WorldWideScience

Sample records for cancer gene discovered

  1. Discovering biomarkers from gene expression data for predicting cancer subgroups using neural networks and relational fuzzy clustering

    Directory of Open Access Journals (Sweden)

    Sharma Animesh

    2007-01-01

    Full Text Available Abstract Background The four heterogeneous childhood cancers, neuroblastoma, non-Hodgkin lymphoma, rhabdomyosarcoma, and Ewing sarcoma present a similar histology of small round blue cell tumor (SRBCT and thus often leads to misdiagnosis. Identification of biomarkers for distinguishing these cancers is a well studied problem. Existing methods typically evaluate each gene separately and do not take into account the nonlinear interaction between genes and the tools that are used to design the diagnostic prediction system. Consequently, more genes are usually identified as necessary for prediction. We propose a general scheme for finding a small set of biomarkers to design a diagnostic system for accurate classification of the cancer subgroups. We use multilayer networks with online gene selection ability and relational fuzzy clustering to identify a small set of biomarkers for accurate classification of the training and blind test cases of a well studied data set. Results Our method discerned just seven biomarkers that precisely categorized the four subgroups of cancer both in training and blind samples. For the same problem, others suggested 19–94 genes. These seven biomarkers include three novel genes (NAB2, LSP1 and EHD1 – not identified by others with distinct class-specific signatures and important role in cancer biology, including cellular proliferation, transendothelial migration and trafficking of MHC class antigens. Interestingly, NAB2 is downregulated in other tumors including Non-Hodgkin lymphoma and Neuroblastoma but we observed moderate to high upregulation in a few cases of Ewing sarcoma and Rabhdomyosarcoma, suggesting that NAB2 might be mutated in these tumors. These genes can discover the subgroups correctly with unsupervised learning, can differentiate non-SRBCT samples and they perform equally well with other machine learning tools including support vector machines. These biomarkers lead to four simple human interpretable

  2. Towards precision medicine: discovering novel gynecological cancer biomarkers and pathways using linked data.

    Science.gov (United States)

    Jha, Alokkumar; Khan, Yasar; Mehdi, Muntazir; Karim, Md Rezaul; Mehmood, Qaiser; Zappa, Achille; Rebholz-Schuhmann, Dietrich; Sahay, Ratnesh

    2017-09-19

    Next Generation Sequencing (NGS) is playing a key role in therapeutic decision making for the cancer prognosis and treatment. The NGS technologies are producing a massive amount of sequencing datasets. Often, these datasets are published from the isolated and different sequencing facilities. Consequently, the process of sharing and aggregating multisite sequencing datasets are thwarted by issues such as the need to discover relevant data from different sources, built scalable repositories, the automation of data linkage, the volume of the data, efficient querying mechanism, and information rich intuitive visualisation. We present an approach to link and query different sequencing datasets (TCGA, COSMIC, REACTOME, KEGG and GO) to indicate risks for four cancer types - Ovarian Serous Cystadenocarcinoma (OV), Uterine Corpus Endometrial Carcinoma (UCEC), Uterine Carcinosarcoma (UCS), Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma (CESC) - covering the 16 healthy tissue-specific genes from Illumina Human Body Map 2.0. The differentially expressed genes from Illumina Human Body Map 2.0 are analysed together with the gene expressions reported in COSMIC and TCGA repositories leading to the discover of potential biomarkers for a tissue-specific cancer. We analyse the tissue expression of genes, copy number variation (CNV), somatic mutation, and promoter methylation to identify associated pathways and find novel biomarkers. We discovered twenty (20) mutated genes and three (3) potential pathways causing promoter changes in different gynaecological cancer types. We propose a data-interlinked platform called BIOOPENER that glues together heterogeneous cancer and biomedical repositories. The key approach is to find correspondences (or data links) among genetic, cellular and molecular features across isolated cancer datasets giving insight into cancer progression from normal to diseased tissues. The proposed BIOOPENER platform enriches mutations by filling in

  3. Discovering cancer vulnerabilities using high-throughput micro-RNA screening.

    Science.gov (United States)

    Nikolic, Iva; Elsworth, Benjamin; Dodson, Eoin; Wu, Sunny Z; Gould, Cathryn M; Mestdagh, Pieter; Marshall, Glenn M; Horvath, Lisa G; Simpson, Kaylene J; Swarbrick, Alexander

    2017-12-15

    Micro-RNAs (miRNAs) are potent regulators of gene expression and cellular phenotype. Each miRNA has the potential to target hundreds of transcripts within the cell thus controlling fundamental cellular processes such as survival and proliferation. Here, we exploit this important feature of miRNA networks to discover vulnerabilities in cancer phenotype, and map miRNA-target relationships across different cancer types. More specifically, we report the results of a functional genomics screen of 1280 miRNA mimics and inhibitors in eight cancer cell lines, and its presentation in a sophisticated interactive data portal. This resource represents the most comprehensive survey of miRNA function in oncology, incorporating breast cancer, prostate cancer and neuroblastoma. A user-friendly web portal couples this experimental data with multiple tools for miRNA target prediction, pathway enrichment analysis and visualization. In addition, the database integrates publicly available gene expression and perturbation data enabling tailored and context-specific analysis of miRNA function in a particular disease. As a proof-of-principle, we use the database and its innovative features to uncover novel determinants of the neuroblastoma malignant phenotype. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Discovering genes underlying QTL

    Energy Technology Data Exchange (ETDEWEB)

    Vanavichit, Apichart [Kasetsart University, Kamphaengsaen, Nakorn Pathom (Thailand)

    2002-02-01

    A map-based approach has allowed scientists to discover few genes at a time. In addition, the reproductive barrier between cultivated rice and wild relatives has prevented us from utilizing the germ plasm by a map-based approach. Most genetic traits important to agriculture or human diseases are manifested as observable, quantitative phenotypes called Quantitative Trait Loci (QTL). In many instances, the complexity of the phenotype/genotype interaction and the general lack of clearly identifiable gene products render the direct molecular cloning approach ineffective, thus additional strategies like genome mapping are required to identify the QTL in question. Genome mapping requires no prior knowledge of the gene function, but utilizes statistical methods to identify the most likely gene location. To completely characterize genes of interest, the initially mapped region of a gene location will have to be narrowed down to a size that is suitable for cloning and sequencing. Strategies for gene identification within the critical region have to be applied after the sequencing of a potentially large clone or set of clones that contains this gene(s). Tremendous success of positional cloning has been shown for cloning many genes responsible for human diseases, including cystic fibrosis and muscular dystrophy as well as plant disease resistance genes. Genome and QTL mapping, positional cloning: the pre-genomics era, comparative approaches to gene identification, and positional cloning: the genomics era are discussed in the report. (M. Suetake)

  5. Discovery of cancer common and specific driver gene sets

    Science.gov (United States)

    2017-01-01

    Abstract Cancer is known as a disease mainly caused by gene alterations. Discovery of mutated driver pathways or gene sets is becoming an important step to understand molecular mechanisms of carcinogenesis. However, systematically investigating commonalities and specificities of driver gene sets among multiple cancer types is still a great challenge, but this investigation will undoubtedly benefit deciphering cancers and will be helpful for personalized therapy and precision medicine in cancer treatment. In this study, we propose two optimization models to de novo discover common driver gene sets among multiple cancer types (ComMDP) and specific driver gene sets of one certain or multiple cancer types to other cancers (SpeMDP), respectively. We first apply ComMDP and SpeMDP to simulated data to validate their efficiency. Then, we further apply these methods to 12 cancer types from The Cancer Genome Atlas (TCGA) and obtain several biologically meaningful driver pathways. As examples, we construct a common cancer pathway model for BRCA and OV, infer a complex driver pathway model for BRCA carcinogenesis based on common driver gene sets of BRCA with eight cancer types, and investigate specific driver pathways of the liquid cancer lymphoblastic acute myeloid leukemia (LAML) versus other solid cancer types. In these processes more candidate cancer genes are also found. PMID:28168295

  6. Discovering disease-associated genes in weighted protein-protein interaction networks

    Science.gov (United States)

    Cui, Ying; Cai, Meng; Stanley, H. Eugene

    2018-04-01

    Although there have been many network-based attempts to discover disease-associated genes, most of them have not taken edge weight - which quantifies their relative strength - into consideration. We use connection weights in a protein-protein interaction (PPI) network to locate disease-related genes. We analyze the topological properties of both weighted and unweighted PPI networks and design an improved random forest classifier to distinguish disease genes from non-disease genes. We use a cross-validation test to confirm that weighted networks are better able to discover disease-associated genes than unweighted networks, which indicates that including link weight in the analysis of network properties provides a better model of complex genotype-phenotype associations.

