WorldWideScience

Sample records for cancer specific transcriptional

  1. Sulindac sulfide inhibits colon cancer cell growth and downregulates specificity protein transcription factors

    OpenAIRE

    Li, Xi; Pathi, Satya S.; Safe, Stephen

    2015-01-01

    Background Specificity protein (Sp) transcription factors play pivotal roles in maintaining the phenotypes of many cancers. We hypothesized that the antineoplastic effects of sulindac and its metabolites were due, in part, to targeting downregulation of Sp transcription factors. Methods The functional effects of sulindac, sulindac sulfone and sulindac sulfide on colon cancer cell proliferation were determined by cell counting. Effects of these compounds on expression of Sp1, Sp3, Sp4 and pro-...

  2. BaalChIP: Bayesian analysis of allele-specific transcription factor binding in cancer genomes.

    Science.gov (United States)

    de Santiago, Ines; Liu, Wei; Yuan, Ke; O'Reilly, Martin; Chilamakuri, Chandra Sekhar Reddy; Ponder, Bruce A J; Meyer, Kerstin B; Markowetz, Florian

    2017-02-24

    Allele-specific measurements of transcription factor binding from ChIP-seq data are key to dissecting the allelic effects of non-coding variants and their contribution to phenotypic diversity. However, most methods of detecting an allelic imbalance assume diploid genomes. This assumption severely limits their applicability to cancer samples with frequent DNA copy-number changes. Here we present a Bayesian statistical approach called BaalChIP to correct for the effect of background allele frequency on the observed ChIP-seq read counts. BaalChIP allows the joint analysis of multiple ChIP-seq samples across a single variant and outperforms competing approaches in simulations. Using 548 ENCODE ChIP-seq and six targeted FAIRE-seq samples, we show that BaalChIP effectively corrects allele-specific analysis for copy-number variation and increases the power to detect putative cis-acting regulatory variants in cancer genomes.

  3. A transcriptional repressive role for epithelial-specific ETS factor ELF3 on oestrogen receptor alpha in breast cancer cells.

    Science.gov (United States)

    Gajulapalli, Vijaya Narasihma Reddy; Samanthapudi, Venkata Subramanyam Kumar; Pulaganti, Madhusudana; Khumukcham, Saratchandra Singh; Malisetty, Vijaya Lakhsmi; Guruprasad, Lalitha; Chitta, Suresh Kumar; Manavathi, Bramanandam

    2016-04-15

    Oestrogen receptor-α (ERα) is a ligand-dependent transcription factor that primarily mediates oestrogen (E2)-dependent gene transcription required for mammary gland development. Coregulators critically regulate ERα transcription functions by directly interacting with it. In the present study, we report that ELF3, an epithelial-specific ETS transcription factor, acts as a transcriptional repressor of ERα. Co-immunoprecipitation (Co-IP) analysis demonstrated that ELF3 strongly binds to ERα in the absence of E2, but ELF3 dissociation occurs upon E2 treatment in a dose- and time-dependent manner suggesting that E2 negatively influences such interaction. Domain mapping studies further revealed that the ETS (E-twenty six) domain of ELF3 interacts with the DNA binding domain of ERα. Accordingly, ELF3 inhibited ERα's DNA binding activity by preventing receptor dimerization, partly explaining the mechanism by which ELF3 represses ERα transcriptional activity. Ectopic expression of ELF3 decreases ERα transcriptional activity as demonstrated by oestrogen response elements (ERE)-luciferase reporter assay or by endogenous ERα target genes. Conversely ELF3 knockdown increases ERα transcriptional activity. Consistent with these results, ELF3 ectopic expression decreases E2-dependent MCF7 cell proliferation whereas ELF3 knockdown increases it. We also found that E2 induces ELF3 expression in MCF7 cells suggesting a negative feedback regulation of ERα signalling in breast cancer cells. A small peptide sequence of ELF3 derived through functional interaction between ERα and ELF3 could inhibit DNA binding activity of ERα and breast cancer cell growth. These findings demonstrate that ELF3 is a novel transcriptional repressor of ERα in breast cancer cells. Peptide interaction studies further represent a novel therapeutic option in breast cancer therapy.

  4. DETECTION OF MICROMETASTASES OF LUNG CANCER BY USING LUNX mRNA SPECIFIC REVERSE TRANSCRIPTION-POLYMERASE CHAIN REACTION

    Institute of Scientific and Technical Information of China (English)

    朱广迎; 刘德林; 王绪; 彭猛青; 刘惠; 沈万华; 张海舟; 王伟; 陈杰

    2002-01-01

    Objective: To detect of lung cancer micrometastases in peripheral blood and regional lymphatic nodes by using lunx mRNA specific reverse transcription-polymerase chain reaction (RT-PCR). Methods: RT-PCR was used to detect lunx mRNA in peripheral blood of 26 patients with lung cancer. We also detected 44 regional lymphatic nodes obtained from 25 patients with lung cancer who underwent curative lobectomy. All the 44 regional lymphatic nodes were also examined by histopathology. Micrometastatic tumor cells in the peripheral blood and regional lymphatic nodes were semiquantitatively determined with the ratio of lunx band intensity to the glyceraldehydes-3-phosphate dehydrogenase band intensity. Results: The positive detection rate of lunx mRNA in peripheral blood for non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) patients were 60% (12/20) and 67% (4/6) respectively. 16 (36.4%) of regional lymphatic nodes from 44 lung cancer patients were positive by RT-PCR while 6 (13.6%) were positive by histopathology (x2=6.06, P=0.014). However, no blood samples and lymphatic nodes from patients with benign pulmonary diseases or normal volunteers were positive for lunx mRNA. The positive detection rate of lunx mRNA in bone marrow of NSCLC amd SCLC patients were 65% (13/20) and 67% (4/6) respectively. Conclusion: RT-PCR amplification of lunx mRNA is an sensitive and specific means to detect early haematogenous and regional lymphatic nodes dissemination of cancer cells for patients with lung cancer.

  5. P16-specific DNA methylation by engineered zinc finger methyltransferase inactivates gene transcription and promotes cancer metastasis

    OpenAIRE

    Cui, Chenghua; Gan, Ying; Gu, Liankun; Wilson, James; Liu, Zhaojun; Zhang, Baozhen; Deng, Dajun

    2015-01-01

    Background P16 DNA methylation is well known to be the most frequent event in cancer development. It has been reported that genetic inactivation of P16 drives cancer growth and metastasis, however, whether P16 DNA methylation is truly a driver in cancer metastasis remains unknown. Results A P16-specific DNA methyltransferase (P16-dnmt) expression vector is designed using a P16 promoter-specific engineered zinc finger protein fused with the catalytic domain of dnmt3a. P16-dnmt transfection sig...

  6. Pharmacologic doses of ascorbic acid repress specificity protein (Sp) transcription factors and Sp-regulated genes in colon cancer cells.

    Science.gov (United States)

    Pathi, Satya S; Lei, Ping; Sreevalsan, Sandeep; Chadalapaka, Gayathri; Jutooru, Indira; Safe, Stephen

    2011-01-01

    Ascorbic acid (vitamin C) inhibits cancer cell growth, and there is a controversy regarding the cancer chemoprotective effects of pharmacologic doses of this compound that exhibits prooxidant activity. We hypothesized that the anticancer activity of pharmacologic doses of ascorbic acid (colon cancer cell proliferation and induced apoptosis and necrosis, and this was accompanied by downregulation of Sp1, Sp3, and Sp4 proteins. In addition, ascorbic acid decreased expression of several Sp-regulated genes that are involved in cancer cell proliferation [hepatocyte growth factor receptor (c-Met), epidermal growth factor receptor and cyclin D1], survival (survivin and bcl-2), and angiogenesis [vascular endothelial growth factor (VEGF) and its receptors (VEGFR1 and VEGFR2)]. Other prooxidants such as hydrogen peroxide exhibited similar activities in colon cancer cells, and cotreatment with glutathione inhibited these responses. This study demonstrates for the first time that the anticancer activities of ascorbic acid are due, in part, to ROS-dependent repression of Sp transcription factors.

  7. Prostate specific membrane antigen (PSM) is expressed in various human tissues: implication for the use of PSM reverse transcription polymerase chain reaction to detect hematogenous prostate cancer spread.

    Science.gov (United States)

    Renneberg, H; Friedetzky, A; Konrad, L; Kurek, R; Weingärtner, K; Wennemuth, G; Tunn, U W; Aumüller, G

    1999-01-01

    Detection of prostate-specific membrane antigen (PSM)-mRNA expression in blood samples using reverse transcription polymerase chain reaction (RT-PCR) is discussed as a new diagnostic marker of circulating micrometastases in prostate cancer patients. We applied the RT-PCR technique to different human tissues and obtained positive signals for PSM transcripts in human genital and multiple extra-genital tissue sites. The cDNAs were prepared from different human tissues and prostatic cell lines. RT-PCR and nested RT-PCR for PSM was performed with primers derived from the published PSM cDNA. The RT-PCR fragments obtained were cloned and showed 100% sequence homology to PSM. Southern blot hybridization with labeled probes was used to confirm the specificity of the amplicons. In addition to the known PSM expression in the human brain, PSM-mRNA was detected in cDNA isolated from human testis, epididymis and seminal vesicles and in the PC-3 prostatic cancer cell line. Furthermore, we found PSM-mRNA in heart, liver, lung, kidney, spleen, and thyroid gland. The results indicate that PSM expression is not restricted to the prostate gland, but represents a more general component of genital and extra-genital human tissues. This must be considered when RT-PCR and nested RT-PCR screening for PSM expression is performed as a diagnostic measure in blood from prostate cancer patients.

  8. Ubiquitin-specific peptidase 22 inhibits colon cancer cell invasion by suppressing the signal transducer and activator of transcription 3/matrix metalloproteinase 9 pathway.

    Science.gov (United States)

    Ao, Ning; Liu, Yanyan; Bian, Xiaocui; Feng, Hailiang; Liu, Yuqin

    2015-08-01

    Colon cancer is associated with increased cell migration and invasion. In the present study, the role of ubiquitin-specific peptidase 22 (USP22) in signal transducer and activator of transcription 3 (STAT3)-mediated colon cancer cell invasion was investigated. The messenger RNA levels of STAT3 target genes were measured by reverse transcription-quantitative polymerase chain reaction, following USP22 knockdown by RNA interference in SW480 colon cancer cells. The matrix metalloproteinase 9 (MMP9) proteolytic activity and invasion potential of SW480 cells were measured by zymography and Transwell assay, respectively, following combined USP22 and STAT3 short interfering (si)RNA treatment or STAT3 siRNA treatment alone. Similarly, a cell counting kit-8 assay was used to detect the proliferation potential of SW480 cells. The protein expression levels of USP22, STAT3 and MMP9 were detected by immunohistochemistry in colon cancer tissue microarrays (TMAs) and the correlation between USP22, STAT3 and MMP9 was analyzed. USP22/STAT3 co-depletion partly rescued the MMP9 proteolytic activity and invasion of SW480 cells, compared with that of STAT3 depletion alone. However, the proliferation of USP22/STAT3si-SW480 cells was decreased compared with that of STAT3si-SW480 cells. USP22 expression was positively correlated with STAT3 and MMP9 expression in colon cancer TMAs. In conclusion, USP22 attenuated the invasion capacity of colon cancer cells by inhibiting the STAT3/MMP9 signaling pathway.

  9. HE4 Transcription- and Splice Variants-Specific Expression in Endometrial Cancer and Correlation with Patient Survival

    Directory of Open Access Journals (Sweden)

    Shi-Wen Jiang

    2013-11-01

    Full Text Available We investigated the HE4 variant-specific expression patterns in various normal tissues as well as in normal and malignant endometrial tissues. The relationships between mRNA variants and age, body weight, or survival are analyzed. ICAT-labeled normal and endometrial cancer (EC tissues were analyzed with multidimensional liquid chromatography followed by tandem mass spectrometry. Levels of HE4 mRNA variants were measured by real-time PCR. Mean mRNA levels were compared among 16 normal endometrial samples, 14 grade 1 and 14 grade 3 endometrioid EC, 15 papillary serous EC, and 14 normal human tissue samples. The relationship between levels of HE4 variants and EC patient characteristics was analyzed with the use of Pearson correlation test. We found that, although all five HE4 mRNA variants are detectable in normal tissue samples, their expression is highly tissue-specific, with epididymis, trachea, breast and endometrium containing the highest levels. HE4-V0, -V1, and -V3 are the most abundant variants in both normal and malignant tissues. All variants are significantly increased in both endometrioid and papillary serous EC, with higher levels observed in grade 3 endometrioid EC. In the EC group, HE4-V1, -V3, and -V4 levels inversely correlate with EC patient survival, whereas HE4-V0 levels positively correlate with age. HE4 variants exhibit tissue-specific expression, suggesting that each variant may exert distinct functions in normal and malignant cells. HE4 levels appear to correlate with EC patient survival in a variant-specific manner. When using HE4 as a biomarker for EC management, the effects of age should be considered.

  10. Transcriptionally regulated, prostate-targeted gene therapy for prostate cancer.

    Science.gov (United States)

    Lu, Yi

    2009-07-02

    Prostate cancer is the most frequently diagnosed cancer and the second leading cause of cancer deaths in American males today. Novel and effective treatment such as gene therapy is greatly desired. The early viral based gene therapy uses tissue-nonspecific promoters, which causes unintended toxicity to other normal tissues. In this chapter, we will review the transcriptionally regulated gene therapy strategy for prostate cancer treatment. We will describe the development of transcriptionally regulated prostate cancer gene therapy in the following areas: (1) Comparison of different routes for best viral delivery to the prostate; (2) Study of transcriptionally regulated, prostate-targeted viral vectors: specificity and activity of the transgene under several different prostate-specific promoters were compared in vitro and in vivo; (3) Selection of therapeutic transgenes and strategies for prostate cancer gene therapy (4) Oncolytic virotherapy for prostate cancer. In addition, the current challenges and future directions in this field are also discussed.

  11. Silibinin modulates caudal-type homeobox transcription factor (CDX2), an intestine specific tumor suppressor to abrogate colon cancer in experimental rats.

    Science.gov (United States)

    Sangeetha, N; Nalini, N

    2015-01-01

    To authenticate the colon cancer preventive potential of silibinin, the efficacy of silibinin needs to be tested by evaluating an organ-specific biomarker. The aim of this study was to evaluate the impact of silibinin on the colonic expression of the caudal-type homeobox transcription factor (CDX2) an intestine specific tumor suppressor gene and its downstream targets in the colon of rats challenged with 1,2 dimethyl hydrazine (DMH). Rats of groups 1 and 2 were treated as control and silibinin control. Rats under groups 3 and 4 were given DMH (20 mg/kg body weight (b.w.) subcutaneously) once a week for 15 consecutive weeks from the 4th week of the experimental period. In addition, group 4 rats alone were treated with silibinin (50 mg/kg b.w. per os) everyday throughout the study period of 32 weeks. Histological investigation and messenger RNA and protein expression studies were performed in the colonic tissues of experimental rats. Findings of the study revealed that DMH administration significantly decreased the expression of CDX2 and Guanylyl cyclase C (GCC) in the colon of experimental rats. Further the decreased levels of CDX2 protein, colonic mucin content, and increased number of mast cells in the colon of DMH alone-administered rats reflects the onset of carcinogenesis. The pathological changes caused due to CDX2 suppression were attenuated by silibinin supplementation.

  12. THE CANNABINOID WIN 55,212-2 DECREASES SPECIFICITY PROTEIN (Sp) TRANSCRIPTION FACTORS AND THE ONCOGENIC CAP PROTEIN eIF4E IN COLON CANCER CELLS

    Science.gov (United States)

    Sreevalsan, Sandeep; Safe, Stephen

    2013-01-01

    2,3-Dihydro-5-methyl-3-([morpholinyl]methyl)pyrollo(1,2,3-de)-1,4-benzoxazinyl]-[1-naphthaleny]methanone [WIN 55,212-2 (WIN)] is a synthetic cannabinoid that inhibits RKO, HT-29 and SW480 cell growth, induced apoptosis, and downregulated expression of survivin, cyclin D1, epidermal growth factor receptor (EGFR), vascular endothelial growth factor (VEGF) and its receptor (VEGFR1). WIN also decreased expression of specificity protein (Sp) transcription factors Sp1, Sp3 and Sp4, and this is consistent with the observed downregulation of the aforementioned Sp-regulated genes. In addition, we also observed by RNA interference (RNAi) that the oncogenic cap protein eIF4E was an Sp-regulated gene also downregulated by WIN in colon cancer cells. WIN-mediated repression of Sp proteins was not affected by CB receptor antagonists or by knockdown of the receptor but was attenuated by the phosphatase inhibitor sodium orthovanadate or by knockdown of protein phosphatase 2A (PP2A). WIN-mediated repression of Sp1, Sp3 and Sp4 was due to PP2A-dependent downregulation of microRNA-27a (miR-27a) and induction of miR-27a-regulated ZBTB10 which has previously been characterized as an “Sp repressor”. The results demonstrate that the anticancer activity of WIN is due, in part, to PP2A-dependent disruption of miR-27a:ZBTB10 and ZBTB10-mediated repression of Sp transcription factors and Sp-regulated genes including eIF4E. PMID:24030632

  13. Transcriptional Network Architecture of Breast Cancer Molecular Subtypes

    Science.gov (United States)

    de Anda-Jáuregui, Guillermo; Velázquez-Caldelas, Tadeo E.; Espinal-Enríquez, Jesús; Hernández-Lemus, Enrique

    2016-01-01

    Breast cancer heterogeneity is evident at the clinical, histological and molecular level. High throughput technologies allowed the identification of intrinsic subtypes that capture transcriptional differences among tumors. A remaining question is whether said differences are associated to a particular transcriptional program which involves different connections between the same molecules. In other words, whether particular transcriptional network architectures can be linked to specific phenotypes. In this work we infer, construct and analyze transcriptional networks from whole-genome gene expression microarrays, by using an information theory approach. We use 493 samples of primary breast cancer tissue classified in four molecular subtypes: Luminal A, Luminal B, Basal and HER2-enriched. For comparison, a network for non-tumoral mammary tissue (61 samples) is also inferred and analyzed. Transcriptional networks present particular architectures in each breast cancer subtype as well as in the non-tumor breast tissue. We find substantial differences between the non-tumor network and those networks inferred from cancer samples, in both structure and gene composition. More importantly, we find specific network architectural features associated to each breast cancer subtype. Based on breast cancer networks' centrality, we identify genes previously associated to the disease, either, generally (i.e., CNR2) or to a particular subtype (such as LCK). Similarly, we identify LUZP4, a gene barely explored in breast cancer, playing a role in transcriptional networks with subtype-specific relevance. With this approach we observe architectural differences between cancer and non-cancer at network level, as well as differences between cancer subtype networks which might be associated with breast cancer heterogeneity. The centrality measures of these networks allow us to identify genes with potential biomedical implications to breast cancer. PMID:27920729

  14. Transcriptional Network Architecture of Breast Cancer Molecular Subtypes

    Directory of Open Access Journals (Sweden)

    Guillermo de Anda-Jáuregui

    2016-11-01

    Full Text Available Breast cancer heterogeneity is evident at the clinical, histological and molecular level. High throughput technologies allowed the identification of intrinsic subtypes that capture transcriptional differences among tumors. A remaining question is whether said differences are associated to a particular transcriptional program which involves different connections between the same molecules. In other words, whether particular transcriptional network architectures can be linked to specific phenotypes.In this work we infer, construct and analyze transcriptional networks from whole-genome gene expression microarrays, by using an information theory approach. We use 493 samples of primary breast cancer tissue classified in four molecular subtypes: Luminal A, Luminal B, Basal and HER2-enriched. For comparison, a network for non-tumoral mammary tissue (61 samples is also inferred and analyzed.Transcriptional networks present particular architectures in each breast cancer subtype as well as in the non-tumor breast tissue. We find substantial differences between the non-tumor network and those networks inferred from cancer samples, in both structure and gene composition. More importantly, we find specific network architectural features associated to each breast cancer subtype. Based on breast cancer networks' centrality, we identify genes previously associated to the disease, either, generally (i.e. CNR2 or to a particular subtype (such as LCK. Similarly, we identify LUZP4, a gene barely explored in breast cancer, playing a role in transcriptional networks with subtype-specific relevance.With this approach we observe architectural differences between cancer and non-cancer at network level, as well as differences between cancer subtype networks which might be associated with breast cancer heterogeneity. The centrality measures of these networks allow us to identify genes with potential biomedical implications to breast cancer.

  15. Transcriptional Network Architecture of Breast Cancer Molecular Subtypes.

    Science.gov (United States)

    de Anda-Jáuregui, Guillermo; Velázquez-Caldelas, Tadeo E; Espinal-Enríquez, Jesús; Hernández-Lemus, Enrique

    2016-01-01

    Breast cancer heterogeneity is evident at the clinical, histological and molecular level. High throughput technologies allowed the identification of intrinsic subtypes that capture transcriptional differences among tumors. A remaining question is whether said differences are associated to a particular transcriptional program which involves different connections between the same molecules. In other words, whether particular transcriptional network architectures can be linked to specific phenotypes. In this work we infer, construct and analyze transcriptional networks from whole-genome gene expression microarrays, by using an information theory approach. We use 493 samples of primary breast cancer tissue classified in four molecular subtypes: Luminal A, Luminal B, Basal and HER2-enriched. For comparison, a network for non-tumoral mammary tissue (61 samples) is also inferred and analyzed. Transcriptional networks present particular architectures in each breast cancer subtype as well as in the non-tumor breast tissue. We find substantial differences between the non-tumor network and those networks inferred from cancer samples, in both structure and gene composition. More importantly, we find specific network architectural features associated to each breast cancer subtype. Based on breast cancer networks' centrality, we identify genes previously associated to the disease, either, generally (i.e., CNR2) or to a particular subtype (such as LCK). Similarly, we identify LUZP4, a gene barely explored in breast cancer, playing a role in transcriptional networks with subtype-specific relevance. With this approach we observe architectural differences between cancer and non-cancer at network level, as well as differences between cancer subtype networks which might be associated with breast cancer heterogeneity. The centrality measures of these networks allow us to identify genes with potential biomedical implications to breast cancer.

  16. Detection of Tumor Cell-Specific mRNA in the Peripheral Blood of Patients with Breast Cancer — Evaluation of Several Markers with Real-Time Reverse Transcription-PCR

    Directory of Open Access Journals (Sweden)

    Ulrich Andergassen

    2013-01-01

    Full Text Available It is widely known that cells from epithelial tumors, e.g., breast cancer, detach from their primary tissue and enter blood circulation. We show that the presence of circulating tumor cells (CTCs in samples of patients with primary and metastatic breast cancer can be detected with an array of selected tumor-marker-genes by reverse transcription real-time PCR. The focus of the presented work is on detecting differences in gene expression between healthy individuals and adjuvant and metastatic breast cancer patients, not an accurate quantification of these differences. Therefore, total RNA was isolated from blood samples of healthy donors and patients with primary or metastatic breast cancer after enrichment of mononuclear cells by density gradient centrifugation. After reverse transcription real-time PCR was carried out with a set of marker genes (BCSP, CK8, Her2, MGL, CK18, CK19. B2M and GAPDH were used as reference genes. Blood samples from patients with metastatic disease revealed increased cytokine gene levels in comparison to normal blood samples. Detection of a single gene was not sufficient to detect CTCs by reverse transcription real-time PCR. Markers used here were selected based on a recent study detecting cancer cells on different protein levels. The combination of such a marker array leads to higher and more specific discovery rates, predominantly in metastatic patients. Identification of CTCs by PCR methods may lead to better diagnosis and prognosis and could help to choose an adequate therapy.

  17. Transcriptional networks inferred from molecular signatures of breast cancer.

    Science.gov (United States)

    Tongbai, Ron; Idelman, Gila; Nordgard, Silje H; Cui, Wenwu; Jacobs, Jonathan L; Haggerty, Cynthia M; Chanock, Stephen J; Børresen-Dale, Anne-Lise; Livingston, Gary; Shaunessy, Patrick; Chiang, Chih-Hung; Kristensen, Vessela N; Bilke, Sven; Gardner, Kevin

    2008-02-01

    Global genomic approaches in cancer research have provided new and innovative strategies for the identification of signatures that differentiate various types of human cancers. Computational analysis of the promoter composition of the genes within these signatures may provide a powerful method for deducing the regulatory transcriptional networks that mediate their collective function. In this study we have systematically analyzed the promoter composition of gene classes derived from previously established genetic signatures that recently have been shown to reliably and reproducibly distinguish five molecular subtypes of breast cancer associated with distinct clinical outcomes. Inferences made from the trends of transcription factor binding site enrichment in the promoters of these gene groups led to the identification of regulatory pathways that implicate discrete transcriptional networks associated with specific molecular subtypes of breast cancer. One of these inferred pathways predicted a role for nuclear factor-kappaB in a novel feed-forward, self-amplifying, autoregulatory module regulated by the ERBB family of growth factor receptors. The existence of this pathway was verified in vivo by chromatin immunoprecipitation and shown to be deregulated in breast cancer cells overexpressing ERBB2. This analysis indicates that approaches of this type can provide unique insights into the differential regulatory molecular programs associated with breast cancer and will aid in identifying specific transcriptional networks and pathways as potential targets for tumor subtype-specific therapeutic intervention.

  18. Wild-type and specific mutant androgen receptor mediates transcription via 17β-estradiol in sex hormone-sensitive cancer cells.

    Science.gov (United States)

    Susa, Takao; Ikaga, Reina; Kajitani, Takashi; Iizuka, Masayoshi; Okinaga, Hiroko; Tamamori-Adachi, Mimi; Okazaki, Tomoki

    2015-07-01

    We previously encountered regulatory processes wherein dihydrotestosterone (DHT) exerted its inhibitory effect on parathyroid hormone-related protein (PTHrP) gene repression through the estrogen receptor (ER)α, but not the androgen receptor (AR), in breast cancer MCF-7 cells. Here, we investigated whether such aberrant ligand-nuclear receptor (NR) interaction is present in prostate cancer LNCaP cells. First, we confirmed that LNCaP cells expressed large amounts of AR at negligible levels of ERα/β or progesterone receptor. Both suppression of PTHrP and activation of prostate-specific antigen genes were observed after independent administration of 17β-estradiol (E2), DHT, or R5020. Consistent with the notion that the LNCaP AR lost its ligand specificity due to a mutation (Thr-Ala877), experiments with siRNA targeting the respective NR revealed that the AR monopolized the role of the mediator of shared hormone-dependent regulation, which was invariably associated with nuclear translocation of this mutant AR. Microarray analysis of gene regulation by DHT, E2, or R5020 disclosed that more than half of the genes downstream of the AR (Thr-Ala877) overlapped in the LNCaP cells. Of particular interest, we realized that the AR (wild-type [wt]) and AR (Thr-Ala877) were equally responsible for the E2-AR interactions. Fluorescence microscopy experiments demonstrated that both EGFP-AR (wt) and EGFP-AR (Thr-Ala877) were exclusively localized within the nucleus after E2 or DHT treatment. Furthermore, reporter assays revealed that some other cancer cells exhibited aberrant E2-AR (wt) signaling similar to that in the LNCaP cells. We herein postulate the presence of entangled interactions between wt AR and E2 in certain hormone-sensitive cancer cells.

  19. Micro-PET/CT Monitoring of Herpes Thymidine Kinase Suicide Gene Therapy in a Prostate Cancer Xenograft: The Advantage of a Cell-specific Transcriptional Targeting Approach

    Directory of Open Access Journals (Sweden)

    Mai Johnson

    2005-10-01

    Full Text Available Cancer gene therapy based on tissue-restricted expression of cytotoxic gene should achieve superior therapeutic index over an unrestricted method. This study compared the therapeutic effects of a highly augmented, prostate-specific gene expression method to a strong constitutive promoter-driven approach. Molecular imaging was coupled to gene therapy to ascertain real-time therapeutic activity. The imaging reporter gene (luciferase and the cytotoxic gene (herpes simplex thymidine kinase were delivered by adenoviral vectors injected directly into human prostate tumors grafted in SCID mice. Serial bioluminescence imaging, positron emission tomography, and computed tomography revealed restriction of gene expression to the tumors when prostate-specific vector was employed. In contrast, administration of constitutive active vector resulted in strong signals in the liver. Liver serology, tissue histology, and frail condition of animals confirmed liver toxicity suffered by the constitutive active cohorts, whereas the prostate-targeted group was unaffected. The extent of tumor killing was analyzed by apoptotic staining and human prostate marker (prostate-specific antigen. Overall, the augmented prostate-specific expression system was superior to the constitutive approach in safeguarding against systemic toxicity, while achieving effective tumor killing. Integrating noninvasive imaging into cytotoxic gene therapy will provide a useful strategy to monitor gene expression and therapeutic efficacy in future clinical protocols.

  20. Association of MMP7 -181A→G Promoter Polymorphism with Gastric Cancer Risk: INFLUENCE OF NICOTINE IN DIFFERENTIAL ALLELE-SPECIFIC TRANSCRIPTION VIA INCREASED PHOSPHORYLATION OF cAMP-RESPONSE ELEMENT-BINDING PROTEIN (CREB).

    Science.gov (United States)

    Kesh, Kousik; Subramanian, Lakshmi; Ghosh, Nillu; Gupta, Vinayak; Gupta, Arnab; Bhattacharya, Samir; Mahapatra, Nitish R; Swarnakar, Snehasikta

    2015-06-05

    Elevated expression of matrix metalloproteinase7 (MMP7) has been demonstrated to play a pivotal role in cancer invasion. The -181A→G (rs11568818) polymorphism in the MMP7 promoter modulates gene expression and possibly affects cancer progression. Here, we evaluated the impact of -181A→G polymorphism on MMP7 promoter activity and its association with gastric cancer risk in eastern Indian case-control cohorts (n = 520). The GG genotype as compared with the AA genotype was predisposed (p = 0.02; odds ratio = 1.9, 95% confidence interval = 1.1-3.3) to gastric cancer risk. Stratification analysis showed that tobacco addiction enhanced gastric cancer risk in GG subjects when compared with AA subjects (p = 0.03, odds ratio = 2.46, and 95% confidence interval = 1.07-5.68). Meta-analysis revealed that tobacco enhanced the risk for cancer more markedly in AG and GG carriers. Activity and expression of MMP7 were significantly higher in GG than in AA carriers. In support, MMP7 promoter-reporter assays showed greater transcriptional activity toward A to G transition under basal/nicotine-induced/cAMP-response element-binding protein (CREB) overexpressed conditions in gastric adenocarcinoma cells. Moreover, nicotine (a major component of tobacco) treatment significantly up-regulated MMP7 expression due to enhanced CREB phosphorylation followed by its nuclear translocation in gastric adenocarcinoma cells. Furthermore, chromatin immunoprecipitation experiments revealed higher binding of phosphorylated CREB with the -181G than the -181A allele. Altogether, specific binding of phosphorylated CREB to the G allele-carrying promoter enhances MMP7 gene expression that is further augmented by nicotine due to increased CREB phosphorylation and thereby increases the risk for gastric cancer.

  1. FOXA and master transcription factors recruit Mediator and Cohesin to the core transcriptional regulatory circuitry of cancer cells

    Science.gov (United States)

    Fournier, Michèle; Bourriquen, Gaëlle; Lamaze, Fabien C.; Côté, Maxime C.; Fournier, Éric; Joly-Beauparlant, Charles; Caron, Vicky; Gobeil, Stéphane; Droit, Arnaud; Bilodeau, Steve

    2016-10-01

    Controlling the transcriptional program is essential to maintain the identity and the biological functions of a cell. The Mediator and Cohesin complexes have been established as central cofactors controlling the transcriptional program in normal cells. However, the distribution, recruitment and importance of these complexes in cancer cells have not been fully investigated. Here we show that FOXA and master transcription factors are part of the core transcriptional regulatory circuitry of cancer cells and are essential to recruit M ediator and Cohesin. Indeed, Mediator and Cohesin occupied the enhancer and promoter regions of actively transcribed genes and maintained the proliferation and colony forming potential. Through integration of publically available ChIP-Seq datasets, we predicted the core transcriptional regulatory circuitry of each cancer cell. Unexpectedly, for all cells investigated, the pioneer transcription factors FOXA1 and/or FOXA2 were identified in addition to cell-specific master transcription factors. Loss of both types of transcription factors phenocopied the loss of Mediator and Cohesin. Lastly, the master and pioneer transcription factors were essential to recruit Mediator and Cohesin to regulatory regions of actively transcribed genes. Our study proposes that maintenance of the cancer cell state is dependent on recruitment of Mediator and Cohesin through FOXA and master transcription factors.

  2. FOXA and master transcription factors recruit Mediator and Cohesin to the core transcriptional regulatory circuitry of cancer cells

    Science.gov (United States)

    Fournier, Michèle; Bourriquen, Gaëlle; Lamaze, Fabien C.; Côté, Maxime C.; Fournier, Éric; Joly-Beauparlant, Charles; Caron, Vicky; Gobeil, Stéphane; Droit, Arnaud; Bilodeau, Steve

    2016-01-01

    Controlling the transcriptional program is essential to maintain the identity and the biological functions of a cell. The Mediator and Cohesin complexes have been established as central cofactors controlling the transcriptional program in normal cells. However, the distribution, recruitment and importance of these complexes in cancer cells have not been fully investigated. Here we show that FOXA and master transcription factors are part of the core transcriptional regulatory circuitry of cancer cells and are essential to recruit M ediator and Cohesin. Indeed, Mediator and Cohesin occupied the enhancer and promoter regions of actively transcribed genes and maintained the proliferation and colony forming potential. Through integration of publically available ChIP-Seq datasets, we predicted the core transcriptional regulatory circuitry of each cancer cell. Unexpectedly, for all cells investigated, the pioneer transcription factors FOXA1 and/or FOXA2 were identified in addition to cell-specific master transcription factors. Loss of both types of transcription factors phenocopied the loss of Mediator and Cohesin. Lastly, the master and pioneer transcription factors were essential to recruit Mediator and Cohesin to regulatory regions of actively transcribed genes. Our study proposes that maintenance of the cancer cell state is dependent on recruitment of Mediator and Cohesin through FOXA and master transcription factors. PMID:27739523

  3. FOXA and master transcription factors recruit Mediator and Cohesin to the core transcriptional regulatory circuitry of cancer cells.

    Science.gov (United States)

    Fournier, Michèle; Bourriquen, Gaëlle; Lamaze, Fabien C; Côté, Maxime C; Fournier, Éric; Joly-Beauparlant, Charles; Caron, Vicky; Gobeil, Stéphane; Droit, Arnaud; Bilodeau, Steve

    2016-10-14

    Controlling the transcriptional program is essential to maintain the identity and the biological functions of a cell. The Mediator and Cohesin complexes have been established as central cofactors controlling the transcriptional program in normal cells. However, the distribution, recruitment and importance of these complexes in cancer cells have not been fully investigated. Here we show that FOXA and master transcription factors are part of the core transcriptional regulatory circuitry of cancer cells and are essential to recruit M ediator and Cohesin. Indeed, Mediator and Cohesin occupied the enhancer and promoter regions of actively transcribed genes and maintained the proliferation and colony forming potential. Through integration of publically available ChIP-Seq datasets, we predicted the core transcriptional regulatory circuitry of each cancer cell. Unexpectedly, for all cells investigated, the pioneer transcription factors FOXA1 and/or FOXA2 were identified in addition to cell-specific master transcription factors. Loss of both types of transcription factors phenocopied the loss of Mediator and Cohesin. Lastly, the master and pioneer transcription factors were essential to recruit Mediator and Cohesin to regulatory regions of actively transcribed genes. Our study proposes that maintenance of the cancer cell state is dependent on recruitment of Mediator and Cohesin through FOXA and master transcription factors.

  4. Identification of transcriptional regulatory networks specific to pilocytic astrocytoma

    Directory of Open Access Journals (Sweden)

    Gutmann David H

    2011-07-01

    Full Text Available Abstract Background Pilocytic Astrocytomas (PAs are common low-grade central nervous system malignancies for which few recurrent and specific genetic alterations have been identified. In an effort to better understand the molecular biology underlying the pathogenesis of these pediatric brain tumors, we performed higher-order transcriptional network analysis of a large gene expression dataset to identify gene regulatory pathways that are specific to this tumor type, relative to other, more aggressive glial or histologically distinct brain tumours. Methods RNA derived from frozen human PA tumours was subjected to microarray-based gene expression profiling, using Affymetrix U133Plus2 GeneChip microarrays. This data set was compared to similar data sets previously generated from non-malignant human brain tissue and other brain tumour types, after appropriate normalization. Results In this study, we examined gene expression in 66 PA tumors compared to 15 non-malignant cortical brain tissues, and identified 792 genes that demonstrated consistent differential expression between independent sets of PA and non-malignant specimens. From this entire 792 gene set, we used the previously described PAP tool to assemble a core transcriptional regulatory network composed of 6 transcription factor genes (TFs and 24 target genes, for a total of 55 interactions. A similar analysis of oligodendroglioma and glioblastoma multiforme (GBM gene expression data sets identified distinct, but overlapping, networks. Most importantly, comparison of each of the brain tumor type-specific networks revealed a network unique to PA that included repressed expression of ONECUT2, a gene frequently methylated in other tumor types, and 13 other uniquely predicted TF-gene interactions. Conclusions These results suggest specific transcriptional pathways that may operate to create the unique molecular phenotype of PA and thus opportunities for corresponding targeted therapeutic

  5. Cutting the chain of command: specific inhibitors of transcription.

    Science.gov (United States)

    Holt, J T

    1991-01-01

    Cell growth and differentiation are regulated (at least in part) by changes in gene transcription. The cloning and characterization of transcription factors has revealed that these factors coordinately regulate the transcription of specific genetic programs; for example, a number of phorbol ester-induced genes are activated by binding of the transcription factors Fos and Jun to specific DNA sequences. Clearly, inhibition of either the production or function of specific transcription factors would alter complete genetic programs, changing the expression of a great number of genes (analogous to cutting the chain of military command and affecting an entire brigade or division). Our laboratory and others have employed genetic methods to specifically inhibit transcription by two distinct methods: (1) antisense inhibition of the production of transcription factors; and (2) introduction of target DNA sequences to "soak up"or quench transcription factors. In this report, we present data showing that serum-stimulated induction of the c-fos gene may be reduced more than 90% by introduction of target DNA sequences containing the serum response element (SRE); identical amounts of mutant SRE sequences have no effect on gene induction. These studies demonstrate that specific inhibitors of transcription can have significant effects on cellular gene expression. The challenge is to modulate transcriptional programs without deleterious effects on normal cells.

  6. Alternative Spliced Transcripts as Cancer Markers

    Directory of Open Access Journals (Sweden)

    Otavia L. Caballero

    2001-01-01

    Full Text Available Eukaryotic mRNAs are transcribed as precursors containing their intronic sequences. These are subsequently excised and the exons are spliced together to form mature mRNAs. This process can lead to transcript diversification through the phenomenon of alternative splicing. Alternative splicing can take the form of one or more skipped exons, variable position of intron splicing or intron retention. The effect of alternative splicing in expanding protein repertoire might partially underlie the apparent discrepancy between gene number and the complexity of higher eukaryotes. It is likely that more than 50% form. Many cancer-associated genes, such as CD44 and WT1 are alternatively spliced. Variation of the splicing process occurs during tumor progression and may play a major role in tumorigenesis. Furthermore, alternatively spliced transcripts may be extremely useful as cancer markers, since it appears likely that there may be striking contrasts in usage of alternatively spliced transcript variants between normal and tumor tissue than in alterations in the general levels of gene expression.

  7. Increased levels of noisy splicing in cancers, but not for oncogene-derived transcripts

    OpenAIRE

    Chen, Lu; Tovar-Corona, Jaime M.; Urrutia, Araxi O.

    2011-01-01

    Recent genome-wide analyses have detected numerous cancer-specific alternative splicing (AS) events. Whether transcripts containing cancer-specific AS events are likely to be translated into functional proteins or simply reflect noisy splicing, thereby determining their clinical relevance, is not known. Here we show that consistent with a noisy-splicing model, cancer-specific AS events generally tend to be rare, containing more premature stop codons and have less identifiable functional domai...

  8. The Evaluation and Comparison of Transcriptionally Targeted Noxa and Puma Killer Genes to Initiate Apoptosis Under Cancer-Specific Promoter CXCR1 in Hepatocarcinoma Gene Therapy

    Directory of Open Access Journals (Sweden)

    Khoshtinat Nikkhoi

    2016-09-01

    Full Text Available Background Cancerous cells proliferate as fast as possible without a proper surveillance system. This rapid cell division leads to enormous mutation rates, which help a tumor establish. Objectives This study evaluated the potential of inducing apoptosis using Noxa and Puma in a hepatocarcinoma cell line. Methods The current study generated two recombinant lentiviruses, pLEX-GCN and pLEX-GCP, bearing Noxa and Puma, respectively. Transduction of both genes to hepatocarcinoma (HepG2 was verified using fluorescent microscopic analysis, western blotting, and quantitative real-time polymerase chain reaction (PCR. To evaluate the potential of Noxa and Puma to initiate apoptosis, a caspase-9 real-time, MTT assay, and a 4’, 6-diamidino-2-phenylindole (DAPI reagent were performed to stain apoptotic cells. Results The data verified successful transduction to HepG2 and HEK293T. Higher relative expression of Noxa and Puma rather than the untransduced cell line showed these genes are expressed more in HepG2 in comparison to HEK293T. The results of the real-time PCR, MTT assay, and DAPI reagent illustrated that higher cells initiated apoptosis following Puma transduction rather than Noxa. Conclusions In this approach, the suicide gene was transferred to transformed cells and ignited apoptosis to exterminate them. Puma is a more potent killer gene and has higher capabilities to start intrinsic apoptosis pathway.

  9. Identification of epididymis-specific transcripts in the mouse and rat by transcriptional profiling

    Institute of Scientific and Technical Information of China (English)

    Daniel S. Johnston; Terry T. Turner; Joshua N. Finger; Tracy L. Owtscharuk; S. Kopf; Scott A. Jelinsky

    2007-01-01

    As part of our efforts to identify novel contraceptive targets in the epididymis we performed transcriptional profiling on each of the 10 and 19 segments of the mouse and rat epididymidis, respectively, using Affymetrix whole genome microarrays. A total of 17 096 and 16 360 probe sets representing transcripts were identified as being expressed in the segmented mouse and rat epididymal transcriptomes, respectively. Comparison of the expressed murine transcripts against a mouse transcriptional profiling database derived from 22 other mouse tissues identified 77transcripts that were expressed uniquely in the epididymis. The expression of these genes was further evaluated by reverse transcription polymerase chain reaction (RT-PCR) analysis of RNA from 21 mouse tissues. RT-PCR analysis confirmed epididymis-specific expression of Defensin Beta 13 and identified two additional genes with expression restricted only to the epididymis and testis. Comparison of the 16 360 expressed transcripts in the rat epididymis with data of 21 other tissues from a rat transcriptional profiling database identified 110 transcripts specific for the epididymis.Sixty-two of these transcripts were further investigated by qPCR analysis. Only Defensin 22 (E3 epididymal protein)was shown to be completely specific for the epididymis. In addition, 14 transcripts showed more than 100-fold selective expression in the epididymis. The products of these genes might play important roles in epididymal and/or sperm function and further investigation and validation as contraceptive targets are warranted. The results of the studies described in this report are available at the Mammalian Reproductive Genetics (MRG) Database (http://mrg.genetics.washington.edu/).

  10. Dissecting specific and global transcriptional regulation of bacterial gene expression

    NARCIS (Netherlands)

    Gerosa, Luca; Kochanowski, Karl; Heinemann, Matthias; Sauer, Uwe

    2013-01-01

    Gene expression is regulated by specific transcriptional circuits but also by the global expression machinery as a function of growth. Simultaneous specific and global regulation thus constitutes an additional-but often neglected-layer of complexity in gene expression. Here, we develop an experiment

  11. Cancer specificity of promoters of the genes controlling cell proliferation.

    Science.gov (United States)

    Kashkin, Kirill; Chernov, Igor; Stukacheva, Elena; Monastyrskaya, Galina; Uspenskaya, Natalya; Kopantzev, Eugene; Sverdlov, Eugene

    2015-02-01

    Violation of proliferation control is a common feature of cancer cells. We put forward the hypothesis that promoters of genes involved in the control of cell proliferation should possess intrinsic cancer specific activity. We cloned promoter regions of CDC6, POLD1, CKS1B, MCM2, and PLK1 genes into pGL3 reporter vector and studied their ability to drive heterologous gene expression in transfected cancer cells of different origin and in normal human fibroblasts. Each promoter was cloned in short (335-800 bp) and long (up to 2.3 kb) variants to cover probable location of core and whole promoter regulatory elements. Cloned promoters were significantly more active in cancer cells than in normal fibroblasts that may indicate their cancer specificity. Both versions of CDC6 promoters were shown to be most active while the activities of others were close to that of BIRC5 gene (survivin) gene promoter. Long and short variants of each cloned promoter demonstrated very similar cancer specificity with the exception of PLK1-long promoter that was substantially more specific than its short variant and other promoters under study. The data indicate that most of the important cis-regulatory transcription elements responsible for intrinsic cancer specificity are located in short variants of the promoters under study. CDC6 short promoter may serve as a promising candidate for transcription targeted cancer gene therapy.

  12. Sequencing the transcriptional network of androgen receptor in prostate cancer.

    Science.gov (United States)

    Chng, Kern Rei; Cheung, Edwin

    2013-11-01

    The progression of prostate cancer is largely dependent on the activity of the androgen receptor (AR), which in turn, correlates with the net output of the AR transcriptional regulatory network. A detailed and thorough understanding of the AR transcriptional regulatory network is therefore critical in the strategic manipulation of AR activity for the targeted eradication of prostate cancer cells. In this mini-review, we highlight some of the novel and unexpected mechanistic and functional insights of the AR transcriptional network derived from recent targeted sequencing (ChIP-Seq) studies of AR and its coregulatory factors in prostate cancer cells.

  13. Transcriptional network of androgen receptor in prostate cancer progression.

    Science.gov (United States)

    Takayama, Ken-ichi; Inoue, Satoshi

    2013-08-01

    The androgen receptor belongs to the nuclear receptor superfamily and functions as a ligand-dependent transcription factor. It binds to the androgen responsive element and recruits coregulatory factors to modulate gene transcription. In addition, the androgen receptor interacts with other transcription factors, such as forkhead box A1, and other oncogenic signaling pathway molecules that bind deoxyribonucleic acid and regulate transcription. Androgen receptor signaling plays an important role in the development of prostate cancer. Prostate cancer cells proliferate in an androgen-dependent manner, and androgen receptor blockade is effective in prostate cancer therapy. However, patients often progress to castration-resistant prostate cancer with elevated androgen receptor expression and hypersensitivity to androgen. Recently, comprehensive analysis tools, such as complementary DNA microarray, chromatin immunoprecipitation-on-chip and chromatin immunoprecipitation-sequence, have described the androgen-mediated diverse transcriptional program and gene networks in prostate cancer. Furthermore, functional and clinical studies have shown that some of the androgen receptor-regulated genes could be prognostic markers and potential therapeutic targets for the treatment of prostate cancer, particularly castration-resistant prostate cancer. Thus, identifying androgen receptor downstream signaling events and investigating the regulation of androgen receptor activity is critical for understanding the mechanism of carcinogenesis and progression to castration-resistant prostate cancer.

  14. Transcription elongation and tissue-specific somatic CAG instability.

    Directory of Open Access Journals (Sweden)

    Agathi-Vasiliki Goula

    Full Text Available The expansion of CAG/CTG repeats is responsible for many diseases, including Huntington's disease (HD and myotonic dystrophy 1. CAG/CTG expansions are unstable in selective somatic tissues, which accelerates disease progression. The mechanisms underlying repeat instability are complex, and it remains unclear whether chromatin structure and/or transcription contribute to somatic CAG/CTG instability in vivo. To address these issues, we investigated the relationship between CAG instability, chromatin structure, and transcription at the HD locus using the R6/1 and R6/2 HD transgenic mouse lines. These mice express a similar transgene, albeit integrated at a different site, and recapitulate HD tissue-specific instability. We show that instability rates are increased in R6/2 tissues as compared to R6/1 matched-samples. High transgene expression levels and chromatin accessibility correlated with the increased CAG instability of R6/2 mice. Transgene mRNA and H3K4 trimethylation at the HD locus were increased, whereas H3K9 dimethylation was reduced in R6/2 tissues relative to R6/1 matched-tissues. However, the levels of transgene expression and these specific histone marks were similar in the striatum and cerebellum, two tissues showing very different CAG instability levels, irrespective of mouse line. Interestingly, the levels of elongating RNA Pol II at the HD locus, but not the initiating form of RNA Pol II, were tissue-specific and correlated with CAG instability levels. Similarly, H3K36 trimethylation, a mark associated with transcription elongation, was specifically increased at the HD locus in the striatum and not in the cerebellum. Together, our data support the view that transcription modulates somatic CAG instability in vivo. More specifically, our results suggest for the first time that transcription elongation is regulated in a tissue-dependent manner, contributing to tissue-selective CAG instability.

  15. Transcriptional master regulator analysis in breast cancer genetic networks.

    Science.gov (United States)

    Tovar, Hugo; García-Herrera, Rodrigo; Espinal-Enríquez, Jesús; Hernández-Lemus, Enrique

    2015-12-01

    Gene regulatory networks account for the delicate mechanisms that control gene expression. Under certain circumstances, gene regulatory programs may give rise to amplification cascades. Such transcriptional cascades are events in which activation of key-responsive transcription factors called master regulators trigger a series of gene expression events. The action of transcriptional master regulators is then important for the establishment of certain programs like cell development and differentiation. However, such cascades have also been related with the onset and maintenance of cancer phenotypes. Here we present a systematic implementation of a series of algorithms aimed at the inference of a gene regulatory network and analysis of transcriptional master regulators in the context of primary breast cancer cells. Such studies were performed in a highly curated database of 880 microarray gene expression experiments on biopsy-captured tissue corresponding to primary breast cancer and healthy controls. Biological function and biochemical pathway enrichment analyses were also performed to study the role that the processes controlled - at the transcriptional level - by such master regulators may have in relation to primary breast cancer. We found that transcription factors such as AGTR2, ZNF132, TFDP3 and others are master regulators in this gene regulatory network. Sets of genes controlled by these regulators are involved in processes that are well-known hallmarks of cancer. This kind of analyses may help to understand the most upstream events in the development of phenotypes, in particular, those regarding cancer biology.

  16. Determination and inference of eukaryotic transcription factor sequence specificity.

    Science.gov (United States)

    Weirauch, Matthew T; Yang, Ally; Albu, Mihai; Cote, Atina G; Montenegro-Montero, Alejandro; Drewe, Philipp; Najafabadi, Hamed S; Lambert, Samuel A; Mann, Ishminder; Cook, Kate; Zheng, Hong; Goity, Alejandra; van Bakel, Harm; Lozano, Jean-Claude; Galli, Mary; Lewsey, Mathew G; Huang, Eryong; Mukherjee, Tuhin; Chen, Xiaoting; Reece-Hoyes, John S; Govindarajan, Sridhar; Shaulsky, Gad; Walhout, Albertha J M; Bouget, François-Yves; Ratsch, Gunnar; Larrondo, Luis F; Ecker, Joseph R; Hughes, Timothy R

    2014-09-11

    Transcription factor (TF) DNA sequence preferences direct their regulatory activity, but are currently known for only ∼1% of eukaryotic TFs. Broadly sampling DNA-binding domain (DBD) types from multiple eukaryotic clades, we determined DNA sequence preferences for >1,000 TFs encompassing 54 different DBD classes from 131 diverse eukaryotes. We find that closely related DBDs almost always have very similar DNA sequence preferences, enabling inference of motifs for ∼34% of the ∼170,000 known or predicted eukaryotic TFs. Sequences matching both measured and inferred motifs are enriched in chromatin immunoprecipitation sequencing (ChIP-seq) peaks and upstream of transcription start sites in diverse eukaryotic lineages. SNPs defining expression quantitative trait loci in Arabidopsis promoters are also enriched for predicted TF binding sites. Importantly, our motif "library" can be used to identify specific TFs whose binding may be altered by human disease risk alleles. These data present a powerful resource for mapping transcriptional networks across eukaryotes.

  17. Human-specific transcriptional networks in the brain.

    Science.gov (United States)

    Konopka, Genevieve; Friedrich, Tara; Davis-Turak, Jeremy; Winden, Kellen; Oldham, Michael C; Gao, Fuying; Chen, Leslie; Wang, Guang-Zhong; Luo, Rui; Preuss, Todd M; Geschwind, Daniel H

    2012-08-23

    Understanding human-specific patterns of brain gene expression and regulation can provide key insights into human brain evolution and speciation. Here, we use next-generation sequencing, and Illumina and Affymetrix microarray platforms, to compare the transcriptome of human, chimpanzee, and macaque telencephalon. Our analysis reveals a predominance of genes differentially expressed within human frontal lobe and a striking increase in transcriptional complexity specific to the human lineage in the frontal lobe. In contrast, caudate nucleus gene expression is highly conserved. We also identify gene coexpression signatures related to either neuronal processes or neuropsychiatric diseases, including a human-specific module with CLOCK as its hub gene and another module enriched for neuronal morphological processes and genes coexpressed with FOXP2, a gene important for language evolution. These data demonstrate that transcriptional networks have undergone evolutionary remodeling even within a given brain region, providing a window through which to view the foundation of uniquely human cognitive capacities.

  18. Non-overlapping progesterone receptor cistromes contribute to cell-specific transcriptional outcomes.

    Directory of Open Access Journals (Sweden)

    Christine L Clarke

    Full Text Available The transcriptional effects of the ovarian hormone progesterone are pleiotropic, and binding to DNA of the nuclear progesterone receptor (PR, a ligand-activated transcription factor, results in diverse outcomes in a range of target tissues. To determine whether distinct patterns of genomic interaction of PR contribute to the cell specificity of the PR transcriptome, we have compared the genomic binding sites for PR in breast cancer cells and immortalized normal breast cells. PR binding was correlated with transcriptional outcome in both cell lines, with 60% of progestin-regulated genes associated with one or more PR binding regions. There was a remarkably low overlap between the PR cistromes of the two cell lines, and a similarly low overlap in transcriptional targets. A conserved PR binding element was identified in PR binding regions from both cell lines, but there were distinct patterns of enrichment of known cofactor binding motifs, with FOXA1 sites over-represented in breast cancer cell binding regions and NF1 and AP-1 motifs uniquely enriched in the immortalized normal line. Downstream analyses suggested that differential cofactor availability may generate these distinct PR cistromes, indicating that cofactor levels may modulate PR specificity. Taken together these data suggest that cell-specificity of PR binding is determined by the coordinated effects of key binding cofactors.

  19. Ligand-specific sequential regulation of transcription factors for differentiation of MCF-7 cells

    Directory of Open Access Journals (Sweden)

    Toyoda Tetsuro

    2009-11-01

    Full Text Available Abstract Background Sharing a common ErbB/HER receptor signaling pathway, heregulin (HRG induces differentiation of MCF-7 human breast cancer cells while epidermal growth factor (EGF elicits proliferation. Although cell fates resulting from action of the aforementioned ligands completely different, the respective gene expression profiles in early transcription are qualitatively similar, suggesting that gene expression during late transcription, but not early transcription, may reflect ligand specificity. In this study, based on both the data from time-course quantitative real-time PCR on over 2,000 human transcription factors and microarray of all human genes, we identified a series of transcription factors which may control HRG-specific late transcription in MCF-7 cells. Results We predicted that four transcription factors including EGR4, FRA-1, FHL2, and DIPA should have responsibility of regulation in MCF-7 cell differentiation. Validation analysis suggested that one member of the activator protein 1 (AP-1 family, FOSL-1 (FRA-1 gene, appeared immediately following c-FOS expression, might be responsible for expression of transcription factor FHL2 through activation of the AP-1 complex. Furthermore, RNAi gene silencing of FOSL-1 and FHL2 resulted in increase of extracellular signal-regulated kinase (ERK phosphorylation of which duration was sustained by HRG stimulation. Conclusion Our analysis indicated that a time-dependent transcriptional regulatory network including c-FOS, FRA-1, and FHL2 is vital in controlling the ERK signaling pathway through a negative feedback loop for MCF-7 cell differentiation.

  20. Cdk phosphorylation of the Ste11 transcription factor constrains differentiation-specific transcription to G1

    DEFF Research Database (Denmark)

    Kjaerulff, Søren; Andersen, Nicoline Resen; Borup, Mia Trolle;

    2007-01-01

    Eukaryotic cells normally differentiate from G(1); here we investigate the mechanism preventing expression of differentiation-specific genes outside G(1). In fission yeast, induction of the transcription factor Ste11 triggers sexual differentiation. We find that Ste11 is only active in G(1) when...... S phase. When we mutated T82 to aspartic acid, mimicking constant phosphorylation, cells no longer underwent differentiation. Conversely, changing T82 to alanine rendered Ste11-controlled transcription constitutive through the cell cycle, and allowed mating from S phase with increased frequency...

  1. Direct Transcriptional Consequences of Somatic Mutation in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Adam Shlien

    2016-08-01

    Full Text Available Disordered transcriptomes of cancer encompass direct effects of somatic mutation on transcription, coordinated secondary pathway alterations, and increased transcriptional noise. To catalog the rules governing how somatic mutation exerts direct transcriptional effects, we developed an exhaustive pipeline for analyzing RNA sequencing data, which we integrated with whole genomes from 23 breast cancers. Using X-inactivation analyses, we found that cancer cells are more transcriptionally active than intermixed stromal cells. This is especially true in estrogen receptor (ER-negative tumors. Overall, 59% of substitutions were expressed. Nonsense mutations showed lower expression levels than expected, with patterns characteristic of nonsense-mediated decay. 14% of 4,234 rearrangements caused transcriptional abnormalities, including exon skips, exon reusage, fusions, and premature polyadenylation. We found productive, stable transcription from sense-to-antisense gene fusions and gene-to-intergenic rearrangements, suggesting that these mutation classes drive more transcriptional disruption than previously suspected. Systematic integration of transcriptome with genome data reveals the rules by which transcriptional machinery interprets somatic mutation.

  2. Small RNAs targeting transcription start site induce heparanase silencing through interference with transcription initiation in human cancer cells.

    Directory of Open Access Journals (Sweden)

    Guosong Jiang

    Full Text Available Heparanase (HPA, an endo-h-D-glucuronidase that cleaves the heparan sulfate chain of heparan sulfate proteoglycans, is overexpressed in majority of human cancers. Recent evidence suggests that small interfering RNA (siRNA induces transcriptional gene silencing (TGS in human cells. In this study, transfection of siRNA against -9/+10 bp (siH3, but not -174/-155 bp (siH1 or -134/-115 bp (siH2 region relative to transcription start site (TSS locating at 101 bp upstream of the translation start site, resulted in TGS of heparanase in human prostate cancer, bladder cancer, and gastric cancer cells in a sequence-specific manner. Methylation-specific PCR and bisulfite sequencing revealed no DNA methylation of CpG islands within heparanase promoter in siH3-transfected cells. The TGS of heparanase did not involve changes of epigenetic markers histone H3 lysine 9 dimethylation (H3K9me2, histone H3 lysine 27 trimethylation (H3K27me3 or active chromatin marker acetylated histone H3 (AcH3. The regulation of alternative splicing was not involved in siH3-mediated TGS. Instead, siH3 interfered with transcription initiation via decreasing the binding of both RNA polymerase II and transcription factor II B (TFIIB, but not the binding of transcription factors Sp1 or early growth response 1, on the heparanase promoter. Moreover, Argonaute 1 and Argonaute 2 facilitated the decreased binding of RNA polymerase II and TFIIB on heparanase promoter, and were necessary in siH3-induced TGS of heparanase. Stable transfection of the short hairpin RNA construct targeting heparanase TSS (-9/+10 bp into cancer cells, resulted in decreased proliferation, invasion, metastasis and angiogenesis of cancer cells in vitro and in athymic mice models. These results suggest that small RNAs targeting TSS can induce TGS of heparanase via interference with transcription initiation, and significantly suppress the tumor growth, invasion, metastasis and angiogenesis of cancer cells.

  3. Transcription factor co-repressors in cancer biology: roles and targeting.

    Science.gov (United States)

    Battaglia, Sebastiano; Maguire, Orla; Campbell, Moray J

    2010-06-01

    Normal transcription displays a high degree of flexibility over the choice, timing and magnitude of mRNA expression levels that tend to oscillate and cycle. These processes allow for combinatorial actions, feedback control and fine-tuning. A central role has emerged for the transcriptional co-repressor proteins such as NCOR1, NCOR2/SMRT, CoREST and CTBPs, to control the actions of many transcriptional factors, in large part, by recruitment and activation of a range of chromatin remodeling enzymes. Thus, co-repressors and chromatin remodeling factors are recruited to transcription factors at specific promoter/enhancer regions and execute changes in the chromatin structure. The specificity of this recruitment is controlled in a spatial-temporal manner. By playing a central role in transcriptional control, as they move and target transcription factors, co-repressors act as a key driver in the epigenetic economy of the nucleus. Co-repressor functions are selectively distorted in malignancy, by both loss and gain of function and contribute to the generation of transcriptional rigidity. Features of transcriptional rigidity apparent in cancer cells include the distorted signaling of nuclear receptors and the WNTs/beta-catenin axis. Understanding and predicting the consequences of altered co-repressor expression patterns in cancer cells has diagnostic and prognostic significance, and also have the capacity to be targeted through selective epigenetic therapies.

  4. Human DJ-1-specific Transcriptional Activation of Tyrosine Hydroxylase Gene*

    Science.gov (United States)

    Ishikawa, Shizuma; Taira, Takahiro; Takahashi-Niki, Kazuko; Niki, Takeshi; Ariga, Hiroyoshi; Iguchi-Ariga, Sanae M. M.

    2010-01-01

    Loss-of-function mutation in the DJ-1 gene causes a subset of familial Parkinson disease. The mechanism underlying DJ-1-related selective vulnerability in the dopaminergic pathway is, however, not known. DJ-1 has multiple functions, including transcriptional regulation, and one of transcriptional target genes for DJ-1 is the tyrosine hydroxylase (TH) gene, the product of which is a key enzyme for dopamine biosynthesis. It has been reported that DJ-1 is a neuroprotective transcriptional co-activator that sequesters a transcriptional co-repressor polypyrimidine tract-binding protein-associated splicing factor (PSF) from the TH gene promoter. In this study, we found that knockdown of human DJ-1 by small interference RNA in human dopaminergic cell lines attenuated TH gene expression and 4-dihydroxy-l-phenylalanine production but that knockdown or knock-out of mouse DJ-1 in mouse cell lines or in mice did not affect such expression and TH activity. In reporter assays using the human TH gene promoter linked to the luciferase gene, stimulation of TH promoter activity was observed in human cells, but not mouse cells, that had been transfected with DJ-1. Although human DJ-1 and mouse DJ-1 were associated either with human or with mouse PSF, TH promoter activity inhibited by PSF was restored by human DJ-1 but not by mouse DJ-1. Chromatin immunoprecipitation assays revealed that the complex of PSF with DJ-1 bound to the human but not the mouse TH gene promoter. These results suggest a novel species-specific transcriptional regulation of the TH promoter by DJ-1 and one of the mechanisms for no reduction of TH in DJ-1-knock-out mice. PMID:20938049

  5. DNA-binding specificities of human transcription factors.

    Science.gov (United States)

    Jolma, Arttu; Yan, Jian; Whitington, Thomas; Toivonen, Jarkko; Nitta, Kazuhiro R; Rastas, Pasi; Morgunova, Ekaterina; Enge, Martin; Taipale, Mikko; Wei, Gonghong; Palin, Kimmo; Vaquerizas, Juan M; Vincentelli, Renaud; Luscombe, Nicholas M; Hughes, Timothy R; Lemaire, Patrick; Ukkonen, Esko; Kivioja, Teemu; Taipale, Jussi

    2013-01-17

    Although the proteins that read the gene regulatory code, transcription factors (TFs), have been largely identified, it is not well known which sequences TFs can recognize. We have analyzed the sequence-specific binding of human TFs using high-throughput SELEX and ChIP sequencing. A total of 830 binding profiles were obtained, describing 239 distinctly different binding specificities. The models represent the majority of human TFs, approximately doubling the coverage compared to existing systematic studies. Our results reveal additional specificity determinants for a large number of factors for which a partial specificity was known, including a commonly observed A- or T-rich stretch that flanks the core motifs. Global analysis of the data revealed that homodimer orientation and spacing preferences, and base-stacking interactions, have a larger role in TF-DNA binding than previously appreciated. We further describe a binding model incorporating these features that is required to understand binding of TFs to DNA.

  6. Comprehensive analysis of the transcriptional profile of the Mediator complex across human cancer types.

    Science.gov (United States)

    Syring, Isabella; Klümper, Niklas; Offermann, Anne; Braun, Martin; Deng, Mario; Boehm, Diana; Queisser, Angela; von Mässenhausen, Anne; Brägelmann, Johannes; Vogel, Wenzel; Schmidt, Doris; Majores, Michael; Schindler, Anne; Kristiansen, Glen; Müller, Stefan C; Ellinger, Jörg; Shaikhibrahim, Zaki; Perner, Sven

    2016-04-26

    The Mediator complex is a key regulator of gene transcription and several studies demonstrated altered expressions of particular subunits in diverse human diseases, especially cancer. However a systematic study deciphering the transcriptional expression of the Mediator across different cancer entities is still lacking.We therefore performed a comprehensive in silico cancer vs. benign analysis of the Mediator complex subunits (MEDs) for 20 tumor entities using Oncomine datasets. The transcriptional expression profiles across almost all cancer entities showed differentially expressed MEDs as compared to benign tissue. Differential expression of MED8 in renal cell carcinoma (RCC) and MED12 in lung cancer (LCa) were validated and further investigated by immunohistochemical staining on tissue microarrays containing large numbers of specimen. MED8 in clear cell RCC (ccRCC) associated with shorter survival and advanced TNM stage and showed higher expression in metastatic than primary tumors. In vitro, siRNA mediated MED8 knockdown significantly impaired proliferation and motility in ccRCC cell lines, hinting at a role for MED8 to serve as a novel therapeutic target in ccRCC. Taken together, our Mediator complex transcriptome proved to be a valid tool for identifying cancer-related shifts in Mediator complex composition, revealing that MEDs do exhibit cancer specific transcriptional expression profiles.

  7. Tissue-specificity of proteoglycans expression in different cancers

    Directory of Open Access Journals (Sweden)

    A. V. Suhovskih

    2016-01-01

    Full Text Available Background. Proteoglycans (PGs are complex glycosylated molecules playing an important role in cell-cell and cell-matrix interactions and signaling. Expression of PGs and their expression pattern change considerably during malignant transformation of mammalian cells and tissues.Objective. The aim of our work was to investigate tissue-specificity of main PGs expression (glypican-1, perlecan, syndecan-1, aggrecan, versican, CSPG4/NG2, brevican, decorin, lumican in normal cells (fibroblasts and normal epithelial prostate cells PNT2 and in different human cancer cell lines (prostate, breast, lung, brain, kidney. Expression patterns of main PGs were determined in these cells using reverse transcription polymerase chain reaction analysis and immunocytochemical staining.Results. It was shown that fibroblasts actively expressed PGs, and PNT2 cells had lower (5–6-fold expression levels of a limited set of PG. In different cancer cell lines, overall transcriptional activities of PGs varied up to 10-fold, although their expression patterns had tissue-specific properties (for example, expression of syndecan-1 is more specific for prostate cancer cells, while perlecan is typical for lung cancer cell lines.Conclusions. Along with this, variability of the PG expression patterns in cell lines of the same tissue of origin was shown, suggesting a possible contribution of the variable PGs expression to intratumoural heterogeneity of cancer cells and their potential as perspective biomarker (s for personalised cancer diagnostics.

  8. Mathematical modeling of DNA's transcription process for the cancer study

    Science.gov (United States)

    Morales-Peñaloza, A.; Meza-López, C. D.; Godina-Nava, J. J.

    2012-10-01

    The cancer is a phenomenon caused by an anomaly in the DNA's transcription process, therefore it is necessary to known how such anomaly is generated in order to implement alternative therapies to combat it. We propose to use mathematical modeling to treat the problem. Is implemented a simulation of the process of transcription and are studied the transport properties in the heterogeneous case using nonlinear dynamics.

  9. Transcription factor FOXA2-centered transcriptional regulation network in non-small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Sang-Min; An, Joo-Hee; Kim, Chul-Hong; Kim, Jung-Woong, E-mail: jungkim@cau.ac.kr; Choi, Kyung-Hee, E-mail: khchoi@cau.ac.kr

    2015-08-07

    Lung cancer is the leading cause of cancer-mediated death. Although various therapeutic approaches are used for lung cancer treatment, these mainly target the tumor suppressor p53 transcription factor, which is involved in apoptosis and cell cycle arrest. However, p53-targeted therapies have limited application in lung cancer, since p53 is found to be mutated in more than half of lung cancers. In this study, we propose tumor suppressor FOXA2 as an alternative target protein for therapies against lung cancer and reveal a possible FOXA2-centered transcriptional regulation network by identifying new target genes and binding partners of FOXA2 by using various screening techniques. The genes encoding Glu/Asp-rich carboxy-terminal domain 2 (CITED2), nuclear receptor subfamily 0, group B, member 2 (NR0B2), cell adhesion molecule 1 (CADM1) and BCL2-associated X protein (BAX) were identified as putative target genes of FOXA2. Additionally, the proteins including highly similar to heat shock protein HSP 90-beta (HSP90A), heat shock 70 kDa protein 1A variant (HSPA1A), histone deacetylase 1 (HDAC1) and HDAC3 were identified as novel interacting partners of FOXA2. Moreover, we showed that FOXA2-dependent promoter activation of BAX and p21 genes is significantly reduced via physical interactions between the identified binding partners and FOXA2. These results provide opportunities to understand the FOXA2-centered transcriptional regulation network and novel therapeutic targets to modulate this network in p53-deficient lung cancer. - Highlights: • Identification of new target genes of FOXA2. • Identifications of novel interaction proteins of FOXA2. • Construction of FOXA2-centered transcriptional regulatory network in non-small cell lung cancer.

  10. Screening Driving Transcription Factors in the Processing of Gastric Cancer

    Directory of Open Access Journals (Sweden)

    Guangzhong Xu

    2016-01-01

    Full Text Available Background. Construction of the transcriptional regulatory network can provide additional clues on the regulatory mechanisms and therapeutic applications in gastric cancer. Methods. Gene expression profiles of gastric cancer were downloaded from GEO database for integrated analysis. All of DEGs were analyzed by GO enrichment and KEGG pathway enrichment. Transcription factors were further identified and then a global transcriptional regulatory network was constructed. Results. By integrated analysis of the six eligible datasets (340 cases and 43 controls, a bunch of 2327 DEGs were identified, including 2100 upregulated and 227 downregulated DEGs. Functional enrichment analysis of DEGs showed that digestion was a significantly enriched GO term for biological process. Moreover, there were two important enriched KEGG pathways: cell cycle and homologous recombination. Furthermore, a total of 70 differentially expressed TFs were identified and the transcriptional regulatory network was constructed, which consisted of 566 TF-target interactions. The top ten TFs regulating most downstream target genes were BRCA1, ARID3A, EHF, SOX10, ZNF263, FOXL1, FEV, GATA3, FOXC1, and FOXD1. Most of them were involved in the carcinogenesis of gastric cancer. Conclusion. The transcriptional regulatory network can help researchers to further clarify the underlying regulatory mechanisms of gastric cancer tumorigenesis.

  11. Experimental strategies for studying transcription factor-DNA binding specificities.

    Science.gov (United States)

    Geertz, Marcel; Maerkl, Sebastian J

    2010-12-01

    Specific binding of transcription factors (TFs) determines in a large part the connectivity of gene regulatory networks as well as the quantitative level of gene expression. A multiplicity of both experimental and computational methods is currently used to discover and characterize the underlying TF-DNA interactions. Experimental methods can be further subdivided into in vitro- and in vivo-based approaches, each accenting different aspects of TF-binding events. In this review we summarize the flexibility and performance of a selection of both types of experimental methods. In conclusion, we argue that a serial combination of methods with different throughput and data type constitutes an optimal experimental strategy.

  12. A novel meta-analysis approach of cancer transcriptomes reveals prevailing transcriptional networks in cancer cells.

    Science.gov (United States)

    Niida, Atsushi; Imoto, Seiya; Nagasaki, Masao; Yamaguchi, Rui; Miyano, Satoru

    2010-01-01

    Although microarray technology has revealed transcriptomic diversities underlining various cancer phenotypes, transcriptional programs controlling them have not been well elucidated. To decode transcriptional programs governing cancer transcriptomes, we have recently developed a computational method termed EEM, which searches for expression modules from prescribed gene sets defined by prior biological knowledge like TF binding motifs. In this paper, we extend our EEM approach to predict cancer transcriptional networks. Starting from functional TF binding motifs and expression modules identified by EEM, we predict cancer transcriptional networks containing regulatory TFs, associated GO terms, and interactions between TF binding motifs. To systematically analyze transcriptional programs in broad types of cancer, we applied our EEM-based network prediction method to 122 microarray datasets collected from public databases. The data sets contain about 15000 experiments for tumor samples of various tissue origins including breast, colon, lung etc. This EEM based meta-analysis successfully revealed a prevailing cancer transcriptional network which functions in a large fraction of cancer transcriptomes; they include cell-cycle and immune related sub-networks. This study demonstrates broad applicability of EEM, and opens a way to comprehensive understanding of transcriptional networks in cancer cells.

  13. Identification of Claudin 1 Transcript Variants in Human Invasive Breast Cancer

    Science.gov (United States)

    Zelinski, Teresa; Xie, Jiuyong; Cooper, Steven; Penner, Carla; Leygue, Etienne; Myal, Yvonne

    2016-01-01

    Background The claudin 1 tight junction protein, solely responsible for the barrier function of epithelial cells, is frequently down regulated in invasive human breast cancer. The underlying mechanism is largely unknown, and no obvious mutations in the claudin 1 gene (CLDN1) have been identified to date in breast cancer. Since many genes have been shown to undergo deregulation through splicing and mis-splicing events in cancer, the current study was undertaken to investigate the occurrence of transcript variants for CLDN1 in human invasive breast cancer. Methods RT-PCR analysis of CLDN1 transcripts was conducted on RNA isolated from 12 human invasive breast tumors. The PCR products from each tumor were resolved by agarose gel electrophoresis, cloned and sequenced. Genomic DNA was also isolated from each of the 12 tumors and amplified using PCR CLDN1 specific primers. Sanger sequencing and single nucleotide polymorphism (SNP) analyses were conducted. Results A number of CLDN1 transcript variants were identified in these breast tumors. All variants were shorter than the classical CLDN1 transcript. Sequence analysis of the PCR products revealed several splice variants, primarily in exon 1 of CLDN1; resulting in truncated proteins. One variant, V1, resulted in a premature stop codon and thus likely led to nonsense mediated decay. Interestingly, another transcript variant, V2, was not detected in normal breast tissue samples. Further, sequence analysis of the tumor genomic DNA revealed SNPs in 3 of the 4 coding exons, including a rare missense SNP (rs140846629) in exon 2 which represents an Ala124Thr substitution. To our knowledge this is the first report of CLDN1 transcript variants in human invasive breast cancer. These studies suggest that alternate splicing may also be a mechanism by which claudin 1 is down regulated at both the mRNA and protein levels in invasive breast cancer and may provide novel insights into how CLDN1 is reduced or silenced in human breast

  14. Transcriptional Selectivity of Epigenetic Therapy in Cancer.

    Science.gov (United States)

    Sato, Takahiro; Cesaroni, Matteo; Chung, Woonbok; Panjarian, Shoghag; Tran, Anthony; Madzo, Jozef; Okamoto, Yasuyuki; Zhang, Hanghang; Chen, Xiaowei; Jelinek, Jaroslav; Issa, Jean-Pierre J

    2017-01-15

    A central challenge in the development of epigenetic cancer therapy is the ability to direct selectivity in modulating gene expression for disease-selective efficacy. To address this issue, we characterized by RNA-seq, DNA methylation, and ChIP-seq analyses the epigenetic response of a set of colon, breast, and leukemia cancer cell lines to small-molecule inhibitors against DNA methyltransferases (DAC), histone deacetylases (Depsi), histone demethylases (KDM1A inhibitor S2101), and histone methylases (EHMT2 inhibitor UNC0638 and EZH2 inhibitor GSK343). We also characterized the effects of DAC as combined with the other compounds. Averaged over the cancer cell models used, we found that DAC affected 8.6% of the transcriptome and that 95.4% of the genes affected were upregulated. DAC preferentially regulated genes that were silenced in cancer and that were methylated at their promoters. In contrast, Depsi affected the expression of 30.4% of the transcriptome but showed little selectivity for gene upregulation or silenced genes. S2101, UNC0638, and GSK343 affected only 2% of the transcriptome, with UNC0638 and GSK343 preferentially targeting genes marked with H3K9me2 or H3K27me3, respectively. When combined with histone methylase inhibitors, the extent of gene upregulation by DAC was extended while still maintaining selectivity for DNA-methylated genes and silenced genes. However, the genes upregulated by combination treatment exhibited limited overlap, indicating the possibility of targeting distinct sets of genes based on different epigenetic therapy combinations. Overall, our results demonstrated that DNA methyltransferase inhibitors preferentially target cancer-relevant genes and can be combined with inhibitors targeting histone methylation for synergistic effects while still maintaining selectivity. Cancer Res; 77(2); 470-81. ©2016 AACR.

