could be an effective anti-virulence additive for the control and/or removal of cariogenic biofilms.

  4. Developed Fungal-Bacterial Biofilms as A Novel Tool for Bioremoval of Hexavelant Chromium from Wastewater

    DEFF Research Database (Denmark)

    Herath, Lasantha; Rajapaksha, R. M. A. U.; Vithanage, M.;

    2014-01-01

    Remediation measures for hexavalent Chromium [Cr(VI)] are required for a safe environment. As a recent development in microbiology, bacterial biofilms are being studied as effective bioremediation agents. When bacteria are in fungal surface-attached biofilm mode, they are called fungal-bacterial ......Remediation measures for hexavalent Chromium [Cr(VI)] are required for a safe environment. As a recent development in microbiology, bacterial biofilms are being studied as effective bioremediation agents. When bacteria are in fungal surface-attached biofilm mode, they are called fungal...

  5. Streptococcus mutans protein synthesis during mixed-species biofilm development by high-throughput quantitative proteomics.

    Science.gov (United States)

    Klein, Marlise I; Xiao, Jin; Lu, Bingwen; Delahunty, Claire M; Yates, John R; Koo, Hyun

    2012-01-01

    Biofilms formed on tooth surfaces are comprised of mixed microbiota enmeshed in an extracellular matrix. Oral biofilms are constantly exposed to environmental changes, which influence the microbial composition, matrix formation and expression of virulence. Streptococcus mutans and sucrose are key modulators associated with the evolution of virulent-cariogenic biofilms. In this study, we used a high-throughput quantitative proteomics approach to examine how S. mutans produces relevant proteins that facilitate its establishment and optimal survival during mixed-species biofilms development induced by sucrose. Biofilms of S. mutans, alone or mixed with Actinomyces naeslundii and Streptococcus oralis, were initially formed onto saliva-coated hydroxyapatite surface under carbohydrate-limiting condition. Sucrose (1%, w/v) was then introduced to cause environmental changes, and to induce biofilm accumulation. Multidimensional protein identification technology (MudPIT) approach detected up to 60% of proteins encoded by S. mutans within biofilms. Specific proteins associated with exopolysaccharide matrix assembly, metabolic and stress adaptation processes were highly abundant as the biofilm transit from earlier to later developmental stages following sucrose introduction. Our results indicate that S. mutans within a mixed-species biofilm community increases the expression of specific genes associated with glucan synthesis and remodeling (gtfBC, dexA) and glucan-binding (gbpB) during this transition (Pspecies biofilms (vs. single-species biofilms) demonstrating fundamental differences in the matrix assembly, survival and biofilm maintenance in the presence of other organisms. Our data provide insights about how S. mutans optimizes its metabolism and adapts/survives within the mixed-species community in response to a dynamically changing environment. This reflects the intricate physiological processes linked to expression of virulence by this bacterium within complex biofilms.

  6. Effects of Iron on DNA Release and Biofilm Development by Pseudomonas Aeruginosa

    DEFF Research Database (Denmark)

    Yang, Liang; Barken, Kim Bundvig; Skindersø, Mette Elena;

    2007-01-01

    Extracellular DNA is one of the major matrix components in Pseudomonas aeruginosa biofilms. It functions as an intercellular connector and plays a role in stabilization of the biofilms. Evidence that DNA release in P. aeruginosa PAO1 biofilms is controlled by the las-rhl and pqs quorum......-sensing systems has been previously presented. This paper provides evidence that DNA release in P. aeruginosa PAO1 biofilms is also under iron regulation. Experiments involving cultivation of P. aeruginosa in microtitre trays suggested that pqs expression, DNA release and biofilm formation were favoured in media...... with low iron concentrations (5 mu M FeCIA and decreased with increasing iron concentrations. Experiments involving cultivation of P. aeruginosa in a flow-chamber system suggested that a high level of iron (1100 mu M FeCl3) in the medium suppressed DNA release, structural biofilm development...

  7. Divergent composition of algal-bacterial biofilms developing under various external factors

    NARCIS (Netherlands)

    Barranguet, C.; Veuger, B.; van Beusekom, S.A.M.; Marvan, P.; Sinke, J.J.; Admiraal, W.

    2005-01-01

    The influence of external factors other than nutrients on biofilm development and composition was studied with a combination of optical (Confocal Laser Scanning Microscopy, PAM fluorometry) and chemical methods (EPS extraction, HPLC, TOC determination). The development of algal-bacterial biofilms wa

  8. Small secreted proteins enable biofilm development in the cyanobacterium Synechococcus elongatus

    Science.gov (United States)

    Parnasa, Rami; Nagar, Elad; Sendersky, Eleonora; Reich, Ziv; Simkovsky, Ryan; Golden, Susan; Schwarz, Rakefet

    2016-01-01

    Small proteins characterized by a double-glycine (GG) secretion motif, typical of secreted bacterial antibiotics, are encoded by the genomes of diverse cyanobacteria, but their functions have not been investigated to date. Using a biofilm-forming mutant of Synechococcus elongatus PCC 7942 and a mutational approach, we demonstrate the involvement of four small secreted proteins and their GG-secretion motifs in biofilm development. These proteins are denoted EbfG1-4 (enable biofilm formation with a GG-motif). Furthermore, the conserved cysteine of the peptidase domain of the Synpcc7942_1133 gene product (dubbed PteB for peptidase transporter essential for biofilm) is crucial for biofilm development and is required for efficient secretion of the GG-motif containing proteins. Transcriptional profiling of ebfG1-4 indicated elevated transcript levels in the biofilm-forming mutant compared to wild type (WT). However, these transcripts decreased, acutely but transiently, when the mutant was cultured in extracellular fluids from a WT culture, and biofilm formation was inhibited. We propose that WT cells secrete inhibitor(s) that suppress transcription of ebfG1-4, whereas secretion of the inhibitor(s) is impaired in the biofilm-forming mutant, leading to synthesis and secretion of EbfG1-4 and supporting the formation of biofilms. PMID:27558743

  9. Impact of Environmental Cues on Staphylococcal Quorum Sensing and Biofilm Development.

    Science.gov (United States)

    Kavanaugh, Jeffrey S; Horswill, Alexander R

    2016-06-10

    Staphylococci are commensal bacteria that colonize the epithelial surfaces of humans and many other mammals. These bacteria can also attach to implanted medical devices and develop surface-associated biofilm communities that resist clearance by host defenses and available chemotherapies. These communities are often associated with persistent staphylococcal infections that place a tremendous burden on the healthcare system. Understanding the regulatory program that controls staphylococcal biofilm development, as well as the environmental conditions that modulate this program, has been a focal point of research in recent years. A central regulator controlling biofilm development is a peptide quorum-sensing system, also called the accessory gene regulator or agr system. In the opportunistic pathogen Staphylococcus aureus, the agr system controls production of exo-toxins and exo-enzymes essential for causing infections, and simultaneously, it modulates the ability of this pathogen to attach to surfaces and develop a biofilm, or to disperse from the biofilm state. In this review, we explore advances on the interconnections between the agr quorum-sensing system and biofilm mechanisms, and topics covered include recent findings on how different environmental conditions influence quorum sensing, the impact on biofilm development, and ongoing questions and challenges in the field. As our understanding of the quorum sensing and biofilm interconnection advances, there are growing opportunities to take advantage of this knowledge and develop therapeutic approaches to control staphylococcal infections.

  10. Strain-specific colonization patterns and serum modulation of multi-species oral biofilm development.

    Science.gov (United States)

    Biyikoğlu, Basak; Ricker, Austin; Diaz, Patricia I

    2012-08-01

    Periodontitis results from an ecological shift in the composition of subgingival biofilms. Subgingival community maturation is modulated by inter-organismal interactions and the relationship of communities with the host. In an effort to better understand this process, we evaluated biofilm formation, with oral commensal species, by three strains of the subgingivally prevalent microorganism Fusobacterium nucleatum and four strains of the periodontopathogen Porphyromonas gingivalis. We also tested the effect of serum, which resembles gingival exudates, on subgingival biofilms. Biofilms were allowed to develop in flow cells using salivary medium. We found that although not all strains of F. nucleatum were able to grow in mono-species biofilms, forming a community with health-associated partners Actinomyces oris and Veillonella parvula promoted biofilm growth of all F. nucleatum strains. Strains of P. gingivalis also showed variable ability to form mono-species biofilms. P. gingivalis W50 and W83 did not form biofilms, while ATCC 33277 and 381 formed biofilm structures, but only strain ATCC 33277 grew over time. Unlike the enhanced growth of F. nucleatum with the two health-associated species, no strain of P. gingivalis grew in three-species communities with A. oris and V. parvula. However, addition of F. nucleatum facilitated growth of P. gingivalis ATCC 33277 with health-associated partners. Importantly, serum negatively affected the adhesion of F. nucleatum, while it favored biofilm growth by P. gingivalis. This work highlights strain specificity in subgingival biofilm formation. Environmental factors such as serum alter the colonization patterns of oral microorganisms and could impact subgingival biofilms by selectively promoting pathogenic species.

  11. Kinetic development of biofilm on NF membranes at the Méry-sur-Oise plant, France.

    Science.gov (United States)

    Houari, Ahmed; Seyer, Damien; Kecili, Karima; Heim, Véronique; Martino, Patrick Di

    2013-01-01

    The kinetic formation of biofilms developing on nanofiltration (NF) membranes was studied for 2 years in the water production unit of Méry-sur-Oise, France. New membranes were set up in a pilot train integrated to the plant and autopsied after operation for 7, 80, 475 and 717 days. The biofouling layer was studied by confocal laser scanning microscope after 4',6-diamidino-2-phenyindole dihydrochloride and lectin staining, and by attenuated total reflectance-Fourier transform infrared spectroscopy and rheology experiments. Three stages of biofilm growth were discriminated: (1) the presence of sessile microcolonies embedded in an exopolymeric matrix (after filtration for seven days); (2) membrane coverage expansion through microcolony development and biofilm growth in three dimensions (up to 80 days filtration); and (3) biofilm maturation by densification (after filtration for 80-717 days). Biofilm maturation resulted in total coverage of the membrane surface and matrix residue diversification, development of the polysaccharide network, and the strengthening of matrix cohesion through viscosity and elasticity increases. The wettability and permeability of the fouled NF membranes decreased quickly and continuously throughout the biofilm development process. The longitudinal pressure drop (LPD) increased only after the biofilm reached a quantitative threshold. The decline in membrane permeability may be the result of contributions from many fouling mechanisms but the LPD was more substantially influenced by biofilm development.

  12. Multiple roles of biosurfactants in structural biofilm development by Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Pamp, Sünje Johanna; Tolker-Nielsen, Tim

    2007-01-01

    . aeruginosa rhl4 mutants were defective in migration-dependent development of mushroom-shaped multicellular structures in the later phase of biofilm formation. Experiments involving three-color-coded mixed-strain P. aeruginosa biofilms demonstrated that the wild-type and rhl4 and pil4 mutant strains formed...

  13. Quorum sensing-controlled biofilm development in Serratia liquefaciens MG1

    DEFF Research Database (Denmark)

    Labbate, M.; Queek, S.Y.; Koh, K.S.

    2004-01-01

    Serratia liquefaciens MG1 contains an N-acylhomoserine lactone-mediated quorum-sensing system that is known to regulate swarming motility colonization. In this study, we describe for S. liquefaciens MG1 the development of a novel biofilm consisting of cell aggregates and differentiated cell types......, such as cell chains and long filamentous cells. Furthermore, quorum sensing is shown to be crucial for normal biofilm development and for elaborate differentiation. A mutant of S. liquefaciens MG1 that was incapable of synthesizing extracellular signal formed a thin and nonmature biofilm lacking cell...... aggregates and differentiated cell chains. Signal-based complementation of this mutant resulted in a biofilm with the wild-type architecture. Two quorum-sensing-regulated genes (bsmA and bsmB) involved in biofilm development were identified, and we propose that these genes are engaged in fine...

  14. 血链球菌胞内蛋白及膜蛋白分别对热带念珠菌生物膜作用的研究%Studies of the Effects of Intracellular Proteins and Membrane Proteins in Streptococcus Sanguis on Biofilm of Candida Tropicalis

    Institute of Scientific and Technical Information of China (English)

    马晟利; 闫闯; 王丹

    2012-01-01

    目的:提取血链球菌标准株ATCC10556的胞内蛋白及膜蛋白,研究血链球菌胞内蛋白及血链球菌膜蛋白对热带念珠菌生物膜的生物学作用.方法:参照Fujimura[1]方法分离血链球菌胞内蛋白有效成分,使之作用于热带念珠菌生物膜,并以激光共聚焦显微镜观察热带念珠菌生物膜厚度的变化.参照碳酸钠梯度离心法[2]提取膜蛋白,观察其对热带念珠菌及其生物膜是否具有抑制作用.结果:在胞内蛋白作用下,24 h内热带念珠菌生物膜厚度明显变薄与阴性对照组相比有显著差异,并且12 h效果最为显著(P<0.05).膜蛋白作用下的热带念珠菌生物膜厚度与阴性对照组相比未见明显差异.结论:血链球菌胞内蛋白对热带念珠菌生物膜具有显著的抑制作用.血链球菌膜蛋白对热带念珠菌及其生物膜无抑制作用.%Objective: To extract intracellular and membrane proteins from Streptococcus sanguis( ATCC10556), and investigate their mechanism of action on Candida tropicalis biofilms. Methods: Intracellular proteins were isolated from Streptococcus sanguis by the method of Fujimura and were applied to Candida tropicalis biofilms. Then observation of changes on thickness of biofilms was taken. We extract membrane proteins by sodium carbonate gradient centrifugation, and judge whether they have inhibition on Candida tropicalis and biofilms or not. Results; Thickness of Candida tropicalis biofilms changed significantly in 24h with the action of intracellular proteins, and it had the most obvious effect within 12h. There was no significant difference on thickness of Candida tropicalis biofilms between membrane proteins and negative control groups. Conclusions: Intracellular proteins of Streptococcus sanguis have notable inhibition on biofilms of Candida tropicalis. Membrane proteins of Streptococcus sanguis have no inhibition on Candida tropicalis and their biofilms.

  15. Antibacterial Effect of Dental Adhesive Containing Dimethylaminododecyl Methacrylate on the Development of Streptococcus mutans Biofilm

    Directory of Open Access Journals (Sweden)

    Suping Wang

    2014-07-01

    Full Text Available Antibacterial bonding agents and composites containing dimethylaminododecyl methacrylate (DMADDM have been recently developed. The objectives of this study were to investigate the antibacterial effect of novel adhesives containing different mass fractions of DMADDM on Streptococcus mutans (S. mutans biofilm at different developmental stages. Different mass fractions of DMADDM were incorporated into adhesives and S. mutans biofilm at different developmetal stages were analyzed by MTT assays, lactic acid measurement, confocal laser scanning microscopy and scanning electron microscopy observations. Exopolysaccharides (EPS staining was used to analyze the inhibitory effect of DMADDM on the biofilm extracellular matrix. Dentin microtensile strengths were also measured. Cured adhesives containing DMADDM could greatly reduce metabolic activity and lactic acid production during the development of S. mutans biofilms (p < 0.05. In earlier stages of biofilm development, there were no significant differences of inhibitory effects between the 2.5% DMADDM and 5% DMADDM group. However, after 72 h, the anti-biofilm effects of adhesives containing 5% DMADDM were significantly stronger than any other group. Incorporation of DMADDM into adhesive did not adversely affect dentin bond strength. In conclusion, adhesives containing DMADDM inhibited the growth, lactic acid production and EPS metabolism of S. mutans biofilm at different stages, with no adverse effect on its dentin adhesive bond strength. The bonding agents have the potential to control dental biofilms and combat tooth decay, and DMADDM is promising for use in a wide range of dental adhesive systems and restoratives.

  16. Antibacterial effect of dental adhesive containing dimethylaminododecyl methacrylate on the development of Streptococcus mutans biofilm.

    Science.gov (United States)

    Wang, Suping; Zhang, Keke; Zhou, Xuedong; Xu, Ning; Xu, Hockin H K; Weir, Michael D; Ge, Yang; Wang, Shida; Li, Mingyun; Li, Yuqing; Xu, Xin; Cheng, Lei

    2014-07-18

    Antibacterial bonding agents and composites containing dimethylaminododecyl methacrylate (DMADDM) have been recently developed. The objectives of this study were to investigate the antibacterial effect of novel adhesives containing different mass fractions of DMADDM on Streptococcus mutans (S. mutans) biofilm at different developmental stages. Different mass fractions of DMADDM were incorporated into adhesives and S. mutans biofilm at different developmetal stages were analyzed by MTT assays, lactic acid measurement, confocal laser scanning microscopy and scanning electron microscopy observations. Exopolysaccharides (EPS) staining was used to analyze the inhibitory effect of DMADDM on the biofilm extracellular matrix. Dentin microtensile strengths were also measured. Cured adhesives containing DMADDM could greatly reduce metabolic activity and lactic acid production during the development of S. mutans biofilms (p biofilm development, there were no significant differences of inhibitory effects between the 2.5% DMADDM and 5% DMADDM group. However, after 72 h, the anti-biofilm effects of adhesives containing 5% DMADDM were significantly stronger than any other group. Incorporation of DMADDM into adhesive did not adversely affect dentin bond strength. In conclusion, adhesives containing DMADDM inhibited the growth, lactic acid production and EPS metabolism of S. mutans biofilm at different stages, with no adverse effect on its dentin adhesive bond strength. The bonding agents have the potential to control dental biofilms and combat tooth decay, and DMADDM is promising for use in a wide range of dental adhesive systems and restoratives.

  17. Mini-review: Microbial coaggregation: ubiquity and implications for biofilm development.

    Science.gov (United States)

    Katharios-Lanwermeyer, S; Xi, C; Jakubovics, N S; Rickard, A H

    2014-01-01

    Coaggregation is the specific recognition and adherence of genetically distinct microorganisms. Because most biofilms are polymicrobial communities, there is potential for coaggregation to play an integral role in spatiotemporal biofilm development and the moderation of biofilm community composition. However, understanding of the mechanisms contributing to coaggregation and the relevance of coaggregation to biofilm ecology is at a very early stage. The purpose of this review is to highlight recent advances in the understanding of microbial coaggregation within different environments and to describe the possible ecological ramifications of such interactions. Bacteria that coaggregate with many partner species within different environments will be highlighted, including oral streptococci and oral bridging organisms such as fusobacteria, as well as the freshwater sphingomonads and acinetobacters. Irrespective of environment, it is proposed that coaggregation is essential for the orchestrated development of multi-species biofilms.

  18. In situ rheology of yeast biofilms.

    Science.gov (United States)

    Brugnoni, Lorena I; Tarifa, María C; Lozano, Jorge E; Genovese, Diego

    2014-01-01

    The aim of the present work was to investigate the in situ rheological behavior of yeast biofilms growing on stainless steel under static and turbulent flow. The species used (Rhodototula mucilaginosa, Candida krusei, Candida kefyr and Candida tropicalis) were isolated from a clarified apple juice industry. The flow conditions impacted biofilm composition over time, with a predominance of C. krusei under static and turbulent flow. Likewise, structural variations occurred, with a tighter appearance under dynamic flow. Under turbulent flow there was an increase of 112 μm in biofilm thickness at 11 weeks (p rheology and contribute to a thin body of knowledge about fungal biofilm formation.

  19. 没食子酸抑制白念珠菌生物膜作用的研究%In vitro activity of gallic acid against Candida albicans biofilms

    Institute of Scientific and Technical Information of China (English)

    汪长中; 程惠娟; 官妍; 王艳; 云云

    2009-01-01

    目的:研究没食子酸对体外白念珠菌生物膜的影响.方法:采用XTT减低法评价没食子酸对白念珠菌的生物膜及黏附性的影响;镜下观察没食子酸对白念珠菌生物膜的形态学影响;细胞毒试验检测该药的毒副作用.结果:没食子酸抑制白念珠菌生物膜最低药物浓度SMIC_(50),SMIC_(80)分别是500,1 000 mg·L~(-1);100,1 000 mg·L~(-1) 的没食子酸对白念珠菌的早期黏附及菌丝生长有抑制作用;没食子酸对人细胞毒性较弱.结论:没食子酸对体外白念珠菌生物膜有较强的抑制作用.%Objective: To investigate the effects of gallic acid against Candida albicans biofilms in vitro. Method: XTT reduc-tion assay was performed to determine the effect of gallic acid on C. albicans biofilms and its adherence, and microscopic examination was conducted to assess the effect of gallic acid on morphogenesis of C. albicans biofilms; and cytotoxic assay was used to measure the adverse effects of gallic acid. Result: SMIC_(50), SMIC_(80) of gallic acid against C. albicans biofilms were 500, 1 000 mg · ~(-1) , respec-tively; 100 mg · L~(-1) and 1 000 mg · ~(-1) of gallic acid could inhibit the initial adherence and filamentous growth, and the agent showed poor cytotoxic activity. Conclusion: gallic acid displayed potent activity against C. albicans biofilm.

  20. Experimental Models of Oral Biofilms Developed on Inert Substrates: A Review of the Literature

    Science.gov (United States)

    Darrene, Lopez-Nguyen

    2016-01-01

    The oral ecosystem is a very complex environment where more than 700 different bacterial species can be found. Most of them are organized in biofilm on dental and mucosal surfaces. Studying this community is important because a rupture in stability can lead to the preeminence of pathogenic microorganisms, causing dental decay, gingivitis, or periodontitis. The multitude of species complicates biofilm analysis so its reproduction, collection, and counting are very delicate. The development of experimental models of dental biofilms was therefore essential and multiple in vitro designs have emerged, each of them especially adapted to observing biofilm formation of specific bacteria within specific environments. The aim of this review is to analyze oral biofilm models. PMID:27699173

  1. Experimental Models of Oral Biofilms Developed on Inert Substrates: A Review of the Literature

    Directory of Open Access Journals (Sweden)

    Lopez-Nguyen Darrene

    2016-01-01

    Full Text Available The oral ecosystem is a very complex environment where more than 700 different bacterial species can be found. Most of them are organized in biofilm on dental and mucosal surfaces. Studying this community is important because a rupture in stability can lead to the preeminence of pathogenic microorganisms, causing dental decay, gingivitis, or periodontitis. The multitude of species complicates biofilm analysis so its reproduction, collection, and counting are very delicate. The development of experimental models of dental biofilms was therefore essential and multiple in vitro designs have emerged, each of them especially adapted to observing biofilm formation of specific bacteria within specific environments. The aim of this review is to analyze oral biofilm models.

  2. Oral biofilm architecture on natural teeth.

    Science.gov (United States)

    Zijnge, Vincent; van Leeuwen, M Barbara M; Degener, John E; Abbas, Frank; Thurnheer, Thomas; Gmür, Rudolf; Harmsen, Hermie J M

    2010-02-24

    Periodontitis and caries are infectious diseases of the oral cavity in which oral biofilms play a causative role. Moreover, oral biofilms are widely studied as model systems for bacterial adhesion, biofilm development, and biofilm resistance to antibiotics, due to their widespread presence and accessibility. Despite descriptions of initial plaque formation on the tooth surface, studies on mature plaque and plaque structure below the gum are limited to landmark studies from the 1970s, without appreciating the breadth of microbial diversity in the plaque. We used fluorescent in situ hybridization to localize in vivo the most abundant species from different phyla and species associated with periodontitis on seven embedded teeth obtained from four different subjects. The data showed convincingly the dominance of Actinomyces sp., Tannerella forsythia, Fusobacterium nucleatum, Spirochaetes, and Synergistetes in subgingival plaque. The latter proved to be new with a possibly important role in host-pathogen interaction due to its localization in close proximity to immune cells. The present study identified for the first time in vivo that Lactobacillus sp. are the central cells of bacterial aggregates in subgingival plaque, and that Streptococcus sp. and the yeast Candida albicans form corncob structures in supragingival plaque. Finally, periodontal pathogens colonize already formed biofilms and form microcolonies therein. These in vivo observations on oral biofilms provide a clear vision on biofilm architecture and the spatial distribution of predominant species.

  3. Oral biofilm architecture on natural teeth.

    Directory of Open Access Journals (Sweden)

    Vincent Zijnge

    Full Text Available Periodontitis and caries are infectious diseases of the oral cavity in which oral biofilms play a causative role. Moreover, oral biofilms are widely studied as model systems for bacterial adhesion, biofilm development, and biofilm resistance to antibiotics, due to their widespread presence and accessibility. Despite descriptions of initial plaque formation on the tooth surface, studies on mature plaque and plaque structure below the gum are limited to landmark studies from the 1970s, without appreciating the breadth of microbial diversity in the plaque. We used fluorescent in situ hybridization to localize in vivo the most abundant species from different phyla and species associated with periodontitis on seven embedded teeth obtained from four different subjects. The data showed convincingly the dominance of Actinomyces sp., Tannerella forsythia, Fusobacterium nucleatum, Spirochaetes, and Synergistetes in subgingival plaque. The latter proved to be new with a possibly important role in host-pathogen interaction due to its localization in close proximity to immune cells. The present study identified for the first time in vivo that Lactobacillus sp. are the central cells of bacterial aggregates in subgingival plaque, and that Streptococcus sp. and the yeast Candida albicans form corncob structures in supragingival plaque. Finally, periodontal pathogens colonize already formed biofilms and form microcolonies therein. These in vivo observations on oral biofilms provide a clear vision on biofilm architecture and the spatial distribution of predominant species.