  7. Emory University: High-Throughput Protein-Protein Interaction Dataset for Lung Cancer-Associated Genes | Office of Cancer Genomics

    Science.gov (United States)

    To discover novel PPI signaling hubs for lung cancer, CTD2 Center at Emory utilized large-scale genomics datasets and literature to compile a set of lung cancer-associated genes. A library of expression vectors were generated for these genes and utilized for detecting pairwise PPIs with cell lysate-based TR-FRET assays in high-throughput screening format. Read the abstract.

  8. An algorithm to discover gene signatures with predictive potential

    Directory of Open Access Journals (Sweden)

    Hallett Robin M

    2010-09-01

    Full Text Available Abstract Background The advent of global gene expression profiling has generated unprecedented insight into our molecular understanding of cancer, including breast cancer. For example, human breast cancer patients display significant diversity in terms of their survival, recurrence, metastasis as well as response to treatment. These patient outcomes can be predicted by the transcriptional programs of their individual breast tumors. Predictive gene signatures allow us to correctly classify human breast tumors into various risk groups as well as to more accurately target therapy to ensure more durable cancer treatment. Results Here we present a novel algorithm to generate gene signatures with predictive potential. The method first classifies the expression intensity for each gene as determined by global gene expression profiling as low, average or high. The matrix containing the classified data for each gene is then used to score the expression of each gene based its individual ability to predict the patient characteristic of interest. Finally, all examined genes are ranked based on their predictive ability and the most highly ranked genes are included in the master gene signature, which is then ready for use as a predictor. This method was used to accurately predict the survival outcomes in a cohort of human breast cancer patients. Conclusions We confirmed the capacity of our algorithm to generate gene signatures with bona fide predictive ability. The simplicity of our algorithm will enable biological researchers to quickly generate valuable gene signatures without specialized software or extensive bioinformatics training.

  9. Human synthetic lethal inference as potential anti-cancer target gene detection

    Directory of Open Access Journals (Sweden)

    Solé Ricard V

    2009-12-01

    Full Text Available Abstract Background Two genes are called synthetic lethal (SL if mutation of either alone is not lethal, but mutation of both leads to death or a significant decrease in organism's fitness. The detection of SL gene pairs constitutes a promising alternative for anti-cancer therapy. As cancer cells exhibit a large number of mutations, the identification of these mutated genes' SL partners may provide specific anti-cancer drug candidates, with minor perturbations to the healthy cells. Since existent SL data is mainly restricted to yeast screenings, the road towards human SL candidates is limited to inference methods. Results In the present work, we use phylogenetic analysis and database manipulation (BioGRID for interactions, Ensembl and NCBI for homology, Gene Ontology for GO attributes in order to reconstruct the phylogenetically-inferred SL gene network for human. In addition, available data on cancer mutated genes (COSMIC and Cancer Gene Census databases as well as on existent approved drugs (DrugBank database supports our selection of cancer-therapy candidates. Conclusions Our work provides a complementary alternative to the current methods for drug discovering and gene target identification in anti-cancer research. Novel SL screening analysis and the use of highly curated databases would contribute to improve the results of this methodology.

  10. GSEH: A Novel Approach to Select Prostate Cancer-Associated Genes Using Gene Expression Heterogeneity.

    Science.gov (United States)

    Kim, Hyunjin; Choi, Sang-Min; Park, Sanghyun

    2018-01-01

    When a gene shows varying levels of expression among normal people but similar levels in disease patients or shows similar levels of expression among normal people but different levels in disease patients, we can assume that the gene is associated with the disease. By utilizing this gene expression heterogeneity, we can obtain additional information that abets discovery of disease-associated genes. In this study, we used collaborative filtering to calculate the degree of gene expression heterogeneity between classes and then scored the genes on the basis of the degree of gene expression heterogeneity to find "differentially predicted" genes. Through the proposed method, we discovered more prostate cancer-associated genes than 10 comparable methods. The genes prioritized by the proposed method are potentially significant to biological processes of a disease and can provide insight into them.

  11. GraphTeams: a method for discovering spatial gene clusters in Hi-C sequencing data.

    Science.gov (United States)

    Schulz, Tizian; Stoye, Jens; Doerr, Daniel

    2018-05-08

    Hi-C sequencing offers novel, cost-effective means to study the spatial conformation of chromosomes. We use data obtained from Hi-C experiments to provide new evidence for the existence of spatial gene clusters. These are sets of genes with associated functionality that exhibit close proximity to each other in the spatial conformation of chromosomes across several related species. We present the first gene cluster model capable of handling spatial data. Our model generalizes a popular computational model for gene cluster prediction, called δ-teams, from sequences to graphs. Following previous lines of research, we subsequently extend our model to allow for several vertices being associated with the same label. The model, called δ-teams with families, is particular suitable for our application as it enables handling of gene duplicates. We develop algorithmic solutions for both models. We implemented the algorithm for discovering δ-teams with families and integrated it into a fully automated workflow for discovering gene clusters in Hi-C data, called GraphTeams. We applied it to human and mouse data to find intra- and interchromosomal gene cluster candidates. The results include intrachromosomal clusters that seem to exhibit a closer proximity in space than on their chromosomal DNA sequence. We further discovered interchromosomal gene clusters that contain genes from different chromosomes within the human genome, but are located on a single chromosome in mouse. By identifying δ-teams with families, we provide a flexible model to discover gene cluster candidates in Hi-C data. Our analysis of Hi-C data from human and mouse reveals several known gene clusters (thus validating our approach), but also few sparsely studied or possibly unknown gene cluster candidates that could be the source of further experimental investigations.

  12. Identification of Genetic Susceptibility to Childhood Cancer through Analysis of Genes in Parallel

    Science.gov (United States)

    Plon, Sharon E.; Wheeler, David A.; Strong, Louise C.; Tomlinson, Gail E.; Pirics, Michael; Meng, Qingchang; Cheung, Hannah C.; Begin, Phyllis R.; Muzny, Donna M.; Lewis, Lora; Biegel, Jaclyn A.; Gibbs, Richard A.

    2011-01-01

    Clinical cancer genetic susceptibility analysis typically proceeds sequentially beginning with the most likely causative gene. The process is time consuming and the yield is low particularly for families with unusual patterns of cancer. We determined the results of in parallel mutation analysis of a large cancer-associated gene panel. We performed deletion analysis and sequenced the coding regions of 45 genes (8 oncogenes and 37 tumor suppressor or DNA repair genes) in 48 childhood cancer patients who also (1) were diagnosed with a second malignancy under age 30, (2) have a sibling diagnosed with cancer under age 30 and/or (3) have a major congenital anomaly or developmental delay. Deleterious mutations were identified in 6 of 48 (13%) families, 4 of which met the sibling criteria. Mutations were identified in genes previously implicated in both dominant and recessive childhood syndromes including SMARCB1, PMS2, and TP53. No pathogenic deletions were identified. This approach has provided efficient identification of childhood cancer susceptibility mutations and will have greater utility as additional cancer susceptibility genes are identified. Integrating parallel analysis of large gene panels into clinical testing will speed results and increase diagnostic yield. The failure to detect mutations in 87% of families highlights that a number of childhood cancer susceptibility genes remain to be discovered. PMID:21356188

  13. Alternative Polyadenylation Patterns for Novel Gene Discovery and Classification in Cancer

    Directory of Open Access Journals (Sweden)

    Oguzhan Begik

    2017-07-01

    Full Text Available Certain aspects of diagnosis, prognosis, and treatment of cancer patients are still important challenges to be addressed. Therefore, we propose a pipeline to uncover patterns of alternative polyadenylation (APA, a hidden complexity in cancer transcriptomes, to further accelerate efforts to discover novel cancer genes and pathways. Here, we analyzed expression data for 1045 cancer patients and found a significant shift in usage of poly(A signals in common tumor types (breast, colon, lung, prostate, gastric, and ovarian compared to normal tissues. Using machine-learning techniques, we further defined specific subsets of APA events to efficiently classify cancer types. Furthermore, APA patterns were associated with altered protein levels in patients, revealed by antibody-based profiling data, suggesting functional significance. Overall, our study offers a computational approach for use of APA in novel gene discovery and classification in common tumor types, with important implications in basic research, biomarker discovery, and precision medicine approaches.