  15. Transcriptional regulation of lung development: emergence of specificity

    Directory of Open Access Journals (Sweden)

    Minoo Parviz

    2000-09-01

    Full Text Available Abstract The lung is the product of a set of complex developmental interactions between two distinct tissues, the endodermally derived epithelium and the mesoderm. Each tissue contributes to lung development by fine-tuning the spatial and temporal pattern of gene expression for a distinct array of signaling molecules, transcriptional molecules and molecules related to the extracellular matrix. Morphoregulatory transcriptional factors such as NKX2.1 have the crucial role of connecting the cell–cell crosstalk to the activation or repression of gene expression through which processes such as cellular proliferation, migration, differentiation and apoptosis can be controlled. Although none of the factors participating in lung development are exclusively lung-specific, their unique combinations and interactions constitute the basis for emergence of lung structural and functional specificities. An understanding of the individual molecules and their unique interactions in the context of lung development is necessary for the construction of a morphogenetic map for this vital organ as well as for the development of rational and innovative approaches to congenital and induced lung disease.

  16. Utilization of Rad51C promoter for transcriptional targeting of cancer cells

    Science.gov (United States)

    Li, Zhen; Jiang, Ying; Tian, Xiao; Seluanov, Andrei; Gorbunova, Vera; Mao, Zhiyong

    2014-01-01

    Cancer therapy that specifically targets malignant cells with minimal or no toxicity to normal tissue has been a long-standing goal of cancer research. Rad51 expression is elevated in a wide range of cancers and Rad51 promoter has been used to transcriptionally target tumor cells, however, a large size of Rad51 promoter limits its application for gene therapy. To identify novel tumor-specific promoters, we examined expression levels of Rad51 paralogs, Rad51B, Rad51C, and Rad51D as well as Rad52 in a panel of normal and tumor cell lines. We found that Rad51C is significantly overexpressed in cancer cells. The expression was up-regulated by approximately 6-fold at the mRNA level and 9-fold at the protein level. Interestingly, the 2064 bp long Rad51C promoter fragment was approximately 300-fold higher in cancer cells than in normal cells. A construct containing Rad51C promoter driving diphtheria toxin A efficiently killed several types of cancer cells with very mild effect to normal cells. These results underscore the potential of targeting the homologous recombination pathway in cancer cells and provide a proof of principle that the Rad51C promoter fragment can be used to transcriptionally target cancer cells. PMID:24742710

  17. High-throughput hacking of the methylation patterns in breast cancer by in vitro transcription and thymidine-specific cleavage mass array on MALDI-TOF silico-chip.

    Science.gov (United States)

    Radpour, Ramin; Haghighi, Mahdi Montazer; Fan, Alex Xiu-Cheng; Torbati, Peyman Mohammadi; Hahn, Sinuhe; Holzgreve, Wolfgang; Zhong, Xiao Yan

    2008-11-01

    Over the last decade, the rapidly expanding interest in the involvement of DNA methylation in developmental mechanisms, human diseases, and malignancies has highlighted the need for an accurate, quantitative, and high-throughput assay. Existing methods are limited and are often too laborious for high-throughput analysis or inadequate for quantitative analysis of methylation. Recently, a MassCLEAVE assay has been developed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry to analyze base-specific methylation patterns after bisulfite conversion. To find an efficient and more cost-effective high-throughput method for analyzing the methylation profile in breast cancer, we developed a method that allows for the simultaneous detection of multiple target CpG residues by using thymidine-specific cleavage mass array on matrix-assisted laser desorption/ionization time-of-flight silicon chips. We used this novel quantitative approach for the analysis of DNA methylation patterns of four tumor suppressor genes in 96 breast tissue samples from 48 patients with breast cancer. Each individual contributed a breast cancer specimen and corresponding adjacent normal tissue. We evaluated the accuracy of the approach and implemented critical improvements in experimental design.

  18. The Complex Role of the ZNF224 Transcription Factor in Cancer.

    Science.gov (United States)

    Cesaro, E; Sodaro, G; Montano, G; Grosso, M; Lupo, A; Costanzo, P

    2017-01-01

    ZNF224 is a member of the Kruppel-associated box zinc finger proteins (KRAB-ZFPs) family. It was originally identified as a transcriptional repressor involved in gene-specific silencing through the recruitment of the corepressor KAP1, chromatin-modifying activities, and the arginine methyltransferase PRMT5 on the promoter of its target genes. Recent findings indicate that ZNF224 can behave both as a tumor suppressor or an oncogene in different human cancers. The transcriptional regulatory properties of ZNF224 in these systems appear to be complex and influenced by specific sets of interactors. ZNF224 can also act as a transcription cofactor for other DNA-binding proteins. A role for ZNF224 in transcriptional activation has also emerged. Here, we review the state of the literature supporting both roles of ZNF224 in cancer. We also examine the functional activity of ZNF224 as a transcription factor and the influence of protein partners on its dual behavior. Increasing information on the mechanism through which ZNF224 can operate could lead to the identification of agents capable of modulating ZNF224 function, thus potentially paving the way to new therapeutic strategies for treatment of cancer.

  19. Identification of Transcription Factors for Lineage-Specific ESC Differentiation

    Science.gov (United States)

    Yamamizu, Kohei; Piao, Yulan; Sharov, Alexei A.; Zsiros, Veronika; Yu, Hong; Nakazawa, Kazu; Schlessinger, David; Ko, Minoru S.H.

    2013-01-01

    Summary A network of transcription factors (TFs) determines cell identity, but identity can be altered by overexpressing a combination of TFs. However, choosing and verifying combinations of TFs for specific cell differentiation have been daunting due to the large number of possible combinations of ∼2,000 TFs. Here, we report the identification of individual TFs for lineage-specific cell differentiation based on the correlation matrix of global gene expression profiles. The overexpression of identified TFs—Myod1, Mef2c, Esx1, Foxa1, Hnf4a, Gata2, Gata3, Myc, Elf5, Irf2, Elf1, Sfpi1, Ets1, Smad7, Nr2f1, Sox11, Dmrt1, Sox9, Foxg1, Sox2, or Ascl1—can direct efficient, specific, and rapid differentiation into myocytes, hepatocytes, blood cells, and neurons. Furthermore, transfection of synthetic mRNAs of TFs generates their appropriate target cells. These results demonstrate both the utility of this approach to identify potent TFs for cell differentiation, and the unanticipated capacity of single TFs directly guides differentiation to specific lineage fates. PMID:24371809

  20. Transcription factor FOXA2-centered transcriptional regulation network in non-small cell lung cancer.

    Science.gov (United States)

    Jang, Sang-Min; An, Joo-Hee; Kim, Chul-Hong; Kim, Jung-Woong; Choi, Kyung-Hee

    2015-08-01

    Lung cancer is the leading cause of cancer-mediated death. Although various therapeutic approaches are used for lung cancer treatment, these mainly target the tumor suppressor p53 transcription factor, which is involved in apoptosis and cell cycle arrest. However, p53-targeted therapies have limited application in lung cancer, since p53 is found to be mutated in more than half of lung cancers. In this study, we propose tumor suppressor FOXA2 as an alternative target protein for therapies against lung cancer and reveal a possible FOXA2-centered transcriptional regulation network by identifying new target genes and binding partners of FOXA2 by using various screening techniques. The genes encoding Glu/Asp-rich carboxy-terminal domain 2 (CITED2), nuclear receptor subfamily 0, group B, member 2 (NR0B2), cell adhesion molecule 1 (CADM1) and BCL2-associated X protein (BAX) were identified as putative target genes of FOXA2. Additionally, the proteins including highly similar to heat shock protein HSP 90-beta (HSP90A), heat shock 70 kDa protein 1A variant (HSPA1A), histone deacetylase 1 (HDAC1) and HDAC3 were identified as novel interacting partners of FOXA2. Moreover, we showed that FOXA2-dependent promoter activation of BAX and p21 genes is significantly reduced via physical interactions between the identified binding partners and FOXA2. These results provide opportunities to understand the FOXA2-centered transcriptional regulation network and novel therapeutic targets to modulate this network in p53-deficient lung cancer.

  1. Reconstructing the Prostate Cancer Transcriptional Regulatory Network

    Science.gov (United States)

    2010-09-01

    Jul 3;4(7):e6146. Lapointe J, Li C, Higgins JP, van de Rijn M, Bair E, Montgomery K, Ferrari M, Egevad L, Rayford W, Bergerheim U, Ekman P...Adrienne Pollack for the DR-Integrator logo art. Funding: National Institutes of Health (CA97139 and CA112016 to J.R.P.); Paul & Daisy Soros...RO1 AG14358, NIH RO1 CA098415, NIH RO1 CA95717, NIH U24 CA80295, DOD PC060595, Fred Hutchinson Cancer Research Center Institutional Funds, Paul and

  2. Identification of Post-Transcriptional Modulators of Breast Cancer Transcription Factor Activity Using MINDy

    Science.gov (United States)

    Campbell, Thomas M.; Castro, Mauro A. A.; Ponder, Bruce A. J.

    2016-01-01

    We have recently identified transcription factors (TFs) that are key drivers of breast cancer risk. To better understand the pathways or sub-networks in which these TFs mediate their function we sought to identify upstream modulators of their activity. We applied the MINDy (Modulator Inference by Network Dynamics) algorithm to four TFs (ESR1, FOXA1, GATA3 and SPDEF) that are key drivers of estrogen receptor-positive (ER+) breast cancer risk, as well as cancer progression. Our computational analysis identified over 500 potential modulators. We assayed 189 of these and identified 55 genes with functional characteristics that were consistent with a role as TF modulators. In the future, the identified modulators may be tested as potential therapeutic targets, able to alter the activity of TFs that are critical in the development of breast cancer. PMID:27997592

  3. Transcriptional activation of human CDCA8 gene regulated by transcription factor NF-Y in embryonic stem cells and cancer cells.

    Science.gov (United States)

    Dai, Can; Miao, Cong-Xiu; Xu, Xiao-Ming; Liu, Lv-Jun; Gu, Yi-Fan; Zhou, Di; Chen, Lian-Sheng; Lin, Ge; Lu, Guang-Xiu

    2015-09-11

    The cell division cycle associated 8 (CDCA8) gene plays an important role in mitosis. Overexpression of CDCA8 was reported in some human cancers and is required for cancer growth and progression. We found CDCA8 expression was also high in human ES cells (hESCs) but dropped significantly upon hESC differentiation. However, the regulation of CDCA8 expression has not yet been studied. Here, we characterized the CDCA8 promoter and identified its cis-elements and transcription factors. Three transcription start sites were identified. Reporter gene assays revealed that the CDCA8 promoter was activated in hESCs and cancer cell lines. The promoter drove the reporter expression specifically to pluripotent cells during early mouse embryo development and to tumor tissues in tumor-bearing mice. These results indicate that CDCA8 is transcriptionally activated in hESCs and cancer cells. Mechanistically, two key activation elements, bound by transcription factor NF-Y and CREB1, respectively, were identified in the CDCA8 basic promoter by mutation analyses and electrophoretic motility shift assays. NF-Y binding is positively correlated with promoter activities in different cell types. Interestingly, the NF-YA subunit, binding to the promoter, is primarily a short isoform in hESCs and a long isoform in cancer cells, indicating a different activation mechanism of the CDCA8 transcription between hESCs and cancer cells. Finally, enhanced CDCA8 promoter activities by NF-Y overexpression and reduced CDCA8 transcription by NF-Y knockdown further verified that NF-Y is a positive regulator of CDCA8 transcription. Our study unearths the molecular mechanisms underlying the activation of CDCA8 expression in hESCs and cancer cells, which provides a better understanding of its biological functions.

  4. Tissue Specific Promoters in Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    A. R. Rama

    2015-01-01

    Full Text Available Colorectal carcinoma is the third most prevalent cancer in the world. In the most advanced stages, the use of chemotherapy induces a poor response and is usually accompanied by other tissue damage. Significant progress based on suicide gene therapy has demonstrated that it may potentiate the classical cytotoxic effects in colorectal cancer. The inconvenience still rests with the targeting and the specificity efficiency. The main target of gene therapy is to achieve an effective vehicle to hand over therapeutic genes safely into specific cells. One possibility is the use of tumor-specific promoters overexpressed in cancers. They could induce a specific expression of therapeutic genes in a given tumor, increasing their localized activity. Several promoters have been assayed into direct suicide genes to cancer cells. This review discusses the current status of specific tumor-promoters and their great potential in colorectal carcinoma treatment.

  5. Targeting Transcriptional Addictions In Small Cell Lung Cancer With a Covalent CDK7 Inhibitor

    Science.gov (United States)

    Christensen, Camilla L.; Kwiatkowski, Nicholas; Abraham, Brian J.; Carretero, Julian; Al-shahrour, Fatima; Zhang, Tinghu; Chipumuro, Edmond; Herter-Sprie, Grit S.; Akbay, Esra A.; Altabef, Abigail; Zhang, Jianming; Shimamura, Takeshi; Capelletti, Marzia; Reibel, Jakob B.; Cavanaugh, Jillian; Gao, Peng; Liu, Yan; Michaelsen, Signe R.; Poulsen, Hans S.; Aref, Amir R.; Barbie, David A.; Bradner, James E.; George, Rani; Gray, Nathanael S.; Young, Richard A.; Wong, Kwok-Kin

    2014-01-01

    SUMMARY Small cell lung cancer (SCLC) is an aggressive disease with high mortality. The identification of effective pharmacological strategies to target SCLC biology represents an urgent need. Using a high-throughput cellular screen of a diverse chemical library we observe that SCLC is sensitive to transcription-targeting drugs, and in particular to THZ1, a recent identified covalent inhibitor of cyclin-dependent kinase 7 (CDK7). We find that expression of super-enhancer associated transcription factor genes including MYC family proto-oncogenes and neuroendocrine lineage-specific factors are highly vulnerability to THZ1 treatment. We propose that downregulation of these transcription factors contributes, in part, to SCLC sensitivity to transcriptional inhibitors and that THZ1 represents a prototype drug for tailored SCLC therapy. PMID:25490451

  6. Gene transcriptional networks integrate microenvironmental signals in human breast cancer.

    Science.gov (United States)

    Xu, Ren; Mao, Jian-Hua

    2011-04-01

    A significant amount of evidence shows that microenvironmental signals generated from extracellular matrix (ECM) molecules, soluble factors, and cell-cell adhesion complexes cooperate at the extra- and intracellular level. This synergetic action of microenvironmental cues is crucial for normal mammary gland development and breast malignancy. To explore how the microenvironmental genes coordinate in human breast cancer at the genome level, we have performed gene co-expression network analysis in three independent microarray datasets and identified two microenvironment networks in human breast cancer tissues. Network I represents crosstalk and cooperation of ECM microenvironment and soluble factors during breast malignancy. The correlated expression of cytokines, chemokines, and cell adhesion proteins in Network II implicates the coordinated action of these molecules in modulating the immune response in breast cancer tissues. These results suggest that microenvironmental cues are integrated with gene transcriptional networks to promote breast cancer development.

  7. From "magic bullets" to specific cancer immunotherapy.

    Science.gov (United States)

    Riether, Carsten; Schürch, Christian; Ochsenbein, Adrian F

    2013-01-23

    The immune system is able to specifically target antigen-expressing cancer cells. The promise of immunotherapy was to eliminate cancer cells without harming normal tissue and, therefore, with no or very few side effects. Immunotherapy approaches have, for several decades, been tested against several tumours, most often against malignant melanoma. However, although detectable immune responses have regularly been induced, the clinical outcome has often been disappointing. The development of molecular methods and an improved understanding of tumour immunosurveillance led to novel immunotherapy approaches in the last few years. First randomised phase III trials proved that immunotherapy can prolong survival of patients with metastatic melanoma or prostate cancer. The development in the field is very rapid and various molecules (mainly monoclonal antibodies) that activate the immune system are currently being tested in clinical trials and will possibly change our treatment of cancer. The ultimate goal of any cancer therapy and also immunotherapy is to cure cancer. However, this depends on the elimination of the disease originating cancer stem cells. Unfortunately, cancer stem cells seem resistant to most available treatment options. Recent developments in immunotherapy may allow targeting these cancer stem cells specifically in the future. In this review, we summarise the current state of immunotherapy in clinical routine and the expected developments in the near future.

  8. Clever cancer strategies with FoxO transcription factors.

    Science.gov (United States)

    Maiese, Kenneth; Chong, Zhao Zhong; Shang, Yan Chen; Hou, Jinling

    2008-12-15

    Given that cancer and related disorders affect a wide spectrum of the world's population, and in most cases are progressive in nature, it is essential that future care must overcome the present limitations of existing therapies in the absence of toxic side effects. Mammalian forkhead transcription factors of the O class (FoxOs) may fill this niche since these proteins are increasingly considered to represent unique cellular targets directed against human cancer in light of their pro-apoptotic effects and ability to lead to cell cycle arrest. Yet, FoxOs also can significantly affect normal cell survival and longevity, requiring new treatments for neoplastic growth to modulate novel pathways that integrate cell proliferation, metabolism, inflammation and survival. In this respect, members of the FoxO family are extremely compelling to consider since these transcription factors have emerged as versatile proteins that can control angiogenesis, stem cell proliferation, cell adhesion and autoimmune disease. Further elucidation of FoxO protein function during neoplastic growth should continue to lay the foundation for the successful translation of these transcription factors into novel and robust clinical therapies for cancer.

  9. Transcription Factor STAT3 as a Novel Molecular Target for Cancer Prevention

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Ailian; Yang, Zhengduo [Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 (United States); Shen, Yicheng [College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712 (United States); Zhou, Jia [Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555 (United States); Shen, Qiang, E-mail: qshen@mdanderson.org [Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 (United States)

    2014-04-16

    Signal Transducers and Activators of Transcription (STATs) are a family of transcription factors that regulate cell proliferation, differentiation, apoptosis, immune and inflammatory responses, and angiogenesis. Cumulative evidence has established that STAT3 has a critical role in the development of multiple cancer types. Because it is constitutively activated during disease progression and metastasis in a variety of cancers, STAT3 has promise as a drug target for cancer therapeutics. Recently, STAT3 was found to have an important role in maintaining cancer stem cells in vitro and in mouse tumor models, suggesting STAT3 is integrally involved in tumor initiation, progression and maintenance. STAT3 has been traditionally considered as nontargetable or undruggable, and the lag in developing effective STAT3 inhibitors contributes to the current lack of FDA-approved STAT3 inhibitors. Recent advances in cancer biology and drug discovery efforts have shed light on targeting STAT3 globally and/or specifically for cancer therapy. In this review, we summarize current literature and discuss the potential importance of STAT3 as a novel target for cancer prevention and of STAT3 inhibitors as effective chemopreventive agents.

  10. The ubiquitous transcription factor CTCF promotes lineage-specific epigenomic remodeling and establishment of transcriptional networks driving cell differentiation.

    Science.gov (United States)

    Dubois-Chevalier, Julie; Staels, Bart; Lefebvre, Philippe; Eeckhoute, Jérôme

    2015-01-01

    Cell differentiation relies on tissue-specific transcription factors (TFs) that cooperate to establish unique transcriptomes and phenotypes. However, the role of ubiquitous TFs in these processes remains poorly defined. Recently, we have shown that the CCCTC-binding factor (CTCF) is required for adipocyte differentiation through epigenomic remodelling of adipose tissue-specific enhancers and transcriptional activation of Peroxisome proliferator-activated receptor gamma (PPARG), the main driver of the adipogenic program (PPARG), and its target genes. Here, we discuss how these findings, together with the recent literature, illuminate a functional role for ubiquitous TFs in lineage-determining transcriptional networks.

  11. The transcription factor REST is lost in aggressive breast cancer.

    Directory of Open Access Journals (Sweden)

    Matthew P Wagoner

    2010-06-01

    Full Text Available The function of the tumor suppressor RE1 silencing transcription factor (REST is lost in colon and small cell lung cancers and is known to induce anchorage-independent growth in human mammary epithelial cells. However, nothing is currently known about the role of this tumor suppressor in breast cancer. Here, we test the hypothesis that loss of REST function plays a role in breast cancer. To assay breast tumors for REST function, we developed a 24-gene signature composed of direct targets of the transcriptional repressor. Using the 24- gene signature, we identified a previously undefined RESTless breast tumor subtype. Using gene set enrichment analysis, we confirmed the aberrant expression of REST target genes in the REST-less tumors, including neuronal gene targets of REST that are normally not expressed outside the nervous system. Examination of REST mRNA identified a truncated splice variant of REST present in the REST-less tumor population, but not other tumors. Histological analysis of 182 outcome-associated breast tumor tissues also identified a subpopulation of tumors that lack full-length, functional REST and over-express the neuroendocrine marker and REST target gene Chromogranin A. Importantly, patients whose tumors were found to be REST-less using either the 24-gene signature or histology had significantly poorer prognosis and were more than twice as likely to undergo disease recurrence within the first 3 years after diagnosis. We show here that REST function is lost in breast cancer, at least in part via an alternative splicing mechanism. Patients with REST-less breast cancer undergo significantly more early disease recurrence than those with fully functional REST, regardless of estrogen receptor or HER2 status. Importantly, REST status may serve as a predictor of poor prognosis, helping to untangle the heterogeneity inherent in disease course and response to treatment. Additionally, the alternative splicing observed in REST

  12. Effects of the lifestyle habits in breast cancer transcriptional regulation.

    Science.gov (United States)

    Pérez-Solis, Marco Allán; Maya-Nuñez, Guadalupe; Casas-González, Patricia; Olivares, Aleida; Aguilar-Rojas, Arturo

    2016-01-01

    Through research carried out in the last 25 years about the breast cancer etiology, it has been possible to estimate that less than 10 % of patients who are diagnosed with the condition are carriers of some germline or somatic mutation. The clinical reports of breast cancer patients with healthy twins and the development of disease in women without high penetrance mutations detected, warn the participation more factors in the transformation process. The high incidence of mammary adenocarcinoma in the modern woman and the urgent need for new methods of prevention and early detection have demanded more information about the role that environment and lifestyle have on the transformation of mammary gland epithelial cells. Obesity, alcoholism and smoking are factors that have shown a close correlation with the risk of developing breast cancer. And although these conditions affect different cell regulation levels, the study of its effects in the mechanisms of transcriptional and epigenetic regulation is considered critical for a better understanding of the loss of identity of epithelial cells during carcinogenesis of this tissue. The main objective of this review was to establish the importance of changes occurring to transcriptional level in the mammary gland as a consequence of acute or chronic exposure to harmful products such as obesity-causing foods, ethanol and cigarette smoke components. At analyze the main studies related to topic, it has concluded that the understanding of effects caused by the lifestyle factors in performance of the transcriptional mechanisms that determine gene expression of the mammary gland epithelial cells, may help explain the development of this disease in women without genetic propensity and different phenotypic manifestations of this cancer type.

  13. Mammary epithelial morphogenesis and early breast cancer. Evidence of involvement of basal components of the RNA Polymerase I transcription machinery.

    Science.gov (United States)

    Rossetti, Stefano; Wierzbicki, Andrzej J; Sacchi, Nicoletta

    2016-09-16

    Upregulation of RNA Polymerase (Pol I)-mediated transcription of rRNA and increased ribogenesis are hallmarks of breast cancer. According to several datasets, including The Cancer Genome Atlas (TCGA), amplification/upregulation of genes encoding for basal components of the Pol I transcriptional machinery is frequent at different breast cancer stages. Here we show that knock down of the RNA polymerase I-specific transcription initiation factor RRN3 (TIF-IA) in breast cancer cells is sufficient to reduce rRNA synthesis and inhibit cell proliferation, and second that stable ectopic expression of RRN3 in human mammary epithelial (HME1) cells, by increasing rRNA transcription, confers increased sensitivity to the anti-proliferative effects of a selective Pol I inhibitor. Further, RRN3-overexpressing HME1 cells, when grown in in vitro 3-dimensional (3D) culture, develop into morphologically aberrant acinar structures lacking a lumen and filled with proliferative cells, thus acquiring a morphology resembling in situ ductal breast cancer lesions (DCIS). Consequently, interference with RRN3 control of Pol I transcription seems capable of both compromising mammary epithelial morphogenetic processes at early breast cancer stages, and driving breast cancer progression by fostering proliferation.

  14. GABA transporter 1 transcriptional starting site exhibiting tissue specific difference

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    GABA transporter 1(GAT1)takes important roles in multiple physiological processes through the uptake and release of GABA,but the regulation of GAT1 gene expression in different tissues is rarely known.To address the question,first,5' Rapid amplification of cDNA end(RACE)was used to determine GAT1 transcriptional starting sites in neonatal mouse cerebral cortex and intestine,adult mouse brain and adult rat testis.The products of 5'RACE were confirmed by DNA sequencing.We found that the transcript of GAT1 in neonatal mouse cerebral cortex and adult mouse brain starts at the same site(inside of exon 1),while in mouse intestine,GAT1 starts transcription in intron 1,and in rat testis,the transcript of GAT1 has an additional untranslation exon to the 5' direction.

  15. Activation of the Ig Iα1 promoter by the transcription factor Ets-1 triggers Ig Iα1-Cα1 germline transcription in epithelial cancer cells.

    Science.gov (United States)

    Duan, Zhi; Zheng, Hui; Xu, San; Jiang, Yiqun; Liu, Haidan; Li, Ming; Hu, Duosha; Li, Wei; Bode, Ann M; Dong, Zigang; Cao, Ya

    2014-03-01

    Immunoglobulins (Igs) are known to be synthesized and secreted only by B lymphocytes. Class switch recombination (CSR) is a key event that enables B cells to express Igs, and one of the crucial steps for CSR initiation is the germline transcription of Ig genes. Surprisingly, recent studies have demonstrated that the Ig genes are also expressed in some epithelial cancer cells; however, the mechanisms underlying how cancer cells initiate CSR and express Igs are still unknown. In this study, we confirmed that the Ig Iα1 promoter in cancer cell lines was activated by the Ets-1 transcription factor, and the activity of the Ig Iα1 promoter and Ig Iα1-Cα1 germline transcription were attenuated after knockdown of Ets-1 by specific small interfering RNAs (siRNA). Furthermore, the expression of Ets-1 and Igα heavy chain in cancer cells was dose dependently upregulated by TGF-β1. These results indicate that activation of the Ig Iα1 promoter by the transcription factor Ets-1 is a critical pathway and provides a novel mechanism for Ig expression in non-B cell cancers.

  16. Peptide arrays for screening cancer specific peptides.

    Science.gov (United States)

    Ahmed, Sahar; Mathews, Anu Stella; Byeon, Nara; Lavasanifar, Afsaneh; Kaur, Kamaljit

    2010-09-15

    In this paper, we describe a novel method to screen peptides for specific recognition by cancer cells. Seventy peptides were synthesized on a cellulose membrane in an array format, and a direct method to study the peptide-whole cell interaction was developed. The relative binding affinity of the cells for different peptides with respect to a lead 12-mer p160 peptide, identified by phage display, was evaluated using the CyQUANT fluorescence of the bound cells. Screening allowed identification of at least five new peptides that displayed higher affinity (up to 3-fold) for MDA-MB-435 and MCF-7 human cancer cells compared to the p160 peptide. These peptides showed very little binding to the control (noncancerous) human umbilical vein endothelial cells (HUVECs). Three of these peptides were synthesized separately and labeled with fluorescein isothiocyanate (FITC) to study their uptake and interaction with the cancer and control cells using confocal laser scanning microscopy and flow cytometry. The results confirmed the high and specific affinity of an 11-mer peptide 11 (RGDPAYQGRFL) and a 10-mer peptide 18 (WXEAAYQRFL) for the cancer cells versus HUVECs. Peptide 11 binds different receptors on target cancer cells as its sequence contains multiple recognition motifs, whereas peptide 18 binds mainly to the putative p160 receptor. The peptide array-whole cell binding assay reported here is a complementary method to phage display for further screening and optimization of cancer targeting peptides for cancer therapy and diagnosis.

  17. Transcriptional Regulation in Mammalian Cells by Sequence-Specific DNA Binding Proteins

    Science.gov (United States)

    Mitchell, Pamela J.; Tjian, Robert

    1989-07-01

    The cloning of genes encoding mammalian DNA binding transcription factors for RNA polymerase II has provided the opportunity to analyze the structure and function of these proteins. This review summarizes recent studies that define structural domains for DNA binding and transcriptional activation functions in sequence-specific transcription factors. The mechanisms by which these factors may activate transcriptional initiation and by which they may be regulated to achieve differential gene expression are also discussed.

  18. Disease specific productivity of american cancer hospitals.

    Directory of Open Access Journals (Sweden)

    Jeffery A Goldstein

    Full Text Available Research-oriented cancer hospitals in the United States treat and study patients with a range of diseases. Measures of disease specific research productivity, and comparison to overall productivity, are currently lacking.Different institutions are specialized in research of particular diseases.To report disease specific productivity of American cancer hospitals, and propose a summary measure.We conducted a retrospective observational survey of the 50 highest ranked cancer hospitals in the 2013 US News and World Report rankings. We performed an automated search of PubMed and Clinicaltrials.gov for published reports and registrations of clinical trials (respectively addressing specific cancers between 2008 and 2013. We calculated the summed impact factor for the publications. We generated a summary measure of productivity based on the number of Phase II clinical trials registered and the impact factor of Phase II clinical trials published for each institution and disease pair. We generated rankings based on this summary measure.We identified 6076 registered trials and 6516 published trials with a combined impact factor of 44280.4, involving 32 different diseases over the 50 institutions. Using a summary measure based on registered and published clinical trails, we ranked institutions in specific diseases. As expected, different institutions were highly ranked in disease-specific productivity for different diseases. 43 institutions appeared in the top 10 ranks for at least 1 disease (vs 10 in the overall list, while 6 different institutions were ranked number 1 in at least 1 disease (vs 1 in the overall list.Research productivity varies considerably among the sample. Overall cancer productivity conceals great variation between diseases. Disease specific rankings identify sites of high academic productivity, which may be of interest to physicians, patients and researchers.

  19. Transcription Factor Zbtb20 Controls Regional Specification of Mammalian Archicortex

    DEFF Research Database (Denmark)

    Rosenthal, Eva Helga

    2010-01-01

    Combinatorial expression of sets of transcription factors (TFs) along the mammalian cortex controls its subdivision into functional areas. Unlike neocortex, only few recent data suggest genetic mechanisms controlling the regionalization of the archicortex. TF Emx2 plays a crucial role in patterning...... later on becoming restricted exclusively to postmitotic neurons of hippocampus (Hi) proper, dentate gyrus (DG), and two transitory zones, subiculum (S) and retrosplenial cortex (Rsp). Analysis of Zbtb20-/- mice revealed altered cortical patterning at the border between neocortex and archicortex...

  20. Transcription Restores DNA Repair to Heterochromatin, Determining Regional Mutation Rates in Cancer Genomes

    Directory of Open Access Journals (Sweden)

    Christina L. Zheng

    2014-11-01

    Full Text Available Somatic mutations in cancer are more frequent in heterochromatic and late-replicating regions of the genome. We report that regional disparities in mutation density are virtually abolished within transcriptionally silent genomic regions of cutaneous squamous cell carcinomas (cSCCs arising in an XPC−/− background. XPC−/− cells lack global genome nucleotide excision repair (GG-NER, thus establishing differential access of DNA repair machinery within chromatin-rich regions of the genome as the primary cause for the regional disparity. Strikingly, we find that increasing levels of transcription reduce mutation prevalence on both strands of gene bodies embedded within H3K9me3-dense regions, and only to those levels observed in H3K9me3-sparse regions, also in an XPC-dependent manner. Therefore, transcription appears to reduce mutation prevalence specifically by relieving the constraints imposed by chromatin structure on DNA repair. We model this relationship among transcription, chromatin state, and DNA repair, revealing a new, personalized determinant of cancer risk.

  1. Specification of jaw identity by the Hand2 transcription factor

    Science.gov (United States)

    Funato, Noriko; Kokubo, Hiroki; Nakamura, Masataka; Yanagisawa, Hiromi; Saga, Yumiko

    2016-01-01

    Acquisition of the lower jaw (mandible) was evolutionarily important for jawed vertebrates. In humans, syndromic craniofacial malformations often accompany jaw anomalies. The basic helix-loop-helix transcription factor Hand2, which is conserved among jawed vertebrates, is expressed in the neural crest in the mandibular process but not in the maxillary process of the first branchial arch. Here, we provide evidence that Hand2 is sufficient for upper jaw (maxilla)-to-mandible transformation by regulating the expression of homeobox transcription factors in mice. Altered Hand2 expression in the neural crest transformed the maxillae into mandibles with duplicated Meckel’s cartilage, which resulted in an absence of the secondary palate. In Hand2-overexpressing mutants, non-Hox homeobox transcription factors were dysregulated. These results suggest that Hand2 regulates mandibular development through downstream genes of Hand2 and is therefore a major determinant of jaw identity. Hand2 may have influenced the evolutionary acquisition of the mandible and secondary palate. PMID:27329940

  2. Arabidopsis BRCA2 and RAD51 proteins are specifically involved in defense gene transcription during plant immune responses

    Science.gov (United States)

    Wang, Shui; Durrant, Wendy E.; Song, Junqi; Spivey, Natalie W.; Dong, Xinnian

    2010-01-01

    Systemic acquired resistance (SAR) is a plant immune response associated with both transcriptional reprogramming and increased homologous DNA recombination (HR). SNI1 is a negative regulator of SAR and HR, as indicated by the increased basal expression of defense genes and HR in sni1. We found that the sni1 phenotypes are rescued by mutations in BREAST CANCER 2 (BRCA2). In humans, BRCA2 is a mediator of RAD51 in pairing of homologous DNA. Mutations in BRCA2 cause predisposition to breast/ovarian cancers; however, the role of the BRCA2–RAD51 complex in transcriptional regulation remains unclear. In Arabidopsis, both brca2 and rad51 were found to be hypersusceptible not only to genotoxic substances, but also to pathogen infections. A whole-genome microarray analysis showed that downstream of NPR1, BRCA2A is a major regulator of defense-related gene transcription. ChIP demonstrated that RAD51 is specifically recruited to the promoters of defense genes during SAR. This recruitment is dependent on the SAR signal salicylic acid (SA) and on the function of BRCA2. This study provides the molecular evidence showing that the BRCA2–RAD51 complex, known for its function in HR, also plays a direct and specific role in transcription regulation during plant immune responses. PMID:21149701

  3. The sequence-specific transcription factor c-Jun targets Cockayne syndrome protein B to regulate transcription and chromatin structure.

    Directory of Open Access Journals (Sweden)

    Robert J Lake

    2014-04-01

    Full Text Available Cockayne syndrome is an inherited premature aging disease associated with numerous developmental and neurological defects, and mutations in the gene encoding the CSB protein account for the majority of Cockayne syndrome cases. Accumulating evidence suggests that CSB functions in transcription regulation, in addition to its roles in DNA repair, and those defects in this transcriptional activity might contribute to the clinical features of Cockayne syndrome. Transcription profiling studies have so far uncovered CSB-dependent effects on gene expression; however, the direct targets of CSB's transcriptional activity remain largely unknown. In this paper, we report the first comprehensive analysis of CSB genomic occupancy during replicative cell growth. We found that CSB occupancy sites display a high correlation to regions with epigenetic features of promoters and enhancers. Furthermore, we found that CSB occupancy is enriched at sites containing the TPA-response element. Consistent with this binding site preference, we show that CSB and the transcription factor c-Jun can be found in the same protein-DNA complex, suggesting that c-Jun can target CSB to specific genomic regions. In support of this notion, we observed decreased CSB occupancy of TPA-response elements when c-Jun levels were diminished. By modulating CSB abundance, we found that CSB can influence the expression of nearby genes and impact nucleosome positioning in the vicinity of its binding site. These results indicate that CSB can be targeted to specific genomic loci by sequence-specific transcription factors to regulate transcription and local chromatin structure. Additionally, comparison of CSB occupancy sites with the MSigDB Pathways database suggests that CSB might function in peroxisome proliferation, EGF receptor transactivation, G protein signaling and NF-κB activation, shedding new light on the possible causes and mechanisms of Cockayne syndrome.

  4. Amplified in Breast Cancer Regulates Transcription and Translation in Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Aleksandra M. Ochnik

    2016-02-01

    Conclusion: The oncogenic transcription factor AIB1 has a novel role in the regulation of polyribosome recruitment and formation of the translational complex. Combinatorial therapies targeting IGF signaling and mRNA translation in AIB1 expressing breast cancers may have clinical benefit and warrants further investigation.

  5. Pharmacological targeting of the transcription factor SOX18 delays breast cancer in mice

    Science.gov (United States)

    Overman, Jeroen; Fontaine, Frank; Moustaqil, Mehdi; Mittal, Deepak; Sierecki, Emma; Sacilotto, Natalia; Zuegg, Johannes; Robertson, Avril AB; Holmes, Kelly; Salim, Angela A; Mamidyala, Sreeman; Butler, Mark S; Robinson, Ashley S; Lesieur, Emmanuelle; Johnston, Wayne; Alexandrov, Kirill; Black, Brian L; Hogan, Benjamin M; Val, Sarah De; Capon, Robert J; Carroll, Jason S; Bailey, Timothy L; Koopman, Peter; Jauch, Ralf; Smyth, Mark J; Cooper, Matthew A; Gambin, Yann; Francois, Mathias

    2017-01-01

    Pharmacological targeting of transcription factors holds great promise for the development of new therapeutics, but strategies based on blockade of DNA binding, nuclear shuttling, or individual protein partner recruitment have yielded limited success to date. Transcription factors typically engage in complex interaction networks, likely masking the effects of specifically inhibiting single protein-protein interactions. Here, we used a combination of genomic, proteomic and biophysical methods to discover a suite of protein-protein interactions involving the SOX18 transcription factor, a known regulator of vascular development and disease. We describe a small-molecule that is able to disrupt a discrete subset of SOX18-dependent interactions. This compound selectively suppressed SOX18 transcriptional outputs in vitro and interfered with vascular development in zebrafish larvae. In a mouse pre-clinical model of breast cancer, treatment with this inhibitor significantly improved survival by reducing tumour vascular density and metastatic spread. Our studies validate an interactome-based molecular strategy to interfere with transcription factor activity, for the development of novel disease therapeutics. DOI: http://dx.doi.org/10.7554/eLife.21221.001 PMID:28137359

  6. Cancer immunology: the search for specificity.

    Science.gov (United States)

    Old, L J

    1982-01-01

    The major focus of cancer immunology has shifted away from arguments about the validity of the immunosurveillance theory of cancer to the more basic question of tumor-specific antigens. Despite vast effort aimed at demonstrations of such antigens, their existence in the generality of cancer remains unproved. Serological analysis of 3 tumor types, mouse leukemia and sarcoma and human malignant melanoma, has received the most attention, and a rudimentary classification of the surface antigens expressed by these tumors has begun to emerge. The prime candidates for antigens that can be considered tumor specific are the few instances of Class 1 antigens that have now been serologically defined on mouse and human tumors. These antigens show an absolute restriction to individual tumors and are not demonstrable on any other normal or malignant cell type. Biochemical and genetic characterizations of Class 1 antigens represent an essential next step in an evaluation of the significance of these antigens. The surprising features of the thymus leukemia (TL) antigens of the mouse provide insight into the genetic origin of another key class of tumor antigens, i.e., those with characteristic properties of both differentiation and tumor-specific antigens. In normal mice, TL antigens are restricted to cells in the thymus, and strains differ with regard to expression versus nonexpression of TL antigens. Genetic information for TL is universal in mice, however, as leukemias that develop in mice normally lacking TL are found to express TL. What is clear from the past two decades of research in cancer immunology is that a far more detailed knowledge of surface antigens of tumor cells will be necessary before we can begin to assess the possibility of immunological control of cancer.

  7. Identification of High-Impact cis-Regulatory Mutations Using Transcription Factor Specific Random Forest Models.

    Directory of Open Access Journals (Sweden)

    Dmitry Svetlichnyy

    2015-11-01

    Full Text Available Cancer genomes contain vast amounts of somatic mutations, many of which are passenger mutations not involved in oncogenesis. Whereas driver mutations in protein-coding genes can be distinguished from passenger mutations based on their recurrence, non-coding mutations are usually not recurrent at the same position. Therefore, it is still unclear how to identify cis-regulatory driver mutations, particularly when chromatin data from the same patient is not available, thus relying only on sequence and expression information. Here we use machine-learning methods to predict functional regulatory regions using sequence information alone, and compare the predicted activity of the mutated region with the reference sequence. This way we define the Predicted Regulatory Impact of a Mutation in an Enhancer (PRIME. We find that the recently identified driver mutation in the TAL1 enhancer has a high PRIME score, representing a "gain-of-target" for MYB, whereas the highly recurrent TERT promoter mutation has a surprisingly low PRIME score. We trained Random Forest models for 45 cancer-related transcription factors, and used these to score variations in the HeLa genome and somatic mutations across more than five hundred cancer genomes. Each model predicts only a small fraction of non-coding mutations with a potential impact on the function of the encompassing regulatory region. Nevertheless, as these few candidate driver mutations are often linked to gains in chromatin activity and gene expression, they may contribute to the oncogenic program by altering the expression levels of specific oncogenes and tumor suppressor genes.

  8. Cancer type-specific epigenetic changes: gastric cancer.

    Science.gov (United States)

    Calcagno, Danielle Queiroz; de Arruda Cardoso Smith, Marília; Burbano, Rommel Rodriguez

    2015-01-01

    Gastric cancer (GC) remains a major cause of mortality despite declining rate in the world. Epigenetic alterations contribute significantly to the development and progression of gastric tumors. Epigenetic refers to the number of modifications of the chromatin structure that affect gene expression without altering the primary sequence of DNA, and these changes lead to transcriptional activation or silencing of the gene. Over the years, the study of epigenetic processes has increased, and novel therapeutic approaches have emerged. This chapter summarizes the main epigenomic mechanisms described recently involved in gastric carcinogenesis, focusing on the roles that aberrant DNA methylation, histone modifications (histone acetylation and methylation), and miRNAs (oncogenic and tumor suppressor function of miRNA) play in the onset and progression of gastric tumors. Clinical implications of these epigenetic alterations in GC are also discussed.

  9. PLK1 Signaling in Breast Cancer Cells Cooperates with Estrogen Receptor-Dependent Gene Transcription

    Directory of Open Access Journals (Sweden)

    Michael Wierer

    2013-06-01

    Full Text Available Polo-like kinase 1 (PLK1 is a key regulator of cell division and is overexpressed in many types of human cancers. Compared to its well-characterized role in mitosis, little is known about PLK1 functions in interphase. Here, we report that PLK1 mediates estrogen receptor (ER-regulated gene transcription in human breast cancer cells. PLK1 interacts with ER and is recruited to ER cis-elements on chromatin. PLK1-coactivated genes included classical ER target genes such as Ps2, Wisp2, and Serpina3 and were enriched in developmental and tumor-suppressive functions. Performing large-scale phosphoproteomics of estradiol-treated MCF7 cells in the presence or absence of the specific PLK1 inhibitor BI2536, we identified several PLK1 end targets involved in transcription, including the histone H3K4 trimethylase MLL2, the function of which on ER target genes was impaired by PLK1 inhibition. Our results propose a mechanism for the tumor-suppressive role of PLK1 in mammals as an interphase transcriptional regulator.

  10. Transcriptional control of the autophagy-lysosome system in pancreatic cancer

    Science.gov (United States)

    Perera, Rushika M.; Stoykova, Svetlana; Nicolay, Brandon N.; Ross, Kenneth N.; Fitamant, Julien; Boukhali, Myriam; Lengrand, Justine; Deshpande, Vikram; Selig, Martin K.; Ferrone, Cristina R.; Settleman, Jeff; Stephanopoulos, Gregory; Dyson, Nicholas J.; Zoncu, Roberto; Ramaswamy, Sridhar; Haas, Wilhelm; Bardeesy, Nabeel

    2016-01-01

    Activation of cellular stress response pathways to maintain metabolic homeostasis is emerging as a critical growth and survival mechanism in many cancers1. The pathogenesis of pancreatic ductal adenocarcinoma (PDA) requires high levels of autophagy2–4, a conserved self-degradative process5. However, the regulatory circuits that activate autophagy and reprogram PDA cell metabolism are unknown. We now show that autophagy induction in PDA occurs as part of a broader transcriptional program that coordinates activation of lysosome biogenesis and function, and nutrient scavenging, mediated by the MiT/TFE family transcription factors. In PDA cells, the MiT/TFE proteins6 – MITF, TFE3 and TFEB – are decoupled from regulatory mechanisms that control their cytoplasmic retention. Increased nuclear import in turn drives the expression of a coherent network of genes that induce high levels of lysosomal catabolic function essential for PDA growth. Unbiased global metabolite profiling reveals that MiT/TFE-dependent autophagy-lysosomal activation is specifically required to maintain intracellular amino acid (AA) pools. These results identify the MiT/TFE transcription factors as master regulators of metabolic reprogramming in pancreatic cancer and demonstrate activation of clearance pathways converging on the lysosome as a novel hallmark of aggressive malignancy. PMID:26168401

  11. Stathmin regulates mutant p53 stability and transcriptional activity in ovarian cancer.

    Science.gov (United States)

    Sonego, Maura; Schiappacassi, Monica; Lovisa, Sara; Dall'Acqua, Alessandra; Bagnoli, Marina; Lovat, Francesca; Libra, Massimo; D'Andrea, Sara; Canzonieri, Vincenzo; Militello, Loredana; Napoli, Marco; Giorda, Giorgio; Pivetta, Barbara; Mezzanzanica, Delia; Barbareschi, Mattia; Valeri, Barbara; Canevari, Silvana; Colombatti, Alfonso; Belletti, Barbara; Del Sal, Giannino; Baldassarre, Gustavo

    2013-05-01

    Stathmin is a p53-target gene, frequently overexpressed in late stages of human cancer progression. Type II High Grade Epithelial Ovarian Carcinomas (HG-EOC) represents the only clear exception to this observation. Here, we show that stathmin expression is necessary for the survival of HG-EOC cells carrying a p53 mutant (p53(MUT) ) gene. At molecular level, stathmin favours the binding and the phosphorylation of p53(MUT) by DNA-PKCS , eventually modulating p53(MUT) stability and transcriptional activity. Inhibition of stathmin or DNA-PKCS impaired p53(MUT) -dependent transcription of several M phase regulators, resulting in M phase failure and EOC cell death, both in vitro and in vivo. In primary human EOC a strong correlation exists between stathmin, DNA-PKCS , p53(MUT) overexpression and its transcriptional targets, further strengthening the relevance of the new pathway here described. Overall our data support the hypothesis that the expression of stathmin and p53 could be useful for the identification of high risk patients that will benefit from a therapy specifically acting on mitotic cancer cells.

  12. C. elegans BED domain transcription factor BED-3 controls lineage-specific cell proliferation during organogenesis

    OpenAIRE

    Inoue, Takao; Sternberg, Paul W.

    2010-01-01

    The control of cell division is critical to organogenesis, but how this control is achieved is not fully understood. We found that mutations in bed-3, encoding a BED Zn-finger domain transcription factor, confer a phenotype where a specific set of cell divisions during vulval organogenesis is lost. Unlike general cell cycle regulators in Caenorhabditis elegans, the function of bed-3 is restricted to specific lineages. Transcriptional reporters suggest that bed-3 is expressed in a limited numb...

  13. Curcumin and synthetic analogs induce reactive oxygen species and decreases specificity protein (Sp transcription factors by targeting microRNAs

    Directory of Open Access Journals (Sweden)

    Gandhy Shruti U

    2012-11-01

    Full Text Available Abstract Background Curcumin inhibits growth of several cancer cell lines, and studies in this laboratory in bladder and pancreatic cancer cells show that curcumin downregulates specificity protein (Sp transcription factors Sp1, Sp3 and Sp4 and pro-oncogenic Sp-regulated genes. In this study, we investigated the anticancer activity of curcumin and several synthetic cyclohexanone and piperidine analogs in colon cancer cells. Methods The effects of curcumin and synthetic analogs on colon cancer cell proliferation and apoptosis were determined using standardized assays. The changes in Sp proteins and Sp-regulated gene products were analysed by western blots, and real time PCR was used to determine microRNA-27a (miR-27a, miR-20a, miR-17-5p and ZBTB10 and ZBTB4 mRNA expression. Results The IC50 (half-maximal values for growth inhibition (24 hr of colon cancer cells by curcumin and synthetic cyclohexanone and piperidine analogs of curcumin varied from 10 μM for curcumin to 0.7 μM for the most active synthetic piperidine analog RL197, which was used along with curcumin as model agents in this study. Curcumin and RL197 inhibited RKO and SW480 colon cancer cell growth and induced apoptosis, and this was accompanied by downregulation of specificity protein (Sp transcription factors Sp1, Sp3 and Sp4 and Sp-regulated genes including the epidermal growth factor receptor (EGFR, hepatocyte growth factor receptor (c-MET, survivin, bcl-2, cyclin D1 and NFκB (p65 and p50. Curcumin and RL197 also induced reactive oxygen species (ROS, and cotreatment with the antioxidant glutathione significantly attenuated curcumin- and RL197-induced growth inhibition and downregulation of Sp1, Sp3, Sp4 and Sp-regulated genes. The mechanism of curcumin-/RL197-induced repression of Sp transcription factors was ROS-dependent and due to induction of the Sp repressors ZBTB10 and ZBTB4 and downregulation of microRNAs (miR-27a, miR-20a and miR-17-5p that regulate these repressors

  14. Cancer-specific binary expression system activated in mice by bacteriophage HK022 Integrase.

    Science.gov (United States)

    Elias, Amer; Spector, Itay; Sogolovsky-Bard, Ilana; Gritsenko, Natalia; Rask, Lene; Mainbakh, Yuli; Zilberstein, Yael; Yagil, Ezra; Kolot, Mikhail

    2016-04-27

    Binary systems based on site-specific recombination have been used for tumor specific transcription targeting of suicide genes in animal models. In these binary systems a site specific recombinase or integrase that is expressed from a tumor specific promoter drives tumor specific expression of a cytotoxic gene. In the present study we developed a new cancer specific binary expression system activated by the Integrase (Int) of the lambdoid phage HK022. We demonstrate the validity of this system by the specific expression of a luciferase (luc) reporter in human embryonic kidney 293T (HEK293T) cells and in a lung cancer mouse model. Due to the absence viral vectors and of cytotoxicity the Int based binary system offers advantages over previously described counterparts and may therefore be developed into a safer cancer cell killing system.

  15. Oestradiol reduces Liver Receptor Homolog-1 mRNA transcript stability in breast cancer cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Lazarus, Kyren A. [Cancer Drug Discovery Laboratory, Prince Henry’s Institute of Medical Research, Clayton, Victoria 3168 (Australia); Environmental and Biotechnology Centre, Swinburne University, Hawthorn, Victoria 3122 (Australia); Zhao, Zhe; Knower, Kevin C. [Cancer Drug Discovery Laboratory, Prince Henry’s Institute of Medical Research, Clayton, Victoria 3168 (Australia); To, Sarah Q. [Cancer Drug Discovery Laboratory, Prince Henry’s Institute of Medical Research, Clayton, Victoria 3168 (Australia); Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3168 (Australia); Chand, Ashwini L. [Cancer Drug Discovery Laboratory, Prince Henry’s Institute of Medical Research, Clayton, Victoria 3168 (Australia); Clyne, Colin D., E-mail: Colin.clyne@princehenrys.org [Cancer Drug Discovery Laboratory, Prince Henry’s Institute of Medical Research, Clayton, Victoria 3168 (Australia); Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3168 (Australia)

    2013-08-30

    Highlights: •LRH-1 is an orphan nuclear receptor that regulates tumor proliferation. •In breast cancer, high mRNA expression is associated with ER+ status. •In ER−ve cells, despite very low mRNA, we found abundant LRH-1 protein. •Our data show distinctly different LRH-1 protein isoforms in ER− and ER+ breast cancer cells. •This is due to differences in LRH-1 mRNA and protein stability rates. -- Abstract: The expression of orphan nuclear receptor Liver Receptor Homolog-1 (LRH-1) is elevated in breast cancer and promotes proliferation, migration and invasion in vitro. LRH-1 expression is regulated by oestrogen (E{sub 2}), with LRH-1 mRNA transcript levels higher in oestrogen receptor α (ERα) positive (ER+) breast cancer cells compared to ER− cells. However, the presence of LRH-1 protein in ER− cells suggests discordance between mRNA transcript levels and protein expression. To understand this, we investigated the impact of mRNA and protein stability in determining LRH-1 protein levels in breast cancer cells. LRH-1 transcript levels were significantly higher in ER+ versus ER− breast cancer cells lines; however LRH-1 protein was expressed at similar levels. We found LRH-1 mRNA and protein was more stable in ER− compared to ER+ cell lines. The tumor-specific LRH-1 variant isoform, LRH-1v4, which is highly responsive to E{sub 2}, showed increased mRNA stability in ER− versus ER+ cells. In addition, in MCF-7 and T47-D cell lines, LRH-1 total mRNA stability was reduced with E{sub 2} treatment, this effect mediated by ERα. Our data demonstrates that in ER− cells, increased mRNA and protein stability contribute to the abundant protein expression levels. Expression and immunolocalisation of LRH-1 in ER− cells as well as ER− tumors suggests a possible role in the development of ER− tumors. The modulation of LRH-1 bioactivity may therefore be beneficial as a treatment option in both ER− and ER+ breast cancer.

  16. Determination of specificity influencing residues for key transcription factor families

    DEFF Research Database (Denmark)

    Patel, Ronak Y.; Garde, Christian; Stormo, Gary D.

    2015-01-01

    -dimensional structure of protein. Structural restraints on the evolution of the amino-acid sequence lead to identification of false SIRs. In this manuscript we extended three methods (direct information, PSICOVand adjusted mutual information) that have been used to disentangle spurious indirect protein residue......-residue contacts from direct contacts, to identify SIRs from joint alignments of amino-acids and specificity. We predicted SIRs for homeodomain (HD), helix-loop-helix, LacI and GntR families of TFs using these methods and compared to MI. Using various measures, we show that the performance of these three methods...

  17. MicroRNA-dependent regulation of transcription in non-small cell lung cancer.

    Directory of Open Access Journals (Sweden)

    Sonia Molina-Pinelo

    Full Text Available Squamous cell lung cancer (SCC and adenocarcinoma are the most common histological subtypes of non-small cell lung cancer (NSCLC, and have been traditionally managed in the clinic as a single entity. Increasing evidence, however, illustrates the biological diversity of these two histological subgroups of lung cancer, and supports the need to improve our understanding of the molecular basis beyond the different phenotypes if we aim to develop more specific and individualized targeted therapy. The purpose of this study was to identify microRNA (miRNA-dependent transcriptional regulation differences between SCC and adenocarcinoma histological lung cancer subtypes. In this work, paired miRNA (667 miRNAs by TaqMan Low Density Arrays (TLDA and mRNA profiling (Whole Genome 44 K array G112A, Agilent was performed in tumor samples of 44 NSCLC patients. Nine miRNAs and 56 mRNAs were found to be differentially expressed in SCC versus adenocarcinoma samples. Eleven of these 56 mRNA were predicted as targets of the miRNAs identified to be differently expressed in these two histological conditions. Of them, 6 miRNAs (miR-149, miR-205, miR-375, miR-378, miR-422a and miR-708 and 9 target genes (CEACAM6, CGN, CLDN3, ABCC3, MLPH, ACSL5, TMEM45B, MUC1 were validated by quantitative PCR in an independent cohort of 41 lung cancer patients. Furthermore, the inverse correlation between mRNAs and microRNAs expression was also validated. These results suggest miRNA-dependent transcriptional regulation differences play an important role in determining key hallmarks of NSCLC, and may provide new biomarkers for personalized treatment strategies.

  18. ETS transcription factors control transcription of EZH2 and epigenetic silencing of the tumor suppressor gene Nkx3.1 in prostate cancer.

    Directory of Open Access Journals (Sweden)

    Paolo Kunderfranco

    Full Text Available BACKGROUND: ETS transcription factors regulate important signaling pathways involved in cell differentiation and development in many tissues and have emerged as important players in prostate cancer. However, the biological impact of ETS factors in prostate tumorigenesis is still debated. METHODOLOGY/PRINCIPAL FINDINGS: We performed an analysis of the ETS gene family using microarray data and real-time PCR in normal and tumor tissues along with functional studies in normal and cancer cell lines to understand the impact in prostate tumorigenesis and identify key targets of these transcription factors. We found frequent dysregulation of ETS genes with oncogenic (i.e., ERG and ESE1 and tumor suppressor (i.e., ESE3 properties in prostate tumors compared to normal prostate. Tumor subgroups (i.e., ERG(high, ESE1(high, ESE3(low and NoETS tumors were identified on the basis of their ETS expression status and showed distinct transcriptional and biological features. ERG(high and ESE3(low tumors had the most robust gene signatures with both distinct and overlapping features. Integrating genomic data with functional studies in multiple cell lines, we demonstrated that ERG and ESE3 controlled in opposite direction transcription of the Polycomb Group protein EZH2, a key gene in development, differentiation, stem cell biology and tumorigenesis. We further demonstrated that the prostate-specific tumor suppressor gene Nkx3.1 was controlled by ERG and ESE3 both directly and through induction of EZH2. CONCLUSIONS/SIGNIFICANCE: These findings provide new insights into the role of the ETS transcriptional network in prostate tumorigenesis and uncover previously unrecognized links between aberrant expression of ETS factors, deregulation of epigenetic effectors and silencing of tumor suppressor genes. The link between aberrant ETS activity and epigenetic gene silencing may be relevant for the clinical management of prostate cancer and design of new therapeutic

  19. Differential control of Notch1 gene transcription by Klf4 and Sp3 transcription factors in normal versus cancer-derived keratinocytes.

    Directory of Open Access Journals (Sweden)

    Chiara Lambertini

    Full Text Available In specific cell types like keratinocytes, Notch signaling plays an important pro-differentiation and tumor suppressing function, with down-modulation of the Notch1 gene being associated with cancer development. Besides being controlled by p53, little else is known on regulation of Notch1 gene expression in this context. We report here that transcription of this gene is driven by a TATA-less "sharp peak" promoter and that the minimal functional region of this promoter, which extends from the -342 bp position to the initiation codon, is differentially active in normal versus cancer cells. This GC rich region lacks p53 binding sites, but binds Klf4 and Sp3. This finding is likely to be of biological significance, as Klf4 and, to a lesser extent, Sp3 are up-regulated in a number of cancer cells where Notch1 expression is down-modulated, and Klf4 over-expression in normal cells is sufficient to down-modulate Notch1 gene transcription. The combined knock-down of Klf4 and Sp3 was necessary for the reverse effect of increasing Notch1 transcription, consistent with the two factors exerting an overlapping repressor function through their binding to the Notch1 promoter.

  20. Progress of transcription factor Twist expression in breast cancer and its biological effect

    Institute of Scientific and Technical Information of China (English)

    Tian Qian

    2016-01-01

    Breast cancer is the most common malignant tumor in women and the pathogenesis is not fully elucidated. Proliferation, invasion, epithelial-mesenchymal transition and angiogenesis are the links closely related to the occurrence and development of breast cancer. Twist is a type of basic helix-loop-helix transcription factor that can affect cell proliferation and invasion process, epithelial-mesenchymal transition process and angiogenesis process through regulating the transcription of downstream target genes. In the research, the study of transcription factor Twist expression in breast cancer and its biological effect is reviewed.

  1. Correlation between Slug transcription factor and miR-221 in MDA-MB-231 breast cancer cells

    Directory of Open Access Journals (Sweden)

    Lambertini Elisabetta

    2012-10-01

    Full Text Available Abstract Background Breast cancer and its metastatic progression is mainly directed by epithelial to mesenchymal transition (EMT, a phenomenon supported by specific transcription factors and miRNAs. Methods In order to investigate a possible correlation between Slug transcription factor and miR-221, we performed Slug gene silencing in MDA-MB-231 breast cancer cells and evaluated the expression of genes involved in supporting the breast cancer phenotype, using qRT-PCR and Western blot analysis. Chromatin immunoprecipitation and wound healing assays were employed to determine a functional link between these two molecules. Results We showed that Slug silencing significantly decreased the level of miR-221 and vimentin, reactivated Estrogen Receptor α and increased E-cadherin and TRPS1 expression. We demonstrated that miR-221 is a Slug target gene, and identified a specific region of miR-221 promoter that is transcriptionally active and binds the transcription factor Slug “in vivo”. In addition, we showed that in Slug-silenced cells, wich retained residual miR-221 (about 38%, cell migration was strongly inhibited. Cell migration was inhibited, but to a less degree, following complete knockdown of miR-221 expression by transfection with antagomiR-221. Conclusions We report for the first time evidence of a correlation between Slug transcription factor and miR-221 in breast cancer cells. These studies suggest that miR-221 expression is, in part, dependent on Slug in breast cancer cells, and that Slug plays a more important role than miR-221 in cell migration and invasion.

  2. Identification of key genes associated with colorectal cancer based on the transcriptional network.

    Science.gov (United States)

    Chen, Guoting; Li, Hengping; Niu, Xianping; Li, Guofeng; Han, Ning; Li, Xin; Li, Guang; Liu, Yangzhou; Sun, Guixin; Wang, Yong; Li, Zengchun; Li, Qinchuan

    2015-07-01

    Colorectal cancer (CRC) is among the most lethal human cancers, but the mechanism of the cancer is still unclear enough. We aimed to explore the key genes in CRC progression. The gene expression profile (GSE4183) of CRC was obtained from Gene Expression Omnibus database which included 8 normal samples, 15 adenoma samples, 15 CRC samples and 15 inflammatory bowel disease (IBD) samples. Thereinto, 8 normal, 15 adenoma, and 15 CRC samples were chosen for our research. The differentially expressed genes (DEGs) in normal vs. adenoma, normal vs. CRC, and adenoma vs. CRC, were identified using the Wilcoxon test method in R respectively. The interactive network of DEGs was constructed to select the significant modules using the Pearson's correlation. Meanwhile, transcriptional network of DEGs was also constructed using the g: Profiler. Totally, 2,741 DEGs in normal vs. adenoma, 1,484 DEGs in normal vs. CRC, and 396 DEGs in adenoma vs. CRC were identified. Moreover, function analysis of DEGs in each group showed FcR-mediated phagocytosis pathway in module 1, cardiac muscle contraction pathway in module 6, and Jak-STAT signaling pathway in module 19 were also enriched. Furthermore, MZF1 and AP2 were the transcription factor in module 6, with the target SP1, while SP1 was also a transcription in module 20. DEGs like NCF1, AKT, SP1, AP2, MZF1, and TPM might be used as specific biomarkers in CRC development. Therapy targeting on the functions of these key genes might provide novel perspective for CRC treatment.

  3. Transcript-specific effects of adrenalectomy on seizure-induced BDNF expression in rat hippocampus

    DEFF Research Database (Denmark)

    Lauterborn, J C; Poulsen, F R; Stinis, C T;

    1998-01-01

    Activity-induced brain-derived neurotrophic factor (BDNF) expression is negatively modulated by circulating adrenal steroids. The rat BDNF gene gives rise to four major transcript forms that each contain a unique 5' exon (I-IV) and a common 3' exon (V) that codes for BDNF protein. Exon......-specific in situ hybridization was used to determine if adrenalectomy has differential effects on basal and activity-induced BDNF transcript expression in hippocampus. Adrenalectomy alone had only modest effects on BDNF mRNA levels with slight increases in exon III-containing mRNA with 7-10-day survival...... no effect on exon IV-containing mRNA content. These results demonstrate that the negative effects of adrenal hormones on activity-induced BDNF expression are by far the greatest for transcripts containing exons I and II. Together with evidence for region-specific transcript expression, these results suggest...

  4. Transcriptional coexpression network reveals the involvement of varying stem cell features with different dysregulations in different gastric cancer subtypes.

    Science.gov (United States)

    Kalamohan, Kalaivani; Periasamy, Jayaprakash; Bhaskar Rao, Divya; Barnabas, Georgina D; Ponnaiyan, Srigayatri; Ganesan, Kumaresan

    2014-10-01

    Despite the advancements in the cancer therapeutics, gastric cancer ranks as the second most common cancers with high global mortality rate. Integrative functional genomic investigation is a powerful approach to understand the major dysregulations and to identify the potential targets toward the development of targeted therapeutics for various cancers. Intestinal and diffuse type gastric tumors remain the major subtypes and the molecular determinants and drivers of these distinct subtypes remain unidentified. In this investigation, by exploring the network of gene coexpression association in gastric tumors, mRNA expressions of 20,318 genes across 200 gastric tumors were categorized into 21 modules. The genes and the hub genes of the modules show gastric cancer subtype specific expression. The expression patterns of the modules were correlated with intestinal and diffuse subtypes as well as with the differentiation status of gastric tumors. Among these, G1 module has been identified as a major driving force of diffuse type gastric tumors with the features of (i) enriched mesenchymal, mesenchymal stem cell like, and mesenchymal derived multiple lineages, (ii) elevated OCT1 mediated transcription, (iii) involvement of Notch activation, and (iv) reduced polycomb mediated epigenetic repression. G13 module has been identified as key factor in intestinal type gastric tumors and found to have the characteristic features of (i) involvement of embryonic stem cell like properties, (ii) Wnt, MYC and E2F mediated transcription programs, and (iii) involvement of polycomb mediated repression. Thus the differential transcription programs, differential epigenetic regulation and varying stem cell features involved in two major subtypes of gastric cancer were delineated by exploring the gene coexpression network. The identified subtype specific dysregulations could be optimally employed in developing subtype specific therapeutic targeting strategies for gastric cancer.

  5. The mouse Eb meiotic recombination hotspot contains a tissue-specific transcriptional enhancer.

    Science.gov (United States)

    Ling, X; Shenkar, R; Sakai, D; Arnheim, N

    1993-01-01

    A meiotic recombination hotspot exists within the second intron of the mouse major histocompatibility complex (MHC) gene, Eb. In the present study, a small fragment from the intron which contains two potential transcriptional regulatory elements was cloned into an expression vector and its effect on transcription was tested. This fragment was found to contain tissue-specific transcriptional enhancer activity. An octamer-like sequence and a B motif may contribute to this enhancer activity. Similar regulatory sequences with the same orientation and distance from one another are found in another mouse MHC recombination hotspot.

  6. Comprehensive analysis of the specificity of transcription activator-like effector nucleases

    DEFF Research Database (Denmark)

    Juillerat, Alexandre; Dubois, Gwendoline; Valton, Julien;

    2014-01-01

    their target site. The ability to predict the specificity of targeting is thus highly desirable. Here, we describe the first comprehensive experimental study focused on the specificity of the four commonly used repeat variable diresidues (RVDs; NI:A, HD:C, NN:G and NG:T) incorporated in transcription activator...

  7. Characterization of the plastid-specific germination and seedling establishment transcriptional programme.

    Science.gov (United States)

    Demarsy, E; Buhr, F; Lambert, E; Lerbs-Mache, S

    2012-01-01

    Upon imbibition, dry seeds rapidly gain metabolic activity and the switching on of a germination-specific transcriptional programme in the nucleus goes ahead, with the induction of many nucleus-encoded transcripts coding for plastid-localized proteins. Dedifferentiated plastids present in dry seeds differentiate into chloroplasts in cotyledons and into amyloplasts in the root and in the hypocotyl, raising the question of whether the beginning of a new plant's life cycle is also characterized by specific changes in the plastid transcriptional programme. Here the plastid transcriptome is characterized during imbibition/stratification, germination, and early seedling outgrowth. It is shown that each of these three developmental steps is characterized by specific changes in the transcriptome profile, due to differential activities of the three plastid RNA polymerases and showing the integration of plastids into a germination-specific transcriptional programme. All three RNA polymerases are active during imbibition; that is, at 4 °C in darkness. However, activity of plastid-encoded RNA polymerase (PEP) is restricted to the rrn operon. After cold release, PEP changes specificity by also transcribing photosynthesis-related genes. The period of germination and radicle outgrowth is further characterized by remarkable antisense RNA production that diminishes during greening when photosynthesis-related mRNAs accumulate to their highest but to very different steady-state levels. During stratification and germination mRNA accumulation is not paralleled by protein accumulation, indicating that plastid transcription is more important for efficient germination than translation.

  8. Specific inhibition of the transcription factor Ci by a cobalt(III) Schiff base-DNA conjugate.

    Science.gov (United States)

    Hurtado, Ryan R; Harney, Allison S; Heffern, Marie C; Holbrook, Robert J; Holmgren, Robert A; Meade, Thomas J

    2012-02-06

    We describe the use of Co(III) Schiff base-DNA conjugates, a versatile class of research tools that target C2H2 transcription factors, to inhibit the Hedgehog (Hh) pathway. In developing mammalian embryos, Hh signaling is critical for the formation and development of many tissues and organs. Inappropriate activation of the Hedgehog (Hh) pathway has been implicated in a variety of cancers including medulloblastomas and basal cell carcinomas. It is well-known that Hh regulates the activity of the Gli family of C2H2 zinc finger transcription factors in mammals. In Drosophila the function of the Gli proteins is performed by a single transcription factor with an identical DNA binding consensus sequence, Cubitus Interruptus (Ci). We have demonstrated previously that conjugation of a specific 17 base-pair oligonucleotide to a Co(III) Schiff base complex results in a targeted inhibitor of the Snail family C2H2 zinc finger transcription factors. Modification of the oligonucleotide sequence in the Co(III) Schiff base-DNA conjugate to that of Ci's consensus sequence (Co(III)-Ci) generates an equally selective inhibitor of Ci. Co(III)-Ci irreversibly binds the Ci zinc finger domain and prevents it from binding DNA in vitro. In a Ci responsive tissue culture reporter gene assay, Co(III)-Ci reduces the transcriptional activity of Ci in a concentration dependent manner. In addition, injection of wild-type Drosophila embryos with Co(III)-Ci phenocopies a Ci loss of function phenotype, demonstrating effectiveness in vivo. This study provides evidence that Co(III) Schiff base-DNA conjugates are a versatile class of specific and potent tools for studying zinc finger domain proteins and have potential applications as customizable anticancer therapeutics.

  9. Clonal selection for transcriptionally active viral oncogenes during progression to cancer.

    NARCIS (Netherlands)

    Tine, BA Van; Kappes, JC; Banerjee, NS; Knops, J; Lai, L; Steenbergen, R.D.M.; Meijer, C.J.L.M.; Snijders, P.J.F.; Chatis, P; Broker, TR; Moen, PTJr; Chow, L.T.

    2004-01-01

    Primary keratinocytes immortalized by human papillomaviruses (HPVs), along with HPV-induced cervical carcinoma cell lines, are excellent models for investigating neoplastic progression to cancer. By simultaneously visualizing viral DNA and nascent viral transcripts in interphase nuclei, we demonstra

  10. SSH adequacy to preimplantation mammalian development: Scarce specific transcripts cloning despite irregular normalisation

    Directory of Open Access Journals (Sweden)

    Renard JP

    2005-11-01

    Full Text Available Abstract Background SSH has emerged as a widely used technology to identify genes that are differentially regulated between two biological situations. Because it includes a normalisation step, it is used for preference to clone low abundance differentially expressed transcripts. It does not require previous sequence knowledge and may start from PCR amplified cDNAs. It is thus particularly well suited to biological situations where specific genes are expressed and tiny amounts of RNA are available. This is the case during early mammalian embryo development. In this field, few differentially expressed genes have been characterized from SSH libraries, but an overall assessment of the quality of SSH libraries is still required. Because we are interested in the more systematic establishment of SSH libraries from early embryos, we have developed a simple and reliable strategy based on reporter transcript follow-up to check SSH library quality and repeatability when starting with small amounts of RNA. Results Four independent subtracted libraries were constructed. They aimed to analyze key events in the preimplantation development of rabbit and bovine embryos. The performance of the SSH procedure was assessed through the large-scale screening of thousands of clones from each library for exogenous reporter transcripts mimicking either tester specific or tester/driver common transcripts. Our results show that abundant transcripts escape normalisation which is only efficient for rare and moderately abundant transcripts. Sequencing 1600 clones from one of the libraries confirmed and extended our results to endogenous transcripts and demonstrated that some very abundant transcripts common to tester and driver escaped subtraction. Nonetheless, the four libraries were greatly enriched in clones encoding for very rare (0.0005% of mRNAs tester-specific transcripts. Conclusion The close agreement between our hybridization and sequencing results shows that the

  11. CSR-1 and P granules suppress sperm-specific transcription in the C. elegans germline.

    Science.gov (United States)

    Campbell, Anne C; Updike, Dustin L

    2015-05-15

    Germ granules (P granules) in C. elegans are required for fertility and function to maintain germ cell identity and pluripotency. Sterility in the absence of P granules is often accompanied by the misexpression of soma-specific proteins and the initiation of somatic differentiation in germ cells. To investigate whether this is caused by the accumulation of somatic transcripts, we performed mRNA-seq on dissected germlines with and without P granules. Strikingly, we found that somatic transcripts do not increase in the young adult germline when P granules are impaired. Instead, we found that impairing P granules causes sperm-specific mRNAs to become highly overexpressed. This includes the accumulation of major sperm protein (MSP) transcripts in germ cells, a phenotype that is suppressed by feminization of the germline. A core component of P granules, the endo-siRNA-binding Argonaute protein CSR-1, has recently been ascribed with the ability to license transcripts for germline expression. However, impairing CSR-1 has very little effect on the accumulation of its mRNA targets. Instead, we found that CSR-1 functions with P granules to prevent MSP and sperm-specific mRNAs from being transcribed in the hermaphrodite germline. These findings suggest that P granules protect germline integrity through two different mechanisms, by (1) preventing the inappropriate expression of somatic proteins at the level of translational regulation, and by (2) functioning with CSR-1 to limit the domain of sperm-specific expression at the level of transcription.

  12. Oogenesis requires germ cell-specific transcriptional regulators Sohlh1 and Lhx8

    Science.gov (United States)

    Pangas, Stephanie A.; Choi, Youngsok; Ballow, Daniel J.; Zhao, Yangu; Westphal, Heiner; Matzuk, Martin M.; Rajkovic, Aleksandar

    2006-01-01

    Mammalian oogenesis requires oocyte-specific transcriptional regulators. The full complement of oocyte-specific transcription factors is unknown. Here, we describe the finding that Sohlh1, a spermatogenesis and oogenesis basic helix–loop–helix transcription factor in females, is preferentially expressed in oocytes and required for oogenesis. Sohlh1 disruption perturbs follicular formation in part by causing down-regulation of two genes that are known to disrupt folliculogenesis: newborn ovary homeobox gene (Nobox) and factor in the germ-line alpha (Figla). In addition, we show that Lhx8 is downstream of Sohlh1 and critical in fertility. Thus, Sohlh1 and Lhx8 are two germ cell-specific, critical regulators of oogenesis. PMID:16690745

  13. Can Diabetes Change the Intrinsic Subtype Specificity of Breast Cancer

    Science.gov (United States)

    2009-09-01

    TITLE: Can Diabetes Change the Intrinsic Subtype Specificity of Breast Cancer? PRINCIPAL INVESTIGATOR: Harikrishna Nakshatri, B.V.Sc., PhD. Kasi...Can Diabetes Change the Intrinsic Subtype Specificity of 5a. CONTRACT NUMBER Breast Cancer? 5b. GRANT NUMBER W81XWH-07-1...positive breast cancer. 15. SUBJECT TERMS Diabetes , Intrinsic subtypes, Breast Cancer 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT

  14. Increased frequency of single base substitutions in a population of transcripts expressed in cancer cells

    Directory of Open Access Journals (Sweden)

    Bianchetti Laurent

    2012-11-01

    Full Text Available Abstract Background Single Base Substitutions (SBS that alter transcripts expressed in cancer originate from somatic mutations. However, recent studies report SBS in transcripts that are not supported by the genomic DNA of tumor cells. Methods We used sequence based whole genome expression profiling, namely Long-SAGE (L-SAGE and Tag-seq (a combination of L-SAGE and deep sequencing, and computational methods to identify transcripts with greater SBS frequencies in cancer. Millions of tags produced by 40 healthy and 47 cancer L-SAGE experiments were compared to 1,959 Reference Tags (RT, i.e. tags matching the human genome exactly once. Similarly, tens of millions of tags produced by 7 healthy and 8 cancer Tag-seq experiments were compared to 8,572 RT. For each transcript, SBS frequencies in healthy and cancer cells were statistically tested for equality. Results In the L-SAGE and Tag-seq experiments, 372 and 4,289 transcripts respectively, showed greater SBS frequencies in cancer. Increased SBS frequencies could not be attributed to known Single Nucleotide Polymorphisms (SNP, catalogued somatic mutations or RNA-editing enzymes. Hypothesizing that Single Tags (ST, i.e. tags sequenced only once, were indicators of SBS, we observed that ST proportions were heterogeneously distributed across Embryonic Stem Cells (ESC, healthy differentiated and cancer cells. ESC had the lowest ST proportions, whereas cancer cells had the greatest. Finally, in a series of experiments carried out on a single patient at 1 healthy and 3 consecutive tumor stages, we could show that SBS frequencies increased during cancer progression. Conclusion If the mechanisms generating the base substitutions could be known, increased SBS frequency in transcripts would be a new useful biomarker of cancer. With the reduction of sequencing cost, sequence based whole genome expression profiling could be used to characterize increased SBS frequency in patient’s tumor and aid diagnostic.