  4. L-arginine destabilizes oral multi-species biofilm communities developed in human saliva.

    Science.gov (United States)

    Kolderman, Ethan; Bettampadi, Deepti; Samarian, Derek; Dowd, Scot E; Foxman, Betsy; Jakubovics, Nicholas S; Rickard, Alexander H

    2015-01-01

    The amino acid L-arginine inhibits bacterial coaggregation, is involved in cell-cell signaling, and alters bacterial metabolism in a broad range of species present in the human oral cavity. Given the range of effects of L-arginine on bacteria, we hypothesized that L-arginine might alter multi-species oral biofilm development and cause developed multi-species biofilms to disassemble. Because of these potential biofilm-destabilizing effects, we also hypothesized that L-arginine might enhance the efficacy of antimicrobials that normally cannot rapidly penetrate biofilms. A static microplate biofilm system and a controlled-flow microfluidic system were used to develop multi-species oral biofilms derived from pooled unfiltered cell-containing saliva (CCS) in pooled filter-sterilized cell-free saliva (CFS) at 37° C. The addition of pH neutral L-arginine monohydrochloride (LAHCl) to CFS was found to exert negligible antimicrobial effects but significantly altered biofilm architecture in a concentration-dependent manner. Under controlled flow, the biovolume of biofilms (μm(3)/μm(2)) developed in saliva containing 100-500 mM LAHCl were up to two orders of magnitude less than when developed without LAHCI. Culture-independent community analysis demonstrated that 500 mM LAHCl substantially altered biofilm species composition: the proportion of Streptococcus and Veillonella species increased and the proportion of Gram-negative bacteria such as Neisseria and Aggregatibacter species was reduced. Adding LAHCl to pre-formed biofilms also reduced biovolume, presumably by altering cell-cell interactions and causing cell detachment. Furthermore, supplementing 0.01% cetylpyridinium chloride (CPC), an antimicrobial commonly used for the treatment of dental plaque, with 500 mM LAHCl resulted in greater penetration of CPC into the biofilms and significantly greater killing compared to a non-supplemented 0.01% CPC solution. Collectively, this work demonstrates that LAHCl moderates multi

  5. L-arginine destabilizes oral multi-species biofilm communities developed in human saliva.

    Directory of Open Access Journals (Sweden)

    Ethan Kolderman

    Full Text Available The amino acid L-arginine inhibits bacterial coaggregation, is involved in cell-cell signaling, and alters bacterial metabolism in a broad range of species present in the human oral cavity. Given the range of effects of L-arginine on bacteria, we hypothesized that L-arginine might alter multi-species oral biofilm development and cause developed multi-species biofilms to disassemble. Because of these potential biofilm-destabilizing effects, we also hypothesized that L-arginine might enhance the efficacy of antimicrobials that normally cannot rapidly penetrate biofilms. A static microplate biofilm system and a controlled-flow microfluidic system were used to develop multi-species oral biofilms derived from pooled unfiltered cell-containing saliva (CCS in pooled filter-sterilized cell-free saliva (CFS at 37° C. The addition of pH neutral L-arginine monohydrochloride (LAHCl to CFS was found to exert negligible antimicrobial effects but significantly altered biofilm architecture in a concentration-dependent manner. Under controlled flow, the biovolume of biofilms (μm(3/μm(2 developed in saliva containing 100-500 mM LAHCl were up to two orders of magnitude less than when developed without LAHCI. Culture-independent community analysis demonstrated that 500 mM LAHCl substantially altered biofilm species composition: the proportion of Streptococcus and Veillonella species increased and the proportion of Gram-negative bacteria such as Neisseria and Aggregatibacter species was reduced. Adding LAHCl to pre-formed biofilms also reduced biovolume, presumably by altering cell-cell interactions and causing cell detachment. Furthermore, supplementing 0.01% cetylpyridinium chloride (CPC, an antimicrobial commonly used for the treatment of dental plaque, with 500 mM LAHCl resulted in greater penetration of CPC into the biofilms and significantly greater killing compared to a non-supplemented 0.01% CPC solution. Collectively, this work demonstrates that LAHCl

  6. Comparative phenotypic analysis of the major fungal pathogens Candida parapsilosis and Candida albicans.

    Science.gov (United States)

    Holland, Linda M; Schröder, Markus S; Turner, Siobhán A; Taff, Heather; Andes, David; Grózer, Zsuzsanna; Gácser, Attila; Ames, Lauren; Haynes, Ken; Higgins, Desmond G; Butler, Geraldine

    2014-09-01

    Candida parapsilosis and Candida albicans are human fungal pathogens that belong to the CTG clade in the Saccharomycotina. In contrast to C. albicans, relatively little is known about the virulence properties of C. parapsilosis, a pathogen particularly associated with infections of premature neonates. We describe here the construction of C. parapsilosis strains carrying double allele deletions of 100 transcription factors, protein kinases and species-specific genes. Two independent deletions were constructed for each target gene. Growth in >40 conditions was tested, including carbon source, temperature, and the presence of antifungal drugs. The phenotypes were compared to C. albicans strains with deletions of orthologous transcription factors. We found that many phenotypes are shared between the two species, such as the role of Upc2 as a regulator of azole resistance, and of CAP1 in the oxidative stress response. Others are unique to one species. For example, Cph2 plays a role in the hypoxic response in C. parapsilosis but not in C. albicans. We found extensive divergence between the biofilm regulators of the two species. We identified seven transcription factors and one protein kinase that are required for biofilm development in C. parapsilosis. Only three (Efg1, Bcr1 and Ace2) have similar effects on C. albicans biofilms, whereas Cph2, Czf1, Gzf3 and Ume6 have major roles in C. parapsilosis only. Two transcription factors (Brg1 and Tec1) with well-characterized roles in biofilm formation in C. albicans do not have the same function in C. parapsilosis. We also compared the transcription profile of C. parapsilosis and C. albicans biofilms. Our analysis suggests the processes shared between the two species are predominantly metabolic, and that Cph2 and Bcr1 are major biofilm regulators in C. parapsilosis.

  7. The cabABC Operon Essential for Biofilm and Rugose Colony Development in Vibrio vulnificus.

    Directory of Open Access Journals (Sweden)

    Jin Hwan Park

    2015-09-01

    Full Text Available A transcriptome analysis identified Vibrio vulnificus cabABC genes which were preferentially expressed in biofilms. The cabABC genes were transcribed as a single operon. The cabA gene was induced by elevated 3',5'-cyclic diguanylic acid (c-di-GMP and encoded a calcium-binding protein CabA. Comparison of the biofilms produced by the cabA mutant and its parent strain JN111 in microtiter plates using crystal-violet staining demonstrated that CabA contributed to biofilm formation in a calcium-dependent manner under elevated c-di-GMP conditions. Genetic and biochemical analyses revealed that CabA was secreted to the cell exterior through functional CabB and CabC, distributed throughout the biofilm matrix, and produced as the biofilm matured. These results, together with the observation that CabA also contributes to the development of rugose colony morphology, indicated that CabA is a matrix-associated protein required for maturation, rather than adhesion involved in the initial attachment, of biofilms. Microscopic comparison of the structure of biofilms produced by JN111 and the cabA mutant demonstrated that CabA is an extracellular matrix component essential for the development of the mature biofilm structures in flow cells and on oyster shells. Exogenously providing purified CabA restored the biofilm- and rugose colony-forming abilities of the cabA mutant when calcium was available. Circular dichroism and size exclusion analyses revealed that calcium binding induces CabA conformational changes which may lead to multimerization. Extracellular complementation experiments revealed that CabA can assemble a functional matrix only when exopolysaccharides coexist. Consequently, the combined results suggested that CabA is a structural protein of the extracellular matrix and multimerizes to a conformation functional in building robust biofilms, which may render V. vulnificus to survive in hostile environments and reach a concentrated infective dose.

  8. Wound biofilms: lessons learned from oral biofilms.

    Science.gov (United States)

    Mancl, Kimberly A; Kirsner, Robert S; Ajdic, Dragana

    2013-01-01

    Biofilms play an important role in the development and pathogenesis of many chronic infections. Oral biofilms, more commonly known as dental plaque, are a primary cause of oral diseases including caries, gingivitis, and periodontitis. Oral biofilms are commonly studied as model biofilm systems as they are easily accessible; thus, biofilm research in oral diseases is advanced with details of biofilm formation and bacterial interactions being well elucidated. In contrast, wound research has relatively recently directed attention to the role biofilms have in chronic wounds. This review discusses the biofilms in periodontal disease and chronic wounds with comparisons focusing on biofilm detection, biofilm formation, the immune response to biofilms, bacterial interaction, and quorum sensing. Current treatment modalities used by both fields and future therapies are also discussed.

  9. [Development of a real-time polymerase chain reaction method for the identification of Candida species].

    Science.gov (United States)

    Ağca, Harun; Dalyan Cilo, Burcu; Özmerdiven, Gülşah Ece; Sağlam, Sezcan; Ener, Beyza

    2015-01-01

    created by cooling the producs at 50°C for 30 secs and then heating to 80°C at a rate of 0.1°C/sec measuring of the fluorescence simultaneously. For the quantitation of fungal DNA according to the standard curve, serial dilutions of C.albicans ATCC 10231 DNA from 3 x 10(5) to 3 x 10(2) ng/μl were used. All of the strains were also identified by conventional methods and sequence analysis in order to compare the results obtained by Rt-PCR. In our study, all patient and standard samples could be amplified, identified and quantitated by this developed Rt-PCR method. A total of 50 strains, of them 26 were C.parapsilosis, 15 were C.glabrata, 6 were C.albicans, and 3 were C.tropicalis have been detected and identified among patient samples. The results were completely concordant with the sequencing and conventional methods, so the sensitivity and specificity of this method were estimated as 100 percent. In conclusion, it was novel Rt-PCR developed and evaluated in this study is considered as a rapid, accurate, reproducible, sensitive and specific method for the detection, identification and quantitation of commonly observed Candida spp. strains.

  10. Species and material considerations in the formation and development of microalgal biofilms.

    Science.gov (United States)

    Irving, Tyler E; Allen, D Grant

    2011-10-01

    The development of microalgal biofilms has received very limited study despite its relevance in the design of photobioreactors where film growth may be advantageous for biomass separation or disadvantageous in fouling surfaces. Here, the effects of species selection, species control, and substrate properties on biofilms of Scenedesmus obliquus and Chlorella vulgaris were investigated. Experiments were conducted in batch culture and in continuous culture modes in a flow cell. Cell growth was monitored using confocal laser scanning microscopy and gravimetrically. Species selection and species control had significant effects on biofilm development. On non-sterile wastewater, C. vulgaris shifted from primarily planktonic (23.7% attachment) to primarily sessile (79.8% attachment) growth. The biofilms that developed in non-sterile conditions were thicker (52 ± 19 μm) than those grown in sterile conditions (7 ± 6 μm). By contrast, S. obliquus attained similar thicknesses (54 ± 31 and 53 ± 38 μm) in both sterile and non-sterile conditions. Neither species was able to dominate a non-sterile biofilm. The effect of substrate surface properties was minimal. Both species grew films of similar thickness (approximately 30 μm for S. obliquus, materials ranging from hydrophilic (glass) to hydrophobic (polytetrafluoroethylene). Surface roughness created by micropatterning the surface with 10 μm grooves did not translate into long-term increases in biofilm thickness. The results indicate that species selection and control are more important than surface properties in the development of microalgal biofilms.

  11. Rapid development of pulmonary cavitation as manifestation of a candida species

    Energy Technology Data Exchange (ETDEWEB)

    Rix, E.; Bickel, R.H.; Baldauf, G.

    1987-01-01

    The roentgenologic pattern of the pulmonary manifestation of candida species, resulting in a rapid development of pulmonary cavitations with mycetoma-like structures, was described in three patients. All patients, undergoing antineoplastic chemotherapy because of acute leukemia, presented with fever and expectoration, which were resistant to various antibiotic regimes. Cultures of blood and urine were sterile; but Torulopsis glabrata, a candida species, was found in multiple cultures of the sputum of all patients and also in a bronchoscopic lavage obtained from one patient after reconstitution of the granulopoesis. The roetgenologic appearance of the infiltrates was accompanied by a rise of the Ig-M immunoglobulins against candida. Following intravenous treatment with amphotericin B a reduction of the cavitation and of the infiltrates to small residues was observed. Simultaneously the body temperature and the sputum became normal and a fall in the immunoglobulin titers was found. The diagnostic problems of pulmonary cavitation and especially of pulmonary mycosis in immuosuppressed and therapy-induced granulocytopenic and thrombocytopenic patients with acute leukemia were discussed.

  12. Impact of Chloramination on the Development of Laboratory-Grown Biofilms Fed with Filter-Pretreated Groundwater

    KAUST Repository

    Ling, Fangqiong

    2013-01-01

    This study evaluated the continuous impact of monochloramine disinfection on laboratory-grown biofilms through the characterization of biofilm architecture and microbial community structure. Biofilm development and disinfection were achieved using CDC (Centers for Disease Control and Prevention) biofilm reactor systems with polyvinyl chloride (PVC) coupons as the substratum and sand filter-pretreated groundwater as the source of microbial seeding and growth nutrient. After 2 weeks of growth, the biofilms were subjected to chloramination for 8 more weeks at concentrations of 7.5±1.4 to 9.1±0.4 mg Cl2 L-1. Control reactors received no disinfection during the development of biofilms. Confocal laser scanning microscopy and image analysis indicated that chloramination could lead to 81.4-83.5% and 86.3-95.6% reduction in biofilm biomass and thickness, respectively, but could not eliminate biofilm growth. 16S rRNA gene terminal restriction fragment length polymorphism analysis indicated that microbial community structures between chloraminated and non-chloraminated biofilms exhibited different successional trends. 16S rRNA gene pyrosequencing analysis further revealed that chloramination could select members of Actinobacteria and Acidobacteria as the dominant populations, whereas natural development leads to the selection of members of Nitrospira and Bacteroidetes as dominant biofilm populations. Overall, chloramination treatment could alter the growth of multi-species biofilms on the PVC surface, shape the biofilm architecture, and select a certain microbial community that can survive or proliferate under chloramination.

  13. Escherichia coli adhesion, biofilm development and antibiotic susceptibility on biomedical materials.

    Science.gov (United States)

    Gomes, L C; Silva, L N; Simões, M; Melo, L F; Mergulhão, F J

    2015-04-01

    The aim of this work was to test materials typically used in the construction of medical devices regarding their influence in the initial adhesion, biofilm development and antibiotic susceptibility of Escherichia coli biofilms. Adhesion and biofilm development was monitored in 12-well microtiter plates containing coupons of different biomedical materials--silicone (SIL), stainless steel (SS) and polyvinyl chloride (PVC)--and glass (GLA) as control. The susceptibility of biofilms to ciprofloxacin and ampicillin was assessed, and the antibiotic effect in cell morphology was observed by scanning electron microscopy. The surface hydrophobicity of the bacterial strain and materials was also evaluated from contact angle measurements. Surface hydrophobicity was related with initial E. coli adhesion and subsequent biofilm development. Hydrophobic materials, such as SIL, SS, and PVC, showed higher bacterial colonization than the hydrophilic GLA. Silicone was the surface with the greatest number of adhered cells and the biofilms formed on this material were also less susceptible to both antibiotics. It was found that different antibiotics induced different levels of elongation on E. coli sessile cells. Results revealed that, by affecting the initial adhesion, the surface properties of a given material can modulate biofilm buildup and interfere with the outcome of antimicrobial therapy. These findings raise the possibility of fine-tuning surface properties as a strategy to reach higher therapeutic efficacy.

  14. A modular reactor to simulate biofilm development in orthopedic materials.

    Science.gov (United States)

    Barros, Joana; Grenho, Liliana; Manuel, Cândida M; Ferreira, Carla; Melo, Luís F; Nunes, Olga C; Monteiro, Fernando J; Ferraz, Maria P

    2013-09-01

    Surfaces of medical implants are generally designed to encourage soft- and/or hard-tissue adherence, eventually leading to tissue- or osseo-integration. Unfortunately, this feature may also encourage bacterial adhesion and biofilm formation. To understand the mechanisms of bone tissue infection associated with contaminated biomaterials, a detailed understanding of bacterial adhesion and subsequent biofilm formation on biomaterial surfaces is needed. In this study, a continuous-flow modular reactor composed of several modular units placed in parallel was designed to evaluate the activity of circulating bacterial suspensions and thus their predilection for biofilm formation during 72 h of incubation. Hydroxyapatite discs were placed in each modular unit and then removed at fixed times to quantify biofilm accumulation. Biofilm formation on each replicate of material, unchanged in structure, morphology, or cell density, was reproducibly observed. The modular reactor therefore proved to be a useful tool for following mature biofilm formation on different surfaces and under conditions similar to those prevailing near human-bone implants.

  15. Induced Polarization Signature of Biofilms in Porous Media: From Laboratory Experiments to Theoretical Developments and Validation

    Energy Technology Data Exchange (ETDEWEB)

    Atekwana, Estella [Oklahoma State Univ., Stillwater, OK (United States); Patrauchan, Marianna [Oklahoma State Univ., Stillwater, OK (United States); Revil, Andre [Colorado School of Mines, Golden, CO (United States)

    2016-10-04

    Bioremediation strategies for mitigating the transport of heavy metals and radionuclides in subsurface sediments have largely targeted the use of dissimilatory metal and sulfate-reducing bacteria. Growth and metabolic activities from these organisms can significantly influence biogeochemical processes, including mineral dissolution/precipitation, fluctuating pH and redox potential (Eh) values, development of biofilms, and decreasing hydraulic conductivity. The Spectral Induced Polarization (SIP) technique has emerged as the technique most sensitive to the presence of microbial cells and biofilms in porous media; yet it is often difficult to unambiguously distinguish the impact of multiple and often competing processes that occur during in-situ biostimulation activities on the SIP signatures. The main goal of our project is to quantitatively characterize major components within bacterial biofilms (cells, DNA, metals, metabolites etc.) contributing to detectable SIP signatures. We specifically: (i) evaluated the contribution of biofilm components to SIP signatures, (ii) determined the contribution of biogenic minerals commonly found in biofilms to SIP signatures, (iii) determined if the SIP signatures can be used to quantify the rates of biofilm formation, (iv) developed models and a fundamental understanding of potential underlying polarization mechanisms at low frequencies (<40 kHz) resulting from the presence of microbial cells and biofilms

  16. A new approach for development of kinetics of wastewater treatment in aerobic biofilm reactor

    Science.gov (United States)

    Goswami, S.; Sarkar, S.; Mazumder, D.

    2016-02-01

    Biofilm process is widely used for the treatment of a variety of wastewater especially containing slowly biodegradable substances. It provides resistance against toxic environment and is capable of retaining biomass under continuous operation. Development of kinetics is very much pertinent for rational design of a biofilm process for the treatment of wastewater with or without inhibitory substances. A simple approach for development of such kinetics for an aerobic biofilm reactor has been presented using a novel biofilm model. The said biofilm model is formulated from the correlations between substrate concentrations in the influent/effluent and at biofilm liquid interface along with substrate flux and biofilm thickness complying Monod's growth kinetics. The methodology for determining the kinetic coefficients for substrate removal and biomass growth has been demonstrated stepwise along with graphical representations. Kinetic coefficients like K, k, Y, b t, b s, and b d are determined either from the intercepts of X- and Y-axis or from the slope of the graphical plots.

  17. 呼吸道白色假丝酵母菌分离株生物膜形成及药物敏感性检测%Biofilm formation and antifungal susceptibility of Candida albicans isolated from respiratory tract

    Institute of Scientific and Technical Information of China (English)

    阳隽; 张天托; 朱家馨; 黄静

    2011-01-01

    OBJECTIVE To monitor the biofilm formation and antifungal susceptibility of Candida albicans isolated from lower respiratory tract of critically ill patients.METHODS By forming biofilm in cell culture plate in vitro,based on the amount of light blocked passing through the wells, C.albicans isolates were divided into two groups:biofilm-negative isolates and biofilm-positive isolates.The MICs of antifungal drugs against planktonic cells and biofilm-associated adherent cells of 10 isolates were determined respectively.RESULTS Totally 14(26.92%)of 52 isolates were classified as biofilm producer, the other 38(73.08 %)isolates were classified as nonbiofilm producer.The MICs of FLU, CASPO and AMB for biofilm-associated adherent cells were much higher than that for planktonic cells.All biofilm-associated adherent ceils were resistant to FLU and CASPO(SMIC80 >256 μg/ml;>16 μg/ml).The MICs of AMB for biofilms of 4 strains were more than 8 μg/ml.CONCLUSION Biofilm formation varies greatly among individual C.albicans isolates.C.albicans biofilm is highly resistant to antifungal agents.%目的 监测危重病患者下呼吸道分离的白色假丝酵母菌(CAL)体外生物膜形成及对抗真菌药物的敏感性,为临床诊治提供依据.方法 接种CAL于96孔培养板黏附生长形成生物膜,根据相对于空白对照透光度下降的程度将CAL分为生物膜阳性和生物膜阴性菌株,并测定抗真菌药物对10株生物膜阳性CAL游离态和生物膜的MIC值.结果 52株CAL中有14株为生物膜阳性菌株,占26.92%;38株为生物膜阴性菌株,占73.08%;氟康唑、卡泊芬净及两性霉素B对生物膜CAL的MIC值明显高于其游离态MIC值,10株生物膜CAL对氟康唑、卡泊芬净均耐药(SMIC80>256μg/ml及>16μg/ml),而两性霉素B对其中4株生物膜CAL的SMIC80>8μg/ml.结论 呼吸道CAL分离株生物膜形成存在表型差异,生物膜CAL对抗真菌药物的耐药性增高.

  18. Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Klausen, Mikkel; Aaes-Jorgensen, A.; Molin, Søren;

    2003-01-01

    development, we have performed an investigation with time-lapse confocal laser scanning microscopy of biofilms formed by various combinations of colour-coded P. aeruginosa wild type and motility mutants. We show that mushroom-shaped multicellular structures in P. aeruginosa biofilms can form in a sequential...... process involving a non-motile bacterial subpopulation and a migrating bacterial subpopulation. The non-motile bacteria form the mushroom stalks by growth in certain foci of the biofilm. The migrating bacteria form the mushroom caps by climbing the stalks and aggregating on the tops in a process which...

  19. Antifungal Activity of Caspofungin against Candida albicans Biofilms in Vitro%卡泊芬净对生物膜态白色念珠菌体外抑菌作用的试验研究

    Institute of Scientific and Technical Information of China (English)

    阳隽; 张天托; 朱家馨

    2011-01-01

    目的:检测卡泊芬净对生物膜态白色念珠菌分离株的抑菌作用,探讨临床治疗其相关感染的最适治疗剂量.方法:分别测定卡泊芬净对10株白色念珠菌临床株游离态及生物膜态的半数抑菌浓度(MIC50),并对比观察不同浓度卡泊芬净作用下白色念珠菌的增殖活性.结果:卡泊芬净对游离态白色念珠菌的MlC50为0.125~0.5 mg·L-1,对生物膜态白色念殊菌的MIC50为0.25~256 mg·L-1,当卡泊芬净浓度高于白色念珠菌MIC50时,全部游离态白色念珠菌的增殖活性几乎完全受到抑制,但有7株生物膜态白色念珠菌的增殖活性再次增强,且大于阳性对照的50%.结论:卡泊芬净对生物膜态白色念珠菌有抑菌作用,但并不呈浓度依赖性,当其用于治疗生物膜态白色念珠菌相关感染时的最适治疗剂量有待临床研究验证.%OBJECTIVE: To detect antifungal activity of caspofungin against Candida albicans biofilms in vitro, and to investigate the suitable dosage of clinical treatment for relevant infection. METHODS: The MIC50 of caspofungin against planktonic cells and biofilm-associated adherent cells were determined respectively. Metabolic activity of Candida albicans was determined at MICso of caspofungin. RESULTS: The MICso of caspofungin against planktonic cells were 0.125 - 0.5 mg-L-1,the MICso of caspofungin against biofilm-associated adherent cells were 0.25 - 256 mg-L-1. But metabolic activity of planktonic cells was inhibited totally while that of 7 strains of biofilm-associated adherent cells were enhanced again in the caspofungin concentration above the MICso. It was more than 50% of positive control. CONCLUSION: Caspofungin displays antifungal activity against Candida albicans biofilms in vitro, not in concentration dependent manner. But the optimal dose of caspofungin for biofilm-associated infection should be determined in clinical study.

  20. Environmental switching during biofilm development in a cold seep system and functional determinants of species sorting

    KAUST Repository

    Zhang, Weipeng

    2015-11-28

    The functional basis for species sorting theory remains elusive, especially for microbial community assembly in deep sea environments. Using artificial surface-based biofilm models, our recent work revealed taxonomic succession during biofilm development in a newly defined cold seep system, the Thuwal cold seeps II, which comprises a brine pool and the adjacent normal bottom water (NBW) to form a metacommunity via the potential immigration of organisms from one patch to another. Here, we designed an experiment to investigate the effects of environmental switching between the brine pool and the NBW on biofilm assembly, which could reflect environmental filtering effects during bacterial immigration to new environments. Analyses of 16S rRNA genes of 71 biofilm samples suggested that the microbial composition of biofilms established in new environments was determined by both the source community and the incubation conditions. Moreover, a comparison of 18 metagenomes provided evidence for biofilm community assembly that was based primarily on functional features rather than taxonomic identities; metal ion resistance and amino acid metabolism were the major species sorting determinants for the succession of biofilm communities. Genome binning and pathway reconstruction of two bacterial species (Marinobacter sp. and Oleispira sp.) further demonstrated metal ion resistance and amino acid metabolism as functional traits conferring the survival of habitat generalists in both the brine pool and NBW. The results of the present study sheds new light on microbial community assembly in special habitats and bridges a gap in species sorting theory.

  1. Different carbon isotope fractionation patterns during the development of phototrophic freshwater and marine biofilms

    Directory of Open Access Journals (Sweden)

    M. Staal

    2007-08-01

    Full Text Available Natural phototrophic biofilms are influenced by a broad array of abiotic and biotic factors and vary over temporal and spatial scales. Different developmental stages can be distinguished and growth rates will vary due to the thickening of the biofilm, which is expected to lead to a limitation of light or mass transport. This study shows that variation in CO2(aq availability leads to a fractionation shift and thereby affects δ13C signatures during biofilm development. For phototrophic freshwater biofilms it was found that the δ13C value became less negative with the thickening of the biofilm, while the opposite trend was found in marine biofilms. Modeling and pH profiling indicated that the trend in the freshwater system was caused by an increase in CO2(aq limitation resulting in an increase of HCO3 as C-source. The opposite trend in the marine system could be explained by a higher heterotrophic biomass and activity causing a higher carbon recycling and thereby lower δ13C values. We conclude that δ13C was more related to the net areal photosynthesis rate and carbon recycling, rather than to the growth rate of the biofilms.