  14. Discovering implicit entity relation with the gene-citation-gene network.

    Directory of Open Access Journals (Sweden)

    Min Song

    Full Text Available In this paper, we apply the entitymetrics model to our constructed Gene-Citation-Gene (GCG network. Based on the premise there is a hidden, but plausible, relationship between an entity in one article and an entity in its citing article, we constructed a GCG network of gene pairs implicitly connected through citation. We compare the performance of this GCG network to a gene-gene (GG network constructed over the same corpus but which uses gene pairs explicitly connected through traditional co-occurrence. Using 331,411 MEDLINE abstracts collected from 18,323 seed articles and their references, we identify 25 gene pairs. A comparison of these pairs with interactions found in BioGRID reveal that 96% of the gene pairs in the GCG network have known interactions. We measure network performance using degree, weighted degree, closeness, betweenness centrality and PageRank. Combining all measures, we find the GCG network has more gene pairs, but a lower matching rate than the GG network. However, combining top ranked genes in both networks produces a matching rate of 35.53%. By visualizing both the GG and GCG networks, we find that cancer is the most dominant disease associated with the genes in both networks. Overall, the study indicates that the GCG network can be useful for detecting gene interaction in an implicit manner.

  15. Cytokine gene polymorphisms and their association with cervical cancer: A North Indian study

    Directory of Open Access Journals (Sweden)

    Maneesh Kumar Gupta

    2016-04-01

    Conclusion: Therefore, the promoter polymorphisms in cytokine genes can be used as biomarkers to predict cervical cancer susceptibility in a north Indian population. However, such studies need to be carried out in different ethnic populations in order to discover the specific risk alleles, genotypes and combinations for disease prediction.

  16. Ancient genes establish stress-induced mutation as a hallmark of cancer.

    Science.gov (United States)

    Cisneros, Luis; Bussey, Kimberly J; Orr, Adam J; Miočević, Milica; Lineweaver, Charles H; Davies, Paul

    2017-01-01

    Cancer is sometimes depicted as a reversion to single cell behavior in cells adapted to live in a multicellular assembly. If this is the case, one would expect that mutation in cancer disrupts functional mechanisms that suppress cell-level traits detrimental to multicellularity. Such mechanisms should have evolved with or after the emergence of multicellularity. This leads to two related, but distinct hypotheses: 1) Somatic mutations in cancer will occur in genes that are younger than the emergence of multicellularity (1000 million years [MY]); and 2) genes that are frequently mutated in cancer and whose mutations are functionally important for the emergence of the cancer phenotype evolved within the past 1000 million years, and thus would exhibit an age distribution that is skewed to younger genes. In order to investigate these hypotheses we estimated the evolutionary ages of all human genes and then studied the probability of mutation and their biological function in relation to their age and genomic location for both normal germline and cancer contexts. We observed that under a model of uniform random mutation across the genome, controlled for gene size, genes less than 500 MY were more frequently mutated in both cases. Paradoxically, causal genes, defined in the COSMIC Cancer Gene Census, were depleted in this age group. When we used functional enrichment analysis to explain this unexpected result we discovered that COSMIC genes with recessive disease phenotypes were enriched for DNA repair and cell cycle control. The non-mutated genes in these pathways are orthologous to those underlying stress-induced mutation in bacteria, which results in the clustering of single nucleotide variations. COSMIC genes were less common in regions where the probability of observing mutational clusters is high, although they are approximately 2-fold more likely to harbor mutational clusters compared to other human genes. Our results suggest this ancient mutational response to

  17. Gene expression signature analysis identifies vorinostat as a candidate therapy for gastric cancer.

    Directory of Open Access Journals (Sweden)

    Sofie Claerhout

    Full Text Available Gastric cancer continues to be one of the deadliest cancers in the world and therefore identification of new drugs targeting this type of cancer is thus of significant importance. The purpose of this study was to identify and validate a therapeutic agent which might improve the outcomes for gastric cancer patients in the future.Using microarray technology, we generated a gene expression profile of human gastric cancer-specific genes from human gastric cancer tissue samples. We used this profile in the Broad Institute's Connectivity Map analysis to identify candidate therapeutic compounds for gastric cancer. We found the histone deacetylase inhibitor vorinostat as the lead compound and thus a potential therapeutic drug for gastric cancer. Vorinostat induced both apoptosis and autophagy in gastric cancer cell lines. Pharmacological and genetic inhibition of autophagy however, increased the therapeutic efficacy of vorinostat, indicating that a combination of vorinostat with autophagy inhibitors may therapeutically be more beneficial. Moreover, gene expression analysis of gastric cancer identified a collection of genes (ITGB5, TYMS, MYB, APOC1, CBX5, PLA2G2A, and KIF20A whose expression was elevated in gastric tumor tissue and downregulated more than 2-fold by vorinostat treatment in gastric cancer cell lines. In contrast, SCGB2A1, TCN1, CFD, APLP1, and NQO1 manifested a reversed pattern.We showed that analysis of gene expression signature may represent an emerging approach to discover therapeutic agents for gastric cancer, such as vorinostat. The observation of altered gene expression after vorinostat treatment may provide the clue to identify the molecular mechanism of vorinostat and those patients likely to benefit from vorinostat treatment.

  18. The Key Genes of Chronic Pancreatitis which Bridge Chronic Pancreatitis and Pancreatic Cancer Can be Therapeutic Targets.

    Science.gov (United States)

    Li, Shuang; Li, Rui; Wang, Heping; Li, Lisha; Li, Huiyu; Li, Yulin

    2018-04-01

    An important question in systems biology is what role the underlying molecular mechanisms play in disease progression. The relationship between chronic pancreatitis and pancreatic cancer needs further exploration in a system view. We constructed the disease network based on gene expression data and protein-protein interaction. We proposed an approach to discover the underlying core network and molecular factors in the progression of pancreatic diseases, which contain stages of chronic pancreatitis and pancreatic cancer. The chronic pancreatitis and pancreatic cancer core network and key factors were revealed and then verified by gene set enrichment analysis of pathways and diseases. The key factors provide the microenvironment for tumor initiation and the change of gene expression level of key factors bridge chronic pancreatitis and pancreatic cancer. Some new candidate genes need further verification by experiments. Transcriptome profiling-based network analysis reveals the importance of chronic pancreatitis genes and pathways in pancreatic cancer development on a system level by computational method and they can be therapeutic targets.

  19. A DNA methylation microarray-based study identifies ERG as a gene commonly methylated in prostate cancer.

    Science.gov (United States)

    Schwartzman, Jacob; Mongoue-Tchokote, Solange; Gibbs, Angela; Gao, Lina; Corless, Christopher L; Jin, Jennifer; Zarour, Luai; Higano, Celestia; True, Lawrence D; Vessella, Robert L; Wilmot, Beth; Bottomly, Daniel; McWeeney, Shannon K; Bova, G Steven; Partin, Alan W; Mori, Motomi; Alumkal, Joshi

    2011-10-01

    DNA methylation of promoter regions is a common event in prostate cancer, one of the most common cancers in men worldwide. Because prior reports demonstrating that DNA methylation is important in prostate cancer studied a limited number of genes, we systematically quantified the DNA methylation status of 1505 CpG dinucleotides for 807 genes in 78 paraffin-embedded prostate cancer samples and three normal prostate samples. The ERG gene, commonly repressed in prostate cells in the absence of an oncogenic fusion to the TMPRSS2 gene, was one of the most commonly methylated genes, occurring in 74% of prostate cancer specimens. In an independent group of patient samples, we confirmed that ERG DNA methylation was common, occurring in 57% of specimens, and cancer-specific. The ERG promoter is marked by repressive chromatin marks mediated by polycomb proteins in both normal prostate cells and prostate cancer cells, which may explain ERG's predisposition to DNA methylation and the fact that tumors with ERG DNA methylation were more methylated, in general. These results demonstrate that bead arrays offer a high-throughput method to discover novel genes with promoter DNA methylation such as ERG, whose measurement may improve our ability to more accurately detect prostate cancer.