  15. Inferring regulatory element landscapes and transcription factor networks from cancer methylomes.

    Science.gov (United States)

    Yao, Lijing; Shen, Hui; Laird, Peter W; Farnham, Peggy J; Berman, Benjamin P

    2015-05-21

    Recent studies indicate that DNA methylation can be used to identify transcriptional enhancers, but no systematic approach has been developed for genome-wide identification and analysis of enhancers based on DNA methylation. We describe ELMER (Enhancer Linking by Methylation/Expression Relationships), an R-based tool that uses DNA methylation to identify enhancers and correlates enhancer state with expression of nearby genes to identify transcriptional targets. Transcription factor motif analysis of enhancers is coupled with expression analysis of transcription factors to infer upstream regulators. Using ELMER, we investigated more than 2,000 tumor samples from The Cancer Genome Atlas. We identified networks regulated by known cancer drivers such as GATA3 and FOXA1 (breast cancer), SOX17 and FOXA2 (endometrial cancer), and NFE2L2, SOX2, and TP63 (squamous cell lung cancer). We also identified novel networks with prognostic associations, including RUNX1 in kidney cancer. We propose ELMER as a powerful new paradigm for understanding the cis-regulatory interface between cancer-associated transcription factors and their functional target genes.

  16. Genome-wide analysis of alternative transcripts in human breast cancer

    Science.gov (United States)

    Wen, Ji; Toomer, Kevin H.

    2016-01-01

    Transcript variants play a critical role in diversifying gene expression. Alternative splicing is a major mechanism for generating transcript variants. A number of genes have been implicated in breast cancer pathogenesis with their aberrant expression of alternative transcripts. In this study, we performed genome-wide analyses of transcript variant expression in breast cancer. With RNA-Seq data from 105 patients, we characterized the transcriptome of breast tumors, by pairwise comparison of gene expression in the breast tumor versus matched healthy tissue from each patient. We identified 2839 genes, ~10 % of protein-coding genes in the human genome, that had differential expression of transcript variants between tumors and healthy tissues. The validity of the computational analysis was confirmed by quantitative RT-PCR assessment of transcript variant expression from four top candidate genes. The alternative transcript profiling led to classification of breast cancer into two subgroups and yielded a novel molecular signature that could be prognostic of patients’ tumor burden and survival. We uncovered nine splicing factors (FOX2, MBNL1, QKI, PTBP1, ELAVL1, HNRNPC, KHDRBS1, SFRS2, and TIAR) that were involved in aberrant splicing in breast cancer. Network analyses for the coordinative patterns of transcript variant expression identified twelve “hub” genes that differentiated the cancerous and normal transcriptomes. Dysregulated expression of alternative transcripts may reveal novel biomarkers for tumor development. It may also suggest new therapeutic targets, such as the “hub” genes identified through the network analyses of transcript variant expression, or splicing factors implicated in the formation of the tumor transcriptome. PMID:25913416

  17. Cloning of a novel insulin-regulated ghrelin transcript in prostate cancer.

    Science.gov (United States)

    Seim, Inge; Lubik, Amy A; Lehman, Melanie L; Tomlinson, Nadine; Whiteside, Eliza J; Herington, Adrian C; Nelson, Colleen C; Chopin, Lisa K

    2013-04-01

    Ghrelin is a multifunctional hormone, with roles in stimulating appetite and regulating energy balance, insulin secretion and glucose homoeostasis. The ghrelin gene locus (GHRL) is highly complex and gives rise to a range of novel transcripts derived from alternative first exons and internally spliced exons. The wild-type transcript encodes a 117 amino acid preprohormone that is processed to yield the 28 amino acid peptide ghrelin. Here, we identified insulin-responsive transcription corresponding to cryptic exons in intron 2 of the human ghrelin gene. A transcript, termed in2c-ghrelin (intron 2-cryptic), was cloned from the testis and the LNCaP prostate cancer cell line. This transcript may encode an 83 amino acid preproghrelin isoform that codes for ghrelin, but not obestatin. It is expressed in a limited number of normal tissues and in tumours of the prostate, testis, breast and ovary. Finally, we confirmed that in2c-ghrelin transcript expression, as well as the recently described in1-ghrelin transcript, is significantly upregulated by insulin in cultured prostate cancer cells. Metabolic syndrome and hyperinsulinaemia have been associated with prostate cancer risk and progression. This may be particularly significant after androgen deprivation therapy for prostate cancer, which induces hyperinsulinaemia, and this could contribute to castrate-resistant prostate cancer growth. We have previously demonstrated that ghrelin stimulates prostate cancer cell line proliferation in vitro. This study is the first description of insulin regulation of a ghrelin transcript in cancer and should provide further impetus for studies into the expression, regulation and function of ghrelin gene products.

  18. Antigen-specific active immunotherapy for ovarian cancer

    NARCIS (Netherlands)

    Leffers, N.; Daemen, T.; Helfrich, W.; Boezen, H. M.; Cohlen, B. J.; Melief, Cornelis; Nijman, H. W.

    2010-01-01

    BACKGROUND: Despite advances in chemotherapy, prognosis of ovarian cancer remains poor. Antigen-specific active immunotherapy aims to induce a tumour-antigen-specific anti-tumour immune responses as an alternative treatment for ovarian cancer. OBJECTIVES: To assess feasibility of antigen-specific ac

  19. The tumor suppressor gene hypermethylated in cancer 1 is transcriptionally regulated by E2F1

    DEFF Research Database (Denmark)

    Jenal, Mathias; Trinh, Emmanuelle; Britschgi, Christian;

    2009-01-01

    The Hypermethylated in Cancer 1 (HIC1) gene encodes a zinc finger transcriptional repressor that cooperates with p53 to suppress cancer development. We and others recently showed that HIC1 is a transcriptional target of p53. To identify additional transcriptional regulators of HIC1, we screened...... to the HIC1 promoter was shown by chromatin immunoprecipitation assays in human TIG3 fibroblasts expressing tamoxifen-activated E2F1. In agreement, activation of E2F1 in TIG3-E2F1 cells markedly increased HIC1 expression. Interestingly, expression of E2F1 in the p53(-/-) hepatocellular carcinoma cell line...

  20. Down-regulation of transcription elogation factor A (SII like 4 (TCEAL4 in anaplastic thyroid cancer

    Directory of Open Access Journals (Sweden)

    Miyamoto Shizuyo

    2006-11-01

    Full Text Available Abstract Background Anaplastic thyroid cancer (ATC is one of the most aggressive human malignancies and appears to arise mainly from transformation of pre-existing differentiated thyroid cancer (DTC. However, the carcinogenic mechanism of anaplastic transformation remains unclear. Previously, we investigated specific genes related to ATC based on gene expression profiling using cDNA microarray analysis. One of these genes, transcription elongation factor A (SII-like 4 (TCEAL4, encodes a member of the transcription elongation factor A (SII-like gene family. The detailed function of TCEAL4 has not been described nor has any association between this gene and human cancers been reported previously. Methods To investigate the role of TCEAL4 in ATC carcinogenesis, we examined expression levels of TCEAL4 in ACLs as well as in other types of thyroid cancers and normal human tissue. Results Expression of TCEAL4 was down-regulated in all 11 ACLs as compared to either normal thyroid tissues or papillary and follicular thyroid cancerous tissues. TCEAL4 was expressed ubiquitously in all normal human tissues tested. Conclusion To our knowledge, this is the first report of altered TCEAL4 expression in human cancers. We suggest that loss of TCEAL4 expression might be associated with development of ATC from DTC. Further functional studies are required.

  1. Regulatory mechanisms for abnormal expression of the human breast cancer specific gene 1 in breast cancer cells

    Institute of Scientific and Technical Information of China (English)

    LU; Aiping; LI; Qing; LIU; Jingwen

    2006-01-01

    Breast cancer-specific gene 1 (BCSG1), also referred as synuclein γ, was originally isolated from a human breast cancer cDNA library and the protein is mainly localized to presynaptic terminals in the nervous system. BCSG1 is not expressed in normal or benign breast lesions, but expressed at an extremely high level in the vast majority of the advanced staged breast carcinomas and ovarian carcinomas. Overexpression of BCSG1 in cancer cells led to significant increase in cell proliferation, motility and invasiveness, and metastasis. To elucidate the molecular mechanism and regulation for abnormal transcription of BCSG1, a variety of BCSG1 promoter luciferase reporters were constructed including 3' end deleted sequences, Sp1 deleted, and activator protein-1 (AP1) domains mutated. Transient transfection assay was used to detect the transcriptional activation of BCSG1 promoters. Results showed that the Sp1 sequence in 5'-flanking region was involved in the basal transcriptional activities of BCSG1 without cell-type specificity. In comparison to pGL3-1249, the reporter activities of pGL3-1553 in BCSG1-negative MCF-7 cells and pGL3-1759 in HepG2 cells were notably decreased. Mutations at AP1 sites in BCSG1 intron 1 significantly reduced the promoter activity in all cell lines. Transcription factors, c-jun, c-fos and cyclin AMP-responsive element binding (CREB) protein, could markedly enhance the promoter activities. Thus, our results suggest that the abnormal expression of BCSG1 in breast cancer cells is likely regulated by multiple mechanisms. The 5' flanking region of BCSG1 provides the basal transcriptional activity without cell type specificity. A critical promoter element involved in abnormal expression of BCSG1 presents in the first exon. The cell type specificity of BCSG1 transcription is probably affected through intronic cis-regulatory sequences. AP1 domains in the first intron play an important role in control of BCSG1 transcription.

  2. Cell type-specific properties and environment shape tissue specificity of cancer genes.

    Science.gov (United States)

    Schaefer, Martin H; Serrano, Luis

    2016-02-09

    One of the biggest mysteries in cancer research remains why mutations in certain genes cause cancer only at specific sites in the human body. The poor correlation between the expression level of a cancer gene and the tissues in which it causes malignant transformations raises the question of which factors determine the tissue-specific effects of a mutation. Here, we explore why some cancer genes are associated only with few different cancer types (i.e., are specific), while others are found mutated in a large number of different types of cancer (i.e., are general). We do so by contrasting cellular functions of specific-cancer genes with those of general ones to identify properties that determine where in the body a gene mutation is causing malignant transformations. We identified different groups of cancer genes that did not behave as expected (i.e., DNA repair genes being tissue specific, immune response genes showing a bimodal specificity function or strong association of generally expressed genes to particular cancers). Analysis of these three groups demonstrates the importance of environmental impact for understanding why certain cancer genes are only involved in the development of some cancer types but are rarely found mutated in other types of cancer.

  3. GATA transcription factors as tissue-specific master regulators for induced responses.

    Science.gov (United States)

    Block, Dena Hs; Shapira, Michael

    2015-01-01

    GATA transcription factors play important roles in directing developmental genetic programs and cell differentiation, and are conserved in animals, plants and fungi. C. elegans has 11 GATA-type transcription factors that orchestrate development of the gut, epidermis and vulva. However, the expression of certain GATA proteins persists into adulthood, where their function is less understood. Accumulating evidence demonstrates contributions of 2 terminal differentiation GATA transcription factors, ELT-2 and ELT-3, to epithelial immune responses in the adult intestine and epidermis (hypodermis), respectively. Involvement in other stress responses has also been documented. We recently showed that ELT-2 acted as a tissue-specific master regulator, cooperating with 2 transcription factors activated by the p38 pathway, ATF-7 and SKN-1, to control immune responses in the adult C. elegans intestine. Here, we discuss the broader implications of these findings for understanding the involvement of GATA transcription factors in adult stress responses, and draw parallels between ELT-2 and ELT-3 to speculate that the latter may fulfill similar tissue-specific functions in the epidermis.

  4. BRCA1 transcriptionally regulates genes associated with the basal-like phenotype in breast cancer.

    Science.gov (United States)

    Gorski, Julia J; James, Colin R; Quinn, Jennifer E; Stewart, Gail E; Staunton, Kieran Crosbie; Buckley, Niamh E; McDyer, Fionnuala A; Kennedy, Richard D; Wilson, Richard H; Mullan, Paul B; Harkin, D Paul

    2010-08-01

    Expression profiling of BRCA1-deficient tumours has identified a pattern of gene expression similar to basal-like breast tumours. In this study, we examine whether a BRCA1-dependent transcriptional mechanism may underpin the link between BRCA1 and basal-like phenotype. In methods section, the mRNA and protein were harvested from a number of BRCA1 mutant and wild-type breast cancer cell lines and from matched isogenic controls. Microarray-based expression profiling was used to identify potential BRCA1-regulated transcripts. These gene targets were then validated (by in silico analysis of tumour samples) by real-time PCR and Western blot analysis. Chromatin immunoprecipitation (ChIP) assays were used to confirm recruitment of BRCA1 to specific promoters. In results, we demonstrate that functional BRCA1 represses the expression of cytokeratins 5(KRT5) and 17(KRT17) and p-Cadherin (CDH3) in HCC1937 and T47D breast cancer cell lines at both mRNA and protein level. ChIP assays demonstrate that BRCA1 is recruited to the promoters of KRT5, KRT17 and CDH3, and re-ChIP assays confirm that BRCA1 is recruited independently to form c-Myc and Sp1 complexes on the CDH3 promoter. We show that siRNA-mediated inhibition of endogenous c-Myc (and not Sp1) results in a marked increase in CDH3 expression analogous to that observed following the inhibition of endogenous BRCA1. The data provided suggest a model whereby BRCA1 and c-Myc form a repressor complex on the promoters of specific basal genes and represent a potential mechanism to explain the observed overexpression of key basal markers in BRCA1-deficient tumours.

  5. Sequence motifs in MADS transcription factors responsible for specificity and diversification of protein-protein interaction.

    Directory of Open Access Journals (Sweden)

    Aalt D J van Dijk

    Full Text Available Protein sequences encompass tertiary structures and contain information about specific molecular interactions, which in turn determine biological functions of proteins. Knowledge about how protein sequences define interaction specificity is largely missing, in particular for paralogous protein families with high sequence similarity, such as the plant MADS domain transcription factor family. In comparison to the situation in mammalian species, this important family of transcription regulators has expanded enormously in plant species and contains over 100 members in the model plant species Arabidopsis thaliana. Here, we provide insight into the mechanisms that determine protein-protein interaction specificity for the Arabidopsis MADS domain transcription factor family, using an integrated computational and experimental approach. Plant MADS proteins have highly similar amino acid sequences, but their dimerization patterns vary substantially. Our computational analysis uncovered small sequence regions that explain observed differences in dimerization patterns with reasonable accuracy. Furthermore, we show the usefulness of the method for prediction of MADS domain transcription factor interaction networks in other plant species. Introduction of mutations in the predicted interaction motifs demonstrated that single amino acid mutations can have a large effect and lead to loss or gain of specific interactions. In addition, various performed bioinformatics analyses shed light on the way evolution has shaped MADS domain transcription factor interaction specificity. Identified protein-protein interaction motifs appeared to be strongly conserved among orthologs, indicating their evolutionary importance. We also provide evidence that mutations in these motifs can be a source for sub- or neo-functionalization. The analyses presented here take us a step forward in understanding protein-protein interactions and the interplay between protein sequences and

  6. Regulation of the transcriptional coactivator FHL2 licenses activation of the androgen receptor in castrate-resistant prostate cancer.

    Science.gov (United States)

    McGrath, Meagan J; Binge, Lauren C; Sriratana, Absorn; Wang, Hong; Robinson, Paul A; Pook, David; Fedele, Clare G; Brown, Susan; Dyson, Jennifer M; Cottle, Denny L; Cowling, Belinda S; Niranjan, Birunthi; Risbridger, Gail P; Mitchell, Christina A

    2013-08-15

    It is now clear that progression from localized prostate cancer to incurable castrate-resistant prostate cancer (CRPC) is driven by continued androgen receptor (AR), signaling independently of androgen. Thus, there remains a strong rationale to suppress AR activity as the single most important therapeutic goal in CRPC treatment. Although the expression of ligand-independent AR splice variants confers resistance to AR-targeted therapy and progression to lethal castrate-resistant cancer, the molecular regulators of AR activity in CRPC remain unclear, in particular those pathways that potentiate the function of mutant AR in CRPC. Here, we identify FHL2 as a novel coactivator of ligand-independent AR variants that are important in CRPC. We show that the nuclear localization of FHL2 and coactivation of the AR is driven by calpain cleavage of the cytoskeletal protein filamin, a pathway that shows differential activation in prostate epithelial versus prostate cancer cell lines. We further identify a novel FHL2-AR-filamin transcription complex, revealing how deregulation of this axis promotes the constitutive, ligand-independent activation of AR variants, which are present in CRPC. Critically, the calpain-cleaved filamin fragment and FHL2 are present in the nucleus only in CRPC and not benign prostate tissue or localized prostate cancer. Thus, our work provides mechanistic insight into the enhanced AR activation, most notably of the recently identified AR variants, including AR-V7 that drives CRPC progression. Furthermore, our results identify the first disease-specific mechanism for deregulation of FHL2 nuclear localization during cancer progression. These results offer general import beyond prostate cancer, given that nuclear FHL2 is characteristic of other human cancers where oncogenic transcription factors that drive disease are activated like the AR in prostate cancer.

  7. A Specific Screening Strategy to Reduce Prostate Cancer Mortality

    Science.gov (United States)

    2013-09-01

    determination, proliferation, cell -cycle regulation, angiogenesis, invasion, and migration [8, 9]. Id1 gene expression is cancer -specific and has been...diagnostic vector can be used for in situ detection and localization of prostate cancer . By simulating low (2.5%) and high (17.5%) tumor cell ...Troncoso, P, Tu, SM, et al. (1997). Establishment of two human prostate cancer cell lines derived from a single bone metastasis . Clinical cancer

  8. The Drosophila Zinc Finger Transcription Factor Ouija Board Controls Ecdysteroid Biosynthesis through Specific Regulation of spookier.

    Directory of Open Access Journals (Sweden)

    Tatsuya Komura-Kawa

    2015-12-01

    Full Text Available Steroid hormones are crucial for many biological events in multicellular organisms. In insects, the principal steroid hormones are ecdysteroids, which play essential roles in regulating molting and metamorphosis. During larval and pupal development, ecdysteroids are synthesized in the prothoracic gland (PG from dietary cholesterol via a series of hydroxylation and oxidation steps. The expression of all but one of the known ecdysteroid biosynthetic enzymes is restricted to the PG, but the transcriptional regulatory networks responsible for generating such exquisite tissue-specific regulation is only beginning to be elucidated. Here, we report identification and characterization of the C2H2-type zinc finger transcription factor Ouija board (Ouib necessary for ecdysteroid production in the PG in the fruit fly Drosophila melanogaster. Expression of ouib is predominantly limited to the PG, and genetic null mutants of ouib result in larval developmental arrest that can be rescued by administrating an active ecdysteroid. Interestingly, ouib mutant animals exhibit a strong reduction in the expression of one ecdysteroid biosynthetic enzyme, spookier. Using a cell culture-based luciferase reporter assay, Ouib protein stimulates transcription of spok by binding to a specific ~15 bp response element in the spok PG enhancer element. Most remarkable, the developmental arrest phenotype of ouib mutants is rescued by over-expression of a functionally-equivalent paralog of spookier. These observations imply that the main biological function of Ouib is to specifically regulate spookier transcription during Drosophila development.

  9. Dysregulation of the homeobox transcription factor gene HOXB13: role in prostate cancer

    Directory of Open Access Journals (Sweden)

    Decker B

    2014-08-01

    Full Text Available Brennan Decker1,2, Elaine A Ostrander1 1Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA; 2Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, School of Clinical Medicine, University of Cambridge, Cambridge, UK Abstract: Prostate cancer (PC is the most common noncutaneous cancer in men, and epidemiological studies suggest that about 40% of PC risk is heritable. Linkage analyses in hereditary PC families have identified multiple putative loci. However, until recently, identification of specific risk alleles has proven elusive. Cooney et al used linkage mapping and segregation analysis to identify a putative risk locus on chromosome 17q21-22. In search of causative variant(s in genes from the candidate region, a novel, potentially deleterious G84E substitution in homeobox transcription factor gene HOXB13 was observed in multiple hereditary PC families. In follow-up testing, the G84E allele was enriched in cases, especially those with an early diagnosis or positive family history of disease. This finding was replicated by others, confirming HOXB13 as a PC risk gene. The HOXB13 protein plays diverse biological roles in embryonic development and terminally differentiated tissue. In tumor cell lines, HOXB13 participates in a number of biological functions, including coactivation and localization of the androgen receptor and FOXA1. However, no consensus role has emerged and many questions remain. All HOXB13 variants with a proposed role in PC risk are predicted to damage the protein and lie in domains that are highly conserved across species. The G84E variant has the strongest epidemiological support and lies in a highly conserved MEIS protein-binding domain, which binds cofactors required for activation. On the basis of epidemiological and biological data, the G84E variant likely modulates the interaction between the HOXB13

  10. Extensive alternative splicing of the repressor element silencing transcription factor linked to cancer.

    Directory of Open Access Journals (Sweden)

    Guo-Lin Chen

    Full Text Available The repressor element silencing transcription factor (REST is a coordinate transcriptional and epigenetic regulator which functions as a tumor suppressor or an oncogene depending on cellular context, and a truncated splice variant REST4 has been linked to various types of cancer. We performed a comprehensive analysis of alternative splicing (AS of REST by rapid amplification of cDNA ends and PCR amplification of cDNAs from various tissues and cell lines with specific primers. We identified 8 novel alternative exons including an alternate last exon which doubles the REST gene boundary, along with numerous 5'/3' splice sites and ends in the constitutive exons. With the combination of various splicing patterns (e.g. exon skipping and alternative usage of the first and last exons that are predictive of altered REST activity, at least 45 alternatively spliced variants of coding and non-coding mRNA were expressed in a species- and cell-type/tissue-specific manner with individual differences. By examining the repertoire of REST pre-mRNA splicing in 27 patients with kidney, liver and lung cancer, we found that all patients without exception showed differential expression of various REST splice variants between paired tumor and adjacent normal tissues, with striking cell-type/tissue and individual differences. Moreover, we revealed that exon 3 skipping, which causes no frame shift but loss of a domain essential for nuclear translocation, was affected by pioglitazone, a highly selective activator of the peroxisome proliferator-activated receptor gamma (PPARγ which contributes to cell differentiation and tumorigenesis besides its metabolic actions. Accordingly, this study demonstrates an extensive AS of REST pre-mRNA which redefines REST gene boundary and structure, along with a general but differential link between REST pre-mRNA splicing and various types of cancer. These findings advance our understanding of the complex, context-dependent regulation of

  11. Can Diabetes Change the Intrinsic Subtype Specificity of Breast Cancer?

    Science.gov (United States)

    2008-09-01

    TITLE: Can Diabetes Change the Intrinsic Subtype Specificity of Breast Cancer ? PRINCIPAL INVESTIGATOR: Harikrishna Nakshatri, B.V.Sc., PhD Kasi R... Diabetes Change the Intrinsic Subtype Specificity of 5a. CONTRACT NUMBER Breast Cancer 5b. GRANT NUMBER W81XWH-07-1-0651...as in type II diabetes , to disrupt GATA- 3:FOXA1:ERα network. Insulin induced the expression of T-bet in MCF-7 breast cancer cells and MCF-7 cells

  12. Activation of the Long Terminal Repeat of Human Endogenous Retrovirus K by Melanoma-Specific Transcription Factor MITF-M

    Directory of Open Access Journals (Sweden)

    Iyoko Katoh

    2011-11-01

    Full Text Available The human and Old World primate genomes possess conserved endogenous retrovirus sequences that have been implicated in evolution, reproduction, and carcinogenesis. Human endogenous retrovirus (HERV-K with 5′LTR-gag-pro-pol-env-rec/np9-3′LTR sequences represents the newest retrovirus family that integrated into the human genome 1 to 5 million years ago. Although a high-level expression of HERV-K in melanomas, breast cancers, and terato-carcinomas has been demonstrated, the mechanism of the lineage-specific activation of the long terminal repeat (LTR remains obscure. We studied chromosomal HERV-K expression in MeWo melanoma cells in comparison with the basal expression in human embryonic kidney 293 (HEK293 cells. Cloned LTR of HERV-K (HML-2.HOM was also characterized by mutation and transactivation experiments. We detected multiple transcriptional initiator (Inr sites in the LTR by rapid amplification of complementary DNA ends (5′ RACE. HEK293 and MeWo showed different Inr usage. The most potent Inr was associated with a TATA box and three binding motifs of microphthalmia-associated transcription factor (MITF. Both chromosomal HERV-K expression and the cloned LTR function were strongly activated in HEK293 by transfection with MITF-M, a melanocyte/melanoma–specific isoform of MITF. Coexpression of MITF and the HERV-K core antigen was detected in retinal pigmented epithelium by an immunofluorescence analysis. Although malignant melanoma lines MeWo, G361, and SK-MEL-28 showed enhanced HERV-K transcription compared with normal melanocytes, the level of MITF-M messenger RNA persisted from normal to transformed melanocytes. Thus, MITF-M may be a prerequisite for the pigmented cell lineage–specific function of HERV-K LTR, leading to the high-level expression in malignant melanomas.

  13. Transcript-specific translational regulation in the unfolded protein response of Saccharomyces cerevisiae.

    Science.gov (United States)

    Payne, Tom; Hanfrey, Colin; Bishop, Amy L; Michael, Anthony J; Avery, Simon V; Archer, David B

    2008-02-20

    Accumulation of unfolded proteins in the endoplasmic reticulum (ER) causes stress and induces the unfolded protein response (UPR). Genome-wide analysis of translational regulation in response to the UPR-inducing agent dithiothreitol in Saccharomyces cerevisiae is reported. Microarray analysis, confirmed using qRT-PCR, identified transcript-specific translational regulation. Transcripts with functions in ribosomal biogenesis and assembly were translationally repressed. In contrast, mRNAs from known UPR genes, encoding the UPR transcription factor Hac1p, the ER-oxidoreductase Ero1p and the ER-associated protein degradation (ERAD) protein Der1p, were enriched in polysomal fractions, indicating translational up-regulation. Splicing of HAC1 mRNA is shown to be required for efficient ribosomal loading.

  14. Altered LKB1/CREB-regulated transcription co-activator (CRTC) signaling axis promotes esophageal cancer cell migration and invasion.

    Science.gov (United States)

    Gu, Y; Lin, S; Li, J-L; Nakagawa, H; Chen, Z; Jin, B; Tian, L; Ucar, D A; Shen, H; Lu, J; Hochwald, S N; Kaye, F J; Wu, L

    2012-01-26

    LKB1 is a tumor susceptibility gene for the Peutz-Jeghers cancer syndrome and is a target for mutational inactivation in sporadic human malignancies. LKB1 encodes a serine/threonine kinase that has critical roles in cell growth, polarity and metabolism. A novel and important function of LKB1 is its ability to regulate the phosphorylation of CREB-regulated transcription co-activators (CRTCs) whose aberrant activation is linked with oncogenic activities. However, the roles and mechanisms of LKB1 and CRTC in the pathogenesis of esophageal cancer have not been previously investigated. In this study, we observed altered LKB1-CRTC signaling in a subset of human esophageal cancer cell lines and patient samples. LKB1 negatively regulates esophageal cancer cell migration and invasion in vitro. Mechanistically, we determined that CRTC signaling becomes activated because of LKB1 loss, which results in the transcriptional activation of specific downstream targets including LYPD3, a critical mediator for LKB1 loss-of-function. Our data indicate that de-regulated LKB1-CRTC signaling might represent a crucial mechanism for esophageal cancer progression.

  15. A synthetic interaction screen identifies factors selectively required for proliferation and TERT transcription in p53-deficient human cancer cells.

    Directory of Open Access Journals (Sweden)

    Li Xie

    Full Text Available Numerous genetic and epigenetic alterations render cancer cells selectively dependent on specific genes and regulatory pathways, and represent potential vulnerabilities that can be therapeutically exploited. Here we describe an RNA interference (RNAi-based synthetic interaction screen to identify genes preferentially required for proliferation of p53-deficient (p53- human cancer cells. We find that compared to p53-competent (p53+ human cancer cell lines, diverse p53- human cancer cell lines are preferentially sensitive to loss of the transcription factor ETV1 and the DNA damage kinase ATR. In p53- cells, RNAi-mediated knockdown of ETV1 or ATR results in decreased expression of the telomerase catalytic subunit TERT leading to growth arrest, which can be reversed by ectopic TERT expression. Chromatin immunoprecipitation analysis reveals that ETV1 binds to a region downstream of the TERT transcriptional start-site in p53- but not p53+ cells. We find that the role of ATR is to phosphorylate and thereby stabilize ETV1. Our collective results identify a regulatory pathway involving ETV1, ATR, and TERT that is preferentially important for proliferation of diverse p53- cancer cells.

  16. The specificity and flexibility of l1 reverse transcription priming at imperfect T-tracts.

    Directory of Open Access Journals (Sweden)

    Clément Monot

    2013-05-01

    Full Text Available L1 retrotransposons have a prominent role in reshaping mammalian genomes. To replicate, the L1 ribonucleoprotein particle (RNP first uses its endonuclease (EN to nick the genomic DNA. The newly generated DNA end is subsequently used as a primer to initiate reverse transcription within the L1 RNA poly(A tail, a process known as target-primed reverse transcription (TPRT. Prior studies demonstrated that most L1 insertions occur into sequences related to the L1 EN consensus sequence (degenerate 5'-TTTT/A-3' sites and frequently preceded by imperfect T-tracts. However, it is currently unclear whether--and to which degree--the liberated 3'-hydroxyl extremity on the genomic DNA needs to be accessible and complementary to the poly(A tail of the L1 RNA for efficient priming of reverse transcription. Here, we employed a direct assay for the initiation of L1 reverse transcription to define the molecular rules that guide this process. First, efficient priming is detected with as few as 4 matching nucleotides at the primer 3' end. Second, L1 RNP can tolerate terminal mismatches if they are compensated within the 10 last bases of the primer by an increased number of matching nucleotides. All terminal mismatches are not equally detrimental to DNA extension, a C being extended at higher levels than an A or a G. Third, efficient priming in the context of duplex DNA requires a 3' overhang. This suggests the possible existence of additional DNA processing steps, which generate a single-stranded 3' end to allow L1 reverse transcription. Based on these data we propose that the specificity of L1 reverse transcription initiation contributes, together with the specificity of the initial EN cleavage, to the distribution of new L1 insertions within the human genome.

  17. Regulating expression of cell and tissue-specific genes by modifying transcription

    Energy Technology Data Exchange (ETDEWEB)

    Beachy, Roger N; Dai, Shunhong

    2010-06-14

    Transcriptional regulation is the primary step to control gene expression, therefore function. Such regulation is achieved primarily via a combination of the activities of the promoter cis regulatory DNA elements and trans regulatory proteins that function through binding to these DNA elements. Rice bZIP transcription factors RF2a, RF2b and RLP1 play key roles in regulating the activity of a vascular tissue specific promoter isolated from Rice Tungro Bacilliform Virus (RTBV), through their interactions with the Box II essential cis element located in the promoter (Dai et al., 2006., Dai et al., 2004., Yin et al., 1997). RF2a, RF2b and RLP1 possess multiple regulatory domains. Functional characterization reveals that those domains can activate or repress the activity of the RTBV promoter. It is equally as important to recognize that these proteins control plant development by regulating differentiation and/or function of the vascular tissues. Studies of transcriptional regulation of the RTBV promoter by this group of bZIP proteins will not only provide insights about gene expression in the vascular tissue, but also insights about general mechanisms of transcription activation and repression. The knowledge gained from this research will also enable us to develop a well-described set of tools that can be used to control expression of multiple genes in transgenic plants. We have proposed characterize the function domains of RF2a, RF2b and RLP1 and explore the biological function of the transcription repressor RLP1.

  18. The role of NANOG transcriptional factor in the development of malignant phenotype of cancer cells.

    Science.gov (United States)

    Gawlik-Rzemieniewska, Natalia; Bednarek, Ilona

    2016-01-01

    NANOG is a transcription factor that is involved in the self-renewal of embryonic stem cells (ES) and is a critical factor for the maintenance of the undifferentiated state of pluripotent cells. Extensive data in the literature show that the NANOG gene is aberrantly expressed during the development of malignancy in cancer cells. ES and cancer stem cells (CSCs), a subpopulation of cancer cells within the tumor, are thought to share common phenotypic properties. This review describes the role of NANOG in cancer cell proliferation, epithelial-mesenchymal transition (EMT), apoptosis and metastasis. In addition, this paper illustrates a correlation between NANOG and signal transducer and activator of transcription 3 (STAT3) in the maintenance of cancer stem cell properties and multidrug resistance. Together, the available data demonstrate that NANOG is strictly involved in the process of carcinogenesis and is a potential prognostic marker of malignant tumors.

  19. The specificity protein factor Sp1 mediates transcriptional regulation of P2X7 receptors in the nervous system.

    Science.gov (United States)

    García-Huerta, Paula; Díaz-Hernandez, Miguel; Delicado, Esmerilda G; Pimentel-Santillana, María; Miras-Portugal, M Teresa; Gómez-Villafuertes, Rosa

    2012-12-28

    P2X7 receptors are involved not only in physiological functions but also in pathological brain processes. Although an increasing number of findings indicate that altered receptor expression has a causative role in neurodegenerative diseases and cancer, little is known about how expression of P2rx7 gene is controlled. Here we reported the first molecular and functional evidence that Specificity protein 1 (Sp1) transcription factor plays a pivotal role in the transcriptional regulation of P2X7 receptor. We delimited a minimal region in the murine P2rx7 promoter containing four SP1 sites, two of them being highly conserved in mammals. The functionality of these SP1 sites was confirmed by site-directed mutagenesis and Sp1 overexpression/down-regulation in neuroblastoma cells. Inhibition of Sp1-mediated transcriptional activation by mithramycin A reduced endogenous P2X7 receptor levels in primary cultures of cortical neurons and astrocytes. Using P2rx7-EGFP transgenic mice that express enhanced green fluorescent protein under the control of P2rx7 promoter, we found a high correlation between reporter expression and Sp1 levels in the brain, demonstrating that Sp1 is a key element in the transcriptional regulation of P2X7 receptor in the nervous system. Finally, we found that Sp1 mediates P2X7 receptor up-regulation in neuroblastoma cells cultured in the absence of serum, a condition that enhances chromatin accessibility and facilitates the exposure of SP1 binding sites.

  20. Genome-wide transcriptional effects of the anti-cancer agent camptothecin.

    Directory of Open Access Journals (Sweden)

    Artur Veloso

    Full Text Available The anti-cancer drug camptothecin inhibits replication and transcription by trapping DNA topoisomerase I (Top1 covalently to DNA in a "cleavable complex". To examine the effects of camptothecin on RNA synthesis genome-wide we used Bru-Seq and show that camptothecin treatment primarily affected transcription elongation. We also observed that camptothecin increased RNA reads past transcription termination sites as well as at enhancer elements. Following removal of camptothecin, transcription spread as a wave from the 5'-end of genes with no recovery of transcription apparent from RNA polymerases stalled in the body of genes. As a result, camptothecin preferentially inhibited the expression of large genes such as proto-oncogenes, and anti-apoptotic genes while smaller ribosomal protein genes, pro-apoptotic genes and p53 target genes showed relative higher expression. Cockayne syndrome group B fibroblasts (CS-B, which are defective in transcription-coupled repair (TCR, showed an RNA synthesis recovery profile similar to normal fibroblasts suggesting that TCR is not involved in the repair of or RNA synthesis recovery from transcription-blocking Top1 lesions. These findings of the effects of camptothecin on transcription have important implications for its anti-cancer activities and may aid in the design of improved combinatorial treatments involving Top1 poisons.

  1. Conserved sequence-specific lincRNA-steroid receptor interactions drive transcriptional repression and direct cell fate

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, William H.; Pickard, Mark R.; de Vera, Ian Mitchelle S.; Kuiper, Emily G.; Mourtada-Maarabouni, Mirna; Conn, Graeme L.; Kojetin, Douglas J.; Williams, Gwyn T.; Ortlund, Eric A. [Emory-MED; (Keele); (Scripps)

    2014-12-23

    The majority of the eukaryotic genome is transcribed, generating a significant number of long intergenic noncoding RNAs (lincRNAs). Although lincRNAs represent the most poorly understood product of transcription, recent work has shown lincRNAs fulfill important cellular functions. In addition to low sequence conservation, poor understanding of structural mechanisms driving lincRNA biology hinders systematic prediction of their function. Here we report the molecular requirements for the recognition of steroid receptors (SRs) by the lincRNA growth arrest-specific 5 (Gas5), which regulates steroid-mediated transcriptional regulation, growth arrest and apoptosis. We identify the functional Gas5-SR interface and generate point mutations that ablate the SR-Gas5 lincRNA interaction, altering Gas5-driven apoptosis in cancer cell lines. Further, we find that the Gas5 SR-recognition sequence is conserved among haplorhines, with its evolutionary origin as a splice acceptor site. This study demonstrates that lincRNAs can recognize protein targets in a conserved, sequence-specific manner in order to affect critical cell functions.

  2. The reverse transcription inhibitor abacavir shows anticancer activity in prostate cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Francesca Carlini

    Full Text Available BACKGROUND: Transposable Elements (TEs comprise nearly 45% of the entire genome and are part of sophisticated regulatory network systems that control developmental processes in normal and pathological conditions. The retroviral/retrotransposon gene machinery consists mainly of Long Interspersed Nuclear Elements (LINEs-1 and Human Endogenous Retroviruses (HERVs that code for their own endogenous reverse transcriptase (RT. Interestingly, RT is typically expressed at high levels in cancer cells. Recent studies report that RT inhibition by non-nucleoside reverse transcriptase inhibitors (NNRTIs induces growth arrest and cell differentiation in vitro and antagonizes growth of human tumors in animal model. In the present study we analyze the anticancer activity of Abacavir (ABC, a nucleoside reverse transcription inhibitor (NRTI, on PC3 and LNCaP prostate cancer cell lines. PRINCIPAL FINDINGS: ABC significantly reduces cell growth, migration and invasion processes, considerably slows S phase progression, induces senescence and cell death in prostate cancer cells. Consistent with these observations, microarray analysis on PC3 cells shows that ABC induces specific and dose-dependent changes in gene expression, involving multiple cellular pathways. Notably, by quantitative Real-Time PCR we found that LINE-1 ORF1 and ORF2 mRNA levels were significantly up-regulated by ABC treatment. CONCLUSIONS: Our results demonstrate the potential of ABC as anticancer agent able to induce antiproliferative activity and trigger senescence in prostate cancer cells. Noteworthy, we show that ABC elicits up-regulation of LINE-1 expression, suggesting the involvement of these elements in the observed cellular modifications.

  3. Selective activation of tumor growth-promoting Ca2+ channel MS4A12 in colon cancer by caudal type homeobox transcription factor CDX2

    Directory of Open Access Journals (Sweden)

    Huber Christoph

    2009-09-01

    Full Text Available Abstract Colon cancer-associated MS4A12 is a novel colon-specific component of store-operated Ca2+ (SOC entry sensitizing cells for epidermal growth factor (EGF-mediated effects on proliferation and chemotaxis. In the present study, we investigated regulation of the MS4A12 promoter to understand the mechanisms responsible for strict transcriptional restriction of this gene to the colonic epithelial cell lineage. DNA-binding assays and luciferase reporter assays showed that MS4A12 promoter activity is governed by a single CDX homeobox transcription factor binding element. RNA interference (RNAi-mediated silencing of intestine-specific transcription factors CDX1 and CDX2 and chromatin immunoprecipitation (ChIP in LoVo and SW48 colon cancer cells revealed that MS4A12 transcript and protein expression is essentially dependent on the presence of endogenous CDX2. In summary, our findings provide a rationale for colon-specific expression of MS4A12. Moreover, this is the first report establishing CDX2 as transactivator of tumor growth-promoting gene expression in colon cancer, adding to untangle the complex and conflicting biological functions of CDX2 in colon cancer and supporting MS4A12 as important factor for normal colonic development as well as for the biology and treatment of colon cancer.

  4. Noninvasive Detection of TMPRSS2:ERG Fusion Transcripts in the Urine of Men with Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Bharathi Laxman

    2006-10-01

    Full Text Available We recently reported the identification of recurrent gene fusions in the majority of prostate cancers involving the 5V untranslated region of the androgenregulated gene TMPRSS2, the ETS family members ERG, ETV1, ETV4. Here we report the noninvasive detection of these gene fusions in the urine of patients with clinically localized prostate cancer. By quantitative polymerase chain reaction, we assessed the expression of ERG, TMPRSS2:ERG transcripts in urine samples obtained after prostatic massage from 19 patients (11 prebiopsy, 8 pre-radical prostatectomy with prostate cancer. We observed a strong concordance between ERG overexpression, TMPRSS2:ERG expression, with 8 of 19 (42% patients having detectable TMPRSS2:ERG transcripts in their urine. Importantly, by fluorescence in situ hybridization, we confirmed the presence or the absence of TMPRSS2:ERG gene fusions in matched prostate cancer tissue samples from three of three patients with fusion transcripts in their urine, from two of two patients without fusion transcripts in their urine. These results demonstrate that TMPRSS2:ERG gene fusions can be detected in the urine of patients with prostate cancer, support larger studies on prospective cohorts for noninvasive detection of prostate cancer.

  5. Global analysis of transcription in castration-resistant prostate cancer cells uncovers active enhancers and direct androgen receptor targets.

    Science.gov (United States)

    Toropainen, Sari; Niskanen, Einari A; Malinen, Marjo; Sutinen, Päivi; Kaikkonen, Minna U; Palvimo, Jorma J

    2016-09-19

    Androgen receptor (AR) is a male sex steroid-activated transcription factor (TF) that plays a critical role in prostate cancers, including castration-resistant prostate cancers (CRPC) that typically express amplified levels of the AR. CRPC-derived VCaP cells display an excessive number of chromatin AR-binding sites (ARBs) most of which localize to distal inter- or intragenic regions. Here, we analyzed direct transcription programs of the AR in VCaP cells using global nuclear run-on sequencing (GRO-seq) and integrated the GRO-seq data with the ARB and VCaP cell-specific TF-binding data. Androgen immediately activated transcription of hundreds of protein-coding genes, including IGF-1 receptor and EGF receptor. Androgen also simultaneously repressed transcription of a large number of genes, including MYC. As functional enhancers have been postulated to produce enhancer-templated non-coding RNAs (eRNAs), we also analyzed the eRNAs, which revealed that only a fraction of the ARBs reside at functional enhancers. Activation of these enhancers was most pronounced at the sites that also bound PIAS1, ERG and HDAC3, whereas binding of HDAC3 and PIAS1 decreased at androgen-repressed enhancers. In summary, our genome-wide data of androgen-regulated enhancers and primary target genes provide new insights how the AR can directly regulate cellular growth and control signaling pathways in CPRC cells.

  6. Targeting cancer stem cells: emerging role of Nanog transcription factor

    Directory of Open Access Journals (Sweden)

    Wang ML

    2013-09-01

    Full Text Available Mong-Lien Wang,1 Shih-Hwa Chiou,2,3 Cheng-Wen Wu1,4–61Institute of Biochemistry and Molecular Biology, 2Institute of Pharmacology, National Yang Ming University, Taipei, Taiwan; 3Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan; 4Institute of Microbiology and Immunology, 5Institute of Clinical Medicine, National Yang Ming University, Taipei, Taiwan; 6Institute of Biomedical Science, Academia Sinica, Taipei, TaiwanAbstract: The involvement of stemness factors in cancer initiation and progression has drawn much attention recently, especially after the finding that introducing four stemness factors in somatic cells is able to reprogram the cells back to an embryonic stem cell-like state. Following accumulating data revealing abnormal elevated expression levels of key stemness factors, like Nanog, Oct4, and Sox2, in several types of cancer stem cells; the importance and therapeutic potential of targeting these stemness regulators in cancers has turned to research focus. Nanog determines cell fate in both embryonic and cancer stem cells; activating Nanog at an inappropriate time would result in cancer stem cells rather than normal pluripotent stem cells or differentiated somatic cells. Upregulated Nanog is correlated with poor survival outcome of patients with various types of cancer. The discoveries of downstream regulatory pathways directly or indirectly mediated by Nanog indicate that Nanog regulates several aspects of cancer development such as tumor cell proliferation, self-renewal, motility, epithelial-mesenchymal transition, immune evasion, and drug-resistance, which are all defined features for cancer stem cells. The current review paper illustrates the central role of Nanog in the regulatory networks of cancer malignant development and stemness acquirement, as well as in the communication between cancer cells and the surrounding stroma. Though a more defined model is needed to test the

  7. The transcriptional programme of the androgen receptor (AR) in prostate cancer.

    Science.gov (United States)

    Lamb, Alastair D; Massie, Charlie E; Neal, David E

    2014-03-01

    The androgen receptor (AR) is essential for normal prostate and prostate cancer cell growth. AR transcriptional activity is almost always maintained even in hormone relapsed prostate cancer (HRPC) in the absence of normal levels of circulating testosterone. Current molecular techniques, such as chromatin-immunoprecipitation sequencing (ChIP-seq), have permitted identification of direct AR-binding sites in cell lines and human tissue with a distinct coordinate network evident in HRPC. The effectiveness of novel agents, such as abiraterone acetate (suppresses adrenal androgens) or enzalutamide (MDV3100, potent AR antagonist), in treating advanced prostate cancer underlines the on-going critical role of the AR throughout all stages of the disease. Persistent AR activity in advanced disease regulates cell cycle activity, steroid biosynthesis and anabolic metabolism in conjunction with regulatory co-factors, such as the E2F family, c-Myc and signal transducer and activator of transcription (STAT) transcription factors. Further treatment approaches must target these other factors.

  8. Non-Canonical EZH2 Transcriptionally Activates RelB in Triple Negative Breast Cancer

    Science.gov (United States)

    Lawrence, Cortney L.; Baldwin, Albert S.

    2016-01-01

    Enhancer of zeste homology 2 (EZH2) is the methyltransferase component of the polycomb repressive complex (PRC2) which represses gene transcription via histone H3 trimethylation at lysine 23 (H3K27me3). EZH2 activity has been linked with oncogenesis where it is thought to block expression of certain tumor suppressors. Relative to a role in cancer, EZH2 functions to promote self-renewal and has been shown to be important for the tumor-initiating cell (TIC) phenotype in breast cancer. Recently a non-canonical role for EZH2 has been identified where it promotes transcriptional activation of certain genes. Here we show that EZH2, through a methyltransferase-independent mechanism, promotes the transcriptional activation of the non-canonical NF-κB subunit RelB to drive self-renewal and the TIC phenotype of triple-negative breast cancer cells. PMID:27764181

  9. Targeting Transcriptional Addictions in Small Cell Lung Cancer with a Covalent CDK7 Inhibitor

    DEFF Research Database (Denmark)

    Christensen, Camilla L; Kwiatkowski, Nicholas; Abraham, Brian J;

    2014-01-01

    Small cell lung cancer (SCLC) is an aggressive disease with high mortality, and the identification of effective pharmacological strategies to target SCLC biology represents an urgent need. Using a high-throughput cellular screen of a diverse chemical library, we observe that SCLC is sensitive to ...... to THZ1 treatment. We propose that downregulation of these transcription factors contributes, in part, to SCLC sensitivity to transcriptional inhibitors and that THZ1 represents a prototype drug for tailored SCLC therapy....

  10. Novel role of Engrailed 1 as a prosurvival transcription factor in basal-like breast cancer and engineering of interference peptides block its oncogenic function

    OpenAIRE

    2013-01-01

    Basal-like breast tumors are aggressive cancers associated with high proliferation and metastasis. Chemotherapy is currently the only treatment option; however, resistance often occurs resulting in recurrence and patient death. Some extremely aggressive cancers are also associated with hypoxia, inflammation and high leukocyte infiltration. Herein, we discovered that the neural-specific transcription factor, Engrailed 1 (EN1), is exclusively overexpressed in these tumors. Short hairpin RNA (sh...

  11. Transcription-coupled repair and apoptosis provide specific protection against transcription-associated mutagenesis by ultraviolet light.

    Science.gov (United States)

    Hendriks, Giel; Jansen, Jacob G; Mullenders, Leon H F; de Wind, Niels

    2010-01-01

    Recent data reveal that gene transcription affects genome stability in mammalian cells. For example, transcription of DNA that is damaged by the most prevalent exogenous genotoxin, UV light, induces nucleotide substitutions and chromosomal instability, collectively called UV-induced transcription-associated mutations (UV-TAM). An important class of UV-TAM consists of nucleotide transitions that are caused by deamination of cytosine-containing photolesions to uracil, presumably occurring at stalled transcription complexes. Transcription-associated deletions and recombinational events after UV exposure may be triggered by collisions of replication forks with stalled transcription complexes. In this Point-of-View we propose that mammalian cells possess two tailored mechanisms to prevent UV-TAM in dermal stem cells. First, the transcription-coupled nucleotide excision repair (TCR) pathway removes lesions at transcribed DNA strands, forming the primary barrier against the mutagenic consequences of transcription at a damaged template. Second, when TCR is absent or when the capacity of TCR is exceeded, persistently stalled transcription complexes induce apoptosis, averting the generation of mutant cells following replication. We hypothesize that TCR and the apoptotic response in conjunction reduce the risk of skin carcinogenesis.

  12. Non-histone chromosomal proteins. Their isolation and role in determining specificity of transcription in vitro.

    Science.gov (United States)

    Blüthmann, H; Mrozek, S; Gierer, A

    1975-10-15

    We describe a method for fractionation of chromatin components by selective dissociation with salt in buffers containing 5 M urea in combination with cromatography on hydroxyapatite at 4 degrees C. This results in two histone and four non-histone fractions which are recovered in high yield and with minimal proteolytic contamination. Template capacity measurements of the isolated chromatins and pre-saturation competition hybridization experiments support the idea that a group of non-histone proteins activate the transcription of specific DNA sequences which were not transcribed from purified DNA to the same extent. In reconstitution experiments a non-histone protein fraction, NH4, prepared from lymphocyte chromatin by hydroxyapatite chromatography is shown to cause transcription in vitro of lymphocyte-specific RNA sequences. A subfraction with a molecular weight of 30 000 comprising 40% of the NH4 fraction protein is characteristic for this tissue and not found in liver chromatin.

  13. Targeting Transcription Elongation Machinery for Breast Cancer Therapy

    Science.gov (United States)

    2016-05-01

    more than half of nuclear P-TEFb are sequestered in a kinase-inactive complex called the 7SK snRNP that contains the 7SK snRNA as a structural...is required for transcription of many primary response and signal-induced genes. In addition to P-TEFb, the SEC contains mostly fusion partners

  14. Transcription factor Fos-related antigen 1 is an effective target for a breast cancer vaccine

    Science.gov (United States)

    Luo, Yunping; Zhou, He; Mizutani, Masato; Mizutani, Noriko; Reisfeld, Ralph A.; Xiang, Rong

    2003-07-01

    Protection against breast cancer was achieved with a DNA vaccine against murine transcription factor Fos-related antigen 1, which is overexpressed in aggressively proliferating D2F2 murine breast carcinoma. Growth of primary s.c. tumor and dissemination of pulmonary metastases was markedly suppressed by this oral DNA vaccine, carried by attenuated Salmonella typhimurium, encoding murine Fos-related antigen 1, fused with mutant polyubiquitin, and cotransformed with secretory murine IL-18. The life span of 60% of vaccinated mice was tripled in the absence of detectable tumor growth after lethal tumor cell challenge. Immunological mechanisms involved activation of T, natural killer, and dendritic cells, as indicated by up-regulation of their activation markers and costimulatory molecules. Markedly increased specific target cell lysis was mediated by both MHC class I-restricted CD8+ T cells and natural killer cells isolated from splenocytes of vaccinated mice, including a significant release of proinflammatory cytokines IFN- and IL-2. Importantly, fluorescence analysis of fibroblast growth factor 2 and tumor cell-induced vessel growth in Matrigel plugs demonstrated marked suppression of angiogenesis only in vaccinated animals. Taken together, this multifunctional DNA vaccine proved effective in protecting against growth and metastases of breast cancer by combining the action of immune effector cells with suppression of tumor angiogenesis. vaccine | tumor | metastases | antiangiogenesis

  15. Transcription factor KLF4 regulates microRNA-544 that targets YWHAZ in cervical cancer.

    Science.gov (United States)

    Mao, Langyong; Zhang, Yan; Deng, Xiaolong; Mo, Wenjuan; Yu, Yao; Lu, Hong

    2015-01-01

    The deregulation of microRNAs has been demonstrated in various tumor processes. Here, we report that microRNA-544 (miR-544) is decreased in cervical cancer tissues compared with normal cervical tissues. To identify the mechanisms involved in miR-544 deregulation, we studied the regulation of miR-544 expression at the transcriptional level. We first identified the transcriptional start site of miR-544 by 5' rapid amplification of cDNA ends and subsequently determined the miR-544 promoter. We discovered that the transcription factor Krueppel-like factor 4 (KLF4) is involved in the transcriptional regulation of miR-544 through interaction with the miR-544 promoter. In addition, we found that miR-544 directly targets the YWHAZ oncogene and functions as a tumor suppressor in cervical cancer cells. miR-544 is involved in cell cycle regulation and suppresses cervical cancer cell proliferation, colony formation, migration and invasion in a manner associated with YWHAZ downregulation. In summary, our findings demonstrate that KLF4 upregulates miR-544 transcription by activating the miR-544 promoter and that miR-544 functions as a tumor suppressor by targeting YWHAZ. Therefore, miR-544 may be a potential novel therapeutic target and prognostic marker for cervical cancer.

  16. A tissue-specific landscape of sense/antisense transcription in the mouse intestine

    Directory of Open Access Journals (Sweden)

    Sina Christian

    2011-06-01

    Full Text Available Abstract Background The intestinal mucosa is characterized by complex metabolic and immunological processes driven highly dynamic gene expression programs. With the advent of next generation sequencing and its utilization for the analysis of the RNA sequence space, the level of detail on the global architecture of the transcriptome reached a new order of magnitude compared to microarrays. Results We report the ultra-deep characterization of the polyadenylated transcriptome in two closely related, yet distinct regions of the mouse intestinal tract (small intestine and colon. We assessed tissue-specific transcriptomal architecture and the presence of novel transcriptionally active regions (nTARs. In the first step, signatures of 20,541 NCBI RefSeq transcripts could be identified in the intestine (74.1% of annotated genes, thereof 16,742 are common in both tissues. Although the majority of reads could be linked to annotated genes, 27,543 nTARs not consistent with current gene annotations in RefSeq or ENSEMBL were identified. By use of a second independent strand-specific RNA-Seq protocol, 20,966 of these nTARs were confirmed, most of them in vicinity of known genes. We further categorized our findings by their relative adjacency to described exonic elements and investigated regional differences of novel transcribed elements in small intestine and colon. Conclusions The current study demonstrates the complexity of an archetypal mammalian intestinal mRNA transcriptome in high resolution and identifies novel transcriptionally active regions at strand-specific, single base resolution. Our analysis for the first time shows a strand-specific comparative picture of nTARs in two tissues and represents a resource for further investigating the transcriptional processes that contribute to tissue identity.

  17. Gene Expression Programs in Response to Hypoxia: Cell Type Specificity and Prognostic Significance in Human Cancers.

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available BACKGROUND: Inadequate oxygen (hypoxia triggers a multifaceted cellular response that has important roles in normal physiology and in many human diseases. A transcription factor, hypoxia-inducible factor (HIF, plays a central role in the hypoxia response; its activity is regulated by the oxygen-dependent degradation of the HIF-1alpha protein. Despite the ubiquity and importance of hypoxia responses, little is known about the variation in the global transcriptional response to hypoxia among different cell types or how this variation might relate to tissue- and cell-specific diseases. METHODS AND FINDINGS: We analyzed the temporal changes in global transcript levels in response to hypoxia in primary renal proximal tubule epithelial cells, breast epithelial cells, smooth muscle cells, and endothelial cells with DNA microarrays. The extent of the transcriptional response to hypoxia was greatest in the renal tubule cells. This heightened response was associated with a uniquely high level of HIF-1alpha RNA in renal cells, and it could be diminished by reducing HIF-1alpha expression via RNA interference. A gene-expression signature of the hypoxia response, derived from our studies of cultured mammary and renal tubular epithelial cells, showed coordinated variation in several human cancers, and was a strong predictor of clinical outcomes in breast and ovarian cancers. In an analysis of a large, published gene-expression dataset from breast cancers, we found that the prognostic information in the hypoxia signature was virtually independent of that provided by the previously reported wound signature and more predictive of outcomes than any of the clinical parameters in current use. CONCLUSIONS: The transcriptional response to hypoxia varies among human cells. Some of this variation is traceable to variation in expression of the HIF1A gene. A gene-expression signature of the cellular response to hypoxia is associated with a significantly poorer prognosis

  18. SoxB1-driven transcriptional network underlies neural-specific interpretation of morphogen signals.

    Science.gov (United States)

    Oosterveen, Tony; Kurdija, Sanja; Ensterö, Mats; Uhde, Christopher W; Bergsland, Maria; Sandberg, Magnus; Sandberg, Rickard; Muhr, Jonas; Ericson, Johan

    2013-04-30

    The reiterative deployment of a small cadre of morphogen signals underlies patterning and growth of most tissues during embyogenesis, but how such inductive events result in tissue-specific responses remains poorly understood. By characterizing cis-regulatory modules (CRMs) associated with genes regulated by Sonic hedgehog (Shh), retinoids, or bone morphogenetic proteins in the CNS, we provide evidence that the neural-specific interpretation of morphogen signaling reflects a direct integration of these pathways with SoxB1 proteins at the CRM level. Moreover, expression of SoxB1 proteins in the limb bud confers on mesodermal cells the potential to activate neural-specific target genes upon Shh, retinoid, or bone morphogenetic protein signaling, and the collocation of binding sites for SoxB1 and morphogen-mediatory transcription factors in CRMs faithfully predicts neural-specific gene activity. Thus, an unexpectedly simple transcriptional paradigm appears to conceptually explain the neural-specific interpretation of pleiotropic signaling during vertebrate development. Importantly, genes induced in a SoxB1-dependent manner appear to constitute repressive gene regulatory networks that are directly interlinked at the CRM level to constrain the regional expression of patterning genes. Accordingly, not only does the topology of SoxB1-driven gene regulatory networks provide a tissue-specific mode of gene activation, but it also determines the spatial expression pattern of target genes within the developing neural tube.

  19. Transcriptional profiling of ectoderm specification to keratinocyte fate in human embryonic stem cells.

    Science.gov (United States)

    Tadeu, Ana Mafalda Baptista; Lin, Samantha; Hou, Lin; Chung, Lisa; Zhong, Mei; Zhao, Hongyu; Horsley, Valerie

    2015-01-01

    In recent years, several studies have shed light into the processes that regulate epidermal specification and homeostasis. We previously showed that a broad-spectrum γ-secretase inhibitor DAPT promoted early keratinocyte specification in human embryonic stem cells triggered to undergo ectoderm specification. Here, we show that DAPT accelerates human embryonic stem cell differentiation and induces expression of the ectoderm protein AP2. Furthermore, we utilize RNA sequencing to identify several candidate regulators of ectoderm specification including those involved in epithelial and epidermal development in human embryonic stem cells. Genes associated with transcriptional regulation and growth factor activity are significantly enriched upon DAPT treatment during specification of human embryonic stem cells to the ectoderm lineage. The human ectoderm cell signature identified in this study contains several genes expressed in ectodermal and epithelial tissues. Importantly, these genes are also associated with skin disorders and ectodermal defects, providing a platform for understanding the biology of human epidermal keratinocyte development under diseased and homeostatic conditions.

  20. Regulating expressin of cell and tissue-specific genes by modifying transcription

    Energy Technology Data Exchange (ETDEWEB)

    Beachy, R N; Dai, Shunhong

    2009-12-15

    Transcriptional regulation is the primary step to control gene expression, therefore function. Such regulation is achieved primarily via a combination of the activities of the promoter cis regulatory DNA elements and trans regulatory proteins that function through binding to these DNA elements. Our research supported by this program has led to the identification of rice bZIP transcription factors RF2a, RF2b and RLP1 that play key roles in regulating the activity of a vascular tissue specific promoter isolated from Rice Tungro Bacilliform Virus (RTBV) through their interactions with the Box II essential cis element located in the promoter. RF2a, RF2b and RLP1 possess multiple regulatory domains. Functional characterization reveals that those domains can activate or repress the activity of the RTBV promoter. Studies of transcriptional regulation of the RTBV promoter by this group of bZIP proteins not only provide insights about gene expression in the vascular tissue, but also insights about general mechanisms of transcription activation and repression. The knowledge gained from this research will also enable us to develop a well-described set of tools that can be used to control expression of multiple genes in transgenic plants and to improve biofuel feedstock.

  1. Navigating cancer network attractors for tumor-specific therapy

    DEFF Research Database (Denmark)

    Creixell, Pau; Schoof, Erwin; Erler, Janine Terra

    2012-01-01

    Cells employ highly dynamic signaling networks to drive biological decision processes. Perturbations to these signaling networks may attract cells to new malignant signaling and phenotypic states, termed cancer network attractors, that result in cancer development. As different cancer cells reach...... these malignant states by accumulating different molecular alterations, uncovering these mechanisms represents a grand challenge in cancer biology. Addressing this challenge will require new systems-based strategies that capture the intrinsic properties of cancer signaling networks and provide deeper...... understanding of the processes by which genetic lesions perturb these networks and lead to disease phenotypes. Network biology will help circumvent fundamental obstacles in cancer treatment, such as drug resistance and metastasis, empowering personalized and tumor-specific cancer therapies....

  2. Wound-regulated accumulation of specific transcripts in tomato fruit: interactions with fruit development, ethylene and light.

    Science.gov (United States)

    Parsons, B L; Mattoo, A K

    1991-09-01

    Regulation of three cDNA clones (pT52, pT53, and pT58) was analyzed in terms of wounding alone and wounding in conjunction with developmental and environmental cues (ripening, ethylene, and light) in tomato fruit tissue. The pT52-specific transcript level is induced by wounding in early-red and red stage fruit and by ethylene. The pT58-specific transcript level is also induced by wounding and ethylene in early-red stage fruit but is not induced by wounding in red fruit. The pT53-specific transcript level is repressed by wounding in early-red and red stage fruit. Like the pT52- and pT58-specific transcripts, the pT53-specific transcript is induced by ethylene. Furthermore, the level of the pT52-specific transcript is regulated by light. Analysis of unwounded tissue showed that the abundance of each cDNA-specific transcript changes during fruit ripening and that each of the transcripts is present in other plant organs as well. This analysis provides information about the interactions between developmental and environmental factors affecting these genes.

  3. Expression of SDF-1 and CXCR4 transcript variants and CXCR7 in epithelial ovarian cancer.

    Science.gov (United States)

    Jaszczynska-Nowinka, Karolina; Rucinski, Marcin; Ziolkowska, Agnieszka; Markowska, Anna; Malendowicz, Ludwik K

    2014-05-01

    Chemokine stromal cell-derived factor-1 (SDF-1) and its receptors, CXCR4 and CXCR7, have been implicated in epithelial ovarian cancer progression and metastasis. However, limited data are available on the expression levels of SDF-1 and CXCR4 variants and CXCR7 in human epithelial ovarian cancer. The present study aimed to characterize the expression pattern and levels of SDF-1, CXCR4 and CXCR7 in normal human ovaries and epithelial ovarian cancer. The expression of SDF-1 and CXCR4 transcript variants and CXCR7 was determined by quantitative polymerase chain reaction (qPCR). Plasma SDF-1α levels were determined by commercially available EIA kits and cancer antigen 125 (CA 125) levels were quantified by automated microparticle enzyme immunosorbent assay. High expression levels of SDF-1 transcript variant 1 were identified in ovarian cancer and control ovaries. By contrast, in both groups the expression levels of SDF-1 transcript variants 3 and 4 were extremely low. Furthermore, SDF-1 variant 1 levels were notably higher in epithelial ovarian cancer than in control ovaries, while data for the remaining transcripts were similar in both groups. CXCR4 transcript variant 2 and CXCR7 expression levels in normal and neoplastic ovaries were similar. In both groups, CXCR4 transcript variant 2 was not detected. Plasma SDF-1α levels were notably higher in females with epithelial ovarian cancer than in the control ovaries. Elevated levels of blood SDF-1α were found prior to surgery, 6 days after surgery and following completion of the first chemotherapy course. These increases were independent of the type of epithelial ovarian cancer. Our results suggest that the expression of SDF-1 and the genes controlling alternative splicing are elevated in epithelial ovarian cancer, leading to an increased formation of SDF-1 variant 1. Elevated plasma SDF-1α levels in epithelial ovarian cancer patients are not associated with the presence of tumors and/or metastases, however reflect a

  4. STAT3 is a key transcriptional regulator of cancer stem cell marker CD133 in HCC

    Science.gov (United States)

    Ghoshal, Sarani; Fuchs, Bryan C.

    2016-01-01

    Cancer stem cell (CSC) marker CD133 was found to be upregulated in many cancers including hepatocellular carcinoma (HCC). However, the molecular mechanism of CD133 regulation in the liver tumor microenvironment has remained elusive. In this study Won and colleagues report that interleukin-6 (IL-6) mediated signal transducer and activator of transcription factor 3 (STAT3) signaling and hypoxia enhance the expression of CD133 and promote the progression of HCC. PMID:27275460

  5. RORγt-specific transcriptional interactomic inhibition suppresses autoimmunity associated with TH17 cells.

    Science.gov (United States)

    Park, Tae-Yoon; Park, Sung-Dong; Cho, Jen-Young; Moon, Jae-Seung; Kim, Na-Yeon; Park, Kyungsoo; Seong, Rho Hyun; Lee, Sang-Won; Morio, Tomohiro; Bothwell, Alfred L M; Lee, Sang-Kyou

    2014-12-30

    The nuclear hormone receptor retinoic acid-related orphan receptor gamma t (RORγt) is a transcription factor (TF) specific to TH17 cells that produce interleukin (IL)-17 and have been implicated in a wide range of autoimmunity. Here, we developed a novel therapeutic strategy to modulate the functions of RORγt using cell-transducible form of transcription modulation domain of RORγt (tRORγt-TMD), which can be delivered effectively into the nucleus of cells and into the central nerve system (CNS). tRORγt-TMD specifically inhibited TH17-related cytokines induced by RORγt, thereby suppressing the differentiation of naïve T cells into TH17, but not into TH1, TH2, or Treg cells. tRORγt-TMD injected into experimental autoimmune encephalomyelitis (EAE) animal model can be delivered effectively in the splenic CD4(+) T cells and spinal cord-infiltrating CD4(+) T cells, and suppress the functions of TH17 cells. The clinical severity and incidence of EAE were ameliorated by tRORγt-TMD in preventive and therapeutic manner, and significant reduction of both infiltrating CD4(+) IL-17(+) T cells and inflammatory cells into the CNS was observed. As a result, the number of spinal cord demyelination was also reduced after tRORγt-TMD treatment. With the same proof of concept, tTbet-TMD specifically blocking TH1 differentiation improved the clinical incidence of rheumatoid arthritis (RA). Therefore, tRORγt-TMD and tTbet-TMD can be novel therapeutic reagents with the natural specificity for the treatment of inflammatory diseases associated with TH17 or TH1. This strategy can be applied to treat various diseases where a specific transcription factor has a key role in pathogenesis.

  6. Pattern specification and immune response transcriptional signatures of pericardial and subcutaneous adipose tissue.

    Directory of Open Access Journals (Sweden)

    Frank H Lau

    Full Text Available Cardiovascular disease (CVD remains the leading cause of morbidity and mortality in the United States. Recent studies suggest that pericardial adipose tissue (PCAT secretes inflammatory factors that contribute to the development of CVD. To better characterize the role of PCAT in the pathogenesis of disease, we performed a large-scale unbiased analysis of the transcriptional differences between PCAT and subcutaneous adipose tissue, analysing 53 microarrays across 19 individuals. As it was unknown whether PCAT-secreted factors are produced by adipocytes or cells in the supporting stromal fraction, we also sought to identify differentially expressed genes in isolated pericardial adipocytes vs. isolated subcutaneous adipocytes. Using microarray analysis, we found that: 1 pericardial adipose tissue and isolated pericardial adipocytes both overexpress atherosclerosis-promoting chemokines and 2 pericardial and subcutaneous fat depots, as well as isolated pericardial adipocytes and subcutaneous adipocytes, express specific patterns of homeobox genes. In contrast, a core set of lipid processing genes showed no significant overlap with differentially expressed transcripts. These depot-specific homeobox signatures and transcriptional profiles strongly suggest different functional roles for the pericardial and subcutaneous adipose depots. Further characterization of these inter-depot differences should be a research priority.

  7. Pattern specification and immune response transcriptional signatures of pericardial and subcutaneous adipose tissue.

    Science.gov (United States)

    Lau, Frank H; Deo, Rahul C; Mowrer, Gregory; Caplin, Joshua; Ahfeldt, Tim; Kaplan, Adam; Ptaszek, Leon; Walker, Jennifer D; Rosengard, Bruce R; Cowan, Chad A

    2011-01-01

    Cardiovascular disease (CVD) remains the leading cause of morbidity and mortality in the United States. Recent studies suggest that pericardial adipose tissue (PCAT) secretes inflammatory factors that contribute to the development of CVD. To better characterize the role of PCAT in the pathogenesis of disease, we performed a large-scale unbiased analysis of the transcriptional differences between PCAT and subcutaneous adipose tissue, analysing 53 microarrays across 19 individuals. As it was unknown whether PCAT-secreted factors are produced by adipocytes or cells in the supporting stromal fraction, we also sought to identify differentially expressed genes in isolated pericardial adipocytes vs. isolated subcutaneous adipocytes. Using microarray analysis, we found that: 1) pericardial adipose tissue and isolated pericardial adipocytes both overexpress atherosclerosis-promoting chemokines and 2) pericardial and subcutaneous fat depots, as well as isolated pericardial adipocytes and subcutaneous adipocytes, express specific patterns of homeobox genes. In contrast, a core set of lipid processing genes showed no significant overlap with differentially expressed transcripts. These depot-specific homeobox signatures and transcriptional profiles strongly suggest different functional roles for the pericardial and subcutaneous adipose depots. Further characterization of these inter-depot differences should be a research priority.

  8. Blood Genome-Wide Transcriptional Profiles of HER2 Negative Breast Cancers Patients

    Directory of Open Access Journals (Sweden)

    Ovidiu Balacescu

    2016-01-01

    Full Text Available Tumors act systemically to sustain cancer progression, affecting the physiological processes in the host and triggering responses in the blood circulating cells. In this study, we explored blood transcriptional patterns of patients with two subtypes of HER2 negative breast cancers, with different prognosis and therapeutic outcome. Peripheral blood samples from seven healthy female donors and 29 women with breast cancer including 14 triple-negative breast cancers and 15 hormone-dependent breast cancers were evaluated by microarray. We also evaluated the stroma in primary tumors. Transcriptional analysis revealed distinct molecular signatures in the blood of HER2− breast cancer patients according to ER/PR status. Our data showed the implication of immune signaling in both breast cancer subtypes with an enrichment of these processes in the blood of TNBC patients. We observed a significant alteration of “chemokine signaling,” “IL-8 signaling,” and “communication between innate and adaptive immune cells” pathways in the blood of TNBC patients correlated with an increased inflammation and necrosis in their primary tumors. Overall, our data indicate that the presence of triple-negative breast cancer is associated with an enrichment of altered systemic immune-related pathways, suggesting that immunotherapy could possibly be synergistic to the chemotherapy, to improve the clinical outcome of these patients.

  9. Role of Transcriptional Corepressor CtBP1 in Prostate Cancer Progression

    Directory of Open Access Journals (Sweden)

    Rui Wang

    2012-10-01

    Full Text Available Transcriptional repressors and corepressors play a critical role in cellular homeostasis and are frequently altered in cancer. C-terminal binding protein 1 (CtBP1, a transcriptional corepressor that regulates the expression of tumor suppressors and genes involved in cell death, is known to play a role in multiple cancers. In this study, we observed the overexpression and mislocalization of CtBP1 in metastatic prostate cancer and demonstrated the functional significance of CtBP1 in prostate cancer progression. Transient and stable knockdown of CtBP1 in prostate cancer cells inhibited their proliferation and invasion. Expression profiling studies of prostate cancer cell lines revealed that multiple tumor suppressor genes are repressed by CtBP1. Furthermore, our studies indicate a role for CtBP1 in conferring radiation resistance to prostate cancer cell lines. In vivo studies using chicken chorioallantoic membrane assay, xenograft studies, and murine metastasis models suggested a role for CtBP1 in prostate tumor growth and metastasis. Taken together, our studies demonstrated that dysregulated expression of CtBP1 plays an important role in prostate cancer progression and may serve as a viable therapeutic target.

  10. Genome-wide Transcription Factor Gene Prediction and their Expressional Tissue-Specificities in Maize

    Institute of Scientific and Technical Information of China (English)

    Yi Jiang; Biao Zeng; Hainan Zhao; Mei Zhang; Shaojun Xie; Jinsheng Lai

    2012-01-01

    Transcription factors (TFs) are important regulators of gene expression.To better understand TFencoding genes in maize (Zea mays L.),a genome-wide TF prediction was performed using the updated B73 reference genome.A total of 2 298 TF genes were identified,which can be classified into 56 families.The largest family,known as the MYB superfamily,comprises 322 MYB and MYB-related TF genes.The expression patterns of 2014 (87.64%) TF genes were examined using RNA-seq data,which resulted in the identification of a subset of TFs that are specifically expressed in particular tissues (including root,shoot,leaf,ear,tassel and kernel).Similarly,98 kernel-specific TF genes were further analyzed,and it was observed that 29 of the kernel-specific genes were preferentially expressed in the early kernel developmental stage,while 69 of the genes were expressed in the late kernel developmental stage.Identification of these TFs,particularly the tissue-specific ones,provides important information for the understanding of development and transcriptional regulation of maize.

  11. Human population-specific gene expression and transcriptional network modification with polymorphic transposable elements.

    Science.gov (United States)

    Wang, Lu; Rishishwar, Lavanya; Mariño-Ramírez, Leonardo; Jordan, I King

    2016-12-19

    Transposable element (TE) derived sequences are known to contribute to the regulation of the human genome. The majority of known TE-derived regulatory sequences correspond to relatively ancient insertions, which are fixed across human populations. The extent to which human genetic variation caused by recent TE activity leads to regulatory polymorphisms among populations has yet to be thoroughly explored. In this study, we searched for associations between polymorphic TE (polyTE) loci and human gene expression levels using an expression quantitative trait loci (eQTL) approach. We compared locus-specific polyTE insertion genotypes to B cell gene expression levels among 445 individuals from 5 human populations. Numerous human polyTE loci correspond to both cis and trans eQTL, and their regulatory effects are directly related to cell type-specific function in the immune system. PolyTE loci are associated with differences in expression between European and African population groups, and a single polyTE loci is indirectly associated with the expression of numerous genes via the regulation of the B cell-specific transcription factor PAX5 The polyTE-gene expression associations we found indicate that human TE genetic variation can have important phenotypic consequences. Our results reveal that TE-eQTL are involved in population-specific gene regulation as well as transcriptional network modification.

  12. Erythroid cell-specific alpha-globin gene regulation by the CP2 transcription factor family.

    Science.gov (United States)

    Kang, Ho Chul; Chae, Ji Hyung; Lee, Yeon Ho; Park, Mi-Ae; Shin, June Ho; Kim, Sung-Hyun; Ye, Sang-Kyu; Cho, Yoon Shin; Fiering, Steven; Kim, Chul Geun

    2005-07-01

    We previously demonstrated that ubiquitously expressed CP2c exerts potent erythroid-specific transactivation of alpha-globin through an unknown mechanism. This mechanism is reported here to involve specific CP2 splice variants and protein inhibitor of activated STAT1 (PIAS1). We identify a novel murine splice isoform of CP2, CP2b, which is identical to CP2a except that it has an additional 36 amino acids encoded by an extra exon. CP2b has an erythroid cell-specific transcriptional activation domain, which requires the extra exon and can form heteromeric complexes with other CP2 isoforms, but lacks the DNA binding activity found in CP2a and CP2c. Transcriptional activation of alpha-globin occurred following dimerization between CP2b and CP2c in erythroid K562 and MEL cells, but this dimerization did not activate the alpha-globin promoter in nonerythroid 293T cells, indicating that an additional erythroid factor is missing in 293T cells. PIAS1 was confirmed as a CP2 binding protein by the yeast two-hybrid screen, and expression of CP2b, CP2c, and PIAS1 in 293T cell induced alpha-globin promoter activation. These results show that ubiquitously expressed CP2b exerts potent erythroid cell-specific alpha-globin gene expression by complexing with CP2c and PIAS1.

  13. C. elegans BED domain transcription factor BED-3 controls lineage-specific cell proliferation during organogenesis.

    Science.gov (United States)

    Inoue, Takao; Sternberg, Paul W

    2010-02-15

    The control of cell division is critical to organogenesis, but how this control is achieved is not fully understood. We found that mutations in bed-3, encoding a BED Zn-finger domain transcription factor, confer a phenotype where a specific set of cell divisions during vulval organogenesis is lost. Unlike general cell cycle regulators in Caenorhabditis elegans, the function of bed-3 is restricted to specific lineages. Transcriptional reporters suggest that bed-3 is expressed in a limited number of cell types including vulval cells whose divisions are affected in bed-3 mutants. A bed-3 mutation also affects the expression pattern of the cdh-3 cadherin gene in the vulva. The phenotype of bed-3 mutants is similar to the phenotype caused by mutations in cog-1 (Nkx6), a component of a gene regulatory network controlling cell type specific gene expression in the vulval lineage. These results suggest that bed-3 is a key component linking the gene regulatory network controlling cell-type specification to control of cell division during vulval organogenesis.