  2. Dynamics of Streptococcus mutans transcriptome in response to starch and sucrose during biofilm development.

    Directory of Open Access Journals (Sweden)

    Marlise I Klein

    Full Text Available The combination of sucrose and starch in the presence of surface-adsorbed salivary α-amylase and bacterial glucosyltransferases increase the formation of a structurally and metabolically distinctive biofilm by Streptococcus mutans. This host-pathogen-diet interaction may modulate the formation of pathogenic biofilms related to dental caries disease. We conducted a comprehensive study to further investigate the influence of the dietary carbohydrates on S. mutans-transcriptome at distinct stages of biofilm development using whole genomic profiling with a new computational tool (MDV for data mining. S. mutans UA159 biofilms were formed on amylase-active saliva coated hydroxyapatite discs in the presence of various concentrations of sucrose alone (ranging from 0.25 to 5% w/v or in combination with starch (0.5 to 1% w/v. Overall, the presence of sucrose and starch (suc+st influenced the dynamics of S. mutans transcriptome (vs. sucrose alone, which may be associated with gradual digestion of starch by surface-adsorbed amylase. At 21 h of biofilm formation, most of the differentially expressed genes were related to sugar metabolism, such as upregulation of genes involved in maltose/maltotriose uptake and glycogen synthesis. In addition, the groEL/groES chaperones were induced in the suc+st-biofilm, indicating that presence of starch hydrolysates may cause environmental stress. In contrast, at 30 h of biofilm development, multiple genes associated with sugar uptake/transport (e.g. maltose, two-component systems, fermentation/glycolysis and iron transport were differentially expressed in suc+st-biofilms (vs. sucrose-biofilms. Interestingly, lytT (bacteria autolysis was upregulated, which was correlated with presence of extracellular DNA in the matrix of suc+st-biofilms. Specific genes related to carbohydrate uptake and glycogen metabolism were detected in suc+st-biofilms in more than one time point, indicating an association between presence of starch

  3. Characterization of In Vitro Resistance Development to the Novel Echinocandin CD101 in Candida Species.

    Science.gov (United States)

    Locke, Jeffrey B; Almaguer, Amanda L; Zuill, Douglas E; Bartizal, Ken

    2016-10-01

    CD101 is a novel echinocandin with a long half-life undergoing clinical development for treatment of candidemia/invasive candidiasis and vulvovaginal candidiasis. The potential for and mechanisms underlying the development of resistance to CD101 in Candida species were investigated by using spontaneous resistance and serial passage selection methodologies. Four Candida spp. (C. albicans, C. glabrata, C. parapsilosis, and C. krusei) were chosen for resistance characterization with CD101, anidulafungin, and caspofungin. The frequency of spontaneous, single-step mutations conferring reduced susceptibility to CD101 at 1× the agar growth inhibition concentration was low across all species, with median frequencies ranging from 1.35 × 10(-8) to 3.86 × 10(-9), similar to ranges generated for anidulafungin and caspofungin. Serial passage of Candida spp. on agar plates containing drug gradients demonstrated a low potential for resistance development, with passage 20 CD101-selected strains possessing increases in MICs equivalent to or lower than those for the majority of strains generated under selection with anidulafungin and caspofungin. A total of 12 fks "hot spot" mutations were identified, typically in strains with the highest MIC shifts. Cross-resistance was broadly observed among the 3 echinocandins evaluated, with no CD101-selected mutants (with or without fks hot spot mutations) exhibiting reduced susceptibility to CD101 but not also to anidulafungin and/or caspofungin. Consistent with currently approved echinocandins, CD101 demonstrates a low potential for resistance development, which could be further enhanced in vivo by the high maximum concentration of drug in serum (Cmax)/area under the concentration-time curve (AUC) plasma drug exposure achieved with once-weekly dosing of CD101.

  4. Characterization of In Vitro Resistance Development to the Novel Echinocandin CD101 in Candida Species

    Science.gov (United States)

    Almaguer, Amanda L.; Zuill, Douglas E.; Bartizal, Ken

    2016-01-01

    CD101 is a novel echinocandin with a long half-life undergoing clinical development for treatment of candidemia/invasive candidiasis and vulvovaginal candidiasis. The potential for and mechanisms underlying the development of resistance to CD101 in Candida species were investigated by using spontaneous resistance and serial passage selection methodologies. Four Candida spp. (C. albicans, C. glabrata, C. parapsilosis, and C. krusei) were chosen for resistance characterization with CD101, anidulafungin, and caspofungin. The frequency of spontaneous, single-step mutations conferring reduced susceptibility to CD101 at 1× the agar growth inhibition concentration was low across all species, with median frequencies ranging from 1.35 × 10−8 to 3.86 × 10−9, similar to ranges generated for anidulafungin and caspofungin. Serial passage of Candida spp. on agar plates containing drug gradients demonstrated a low potential for resistance development, with passage 20 CD101-selected strains possessing increases in MICs equivalent to or lower than those for the majority of strains generated under selection with anidulafungin and caspofungin. A total of 12 fks “hot spot” mutations were identified, typically in strains with the highest MIC shifts. Cross-resistance was broadly observed among the 3 echinocandins evaluated, with no CD101-selected mutants (with or without fks hot spot mutations) exhibiting reduced susceptibility to CD101 but not also to anidulafungin and/or caspofungin. Consistent with currently approved echinocandins, CD101 demonstrates a low potential for resistance development, which could be further enhanced in vivo by the high maximum concentration of drug in serum (Cmax)/area under the concentration-time curve (AUC) plasma drug exposure achieved with once-weekly dosing of CD101. PMID:27480852

  5. Cryptococcus laurentii biofilms: structure, development and antifungal drug resistance.

    Science.gov (United States)

    Ajesh, K; Sreejith, K

    2012-12-01

    A great number of fungal infections are related to biofilm formation on inert or biological surfaces, which are recalcitrant to most treatments and cause human mortality. Cryptococcus laurentii has been diagnosed as the aetiological pathogen able to cause human infections mainly in immunosuppressed patients and the spectrum of clinical manifestations ranges from skin lesions to fungaemia. The effect of temperature, pH and surface preconditioning on C. laurentii biofilm formation was determined by 2, 3-bis (2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino) carbonyl]-2H-tetrazolium hydroxide (XTT) reduction assay. Scanning electron microscopic (SEM) analysis of C. laurentii biofilms demonstrated surface topographies of profuse growth and dense colonization with extensive polymeric substances around the cells. In this study, we determined the activity of amphotericin B, itraconazole and fluconazole against C. laurentii free-living cells and biofilms. The activity of antifungals tested was greater against free-living cells, but sessile cells fell into the resistant range for these antifungal agents. Extracellular polymeric substances (EPS), comprising the matrix of C. laurentii biofilms, were isolated by ultrasonication. Fourier transform infrared spectroscopy (FT-IR) was performed with ethanol-precipitated and dried samples. Also, the multielement analysis of the EPS was performed by inductively coupled plasma optical emission spectroscopy (ICP-OES).

  6. Development of a System to Assess Biofilm Formation in the International Space Station

    Science.gov (United States)

    Martin Charles, E.; Summers, Silvia M.; Roman, Monserrate C.

    1998-01-01

    The design requirements for the water treatment systems aboard the International Space Station (ISS) include and require recycling as much water as possible and to treat the water for intentional contamination (hygiene, urine distillate, condensate, etc.) and unintentional contamination in the form of biofilm and microorganisms. As part of an effort to address the latter issue, a biofilm system was developed by Marshall Space Flight Center (MSFC) to simulate the conditions aboard ISS with respect to materials, flow rates, water conditions, water content, and handling. The tubing, connectors, sensors, and fabricated parts included in the system were chosen for specific attributes as applicable to emulate an orbital water treatment system. This paper addresses the design and development process of the system, as well as the configuration, operation, and system procedures for maintenance to assure that the simulation is valid for the representative data as it applies to water degradation and biofilm/microbial growth. Preliminary biofilm/microbial results are also presented.

  7. Study on andrographolide-induced apoptosis of Candida albicans biofilm dispersion cells%穿心莲内酯诱导白念珠菌生物膜分散细胞凋亡的研究

    Institute of Scientific and Technical Information of China (English)

    汪长中; 韩宁; 徐振华; 程惠娟; 官妍; 云云; 王艳

    2012-01-01

    Objective: To detect the effect of andrographolide on apoptosis of Candida albicans biofilm dispersion cells. Method: The morphological changes of apoptotic C. Albicans biofilm cells were observed by using Hoechst 33258 staining Fluorescence microscope; changes of mitochondrial membrane potential (MMP) of C. Albicans biofilm cells were detected by rhodamine 123 staining flow cytometry; and reactive oxygen species (ROS) was detected by DHR staining flow cytometry. Result: 1 000, 100 μmol · L-1 of andrographolide could cause pyknosis and dense staining of C. Albicans biofilm cells, 1 000, 100, 10 μmol · L-1 of andrographolide could decrease MMP and increase ROS of C. Albicans biofilm cells. Conclusion: Andrographolide of appropriate concentrations could induce apoptosis of dispersion cells of C. Albicans biofilms.%目的:探讨中药有效成分穿心莲内酯对白念珠菌生物膜分散细胞凋亡的影响.方法:Hoechst33258染色荧光显微镜检测白念珠菌生物膜细胞凋亡的形态;Rh123染色流式细胞仪检测白念珠菌生物膜细胞线粒体膜电位(MMP)变化;DHR染色流式细胞仪检测白念珠菌生物膜细胞内活性氧(ROS)水平.结果:1 000,100 μmol·L-1的穿心莲内酯能诱导白念珠菌生物膜细胞核固缩、浓染致密,1 000,100,10 μmol·L-的穿心莲内酯能降低白念珠菌生物膜线粒体膜电位,提高细胞内ROS水平.结论:一定浓度的穿心莲内酯可诱导白念珠菌生物膜分散细胞凋亡.

  8. Effect of usnic acid on Candida orthopsilosis and C. parapsilosis.

    Science.gov (United States)

    Pires, Regina Helena; Lucarini, Rodrigo; Mendes-Giannini, Maria Jose Soares

    2012-01-01

    The activity of usnic acid against Candida orthopsilosis and Candida parapsilosis on planktonic and biofilm conditions was investigated by using a broth microdilution and microplate methods. Potent in vitro activities against different Candida species were obtained. The metabolic activity of sessile cells of C. parapsilosis complex was reduced by 80% at four times the 80% inhibitory concentration. The in vitro studies support further efforts to determine whether usnic acid can be used clinically to cure patients with Candida infections.

  9. Lysogenic Conversion and Phage Resistance Development in Phage Exposed Escherichia coli Biofilms

    Directory of Open Access Journals (Sweden)

    Abram Aertsen

    2013-01-01

    Full Text Available In this study, three-day old mature biofilms of Escherichia coli were exposed once to either a temperate Shiga-toxin encoding phage (H-19B or an obligatory lytic phage (T7, after which further dynamics in the biofilm were monitored. As such, it was found that a single dose of H-19B could rapidly lead to a near complete lysogenization of the biofilm, with a subsequent continuous release of infectious H-19B particles. On the other hand, a single dose of T7 rapidly led to resistance development in the biofilm population. Together, our data indicates a profound impact of phages on the dynamics within structured bacterial populations.

  10. Nicotine Enhances Interspecies Relationship between Streptococcus mutans and Candida albicans

    Science.gov (United States)

    Qiu, Wei; Zhang, Keke; Zhou, Xuedong; Ren, Biao; He, Jinzhi; Xu, Xin

    2017-01-01

    Streptococcus mutans and Candida albicans are common microorganisms in the human oral cavity. The synergistic relationship between these two species has been deeply explored in many studies. In the present study, the effect of alkaloid nicotine on the interspecies between S. mutans and C. albicans is explored. We developed a dual-species biofilm model and studied biofilm biomass, biofilm structure, synthesis of extracellular polysaccharides (EPS), and expression of glucosyltransferases (Gtfs). Biofilm formation and bacterial and fungal cell numbers in dual-species biofilms increased in the presence of nicotine. More C. albicans cells were present in the dual-species biofilms in the nicotine-treated groups as determined by scanning electron microscopy. The synthesis of EPS was increased by 1 mg/ml of nicotine as detected by confocal laser scanning microscopy. The result of qRT-PCR showed gtfs expression was upregulated when 1 mg/ml of nicotine was used. We speculate that nicotine promoted the growth of S. mutans, and more S. mutans cells attracted more C. albicans cells due to the interaction between two species. Since S. mutans and C. albicans are putative pathogens for dental caries, the enhancement of the synergistic relationship by nicotine may contribute to caries development in smokers. PMID:28280743

  11. msaABCR operon positively regulates biofilm development by repressing proteases and autolysis in Staphylococcus aureus.

    Science.gov (United States)

    Sahukhal, Gyan S; Batte, Justin L; Elasri, Mohamed O

    2015-02-01

    Staphylococcus aureus is an important human pathogen that causes nosocomial and community-acquired infections. One of the most important aspects of staphylococcal infections is biofilm development within the host, which renders the bacterium resistant to the host's immune response and antimicrobial agents. Biofilm development is very complex and involves several regulators that ensure cell survival on surfaces within the extracellular polymeric matrix. Previously, we identified the msaABCR operon as an additional positive regulator of biofilm formation. In this study, we define the regulatory pathway by which msaABCR controls biofilm formation. We demonstrate that the msaABCR operon is a negative regulator of proteases. The control of protease production mediates the processing of the major autolysin, Atl, and thus regulates the rate of autolysis. In the absence of the msaABCR operon, Atl is processed by proteases at a high rate, leading to increased cell death and a defect in biofilm maturation. We conclude that the msaABCR operon plays a key role in maintaining the balance between autolysis and growth within the staphylococcal biofilm.

  12. A new approach to model the spatiotemporal development of biofilm phase in porous media.

    Science.gov (United States)

    Bozorg, Ali; Sen, Arindom; Gates, Ian D

    2011-11-01

    Bacteria can exist within biofilms that are attached to the solid matrix of a porous medium. Under certain conditions, the biomass can fully occupy the pore space leading to reduced hydraulic conductivity and mass transport. Here, by treating biofilm as a growing, high-viscosity phase, a novel macroscopic approach to model biofilm spatial expansion and its corresponding effects on porous medium hydraulic properties is presented. The separate yet coupled flow of the water and biofilm phases is handled by using relative permeability curves that allow for biofilm movement within the porous medium and bioclogging effects. Fluid flow is governed by Darcy's law and component transport is set by the convection-diffusion equation reaction terms for each component. Here, the system of governing equations is solved by using a commercial multiphase flow reservoir simulator, which is used to validate the model against published laboratory experiments. A comparison of the model and experimental observations reveal that the model provides a reasonable means to predict biomass development in the porous medium. The results reveal that coupled flow of water and movement of biofilm, as described by relative permeability curves, is complex and has a large impact on the development of biomass and consequent bioclogging in the porous medium.

  13. In vitro formation of biofilm by Candida albicans and its relationship with genotype%白色念珠菌体外生物膜形成与基因分型关系的研究

    Institute of Scientific and Technical Information of China (English)

    阳隽; 张天托; 朱家馨

    2012-01-01

    Objective To study the relationship between in vitro formation of biofilm by Candida albicans (C .albicans) isolates and genotypes .Methods 52 strains of C .albicans isolated from respiratory tract were isolated and incubated for 24 h .The metabolic activities of cells within biofilm were measured by XTT -reduction assay .The genetic similarities of isolates were assessed by rep-polymerase chain reaction(rep-PCR) and analyzed by cluster analysis .Results 26 C .albicans isolates were with high performance of biofilm formation .Similarity coefficient of tested strains was 0 .79 ± 0 .13 .Similarity coefficient of isolates with high or low performance of biofilm formation were 0 .8±0 .14 and 0 .81 ± 0 .12 respectively .Conclusion The relationship among C .albicans isolates from respiratory tract might be close .The isolates with similar ability to form biofilm might be without cluster of genotypes .%目的 探讨白色念珠菌临床分离株体外生物膜形成与基因分型的可能关系.方法 选取52株呼吸道白色念珠菌分离株体外黏附生长24 h,用XTT减低法测定其增殖情况.采用重复序列PCR指纹技术分析白色念珠菌菌株基因类型,并进行聚类分析.结果 根据黏附生长的白色念珠菌增殖情况,有26株临床株形成生物膜能力"高",其余菌株形成生物膜能力"低".实验菌株的遗传相似系数为0.79±0.13,生物膜形成能力"高"及生物膜形成能力"低"的菌株间相似系数分别为0.8±0.14和0.81±0.12.结论 呼吸道白色念珠菌分离株的亲缘关系较近,但生物膜形成能力形似的菌株间未出现基因型聚集.

  14. In vitro activity of micafungin against Candida albicans biofilms%米卡芬净等对抗白念珠菌生物膜的体外研究

    Institute of Scientific and Technical Information of China (English)

    张洁; 王英; 顾军; 张莉

    2009-01-01

    目的 探讨体外白念珠菌生物膜对米卡芬净的敏感性.方法 通过建立白念珠菌生物膜的体外模型,用抗真菌药物敏感实验法和甲基四氮盐(XTT)减低法来评价白念珠菌生物膜对氟康唑、两性霉素B、米卡芬净的敏感性.结果 30株白念珠菌生物膜中,所有菌株对氟康唑均耐药(SMIC80≥64μg/mL);4株对两性霉素B敏感(SMIC80≤1μg/mL),26株对两性霉素B耐药(MIC801μg/mL);27株对米卡芬净敏感(SMIC800.05).结论 白念珠菌生物膜对目前常用的系统性抗真菌药物两性霉素B、氟康唑明显耐药,而对米卡芬净比较敏感.%Objective To explore the susceptibility of Candida albicans biofilms to micafungin. Methods In vitro model of C. Albicans biofilm was established in 96-well microtiter plates with 30 C. Albicans isolates from the Department of Mycology, Changhai Hospital, Shanghai. The susceptibility of C. Albicans biofilms to fluconazole, amphotericine B and micafungin was evaluated by colorimetric XTT-reduction assay. Sessile MIC80 (SMIC80), defined as the lowest antifungal concentration at which an 80% reduction in fungal growth was achieved, was determined. Results Of the 30 C. Albicans isolates grown in sessile states, all were resistant to fluconazole (SMIC80≥64 μg/mL), 4 sensitive to amphotericine B (SMIC80≤1 μg/mL), 26 resistant to amphotericine B (SMIC80 > 1 μg/mL), 27 sensitive to micafungin (SMIC80 16 μg/mL). Statistical analysis revealed a significant difference in the activity against C. Albicans biofilms between micafungin and fluconazole (χ2=736.36, P0.05). Conclusion C. Albicans biofilms are resistant to routine antifungal agents such as fluconazole and amphotericine B, but relatively more sensitive to micafungin.

  15. Microbial dynamics during conversion from supragingival to subgingival biofilms in an in vitro model.

    Science.gov (United States)

    Thurnheer, T; Bostanci, N; Belibasakis, G N

    2016-04-01

    The development of dental caries and periodontal diseases result from distinct shifts in the microbiota of the tooth-associated biofilm. This in vitro study aimed to investigate changes in biofilm composition and structure, during the shift from a 'supragingival' aerobic profile to a 'subgingival' anaerobic profile. Biofilms consisting of Actinomyces oris, Candida albicans, Fusobacterium nucleatum, Streptococcus oralis, Streptococcus mutans and Veillonella dispar were aerobically grown in saliva-containing medium on hydroxyapatite disks. After 64 h, Campylobacter rectus, Prevotella intermedia and Streptococcus anginosus were further added along with human serum, while culture conditions were shifted to microaerophilic. After 96 h, Porphyromonas gingivalis, Tannerella forsythia and Treponema denticola were finally added and the biofilm was grown anaerobically for another 64 h. At the end of each phase, biofilms were harvested for species-specific quantification and localization. Apart from C. albicans, all other species gradually increased during aerobic and microaerophilic conditions, but remained steady during anaerobic conditions. Biofilm thickness was doubled during the microaerophilic phase, but remained steady throughout the anaerobic phase. Extracellular polysaccharide presence was gradually reduced throughout the growth period. Biofilm viability was reduced during the microaerophilic conversion, but was recovered during the anaerobic phase. This in vitro study has characterized the dynamic structural shifts occurring in an oral biofilm model during the switch from aerobic to anaerobic conditions, potentially modeling the conversion of supragingival to subgingival biofilms. Within the limitations of this experimental model, the findings may provide novel insights into the ecology of oral biofilms.

  16. Mimicking disinfection and drying of biofilms in contaminated endoscopes

    NARCIS (Netherlands)

    Kovaleva, J.; Degener, J. E.; van der Mei, H. C.

    2010-01-01

    The effects of peracetic acid-based (PAA) disinfectant with, and without, additional drying on Candida albicans, Candida parapsilosis, Pseudomonas aeruginosa and Stenotrophomonas maltophilia, isolated from contaminated flexible endoscopes, in single-and dual-species biofilms were studied. Biofilms w

  17. The in vivo biofilm

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Alhede, Maria; Alhede, Morten

    2013-01-01

    Bacteria can grow and proliferate either as single, independent cells or organized in aggregates commonly referred to as biofilms. When bacteria succeed in forming a biofilm within the human host, the infection often becomes very resistant to treatment and can develop into a chronic state. Biofilms...... have been studied for decades using various in vitro models, but it remains debatable whether such in vitro biofilms actually resemble in vivo biofilms in chronic infections. In vivo biofilms share several structural characteristics that differ from most in vitro biofilms. Additionally, the in vivo...... experimental time span and presence of host defenses differ from chronic infections and the chemical microenvironment of both in vivo and in vitro biofilms is seldom taken into account. In this review, we discuss why the current in vitro models of biofilms might be limited for describing infectious biofilms...

  18. Role of a Tannerella forsythia exopolysaccharide synthesis operon in biofilm development.

    Science.gov (United States)

    Honma, Kiyonobu; Inagaki, Satoru; Okuda, Katsuji; Kuramitsu, Howard K; Sharma, Ashu

    2007-04-01

    Tannerella forsythia is a Gram-negative oral anaerobe implicated in the development of periodontitis, a chronic inflammatory disease induced by bacterial infections which leads to tooth loss if untreated. Since biofilms formed by periodontal bacteria are considered important in disease progression and pose difficulties in treatment, we sought to investigate the underlying mechanisms of T. forsythia biofilm formation. This was carried out by screening random insertion mutants of T. forsythia for alterations in biofilm development. This approach lead to the identification of an operon involved in exopolysaccharide (EPS) synthesis. An isogenic mutant of one of the genes, wecC, contained within the operon was constructed. The isogenic wecC mutant showed increased ability to form biofilms as compared to the parent strain. The wecC mutant also formed aggregated microcolonies and showed increased cell-surface associated hydrophobicity as compared to the parent strain. Moreover, biochemical characterization of the wecC mutant indicated that glycosylation of surface glycoproteins was reduced. Therefore, our results suggest that the wecC operon is associated with glycosylation of surface-glycoprotein expression and likely plays an inhibitory role in T. forsythia biofilm formation.

  19. Evaluating the use of Spectral Induced Conductivity to Detect Biofilm Development within Porous Media

    Science.gov (United States)

    Rosier, C. L.; Atekwana, E. A.; Price, A.; Sharma, S.; Patrauchan, M.

    2015-12-01

    Microbial biomass accumulation in subsurface sediments dynamically alters porosity/permeability; factors critical to contaminant transport and management of bioremediation efforts. Current methodologies (i.e. plate counts, tracer/slug tests) offer some understanding of biofilm effect on subsurface hydrology, yet do not provide real-time information regarding biofilm development. Due to these limitations there is interest in assessing the near surface geophysical technique Spectral Induced Polarization (SIP), to measure biofilm formation. Our study assesses the influence of cell density and biofilm production on SIP response. Laboratory experiments monitored changes in SIP, measured colony forming units (CFU), and cellular protein levels on sand packed columns inoculated with either Pseudomonas aeruginosa PAO1 (non-mucoid strain) or Pseudomonas aeruginosa FRD1 (biofilm-overproducing mucoid strain) cells over one month. Confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM) were used to confirm the presence of biofilm. Our results indicate that phase and imaginary conductivity remained stable in PAO1 treatments as cell densities and cellular protein levels remained low (1.7x105 CFUml-1; 111 μg ml-1). However, we observed a significant decrease in both phase (0.5 to -0.20 mrad) and imaginary conductivity (0.0 to -3.0x10-5 S m-1) when both cell densities and cellular protein levels increased. In FRD1 treatments we observed an immediate decrease in phase (0.1 mrad) and imaginary conductivity (-2.0x10-6 S m-1) as cell densities were an order of magnitude greater then PAO1 treatments and cellular protein levels surpassed 500 μg ml-1. CLSM and SEM analysis confirmed the presence of biofilm and cells within both PAO1 and FRD1 treatments. Our findings suggest that the ratio of cells to cellular protein production is an important factor influencing both phase and imaginary conductivity response. However, our results are not in agreement with

  20. STUDY ON THE INHIBITORY EFFECTS OF ESSENTIAL OILS ON Candida albicans BIOFILM%阴香植物精油对白色念珠菌生物膜的抑制研究

    Institute of Scientific and Technical Information of China (English)

    黄晓敏; 王晨明; 管文华; 林少芸; 袁华珍; 余培凯

    2012-01-01

    Objective To observe the inhibitory effect of essential oil on Candida albicans biofilm. Methods The modified Brown's Plate method and the carrier quantitative germicidal test were used to observe the inhibitory effect of essential oil on C. albicans. Results The C. albicans biofilm cultivated for 3 days and 7 days exposed to 2. 5% ( v/v) essential oil compound preparation for 30 min and 90 min respectively were completely killed. While the pelagic C. albicans in suspensions exposed to 2. 5% (v/v) essential oil compound preparation for 10 min were completely killed. Conclusion Essential oil has cleaning effect on C. albicans biofilm and can inhibit biofilm formation. It has better killing effect on pelagic C. albicans.%目的 观察阴香精油对白色念珠菌生物膜(BF)的抑制作用.方法 采用改良Brown平板连续培养法制备生物膜和应用悬液定量杀菌试验法,对阴香精油抑制白色念珠菌生物膜的效果进行了实验室检测.结果 用体积分数2.5%阴香精油作用30 min,对培养3 d的白色念珠菌生物膜达到完全杀灭;作用90 min对培养7 d的白色念珠菌生物膜达到完全清除.用体积分数2.5%阴香精油作用10 min,可完全杀灭悬液内白色念珠菌浮游菌.结论 阴香精油对白色念珠菌生物膜有清除效应,可抑制生物膜形成,对悬液内浮游菌杀灭效果更好.