  20. A Gene Expression Classifier of Node-Positive Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Paul F. Meeh

    2009-10-01

    Full Text Available We used digital long serial analysis of gene expression to discover gene expression differences between node-negative and node-positive colorectal tumors and developed a multigene classifier able to discriminate between these two tumor types. We prepared and sequenced long serial analysis of gene expression libraries from one node-negative and one node-positive colorectal tumor, sequenced to a depth of 26,060 unique tags, and identified 262 tags significantly differentially expressed between these two tumors (P < 2 x 10-6. We confirmed the tag-to-gene assignments and differential expression of 31 genes by quantitative real-time polymerase chain reaction, 12 of which were elevated in the node-positive tumor. We analyzed the expression levels of these 12 upregulated genes in a validation panel of 23 additional tumors and developed an optimized seven-gene logistic regression classifier. The classifier discriminated between node-negative and node-positive tumors with 86% sensitivity and 80% specificity. Receiver operating characteristic analysis of the classifier revealed an area under the curve of 0.86. Experimental manipulation of the function of one classification gene, Fibronectin, caused profound effects on invasion and migration of colorectal cancer cells in vitro. These results suggest that the development of node-positive colorectal cancer occurs in part through elevated epithelial FN1 expression and suggest novel strategies for the diagnosis and treatment of advanced disease.

  1. Gene Expression Signature Analysis Identifies Vorinostat as a Candidate Therapy for Gastric Cancer

    Science.gov (United States)

    Choi, Woonyoung; Park, Yun-Yong; Kim, KyoungHyun; Kim, Sang-Bae; Lee, Ju-Seog; Mills, Gordon B.; Cho, Jae Yong

    2011-01-01

    Background Gastric cancer continues to be one of the deadliest cancers in the world and therefore identification of new drugs targeting this type of cancer is thus of significant importance. The purpose of this study was to identify and validate a therapeutic agent which might improve the outcomes for gastric cancer patients in the future. Methodology/Principal Findings Using microarray technology, we generated a gene expression profile of human gastric cancer–specific genes from human gastric cancer tissue samples. We used this profile in the Broad Institute's Connectivity Map analysis to identify candidate therapeutic compounds for gastric cancer. We found the histone deacetylase inhibitor vorinostat as the lead compound and thus a potential therapeutic drug for gastric cancer. Vorinostat induced both apoptosis and autophagy in gastric cancer cell lines. Pharmacological and genetic inhibition of autophagy however, increased the therapeutic efficacy of vorinostat, indicating that a combination of vorinostat with autophagy inhibitors may therapeutically be more beneficial. Moreover, gene expression analysis of gastric cancer identified a collection of genes (ITGB5, TYMS, MYB, APOC1, CBX5, PLA2G2A, and KIF20A) whose expression was elevated in gastric tumor tissue and downregulated more than 2-fold by vorinostat treatment in gastric cancer cell lines. In contrast, SCGB2A1, TCN1, CFD, APLP1, and NQO1 manifested a reversed pattern. Conclusions/Significance We showed that analysis of gene expression signature may represent an emerging approach to discover therapeutic agents for gastric cancer, such as vorinostat. The observation of altered gene expression after vorinostat treatment may provide the clue to identify the molecular mechanism of vorinostat and those patients likely to benefit from vorinostat treatment. PMID:21931799

  2. Gene dosage, expression, and ontology analysis identifies driver genes in the carcinogenesis and chemoradioresistance of cervical cancer.

    Directory of Open Access Journals (Sweden)

    Malin Lando

    2009-11-01

    Full Text Available Integrative analysis of gene dosage, expression, and ontology (GO data was performed to discover driver genes in the carcinogenesis and chemoradioresistance of cervical cancers. Gene dosage and expression profiles of 102 locally advanced cervical cancers were generated by microarray techniques. Fifty-two of these patients were also analyzed with the Illumina expression method to confirm the gene expression results. An independent cohort of 41 patients was used for validation of gene expressions associated with clinical outcome. Statistical analysis identified 29 recurrent gains and losses and 3 losses (on 3p, 13q, 21q associated with poor outcome after chemoradiotherapy. The intratumor heterogeneity, assessed from the gene dosage profiles, was low for these alterations, showing that they had emerged prior to many other alterations and probably were early events in carcinogenesis. Integration of the alterations with gene expression and GO data identified genes that were regulated by the alterations and revealed five biological processes that were significantly overrepresented among the affected genes: apoptosis, metabolism, macromolecule localization, translation, and transcription. Four genes on 3p (RYBP, GBE1 and 13q (FAM48A, MED4 correlated with outcome at both the gene dosage and expression level and were satisfactorily validated in the independent cohort. These integrated analyses yielded 57 candidate drivers of 24 genetic events, including novel loci responsible for chemoradioresistance. Further mapping of the connections among genetic events, drivers, and biological processes suggested that each individual event stimulates specific processes in carcinogenesis through the coordinated control of multiple genes. The present results may provide novel therapeutic opportunities of both early and advanced stage cervical cancers.

  3. Biomarker discovery for colon cancer using a 761 gene RT-PCR assay

    Directory of Open Access Journals (Sweden)

    Hackett James R

    2007-08-01

    Full Text Available Abstract Background Reverse transcription PCR (RT-PCR is widely recognized to be the gold standard method for quantifying gene expression. Studies using RT-PCR technology as a discovery tool have historically been limited to relatively small gene sets compared to other gene expression platforms such as microarrays. We have recently shown that TaqMan® RT-PCR can be scaled up to profile expression for 192 genes in fixed paraffin-embedded (FPE clinical study tumor specimens. This technology has also been used to develop and commercialize a widely used clinical test for breast cancer prognosis and prediction, the Onco typeDX™ assay. A similar need exists in colon cancer for a test that provides information on the likelihood of disease recurrence in colon cancer (prognosis and the likelihood of tumor response to standard chemotherapy regimens (prediction. We have now scaled our RT-PCR assay to efficiently screen 761 biomarkers across hundreds of patient samples and applied this process to biomarker discovery in colon cancer. This screening strategy remains attractive due to the inherent advantages of maintaining platform consistency from discovery through clinical application. Results RNA was extracted from formalin fixed paraffin embedded (FPE tissue, as old as 28 years, from 354 patients enrolled in NSABP C-01 and C-02 colon cancer studies. Multiplexed reverse transcription reactions were performed using a gene specific primer pool containing 761 unique primers. PCR was performed as independent TaqMan® reactions for each candidate gene. Hierarchal clustering demonstrates that genes expected to co-express form obvious, distinct and in certain cases very tightly correlated clusters, validating the reliability of this technical approach to biomarker discovery. Conclusion We have developed a high throughput, quantitatively precise multi-analyte gene expression platform for biomarker discovery that approaches low density DNA arrays in numbers of

  4. Gene Fusions Associated with Recurrent Amplicons Represent a Class of Passenger Aberrations in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Shanker Kalyana-Sundaram

    2012-08-01

    Full Text Available Application of high-throughput transcriptome sequencing has spurred highly sensitive detection and discovery of gene fusions in cancer, but distinguishing potentially oncogenic fusions from random, “passenger” aberrations has proven challenging. Here we examine a distinctive group of gene fusions that involve genes present in the loci of chromosomal amplifications—a class of oncogenic aberrations that are widely prevalent in breast cancers. Integrative analysis of a panel of 14 breast cancer cell lines comparing gene fusions discovered by high-throughput transcriptome sequencing and genome-wide copy number aberrations assessed by array comparative genomic hybridization, led to the identification of 77 gene fusions, of which more than 60% were localized to amplicons including 17q12, 17q23, 20q13, chr8q, and others. Many of these fusions appeared to be recurrent or involved highly expressed oncogenic drivers, frequently fused with multiple different partners, but sometimes displaying loss of functional domains. As illustrative examples of the “amplicon-associated” gene fusions, we examined here a recurrent gene fusion involving the mediator of mammalian target of rapamycin signaling, RPS6KB1 kinase in BT-474, and the therapeutically important receptor tyrosine kinase EGFR in MDA-MB-468 breast cancer cell line. These gene fusions comprise a minor allelic fraction relative to the highly expressed full-length transcripts and encode chimera lacking the kinase domains, which do not impart dependence on the respective cells. Our study suggests that amplicon-associated gene fusions in breast cancer primarily represent a by-product of chromosomal amplifications, which constitutes a subset of passenger aberrations and should be factored accordingly during prioritization of gene fusion candidates.