  14. A Role for the NFkB/Rel Transcription Factors in Human Breast Cancer

    Science.gov (United States)

    1996-07-01

    transcription through NF-kB binding sites ( Galang et al., 1996). We have previously found that a breast cancer cell line exhibited constitutive...Futreal, P., Q. Liu, D. Shattuck-Eidens et al. (1994). BRCA1 mutations in primary breast and ovarian carcinomas. Science 266: 120-122. Galang , C., J

  15. Observation of Transcription Regulation in the Mouse Heart Nuclear DNA Fragments and the Specific-protein Interaction by AFM

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Using atom force microscopy (AFM), in vitro transcription, PAGE and other experimental technologies, it is observed that, in active genes of mice (Balb/c) nuclear DNA fragments of non-transcriptional state, only regulation sequences at both ends are associated with scaffold proteins (indissociable proteins) and some transcriptional factors such as complexes (dissociable proteins) made of gene-coding proteins and specific auxiliary small molecules, while there are no combining proteins in intermediate coding sequences. However, in active genes of transcriptional state, both regulation sequences and intermediate coding sequences are associated with active transcriptional factors by non-covalent bonds.This paper shows the prospective application of AFM observation and in vitro transcription in the research on gene expression and regulation. It also offers some theoretical basis for localization of specific genes in human genomes.

  16. Testis-specific transcriptional regulators selectively occupy BORIS-bound CTCF target regions in mouse male germ cells

    Science.gov (United States)

    Rivero-Hinojosa, Samuel; Kang, Sungyun; Lobanenkov, Victor V.; Zentner, Gabriel E.

    2017-01-01

    Despite sharing the same sequence specificity in vitro and in vivo, CCCTC-binding factor (CTCF) and its paralog brother of the regulator of imprinted sites (BORIS) are simultaneously expressed in germ cells. Recently, ChIP-seq analysis revealed two classes of CTCF/BORIS-bound regions: single CTCF target sites (1xCTSes) that are bound by CTCF alone (CTCF-only) or double CTCF target sites (2xCTSes) simultaneously bound by CTCF and BORIS (CTCF&BORIS) or BORIS alone (BORIS-only) in germ cells and in BORIS-positive somatic cancer cells. BORIS-bound regions (CTCF&BORIS and BORIS-only sites) are, on average, enriched for RNA polymerase II (RNAPII) binding and histone retention in mature spermatozoa relative to CTCF-only sites, but little else is known about them. We show that subsets of CTCF&BORIS and BORIS-only sites are occupied by several testis-specific transcriptional regulators (TSTRs) and associated with highly expressed germ cell-specific genes and histone retention in mature spermatozoa. We also demonstrate a physical interaction between BORIS and one of the analyzed TSTRs, TATA-binding protein (TBP)-associated factor 7-like (TAF7L). Our data suggest that CTCF and BORIS cooperate with additional TSTRs to regulate gene expression in developing male gametes and histone retention in mature spermatozoa, potentially priming certain regions of the genome for rapid activation following fertilization. PMID:28145452

  17. The role of the transcription factor SIM2 in prostate cancer.

    Directory of Open Access Journals (Sweden)

    Bin Lu

    Full Text Available BACKGROUND: Recent reports have suggested a possible involvement of Single-minded homolog 2 (SIM2 in human solid cancers, including prostate cancer. However, the exact role of SIM2 in cancer in general, and in prostate cancer in particular, remains largely unknown. This study was designed to elucidate the role of SIM2 in prostate cancer using a shRNA-based approach in the PC3 prostate cancer cell line. METHODS: Lentiviral shRNAs were used to inhibit SIM2 gene and protein levels in PC3 cells. Quantitative RT-PCR and branched DNA were performed to evaluate transcript expression. SIM2 protein expression level was measured by western blot. Profiling of gene expression spanning the whole genome, as well as polar metabolomics of several major metabolic pathways was performed to identify major pathway dysregulations. RESULTS: SIM2 gene and protein products were significantly downregulated by lenti-shRNA in PC3 cell line. This low expression of SIM2 affected gene expression profile, revealing significant changes in major signaling pathways, networks and functions. In addition, major metabolic pathways were affected. CONCLUSION: Taken together, our results suggest an involvement of SIM2 in key traits of prostate tumor cell biology and might underlie a contribution of this transcription factor to prostate cancer onset and progression.

  18. Increased Expression of Serglycin in Specific Carcinomas and Aggressive Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Angeliki Korpetinou

    2015-01-01

    Full Text Available In the present pilot study, we examined the presence of serglycin in lung, breast, prostate, and colon cancer and evaluated its expression in cell lines and tissues. We found that serglycin was expressed and constitutively secreted in culture medium in high levels in more aggressive cancer cells. It is worth noticing that aggressive cancer cells that harbor KRAS or EGFR mutations secreted serglycin constitutively in elevated levels. Furthermore, we detected the transcription of an alternative splice variant of serglycin lacking exon 2 in specific cell lines. In a limited number of tissue samples analyzed, serglycin was detected in normal epithelium but was also expressed in higher levels in advanced grade tumors as shown by immunohistochemistry. Serglycin staining was diffuse, granular, and mainly cytoplasmic. In some cancer cells serglycin also exhibited membrane and/or nuclear immunolocalization. Interestingly, the stromal cells of the reactive tumor stroma were positive for serglycin, suggesting an enhanced biosynthesis for this proteoglycan in activated tumor microenvironment. Our study investigated for first time the distribution of serglycin in normal epithelial and cancerous lesions in most common cancer types. The elevated levels of serglycin in aggressive cancer and stromal cells may suggest a key role for serglycin in disease progression.

  19. MTA family of transcriptional metaregulators in mammary gland morphogenesis and breast cancer.

    Science.gov (United States)

    Singh, Rajesh R; Kumar, Rakesh

    2007-09-01

    Since breast cancer and its associated metastasis are a global health problem and a major cause of mortality among women, research efforts to understand the development, morphogenesis, and functioning of the mammary gland are a high priority. Myriad signaling pathways, transcription factors, and associated transcriptional coregulators have been identified in both normal functioning and neoplastic transformation of the mammary gland. The discovery of the metastasis tumor antigen 1 (MTA1) gene, its overexpression in cancer and metastasis and its subsequent identification as an integral part of the chromatin remodeling complex heralded extensive research on its physiological role. Subsequent identification of additional gene family members, namely MTA1s, MTA2, and MTA3, and their functions in the cell has resulted in the establishment of the significance of the MTA family. The role of these proteins in modulating hormonal responses in normal mammary glands and in breast cancer has resulted in their identification as important molecular markers and potential therapeutic targets.

  20. Genome-wide Analysis of Plant-specific Dof Transcription Factor Family in Tomato

    Institute of Scientific and Technical Information of China (English)

    Xiaofeng Cai; Yuyang Zhang; Chanjuan Zhang; Tingyan Zhang; Tixu Hu; Jie Ye; Junhong Zhang

    2013-01-01

    The Dof (DNA binding with One Finger) family encoding single zinc finger proteins has been known as a family of plant-specific transcription factors.These transcription factors are involved in a variety of functions of importance for different biological processes in plants.In the current study,we identified 34 Dof family genes in tomato (Solanum lycopersicum L.),distributed on 11 chromosomes.A complete overview of SIDof genes in tomato is presented,including the gene structures,chromosome locations,phylogeny,protein motifs and evolution pattern.Phylogenetic analysis of 34 SlDof proteins resulted in four classes constituting six clusters.In addition,a comparative analysis between these genes in tomato,Arabidopsis (Arabidopsis thaliana L.) and rice (Oryza sativa L.) was also performed.The tomato Dof family expansion has been dated to recent duplication events,and segmental duplication is predominant for the SlDof genes.Furthermore,the SlDof genes displayed differential expression either in their transcript abundance or in their expression patterns under normal growth conditions.This is the first step towards genome-wide analyses of the Dof genes in tomato.Our study provides a very useful reference for cloning and functional analysis of the members of this gene family in tomato and other species.

  1. MicroRNA-101 regulated transcriptional modulator SUB1 plays a role in prostate cancer.

    Science.gov (United States)

    Chakravarthi, B V S K; Goswami, M T; Pathi, S S; Robinson, A D; Cieślik, M; Chandrashekar, D S; Agarwal, S; Siddiqui, J; Daignault, S; Carskadon, S L; Jing, X; Chinnaiyan, A M; Kunju, L P; Palanisamy, N; Varambally, S

    2016-12-08

    MicroRNA-101, a tumor suppressor microRNA (miR), is often downregulated in cancer and is known to target multiple oncogenes. Some of the genes that are negatively regulated by miR-101 expression include histone methyltransferase EZH2 (enhancer of zeste homolog 2), COX2 (cyclooxygenase-2), POMP (proteasome maturation protein), CERS6, STMN1, MCL-1 and ROCK2, among others. In the present study, we show that miR-101 targets transcriptional coactivator SUB1 homolog (Saccharomyces cerevisiae)/PC4 (positive cofactor 4) and regulates its expression. SUB1 is known to have diverse role in vital cell processes such as DNA replication, repair and heterochromatinization. SUB1 is known to modulate transcription and acts as a mediator between the upstream activators and general transcription machinery. Expression profiling in several cancers revealed SUB1 overexpression, suggesting a potential role in tumorigenesis. However, detailed regulation and function of SUB1 has not been elucidated. In this study, we show elevated expression of SUB1 in aggressive prostate cancer. Knockdown of SUB1 in prostate cancer cells resulted in reduced cell proliferation, invasion and migration in vitro, and tumor growth and metastasis in vivo. Gene expression analyses coupled with chromatin immunoprecipitation revealed that SUB1 binds to the promoter regions of several oncogenes such as PLK1 (Polo-like kinase 1), C-MYC, serine-threonine kinase BUB1B and regulates their expression. Additionally, we observed SUB1 downregulated CDKN1B expression. PLK1 knockdown or use of PLK1 inhibitor can mitigate oncogenic function of SUB1 in benign prostate cancer cells. Thus, our study suggests that miR-101 loss results in increased SUB1 expression and subsequent activation of known oncogenes driving prostate cancer progression and metastasis. This study therefore demonstrates functional role of SUB1 in prostate cancer, and identifies its regulation and potential downstream therapeutic targets of SUB1 in prostate

  2. HBXIP up-regulates ACSL1 through activating transcriptional factor Sp1 in breast cancer.

    Science.gov (United States)

    Wang, Yue; Cai, Xiaoli; Zhang, Shuqin; Cui, Ming; Liu, Fabao; Sun, Baodi; Zhang, Weiying; Zhang, Xiaodong; Ye, Lihong

    2017-03-11

    The oncoprotein hepatitis B X-interacting protein (HBXIP) results in the dysregulation of lipid metabolism to enhance the development of breast cancer. Acyl-CoA synthetase long-chain family member 1 (ACSL1) is required for thioesterification of long-chain fatty acids into their acyl-CoA derivatives. In this study, we present a hypothesis that HBXIP might be involved in the regulation of ACSL1 in breast cancer. Interestingly, we found that the overexpression of HBXIP was able to up-regulate ACSL1 at the levels of mRNA and protein in a dose-dependent manner in breast cancer cells. Conversely, silencing of HBXIP led to the opposite results. Mechanistically, HBXIP as a coactivator interacted with transcriptional factor Sp1 through binding to the promoter of ACSL1 by ChIP assays analysis, leading to the transcription of ACSL1 in breast cancer cells. Immunohistochemistry staining revealed that the positive rate of ACSL1 was 71.4% (35/49) in clinical breast cancer tissues, HBXIP 79.6% (39/49), in which the positive rate of ACSL1 was 76.9% (30/39) in the HBXIP-positive specimens. But, few positive rate of ACSL1 10% (1/10) was observed in normal breast tissues. The mRNA levels of ACSL1 were significantly higher in clinical breast cancer tissues than those in their corresponding peritumor tissues. The mRNA levels of ACSL1 were positively associated with those of HBXIP in clinical breast cancer tissues. Thus, we conclude that the oncoprotein HBXIP is able to up-regulate ACSL1 through activating the transcriptional factor Sp1 in breast cancer.

  3. Assessment of Site Specific Mutational Effect on Transcription Initiation at Escherichia coli Promoter

    Directory of Open Access Journals (Sweden)

    S. Kannan

    2009-01-01

    Full Text Available Problem statement: It is widely accepted thought that the weak promoters control the RNA synthesis and play regulatory role in complex genetic networks in bacterial system. An experiment had been designed to address whether mutations in the -16/-17 region affect the rate of transcription at an activator-independent promoter in E. coli or not? Approach: The aim of this study was to determine whether mutations in the -16/-17 region affect the rate of expression at an activator-dependent promoter in JM109 strain of E. coli. Primers were constructed to amplify the mutant promoter genes through PCR. The amplified PCR product was checked and then inserted into the MCS region of pAA128 plasmid. Further the plasmid vector was transformed into JM109 strain of E. coli and then cloned the selected transformats. Finally, the plasmid from each mutant colony was then sequenced using the protocol supplied with the Amersham Pharmacia Biotech T7 sequencing Kit. The JM109 cultures for which the sequences were determined, then assayed for ß-galactosidase activity to assess the rate of gene expression from the altered promoters. Results: The present investigation revealed that the extended-10 promoter region has a substantial effect on the rate of transcription at weak promoter sequence and also bearing little resemblance to the consensus sequence recognized by RNA. The expression of the genetically engineered plasmid proved that the 2 bps (-16 and -17 base pair found adjacently upstream of the extended-10 promoter have an effect on the level of transcription. This was achieved by site specific base substitutions into the weak promoter of a modified lac operon lacking any activator or repressor binding sites. The results from gene expression assays of several mutants showed a distinct preference for either GG or TT located adjacently upstream of the extended promoter element. Thus the present study emphasized that

  4. Transcriptional Regulation of Fucosyltransferase 1 Gene Expression in Colon Cancer Cells

    Directory of Open Access Journals (Sweden)

    Fumiko Taniuchi

    2013-01-01

    Full Text Available The α1,2-fucosyltransferase I (FUT1 enzyme is important for the biosynthesis of H antigens, Lewis B, and Lewis Y. In this study, we clarified the transcriptional regulation of FUT1 in the DLD-1 colon cancer cell line, which has high expression of Lewis B and Lewis Y antigens, expresses the FUT1 gene, and shows α1,2-fucosyltransferase (FUT activity. 5′-rapid amplification of cDNA ends revealed a FUT1 transcriptional start site −10 nucleotides upstream of the site registered at NM_000148 in the DataBase of Human Transcription Start Sites (DBTSS. Using the dual luciferase assay, FUT1 gene expression was shown to be regulated at the region −91 to −81 nt to the transcriptional start site, which contains the Elk-1 binding site. Site-directed mutagenesis of this region revealed the Elk-1 binding site to be essential for FUT1 transcription. Furthermore, transfection of the dominant negative Elk-1 gene, and the chromatin immunoprecipitation (CHIp assay, supported Elk-1-dependent transcriptional regulation of FUT1 gene expression in DLD-1 cells. These results suggest that a defined region in the 5′-flanking region of FUT1 is critical for FUT1 transcription and that constitutive gene expression of FUT1 is regulated by Elk-1 in DLD-1 cells.

  5. Differential roles of epigenetic changes and Foxp3 expression in regulatory T cell-specific transcriptional regulation

    NARCIS (Netherlands)

    Morikawa, Hiromasa; Ohkura, Naganari; Vandenbon, Alexis; Itoh, Masayoshi; Nagao-Sato, Sayaka; Kawaji, Hideya; Lassmann, Timo; Carninci, Piero; Hayashizaki, Yoshihide; Forrest, Alistair R R; Standley, Daron M; Date, Hiroshi; Sakaguchi, Shimon; Clevers, Hans

    2014-01-01

    Naturally occurring regulatory T (Treg) cells, which specifically express the transcription factor forkhead box P3 (Foxp3), are engaged in the maintenance of immunological self-tolerance and homeostasis. By transcriptional start site cluster analysis, we assessed here how genome-wide patterns of DNA

  6. Intestinal Specific Gene Regulation by Transcription Factors Gata4 and Hnfla in Vivo

    OpenAIRE

    Bosse, Tjalling

    2006-01-01

    textabstractThe mammalian small intestine is responsible for the terminal digestion and absorption of nutrients, water homeostasis, and the elimination of waste products, which in turn, are essential processes for life. These processes however, are easily disrupted by infection, inflammatory processes such as Crohn’s disease, cancer, and resection. The small intestine is equipped with specific proteins, such as enzymes to digest nutrients (digestion) and ‘transporters’ to carry the nutrients ...

  7. Transcriptional coactivator CBP upregulates hTERT expression and tumor growth and predicts poor prognosis in human lung cancers.

    Science.gov (United States)

    Guo, Wei; Lu, Jianjun; Dai, Meng; Wu, Taihua; Yu, Zhenlong; Wang, Jingshu; Chen, Wangbing; Shi, Dingbo; Yu, Wendan; Xiao, Yao; Yi, Canhui; Tang, Zhipeng; Xu, Tingting; Xiao, Xiangsheng; Yuan, Yuhui; Liu, Quentin; Du, Guangwei; Deng, Wuguo

    2014-10-15

    Upregulated expression and activation of human telomerase reverse transcriptase (hTERT) is a hallmarker of lung tumorigenesis. However, the mechanism underlying the aberrant hTERT activity in lung cancer cells remains poorly understood. In this study, we found the transcriptional co-activator CBP as a new hTERT promoter-binding protein that regulated hTERT expression and tumor growth in lung adenocarcinoma cells using a biotin-streptavidin-bead pulldown technique. Chromatin immunoprecipitation assay verified the immortalized cell and tumor cell-specific binding of CBP on hTERT promoter. Overexpression of exogenous CBP upregulated the expression of the hTERT promoter-driven luciferase and endogenous hTERT protein in lung cancer cells. Conversely, inhibition of CBP by CBP-specific siRNA or its chemical inhibitor repressed the expression of hTERT promoter-driven luciferase and endogenous hTERT protein as well as telomerase activity. Moreover, inhibition of CBP expression or activity also significantly reduced the proliferation of lung cancer cells in vitro and tumor growth in an xenograft mouse model in vivo. Immunohistochemical analysis of tissue microarrays of lung cancers revealed a positive correlation between CBP and hTERT. Importantly, the patients with high CBP and hTERT expression had a significantly shorter overall survival. Furthermore, CBP was found to interact with and acetylate transactivator Sp1 in lung cancer cells. Inhibition of CBP by CBP-specific siRNA or its chemical inhibitor significantly inhibited Sp1 acetylation and its binding to the hTERT promoter. Collectively, our results indicate that CBP contributes to the upregulation of hTERT expression and tumor growth, and overexpression of CBP predicts poor prognosis in human lung cancers.

  8. SOX2 gene regulates the transcriptional network of oncogenes and affects tumorigenesis of human lung cancer cells.

    Science.gov (United States)

    Chen, Si; Xu, Yingxi; Chen, Yanan; Li, Xuefei; Mou, Wenjun; Wang, Lina; Liu, Yanhua; Reisfeld, Ralph A; Xiang, Rong; Lv, Dan; Li, Na

    2012-01-01

    Recent studies demonstrated that cancer stem cells (CSCs) have higher tumorigenesis properties than those of differentiated cancer cells and that transcriptional factor-SOX2 plays a vital role in maintaining the unique properties of CSCs; however, the function and underlying mechanism of SOX2 in carcinogenesis of lung cancer are still elusive. This study applied immunohistochemistry to analyze the expression of SOX2 in human lung tissues of normal individuals as well as patients with adenocarcinoma, squamous cell carcinoma, and large cell and small cell carcinoma and demonstrated specific overexpression of SOX2 in all types of lung cancer tissues. This finding supports the notion that SOX2 contributes to the tumorigenesis of lung cancer cells and can be used as a diagnostic probe. In addition, obviously higher expression of oncogenes c-MYC, WNT1, WNT2, and NOTCH1 was detected in side population (SP) cells than in non-side population (NSP) cells of human lung adenocarcinoma cell line-A549, revealing a possible mechanism for the tenacious tumorigenic potential of CSCs. To further elucidate the function of SOX2 in tumorigenesis of cancer cells, A549 cells were established with expression of luciferase and doxycycline-inducible shRNA targeting SOX2. We found silencing of SOX2 gene reduces the tumorigenic property of A549 cells with attenuated expression of c-MYC, WNT1, WNT2, and NOTCH1 in xenografted NOD/SCID mice. By using the RNA-Seq method, an additional 246 target cancer genes of SOX2 were revealed. These results present evidence that SOX2 may regulate the expression of oncogenes in CSCs to promote the development of human lung cancer.

  9. SOX2 gene regulates the transcriptional network of oncogenes and affects tumorigenesis of human lung cancer cells.

    Directory of Open Access Journals (Sweden)

    Si Chen

    Full Text Available Recent studies demonstrated that cancer stem cells (CSCs have higher tumorigenesis properties than those of differentiated cancer cells and that transcriptional factor-SOX2 plays a vital role in maintaining the unique properties of CSCs; however, the function and underlying mechanism of SOX2 in carcinogenesis of lung cancer are still elusive. This study applied immunohistochemistry to analyze the expression of SOX2 in human lung tissues of normal individuals as well as patients with adenocarcinoma, squamous cell carcinoma, and large cell and small cell carcinoma and demonstrated specific overexpression of SOX2 in all types of lung cancer tissues. This finding supports the notion that SOX2 contributes to the tumorigenesis of lung cancer cells and can be used as a diagnostic probe. In addition, obviously higher expression of oncogenes c-MYC, WNT1, WNT2, and NOTCH1 was detected in side population (SP cells than in non-side population (NSP cells of human lung adenocarcinoma cell line-A549, revealing a possible mechanism for the tenacious tumorigenic potential of CSCs. To further elucidate the function of SOX2 in tumorigenesis of cancer cells, A549 cells were established with expression of luciferase and doxycycline-inducible shRNA targeting SOX2. We found silencing of SOX2 gene reduces the tumorigenic property of A549 cells with attenuated expression of c-MYC, WNT1, WNT2, and NOTCH1 in xenografted NOD/SCID mice. By using the RNA-Seq method, an additional 246 target cancer genes of SOX2 were revealed. These results present evidence that SOX2 may regulate the expression of oncogenes in CSCs to promote the development of human lung cancer.

  10. Cancer registries in Japan: National Clinical Database and site-specific cancer registries.

    Science.gov (United States)

    Anazawa, Takayuki; Miyata, Hiroaki; Gotoh, Mitsukazu

    2015-02-01

    The cancer registry is an essential part of any rational program of evidence-based cancer control. The cancer control program is required to strategize in a systematic and impartial manner and efficiently utilize limited resources. In Japan, the National Clinical Database (NCD) was launched in 2010. It is a nationwide prospective registry linked to various types of board certification systems regarding surgery. The NCD is a nationally validated database using web-based data collection software; it is risk adjusted and outcome based to improve the quality of surgical care. The NCD generalizes site-specific cancer registries by taking advantage of their excellent organizing ability. Some site-specific cancer registries, including pancreatic, breast, and liver cancer registries have already been combined with the NCD. Cooperation between the NCD and site-specific cancer registries can establish a valuable platform to develop a cancer care plan in Japan. Furthermore, the prognosis information of cancer patients arranged using population-based and hospital-based cancer registries can help in efficient data accumulation on the NCD. International collaboration between Japan and the USA has recently started and is expected to provide global benchmarking and to allow a valuable comparison of cancer treatment practices between countries using nationwide cancer registries in the future. Clinical research and evidence-based policy recommendation based on accurate data from the nationwide database may positively impact the public.

  11. Transcription factor Oct1 is a somatic and cancer stem cell determinant.

    Directory of Open Access Journals (Sweden)

    Jessica Maddox

    Full Text Available Defining master transcription factors governing somatic and cancer stem cell identity is an important goal. Here we show that the Oct4 paralog Oct1, a transcription factor implicated in stress responses, metabolic control, and poised transcription states, regulates normal and pathologic stem cell function. Oct1(HI cells in the colon and small intestine co-express known stem cell markers. In primary malignant tissue, high Oct1 protein but not mRNA levels strongly correlate with the frequency of CD24(LOCD44(HI cancer-initiating cells. Reducing Oct1 expression via RNAi reduces the proportion of ALDH(HI and dye efflux(HI cells, and increasing Oct1 increases the proportion of ALDH(HI cells. Normal ALDH(HI cells harbor elevated Oct1 protein but not mRNA levels. Functionally, we show that Oct1 promotes tumor engraftment frequency and promotes hematopoietic stem cell engraftment potential in competitive and serial transplants. In addition to previously described Oct1 transcriptional targets, we identify four Oct1 targets associated with the stem cell phenotype. Cumulatively, the data indicate that Oct1 regulates normal and cancer stem cell function.

  12. Comprehensive analysis of the specificity of transcription activator-like effector nucleases.

    Science.gov (United States)

    Juillerat, Alexandre; Dubois, Gwendoline; Valton, Julien; Thomas, Séverine; Stella, Stefano; Maréchal, Alan; Langevin, Stéphanie; Benomari, Nassima; Bertonati, Claudia; Silva, George H; Daboussi, Fayza; Epinat, Jean-Charles; Montoya, Guillermo; Duclert, Aymeric; Duchateau, Philippe

    2014-04-01

    A key issue when designing and using DNA-targeting nucleases is specificity. Ideally, an optimal DNA-targeting tool has only one recognition site within a genomic sequence. In practice, however, almost all designer nucleases available today can accommodate one to several mutations within their target site. The ability to predict the specificity of targeting is thus highly desirable. Here, we describe the first comprehensive experimental study focused on the specificity of the four commonly used repeat variable diresidues (RVDs; NI:A, HD:C, NN:G and NG:T) incorporated in transcription activator-like effector nucleases (TALEN). The analysis of >15 500 unique TALEN/DNA cleavage profiles allowed us to monitor the specificity gradient of the RVDs along a TALEN/DNA binding array and to present a specificity scoring matrix for RVD/nucleotide association. Furthermore, we report that TALEN can only accommodate a relatively small number of position-dependent mismatches while maintaining a detectable activity at endogenous loci in vivo, demonstrating the high specificity of these molecular tools. We thus envision that the results we provide will allow for more deliberate choices of DNA binding arrays and/or DNA targets, extending our engineering capabilities.

  13. Lineage-affiliated transcription factors bind the Gata3 Tce1 enhancer to mediate lineage-specific programs.

    Science.gov (United States)

    Ohmura, Sakie; Mizuno, Seiya; Oishi, Hisashi; Ku, Chia-Jui; Hermann, Mary; Hosoya, Tomonori; Takahashi, Satoru; Engel, James Douglas

    2016-03-01

    The transcription factor GATA3 is essential for the genesis and maturation of the T cell lineage, and GATA3 dysregulation has pathological consequences. Previous studies have shown that GATA3 function in T cell development is regulated by multiple signaling pathways and that the Notch nuclear effector, RBP-J, binds specifically to the Gata3 promoter. We previously identified a T cell-specific Gata3 enhancer (Tce1) lying 280 kb downstream from the structural gene and demonstrated in transgenic mice that Tce1 promoted T lymphocyte-specific transcription of reporter genes throughout T cell development; however, it was not clear if Tce1 is required for Gata3 transcription in vivo. Here, we determined that the canonical Gata3 promoter is insufficient for Gata3 transcriptional activation in T cells in vivo, precluding the possibility that promoter binding by a host of previously implicated transcription factors alone is responsible for Gata3 expression in T cells. Instead, we demonstrated that multiple lineage-affiliated transcription factors bind to Tce1 and that this enhancer confers T lymphocyte-specific Gata3 activation in vivo, as targeted deletion of Tce1 in a mouse model abrogated critical functions of this T cell-regulatory element. Together, our data show that Tce1 is both necessary and sufficient for critical aspects of Gata3 T cell-specific transcriptional activity.

  14. FOXP3 Transcription Factor: A Candidate Marker for Susceptibility and Prognosis in Triple Negative Breast Cancer

    Directory of Open Access Journals (Sweden)

    Leandra Fiori Lopes

    2014-01-01

    Full Text Available Triple negative breast cancer (TNBC is a relevant subgroup of neoplasia which presents negative phenotype of estrogen and progesterone receptors and has no overexpression of the human epidermal growth factor 2 (HER2. FOXP3 (forkhead transcription factor 3 is a marker of regulatory T cells (Tregs, whose expression may be increased in tumor cells. This study aimed to investigate a polymorphism (rs3761548 and the protein expression of FOXP3 for a possible involvement in TNBC susceptibility and prognosis. Genetic polymorphism was evaluated in 50 patients and in 115 controls by allele-specific PCR (polymerase chain reaction. Protein expression was evaluated in 38 patients by immunohistochemistry. It was observed a positive association for homozygous AA (OR = 3.78; 95% CI = 1.02–14.06 in relation to TNBC susceptibility. Most of the patients (83% showed a strong staining for FOXP3 protein in the tumor cells. In relation to FOXP3-positive infiltrate, 47% and 58% of patients had a moderate or intense intratumoral and peritumoral mononuclear infiltrate cells, respectively. Tumor size was positively correlated to intratumoral FOXP3-positive infiltrate (P=0.026. In conclusion, since FOXP3 was positively associated with TNBC susceptibility and prognosis, it seems to be a promising candidate for further investigation in larger TNBC samples.

  15. Modeling microRNA-transcription factor networks in cancer.

    Science.gov (United States)

    Aguda, Baltazar D

    2013-01-01

    An increasing number of transcription factors (TFs) and microRNAs (miRNAs) is known to form feedback loops (FBLs) of interactions where a TF positively or negatively regulates the expression of a miRNA, and the miRNA suppresses the translation of the TF messenger RNA. FBLs are potential sources of instability in a gene regulatory network. Positive FBLs can give rise to switching behaviors while negative FBLs can generate periodic oscillations. This chapter presents documented examples of FBLs and their relevance to stem cell renewal and differentiation in gliomas. Feed-forward loops (FFLs) are only discussed briefly because they do not affect network stability unless they are members of cycles. A primer on qualitative network stability analysis is given and then used to demonstrate the network destabilizing role of FBLs. Steps in model formulation and computer simulations are illustrated using the miR-17-92/Myc/E2F network as an example. This example possesses both negative and positive FBLs.

  16. The Colorectal cancer disease-specific transcriptome may facilitate the discovery of more biologically and clinically relevant information

    Directory of Open Access Journals (Sweden)

    Proutski Vitali

    2010-12-01

    Full Text Available Abstract Background To date, there are no clinically reliable predictive markers of response to the current treatment regimens for advanced colorectal cancer. The aim of the current study was to compare and assess the power of transcriptional profiling using a generic microarray and a disease-specific transcriptome-based microarray. We also examined the biological and clinical relevance of the disease-specific transcriptome. Methods DNA microarray profiling was carried out on isogenic sensitive and 5-FU-resistant HCT116 colorectal cancer cell lines using the Affymetrix HG-U133 Plus2.0 array and the Almac Diagnostics Colorectal cancer disease specific Research tool. In addition, DNA microarray profiling was also carried out on pre-treatment metastatic colorectal cancer biopsies using the colorectal cancer disease specific Research tool. The two microarray platforms were compared based on detection of probesets and biological information. Results The results demonstrated that the disease-specific transcriptome-based microarray was able to out-perform the generic genomic-based microarray on a number of levels including detection of transcripts and pathway analysis. In addition, the disease-specific microarray contains a high percentage of antisense transcripts and further analysis demonstrated that a number of these exist in sense:antisense pairs. Comparison between cell line models and metastatic CRC patient biopsies further demonstrated that a number of the identified sense:antisense pairs were also detected in CRC patient biopsies, suggesting potential clinical relevance. Conclusions Analysis from our in vitro and clinical experiments has demonstrated that many transcripts exist in sense:antisense pairs including IGF2BP2, which may have a direct regulatory function in the context of colorectal cancer. While the functional relevance of the antisense transcripts has been established by many studies, their functional role is currently unclear

  17. TRIM24 Is an Oncogenic Transcriptional Activator in Prostate Cancer.

    Science.gov (United States)

    Groner, Anna C; Cato, Laura; de Tribolet-Hardy, Jonas; Bernasocchi, Tiziano; Janouskova, Hana; Melchers, Diana; Houtman, René; Cato, Andrew C B; Tschopp, Patrick; Gu, Lei; Corsinotti, Andrea; Zhong, Qing; Fankhauser, Christian; Fritz, Christine; Poyet, Cédric; Wagner, Ulrich; Guo, Tiannan; Aebersold, Ruedi; Garraway, Levi A; Wild, Peter J; Theurillat, Jean-Philippe; Brown, Myles

    2016-06-13

    Androgen receptor (AR) signaling is a key driver of prostate cancer (PC). While androgen-deprivation therapy is transiently effective in advanced disease, tumors often progress to a lethal castration-resistant state (CRPC). We show that recurrent PC-driver mutations in speckle-type POZ protein (SPOP) stabilize the TRIM24 protein, which promotes proliferation under low androgen conditions. TRIM24 augments AR signaling, and AR and TRIM24 co-activated genes are significantly upregulated in CRPC. Expression of TRIM24 protein increases from primary PC to CRPC, and both TRIM24 protein levels and the AR/TRIM24 gene signature predict disease recurrence. Analyses in CRPC cells reveal that the TRIM24 bromodomain and the AR-interacting motif are essential to support proliferation. These data provide a rationale for therapeutic TRIM24 targeting in SPOP mutant and CRPC patients.

  18. Transcriptional and Non-Transcriptional Functions of PPARβ/δ in Non-Small Cell Lung Cancer.

    Directory of Open Access Journals (Sweden)

    Davide Genini

    Full Text Available Peroxisome proliferator-activated receptor β/δ (PPARβ/δ is a nuclear receptor involved in regulation of lipid and glucose metabolism, wound healing and inflammation. PPARβ/δ has been associated also with cancer. Here we investigated the expression of PPARβ/δ and components of the prostaglandin biosynthetic pathway in non-small cell lung cancer (NSCLC. We found increased expression of PPARβ/δ, Cox-2, cPLA(2, PGES and VEGF in human NSCLC compared to normal lung. In NSCLC cell lines PPARβ/δ activation increased proliferation and survival, while PPARβ/δ knock-down reduced viability and increased apoptosis. PPARβ/δ agonists induced Cox-2 and VEGF transcription, suggesting the existence of feed-forward loops promoting cell survival, inflammation and angiogenesis. These effects were seen only in high PPARβ/δ expressing cells, while low expressing cells were less or not affected. The effects were also abolished by PPARβ/δ knock-down or incubation with a PPARβ/δ antagonist. Induction of VEGF was due to both binding of PPARβ/δ to the VEGF promoter and PI3K activation through a non-genomic mechanism. We found that PPARβ/δ interacted with the PI3K regulatory subunit p85α leading to PI3K activation and Akt phosphorylation. Collectively, these data indicate that PPARβ/δ might be a central element in lung carcinogenesis controlling multiple pathways and representing a potential target for NSCLC treatment.

  19. Human BLCAP transcript: new editing events in normal and cancerous tissues.

    Science.gov (United States)

    Galeano, Federica; Leroy, Anne; Rossetti, Claudia; Gromova, Irina; Gautier, Philippe; Keegan, Liam P; Massimi, Luca; Di Rocco, Concezio; O'Connell, Mary A; Gallo, Angela

    2010-07-01

    Bladder cancer-associated protein (BLCAP) is a highly conserved protein among species, and it is considered a novel candidate tumor suppressor gene originally identified from human bladder carcinoma. However, little is known about the regulation or the function of this protein. Here, we show that the human BLCAP transcript undergoes multiple A-to-I editing events. Some of the new editing events alter the highly conserved amino terminus of the protein creating alternative protein isoforms by changing the genetically coded amino acids. We found that both ADAR1 and ADAR2-editing enzymes cooperate to edit this transcript and that different tissues displayed distinctive ratios of edited and unedited BLCAP transcripts. Moreover, we observed a general decrease in BLCAP-editing level in astrocytomas, bladder cancer and colorectal cancer when compared with the related normal tissues. The newly identified editing events, found to be downregulated in cancers, could be useful for future studies as a diagnostic tool to distinguish malignancies or epigenetic changes in different tumors.

  20. Cancer cell specific cytotoxic gene expression mediated by ARF tumor suppressor promoter constructs

    Energy Technology Data Exchange (ETDEWEB)

    Kurayoshi, Kenta [Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337 (Japan); Ozono, Eiko [Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary, University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ (United Kingdom); Iwanaga, Ritsuko; Bradford, Andrew P. [Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045 (United States); Komori, Hideyuki [Center for Stem Cell Biology, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109 (United States); Ohtani, Kiyoshi, E-mail: btm88939@kwansei.ac.jp [Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337 (Japan)

    2014-07-18

    Highlights: • ARF promoter showed higher responsiveness to deregulated E2F activity than the E2F1 promoter. • ARF promoter showed higher cancer cell-specificity than E2F1 promoter to drive gene expression. • HSV-TK driven by ARF promoter showed higher cancer cell-specific cytotoxicity than that driven by E2F1 promoter. - Abstract: In current cancer treatment protocols, such as radiation and chemotherapy, side effects on normal cells are major obstacles to radical therapy. To avoid these side effects, a cancer cell-specific approach is needed. One way to specifically target cancer cells is to utilize a cancer specific promoter to express a cytotoxic gene (suicide gene therapy) or a viral gene required for viral replication (oncolytic virotherapy). For this purpose, the selected promoter should have minimal activity in normal cells to avoid side effects, and high activity in a wide variety of cancers to obtain optimal therapeutic efficacy. In contrast to the AFP, CEA and PSA promoters, which have high activity only in a limited spectrum of tumors, the E2F1 promoter exhibits high activity in wide variety of cancers. This is based on the mechanism of carcinogenesis. Defects in the RB pathway and activation of the transcription factor E2F, the main target of the RB pathway, are observed in almost all cancers. Consequently, the E2F1 promoter, which is mainly regulated by E2F, has high activity in wide variety of cancers. However, E2F is also activated by growth stimulation in normal growing cells, suggesting that the E2F1 promoter may also be highly active in normal growing cells. In contrast, we found that the tumor suppressor ARF promoter is activated by deregulated E2F activity, induced by forced inactivation of pRB, but does not respond to physiological E2F activity induced by growth stimulation. We also found that the deregulated E2F activity, which activates the ARF promoter, is detected only in cancer cell lines. These observations suggest that ARF promoter

  1. RKIP Inhibits Local Breast Cancer Invasion by Antagonizing the Transcriptional Activation of MMP13.

    Directory of Open Access Journals (Sweden)

    Ila Datar

    Full Text Available Raf Kinase Inhibitory Protein or RKIP was initially identified as a Raf-1 binding protein using the yeast 2-hybrid screen. RKIP inhibits the activation phosphorylation of MEK by Raf-1 by competitively inhibiting the binding of MEK to Raf-1 and thus exerting an inhibitory effect on the Raf-MEK-Erk pathway. RKIP has been identified as a metastasis suppressor gene. Expression of RKIP is low in cancer metastases. Although primary tumor growth remains unaffected, re- expression of RKIP inhibits cancer metastasis. Mechanistically, RKIP constrains metastasis by inhibiting angiogenesis, local invasion, intravasation, and colonization. The molecular mechanism of how RKIP inhibits these individual steps remains undefined. In our present study, using an unbiased PCR based screening and by analyzing DNA microarray expression datasets we observe that the expression of multiple metalloproteases (MMPs including MMP1, MMP3, MMP10 and MMP13 are negatively correlated with RKIP expression in breast cancer cell lines and clinical samples. Since expression of MMPs by cancer cells is important for cancer metastasis, we hypothesize that RKIP may mediate suppression of breast cancer metastasis by inhibiting multiple MMPs. We show that the expression signature of RKIP and MMPs is better at predicting high metastatic risk than the individual gene. Using a combination of loss- and gain-of-function approaches, we find that MMP13 is the cause of RKIP-mediated inhibition of local cancer invasion. Interestingly expression of MMP13 alone is not sufficient to reverse the inhibition of breast cancer cell metastasis to the lung due to the expression of RKIP. We find that RKIP negatively regulates MMP13 through the Erk2 signaling pathway and the repression of MMP13 by RKIP is transcription factor AP-1 independent. Together, our findings indicate that RKIP inhibits cancer cell invasion, in part, via MMP13 inhibition. These data also implicate RKIP in the regulation of MMP

  2. The Pioneer Transcription Factor FoxA Maintains an Accessible Nucleosome Configuration at Enhancers for Tissue-Specific Gene Activation.

    Science.gov (United States)

    Iwafuchi-Doi, Makiko; Donahue, Greg; Kakumanu, Akshay; Watts, Jason A; Mahony, Shaun; Pugh, B Franklin; Lee, Dolim; Kaestner, Klaus H; Zaret, Kenneth S

    2016-04-01

    Nuclear DNA wraps around core histones to form nucleosomes, which restricts the binding of transcription factors to gene regulatory sequences. Pioneer transcription factors can bind DNA sites on nucleosomes and initiate gene regulatory events, often leading to the local opening of chromatin. However, the nucleosomal configuration of open chromatin and the basis for its regulation is unclear. We combined low and high levels of micrococcal nuclease (MNase) digestion along with core histone mapping to assess the nucleosomal configuration at enhancers and promoters in mouse liver. We find that MNase-accessible nucleosomes, bound by transcription factors, are retained more at liver-specific enhancers than at promoters and ubiquitous enhancers. The pioneer factor FoxA displaces linker histone H1, thereby keeping enhancer nucleosomes accessible in chromatin and allowing other liver-specific transcription factors to bind and stimulate transcription. Thus, nucleosomes are not exclusively repressive to gene regulation when they are retained with, and exposed by, pioneer factors.

  3. The Identification of Senescence-Specific Genes during the Induction of Senescence in Prostate Cancer Cells

    Directory of Open Access Journals (Sweden)

    Steven R. Schwarze

    2005-09-01

    Full Text Available Classic mechanisms of tumor response to chemotherapy include apoptosis, mitotic catastrophe. Recent studies have suggested that cellular senescence, a terminal proliferation arrest seen in vitro, may be invoked during the exposure of cancer cells to chemotherapeutic agents. To identify markers associated specifically with the cellular senescence phenotype, we utilized expression data from cDNA microarray experiments identifying transcripts whose expression levels increased as human prostate epithelial cells progressed to senescence. When screened against other growth-inhibitory conditions, including quiescence, apoptosis, many of these transcripts were also upregulated, indicating that similar pathways occur between apoptosis, senescence. A senescent-like phenotype was then induced in several prostate cancer cell lines using 5-aza-2′-deoxycytidine, doxorubicin, or Docetaxel. Treatment with these agents resulted in a significant increase in the induction of senescence-specific genes when compared to nonsenescent conditions. The performance of the panel was improved with fluorescence-activated cell sorting using PKH26 to isolate nonproliferating, viable, drug-treated populations, indicating that a heterogeneous response occurs with chemotherapy. We have defined an RNA-based gene panel that characterizes the senescent phenotype induced in cancer cells by drug treatment. These data also indicate that a panel of genes, rather than one marker, needs to be utilized to identify senescence.

  4. Atopy and Specific Cancer Sites: a Review of Epidemiological Studies.

    Science.gov (United States)

    Cui, Yubao; Hill, Andrew W

    2016-12-01

    Mounting evidence appears to link asthma and atopy to cancer susceptibility. This review presents and discusses published epidemiological studies on the association between site-specific cancers and atopy. PubMed was searched electronically for publications between 1995 and 2015, and cited references were researched manually. Quantitative studies relating to atopy, allergy, or asthma and cancer were identified and tabulated. Despite many exposure-related limitations, patterns in the studies were observed. Asthma, specifically, has been observed to be a risk factor for lung cancer. A protective effect of atopic diseases against pancreatic cancer has been shown consistently in case-control studies but not in cohort studies. Allergy of any type appears to be protective against glioma and adult acute lymphoblastic leukemia. Most studies on atopic diseases and non-Hodgkin lymphoma or colorectal cancer reported an inverse association. The other sites identified had varying and non-significant outcomes. Further research should be dedicated to carefully defined exposure assessments of "atopy" as well as the biological plausibility in the association between atopic diseases and cancer.

  5. A sex-specific transcription factor controls male identity in a simultaneous hermaphrodite.

    Science.gov (United States)

    Chong, Tracy; Collins, James J; Brubacher, John L; Zarkower, David; Newmark, Phillip A

    2013-01-01

    Evolutionary transitions between hermaphroditic and dioecious reproductive states are found in many groups of animals. To understand such transitions, it is important to characterize diverse modes of sex determination utilized by metazoans. Currently, little is known about how simultaneous hermaphrodites specify and maintain male and female organs in a single individual. Here we show that a sex-specific gene, Smed-dmd-1 encoding a predicted doublesex/male-abnormal-3 (DM) domain transcription factor, is required for specification of male germ cells in a simultaneous hermaphrodite, the planarian Schmidtea mediterranea. dmd-1 has a male-specific role in the maintenance and regeneration of the testes and male accessory reproductive organs. In addition, a homologue of dmd-1 exhibits male-specific expression in Schistosoma mansoni, a derived, dioecious flatworm. These results demonstrate conservation of the role of DM domain genes in sexual development in lophotrochozoans and suggest one means by which modulation of sex-specific pathways can drive the transition from hermaphroditism to dioecy.

  6. Cumulus-specific genes are transcriptionally silent following somatic cell nuclear transfer in a mouse model

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This study investigated whether four cumulus-specific genes: follicular stimulating hormone receptor (FSHr), hyaluronan synthase 2 (Has2), prostaglandin synthase 2 (Ptgs2) and steroidogenic acute regulator protein (Star), were correctly reprogrammed to be transcriptionally silent following somatic cell nuclear transfer (SCNT) in a murine model. Cumulus cells of C57×CBA F1 female mouse were injected into enucleated oocytes, followed by activation in 10 μmol/L strontium chloride for 5 h and subsequent in vitro culture up to the blastocyst stage. Expression of cumulus-specific genes in SCNT-derived embryos at 2-cell, 4-cell and day 4.5 blastocyst stages was compared with corresponding in vivo fertilized embryos by real-time PCR. It was demonstrated that immediately after the first cell cycle, SCNT-derived 2-cell stage embryos did not express all four cumulus-specific genes, which continually remained silent at the 4-cell and blastocyst stages. It is therefore concluded that all four cumulus-specific genes were correctly reprogrammed to be silent following nuclear transfer with cumulus donor cells in the mouse model. This would imply that the poor preimplantation developmental competence of SCNT embryos derived from cumulus cells is due to incomplete reprogramming of other embryonic genes, rather than cumulus-specific genes.

  7. Identification of Tissue-Specific Protein-Coding and Noncoding Transcripts across 14 Human Tissues Using RNA-seq.

    Science.gov (United States)

    Zhu, Jinhang; Chen, Geng; Zhu, Sibo; Li, Suqing; Wen, Zhuo; Bin Li; Zheng, Yuanting; Shi, Leming

    2016-06-22

    Many diseases and adverse drug reactions exhibit tissue specificity. To better understand the tissue-specific expression characteristics of transcripts in different human tissues, we deeply sequenced RNA samples from 14 different human tissues. After filtering many lowly expressed transcripts, 24,729 protein-coding transcripts and 1,653 noncoding transcripts were identified. By analyzing highly expressed tissue-specific protein-coding transcripts (TSCTs) and noncoding transcripts (TSNTs), we found that testis expressed the highest numbers of TSCTs and TSNTs. Brain, monocytes, ovary, and heart expressed more TSCTs than the rest tissues, whereas brain, placenta, heart, and monocytes expressed more TSNTs than other tissues. Co-expression network constructed based on the TSCTs and TSNTs showed that each hub TSNT was co-expressed with several TSCTs, allowing functional annotation of TSNTs. Important biological processes and KEGG pathways highly related to the specific functions or diseases of each tissue were enriched with the corresponding TSCTs. These TSCTs and TSNTs may participate in the tissue-specific physiological or pathological processes. Our study provided a unique data set and systematic analysis of expression characteristics and functions of both TSCTs and TSNTs based on 14 distinct human tissues, and could facilitate future investigation of the mechanisms behind tissue-specific diseases and adverse drug reactions.

  8. Interobserver variability in prostate cancer specific survival.

    Science.gov (United States)

    Clark, J Y; Lillis, P K; O'Rourke, T J; Jones, C; Higgins, B A; Thompson, I M

    1998-01-01

    We evaluated the reliability of disease-specific survival (DSS) as an outcome measure in patients with carcinoma of the prostate (CaP). The records of 50 patients had a diagnosis of CaP and had expired were selected from the hospital tumor registry. Records were reviewed by six individuals and each individual was asked to specify cause of death as due to CaP or some other cause. DSS curves were generated based on the determinations of each reviewer. Although the DSS curves were generally parallel, a high degree of variability was seen at various intervals, leading us to conclude that DSS is dependent upon the individual reviewer. Published by Elsevier Science Inc.

  9. Specific and non-specific symptoms of colorectal cancer and contact to general practice

    DEFF Research Database (Denmark)

    Rasmussen, Sanne; Larsen, Pia Veldt; Søndergaard, Jens;

    2015-01-01

    , were randomly selected in the general population and invited to participate in an internet-based survey. Items regarding experience of specific and non-specific alarm symptoms of colorectal cancer within the preceding 4 weeks and contact to GP were included. RESULTS: A total of 49706 subjects completed......BACKGROUND: To improve survival rates for colorectal cancer, referral guidelines have been implemented. First step in the diagnostic process is for the individual to recognize the symptoms and contact his/her general practitioner (GP) for evaluation. OBJECTIVES: To determine (i) the prevalence...... of specific and non-specific symptom experiences indicative of colorectal cancer, (ii) the proportion of subsequent contacts to GPs, (iii) to explore the possible differences in symptom experience and contact to GPs between age and sex. METHODS: A nationwide study of 100000 adults, aged 20 years and older...

  10. The Transcription Factor ZNF217 Is a Prognostic Biomarker and Therapeutic Target during Breast Cancer Progression

    Science.gov (United States)

    Littlepage, Laurie E.; Adler, Adam S.; Kouros-Mehr, Hosein; Huang, Guiqing; Chou, Jonathan; Krig, Sheryl R.; Griffith, Obi L.; Korkola, James E.; Qu, Kun; Lawson, Devon A.; Xue, Qing; Sternlicht, Mark D.; Dijkgraaf, Gerrit J. P.; Yaswen, Paul; Rugo, Hope S.; Sweeney, Colleen A.; Collins, Colin C.; Gray, Joe W.; Chang, Howard Y.; Werb, Zena

    2013-01-01

    The transcription factor ZNF217 is a candidate oncogene in the amplicon on chromosome 20q13 that occurs in 20% to 30% of primary human breast cancers and that correlates with poor prognosis. We show that Znf217 overexpression drives aberrant differentiation and signaling events, promotes increased self-renewal capacity, mesenchymal marker expression, motility, and metastasis, and represses an adult tissue stem cell gene signature downregulated in cancers. By in silico screening, we identified candidate therapeutics that at low concentrations inhibit growth of cancer cells expressing high ZNF217. We show that the nucleoside analogue triciribine inhibits ZNF217-induced tumor growth and chemotherapy resistance and inhibits signaling events [e.g., phospho-AKT, phospho-mitogen-activated protein kinase (MAPK)] in vivo. Our data suggest that ZNF217 is a biomarker of poor prognosis and a therapeutic target in patients with breast cancer and that triciribine may be part of a personalized treatment strategy in patients overexpressing ZNF217. Because ZNF217 is amplified in numerous cancers, these results have implications for other cancers. SIGNIFICANCE This study finds that ZNF217 is a poor prognostic indicator and therapeutic target in patients with breast cancer and may be a strong biomarker of triciribine treatment efficacy in patients. Because previous clinical trials for triciribine did not include biomarkers of treatment efficacy, this study provides a rationale for revisiting triciribine in the clinical setting as a therapy for patients with breast cancer who overexpress ZNF217. PMID:22728437

  11. PEA3activates CXCL12transcription in MCF-7breast cancer cells%PEA3 activates CXCL12 transcription in MCF-7 breast cancer cells

    Institute of Scientific and Technical Information of China (English)

    CHEN Li; CHEN Bo-bin; LI Jun-jie; JIN Wei; SHAO Zhi-min

    2011-01-01

    Objective To explore the activity of PEA3 ( polyomavirus enhancer activator 3 ) on CXCL12 (Chemokine CXC motif ligand 12) transcription and to reveal the role of PEA3 involved in CXCL12-mediated metastasis and angiogenesis in breast cancer. Methods Methods such as cell transfection, ChIP assay (chromatin immunoprecipitation ), and siRNA (small interfering RNA) were applied to demonstrate and confirm the interaction between PEA3 and CXCL12. Results Over-expression of PEA3 could increase the CXCL12 mRNA level and the CXCL12 promoter activity in human MCF-7 breast cancer cells. ChIP assay demonstrated that PEA3 could bind to the CXCL12 promoter in the cells transfected with PEA3 expression vector. PEA3 siRNA decreased CXCL12 promoter activity and the binding of PEA3 to the CXCL12 promoter in MCF-7 cells. Conclusions PEA3 could activate CXCL12 promoter transcription. It may be a potential mechanism of tumor angiogenesis and metastasis regarding of PEA3 and CXCL12.

  12. Erythroid-specific transcriptional changes in PBMCs from pulmonary hypertension patients.

    Directory of Open Access Journals (Sweden)

    Chris Cheadle

    Full Text Available BACKGROUND: Gene expression profiling of peripheral blood mononuclear cells (PBMCs is a powerful tool for the identification of surrogate markers involved in disease processes. The hypothesis tested in this study was that chronic exposure of PBMCs to a hypertensive environment in remodeled pulmonary vessels would be reflected by specific transcriptional changes in these cells. METHODOLOGY/PRINCIPAL FINDINGS: The transcript profiles of PBMCs from 30 idiopathic pulmonary arterial hypertension patients (IPAH, 19 patients with systemic sclerosis without pulmonary hypertension (SSc, 42 scleroderma-associated pulmonary arterial hypertensio patients (SSc-PAH, and 8 patients with SSc complicated by interstitial lung disease and pulmonary hypertension (SSc-PH-ILD were compared to the gene expression profiles of PBMCs from 41 healthy individuals. Multiple gene expression signatures were identified which could distinguish various disease groups from controls. One of these signatures, specific for erythrocyte maturation, is enriched specifically in patients with PH. This association was validated in multiple published datasets. The erythropoiesis signature was strongly correlated with hemodynamic measures of increasing disease severity in IPAH patients. No significant correlation of the same type was noted for SSc-PAH patients, this despite a clear signature enrichment within this group overall. These findings suggest an association of the erythropoiesis signature in PBMCs from patients with PH with a variable presentation among different subtypes of disease. CONCLUSIONS/SIGNIFICANCE: In PH, the expansion of immature red blood cell precursors may constitute a response to the increasingly hypoxic conditions prevalent in this syndrome. A correlation of this erythrocyte signature with more severe hypertension cases may provide an important biomarker of disease progression.

  13. Elucidating the altered transcriptional programs in breast cancer using independent component analysis.

    Directory of Open Access Journals (Sweden)

    Andrew E Teschendorff

    2007-08-01

    Full Text Available The quantity of mRNA transcripts in a cell is determined by a complex interplay of cooperative and counteracting biological processes. Independent Component Analysis (ICA is one of a few number of unsupervised algorithms that have been applied to microarray gene expression data in an attempt to understand phenotype differences in terms of changes in the activation/inhibition patterns of biological pathways. While the ICA model has been shown to outperform other linear representations of the data such as Principal Components Analysis (PCA, a validation using explicit pathway and regulatory element information has not yet been performed. We apply a range of popular ICA algorithms to six of the largest microarray cancer datasets and use pathway-knowledge and regulatory-element databases for validation. We show that ICA outperforms PCA and clustering-based methods in that ICA components map closer to known cancer-related pathways, regulatory modules, and cancer phenotypes. Furthermore, we identify cancer signalling and oncogenic pathways and regulatory modules that play a prominent role in breast cancer and relate the differential activation patterns of these to breast cancer phenotypes. Importantly, we find novel associations linking immune response and epithelial-mesenchymal transition pathways with estrogen receptor status and histological grade, respectively. In addition, we find associations linking the activity levels of biological pathways and transcription factors (NF1 and NFAT with clinical outcome in breast cancer. ICA provides a framework for a more biologically relevant interpretation of genomewide transcriptomic data. Adopting ICA as the analysis tool of choice will help understand the phenotype-pathway relationship and thus help elucidate the molecular taxonomy of heterogeneous cancers and of other complex genetic diseases.

  14. Genome-wide transcript profiling reveals novel breast cancer-associated intronic sense RNAs.

    Science.gov (United States)

    Kim, Sang Woo; Fishilevich, Elane; Arango-Argoty, Gustavo; Lin, Yuefeng; Liu, Guodong; Li, Zhihua; Monaghan, A Paula; Nichols, Mark; John, Bino

    2015-01-01

    Non-coding RNAs (ncRNAs) play major roles in development and cancer progression. To identify novel ncRNAs that may identify key pathways in breast cancer development, we performed high-throughput transcript profiling of tumor and normal matched-pair tissue samples. Initial transcriptome profiling using high-density genome-wide tiling arrays revealed changes in over 200 novel candidate genomic regions that map to intronic regions. Sixteen genomic loci were identified that map to the long introns of five key protein-coding genes, CRIM1, EPAS1, ZEB2, RBMS1, and RFX2. Consistent with the known role of the tumor suppressor ZEB2 in the cancer-associated epithelial to mesenchymal transition (EMT), in situ hybridization reveals that the intronic regions deriving from ZEB2 as well as those from RFX2 and EPAS1 are down-regulated in cells of epithelial morphology, suggesting that these regions may be important for maintaining normal epithelial cell morphology. Paired-end deep sequencing analysis reveals a large number of distinct genomic clusters with no coding potential within the introns of these genes. These novel transcripts are only transcribed from the coding strand. A comprehensive search for breast cancer associated genes reveals enrichment for transcribed intronic regions from these loci, pointing to an underappreciated role of introns or mechanisms relating to their biology in EMT and breast cancer.

  15. Genome-wide transcript profiling reveals novel breast cancer-associated intronic sense RNAs.

    Directory of Open Access Journals (Sweden)

    Sang Woo Kim

    Full Text Available Non-coding RNAs (ncRNAs play major roles in development and cancer progression. To identify novel ncRNAs that may identify key pathways in breast cancer development, we performed high-throughput transcript profiling of tumor and normal matched-pair tissue samples. Initial transcriptome profiling using high-density genome-wide tiling arrays revealed changes in over 200 novel candidate genomic regions that map to intronic regions. Sixteen genomic loci were identified that map to the long introns of five key protein-coding genes, CRIM1, EPAS1, ZEB2, RBMS1, and RFX2. Consistent with the known role of the tumor suppressor ZEB2 in the cancer-associated epithelial to mesenchymal transition (EMT, in situ hybridization reveals that the intronic regions deriving from ZEB2 as well as those from RFX2 and EPAS1 are down-regulated in cells of epithelial morphology, suggesting that these regions may be important for maintaining normal epithelial cell morphology. Paired-end deep sequencing analysis reveals a large number of distinct genomic clusters with no coding potential within the introns of these genes. These novel transcripts are only transcribed from the coding strand. A comprehensive search for breast cancer associated genes reveals enrichment for transcribed intronic regions from these loci, pointing to an underappreciated role of introns or mechanisms relating to their biology in EMT and breast cancer.

  16. ProteDNA: a sequence-based predictor of sequence-specific DNA-binding residues in transcription factors

    OpenAIRE

    2009-01-01

    This article presents the design of a sequence-based predictor named ProteDNA for identifying the sequence-specific binding residues in a transcription factor (TF). Concerning protein–DNA interactions, there are two types of binding mechanisms involved, namely sequence-specific binding and nonspecific binding. Sequence-specific bindings occur between protein sidechains and nucleotide bases and correspond to sequence-specific recognition of genes. Therefore, sequence-specific bindings are esse...

  17. Identification of Hyaloperonospora arabidopsidis transcript sequences expressed during infection reveals isolate-specific effectors.

    Directory of Open Access Journals (Sweden)

    Adriana Cabral

    Full Text Available Biotrophic plant pathogens secrete effector proteins that are important for infection of the host. The aim of this study was to identify effectors of the downy mildew pathogen Hyaloperonospora arabidopsidis (Hpa that are expressed during infection of its natural host Arabidopsis thaliana. Infection-related transcripts were identified from Expressed Sequence Tags (ESTs derived from leaves of the susceptible Arabidopsis Ws eds1-1 mutant inoculated with the highly virulent Hpa isolate Waco9. Assembly of 6364 ESTs yielded 3729 unigenes, of which 2164 were Hpa-derived. From the translated Hpa unigenes, 198 predicted secreted proteins were identified. Of these, 75 were found to be Hpa-specific and six isolate Waco9-specific. Among 42 putative effectors identified there were three Elicitin-like proteins, 16 Cysteine-rich proteins and 18 host-translocated RXLR effectors. Sequencing of alleles in different Hpa isolates revealed that five RXLR genes show signatures of diversifying selection. Thus, EST analysis of Hpa-infected Arabidopsis is proving to be a powerful method for identifying pathogen effector candidates expressed during infection. Delivery of the Waco9-specific protein RXLR29 in planta revealed that this effector can suppress PAMP-triggered immunity and enhance disease susceptibility. We propose that differences in host colonization can be conditioned by isolate-specific effectors.

  18. Critical analysis of the potential for the therapeutic targeting of the Sp1 transcription factor in pancreatic cancer

    Directory of Open Access Journals (Sweden)

    Jutooru I

    2014-06-01

    Full Text Available Indira Jutooru,1 Gayathri Chadalapaka,1 Stephen Safe1,21Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA; 2Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, USAAbstract: Pancreatic ductal adenocarcinoma (PDAC is a major cause of cancer-related deaths in developed countries and, in 2013, it is estimated that in excess of 45,220 new cases were diagnosed in the United States. PDAC is a highly aggressive disease that invariably evades early diagnosis. The mean survival time for patients with metastatic disease is only 3–6 months, and only 20%–30% of pancreatic cancer patients are alive after 12 months. Because pancreatic cancers are frequently detected at an advanced stage, treatments have provided very limited improvements in tumor regression and overall survival times after diagnosis. 5-Fluorouracil alone or in combination with other drugs has been extensively used for treatment of advanced pancreatic cancer, and gemcitabine has partially replaced 5-fluorouracil as a treatment for pancreatic cancer. Gemcitabine provides increased clinical benefits in terms of response rate; however, future studies need to focus on developing treatment modalities that will improve the survival rate for pancreatic cancer patients. Specificity protein 1 (Sp1 is overexpressed in PDAC patients, and high expression is associated with poor prognosis, lymph node metastasis, and low survival. Knockdown studies have shown that Sp1 plays an important role in cell growth, angiogenesis, inflammation, survival, and metastasis. Sp1 expression is low in normal tissue when compared to tumor tissue, which makes Sp1 a potential target for development of new mechanism-based drugs for treatment of pancreatic cancer. Several drugs such as tolfenamic acid, betulinic acid, and methyl-2-cyano3,12-dioxooleana-1,9(11-dien-28-oate are shown to downregulate Sp1 expression through various pathways

  19. DriverNet: uncovering the impact of somatic driver mutations on transcriptional networks in cancer.

    Science.gov (United States)

    Bashashati, Ali; Haffari, Gholamreza; Ding, Jiarui; Ha, Gavin; Lui, Kenneth; Rosner, Jamie; Huntsman, David G; Caldas, Carlos; Aparicio, Samuel A; Shah, Sohrab P

    2012-12-22

    Simultaneous interrogation of tumor genomes and transcriptomes is underway in unprecedented global efforts. Yet, despite the essential need to separate driver mutations modulating gene expression networks from transcriptionally inert passenger mutations, robust computational methods to ascertain the impact of individual mutations on transcriptional networks are underdeveloped. We introduce a novel computational framework, DriverNet, to identify likely driver mutations by virtue of their effect on mRNA expression networks. Application to four cancer datasets reveals the prevalence of rare candidate driver mutations associated with disrupted transcriptional networks and a simultaneous modulation of oncogenic and metabolic networks, induced by copy number co-modification of adjacent oncogenic and metabolic drivers. DriverNet is available on Bioconductor or at http://compbio.bccrc.ca/software/drivernet/.

  20. Gene expression meta-analysis identifies metastatic pathways and transcription factors in breast cancer

    DEFF Research Database (Denmark)

    Thomassen, Mads; Tan, Qihua; Kruse, Torben

    2008-01-01

    tumors compared to non-metastasizing tumors. Meta-analysis has been used to determine overrepresentation of pathways and transcription factors targets, concordant deregulated in metastasizing breast tumors, in several data sets. RESULTS: The major findings are upregulation of cell cycle pathways...... system, angiogenesis, DNA repair and several signal transduction pathways are associated to metastasis. Finally several transcription factors e.g. E2F, NFY, and YY1 are identified as being involved in metastasis. CONCLUSIONS: By pathway meta-analysis many biological mechanisms beyond major...... studies. Besides classification of outcome, these global expression patterns may reflect biological mechanisms involved in metastasis of breast cancer. Our purpose has been to investigate pathways and transcription factors involved in metastasis by use of gene expression data sets. METHODS: We have...

  1. E2fl1 is a meiosis-specific transcription factor in the protist Tetrahymena thermophila.

    Science.gov (United States)

    Zhang, Jing; Tian, Miao; Yan, Guan-Xiong; Shodhan, Anura; Miao, Wei

    2017-01-02

    Members of the E2F family of transcription factors have been reported to regulate the expression of genes involved in cell cycle control, DNA replication, and DNA repair in multicellular eukaryotes. Here, E2FL1, a meiosis-specific E2F transcription factor gene, was identified in the model ciliate Tetrahymena thermophila. Loss of this gene resulted in meiotic arrest prior to anaphase I. The cytological experiments revealed that the meiotic homologous pairing was not affected in the absence of E2FL1, but the paired homologous chromosomes did not separate and assumed a peculiar tandem arrangement. This is the first time that an E2F family member has been shown to regulate meiotic events. Moreover, BrdU incorporation showed that DSB processing during meiosis was abnormal upon the deletion of E2FL1. Transcriptome sequencing analysis revealed that E2FL1 knockout decreased the expression of genes involved in DNA replication and DNA repair in T. thermophila, suggesting that the function of E2F is highly conserved in eukaryotes. In addition, E2FL1 deletion inhibited the expression of related homologous chromosome segregation genes in T. thermophila. The result may explain the meiotic arrest phenotype at anaphase I. Finally, by searching for E2F DNA-binding motifs in the entire T. thermophila genome, we identified 714 genes containing at least one E2F DNA-binding motif; of these, 235 downregulated represent putative E2FL1 target genes.

  2. Lysine-specific demethylase 1 (LSD1 Is required for the transcriptional repression of the telomerase reverse transcriptase (hTERT gene.

    Directory of Open Access Journals (Sweden)

    Qingjun Zhu

    Full Text Available BACKGROUND: Lysine-specific demethylase 1 (LSD1, catalysing demethylation of mono- and di-methylated histone H3-K4 or K9, exhibits diverse transcriptional activities by mediating chromatin reconfiguration. The telomerase reverse transcriptase (hTERT gene, encoding an essential component for telomerase activity that is involved in cellular immortalization and transformation, is silent in most normal human cells while activated in up to 90% of human cancers. It remains to be defined how exactly the transcriptional activation of the hTERT gene occurs during the oncogenic process. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we determined the effect of LSD1 on hTERT transcription. In normal human fibroblasts with a tight hTERT repression, a pharmacological inhibition of LSD1 led to a weak hTERT expression, and a robust induction of hTERT mRNA was observed when LSD1 and histone deacetylases (HDACs were both inhibited. Small interference RNA-mediated depletion of both LSD1 and CoREST, a co-repressor in HDAC-containing complexes, synergistically activated hTERT transcription. In cancer cells, inhibition of LSD1 activity or knocking-down of its expression led to significant increases in levels of hTERT mRNA and telomerase activity. Chromatin immunoprecipitation assay showed that LSD1 occupied the hTERT proximal promoter, and its depletion resulted in elevated di-methylation of histone H3-K4 accompanied by increased H3 acetylation locally in cancer cells. Moreover, during the differentiation of leukemic HL60 cells, the decreased hTERT expression was accompanied by the LSD1 recruitment to the hTERT promoter. CONCLUSIONS/SIGNIFICANCE: LSD1 represses hTERT transcription via demethylating H3-K4 in normal and cancerous cells, and together with HDACs, participates in the establishment of a stable repression state of the hTERT gene in normal or differentiated malignant cells. The findings contribute to better understandings of h

  3. Knockdown of Immature Colon Carcinoma Transcript 1 Inhibits Proliferation and Promotes Apoptosis of Non-Small Cell Lung Cancer Cells.

    Science.gov (United States)

    Wang, Yiling; He, Jiantao; Zhang, Shenghui; Yang, Qingbo; Wang, Bo; Liu, Zhiyu; Wu, Xintian

    2016-07-13

    Non-small cell lung cancer, as the most frequent type lung cancer, has lower survival rate of 5 years, despite improvements in surgery and chemotherapy. Previous studies showed immature colon carcinoma transcript 1 is closely related to tumorigenesis of human cancer cells. In the present study, we found immature colon carcinoma transcript 1 was overexpressed in lung cancer tissues using Oncomine database mining, and the biological effect of immature colon carcinoma transcript 1 was investigated in non-small cell lung cancer cell lines 95D and A549. Lentivirus-mediated RNA interference was used to knock down immature colon carcinoma transcript 1 expression in 95D and A549 cells in vitro, and the knockdown efficiency was determined using quantitative real-time polymerase chain reaction and Western blot assay. Knockdown of immature colon carcinoma transcript 1 significantly suppressed non-small cell lung cancer cell proliferation and colony formation ability confirmed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and colony formation assay. Flow cytometry was applied to measure cell cycle arrest, and the result showed the cell cycle arrested in G2/M phase in 95D cells and arrested in G0/G1 phase in A549 cells. Furthermore, we measured the levels of cell cycle-associated proteins by Western blot analysis and found immature colon carcinoma transcript 1-mediated cell proliferation inhibition appeared due to downregulation of cell cycle activator cyclin D1 and upregulation of cell cycle inhibitor p21. In addition, immature colon carcinoma transcript 1 silencing significantly induced non-small cell lung cancer cell apoptosis by annexin V/7-amino-actinomycin D double-staining assay. All our data suggest that immature colon carcinoma transcript 1 may play an important role for non-small cell lung cancer cell proliferation and could be a potential molecular target for diagnosing and treating human non-small cell lung cancer.

  4. The oncoprotein HBXIP upregulates PDGFB via activating transcription factor Sp1 to promote the proliferation of breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yingyi; Zhao, Yu; Li, Leilei; Shen, Yu; Cai, Xiaoli [Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin 300071 (China); Zhang, Xiaodong, E-mail: zhangxd@nankai.edu.cn [Department of Cancer Research, Institute for Molecular Biology, College of Life Sciences, Nankai University, Tianjin 300071 (China); Ye, Lihong, E-mail: yelihong@nankai.edu.cn [Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin 300071 (China)

    2013-05-03

    Highlights: •HBXIP is able to upregulate the expression of PDGFB in breast cancer cells. •HBXIP serves as a coactivator of activating transcription factor Sp1. •HBXIP stimulates the PDGFB promoter via activating transcription factor Sp1. •HBXIP promotes the proliferation of breast cancer cell via upregulating PDGFB. -- Abstract: We have reported that the oncoprotein hepatitis B virus X-interacting protein (HBXIP) acts as a novel transcriptional coactivator to promote proliferation and migration of breast cancer cells. Previously, we showed that HBXIP was able to activate nuclear factor-κB (NF-κB) in breast cancer cells. As an oncogene, the platelet-derived growth factor beta polypeptide (PDGFB) plays crucial roles in carcinogenesis. In the present study, we found that both HBXIP and PDGFB were highly expressed in breast cancer cell lines. Interestingly, HBXIP was able to increase transcriptional activity of NF-κB through PDGFB, suggesting that HBXIP is associated with PDGFB in the cells. Moreover, HBXIP was able to upregulate PDGFB at the levels of mRNA, protein and promoter in the cells. Then, we identified that HBXIP stimulated the promoter of PDGFB through activating transcription factor Sp1. In function, HBXIP enhanced the proliferation of breast cancer cells through PDGFB in vitro. Thus, we conclude that HBXIP upregulates PDGFB via activating transcription factor Sp1 to promote proliferation of breast cancer cells.

  5. Benzimidazoles diminish ERE transcriptional activity and cell growth in breast cancer cells.

    Science.gov (United States)

    Payton-Stewart, Florastina; Tilghman, Syreeta L; Williams, LaKeisha G; Winfield, Leyte L

    2014-08-08

    Estrogen receptors (ERα and ERβ) are members of the nuclear receptor superfamily. They regulate the transcription of estrogen-responsive genes and mediate numerous estrogen related diseases (i.e., fertility, osteoporosis, cancer, etc.). As such, ERs are potentially useful targets for developing therapies and diagnostic tools for hormonally responsive human breast cancers. In this work, two benzimidazole-based sulfonamides originally designed to reduce proliferation in prostate cancer, have been evaluated for their ability to modulate growth in estrogen dependent and independent cell lines (MCF-7 and MDA-MB 231) using cell viability assays. The molecules reduced growth in MCF-7 cells, but differed in their impact on the growth of MDA-MB 231 cells. Although both molecules reduced estrogen response element (ERE) transcriptional activity in a dose dependent manner, the contrasting activity in the MDA-MB-231 cells seems to suggest that the molecules may act through alternate ER-mediated pathways. Further, the methyl analog showed modest selectivity for the ERβ receptor in an ER gene expression array panel, while the naphthyl analog did not significantly alter gene expression. The molecules were docked in the ligand binding domains of the ERα-antagonist and ERβ-agonist crystal structures to evaluate the potential of the molecules to interact with the receptors. The computational analysis complimented the results obtained in the assay of transcriptional activity and gene expression suggesting that the molecules upregulate ERβ activity while down regulating that of ERα.

  6. Transcriptional network in ovarian cancer cell line SKOV3 treated with Pinellia pedatisecta Schott extract.

    Science.gov (United States)

    Zhou, Li; Xu, Teng; Zhang, Ying; Zhu, Mei; Zhu, Wen; Wang, Ziqiang; Gu, Hangzhi; Wang, Hanchu; Li, Peizhen; Ying, Jun; Yang, Lei; Ren, Ping; Li, Jinsong; Xu, Zuyuan; Ni, Liyan; Bao, Qiyu; Chen, Jindong

    2016-07-01

    Ovarian cancer is the most lethal disease among the malignant tumors of female reproductive organs. Few successful therapeutic options exist for patients with ovarian cancer. The common therapeutic methods are surgical operation, chemotherapy, radiotherapy, and combination of these treatments. In recent years, studies have indicated that Pinellia pedatisecta Schott (PPS), a traditional Chinese medicine, could inhibit tumor growth. In this study, we demonstrated that PPS extract could induce apoptosis in SKOV3 cells in a dose- and time-dependent manner. We further conducted transcriptome sequencing on PPS extract-treated SKOV3 cells along with controls, and identified 1,754 transcripts whose expression differs at least 3-fold over the controls. These differentially expressed transcripts include the apoptosis-related genes such as the caspase family members, and were significantly enriched in steroid biosynthesis in the KEGG pathway database compared with the transcriptome background. Most of the differentially expressed transcripts from this pathway were upregulated in PPS extract-treated cell line, indicating that PPS extract-induced apoptosis was accompanied by increased steroid biosynthesis (e.g. zymosterol). These results suggest that PPS extract could be a new cytostatic therapeutic agent for ovarian cancer.

  7. Hormones and Sex-Specific Transcription Factors Jointly Control Yolk Protein Synthesis in Musca domestica

    Directory of Open Access Journals (Sweden)

    Christina Siegenthaler

    2009-01-01

    Full Text Available In the housefly Musca domestica, synthesis of yolk proteins (YPs depends on the level of circulating ecdysteroid hormones. In female houseflies, the ecdysterone concentration in the hemolymph oscillates and, at high levels, is followed by expression of YP. In male houseflies, the ecdysterone titre is constantly low and no YP is produced. In some strains, which are mutant in key components of the sex-determining pathway, males express YP even though their ecdysterone titre is not significantly elevated. However, we find that these males express a substantial amount of the female variant of the Musca doublesex homologue, Md-dsx. The dsx gene is known to sex-specifically control transcription of yp genes in the fat body of Drosophila melanogaster. Our data suggest that Md-dsx also contributes to the regulation of YP expression in the housefly by modulating the responsiveness of YP-producing cells to hormonal stimuli.

  8. Design, construction, and analysis of specific zinc finger nucleases for microphthalmia - associate transcription factor

    Directory of Open Access Journals (Sweden)

    Wenwen Wang

    2012-08-01

    Full Text Available This work studied the design, construction, and cleavage analysis of zinc finger nucleases (ZFNs that could cut the specific sequences within microphthalmia - associate transcription factor (mitfa of zebra fish. The target site and ZFPs were selected and designed with zinc finger tools, while the ZFPs were synthesized using DNAWorks and two-step PCR. The ZFNs were constructed, expressed, purified, and analyzed in vitro. As expected, the designed ZFNs could create a double-stand break (DSB at the target site in vitro. The DNAWorks, two-step PCR, and an optimized process of protein expression were firstly induced in the construction of ZFNs successfully, which was an effective and simplified protocol. These results could be useful for further application of ZFNs - mediated gene targeting.