  1. Comoarison of the Effects of Five Denture Cleansers on Cleaning of Candida Albicans Biofilms.%5种义齿清洁剂对白色念珠菌生物膜清洁效果的比较

    Institute of Scientific and Technical Information of China (English)

    张燕萍; 吴凤鸣

    2011-01-01

    Objective: To evaluate the capacity of five denture cleansers on reducing the candida albicans biofilms activity and biomass. Methods: C. albicans strain SC5314 was grown as biofilms on a 96- well format and immersed in Polident,Victoria- C, Protefix, 0.2 % chlorhexidine gluconate and Y- Kelin denture cleansers according to the manufacturers'- instructions and overnight. The activity and biomass of the biofilms were then quantified. Results: Following the manufacturers' instructions,only Polident,protefix reduced the activity by greater than 80 %.Except 0.2% chlorhexidine gluconate (58.8%), all cleansers reduced theactivity by greater than 80% following overnight immersion. Following the manufacturers' instructions, all the five denture cleansers reduced the biomass by less than 50% ,and after overnight immersion, only Polident showed a reduction greater than 50%. Conclusion:Polident exhibited the best cleaning effect among the five denture cleansers. However, residual biofilms retention with a few living cells was still observed.%目的:比较5种义齿清洁剂在减少白色念珠菌生物膜活性及生物量方面的能力.方法:在96孔微量培养板中形成的白色念珠菌SC5314生物膜按照生产商推荐时间及过夜浸泡于保丽净,澳多-C,protefix,0.2%葡萄糖酸氯己定和雅克菱义齿清洁剂中,进而定量生物膜的活性和生物量.结果:生产商推荐时间浸泡后,仅保丽净、protefix组的活性减少率达80%以上;过夜浸泡后,除0.2%葡萄糖酸氯己定(58.8%)外,其余均达80%以上.在生物量减少上,5种义齿清洁剂生产商推荐时间浸泡后,生物量减少率均位于50%以下;过夜浸泡后,仅保丽净达50%以上.结论:5种义齿清洁剂中保丽净的清洁效果最佳,但仍存在残余少量活菌的生物膜.

  2. Development and characterization of sulfide-oxidizing biofilms

    OpenAIRE

    Ferrera Ceada, Isabel

    2004-01-01

    Consultable des del TDX Títol obtingut de la portada digitalitzada En el present treball s'han desenvolupat i caracteritzat biofilms per a la detoxificació d'efluents contaminats amb compostos reduïts de sofre. En primer lloc es va dissenyar un bioreactor basat en una columna il·luminada que aporta una gran i heterogènia superfície d'adhesió per als microorganismes, i en el qual no hi ha aportació externa d'oxigen. El sistema de control, basat en el potencial redox, permet mantenir cons...

  3. Membrane biofilm development improves COD removal in anaerobic membrane bioreactor wastewater treatment.

    Science.gov (United States)

    Smith, Adam L; Skerlos, Steven J; Raskin, Lutgarde

    2015-09-01

    Membrane biofilm development was evaluated to improve psychrophilic (15°C) anaerobic membrane bioreactor (AnMBR) treatment of domestic wastewater. An AnMBR containing three replicate submerged membrane housings with separate permeate collection was operated at three levels of membrane fouling by independently controlling biogas sparging for each membrane unit. High membrane fouling significantly improved permeate quality, but resulted in dissolved methane in the permeate at a concentration two to three times the equilibrium concentration predicted by Henry's law. Illumina sequencing of 16S rRNA targeting Bacteria and Archaea and reverse transcription-quantitative polymerase chain reaction targeting the methyl coenzyme-M reductase (mcrA) gene in methanogens indicated that the membrane biofilm was enriched in highly active methanogens and syntrophic bacteria. Restoring fouled membranes to a transmembrane pressure (TMP) near zero by increasing biogas sparging did not disrupt the biofilm's treatment performance, suggesting that microbes in the foulant layer were tightly adhered and did not significantly contribute to TMP. Dissolved methane oversaturation persisted without high TMP, implying that methanogenesis in the biofilm, rather than high TMP, was the primary driving force in methane oversaturation. The results describe an attractive operational strategy to improve treatment performance in low-temperature AnMBR by supporting syntrophy and methanogenesis in the membrane biofilm through controlled membrane fouling.

  4. Distribution of Candida Species in Different Clinical Samples and Their Virulence: Biofilm Formation, Proteinase and Phospholipase Production: A Study on Hospitalized Patients in Southern India

    OpenAIRE

    Vinitha Mohandas; Mamatha Ballal

    2011-01-01

    Introduction: Candida species are normal inhabitants of the skin and mucosa. The importance of epidemiological monitoring of yeasts involved in pathogenic processes is unquestionable due to the increase of these infections over the last decade; Materials and Methods: The clinical samples from the respiratory tract (sputum, bronchial wash, tracheal secretions), saliva, blood, urine, middle ear discharge, vitreous fluid, corneal ulcer, and plastic devices (endotracheal tube, catheter tip, sucti...

  5. Residual structure of Streptococcus mutans biofilm following complete disinfection favors secondary bacterial adhesion and biofilm re-development.

    Directory of Open Access Journals (Sweden)

    Tatsuya Ohsumi

    Full Text Available Chemical disinfection of oral biofilms often leaves biofilm structures intact. This study aimed to examine whether the residual structure promotes secondary bacterial adhesion. Streptococcus mutans biofilms generated on resin-composite disks in a rotating disc reactor were disinfected completely with 70% isopropyl alcohol, and were again cultured in the same reactor after resupplying with the same bacterial solution. Specimens were subjected to fluorescence confocal laser scanning microscopy, viable cell counts and PCR-Invader assay in order to observe and quantify secondarily adhered cells. Fluorescence microscopic analysis, particularly after longitudinal cryosectioning, demonstrated stratified patterns of viable cells on the disinfected biofilm structure. Viable cell counts of test specimens were significantly higher than those of controls, and increased according to the amount of residual structure and culture period. Linear regression analysis exhibited a high correlation between viable and total cell counts. It was concluded that disinfected biofilm structures favored secondary bacterial adhesion.

  6. An in vitro urinary tract catheter system to investigate biofilm development in catheter-associated urinary tract infections.

    Science.gov (United States)

    Dohnt, Katrin; Sauer, Marie; Müller, Maren; Atallah, Karin; Weidemann, Marina; Gronemeyer, Petra; Rasch, Detlev; Tielen, Petra; Krull, Rainer

    2011-12-01

    Biofilm development in urinary tract catheters is an often underestimated problem. However, this form of infection leads to high mortality rates and causes significant costs in health care. Therefore, it is important to analyze these biofilms and establish avoiding strategies. In this study a continuous flow-through system for the cultivation of biofilms under catheter-associated urinary tract infection conditions was established and validated. The in vitro urinary tract catheter system implies the composition of urine (artificial urine medium), the mean volume of urine of adults (1 mL min(-1)), the frequently used silicone catheter (foley silicon catheter) as well as the infection with uropathogenic microorganisms like Pseudomonas aeruginosa. Three clinical isolates from urine of catheterized patients were chosen due to their ability to form biofilms, their mobility and their cell surface hydrophobicity. As reference strain P. aeruginosa PA14 has been used. Characteristic parameters as biofilm thickness, specific biofilm growth rate and substrate consumption were observed. Biofilm thicknesses varied from 105±16 μm up to 246±67 μm for the different isolates. The specific biofilm growth rate could be determined with a non invasive optical biomass sensor. This sensor allows online monitoring of the biofilm growth in the progress of the cultivation.

  7. Development of Spatial Distribution Patterns by Biofilm Cells

    DEFF Research Database (Denmark)

    Haagensen, Janus Anders Juul; Hansen, Susse Kirkelund; Bak Christensen, Bjarke;

    2015-01-01

    in the context of species distribution patterns observed in macroecology, and we summarize observations about the processes involved in co-adaptation between P. putida and Acinetobacter sp. C6. Our results contribute to an understanding of spatial species distribution patterns as they are observed in nature......Confined spatial patterns of microbial distribution are prevalent in nature, such as in microbial mats, soil communities, and water stream biofilms. The symbiotic two-species consortium of Pseudomonas putida and Acinetobacter sp. C6, originally isolated from a creosote-polluted aquifer, has evolved...... a distinct spatial organization in the laboratory that is characterized by an increased fitness and productivity. In this consortium, P. putida is reliant on microcolonies formed by Acinetobacter sp. C6 — to which it attaches. Here we describe the processes that lead to the microcolony...

  8. Development of Spatial Distribution Patterns by Biofilm Cells

    DEFF Research Database (Denmark)

    Haagensen, Janus Anders Juul; Hansen, Susse Kirkelund; Bak Christensen, Bjarke

    2015-01-01

    Confined spatial patterns of microbial distribution are prevalent in nature, such as in microbial mats, soil communities, and water stream biofilms. The symbiotic two-species consortium of Pseudomonas putida and Acinetobacter sp. C6, originally isolated from a creosote-polluted aquifer, has evolved...... a distinct spatial organization in the laboratory that is characterized by an increased fitness and productivity. In this consortium, P. putida is reliant on microcolonies formed by Acinetobacter sp. C6 — to which it attaches. Here we describe the processes that lead to the microcolony......-pattern by Acinetobacter sp. C6. Ecological spatial pattern analyses revealed that the microcolonies were not entirely randomly distributed, and instead arranged in a uniform pattern. Detailed time-lapse confocal microscopy at the single cell level demonstrated that the spatial pattern was the result of an intriguing self...

  9. 白念珠菌生物膜耐药性观察及 als3基因表达与成膜相关性的初步探讨%The drug resistance of Candida albicans biofilm and the correlation of als3 gene expression and film forming

    Institute of Scientific and Technical Information of China (English)

    邓可可; 邓琦; 张坚磊; 贺小圆; 江嫣雨

    2016-01-01

    Objective To observe the biofilm structure,drug resistance and related gene expressions of clinically collected drug sensitive strains of Candida albicans ,and to explore preliminarily the film-forming related gene expressions of Candida albicans .Methods A total of 108 strains of Candida albicans from positive blood culture were obtained from Tianjing First Central Hospital from January to December in 2015 and 58 stains which were sensitive to azole drugs were selected.Sterile indwelling catheter was used to establish the Candida albicans biofilm in vitro model.The structure of Candida albicans biofilm was observed with inverted microscope.The ultrastructure was observed with transmission electron microscope.The drug sensitivity was detected by using trace liquid dilution M27-A2 scheme and the als3,xog,bg1,efg1 gene expressions were detected using polymerase chain reaction method.Paired t test was used for data analysis.Results After Candida albicans biofilm model was set up,Candida albicans cells gathering along the hyphae and forming different layers of membrane structure were observed under inverted microscope.The thickened Candida albicans cell membranes with increased mitochondria and cell activity were observed under transmission electron microscope.Drug resistances to fluconazole,voriconazole and itraconazole were increased after the biofilm formation. The minimal inhibitory concentration values of echinocandins, including caspofungin and micafungin increased at different degree,but did not achieve drug resistance.The als3 gene expressions among strains before biofilm formation were different.Candida albicans with high als3 gene expression tended to form biofilm (t= 3.645,P 0.05 ).Conclusions Drug resistances to fluconazole, voriconazole and itraconazole increase after the Candida albicans biofilm formation.But Candida albicans remains sensitive to echinocandins after the formation of biofilm.The expression of als3 gene can be used to screen Candida

  10. Impact of ZnO embedded feed spacer on biofilm development in membrane systems.

    Science.gov (United States)

    Ronen, Avner; Semiat, Raphael; Dosoretz, Carlos G

    2013-11-01

    The concept of suppressing biofouling formation using an antibacterial feed spacer was investigated in a bench scale-cross flow system mimicking a spiral wound membrane configuration. An antibacterial composite spacer containing zinc oxide-nanoparticles was constructed by modification of a commercial polypropylene feed spacer using sonochemical deposition. The ability of the modified spacers to repress biofilm development on membranes was evaluated in flow-through cells simulating the flow conditions in commercial spiral wound modules. The experiments were performed at laminar flow (Re = 300) with a 200 kDa molecular weight cut off polysulfone ultrafiltration membrane using Pseudomonas putida S-12 as model biofilm bacteria. The modified spacers reduced permeate flux decrease at least by 50% compared to the unmodified spacers (control). The physical properties of the modified spacer and biofilm development were evaluated using high resolution/energy dispersive spectrometry-scanning electron microscopy, atomic force microscopy and confocal laser scanning microscopy imaging (HRSEM, EDS, AFM and CLSM). HRSEM images depicted significantly less bacteria attached to the membranes exposed to the modified spacer, mainly scattered and in a sporadic monolayer structure. AFM analysis indicated the influence of the modification on the spacer surface including a phase change on the upper surface. Dead-live staining assay by CLSM indicated that most of the bacterial cells attached on the membranes exposed to the modified spacer were dead in contrast to a developed biofilm which was predominant in the control samples.

  11. In vitro and in vivo activity of a novel antifungal small molecule against Candida infections.

    Directory of Open Access Journals (Sweden)

    Sarah Sze Wah Wong

    Full Text Available Candida is the most common fungal pathogen of humans worldwide and has become a major clinical problem because of the growing number of immunocompromised patients, who are susceptible to infection. Moreover, the number of available antifungals is limited, and antifungal-resistant Candida strains are emerging. New and effective antifungals are therefore urgently needed. Here, we discovered a small molecule with activity against Candida spp. both in vitro and in vivo. We screened a library of 50,240 small molecules for inhibitors of yeast-to-hypha transition, a major virulence attribute of Candida albicans. This screening identified 20 active compounds. Further examination of the in vitro antifungal and anti-biofilm properties of these compounds, using a range of Candida spp., led to the discovery of SM21, a highly potent antifungal molecule (minimum inhibitory concentration (MIC 0.2-1.6 µg/ml. In vitro, SM21 was toxic to fungi but not to various human cell lines or bacterial species and was active against Candida isolates that are resistant to existing antifungal agents. Moreover, SM21 was relatively more effective against biofilms of Candida spp. than the current antifungal agents. In vivo, SM21 prevented the death of mice in a systemic candidiasis model and was also more effective than the common antifungal nystatin at reducing the extent of tongue lesions in a mouse model of oral candidiasis. Propidium iodide uptake assay showed that SM21 affected the integrity of the cell membrane. Taken together, our results indicate that SM21 has the potential to be developed as a novel antifungal agent for clinical use.

  12. Novel entries in a fungal biofilm matrix encyclopedia

    Science.gov (United States)

    Virulence of Candida albicans is linked with its ability to form biofilms. Once established, biofilm infections are nearly impossible to eradicate. Biofilm cells live immersed in a self-produced matrix, a blend of extracellular biopolymers, many of which are uncharacterized. In this study, we conduc...

  13. Composition and architecture of biofilms on used voice prostheses

    NARCIS (Netherlands)

    Buijssen, Kevin J. D. A.; van der Laan, Bernard F. A. M.; van der Mei, Henny C.; Atema-Smit, Jelly; van den Huijssen, Pauline; Busscher, Henk J.; Harmsen, Hermie J. M.

    2012-01-01

    Background Biofilms on medical devices are a frequent reason for failure of the device. Voice prostheses in laryngectomized patients deteriorate within 3 to 4 months due to adhering biofilms, impeding proper functioning. Recently, we showed that these biofilms are dominated by Candida and lactobacil

  14. Involvement of Shewanella oneidensis MR-1 LuxS in Biofilm Development and Sulfur Metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Learman, Deric R.; Yi, Haakrho; Brown, Steven D.; Martin, Stanton L.; Geesey, Gill G.; Stevens, Ann M.; Hochella, Michael F.

    2009-01-05

    The role of LuxS in Shewanella oneidensis MR-1 has been examined by transcriptomic profiling, biochemical, and physiological experiments. The results indicate that a mutation in luxS alters biofilm development, not by altering quorum-sensing abilities but by disrupting the activated methyl cycle (AMC). The S. oneidensis wild type can produce a luminescence response in the AI-2 reporter strain Vibrio harveyi MM32. This luminescence response is abolished upon the deletion of luxS. The deletion of luxS also alters biofilm formations in static and flowthrough conditions. Genetic complementation restores the mutant biofilm defect, but the addition of synthetic AI-2 has no effect. These results suggest that AI-2 is not used as a quorum-sensing signal to regulate biofilm development in S. oneidensis. Growth on various sulfur sources was examined because of the involvement of LuxS in the AMC. A mutation in luxS produced a reduced ability to grow with methionine as the sole sulfur source. Methionine is a key metabolite used in the AMC to produce a methyl source in the cell and to recycle homocysteine. These data suggest that LuxS is important to metabolizing methionine and the AMC in S. oneidensis.

  15. Characterization and performance of a toluene-degrading biofilm developed on pumice stones

    Directory of Open Access Journals (Sweden)

    Sacceddu Pasquale

    2005-01-01

    Full Text Available Abstract Background Hydrocarbon-degrading biofilms in the treatment of contaminated groundwaters have received increasing attention due to the role played in the so-called "biobarriers". These are bioremediation systems in which a microbial consortium adherent to a solid support is placed across the flow of a contaminated plume, thus promoting biodegradation of the pollutant. Results A microbial consortium adherent to pumice granules (biofilm developed from a toluene-enriched microflora in a mini-scale system, following continuous supply of a mineral medium containing toluene, over a 12-month period. Observation by scanning electron microscopy, together with quantification of the biomass attached to pumice, evidenced the presence of abundant exopolymeric material surrounding the cells in the biofilm. Toluene removal monitored during 12-month operation, reached 99%. Identification of the species, based on comparative 16S ribosomal DNA (rDNA sequence analysis, revealed that Rhodococcus erythropolis and Pseudomonas marginalis were the predominant bacterial species in the microbial consortium. Conclusion A structurally complex toluene-degrading biofilm, mainly formed by Rhodococcus erythropolis and Pseudomonas marginalis, developed on pumice granules, in a mini-scale apparatus continuously fed with toluene.

  16. Use of a high-throughput in vitro microfluidic system to develop oral multi-species biofilms.

    Science.gov (United States)

    Samarian, Derek S; Jakubovics, Nicholas S; Luo, Ting L; Rickard, Alexander H

    2014-12-01

    There are few high-throughput in vitro systems which facilitate the development of multi-species biofilms that contain numerous species commonly detected within in vivo oral biofilms. Furthermore, a system that uses natural human saliva as the nutrient source, instead of artificial media, is particularly desirable in order to support the expression of cellular and biofilm-specific properties that mimic the in vivo communities. We describe a method for the development of multi-species oral biofilms that are comparable, with respect to species composition, to supragingival dental plaque, under conditions similar to the human oral cavity. Specifically, this methods article will describe how a commercially available microfluidic system can be adapted to facilitate the development of multi-species oral biofilms derived from and grown within pooled saliva. Furthermore, a description of how the system can be used in conjunction with a confocal laser scanning microscope to generate 3-D biofilm reconstructions for architectural and viability analyses will be presented. Given the broad diversity of microorganisms that grow within biofilms in the microfluidic system (including Streptococcus, Neisseria, Veillonella, Gemella, and Porphyromonas), a protocol will also be presented describing how to harvest the biofilm cells for further subculture or DNA extraction and analysis. The limits of both the microfluidic biofilm system and the current state-of-the-art data analyses will be addressed. Ultimately, it is envisioned that this article will provide a baseline technique that will improve the study of oral biofilms and aid in the development of additional technologies that can be integrated with the microfluidic platform.

  17. Effect of Antibiotics and Antibiofilm Agents in the Ultrastructure and Development of Biofilms Developed by Nonpigmented Rapidly Growing Mycobacteria.

    Science.gov (United States)

    Muñoz-Egea, María-Carmen; García-Pedrazuela, María; Mahillo-Fernandez, Ignacio; Esteban, Jaime

    2016-01-01

    We analyze the effect of amikacin, ciprofloxacin, and clarithromycin, alone and associated with N-acetylcysteine (NAC) and Tween 80, at different times and concentrations in nonpigmented rapidly growing mycobacteria (NPRGM) biofilms. For this purpose, confocal laser scanning microscopy and image analysis were used to study the development and behavior of intrinsic autofluorescence, covered area, thickness, and cell viability in NPRGM biofilms after adding antibiotics alone and associated with antibiofilm agents. In this study, ciprofloxacin is the most active antibiotic against this type of biofilm and thickness is the most affected parameter. NAC and Tween 80 combined with antibiotics exert a synergistic effect in increasing the percentage of dead bacteria and also reducing the percentage of covered surface and thickness of NPRGM biofilms. Tween 80 seems to be an antibiofilm agent more effective than NAC due to its higher reduction in the percentage of cover surface and thickness. In conclusion, the results obtained in this work show that phenotypic parameters (thickness, percentage of covered surface, autofluorescence, percentage of live/dead bacteria) are affected by combining antibiotics and antibiofilm agents, ciprofloxacin and Tween 80 being the most active agents against NPRGM biofilms.

  18. 黄芩素与氟康唑协同抗白念珠菌生物被膜作用研究%Synergistic effect of baicalein in combination with fluconazole on Candida albicans biofilm

    Institute of Scientific and Technical Information of China (English)

    赵柳娅; 蒋京辰; 姚响文; 曹颖瑛; 姜远英

    2014-01-01

    Objective To investigate the effect of baicalein(BE)in combination with fluconazole(FLC)on Candida albicans biofilm formation. Methods The inhibition of C. albicans biofilm by BE in combination with FLC was determined by confocal scan-ning laser microscopy and XTT methods. The water-hydrocarbon two-phase assay was used to measure the cell surface hydrophobicity (CSH). The expression of CSH1,EFG1,HWP1,ALS1 mRNA was measured by Real time RT-PCR. Results BE in combination with FLC could inhibit the formation of C. albicans biofilm. The cell surface hydrophobicity in the BE and FLC-treated group was lower than that in the groups treated by BE or FLC alone. Consistent with this,BE and FLC-treated biofilm cells expressed lower lev-els of CSH1,EFG1,HWP1 mRNA than the cells grown in the presence of BE or FLC alone. Conclusions BE in combination with FLC could inhibit the formation of C. albicans biofilm.%目的:研究黄芩素与氟康唑合用对白念珠菌生物被膜形成的影响。方法采用激光共聚焦显微镜观察黄芩素与氟康唑合用对白念珠菌生物被膜生长形态的影响;采用 XTT 法考察黄芩素与氟康唑合用对白念珠菌生物被膜形成能力的影响;应用水-烃两相测定实验考察黄芩素与氟康唑合用对白念珠菌生物被膜细胞表面疏水性( Cell surface hydrophobicity, CSH)的影响;应用实时定量 RT-PCR(Real Time RT-PCR)实验考察黄芩素与氟康唑合用对白念珠菌 CSH1、EFG1、HWP1、ALS1基因表达的影响。结果黄芩素与氟康唑合用能够协同抑制白念珠菌生物被膜的形成,经黄芩素与氟康唑处理的白念珠菌不能形成正常的生物被膜,其生长动力学及细胞表面疏水性下降,细胞疏水性相关基 CSH1、菌丝形成调控基因EFG1、黏附相关基因 HWP1基因的表达水平降低。结论黄芩素与氟康唑合用可协同抑制白念珠菌生物被膜的形成。

  19. 黄根醇提取物体外抗白色念珠菌生物膜作用的实验研究%Alcohol Extract from Prismatomeris Tetrandra against Candida Albicans Biofilms in Vitro

    Institute of Scientific and Technical Information of China (English)

    谈潘莉; 徐雯; 曹毅

    2015-01-01

    目的:观察黄根醇提取物体外对白色念珠菌生物膜及相关基因的影响。方法 M27-A2测定黄根醇提取物对白色念珠菌的最小抑菌浓度(MIC);XTT法评价黄根醇提取物对白色念珠菌生物膜形成的影响;实时荧光定量RT-PCR(qRT-PCR)检测黄根醇提取物作用后,ALS基因的表达情况。结果黄根醇提取物对白色念珠菌的MIC为8μg/mL;随着浓度的增加,黄根醇提取物对白色念珠菌生物膜的抑制作用增强,呈正相关性;16μg/mL黄根醇提取物对不同生长阶段的白色念珠菌生物膜均有抑制作用,抑制率随生物膜成熟逐渐降低;qRT-PCR结果显示,药物作用后ALS2、ALS3基因表达降低(7.87±0.27比5.15±0.34;6.24±0.51比2.13±0.23,P0.05)。结论黄根醇提取物对体外白色念珠菌生物膜有较明显的抑制作用,可能通过抑制ALS2、ALS3基因的表达而实现。%Objective To study the effect of alcohol extract from Prismatomeris tetrandra on candida albicans(C. albicans) biofilms and the expression of related genes in vitro. Methods M27-A2 was used to determine the min-imum inhibitory concentration (MIC) of alcohol extract from Prismatomeris tetrandra against C. albicans. XTT assay was performed to determine the effects of alcohol extract from Prismatomeris tetrandraon C.albicans biofilm forma-tion. The real-time fluorescent quantitative RT-PCR(qRT-PCR) was used to determine the difference of ALS gene expression between before and after alcohol extract from Prismatomeris tetrandra induction group. Results MIC of alcohol extract from Prismatomeris tetrandra against C. albicans was 8μg/mL. With increasing concentration, the in-hibitory effect of alcohol extract from Prismatomeris tetrandra on C. albicans biofilms enhanced. Alcohol extract from Prismatomeris tetrandra at concentration of 16μg/mL showed distinct inhibitive effect on adhesion to C.albicans cultured for 4h, 8h, 12h, 24h and 48h, and the

  20. Formation of Biofilms by Foodborne Pathogens and Development of Laboratory In Vitro Model for the Study of Campylobacter Genus Bacteria Based on These Biofilms.