  5. Sleeping Beauty transposon mutagenesis identifies genes that cooperate with mutant Smad4 in gastric cancer development.

    Science.gov (United States)

    Takeda, Haruna; Rust, Alistair G; Ward, Jerrold M; Yew, Christopher Chin Kuan; Jenkins, Nancy A; Copeland, Neal G

    2016-04-05

    Mutations in SMAD4 predispose to the development of gastrointestinal cancer, which is the third leading cause of cancer-related deaths. To identify genes driving gastric cancer (GC) development, we performed a Sleeping Beauty (SB) transposon mutagenesis screen in the stomach of Smad4(+/-) mutant mice. This screen identified 59 candidate GC trunk drivers and a much larger number of candidate GC progression genes. Strikingly, 22 SB-identified trunk drivers are known or candidate cancer genes, whereas four SB-identified trunk drivers, including PTEN, SMAD4, RNF43, and NF1, are known human GC trunk drivers. Similar to human GC, pathway analyses identified WNT, TGF-β, and PI3K-PTEN signaling, ubiquitin-mediated proteolysis, adherens junctions, and RNA degradation in addition to genes involved in chromatin modification and organization as highly deregulated pathways in GC. Comparative oncogenomic filtering of the complete list of SB-identified genes showed that they are highly enriched for genes mutated in human GC and identified many candidate human GC genes. Finally, by comparing our complete list of SB-identified genes against the list of mutated genes identified in five large-scale human GC sequencing studies, we identified LDL receptor-related protein 1B (LRP1B) as a previously unidentified human candidate GC tumor suppressor gene. In LRP1B, 129 mutations were found in 462 human GC samples sequenced, and LRP1B is one of the top 10 most deleted genes identified in a panel of 3,312 human cancers. SB mutagenesis has, thus, helped to catalog the cooperative molecular mechanisms driving SMAD4-induced GC growth and discover genes with potential clinical importance in human GC.

  6. Gene-Gene and Gene-Environment Interactions in the Etiology of Breast Cancer

    National Research Council Canada - National Science Library

    Adegoke, Olufemi

    2003-01-01

    The objective of this CDA is to evaluate the gene-gene and gene-environment interactions in the etiology of breast cancer in two ongoing case-control studies, the Shanghai Breast Cancer Study (SBCS...

  7. Actionable gene-based classification toward precision medicine in gastric cancer

    Directory of Open Access Journals (Sweden)

    Hiroshi Ichikawa

    2017-10-01

    Full Text Available Abstract Background Intertumoral heterogeneity represents a significant hurdle to identifying optimized targeted therapies in gastric cancer (GC. To realize precision medicine for GC patients, an actionable gene alteration-based molecular classification that directly associates GCs with targeted therapies is needed. Methods A total of 207 Japanese patients with GC were included in this study. Formalin-fixed, paraffin-embedded (FFPE tumor tissues were obtained from surgical or biopsy specimens and were subjected to DNA extraction. We generated comprehensive genomic profiling data using a 435-gene panel including 69 actionable genes paired with US Food and Drug Administration-approved targeted therapies, and the evaluation of Epstein-Barr virus (EBV infection and microsatellite instability (MSI status. Results Comprehensive genomic sequencing detected at least one alteration of 435 cancer-related genes in 194 GCs (93.7% and of 69 actionable genes in 141 GCs (68.1%. We classified the 207 GCs into four The Cancer Genome Atlas (TCGA subtypes using the genomic profiling data; EBV (N = 9, MSI (N = 17, chromosomal instability (N = 119, and genomically stable subtype (N = 62. Actionable gene alterations were not specific and were widely observed throughout all TCGA subtypes. To discover a novel classification which more precisely selects candidates for targeted therapies, 207 GCs were classified using hypermutated phenotype and the mutation profile of 69 actionable genes. We identified a hypermutated group (N = 32, while the others (N = 175 were sub-divided into six clusters including five with actionable gene alterations: ERBB2 (N = 25, CDKN2A, and CDKN2B (N = 10, KRAS (N = 10, BRCA2 (N = 9, and ATM cluster (N = 12. The clinical utility of this classification was demonstrated by a case of unresectable GC with a remarkable response to anti-HER2 therapy in the ERBB2 cluster. Conclusions This actionable gene

  8. Evolutionary Origins of Cancer Driver Genes and Implications for Cancer Prognosis.

    Science.gov (United States)

    Chu, Xin-Yi; Jiang, Ling-Han; Zhou, Xiong-Hui; Cui, Ze-Jia; Zhang, Hong-Yu

    2017-07-14

    The cancer atavistic theory suggests that carcinogenesis is a reverse evolution process. It is thus of great interest to explore the evolutionary origins of cancer driver genes and the relevant mechanisms underlying the carcinogenesis. Moreover, the evolutionary features of cancer driver genes could be helpful in selecting cancer biomarkers from high-throughput data. In this study, through analyzing the cancer endogenous molecular networks, we revealed that the subnetwork originating from eukaryota could control the unlimited proliferation of cancer cells, and the subnetwork originating from eumetazoa could recapitulate the other hallmarks of cancer. In addition, investigations based on multiple datasets revealed that cancer driver genes were enriched in genes originating from eukaryota, opisthokonta, and eumetazoa. These results have important implications for enhancing the robustness of cancer prognosis models through selecting the gene signatures by the gene age information.

  9. Identification of novel androgen receptor target genes in prostate cancer

    Directory of Open Access Journals (Sweden)

    Gerald William L

    2007-06-01

    Full Text Available Abstract Background The androgen receptor (AR plays critical roles in both androgen-dependent and castrate-resistant prostate cancer (PCa. However, little is known about AR target genes that mediate the receptor's roles in disease progression. Results Using Chromatin Immunoprecipitation (ChIP Display, we discovered 19 novel loci occupied by the AR in castrate resistant C4-2B PCa cells. Only four of the 19 AR-occupied regions were within 10-kb 5'-flanking regulatory sequences. Three were located up to 4-kb 3' of the nearest gene, eight were intragenic and four were in gene deserts. Whereas the AR occupied the same loci in C4-2B (castrate resistant and LNCaP (androgen-dependent PCa cells, differences between the two cell lines were observed in the response of nearby genes to androgens. Among the genes strongly stimulated by DHT in C4-2B cells – D-dopachrome tautomerase (DDT, Protein kinase C delta (PRKCD, Glutathione S- transferase theta 2 (GSTT2, Transient receptor potential cation channel subfamily V member 3 (TRPV3, and Pyrroline-5-carboxylate reductase 1 (PYCR1 – most were less strongly or hardly stimulated in LNCaP cells. Another AR target gene, ornithine aminotransferase (OAT, was AR-stimulated in a ligand-independent manner, since it was repressed by AR siRNA knockdown, but not stimulated by DHT. We also present evidence for in vivo AR-mediated regulation of several genes identified by ChIP Display. For example, PRKCD and PYCR1, which may contribute to PCa cell growth and survival, are expressed in PCa biopsies from primary tumors before and after ablation and in metastatic lesions in a manner consistent with AR-mediated stimulation. Conclusion AR genomic occupancy is similar between LNCaP and C4-2B cells and is not biased towards 5' gene flanking sequences. The AR transcriptionally regulates less than half the genes nearby AR-occupied regions, usually but not always, in a ligand-dependent manner. Most are stimulated and a few are

  10. Major cancer protein amplifies global gene expression

    Science.gov (United States)

    Scientists may have discovered why a protein called MYC can provoke a variety of cancers. Like many proteins associated with cancer, MYC helps regulate cell growth. A new study carried out by researchers at the National Institutes of Health and colleagues

  11. Genome-wide scan of healthy human connectome discovers SPON1 gene variant influencing dementia severity

    Science.gov (United States)