  9. The Role of Chromosomal Instability and Epigenetics in Colorectal Cancers Lacking β-Catenin/TCF Regulated Transcription

    Directory of Open Access Journals (Sweden)

    Wael M. Abdel-Rahman

    2016-01-01

    Full Text Available All colorectal cancer cell lines except RKO displayed active β-catenin/TCF regulated transcription. This feature of RKO was noted in familial colon cancers; hence our aim was to dissect its carcinogenic mechanism. MFISH and CGH revealed distinct instability of chromosome structure in RKO. Gene expression microarray of RKO versus 7 colon cancer lines (with active Wnt signaling and 3 normal specimens revealed 611 differentially expressed genes. The majority of the tested gene loci were susceptible to LOH in primary tumors with various β-catenin localizations as a surrogate marker for β-catenin activation. The immunohistochemistry of selected genes (IFI16, RGS4, MCTP1, DGKI, OBCAM/OPCML, and GLIPR1 confirmed that they were differentially expressed in clinical specimens. Since epigenetic mechanisms can contribute to expression changes, selected target genes were evaluated for promoter methylation in patient specimens from sporadic and hereditary colorectal cancers. CMTM3, DGKI, and OPCML were frequently hypermethylated in both groups, whereas KLK10, EPCAM, and DLC1 displayed subgroup specificity. The overall fraction of hypermethylated genes was higher in tumors with membranous β-catenin. We identified novel genes in colorectal carcinogenesis that might be useful in personalized tumor profiling. Tumors with inactive Wnt signaling are a heterogeneous group displaying interaction of chromosomal instability, Wnt signaling, and epigenetics.

  10. Identification of the imprinted KLF14 transcription factor undergoing human-specific accelerated evolution.

    Science.gov (United States)

    Parker-Katiraee, Layla; Carson, Andrew R; Yamada, Takahiro; Arnaud, Philippe; Feil, Robert; Abu-Amero, Sayeda N; Moore, Gudrun E; Kaneda, Masahiro; Perry, George H; Stone, Anne C; Lee, Charles; Meguro-Horike, Makiko; Sasaki, Hiroyuki; Kobayashi, Keiko; Nakabayashi, Kazuhiko; Scherer, Stephen W

    2007-05-04

    Imprinted genes are expressed in a parent-of-origin manner and are located in clusters throughout the genome. Aberrations in the expression of imprinted genes on human Chromosome 7 have been suggested to play a role in the etiologies of Russell-Silver Syndrome and autism. We describe the imprinting of KLF14, an intronless member of the Krüppel-like family of transcription factors located at Chromosome 7q32. We show that it has monoallelic maternal expression in all embryonic and extra-embryonic tissues studied, in both human and mouse. We examine epigenetic modifications in the KLF14 CpG island in both species and find this region to be hypomethylated. In addition, we perform chromatin immunoprecipitation and find that the murine Klf14 CpG island lacks allele-specific histone modifications. Despite the absence of these defining features, our analysis of Klf14 in offspring from DNA methyltransferase 3a conditional knockout mice reveals that the gene's expression is dependent upon a maternally methylated region. Due to the intronless nature of Klf14 and its homology to Klf16, we suggest that the gene is an ancient retrotransposed copy of Klf16. By sequence analysis of numerous species, we place the timing of this event after the divergence of Marsupialia, yet prior to the divergence of the Xenarthra superclade. We identify a large number of sequence variants in KLF14 and, using several measures of diversity, we determine that there is greater variability in the human lineage with a significantly increased number of nonsynonymous changes, suggesting human-specific accelerated evolution. Thus, KLF14 may be the first example of an imprinted transcript undergoing accelerated evolution in the human lineage.

  11. Identification of the imprinted KLF14 transcription factor undergoing human-specific accelerated evolution.

    Directory of Open Access Journals (Sweden)

    Layla Parker-Katiraee

    2007-05-01

    Full Text Available Imprinted genes are expressed in a parent-of-origin manner and are located in clusters throughout the genome. Aberrations in the expression of imprinted genes on human Chromosome 7 have been suggested to play a role in the etiologies of Russell-Silver Syndrome and autism. We describe the imprinting of KLF14, an intronless member of the Krüppel-like family of transcription factors located at Chromosome 7q32. We show that it has monoallelic maternal expression in all embryonic and extra-embryonic tissues studied, in both human and mouse. We examine epigenetic modifications in the KLF14 CpG island in both species and find this region to be hypomethylated. In addition, we perform chromatin immunoprecipitation and find that the murine Klf14 CpG island lacks allele-specific histone modifications. Despite the absence of these defining features, our analysis of Klf14 in offspring from DNA methyltransferase 3a conditional knockout mice reveals that the gene's expression is dependent upon a maternally methylated region. Due to the intronless nature of Klf14 and its homology to Klf16, we suggest that the gene is an ancient retrotransposed copy of Klf16. By sequence analysis of numerous species, we place the timing of this event after the divergence of Marsupialia, yet prior to the divergence of the Xenarthra superclade. We identify a large number of sequence variants in KLF14 and, using several measures of diversity, we determine that there is greater variability in the human lineage with a significantly increased number of nonsynonymous changes, suggesting human-specific accelerated evolution. Thus, KLF14 may be the first example of an imprinted transcript undergoing accelerated evolution in the human lineage.

  12. Adiponectin stimulates Wnt inhibitory factor-1 expression through epigenetic regulations involving the transcription factor specificity protein 1.

    Science.gov (United States)

    Liu, Jing; Lam, Janice B B; Chow, Kim H M; Xu, Aimin; Lam, Karen S L; Moon, Randall T; Wang, Yu

    2008-11-01

    Adiponectin (ADN) is an adipokine possessing growth inhibitory activities against various types of cancer cells. Our previous results demonstrated that ADN could impede Wnt/beta-catenin-signaling pathways in MDA-MB-231 human breast carcinoma cells [Wang,Y. et al. (2006) Adiponectin modulates the glycogen synthase kinase-3 beta/beta-catenin signaling pathway and attenuates mammary tumorigenesis of MDA-MB-231 cells in nude mice. Cancer Res., 66, 11462-11470]. Here, we extended our studies to elucidate the effects of ADN on regulating the expressions of Wnt inhibitory factor-1 (WIF1), a Wnt antagonist frequently silenced in human breast tumors. Our results showed that ADN time dependently stimulated WIF1 gene and protein expressions in MDA-MB-231 cells. Overexpression of WIF1 exerted similar inhibitory effects to those of ADN on cell proliferations, nuclear beta-catenin activities, cyclin D1 expressions and serum-induced phosphorylations of Akt and glycogen synthase kinase-3 beta. Blockage of WIF1 activities significantly attenuated the suppressive effects of ADN on MDA-MB-231 cell growth. Furthermore, our in vivo studies showed that both supplementation of recombinant ADN and adenovirus-mediated overexpression of this adipokine substantially enhanced WIF1 expressions in MDA-MB-231 tumors implanted in nude mice. More interestingly, we found that ADN could alleviate methylation of CpG islands located within the proximal promoter region of WIF1, possibly involving the specificity protein 1 (Sp1) transcription factor and its downstream target DNA methyltransferase 1 (DNMT1). Upon ADN treatment, the protein levels of both Sp1 and DNMT1 were significantly decreased. Using silencing RNA approaches, we confirmed that downregulation of Sp1 resulted in an increased expression of WIF1 and decreased methylation of WIF1 promoter. Taken together, these data suggest that ADN might elicit its antitumor activities at least partially through promoting WIF1 expressions.

  13. The Hedgehog Inhibitor Cyclopamine Reduces β-Catenin-Tcf Transcriptional Activity, Induces E-Cadherin Expression, and Reduces Invasion in Colorectal Cancer Cells

    Directory of Open Access Journals (Sweden)

    David Qualtrough

    2015-09-01

    Full Text Available Colorectal cancer is a major global health problem resulting in over 600,000 deaths world-wide every year with the majority of these due to metastatic disease. Wnt signalling, and more specifically β-catenin-related transcription, has been shown to drive both tumorigenesis and the metastatic process in colorectal neoplasia, yet its complex interactions with other key signalling pathways, such as hedgehog, remain to be elucidated. We have previously shown that the Hedgehog (HH signalling pathway is active in cells from colorectal tumours, and that inhibition of the pathway with cyclopamine induces apoptosis. We now show that cyclopamine treatment reduces β-catenin related transcription in colorectal cancer cell lines, and that this effect can be reversed by addition of Sonic Hedgehog protein. We also show that cyclopamine concomitantly induces expression of the tumour suppressor and prognostic indicator E-cadherin. Consistent with a role for HH in regulating the invasive potential we show that cyclopamine reduces the expression of transcription factors (Slug, Snail and Twist associated with the epithelial-mesenchymal transition and reduces the invasiveness of colorectal cancer cells in vitro. Taken together, Cancers 2015, 7 1886 these data show that pharmacological inhibition of the hedgehog pathway has therapeutic potential in the treatment of colorectal cancer.

  14. Cooperatively transcriptional and epigenetic regulation of sonic hedgehog overexpression drives malignant potential of breast cancer.

    Science.gov (United States)

    Duan, Zhao-Heng; Wang, Hao-Chuan; Zhao, Dong-Mei; Ji, Xiao-Xin; Song, Min; Yang, Xiao-Jun; Cui, Wei

    2015-08-01

    Sonic hedgehog (Shh), a ligand of Hedgehog signaling pathway, is considered an important oncogene and an exciting potential therapeutic target in several cancers. Comprehensive understanding of the regulation mechanism of Shh in cancer cells is necessary to find an effective approach to selectively block its tumorigenic function. We and others previously demonstrated that nuclear factor-kappa B (NF-κB) activation and promoter hypomethylation contributed to the overexpression of Shh. However, the relationship between transcriptional and epigenetic regulation of Shh, and their roles in the malignant phenotype of cancer cells are still not clearly elucidated. In the present study, our data showed that the level of Shh was higher in breast cancer tissues with positive NF-κB nuclear staining and promoter hypomethylation. In addition, survival analysis revealed that Shh overexpression, but not hypomethylation and NF-κB nuclear staining, was a poor prognosis indicator for breast cancers. Moreover, in vitro data demonstrated that both NF-κB activation and hypomethylation in promoter region were positively associated with the overexpression of Shh. Mechanistically, the hypomethylation in Shh promoter could facilitate NF-κB binding to its site, and subsequently cooperate to induce transcription of Shh. Furthermore, the biological function data indicated that overexpressed Shh enhanced the self-renewal capacity and migration ability of breast cancer cells, which could be augmented by promoter demethylation and NF-κB activation. Overall, our findings reveal multiple and cooperative mechanisms of Shh upregulation in cancer cells, and the roles of Shh in tumor malignant behavior, thus suggesting a new strategy for therapeutic interventions to reduce Shh in tumors and improve patients' prognosis.

  15. Identification and Validation of HCC-specific Gene Transcriptional Signature for Tumor Antigen Discovery.

    Science.gov (United States)

    Petrizzo, Annacarmen; Caruso, Francesca Pia; Tagliamonte, Maria; Tornesello, Maria Lina; Ceccarelli, Michele; Costa, Valerio; Aprile, Marianna; Esposito, Roberta; Ciliberto, Gennaro; Buonaguro, Franco M; Buonaguro, Luigi

    2016-07-08

    A novel two-step bioinformatics strategy was applied for identification of signatures with therapeutic implications in hepatitis-associated HCC. Transcriptional profiles from HBV- and HCV-associated HCC samples were compared with non-tumor liver controls. Resulting HCC modulated genes were subsequently compared with different non-tumor tissue samples. Two related signatures were identified, namely "HCC-associated" and "HCC-specific". Expression data were validated by RNA-Seq analysis carried out on unrelated HCC samples and protein expression was confirmed according to The Human Protein Atlas" (http://proteinatlas.org/), a public repository of immunohistochemistry data. Among all, aldo-keto reductase family 1 member B10, and IGF2 mRNA-binding protein 3 were found strictly HCC-specific with no expression in 18/20 normal tissues. Target peptides for vaccine design were predicted for both proteins associated with the most prevalent HLA-class I and II alleles. The described novel strategy showed to be feasible for identification of HCC-specific proteins as highly potential target for HCC immunotherapy.

  16. Site-specific labeling of RNA by combining genetic alphabet expansion transcription and copper-free click chemistry.

    Science.gov (United States)

    Someya, Tatsuhiko; Ando, Ami; Kimoto, Michiko; Hirao, Ichiro

    2015-08-18

    Site-specific labeling of long-chain RNAs with desired molecular probes is an imperative technique to facilitate studies of functional RNA molecules. By genetic alphabet expansion using an artificial third base pair, called an unnatural base pair, we present a post-transcriptional modification method for RNA transcripts containing an incorporated azide-linked unnatural base at specific positions, using a copper-free click reaction. The unnatural base pair between 7-(2-thienyl)imidazo[4,5-b]pyridine (Ds) and pyrrole-2-carbaldehyde (Pa) functions in transcription. Thus, we chemically synthesized a triphosphate substrate of 4-(4-azidopentyl)-pyrrole-2-carbaldehyde (N3-PaTP), which can be site-specifically introduced into RNA, opposite Ds in templates by T7 transcription. The N3-Pa incorporated in the transcripts was modified with dibenzocyclooctyne (DIBO) derivatives. We demonstrated the transcription of 17-, 76- and 260-mer RNA molecules and their site-specific labeling with Alexa 488, Alexa 594 and biotin. This method will be useful for preparing RNA molecules labeled with any functional groups of interest, toward in vivo experiments.

  17. Transcription factor-microRNA-target gene networks associated with ovarian cancer survival and recurrence.

    Science.gov (United States)

    Delfino, Kristin R; Rodriguez-Zas, Sandra L

    2013-01-01

    The identification of reliable transcriptome biomarkers requires the simultaneous consideration of regulatory and target elements including microRNAs (miRNAs), transcription factors (TFs), and target genes. A novel approach that integrates multivariate survival analysis, feature selection, and regulatory network visualization was used to identify reliable biomarkers of ovarian cancer survival and recurrence. Expression profiles of 799 miRNAs, 17,814 TFs and target genes and cohort clinical records on 272 patients diagnosed with ovarian cancer were simultaneously considered and results were validated on an independent group of 146 patients. Three miRNAs (hsa-miR-16, hsa-miR-22*, and ebv-miR-BHRF1-2*) were associated with both ovarian cancer survival and recurrence and 27 miRNAs were associated with either one hazard. Two miRNAs (hsa-miR-521 and hsa-miR-497) were cohort-dependent, while 28 were cohort-independent. This study confirmed 19 miRNAs previously associated with ovarian cancer and identified two miRNAs that have previously been associated with other cancer types. In total, the expression of 838 and 734 target genes and 12 and eight TFs were associated (FDR-adjusted P-value cancer survival and recurrence, respectively. Functional analysis highlighted the association between cellular and nucleotide metabolic processes and ovarian cancer. The more direct connections and higher centrality of the miRNAs, TFs and target genes in the survival network studied suggest that network-based approaches to prognosticate or predict ovarian cancer survival may be more effective than those for ovarian cancer recurrence. This study demonstrated the feasibility to infer reliable miRNA-TF-target gene networks associated with survival and recurrence of ovarian cancer based on the simultaneous analysis of co-expression profiles and consideration of the clinical characteristics of the patients.

  18. Transcription factor-microRNA-target gene networks associated with ovarian cancer survival and recurrence.

    Directory of Open Access Journals (Sweden)

    Kristin R Delfino

    Full Text Available The identification of reliable transcriptome biomarkers requires the simultaneous consideration of regulatory and target elements including microRNAs (miRNAs, transcription factors (TFs, and target genes. A novel approach that integrates multivariate survival analysis, feature selection, and regulatory network visualization was used to identify reliable biomarkers of ovarian cancer survival and recurrence. Expression profiles of 799 miRNAs, 17,814 TFs and target genes and cohort clinical records on 272 patients diagnosed with ovarian cancer were simultaneously considered and results were validated on an independent group of 146 patients. Three miRNAs (hsa-miR-16, hsa-miR-22*, and ebv-miR-BHRF1-2* were associated with both ovarian cancer survival and recurrence and 27 miRNAs were associated with either one hazard. Two miRNAs (hsa-miR-521 and hsa-miR-497 were cohort-dependent, while 28 were cohort-independent. This study confirmed 19 miRNAs previously associated with ovarian cancer and identified two miRNAs that have previously been associated with other cancer types. In total, the expression of 838 and 734 target genes and 12 and eight TFs were associated (FDR-adjusted P-value <0.05 with ovarian cancer survival and recurrence, respectively. Functional analysis highlighted the association between cellular and nucleotide metabolic processes and ovarian cancer. The more direct connections and higher centrality of the miRNAs, TFs and target genes in the survival network studied suggest that network-based approaches to prognosticate or predict ovarian cancer survival may be more effective than those for ovarian cancer recurrence. This study demonstrated the feasibility to infer reliable miRNA-TF-target gene networks associated with survival and recurrence of ovarian cancer based on the simultaneous analysis of co-expression profiles and consideration of the clinical characteristics of the patients.

  19. Linkage of E2F1 transcriptional network and cell proliferation with respiratory chain activity in breast cancer cells.

    Science.gov (United States)

    Mori, Kazunori; Uchida, Tetsu; Fukumura, Motonori; Tamiya, Shigetoshi; Higurashi, Masato; Sakai, Hirosato; Ishikawa, Fumihiro; Shibanuma, Motoko

    2016-07-01

    Mitochondria are multifunctional organelles; they have been implicated in various aspects of tumorigenesis. In this study, we investigated a novel role of the basal electron transport chain (ETC) activity in cell proliferation by inhibiting mitochondrial replication and transcription (mtR/T) using pharmacological and genetic interventions, which depleted mitochondrial DNA/RNA, thereby inducing ETC deficiency. Interestingly, mtR/T inhibition did not decrease ATP levels despite deficiency in ETC activity in different cell types, including MDA-MB-231 breast cancer cells, but it severely impeded cell cycle progression, specifically progression during G2 and/or M phases in the cancer cells. Under these conditions, the expression of a group of cell cycle regulators was downregulated without affecting the growth signaling pathway. Further analysis suggested that the transcriptional network organized by E2F1 was significantly affected because of the downregulation of E2F1 in response to ETC deficiency, which eventually resulted in the suppression of cell proliferation. Thus, in this study, the E2F1-mediated ETC-dependent mechanism has emerged as the regulatory mechanism of cell cycle progression. In addition to E2F1, FOXM1 and BMYB were also downregulated, which contributed specifically to the defects in G2 and/or M phase progression. Thus, ETC-deficient cancer cells lost their growing ability, including their tumorigenic potential in vivo. ETC deficiency abolished the production of reactive oxygen species (ROS) from the mitochondria and a mitochondria-targeted antioxidant mimicked the deficiency, thereby suggesting that ETC activity signaled through ROS production. In conclusion, this novel coupling between ETC activity and cell cycle progression may be an important mechanism for coordinating cell proliferation and metabolism.

  20. Yin Yang 1 is associated with cancer stem cell transcription factors (SOX2, OCT4, BMI1) and clinical implication

    OpenAIRE

    Kaufhold, Samantha; Garbán, Hermes; Bonavida, Benjamin

    2016-01-01

    The transcription factor Yin Yang 1 (YY1) is frequently overexpressed in cancerous tissues compared to normal tissues and has regulatory roles in cell proliferation, cell viability, epithelial-mesenchymal transition, metastasis and drug/immune resistance. YY1 shares many properties with cancer stem cells (CSCs) that drive tumorigenesis, metastasis and drug resistance and are regulated by overexpression of certain transcription factors, including SOX2, OCT4 (POU5F1), BMI1 and NANOG. Based on t...

  1. Specific regulation of mRNA cap methylation by the c-Myc and E2F1 transcription factors

    Science.gov (United States)

    Cole, Michael D.; Cowling, Victoria H.

    2009-01-01

    Methylation of the mRNA 5′ guanosine cap is essential for efficient gene expression. The 5′methyl cap binds to eIF4E, which is the first step in the recruitment of mRNA to the 40S ribosomal subunit. To investigate whether mRNA cap methylation is regulated in a gene-specific manner, we established a method to detect the relative level of cap methylation on specific mRNAs. We found that two transcription factors, c-Myc and E2F1, induce cap methylation of their transcriptional target genes, and therefore, c-Myc and E2F1 upregulate gene expression by simultaneously inducing transcription and promoting translation. c-Myc-induced cap methylation is greater than transcriptional induction for the majority of its target genes, indicating that this is a major mechanism by which Myc regulates gene expression. PMID:19137018

  2. Evidence for gene-specific rather than transcription rate-dependent histone H3 exchange in yeast coding regions.

    Science.gov (United States)

    Gat-Viks, Irit; Vingron, Martin

    2009-02-01

    In eukaryotic organisms, histones are dynamically exchanged independently of DNA replication. Recent reports show that different coding regions differ in their amount of replication-independent histone H3 exchange. The current paradigm is that this histone exchange variability among coding regions is a consequence of transcription rate. Here we put forward the idea that this variability might be also modulated in a gene-specific manner independently of transcription rate. To that end, we study transcription rate-independent replication-independent coding region histone H3 exchange. We term such events relative exchange. Our genome-wide analysis shows conclusively that in yeast, relative exchange is a novel consistent feature of coding regions. Outside of replication, each coding region has a characteristic pattern of histone H3 exchange that is either higher or lower than what was expected by its RNAPII transcription rate alone. Histone H3 exchange in coding regions might be a way to add or remove certain histone modifications that are important for transcription elongation. Therefore, our results that gene-specific coding region histone H3 exchange is decoupled from transcription rate might hint at a new epigenetic mechanism of transcription regulation.

  3. Phosphorylated STAT3 physically interacts with NPM and transcriptionally enhances its expression in cancer.

    Science.gov (United States)

    Ren, Z; Aerts, J L; Pen, J J; Heirman, C; Breckpot, K; De Grève, J

    2015-03-26

    The signal transducer and activator of transcription 3 (STAT3) can be activated by the tyrosine kinase domain of the chimeric protein nucleophosmin/anaplastic lymphoma kinase (NPM/ALK), and has a pivotal role in mediating NPM/ALK-related malignant cell transformation. Although the role of STAT3 and wild-type NPM in oncogenesis has been extensively investigated, the relationship between both molecules in cancer remains poorly understood. In the present study, we first demonstrate that STAT3 phosphorylation at tyrosine 705 is accompanied by a concomitant increase in the expression level of NPM. Nuclear co-translocation of phosphorylated STAT3 with NPM can be triggered by interferon-alpha (IFN-α) stimulation of Jurkat cells and phosphorylated STAT3 co-localizes with NPM in cancer cells showing constitutive STAT3 activation. We further demonstrate that STAT3 phosphorylation can transcriptionally mediate NPM upregulation in IFN-α-stimulated Jurkat cells and is responsible for maintaining its expression in cancer cells showing constitutive STAT3 activation. Inhibition of STAT3 phosphorylation or knockdown of NPM expression abrogates their simultaneous transnuclear movements. Finally, we found evidence for a physical interaction between NPM and STAT3 in conditions of STAT3 activation. In conclusion, NPM is a downstream effector of the STAT3 signaling, and can facilitate the nuclear entry of phosphorylated STAT3. These observations might open novel opportunities for targeting the STAT3 pathway in cancer.

  4. Androgen receptor driven transcription in molecular apocrine breast cancer is mediated by FoxA1.

    Science.gov (United States)

    Robinson, Jessica L L; Macarthur, Stewart; Ross-Innes, Caryn S; Tilley, Wayne D; Neal, David E; Mills, Ian G; Carroll, Jason S

    2011-06-24

    Breast cancer is a heterogeneous disease and several distinct subtypes exist based on differential gene expression patterns. Molecular apocrine tumours were recently identified as an additional subgroup, characterised as oestrogen receptor negative and androgen receptor positive (ER- AR+), but with an expression profile resembling ER+ luminal breast cancer. One possible explanation for the apparent incongruity is that ER gene expression programmes could be recapitulated by AR. Using a cell line model of ER- AR+ molecular apocrine tumours (termed MDA-MB-453 cells), we map global AR binding events and find a binding profile that is similar to ER binding in breast cancer cells. We find that AR binding is a near-perfect subset of FoxA1 binding regions, a level of concordance never previously seen with a nuclear receptor. AR functionality is dependent on FoxA1, since silencing of FoxA1 inhibits AR binding, expression of the majority of the molecular apocrine gene signature and growth cell growth. These findings show that AR binds and regulates ER cis-regulatory elements in molecular apocrine tumours, resulting in a transcriptional programme reminiscent of ER-mediated transcription in luminal breast cancers.

  5. Bioinformatic analysis reveals a pattern of STAT3-associated gene expression specific to basal-like breast cancers in human tumors.

    Science.gov (United States)

    Tell, Robert W; Horvath, Curt M

    2014-09-02

    Signal transducer and activator of transcription 3 (STAT3), a latent transcription factor associated with inflammatory signaling and innate and adaptive immune responses, is known to be aberrantly activated in a wide variety of cancers. In vitro analysis of STAT3 in human cancer cell lines has elucidated a number of specific targets associated with poor prognosis in breast cancer. However, to date, no comparison of cancer subtype and gene expression associated with STAT3 signaling in human patients has been reported. In silico analysis of human breast cancer microarray and reverse-phase protein array data was performed to identify expression patterns associated with STAT3 in basal-like and luminal breast cancers. Results indicate clearly identifiable STAT3-regulated signatures common to basal-like breast cancers but not to luminal A or luminal B cancers. Furthermore, these differentially expressed genes are associated with immune signaling and inflammation, a known phenotype of basal-like cancers. These findings demonstrate a distinct role for STAT3 signaling in basal breast cancers, and underscore the importance of considering subtype-specific molecular pathways that contribute to tissue-specific cancers.

  6. Benzimidazoles diminish ERE transcriptional activity and cell growth in breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Payton-Stewart, Florastina [Department of Chemistry, College of Arts and Sciences, Xavier University of Louisiana, New Orleans, LA (United States); Tilghman, Syreeta L. [Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA (United States); Williams, LaKeisha G. [Division of Clinical and Administrative Sciences, College of Pharmacy Xavier University of Louisiana, New Orleans, LA (United States); Winfield, Leyte L., E-mail: lwinfield@spelman.edu [Department of Chemistry, Spelman College, Atlanta, GA (United States)

    2014-08-08

    Highlights: • The methyl-substituted benzimidazole was more effective at inhibiting growth in MDA-MB 231 cells. • The naphthyl-substituted benzimidazole was more effective at inhibiting growth in MCF-7 cells than ICI. • The benzimidazole molecules demonstrated a dose-dependent reduction in ERE transcriptional activity. • The benzimidazole molecules had binding mode in ERα and ERβ comparable to that of the co-crystallized ligand. - Abstract: Estrogen receptors (ERα and ERβ) are members of the nuclear receptor superfamily. They regulate the transcription of estrogen-responsive genes and mediate numerous estrogen related diseases (i.e., fertility, osteoporosis, cancer, etc.). As such, ERs are potentially useful targets for developing therapies and diagnostic tools for hormonally responsive human breast cancers. In this work, two benzimidazole-based sulfonamides originally designed to reduce proliferation in prostate cancer, have been evaluated for their ability to modulate growth in estrogen dependent and independent cell lines (MCF-7 and MDA-MB 231) using cell viability assays. The molecules reduced growth in MCF-7 cells, but differed in their impact on the growth of MDA-MB 231 cells. Although both molecules reduced estrogen response element (ERE) transcriptional activity in a dose dependent manner, the contrasting activity in the MDA-MB-231 cells seems to suggest that the molecules may act through alternate ER-mediated pathways. Further, the methyl analog showed modest selectivity for the ERβ receptor in an ER gene expression array panel, while the naphthyl analog did not significantly alter gene expression. The molecules were docked in the ligand binding domains of the ERα-antagonist and ERβ-agonist crystal structures to evaluate the potential of the molecules to interact with the receptors. The computational analysis complimented the results obtained in the assay of transcriptional activity and gene expression suggesting that the molecules

  7. Site-specific proteolysis of the transcriptional coactivator HCF-1 can regulate its interaction with protein cofactors.

    Science.gov (United States)

    Vogel, Jodi L; Kristie, Thomas M

    2006-05-01

    Limited proteolytic processing is an important transcriptional regulatory mechanism. In various contexts, proteolysis controls the cytoplasmic-to-nuclear transport of important transcription factors or removes domains to produce factors with altered activities. The transcriptional coactivator host cell factor-1 (HCF-1) is proteolytically processed within a unique domain consisting of 20-aa reiterations. Site-specific cleavage within one or more repeats generates a family of amino- and carboxyl-terminal subunits that remain tightly associated. However, the consequences of HCF-1 processing have been undefined. In this study, it was determined that the HCF-1-processing domain interacts with several proteins including the transcriptional coactivator/corepressor four-and-a-half LIM domain-2 (FHL2). Analysis of this interaction has uncovered specificity with both sequence and context determinants within the reiterations of this processing domain. In cells, FHL2 interacts exclusively with the nonprocessed coactivator and costimulates transcription of an HCF-1-dependent target gene. The functional interaction of HCF-1 with FHL2 supports a model in which site-specific proteolysis regulates the interaction of HCF-1 with protein partners and thus can modulate the activity of this coactivator. This paradigm expands the biological significance of limited proteolytic processing as a regulatory mechanism in gene transcription.

  8. Cell-type specificity of ChIP-predicted transcription factor binding sites

    Directory of Open Access Journals (Sweden)

    Håndstad Tony

    2012-08-01

    Full Text Available Abstract Background Context-dependent transcription factor (TF binding is one reason for differences in gene expression patterns between different cellular states. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq identifies genome-wide TF binding sites for one particular context—the cells used in the experiment. But can such ChIP-seq data predict TF binding in other cellular contexts and is it possible to distinguish context-dependent from ubiquitous TF binding? Results We compared ChIP-seq data on TF binding for multiple TFs in two different cell types and found that on average only a third of ChIP-seq peak regions are common to both cell types. Expectedly, common peaks occur more frequently in certain genomic contexts, such as CpG-rich promoters, whereas chromatin differences characterize cell-type specific TF binding. We also find, however, that genotype differences between the cell types can explain differences in binding. Moreover, ChIP-seq signal intensity and peak clustering are the strongest predictors of common peaks. Compared with strong peaks located in regions containing peaks for multiple transcription factors, weak and isolated peaks are less common between the cell types and are less associated with data that indicate regulatory activity. Conclusions Together, the results suggest that experimental noise is prevalent among weak peaks, whereas strong and clustered peaks represent high-confidence binding events that often occur in other cellular contexts. Nevertheless, 30-40% of the strongest and most clustered peaks show context-dependent regulation. We show that by combining signal intensity with additional data—ranging from context independent information such as binding site conservation and position weight matrix scores to context dependent chromatin structure—we can predict whether a ChIP-seq peak is likely to be present in other cellular contexts.

  9. A microbial sensor for organophosphate hydrolysis exploiting an engineered specificity switch in a transcription factor

    Energy Technology Data Exchange (ETDEWEB)

    Jha, Ramesh K.; Kern, Teresa L.; Kim, Youngchang; Tesar, Christine K.; Jedrzejczak, Robert; Joachimiak, Andrzej; Strauss, Charlie E E.

    2016-09-30

    A whole-cell biosensor utilizing a transcription factor (TF) is an effective tool for sensitive and selective detection of specialty chemicals or anthropogenic molecules, but requires access to an expanded repertoire of TFs. Using homology modeling and ligand docking for binding pocket identification, assisted by conservative mutations in the pocket, we engineered a novel specificity in an Acinetobacter TF, PobR, to ‘sense’ a chemical p-nitrophenol (pNP) and measured the response via a fluorescent protein reporter expressed from a PobR promoter. Out of 107 variants of PobR, four were active when dosed with pNP, with two mutants showing a specificity switch from the native effector 4-hydroxybenzoate (4HB). One of the mutants, pNPmut1 was then used to create a smart microbial cell responding to pNP production from hydrolysis of an insecticide, paraoxon, in a coupled assay involving phosphotriesterase (PTE) enzyme expressed from a separate promoter. We show the fluorescence of the cells correlated with the catalytic efficiency of the PTE variant expressed in each cell. High selectivity between similar molecules (4HB versus pNP), high sensitivity for pNP detection (~2 μM) and agreement of apo- and holo-structures of PobR scaffold with predetermined computational models are other significant results presented in this work.

  10. Dynamic transcription factor networks in epithelial-mesenchymal transition in breast cancer models.

    Science.gov (United States)

    Siletz, Anaar; Schnabel, Michael; Kniazeva, Ekaterina; Schumacher, Andrew J; Shin, Seungjin; Jeruss, Jacqueline S; Shea, Lonnie D

    2013-01-01

    The epithelial-mesenchymal transition (EMT) is a complex change in cell differentiation that allows breast carcinoma cells to acquire invasive properties. EMT involves a cascade of regulatory changes that destabilize the epithelial phenotype and allow mesenchymal features to manifest. As transcription factors (TFs) are upstream effectors of the genome-wide expression changes that result in phenotypic change, understanding the sequential changes in TF activity during EMT provides rich information on the mechanism of this process. Because molecular interactions will vary as cells progress from an epithelial to a mesenchymal differentiation program, dynamic networks are needed to capture the changing context of molecular processes. In this study we applied an emerging high-throughput, dynamic TF activity array to define TF activity network changes in three cell-based models of EMT in breast cancer based on HMLE Twist ER and MCF-7 mammary epithelial cells. The TF array distinguished conserved from model-specific TF activity changes in the three models. Time-dependent data was used to identify pairs of TF activities with significant positive or negative correlation, indicative of interdependent TF activity throughout the six-day study period. Dynamic TF activity patterns were clustered into groups of TFs that change along a time course of gene expression changes and acquisition of invasive capacity. Time-dependent TF activity data was combined with prior knowledge of TF interactions to construct dynamic models of TF activity networks as epithelial cells acquire invasive characteristics. These analyses show EMT from a unique and targetable vantage and may ultimately contribute to diagnosis and therapy.

  11. Dynamic transcription factor networks in epithelial-mesenchymal transition in breast cancer models.

    Directory of Open Access Journals (Sweden)

    Anaar Siletz

    Full Text Available The epithelial-mesenchymal transition (EMT is a complex change in cell differentiation that allows breast carcinoma cells to acquire invasive properties. EMT involves a cascade of regulatory changes that destabilize the epithelial phenotype and allow mesenchymal features to manifest. As transcription factors (TFs are upstream effectors of the genome-wide expression changes that result in phenotypic change, understanding the sequential changes in TF activity during EMT provides rich information on the mechanism of this process. Because molecular interactions will vary as cells progress from an epithelial to a mesenchymal differentiation program, dynamic networks are needed to capture the changing context of molecular processes. In this study we applied an emerging high-throughput, dynamic TF activity array to define TF activity network changes in three cell-based models of EMT in breast cancer based on HMLE Twist ER and MCF-7 mammary epithelial cells. The TF array distinguished conserved from model-specific TF activity changes in the three models. Time-dependent data was used to identify pairs of TF activities with significant positive or negative correlation, indicative of interdependent TF activity throughout the six-day study period. Dynamic TF activity patterns were clustered into groups of TFs that change along a time course of gene expression changes and acquisition of invasive capacity. Time-dependent TF activity data was combined with prior knowledge of TF interactions to construct dynamic models of TF activity networks as epithelial cells acquire invasive characteristics. These analyses show EMT from a unique and targetable vantage and may ultimately contribute to diagnosis and therapy.

  12. Prostate-specific RNA aptamer: promising nucleic acid antibody-like cancer detection.

    Science.gov (United States)

    Marangoni, Karina; Neves, Adriana F; Rocha, Rafael M; Faria, Paulo R; Alves, Patrícia T; Souza, Aline G; Fujimura, Patrícia T; Santos, Fabiana A A; Araújo, Thaise G; Ward, Laura S; Goulart, Luiz R

    2015-07-15

    We described the selection of a novel nucleic acid antibody-like prostate cancer (PCa) that specifically binds to the single-stranded DNA molecule from a 277-nt fragment that may have been partially paired and bound to the PCA3 RNA conformational structure. PCA3-277 aptamer ligands were obtained, and the best binding molecule, named CG3, was synthesized for validation. Aiming to prove its diagnostic utility, we used an apta-qPCR assay with CG3-aptamer conjugated to magnetic beads to capture PCA3 transcripts, which were amplified 97-fold and 7-fold higher than conventional qPCR in blood and tissue, respectively. Histopathologic analysis of 161 prostate biopsies arranged in a TMA and marked with biotin-labeled CG3-aptamer showed moderate staining in both cytoplasm and nucleus of PCa samples; in contrast, benign prostatic hyperplasia (BPH) samples presented strong nuclear staining (78% of the cases). No staining was observed in stromal cells. In addition, using an apta-qPCR, we demonstrated that CG3-aptamer specifically recognizes the conformational PCA3-277 molecule and at least three other transcript variants, indicating that long non-coding RNA (lncRNA) is processed after transcription. We suggest that CG3-aptamer may be a useful PCa diagnostic tool. In addition, this molecule may be used in drug design and drug delivery for PCa therapy.

  13. SPECIFIC IMMUNOTHERAPY AND CELLULAR IMMUNITY IN PATIENTS WITH CERVICAL CANCER

    Directory of Open Access Journals (Sweden)

    D. K. Kenbaeva

    2013-01-01

    Full Text Available Cellular mechanisms are quite important immunological components of tumor surveillance, being, however, most vulnerable to influence of different adverse factors, including surgery-associated stress and ionizing radiation. Our study was aimed for assessing specific effects of immunotherapy upon indices of cellular immunity in patients with cervical cancer. Eighty-eight patients with cervical cancer (clinical stage I-IIA, Т1аN0M0-T2aN0M0, who underwent appropriate surgery (for IA stage, or a combined treatment, including surgery gamma-ray teletherapy (IB, IIA stages are under study. The patients were distributed in two groups, depending on the therapy applied. Group 1 included patients subjected to surgical treatment plus and radiation therapy, Group 2 included those patients who were treated according to this protocol, with addition of a specific immunotherapy. Contents of T cells and various CD subpopulations of T-lymphocytes were identified by immunofluorescence techniques. Among patients with cervical cancer at clinical stages IA, IB, IIA, a reliable decrease in cellular immunity indices was registered, both after surgery, and during combined treatment. Introduction of specific immunotherapy to the conventional treatment schedule was associated with increase of cellular immune indices, and, in first line, the antineoplastic mechanisms (e.g., NK’s and NKT cell contents. One should point to a relatively low efficiency of this immunotherapy in combined treatment of patients with cervical cancer at IIA stage.

  14. The flagellar-specific transcription factor, sigma28, is the Type III secretion chaperone for the flagellar-specific anti-sigma28 factor FlgM.

    Science.gov (United States)

    Aldridge, Phillip D; Karlinsey, Joyce E; Aldridge, Christine; Birchall, Christopher; Thompson, Danielle; Yagasaki, Jin; Hughes, Kelly T

    2006-08-15

    The sigma(28) protein is a member of the bacterial sigma(70)-family of transcription factors that directs RNA polymerase to flagellar late (class 3) promoters. The sigma(28) protein is regulated in response to flagellar assembly by the anti-sigma(28) factor FlgM. FlgM inhibits sigma(28)-dependent transcription of genes whose products are needed late in assembly until the flagellar basal motor structure, the hook-basal body (HBB), is constructed. A second function for the sigma(28) transcription factor has been discovered: sigma(28) facilitates the secretion of FlgM through the HBB, acting as the FlgM Type III secretion chaperone. Transcription-specific mutants in sigma(28) were isolated that remained competent for FlgM-facilitated secretion separating the transcription and secretion-facilitation activities of sigma (28). Conversely, we also describe the isolation of mutants in sigma(28) that are specific for FlgM-facilitated secretion. The data demonstrate that sigma(28) is the Type III secretion chaperone for its own anti-sigma factor FlgM. Thus, a novel role for a sigma(70)-family transcription factor is described.

  15. Inhibition of AHR transcription by NF1C is affected by a single-nucleotide polymorphism, and is involved in suppression of human uterine endometrial cancer.

    Science.gov (United States)

    Li, D; Takao, T; Tsunematsu, R; Morokuma, S; Fukushima, K; Kobayashi, H; Saito, T; Furue, M; Wake, N; Asanoma, K

    2013-10-10

    Involvement of the aryl hydrocarbon receptor (AHR) in carcinogenesis has been suggested in many studies. Upregulation of AHR has been reported in some cancer species, and an association between single-nucleotide polymorphisms (SNPs) of AHR and cancer risk or cancer development has also been reported. This evidence suggests the involvement of some specific SNPs in AHR transcriptional regulation in the process of carcinogenesis or cancer development, but there have been no studies to elucidate the mechanism involved. In this study, we identified the transcription factor Nuclear Factor 1-C (NF1C) as a candidate to regulate AHR transcription in a polymorphism-dependent manner. SNP rs10249788 was included in a consensus binding site for NF1C. Our results suggested that NF1C preferred the C allele to the T allele at rs10249788 for binding. Forced expression of NF1C suppressed the activity of the AHR promoter with C at rs10249788 stronger than that with T. Moreover, expression analysis of human uterine endometrial cancer (HEC) specimens showed greater upregulation of AHR and downregulation of NF1C than those of normal endometrium specimens. Sequence analysis showed HEC patients at advanced stages tended to possess T/T alleles more frequently than healthy women. We also demonstrated that NF1C suppressed proliferation, motility and invasion of HEC cells. This function was at least partially mediated by AHR. This study is the first to report that a polymorphism on the AHR regulatory region affected transcriptional regulation of the AHR gene in vitro. Because NF1C is a tumor suppressor, our new insights into AHR deregulation and its polymorphisms could reveal novel mechanisms of genetic susceptibility to cancer.

  16. Epigenetic modifications, chromatin distribution and TP53 transcription in a model of breast cancer progression.

    Science.gov (United States)

    Santos, Gilson C; da Silva, Ana P A; Feldman, Lucas; Ventura, Grasiella M; Vassetzky, Yegor; de Moura Gallo, Claudia V

    2015-04-01

    In the present paper we aimed to characterize epigenetic aspects and analyze TP53 transcription in the 21 T series, composed of breast cell lines: non-cancerous H16N2; Atypical Ductal Hyperplasia 21PT; Ductal Carcinoma in situ 21NT and Invasive Metastatic Carcinoma 21MT1. We detected a global genomic hypomethylation in 21NT and 21MT1. The histone modification markers analysis showed an important global decrease of the active chromatin mark H4Ac in 21MT1 relative to the other cell lines while the repressive mark H3K9Me3 were not significantly altered. The mRNA levels of DNA methylation and histone modification key enzymes are consistent with the observed genomic hypomethylation and histone hypoacetylation. The expression of DNMT3A/B increased at the initial stages of oncogenesis and the expression of DNMT1 and HAT1 decreased at the advanced stages of breast cancer. Using a confocal immunofluorescent assay, we observed that H4Ac was mostly located at the periphery and the repressive mark H3K9Me3, at the center of 21NT and 21MT1 cells nuclei. TP53 P1 promoter was found to be in an open chromatin state, with a relatively high enrichment of H4Ac and similar TP53 transcription levels in all 21 T cell lines. In conclusion, we observed epigenetic alterations (global genome hypomethylation, global hypoacetylation and accumulation of pericentric heterochromatin) in metastatic breast cancer cells of the 21 T series. These alterations may act at later stages of breast cancer progression and may not affect TP53 transcription at the P1 promoter.

  17. Human mitochondrial transcription factor A functions in both nuclei and mitochondria and regulates cancer cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Han, Bin [Department of Molecular Biology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu (Japan); Department of Urology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu (Japan); Department of Urology, Shengjing Hospital of China Medical University, Shenyang (China); Izumi, Hiroto; Yasuniwa, Yoshihiro; Akiyama, Masaki; Yamaguchi, Takahiro [Department of Molecular Biology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu (Japan); Fujimoto, Naohiro; Matsumoto, Tetsuro [Department of Urology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu (Japan); Wu, Bin [Department of Urology, Shengjing Hospital of China Medical University, Shenyang (China); Tanimoto, Akihide [Department of Pathology, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima (Japan); Sasaguri, Yasuyuki [Pathology and Cell Biology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu (Japan); Kohno, Kimitoshi, E-mail: k-kohno@med.uoeh-u.ac.jp [Department of Molecular Biology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu (Japan)

    2011-04-29

    Highlights: {yields} Mitochondrial transcription factor A (mtTFA) localizes in nuclei and binds tightly to the nuclear chromatin. {yields} mtTFA contains two putative nuclear localization signals (NLS) in the HMG-boxes. {yields} Overexpression of mtTFA enhances the growth of cancer cells, whereas downregulation of mtTFA inhibits their growth by regulating mtTFA target genes, such as baculoviral IAP repeat-containing 5 (BIRC5; also known as survivin). {yields} Knockdown of mtTFA expression induces p21-dependent G1 cell cycle arrest. -- Abstract: Mitochondrial transcription factor A (mtTFA) is one of the high mobility group protein family and is required for both transcription from and maintenance of mitochondrial genomes. However, the roles of mtTFA have not been extensively studied in cancer cells. Here, we firstly reported the nuclear localization of mtTFA. The proportion of nuclear-localized mtTFA varied among different cancer cells. Some mtTFA binds tightly to the nuclear chromatin. DNA microarray and chromatin immunoprecipitation assays showed that mtTFA can regulate the expression of nuclear genes. Overexpression of mtTFA enhanced the growth of cancer cell lines, whereas downregulation of mtTFA inhibited their growth by regulating mtTFA target genes, such as baculoviral IAP repeat-containing 5 (BIRC5; also known as survivin). Knockdown of mtTFA expression induced p21-dependent G1 cell cycle arrest. These results imply that mtTFA functions in both nuclei and mitochondria to promote cell growth.

  18. Screening and identification of differentially expressed transcripts in circulating cells of prostate cancer patients using suppression subtractive hybridization

    Directory of Open Access Journals (Sweden)

    Manatt C Scott

    2005-08-01

    Full Text Available Abstract Background Tumor metastasis and changes in host immunosurveillance are important components in cancer development. Tumor cell invasion into the bloodstream is an essential step for systemic metastasis. Currently, the detection of tumor cells in the circulation is mainly dependent upon the utilization of known epithelial cell markers. However, expression of these molecules is not limited to cancer patients; healthy people also have a small number of epithelial cells in their circulation. Utilizing these markers to detect circulating tumor cells (CTCs cannot adequately explain the mechanisms of tumor cell survival or their development of metastatic potential in peripheral blood. The immune system can also evolve along with the cancer, actually promoting or selecting the outgrowth of tumor variants. Unfortunately, both metastasis and immunosurveillance remain mysterious and are debatable because we have yet to define the molecules that participate in these processes. We are interested in identifying the existence of expressed genes, or mRNA species, that are specifically associated with circulating cells of cancer-bearing patients using prostate cancer (PCa as a model. Results We established two comprehensive subtracted cDNA libraries using a molecular technique called suppression subtractive hybridization. This technique selectively amplifies transcripts that are specifically expressed in circulating cells of either PCa patients or healthy men. Following sequencing reaction, we showed that 17 out of 23 (73.9% sequenced clones did not match any mRNAs in the GenBank database. This result suggests that genes associated with alterations in circulating cells of cancer-bearing patients are largely unknown. Semi-quantitative RT-PCR confirmed that two genes are up-regulated in circulating cells of PCa patients, whereas another two genes are down-regulated in the same patients. Conclusion The comprehensive gene expression analysis is capable of

  19. Clone-specific expression, transcriptional regulation, and action of interleukin-6 in human colon carcinoma cells

    Directory of Open Access Journals (Sweden)

    Fabjani Gerhild

    2008-01-01

    Full Text Available Abstract Background Many cancer cells produce interleukin-6 (IL-6, a cytokine that plays a role in growth stimulation, metastasis, and angiogenesis of secondary tumours in a variety of malignancies, including colorectal cancer. Effectiveness of IL-6 in this respect may depend on the quantity of basal and inducible IL-6 expressed as the tumour progresses through stages of malignancy. We therefore have evaluated the effect of IL-6 modulators, i.e. IL-1β, prostaglandin E2, 17β-estradiol, and 1,25-dihydroxyvitamin D3, on expression and synthesis of the cytokine at different stages of tumour progression. Methods We utilized cultures of the human colon carcinoma cell clones Caco-2/AQ, COGA-1A and COGA-13, all of which expressed differentiation and proliferation markers typical of distinct stages of tumour progression. IL-6 mRNA and protein levels were assayed by RT-PCR and ELISA, respectively. DNA sequencing was utilized to detect polymorphisms in the IL-6 gene promoter. Results IL-6 mRNA and protein concentrations were low in well and moderately differentiated Caco-2/AQ and COGA-1A cells, but were high in poorly differentiated COGA-13 cells. Addition of IL-1β (5 ng/ml to a COGA-13 culture raised IL-6 production approximately thousandfold via a prostaglandin-independent mechanism. Addition of 17β-estradiol (10-7 M reduced basal IL-6 production by one-third, but IL-1β-inducible IL-6 was unaffected. Search for polymorphisms in the IL-6 promoter revealed the presence of a single haplotype, i.e., -597A/-572G/-174C, in COGA-13 cells, which is associated with a high degree of transcriptional activity of the IL-6 gene. IL-6 blocked differentiation only in Caco-2/AQ cells and stimulated mitosis through up-regulation of c-myc proto-oncogene expression. These effects were inhibited by 10-8 M 1,25-dihydroxyvitamin D3. Conclusion In human colon carcinoma cells derived from well and moderately differentiated tumours, IL-6 expression is low and only marginally

  20. CITED2 modulates estrogen receptor transcriptional activity in breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Lau, Wen Min; Doucet, Michele; Huang, David; Weber, Kristy L.; Kominsky, Scott L., E-mail: kominsc@jhmi.edu

    2013-07-26

    Highlights: •The effects of elevated CITED2 on ER function in breast cancer cells are examined. •CITED2 enhances cell growth in the absence of estrogen and presence of tamoxifen. •CITED2 functions as a transcriptional co-activator of ER in breast cancer cells. -- Abstract: Cbp/p300-interacting transactivator with Glu/Asp-rich carboxy-terminal domain 2 (CITED2) is a member of the CITED family of non-DNA binding transcriptional co-activators of the p300/CBP-mediated transcription complex. Previously, we identified CITED2 as being overexpressed in human breast tumors relative to normal mammary epithelium. Upon further investigation within the estrogen receptor (ER)-positive subset of these breast tumor samples, we found that CITED2 mRNA expression was elevated in those associated with poor survival. In light of this observation, we investigated the effect of elevated CITED2 levels on ER function. While ectopic overexpression of CITED2 in three ER-positive breast cancer cell lines (MCF-7, T47D, and CAMA-1) did not alter cell proliferation in complete media, growth was markedly enhanced in the absence of exogenous estrogen. Correspondingly, cells overexpressing CITED2 demonstrated reduced sensitivity to the growth inhibitory effects of the selective estrogen receptor modulator, 4-hydroxytamoxifen. Subsequent studies revealed that basal ER transcriptional activity was elevated in CITED2-overexpressing cells and was further increased upon the addition of estrogen. Similarly, basal and estrogen-induced expression of the ER-regulated genes trefoil factor 1 (TFF1) and progesterone receptor (PGR) was higher in cells overexpressing CITED2. Concordant with this observation, ChIP analysis revealed higher basal levels of CITED2 localized to the TFF-1 and PGR promoters in cells with ectopic overexpression of CITED2, and these levels were elevated further in response to estrogen stimulation. Taken together, these data indicate that CITED2 functions as a transcriptional co

  1. MicroRNA and transcription factor mediated regulatory network for ovarian cancer: regulatory network of ovarian cancer.

    Science.gov (United States)

    Ying, Huanchun; Lv, Jing; Ying, Tianshu; Li, Jun; Yang, Qing; Ma, Yuan

    2013-10-01

    A better understanding on the regulatory interactions of microRNA (miRNA) target genes and transcription factor (TF) target genes in ovarian cancer may be conducive for developing early diagnosis strategy. Thus, gene expression data and miRNA expression data were downloaded from The Cancer Genome Atlas in this study. Differentially expressed genes and miRNAs were selected out with t test, and Gene Ontology enrichment analysis was performed with DAVID tools. Regulatory interactions were retrieved from miRTarBase, TRED, and TRANSFAC, and then networks for miRNA target genes and TF target genes were constructed to globally present the mechanisms. As a result, a total of 1,939 differentially expressed genes were identified, and they were enriched in 28 functions, among which cell cycle was affected to the most degree. Besides, 213 differentially expressed miRNAs were identified. Two regulatory networks for miRNA target genes and TF target genes were established and then both were combined, in which E2F transcription factor 1, cyclin-dependent kinase inhibitor 1A, cyclin E1, and miR-16 were the hub genes. These genes may be potential biomarkers for ovarian cancer.

  2. p55PIK Transcriptionally Activated by MZF1 Promotes Colorectal Cancer Cell Proliferation

    Directory of Open Access Journals (Sweden)

    Yu Deng

    2013-01-01

    Full Text Available p55PIK, regulatory subunit of class IA phosphatidylinositol 3-kinase (PI3K, plays a crucial role in cell cycle progression by interaction with tumor repressor retinoblastoma (Rb protein. A recent study showed that Rb protein can localize to the mitochondria in proliferative cells. Aberrant p55PIK expression may contribute to mitochondrial dysfunction in cancer progression. To reveal the mechanisms of p55PIK transcriptional regulation, the p55PIK promoter characteristics were analyzed. The data show that myeloid zinc finger 1, MZF1, is necessary for p55PIK gene transcription activation. ChIP (Chromatin immuno-precipitation assay shows that MZF1 binds to the cis-element “TGGGGA” in p55PIK promoter. In MZF1 overexpressed cells, the promoter activity, expression of p55PIK, and cell proliferation rate were observed to be significantly enhanced. Whereas in MZF1-silenced cells, the promoter activity and expression of p55PIK and cell proliferation level was statistically decreased. In CRC tissues, MZF1 and p55PIK mRNA expression were increased (P=0.046, P=0.047, resp.. A strong positive correlation (Rs=0.94 between MZF1 and p55PIK mRNA expression was observed. Taken together, we concluded that p55PIK is transcriptionally activated by MZF1, resulting in increased proliferation of colorectal cancer cells.

  3. Transcriptional silencing of Dickkopf gene family by CpG island hypermethylation in human gastrointestinal cancer

    Institute of Scientific and Technical Information of China (English)

    Tadateru Maehata; Fumio Itoh; Hiroaki Taniguchi; Hiroyuki Yamamoto; Katsuhiko Nosho; Yasushi Adachi; Nobuki Miyamoto; Chic Miyamoto; Noriyuki Akutsu; Satoshi Yamaoka

    2008-01-01

    AIM:To clarify alterations of Dickkopfs (Dkks) and Kremen2 (Krm2) in gastrointestinal cancer.METHODS:We investigated the expression profiles and epigenetic alterations of Dkks and Krm2 genes in gastrointestinal cancer using RT-PCR,tissue microarray analysis,and methylation specific PCR (MSP).Cancer cells were treated with the demethylating agent and/or histone deacetylase inhibitor.WST-8 assays and in vitro invasion assays after treatment with specific siRNA for those genes were performed.RESULTS:Dkks and Krm2 expression levels were reduced in a certain subset of the gastrointestinal cancer cell lines and cancer tissues.This was correlated with promoter hypermethylation.There were significant correlations between Dkks over-expression levels and beta-catenin over-expression in colorectal cancer.In colorectal cancers with beta-catenin over-expression,Dkk-1 expression levels were significantly lower in those with lymph node metastases than in those without.Down-regulation of Dkks expression by siRNA resulted in a significant increase in cancer cell growth and invasiveness in vitro.CONCLUSION:Down-regulation of the Dkks associated to promoter hypermethylation appears to be frequently involved in gastrointestinal tumorigenesis.

  4. FoxO3a transcriptional regulation of bim controls apoptosis in paclitaxel-treated breast cancer cell lines

    NARCIS (Netherlands)

    Sunters, A; de Mattos, SF; Stahl, M; Brosens, JJ; Zoumpoulidou, G; Saunders, CA; Coffer, PJ; Medema, RH; Coombes, RC; Lam, EWF

    2003-01-01

    Paclitaxel is used to treat breast cancers, but the mechanisms by which it induces apoptosis are poorly understood. Consequently, we have studied the role of the FoxO transcription factors in determining cellular response to paclitaxel. Western blotting revealed that in a panel of nine breast cancer

  5. In Silico discovery of transcription factors as potential diagnostic biomarkers of ovarian cancer

    KAUST Repository

    Kaur, Mandeep

    2011-09-19

    Background: Our study focuses on identifying potential biomarkers for diagnosis and early detection of ovarian cancer (OC) through the study of transcription regulation of genes affected by estrogen hormone.Results: The results are based on a set of 323 experimentally validated OC-associated genes compiled from several databases, and their subset controlled by estrogen. For these two gene sets we computationally determined transcription factors (TFs) that putatively regulate transcription initiation. We ranked these TFs based on the number of genes they are likely to control. In this way, we selected 17 top-ranked TFs as potential key regulators and thus possible biomarkers for a set of 323 OC-associated genes. For 77 estrogen controlled genes from this set we identified three unique TFs as potential biomarkers.Conclusions: We introduced a new methodology to identify potential diagnostic biomarkers for OC. This report is the first bioinformatics study that explores multiple transcriptional regulators of OC-associated genes as potential diagnostic biomarkers in connection with estrogen responsiveness. We show that 64% of TF biomarkers identified in our study are validated based on real-time data from microarray expression studies. As an illustration, our method could identify CP2 that in combination with CA125 has been reported to be sensitive in diagnosing ovarian tumors. 2011 Kaur et al; licensee BioMed Central Ltd.

  6. In Silico discovery of transcription factors as potential diagnostic biomarkers of ovarian cancer

    Directory of Open Access Journals (Sweden)

    Choolani Mahesh

    2011-09-01

    Full Text Available Abstract Background Our study focuses on identifying potential biomarkers for diagnosis and early detection of ovarian cancer (OC through the study of transcription regulation of genes affected by estrogen hormone. Results The results are based on a set of 323 experimentally validated OC-associated genes compiled from several databases, and their subset controlled by estrogen. For these two gene sets we computationally determined transcription factors (TFs that putatively regulate transcription initiation. We ranked these TFs based on the number of genes they are likely to control. In this way, we selected 17 top-ranked TFs as potential key regulators and thus possible biomarkers for a set of 323 OC-associated genes. For 77 estrogen controlled genes from this set we identified three unique TFs as potential biomarkers. Conclusions We introduced a new methodology to identify potential diagnostic biomarkers for OC. This report is the first bioinformatics study that explores multiple transcriptional regulators of OC-associated genes as potential diagnostic biomarkers in connection with estrogen responsiveness. We show that 64% of TF biomarkers identified in our study are validated based on real-time data from microarray expression studies. As an illustration, our method could identify CP2 that in combination with CA125 has been reported to be sensitive in diagnosing ovarian tumors.

  7. The Hedgehog Inhibitor Cyclopamine Reduces β-Catenin-Tcf Transcriptional Activity, Induces E-Cadherin Expression, and Reduces Invasion in Colorectal Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Qualtrough, David, E-mail: david.qualtrough@uwe.ac.uk [Department of Biological, Biomedical & Analytical Sciences, University of the West of England, Faculty of Health and Applied Sciences, University of the West of England, Frenchay, Bristol BS16 1QY (United Kingdom); Rees, Phil; Speight, Beverley; Williams, Ann C.; Paraskeva, Christos [School of Cellular & Molecular Medicine, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD (United Kingdom)

    2015-09-17

    Colorectal cancer is a major global health problem resulting in over 600,000 deaths world-wide every year with the majority of these due to metastatic disease. Wnt signalling, and more specifically β-catenin-related transcription, has been shown to drive both tumorigenesis and the metastatic process in colorectal neoplasia, yet its complex interactions with other key signalling pathways, such as hedgehog, remain to be elucidated. We have previously shown that the Hedgehog (HH) signalling pathway is active in cells from colorectal tumours, and that inhibition of the pathway with cyclopamine induces apoptosis. We now show that cyclopamine treatment reduces β-catenin related transcription in colorectal cancer cell lines, and that this effect can be reversed by addition of Sonic Hedgehog protein. We also show that cyclopamine concomitantly induces expression of the tumour suppressor and prognostic indicator E-cadherin. Consistent with a role for HH in regulating the invasive potential we show that cyclopamine reduces the expression of transcription factors (Slug, Snail and Twist) associated with the epithelial-mesenchymal transition and reduces the invasiveness of colorectal cancer cells in vitro. Taken together, these data show that pharmacological inhibition of the hedgehog pathway has therapeutic potential in the treatment of colorectal cancer.

  8. Transcriptional and epigenetic regulation of KIAA1199 gene expression in human breast cancer.

    Directory of Open Access Journals (Sweden)

    Cem Kuscu

    Full Text Available Emerging evidence has demonstrated that upregulated expression of KIAA1199 in human cancer bodes for poor survival. The regulatory mechanism controlling KIAA1199 expression in cancer remains to be characterized. In the present study, we have isolated and characterized the human KIAA1199 promoter in terms of regulation of KIAA1199 gene expression. A 3.3 kb fragment of human genomic DNA containing the 5'-flanking sequence of the KIAA1199 gene possesses both suppressive and activating elements. Employing a deletion mutagenesis approach, a 1.4 kb proximal region was defined as the basic KIAA1199 promoter containing a TATA-box close to the transcription start site. A combination of 5'-primer extension study with 5'RACE DNA sequencing analysis revealed one major transcription start site that is utilized in the human KIAA1199 gene. Bioinformatics analysis suggested that the 1.4 kb KIAA1199 promoter contains putative activating regulatory elements, including activator protein-1(AP-1, Twist-1, and NF-κB sites. Sequential deletion and site-direct mutagenesis analysis demonstrated that the AP-1 and distal NF-κB sites are required for KIAA1199 gene expression. Further analyses using an electrophoretic mobility-shift assay and chromatin immunoprecipitation confirmed the requirement of these cis- and trans-acting elements in controlling KIAA1199 gene expression. Finally, we found that upregulated KIAA1199 expression in human breast cancer specimens correlated with hypomethylation of the regulatory region. Involvement of DNA methylation in regulation of KIAA1199 expression was recapitulated in human breast cancer cell lines. Taken together, our study unraveled the regulatory mechanisms controlling KIAA1199 gene expression in human cancer.

  9. An integrated transcriptional regulatory circuit that reinforces the breast cancer stem cell state.

    Science.gov (United States)

    Polytarchou, Christos; Iliopoulos, Dimitrios; Struhl, Kevin

    2012-09-01

    Cancer stem-like cells (CSCs) are a highly tumorigenic cell type present as a minority population in developmentally diverse tumors and cell lines. Using a genetic screen in an inducible model of CSC formation in a breast cell line, we identify microRNAs (miRNAs) that inhibit CSC growth and are down-regulated in CSCs. Aside from the previously identified miR-200 family, these include the miR-15/16 (miR-16, miR-15b) and miR-103/107 (miR-103, miR-107) families as well as miR-145, miR-335, and miR-128b. Interestingly, these miRNAs affect common target genes that encode the Bmi1 and Suz12 components of the polycomb repressor complexes as well as the DNA-binding transcription factors Zeb1, Zeb2, and Klf4. Conversely, expression of the CSC-modulating miRNAs is inhibited by Zeb1 and Zeb2. There is an inverse relationship between the levels of CSC-regulating miRNAs and their respective targets in samples from triple-negative breast cancer patients, providing evidence for the relevance of these interactions in human cancer. In addition, combinatorial overexpression of these miRNAs progressively attenuates the growth of CSCs derived from triple-negative breast cancers. These observations suggest that CSC formation and function are reinforced by an integrated regulatory circuit of miRNAs, transcription factors, and chromatin-modifying activities that can act as a bistable switch to drive cells into either the CSC or the nonstem state within the population of cancer cells.

  10. An integrated transcriptional regulatory circuit that reinforces the breast cancer stem cell state

    Science.gov (United States)

    Polytarchou, Christos; Iliopoulos, Dimitrios; Struhl, Kevin

    2012-01-01

    Cancer stem-like cells (CSCs) are a highly tumorigenic cell type present as a minority population in developmentally diverse tumors and cell lines. Using a genetic screen in an inducible model of CSC formation in a breast cell line, we identify microRNAs (miRNAs) that inhibit CSC growth and are down-regulated in CSCs. Aside from the previously identified miR-200 family, these include the miR-15/16 (miR-16, miR-15b) and miR-103/107 (miR-103, miR-107) families as well as miR-145, miR-335, and miR-128b. Interestingly, these miRNAs affect common target genes that encode the Bmi1 and Suz12 components of the polycomb repressor complexes as well as the DNA-binding transcription factors Zeb1, Zeb2, and Klf4. Conversely, expression of the CSC-modulating miRNAs is inhibited by Zeb1 and Zeb2. There is an inverse relationship between the levels of CSC-regulating miRNAs and their respective targets in samples from triple-negative breast cancer patients, providing evidence for the relevance of these interactions in human cancer. In addition, combinatorial overexpression of these miRNAs progressively attenuates the growth of CSCs derived from triple-negative breast cancers. These observations suggest that CSC formation and function are reinforced by an integrated regulatory circuit of miRNAs, transcription factors, and chromatin-modifying activities that can act as a bistable switch to drive cells into either the CSC or the nonstem state within the population of cancer cells. PMID:22908280

  11. Molecular recognition: monomer of the yeast transcriptional activator GCN4 recognizes its dimer DNA binding target sites specifically

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    It is widely believed that dimerization is a requirement for the yeast transcriptional activator GCN4 to recognize its specific DNA target sites. We used the basic region (226-252) of the yeast transcriptional activator GCN4, as both a monomeric peptide and a disulfide-linked dimer to investigate the interaction of the peptides with the DNA target sites AP-1 and CRE. CD and ITC experiments indicate that although the monomeric peptide GCN4-M has a weaker affinity with the DNA relative to the disulfide-linked dimer peptide GCN4-D, it recognizes AP-1 and CRE target sites specifically.

  12. Attributing death to cancer: cause-specific survival estimation.

    Directory of Open Access Journals (Sweden)

    Mathew A

    2002-10-01

    Full Text Available Cancer survival estimation is an important part of assessing the overall strength of cancer care in a region. Generally, the death of a patient is taken as the end point in estimation of overall survival. When calculating the overall survival, the cause of death is not taken into account. With increasing demand for better survival of cancer patients it is important for clinicians and researchers to know about survival statistics due to disease of interest, i.e. net survival. It is also important to choose the best method for estimating net survival. Increase in the use of computer programmes has made it possible to carry out statistical analysis without guidance from a bio-statistician. This is of prime importance in third- world countries as there are a few trained bio-statisticians to guide clinicians and researchers. The present communication describes current methods used to estimate net survival such as cause-specific survival and relative survival. The limitation of estimation of cause-specific survival particularly in India and the usefulness of relative survival are discussed. The various sources for estimating cancer survival are also discussed. As survival-estimates are to be projected on to the population at large, it becomes important to measure the variation of the estimates, and thus confidence intervals are used. Rothman′s confidence interval gives the most satisfactory result for survival estimate.

  13. Genetic susceptibility for specific cancers. Medical liability of the clinician.

    Science.gov (United States)

    Severin, M J

    1999-12-01

    The use of genetic profiling techniques to detect individuals with an increased susceptibility to heritable cancers has provoked recent legal interest in the duties of the attending physician and in the rights of patients and their families. In the current study specific prima facie and recently litigated cases are presented and explored to delineate the issues facing physicians and to illustrate the prerogatives of patients who are caught up in a heritable cancer enigma. Various courts have attempted to answer questions involving lawsuits in which incidents of breast/ovarian carcinoma and colon carcinoma have provoked claims of negligence against health care providers. Health care workers involved in the care of these patients have specific duties to these individuals. It would appear that physicians are being forced to assume the additional duty of delving into a patient's family history of cancer through multiple generations. This duty is followed by a responsibility to provide detailed counseling to those patients in whom such activity impacts the diagnosis and management of familial cancer.

  14. Emergence of ETS transcription factors as diagnostic tools and therapeutic targets in prostate cancer.

    Science.gov (United States)

    Rahim, Said; Uren, Aykut

    2013-01-01

    The discovery of chromosomal translocations in prostate cancer has greatly enhanced our understanding of prostate cancer biology. Genomic rearrangements involving the ETS family of transcription factors are estimated to be present in 50-70% of prostate cancer cases. These rearrangements fuse the ETS factors with promoters of genes that are androgen regulated. Thus, the expression of ETS factors, such as ERG, ETV1, ETV4 and ETV5, is mediated by androgen. In-vitro and in-vivo studies suggest that overexpression of ETS proteins increase cell proliferation and confer an invasive phenotype to prostate cancer cells. Epidemiological studies demonstrate that ETS-fusion positive patients exhibit tumors corresponding to a more advanced disease. The ability of ETS factors to serve as markers for screening and diagnosing prostate cancer patients is being investigated, and the results have been largely positive to date. Additionally, ETS factors present an excellent opportunity as therapeutic targets and several strategies have been devised to directly target ETS proteins or their binding partners and downstream effectors.

  15. Transcription Factor NFIB Is a Driver of Small Cell Lung Cancer Progression in Mice and Marks Metastatic Disease in Patients

    Directory of Open Access Journals (Sweden)

    Ekaterina A. Semenova

    2016-07-01

    Full Text Available Small cell lung cancer (SCLC is an aggressive neuroendocrine tumor, and no effective treatment is available to date. Mouse models of SCLC based on the inactivation of Rb1 and Trp53 show frequent amplifications of the Nfib and Mycl genes. Here, we report that, although overexpression of either transcription factor accelerates tumor growth, NFIB specifically promotes metastatic spread. High NFIB levels are associated with expansive growth of a poorly differentiated and almost exclusively E-cadherin (CDH1-negative invasive tumor cell population. Consistent with the mouse data, we find that NFIB is overexpressed in almost all tested human metastatic high-grade neuroendocrine lung tumors, warranting further assessment of NFIB as a tumor progression marker in a clinical setting.

  16. Fusarium oxysporum triggers tissue-specific transcriptional reprogramming in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Rebecca Lyons

    Full Text Available Some of the most devastating agricultural diseases are caused by root-infecting pathogens, yet the majority of studies on these interactions to date have focused on the host responses of aerial tissues rather than those belowground. Fusarium oxysporum is a root-infecting pathogen that causes wilt disease on several plant species including Arabidopsis thaliana. To investigate and compare transcriptional changes triggered by F. oxysporum in different Arabidopsis tissues, we infected soil-grown plants with F. oxysporum and subjected root and leaf tissue harvested at early and late timepoints to RNA-seq analyses. At least half of the genes induced or repressed by F. oxysporum showed tissue-specific regulation. Regulators of auxin and ABA signalling, mannose binding lectins and peroxidases showed strong differential expression in root tissue. We demonstrate that ARF2 and PRX33, two genes regulated in the roots, promote susceptibility to F. oxysporum. In the leaves, defensins and genes associated with the response to auxin, cold and senescence were strongly regulated while jasmonate biosynthesis and signalling genes were induced throughout the plant.

  17. The evolution of gene expression and binding specificity of the largest transcription factor family in primates.

    Science.gov (United States)

    Kapopoulou, Adamandia; Mathew, Lisha; Wong, Alex; Trono, Didier; Jensen, Jeffrey D

    2016-01-01

    The KRAB-containing zinc finger (KRAB-ZF) proteins represent the largest family of transcription factors (TFs) in humans, yet for the great majority, their function and specific genomic target remain unknown. However, it has been shown that a large fraction of these genes arose from segmental duplications, and that they have expanded in gene and zinc finger number throughout vertebrate evolution. To determine whether this expansion is linked to selective pressures acting on different domains, we have manually curated all KRAB-ZF genes present in the human genome together with their orthologous genes in three closely related species and assessed the evolutionary forces acting at the sequence level as well as on their expression profiles. We provide evidence that KRAB-ZFs can be separated into two categories according to the polymorphism present in their DNA-contacting residues. Those carrying a nonsynonymous single nucleotide polymorphism (SNP) in their DNA-contacting amino acids exhibit significantly reduced expression in all tissues, have emerged in a recent lineage, and seem to be less strongly constrained evolutionarily than those without such a polymorphism. This work provides evidence for a link between age of the TF, as well as polymorphism in their DNA-contacting residues and expression levels-both of which may be jointly affected by selection.

  18. Current and emerging approaches to define intestinal epithelium-specific transcriptional networks

    DEFF Research Database (Denmark)

    Olsen, Anders Krûger; Boyd, Mette; Danielsen, Erik Thomas

    2012-01-01

    Upon developmental or environmental cues, the composition of transcription factors in a transcriptional regulatory network is deeply implicated in controlling the signature of the gene expression and thereby specifies the cell- or tissue-type. Novel methods including ChIP-chip and ChIP-Seq have b...

  19. Current and emerging approaches to define intestinal epithelium-specific transcriptional networks

    DEFF Research Database (Denmark)

    Olsen, Anders Krüger; Boyd, Mette; Danielsen, Erik Thomas

    2012-01-01

    Upon developmental or environmental cues, the composition of transcription factors in a transcriptional regulatory network is deeply implicated in controlling the signature of the gene expression and thereby specifies the cell or tissue type. Novel methods including ChIP-chip and ChIP-Seq have be...

  20. Highly efficient site-specific transgenesis in cancer cell lines

    Directory of Open Access Journals (Sweden)

    Michael Iacovos P

    2012-12-01

    Full Text Available Abstract Background Transgenes introduced into cancer cell lines serve as powerful tools for identification of genes involved in cancer. However, the random nature of genomic integration site of a transgene highly influences the fidelity, reliability and level of its expression. In order to alleviate this bottleneck, we characterized the potential utility of a novel PhiC31 integrase-mediated site-specific insertion system (PhiC31-IMSI for introduction of transgenes into a pre-inserted docking site in the genome of cancer cells. Methods According to this system, a “docking-site” was first randomly inserted into human cancer cell lines and clones with a single copy were selected. Subsequently, an “incoming” vector containing the gene of interest was specifically inserted in the docking-site using PhiC31. Results Using the Pc-3 and SKOV-3 cancer cell lines, we showed that transgene insertion is reproducible and reliable. Furthermore, the selection system ensured that all surviving stable transgenic lines harbored the correct integration site. We demonstrated that the expression levels of reporter genes, such as green fluorescent protein and luciferase, from the same locus were comparable among sister, isogenic clones. Using in vivo xenograft studies, we showed that the genetically altered cancer cell lines retain the properties of the parental line. To achieve temporal control of transgene expression, we coupled our insertion strategy with the doxycycline inducible system and demonstrated tight regulation of the expression of the antiangiogenic molecule sFlt-1-Fc in Pc-3 cells. Furthermore, we introduced the luciferase gene into the insertion cassette allowing for possible live imaging of cancer cells in transplantation assays. We also generated a series of Gateway cloning-compatible intermediate cassettes ready for high-throughput cloning of transgenes and demonstrated that PhiC31-IMSI can be achieved in a high throughput 96-well plate

  1. DNA methylation of specific CpG sites in the promoter region regulates the transcription of the mouse oxytocin receptor.

    Directory of Open Access Journals (Sweden)

    Shimrat Mamrut

    Full Text Available Oxytocin is a peptide hormone, well known for its role in labor and suckling, and most recently for its involvement in mammalian social behavior. All central and peripheral actions of oxytocin are mediated through the oxytocin receptor, which is the product of a single gene. Transcription of the oxytocin receptor is subject to regulation by gonadal steroid hormones, and is profoundly elevated in the uterus and mammary glands during parturition. DNA methylation is a major epigenetic mechanism that regulates gene transcription, and has been linked to reduced expression of the oxytocin receptor in individuals with autism. Here, we hypothesized that transcription of the mouse oxytocin receptor is regulated by DNA methylation of specific sites in its promoter, in a tissue-specific manner. Hypothalamus-derived GT1-7, and mammary-derived 4T1 murine cell lines displayed negative correlations between oxytocin receptor transcription and methylation of the gene promoter, and demethylation caused a significant enhancement of oxytocin receptor transcription in 4T1 cells. Using a reporter gene assay, we showed that methylation of specific sites in the gene promoter, including an estrogen response element, significantly inhibits transcription. Furthermore, methylation of the oxytocin receptor promoter was found to be differentially correlated with oxytocin receptor expression in mammary glands and the uterus of virgin and post-partum mice, suggesting that it plays a distinct role in oxytocin receptor transcription among tissues and under different physiological conditions. Together, these results support the hypothesis that the expression of the mouse oxytocin receptor gene is epigenetically regulated by DNA methylation of its promoter.