    Science.gov (United States)

    Efimochkina, N R; Bykova, I B; Markova, Yu M; Korotkevich, Yu V; Stetsenko, V V; Minaeva, L P; Sheveleva, S A

    2017-02-01

    We analyzed the formation of biofilms by 7 strains of Campylobacter genus bacteria and 18 strains of Enterobacteriaceae genus bacteria that were isolated from plant and animal raw materials, from finished products, and swabs from the equipment of the food industry. Biofilm formation on glass plates, slides and coverslips, microtubes made of polymeric materials and Petri dishes, and polystyrene plates of different profiles were analyzed. When studying the process of films formation, different effects on bacterial populations were simulated, including variation of growth factor composition of culture media, technique of creating of anaerobiosis, and biocide treatment (active chlorine solutions in a concentration of 100 mg/dm(3)). The formation of biofilms by the studied cultures was assessed by the formation of extracellular matrix stained with aniline dyes on glass and polystyrene surfaces after incubation; 0.1% crystal violet solution was used as the dye. The presence and density of biomatrix were assessed by staining intensity of the surfaces of contact with broth cultures or by optical density of the stained inoculum on a spectrophotometer. Biofilms were formed by 57% Campylobacter strains and 44% Enterobacteriaceae strains. The intensity of the film formation depended on culturing conditions and protocols, species and genus of studied isolates, and largely on adhesion properties of abiotic surfaces. In 30% of Enterobacteriaceae strains, the biofilm formation capacity tended to increase under the influence of chlorine-containing biocide solutions. Thus, we developed and tested under laboratory conditions a plate version of in vitro chromogenic model for evaluation of biofilm formation capacity of C. jejuni strains and studied stress responses to negative environmental factors.

  1. Development of biofilm-targeted antimicrobial wound dressing for the treatment of chronic wound infections.

    Science.gov (United States)

    Ng, Shiow-Fern; Leow, Hon-Lunn

    2015-01-01

    It has been established that microbial biofilms are largely responsible for the recalcitrance of many wound infections to conventional antibiotics. It was proposed that the efficacy of antibiotics could be optimized via the inhibition of bacterial biofilm growth in wounds. The combination of antibiofilm agent and antibiotics into a wound dressing may be a plausible strategy in wound infection management. Xylitol is an antibiofilm agent that has been shown to inhibit the biofilm formation. The purpose of this study was to develop an alginate film containing xylitol and gentamicin for the treatment of wound infection. Three films, i.e. blank alginate film (SA), alginate film with xylitol (F5) and alginate film with xylitol and gentamicin (AG), were prepared. The films were studied for their physical properties, swelling ratio, moisture absorption, moisture vapor transmission rate (MVTR), mechanical and rheology properties, drug content uniformity as well as in vitro drug release properties. Antimicrobial and antibiofilm in vitro studies on Staphylococcus aureus and Pseudomonas aeruginosa were also performed. The results showed that AG demonstrates superior mechanical properties, rheological properties and a higher MVTR compared with SA and F5. The drug flux of AG was higher than that of commercial gentamicin cream. Furthermore, antimicrobial studies showed that AG is effective against both S. aureus and P. aeruginosa, and the antibiofilm assays demonstrated that the combination was effective against biofilm bacteria. In summary, alginate films containing xylitol and gentamicin may potentially be used as new dressings for the treatment of wound infection.

  2. Development of Spatial Distribution Patterns by Biofilm Cells.

    Science.gov (United States)

    Haagensen, Janus A J; Hansen, Susse K; Christensen, Bjarke B; Pamp, Sünje J; Molin, Søren

    2015-09-01

    Confined spatial patterns of microbial distribution are prevalent in nature, such as in microbial mats, soil communities, and water stream biofilms. The symbiotic two-species consortium of Pseudomonas putida and Acinetobacter sp. strain C6, originally isolated from a creosote-polluted aquifer, has evolved a distinct spatial organization in the laboratory that is characterized by an increased fitness and productivity. In this consortium, P. putida is reliant on microcolonies formed by Acinetobacter sp. C6, to which it attaches. Here we describe the processes that lead to the microcolony pattern by Acinetobacter sp. C6. Ecological spatial pattern analyses revealed that the microcolonies were not entirely randomly distributed and instead were arranged in a uniform pattern. Detailed time-lapse confocal microscopy at the single-cell level demonstrated that the spatial pattern was the result of an intriguing self-organization: small multicellular clusters moved along the surface to fuse with one another to form microcolonies. This active distribution capability was dependent on environmental factors (carbon source and oxygen) and historical contingency (formation of phenotypic variants). The findings of this study are discussed in the context of species distribution patterns observed in macroecology, and we summarize observations about the processes involved in coadaptation between P. putida and Acinetobacter sp. C6. Our results contribute to an understanding of spatial species distribution patterns as they are observed in nature, as well as the ecology of engineered communities that have the potential for enhanced and sustainable bioprocessing capacity.

  3. 和厚朴酚对根管内白色念珠菌生物膜作用的体外研究%Effect of honokiol on Candida albicans biofilms in root canals in vitro

    Institute of Scientific and Technical Information of China (English)

    田玉珠; 王健平; 杨景云; 张慧明; 杨玉娟

    2013-01-01

    Objective To investigate the significance of honokio] in the oral microecology changes by observing its effect on Candida albicans biofilms in vitro. Methods XTT reduction assay was applied to evaluate the effect of honokiol on C. albicans biofilms and its adhesion; Confocal laser scanning microscopy combining with vital fluorescent staining technique was used to observe the thickness and activity of C. albicans biofilms with and without the drug action. Results 15. 63 μg/mL, 31. 25 μg/mL and 62. 5 μg/mL of honokiol had inhibited the early adhesion and mycelial growth of C. albicans; the inhibition rates of 2000 μg/mL to 15. 63 μg/mL honokiol against C. albicans biofilms were 90. 13% to 24. 21 %; Viable bacteria was dominant at 24 h in the untreated C. albicans biofilms, and the thickness of the C. albicans biofilms was (75. 15 ±6.57) μm; The quantitative data from Image-Pro Plus 6.0 software showed that under the inhibition of 62.5 μg/mL honokiol at 24 h, the viable bacteria percentage was (31.4 ±0.09)% and the biofilm thickness was (33.14 ± 6.66) μm; compared with the negative control group, the difference was statistically significant (P<0.05). The antibacterial activity of honokiol was relatively weaker than that of nystatin, but its influence on biofilm thickness was stronger. Conclusion Honokiol has inhibition against C. albicans biofilms in vitro.%目的 通过观察和厚朴酚对体外白色念珠菌生物膜形成中的作用,探讨其在口腔微生态中变化的意义.方法 采用XTT减低法评价和厚朴酚对白色念珠菌的生物膜及黏附性的影响;利用激光共聚焦扫描显微镜和死菌活菌荧光染色技术相结合,对常态及药物作用下白色念珠菌生物膜厚度及活性进行观察.结果 与阴性对照组相比,15.63、31.25及62.5μg/mL的和厚朴酚对白色念珠菌的早期黏附及菌丝生长有抑制作用;2 000 ~ 15.63 μg/mL的和厚朴酚对白色念珠菌生物膜的抑菌率分别为90

  4. Experimental biofilms within drinking water treatment plant origin; evaluation of nutrient concentration and temperature influences upon their development

    Directory of Open Access Journals (Sweden)

    Anca FARKAS

    2009-11-01

    Full Text Available From the planktonic free-floating state, microorganisms pass to the solid state, the biofilm, cells being strongly attached to each other and usually to the interface. This changing in cells’ behavior induces surface colonization and complex interactions development within the biofilm. If the biofilm’s role into the natural aquatic habitats is, undoubtedly, a positive one, consisting in water self-purification, drinking water pipe networks biofouling can be responsible for a wide range of water quality and operational problems. This exploratory experiment was performed in order to investigate, in a time interval of 7 days, the influence of certain environmental factors such as nutrient concentration and temperature upon in vitro biofilm’s development, origin in the biofilm of water treatment plant. The method used for in vitro biofilm growth monitoring is the colorimetric measurement of the biomass. Descriptive analyses, including the mean value, variability, trends, correlations and graphic displays were performed. The correlation analysis shown that the biofilm development in the discussed experiment was influenced as by the origin source as by the temperature, time and nutrients concentration. The biomass increment was significantly different for the biofilms with clarifier and sand filter sites origin, grown at 22 oC, while at 8 oC, the differences were not significant from a statistical point of view. For all the dilutions, moments and temperatures considered, the biofilm’s development with clarifier origin registered was significantly higher than the biofilm with sand filter origin.

  5. Bisbibenzyls, a new type of antifungal agent, inhibit morphogenesis switch and biofilm formation through upregulation of DPP3 in Candida albicans.

    Directory of Open Access Journals (Sweden)

    Li Zhang

    Full Text Available The yeast-to-hypha transition plays a crucial role in the pathogenesis of C. albicans. Farnesol, a quorum sensing molecule (QSM secreted by the fungal itself, could prevent the formation of hyphae and subsequently lead to the defect of biofilm formation. The DPP3, encoding phosphatase, is a key gene in regulating farnesol synthesis. In this study, we screened 24 bisbibenzyls and 2 bibenzyls that were isolated from bryophytes or chemically synthesized by using CLSI method for antifungal effect. Seven bisbibenzyls were found to have antifungal effects with IC(80 less than 32 µg/ml, and among them, plagiochin F, isoriccardin C and BS-34 were found to inhibit the hyphae and biofilm formation of C. albicans in a dose-dependent manner. To uncover the underlying relationship between morphogenesis switch and QSM formation, we measured the farnesol production by HPLC-MS and quantified Dpp3 expression by detecting the fluorescent intensity of green fluorescent protein tagged strain using Confocal Laser Scanning microscopy and Multifunction Microplate Reader. The DPP3 transcripts were determined by real-time PCR. The data indicated that the bisbibenzyls exerted antifungal effects through stimulating the synthesis of farnesol via upregulation of Dpp3, suggesting a potential antifungal application of bisbibenzyls. In addition, our assay provides a novel, visual and convenient method to measure active compounds against morphogenesis switch.

  6. Extracellular polymeric substances govern the development of biofilm and mass transfer of polycyclic aromatic hydrocarbons for improved biodegradation.

    Science.gov (United States)

    Zhang, Yinping; Wang, Fang; Zhu, Xiaoshu; Zeng, Jun; Zhao, Qiguo; Jiang, Xin

    2015-10-01

    The hypothesis that extracellular polymeric substances (EPS) affect the formation of biofilms for subsequent enhanced biodegradation of polycyclic aromatic hydrocarbons was tested. Controlled formation of biofilms on humin particles and biodegradation of phenanthrene and pyrene were performed with bacteria and EPS-extracted bacteria of Micrococcus sp. PHE9 and Mycobacterium sp. NJS-P. Bacteria without EPS extraction developed biofilms on humin, in contrast the EPS-extracted bacteria could not attach to humin particles. In the subsequent biodegradation of phenanthrene and pyrene, the biodegradation rates by biofilms were significantly higher than those of EPS-extracted bacteria. Although, both the biofilms and EPS-extracted bacteria showed increases in EPS contents, only the EPS contents in biofilms displayed significant correlations with the biodegradation efficiencies of phenanthrene and pyrene. It is proposed that the bacterial-produced EPS was a key factor to mediate bacterial attachment to other surfaces and develop biofilms, thereby increasing the bioavailability of poorly soluble PAH for enhanced biodegradation.

  7. Synchronized dynamics of bacterial niche-specific functions during biofilm development in a cold seep brine pool

    KAUST Repository

    Zhang, Weipeng

    2015-07-14

    The biology of biofilm in deep-sea environments is barely being explored. Here, biofilms were developed at the brine pool (characterized by limited carbon sources) and the normal bottom water adjacent to Thuwal cold seeps. Comparative metagenomics based on 50 Gb datasets identified polysaccharide degradation, nitrate reduction, and proteolysis as enriched functional categories for brine biofilms. The genomes of two dominant species: a novel deltaproteobacterium and a novel epsilonproteobacterium in the brine biofilms were reconstructed. Despite rather small genome sizes, the deltaproteobacterium possessed enhanced polysaccharide fermentation pathways, whereas the epsilonproteobacterium was a versatile nitrogen reactor possessing nar, nap and nif gene clusters. These metabolic functions, together with specific regulatory and hypersaline-tolerant genes, made the two bacteria unique compared with their close relatives including those from hydrothermal vents. Moreover, these functions were regulated by biofilm development, as both the abundance and the expression level of key functional genes were higher in later-stage biofilms, and co-occurrences between the two dominant bacteria were demonstrated. Collectively, unique mechanisms were revealed: i) polysaccharides fermentation, proteolysis interacted with nitrogen cycling to form a complex chain for energy generation; ii) remarkably, exploiting and organizing niche-specific functions would be an important strategy for biofilm-dependent adaptation to the extreme conditions.

  8. Wastewater treatment with submerged fixed bed biofilm reactor systems--design rules, operating experiences and ongoing developments.

    Science.gov (United States)

    Schlegel, S; Koeser, H

    2007-01-01

    Wastewater treatment systems using bio-films that grow attached to a support media are an alternative to the widely used suspended growth activated sludge process. Different fixed growth biofilm reactors are commercially used for the treatment of municipal as well as industrial wastewater. In this paper a fairly new fixed growth biofilm system, the submerged fixed bed biofilm reactor (SFBBR), is discussed. SFBBRs are based on aerated submerged fixed open structured plastic media for the support of the biofilm. They are generally operated without sludge recirculation in order to avoid clogging of the support media and problems with the control of the biofilm. Reactor and process design considerations for these reactors are reviewed. Measures to ensure the development and maintenance of an active biofilm are examined. SFBBRs have been applied successfully to small wastewater treatment plants where complete nitrification but no high degree of denitrification is necessary. For the pre-treatment of industrial wastewater the use of SFBBRs is advantageous, especially in cases of wastewater with high organic loading or high content of compounds with low biodegradability. Performance data from exemplary commercial plants are given. Ongoing research and development efforts aim at achieving a high simultaneous total nitrogen (TN) removal of aerated SFBBRs and at improving the efficiency of TN removal in anoxic SFBBRs.

  9. Separation of phenotypically indistinguishable Candida species, C. orthopsilosis, C. metapsilosis and C. parapsilosis, by capillary electromigration techniques.

    Science.gov (United States)

    Horká, Marie; Růžička, Filip; Kubesová, Anna; Němcová, Eva; Slais, Karel

    2011-06-24

    At the current state of laboratory diagnostics, methods for fast identification of phenotypically indistinguishable species are difficult or inaccurate. An example is represented by Candida parapsilosis, which is the second most common yeast species isolated from bloodstream infections. C. parapsilosis comprises a complex of three genetically distinct groups. Genotypes II and III have been designated as the separate species Candida orthopsilosis and Candida metapsilosis, phenotypically indistinguishable. The considerable genetic variability of these newly described yeasts species has caused difficulties in the development of molecular techniques for their precise identification. Similarly, the detection of biofilm formation, which is considered as an important yeast virulence factor, is accompanied by difficulties. In this study we optimize the first precise and reproducible method for the separation and possible identification of C. orthopsilosis, C. metapsilosis and C. parapsilosis as well as the detection of their ability to form biofilm. The method is based on capillary isoelectric focusing and capillary electrophoresis with UV detection. In capillary isoelectric focusing, very narrow pH gradients were established. With such gradients, differences in isoelectric points of biofilm-negative and biofilm-positive species calculated from the migration times of the selected pI markers were below 0.03 pI units. In the capillary zone electrophoresis narrow zones of the cells of Candida species were detected with sufficient resolution. The values of the isoelectric point and the migration velocities of the examined species were independent on the origin of the tested strains. Capillary isoelectric focusing was examined also for the separation and detection of the cultivated biofilm-negative C. parapsilosis in the blood serum.

  10. Development and calibration of a microfluidic biofilm growth cell with flow-templating and multi-modal characterization.

    Science.gov (United States)

    Paquet-Mercier, Francois; Karas, Adnane; Safdar, Muhammad; Aznaveh, Nahid Babaei; Zarabadi, Mirpouyan; Greener, Jesse

    2014-01-01

    We report the development of a microfluidic flow-templating platform with multi-modal characterization for studies of biofilms and their precursor materials. A key feature is a special three inlet flow-template compartment, which confines and controls the location of biofilm growth against a template wall. Characterization compartments include Raman imaging to study the localization of the nutrient solutions, optical microscopy to quantify biofilm biomass and localization, and cyclic voltammetry for flow velocity measurements. Each compartment is tested and then utilized to make preliminary measurements.

  11. Initial development and structure of biofilms on microbial fuel cell anodes

    Directory of Open Access Journals (Sweden)

    Keller Jürg

    2010-04-01

    Full Text Available Abstract Background Microbial fuel cells (MFCs rely on electrochemically active bacteria to capture the chemical energy contained in organics and convert it to electrical energy. Bacteria develop biofilms on the MFC electrodes, allowing considerable conversion capacity and opportunities for extracellular electron transfer (EET. The present knowledge on EET is centred around two Gram-negative models, i.e. Shewanella and Geobacter species, as it is believed that Gram-positives cannot perform EET by themselves as the Gram-negatives can. To understand how bacteria form biofilms within MFCs and how their development, structure and viability affects electron transfer, we performed pure and co-culture experiments. Results Biofilm viability was maintained highest nearer the anode during closed circuit operation (current flowing, in contrast to when the anode was in open circuit (soluble electron acceptor where viability was highest on top of the biofilm, furthest from the anode. Closed circuit anode Pseudomonas aeruginosa biofilms were considerably thinner compared to the open circuit anode (30 ± 3 μm and 42 ± 3 μm respectively, which is likely due to the higher energetic gain of soluble electron acceptors used. The two Gram-positive bacteria used only provided a fraction of current produced by the Gram-negative organisms. Power output of co-cultures Gram-positive Enterococcus faecium and either Gram-negative organisms, increased by 30-70% relative to the single cultures. Over time the co-culture biofilms segregated, in particular, Pseudomonas aeruginosa creating towers piercing through a thin, uniform layer of Enterococcus faecium. P. aeruginosa and E. faecium together generated a current of 1.8 ± 0.4 mA while alone they produced 0.9 ± 0.01 and 0.2 ± 0.05 mA respectively. Conclusion We postulate that this segregation may be an essential difference in strategy for electron transfer and substrate capture between the Gram-negative and the Gram

  12. 黄芩苷联合氟康唑对白念珠菌生物膜的抑制作用研究%Inhibitory effects of baicalin in combination with fluconazole against Candida albicans biofilms

    Institute of Scientific and Technical Information of China (English)

    颜贵明; 施高翔; 邵菁; 汪天明; 夏丹; 汪长中

    2015-01-01

    目的:探讨中药有效成分黄芩苷( baicalin,BA)联合氟康唑( fluconazole,FLC)对白念珠菌( Candida albicans,C. albicans)生物膜的抑制作用。方法通过棋盘法考察BA联合FLC对白念珠菌浮游菌与生物膜的部分抑菌浓度指数( FI⁃CI);通过时间⁃杀菌曲线检测两药联合对白念珠菌标准株(C.albicans SC5314)的杀菌作用;以XTT减低法和干重法检测两药联合对白念珠菌SC5314生物膜代谢及生物量的影响;采用扫描电镜( Scanning electron microscopy,SEM)和激光共聚焦显微镜( Confocal laser scanning microscopy,CLSM)观察两药联合对白念珠菌SC5314生物膜形态结构的影响;以水⁃烃法检测两药联合对白念珠菌SC5314生物膜细胞表面疏水性( cell surface hydrophobicity,CSH)的影响;通过实时荧光定量PCR ( quan⁃titative real time PCR,qRT⁃PCR)检测两药联合对白念珠菌生物膜和CSH相关基因表达的影响。结果黄芩苷与氟康唑联用抗白念珠菌浮游菌的FICI介于0.28~0.75之间,对生物膜的FICI介于0.16~0.5之间,表现为协同作用;SEM和CLSM在生物膜结构上验证了两药的协同效果;两药联合可降低生物膜表面疏水性,以及使ALS1、ALS3、EAP1、SUN41和CSH1分别下调6%、51%、24%、13%和39%。结论黄芩苷具有协同氟康唑抗白念珠菌生物膜作用。%Objective This study aimed to investigate the antifungal activity of baicalin alone or in combination with fluconazole against Candida albicans biofilms and to explore the related mechanism.Methods Checkerboard method was uased to study the in⁃terrelation of baicalin and fluconazole on C.albicans;Time⁃kill curve was used to evaluate the effect of baicalin alone and in combina⁃tion with fluconazole on C.albicans;XTT reduction assay and measurement of biofilm biomass assay were performed to investigate the antibiofilm activity of

  13. Effect of Neovestitol-vestitol containing Brazilian red propolis on biofilm accumulation in vitro and dental caries development in vivo

    Science.gov (United States)

    Bueno-Silva, B; Koo, H; Falsetta, ML; Alencar, SM; Ikegaki, M; Rosalen, PL

    2013-01-01

    The present study examined the influences of the neovestitol-vestitol (NV) containing fraction isolated from Brazilian red propolis on biofilm development and expression of virulence factors by Streptococcus mutans using saliva-coated hydroxyapatite surfaces. In addition, NV was tested in a rodent model of dental caries to assess its potential effectiveness in vivo. Topical applications of NV (800μg/ml) significantly impaired the accumulation of S. mutans biofilms by largely disrupting the synthesis of glucosyltransferase-derived exopolysaccharides and the expression of genes associated with the adaptive stress response, such as copYAZ and sloA. Of even greater impact, NV was as effective as fluoride (positive control) in reducing the development of carious lesions in vivo. NV is a promising natural anti-biofilm agent that targets essential virulence traits in S. mutans, which are associated with cariogenic biofilm formation and the subsequent onset of dental caries disease. PMID:24099330

  14. The development of fluconazole resistance in Candida albicans - an example of microevolution of a fungal pathogen.

    Science.gov (United States)

    Morschhäuser, Joachim

    2016-03-01

    The yeast Candida albicans is a member of the microbiota in the gastrointestinal and urogenital tracts of most healthy persons, but it can also cause symptomatic infections, especially in immunocompromised patients. During the life-long association with its human host, C. albicans generates genetically altered variants that are better adapted to changes in their environment. A prime example of this microevolution is the development of resistance to the commonly used drug fluconazole, which inhibits ergosterol biosynthesis, during antimycotic therapy. Fluconazole resistance can be caused by mutations in the drug target, by changes in the sterol biosynthesis pathway, and by gain-of-function mutations in transcription factors that result in the constitutive upregulation of ergosterol biosynthesis genes and multidrug efflux pumps. Fluconazole also induces genomic rearrangements that result in gene amplification and loss of heterozygosity for resistance mutations, which further increases drug resistance. These genome alterations may affect extended chromosomal regions and have additional phenotypic consequences. A striking case is the loss of heterozygosity for the mating type locus MTL in many fluconazole-resistant clinical isolates, which allows the cells to switch to the mating-competent opaque phenotype. This, in turn, raises the possibility that sexual recombination between different variants of an originally clonal, drug-susceptible population may contribute to the generation of highly fluconazole-resistant strains with multiple resistance mechanisms. The gain-of-function mutations in transcription factors, which result in deregulated gene expression, also cause reduced fitness. In spite of this, many clinical isolates that contain such mutations do not exhibit fitness defects, indicating that they have overcome the costs of drug resistance with further evolution by still unknown mechanisms.

  15. Dynamics of development and dispersal in sessile microbial communities: examples from Pseudomonas aeruginosa and Pseudomonas putida model biofilms

    DEFF Research Database (Denmark)

    Klausen, M.; Gjermansen, Morten; Kreft, J.-U.;

    2006-01-01

    Surface-associated microbial communities in many cases display dynamic developmental patterns. Model biofilms formed by Pseudomonas aeruginosa and Pseudomonas putida in laboratory flow-chamber setups represent examples of such behaviour. Dependent on the experimental conditions the bacteria...... organisms do not possess comprehensive genetic programs for biofilm development. Instead the bacteria appear to have evolved a number of different mechanisms to optimize surface colonization, of which they express a subset in response to the prevailing environmental conditions. These mechanisms include...

  16. An in vitro dynamic microcosm biofilm model for caries lesion development and antimicrobial dose-response studies.

    Science.gov (United States)

    Maske, T T; Brauner, K V; Nakanishi, L; Arthur, R A; van de Sande, F H; Cenci, M S

    2016-01-01

    Some dynamic biofilm models for dental caries development are limited as they require multiple experiments and do not allow independent biofilm growth units, making them expensive and time-consuming. This study aimed to develop and test an in vitro dynamic microcosm biofilm model for caries lesion development and for dose-response to chlorhexidine. Microcosm biofilms were grown under two different protocols from saliva on bovine enamel discs for up to 21 days. The study outcomes were as follows: the percentage of enamel surface hardness change, integrated hardness loss, and the CFU counts from the biofilms formed. The measured outcomes, mineral loss and CFU counts showed dose-response effects as a result of the treatment with chlorhexidine. Overall, the findings suggest that biofilm growth for seven days with 0.06 ml min(-1) salivary flow under exposure to 5% sucrose (3 × daily, 0.25 ml min(-1), 6 min) was suitable as a pre-clinical model for enamel demineralization and antimicrobial studies.

  17. Development of equipment for in situ studies of biofilm in hot water systems

    DEFF Research Database (Denmark)

    Bagh, Lene Karen; Albrechtsen, Hans-Jørgen; Arvin, Erik

    1999-01-01

    New equipment was developed for in situ studies of biofilms in hot water tanks and hot water pipes under normal operation and pressure. Sampling ports were installed in the wall of a hot water tank and through these operating shafts were inserted with a test plug in the end. The surface of the test...... plugs was made of the same material as used in the hot water system and the test plugs were flush with the inner surface of the tank. When the operating shaft was removed from the tank, biofilm could be collected. In the distribution system, biofilm samples were collected from test plugs inserted...... in sampling ports in a by-pass. Heterotrophic plate counts (HPC) revealed 10(4)-10(6) CFU cm(-2) on the test plugs in the hot water system after an exposure period of 7 d. The number of bacteria was not influenced by the location of the plug within each cluster of plugs in the distribution system...

  18. Biofilm development on new and cleaned membrane surfaces

    NARCIS (Netherlands)

    Bereschenko, L.A.