    Jahanshad, Neda; Rajagopalan, Priya; Hua, Xue; Hibar, Derrek P.; Nir, Talia M.; Toga, Arthur W.; Jack, Clifford R.; Saykin, Andrew J.; Green, Robert C.; Weiner, Michael W.; Medland, Sarah E.; Montgomery, Grant W.; Hansell, Narelle K.; McMahon, Katie L.; de Zubicaray, Greig I.; Martin, Nicholas G.; Wright, Margaret J.; Thompson, Paul M.; Weiner, Michael; Aisen, Paul; Weiner, Michael; Aisen, Paul; Petersen, Ronald; Jack, Clifford R.; Jagust, William; Trojanowski, John Q.; Toga, Arthur W.; Beckett, Laurel; Green, Robert C.; Saykin, Andrew J.; Morris, John; Liu, Enchi; Green, Robert C.; Montine, Tom; Petersen, Ronald; Aisen, Paul; Gamst, Anthony; Thomas, Ronald G.; Donohue, Michael; Walter, Sarah; Gessert, Devon; Sather, Tamie; Beckett, Laurel; Harvey, Danielle; Gamst, Anthony; Donohue, Michael; Kornak, John; Jack, Clifford R.; Dale, Anders; Bernstein, Matthew; Felmlee, Joel; Fox, Nick; Thompson, Paul; Schuff, Norbert; Alexander, Gene; DeCarli, Charles; Jagust, William; Bandy, Dan; Koeppe, Robert A.; Foster, Norm; Reiman, Eric M.; Chen, Kewei; Mathis, Chet; Morris, John; Cairns, Nigel J.; Taylor-Reinwald, Lisa; Trojanowki, J.Q.; Shaw, Les; Lee, Virginia M.Y.; Korecka, Magdalena; Toga, Arthur W.; Crawford, Karen; Neu, Scott; Saykin, Andrew J.; Foroud, Tatiana M.; Potkin, Steven; Shen, Li; Khachaturian, Zaven; Frank, Richard; Snyder, Peter J.; Molchan, Susan; Kaye, Jeffrey; Quinn, Joseph; Lind, Betty; Dolen, Sara; Schneider, Lon S.; Pawluczyk, Sonia; Spann, Bryan M.; Brewer, James; Vanderswag, Helen; Heidebrink, Judith L.; Lord, Joanne L.; Petersen, Ronald; Johnson, Kris; Doody, Rachelle S.; Villanueva-Meyer, Javier; Chowdhury, Munir; Stern, Yaakov; Honig, Lawrence S.; Bell, Karen L.; Morris, John C.; Ances, Beau; Carroll, Maria; Leon, Sue; Mintun, Mark A.; Schneider, Stacy; Marson, Daniel; Griffith, Randall; Clark, David; Grossman, Hillel; Mitsis, Effie; Romirowsky, Aliza; deToledo-Morrell, Leyla; Shah, Raj C.; Duara, Ranjan; Varon, Daniel; Roberts, Peggy; Albert, Marilyn; Onyike, Chiadi; Kielb, Stephanie; Rusinek, Henry; de Leon, Mony J.; Glodzik, Lidia; De Santi, Susan; Doraiswamy, P. Murali; Petrella, Jeffrey R.; Coleman, R. Edward; Arnold, Steven E.; Karlawish, Jason H.; Wolk, David; Smith, Charles D.; Jicha, Greg; Hardy, Peter; Lopez, Oscar L.; Oakley, MaryAnn; Simpson, Donna M.; Porsteinsson, Anton P.; Goldstein, Bonnie S.; Martin, Kim; Makino, Kelly M.; Ismail, M. Saleem; Brand, Connie; Mulnard, Ruth A.; Thai, Gaby; Mc-Adams-Ortiz, Catherine; Womack, Kyle; Mathews, Dana; Quiceno, Mary; Diaz-Arrastia, Ramon; King, Richard; Weiner, Myron; Martin-Cook, Kristen; DeVous, Michael; Levey, Allan I.; Lah, James J.; Cellar, Janet S.; Burns, Jeffrey M.; Anderson, Heather S.; Swerdlow, Russell H.; Apostolova, Liana; Lu, Po H.; Bartzokis, George; Silverman, Daniel H.S.; Graff-Radford, Neill R.; Parfitt, Francine; Johnson, Heather; Farlow, Martin R.; Hake, Ann Marie; Matthews, Brandy R.; Herring, Scott; van Dyck, Christopher H.; Carson, Richard E.; MacAvoy, Martha G.; Chertkow, Howard; Bergman, Howard; Hosein, Chris; Black, Sandra; Stefanovic, Bojana; Caldwell, Curtis; Hsiung, Ging-Yuek Robin; Feldman, Howard; Mudge, Benita; Assaly, Michele; Kertesz, Andrew; Rogers, John; Trost, Dick; Bernick, Charles; Munic, Donna; Kerwin, Diana; Mesulam, Marek-Marsel; Lipowski, Kristina; Wu, Chuang-Kuo; Johnson, Nancy; Sadowsky, Carl; Martinez, Walter; Villena, Teresa; Turner, Raymond Scott; Johnson, Kathleen; Reynolds, Brigid; Sperling, Reisa A.; Johnson, Keith A.; Marshall, Gad; Frey, Meghan; Yesavage, Jerome; Taylor, Joy L.; Lane, Barton; Rosen, Allyson; Tinklenberg, Jared; Sabbagh, Marwan; Belden, Christine; Jacobson, Sandra; Kowall, Neil; Killiany, Ronald; Budson, Andrew E.; Norbash, Alexander; Johnson, Patricia Lynn; Obisesan, Thomas O.; Wolday, Saba; Bwayo, Salome K.; Lerner, Alan; Hudson, Leon; Ogrocki, Paula; Fletcher, Evan; Carmichael, Owen; Olichney, John; DeCarli, Charles; Kittur, Smita; Borrie, Michael; Lee, T.-Y.; Bartha, Rob; Johnson, Sterling; Asthana, Sanjay; Carlsson, Cynthia M.; Potkin, Steven G.; Preda, Adrian; Nguyen, Dana; Tariot, Pierre; Fleisher, Adam; Reeder, Stephanie; Bates, Vernice; Capote, Horacio; Rainka, Michelle; Scharre, Douglas W.; Kataki, Maria; Zimmerman, Earl A.; Celmins, Dzintra; Brown, Alice D.; Pearlson, Godfrey D.; Blank, Karen; Anderson, Karen; Saykin, Andrew J.; Santulli, Robert B.; Schwartz, Eben S.; Sink, Kaycee M.; Williamson, Jeff D.; Garg, Pradeep; Watkins, Franklin; Ott, Brian R.; Querfurth, Henry; Tremont, Geoffrey; Salloway, Stephen; Malloy, Paul; Correia, Stephen; Rosen, Howard J.; Miller, Bruce L.; Mintzer, Jacobo; Longmire, Crystal Flynn; Spicer, Kenneth; Finger, Elizabeth; Rachinsky, Irina; Rogers, John; Kertesz, Andrew; Drost, Dick

    2013-01-01

    Aberrant connectivity is implicated in many neurological and psychiatric disorders, including Alzheimer’s disease and schizophrenia. However, other than a few disease-associated candidate genes, we know little about the degree to which genetics play a role in the brain networks; we know even less about specific genes that influence brain connections. Twin and family-based studies can generate estimates of overall genetic influences on a trait, but genome-wide association scans (GWASs) can screen the genome for specific variants influencing the brain or risk for disease. To identify the heritability of various brain connections, we scanned healthy young adult twins with high-field, high-angular resolution diffusion MRI. We adapted GWASs to screen the brain’s connectivity pattern, allowing us to discover genetic variants that affect the human brain’s wiring. The association of connectivity with the SPON1 variant at rs2618516 on chromosome 11 (11p15.2) reached connectome-wide, genome-wide significance after stringent statistical corrections were enforced, and it was replicated in an independent subsample. rs2618516 was shown to affect brain structure in an elderly population with varying degrees of dementia. Older people who carried the connectivity variant had significantly milder clinical dementia scores and lower risk of Alzheimer’s disease. As a posthoc analysis, we conducted GWASs on several organizational and topological network measures derived from the matrices to discover variants in and around genes associated with autism (MACROD2), development (NEDD4), and mental retardation (UBE2A) significantly associated with connectivity. Connectome-wide, genome-wide screening offers substantial promise to discover genes affecting brain connectivity and risk for brain diseases. PMID:23471985

  12. Identifying molecular subtypes in human colon cancer using gene expression and DNA methylation microarray data.

    Science.gov (United States)

    Ren, Zhonglu; Wang, Wenhui; Li, Jinming

    2016-02-01

    Identifying colon cancer subtypes based on molecular signatures may allow for a more rational, patient-specific approach to therapy in the future. Classifications using gene expression data have been attempted before with little concordance between the different studies carried out. In this study we aimed to uncover subtypes of colon cancer that have distinct biological characteristics and identify a set of novel biomarkers which could best reflect the clinical and/or biological characteristics of each subtype. Clustering analysis and discriminant analysis were utilized to discover the subtypes in two different molecular levels on 153 colon cancer samples from The Cancer Genome Atlas (TCGA) Data Portal. At gene expression level, we identified two major subtypes, ECL1 (expression cluster 1) and ECL2 (expression cluster 2) and a list of signature genes. Due to the heterogeneity of colon cancer, the subtype ECL1 can be further subdivided into three nested subclasses, and HOTAIR were found upregulated in subclass 2. At DNA methylation level, we uncovered three major subtypes, MCL1 (methylation cluster 1), MCL2 (methylation cluster 2) and MCL3 (methylation cluster 3). We found only three subtypes of CpG island methylator phenotype (CIMP) in colon cancer instead of the four subtypes in the previous reports, and we found no sufficient evidence to subdivide MCL3 into two distinct subgroups.