  2. Epidermal growth factor receptor regulates β-catenin location, stability, and transcriptional activity in oral cancer

    Directory of Open Access Journals (Sweden)

    Hung Hsing-Wen

    2010-03-01

    Full Text Available Abstract Background Many cancerous cells accumulate β-catenin in the nucleus. We examined the role of epidermal growth factor receptor (EGFR signaling in the accumulation of β-catenin in the nuclei of oral cancer cells. Results We used two strains of cultured oral cancer cells, one with reduced EGFR expression (OECM1 cells and one with elevated EGFR expression (SAS cells, and measured downstream effects, such as phosphorylation of β-catenin and GSK-3β, association of β-catenin with E-cadherin, and target gene regulation. We also studied the expression of EGFR, β-catenin, and cyclin D1 in 112 samples of oral cancer by immunostaining. Activation of EGFR signaling increased the amount of β-catenin in the nucleus and decreased the amount in the membranes. EGF treatment increased phosphorylation of β-catenin (tyrosine and GSK-3β(Ser-(9, resulting in a loss of β-catenin association with E-cadherin. TOP-FLASH and FOP-FLASH reporter assays demonstrated that the EGFR signal regulates β-catenin transcriptional activity and mediates cyclin D1 expression. Chromatin immunoprecipitation experiments indicated that the EGFR signal affects chromatin architecture at the regulatory element of cyclin D1, and that the CBP, HDAC1, and Suv39h1 histone/chromatin remodeling complex is involved in this process. Immunostaining showed a significant association between EGFR expression and aberrant accumulation of β-catenin in oral cancer. Conclusions EGFR signaling regulates β-catenin localization and stability, target gene expression, and tumor progression in oral cancer. Moreover, our data suggest that aberrant accumulation of β-catenin under EGFR activation is a malignancy marker of oral cancer.

  3. Bioactive food components and cancer-specific metabonomic profiles.

    Science.gov (United States)

    Kim, Young S; Milner, John A

    2011-01-01

    Cancer cells possess unique metabolic signatures compared to normal cells, including shifts in aerobic glycolysis, glutaminolysis, and de novo biosynthesis of macromolecules. Targeting these changes with agents (drugs and dietary components) has been employed as strategies to reduce the complications associated with tumorigenesis. This paper highlights the ability of several food components to suppress tumor-specific metabolic pathways, including increased expression of glucose transporters, oncogenic tyrosine kinase, tumor-specific M2-type pyruvate kinase, and fatty acid synthase, and the detection of such effects using various metabonomic technologies, including liquid chromatography/mass spectrometry (LC/MS) and stable isotope-labeled MS. Stable isotope-mediated tracing technologies offer exciting opportunities for defining specific target(s) for food components. Exposures, especially during the early transition phase from normal to cancer, are critical for the translation of knowledge about food components into effective prevention strategies. Although appropriate dietary exposures needed to alter cellular metabolism remain inconsistent and/or ill-defined, validated metabonomic biomarkers for dietary components hold promise for establishing effective strategies for cancer prevention.

  4. Bioactive Food Components and Cancer-Specific Metabonomic Profiles

    Directory of Open Access Journals (Sweden)

    Young S. Kim

    2011-01-01

    Full Text Available Cancer cells possess unique metabolic signatures compared to normal cells, including shifts in aerobic glycolysis, glutaminolysis, and de novo biosynthesis of macromolecules. Targeting these changes with agents (drugs and dietary components has been employed as strategies to reduce the complications associated with tumorigenesis. This paper highlights the ability of several food components to suppress tumor-specific metabolic pathways, including increased expression of glucose transporters, oncogenic tyrosine kinase, tumor-specific M2-type pyruvate kinase, and fatty acid synthase, and the detection of such effects using various metabonomic technologies, including liquid chromatography/mass spectrometry (LC/MS and stable isotope-labeled MS. Stable isotope-mediated tracing technologies offer exciting opportunities for defining specific target(s for food components. Exposures, especially during the early transition phase from normal to cancer, are critical for the translation of knowledge about food components into effective prevention strategies. Although appropriate dietary exposures needed to alter cellular metabolism remain inconsistent and/or ill-defined, validated metabonomic biomarkers for dietary components hold promise for establishing effective strategies for cancer prevention.

  5. Engineering zinc finger protein transcription factors to downregulate the epithelial glycoprotein-2 promoter as a novel anti-cancer treatment.

    Science.gov (United States)

    Gommans, Willemijn M; McLaughlin, Pamela M J; Lindhout, Beatrice I; Segal, David J; Wiegman, D J; Haisma, Hidde J; van der Zaal, Bert J; Rots, Marianne G

    2007-05-01

    Zinc finger protein transcription factors (ZFP-TFs) are emerging as powerful novel tools for the treatment of many different diseases. ZFPs are DNA-binding motifs and consist of modular zinc finger domains. Each domain can be engineered to recognize a specific DNA triplet, and stitching six domains together results in the recognition of a gene-specific sequence. Inhibition of gene expression can be achieved by fusing a repressor domain to these DNA-binding motifs. In this study, we engineered ZFP-TFs to downregulate the activity of the epithelial glycoprotein-2 (EGP-2) promoter. The protein EGP-2 is overexpressed in a wide variety of cancer types and EGP-2 downregulation has been shown to result in a decreased oncogenic potential of tumor cells. Therefore, downregulation of EGP-2 expression by ZFP-TFs provides a novel anti-cancer therapeutic. Using a straightforward strategy, we engineered a 3-ZFP that could bind a 9 bp sequence within the EGP-2 promoter. After the addition of a repressor domain, this 3-ZFP-TF could efficiently downregulate EGP-2 promoter activity by 60%. To demonstrate the flexibility of this technology, we coupled an activation domain to the engineered ZFP, resulting in a nearly 200% increase in EGP-2 promoter activity. To inhibit the endogenous EGP-2 promoter, we engineered 6-ZFP-TFs. Although none of the constructed ZFP-TFs could convincingly modulate the endogenous promoter, efficient and specific inhibition of the exogenous promoter was observed. Overall, ZFP-TFs are versatile bi-directional modulators of gene expression and downregulation of EGP-2 promoter activity using ZFP-TFs can ultimately result in a novel anti-cancer treatment.

  6. Lung Cancer Signature Biomarkers: tissue specific semantic similarity based clustering of Digital Differential Display (DDD data

    Directory of Open Access Journals (Sweden)

    Srivastava Mousami

    2012-11-01

    Full Text Available Abstract Background The tissue-specific Unigene Sets derived from more than one million expressed sequence tags (ESTs in the NCBI, GenBank database offers a platform for identifying significantly and differentially expressed tissue-specific genes by in-silico methods. Digital differential display (DDD rapidly creates transcription profiles based on EST comparisons and numerically calculates, as a fraction of the pool of ESTs, the relative sequence abundance of known and novel genes. However, the process of identifying the most likely tissue for a specific disease in which to search for candidate genes from the pool of differentially expressed genes remains difficult. Therefore, we have used ‘Gene Ontology semantic similarity score’ to measure the GO similarity between gene products of lung tissue-specific candidate genes from control (normal and disease (cancer sets. This semantic similarity score matrix based on hierarchical clustering represents in the form of a dendrogram. The dendrogram cluster stability was assessed by multiple bootstrapping. Multiple bootstrapping also computes a p-value for each cluster and corrects the bias of the bootstrap probability. Results Subsequent hierarchical clustering by the multiple bootstrapping method (α = 0.95 identified seven clusters. The comparative, as well as subtractive, approach revealed a set of 38 biomarkers comprising four distinct lung cancer signature biomarker clusters (panel 1–4. Further gene enrichment analysis of the four panels revealed that each panel represents a set of lung cancer linked metastasis diagnostic biomarkers (panel 1, chemotherapy/drug resistance biomarkers (panel 2, hypoxia regulated biomarkers (panel 3 and lung extra cellular matrix biomarkers (panel 4. Conclusions Expression analysis reveals that hypoxia induced lung cancer related biomarkers (panel 3, HIF and its modulating proteins (TGM2, CSNK1A1, CTNNA1, NAMPT/Visfatin, TNFRSF1A, ETS1, SRC-1, FN1, APLP2, DMBT1

  7. HPV16 oncoproteins promote cervical cancer invasiveness by upregulating specific matrix metalloproteinases.

    Directory of Open Access Journals (Sweden)

    Jittranan Kaewprag

    Full Text Available Production of matrix metalloproteinases (MMPs for degradation of extracellular matrix is a vital step in cancer metastasis. We investigated the effects of HPV16 oncoproteins (16E6, 16E6*I and 16E7, either individually or combined, on the transcription of 7 MMPs implicated in cervical cancer invasiveness. The levels of 7 MMPs reported to be increased in cervical cancer were determined in C33A stably expressing different HPV16 oncoproteins using quantitative RT-PCR and compared with invasion ability of cell lines using in vitro invasion and wound healing assays. Overexpression of MMP-2 and MT1-MMP was detected in HPV16E6E7 expressing cells which correlated with increased cell invasion. Combination of HPV oncoproteins always showed greater effects than its individual form. Inhibition of cell invasion using a specific MMP-2 inhibitor, OA-Hy, and anti-MT1-MMP antibody confirmed that invasion in these cells was dependent on both MMP-2 and MT1-MMP expression. Depletion of HPV16E6E7 by shRNA-mediated knock-down experiments resulted in decreased MMP-2 and MT1-MMP expression levels as well as reduced invasion ability which strongly suggested specific effects of HPV oncoproteins on both MMPs and on cell invasion. Immunohistochemistry study in invasive cervical cancers confirmed the enhanced in vivo expression of these two MMPs in HPV16-infected cells. In addition, possible sites required by HPV16E6E7 on the MMP-2 and MT1-MMP promoters were investigated and PEA3 (at -552/-540 for MMP-2, -303 for MT1-MMP and Sp1 (at -91 for MMP-2, -102 for MT1-MMP binding sites were shown to be essential for mediating their transactivation activity. In conclusion, our study demonstrated that HPV16E6 and E7 oncoproteins cooperate in promoting cervical cancer invasiveness by specifically upregulating MMP-2 and MT1-MMP transcription in a similar manner.

  8. HPV16 oncoproteins promote cervical cancer invasiveness by upregulating specific matrix metalloproteinases.

    Science.gov (United States)

    Kaewprag, Jittranan; Umnajvijit, Wareerat; Ngamkham, Jarunya; Ponglikitmongkol, Mathurose

    2013-01-01

    Production of matrix metalloproteinases (MMPs) for degradation of extracellular matrix is a vital step in cancer metastasis. We investigated the effects of HPV16 oncoproteins (16E6, 16E6*I and 16E7), either individually or combined, on the transcription of 7 MMPs implicated in cervical cancer invasiveness. The levels of 7 MMPs reported to be increased in cervical cancer were determined in C33A stably expressing different HPV16 oncoproteins using quantitative RT-PCR and compared with invasion ability of cell lines using in vitro invasion and wound healing assays. Overexpression of MMP-2 and MT1-MMP was detected in HPV16E6E7 expressing cells which correlated with increased cell invasion. Combination of HPV oncoproteins always showed greater effects than its individual form. Inhibition of cell invasion using a specific MMP-2 inhibitor, OA-Hy, and anti-MT1-MMP antibody confirmed that invasion in these cells was dependent on both MMP-2 and MT1-MMP expression. Depletion of HPV16E6E7 by shRNA-mediated knock-down experiments resulted in decreased MMP-2 and MT1-MMP expression levels as well as reduced invasion ability which strongly suggested specific effects of HPV oncoproteins on both MMPs and on cell invasion. Immunohistochemistry study in invasive cervical cancers confirmed the enhanced in vivo expression of these two MMPs in HPV16-infected cells. In addition, possible sites required by HPV16E6E7 on the MMP-2 and MT1-MMP promoters were investigated and PEA3 (at -552/-540 for MMP-2, -303 for MT1-MMP) and Sp1 (at -91 for MMP-2, -102 for MT1-MMP) binding sites were shown to be essential for mediating their transactivation activity. In conclusion, our study demonstrated that HPV16E6 and E7 oncoproteins cooperate in promoting cervical cancer invasiveness by specifically upregulating MMP-2 and MT1-MMP transcription in a similar manner.

  9. The Runx transcriptional co-activator, CBFβ, is essential for invasion of breast cancer cells

    Directory of Open Access Journals (Sweden)

    Lopez-Camacho Cesar

    2010-06-01

    Full Text Available Abstract Background The transcription factor Runx2 has an established role in cancers that metastasize to bone. In metastatic breast cancer cells Runx2 is overexpressed and contributes to the invasive capacity of the cells by regulating the expression of several invasion genes. CBFβ is a transcriptional co-activator that is recruited to promoters by Runx transcription factors and there is considerable evidence that CBFβ is essential for the function of Runx factors. However, overexpression of Runx1 can partially rescue the lethal phenotype in CBFβ-deficient mice, indicating that increased levels of Runx factors can, in some situations, overcome the requirement for CBFβ. Since Runx2 is overexpressed in metastatic breast cancer cells, and there are no reports of CBFβ expression in breast cells, we sought to determine whether Runx2 function in these cells was dependent on CBFβ. Such an interaction might represent a viable target for therapeutic intervention to inhibit bone metastasis. Results We show that CBFβ is expressed in the metastatic breast cancer cells, MDA-MB-231, and that it associates with Runx2. Matrigel invasion assays and RNA interference were used to demonstrate that CBFβ contributes to the invasive capacity of these cells. Subsequent analysis of Runx2 target genes in MDA-MB-231 cells revealed that CBFβ is essential for the expression of Osteopontin, Matrixmetalloproteinase-13, Matrixmetalloproteinase-9, and Osteocalcin but not for Galectin-3. Chromatin immunoprecipitation analysis showed that CBFβ is recruited to both the Osteopontin and the Galectin-3 promoters. Conclusions CBFβ is expressed in metastatic breast cancer cells and is essential for cell invasion. CBFβ is required for expression of several Runx2-target genes known to be involved in cell invasion. However, whilst CBFβ is essential for invasion, not all Runx2-target genes require CBFβ. We conclude that CBFβ is required for a subset of Runx2-target genes

  10. The homeodomain-containing transcription factors Arx and Pax4 control enteroendocrine subtype specification in mice.

    Directory of Open Access Journals (Sweden)

    Anthony Beucher

    Full Text Available Intestinal hormones are key regulators of digestion and energy homeostasis secreted by rare enteroendocrine cells. These cells produce over ten different hormones including GLP-1 and GIP peptides known to promote insulin secretion. To date, the molecular mechanisms controlling the specification of the various enteroendocrine subtypes from multipotent Neurog3(+ endocrine progenitor cells, as well as their number, remain largely unknown. In contrast, in the embryonic pancreas, the opposite activities of Arx and Pax4 homeodomain transcription factors promote islet progenitor cells towards the different endocrine cell fates. In this study, we thus investigated the role of Arx and Pax4 in enteroendocrine subtype specification. The small intestine and colon of Arx- and Pax4-deficient mice were analyzed using histological, molecular, and lineage tracing approaches. We show that Arx is expressed in endocrine progenitors (Neurog3(+ and in early differentiating (ChromograninA(- GLP-1-, GIP-, CCK-, Sct- Gastrin- and Ghrelin-producing cells. We noted a dramatic reduction or a complete loss of all these enteroendocrine cell types in Arx mutants. Serotonin- and Somatostatin-secreting cells do not express Arx and, accordingly, the differentiation of Serotonin cells was not affected in Arx mutants. However, the number of Somatostatin-expressing D-cells is increased as Arx-deficient progenitor cells are redirected to the D-cell lineage. In Pax4-deficient mice, the differentiation of Serotonin and Somatostatin cells is impaired, as well as of GIP and Gastrin cells. In contrast, the number of GLP-1 producing L-cells is increased concomitantly with an upregulation of Arx. Thus, while Arx and Pax4 are necessary for the development of L- and D-cells respectively, they conversely restrict D- and L-cells fates suggesting antagonistic functions in D/L cell allocation. In conclusion, these finding demonstrate that, downstream of Neurog3, the specification of a subset of

  11. A crucial role for the ubiquitously expressed transcription factor Sp1 at early stages of hematopoietic specification

    NARCIS (Netherlands)

    J. Gilmour (Jane); S.A. Assi (Salam); U. Jaegle (Ulrike); D.I. Kulu (Divine); H.J.G. van de Werken (Harmen); D. Clarke (Deborah); P. Westhead (Paul); J.N.J. Philipsen (Sjaak); C. Bonifer (Constanze)

    2014-01-01

    textabstractMammalian development is regulated by the interplay of tissue-specific and ubiquitously expressed transcription factors, such as Sp1. Sp1 knockout mice die in utero with multiple phenotypic aberrations, but the underlying molecular mechanism of this differentiation failure has been elusi

  12. Rapid and specific detection of Lassa virus by reverse transcription-PCR coupled with oligonucleotide array hybridization.

    Science.gov (United States)

    Olschläger, Stephan; Günther, Stephan

    2012-07-01

    To facilitate sequence-specific detection of DNA amplified in a diagnostic reverse transcription (RT)-PCR for Lassa virus, we developed an array featuring 47 oligonucleotide probes for post-PCR hybridization of the amplicons. The array procedure may be performed with low-tech equipment and does not take longer than agarose gel detection.

  13. Genome-wide analysis of the homeobox C6 transcriptional network in prostate cancer.

    Science.gov (United States)

    McCabe, Colleen D; Spyropoulos, Demetri D; Martin, David; Moreno, Carlos S

    2008-03-15

    Homeobox transcription factors are developmentally regulated genes that play crucial roles in tissue patterning. Homeobox C6 (HOXC6) is overexpressed in prostate cancers and correlated with cancer progression, but the downstream targets of HOXC6 are largely unknown. We have performed genome-wide localization analysis to identify promoters bound by HOXC6 in prostate cancer cells. This analysis identified 468 reproducibly bound promoters whose associated genes are involved in functions such as cell proliferation and apoptosis. We have complemented these data with expression profiling of prostates from mice with homozygous disruption of the Hoxc6 gene to identify 31 direct regulatory target genes of HOXC6. We show that HOXC6 directly regulates expression of bone morphogenic protein 7, fibroblast growth factor receptor 2, insulin-like growth factor binding protein 3, and platelet-derived growth factor receptor alpha (PDGFRA) in prostate cells and indirectly influences the Notch and Wnt signaling pathways in vivo. We further show that inhibition of PDGFRA reduces proliferation of prostate cancer cells, and that overexpression of HOXC6 can overcome the effects of PDGFRA inhibition. HOXC6 regulates genes with both oncogenic and tumor suppressor activities as well as several genes such as CD44 that are important for prostate branching morphogenesis and metastasis to the bone microenvironment.

  14. Rapid and specific detection of tdh, trh1, and trh2 mRNA of Vibrio parahaemolyticus by transcription-reverse transcription concerted reaction with an automated system.

    Science.gov (United States)

    Nakaguchi, Yoshitsugu; Ishizuka, Tetsuya; Ohnaka, Satoru; Hayashi, Toshinori; Yasukawa, Kiyoshi; Ishiguro, Takahiko; Nishibuchi, Mitsuaki

    2004-09-01

    Vibrio parahaemolyticus strains carrying the thermostable direct hemolysin (TDH) tdh gene, the TDH-related hemolysin (trh) gene, or both genes are considered virulent strains. We previously demonstrated that the transcription-reverse transcription concerted (TRC) method could be used to quantify the amount of mRNA transcribed from the tdh gene by using an automated detection system. In this study, we devised two TRC-based assays to quantify the mRNAs transcribed from the trh1 and trh2 genes, the two representative trh genes. The TRC-based detection assays for the tdh, trh1, and trh2 transcripts could specifically and quantitatively detect 10(3) to 10(7) copies of the corresponding calibrator RNAs. We examined by the three TRC assays the total RNA preparations extracted from 103 strains of Vibrio parahaemolyticus carrying the tdh, trh1, or trh2 gene in various combinations. The tdh, trh1, and trh2 mRNAs in the total RNA preparations were specifically quantified, and the time needed for detection ranged from 9 to 19 min, from 14 to 18 min, and from 9 to 12 min, respectively. The results showed that this automated TRC assays could detect the tdh, trh1, and trh2 mRNAs specifically, quantitatively, and rapidly. The relative levels of TDH determined by the immunological method and that of tdh mRNA determined by the TRC assays for most tdh-positive strains correlated. Interestingly, the levels of TDH produced from the strains carrying both tdh and trh genes were lower than those carrying only the tdh gene, whereas the levels of mRNA did not significantly differ between the two groups.

  15. Clinical and Prognostic Implications of Transcription Factor SOX4 in Patients with Colon Cancer.

    Directory of Open Access Journals (Sweden)

    Chun-Mao Lin

    Full Text Available Colon cancer is one of the most common malignant cancers worldwide but the current therapeutic approaches for advanced colon cancer are less efficient. This study investigated associations between the expression of nuclear transcription factor SOX4 and various clinicopathologic parameters as well as patients' survival. Expression levels of nuclear SOX4 were analyzed by immunohistochemistry; the data comprised colon tissues from 263 patients with colon cancer. Paired t tests were used to analyze the differences in nuclear SOX4 expression between tumor and non-tumor tissues from each patient. Two-tailed Χ(2 tests were performed to determine whether the differences in nuclear SOX4 expression and clinicopathologic parameters were significant. Time-to-event endpoints for clinicopathologic parameters were plotted using the Kaplan-Meier method, and statistical significance was determined using univariate log-rank tests. Cox proportional hazard model was used for multivariate analysis to determine the independence of prognostic effects of nuclear SOX4 expression. Overexpression of nuclear SOX4 was significantly correlated with depth of invasion (P = 0.0041, distant metastasis (P<0.0001, and stage (P = 0.0001. Patients who displayed high expression levels of nuclear SOX4 achieved a significantly poorer disease-free survival rate, compared with patients with low SOX4 expression levels (P<0.001. Univariate Cox regression analysis showed that overexpression of nuclear SOX4 was a clear prognostic marker for colon cancer (P = 0.001. Overexpression of nuclear SOX4 may be used as a marker to predict the outcome of patients with colon cancer.

  16. FOXP1 forkhead transcription factor is associated with the pathogenesis of endometrial cancer

    Directory of Open Access Journals (Sweden)

    Makito Mizunuma

    2016-05-01

    Full Text Available Endometrial cancers are mostly estrogen-dependent. FOXP1 is a P subfamily of forkhead box (FOX, and known as an estrogen-responsive transcription factor. The aims of this study were to examine histological location of FOXP1 in normal and malignant endometrium, and to investigate a possible association between FOXP1 and other factors considered to be involved in pathogenesis of endometrial cancer. The levels of FOXP1, estrogen receptor (ERα, and ERβ expression were examined immunohistochemically in normal and malignant endometrium obtained from 75 women (8 normal, 8 atypical endometrial hyperplasia, and 59 endometrial cancers from grade 1 to 3. The effects of estrogen on ERα, FOXP1, KRAS, and PTEN expression were analyzed in telomerase-immortalized human endometrial stromal cells (T HESCs by Western blotting. Western blotting was also used to examine the effect of FOXP1 plasmid DNA or siRNA transfection on KRAS and PTEN expression in Ishikawa cells (well differentiated endometrioid adenocarcinoma, HEC-50B cells (poorly differentiated endometrioid adenocarcinoma, and T HESCs, respectively. FOXP1 was expressed in normal and malignant endometrium, but the rate of expression was different depending upon menstrual cycle and pathological grade of malignancy. FOXP1 expression in nucleus and cytoplasm of grade 3 endometrioid cancers was significantly lower than that of grade 1 and 2 ones. Estradiol increased levels of FOXP1 and KRAS expression in a dose- and time-dependent manner in T HESCs cells, and FOXP1 transfection or knockdown led to increase or decrease of KRAS expression but not PTEN. KRAS expression level was significantly related to FOXP1 and ERα levels in cancer tissues. Estradiol did not affect KRAS expression in T HESCs cells transfected with FOXP1 siRNA. These results suggest that FOXP1 is involved in estrogen dependent endometrial cancers through KRAS pathway.

  17. Collaborative regulation of development but independent control of metabolism by two epidermis-specific transcription factors in Caenorhabditis elegans.

    Science.gov (United States)

    Shao, Jiaofang; He, Kan; Wang, Hao; Ho, Wing Sze; Ren, Xiaoliang; An, Xiaomeng; Wong, Ming Kin; Yan, Bin; Xie, Dongying; Stamatoyannopoulos, John; Zhao, Zhongying

    2013-11-15

    Cell fate specification is typically initiated by a master regulator, which is relayed by tissue-specific regulatory proteins (usually transcription factors) for further enforcement of cell identities, but how the factors are coordinated among each other to "finish up" the specification remains poorly understood. Caenorhabditis elegans epidermis specification is initiated by a master regulator, ELT-1, that activates its targets, NHR-25 and ELT-3, two epidermis-specific transcription factors that are important for development but not for initial specification of epidermis, thus providing a unique paradigm for illustrating how the tissue-specific regulatory proteins work together to enforce cell fate specification. Here we addressed the question through contrasting genome-wide in vivo binding targets between NHR-25 and ELT-3. We demonstrate that the two factors bind discrete but conserved DNA motifs, most of which remain in proximity, suggesting formation of a complex between the two. In agreement with this, gene ontology analysis of putative target genes suggested differential regulation of metabolism but coordinated control of epidermal development between the two factors, which is supported by quantitative analysis of expression of their specific or common targets in the presence or absence of either protein. Functional validation of a subset of the target genes showed both activating and inhibitory roles of NHR-25 and ELT-3 in regulating their targets. We further demonstrated differential control of specification of AB and C lineage-derived epidermis. The results allow us to assemble a comprehensive gene network underlying C. elegans epidermis development that is likely to be widely used across species and provides insights into how tissue-specific transcription factors coordinate with one another to enforce cell fate specification initiated by its master regulator.

  18. Transcription of the rat testis-specific Rtdpoz-T1 and -T2 retrogenes during embryo development: co-transcription and frequent exonisation of transposable element sequences

    Directory of Open Access Journals (Sweden)

    Chang Che-Ming

    2009-07-01

    Full Text Available Abstract Background Retrotransposition is an important evolutionary force for the creation of new and potentially functional intronless genes which are collectively called retrogenes. Many retrogenes are expressed in the testis and the gene products have been shown to actively participate in spermatogenesis and other unique functions of the male germline. We have previously reported a cluster of retrogenes in the rat genome that encode putative TRAF- and POZ-domain proteins. Two of the genes, Rtdpoz-T1 and -T2 (abbreviated as T1 and T2, have further been shown to be expressed specifically in the rat testis. Results We show here that the T1 and T2 genes are also expressed in the rat embryo up to days 16–17 of development when the genes are silenced until being re-activated in the adult testis. On database interrogation, we find that some T1/T2 exons are chromosomally duplicated as cassettes of 2 or 3 exons consistent with retro-duplication. The embryonic T1/T2 transcripts, characterised by RT-PCR-cloning and rapid amplification of cDNA ends, are further found to have acquired one or more noncoding exons in the 5'-untranslated region (5'-UTR. Most importantly, the T1/T2 locus is embedded within a dense field of relics of transposable element (TE derived mainly from LINE1 and ERV sequences, and the TE sequences are frequently exonised through alternative splicing to form the 5'-UTR sequences of the T1/T2 transcripts. In a case of T1 transcript, the 3'-end is extended into and terminated within an L1 sequence. Since the two genes share a common exon 1 and are, therefore, regulated by a single promoter, a T2-to-T1 co-transcription model is proposed. We further demonstrate that the exonised 5'-UTR TE sequences could lead to the creation of upstream open reading frames resulting in translational repression. Conclusion Exonisation of TE sequences is a frequent event in the transcription of retrogenes during embryonic development and in the testis and

  19. Targeting RNA polymerase I transcription and the nucleolus for cancer therapy.

    Science.gov (United States)

    Hannan, Ross D; Drygin, Denis; Pearson, Richard B

    2013-08-01

    The nucleoli are the site of the production of ribosomes, the protein synthetic apparatus of the cell. The presence of enlarged nucleoli, reflecting increased ribosomal gene transcription, has long been used by pathologists as an indicator of aggressive tumors. However, over the last 10 years a growing body of evidence has revealed that the nucleolus contains a dynamic cohort of over 4500 proteins, the majority of which have no function in ribosome production. The activity of some of these proteins is modulated by their regulated sequestration and release from the nucleolus. In particular, the nucleolus plays a central role in sensing cellular stress to modulate the abundance of the critical tumor suppressor protein p53. The finding that p53 activity is dysregulated in up to 50% of all human cancers highlights the importance of the nucleolar stress response in limiting malignant transformation. The development of drugs to selectively inhibit transcription of the ribosomal RNA genes in the nucleolus has paved the way for a new therapeutic approach to hijack nucleolar stress to selectively and non-genotoxically activate p53 in tumor cells. Here, we describe the potential application of this exciting new class of drugs for the treatment of human cancer.

  20. Transcriptional regulation of the differentiation-linked human K4 promoter is dependent upon esophageal-specific nuclear factors.

    Science.gov (United States)

    Opitz, O G; Jenkins, T D; Rustgi, A K

    1998-09-11

    The stratified squamous epithelium comprises actively proliferating basal cells that undergo a program of differentiation accompanied by morphological, biochemical, and genetic changes. The transcriptional regulatory signals and the genes that orchestrate this switch from proliferation to differentiation can be studied through the keratin gene family. Given the localization of keratin 4 (K4) to the early differentiated suprabasal compartment and having previously demonstrated that targeted disruption of this gene in murine embryonic stem cells results in impairment of the normal differentiation program in esophageal and corneal epithelial cells, we studied the transcriptional regulation of the human K4 promoter. A panel of K4 promoter deletions were found in transient transfection assays to be predominantly active in esophageal and corneal cell lines. A critical cis-regulatory element resides between -163 and -140 bp and contains an inverted CACACCT motif. A site-directed mutated version of this motif within the K4 promoter renders it inactive, whereas the wild-type version is active in a heterologous promoter system. It specifically binds esophageal-specific zinc-dependent transcriptional factors. Our studies demonstrate that regulation of the human K4 promoter is in part mediated through tissue-specific transcriptional factors.

  1. HES6 drives a critical AR transcriptional programme to induce castration-resistant prostate cancer through activation of an E2F1-mediated cell cycle network.

    Science.gov (United States)

    Ramos-Montoya, Antonio; Lamb, Alastair D; Russell, Roslin; Carroll, Thomas; Jurmeister, Sarah; Galeano-Dalmau, Nuria; Massie, Charlie E; Boren, Joan; Bon, Helene; Theodorou, Vasiliki; Vias, Maria; Shaw, Greg L; Sharma, Naomi L; Ross-Adams, Helen; Scott, Helen E; Vowler, Sarah L; Howat, William J; Warren, Anne Y; Wooster, Richard F; Mills, Ian G; Neal, David E

    2014-05-01

    Castrate-resistant prostate cancer (CRPC) is poorly characterized and heterogeneous and while the androgen receptor (AR) is of singular importance, other factors such as c-Myc and the E2F family also play a role in later stage disease. HES6 is a transcription co-factor associated with stem cell characteristics in neural tissue. Here we show that HES6 is up-regulated in aggressive human prostate cancer and drives castration-resistant tumour growth in the absence of ligand binding by enhancing the transcriptional activity of the AR, which is preferentially directed to a regulatory network enriched for transcription factors such as E2F1. In the clinical setting, we have uncovered a HES6-associated signature that predicts poor outcome in prostate cancer, which can be pharmacologically targeted by inhibition of PLK1 with restoration of sensitivity to castration. We have therefore shown for the first time the critical role of HES6 in the development of CRPC and identified its potential in patient-specific therapeutic strategies.

  2. HES6 drives a critical AR transcriptional programme to induce castration-resistant prostate cancer through activation of an E2F1-mediated cell cycle network

    Science.gov (United States)

    Ramos-Montoya, Antonio; Lamb, Alastair D; Russell, Roslin; Carroll, Thomas; Jurmeister, Sarah; Galeano-Dalmau, Nuria; Massie, Charlie E; Boren, Joan; Bon, Helene; Theodorou, Vasiliki; Vias, Maria; Shaw, Greg L; Sharma, Naomi L; Ross-Adams, Helen; Scott, Helen E; Vowler, Sarah L; Howat, William J; Warren, Anne Y; Wooster, Richard F; Mills, Ian G; Neal, David E

    2014-01-01

    Castrate-resistant prostate cancer (CRPC) is poorly characterized and heterogeneous and while the androgen receptor (AR) is of singular importance, other factors such as c-Myc and the E2F family also play a role in later stage disease. HES6 is a transcription co-factor associated with stem cell characteristics in neural tissue. Here we show that HES6 is up-regulated in aggressive human prostate cancer and drives castration-resistant tumour growth in the absence of ligand binding by enhancing the transcriptional activity of the AR, which is preferentially directed to a regulatory network enriched for transcription factors such as E2F1. In the clinical setting, we have uncovered a HES6-associated signature that predicts poor outcome in prostate cancer, which can be pharmacologically targeted by inhibition of PLK1 with restoration of sensitivity to castration. We have therefore shown for the first time the critical role of HES6 in the development of CRPC and identified its potential in patient-specific therapeutic strategies. PMID:24737870

  3. Timing of Tissue-specific Cell Division Requires a Differential Onset of Zygotic Transcription during Metazoan Embryogenesis.

    Science.gov (United States)

    Wong, Ming-Kin; Guan, Daogang; Ng, Kaoru Hon Chun; Ho, Vincy Wing Sze; An, Xiaomeng; Li, Runsheng; Ren, Xiaoliang; Zhao, Zhongying

    2016-06-10

    Metazoan development demands not only precise cell fate differentiation but also accurate timing of cell division to ensure proper development. How cell divisions are temporally coordinated during development is poorly understood. Caenorhabditis elegans embryogenesis provides an excellent opportunity to study this coordination due to its invariant development and widespread division asynchronies. One of the most pronounced asynchronies is a significant delay of cell division in two endoderm progenitor cells, Ea and Ep, hereafter referred to as E2, relative to its cousins that mainly develop into mesoderm organs and tissues. To unravel the genetic control over the endoderm-specific E2 division timing, a total of 822 essential and conserved genes were knocked down using RNAi followed by quantification of cell cycle lengths using in toto imaging of C. elegans embryogenesis and automated lineage. Intriguingly, knockdown of numerous genes encoding the components of general transcription pathway or its regulatory factors leads to a significant reduction in the E2 cell cycle length but an increase in cell cycle length of the remaining cells, indicating a differential requirement of transcription for division timing between the two. Analysis of lineage-specific RNA-seq data demonstrates an earlier onset of transcription in endoderm than in other germ layers, the timing of which coincides with the birth of E2, supporting the notion that the endoderm-specific delay in E2 division timing demands robust zygotic transcription. The reduction in E2 cell cycle length is frequently associated with cell migration defect and gastrulation failure. The results suggest that a tissue-specific transcriptional activation is required to coordinate fate differentiation, division timing, and cell migration to ensure proper development.

  4. Resveratrol induces growth arrest and apoptosis through activation of FOXO transcription factors in prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Qinghe Chen

    Full Text Available BACKGROUND: Resveratrol, a naturally occurring phytopolyphenol compound, has attracted extensive interest in recent years because of its diverse pharmacological characteristics. Although resveratrol possesses chemopreventive properties against several cancers, the molecular mechanisms by which it inhibits cell growth and induces apoptosis have not been clearly understood. The present study was carried out to examine whether PI3K/AKT/FOXO pathway mediates the biological effects of resveratrol. METHODOLOGY/PRINCIPAL FINDINGS: Resveratrol inhibited the phosphorylation of PI3K, AKT and mTOR. Resveratrol, PI3K inhibitors (LY294002 and Wortmannin and AKT inhibitor alone slightly induced apoptosis in LNCaP cells. These inhibitors further enhanced the apoptosis-inducing potential of resveratrol. Overexpression of wild-type PTEN slightly induced apoptosis. Wild type PTEN and PTEN-G129E enhanced resveratrol-induced apoptosis, whereas PTEN-G129R had no effect on proapoptotic effects of resveratrol. Furthermore, apoptosis-inducing potential of resveratrol was enhanced by dominant negative AKT, and inhibited by wild-type AKT and constitutively active AKT. Resveratrol has no effect on the expression of FKHR, FKHRL1 and AFX genes. The inhibition of FOXO phosphorylation by resveratrol resulted in its nuclear translocation, DNA binding and transcriptional activity. The inhibition of PI3K/AKT pathway induced FOXO transcriptional activity resulting in induction of Bim, TRAIL, p27/KIP1, DR4 and DR5, and inhibition of cyclin D1. Similarly, resveratrol-induced FOXO transcriptional activity was further enhanced when activation of PI3K/AKT pathway was blocked. Over-expression of phosphorylation deficient mutants of FOXO proteins (FOXO1-TM, FOXO3A-TM and FOXO4-TM induced FOXO transcriptional activity, which was further enhanced by resveratrol. Inhibition of FOXO transcription factors by shRNA blocked resveratrol-induced upregulation of Bim, TRAIL, DR4, DR5, p27/KIP1 and

  5. Effect of ionizing radiation on transcription of colorectal cancer MDR1 gene of HCT-8 cells

    Institute of Scientific and Technical Information of China (English)

    Xiao-Feng Li; Lin Ma; Jing Lu; Li-Xia Kong; Xiao-Hua Long; Su-Huan Liao; Bao-Rong Chi

    2013-01-01

    Objective: To discuss effect of ionizing radiation on transcription of colorectal cancer multidrug resistance (MDR) 1 gene of HCT-8 cells. Methods: Total RNA was extracted by guanidine thiocyanate one-step method. Northern blot was applied to detect transcription level of MDR1 gene. The expression of P-gp protein was detected by flow cytometry. Results: The expression of MDR1 of normal colorectal cancer HCT-8 cells was low. It was increased by 8.35 times under stimulus with 2 Gy. When treated with low doses in advance, high expressed MDR was decreased significantly under 0.05, 0.1 Gy, which was 69.00%, 62.89% in 2 Gy group and 5.77 times, 5.25 times in sham irradiation group. No obvious difference was detected between (0.2+2) Gy group and 2 Gy group. Compared with sham irradiation group, the percentage of P-gp positive cells after radiation of a high 2 Gy dose was increased significantly (P<0.01). When treated with high radiation dose following low radiation dose (0.05 Gy, 0.1 Gy) in advance, the percentage of P-gp positive cells were also increased significantly. The percentage of P-gp positive cells were increased obviously in 0.2 Gy and 2 Gy groups. Compared with simple high radiation 2 Gy group, the percentage of P-gp positive cells was decreased significantly (P<0.05). Conclusions:Low radiation dose can reverse multidrug resistance of colorectal cancer cells caused by high radiation dose.

  6. Fruit specific variability in capsaicinoid accumulation and transcription of structural and regulatory genes in Capsicum fruit.

    Science.gov (United States)

    Keyhaninejad, Neda; Curry, Jeanne; Romero, Joslynn; O'Connell, Mary A

    2014-02-01

    Accumulation of capsaicinoids in the placental tissue of ripening chile (Capsicum spp.) fruit follows the coordinated expression of multiple biosynthetic enzymes producing the substrates for capsaicin synthase. Transcription factors are likely agents to regulate expression of these biosynthetic genes. Placental RNAs from habanero fruit (Capsicum chinense) were screened for expression of candidate transcription factors; with two candidate genes identified, both in the ERF family of transcription factors. Characterization of these transcription factors, Erf and Jerf, in nine chile cultivars with distinct capsaicinoid contents demonstrated a correlation of expression with pungency. Amino acid variants were observed in both ERF and JERF from different chile cultivars; none of these changes involved the DNA binding domains. Little to no transcription of Erf was detected in non-pungent Capsium annuum or C. chinense mutants. This correlation was characterized at an individual fruit level in a set of jalapeño (C. annuum) lines again with distinct and variable capsaicinoid contents. Both Erf and Jerf are expressed early in fruit development, 16-20 days post-anthesis, at times prior to the accumulation of capsaicinoids in the placental tissues. These data support the hypothesis that these two members of the complex ERF family participate in regulation of the pungency phenotype in chile.

  7. TFIIH subunit alterations causing xeroderma pigmentosum and trichothiodystrophy specifically disturb several steps during transcription.

    Science.gov (United States)

    Singh, Amita; Compe, Emanuel; Le May, Nicolas; Egly, Jean-Marc

    2015-02-01

    Mutations in genes encoding the ERCC3 (XPB), ERCC2 (XPD), and GTF2H5 (p8 or TTD-A) subunits of the transcription and DNA-repair factor TFIIH lead to three autosomal-recessive disorders: xeroderma pigmentosum (XP), XP associated with Cockayne syndrome (XP/CS), and trichothiodystrophy (TTD). Although these diseases were originally associated with defects in DNA repair, transcription deficiencies might be also implicated. By using retinoic acid receptor beta isoform 2 (RARB2) as a model in several cells bearing mutations in genes encoding TFIIH subunits, we observed that (1) the recruitment of the TFIIH complex was altered at the activated RARB2 promoter, (2) TFIIH participated in the recruitment of nucleotide excision repair (NER) factors during transcription in a manner different from that observed during NER, and (3) the different TFIIH variants disturbed transcription by having distinct consequences on post-translational modifications of histones, DNA-break induction, DNA demethylation, and gene-loop formation. The transition from heterochromatin to euchromatin was disrupted depending on the variant, illustrating the fact that TFIIH, by contributing to NER factor recruitment, orchestrates chromatin remodeling. The subtle transcriptional differences found between various TFIIH variants thus participate in the phenotypic variability observed among XP, XP/CS, and TTD individuals.

  8. HIV Skews the Lineage-Defining Transcriptional Profile of Mycobacterium tuberculosis-Specific CD4+ T Cells.

    Science.gov (United States)

    Riou, Catherine; Strickland, Natalie; Soares, Andreia P; Corleis, Björn; Kwon, Douglas S; Wherry, E John; Wilkinson, Robert J; Burgers, Wendy A

    2016-04-01

    HIV-infected persons are at greater risk of developing tuberculosis (TB) even before profound CD4 loss occurs, suggesting that HIV alters CD4(+) T cell functions capable of containing bacterial replication. An effective immune response to Mycobacterium tuberculosis most likely relies on the development of a balanced CD4 response, in which distinct CD4(+) Th subsets act in synergy to control the infection. To define the diversity of M. tuberculosis-specific CD4(+) Th subsets and determine whether HIV infection impacts such responses, the expression of lineage-defining transcription factors T-bet, Gata3, RORγt, and Foxp3 was measured in M. tuberculosis-specific CD4(+) T cells in HIV-uninfected (n = 20) and HIV-infected individuals (n = 20) with latent TB infection. Our results show that, upon 5-d restimulation in vitro, M. tuberculosis-specific CD4(+) T cells from healthy individuals have the ability to exhibit a broad spectrum of Th subsets, defined by specific patterns of transcription factor coexpression. These transcription factor profiles were skewed in HIV-infected individuals where the proportion of T-bet(high)Foxp3(+) M. tuberculosis-specific CD4(+) T cells was significantly decreased (p = 0.002) compared with HIV-uninfected individuals, a change that correlated inversely with HIV viral load (p = 0.0007) and plasma TNF-α (p = 0.027). Our data demonstrate an important balance in Th subset diversity defined by lineage-defining transcription factor coexpression profiles that is disrupted by HIV infection and suggest a role for HIV in impairing TB immunity by altering the equilibrium of M. tuberculosis-specific CD4(+) Th subsets.

  9. Activation of transcriptional activity of HSE by a novel mouse zinc finger protein ZNFD specifically expressed in testis.

    Science.gov (United States)

    Xu, Fengqin; Wang, Weiping; Lei, Chen; Liu, Qingmei; Qiu, Hao; Muraleedharan, Vinaydhar; Zhou, Bin; Cheng, Hongxia; Huang, Zhongkai; Xu, Weian; Li, Bichun; Wang, Minghua

    2012-04-01

    Zinc finger proteins (ZFPs) that contain multiple cysteine and/or histidine residues perform important roles in various cellular functions, including transcriptional regulation, cell proliferation, differentiation, and apoptosis. The Cys-Cys-His-His (C(2)H(2)) type of ZFPs are the well-defined members of this super family and are the largest and most complex proteins in eukaryotic genomes. In this study, we identified a novel C(2)H(2) type of zinc finger gene ZNFD from mice which has a 1,002 bp open reading frame and encodes a protein with 333 amino acid residues. The predicted 37.4 kDa protein contains a C(2)H(2) zinc finger domain. ZNFD gene is located on chromosome 18qD1. RT-PCR analysis revealed that the ZNFD gene was specifically expressed in mouse testis but not in other tissues. Subcellular localization analysis demonstrated that ZNFD was localized in the nucleus. Reporter gene assays showed that overexpression of ZNFD in the COS7 cells activates the transcriptional activities of heat shock element (HSE). Overall, these results suggest that ZNFD is a member of the zinc finger transcription factor family and it participates in the transcriptional regulation of HSE. Many heat shock proteins regulated by HSE are involved in testicular development. Therefore, our results suggest that ZNFD may probably participate in the development of mouse testis and function as a transcription activator in HSE-mediated gene expression and signaling pathways.

  10. Inhibiting cell migration and cell invasion by silencing the transcription factor ETS-1 in human bladder cancer.

    Science.gov (United States)

    Liu, Li; Liu, Yuchen; Zhang, Xintao; Chen, Mingwei; Wu, Hanwei; Lin, Muqi; Zhan, Yonghao; Zhuang, Chengle; Lin, Junhao; Li, Jianfa; Xu, Wen; Fu, Xing; Zhang, Qiaoxia; Sun, Xiaojuan; Zhao, Guoping; Huang, Weiren

    2016-05-03

    As one of the members of the ETS gene family, the transcription factor v-ets avian erythroblastosis virus E26 oncogene homolog 1 (ETS-1) plays key role in the regulation of physiological processes in normal cells and tumors. In this study, we aimed to investigate the relationship between the transcription factor ETS-1 and malignant phenotypes of bladder cancer. We demonstrated that ETS-1 was up-regulated in human bladder cancer tissue compared to paired normal bladder tissue. In order to evaluate the functional role of ETS-1 in human bladder cancer, vectors expressing ETS-1 shRNA and ETS-1 protein were constructed in vitro and transfected into the human bladder cancer T24 and 5637 cells. Our results showed that the transcription factor ETS-1 could promote cell migration and cell invasion in human bladder cancer, without affecting cell proliferation and apoptosis. In conclusion, ETS-1 plays oncogenic roles through inducing cell migration and invasion in human bladder cancer, and it can be used as a therapeutic target for treating human bladder cancer.

  11. In Vitro Anticancer Activity of Phlorofucofuroeckol A via Upregulation of Activating Transcription Factor 3 against Human Colorectal Cancer Cells

    Directory of Open Access Journals (Sweden)

    Hyun Ji Eo

    2016-03-01

    Full Text Available Phlorofucofuroeckol A (PFF-A, one of the phlorotannins found in brown algae, has been reported to exert anti-cancer property. However, the molecular mechanism for the anti-cancer effect of PFF-A has not been known. Activating transcription factor 3 (ATF3 has been reported to be associated with apoptosis in colorectal cancer. The present study was performed to investigate the molecular mechanism by which PFF-A stimulates ATF3 expression and apoptosis in human colorectal cancer cells. PFF-A decreased cell viability through apoptosis of human colorectal cancer cells. PFF-A increased ATF3 expression through regulating transcriptional activity. The responsible cis-element for ATF3 transcriptional activation by PFF-A was cAMP response element binding protein (CREB, located between positions −147 and −85 of the ATF3 promoter. Inhibition of p38, c-Jun N-terminal kinases (JNK, glycogen synthase kinase (GSK 3β, and IκB kinase (IKK-α blocked PFF-A-mediated ATF3 expression. ATF3 knockdown by ATF3 siRNA attenuated the cleavage of poly (ADP-ribose polymerase (PARP by PFF-A, while ATF3 overexpression increased PFF-A-mediated cleaved PARP. These results suggest that PFF-A may exert anti-cancer property through inducing apoptosis via the ATF3-mediated pathway in human colorectal cancer cells.

  12. Cancer Patient T Cells Genetically Targeted to Prostate-Specific Membrane Antigen Specifically Lyse Prostate Cancer Cells and Release Cytokines in Response to Prostate-Specific Membrane Antigen

    Directory of Open Access Journals (Sweden)

    Michael C. Gong

    1999-06-01

    Full Text Available The expression of immunoglobulin-based artificial receptors in normal T lymphocytes provides a means to target lymphocytes to cell surface antigens independently of major histocompatibility complex restriction. Such artificial receptors have been previously shown to confer antigen-specific tumoricidal properties in murine T cells. We constructed a novel ζ chain fusion receptor specific for prostate-specific membrane antigen (PSMA termed Pz-1. PSMA is a cell-surface glycoprotein expressed on prostate cancer cells and the neovascular endothelium of multiple carcinomas. We show that primary T cells harvested from five of five patients with different stages of prostate cancer and transduced with the Pz-1 receptor readily lyse prostate cancer cells. Having established a culture system using fibroblasts that express PSMA, we next show that T cells expressing the Pz-1 receptor release cytokines in response to cell-bound PSMA. Furthermore, we show that the cytokine release is greatly augmented by B7.1-mediated costimulation. Thus, our findings support the feasibility of adoptive cell therapy by using genetically engineered T cells in prostate cancer patients and suggest that both CD4+ and CD8+ T lymphocyte functions can be synergistically targeted against tumor cells.

  13. Analysis of Specific Binding and Subcellular Localization of Wheat ERF Transcription Factor W17

    Institute of Scientific and Technical Information of China (English)

    ZHAO Yun-xiang; LIU Pei; XU Zhao-shi; CHEN Ming; LI Lian-cheng; CHEN Yao-feng; XIONG Xiang-jin; MA You-zhi

    2008-01-01

    The study aims to detect the subcellular localization of ERF (ethylene-responsive element binding factor) transcription factor W17 protein, the interaction between W17 and cis-acting regulatory elements GCC-box and DRE in vitro, the binding and transactivating ability in vivo, and the role of W17 in higher plant stress-signal pathway. Recombinant plasmid W17/163hGFP was introduced into onion epidermal cells by the particle bombardment method with a PDS1000/He. Transformed cells were incubated for 24h at 22℃ in the dark and green fluorescence was monitored under a confocal microscope. The gene W17 was fused N-terminus of GST (glutathione-S-transferase) in prokaryotic expression vector pGEX-4T-1 and then transformed into E. coli strain BL21 (DE3). IPTG (0.5mmol L-1) was added to induce the expression of recombinant GST/W17 for 3h. The fused proteins were purified by GST purification columns, and then subjected to gel retardation assay with a 32P-labeled GCC or DRE sequence. The different reporter and effector plasmids were introduced into tobacco leaves through agroinfiltration, then transformed leaves stained by X-Gluc, faded with 75% alcohol and monitored under a Stereozooming microscope. The GFP fused with W17 protein was localized in the nuclei; SDS-PAGE assay demonstrated that the fused protein GST/W17 could be induced and purified with molecular weight at around 42.2kD under the induction of IPTG. Purified fused protein was able to specifically bind to both the wild-type GCC-box and DRE element, but had no interaction with either the mutant DRE or GCC-box; W17 protein can bind to GCC-box and transactive downstream GUS gene in vivo. W17 can localize into the nuclei, and it may be involved not only in biotic stresses controlled by GCC-box, but also in abiotic stresses (e. g., salt-) induced signaling pathway.

  14. Permanent uncoupling of male-specific CYP2C11 transcription/translation by perinatal glutamate

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Sarmistha; Das, Rajat Kumar; Giffear, Kelly A.; Shapiro, Bernard H., E-mail: shapirob@vet.upenn.edu

    2015-04-01

    Perinatal exposure of rats and mice to the typically reported 4 mg/g bd wt dose of monosodium glutamate (MSG) results in a complete block in GH secretion as well as obesity, growth retardation and a profound suppression of several cytochrome P450s, including CYP2C11, the predominant male-specific isoform — all irreversible effects. In contrast, we have found that a lower dose of the food additive, 2 mg/g bd wt on alternate days for the first 9 days of life results in a transient neonatal depletion of plasma GH, a subsequent permanent overexpression of CYP2C11 as well as subnormal (mini) GH pulse amplitudes in an otherwise normal adult masculine episodic GH profile. The overexpressed CYP2C11 was characterized by a 250% increase in mRNA, but only a 40 to 50% increase in CYP2C11 protein and its catalytic activity. Using freshly isolated hepatocytes as well as primary cultures exposed to the masculine-like episodic GH profile, we observed normal induction, activation, nuclear translocation and binding to the CYP2C11 promoter of the GH-dependent signal transducers required for CYP2C11 transcription. The disproportionately lower expression levels of CYP2C11 protein were associated with dramatically high expression levels of an aberrant, presumably nontranslated CYP2C11 mRNA, a 200% increase in CYP2C11 ubiquitination and a 70–80% decline in miRNAs associated, at normal levels, with a suppression of CYP2C expression. Whereas the GH-responsiveness of CYP2C7 and CYP2C6 as well as albumin was normal in the MSG-derived hepatocytes, the abnormal expression of CYP2C11 was permanent and irreversible. - Highlights: • A “low” neonatal dose of MSG causes an immediate but transient growth hormone depletion. • Adult circulating growth hormone contains mini pulses in an otherwise male profile. • CYP2C11 is permanently overexpressed > 250%; CYP2C6, 2C7 and albumin remain normal. • The bulk of the overexpressed CYP2C11 mRNA consists of an intron-retained form. • SOCS2

  15. Tumor-Associated Antigens for Specific Immunotherapy of Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kiessling, Andrea [Biologics Safety and Disposition, Preclinical Safety, Translational Sciences, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Werk Klybeck, Klybeckstraße 141, Basel CH-4057 (Switzerland); Wehner, Rebekka [Institute of Immunology, Medical Faculty, University of Technology Dresden, Fetscherstraße 74, Dresden 01307 (Germany); Füssel, Susanne [Department of Urology, Medical Faculty, University of Technology Dresden, Fetscherstraße 74, Dresden 01307 (Germany); Bachmann, Michael [Institute of Immunology, Medical Faculty, University of Technology Dresden, Fetscherstraße 74, Dresden 01307 (Germany); Wirth, Manfred P. [Department of Urology, Medical Faculty, University of Technology Dresden, Fetscherstraße 74, Dresden 01307 (Germany); Schmitz, Marc, E-mail: marc.schmitz@tu-dresden.de [Institute of Immunology, Medical Faculty, University of Technology Dresden, Fetscherstraße 74, Dresden 01307 (Germany)

    2012-02-22

    Prostate cancer (PCa) is the most common noncutaneous cancer diagnosis and the second leading cause of cancer-related deaths among men in the United States. Effective treatment modalities for advanced metastatic PCa are limited. Immunotherapeutic strategies based on T cells and antibodies represent interesting approaches to prevent progression from localized to advanced PCa and to improve survival outcomes for patients with advanced disease. CD8{sup +} cytotoxic T lymphocytes (CTLs) efficiently recognize and destroy tumor cells. CD4{sup +} T cells augment the antigen-presenting capacity of dendritic cells and promote the expansion of tumor-reactive CTLs. Antibodies mediate their antitumor effects via antibody-dependent cellular cytotoxicity, activation of the complement system, improving the uptake of coated tumor cells by phagocytes, and the functional interference of biological pathways essential for tumor growth. Consequently, several tumor-associated antigens (TAAs) have been identified that represent promising targets for T cell- or antibody-based immunotherapy. These TAAs comprise proteins preferentially expressed in normal and malignant prostate tissues and molecules which are not predominantly restricted to the prostate, but are overexpressed in various tumor entities including PCa. Clinical trials provide evidence that specific immunotherapeutic strategies using such TAAs represent safe and feasible concepts for the induction of immunological and clinical responses in PCa patients. However, further improvement of the current approaches is required which may be achieved by combining T cell- and/or antibody-based strategies with radio-, hormone-, chemo- or antiangiogenic therapy.

  16. Post-transcriptional regulation of cyclins D1, D3 and G1 and proliferation of human cancer cells depend on IMP-3 nuclear localization.

    Science.gov (United States)

    Rivera Vargas, T; Boudoukha, S; Simon, A; Souidi, M; Cuvellier, S; Pinna, G; Polesskaya, A

    2014-05-29

    RNA-binding proteins of the IMP family (insulin-like growth factor 2 (IGF2) mRNA-binding proteins 1-3) are important post-transcriptional regulators of gene expression. Multiple studies have linked high expression of IMP proteins, and especially of IMP-3, to an unfavorable prognosis in numerous types of cancer. The specific importance of IMP-3 for cancer transformation remains poorly understood. We here show that all three IMPs can directly bind the mRNAs of cyclins D1, D3 and G1 (CCND1, D3 and G1) in vivo and in vitro, and yet only IMP-3 regulates the expression of these cyclins in a significant manner in six human cancer cell lines of different origins. In the absence of IMP-3, the levels of CCND1, D3 and G1 proteins fall dramatically, and the cells accumulate in the G1 phase of the cell cycle, leading to almost complete proliferation arrest. Our results show that, compared with IMP-1 and IMP-2, IMP-3 is enriched in the nucleus, where it binds the transcripts of CCND1, D3 and G1. The nuclear localization of IMP-3 depends on its protein partner HNRNPM and is indispensable for the post-transcriptional regulation of expression of the cyclins. Cytoplasmic retention of IMP-3 and HNRNPM in human cancer cells leads to significant drop in proliferation. In conclusion, a nuclear IMP-3-HNRNPM complex is important for the efficient synthesis of CCND1, D3 and G1 and for the proliferation of human cancer cells.

  17. DNA binding by the plant-specific NAC transcription factors in crystal and solution

    DEFF Research Database (Denmark)

    Welner, Ditte Hededam; Lindemose, Søren; Grossmann, J. Günter;

    2012-01-01

    NAC (NAM/ATAF/CUC) plant transcription factors regulate essential processes in development, stress responses and nutrient distribution in important crop and model plants (rice, Populus, Arabidopsis), which makes them highly relevant in the context of crop optimization and bioenergy production. Th...

  18. DNA-binding specificity and molecular functions of NAC transcription factors

    DEFF Research Database (Denmark)

    Olsen, Addie Nina; Ernst, Heidi Asschenfeldt; Lo Leggio, Leila;

    2005-01-01

    The family of NAC (NAM/ATAF1,2/CUC2) transcription factors has been implicated in a wide range of plant processes, but knowledge on the DNA-binding properties of the family is limited. Using a reiterative selection procedure on random oligonucleotides, we have identified consensus binding sites f...

  19. Microarray analysis of gender- and parasite-specific gene transcription in Strongyloides ratti

    NARCIS (Netherlands)

    Evans, Helen; Mello, Luciane V.; Fang, Yongxiang; Wit, Ernst; Thompson, Fiona J.; Viney, Mark E.; Paterson, Steve

    2008-01-01

    The molecular mechanisms by which parasitic nematodes reproduce and have adapted to life within a host are unclear. In the present study, microarray analysis was used to explore differential transcription among the different stages and sexes of Strongyloides ratti, a parasitic nematode of brown rats

  20. A meiosis-specific Spt5 homolog involved in non-coding transcription.

    Science.gov (United States)

    Gruchota, Julita; Denby Wilkes, Cyril; Arnaiz, Olivier; Sperling, Linda; Nowak, Jacek K

    2017-01-03

    Spt5 is a conserved and essential transcriptional regulator that binds directly to RNA polymerase and is involved in transcription elongation, polymerase pausing and various co-transcriptional processes. To investigate the role of Spt5 in non-coding transcription, we used the unicellular model Paramecium tetraurelia In this ciliate, development is controlled by epigenetic mechanisms that use different classes of non-coding RNAs to target DNA elimination. We identified two SPT5 genes. One (STP5v) is involved in vegetative growth, while the other (SPT5m) is essential for sexual reproduction. We focused our study on SPT5m, expressed at meiosis and associated with germline nuclei during sexual processes. Upon Spt5m depletion, we observed absence of scnRNAs, piRNA-like 25 nt small RNAs produced at meiosis. The scnRNAs are a temporal copy of the germline genome and play a key role in programming DNA elimination. Moreover, Spt5m depletion abolishes elimination of all germline-limited sequences, including sequences whose excision was previously shown to be scnRNA-independent. This suggests that in addition to scnRNA production, Spt5 is involved in setting some as yet uncharacterized epigenetic information at meiosis. Our study establishes that Spt5m is crucial for developmental genome rearrangements and necessary for scnRNA production.

  1. Sequence-specific inhibition of duck hepatitis B virus reverse transcription by peptide nucleic acids (PNA)

    DEFF Research Database (Denmark)

    Robaczewska, Magdalena; Narayan, Ramamurthy; Seigneres, Beatrice

    2005-01-01

    BACKGROUND/AIMS: Peptide nucleic acids (PNAs) appear as promising new antisense agents, that have not yet been examined as hepatitis B virus (HBV) inhibitors. Our aim was to study the ability of PNAs targeting the duck HBV (DHBV) encapsidation signal epsilon to inhibit reverse transcription (RT...

  2. Unmasking risk loci: DNA methylation illuminates the biology of cancer predisposition: analyzing DNA methylation of transcriptional enhancers reveals missed regulatory links between cancer risk loci and genes.

    Science.gov (United States)

    Aran, Dvir; Hellman, Asaf

    2014-02-01

    Paradoxically, DNA sequence polymorphisms in cancer risk loci rarely correlate with the expression of cancer genes. Therefore, the molecular mechanism underlying an individual's susceptibility to cancer has remained largely unknown. However, recent evaluations of the correlations between DNA methylation and gene expression levels across healthy and cancerous genomes have revealed enrichment of disease-related DNA methylation variations within disease-associated risk loci. Moreover, it appears that transcriptional enhancers embedded in cancer risk loci often contain DNA methylation sites that closely define the expression of prominent cancer genes, despite the lack of significant correlations between gene expression levels and the surrounding disease-associated polymorphic sequences. We suggest that DNA methylation variations may obscure the effect of co-residing risk sequence alleles. Analysis of enhancer methylation data may help to reveal the regulatory circuits underlying predisposition to cancers and other common diseases.

  3. A Hypoxia-Regulated Adeno-Associated Virus Vector for Cancer-Specific Gene Therapy

    Directory of Open Access Journals (Sweden)

    Hangjun Ruan

    2001-01-01

    Full Text Available The presence of hypoxic cells in human brain tumors is an important factor leading to resistance to radiation therapy. However, this physiological difference between normal tissues and tumors also provides the potential for designing cancer-specific gene therapy. We compared the increase of gene expression under anoxia (<0.01% oxygen produced by 3, 6, and 9 copies of hypoxia-responsive elements (HRE from the erythropoietin gene (Epo, which are activated through the transcriptional complex hypoxia-inducible factor 1 (HIF-1. Under anoxic conditions, nine copies of HIRE (9XHRE yielded 27- to 37-fold of increased gene expression in U-251 MG and U-87 MG human brain tumor cell lines. Under the less hypoxic conditions of 0.3% and 1% oxygen, gene activation by 9XHRE increased expression 11- to 18-fold in these cell lines. To generate a recombinant adeno-associated virus (rAAV in which the transgene can be regulated by hypoxia, we inserted the DNA fragment containing 9XHRE and the LacZ reporter gene into an AAV vector. Under anoxic conditions, this vector produced 79- to 110-fold increase in gene expression. We believe this hypoxia-regulated rAAV vector will provide a useful delivery vehicle for cancer-specific gene therapy.

  4. Nuclear reprogramming of luminal-like breast cancer cells generates Sox2-overexpressing cancer stem-like cellular states harboring transcriptional activation of the mTOR pathway

    Science.gov (United States)

    Corominas-Faja, Bruna; Cufí, Sílvia; Oliveras-Ferraros, Cristina; Cuyàs, Elisabet; López-Bonet, Eugeni; Lupu, Ruth; Alarcón, Tomás; Vellon, Luciano; Iglesias, Juan Manuel; Leis, Olatz; Martín, Ángel G; Vazquez-Martin, Alejandro; Menendez, Javier A

    2013-01-01

    Energy metabolism plasticity enables stemness programs during the reprogramming of somatic cells to an induced pluripotent stem cell (iPSC) state. This relationship may introduce a new era in the understanding of Warburg’s theory on the metabolic origin of cancer at the level of cancer stem cells (CSCs). Here, we used Yamanaka’s stem cell technology in an attempt to create stable CSC research lines in which to dissect the transcriptional control of mTOR—the master switch of cellular catabolism and anabolism—in CSC-like states. The rare colonies with iPSC-like morphology, obtained following the viral transduction of the Oct4, Sox2, Klf4, and c-Myc (OSKM) stemness factors into MCF-7 luminal-like breast cancer cells (MCF-7/Rep), demonstrated an intermediate state between cancer cells and bona fide iPSCs. MCF-7/Rep cells notably overexpressed SOX2 and stage-specific embryonic antigen (SSEA)-4 proteins; however, other stemness-related markers (OCT4, NANOG, SSEA-1, TRA-1–60, and TRA-1–81) were found at low to moderate levels. The transcriptional analyses of OSKM factors confirmed the strong but unique reactivation of the endogenous Sox2 stemness gene accompanied by the silencing of the exogenous Sox2 transgene in MCF-7/Rep cells. Some but not all MCF-7/Rep cells acquired strong alkaline phosphatase (AP) activity compared with MCF-7 parental cells. SOX2-overexpressing MCF-7/Rep cells contained drastically higher percentages of CD44+ and ALDEFLUOR-stained ALDHbright cells than MCF-7 parental cells. The overlap between differentially expressed mTOR signaling-related genes in 3 different SOX2-overexpressing CSC-like cell lines revealed a notable downregulation of 3 genes, PRKAA1 (which codes for the catalytic α 1 subunit of AMPK), DDIT4/REDD1 (a stress response gene that operates as a negative regulator of mTOR), and DEPTOR (a naturally occurring endogenous inhibitor of mTOR activity). The insulin-receptor gene (INSR) was differentially upregulated in MCF-7/Rep

  5. Transcriptional profile of fibroblasts obtained from the primary site, lymph node and bone marrow of breast cancer patients

    OpenAIRE

    2014-01-01

    Cancer-associated fibroblasts (CAF) influence tumor development at primary as well as in metastatic sites, but there have been no direct comparisons of the transcriptional profiles of stromal cells from different tumor sites. In this study, we used customized cDNA microarrays to compare the gene expression profile of stromal cells from primary tumor (CAF, n = 4), lymph node metastasis (N+, n = 3) and bone marrow (BM, n = 4) obtained from breast cancer patients. Biological validation was done ...

  6. Delineating transcriptional networks of prognostic gene signatures refines treatment recommendations for lymph node-negative breast cancer patients.

    Science.gov (United States)

    Lanigan, Fiona; Brien, Gerard L; Fan, Yue; Madden, Stephen F; Jerman, Emilia; Maratha, Ashwini; Aloraifi, Fatima; Hokamp, Karsten; Dunne, Eiseart J; Lohan, Amanda J; Flanagan, Louise; Garbe, James C; Stampfer, Martha R; Fridberg, Marie; Jirstrom, Karin; Quinn, Cecily M; Loftus, Brendan; Gallagher, William M; Geraghty, James; Bracken, Adrian P

    2015-09-01

    The majority of women diagnosed with lymph node-negative breast cancer are unnecessarily treated with damaging chemotherapeutics after surgical resection. This highlights the importance of understanding and more accurately predicting patient prognosis. In the present study, we define the transcriptional networks regulating well-established prognostic gene expression signatures. We find that the same set of transcriptional regulators consistently lie upstream of both 'prognosis' and 'proliferation' gene signatures, suggesting that a central transcriptional network underpins a shared phenotype within these signatures. Strikingly, the master transcriptional regulators within this network predict recurrence risk for lymph node-negative breast cancer better than currently used multigene prognostic assays, particularly in estrogen receptor-positive patients. Simultaneous examination of p16(INK4A) expression, which predicts tumours that have bypassed cellular senescence, revealed that intermediate levels of p16(INK4A) correlate with an intact pRB pathway and improved survival. A combination of these master transcriptional regulators and p16(INK4A), termed the OncoMasTR score, stratifies tumours based on their proliferative and senescence capacity, facilitating a clearer delineation of lymph node-negative breast cancer patients at high risk of recurrence, and thus requiring chemotherapy. Furthermore, OncoMasTR accurately classifies over 60% of patients as 'low risk', an improvement on existing prognostic assays, which has the potential to reduce overtreatment in early-stage patients. Taken together, the present study provides new insights into the transcriptional regulation of cellular proliferation in breast cancer and provides an opportunity to enhance and streamline methods of predicting breast cancer prognosis.

  7. LRH-1 and PTF1-L coregulate an exocrine pancreas-specific transcriptional network for digestive function.

    Science.gov (United States)

    Holmstrom, Sam R; Deering, Tye; Swift, Galvin H; Poelwijk, Frank J; Mangelsdorf, David J; Kliewer, Steven A; MacDonald, Raymond J

    2011-08-15

    We have determined the cistrome and transcriptome for the nuclear receptor liver receptor homolog-1 (LRH-1) in exocrine pancreas. Chromatin immunoprecipitation (ChIP)-seq and RNA-seq analyses reveal that LRH-1 directly induces expression of genes encoding digestive enzymes and secretory and mitochondrial proteins. LRH-1 cooperates with the pancreas transcription factor 1-L complex (PTF1-L) in regulating exocrine pancreas-specific gene expression. Elimination of LRH-1 in adult mice reduced the concentration of several lipases and proteases in pancreatic fluid and impaired pancreatic fluid secretion in response to cholecystokinin. Thus, LRH-1 is a key regulator of the exocrine pancreas-specific transcriptional network required for the production and secretion of pancreatic fluid.

  8. Chromatin programming by developmentally regulated transcription factors: lessons from the study of haematopoietic stem cell specification and differentiation.

    Science.gov (United States)

    Obier, Nadine; Bonifer, Constanze

    2016-11-01

    Although the body plan of individuals is encoded in their genomes, each cell type expresses a different gene expression programme and therefore has access to only a subset of this information. Alterations to gene expression programmes are the underlying basis for the differentiation of multiple cell types and are driven by tissue-specific transcription factors (TFs) that interact with the epigenetic regulatory machinery to programme the chromatin landscape into transcriptionally active and inactive states. The haematopoietic system has long served as a paradigm for studying the molecular principles that regulate gene expression in development. In this review article, we summarize the current knowledge on the mechanism of action of TFs regulating haematopoietic stem cell specification and differentiation, and place this information into the context of general principles governing development.

  9. Epithelial Expression of Human ABO Blood Group Genes Is Dependent upon a Downstream Regulatory Element Functioning through an Epithelial Cell-specific Transcription Factor, Elf5.

    Science.gov (United States)

    Sano, Rie; Nakajima, Tamiko; Takahashi, Yoichiro; Kubo, Rieko; Kobayashi, Momoko; Takahashi, Keiko; Takeshita, Haruo; Ogasawara, Kenichi; Kominato, Yoshihiko

    2016-10-21

    The human ABO blood group system is of great importance in blood transfusion and organ transplantation. The ABO system is composed of complex carbohydrate structures that are biosynthesized by A- and B-transferases encoded by the ABO gene. However, the mechanisms regulating ABO gene expression in epithelial cells remain obscure. On the basis of DNase I-hypersensitive sites in and around ABO in epithelial cells, we prepared reporter plasmid constructs including these sites. Subsequent luciferase assays and histone modifications indicated a novel positive regulatory element, designated the +22.6-kb site, downstream from ABO, and this was shown to enhance ABO promoter activity in an epithelial cell-specific manner. Expression of ABO and B-antigen was reduced in gastric cancer KATOIII cells by biallelic deletion of the +22.6-kb site using the CRISPR/Cas9 system. Electrophoretic mobility shift assay and chromatin immunoprecipitation assay demonstrated that the site bound to an epithelial cell-specific transcription factor, Elf5. Mutation of the Ets binding motifs to abrogate binding of this factor reduced the regulatory activity of the +22.6-kb site. Furthermore, ELF5 knockdown with shRNA reduced both endogenous transcription from ABO and B-antigen expression in KATOIII cells. Thus, Elf5 appeared to be involved in the enhancer potential of the +22.6-kb site. These results support the contention that ABO expression is dependent upon a downstream positive regulatory element functioning through a tissue-restricted transcription factor, Elf5, in epithelial cells.

  10. Alkaline-stress response in Glycine soja leaf identifies specific transcription factors and ABA-mediated signaling factors.

    Science.gov (United States)

    Ge, Ying; Li, Yong; Lv, De-Kang; Bai, Xi; Ji, Wei; Cai, Hua; Wang, Ao-Xue; Zhu, Yan-Ming

    2011-06-01

    Transcriptome of Glycine soja leaf tissue during a detailed time course formed a foundation for examining transcriptional processes during NaHCO(3) stress treatment. Of a total of 2,310 detected differentially expressed genes, 1,664 genes were upregulated and 1,704 genes were downregulated at various time points. The number of stress-regulated genes increased dramatically after a 6-h stress treatment. GO category gene enrichment analysis revealed that most of the differentially expressed genes were involved in cell structure, protein synthesis, energy, and secondary metabolism. Another enrichment test revealed that the response of G. soja to NaHCO(3) highlights specific transcription factors, such as the C2C2-CO-like, MYB-related, WRKY, GARP-G2-like, and ZIM families. Co-expressed genes were clustered into ten classes (P < 0.001). Intriguingly, one cluster of 188 genes displayed a unique expression pattern that increases at an early stage (0.5 and 3 h), followed by a decrease from 6 to 12 h. This group was enriched in regulation of transcription components, including AP2-EREBP, bHLH, MYB/MYB-related, C2C2-CO-like, C2C2-DOF, C2C2, C3H, and GARP-G2-like transcription factors. Analysis of the 1-kb upstream regions of transcripts displaying similar changes in abundance identified 19 conserved motifs, potential binding sites for transcription factors. The appearance of ABA-responsive elements in the upstream of co-expression genes reveals that ABA-mediated signaling participates in the signal transduction in alkaline response.

  11. Correlating transcriptional networks with pathological complete response following neoadjuvant chemotherapy for breast cancer.

    Science.gov (United States)

    Liu, Rong; Lv, Qiao-Li; Yu, Jing; Hu, Lei; Zhang, Li-Hua; Cheng, Yu; Zhou, Hong-Hao

    2015-06-01

    We aimed to investigate the association between gene co-expression modules and responses to neoadjuvant chemotherapy in breast cancer by using a systematic biological approach. The gene expression profiles and clinico-pathological data of 508 (discovery set) and 740 (validation set) patients with breast cancer who received neoadjuvant chemotherapy were analyzed. Weighted gene co-expression network analysis was performed and identified seven co-regulated gene modules. Each module and gene signature were evaluated with logistic regression models for pathological complete response (pCR). The association between modules and pCR in each intrinsic molecular subtype was also investigated. Two transcriptional modules were correlated with tumor grade, estrogen receptor status, progesterone receptor status, and chemotherapy response in breast cancer. One module that constitutes upregulated cell proliferation genes was associated with a high probability for pCR in the whole (odds ratio (OR) = 5.20 and 3.45 in the discovery and validation datasets, respectively), luminal B, and basal-like subtypes. The prognostic potentials of novel genes, such as MELK, and pCR-related genes, such as ESR1 and TOP2A, were identified. The upregulation of another gene co-expression module was associated with weak chemotherapy responses (OR = 0.19 and 0.33 in the discovery and validation datasets, respectively). The novel gene CA12 was identified as a potential prognostic indicator in this module. A systems biology network-based approach may facilitate the discovery of biomarkers for predicting chemotherapy responses in breast cancer and contribute in developing personalized medicines.

  12. Correlating transcriptional networks to breast cancer survival: a large-scale coexpression analysis.

    Science.gov (United States)

    Clarke, Colin; Madden, Stephen F; Doolan, Padraig; Aherne, Sinead T; Joyce, Helena; O'Driscoll, Lorraine; Gallagher, William M; Hennessy, Bryan T; Moriarty, Michael; Crown, John; Kennedy, Susan; Clynes, Martin

    2013-10-01

    Weighted gene coexpression network analysis (WGCNA) is a powerful 'guilt-by-association'-based method to extract coexpressed groups of genes from large heterogeneous messenger RNA expression data sets. We have utilized WGCNA to identify 11 coregulated gene clusters across 2342 breast cancer samples from 13 microarray-based gene expression studies. A number of these transcriptional modules were found to be correlated to clinicopathological variables (e.g. tumor grade), survival endpoints for breast cancer as a whole (disease-free survival, distant disease-free survival and overall survival) and also its molecular subtypes (luminal A, luminal B, HER2+ and basal-like). Examples of findings arising from this work include the identification of a cluster of proliferation-related genes that when upregulated correlated to increased tumor grade and were associated with poor survival in general. The prognostic potential of novel genes, for example, ubiquitin-conjugating enzyme E2S (UBE2S) within this group was confirmed in an independent data set. In addition, gene clusters were also associated with survival for breast cancer molecular subtypes including a cluster of genes that was found to correlate with prognosis exclusively for basal-like breast cancer. The upregulation of several single genes within this coexpression cluster, for example, the potassium channel, subfamily K, member 5 (KCNK5) was associated with poor outcome for the basal-like molecular subtype. We have developed an online database to allow user-friendly access to the coexpression patterns and the survival analysis outputs uncovered in this study (available at http://glados.ucd.ie/Coexpression/).

  13. MONKEY: Identifying conserved transcription-factor binding sitesin multiple alignments using a binding site-specific evolutionarymodel

    Energy Technology Data Exchange (ETDEWEB)

    Moses, Alan M.; Chiang, Derek Y.; Pollard, Daniel A.; Iyer, VenkyN.; Eisen, Michael B.

    2004-10-28

    We introduce a method (MONKEY) to identify conserved transcription-factor binding sites in multispecies alignments. MONKEY employs probabilistic models of factor specificity and binding site evolution, on which basis we compute the likelihood that putative sites are conserved and assign statistical significance to each hit. Using genomes from the genus Saccharomyces, we illustrate how the significance of real sites increases with evolutionary distance and explore the relationship between conservation and function.