    2010-01-01

    This thesis presents a comprehensive research report on microbiological aspects of biofouling occurrence in full-scale reverse osmosis (RO) systems. Biofouling is a process in which microorganisms attach to membranes and develop into a thick film that can choke the entire RO system. Management of th

  19. Biofilm Risks

    DEFF Research Database (Denmark)

    Wirtanen, Gun Linnea; Salo, Satu

    2016-01-01

    This chapter on biofilm risks deals with biofilm formation of pathogenic microbes, sampling and detection methods, biofilm removal, and prevention of biofilm formation. Several common pathogens produce sticky and/or slimy structures in which the cells are embedded, that is, biofilms, on various s...

  20. Distinct roles of extracellular polymeric substances in Pseudomonas aeruginosa biofilm development

    DEFF Research Database (Denmark)

    Yang, Liang; Hu, Yifan; Liu, Yang

    2011-01-01

    Bacteria form surface attached biofilm communities as one of the most important survival strategies in nature. Biofilms consist of water, bacterial cells and a wide range of self‐generated extracellular polymeric substances (EPS). Biofilm formation is a dynamic self‐assembly process and several d...... polysaccharide is more important than Pel polysaccharide in P. aeruginosa PAO1 biofilm formation and antibiotic resistance. Our study thus suggests that different EPS materials play distinct roles during bacterial biofilm formation.......Bacteria form surface attached biofilm communities as one of the most important survival strategies in nature. Biofilms consist of water, bacterial cells and a wide range of self‐generated extracellular polymeric substances (EPS). Biofilm formation is a dynamic self‐assembly process and several...

  1. Developing sulfide-oxidizing biofilm on H2S-exhausted carbon for sustainable bio-regeneration and biofiltration.

    Science.gov (United States)

    Jiang, Xia; Yan, Rong; Tay, Joo Hwa

    2009-05-30

    The feasibility of developing biofilm on exhausted carbon using pre-deposited sulfur compounds as the sole energy source was studied, aiming to re-use them in odor biofiltration. The exhausted carbon with different properties, including surface pH, sulfur content and porosity, was used. A series of off-line trials were conducted to investigate the release of sulfur compounds from the exhausted carbon and the attachment of sulfide-oxidizing bacteria on the exhausted carbon. Without any pre-treatment, a few bacteria attachment on exhausted carbon was observed by SEM, due to possibly the limitation of reduced sulfur compounds release for bacterial growth. The biofilm development was much improved by adding NaOH solution to partially pre-desorb the deposited sulfur into liquid phase, which provided initial energy for bacterial growth. With the attached bacteria, the further significant release of the deposited sulfur was achieved through an additional driving force: biodegradation. The key issues for developing biofilm on exhausted carbon were concluded, which mainly concerned of desorption of pre-deposited reduced sulfur compounds and porosity of carbon. The sulfur-associated reactions occurring in developing biofilm on exhausted carbon was proposed. Bio-regeneration of exhausted carbon in the course of biofilm development was also preliminarily assessed.

  2. Characterisitics of Candida albicans bioflm developed on poly (methil methacrilate) resins surfaces

    OpenAIRE

    2009-01-01

    Resumo: Os biofilmes de Cândida albicans formados sobre a superfície de resina de poli (metil metacrilato) (PMMA) apresentam alta virulência em função da liberação de enzimas hidrolíticas e são responsáveis pela candidose oral, infecção fúngica mais comum em usuários de próteses dentais removíveis. A organização do biofilme em várias camadas celulares envoltos por matriz de polissacarídeos extracelulares leva estas camadas celulares a estado metabólicos diferenciados e, portanto o uso da técn...

  3. Identification and differentiation of Candida parapsilosis complex species by use of exon-primed intron-crossing PCR.

    Science.gov (United States)

    Feng, Xiaobo; Wu, Zengbin; Ling, Bo; Pan, Shuming; Liao, Wanqing; Pan, Weihua; Yao, Zhirong

    2014-05-01

    The Candida parapsilosis complex is composed of Candida parapsilosis sensu stricto, Candida orthopsilosis, Candida metapsilosis, and the closely related species Lodderomyces elongisporus. An exon-primed intron-crossing PCR assay was developed here to distinguish the members of the species complex on the basis of the distinct sizes of amplicons, and Candida orthopsilosis and Candida metapsilosis were further discriminated by restriction enzyme analysis.

  4. Prevalence of Staphylococcus spp and Candida spp in the oral cavity and periodontal pockets of periodontal disease patients.

    Science.gov (United States)

    Cuesta, Alicia I; Jewtuchowicz, Virginia; Brusca, María I; Nastri, María L; Rosa, Alcira C

    2010-01-01

    The oral cavity can act as a reservoir of certain pathogens that can cause systemic infections. The periodontal pocket is an ecological niche appropriate for hosting microorganisms that could act as opportunistic pathogens. The ability of Staphylococcus spp and Candida spp to form a biofilm and live within certain niches allows them to develop mechanisms that increase persistence, such as the evasion of host defenses and antibiotic efficacy. These microorganisms can easily be or become resistant to antibiotics and lead to superinfection. The aims of this study were to assess the presence of Staphylococcus aureus and Staphylococcus spp in biofilm in subgingival plaque and oral cavity of individuals with gingival-periodontal disease, to identify isolates and the relationship with Candida spp. The study included eighty-two patients, aged 18-70 years with periodontal disease and at least two sites with probing depth > or = 3 mm. Participants' data were evaluated individually. Subgingival biofilm samples were obtained using Gracey curettes 7/8, after supragingival biofilm removal, and a sample from the oral cavity (buccal mucosa, tongue and cheek mucosa) by sterile swab. Of all the patients studied, 42.7% exhibited Staphylococcus spp in the periodontal pocket and 69.5% in the oral cavity while 25.6% exhibited Candida spp in the periodontal pocket and 42.7% in the oral cavity. However, 13.4% had both microorganisms in the periodontal pocket and 36.6% in the oral cavity. The prevalence of Staphylococcus aureus was 13.4% in the periodontal pocket and 15.8% in the oral cavity. Candida albicans was the most prevalent yeast in the periodontal pocket (76.2%) and in the oral cavity (63.0%).

  5. Enhanced effect of the combination of aminobutyric acid with caspofungin against biofilm formation of Candida albicans%氨基丁酸联合卡泊芬净抗白色假丝酵母菌生物被膜协同作用研究

    Institute of Scientific and Technical Information of China (English)

    刘懿萱; 叶春林

    2015-01-01

    目的:探讨氨基丁酸联合卡泊芬净抗白色假丝酵母菌生物被膜的协同作用。方法利用白色假丝酵母菌标准菌株SC5314,采用生物被膜形成实验,分为空白对照组、氨基丁酸单用组、卡泊芬净单用组、氨基丁酸联合卡泊芬净组,对比各组生物被膜形成情况。采用XT T还原法测定氨基丁酸、卡泊芬净单用以及氨基丁酸联合卡泊芬净对成熟生物被膜细胞代谢活性的抑制作用。采用YNB培养基菌丝形成实验,考察氨基丁酸与卡泊芬净合用是否具有协同抑制菌丝形成的作用。结果卡泊芬净0.1μg · mL -1联合氨基丁酸0.1μmol · L -1对白色假丝酵母菌SC5314生物被膜的形成具有显著的抑制作用。此外,XT T还原法测定氨基丁酸6.25μmol · L -1联合卡泊芬净0.1μg · mL -1时降低被膜细胞代谢活性的效率能够达到约15%。采用YNB培养基形成菌丝,氨基丁酸6.25μmol · L -1联合卡泊芬净0.1μg · mL -1对白色假丝酵母菌SC5314菌丝形成能力有显著的抑制作用。结论氨基丁酸联合卡泊芬净表现出显著的体外协同抗白色假丝酵母菌标准菌株SC5314生物被膜作用。%Objective To investigate the enhanced effect of aminobutyric acid (GABA) combined with caspofungin on biofilm forma‐tion of Candida albicans .Methods Standard stains of Candida albicans SC5314 were used in this study .The group of caspofun‐gin with GABA comparing with the group of GABA or caspofungin alone were evaluated by observing the prevention of biofilm formation .Candida albicans SC5314 were cultured in YNB medium to induce the formation of hyphae and the metabolic activity was determined by XTT reduction assay .Results The group of caspofungin (0 .1μg · mL -1 ) showed no inhibition against biofilm formation of Candida albicans ,but caspofungin (0 .1 μg · mL -1 ) with GABA (0 .1 μmol · L -1 ) showed apparent inhibition a

  6. Effect of pipe material and low level disinfectants on biofilm development in a simulated drinking water distribution system

    Institute of Scientific and Technical Information of China (English)

    Ling-ling ZHOU; Yong-ji ZHANG; Gui-bai LI

    2009-01-01

    The efficiency of chlorine and chloramines disinfection on biofilm development in a simulated drinking water distribution system was investigated by using heterotrophic bacterial spread plate technique.The experiments were carried out with four annular reactors(ARs)with stainless steel(SS)or copper(Cu)material slides.The results showed that there were fewer bacteria attached to Cu slides without a disinfectant compared with those attached to SS slides.When the water was disinfected with chloramines,the heterotrophic plate counts(HPCs)on the biofilm attached to the Cu slides were significantly lower(by 3.46 log CFU/cm2)than those attached to the SS slides.Likewise,the biofilm HPC numbers on the Cu slides were slightly lower(by 1.19log CFU/cm2) than those on the SS slides disinfected with chlorine.In a quasi-steady state.the HPC levels on Cu slides can be reduced to 3.0 log CFU/cm2 with chlorine and to about 0.9 log CFU/cm2 with chloramines.The addition of chloramines resulted in a more efficient reduction of biofilm heterotrophic bacteria than did chlorine.We concluded that the chlorine and chloramines levels usually employed in water distribution system were not SUfficient to prevent the growth and development of microbial biofilm.The combination of copper pipe slides and chlorarnincs as the disinfectant was the most efficient combination to bring about diminished bacterial levels.

  7. Development of a Laboratory Model of a Phototroph-Heterotroph Mixed-Species Biofilm at the Stone/Air Interface.

    Science.gov (United States)

    Villa, Federica; Pitts, Betsey; Lauchnor, Ellen; Cappitelli, Francesca; Stewart, Philip S

    2015-01-01

    Recent scientific investigations have shed light on the ecological importance and physiological complexity of subaerial biofilms (SABs) inhabiting lithic surfaces. In the field of sustainable cultural heritage (CH) preservation, mechanistic approaches aimed at investigation of the spatiotemporal patterns of interactions between the biofilm, the stone, and the atmosphere are of outstanding importance. However, these interactions have proven difficult to explore with field experiments due to the inaccessibility of samples, the complexity of the ecosystem under investigation and the temporal resolution of the experiments. To overcome these limitations, we aimed at developing a unifying methodology to reproduce a fast-growing, phototroph-heterotroph mixed species biofilm at the stone/air interface. Our experiments underscore the ability of the dual-species SAB model to capture functional traits characteristic of biofilms inhabiting lithic substrate such as: (i) microcolonies of aggregated bacteria; (ii) network like structure following surface topography; (iii) cooperation between phototrophs and heterotrophs and cross feeding processes; (iv) ability to change the chemical parameters that characterize the microhabitats; (v) survival under desiccation and (vi) biocide tolerance. With its advantages in control, replication, range of different experimental scenarios and matches with the real ecosystem, the developed model system is a powerful tool to advance our mechanistic understanding of the stone-biofilm-atmosphere interplay in different environments.

  8. Development of a laboratory model of a phototroph-heterotroph mixed-species biofilm at the stone/air interface

    Directory of Open Access Journals (Sweden)

    Federica eVilla

    2015-11-01

    Full Text Available Recent scientific investigations have shed light on the ecological importance and physiological complexity of subaerial biofilms (SABs inhabiting lithic surfaces. In the field of sustainable cultural heritage (CH preservation, mechanistic approaches aimed at investigation of the spatiotemporal patterns of interactions between the biofilm, the stone, and the atmosphere are of outstanding importance. However, these interactions have proven difficult to explore with field experiments due to the inaccessibility of samples, the complexity of the ecosystem under investigation and the temporal resolution of the experiments.To overcome these limitations, we aimed at developing a unifying methodology to reproduce a fast-growing, phototroph-heterotroph mixed species biofilm at the stone/air interface. Our experiments underscore the ability of the dual-species SAB model to capture functional traits characteristic of biofilms inhabiting lithic substrate such as: i microcolonies of aggregated bacteria; ii network like structure following surface topography; iii cooperation between phototrophs and heterotrophs and cross feeding processes; iv ability to change the chemical parameters that characterize the microhabitats; v survival under desiccation and vi biocide tolerance. With its advantages in control, replication, range of different experimental scenarios and matches with the real ecosystem, the developed model system is a powerful tool to advance our mechanistic understanding of the stone-biofilm-atmosphere interplay in different environments.

  9. Antimicrobial efficacy of different concentration of sodium hypochlorite on the biofilm of Enterococcus faecalis at different stages of development

    Science.gov (United States)

    Frough-Reyhani, Mohammad; Soroush-Barhaghi, Mohammadhosien; Amini, Mahsa; Gholizadeh, Yousefreza

    2016-01-01

    Background Persistent infection of the root canal due to the presence of resistance bacterial species, such as Enterococcus faecalis, has always been one of the most important reasons for endodontic treatment failure. This study investigated the antimicrobial efficacy of 1%, 2.5 % and 5% sodium hypochlorite in eliminating E. faecalis biofilms at different stages of development. Material and Methods In this study 4-, 6- and 10-week-old E. faecalis biofilms were subjected to one of the following approaches: phosphate-buffered saline solution (PBS) or 1%, 2.5% and 5% NaOCl. Dentin chip suspensions were used for colony forming unit (CFU) counting to estimate remaining E. faecalis counts. Statistical comparison of the means was carried out with Kruskal-Wallis test, and pair-wise comparisons were made by Mann-Whitney U test, at a significance level of Pfaecalis biofilms in three stages of biofilm development, whereas 1% NaOCl resulted in 85.73%, 81.88% and 78.62% decreases in bacterial counts in 4-, 6- and 10-week-old biofilms, respectively, which was significantly more than those with PBS (pfaecalis, sodium hypochlorite. PMID:27957257

  10. Development of Enterobacter aerogenes fuel cells: from in situ biohydrogen oxidization to direct electroactive biofilm.

    Science.gov (United States)

    Zhuang, Li; Zhou, Shungui; Yuan, Yong; Liu, Tinglin; Wu, Zhifeng; Cheng, Jiong

    2011-01-01

    This study described an Enterobacter aerogenes-catalyzed microbial fuel cell (MFC) with a carbon-based anode that exhibited a maximum power density of 2.51 W/m(3) in the absence of artificial electron mediators. The MFC was started up rapidly, within hours, and the current generation in the early stage was demonstrated to result from in situ oxidation of biohydrogen produced by E. aerogenes during glucose fermentation. Over periodic replacement of substrate, both planktonic biomass in the culture liquid and hydrogen productivity decreased, while increased power density and coulombic efficiency and decreased internal resistance were unexpectedly observed. Using scanning electron microscopy and cyclic voltammetry, it was found that the enhanced MFC performance was associated with the development of electroactive biofilm on the anodic surface, proposed to involve an acclimation and selection process of E. aerogenes cells under electrochemical tension. The significant advantage of rapid start-up and the ability to develop an electroactive biofilm identifies E. aerogenes as a suitable biocatalyst for MFC applications.

  11. Development of a calibration protocol and identification of the most sensitive parameters for the particulate biofilm models used in biological wastewater treatment.

    Science.gov (United States)

    Eldyasti, Ahmed; Nakhla, George; Zhu, Jesse

    2012-05-01

    Biofilm models are valuable tools for process engineers to simulate biological wastewater treatment. In order to enhance the use of biofilm models implemented in contemporary simulation software, model calibration is both necessary and helpful. The aim of this work was to develop a calibration protocol of the particulate biofilm model with a help of the sensitivity analysis of the most important parameters in the biofilm model implemented in BioWin® and verify the predictability of the calibration protocol. A case study of a circulating fluidized bed bioreactor (CFBBR) system used for biological nutrient removal (BNR) with a fluidized bed respirometric study of the biofilm stoichiometry and kinetics was used to verify and validate the proposed calibration protocol. Applying the five stages of the biofilm calibration procedures enhanced the applicability of BioWin®, which was capable of predicting most of the performance parameters with an average percentage error (APE) of 0-20%.

  12. Pseudomonas aeruginosa biofilm infections

    DEFF Research Database (Denmark)

    Tolker-Nielsen, Tim

    2014-01-01

    Bacteria in natural, industrial and clinical settings predominantly live in biofilms, i.e., sessile structured microbial communities encased in self-produced extracellular matrix material. One of the most important characteristics of microbial biofilms is that the resident bacteria display...... a remarkable increased tolerance toward antimicrobial attack. Biofilms formed by opportunistic pathogenic bacteria are involved in devastating persistent medical device-associated infections, and chronic infections in individuals who are immune-compromised or otherwise impaired in the host defense. Because...... the use of conventional antimicrobial compounds in many cases cannot eradicate biofilms, there is an urgent need to develop alternative measures to combat biofilm infections. The present review is focussed on the important opportunistic pathogen and biofilm model organism Pseudomonas aeruginosa. Initially...

  13. Compaction and relaxation of biofilms

    KAUST Repository

    Valladares Linares, R.

    2015-06-18

    Operation of membrane systems for water treatment can be seriously hampered by biofouling. A better characterization of biofilms in membrane systems and their impact on membrane performance may help to develop effective biofouling control strategies. The objective of this study was to determine the occurrence, extent and timescale of biofilm compaction and relaxation (decompaction), caused by permeate flux variations. The impact of permeate flux changes on biofilm thickness, structure and stiffness was investigated in situ and non-destructively with optical coherence tomography using membrane fouling monitors operated at a constant crossflow velocity of 0.1 m s−1 with permeate production. The permeate flux was varied sequentially from 20 to 60 and back to 20 L m−2 h−1. The study showed that the average biofilm thickness on the membrane decreased after elevating the permeate flux from 20 to 60 L m−2 h−1 while the biofilm thickness increased again after restoring the original flux of 20 L m−2 h−1, indicating the occurrence of biofilm compaction and relaxation. Within a few seconds after the flux change, the biofilm thickness was changed and stabilized, biofilm compaction occurred faster than the relaxation after restoring the original permeate flux. The initial biofilm parameters were not fully reinstated: the biofilm thickness was reduced by 21%, biofilm stiffness had increased and the hydraulic biofilm resistance was elevated by 16%. Biofilm thickness was related to the hydraulic biofilm resistance. Membrane performance losses are related to the biofilm thickness, density and morphology, which are influenced by (variations in) hydraulic conditions. A (temporarily) permeate flux increase caused biofilm compaction, together with membrane performance losses. The impact of biofilms on membrane performance can be influenced (increased and reduced) by operational parameters. The article shows that a (temporary) pressure increase leads to more

  14. A common mechanism involving the TORC1 pathway can lead to amphotericin B-persistence in biofilm and planktonic Saccharomyces cerevisiae populations.

    Science.gov (United States)

    Bojsen, Rasmus; Regenberg, Birgitte; Gresham, David; Folkesson, Anders

    2016-02-23

    Fungal infections are an increasing clinical problem. Decreased treatment effectiveness is associated with biofilm formation and drug recalcitrance is thought to be biofilm specific. However, no systematic investigations have tested whether resistance mechanisms are shared between biofilm and planktonic populations. We performed multiplexed barcode sequencing (Bar-seq) screening of a pooled collection of gene-deletion mutants cultivated as biofilm and planktonic cells. Screening for resistance to the ergosterol-targeting fungicide amphotericin B (AmB) revealed that the two growth modes had significant overlap in AmB-persistent mutants. Mutants defective in sterol metabolism, ribosome biosynthesis, and the TORC1 and Ras pathways showed increased persistence when treated with AmB. The ras1, ras2 and tor1 mutants had a high-persister phenotype similar to wild-type biofilm and planktonic cells exposed to the TORC1 pathway inhibitor rapamycin. Inhibition of TORC1 with rapamycin also increased the proportion of persisters in Candida albicans and Candida glabrata. We propose that decreased TORC1-mediated induction of ribosome biosynthesis via Ras can lead to formation of AmB-persister cells regardless of whether the cells are in planktonic or biofilm growth mode. Identification of common pathways leading to growth mode-independent persister formation is important for developing novel strategies for treating fungal infections.

  15. Oral multispecies biofilm development and the key role of cell-cell distance.

    Science.gov (United States)

    Kolenbrander, Paul E; Palmer, Robert J; Periasamy, Saravanan; Jakubovics, Nicholas S

    2010-07-01

    Growth of oral bacteria in situ requires adhesion to a surface because the constant flow of host secretions thwarts the ability of planktonic cells to grow before they are swallowed. Therefore, oral bacteria evolved to form biofilms on hard tooth surfaces and on soft epithelial tissues, which often contain multiple bacterial species. Because these biofilms are easy to study, they have become the paradigm of multispecies biofilms. In this Review we describe the factors involved in the formation of these biofilms, including the initial adherence to the oral tissues and teeth, cooperation between bacterial species in the biofilm, signalling between the bacteria and its role in pathogenesis, and the transfer of DNA between bacteria. In all these aspects distance between cells of different species is integral for oral biofilm growth.

  16. Development and validation of a chemostat gut model to study both planktonic and biofilm modes of growth of Clostridium difficile and human microbiota.

    Science.gov (United States)

    Crowther, Grace S; Chilton, Caroline H; Todhunter, Sharie L; Nicholson, Scott; Freeman, Jane; Baines, Simon D; Wilcox, Mark H

    2014-01-01

    The human gastrointestinal tract harbours a complex microbial community which exist in planktonic and sessile form. The degree to which composition and function of faecal and mucosal microbiota differ remains unclear. We describe the development and characterisation of an in vitro human gut model, which can be used to facilitate the formation and longitudinal analysis of mature mixed species biofilms. This enables the investigation of the role of biofilms in Clostridium difficile infection (CDI). A well established and validated human gut model of simulated CDI was adapted to incorporate glass rods that create a solid-gaseous-liquid interface for biofilm formation. The continuous chemostat model was inoculated with a pooled human faecal emulsion and controlled to mimic colonic conditions in vivo. Planktonic and sessile bacterial populations were enumerated for up to 46 days. Biofilm consistently formed macroscopic structures on all glass rods over extended periods of time, providing a framework to sample and analyse biofilm structures independently. Whilst variation in biofilm biomass is evident between rods, populations of sessile bacterial groups (log10 cfu/g of biofilm) remain relatively consistent between rods at each sampling point. All bacterial groups enumerated within the planktonic communities were also present within biofilm structures. The planktonic mode of growth of C. difficile and gut microbiota closely reflected observations within the original gut model. However, distinct differences were observed in the behaviour of sessile and planktonic C. difficile populations, with C. difficile spores preferentially persisting within biofilm structures. The redesigned biofilm chemostat model has been validated for reproducible and consistent formation of mixed species intestinal biofilms. This model can be utilised for the analysis of sessile mixed species communities longitudinally, potentially providing information of the role of biofilms in CDI.

  17. Bacterial biofilms: prokaryotic adventures in multicellularity

    DEFF Research Database (Denmark)

    Webb, J.S.; Givskov, Michael Christian; Kjelleberg, S.

    2003-01-01

    The development of bacterial biofilms includes both the initial social behavior of undifferentiated cells, as well as cell death and differentiation in the mature biofilm, and displays several striking similarities with higher organisms. Recent advances in the field provide new insight...... into differentiation and cell death events in bacterial biofilm development and propose that biofilms have an unexpected level of multicellularity....

  18. 盐酸氨溴索对体外白色假丝酵母菌成熟生物膜的抑制作用及其形态学的影响%Inhibition of ambroxol hydrochloride on Candida albicans biofilm in vitro and its effect on morphogenesis

    Institute of Scientific and Technical Information of China (English)

    吴玉华; 陆彪; 余加林

    2011-01-01

    目的 研究盐酸氨溴索对体外白色假丝酵母菌(Candida albicans)成熟生物膜(biofilm, BF)的影响.方法 用微孔板法建立体外白色假丝酵母菌ATCC 90028 BF模型;采用甲基四氮盐(the abated tetrazolium salt, XTT)减低法定量评价盐酸氨溴索对白色假丝酵母菌成熟BF的抑制作用;银染后,倒置显微镜下观察该药对白色假丝酵母菌成熟BF的形态学影响.结果 在96孔微量细胞培养板上成功建立白色假丝酵母菌BF模型;1.25、2.5、5、7.5 mg/ml的盐酸氨溴索作用白色假丝酵母菌成熟BF 12 h后,XTT减低法D(450)值分别为(0.63±0.05)、(0.52±0.08)、(0.31±0.05)和(0.11±0.03),分别与空白对照组(0.71±0.07)比较,差异有显著性(P0.05);不同浓度的盐酸氨溴索作用白色假丝酵母菌成熟BF,组间比较,均有显著性差异(P<0.05).结论 盐酸氨溴索对体外白色假丝酵母菌成熟BF有抑制作用,且在一定药物浓度范围内随着该药药物浓度的增加,对BF的抑制作用显著增强.%Objective To investigate the effect of ambroxol hydrochloride on biofilm and morphology of Candida albicans ( C. albicans) in vitro. Methods Microtiter plate culture method was used to establish C. albicans (ATCC 90028 ) biofilm. The abated tetrazolium salt (XTT) reduction assay was performed to quantitatively analyze the effect of ambroxol hydrochloride against C. albicans mature biofilm for 12 h. Micro scopic examination with silver staining was conducted to assess the effect of ambroxol hydrochloride on morpho logy of C. albicans biofilm. Results C. albicans biofilm in vitro was formed on 96-well microtiter plates suc cessfully. XTT reduction assay indicated that the OD450 values at different concentration of ambroxol hydrochlo ride (0. 625, 1.25 and 2.50, 5.00 and 7.50 mg/ml) were 0.68 ±0.04, 0.63 ±0.05, 0.52 ±0.07, 0.31 ± 0.05 and 0. 11 ± 0.03, respectively. All of these values had significant difference when compared with that of control (0

  19. Rapid development in vitro and in vivo of resistance to ceftazidime in biofilm-growing Pseudomonas aeruginosa due to chromosomal beta-lactamase

    DEFF Research Database (Denmark)

    Bagge, N; Ciofu, O; Skovgaard, L T;

    2000-01-01

    The aim of this study was to examine the development of resistance of biofilm-growing P. aeruginosa during treatment with ceftazidime. Biofilms were established in vitro using a modified Robbins device (MRD) and in vivo in the rat model of chronic lung infection. Three P. aeruginosa strains...