  13. Intracellular delivery of potential therapeutic genes: prospects in cancer gene therapy.

    Science.gov (United States)

    Bakhtiar, Athirah; Sayyad, Mustak; Rosli, Rozita; Maruyama, Atsushi; Chowdhury, Ezharul H

    2014-01-01

    Conventional therapies for malignant cancer such as chemotherapy and radiotherapy are associated with poor survival rates owing to the development of cellular resistance to cancer drugs and the lack of targetability, resulting in unwanted adverse effects on healthy cells and necessitating the lowering of therapeutic dose with consequential lower efficacy of the treatment. Gene therapy employing different types of viral and non-viral carriers to transport gene(s) of interest and facilitating production of the desirable therapeutic protein(s) has tremendous prospects in cancer treatments due to the high-level of specificity in therapeutic action of the expressed protein(s) with diminished off-target effects, although cancer cell-specific delivery of transgene(s) still poses some challenges to be addressed. Depending on the potential therapeutic target genes, cancer gene therapy could be categorized into tumor suppressor gene replacement therapy, immune gene therapy and enzyme- or prodrug-based therapy. This review would shed light on the current progress of delivery of potentially therapeutic genes into various cancer cells in vitro and animal models utilizing a variety of viral and non-viral vectors.

  14. Prioritizing genes associated with prostate cancer development

    International Nuclear Information System (INIS)

    Gorlov, Ivan P; Logothetis, Christopher J; Sircar, Kanishka; Zhao, Hongya; Maity, Sankar N; Navone, Nora M; Gorlova, Olga Y; Troncoso, Patricia; Pettaway, Curtis A; Byun, Jin Young

    2010-01-01

    The genetic control of prostate cancer development is poorly understood. Large numbers of gene-expression datasets on different aspects of prostate tumorigenesis are available. We used these data to identify and prioritize candidate genes associated with the development of prostate cancer and bone metastases. Our working hypothesis was that combining meta-analyses on different but overlapping steps of prostate tumorigenesis will improve identification of genes associated with prostate cancer development. A Z score-based meta-analysis of gene-expression data was used to identify candidate genes associated with prostate cancer development. To put together different datasets, we conducted a meta-analysis on 3 levels that follow the natural history of prostate cancer development. For experimental verification of candidates, we used in silico validation as well as in-house gene-expression data. Genes with experimental evidence of an association with prostate cancer development were overrepresented among our top candidates. The meta-analysis also identified a considerable number of novel candidate genes with no published evidence of a role in prostate cancer development. Functional annotation identified cytoskeleton, cell adhesion, extracellular matrix, and cell motility as the top functions associated with prostate cancer development. We identified 10 genes--CDC2, CCNA2, IGF1, EGR1, SRF, CTGF, CCL2, CAV1, SMAD4, and AURKA--that form hubs of the interaction network and therefore are likely to be primary drivers of prostate cancer development. By using this large 3-level meta-analysis of the gene-expression data to identify candidate genes associated with prostate cancer development, we have generated a list of candidate genes that may be a useful resource for researchers studying the molecular mechanisms underlying prostate cancer development

  15. Cancer suicide gene therapy: a patent review.

    Science.gov (United States)

    Navarro, Saúl Abenhamar; Carrillo, Esmeralda; Griñán-Lisón, Carmen; Martín, Ana; Perán, Macarena; Marchal, Juan Antonio; Boulaiz, Houria

    2016-09-01

    Cancer is considered the second leading cause of death worldwide despite the progress made in early detection and advances in classical therapies. Advancing in the fight against cancer requires the development of novel strategies, and the suicide gene transfer to tumor cells is providing new possibilities for cancer therapy. In this manuscript, authors present an overview of suicide gene systems and the latest innovations done to enhance cancer suicide gene therapy strategies by i) improving vectors for targeted gene delivery using tissue specific promoter and receptors; ii) modification of the tropism; and iii) combining suicide genes and/or classical therapies for cancer. Finally, the authors highlight the main challenges to be addressed in the future. Even if many efforts are needed for suicide gene therapy to be a real alternative for cancer treatment, we believe that the significant progress made in the knowledge of cancer biology and characterization of cancer stem cells accompanied by the development of novel targeted vectors will enhance the effectiveness of this type of therapeutic strategy. Moreover, combined with current treatments, suicide gene therapy will improve the clinical outcome of patients with cancer in the future.

  16. The Candidate Cancer Gene Database: a database of cancer driver genes from forward genetic screens in mice.

    Science.gov (United States)

    Abbott, Kenneth L; Nyre, Erik T; Abrahante, Juan; Ho, Yen-Yi; Isaksson Vogel, Rachel; Starr, Timothy K

    2015-01-01

    Identification of cancer driver gene mutations is crucial for advancing cancer therapeutics. Due to the overwhelming number of passenger mutations in the human tumor genome, it is difficult to pinpoint causative driver genes. Using transposon mutagenesis in mice many laboratories have conducted forward genetic screens and identified thousands of candidate driver genes that are highly relevant to human cancer. Unfortunately, this information is difficult to access and utilize because it is scattered across multiple publications using different mouse genome builds and strength metrics. To improve access to these findings and facilitate meta-analyses, we developed the Candidate Cancer Gene Database (CCGD, http://ccgd-starrlab.oit.umn.edu/). The CCGD is a manually curated database containing a unified description of all identified candidate driver genes and the genomic location of transposon common insertion sites (CISs) from all currently published transposon-based screens. To demonstrate relevance to human cancer, we performed a modified gene set enrichment analysis using KEGG pathways and show that human cancer pathways are highly enriched in the database. We also used hierarchical clustering to identify pathways enriched in blood cancers compared to solid cancers. The CCGD is a novel resource available to scientists interested in the identification of genetic drivers of cancer. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Discovering time-lagged rules from microarray data using gene profile classifiers

    Directory of Open Access Journals (Sweden)

    Ponzoni Ignacio

    2011-04-01

    Full Text Available Abstract Background Gene regulatory networks have an essential role in every process of life. In this regard, the amount of genome-wide time series data is becoming increasingly available, providing the opportunity to discover the time-delayed gene regulatory networks that govern the majority of these molecular processes. Results This paper aims at reconstructing gene regulatory networks from multiple genome-wide microarray time series datasets. In this sense, a new model-free algorithm called GRNCOP2 (Gene Regulatory Network inference by Combinatorial OPtimization 2, which is a significant evolution of the GRNCOP algorithm, was developed using combinatorial optimization of gene profile classifiers. The method is capable of inferring potential time-delay relationships with any span of time between genes from various time series datasets given as input. The proposed algorithm was applied to time series data composed of twenty yeast genes that are highly relevant for the cell-cycle study, and the results were compared against several related approaches. The outcomes have shown that GRNCOP2 outperforms the contrasted methods in terms of the proposed metrics, and that the results are consistent with previous biological knowledge. Additionally, a genome-wide study on multiple publicly available time series data was performed. In this case, the experimentation has exhibited the soundness and scalability of the new method which inferred highly-related statistically-significant gene associations. Conclusions A novel method for inferring time-delayed gene regulatory networks from genome-wide time series datasets is proposed in this paper. The method was carefully validated with several publicly available data sets. The results have demonstrated that the algorithm constitutes a usable model-free approach capable of predicting meaningful relationships between genes, revealing the time-trends of gene regulation.