  14. PEA3 activates VEGF transcription in T47D and SKBR3 breast cancer cells

    Institute of Scientific and Technical Information of China (English)

    Dong Hua; Bobin Chen; Mei Bai; Hao Yu; Xiaohong Wu; Wei Jin

    2009-01-01

    Vascular endothelial growth factor(VEGF)is a potent stimulator of angiogenesis and a prognostic factor for many tumors,including those of endocrine-responsive tissues such as the breast and uterus.In this study,we found that overexpression of PEA3 could increase VEGF mRNA levels and VEGF promoter activity in human T47D and SKBR3 breast cancer cells.Chromatin immunoprecipitation assay demonstrated that PEA3 could bind to the VEGF promoter in the cells transfected with PEA3 expression vector.PEA3 small interfering RNA attenuated VEGF promoter activity and the binding of PEA3 to the VEGF promoter in T47D and SKBR3 cells.These results indicated that PEA3 could activate VEGF promoter transcription.

  15. Exon-level transcriptome profiling in murine breast cancer reveals splicing changes specific to tumors with different metastatic abilities.

    Directory of Open Access Journals (Sweden)

    Amandine Bemmo

    Full Text Available BACKGROUND: Breast cancer is the second most frequent type of cancer affecting women. We are increasingly aware that changes in mRNA splicing are associated with various characteristics of cancer. The most deadly aspect of cancer is metastasis, the process by which cancer spreads from the primary tumor to distant organs. However, little is known specifically about the involvement of alternative splicing in the formation of macroscopic metastases. Our study investigates transcript isoform changes that characterize tumors of different abilities to form growing metastases. METHODS AND FINDINGS: To identify alternative splicing events (ASEs that are associated with the fully metastatic phenotype in breast cancer, we used Affymetrix Exon Microarrays to profile mRNA isoform variations genome-wide in weakly metastatic (168FARN and 4T07 and highly metastatic (4T1 mammary carcinomas. Statistical analysis identified significant expression changes in 7606 out of 155,994 (4% exons and in 1725 out of 189,460 (1% intronic regions, which affect 2623 out of 16,654 (16% genes. These changes correspond to putative alternative isoforms-several of which are novel-that are differentially expressed between tumors of varying metastatic phenotypes. Gene pathway analysis showed that 1224 of genes expressing alternative isoforms were involved in cell growth, cell interactions, cell proliferation, cell migration and cell death and have been previously linked to cancers and genetic disorders. We chose ten predicted splice variants for RT-PCR validation, eight of which were successfully confirmed (MED24, MFI2, SRRT, CD44, CLK1 and HNRNPH1. These include three novel intron retentions in CD44, a gene in which isoform variations have been previously associated with the metastasis of several cancers. CONCLUSION: Our findings reveal that various genes are differently spliced and/or expressed in association with the metastatic phenotype of tumor cells. Identification of

  16. Construction of pancreatic cancer double-factor regulatory network based on chip data on the transcriptional level.

    Science.gov (United States)

    Zhao, Li-Li; Zhang, Tong; Liu, Bing-Rong; Liu, Tie-Fu; Tao, Na; Zhuang, Li-Wei

    2014-05-01

    Transcription factor (TF) and microRNA (miRNA) have been discovered playing crucial roles in cancer development. However, the effect of TFs and miRNAs in pancreatic cancer pathogenesis remains vague. We attempted to reveal the possible mechanism of pancreatic cancer based on transcription level. Using GSE16515 datasets downloaded from gene expression omnibus database, we first identified the differentially expressed genes (DEGs) in pancreatic cancer by the limma package in R. Then the DEGs were mapped into DAVID to conduct the kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis. TFs and miRNAs that DEGs significantly enriched were identified by Fisher's test, and then the pancreatic cancer double-factor regulatory network was constructed. In our study, total 1117 DEGs were identified and they significantly enriched in 4 KEGG pathways. A double-factor regulatory network was established, including 29 DEGs, 24 TFs, 25 miRNAs. In the network, LAMC2, BRIP1 and miR155 were identified which may be involved in pancreatic cancer development. In conclusion, the double-factor regulatory network was found to play an important role in pancreatic cancer progression and our results shed new light on the molecular mechanism of pancreatic cancer.

  17. Voltage-gated Na+ Channel Activity Increases Colon Cancer Transcriptional Activity and Invasion Via Persistent MAPK Signaling

    Science.gov (United States)

    House, Carrie D.; Wang, Bi-Dar; Ceniccola, Kristin; Williams, Russell; Simaan, May; Olender, Jacqueline; Patel, Vyomesh; Baptista-Hon, Daniel T.; Annunziata, Christina M.; Silvio Gutkind, J.; Hales, Tim G.; Lee, Norman H.

    2015-06-01

    Functional expression of voltage-gated Na+ channels (VGSCs) has been demonstrated in multiple cancer cell types where channel activity induces invasive activity. The signaling mechanisms by which VGSCs promote oncogenesis remain poorly understood. We explored the signal transduction process critical to VGSC-mediated invasion on the basis of reports linking channel activity to gene expression changes in excitable cells. Coincidentally, many genes transcriptionally regulated by the SCN5A isoform in colon cancer have an over-representation of cis-acting sites for transcription factors phosphorylated by ERK1/2 MAPK. We hypothesized that VGSC activity promotes MAPK activation to induce transcriptional changes in invasion-related genes. Using pharmacological inhibitors/activators and siRNA-mediated gene knockdowns, we correlated channel activity with Rap1-dependent persistent MAPK activation in the SW620 human colon cancer cell line. We further demonstrated that VGSC activity induces downstream changes in invasion-related gene expression via a PKA/ERK/c-JUN/ELK-1/ETS-1 transcriptional pathway. This is the first study illustrating a molecular mechanism linking functional activity of VGSCs to transcriptional activation of invasion-related genes.

  18. Fungal-specific transcription factor AbPf2 activates pathogenicity in Alternaria brassicicola

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yangrae; Ohm, Robin A.; Grigoriev, Igor V.; Srivastava, Akhil

    2012-12-03

    Alternaria brassicicola is a successful saprophyte and necrotrophic plant pathogen. To identify molecular determinants of pathogenicity, we created non-pathogenic mutants of a transcription factor-encoding gene, AbPf2. The frequency and timing of germination and appressorium formation on host plants were similar between the non-pathogenic abpf2 mutants and wild-type A. brassicicola. The mutants were also similar in vitro to wild-type A. brassicicola in terms of vegetative growth, conidium production, and responses to a phytoalexin, reactive oxygen species and osmolites. The hyphae of the mutants grew slowly but did not cause disease symptoms on the surface of host plants. Transcripts of the AbPf2 gene increased exponentially soon after wild-type conidia contacted their host plants . A small amount of AbPf2 protein, as monitored using GFP fusions, was present in young, mature conidia. The protein level decreased during saprophytic growth, but increased and was located primarily in fungal nuclei during pathogenesis. Levels of the proteins and transcripts sharply decreased following colonization of host tissues beyond the initial infection site. When expression of the transcription factor was induced in the wild-type during early pathogenesis, 106 fungal genes were also induced in the wild-type but not in the abpf2 mutants. Notably, 33 of the 106 genes encoded secreted proteins, including eight putative effector proteins. Plants inoculated with abpf2 mutants expressed higher levels of genes associated with photosynthesis, the pentose phosphate pathway and primary metabolism, but lower levels of defense-related genes. Our results suggest that AbPf2 is an important regulator of pathogenesis, but does not affect other cellular processes in A. brassicicola.

  19. Pharmacological levels of Withaferin A (Withania somnifera trigger clinically relevant anticancer effects specific to triple negative breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Katarzyna Szarc vel Szic

    Full Text Available Withaferin A (WA isolated from Withania somnifera (Ashwagandha has recently become an attractive phytochemical under investigation in various preclinical studies for treatment of different cancer types. In the present study, a comparative pathway-based transcriptome analysis was applied in epithelial-like MCF-7 and triple negative mesenchymal MDA-MB-231 breast cancer cells exposed to different concentrations of WA which can be detected systemically in in vivo experiments. Whereas WA treatment demonstrated attenuation of multiple cancer hallmarks, the withanolide analogue Withanone (WN did not exert any of the described effects at comparable concentrations. Pathway enrichment analysis revealed that WA targets specific cancer processes related to cell death, cell cycle and proliferation, which could be functionally validated by flow cytometry and real-time cell proliferation assays. WA also strongly decreased MDA-MB-231 invasion as determined by single-cell collagen invasion assay. This was further supported by decreased gene expression of extracellular matrix-degrading proteases (uPA, PLAT, ADAM8, cell adhesion molecules (integrins, laminins, pro-inflammatory mediators of the metastasis-promoting tumor microenvironment (TNFSF12, IL6, ANGPTL2, CSF1R and concomitant increased expression of the validated breast cancer metastasis suppressor gene (BRMS1. In line with the transcriptional changes, nanomolar concentrations of WA significantly decreased protein levels and corresponding activity of uPA in MDA-MB-231 cell supernatant, further supporting its anti-metastatic properties. Finally, hierarchical clustering analysis of 84 chromatin writer-reader-eraser enzymes revealed that WA treatment of invasive mesenchymal MDA-MB-231 cells reprogrammed their transcription levels more similarly towards the pattern observed in non-invasive MCF-7 cells. In conclusion, taking into account that sub-cytotoxic concentrations of WA target multiple metastatic effectors

  20. Organ-specific phosphorus-allocation patterns and transcript profiles linked to phosphorus efficiency in two contrasting wheat genotypes.

    Science.gov (United States)

    Aziz, Tariq; Finnegan, Patrick M; Lambers, Hans; Jost, Ricarda

    2014-04-01

    Recent studies have identified genotypic variation in phosphorus (P) efficiency, but rarely have the underlying mechanisms been described at the molecular level. We demonstrate that the highly P-efficient wheat (Triticum aestivum L.) cultivar Chinese 80-55 maintains higher inorganic phosphate (Pi ) concentrations in all organs upon Pi withdrawal in combination with higher Pi acquisition in the presence of Pi when compared with the less-efficient cultivar Machete. These findings correlated with differential organ-specific expression of Pi transporters TaPHT1;2, TaPHT1;5, TaPHT1;8, TaPHT2;1 and H(+) -ATPase TaHa1. Observed transcript level differences between the cultivars suggest that higher de novo phospholipid biosynthetic activities in Pi -limited elongating basal leaf sections are another crucial adaptation in Chinese 80-55 for sustaining growth upon Pi withdrawal. These activities may be supported through enhanced breakdown of starch in Chinese 80-55 stems as suggested by higher TaGPho1 transcript levels. Chinese 80-55 fine roots on the other hand show strong suppression of transcripts involved in glycolysis, transcriptional regulation and ribosomal activities. Our work reveals major differences in the way the two contrasting cultivars allocate Pi and organic P compounds between source and sink tissues and in the acclimation of their metabolism to changes in Pi availability.

  1. The WEREWOLF MYB protein directly regulates CAPRICE transcription during cell fate specification in the Arabidopsis root epidermis.

    Science.gov (United States)

    Ryu, Kook Hui; Kang, Yeon Hee; Park, Young-hwan; Hwang, Ildoo; Schiefelbein, John; Lee, Myeong Min

    2005-11-01

    The Arabidopsis root epidermis is composed of two types of cells, hair cells and non-hair cells, and their fate is determined in a position-dependent manner. WEREWOLF (WER), a R2R3 MYB protein, has been shown genetically to function as a master regulator to control both of the epidermal cell fates. To directly test the proposed role of WER in this system, we examined its subcellular localization and defined its transcriptional activation properties. We show that a WER-GFP fusion protein is functional and accumulates in the nucleus of the N-position cells in the Arabidopsis root epidermis, as expected for a transcriptional regulator. We also find that a modified WER protein with a strong activation domain (WER-VP16) promotes the formation of both epidermal cell types, supporting the view that WER specifies both cell fates. In addition, we used the glucocorticoid receptor (GR) inducible system to show that CPC transcription is regulated directly by WER. Using EMSA, we found two WER-binding sites (WBSs; WBSI and WBSII) in the CPC promoter. WER-WBSI binding was confirmed in vivo using the yeast one-hybrid assay. Binding between the WER protein and both WBSs (WBSI and WBSII), and the importance of the two WBSs in CPC promoter activity were confirmed in Arabidopsis. These results provide experimental support for the proposed role of WER as an activator of gene transcription during the specification of both epidermal cell fates.

  2. Systems Pharmacogenomics Finds RUNX1 Is an Aspirin-Responsive Transcription Factor Linked to Cardiovascular Disease and Colon Cancer.

    Science.gov (United States)

    Voora, Deepak; Rao, A Koneti; Jalagadugula, Gauthami S; Myers, Rachel; Harris, Emily; Ortel, Thomas L; Ginsburg, Geoffrey S

    2016-09-01

    Aspirin prevents cardiovascular disease and colon cancer; however aspirin's inhibition of platelet COX-1 only partially explains its diverse effects. We previously identified an aspirin response signature (ARS) in blood consisting of 62 co-expressed transcripts that correlated with aspirin's effects on platelets and myocardial infarction (MI). Here we report that 60% of ARS transcripts are regulated by RUNX1 - a hematopoietic transcription factor - and 48% of ARS gene promoters contain a RUNX1 binding site. Megakaryocytic cells exposed to aspirin and its metabolite (salicylic acid, a weak COX-1 inhibitor) showed up regulation in the RUNX1 P1 isoform and MYL9, which is transcriptionally regulated by RUNX1. In human subjects, RUNX1 P1 expression in blood and RUNX1-regulated platelet proteins, including MYL9, were aspirin-responsive and associated with platelet function. In cardiovascular disease patients RUNX1 P1 expression was associated with death or MI. RUNX1 acts as a tumor suppressor gene in gastrointestinal malignancies. We show that RUNX1 P1 expression is associated with colon cancer free survival suggesting a role for RUNX1 in aspirin's protective effect in colon cancer. Our studies reveal an effect of aspirin on RUNX1 and gene expression that may additionally explain aspirin's effects in cardiovascular disease and cancer.

  3. Systems Pharmacogenomics Finds RUNX1 Is an Aspirin-Responsive Transcription Factor Linked to Cardiovascular Disease and Colon Cancer

    Directory of Open Access Journals (Sweden)

    Deepak Voora, MD

    2016-09-01

    Full Text Available Aspirin prevents cardiovascular disease and colon cancer; however aspirin's inhibition of platelet COX-1 only partially explains its diverse effects. We previously identified an aspirin response signature (ARS in blood consisting of 62 co-expressed transcripts that correlated with aspirin's effects on platelets and myocardial infarction (MI. Here we report that 60% of ARS transcripts are regulated by RUNX1 – a hematopoietic transcription factor - and 48% of ARS gene promoters contain a RUNX1 binding site. Megakaryocytic cells exposed to aspirin and its metabolite (salicylic acid, a weak COX-1 inhibitor showed up regulation in the RUNX1 P1 isoform and MYL9, which is transcriptionally regulated by RUNX1. In human subjects, RUNX1 P1 expression in blood and RUNX1-regulated platelet proteins, including MYL9, were aspirin-responsive and associated with platelet function. In cardiovascular disease patients RUNX1 P1 expression was associated with death or MI. RUNX1 acts as a tumor suppressor gene in gastrointestinal malignancies. We show that RUNX1 P1 expression is associated with colon cancer free survival suggesting a role for RUNX1 in aspirin's protective effect in colon cancer. Our studies reveal an effect of aspirin on RUNX1 and gene expression that may additionally explain aspirin's effects in cardiovascular disease and cancer.

  4. APE1/Ref-1 regulates STAT3 transcriptional activity and APE1/Ref-1-STAT3 dual-targeting effectively inhibits pancreatic cancer cell survival.

    Science.gov (United States)

    Cardoso, Angelo A; Jiang, Yanlin; Luo, Meihua; Reed, April M; Shahda, Safi; He, Ying; Maitra, Anirban; Kelley, Mark R; Fishel, Melissa L

    2012-01-01

    Pancreatic cancer is a largely incurable disease, and increasing evidence supports strategies targeting multiple molecular mediators of critical functions of pancreatic ductal adenocarcinoma cells. Intracellular redox state modulates the activity of various signal transduction pathways and biological processes, including cell survival, drug resistance and responsiveness to microenvironmental factors. Recently, it has been shown that the transcription factor STAT3 is under redox control, but the mechanisms involved in its regulation are unknown. Here, we demonstrate for the first time that STAT3 DNA binding and transcriptional activity is directly regulated by the redox function of the APE1/Ref-1 endonuclease, using overexpression and redox-specific mutational strategies, and gene knockdown. Also, pharmacological blockade of APE1/Ref-1 by the redox-selective inhibitor E3330 abrogates STAT3 DNA binding. Since APE1/Ref-1 also exerts redox control on other cancer-associated transcription factors, we assessed the impact of dual-targeting of STAT3 signaling and APE1/Ref-1 redox on pancreatic cancer cell functions. We observed that disruption of APE1/Ref-1 redox activity synergizes with STAT3 blockade to potently inhibit the proliferation and viability of human PDAC cells. Mechanistically, we show that STAT3-APE1/Ref-1 dual targeting promotes marked tumor cell apoptosis, with engagement of caspase-3 signaling, which are significantly increased in comparison to the effects triggered by single target blockade. Also, we show that STAT3-APE1/Ref-1 dual blockade results in significant inhibition of tumor cell migration. Overall, this work demonstrates that the transcriptional activity of STAT3 is directly regulated by the redox function of APE1/Ref-1, and that concurrent blockade of STAT3 and APE1/Ref-1 redox synergize effectively inhibit critical PDAC cell functions.

  5. The Transcription Factor GATA-6 is Overexpressed in Vivo and Contributes to Silencing 15-LOX-1 in Vitro in Human Colon Cancer

    OpenAIRE

    Shureiqi, Imad; Zuo, Xiangsheng; Broaddus, Russell; Wu, Yuanqing; Guan, Baoxiang; Morris, Jeffrey S.; Lippman, Scott M.

    2006-01-01

    Transcriptional suppression of 15-lipoxygenase-1 (15-LOX-1) helps enable human colorectal cancer cells escape apoptosis, a critical mechanism for colonic tumorigenesis. GATA-6 is strongly expressed in vitro in cancer cells; its downregulation by pharmaceuticals is associated with reversal of 15-LOX-1 transcriptional suppression. The mechanistic contribution of GATA-6 overexpression to colonic tumorigenesis, especially concerning 15-LOX-1 transcriptional suppression, remains unknown. We tested...

  6. Cancer-specific binary expression system activated in mice by bacteriophage HK022 Integrase

    DEFF Research Database (Denmark)

    Elias, Amer; Spector, Itay; Sogolovsky-Bard, Ilana;

    2016-01-01

    Binary systems based on site-specific recombination have been used for tumor specific transcription targeting of suicide genes in animal models. In these binary systems a site specific recombinase or integrase that is expressed from a tumor specific promoter drives tumor specific expression...

  7. CCAAT/enhancer binding protein β (C/EBPβ isoforms as transcriptional regulators of the pro-invasive CDH3/P-cadherin gene in human breast cancer cells.

    Directory of Open Access Journals (Sweden)

    André Albergaria

    Full Text Available P-cadherin is a cell-cell adhesion molecule codified by the CDH3 gene, which expression is highly associated with undifferentiated cells in normal adult epithelial tissues, as well as with poorly differentiated carcinomas. In breast cancer, P-cadherin is frequently overexpressed in high-grade tumours and is a well-established indicator of aggressive tumour behaviour and poor patient prognosis. However, till now, the mechanisms controlling CDH3 gene activation have been poorly explored. Since we recently described the existence of several CCAAT/Enhancer Binding Protein β (C/EBPβ transcription factor binding sites at the CDH3 promoter, the aim of this study was to assess if the distinct C/EBPβ isoforms were directly involved in the transcriptional activation of the CDH3 gene in breast cancer cells. DNA-protein interactions, mutation analysis and luciferase reporter assay studies have been performed. We demonstrated that C/EBPβ is co-expressed with P-cadherin in breast cancer cells and all the three isoforms function as transcriptional regulators of the CDH3 gene, directly interacting with specific regions of its promoter. Interestingly, this transcriptional activation was only reflected at the P-cadherin protein level concerning the LIP isoform. Taken together, our data show that CDH3 is a newly defined transcriptional target gene of C/EBPβ isoforms in breast cancer, and we also identified the binding sites that are relevant for this activation.

  8. Steric mechanism of auto-inhibitory regulation of specific and non-specific DNA binding by the ETS transcriptional repressor ETV6.

    Science.gov (United States)

    De, Soumya; Chan, Anson C K; Coyne, H Jerome; Bhachech, Niraja; Hermsdorf, Ulrike; Okon, Mark; Murphy, Michael E P; Graves, Barbara J; McIntosh, Lawrence P

    2014-04-03

    DNA binding by the ETS transcriptional repressor ETV6 (or TEL) is auto-inhibited ~50-fold due to an α-helix that sterically blocks its ETS domain binding interface. Using NMR spectroscopy, we demonstrate that this marginally stable helix is unfolded, and not displaced to a non-inhibitory position, when ETV6 is bound to DNA containing a consensus (5')GGAA(3') recognition site. Although significantly lower in affinity, binding to non-specific DNA is auto-inhibited ~5-fold and is also accompanied by helix unfolding. Based on NMR chemical shift perturbations, both specific and non-specific DNA are bound via the same canonical ETS domain interface. However, spectral perturbations are smaller for the non-specific complex, suggesting weaker and less well-defined interactions than in the specific complex. In parallel, the crystal structure of ETV6 bound to a specific DNA duplex was determined. The structure of this complex reveals that a non-conserved histidine residue in the ETS domain recognition helix helps establish the specificity of ETV6 for DNA-binding sites containing (5')GGAA(3')versus(5')GGAT(3'). These studies provide a unified steric mechanism for attenuating ETV6 binding to both specific and non-specific DNA and expand the repertoire of characterized auto-inhibitory strategies utilized to regulate ETS factors.

  9. Characterization of key transcription factors as molecular signatures of HPV-positive and HPV-negative oral cancers.

    Science.gov (United States)

    Verma, Gaurav; Vishnoi, Kanchan; Tyagi, Abhishek; Jadli, Mohit; Singh, Tejveer; Goel, Ankit; Sharma, Ankita; Agarwal, Kiran; Prasad, Subhash Chandra; Pandey, Durgatosh; Sharma, Shashi; Mehrotra, Ravi; Singh, Sukh Mahendra; Bharti, Alok Chandra

    2017-02-03

    Prior studies established constitutively active AP-1, NF-κB, and STAT3 signaling in oral cancer. Differential expression/activation of specific members of these transcription factors has been documented in HPV-positive oral lesions that respond better to therapy. We performed a comprehensive analysis of differentially expressed, transcriptionally active members of these pivotal signaling mediators to develop specific signatures of HPV-positive and HPV-negative oral lesions by immunohistochemical method that is applicable in low-resource settings. We examined a total of 31 prospective and 30 formalin-fixed, paraffin-embedded tissues from treatment-naïve, histopathologically and clinically confirmed cases diagnosed as oral or oropharyngeal squamous cell carcinoma (OSCC/OPSCC). Following determination of their HPV status by GP5 + /GP6 +  PCR, the sequential sections of the tissues were evaluated for expression of JunB, JunD, c-Fos, p50, p65, STAT3, and pSTAT3(Y705), along with two key regulatory proteins pEGFR and p16 by IHC. Independent analysis of JunB and p65 showed direct correlation with HPV positivity, whereas STAT3 and pSTAT3 were inversely correlated. A combined analysis of transcription factors revealed a more restrictive combination, characterized by the presence of AP-1 and NF-κB lacking involvement of STAT3 that strongly correlated with HPV-positive tumors. Presence of STAT3/pSTAT3 with NF-κB irrespective of the presence or absence of AP-1 members was present in HPV-negative lesions. Expression of pSTAT3 strongly correlated with all the AP-1/NF-κB members (except JunD), its upstream activator pEGFR(Y)(1092) , and HPV infection-related negative regulator p16. Overall, we show a simple combination of AP-1, NF-κB, and STAT3 members' expression that may serve as molecular signature of HPV-positive lesions or more broadly the tumors that show better prognosis.

  10. Transcription factors link mouse WAP-T mammary tumors with human breast cancer.

    Science.gov (United States)

    Otto, Benjamin; Streichert, Thomas; Wegwitz, Florian; Gevensleben, Heidrun; Klätschke, Kristin; Wagener, Christoph; Deppert, Wolfgang; Tolstonog, Genrich V

    2013-03-15

    Mouse models are important tools to decipher the molecular mechanisms of mammary carcinogenesis and to mimic the respective human disease. Despite sharing common phenotypic and genetic features, the proper translation of murine models to human breast cancer remains a challenging task. In a previous study we showed that in the SV40 transgenic WAP-T mice an active Met-pathway and epithelial-mesenchymal characteristics distinguish low- and high-grade mammary carcinoma. To assign these murine tumors to corresponding human tumors we here incorporated the analysis of expression of transcription factor (TF) coding genes and show that thereby a more accurate interspecies translation can be achieved. We describe a novel cross-species translation procedure and demonstrate that expression of unsupervised selected TFs, such as ELF5, HOXA5 and TFCP2L1, can clearly distinguish between the human molecular breast cancer subtypes--or as, for example, expression of TFAP2B between yet unclassified subgroups. By integrating different levels of information like histology, gene set enrichment, expression of differentiation markers and TFs we conclude that tumors in WAP-T mice exhibit similarities to both, human basal-like and non-basal-like subtypes. We furthermore suggest that the low- and high-grade WAP-T tumor phenotypes might arise from distinct cells of tumor origin. Our results underscore the importance of TFs as common cross-species denominators in the regulatory networks underlying mammary carcinogenesis.

  11. Conformational Dynamics and the Binding of Specific and Nonspecific DNA by the Autoinhibited Transcription Factor Ets-1.

    Science.gov (United States)

    Desjardins, Geneviève; Okon, Mark; Graves, Barbara J; McIntosh, Lawrence P

    2016-07-26

    The affinity of the Ets-1 transcription factor for DNA is autoinhibited by an intrinsically disordered serine-rich region (SRR) and a helical inhibitory module (IM) appended to its winged helix-turn-helix ETS domain. Using NMR spectroscopy, we investigated how Ets-1 recognizes specific versus nonspecific DNA, with a focus on the roles of protein dynamics and autoinhibition in these processes. Upon binding either DNA, the two marginally stable N-terminal helices of the IM predominantly unfold, but still sample partially ordered conformations. Also, on the basis of amide chemical shift perturbation mapping, Ets-1 associates with both specific and nonspecific DNA through the same canonical ETS domain interface. These interactions are structurally independent of the SRR, and thus autoinhibition does not impart DNA-binding specificity. However, relative to the pronounced NMR spectroscopic changes in Ets-1 resulting from specific DNA binding, the spectra of the nonspecific DNA complexes showed conformational exchange broadening and lacked several diagnostic amide and indole signals attributable to hydrogen bonding interactions seen in reported X-ray crystallographic structures of this transcription factor with its cognate DNA sequences. Such differences are highlighted by the chemical shift and relaxation properties of several interfacial lysine and arginine side chains. Collectively, these data support a general model in which Ets-1 interacts with nonspecific DNA via dynamic electrostatic interactions, whereas hydrogen bonding drives the formation of well-ordered complexes with specific DNA.

  12. Ascl1 as a novel player in the Ptf1a transcriptional network for GABAergic cell specification in the retina.

    Directory of Open Access Journals (Sweden)

    Nicolas Mazurier

    Full Text Available In contrast with the wealth of data involving bHLH and homeodomain transcription factors in retinal cell type determination, the molecular bases underlying neurotransmitter subtype specification is far less understood. Using both gain and loss of function analyses in Xenopus, we investigated the putative implication of the bHLH factor Ascl1 in this process. We found that in addition to its previously characterized proneural function, Ascl1 also contributes to the specification of the GABAergic phenotype. We showed that it is necessary for retinal GABAergic cell genesis and sufficient in overexpression experiments to bias a subset of retinal precursor cells towards a GABAergic fate. We also analysed the relationships between Ascl1 and a set of other bHLH factors using an in vivo ectopic neurogenic assay. We demonstrated that Ascl1 has unique features as a GABAergic inducer and is epistatic over factors endowed with glutamatergic potentialities such as Neurog2, NeuroD1 or Atoh7. This functional specificity is conferred by the basic DNA binding domain of Ascl1 and involves a specific genetic network, distinct from that underlying its previously demonstrated effects on catecholaminergic differentiation. Our data show that GABAergic inducing activity of Ascl1 requires the direct transcriptional regulation of Ptf1a, providing therefore a new piece of the network governing neurotransmitter subtype specification during retinogenesis.

  13. Ascl1 as a novel player in the Ptf1a transcriptional network for GABAergic cell specification in the retina.

    Science.gov (United States)

    Mazurier, Nicolas; Parain, Karine; Parlier, Damien; Pretto, Silvia; Hamdache, Johanna; Vernier, Philippe; Locker, Morgane; Bellefroid, Eric; Perron, Muriel

    2014-01-01

    In contrast with the wealth of data involving bHLH and homeodomain transcription factors in retinal cell type determination, the molecular bases underlying neurotransmitter subtype specification is far less understood. Using both gain and loss of function analyses in Xenopus, we investigated the putative implication of the bHLH factor Ascl1 in this process. We found that in addition to its previously characterized proneural function, Ascl1 also contributes to the specification of the GABAergic phenotype. We showed that it is necessary for retinal GABAergic cell genesis and sufficient in overexpression experiments to bias a subset of retinal precursor cells towards a GABAergic fate. We also analysed the relationships between Ascl1 and a set of other bHLH factors using an in vivo ectopic neurogenic assay. We demonstrated that Ascl1 has unique features as a GABAergic inducer and is epistatic over factors endowed with glutamatergic potentialities such as Neurog2, NeuroD1 or Atoh7. This functional specificity is conferred by the basic DNA binding domain of Ascl1 and involves a specific genetic network, distinct from that underlying its previously demonstrated effects on catecholaminergic differentiation. Our data show that GABAergic inducing activity of Ascl1 requires the direct transcriptional regulation of Ptf1a, providing therefore a new piece of the network governing neurotransmitter subtype specification during retinogenesis.

  14. Mutation of senataxin alters disease-specific transcriptional networks in patients with ataxia with oculomotor apraxia type 2.

    Science.gov (United States)

    Fogel, Brent L; Cho, Ellen; Wahnich, Amanda; Gao, Fuying; Becherel, Olivier J; Wang, Xizhe; Fike, Francesca; Chen, Leslie; Criscuolo, Chiara; De Michele, Giuseppe; Filla, Alessandro; Collins, Abigail; Hahn, Angelika F; Gatti, Richard A; Konopka, Genevieve; Perlman, Susan; Lavin, Martin F; Geschwind, Daniel H; Coppola, Giovanni

    2014-09-15

    Senataxin, encoded by the SETX gene, contributes to multiple aspects of gene expression, including transcription and RNA processing. Mutations in SETX cause the recessive disorder ataxia with oculomotor apraxia type 2 (AOA2) and a dominant juvenile form of amyotrophic lateral sclerosis (ALS4). To assess the functional role of senataxin in disease, we examined differential gene expression in AOA2 patient fibroblasts, identifying a core set of genes showing altered expression by microarray and RNA-sequencing. To determine whether AOA2 and ALS4 mutations differentially affect gene expression, we overexpressed disease-specific SETX mutations in senataxin-haploinsufficient fibroblasts and observed changes in distinct sets of genes. This implicates mutation-specific alterations of senataxin function in disease pathogenesis and provides a novel example of allelic neurogenetic disorders with differing gene expression profiles. Weighted gene co-expression network analysis (WGCNA) demonstrated these senataxin-associated genes to be involved in both mutation-specific and shared functional gene networks. To assess this in vivo, we performed gene expression analysis on peripheral blood from members of 12 different AOA2 families and identified an AOA2-specific transcriptional signature. WGCNA identified two gene modules highly enriched for this transcriptional signature in the peripheral blood of all AOA2 patients studied. These modules were disease-specific and preserved in patient fibroblasts and in the cerebellum of Setx knockout mice demonstrating conservation across species and cell types, including neurons. These results identify novel genes and cellular pathways related to senataxin function in normal and disease states, and implicate alterations in gene expression as underlying the phenotypic differences between AOA2 and ALS4.

  15. Specific binding of benzodiazepines to human breast cancer cell lines.

    Science.gov (United States)

    Beinlich, A; Strohmeier, R; Kaufmann, M; Kuhl, H

    1999-01-01

    Binding of [3H]Ro5-4864, a peripheral benzodiazepine receptor (PBR) agonist, to BT-20 human, estrogen- (ER) and progesterone- (PR) receptor negative breast cancer cells was characterized. It was found to be specific, dose-dependent and saturable with a single population of binding sites. Dissociation constant (K(D)) was 8.5 nM, maximal binding capacity (Bmax) 339 fM/10(6) cells. Ro5-4864 (IC50 17.3 nM) and PK 11195 (IC50 12.3 nM) were able to compete with [3H]Ro5-4864 for binding, indicating specificity of interaction with PBR. Diazepam was able to displace [3H]Ro5-4864 from binding only at high concentrations (>1 microM), while ODN did not compete for PBR binding. Thymidine-uptake assay showed a biphasic response of cell proliferation. While low concentrations (100 nM) of Ro5-4864, PK 11195 and diazepam increased cell growth by 10 to 20%, higher concentrations (10-100 microM) significantly inhibited cell proliferation. PK 11195, a potent PBR ligand, was able to attenuate growth of BT-20 cells stimulated by 100 nM Ro5-4864 and to reverse growth reduction caused by 1 and 10 microM Ro5-4864, but not by 50 microM and 100 microM. This indicates that the antimitotic activity of higher concentrations of Ro5-4864 is independent of PBR binding. It is suggested, that PBR are involved in growth regulation of certain human breast cancer cell lines, possibly by supplying proliferating cells with energy, as their endogenous ligand is a polypeptide transporting Acyl-CoA.

  16. Potential utility of cancer-specific biomarkers for assessing response to hormonal treatments in metastatic prostate cancer

    NARCIS (Netherlands)

    Schalken, J.; Dijkstra, S.; Baskin-Bey, E.; Oort, I. van

    2014-01-01

    Prostate cancer is the second leading cause of cancer death in men and there is an urgent clinical need to improve its detection and treatment. The introduction of prostate-specific antigen (PSA) as a biomarker for prostate cancer several decades ago represented an important step forward in our abil

  17. Expression of a splice variant of the platelet-activating factor receptor transcript 2 in various human cancer cell lines

    Directory of Open Access Journals (Sweden)

    Ibtissam Youlyouz

    2002-01-01

    Full Text Available Platelet-activating factor receptor (PAF-R transcripts were analysed by reverse transcriptase-polymerase chain reaction in five human cancer cell lines derived from the breast (BT20, SKBR3 and T47D cells, the pancreas (Miapaca cells and the bladder (5637 cells in order to confirm the existence of a splice variant of the PAF-R transcript 2. After cloning and sequencing, we confirmed its existence in all cell lines. It consisted of the PAF-R transcript 2 lengthening with 82 nucleotides from the 3' end of exon 1 of the PAF-R gene. The role of this elongated form of the tissue-type PAF-R transcript in cell physiology remains to be elucidated.

  18. VEGF-A isoform-specific regulation of calcium ion flux, transcriptional activation and endothelial cell migration

    Directory of Open Access Journals (Sweden)

    Gareth W. Fearnley

    2015-07-01

    Full Text Available Vascular endothelial growth factor A (VEGF-A regulates many aspects of vascular physiology such as cell migration, proliferation, tubulogenesis and cell-cell interactions. Numerous isoforms of VEGF-A exist but their physiological significance is unclear. Here we evaluated two different VEGF-A isoforms and discovered differential regulation of cytosolic calcium ion flux, transcription factor localisation and endothelial cell response. Analysis of VEGF-A isoform-specific stimulation of VEGFR2-dependent signal transduction revealed differential capabilities for isoform activation of multiple signal transduction pathways. VEGF-A165 treatment promoted increased phospholipase Cγ1 phosphorylation, which was proportional to the subsequent rise in cytosolic calcium ions, in comparison to cells treated with VEGF-A121. A major consequence of this VEGF-A isoform-specific calcium ion flux in endothelial cells is differential dephosphorylation and subsequent nuclear translocation of the transcription factor NFATc2. Using reverse genetics, we discovered that NFATc2 is functionally required for VEGF-A-stimulated endothelial cell migration but not tubulogenesis. This work presents a new mechanism for understanding how VEGF-A isoforms program complex cellular outputs by converting signal transduction pathways into transcription factor redistribution to the nucleus, as well as defining a novel role for NFATc2 in regulating the endothelial cell response.

  19. Elucidation of Xylem-Specific Transcription Factors and Absolute Quantification of Enzymes Regulating Cellulose Biosynthesis in Populus trichocarpa.

    Science.gov (United States)

    Loziuk, Philip L; Parker, Jennifer; Li, Wei; Lin, Chien-Yuan; Wang, Jack P; Li, Quanzi; Sederoff, Ronald R; Chiang, Vincent L; Muddiman, David C

    2015-10-02

    Cellulose, the main chemical polymer of wood, is the most abundant polysaccharide in nature.1 The ability to perturb the abundance and structure of cellulose microfibrils is of critical importance to the pulp and paper industry as well as for the textile, wood products, and liquid biofuels industries. Although much has been learned at the transcript level about the biosynthesis of cellulose, a quantitative understanding at the proteome level has yet to be established. The study described herein sought to identify the proteins directly involved in cellulose biosynthesis during wood formation in Populus trichocarpa along with known xylem-specific transcription factors involved in regulating these key proteins. Development of an effective discovery proteomic strategy through a combination of subcellular fractionation of stem differentiating xylem tissue (SDX) with recently optimized FASP digestion protocols, StageTip fractionation, as well as optimized instrument parameters for global proteomic analysis using the quadrupole-orbitrap mass spectrometer resulted in the deepest proteomic coverage of SDX protein from P. trichocarpa with 9,146 protein groups being identified (1% FDR). Of these, 20 cellulosic/hemicellulosic enzymes and 43 xylem-specific transcription factor groups were identified. Finally, selection of surrogate peptides led to an assay for absolute quantification of 14 cellulosic proteins in SDX of P. trichocarpa.

  20. Comparative genomic organization and tissue-specific transcription of the duplicated fabp7 and fabp10 genes in teleost fishes.

    Science.gov (United States)

    Parmar, Manoj B; Wright, Jonathan M

    2013-11-01

    A whole-genome duplication (WGD) early in the teleost fish lineage makes fish ideal organisms to study the fate of duplicated genes and underlying evolutionary trajectories that have led to the retention of ohnologous gene duplicates in fish genomes. Here, we compare the genomic organization and tissue-specific transcription of the ohnologous fabp7 and fabp10 genes in medaka, three-spined stickleback, and spotted green pufferfish to the well-studied duplicated fabp7 and fabp10 genes of zebrafish. Teleost fabp7 and fabp10 genes contain four exons interrupted by three introns. Polypeptide sequences of Fabp7 and Fabp10 show the highest sequence identity and similarity with their orthologs from vertebrates. Orthology was evident as the ohnologous Fabp7 and Fabp10 polypeptides of teleost fishes each formed distinct clades and clustered together with their orthologs from other vertebrates in a phylogenetic tree. Furthermore, ohnologous teleost fabp7 and fabp10 genes exhibit conserved gene synteny with human FABP7 and chicken FABP10, respectively, which provides compelling evidence that the duplicated fabp7 and fabp10 genes of teleost fishes most likely arose from the well-documented WGD. The tissue-specific distribution of fabp7a, fabp7b, fabp10a, and fabp10b transcripts provides evidence of diverged spatial transcriptional regulation between ohnologous gene duplicates of fabp7 and fabp10 in teleost fishes.

  1. Unique somatic and malignant expression patterns implicate PIWI-interacting RNAs in cancer-type specific biology

    Science.gov (United States)

    Martinez, Victor D.; Vucic, Emily A.; Thu, Kelsie L.; Hubaux, Roland; Enfield, Katey S.S.; Pikor, Larissa A.; Becker-Santos, Daiana D.; Brown, Carolyn J.; Lam, Stephen; Lam, Wan L.

    2015-01-01

    Human PIWI-interacting RNAs (piRNAs) are known to be expressed in germline cells, functionally silencing LINEs and SINEs. Their expression patterns in somatic tissues are largely uncharted. We analyzed 6,260 human piRNA transcriptomes derived from non-malignant and tumour tissues from 11 organs. We discovered that only 273 of the 20,831 known piRNAs are expressed in somatic non-malignant tissues. However, expression patterns of these piRNAs were able to distinguish tissue-of-origin. A total of 522 piRNAs are expressed in corresponding tumour tissues, largely distinguishing tumour from non-malignant tissues in a cancer-type specific manner. Most expressed piRNAs mapped to known transcripts, contrary to “piRNA clusters” reported in germline cells. We showed that piRNA expression can delineate clinical features, such as histological subgroups, disease stages, and survival. PiRNAs common to many cancer types might represent a core gene-set that facilitates cancer growth, while piRNAs unique to individual cancer types likely contribute to cancer-specific biology. PMID:26013764

  2. Regulation of Carotenoid Biosynthesis by Shade Relies on Specific Subsets of Antagonistic Transcription Factors and Cofactors1[OPEN

    Science.gov (United States)

    Bou-Torrent, Jordi; Toledo-Ortiz, Gabriela; Ortiz-Alcaide, Miriam; Cifuentes-Esquivel, Nicolas; Halliday, Karen J.; Martinez-García, Jaime F.; Rodriguez-Concepcion, Manuel

    2015-01-01

    Carotenoids are photosynthetic pigments essential for the protection against excess light. During deetiolation, their production is regulated by a dynamic repression-activation module formed by PHYTOCHROME-INTERACTING FACTOR1 (PIF1) and LONG HYPOCOTYL5 (HY5). These transcription factors directly and oppositely control the expression of the gene encoding PHYTOENE SYNTHASE (PSY), the first and main rate-determining enzyme of the carotenoid pathway. Antagonistic modules also regulate the responses of deetiolated plants to vegetation proximity and shade (i.e. to the perception of far-red light-enriched light filtered through or reflected from neighboring plants). These responses, aimed to adapt to eventual shading from plant competitors, include a reduced accumulation of carotenoids. Here, we show that PIF1 and related photolabile PIFs (but not photostable PIF7) promote the shade-triggered decrease in carotenoid accumulation. While HY5 does not appear to be required for this process, other known PIF antagonists were found to modulate the expression of the Arabidopsis (Arabidopsis thaliana) PSY gene and the biosynthesis of carotenoids early after exposure to shade. In particular, PHYTOCHROME-RAPIDLY REGULATED1, a transcriptional cofactor that prevents the binding of true transcription factors to their target promoters, was found to interact with PIF1 and hence directly induce PSY expression. By contrast, a change in the levels of the transcriptional cofactor LONG HYPOCOTYL IN FAR RED1, which also binds to PIF1 and other PIFs to regulate shade-related elongation responses, did not impact PSY expression or carotenoid accumulation. Our data suggest that the fine-regulation of carotenoid biosynthesis in response to shade relies on specific modules of antagonistic transcriptional factors and cofactors. PMID:26082398

  3. Transcriptional activation requires protection of the TATA-binding protein Tbp1 by the ubiquitin-specific protease Ubp3.

    Science.gov (United States)

    Chew, Boon Shang; Siew, Wee Leng; Xiao, Benjamin; Lehming, Norbert

    2010-11-01

    Tbp1, the TATA-binding protein, is essential for transcriptional activation, and Gal4 and Gcn4 are unable to fully activate transcription in a Saccharomyces cerevisiae TBP1E86D mutant strain. In the present study we have shown that the Tbp1E186D mutant protein is proteolytically instable, and we have isolated intragenic and extragenic suppressors of the transcription defects of the TBP1E186D mutant strain. The TBP1R6S mutation stabilizes the Tbp1E186D mutant protein and suppresses the defects of the TBP1E186D mutant strain. Furthermore, we found that the overexpression of the de-ubiquitinating enzyme Ubp3 (ubiquitin-specific protease 3) also stabilizes the Tbp1E186D mutant protein and suppresses of the defects of the TBP1E186D mutant strain. Importantly, the deletion of UBP3 and its cofactor BRE5 lead to increased degradation of wild-type Tbp1 protein and to defects in transcriptional activation by Gal4 and Gcn4. Purified GST (glutathione transferase)-Ubp3 reversed Tbp1 ubiquitination, and the deletion of UBP3 lead to the accumulation of poly-ubiquitinated species of Tbp1 in a proteaseome-deficient genetic background, demonstrating that Ubp3 reverses ubiquitination of Tbp1 in vitro and in vivo. Chromatin immunoprecipitation showed that Ubp3 was recruited to the GAL1 and HIS3 promoters upon the induction of the respective gene, indicating that protection of promoter-bound Tbp1 by Ubp3 is required for transcriptional activation.

  4. 3{prime} UTR sequence-specific mRNA-protein complexes and the post-transcriptional regulation of catalase

    Energy Technology Data Exchange (ETDEWEB)

    Reimer, D.L.; Ott, R.N.; Singh, S.M. [Univ. of Western Ontario, London (Canada)

    1994-09-01

    Recently, sequences in the 3{prime} untranslated region (3{prime} UTR) of some genes have been recognized which may play an important role in the post-transcriptional regulation of gene expression. Mutations in this region of the gene are known to cause at least two diseases including myotonic dystrophy and a lysosomal accumulation disease. The mechanism is thought to involve mRNA-protein interactions that affect translation and/or mRNA stability. Reports of this nature are not common and the significance of the often large 3{prime} UTR on the regulation of gene expression remains speculative. Studies on the 3{prime} UTR mRNA-protein interactions in model eukaryotic genes therefore are critical to better understand the molecular mechanisms involved in post-transcriptional gene regulation. Mouse catalase, encoded by Cas-1, was used as a model to characterize the molecular mechanisms of post-transcriptional gene regulation. The 3{prime} UTR (752 bp) of Cas-1 contains three unusual, near repeats [(CA){sub 31}, (U){sub 15} and (TGTGC){sub 7}]. Gel mobility shift assays using {sup 32}P-labelled transcripts which contain these sequences and tissue homogenates from various sources identified mRNA-protein complexes specific to (CA){sub 31} and (U){sub 15} only. In all strains analyzed, a single protein of 69 kDa which was involved in the (CA){sub 31} complex, was observed in most tissues except lung and was localized to the polysomal fraction. Similarly, two proteins involved in the (U){sub 15} complex, 38 and 47 kDa, were observed in all tissues and strains studied. Only the 38 kDa protein was observed in the polysomal fraction. The results argue for a possible role for these 3{prime} UTR mRNA-binding protein complexes in the post-transcriptional regulation of this antioxidant enzyme.

  5. HDAC8 Inhibition Blocks SMC3 Deacetylation and Delays Cell Cycle Progression without Affecting Cohesin-dependent Transcription in MCF7 Cancer Cells.

    Science.gov (United States)

    Dasgupta, Tanushree; Antony, Jisha; Braithwaite, Antony W; Horsfield, Julia A

    2016-06-10

    Cohesin, a multi-subunit protein complex involved in chromosome organization, is frequently mutated or aberrantly expressed in cancer. Multiple functions of cohesin, including cell division and gene expression, highlight its potential as a novel therapeutic target. The SMC3 subunit of cohesin is acetylated (ac) during S phase to establish cohesion between replicated chromosomes. Following anaphase, ac-SMC3 is deacetylated by HDAC8. Reversal of SMC3 acetylation is imperative for recycling cohesin so that it can be reloaded in interphase for both non-mitotic and mitotic functions. We blocked deacetylation of ac-SMC3 using an HDAC8-specific inhibitor PCI-34051 in MCF7 breast cancer cells, and examined the effects on transcription of cohesin-dependent genes that respond to estrogen. HDAC8 inhibition led to accumulation of ac-SMC3 as expected, but surprisingly, had no influence on the transcription of estrogen-responsive genes that are altered by siRNA targeting of RAD21 or SMC3. Knockdown of RAD21 altered estrogen receptor α (ER) recruitment at SOX4 and IL20, and affected transcription of these genes, while HDAC8 inhibition did not. Rather, inhibition of HDAC8 delayed cell cycle progression, suppressed proliferation and induced apoptosis in a concentration-dependent manner. We conclude that HDAC8 inhibition does not change the estrogen-specific transcriptional role of cohesin in MCF7 cells, but instead, compromises cell cycle progression and cell survival. Our results argue that candidate inhibitors of cohesin function may differ in their effects depending on the cellular genotype and should be thoroughly tested for predicted effects on cohesin's mechanistic roles.

  6. Sequence Motifs in MADS Transcription Factors Responsible for Specificity and Diversification of Protein-Protein Interaction

    NARCIS (Netherlands)

    Dijk, van A.D.J.; Morabito, G.; Fiers, M.A.; Ham, van R.C.H.J.; Angenent, G.C.; Immink, R.G.H.

    2010-01-01

    Protein sequences encompass tertiary structures and contain information about specific molecular interactions, which in turn determine biological functions of proteins. Knowledge about how protein sequences define interaction specificity is largely missing, in particular for paralogous protein famil

  7. The Drosophila Translational Control Element (TCE) is required for high-level transcription of many genes that are specifically expressed in testes.

    Science.gov (United States)

    Katzenberger, Rebeccah J; Rach, Elizabeth A; Anderson, Ashley K; Ohler, Uwe; Wassarman, David A

    2012-01-01

    To investigate the importance of core promoter elements for tissue-specific transcription of RNA polymerase II genes, we examined testis-specific transcription in Drosophila melanogaster. Bioinformatic analyses of core promoter sequences from 190 genes that are specifically expressed in testes identified a 10 bp A/T-rich motif that is identical to the translational control element (TCE). The TCE functions in the 5' untranslated region of Mst(3)CGP mRNAs to repress translation, and it also functions in a heterologous gene to regulate transcription. We found that among genes with focused initiation patterns, the TCE is significantly enriched in core promoters of genes that are specifically expressed in testes but not in core promoters of genes that are specifically expressed in other tissues. The TCE is variably located in core promoters and is conserved in melanogaster subgroup species, but conservation dramatically drops in more distant species. In transgenic flies, short (300-400 bp) genomic regions containing a TCE directed testis-specific transcription of a reporter gene. Mutation of the TCE significantly reduced but did not abolish reporter gene transcription indicating that the TCE is important but not essential for transcription activation. Finally, mutation of testis-specific TFIID (tTFIID) subunits significantly reduced the transcription of a subset of endogenous TCE-containing but not TCE-lacking genes, suggesting that tTFIID activity is limited to TCE-containing genes but that tTFIID is not an obligatory regulator of TCE-containing genes. Thus, the TCE is a core promoter element in a subset of genes that are specifically expressed in testes. Furthermore, the TCE regulates transcription in the context of short genomic regions, from variable locations in the core promoter, and both dependently and independently of tTFIID. These findings set the stage for determining the mechanism by which the TCE regulates testis-specific transcription and understanding the

  8. Transcriptional and post-translational regulation of Bim controls apoptosis in melatonin-treated human renal cancer Caki cells.

    Science.gov (United States)

    Park, Eun Jung; Woo, Seon Min; Min, Kyoung-Jin; Kwon, Taeg Kyu

    2014-01-01

    Melatonin (N-acetyl-5-methoxytryptamine) has recently gained attention as an anticancer agent and for combined cancer therapy. In this study, we investigated the underlying molecular mechanisms of the effects of melatonin on cancer cell death. Treatment with melatonin induced apoptosis and upregulated the expression of the pro-apoptotic protein Bcl-2-interacting mediator of cell death (Bim) in renal cancer Caki cells. Furthermore, downregulation of Bim expression by siRNA markedly reduced melatonin-mediated apoptosis. Melatonin increased Bim mRNA expression through the induction of Sp1 and E2F1 expression and transcriptional activity. We found that melatonin also modulated Bim protein stability through the inhibition of proteasome activity. However, melatonin-induced Bim upregulation was independent of melatonin's antioxidant properties and the melatonin receptor. Taken together, our results suggest that melatonin induces apoptosis through the upregulation of Bim expression at the transcriptional level and at the post-translational level.

  9. Leptin upregulates telomerase activity and transcription of human telomerase reverse transcriptase in MCF-7 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Ren, He, E-mail: herenrh@yahoo.com.cn [Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin Medical University Cancer Hospital, Tianjin (China); Zhao, Tiansuo; Wang, Xiuchao; Gao, Chuntao; Wang, Jian; Yu, Ming [Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin Medical University Cancer Hospital, Tianjin (China); Hao, Jihui, E-mail: jihuihao@yahoo.com [Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin Medical University Cancer Hospital, Tianjin (China)

    2010-03-26

    The aim was to analyze the mechanism of leptin-induced activity of telomerase in MCF-7 breast cancer cells. We found that leptin activated telomerase in a dose-dependent manner; leptin upregulated the expression of Human Telomerase Reverse Transcriptase (hTERT) at mRNA and protein levels; blockade of signal transducer and activator of transcription 3 (STAT3) phosphorylation significantly counteracted leptin-induced hTERT transcription and protein expression; chromatin immunoprecipitation analysis showed that leptin enhanced the binding of STAT3 to the hTERT promoter. This study uncovers a new mechanism of the proliferative effect of leptin on breast cancer cells and provides a new explanation of obesity-related breast cancer.

  10. Genome-Wide Identification and Evolutionary Analysis of the Animal Specific ETS Transcription Factor Family

    OpenAIRE

    Wang, Zhipeng; Zhang, Qin

    2009-01-01

    The ETS proteins are a family of transcription factors (TFs) that regulate a variety of biological processes. We made genome-wide analyses to explore the classification of the ETS gene family. We identified 207 ETS genes which encode 321 ETS TFs from ten animal species. Of the 321 ETS TFs, 155 contain only an ETS domain, about 50% contain a ETS_PEA3_N or a SAM_PNT domain in addition to an ETS domain, the rest (only four) contain a second ETS domain or a second ETS_PEA3_N domain or an another ...

  11. Identification of the Imprinted KLF14 Transcription Factor Undergoing Human-Specific Accelerated Evolution

    OpenAIRE

    Layla Parker-Katiraee; Carson, Andrew R.; Takahiro Yamada; Philippe Arnaud; Robert Feil; Abu-Amero, Sayeda N.; Moore, Gudrun E; Masahiro Kaneda; Perry, George H.; Stone, Anne C.; Charles Lee; Makiko Meguro-Horike; Hiroyuki Sasaki; Keiko Kobayashi; Kazuhiko Nakabayashi

    2007-01-01

    Imprinted genes are expressed in a parent-of-origin manner and are located in clusters throughout the genome. Aberrations in the expression of imprinted genes on human Chromosome 7 have been suggested to play a role in the etiologies of Russell-Silver Syndrome and autism. We describe the imprinting of KLF14, an intronless member of the Krüppel-like family of transcription factors located at Chromosome 7q32. We show that it has monoallelic maternal expression in all embryonic and extra-embryon...

  12. Identification of the imprinted KLF14 transcription factor undergoing human-specific accelerated evolution

    OpenAIRE

    Parker-Katiraee, L.; Carson, A.R.; Yamada, T; Meguro-Horike, M.; Nakabayashi, K.; Scherer, S.W.; Arnaud, P.; Feil, R; Abu-Amero, S. N.; Moore, G.E.; Kaneda, M.; Sasaki, H.; Perry, G. H.; Stone, A C; Lee, C

    2007-01-01

    Imprinted genes are expressed in a parent-of-origin manner and are located in clusters throughout the genome. Aberrations in the expression of imprinted genes on human Chromosome 7 have been suggested to play a role in the etiologies of Russell-Silver Syndrome and autism. We describe the imprinting of KLF14, an intronless member of the Krüppel-like family of transcription factors located at Chromosome 7q32. We show that it has monoallelic maternal expression in all embryonic and extra-embryon...

  13. Fetal gut laser microdissection in combination with RNA preamplification enables epithelial-specific transcriptional profiling

    NARCIS (Netherlands)

    Hemmerling, J.; Jansen, Jenny; Müller, M.; Haller, D.

    2015-01-01

    Laser microdissection (LMD) technology enables highly specific gene expression analyses of biologically relevant questions at cell- or tissue-specific resolution. Nevertheless, specific cell types are often limited in quantity (i.e. fetal tissue), making high quality RNA extraction and subsequent

  14. Medusa structure of the gene regulatory network: dominance of transcription factors in cancer subtype classification.

    Science.gov (United States)

    Guo, Yuchun; Feng, Ying; Trivedi, Niraj S; Huang, Sui

    2011-05-01

    Gene expression profiles consisting of ten thousands of transcripts are used for clustering of tissue, such as tumors, into subtypes, often without considering the underlying reason that the distinct patterns of expression arise because of constraints in the realization of gene expression profiles imposed by the gene regulatory network. The topology of this network has been suggested to consist of a regulatory core of genes represented most prominently by transcription factors (TFs) and microRNAs, that influence the expression of other genes, and of a periphery of 'enslaved' effector genes that are regulated but not regulating. This 'medusa' architecture implies that the core genes are much stronger determinants of the realized gene expression profiles. To test this hypothesis, we examined the clustering of gene expression profiles into known tumor types to quantitatively demonstrate that TFs, and even more pronounced, microRNAs, are much stronger discriminators of tumor type specific gene expression patterns than a same number of randomly selected or metabolic genes. These findings lend support to the hypothesis of a medusa architecture and of the canalizing nature of regulation by microRNAs. They also reveal the degree of freedom for the expression of peripheral genes that are less stringently associated with a tissue type specific global gene expression profile.

  15. Strand-specific RNA-seq reveals widespread occurrence of novel cis-natural antisense transcripts in rice

    Directory of Open Access Journals (Sweden)

    Lu Tingting

    2012-12-01

    Full Text Available Abstract Background Cis-natural antisense transcripts (cis-NATs are RNAs transcribed from the antisense strand of a gene locus, and are complementary to the RNA transcribed from the sense strand. Common techniques including microarray approach and analysis of transcriptome databases are the major ways to globally identify cis-NATs in various eukaryotic organisms. Genome-wide in silico analysis has identified a large number of cis-NATs that may generate endogenous short interfering RNAs (nat-siRNAs, which participate in important biogenesis mechanisms for transcriptional and post-transcriptional regulation in rice. However, the transcriptomes are yet to be deeply sequenced to comprehensively investigate cis-NATs. Results We applied high-throughput strand-specific complementary DNA sequencing technology (ssRNA-seq to deeply sequence mRNA for assessing sense and antisense transcripts that were derived under salt, drought and cold stresses, and normal conditions, in the model plant rice (Oryza sativa. Combined with RAP-DB genome annotation (the Rice Annotation Project Database build-5 data set, 76,013 transcripts corresponding to 45,844 unique gene loci were assembled, in which 4873 gene loci were newly identified. Of 3819 putative rice cis-NATs, 2292 were detected as expressed and giving rise to small RNAs from their overlapping regions through integrated analysis of ssRNA-seq data and small RNA data. Among them, 503 cis-NATs seemed to be associated with specific conditions. The deep sequence data from isolated epidermal cells of rice seedlings further showed that 54.0% of cis-NATs were expressed simultaneously in a population of homogenous cells. Nearly 9.7% of rice transcripts were involved in one-to-one or many-to-many cis-NATs formation. Furthermore, only 17.4-34.7% of 223 many-to-many cis-NAT groups were all expressed and generated nat-siRNAs, indicating that only some cis-NAT groups may be involved in complex regulatory networks. Conclusions

  16. ICF-specific DNMT3B dysfunction interferes with intragenic regulation of mRNA transcription and alternative splicing.

    Science.gov (United States)

    Gatto, Sole; Gagliardi, Miriam; Franzese, Monica; Leppert, Sylwia; Papa, Mariarosaria; Cammisa, Marco; Grillo, Giacomo; Velasco, Guillame; Francastel, Claire; Toubiana, Shir; D'Esposito, Maurizio; Angelini, Claudia; Matarazzo, Maria R

    2017-03-09

    Hypomorphic mutations in DNA-methyltransferase DNMT3B cause majority of the rare disorder Immunodeficiency, Centromere instability and Facial anomalies syndrome cases (ICF1). By unspecified mechanisms, mutant-DNMT3B interferes with lymphoid-specific pathways resulting in immune response defects. Interestingly, recent findings report that DNMT3B shapes intragenic CpG-methylation of highly-transcribed genes. However, how the DNMT3B-dependent epigenetic network modulates transcription and whether ICF1-specific mutations impair this process remains unknown. We performed a transcriptomic and epigenomic study in patient-derived B-cell lines to investigate the genome-scale effects of DNMT3B dysfunction. We highlighted that altered intragenic CpG-methylation impairs multiple aspects of transcriptional regulation, like alternative TSS usage, antisense transcription and exon splicing. These defects preferentially associate with changes of intragenic H3K4me3 and at lesser extent of H3K27me3 and H3K36me3. In addition, we highlighted a novel DNMT3B activity in modulating the self-regulatory circuit of sense-antisense pairs and the exon skipping during alternative splicing, through interacting with RNA molecules. Strikingly, altered transcription affects disease relevant genes, as for instance the memory-B cell marker CD27 and PTPRC genes, providing us with biological insights into the ICF1-syndrome pathogenesis. Our genome-scale approach sheds light on the mechanisms still poorly understood of the intragenic function of DNMT3B and DNA methylation in gene expression regulation.

  17. Transcriptional immunoresponse of tissue-specific macrophages in swine after infection with African swine fever virus

    Directory of Open Access Journals (Sweden)

    Kowalczyk Andrzej

    2015-12-01

    Full Text Available Macrophages and cytokines are important in the control of inflammation and regulation of the immune response. However, they can also contribute to immunopathology in the host after viral infection and the regulatory network can be subverted by infectious agents, including viruses, some of which produce cytokine analogues or have mechanisms that inhibit cytokine function. African swine fever virus (ASFV encodes a number of proteins which modulate cytokine and chemokine induction, host transcription factor activation, stress responses, and apoptosis. The aim of this review is to elucidate the mechanisms of immune responses to ASFV in different subpopulations of porcine macrophages. A transcriptional immune response in different resident tissue macrophages following ASFV infection was presented in many publications. ASFV-susceptible porcine macrophages can be of several origins, such as peripheral blood, lungs, bone marrow, etc. blood monocytes, blood macrophages, and lung macrophages have demonstrated a modulation of phenotype. Monocyte-derived macrophages could express surface markers not found on their monocyte precursors. Moreover, they can undergo further differentiation after infection and during inflammation. When viruses infect such cells, immunological activity can be seriously impaired or modified.

  18. Neuron-specific specificity protein 4 bigenomically regulates the transcription of all mitochondria- and nucleus-encoded cytochrome c oxidase subunit genes in neurons.

    Science.gov (United States)

    Johar, Kaid; Priya, Anusha; Dhar, Shilpa; Liu, Qiuli; Wong-Riley, Margaret T T

    2013-11-01

    Neurons are highly dependent on oxidative metabolism for their energy supply, and cytochrome c oxidase (COX) is a key energy-generating enzyme in the mitochondria. A unique feature of COX is that it is one of only four proteins in mammalian cells that are bigenomically regulated. Of its thirteen subunits, three are encoded in the mitochondrial genome and ten are nuclear-encoded on nine different chromosomes. The mechanism of regulating this multisubunit, bigenomic enzyme poses a distinct challenge. In recent years, we found that nuclear respiratory factors 1 and 2 (NRF-1 and NRF-2) mediate such bigenomic coordination. The latest candidate is the specificity factor (Sp) family of proteins. In N2a cells, we found that Sp1 regulates all 13 COX subunits. However, we discovered recently that in primary neurons, it is Sp4 and not Sp1 that regulates some of the key glutamatergic receptor subunit genes. The question naturally arises as to the role of Sp4 in regulating COX in primary neurons. The present study utilized multiple approaches, including chromatin immunoprecipitation, promoter mutational analysis, knockdown and over-expression of Sp4, as well as functional assays to document that Sp4 indeed functionally regulate all 13 subunits of COX as well as mitochondrial transcription factors A and B. The present study discovered that among the specificity family of transcription factors, it is the less known neuron-specific Sp4 that regulates the expression of all 13 subunits of mitochondrial cytochrome c oxidase (COX) enzyme in primary neurons. Sp4 also regulates the three mitochondrial transcription factors (TFAM, TFB1M, and TFB2M) and a COX assembly protein SURF-1 in primary neurons.

  19. Specificity and transcriptional activity of microbiota associated with low and high microbial abundance sponges from the Red Sea

    KAUST Repository

    Moitinho-Silva, Lucas

    2013-08-20

    Marine sponges are generally classified as high microbial abundance (HMA) and low microbial abundance (LMA) species. Here, 16S rRNA amplicon sequencing was applied to investigate the diversity, specificity and transcriptional activity of microbes associated with an LMA sponge (Stylissa carteri), an HMA sponge (Xestospongia testudinaria) and sea water collected from the central Saudi Arabia coast of the Red Sea. Altogether, 887 068 denoised sequences were obtained, of which 806 661 sequences remained after quality control. This resulted in 1477 operational taxonomic units (OTUs) that were assigned to 27 microbial phyla. The microbial composition of S. carteri was more similar to that of sea water than to that of X. testudinaria, which is consistent with the observation that the sequence data set of S. carteri contained many more possibly sea water sequences (~24%) than the X. testudinaria data set (~6%). The most abundant OTUs were shared between all three sources (S. carteri, X. testudinaria, sea water), while rare OTUs were unique to any given source. Despite this high degree of overlap, each sponge species contained its own specific microbiota. The X. testudinaria-specific bacterial taxa were similar to those already described for this species. A set of S. carteri-specific bacterial taxa related to Proteobacteria and Nitrospira was identified, which are likely permanently associated with S. carteri. The transcriptional activity of sponge-associated microorganisms correlated well with their abundance. Quantitative PCR revealed the presence of Poribacteria, representing typical sponge symbionts, in both sponge species and in sea water; however, low transcriptional activity in sea water suggested that Poribacteria are not active outside the host context. © 2013 John Wiley & Sons Ltd.

  20. Structure and cell-specific expression of a cloned human retinol binding protein gene: the 5'-flanking region contains hepatoma specific transcriptional signals.

    Science.gov (United States)

    D'Onofrio, C; Colantuoni, V; Cortese, R

    1985-08-01

    Human plasma retinol binding protein (RBP) is coded by a single gene and is specifically synthesized in the liver. We have characterized a lambda clone, from a human DNA library, carrying the gene coding for plasma RBP. Southern blot analysis and DNA sequencing show that the gene is composed of six exons and five introns. Primer elongation and S1 mapping experiments allowed the definition of the initiation of transcription and the identification of the putative promoter. The 5'-flanking region of the RBP gene was fused upstream to the coding sequence of the bacterial enzyme chloramphenicol acetyl transferase (CAT): the chimeric gene was introduced, by calcium phosphate precipitation, into the human hepatoma cell line Hep G2 and into HeLa cells. Efficient expression of CAT was obtained only in Hep G2. Primer elongation analysis of the RNA extracted from transfected Hep G2 showed that initiation of transcription of the transfected chimeric gene occurs at a position identical to that of the natural gene. Transcriptional analysis of Bal31 deletions from the 3' end of the RBP 5'-flanking DNA allowed the identification of the RBP gene promoter.

  1. Lack of germline A339V mutation in thyroid transcription factor-1 (TITF-1/NKX2.1 gene in familial papillary thyroid cancer

    Directory of Open Access Journals (Sweden)

    Cantara Silvia

    2010-08-01

    Full Text Available Abstract Thyroid cancer may have a familial predisposition but a specific germline alteration responsible for the disease has not been discovered yet. We have shown that familial papillary thyroid cancer (FPTC patients have an imbalance in telomere-telomerase complex with short telomeres and increased telomerase activity. A germline mutation (A339V in thyroid transcription factor-1 has been described in patients with multinodular goiter and papillary thyroid cancer. In this report, the presence of the A339V mutation and the telomere length has been studied in FPTC patients and unaffected family members. All samples analyzed displayed a pattern typical of the homozygous wild type revealing the absence of the A339V mutation. Shortening of telomeres was confirmed in all patients. We concluded that the A339V mutation in thyroid transcription factor-1 (TITF-1/NKX2.1 is not correlated with the familial form of PTC, even when the tumor was in the context of multinodular goiter.

  2. Inhibition of the transcription factor Sp1 suppresses colon cancer stem cell growth and induces apoptosis in vitro and in nude mouse xenografts.

    Science.gov (United States)

    Zhao, Yingying; Zhang, Wenjing; Guo, Zheng; Ma, Feng; Wu, Yao; Bai, Yang; Gong, Wei; Chen, Ye; Cheng, Tianming; Zhi, Fachao; Zhang, Yali; Wang, Jide; Jiang, Bo

    2013-10-01

    The transcription factor specificity protein 1 (Sp1) plays a role in the development and progression of various types of human cancers, while cancer stem cells (CSCs) are important in cancer cell self-renewal, resistance to chemotherapy and metastatic potential. This study investigated the role of Sp1 in colon CSC growth and apoptosis. Colon CSCs were successfully enriched using special culture medium and identified by typical CSC gene expression. In a quiescent state, these CSCs formed spheres with slow proliferation; overexpressed Sp1, CD44, CD166 and CD133 proteins; upregulated mesenchymal markers; and a downregulated epithelial marker were noted. In ex vivo experiments, the Sp1 protein was expressed in 74.8% of colon cancer tissues, whereas it was expressed only in 42.2% of the distant normal colon mucosae. Furthermore, inhibition of SP1 expression using Sp1 siRNA or mithramycin A (MIT) led to marked suppression of CSC growth and induced apoptosis. In addition, the percentage of CD44+/CD166+ cells was significantly downregulated both in vivo and in vitro following Sp1 inhibition. In conclusion, Sp1 suppression attenuated the characteristics of colon CSCs. Thus, Sp1 inhibition may be potentially useful for the future development of a novel therapeutic strategy to control colon cancer.

  3. Comprehensive analysis of the specificity of transcription activator-like effector nucleases

    OpenAIRE

    Juillerat, Alexandre; Dubois, Gwendoline; Valton, Julien; Thomas, Séverine; Stella, Stefano; Maréchal, Alan; Langevin, Stéphanie; Benomari, Nassima; Bertonati, Claudia; George H Silva; Daboussi, Fayza; Epinat, Jean-Charles; Montoya, Guillermo; Duclert, Aymeric; Duchateau, Philippe

    2014-01-01

    A key issue when designing and using DNA-targeting nucleases is specificity. Ideally, an optimal DNA-targeting tool has only one recognition site within a genomic sequence. In practice, however, almost all designer nucleases available today can accommodate one to several mutations within their target site. The ability to predict the specificity of targeting is thus highly desirable. Here, we describe the first comprehensive experimental study focused on the specificity of the four commonly us...

  4. ProteDNA: a sequence-based predictor of sequence-specific DNA-binding residues in transcription factors.

    Science.gov (United States)

    Chu, Wen-Yi; Huang, Yu-Feng; Huang, Chun-Chin; Cheng, Yi-Sheng; Huang, Chien-Kang; Oyang, Yen-Jen

    2009-07-01

    This article presents the design of a sequence-based predictor named ProteDNA for identifying the sequence-specific binding residues in a transcription factor (TF). Concerning protein-DNA interactions, there are two types of binding mechanisms involved, namely sequence-specific binding and nonspecific binding. Sequence-specific bindings occur between protein sidechains and nucleotide bases and correspond to sequence-specific recognition of genes. Therefore, sequence-specific bindings are essential for correct gene regulation. In this respect, ProteDNA is distinctive since it has been designed to identify sequence-specific binding residues. In order to accommodate users with different application needs, ProteDNA has been designed to operate under two modes, namely, the high-precision mode and the balanced mode. According to the experiments reported in this article, under the high-precision mode, ProteDNA has been able to deliver precision of 82.3%, specificity of 99.3%, sensitivity of 49.8% and accuracy of 96.5%. Meanwhile, under the balanced mode, ProteDNA has been able to deliver precision of 60.8%, specificity of 97.6%, sensitivity of 60.7% and accuracy of 95.4%. ProteDNA is available at the following websites: http://protedna.csbb.ntu.edu.tw/, http://protedna.csie.ntu.edu.tw/, http://bio222.esoe.ntu.edu.tw/ProteDNA/.

  5. Recruitment of HDAC4 by transcription factor YY1 represses HOXB13 to affect cell growth in AR-negative prostate cancers

    DEFF Research Database (Denmark)

    Ren, Guoling; Zhang, Guocui; Dong, Zhixiong;

    2008-01-01

    HOXB13 is a homeodomain protein implicated to play a role in growth arrest in AR (androgen receptor)-negative prostate cancer cells. Expression of HOXB13 is restricted to the AR-expressing prostate cells. In this report, we demonstrate that the HDAC inhibitor NaB (sodium butyrate) was able...... to induce cell growth arrest and to increase HOXB13 expression in AR-negative prostate cancer cells. We also show that both HDAC4 and YY1 participated in the repression of HOXB13 expression through an epigenetic mechanism involving histone acetylation modification. Specifically, co...... essential for the recruitments of YY1 and HDAC4. Data presented in this report suggest that YY1 and HDAC4 affected cell growth by repressing transcriptional regulation of HOXB13 through an epigenetic modification of histones....

  6. Signal transducer and activator of transcription 3 activation is associated with bladder cancer cell growth and survival

    Directory of Open Access Journals (Sweden)

    Hsieh Fu-Chuan

    2008-10-01

    Full Text Available Abstract Background Constitutive activation of signal transducer and activator of transcription 3 (Stat3 signaling pathway plays an important role in several human cancers. Activation of Stat3 is dependent on the phosphorylation at the tyrosine residue 705 by upstream kinases and subsequent nuclear translocation after dimerization. It remains unclear whether oncogenic Stat3 signaling pathway is involved in the oncogenesis of bladder cancer. Results We found that elevated Stat3 phosphorylation in 19 of 100 (19% bladder cancer tissues as well as bladder cancer cell lines, WH, UMUC-3 and 253J. To explore whether Stat3 activation is associated with cell growth and survival of bladder cancer, we targeted the Stat3 signaling pathway in bladder cancer cells using an adenovirus-mediated dominant-negative Stat3 (Y705F and a small molecule compound, STA-21. Both prohibited cell growth and induction of apoptosis in these bladder cancer cell lines but not in normal bladder smooth muscle cell (BdSMC. The survival inhibition might be mediated through apoptotic caspase 3, 8 and 9 pathways. Moreover, down-regulation of anti-apoptotic genes (Bcl-2, Bcl-xL and survivin and a cell cycle regulating gene (cyclin D1 was associated with the cell growth inhibition and apoptosis. Conclusion These results indicated that activation of Stat3 is crucial for bladder cancer cell growth and survival. Therefore, interference of Stat3 signaling pathway emerges as a potential therapeutic approach for bladder cancer.

  7. Comparing cancer vs normal gene expression profiles identifies new disease entities and common transcriptional programs in AML patients

    DEFF Research Database (Denmark)

    Rapin, Nicolas; Bagger, Frederik Otzen; Jendholm, Johan

    2014-01-01

    Gene expression profiling has been used extensively to characterize cancer, identify novel subtypes, and improve patient stratification. However, it has largely failed to identify transcriptional programs that differ between cancer and corresponding normal cells and has not been efficient in iden......-karyotype AML, which allowed for the generation of a highly prognostic survival signature. Collectively, our CvN method holds great potential as a tool for the analysis of gene expression profiles of cancer patients.......Gene expression profiling has been used extensively to characterize cancer, identify novel subtypes, and improve patient stratification. However, it has largely failed to identify transcriptional programs that differ between cancer and corresponding normal cells and has not been efficient...... in identifying expression changes fundamental to disease etiology. Here we present a method that facilitates the comparison of any cancer sample to its nearest normal cellular counterpart, using acute myeloid leukemia (AML) as a model. We first generated a gene expression-based landscape of the normal...

  8. Reptin is required for the transcription of telomerase reverse transcriptase and over-expressed in gastric cancer

    Directory of Open Access Journals (Sweden)

    Liu Tiantian

    2010-05-01

    Full Text Available Abstract Background Telomerase is activated in oncogenesis, which confers an immortal phenotype to cancer cells. The AAA + ATPase Reptin is required for telomerase biogenesis by maintaining telomerase RNA (hTER stability and is aberrantly expressed in certain cancers. Given its role in chromatin remodeling and transcription regulation, we determined the effect of Reptin on the transcription of the telomerase reverse transcriptase (hTERT gene, a key component of the telomerase complex and its expression in gastric cancer. Results Knocking down Reptin or its partner Pontin using small interfering RNA in gastric and cervical cancer cells led to significant decreases in hTERT mRNA, but hTERT promoter activity was inhibited in only Reptin-depleted cells. Reptin interacted with the c-MYC oncoprotein and its stimulatory effect on the hTERTpromoter was significantly dependent on functional E-boxes in the promoter. Moreover, Reptin bound to the hTERT proximal promoter and the loss of the Reptin occupancy led to dissociation of c-MYC from the hTERT promoter in Reptin-depleted cells. Reptin inhibition dramatically impaired clonogenic potential of gastric cancer cells by inducing cell growtharrest and over-expression of Reptin was observed in primary gastric cancer specimens. Conclusions The hTERT gene is a direct target of Reptin, and hTERT transcription requires constitutive expression of Reptin and its cooperation with c-MYC. Thus, Reptin regulates telomerase at two different levels. This finding, together with the requirementof Reptin for the clonogenic potential of cancer cells and its over-expression in gastriccancer and other solid tumors, suggests that Reptin may be a putative therapeutic target.

  9. Class III/IV POU transcription factors expressed in small cell lung cancer cells are involved in proneural/neuroendocrine differentiation.