  20. Resilience and recovery: The effect of triclosan exposure timing during development, on the structure and function of river biofilm communities

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, J.R., E-mail: john.lawrence@ec.gc.ca [Environment Canada, 11 Innovation Blvd., Saskatoon, SK S7N 3H5 (Canada); Topp, E. [Agriculture and Agri-Food Canada, London, ON (Canada); Waiser, M.J.; Tumber, V.; Roy, J.; Swerhone, G.D.W. [Environment Canada, 11 Innovation Blvd., Saskatoon, SK S7N 3H5 (Canada); Leavitt, P. [University of Regina, Regina, SK (Canada); Paule, A. [Global Institute for Water Security, University of Saskatchewan, Saskatoon, SK (Canada); Korber, D.R. [Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK (Canada)

    2015-04-15

    Highlights: • Triclosan negatively affected structure and metabolism of biofilms under all exposure conditions. • Biofilm age, timing and exposure regime alter the effects of triclosan. • Regardless of exposure regime algae and cyanobacteria were the most affected. • Although recovery was evident no community regained the reference condition. • Initial recruitment may be significant in determining community recovery. - Abstract: Triclosan (TCS) is a ubiquitous antibacterial agent found in soaps, scrubs, and consumer products. There is limited information on hazardous effects of TCS in the environment. Here, rotating annular reactors were used to cultivate river biofilm communities exposed to 1.8 μg l{sup −1} TCS with the timing and duration of exposure and recovery during development varied. Two major treatment regimens were employed: (i) biofilm development for 2, 4 or 6 weeks prior to TCS exposure and (ii) exposure of biofilms to TCS for 2, 4 or 6 weeks followed by recovery. Biofilms not exposed to TCS were used as a reference condition. Communities cultivated without and then exposed to TCS all exhibited reductions in algal biomass and significant (p < 0.05) reductions in cyanobacterial biomass. No significant effects were observed on bacterial biomass. CLSM imaging of biofilms at 8 weeks revealed unique endpoints in terms of community architecture. Community composition was altered by any exposure to TCS, as indicated by significant shifts in denaturing gradient gel electrophoresis fingerprints and exopolymer composition relative to the reference. Bacterial, algal and cyanobacterial components initially exposed to TCS were significantly different from those TCS-free at time zero. Pigment analyses suggested that significant changes in composition of algal and cyanobacterial populations occurred with TCS exposure. Bacterial thymidine incorporation rates were reduced by TCS exposure and carbon utilization spectra shifted in terms substrate metabolism

  1. BIOFILM DEVELOPMENT IN TIME ON A SILICONE VOICE PROSTHESIS - A CASE-STUDY

    NARCIS (Netherlands)

    NEU, TR; DEBOER, CE; VERKERKE, GJ; SCHUTTE, HK; RAKHORST, G; VANDERMEI, HC; BUSSCHER, HJ

    1994-01-01

    Voice prostheses from silicone elastomers become rapidly colonised by a mixed biofilm of bacteria and yeasts. In this study, microorganisms were isolated from biofilms on explanted prostheses after having been in place for various time intervals ranging from 1 to 67 d. The isolates were examined for

  2. Changes in tolerance to herbicide toxicity throughout development stages of phototrophic biofilms.

    Science.gov (United States)

    Paule, A; Roubeix, V; Lauga, B; Duran, R; Delmas, F; Paul, E; Rols, J L

    2013-11-15

    Ecotoxicological experiments have been performed in laboratory-scale microcosms to investigate the sensitivity of phototrophic biofilm communities to the alachlor herbicide, in relation to the stages of phototrophic biofilm maturation (age of the phototrophic biofilms) and physical structure (intact biofilm versus recolonization). The phototrophic biofilms were initially cultivated on artificial supports in a prototype rotating annular bioreactor (RAB) with Taylor-Couette type flow under constant operating conditions. Biofilms were collected after 1.6 and 4.4 weeks of culture providing biofilms with different maturation levels, and then exposed to nominal initial alachlor concentration of 10 μg L(-1) in either intact or recolonized biofilms for 15 days in microcosms (mean time-weighted average concentration - TWAC of 5.52 ± 0.74 μg L(-1)). At the end of the exposure period, alachlor effects were monitored by a combination of biomass descriptors (ash-free dry mass - AFDM, chlorophyll a), structural molecular fingerprinting (T-RFLP), carbon utilization spectra (Biolog) and diatom species composition. We found significant effects that in terms of AFDM, alachlor inhibited growth of the intact phototrophic biofilms. No effect of alachlor was observed on diatom composition or functional and structural properties of the bacterial community regardless of whether they were intact or recolonized. The intact three-dimensional structure of the biofilm did not appear to confer protection from the effects of alachlor. Bacterial community structure and biomass level of 4.4 weeks - intact phototrophic biofilms were significantly influenced by the biofilm maturation processes rather than alachlor exposure. The diatom communities which were largely composed of mobile and colonizer life-form populations were not affected by alachlor. This study showed that the effect of alachlor (at initial concentration of 10 μg L(-1) or mean TWAC of 5.52 ± 0.74 μg L(-1)) is mainly limited to

  3. Characterization of Candida parapsilosis complex isolates.

    Science.gov (United States)

    de Toro, M; Torres, M J; Maite, Ruiz; Aznar, J

    2011-03-01

    Candida parapsilosis former groups II and III have recently been established as independent species, named Candida orthopsilosis and Candida metapsilosis, respectively. We investigated the distribution of C. parapsilosis complex species in 122 isolates from blood and other sources in a southern Spain tertiary-care hospital, and we examined the relationship between species, site of isolation and biofilm positivity. We also evaluated the planktonic MICs and sessile MICs (SMICs) of voriconazole, amphotericin B and anidulafungin. One hundred and eleven isolates (91%) were categorized as C. parapsilosis sensu stricto, whereas ten isolates (8.2%) were categorized as C. orthopsilosis and one (0.8%) as C. metapsilosis. Biofilm positivity was observed in 58.5% (65 of 111) of C. parapsilosis sensu stricto isolates vs. 0% (0 of 11) of C. orthopsilosis and C. metapsilosis isolates (p orthopsilosis than for C. parapsilosis sensu stricto (0.03 mg/L). In contrast to planktonic cells, the SMICs show that amphotericin B and anidulafungin are moderately effective against the biofilm of C. parapsilosis sensu stricto, whereas voriconazole is ineffective.

  4. Oral Biofilm Architecture on Natural Teeth

    NARCIS (Netherlands)

    Zijnge, Vincent; van Leeuwen, M. Barbara M.; Degener, John E.; Abbas, Frank; Thurnheer, Thomas; Gmuer, Rudolf; Harmsen, Hermie J. M.

    2010-01-01

    Periodontitis and caries are infectious diseases of the oral cavity in which oral biofilms play a causative role. Moreover, oral biofilms are widely studied as model systems for bacterial adhesion, biofilm development, and biofilm resistance to antibiotics, due to their widespread presence and acces

  5. Silicone colonization by non-Candida albicans Candida species in the presence of urine.

    Science.gov (United States)

    Silva, Sónia; Negri, Melyssa; Henriques, Mariana; Oliveira, Rosário; Williams, David; Azeredo, Joana

    2010-07-01

    Urinary tract infections (UTIs) are the most common nosocomial infections and 80 % are related to the use of urinary catheters. Furthermore, Candida species are responsible for around 15 % of UTIs and an increasing involvement of non-Candida albicans Candida (NCAC) species (e.g. Candida glabrata, Candida tropicalis and Candida parapsilosis) has been recognized. Given the fact that silicone is frequently used in the manufacture of urinary catheters, the aim of this work was to compare both the adhesion and biofilm formation on silicone of different urinary clinical isolates of NCAC species (i.e. C. glabrata, C. tropicalis and C. parapsilosis) in the presence of urine. Several clinical isolates of NCAC species recovered from patients with UTIs, together with reference strains of each species, were examined. Adhesion and biofilm formation were performed in artificial urine and the biofilm biomass was assessed by crystal violet staining. Hydrophobicity and surface charge of cells was determined by measuring contact angles and zeta potential, respectively. The number of viable cells in biofilms was determined by enumeration of c.f.u. after appropriate culture. The biofilm structure was also examined by confocal laser scanning microscopy (CLSM). The results showed that all isolates adhered to silicone in a species- and strain-dependent manner with C. parapsilosis showing the lowest and C. glabrata the highest levels of adhesion. However, these differences in adhesion abilities cannot be correlated with surface properties since all strains examined were hydrophilic and exhibited a similar zeta potential. Despite a higher number of cultivable cells being recovered after 72 h of incubation, stronger biofilm formation was not observed and CLSM showed an absence of extracellular polymeric material for all isolates examined. In summary, this work demonstrated that all tested NCAC species were able to adhere to and survive on silicone in the presence of urine. Furthermore, C

  6. Streptococcus mutans Competence-Stimulating Peptide Inhibits Candida albicans Hypha Formation

    NARCIS (Netherlands)

    Jarosz, Lucja M.; Deng, Dong Mei; van der Mei, Henny C.; Crielaard, Wim; Krom, Bastiaan P.

    2009-01-01

    The oral cavity is colonized by microorganisms growing in biofilms in which interspecies interactions take place. Streptococcus mutans grows in biofilms on enamel surfaces and is considered one of the main etiological agents of human dental caries. Candida albicans is also commonly found in the huma

  7. Streptococcus mutans competence-stimulating peptide inhibits Candida albicans hypha formation

    NARCIS (Netherlands)

    Jarosz, L.M.; Deng, D.M.; van der Mei, H.C.; Crielaard, W.; Krom, B.P.

    2009-01-01

    The oral cavity is colonized by microorganisms growing in biofilms in which interspecies interactions take place. Streptococcus mutans grows in biofilms on enamel surfaces and is considered one of the main etiological agents of human dental caries. Candida albicans is also commonly found in the huma

  8. Microbial community structures and in situ sulfate-reducing and sulfur-oxidizing activities in biofilms developed on mortar specimens in a corroded sewer system.

    Science.gov (United States)

    Satoh, Hisashi; Odagiri, Mitsunori; Ito, Tsukasa; Okabe, Satoshi

    2009-10-01

    Microbially induced concrete corrosion (MICC) caused by sulfuric acid attack in sewer systems has been a serious problem for a long time. A better understanding of microbial community structures of sulfate-reducing bacteria (SRB) and sulfur-oxidizing bacteria (SOB) and their in situ activities is essential for the efficient control of MICC. In this study, the microbial community structures and the in situ hydrogen sulfide production and consumption rates within biofilms and corroded materials developed on mortar specimens placed in a corroded manhole was investigated by culture-independent 16S rRNA gene-based molecular techniques and microsensors for hydrogen sulfide, oxygen, pH and the oxidation-reduction potential. The dark-gray gel-like biofilm was developed in the bottom (from the bottom to 4 cm) and the middle (4-20 cm from the bottom of the manhole) parts of the mortar specimens. White filamentous biofilms covered the gel-like biofilm in the middle part. The mortar specimens placed in the upper part (30 cm above the bottom of the manhole) were corroded. The 16S rRNA gene-cloning analysis revealed that one clone retrieved from the bottom biofilm sample was related to an SRB, 12 clones and 6 clones retrieved from the middle biofilm and the corroded material samples, respectively, were related to SOB. In situ hybridization results showed that the SRB were detected throughout the bottom biofilm and filamentous SOB cells were mainly detected in the upper oxic layer of the middle biofilm. Microsensor measurements demonstrated that hydrogen sulfide was produced in and diffused out of the bottom biofilms. In contrast, in the middle biofilm the hydrogen sulfide produced in the deeper parts of the biofilm was oxidized in the upper filamentous biofilm. pH was around 3 in the corroded materials developed in the upper part of the mortar specimens. Therefore, it can be concluded that hydrogen sulfide provided from the bottom biofilms and the sludge settling tank was

  9. Impact of Irgarol 1051 on the larval development and metamorphosis of Balanus amphitirite Darwin, diatom, Amphora coffeaformis and natural biofilm

    Digital Repository Service at National Institute of Oceanography (India)

    Desai, D.V.

    The effect of Irgarol 1051 on the biofilm-forming diatom, Amphora coffeaformis, and on natural biofilm was assessed. A reduction in the number of A. coffeaformis cells within a biofilm was observed after treatment with Irgarol 1051, confirming its...

  10. Arsenate Retention by Epipsammic Biofilms Developed on Streambed Sediments: Influence of Phosphate

    Directory of Open Access Journals (Sweden)

    D. M. Prieto

    2013-01-01

    Full Text Available Natural geological conditions together with the impact of human activities could produce environmental problems due to high As concentrations. The aim of this study was to assess the role of epipsammic biofilm-sediment systems onto As (V sorption and to evaluate the effect of the presence of equimolar P concentrations on As retention. A natural biofilm was grown on sediment samples in the laboratory, using river water as nutrient supplier. Sorption experiments with initial As concentrations 0, 5, 25, 50, 100, 250, and 500 μg L−1 were performed. The average percentage of As sorbed was 78.9±3.5 and 96.9±6.6% for the sediment and biofilm-sediment systems, respectively. Phosphate decreased by 25% the As sorption capactity in the sediment devoid of biofilm, whereas no significant effect was observed in the systems with biofilm. Freundlich, Sips, and Toth models were the best to describe experimental data. The maximum As sorption capacity of the sediment and biofilm-sediment systems was, respectively, 6.6 and 6.8 μg g−1 and 4.5 and 7.8 μg g−1 in the presence of P. In conclusion, epipsammic biofilms play an important role in the environmental quality of river systems, increasing As retention by the system, especially in environments where both As and P occur simultaneously.

  11. Incorporation of Escherichia coli O157:H7 in biofilms with Ralstonia insidiosa, a primary localizer for the development of heterogeneous biofilms

    Science.gov (United States)

    It is hypothesized that the presence of strong biofilm forming microflora could potentially enhance the survival of Escherichia coli O157:H7 (EcO157) in harsh environment. In this study, a strong biofilm forming bacterium, Ralstonia insidiosa, previously isolated from a fresh-cut produce plant was c...

  12. Permeabilizing biofilms

    Science.gov (United States)

    Soukos, Nikolaos S.; Lee, Shun; Doukas,; Apostolos G.

    2008-02-19

    Methods for permeabilizing biofilms using stress waves are described. The methods involve applying one or more stress waves to a biofilm, e.g., on a surface of a device or food item, or on a tissue surface in a patient, and then inducing stress waves to create transient increases in the permeability of the biofilm. The increased permeability facilitates delivery of compounds, such as antimicrobial or therapeutic agents into and through the biofilm.

  13. Genotypes of Candida albicans involved in development of candidiasis and their distribution in oral cavity of non-candidiasis individuals.

    Science.gov (United States)

    Takagi, Yuki; Hattori, Hisao; Adachi, Hidesada; Takakura, Shunji; Horii, Toshinobu; Chindamporn, Ariya; Kitai, Hiroki; Tanaka, Reiko; Yaguchi, Takashi; Fukano, Hideo; Kawamoto, Fumihiko; Shimozato, Kazuo; Kanbe, Toshio

    2011-01-01

    Genotype characteristics and distribution of commensal Candida albicans should be studied to predict the development of candidiasis, however, extensive genotype analysis of commensal C. albicans has not been made. In this study, 508 C. albicans isolates were collected from patients with/without candidiasis and divided into 4 isolate groups (SG-1, oral cavity of non-candidiasis patients; SG-2, patients with cutaneous candidiasis; SG-3, patients with vaginal candidiasis; SG-4, patients with candidemia). These isolates were characterized to study the relationship between genotypes and pathogenicity using microsatellite analysis. Using CDC3 and CAI, 5 genotypes (I, 111: 115/33: 41; II, 115: 119/23: 23; III, 115: 123/18: 27; IV, 115: 123/33: 40; and V, 123: 127/32: 41) were found in 4.2%, 8.9%, 7.1%, 2.2% and 3.1% of the isolates, respectively. Genotypes II and III were commonly found in all isolate groups. These genotypes were further divided into 28 types by additional HIS3 and CAIII microsatellite markers. In this analysis, C. albicans with type 6 and type 23 was widely distributed as a commensal species in the oral cavity of non-candidiasis patients and found to be related with candidiasis development. Additionally, genotypes I and IV were found in SG-2 and/or SG-4, suggesting that the fungus with those genotypes is also involved in this development. In contrast, genotype V was not identified in any infective isolates.

  14. CalPFl4030 negatively modulates intracellular ATP levels during the development of azole resistance in Candida albicans

    Institute of Scientific and Technical Information of China (English)

    Xin-ming JIA; Ying WANG; Jun-dong ZHANG; Hong-yue TAN; Yuan-yingJIANG; Jun GU

    2011-01-01

    Aim:Widespread and repeated use of azoles, particularly fiuconazole, has led to the rapid development of azole resistance in Candida albicans.We investigated the role of CalPF14030 during the development of azole resistance in C albicans.Methods:The expression of CalPF14030 was measured by quantitative RT-PCR, and CalPF14030 was disrupted by the hisG-URA3-hisG(URA-blaster)method.The sensitivity of C albicans to azoles was examined using a spot assay, and the intracellular ATP concentrations were measured by a luminometer.Results:CalPF14030 expression in C albicans was up-regulated by Ca2+ in a calcineurin-dependent manner, and the protein was overexpressed during the stepwise acquisition of azole resistance.However,disruption or ectopic overexpression of CalPFl4030 did not affect the sensitivity of C albicans to azoles.Finally,we demonstrated that disruption of CalPFll4030 significantly increased intracellular ATP levels.and overexpression significantly decreased intracellular ATP levels jn C albicans.Conclusion:CalPF14030 may negatively modulate intracellular ATP levels during the development of azole resistance in C albicans.

  15. Candida Immunity

    Directory of Open Access Journals (Sweden)

    Julian R. Naglik

    2014-01-01

    Full Text Available The human pathogenic fungus Candida albicans is the predominant cause of both superficial and invasive forms of candidiasis. C. albicans primarily infects immunocompromised individuals as a result of either immunodeficiency or intervention therapy, which highlights the importance of host immune defences in preventing fungal infections. The host defence system utilises a vast communication network of cells, proteins, and chemical signals distributed in blood and tissues, which constitute innate and adaptive immunity. Over the last decade the identity of many key molecules mediating host defence against C. albicans has been identified. This review will discuss how the host recognises this fungus, the events induced by fungal cells, and the host innate and adaptive immune defences that ultimately resolve C. albicans infections during health.

  16. Photodynamic inactivation of virulence factors of Candida strains isolated from patients with denture stomatitis.

    Science.gov (United States)

    Pereira, Cristiane Aparecida; Domingues, Nádia; Silva, Michelle Peneluppi; Costa, Anna Carolina Borges Pereira; Junqueira, Juliana Campos; Jorge, Antonio Olavo Cardoso

    2015-12-01

    Candida species are major microorganisms isolated in denture stomatitis (DS), an inflammatory process of the mucosa underlying removable dental prostheses, and express a variety of virulence factors that can increase their pathogenicity. The potential of Photodynamic inactivation (PDI) in planktonic culture, biofilms and virulence factors of Candida strains was evaluated. A total of 48 clinical Candida isolates from individuals wearing removable maxillary prostheses with DS were included in the study. The effects of erythrosine (ER, 200 μM) and a green LED (λ 532 ± 10 nm, 237 mW/cm(2) and 42.63 J/cm(2)) in a planktonic culture were evaluated. The effect of the addition of ER at a concentration of 400 μM together with a green LED was evaluated in biofilms. The virulence factors of all of the Candida strains were evaluated before and after the PDI process in cells derived from biofilm and planktonic assays. All of the Candida species were susceptible to ER and green LED. However, the biofilm structures were more resistant to PDI than the planktonic cultures. PDI also promoted slight reductions in most of the virulence factors of C. albicans and some of the Candida tropicalis strains. These results suggest that the addition of PDI is effective for reducing yeasts and may also reduce the virulence of certain Candida species and decrease their pathogenicity.

  17. Development and (evidence for) destruction of biofilm with Pseudomonas aeruginosa as architect

    Science.gov (United States)

    Uzcategui, Valerie N.; Donadeo, John J.; Lombardi, Daniel R.; Costello, Michael J.; Sauer, Richard L.

    1991-01-01

    Disinfection and maintenance of an acceptable level of asepsis in spacecraft potable water delivery systems is a formidable task. The major area of research for this project has been to monitor the formation and growth of biofilm, and biofilm attached microorganisms, on stainless steel surfaces (specifically coupons), and the use of ozone for the elimination of these species in a closed loop system. A number of different techniques have been utilized during the course of a typical run. Scraping and sonication of coupon surfaces with subsequent plating as well as epifluorescence microscopy have been utilized to enumerate biofilm protected Pseudomonas aeruginosa. In addition, scanning electron microscopy is the method of choice to examine the integrity of the biofilm. For ozone determinations, the indigo decolorization spectrophotometric method seems most reliable. Both high- and low-nutrient cultured P. aeruginosa organisms were the target species for the ozone disinfection experiments.

  18. Environmental factors that shape biofilm formation.

    Science.gov (United States)

    Toyofuku, Masanori; Inaba, Tomohiro; Kiyokawa, Tatsunori; Obana, Nozomu; Yawata, Yutaka; Nomura, Nobuhiko

    2015-01-01

    Cells respond to the environment and alter gene expression. Recent studies have revealed the social aspects of bacterial life, such as biofilm formation. Biofilm formation is largely affected by the environment, and the mechanisms by which the gene expression of individual cells affects biofilm development have attracted interest. Environmental factors determine the cell's decision to form or leave a biofilm. In addition, the biofilm structure largely depends on the environment, implying that biofilms are shaped to adapt to local conditions. Second messengers such as cAMP and c-di-GMP are key factors that link environmental factors with gene regulation. Cell-to-cell communication is also an important factor in shaping the biofilm. In this short review, we will introduce the basics of biofilm formation and further discuss environmental factors that shape biofilm formation. Finally, the state-of-the-art tools that allow us investigate biofilms under various conditions are discussed.

  19. Bilateral polymicrobial osteomyelitis with Candida tropicalis and Candida krusei

    DEFF Research Database (Denmark)

    Kaldau, Niels Christian; Brorson, Stig; Jensen, Poul Einar

    2012-01-01

    We present a case of bilateral polymicrobial osteomyelitis with Candida tropicalis and Candida krusei, and review the literature on Candida osteomyelitis.......We present a case of bilateral polymicrobial osteomyelitis with Candida tropicalis and Candida krusei, and review the literature on Candida osteomyelitis....

  20. In vitro actinomycete biofilm development and inhibition by the polyene antibiotic, nystatin, on IUD copper surfaces.

    Science.gov (United States)

    Shanmughapriya, Santhanam; Francis, Arumugam Lency; Kavitha, Senthil; Natarajaseenivasan, Kalimuthusamy

    2012-01-01

    The presence of intrauterine contraceptive devices (IUDs) gives a solid surface for attachment and an ideal niche for biofilm to form and flourish. Pelvic actinomycosis is often associated with the use of IUDs. Treatment of IUD-associated pelvic actinomycosis requires the immediate removal of the IUD. Therefore, this article presents in vitro evidence to support the use of novel antibiotics in the treatment of actinomycete biofilms. Twenty one clinical actinomycetes isolates from endocervical swabs of IUD wearers were assessed for their biofilm forming ability. An in vitro biofilm model with three isolates, Streptomyces strain A4, Nocardia strain C15 and Nocardia strain C17 was subjected to treatment with nystatin. Inhibition of biofilm formation by nystatin was found to be concentration dependent, with MBIC50 values in the range 0.08-0.16 mg ml(-1). Furthermore, at a concentration of 0.16 mg ml(-1), nystatin inhibited the twitching motility of the isolates, providing evidence for a possible mechanism of biofilm inhibition.

  1. Defining pheromone-receptor signaling in Candida albicans and related asexual Candida species.

    Science.gov (United States)

    Lin, Ching-Hsuan; Choi, Anthony; Bennett, Richard J

    2011-12-01

    Candida albicans is an important human fungal pathogen in which sexual reproduction is under the control of the novel white-opaque switch. Opaque cells are the mating-competent form, whereas white cells do not mate but can still respond to pheromones, resulting in biofilm formation. In this study, we first define the domains of the α-pheromone receptor Ste2 that are necessary for signaling in both white and opaque forms. Both cell states require the IC loop 3 (IC3) and the C-terminal tail of Ste2 for the cellular response, whereas the first IC loop (IC1) of Ste2 is dispensable for signaling. To also address pheromone-receptor interactions in related species, including apparently asexual Candida species, Ste2 orthologues were heterologously expressed in Candida albicans. Ste2 receptors from multiple Candida clade species were functional when expressed in C. albicans, whereas the Ste2 receptor of Candida lusitaniae was nonfunctional. Significantly, however, expression of a chimeric C. lusitaniae Ste2 receptor containing the C-terminal tail of Ste2 from C. albicans generated a productive response to C. lusitaniae pheromone. This system has allowed us to characterize pheromones from multiple Candida species and indicates that functional pheromone-receptor couples exist in fungal species that have yet to be shown to undergo sexual mating.

  2. [Biofilm caused by fungi--structure, quorum sensing, morphogenetic changes, resistance to drugs].

    Science.gov (United States)

    Nowak, Magdalena; Kurnatowski, Piotr

    2009-01-01

    Formation of fungal biofilms in patients with implanted biomedical prosthesis constitutes very serious clinical problems. The biofilm can lead to dysfunction of implanted material and can be a reservoir for chronic and systemic infections. Numerous investigations demonstrated differences in quantity and structure of biofilms that had been formed by various species of fungi belonged to Candida genus. Stages of biofilm formations had been examined carefully in in vitro conditions. Biofilm formation begin with adhesion of fungi to the surface, microcolonies are formed subsequently. At the end of the process, extracellular material is excreted, and its formula, that is various in different fungi Candida species, contribute to its resistance to antifungal drugs. Farnesol and tyrosol are two quorum-sensing molecules. They are acting inversely, regulating formation of "germ tubes" and influencing morphogenetic conversion between yeast and filamentous forms, which plays a very important role in pathogenicity and formation of biofilm. Drug resistance of fungi from Candida has been shown to create a very important clinical problem. Many experiments in vitro confirm significantly lower activity of antifungal drugs toward Candida biofilm than toward Candida, in the form of planctonic cells. Surprisingly, some non-steroidal anti-inflammatory drugs can inhibit biofilm formation.