    Science.gov (United States)

    Ishii, Jun; Sato, Hanako; Yazawa, Takuya; Shishido-Hara, Yukiko; Hiramatsu, Chie; Nakatani, Yukio; Kamma, Hiroshi

    2014-09-01

    One-third of lung malignancies demonstrate a proneural/neuroendocrine phenotype or type of differentiation. However, it has not been clearly elucidated how proneural/neuroendocrine differentiation is controlled in lung cancers. We recently demonstrated that the POU3F2 gene plays a significant role in proneural/neuroendocrine differentiation of lung cancers. Because class III POU genes (POU3F1, POU3F2, POU3F3, and POU3F4) and class IV POU genes (POU4F1, POU4F2, and POU4F3) share similar properties in neural development, we analyzed the association between class III/IV POU genes and a proneural/neuroendocrine phenotype in lung cancers using seven small cell lung cancer (SCLC) cell lines and twelve non-SCLC (NSCLC) cell lines. Class III/IV POU gene expression was generally restricted to SCLC cells. However, the forced expression of class III/IV POU genes in the NSCLC cell lines induced the expression of neuroendocrine-specific markers (neural call adhesion molecule 1, synaptophysin, and chromogranin A) and proneural transcription factors (achaete-scute homolog-like 1, NeuroD1, and thyroid transcription factor 1) in various degrees. Furthermore, each class III/IV POU gene induced other class III/IV POU genes, suggesting the mutual induction of class III/IV POU genes. These findings suggest that the expression of class III/IV POU genes is important for the proneural/neuroendocrine differentiation of lung cancer cells.

  10. A powerful method for transcriptional profiling of specific cell types in eukaryotes: laser-assisted microdissection and RNA sequencing.

    Directory of Open Access Journals (Sweden)

    Marc W Schmid

    Full Text Available The acquisition of distinct cell fates is central to the development of multicellular organisms and is largely mediated by gene expression patterns specific to individual cells and tissues. A spatially and temporally resolved analysis of gene expression facilitates the elucidation of transcriptional networks linked to cellular identity and function. We present an approach that allows cell type-specific transcriptional profiling of distinct target cells, which are rare and difficult to access, with unprecedented sensitivity and resolution. We combined laser-assisted microdissection (LAM, linear amplification starting from <1 ng of total RNA, and RNA-sequencing (RNA-Seq. As a model we used the central cell of the Arabidopsis thaliana female gametophyte, one of the female gametes harbored in the reproductive organs of the flower. We estimated the number of expressed genes to be more than twice the number reported previously in a study using LAM and ATH1 microarrays, and identified several classes of genes that were systematically underrepresented in the transcriptome measured with the ATH1 microarray. Among them are many genes that are likely to be important for developmental processes and specific cellular functions. In addition, we identified several intergenic regions, which are likely to be transcribed, and describe a considerable fraction of reads mapping to introns and regions flanking annotated loci, which may represent alternative transcript isoforms. Finally, we performed a de novo assembly of the transcriptome and show that the method is suitable for studying individual cell types of organisms lacking reference sequence information, demonstrating that this approach can be applied to most eukaryotic organisms.

  11. A novel, testis-specific mRNA transcript encoding an NH2-terminal truncated nitric-oxide synthase.

    Science.gov (United States)

    Wang, Y; Goligorsky, M S; Lin, M; Wilcox, J N; Marsden, P A

    1997-04-25

    mRNA diversity represents a major theme of neuronal nitric-oxide synthase (nNOS) gene expression in somatic cells/tissues. Given that gonads often express unique and biologically informative variants of complex genes, we determined whether unique variants of nNOS are expressed in the testis. Analysis of cDNA clones isolated from human testis identified a novel, testis-specific nNOS (TnNOS) mRNA transcript. A predicted 3294-base pair open reading frame encodes an NH2-terminal truncated protein of 1098 amino acids. Measurement of calcium-activated L-[14C]citrulline formation and nitric oxide release in CHO-K1 cells stably transfected with the TnNOS cDNA indicates that this protein is a calcium-dependent nitric-oxide synthase with catalytic activity comparable to that of full-length nNOS. TnNOS transcripts exhibit novel 5' mRNA sequences encoded by two unique exons spliced to exon 4 of the full-length nNOS. Characterization of the genomic structure indicates that exonic regions used by the novel TnNOS are expressed from intron 3 of the NOS1 gene. Although lacking canonical TATA and CAAT boxes, the 5'-flanking region of the TnNOS exon 1 contains multiple putative cis-regulatory elements including those implicated in testis-specific gene expression. The downstream promoter of the human nNOS gene, which directs testis-specific expression of a novel NH2-terminal truncated nitric-oxide synthase, represents the first reported example in the NOS gene family of transcriptional diversity producing a variant NOS protein.

  12. Expression of transcription factor Pokemon in non-small cell lung cancer and its clinical significance

    Institute of Scientific and Technical Information of China (English)

    ZHAO Zhi-hong; WANG Sheng-fa; YU Liang; WANG Ju; CHANG Hao; YAN Wei-li; FU Kai; ZHANG Jian

    2008-01-01

    Background Transcription factor Pokemon,a central regulation gene of the important tumor suppressor ARF gene,exerted its activity by acting upstream of many tumor-suppressing genes and proto-oncogenes.Its expression in non-small cell lung cancer (NSCLC)and its clinical significance remains unclear.The aim of this study was to investigate the expression of Pokemon in NSCLC and to explore its correlation with the clinical pathological characteristics and its influence on patients'prognosis.Methods Fifty-five cases of NSCLC were involved in this study.The expression of Pokemon in the tumor tissue,the corresponding tumor adjacent tissue and the surrounding tissue was detected via reverse transcription-polymerase chain reaction(RT-PCR)and Western blotting,with the aim of investigating the correlation between the expression of Pokemon in tumor tissue of NSCLC and its clinicaI pathological characteristics.Moreover,a prognostic analysis was carried out based upon the immunohistochemical(IHC)detection of the expression of Pokemon gene in archival tumor specimens (5 years ago) of 62 cases of NSCLC.Results Statistical significance of the expression of Pokemon mRNA and protein was determined in the tumor tissue,the tumor adjacent tissue and the surrounding tissue (P<0.05).The expression of Pokemon was determined not to be associated with the patients'sex,age,smoking condition,tumor differentiation degree,histology and lymph node metastasis condition.However,its relationship with TNM staging was established(P<0.05).Furthermore,it was shown that the suwival rate of patients with negative Pokemon expression was significantly higher than that of those with positive Pokemon expression(P=0.004),therefore,the expression of Pokemon is believed to be an independent factor affectinq prognosis (P=0.034).Concluaion Pokemon was over-expressed in NSCLC tissue and the expression of Pokemon might be of clinical significance in non-small cell lung cancer prognostic evaluation.

  13. Role of ligand-dependent GR phosphorylation and half-life in determination of ligand-specific transcriptional activity.

    Science.gov (United States)

    Avenant, Chanel; Ronacher, Katharina; Stubsrud, Elisabeth; Louw, Ann; Hapgood, Janet P

    2010-10-07

    A central question in glucocorticoid mechanism of action via the glucocorticoid receptor (GR) is what determines ligand-selective transcriptional responses. Using a panel of 12 GR ligands, we show that the extent of GR phosphorylation at S226 and S211, GR half-life and transcriptional response, occur in a ligand-selective manner. While GR phosphorylation at S226 was shown to inhibit maximal transcription efficacy, phosphorylation at S211 is required for maximal transactivation, but not for transrepression efficacy. Both ligand-selective GR phosphorylation and half-life correlated with efficacy for transactivation and transrepression. For both expressed and endogenous GR, in two different cell lines, agonists resulted in the greatest extent of phosphorylation and the greatest extent of GR downregulation, suggesting a link between these functions. However, using phosphorylation-deficient GR mutants we established that phosphorylation of the GR at S226 or S211 does not determine the rank order of ligand-selective GR transactivation. These results are consistent with a model whereby ligand-selective GR phosphorylation and half-life are a consequence of upstream events, such as ligand-specific GR conformations, which are maintained in the phosphorylation mutants.

  14. Reverse engineering a mouse embryonic stem cell-specific transcriptional network reveals a new modulator of neuronal differentiation.

    Science.gov (United States)

    De Cegli, Rossella; Iacobacci, Simona; Flore, Gemma; Gambardella, Gennaro; Mao, Lei; Cutillo, Luisa; Lauria, Mario; Klose, Joachim; Illingworth, Elizabeth; Banfi, Sandro; di Bernardo, Diego

    2013-01-01

    Gene expression profiles can be used to infer previously unknown transcriptional regulatory interaction among thousands of genes, via systems biology 'reverse engineering' approaches. We 'reverse engineered' an embryonic stem (ES)-specific transcriptional network from 171 gene expression profiles, measured in ES cells, to identify master regulators of gene expression ('hubs'). We discovered that E130012A19Rik (E13), highly expressed in mouse ES cells as compared with differentiated cells, was a central 'hub' of the network. We demonstrated that E13 is a protein-coding gene implicated in regulating the commitment towards the different neuronal subtypes and glia cells. The overexpression and knock-down of E13 in ES cell lines, undergoing differentiation into neurons and glia cells, caused a strong up-regulation of the glutamatergic neurons marker Vglut2 and a strong down-regulation of the GABAergic neurons marker GAD65 and of the radial glia marker Blbp. We confirmed E13 expression in the cerebral cortex of adult mice and during development. By immuno-based affinity purification, we characterized protein partners of E13, involved in the Polycomb complex. Our results suggest a role of E13 in regulating the division between glutamatergic projection neurons and GABAergic interneurons and glia cells possibly by epigenetic-mediated transcriptional regulation.

  15. Novel Tissue‐Specific Mechanism of Regulation of Angiogenesis and Cancer Growth in Response to Hyperglycemia

    OpenAIRE

    Bhattacharyya, Sanghamitra; Sul, Kristina; Krukovets, Irene; Nestor, Carla; Li, Jianbo; Adognravi, Olga Stenina

    2012-01-01

    Background Hyperglycemia is an independent risk factor for the development of vascular diabetic complications, which are characterized by endothelial dysfunction and tissue‐specific aberrant angiogenesis. Tumor growth is also dependent on angiogenesis. Diabetes affects several cancers in a tissue‐specific way. For example, it positively correlates with the incidence of breast cancer but negatively correlates with the incidence of prostate cancer. The tissue‐specific molecular mechanisms activ...

  16. Role of intrinsic DNA binding specificity in defining target genes of the mammalian transcription factor PDX1

    Science.gov (United States)

    Liberzon, Arthur; Ridner, Gabriela; Walker, Michael D.

    2004-01-01

    PDX1 is a homeodomain transcription factor essential for pancreatic development and mature beta cell function. Homeodomain proteins typically recognize short TAAT DNA motifs in vitro: this binding displays paradoxically low specificity and affinity, given the extremely high specificity of action of these proteins in vivo. To better understand how PDX1 selects target genes in vivo, we have examined the interaction of PDX1 with natural and artificial binding sites. Comparison of PDX1 binding sites in several target promoters revealed an evolutionarily conserved pattern of nucleotides flanking the TAAT core. Using competitive in vitro DNA binding assays, we defined three groups of binding sites displaying high, intermediate and low affinity. Transfection experiments revealed a striking correlation between the ability of each sequence to activate transcription in cultured beta cells, and its ability to bind PDX1 in vitro. Site selection from a pool of oligonucleotides (sequence NNNTAATNNN) revealed a non-random preference for particular nucleotides at the flanking locations, resembling natural PDX1 binding sites. Taken together, the data indicate that the intrinsic DNA binding specificity of PDX1, in particular the bases adjacent to TAAT, plays an important role in determining the spectrum of target genes. PMID:14704343

  17. Evolutionary expansion and divergence in a large family of primate-specific zinc finger transcription factor genes

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, A T; Huntley, S; Tran-Gyamfi, M; Baggott, D; Gordon, L; Stubbs, L

    2005-09-28

    Although most genes are conserved as one-to-one orthologs in different mammalian orders, certain gene families have evolved to comprise different numbers and types of protein-coding genes through independent series of gene duplications, divergence and gene loss in each evolutionary lineage. One such family encodes KRAB-zinc finger (KRAB-ZNF) genes, which are likely to function as transcriptional repressors. One KRAB-ZNF subfamily, the ZNF91 clade, has expanded specifically in primates to comprise more than 110 loci in the human genome, yielding large gene clusters in human chromosomes 19 and 7 and smaller clusters or isolated copies at other chromosomal locations. Although phylogenetic analysis indicates that many of these genes arose before the split between old world monkeys and new world monkeys, the ZNF91 subfamily has continued to expand and diversify throughout the evolution of apes and humans. The paralogous loci are distinguished by sequence divergence within their zinc finger arrays indicating a selection for proteins with different DNA binding specificities. RT-PCR and in situ hybridization data show that some of these ZNF genes can have tissue-specific expression patterns, however many KRAB-ZNFs that are near-ubiquitous could also be playing very specific roles in halting target pathways in all tissues except for a few, where the target is released by the absence of its repressor. The number of variant KRAB-ZNF proteins is increased not only because of the large number of loci, but also because many loci can produce multiple splice variants, which because of the modular structure of these genes may have separate and perhaps even conflicting regulatory roles. The lineage-specific duplication and rapid divergence of this family of transcription factor genes suggests a role in determining species-specific biological differences and the evolution of novel primate traits.

  18. BRCA1 in Gene-Specific Coordination of Transcription and DNA Damage Response

    Science.gov (United States)

    2008-03-01

    model under the low estrogen condition. A. Wester blot analy is of COBRA1 level in control and shCOBRA1 expressing ZR-75-1 cells. α-tubulin was...samples. Western blot analysis was used to analyze expression of COBRA1 in breast (MCF10A, MCF-7, SKBR3) and ovarian (ES2, SKOV3, H118) cancer cell...GFES HPGBE B C Figure 1. COBRA1 expression in established cell lines and clinical tissues. A. Western blot analysis of COBRA1 expression in multiple

  19. The mucin MUC4 is a transcriptional and post-transcriptional target of K-ras oncogene in pancreatic cancer. Implication of MAPK/AP-1, NF-κB and RalB signaling pathways.

    Science.gov (United States)

    Vasseur, Romain; Skrypek, Nicolas; Duchêne, Belinda; Renaud, Florence; Martínez-Maqueda, Daniel; Vincent, Audrey; Porchet, Nicole; Van Seuningen, Isabelle; Jonckheere, Nicolas

    2015-12-01

    The membrane-bound mucinMUC4 is a high molecularweight glycoprotein frequently deregulated in cancer. In pancreatic cancer, one of the most deadly cancers in occidental countries, MUC4 is neo-expressed in the preneoplastic stages and thereafter is involved in cancer cell properties leading to cancer progression and chemoresistance. K-ras oncogene is a small GTPase of the RAS superfamily, highly implicated in cancer. K-ras mutations are considered as an initiating event of pancreatic carcinogenesis and K-ras oncogenic activities are necessary components of cancer progression. However, K-ras remains clinically undruggable. Targeting early downstream K-ras signaling in cancer may thus appear as an interesting strategy and MUC4 regulation by K-ras in pancreatic carcinogenesis remains unknown. Using the Pdx1-Cre; LStopL-K-rasG12D mouse model of pancreatic carcinogenesis, we show that the in vivo early neo-expression of the mucin Muc4 in pancreatic intraepithelial neoplastic lesions (PanINs) induced by mutated K-ras is correlated with the activation of ERK, JNK and NF-κB signaling pathways. In vitro, transfection of constitutively activated K-rasG12V in pancreatic cancer cells led to the transcriptional upregulation of MUC4. This activation was found to be mediated at the transcriptional level by AP-1 and NF-κB transcription factors via MAPK, JNK and NF-κB pathways and at the posttranscriptional level by a mechanism involving the RalB GTPase. Altogether, these results identify MUC4 as a transcriptional and post-transcriptional target of K-ras in pancreatic cancer. This opens avenues in developing new approaches to target the early steps of this deadly cancer.

  20. Transcription factors C/EBP-alpha and HNF-1 alpha are associated with decreased expression of liver-specific genes in sepsis

    NARCIS (Netherlands)

    Haaxma, CA; Kim, PK; Andrejko, KM; Raj, NR; Deutschman, CS

    2003-01-01

    Previous studies have demonstrated sepsis-specific changes in the transcription of key hepatic genes. However, the role of hepatic transcription factors in sepsis-associated organ dysfunction has not been well established. We hypothesize that the binding activities of C/EBPalpha and beta, HNF-1alpha

  1. Role of the Slug Transcription Factor in Chemically-Induced Skin Cancer

    Directory of Open Access Journals (Sweden)

    Kristine von Maltzan

    2016-02-01

    Full Text Available The Slug transcription factor plays an important role in ultraviolet radiation (UVR-induced skin carcinogenesis, particularly in the epithelial-mesenchymal transition (EMT occurring during tumor progression. In the present studies, we investigated the role of Slug in two-stage chemical skin carcinogenesis. Slug and the related transcription factor Snail were expressed at high levels in skin tumors induced by 7,12-dimethylbenz[α]anthracene application followed by 12-O-tetradecanoylphorbol-13-acetate (TPA treatment. TPA-induced transient elevation of Slug and Snail proteins in normal mouse epidermis and studies in Slug transgenic mice indicated that Slug modulates TPA-induced epidermal hyperplasia and cutaneous inflammation. Although Snail family factors have been linked to inflammation via interactions with the cyclooxygenase-2 (COX-2 pathway, a pathway that also plays an important role in skin carcinogenesis, transient TPA induction of Slug and Snail appeared unrelated to COX-2 expression. In cultured human keratinocytes, TPA induced Snail mRNA expression while suppressing Slug expression, and this differential regulation was due specifically to activation of the TPA receptor. These studies show that Slug and Snail exhibit similar patterns of expression during both UVR and chemical skin carcinogenesis, that Slug and Snail can be differentially regulated under some conditions and that in vitro findings may not recapitulate in vivo results.

  2. Clinical and prognostic association of transcription factor SOX4 in gastric cancer.

    Directory of Open Access Journals (Sweden)

    Chia-Lang Fang

    Full Text Available Gastric cancer (GC is one of the most common malignant cancers worldwide. However, little is known about the molecular process by which this disease develops and progresses. This study investigated correlations between the expression of nuclear transcription factor SOX4 and various clinicopathologic parameters as well as patients' survival. Expression levels of nuclear SOX4 were analyzed by immunohistochemistry; the data comprised gastric tissues from 168 patients with GC. Paired t tests were used to analyze the differences in nuclear SOX4 expression between tumor and non-tumor tissues from each patient. Two-tailed Χ(2 tests were performed to determine whether the differences in nuclear SOX4 expression and clinicopathologic parameters were significant. Time-to-event endpoints for clinicopathologic parameters were plotted using the Kaplan-Meier method, and statistical significance was determined using univariate log-rank tests. Cox proportional hazard model was used for multivariate analysis to determine the independence of prognostic effects of nuclear SOX4 expression. Overexpression of nuclear SOX4 was significantly correlated with depth of invasion (P<0.0001, nodal status (P=0.0055, distant metastasis (P=0.0195, stage (P=0.0003, and vascular invasion (P=0.0383. Patients who displayed high expression levels of nuclear SOX4 achieved a significantly poorer disease-free survival rate, compared with patients with low SOX4 expression levels (P=0.003. Univariate Cox regression analysis showed that overexpression of nuclear SOX4 was a clear prognostic marker for GC (P=0.004. Overexpression of nuclear SOX4 can be used as a marker to predict the outcome of patients with GC.

  3. Nrf1 and Nrf2 transcription factors regulate androgen receptor transactivation in prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Michelle A Schultz

    Full Text Available Despite androgen deprivation therapy (ADT, persistent androgen receptor (AR signaling enables outgrowth of castration resistant prostate cancer (CRPC. In prostate cancer (PCa cells, ADT may enhance AR activity through induction of oxidative stress. Herein, we investigated the roles of Nrf1 and Nrf2, transcription factors that regulate antioxidant gene expression, on hormone-mediated AR transactivation using a syngeneic in vitro model of androgen dependent (LNCaP and castration resistant (C4-2B PCa cells. Dihydrotestosterone (DHT stimulated transactivation of the androgen response element (ARE was significantly greater in C4-2B cells than in LNCaP cells. DHT-induced AR transactivation was coupled with higher nuclear translocation of p65-Nrf1 in C4-2B cells, as compared to LNCaP cells. Conversely, DHT stimulation suppressed total Nrf2 levels in C4-2B cells but elevated total Nrf2 levels in LNCaP cells. Interestingly, siRNA mediated silencing of Nrf1 attenuated AR transactivation while p65-Nrf1 overexpression enhanced AR transactivation. Subsequent studies showed that Nrf1 physically interacts with AR and enhances AR's DNA-binding activity, suggesting that the p65-Nrf1 isoform is a potential AR coactivator. In contrast, Nrf2 suppressed AR-mediated transactivation by stimulating the nuclear accumulation of the p120-Nrf1 which suppressed AR transactivation. Quantitative RT-PCR studies further validated the inductive effects of p65-Nrf1 isoform on the androgen regulated genes, PSA and TMPRSS2. Therefore, our findings implicate differential roles of Nrf1 and Nrf2 in regulating AR transactivation in PCa cells. Our findings also indicate that the DHT-stimulated increase in p65-Nrf1 and the simultaneous suppression of both Nrf2 and p120-Nrf1 ultimately facilitates AR transactivation in CRPC cells.

  4. Identifying significant genetic regulatory networks in the prostate cancer from microarray data based on transcription factor analysis and conditional independency

    Directory of Open Access Journals (Sweden)

    Yeh Cheng-Yu

    2009-12-01

    Full Text Available Abstract Background Prostate cancer is a world wide leading cancer and it is characterized by its aggressive metastasis. According to the clinical heterogeneity, prostate cancer displays different stages and grades related to the aggressive metastasis disease. Although numerous studies used microarray analysis and traditional clustering method to identify the individual genes during the disease processes, the important gene regulations remain unclear. We present a computational method for inferring genetic regulatory networks from micorarray data automatically with transcription factor analysis and conditional independence testing to explore the potential significant gene regulatory networks that are correlated with cancer, tumor grade and stage in the prostate cancer. Results To deal with missing values in microarray data, we used a K-nearest-neighbors (KNN algorithm to determine the precise expression values. We applied web services technology to wrap the bioinformatics toolkits and databases to automatically extract the promoter regions of DNA sequences and predicted the transcription factors that regulate the gene expressions. We adopt the microarray datasets consists of 62 primary tumors, 41 normal prostate tissues from Stanford Microarray Database (SMD as a target dataset to evaluate our method. The predicted results showed that the possible biomarker genes related to cancer and denoted the androgen functions and processes may be in the development of the prostate cancer and promote the cell death in cell cycle. Our predicted results showed that sub-networks of genes SREBF1, STAT6 and PBX1 are strongly related to a high extent while ETS transcription factors ELK1, JUN and EGR2 are related to a low extent. Gene SLC22A3 may explain clinically the differentiation associated with the high grade cancer compared with low grade cancer. Enhancer of Zeste Homolg 2 (EZH2 regulated by RUNX1 and STAT3 is correlated to the pathological stage

  5. Regulation of the Mechanism of TWIST1 Transcription by BHLHE40 and BHLHE41 in Cancer Cells.

    Science.gov (United States)

    Asanoma, Kazuo; Liu, Ge; Yamane, Takako; Miyanari, Yoko; Takao, Tomoka; Yagi, Hiroshi; Ohgami, Tatsuhiro; Ichinoe, Akimasa; Sonoda, Kenzo; Wake, Norio; Kato, Kiyoko

    2015-12-01

    BHLHE40 and BHLHE41 (BHLHE40/41) are basic helix-loop-helix type transcription factors that play key roles in multiple cell behaviors. BHLHE40/41 were recently shown to be involved in an epithelial-to-mesenchymal transition (EMT). However, the precise mechanism of EMT control by BHLHE40/41 remains unclear. In the present study, we demonstrated that BHLHE40/41 expression was controlled in a pathological stage-dependent manner in human endometrial cancer (HEC). Our in vitro assays showed that BHLHE40/41 suppressed tumor cell invasion. BHLHE40/41 also suppressed the transcription of the EMT effectors SNAI1, SNAI2, and TWIST1. We identified the critical promoter regions of TWIST1 for its basal transcriptional activity. We elucidated that the transcription factor SP1 was involved in the basal transcriptional activity of TWIST1 and that BHLHE40/41 competed with SP1 for DNA binding to regulate gene transcription. This study is the first to report the detailed functions of BHLHE40 and BHLHE41 in the suppression of EMT effectors in vitro. Our results suggest that BHLHE40/41 suppress tumor cell invasion by inhibiting EMT in tumor cells. We propose that BHLHE40/41 are promising markers to predict the aggressiveness of each HEC case and that molecular targeting strategies involving BHLHE40/41 and SP1 may effectively regulate HEC progression.

  6. Abnormal Localization and Tumor Suppressor Function of Epithelial Tissue-Specific Transcription Factor ESE3 in Esophageal Squamous Cell Carcinoma.

    Science.gov (United States)

    Wang, Li; Xing, Jie; Cheng, Rui; Shao, Ying; Li, Peng; Zhu, Shengtao; Zhang, Shutian

    2015-01-01

    Esophageal cancer is one of the most common malignant cancers worldwide. The molecular mechanism of esophageal squamous cell carcinoma (ESCC) is still poorly understood. ESE3 is a member of the Ets transcription family, which is only expressed in epithelial tissues and acts as a tumor suppressor gene in prostate cancer. Our study aim was to confirm whether ESE3 is involved in the carcinogenesis of ESCC. Immunohistochemical analysis revealed that ESE3 was mainly located in cell nuclei of normal tissues and the cytoplasm in ESCC tissues. Immunofluorescence and western blot analyses of the normal esophageal cell line HEEpiC and ESCC cell lines EC9706 TE-1, KYSE150, and KYSE410 confirmed these results. pEGFP-ESE3 and pcDNA3.1-V5/HisA-ESE3 plasmids were constructed for overexpression of ESE3 in EC9706 and KYSE150 cells. The stably transfected cells showed restoration of the nuclear localization of ESE3. EC9706 cells with re-localization of ESE3 to the nucleus showed inhibition of proliferation, colony formation, migration, and invasion. To explore the possible mechanism of the differences in localization of ESE3 in normal esophageal cells and ESCC cells, ESCC cell lines were treated with the nuclear export inhibitor leptomycin B, transcription inhibitor actinomycin D, PKC inhibitor sphinganine, P38 MAPK inhibitor SB202190, and CK II inhibitor TBCA. These reagents were chosen according to the well-known mechanisms of protein translocation. However, the localization of ESE3 was unchanged after these treatments. The sequence of ESE3 cDNA in ESCC cells was identical to the standard sequence of ESE3 in the NCBI Genebank database, indicating that there was no mutation in the coding region of ESE3 in ESCC. Taken together, our study suggests that ESE3 plays an important role in the carcinogenesis of ESCC through changes in subcellular localization and may act as a tumor suppressor gene in ESCC, although the mechanisms require further study.

  7. Abnormal Localization and Tumor Suppressor Function of Epithelial Tissue-Specific Transcription Factor ESE3 in Esophageal Squamous Cell Carcinoma.

    Directory of Open Access Journals (Sweden)

    Li Wang

    Full Text Available Esophageal cancer is one of the most common malignant cancers worldwide. The molecular mechanism of esophageal squamous cell carcinoma (ESCC is still poorly understood. ESE3 is a member of the Ets transcription family, which is only expressed in epithelial tissues and acts as a tumor suppressor gene in prostate cancer. Our study aim was to confirm whether ESE3 is involved in the carcinogenesis of ESCC. Immunohistochemical analysis revealed that ESE3 was mainly located in cell nuclei of normal tissues and the cytoplasm in ESCC tissues. Immunofluorescence and western blot analyses of the normal esophageal cell line HEEpiC and ESCC cell lines EC9706 TE-1, KYSE150, and KYSE410 confirmed these results. pEGFP-ESE3 and pcDNA3.1-V5/HisA-ESE3 plasmids were constructed for overexpression of ESE3 in EC9706 and KYSE150 cells. The stably transfected cells showed restoration of the nuclear localization of ESE3. EC9706 cells with re-localization of ESE3 to the nucleus showed inhibition of proliferation, colony formation, migration, and invasion. To explore the possible mechanism of the differences in localization of ESE3 in normal esophageal cells and ESCC cells, ESCC cell lines were treated with the nuclear export inhibitor leptomycin B, transcription inhibitor actinomycin D, PKC inhibitor sphinganine, P38 MAPK inhibitor SB202190, and CK II inhibitor TBCA. These reagents were chosen according to the well-known mechanisms of protein translocation. However, the localization of ESE3 was unchanged after these treatments. The sequence of ESE3 cDNA in ESCC cells was identical to the standard sequence of ESE3 in the NCBI Genebank database, indicating that there was no mutation in the coding region of ESE3 in ESCC. Taken together, our study suggests that ESE3 plays an important role in the carcinogenesis of ESCC through changes in subcellular localization and may act as a tumor suppressor gene in ESCC, although the mechanisms require further study.

  8. Rare earth fluorescent nanoparticles for specific cancer cell targeting

    Science.gov (United States)

    Stefanakis, Dimitrios; Ghanotakis, Demetrios F.

    2016-07-01

    Terbium layered hydroxide nanoparticles (Tb2(OH)5NO3) were synthesized by a one-pot coprecipitation method. The characterization of this preparation revealed highly oriented fluorescent nanoparticles. An attempt to improve the properties of Tb2(OH)5NO3 resulted in the preparation of two optimized nanoparticles. In particular, Tb2(OH)5NO3:Eu and Tb2(OH)5NO3-FA were prepared when Tb2(OH)5NO3 was doped with Europium and when the surface was modified with folic acid (FA), respectively. The size of the above nanoparticles was below 100 nm, and thus they have the potential to be used for biomedical applications. The interaction of nanoparticles with human cells was studied using confocal microscopy. This study revealed that only the nanoparticles modified with folic acid have the ability to be targeted to HeLa cells. This specific identification of cancer cells, in combination with the fluorescent properties of Tb2(OH)5NO3, could render these nanoparticles appropriate for biomedical applications.

  9. Transcriptional Signatures as a Disease-Specific and Predictive Inflammatory Biomarker for Type 1 Diabetes

    Science.gov (United States)

    Levy, Hara; Wang, Xujing; Kaldunski, Mary; Jia, Shuang; Kramer, Joanna; Pavletich, Scott J.; Reske, Melissa; Gessel, Trevor; Yassai, Maryam; Quasney, Michael W.; Dahmer, Mary K.; Gorski, Jack; Hessner, Martin J.

    2014-01-01

    The complex milieu of inflammatory mediators associated with many diseases is often too dilute to directly measure in the periphery, necessitating development of more sensitive measurements suitable for mechanistic studies, earlier diagnosis, guiding therapeutic decisions, and monitoring interventions. We previously demonstrated that plasma samples from recent-onset Type 1 diabetes (RO T1D) patients induce a proinflammatory transcriptional signature in freshly drawn peripheral blood mononuclear cells (PBMCs) relative to that of unrelated healthy controls (HC). Here, using cryopreserved PBMC, we analyzed larger RO T1D and HC cohorts, examined T1D progression in pre-onset samples, and compared the RO T1D signature to those associated with three disorders characterized by airway infection and inflammation. The RO T1D signature, consisting of interleukin-1 cytokine family members, chemokines involved in immunocyte chemotaxis, immune receptors, and signaling molecules, was detected during early pre-diabetes and found to resolve post-onset. The signatures associated with cystic fibrosis patients chronically infected with Pseudomonas aeruginosa, patients with confirmed bacterial pneumonia, and subjects with H1N1 influenza all reflected immunological activation, yet each were distinct from one another and negatively correlated with that of T1D. This study highlights the remarkable capacity of cells to serve as biosensors capable of sensitively and comprehensively differentiating immunological states. PMID:22972474

  10. Azacytidine and decitabine induce gene-specific and non-random DNA demethylation in human cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Sabine Hagemann

    Full Text Available The DNA methyltransferase inhibitors azacytidine and decitabine represent archetypal drugs for epigenetic cancer therapy. To characterize the demethylating activity of azacytidine and decitabine we treated colon cancer and leukemic cells with both drugs and used array-based DNA methylation analysis of more than 14,000 gene promoters. Additionally, drug-induced demethylation was compared to methylation patterns of isogenic colon cancer cells lacking both DNA methyltransferase 1 (DNMT1 and DNMT3B. We show that drug-induced demethylation patterns are highly specific, non-random and reproducible, indicating targeted remethylation of specific loci after replication. Correspondingly, we found that CG dinucleotides within CG islands became preferentially remethylated, indicating a role for DNA sequence context. We also identified a subset of genes that were never demethylated by drug treatment, either in colon cancer or in leukemic cell lines. These demethylation-resistant genes were enriched for Polycomb Repressive Complex 2 components in embryonic stem cells and for transcription factor binding motifs not present in demethylated genes. Our results provide detailed insights into the DNA methylation patterns induced by azacytidine and decitabine and suggest the involvement of complex regulatory mechanisms in drug-induced DNA demethylation.

  11. Epigenetic transcriptional regulation of the growth arrest-specific gene 1 (Gas1 in hepatic cell proliferation at mononucleosomal resolution.

    Directory of Open Access Journals (Sweden)

    Natalia Sacilotto

    Full Text Available BACKGROUND: Gas1 (growth arrest-specific 1 gene is known to inhibit cell proliferation in a variety of models, but its possible implication in regulating quiescence in adult tissues has not been examined to date. The knowledge of how Gas1 is regulated in quiescence may contribute to understand the deregulation occurring in neoplastic diseases. METHODOLOGY/PRINCIPAL FINDINGS: Gas1 expression has been studied in quiescent murine liver and during the naturally synchronized cell proliferation after partial hepatectomy. Chromatin immunoprecipitation at nucleosomal resolution (Nuc-ChIP has been used to carry out the study preserving the in vivo conditions. Transcription has been assessed at real time by quantifying the presence of RNA polymerase II in coding regions (RNApol-ChIP. It has been found that Gas1 is expressed not only in quiescent liver but also at the cell cycle G(1/S transition. The latter expression peak had not been previously reported. Two nucleosomes, flanking a nucleosome-free region, are positioned close to the transcription start site. Both nucleosomes slide in going from the active to the inactive state and vice versa. Nuc-ChIP analysis of the acquisition of histone epigenetic marks show distinctive features in both active states: H3K9ac and H3K4me2 are characteristic of transcription in G(0 and H4R3me2 in G(1/S transition. Sequential-ChIP analysis revealed that the "repressing" mark H3K9me2 colocalize with several "activating" marks at nucleosome N-1 when Gas1 is actively transcribed suggesting a greater plasticity of epigenetic marks than proposed until now. The recruitment of chromatin-remodeling or modifying complexes also displayed distinct characteristics in quiescence and the G(1/S transition. CONCLUSIONS/SIGNIFICANCE: The finding that Gas1 is transcribed at the G(1/S transition suggests that the gene may exert a novel function during cell proliferation. Transcription of this gene is modulated by specific "activating" and

  12. A Transcriptional Fingerprint of Estrogen in Human Breast Cancer Predicts Patient Survival

    Directory of Open Access Journals (Sweden)

    Jianjun Yu

    2008-01-01

    Full Text Available Estrogen signaling plays an essential role in breast cancer progression, and estrogen receptor (ER status has long been a marker of hormone responsiveness. However, ER status alone has been an incomplete predictor of endocrine therapy, as some ER+ tumors, nevertheless, have poor prognosis. Here we sought to use expression profiling of ER+ breast cancer cells to screen for a robust estrogen-regulated gene signature that may serve as a better indicator of cancer outcome. We identified 532 estrogen-induced genes and further developed a 73-gene signature that best separated a training set of 286 primary breast carcinomas into prognostic subtypes by stepwise cross-validation. Notably, this signature predicts clinical outcome in over 10 patient cohorts as well as their respective ER+ subcohorts. Further, this signature separates patients who have received endocrine therapy into two prognostic subgroups, suggesting its specificity as a measure of estrogen signaling, and thus hormone sensitivity. The 73-gene signature also provides additional predictive value for patient survival, independent of other clinical parameters, and outperforms other previously reported molecular outcome signatures. Taken together, these data demonstrate the power of using cell culture systems to screen for robust gene signatures of clinical relevance.

  13. Transcription activator-like effector nuclease (TALEN)-mediated female-specific sterility in the silkworm, Bombyx mori.

    Science.gov (United States)

    Xu, J; Wang, Y; Li, Z; Ling, L; Zeng, B; James, A A; Tan, A; Huang, Y

    2014-12-01

    Engineering sex-specific sterility is critical for developing transgene-based sterile insect technology. Targeted genome engineering achieved by customized zinc-finger nuclease, transcription activator-like effector nuclease (TALEN) or clustered, regularly interspaced, short palindromic repeats/Cas9 systems has been exploited extensively in a variety of model organisms; however, screening mutated individuals without a detectable phenotype is still challenging. In addition, genetically recessive mutations only detectable in homozygotes make the experiments time-consuming. In the present study, we model a novel genetic system in the silkworm, Bombyx mori, that results in female-specific sterility by combining transgenesis with TALEN technologies. This system induces sex-specific sterility at a high efficiency by targeting the female-specific exon of the B. mori doublesex (Bmdsx) gene, which has sex-specific splicing isoforms regulating somatic sexual development. Transgenic animals co-expressing TALEN left and right arms targeting the female-specific Bmdsx exon resulted in somatic mutations and female mutants lost fecundity because of lack of egg storage and abnormal external genitalia. The wild-type sexual dimorphism of abdominal segment was not evident in mutant females. In contrast, there were no deleterious effects in mutant male moths. The current somatic TALEN technologies provide a promising approach for future insect functional genetics, thus providing the basis for the development of attractive genetic alternatives for insect population management.

  14. Changes in nucleosome position at transcriptional start sites of specific genes in Zea mays mediator of paramutation1 mutants.

    Science.gov (United States)

    Labonne, Jonathan D J; Dorweiler, Jane E; McGinnis, Karen M

    2013-04-01

    Nucleosomes facilitate compaction of DNA within the confines of the eukaryotic nucleus. This packaging of DNA and histone proteins must accommodate cellular processes, such as transcription and DNA replication. The repositioning of nucleosomes to facilitate cellular processes is likely regulated by several factors. In Zea mays, Mediator of paramutation1 (MOP1) has been demonstrated to be an epigenetic regulator of gene expression. Based on sequence orthology and mutant phenotypes, MOP1 is likely to function in an RNA-dependent pathway to mediate changes to chromatin. High-resolution microarrays were used to assay the distribution of nucleosomes across the transcription start sites (TSSs) of ~400 maize genes in wild type and mutant mop1-1 tissues. Analysis of nucleosome distribution in leaf, immature tassel and ear shoot tissues resulted in the identification of three genes showing consistent differences in nucleosome positioning and occupancy between wild type and mutant mop1-1. These specific changes in nucleosome distribution were located upstream as well as downstream of the TSS. No direct relationship between the specific changes in nucleosome distribution and transcription were observed through quantitative expression analysis in these tissues. In silico prediction suggests that nucleosome positioning is not dictated by intrinsic DNA sequence signals in the TSSs of two of the identified genes, suggesting a role for chromatin remodeling proteins in MOP1-mediated pathways. These results also indicate that MOP1 contributions to nucleosome position may be either separate from changes in gene expression, or cooperative with development and other levels of regulation in coordinating gene expression.

  15. Androgen receptor is the key transcriptional mediator of the tumor suppressor SPOP in prostate cancer.

    Science.gov (United States)

    Geng, Chuandong; Rajapakshe, Kimal; Shah, Shrijal S; Shou, John; Eedunuri, Vijay Kumar; Foley, Christopher; Fiskus, Warren; Rajendran, Mahitha; Chew, Sue Anne; Zimmermann, Martin; Bond, Richard; He, Bin; Coarfa, Cristian; Mitsiades, Nicholas

    2014-10-01

    Somatic missense mutations in the substrate-binding pocket of the E3 ubiquitin ligase adaptor SPOP are present in up to 15% of human prostate adenocarcinomas, but are rare in other malignancies, suggesting a prostate-specific mechanism of action. SPOP promotes ubiquitination and degradation of several protein substrates, including the androgen receptor (AR) coactivator SRC-3. However, the relative contributions that SPOP substrates may make to the pathophysiology of SPOP-mutant (mt) prostate adenocarcinomas are unknown. Using an unbiased bioinformatics approach, we determined that the gene expression profile of prostate adenocarcinoma cells engineered to express mt-SPOP overlaps greatly with the gene signature of both SRC-3 and AR transcriptional output, with a stronger similarity to AR than SRC-3. This finding suggests that in addition to its SRC-3-mediated effects, SPOP also exerts SRC-3-independent effects that are AR-mediated. Indeed, we found that wild-type (wt) but not prostate adenocarcinoma-associated mutants of SPOP promoted AR ubiquitination and degradation, acting directly through a SPOP-binding motif in the hinge region of AR. In support of these results, tumor xenografts composed of prostate adenocarcinoma cells expressing mt-SPOP exhibited higher AR protein levels and grew faster than tumors composed of prostate adenocarcinoma cells expressing wt-SPOP. Furthermore, genetic ablation of SPOP was sufficient to increase AR protein levels in mouse prostate. Examination of public human prostate adenocarcinoma datasets confirmed a strong link between transcriptomic profiles of mt-SPOP and AR. Overall, our studies highlight the AR axis as the key transcriptional output of SPOP in prostate adenocarcinoma and provide an explanation for the prostate-specific tumor suppressor role of wt-SPOP.

  16. The tumor suppressor p53 regulates autophagosomal and lysosomal biogenesis in lung cancer cells by targeting transcription factor EB.

    Science.gov (United States)

    Zhang, Zengli; Wang, Hongfeng; Ding, Qifeng; Xing, Yufei; Xu, Delai; Xu, Zhonghua; Zhou, Tong; Qian, Bin; Ji, Chenghong; Pan, Xue; Zhong, Anyuan; Ying, Zheng; Zhou, Caicun; Shi, Minhua

    2017-03-10

    The cellular protein degradation system, such as proteasomal or autophagy-lysosomal system plays an important role in the pathogenesis of a variety of human diseases including cancer. Transcription factor EB (TFEB) is a master transcriptional factor in the regulation of autophagy-lysosome pathway (ALP), and it has multiple biological functions including protein degradation, cell homeostasis and cell survival. In the present study we show that the tumor suppressor p53 can regulate TFEB nuclear translocation and activity in lung cancer cells. We found p53 deletion or chemical inhibition of p53 using pifithrin-α could promote the translocation of TFEB from cytoplasm to the nucleus, thus increased the TFEB-mediated lysosomal and autophagosomal biogenesis in lung cancer cells. Moreover, re-expression of p53 could decrease the expression levels of TFEB-targeting genes involved in ALP, and knockdown of TFEB could abolish the effect of p53 on the regulation of ALP gene expression. Taken together, our data indicate that p53 affects ALP through regulating TFEB nuclear translocation in lung cancer cells. Importantly, our study reveals a critical link between two keys factors in tumourigenesis and autophagy, and suggests a potential important role of p53-TFEB signaling axis in lung cancer.

  17. Using graphical adaptive lasso approach to construct transcription factor and microRNA's combinatorial regulatory network in breast cancer.

    Science.gov (United States)

    Su, Naifang; Dai, Ding; Deng, Chao; Qian, Minping; Deng, Minghua

    2014-06-01

    Discovering the regulation of cancer-related gene is of great importance in cancer biology. Transcription factors and microRNAs are two kinds of crucial regulators in gene expression, and they compose a combinatorial regulatory network with their target genes. Revealing the structure of this network could improve the authors' understanding of gene regulation, and further explore the molecular pathway in cancer. In this article, the authors propose a novel approach graphical adaptive lasso (GALASSO) to construct the regulatory network in breast cancer. GALASSO use a Gaussian graphical model with adaptive lasso penalties to integrate the sequence information as well as gene expression profiles. The simulation study and the experimental profiles verify the accuracy of the authors' approach. The authors further reveal the structure of the regulatory network, and explore the role of feedforward loops in gene regulation. In addition, the authors discuss the combinatorial regulatory effect between transcription factors and microRNAs, and select miR-155 for detailed analysis of microRNA's role in cancer. The proposed GALASSO approach is an efficient method to construct the combinatorial regulatory network. It also provides a new way to integrate different data sources and could find more applications in meta-analysis problem.

  18. Embryonic transcription factor expression in mice predicts medial amygdala neuronal identity and sex-specific responses to innate behavioral cues

    Science.gov (United States)

    Lischinsky, Julieta E; Sokolowski, Katie; Li, Peijun; Esumi, Shigeyuki; Kamal, Yasmin; Goodrich, Meredith; Oboti, Livio; Hammond, Timothy R; Krishnamoorthy, Meera; Feldman, Daniel; Huntsman, Molly; Liu, Judy; Corbin, Joshua G

    2017-01-01

    The medial subnucleus of the amygdala (MeA) plays a central role in processing sensory cues required for innate behaviors. However, whether there is a link between developmental programs and the emergence of inborn behaviors remains unknown. Our previous studies revealed that the telencephalic preoptic area (POA) embryonic niche is a novel source of MeA destined progenitors. Here, we show that the POA is comprised of distinct progenitor pools complementarily marked by the transcription factors Dbx1 and Foxp2. As determined by molecular and electrophysiological criteria this embryonic parcellation predicts postnatal MeA inhibitory neuronal subtype identity. We further find that Dbx1-derived and Foxp2+ cells in the MeA are differentially activated in response to innate behavioral cues in a sex-specific manner. Thus, developmental transcription factor expression is predictive of MeA neuronal identity and sex-specific neuronal responses, providing a potential developmental logic for how innate behaviors could be processed by different MeA neuronal subtypes. DOI: http://dx.doi.org/10.7554/eLife.21012.001 PMID:28244870

  19. A component of the transcriptional mediator complex inhibits RAS-dependent vulval fate specification in C. elegans.

    Science.gov (United States)

    Moghal, Nadeem; Sternberg, Paul W

    2003-01-01

    Negative regulation of receptor tyrosine kinase (RTK)/RAS signaling pathways is important for normal development and the prevention of disease in humans. We have used a genetic screen in C. elegans to identify genes that antagonize the activity of activated LET-23, a member of the EGFR family of RTKs. We identified two loss-of-function mutations in dpy-22, previously cloned as sop-1, that promote the ability of activated LET-23 to induce ectopic vulval fates. DPY-22 is a glutamine-rich protein that is most similar to human TRAP230, a component of a transcriptional mediator complex. DPY-22 has previously been shown to regulate WNT responses through inhibition of the beta-catenin-like protein BAR-1. We provide evidence that DPY-22 also inhibits RAS-dependent vulval fate specification independently of BAR-1, and probably regulates the activities of multiple transcription factors during development. Furthermore, we demonstrate that although inhibition of BAR-1-dependent gene expression has been shown to require the C-terminal glutamine-rich region, this region is dispensable for inhibition of RAS-dependent cell differentiation. Thus, the glutamine-rich region contributes to specificity of this class of mediator protein.

  20. Gambogic acid-loaded magnetic Fe3O4 nanoparticles inhibit Panc-1 pancreatic cancer cell proliferation and migration by inactivating transcription factor ETS1

    Directory of Open Access Journals (Sweden)

    Wang C

    2012-02-01

    Full Text Available Cailian Wang1, Haijun Zhang1, Yan Chen1, Fangfang Shi1, Baoan Chen2,31Department of Oncology, 2Department of Hematology, Zhongda Hospital, 3Faculty of Oncology, Medical School, Southeast University, Nanjing, People’s Republic of ChinaBackground: E26 transformation-specific sequence-1 (ETS1 transcription factor plays important roles in both carcinogenesis and the progression of a wide range of malignancies. Aberrant ETS1 expression correlates with aggressive tumor behavior and a poorer prognosis in patients with various malignancies. The aim of the current study was to evaluate the efficacy of a drug delivery system utilizing gambogic acid-loaded magnetic Fe3O4 nanoparticles (GA-MNP- Fe3O4 on the suppression of ETS1-mediated cell proliferation and migration in Panc-1 pancreatic cancer cells.Methods: The effects caused by GA-MNP- Fe3O4 on the proliferation of Panc-1 pancreatic cancer cells were evaluated using a MTT (3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assay while inhibition of tumor cell migration was investigated in a scratch assay. The expressions of ETS1, cyclin D1, urokinase-type plasminogen activator (u-PA, and VEGF (vascular endothelial growth factor were examined by Western blot to elucidate the possible mechanisms involved.Results: In Panc-1 pancreatic cancer cells, we observed that application of GA-MNP- Fe3O4 was able to suppress cancer cell proliferation and prevent cells from migrating effectively. After treatment, Panc-1 pancreatic cancer cells showed significantly decreased expression of ETS1, as well as its downstream target genes for cyclin D1, u-PA, and VEGF.Conclusion: Our novel finding reaffirmed the significance of ETS1 in the treatment of pancreatic cancer, and application of GA-MNP- Fe3O4 nanoparticles targeting ETS1 should be considered as a promising contribution for better pancreatic cancer care.Keywords: ETS1 transcription factor, gambogic acid, pancreatic cancer, magnetic nanoparticles

  1. Facilitates Chromatin Transcription Complex Is an “Accelerator” of Tumor Transformation and Potential Marker and Target of Aggressive Cancers

    Directory of Open Access Journals (Sweden)

    Henry Garcia

    2013-07-01

    Full Text Available The facilitates chromatin transcription (FACT complex is involved in chromatin remodeling during transcription, replication, and DNA repair. FACT was previously considered to be ubiquitously expressed and not associated with any disease. However, we discovered that FACT is the target of a class of anticancer compounds and is not expressed in normal cells of adult mammalian tissues, except for undifferentiated and stem-like cells. Here, we show that FACT expression is strongly associated with poorly differentiated aggressive cancers with low overall survival. In addition, FACT was found to be upregulated during in vitro transformation and to be necessary, but not sufficient, for driving transformation. FACT also promoted survival and growth of established tumor cells. Genome-wide mapping of chromatin-bound FACT indicated that FACT’s role in cancer most likely involves selective chromatin remodeling of genes that stimulate proliferation, inhibit cell death and differentiation, and regulate cellular stress responses.

  2. Comet-FISH with strand-specific probes reveals transcription-coupled repair of 8-oxoGuanine in human cells.

    Science.gov (United States)

    Guo, Jia; Hanawalt, Philip C; Spivak, Graciela

    2013-09-01

    Oxidized bases in DNA have been implicated in cancer, aging and neurodegenerative disease. We have developed an approach combining single-cell gel electrophoresis (comet) with fluorescence in situ hybridization (FISH) that enables the comparative quantification of low, physiologically relevant levels of DNA lesions in the respective strands of defined nucleotide sequences and in the genome overall. We have synthesized single-stranded probes targeting the termini of DNA segments of interest using a polymerase chain reaction-based method. These probes facilitate detection of damage at the single-molecule level, as the lesions are converted to DNA strand breaks by lesion-specific endonucleases or glycosylases. To validate our method, we have documented transcription-coupled repair of cyclobutane pyrimidine dimers in the ataxia telangiectasia-mutated (ATM) gene in human fibroblasts irradiated with 254 nm ultraviolet at 0.1 J/m2, a dose ∼100-fold lower than those typically used. The high specificity and sensitivity of our approach revealed that 7,8-dihydro-8-oxoguanine (8-oxoG) at an incidence of approximately three lesions per megabase is preferentially repaired in the transcribed strand of the ATM gene. We have also demonstrated that the hOGG1, XPA, CSB and UVSSA proteins, as well as actively elongating RNA polymerase II, are required for this process, suggesting cross-talk between DNA repair pathways.

  3. The sensitivity and specificity of a reverse transcription-polymerase chain reaction assay for the avian pneumovirus (Colorado strain).

    Science.gov (United States)

    Pedersen, J C; Reynolds, D L; Ali, A

    2000-01-01

    A reverse transcription-polymerase chain reaction (RT-PCR) assay for the detection of avian pneumovirus (APV), Colorado strain (US/CO), was evaluated for sensitivity and specificity. The single-tube RT-PCR assay utilized primers developed from the matrix (M) gene sequence of the US/CO APV. The RT-PCR amplified the US/CO APV but did not amplify other pneumoviruses, including the avian pneumoviruses subgroups A and B. The RT-PCR was capable of detecting between 10(0.25) mean tissue culture infective dose (TCID50) and 10(-0.44) TCID50 of the US/CO APV. These results have demonstrated that the single-tube RT-PCR assay is a specific and sensitive assay for the detection of US/CO APV.

  4. Nuclear localization of the transcriptional coactivator YAP is associated with invasive lobular breast cancer

    NARCIS (Netherlands)

    Vlug, E.J.; Ven, R.A. van de; Vermeulen, J.F.; Bult, P.; Diest, P.J. van; Derksen, P.W.B.

    2013-01-01

    BACKGROUND: Yes Associated Protein (YAP) has been implicated in the control of organ size by regulating cell proliferation and survival. YAP is a transcriptional coactivator that controls cellular responses through interaction with TEAD transcription factors in the nucleus, while its transcriptional

  5. Human and mouse ZFY genes produce a conserved testis-specific transcript encoding a zinc finger protein with a short acidic domain and modified transactivation potential.

    Science.gov (United States)

    Decarpentrie, Fanny; Vernet, Nadège; Mahadevaiah, Shantha K; Longepied, Guy; Streichemberger, Eric; Aknin-Seifer, Isabelle; Ojarikre, Obah A; Burgoyne, Paul S; Metzler-Guillemain, Catherine; Mitchell, Michael J

    2012-06-15

    Mammalian ZFY genes are located on the Y chromosome, and code putative transcription factors with 12-13 zinc fingers preceded by a large acidic (activating) domain. In mice, there are two genes, Zfy1 and Zfy2, which are expressed mainly in the testis. Their transcription increases in germ cells as they enter meiosis, both are silenced by meiotic sex chromosome inactivation (MSCI) during pachytene, and Zfy2 is strongly reactivated later in spermatids. Recently, we have shown that mouse Zfy2, but not Zfy1, is involved in triggering the apoptotic elimination of specific types of sex chromosomally aberrant spermatocytes. In humans, there is a single widely transcribed ZFY gene, and there is no evidence for a specific role in the testis. Here, we characterize ZFY transcription during spermatogenesis in mice and humans. In mice, we define a variety of Zfy transcripts, among which is a Zfy2 transcript that predominates in spermatids, and a Zfy1 transcript, lacking an exon encoding approximately half of the acidic domain, which predominates prior to MSCI. In humans, we have identified a major testis-specific ZFY transcript that encodes a protein with the same short acidic domain. This represents the first evidence that ZFY has a conserved function during human spermatogenesis. We further show that, in contrast to the full acidic domain, the short domain does not activate transcription in yeast, and we hypothesize that this explains the functional difference observed between Zfy1 and Zfy2 during mouse meiosis.

  6. Genome-wide analysis of the Dof transcription factor gene family reveals soybean-specific duplicable and functional characteristics.

    Directory of Open Access Journals (Sweden)

    Yong Guo

    Full Text Available The Dof domain protein family is a classic plant-specific zinc-finger transcription factor family involved in a variety of biological processes. There is great diversity in the number of Dof genes in different plants. However, there are only very limited reports on the characterization of Dof transcription factors in soybean (Glycine max. In the present study, 78 putative Dof genes were identified from the whole-genome sequence of soybean. The predicted GmDof genes were non-randomly distributed within and across 19 out of 20 chromosomes and 97.4% (38 pairs were preferentially retained duplicate paralogous genes located in duplicated regions of the genome. Soybean-specific segmental duplications contributed significantly to the expansion of the soybean Dof gene family. These Dof proteins were phylogenetically clustered into nine distinct subgroups among which the gene structure and motif compositions were considerably conserved. Comparative phylogenetic analysis of these Dof proteins revealed four major groups, similar to those reported for Arabidopsis and rice. Most of the GmDofs showed specific expression patterns based on RNA-seq data analyses. The expression patterns of some duplicate genes were partially redundant while others showed functional diversity, suggesting the occurrence of sub-functionalization during subsequent evolution. Comprehensive expression profile analysis also provided insights into the soybean-specific functional divergence among members of the Dof gene family. Cis-regulatory element analysis of these GmDof genes suggested diverse functions associated with different processes. Taken together, our results provide useful information for the functional characterization of soybean Dof genes by combining phylogenetic analysis with global gene-expression profiling.

  7. Fusion transcript discovery in formalin-fixed paraffin-embedded human breast cancer tissues reveals a link to tumor progression.

    Science.gov (United States)

    Ma, Yan; Ambannavar, Ranjana; Stephans, James; Jeong, Jennie; Dei Rossi, Andrew; Liu, Mei-Lan; Friedman, Adam J; Londry, Jason J; Abramson, Richard; Beasley, Ellen M; Baker, Joffre; Levy, Samuel; Qu, Kunbin

    2014-01-01

    The identification of gene fusions promises to play an important role in personalized cancer treatment decisions. Many rare gene fusion events have been identified in fresh frozen solid tumors from common cancers employing next-generation sequencing technology. However the ability to detect transcripts from gene fusions in RNA isolated from formalin-fixed paraffin-embedded (FFPE) tumor tissues, which exist in very large sample repositories for which disease outcome is known, is still limited due to the low complexity of FFPE libraries and the lack of appropriate bioinformatics methods. We sought to develop a bioinformatics method, named gFuse, to detect fusion transcripts in FFPE tumor tissues. An integrated, cohort based strategy has been used in gFuse to examine single-end 50 base pair (bp) reads generated from FFPE RNA-Sequencing (RNA-Seq) datasets employing two breast cancer cohorts of 136 and 76 patients. In total, 118 fusion events were detected transcriptome-wide at base-pair resolution across the 212 samples. We selected 77 candidate fusions based on their biological relevance to cancer and supported 61% of these using TaqMan assays. Direct sequencing of 19 of the fusion sequences identified by TaqMan confirmed them. Three unique fused gene pairs were recurrent across the 212 patients with 6, 3, 2 individuals harboring these fusions respectively. We show here that a high frequency of fusion transcripts detected at the whole transcriptome level correlates with poor outcome (Parchival FFPE tissues, and the potential prognostic value of the fusion transcripts detected.

  8. Signal transducer and activator of transcription 3 and 5 regulate system Xc- and redox balance in human breast cancer cells.

    Science.gov (United States)

    Linher-Melville, Katja; Haftchenary, Sina; Gunning, Patrick; Singh, Gurmit

    2015-07-01

    System Xc- is a cystine/glutamate antiporter that contributes to the maintenance of cellular redox balance. The human xCT (SLC7A11) gene encodes the functional subunit of system Xc-. Transcription factors regulating antioxidant defense mechanisms including system Xc- are of therapeutic interest, especially given that aggressive breast cancer cells exhibit increased system Xc- function. This investigation provides evidence that xCT expression is regulated by STAT3 and/or STAT5A, functionally affecting the antiporter in human breast cancer cells. Computationally analyzing two kilobase pairs of the xCT promoter/5' flanking region identified a distal gamma-activated site (GAS) motif, with truncations significantly increasing luciferase reporter activity. Similar transcriptional increases were obtained after treating cells transiently transfected with the full-length xCT promoter construct with STAT3/5 pharmacological inhibitors. Knock-down of STAT3 or STAT5A with siRNAs produced similar results. However, GAS site mutation significantly reduced xCT transcriptional activity, suggesting that STATs may interact with other transcription factors at more proximal promoter sites. STAT3 and STAT5A were bound to the xCT promoter in MDA-MB-231 cells, and binding was disrupted by pre-treatment with STAT inhibitors. Pharmacologically suppressing STAT3/5 activation significantly increased xCT mRNA and protein levels, as well as cystine uptake, glutamate release, and total levels of intracellular glutathione. Our data suggest that STAT proteins negatively regulate basal xCT expression. Blocking STAT3/5-mediated signaling induces an adaptive, compensatory mechanism to protect breast cancer cells from stress, including reactive oxygen species, by up-regulating xCT expression and the function of system Xc-. We propose that targeting system Xc- together with STAT3/5 inhibitors may heighten therapeutic anti-cancer effects.

  9. Common germline polymorphisms associated with breast cancer-specific survival

    DEFF Research Database (Denmark)

    Pirie, Ailith; Guo, Qi; Kraft, Peter

    2015-01-01

    INTRODUCTION: Previous studies have identified common germline variants nominally associated with breast cancer survival. These associations have not been widely replicated in further studies. The purpose of this study was to evaluate the association of previously reported SNPs with breast cancer...

  10. Leptin-dependent serotonin control of appetite: temporal specificity, transcriptional regulation, and therapeutic implications.

    Science.gov (United States)

    Yadav, Vijay K; Oury, Franck; Tanaka, Kenji F; Tanaka, Kenji; Thomas, Tiffany; Wang, Ying; Cremers, Serge; Hen, Rene; Krust, Andree; Chambon, Pierre; Karsenty, Gerard

    2011-01-17

    Recent evidence indicates that leptin regulates appetite and energy expenditure, at least in part by inhibiting serotonin synthesis and release from brainstem neurons. To demonstrate that this pathway works postnatally, we used a conditional, brainstem-specific mouse CreER(T2) driver to show that leptin signals in brainstem neurons after birth to decrease appetite by inhibiting serotonin synthesis. Cell-specific gene deletion experiments and intracerebroventricular leptin infusions reveal that serotonin signals in arcuate nuclei of the hypothalamus through the Htr1a receptor to favor food intake and that this serotonin function requires the expression of Creb, which regulates the expression of several genes affecting appetite. Accordingly, a specific antagonist of the Htr1a receptor decreases food intake in leptin-deficient but not in Htr1a(-/-) mice. Collectively, these results establish that leptin inhibition of serotonin is necessary to inhibit appetite postnatally and provide a proof of principle that selective inhibition of this pathway may be a viable option to treat appetite disorders.

  11. Comparative transcriptional profiling of the axolotl limb identifies a tripartite regeneration-specific gene program.

    Directory of Open Access Journals (Sweden)

    Dunja Knapp

    Full Text Available Understanding how the limb blastema is established after the initial wound healing response is an important aspect of regeneration research. Here we performed parallel expression profile time courses of healing lateral wounds versus amputated limbs in axolotl. This comparison between wound healing and regeneration allowed us to identify amputation-specific genes. By clustering the expression profiles of these samples, we could detect three distinguishable phases of gene expression - early wound healing followed by a transition-phase leading to establishment of the limb development program, which correspond to the three phases of limb regeneration that had been defined by morphological criteria. By focusing on the transition-phase, we identified 93 strictly amputation-associated genes many of which are implicated in oxidative-stress response, chromatin modification, epithelial development or limb development. We further classified the genes based on whether they were or were not significantly expressed in the developing limb bud. The specific localization of 53 selected candidates within the blastema was investigated by in situ hybridization. In summary, we identified a set of genes that are expressed specifically during regeneration and are therefore, likely candidates for the regulation of blastema formation.

  12. Impact of Physical Activity on Cancer-Specific and Overall Survival of Patients with Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Gaetan Des Guetz

    2013-01-01

    Full Text Available Background. Physical activity (PA reduces incidence of colorectal cancer (CRC. Its influence on cancer-specific (CSS and overall survival (OS is controversial. Methods. We performed a literature-based meta-analysis (MA of observational studies, using keywords “colorectal cancer, physical activity, and survival” in PubMed and EMBASE. No dedicated MA was found in the Cochrane Library. References were cross-checked. Pre- and postdiagnosis PA levels were assessed by MET. Usually, “high” PA was higher than 17 MET hour/week. Hazard ratios (HRs for OS and CSS were calculated, with their 95% confidence interval. We used more conservative adjusted HRs, since variables of adjustment were similar between studies. When higher PA was associated with improved survival, HRs for detrimental events were set to <1. We used EasyMA software and fixed effect model whenever possible. Results. Seven studies (8056 participants were included, representing 3762 men and 4256 women, 5210 colon and 1745 rectum cancers. Mean age was 67 years. HR CSS for postdiagnosis PA (higher PA versus lower was 0.61 (0.44–0.86. The corresponding HR OS was 0.62 (0.54–0.71. HR CSS for prediagnosis PA was 0.75 (0.62–0.91. The corresponding HR OS was 0.74 (0.62–0.89. Conclusion. Higher PA predicted a better CSS. Sustained PA should be advised for CRC. OS also improved (reduced cardiovascular risk.

  13. PlexinD1 Is a Novel Transcriptional Target and Effector of Notch Signaling in Cancer Cells

    Science.gov (United States)

    Rehman, Michael; Capparuccia, Lorena

    2016-01-01

    The secreted semaphorin Sema3E controls cell migration and invasiveness in cancer cells. Sema3E-receptor, PlexinD1, is frequently upregulated in melanoma, breast, colon, ovarian and prostate cancers; however, the mechanisms underlying PlexinD1 upregulation and the downstream events elicited in tumor cells are still unclear. Here we show that the canonical RBPjk-dependent Notch signaling cascade controls PlexinD1 expression in primary endothelial and cancer cells. Transcriptional activation was studied by quantitative PCR and promoter activity reporter assays. We found that Notch ligands and constitutively activated intracellular forms of Notch receptors upregulated PlexinD1 expression; conversely RNAi-based knock-down, or pharmacological inhibition of Notch signaling by gamma-secretase inhibitors, downregulated PlexinD1 levels. Notably, both Notch1 and Notch3 expression positively correlates with PlexinD1 levels in prostate cancer, as well as in other tumor types. In prostate cancer cells, Sema3E-PlexinD1 axis was previously reported to regulate migration; however, implicated mechanisms were not elucidated. Here we show that in these cells PlexinD1 activity induces the expression of the transcription factor Slug, downregulates E-cadherin levels and enhances cell migration. Moreover, our mechanistic data identify PlexinD1 as a pivotal mediator of this signaling axis downstream of Notch in prostate cancer cells. In fact, on one hand, PlexinD1 is required to mediate cell migration and E-cadherin regulation elicited by Notch. On the other hand, PlexinD1 upregulation is sufficient to induce prostate cancer cell migration and metastatic potential in mice, leading to functional rescue in the absence of Notch. In sum, our work identifies PlexinD1 as a novel transcriptional target induced by Notch signaling, and reveals its role promoting prostate cancer cell migration and downregulating E-cadherin levels in Slug-dependent manner. Collectively, these findings suggest that

  14. Transcriptional regulation of tenascin-W by TGF-beta signaling in the bone metastatic niche of breast cancer cells.

    Science.gov (United States)

    Chiovaro, Francesca; Martina, Enrico; Bottos, Alessia; Scherberich, Arnaud; Hynes, Nancy E; Chiquet-Ehrismann, Ruth

    2015-10-15

    Tenascin-W is a matricellular protein with a dynamically changing expression pattern in development and disease. In adults, tenascin-W is mostly restricted to stem cell niches, and is also expressed in the stroma of solid cancers. Here, we analyzed its expression in the bone microenvironment of breast cancer metastasis. Osteoblasts were isolated from tumor-free or tumor-bearing bones of mice injected with MDA-MB231-1833 breast cancer cells. We found a fourfold upregulation of tenascin-W in the osteoblast population of tumor-bearing mice compared to healthy mice, indicating that tenascin-W is supplied by the bone metastatic niche. Transwell and co-culture studies showed that human bone marrow stromal cells (BMSCs) express tenascin-W protein after exposure to factors secreted by MDA-MB231-1833 breast cancer cells. To study tenascin-W gene regulation, we identified and analyzed the tenascin-W promoter as well as three evolutionary conserved regions in the first intron. 5'RACE analysis of mRNA from human breast cancer, glioblastoma and bone tissue showed a single tenascin-W transcript with a transcription start site at a noncoding first exon followed by exon 2 containing the ATG translation start. Site-directed mutagenesis of a SMAD4-binding element in proximity of the TATA box strongly impaired promoter activity. TGFβ1 induced tenascin-W expression in human BMSCs through activation of the TGFβ1 receptor ALK5, while glucocorticoids were inhibitory. Our experiments show that tenascin-W acts as a niche component for breast cancer metastasis to bone by supporting cell migration and cell proliferation of the cancer cells.

  15. Power training and postmenopausal hormone therapy affect transcriptional control of specific co-regulated gene clusters in skeletal muscle

    Science.gov (United States)

    Fey, Vidal; Törmäkangas, Timo; Ronkainen, Paula H. A.; Taaffe, Dennis R.; Takala, Timo; Koskinen, Satu; Cheng, Sulin; Puolakka, Jukka; Kujala, Urho M.; Suominen, Harri; Sipilä, Sarianna; Kovanen, Vuokko

    2010-01-01

    At the moment, there is no clear molecular explanation for the steeper decline in muscle performance after menopause or the mechanisms of counteractive treatments. The goal of this genome-wide study was to identify the genes and gene clusters through which power training (PT) comprising jumping activities or estrogen containing hormone replacement therapy (HRT) may affect skeletal muscle properties after menopause. We used musculus vastus lateralis samples from early stage postmenopausal (50–57 years old) women participating in a yearlong randomized double-blind placebo-controlled trial with PT and HRT interventions. Using microarray platform with over 24,000 probes, we identified 665 differentially expressed genes. The hierarchical clustering method was used to assort the genes. Additionally, enrichment analysis of gene ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways was carried out to clarify whether assorted gene clusters are enriched with particular functional categories. The analysis revealed transcriptional regulation of 49 GO/KEGG categories. PT upregulated transcription in “response to contraction”—category revealing novel candidate genes for contraction-related regulation of muscle function while HRT upregulated gene expression related to functionality of mitochondria. Moreover, several functional categories tightly related to muscle energy metabolism, development, and function were affected regardless of the treatment. Our results emphasize that during the early stages of the postmenopause, muscle properties are under transcriptional modulation, which both PT and HRT partially counteract leading to preservation of muscle power and potentially reducing the risk for aging-related muscle weakness. More specifically, PT and HRT may function through improving energy metabolism, response to contraction as well as by preserving functionality of the mitochondria. Electronic supplementary material The online version of this

  16. FoxP2 is a parvocellular-specific transcription factor in the visual thalamus of monkeys and ferrets.

    Science.gov (United States)

    Iwai, Lena; Ohashi, Yohei; van der List, Deborah; Usrey, William Martin; Miyashita, Yasushi; Kawasaki, Hiroshi

    2013-09-01

    Although the parallel visual pathways are a fundamental basis of visual processing, our knowledge of their molecular properties is still limited. Here, we uncovered a parvocellular-specific molecule in the dorsal lateral geniculate nucleus (dLGN) of higher mammals. We found that FoxP2 transcription factor was specifically expressed in X cells of the adult ferret dLGN. Interestingly, FoxP2 was also specifically expressed in parvocellular layers 3-6 of the dLGN of adult old world monkeys, providing new evidence for a homology between X cells in the ferret dLGN and parvocellular cells in the monkey dLGN. Furthermore, this expression pattern was established as early as gestation day 140 in the embryonic monkey dLGN, suggesting that parvocellular specification has already occurred when the cytoarchitectonic dLGN layers are formed. Our results should help in gaining a fundamental understanding of the development, evolution, and function of the parallel visual pathways, which are especially prominent in higher mammals.

  17. Distinct Roles for Interfacial Hydration in Site-Specific DNA Recognition by ETS-Family Transcription Factors.

    Science.gov (United States)

    Xhani, Suela; Esaki, Shingo; Huang, Kenneth; Erlitzki, Noa; Poon, Gregory M K

    2017-03-15

    The ETS family of transcription factors is a functionally heterogeneous group of gene regulators that share a structurally conserved, eponymous DNA-binding domain. Unlike other ETS homologs, such as Ets-1, DNA recognition by PU.1 is highly sensitive to its osmotic environment due to excess interfacial hydration in the complex. To interrogate interfacial hydration in the two homologs, we mutated a highly conserved tyrosine residue, which is exclusively engaged in coordinating a well-defined water contact between the protein and DNA among ETS proteins, to phenylalanine. The loss of this water-mediated contact blunted the osmotic sensitivity of PU.1/DNA binding, but did not alter binding under normo-osmotic conditions, suggesting that PU.1 has evolved to maximize osmotic sensitivity. The homologous mutation in Ets-1, which was minimally sensitive to osmotic stress due to a sparsely hydrated interface, reduced DNA-binding affinity at normal osmolality but the complex became stabilized by osmotic stress. Molecular dynamics simulations of wildtype and mutant PU.1 and Ets-1 in their free and DNA-bound states, which recapitulated experimental features of the proteins, showed that abrogation of this tyrosine-mediated water contact perturbed the Ets-1/DNA complex not through disruption of interfacial hydration, but by inhibiting local dynamics induced specifically in the bound state. Thus, a configurationally identical water-mediated contact plays mechanistically distinct roles in mediating DNA recognition by structurally homologous ETS transcription factors.

  18. Tissue specific transcript profiling of wheat phosphate transporter genes and its association with phosphate allocation in grains

    Science.gov (United States)

    Shukla, Vishnu; Kaur, Mandeep; Aggarwal, Sipla; Bhati, Kaushal Kumar; Kaur, Jaspreet; Mantri, Shrikant; Pandey, Ajay K.

    2016-01-01

    Approaches enabling efficient phosphorus utilization in crops are of great importance. In cereal crop like wheat, utilization of inorganic phosphate (Pi) is high and mature grains are the major sink for Pi utilization and storage. Research that addresses the importance of the Pi homeostasis in developing grains is limited. In an attempt to understand the Pi homeostasis in developing wheat grains, we identified twelve new phosphate transporters (PHT), these are phyologentically well distributed along with the members reported from Arabidopsis and rice. Enhanced expression of PHT1-subfamily genes was observed in roots subjected to the Pi starvation suggesting their active role in Pi homeostasis. Differential expression patterns of all the PHT genes during grain filling stages suggested their importance in the filial tissues. Additionally, high accumulation of Pi and total P in aleurone correlates well with the expression of TaPHTs and other phosphate starvation related genes. Tissue specific transcript accumulation of TaPHT1.1, TaPHT1.2, TaPHT1.4 in aleurone; TaPHT3.1 in embryo and TaPHT4.2 in the endosperm was observed. Furthermore, their transcript abundance was affected in low phytate wheat grains. Altogether, this study helps in expanding the knowledge and prioritize the candidate wheat Pi-transporters to modulate the Pi homeostasis in cereal grains. PMID:27995999

  19. RNA helicase HEL-1 promotes longevity by specifically activating DAF-16/FOXO transcription factor signaling in Caenorhabditis elegans.

    Science.gov (United States)

    Seo, Mihwa; Seo, Keunhee; Hwang, Wooseon; Koo, Hee Jung; Hahm, Jeong-Hoon; Yang, Jae-Seong; Han, Seong Kyu; Hwang, Daehee; Kim, Sanguk; Jang, Sung Key; Lee, Yoontae; Nam, Hong Gil; Lee, Seung-Jae V

    2015-08-01

    The homeostatic maintenance of the genomic DNA is crucial for regulating aging processes. However, the role of RNA homeostasis in aging processes remains unknown. RNA helicases are a large family of enzymes that regulate the biogenesis and homeostasis of RNA. However, the functional significance of RNA helicases in aging has not been explored. Here, we report that a large fraction of RNA helicases regulate the lifespan of Caenorhabditis elegans. In particular, we show that a DEAD-box RNA helicase, helicase 1 (HEL-1), promotes longevity by specifically activating the DAF-16/forkhead box O (FOXO) transcription factor signaling pathway. We find that HEL-1 is required for the longevity conferred by reduced insulin/insulin-like growth factor 1 (IGF-1) signaling (IIS) and is sufficient for extending lifespan. We further show that the expression of HEL-1 in the intestine and neurons contributes to longevity. HEL-1 enhances the induction of a large fraction of DAF-16 target genes. Thus, the RNA helicase HEL-1 appears to promote longevity in response to decreased IIS as a transcription coregulator of DAF-16. Because HEL-1 and IIS are evolutionarily well conserved, a similar mechanism for longevity regulation via an RNA helicase-dependent regulation of FOXO signaling may operate in mammals, including humans.

  20. Effect of DNA methylation profile on OATP3A1 and OATP4A1 transcript levels in colorectal cancer.

    Science.gov (United States)

    Rawłuszko-Wieczorek, Agnieszka Anna; Horst, Nikodem; Horbacka, Karolina; Bandura, Artur Szymon; Świderska, Monika; Krokowicz, Piotr; Jagodziński, Paweł Piotr

    2015-08-01

    Epidemiological studies indicate that 17β-estradiol (E2) prevents colorectal cancer (CRC). Organic anion transporting polypeptides (OATPs) are involved in the cellular uptake of various endogenous and exogenous substrates, including hormone conjugates. Because transfer of estrone sulfate (E1-S) can contribute to intra-tissue conversion of estrone to the biologically active form -E2, it is evident that the expression patterns of OATPs may be relevant to the analysis of CRC incidence and therapy. We therefore evaluated DNA methylation and transcript levels of two members of the OATP family, OATP3A1 and OATP4A1, that may be involved in E1-S transport in colorectal cancer patients. We detected a significant reduction in OATP3A1 and a significant increase in OATP4A1 mRNA levels in cancerous tissue, compared with histopathologically unchanged tissue (n=103). Moreover, we observed DNA hypermethylation in the OATP3A1 promoter region in a small subset of CRC patients and in HCT116 and Caco-2 colorectal cancer cell lines. We also observed increased OATP3A1 transcript following treatment with 5-aza-2-deoxycytidine and sodium butyrate. The OATP4A1 promoter region was hypomethylated in analyzed tissues and CRC cell lines and was not affected by these treatments. Our results suggest a potential mechanism for OATP3A1 downregulation that involves DNA methylation during colorectal carcinogenesis.