  3. 香莲方对白念珠菌生物膜体外模型的影响及代谢组学研究%The Effect of Xianglian Solution on Candida Albicans Biofilms Model in Vitro and it′s Metabolomics Study

    Institute of Scientific and Technical Information of China (English)

    袁娟娜; 范瑞强; 谢婷; 陈信生

    2015-01-01

    Objective:To study the antifungal efficacy and the probable mechanism of Candida albicans biofilms in vitro by Xianglian Solution, in the view of metabolomics.Methods:C.albi-cans biofilms in vitro were established, and the SMIC50 and SMIC80 of the C.albicans biofilms in different maturity (4 h, 24 h and 48 h) were measured by XTT.Through the method of UPLC-Q-TOF-MS, the metabolomics of the planktonic,early (4 h),medium term(24 h),and maturity(48 h) biofilms were detected.Results:The effect of Xianglian Solution,the SMIC50 of early (4 h), medium term(24 h) and maturity(48 h) biofilms were 7.81,125 and 500 mg/mL respectively. The SMIC80 were up to 31.25,250 and >1 000 mg/mL respectively.For Fluconazole,the SMIC50 of early (4 h),medium term(24 h) and maturity(48 h) biofilms were 32,64 and >1 024μg/mL respectively,while the SMIC80 were up to 64,128 and >1 024μg/mL respectively.The metabolic profiling of the planktonic among Group Xianglian Solution,Group Fluconazole and control group were different from each other.The metabolin Tyrosyl-Arginine and Pentosidine were identified as the potential metabolin .Conclusions:Xianglian Solution was effective to C .albicans biofilms. Sugar metabolism and changes in amino acid metabolism pathways may relate to the biofilms for-mation.%目的:从代谢组学角度探讨香莲外洗液对白念珠菌生物膜的抗真菌效力及其作用机制。方法:建立白念珠菌生物膜体外模型,采用 XTT减低法测定香莲外洗液、氟康唑对不同成熟程度(4 h、24 h、48 h)白念珠菌生物膜的最低粘附抑菌浓度( SMIC50、SMIC80),并采用UPLC-Q-TOF-MS分别进行代谢组学检测。结果:香莲外洗液对4 h、24 h、48 h的白念珠菌生物膜的 SMIC50分别为7.81、125和500 mg/mL,SMIC80分别为31.25、250和>1000 mg/mL;氟康唑对4 h、24 h、48 h的白念珠菌生物膜的SMIC50分别为32、64和>1024μg/mL,SMIC80分别为64、128和>1024μg/mL;香莲外洗

  4. Critical review on biofilm methods.

    Science.gov (United States)

    Azeredo, Joana; Azevedo, Nuno F; Briandet, Romain; Cerca, Nuno; Coenye, Tom; Costa, Ana Rita; Desvaux, Mickaël; Di Bonaventura, Giovanni; Hébraud, Michel; Jaglic, Zoran; Kačániová, Miroslava; Knøchel, Susanne; Lourenço, Anália; Mergulhão, Filipe; Meyer, Rikke Louise; Nychas, George; Simões, Manuel; Tresse, Odile; Sternberg, Claus

    2017-05-01

    Biofilms are widespread in nature and constitute an important strategy implemented by microorganisms to survive in sometimes harsh environmental conditions. They can be beneficial or have a negative impact particularly when formed in industrial settings or on medical devices. As such, research into the formation and elimination of biofilms is important for many disciplines. Several new methodologies have been recently developed for, or adapted to, biofilm studies that have contributed to deeper knowledge on biofilm physiology, structure and composition. In this review, traditional and cutting-edge methods to study biofilm biomass, viability, structure, composition and physiology are addressed. Moreover, as there is a lack of consensus among the diversity of techniques used to grow and study biofilms. This review intends to remedy this, by giving a critical perspective, highlighting the advantages and limitations of several methods. Accordingly, this review aims at helping scientists in finding the most appropriate and up-to-date methods to study their biofilms.

  5. Microbial Biofilms and Chronic Wounds

    Science.gov (United States)

    Omar, Amin; Wright, J. Barry; Schultz, Gregory; Burrell, Robert; Nadworny, Patricia

    2017-01-01

    Background is provided on biofilms, including their formation, tolerance mechanisms, structure, and morphology within the context of chronic wounds. The features of biofilms in chronic wounds are discussed in detail, as is the impact of biofilm on wound chronicity. Difficulties associated with the use of standard susceptibility tests (minimum inhibitory concentrations or MICs) to determine appropriate treatment regimens for, or develop new treatments for use in, chronic wounds are discussed, with alternate test methods specific to biofilms being recommended. Animal models appropriate for evaluating biofilm treatments are also described. Current and potential future therapies for treatment of biofilm-containing chronic wounds, including probiotic therapy, virulence attenuation, biofilm phenotype expression attenuation, immune response suppression, and aggressive debridement combined with antimicrobial dressings, are described. PMID:28272369

  6. Susceptibility of Candida albicans and Candida dubliniensis to Photodynamic Therapy Using Four Dyes as the Photosensitizer

    Science.gov (United States)

    Hosseini, Nasim; Yazdanpanah, Samira; Saki, Maryam; Rezazadeh, Fahimeh; Ghapanchi, Janan; Zomorodian, Kamiar

    2016-01-01

    Statement of the Problem: Oral candidiasis is the most common opportunistic infection affecting the human oral cavity. Photodynamic therapy, as one of its proposed treatment modalities, needs a distinct dye for achieving the best effect. Purpose: The purpose of this study was to evaluate photosensitization effects of four distinct dyes on standard suspension of Candida albicans (C. albicans) and Candida dubliniensis (C. dubliniensis) and biofilm of C. albicans considering the obtained optimum dye concentration and duration of laser irradiation. Materials and Method: In this in vitro study, colony forming units (CFU) of two sets of four groups of Laser plus Dye (L+D+), Dye (L-D+), Laser (L+D-) and No Laser, No Dye (L-D-) were assessed individually with different methylene blue concentrations and laser irradiation period. The photodynamic therapy effect on standard suspension of Candida species (using methylene blue, aniline blue, malachite green and crystal violet) were studied based on the obtained results. Similar investigation was performed on biofilm of C. albicans using the spectral absorbance. Data were imported to SPSS and assessed by statistical tests of analysis of variance (ANOVA) and Tukey test (α= 0.05). Results: CFU among the different dye concentration and irradiation time decrease in dose- and time-dependent manner (p> 0.05), all of which were significantly lower than the control groups (p 0.05) though all of them were significantly decrease CFU compared with the control groups (p< 0.05). In L+D- and L+D+ groups, biofilm was significantly destroyed more than that of L-D- (p< 0.05). Conclusion: Photodynamic therapy might be used as an effective procedure to treat Candida associated mucocutaneous diseases and killing biofilm in the infected surfaces such as dentures. PMID:27942552

  7. Histone Deacetylases and Their Inhibition in Candida Species

    Science.gov (United States)

    Garnaud, Cécile; Champleboux, Morgane; Maubon, Danièle; Cornet, Muriel; Govin, Jérôme

    2016-01-01

    Fungi are generally benign members of the human mucosal flora or live as saprophytes in the environment. However, they can become pathogenic, leading to invasive and life threatening infections in vulnerable patients. These invasive fungal infections are regarded as a major public health problem on a similar scale to tuberculosis or malaria. Current treatment for these infections is based on only four available drug classes. This limited therapeutic arsenal and the emergence of drug-resistant strains are a matter of concern due to the growing number of patients to be treated, and new therapeutic strategies are urgently needed. Adaptation of fungi to drug pressure involves transcriptional regulation, in which chromatin dynamics and histone modifications play a major role. Histone deacetylases (HDACs) remove acetyl groups from histones and actively participate in controlling stress responses. HDAC inhibition has been shown to limit fungal development, virulence, biofilm formation, and dissemination in the infected host, while also improving the efficacy of existing antifungal drugs toward Candida spp. In this article, we review the functional roles of HDACs and the biological effects of HDAC inhibitors on Candida spp., highlighting the correlations between their pathogenic effects in vitro and in vivo. We focus on how HDAC inhibitors could be used to treat invasive candidiasis while also reviewing recent developments in their clinical evaluation. PMID:27547205

  8. Hyphal development in Candida albicans requires two temporally linked changes in promoter chromatin for initiation and maintenance.

    Directory of Open Access Journals (Sweden)

    Yang Lu

    2011-07-01

    Full Text Available Phenotypic plasticity is common in development. For Candida albicans, the most common cause of invasive fungal infections in humans, morphological plasticity is its defining feature and is critical for its pathogenesis. Unlike other fungal pathogens that exist primarily in either yeast or hyphal forms, C. albicans is able to switch reversibly between yeast and hyphal growth forms in response to environmental cues. Although many regulators have been found involved in hyphal development, the mechanisms of regulating hyphal development and plasticity of dimorphism remain unclear. Here we show that hyphal development involves two sequential regulations of the promoter chromatin of hypha-specific genes. Initiation requires a rapid but temporary disappearance of the Nrg1 transcriptional repressor of hyphal morphogenesis via activation of the cAMP-PKA pathway. Maintenance requires promoter recruitment of Hda1 histone deacetylase under reduced Tor1 (target of rapamycin signaling. Hda1 deacetylates a subunit of the NuA4 histone acetyltransferase module, leading to eviction of the NuA4 acetyltransferase module and blockage of Nrg1 access to promoters of hypha-specific genes. Promoter recruitment of Hda1 for hyphal maintenance happens only during the period when Nrg1 is gone. The sequential regulation of hyphal development by the activation of the cAMP-PKA pathway and reduced Tor1 signaling provides a molecular mechanism for plasticity of dimorphism and how C. albicans adapts to the varied host environments in pathogenesis. Such temporally linked regulation of promoter chromatin by different signaling pathways provides a unique mechanism for integrating multiple signals during development and cell fate specification.

  9. Severe Candida spp. infections: new insights into natural immunity.

    NARCIS (Netherlands)

    Meer, J.W.M. van der; Veerdonk, F.L. van de; Joosten, L.A.B.; Kullberg, B.J.; Netea, M.G.

    2010-01-01

    Invasive infections caused by Candida spp. are associated with high mortality. Colonisation by Candida spp. and the capacity of the host to recognise them as potential pathogens are essential steps in the development of these infections. The major pathogen-associated molecular patterns of Candida ar

  10. Role of Candida species from HIV infected children in enamel caries lesions: an in vitro study

    Science.gov (United States)

    CHARONE, Senda; PORTELA, Maristela Barbosa; MARTINS, Karol de Oliveira; SOARES, Rosangela Maria; CASTRO, Gloria Fernanda

    2017-01-01

    Abstract Objectives This study analyzed the capacity of Candida spp. from dental biofilm of HIV infected (HIV+) children to demineralize primary molar enamel in vitro by Transversal Microhardness (TMH), Polarized Light Microscopy (PLM) and the quantity of calcium ions (Ca2+) released from the enamel. Material and Methods Candida spp. samples were isolated from the supragingival biofilm of HIV+ children. A hundred and forty (140) enamel blocks were randomly assigned to six groups: biofilm formed by C. albicans (Group 1); mixed biofilm formed by C. albicans and C. tropicalis (Group 2); mixed biofilm formed by C. albicans and C. parapsilosis (Group 3); mixed biofilm formed by C. albicans, C. parapsilosis and C. glabrata (Group 4); biofilm formed by C. albicans ATCC (Group 5) and medium without Candida (Group 6). Enamel blocks from each group were removed on days 3, 5, 8 and 15 after biofilm formation to evaluate the TMH and images of enamel were analyzed by PLM. The quantity of Ca2+ released, from Groups 1 and 6, was determined using an Atomic Absorption Spectrophotometer. The SPSS program was used for statistical analysis and the significance level was 5%. Results TMH showed a gradual reduction in enamel hardness (p<0.05) from the 1st to 15th day, but mainly five days after biofilm formation in all groups. The PLM showed superficial lesions indicating an increase in porosity. C. albicans caused the release of Ca2+ into suspension during biofilm formation. Conclusion Candida species from dental biofilm of HIV+ children can cause demineralization of primary enamel in vitro. PMID:28198976

  11. Role of Candida species from HIV infected children in enamel caries lesions: an in vitro study

    Directory of Open Access Journals (Sweden)

    Senda CHARONE

    Full Text Available Abstract Objectives This study analyzed the capacity of Candida spp. from dental biofilm of HIV infected (HIV+ children to demineralize primary molar enamel in vitro by Transversal Microhardness (TMH, Polarized Light Microscopy (PLM and the quantity of calcium ions (Ca2+ released from the enamel. Material and Methods Candida spp. samples were isolated from the supragingival biofilm of HIV+ children. A hundred and forty (140 enamel blocks were randomly assigned to six groups: biofilm formed by C. albicans (Group 1; mixed biofilm formed by C. albicans and C. tropicalis (Group 2; mixed biofilm formed by C. albicans and C. parapsilosis (Group 3; mixed biofilm formed by C. albicans, C. parapsilosis and C. glabrata (Group 4; biofilm formed by C. albicans ATCC (Group 5 and medium without Candida (Group 6. Enamel blocks from each group were removed on days 3, 5, 8 and 15 after biofilm formation to evaluate the TMH and images of enamel were analyzed by PLM. The quantity of Ca2+ released, from Groups 1 and 6, was determined using an Atomic Absorption Spectrophotometer. The SPSS program was used for statistical analysis and the significance level was 5%. Results TMH showed a gradual reduction in enamel hardness (p<0.05 from the 1st to 15th day, but mainly five days after biofilm formation in all groups. The PLM showed superficial lesions indicating an increase in porosity. C. albicans caused the release of Ca2+ into suspension during biofilm formation. Conclusion Candida species from dental biofilm of HIV+ children can cause demineralization of primary enamel in vitro.

  12. Effects of copper,lead and zinc in soil on egg development and hatching of Folsomia candida

    Institute of Scientific and Technical Information of China (English)

    Jie Xu; Yin Wang; Yong-Ming Luo; Jing Song; Xin Ke

    2009-01-01

    Effects of CaCl2,CuCl2,ZnCl2 and PbCl2 on development and hatching Success of eggs of Folsomia candida(Collembola)were studied under laboratory conditions.Thousands of healthy eggs from synchronized cultures were incubated in soils treated with different concentrations of the metals.Compared with the water control.egg hatch signifi-cantly decreased when concentrations of Cu,Pb and Zn reached 400,1 600 and 800 mg/kg dry soil,respectively.Values of EC50(hatching),calculated according to the exponential model (with 95%confidence limits in brackets),were 625(407-875),2361 (2064-2687)and 1763(1548-2000)mg/kg dry soils for Cu,Pb and Zn,respectively.When Cu concentration reachedl 600mg/kg dry soil,eggs became green and the percentage of green eggs changed from 5%-20%after incubadon for 2 daysto 15%-30%after incubafion for 4 days.At3200mg Cu/kg dry soil,tissues inside eggs were black and shrunken.

  13. Performance of chromogenic media for Candida in rapid presumptive identification of Candida species from clinical materials

    Directory of Open Access Journals (Sweden)

    M V Pravin Charles

    2015-01-01

    Full Text Available Background: In perspective of the worldwide increase in a number of immunocompromised patients, the need for identification of Candida species has become a major concern. The development of chromogenic differential media, introduced recently, facilitate rapid speciation. However, it can be employed for routine mycology workup only after an exhaustive evaluation of its benefit and cost effectiveness. This study was undertaken to evaluate the benefit and cost effectiveness of chromogenic media for speciation of Candida clinical isolates. Materials and Methods: Sputum samples of 382 patients were screened for the presence of Candida spp. by Gram stain and culture on sabouraud dextrose agar. Candida species were identified using Gram stain morphology, germ tube formation, cornmeal agar with Tween-80, sugar fermentation tests and morphology on HiCrome Candida differential agar. All the Candida isolates were inoculated on HiCrome Candida agar (HiMedia, Mumbai, India. Results: The sensitivity and specificity of HiCrome agar for identification of Candida albicans were 90% and 96.42%, respectively whereas sensitivity and specificity of carbohydrate fermentation test were 86.67% and 74.07%, respectively. Sensitivity and specificity values of HiCrome agar for detection of C. albicans, Candida parapsilosis and Candida glabrata were above 90%. Conclusions: We found HiCrome agar has high sensitivity and specificity comparable to that of the conventional method. In addition, use of this differential media could significantly cut down the turnaround time as well as cost of sample processing.

  14. Characterization of biofilm formed on intrauterine devices

    Directory of Open Access Journals (Sweden)

    Pruthi V

    2003-01-01

    Full Text Available PURPOSE: Intrauterine device (IUD is one of the most convenient contraceptive procedures used by women of Asian and African countries. Previous surveys have revealed that 75% of the IUDs recovered from patients suffering from reproductive tract infections (RTIs were covered with a consortium of microbes. This study was designed to characterize these microbes and recommend remedial measures. METHODS: Quantitative measurement of biofilm formation was assessed by a microtitre plate assay on 86 samples of microorganisms dislodged from IUDs of patients with RTIs. Susceptibility of biofilm to various antimicrobial agents was also quantified. Scanning electron microscopy (SEM was used to scrutinize the microorganisms adherent to IUDs. RESULTS: The organisms associated with IUDs were predominantly composed of Staphylococcus aureus (16%, Staphylococcus epidermidis (18%, Pseudomonas aeruginosa (5%, Escherichia coli (27%, Neisseria gonorrhoeae (2%, Candida albicans (20% and Candida dubliniesis (12%. SEM studies indicated that these organisms were organized into biofilms. Studies on the in vitro adherence pattern by crystal violet staining on 96 well microtitre plates revealed that the biofilms were stably established after 60 hours. These biofilms are resistant to an array of antibiotics tested. CONCLUSION: Biofilm formation may be one of the major causes for persistent infection and antibiotic resistance in IUD users.

  15. Population dynamics of biofilm development during start-up of a butyrate-degrading fluidized-bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zellner, G.; Geveke, M.; Diekmann, H. (Hannover Univ. (Germany). Inst. fuer Mikrobiologie); Conway de Macario, E. (New York State Dept. of Health, Albany, NY (United States). Wadsworth Center for Laboratories and Research)

    1991-12-01

    Population dynamics during start-up of a fluidized-bed reactor with butyrate or butyrate plus acetate as sole substrates as well as biofilm development on the sand substratum were studied microbiologically, immunologically and by scanning electron microscopy. An adapted syntrophic consortium consisting of Syntrophospora sp., Methanothrix soehngenii, Methanosarcina mazei and Methanobrevibacter arboriphilus or Methanogenium sp. achieved high-rate butyrate degradation to methane and carbon dioxide. Desulfovibrio sp., Methanocorpusculum sp., and Methanobacterium sp. were also present in lower numbers. Immunological analysis demonstrated methanogens antigenically related to Methanobrevibacter ruminantium M1, Methanosarcina mazei S6, M. thermophila TM1, Methanobrevibacter arboriphilus AZ and Methanothrix soehngenii Opfikon in the biofilm. Immunological analysis also showed that the organisms isolated from the butyrate-degrading culture used as a source of inoculum were related to M. soehngenii Opfikon, Methanobacterium formicium MF and Methanospirillum hungatei JF1. (orig.).

  16. A new rabbit model of implant-related biofilm infection: development and evaluation

    Science.gov (United States)

    Chu, Cheng-Bing; Zeng, Hong; Shen, Ding-Xia; Wang, Hui; Wang, Ji-Fang; Cui, Fu-Zhai

    2016-03-01

    This study is to establish a rabbit model for human prosthetic joint infection and biofilm formation. Thirty-two healthy adult rabbits were randomly divided into four groups and implanted with stainless steel screws and ultra-high molecular weight polyethylene (UHMWPE) washers in the non-articular surface of the femoral lateral condyle of the right hind knees. The rabbit knee joints were inoculated with 1 mL saline containing 0, 102, 103, 104 CFU of Staphylococcus epidermidis ( S. epidermidis) isolated from the patient with total knee arthroplasty (TKA) infection, respectively. On the 14th postoperative day, the UHMWPE washers from the optimal 103 CFU group were further examined. The SEM examination showed a typical biofilm construction that circular S. epidermidis were embedded in a mucous-like matrix. In addition, the LCSM examination showed that the biofilm consisted of the polysaccharide stained bright green fluorescence and S. epidermidis radiating red fluorescence. Thus, we successfully create a rabbit model for prosthetic joint infection and biofilm formation, which should be valuable for biofilm studies.

  17. The c-di-GMP phosphodiesterase BifA regulates biofilm development in Pseudomonas putida.

    Science.gov (United States)

    Jiménez-Fernández, Alicia; López-Sánchez, Aroa; Calero, Patricia; Govantes, Fernando

    2015-02-01

    We previously showed the isolation of biofilmpersistent Pseudomonas putida mutants that fail to undergo biofilm dispersal upon entry in stationary phase. Two such mutants were found to bear insertions in PP0914, encoding a GGDEF/EAL domain protein with high similarity to Pseudomon asaeruginosa BifA. Here we show the phenotypic characterization of a ΔbifA mutant in P. putida KT2442.This mutant displayed increased biofilm and pellicle formation, cell aggregation in liquid medium and decreased starvation-induced biofilm dispersal relative to the wild type. Unlike its P. aeruginosa counterpart, P. putida BifA did not affect swarming motility. The hyperadherent phenotype of the ΔbifA mutant correlates with a general increase in cyclic diguanylate (c-di-GMP) levels, Congo Red-binding exopolyaccharide production and transcription of the adhesin-encoding lapA gene. Integrity of the EAL motif and a modified GGDEF motif (altered to GGDQF)were crucial for BifA activity, and c-di-GMP depletion by overexpression of a heterologous c-di-GMP phosphodiesterase in the ΔbifA mutant restored wild-type biofilm dispersal and lapA expression.Our results indicate that BifA is a phosphodiesterase involved in the regulation of the c-di-GMP pool and required for the generation of the low c-di-GMP signal that triggers starvation-induced biofilm dispersal.

  18. Development of a flow chamber system for the reproducible in vitro analysis of biofilm formation on implant materials

    Science.gov (United States)

    Rath, Henryke; Stumpp, Sascha Nico; Stiesch, Meike

    2017-01-01

    Since the introduction of modern dental implants in the 1980s, the number of inserted implants has steadily increased. Implant systems have become more sophisticated and have enormously enhanced patients’ quality of life. Although there has been tremendous development in implant materials and clinical methods, bacterial infections are still one of the major causes of implant failure. These infections involve the formation of sessile microbial communities, called biofilms. Biofilms possess unique physical and biochemical properties and are hard to treat conventionally. There is a great demand for innovative methods to functionalize surfaces antibacterially, which could be used as the basis of new implant technologies. Present, there are few test systems to evaluate bacterial growth on these surfaces under physiological flow conditions. We developed a flow chamber model optimized for the assessment of dental implant materials. As a result it could be shown that biofilms of the five important oral bacteria Streptococcus gordonii, Streptococcus oralis, Streptococcus salivarius, Porphyromonas gingivalis, and Aggregatibacter actinomycetemcomitans, can be reproducibly formed on the surface of titanium, a frequent implant material. This system can be run automatically in combination with an appropriate microscopic device and is a promising approach for testing the antibacterial effect of innovative dental materials. PMID:28187188

  19. Rapid depletion of dissolved oxygen in 96 well microtitre plate Staphylococcus epidermidis biofilm assays promotes biofilm development and is influenced by inoculum cell concentration

    OpenAIRE

    Cotter, John J.; O'Gara, James P.; Casey, Eoin

    2009-01-01

    Biofilm-related research using 96-well microtiter plates involves static incubation of plates indiscriminate of environmental conditions, making oxygen availability an important variable which has not been considered to date. By directly measuring dissolved oxygen concentration over time we report here that dissolved oxygen is rapidly consumed in Staphylococcus epidermidis biofilm cultures grown in 96-well plates irrespective of the oxygen concentration in the gaseous environment in which the...

  20. Development of a super high-rate Anammox reactor and in situ analysis of biofilm structure and function.

    Science.gov (United States)

    Tsushima, Ikuo; Ogasawara, Yuji; Shimokawa, Masaki; Kindaichi, Tomonori; Okabe, Satoshi

    2007-01-01

    The anaerobic ammonium oxidation (Anammox) process is a new efficient and cost effective method of ammonium removal from wastewater. Under strictly anoxic condition, ammonium is directly oxidised with nitrite as electron acceptor to dinitrogen gas. However, it is extremely difficult to cultivate Anammox bacteria due to their low growth rate. This suggests that a rapid and efficient start-up of Anammox process is the key to practical applications. To screen appropriate seeding sludge with high Anammox potential, a real-time quantitative PCR assay with newly designed primers has been developed. Thereafter, the seeding sludge with high abundance of Anammox bacteria (1.7 x 10(8) copies/mg-dry weight) was selected and inoculated into an upflow anaerobic biofilters (UABs). The UABs were operated for more than 1 year and the highest nitrogen removal rate of 24.0 kg-N m-3 day(-1) was attained. In addition, the ecophysiology of Anammox bacteria (spatial distribution and in situ activity) in biofilms was analysed by combining a full-cycle 16S rRNA approach and microelectrodes. The microelectrode measurement clearly revealed that a successive vertical zonation of the partial nitrification (NH4+ to NO2-), Anammox reaction and denitrification was developed in the biofilm in the UAB. This result agreed with the spatial distribution of corresponding bacterial populations in the biofilm. We linked the micro-scale information (i.e. single cell and/or biofilm levels) with the macro-scale information (i.e. the reactor level) to understand the details of Anammox reaction occurring in the UABs.

  1. The ``Swiss cheese'' instability of bacterial biofilms

    Science.gov (United States)

    Jang, Hongchul; Rusconi, Roberto; Stocker, Roman

    2012-11-01

    Bacteria often adhere to surfaces, where they develop polymer-encased communities (biofilms) that display dramatic re