  18. Integration of multiple networks and pathways identifies cancer driver genes in pan-cancer analysis.

    Science.gov (United States)

    Cava, Claudia; Bertoli, Gloria; Colaprico, Antonio; Olsen, Catharina; Bontempi, Gianluca; Castiglioni, Isabella

    2018-01-06

    Modern high-throughput genomic technologies represent a comprehensive hallmark of molecular changes in pan-cancer studies. Although different cancer gene signatures have been revealed, the mechanism of tumourigenesis has yet to be completely understood. Pathways and networks are important tools to explain the role of genes in functional genomic studies. However, few methods consider the functional non-equal roles of genes in pathways and the complex gene-gene interactions in a network. We present a novel method in pan-cancer analysis that identifies de-regulated genes with a functional role by integrating pathway and network data. A pan-cancer analysis of 7158 tumour/normal samples from 16 cancer types identified 895 genes with a central role in pathways and de-regulated in cancer. Comparing our approach with 15 current tools that identify cancer driver genes, we found that 35.6% of the 895 genes identified by our method have been found as cancer driver genes with at least 2/15 tools. Finally, we applied a machine learning algorithm on 16 independent GEO cancer datasets to validate the diagnostic role of cancer driver genes for each cancer. We obtained a list of the top-ten cancer driver genes for each cancer considered in this study. Our analysis 1) confirmed that there are several known cancer driver genes in common among different types of cancer, 2) highlighted that cancer driver genes are able to regulate crucial pathways.

  19. Progress in Gene Therapy for Prostate Cancer

    International Nuclear Information System (INIS)

    Ahmed, Kamran A.; Davis, Brian J.; Wilson, Torrence M.; Wiseman, Gregory A.; Federspiel, Mark J.; Morris, John C.

    2012-01-01

    Gene therapy has held promise to correct various disease processes. Prostate cancer represents the second leading cause of cancer death in American men. A number of clinical trials involving gene therapy for the treatment of prostate cancer have been reported. The ability to efficiently transduce tumors with effective levels of therapeutic genes has been identified as a fundamental barrier to effective cancer gene therapy. The approach utilizing gene therapy in prostate cancer patients at our institution attempts to address this deficiency. The sodium-iodide symporter (NIS) is responsible for the ability of the thyroid gland to transport and concentrate iodide. The characteristics of the NIS gene suggest that it could represent an ideal therapeutic gene for cancer therapy. Published results from Mayo Clinic researchers have indicated several important successes with the use of the NIS gene and prostate gene therapy. Studies have demonstrated that transfer of the human NIS gene into prostate cancer using adenovirus vectors in vitro and in vivo results in efficient uptake of radioactive iodine and significant tumor growth delay with prolongation of survival. Preclinical successes have culminated in the opening of a phase I trial for patients with advanced prostate disease which is currently accruing patients. Further study will reveal the clinical promise of NIS gene therapy in the treatment of prostate as well as other malignancies.

  20. Progress in Gene Therapy for Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Kamran A.; Davis, Brian J. [Department of Radiation Oncology, Mayo Clinic, Rochester, MN (United States); Wilson, Torrence M. [Department of Urology, Mayo Clinic, Rochester, MN (United States); Wiseman, Gregory A. [Division of Nuclear Medicine, Mayo Clinic, Rochester, MN (United States); Federspiel, Mark J. [Department of Molecular Medicine, Mayo Clinic, Rochester, MN (United States); Morris, John C., E-mail: davis.brian@mayo.edu [Division of Endocrinology, Mayo Clinic, Rochester, MN (United States)

    2012-11-19

    Gene therapy has held promise to correct various disease processes. Prostate cancer represents the second leading cause of cancer death in American men. A number of clinical trials involving gene therapy for the treatment of prostate cancer have been reported. The ability to efficiently transduce tumors with effective levels of therapeutic genes has been identified as a fundamental barrier to effective cancer gene therapy. The approach utilizing gene therapy in prostate cancer patients at our institution attempts to address this deficiency. The sodium-iodide symporter (NIS) is responsible for the ability of the thyroid gland to transport and concentrate iodide. The characteristics of the NIS gene suggest that it could represent an ideal therapeutic gene for cancer therapy. Published results from Mayo Clinic researchers have indicated several important successes with the use of the NIS gene and prostate gene therapy. Studies have demonstrated that transfer of the human NIS gene into prostate cancer using adenovirus vectors in vitro and in vivo results in efficient uptake of radioactive iodine and significant tumor growth delay with prolongation of survival. Preclinical successes have culminated in the opening of a phase I trial for patients with advanced prostate disease which is currently accruing patients. Further study will reveal the clinical promise of NIS gene therapy in the treatment of prostate as well as other malignancies.

  1. Gene panel testing for inherited cancer risk.

    Science.gov (United States)

    Hall, Michael J; Forman, Andrea D; Pilarski, Robert; Wiesner, Georgia; Giri, Veda N

    2014-09-01

    Next-generation sequencing technologies have ushered in the capability to assess multiple genes in parallel for genetic alterations that may contribute to inherited risk for cancers in families. Thus, gene panel testing is now an option in the setting of genetic counseling and testing for cancer risk. This article describes the many gene panel testing options clinically available to assess inherited cancer susceptibility, the potential advantages and challenges associated with various types of panels, clinical scenarios in which gene panels may be particularly useful in cancer risk assessment, and testing and counseling considerations. Given the potential issues for patients and their families, gene panel testing for inherited cancer risk is recommended to be offered in conjunction or consultation with an experienced cancer genetic specialist, such as a certified genetic counselor or geneticist, as an integral part of the testing process. Copyright © 2014 by the National Comprehensive Cancer Network.

  2. Inflammatory Gene Polymorphisms in Lung Cancer Susceptibility.

    Science.gov (United States)

    Eaton, Keith D; Romine, Perrin E; Goodman, Gary E; Thornquist, Mark D; Barnett, Matt J; Petersdorf, Effie W

    2018-05-01

    Chronic inflammation has been implicated in carcinogenesis, with increasing evidence of its role in lung cancer. We aimed to evaluate the role of genetic polymorphisms in inflammation-related genes in the risk for development of lung cancer. A nested case-control study design was used, and 625 cases and 625 well-matched controls were selected from participants in the β-Carotene and Retinol Efficacy Trial, which is a large, prospective lung cancer chemoprevention trial. The association between lung cancer incidence and survival and 23 polymorphisms descriptive of 11 inflammation-related genes (interferon gamma gene [IFNG], interleukin 10 gene [IL10], interleukin 1 alpha gene [IL1A], interleukin 1 beta gene [IL1B], interleukin 2 gene [IL2], interleukin 4 receptor gene [IL4R], interleukin 4 gene [IL4], interleukin 6 gene [IL6], prostaglandin-endoperoxide synthase 2 gene [PTGS2] (also known as COX2), transforming growth factor beta 1 gene [TGFB1], and tumor necrosis factor alpha gene [TNFA]) was evaluated. Of the 23 polymorphisms, two were associated with risk for lung cancer. Compared with individuals with the wild-type (CC) variant, individuals carrying the minor allele variants of the IL-1β-511C>T promoter polymorphism (rs16944) (CT and TT) had decreased odds of lung cancer (OR = 0.74, [95% confidence interval (CI): 0.58-0.94] and OR = 0.71 [95% CI: 0.50-1.01], respectively, p = 0.03). Similar results were observed for the IL-1β-1464 C>G promoter polymorphism (rs1143623), with presence of the minor variants CG and CC having decreased odds of lung cancer (OR = 0.75 [95% CI: 0.59-0.95] and OR = 0.69 [95% CI: 0.46-1.03], respectively, p = 0.03). Survival was not influenced by genotype. This study provides further evidence that IL1B promoter polymorphisms may modulate the risk for development of lung cancer. Copyright © 2018 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  3. NGX6 gene mediated by promoter methylation as a potential molecular marker in colorectal cancer

    Directory of Open Access Journals (Sweden)

    Shen Shourong

    2010-04-01

    Full Text Available Abstract Background Nasopharyngeal carcinoma associated gene 6 (NGX6 is down-regulated in most colon cancer cell lines and tumor tissues when compared with their normal tissue samples. As a novel suppress tumor gene, it could inhibit colon cancer cell growth and cell cycle progression. However, little is known about the transcriptional mechanisms controlling NGX6 gene expression. Recent findings suggest that epigenetic inactivation of multiple tumor suppressor genes plays an important role in the tumorigenesis of colorectal carcinoma (CRC. In this study, we explored the role of DNA methylation in regulation of NGX6 transcription. Methods In the present study, we cloned the NGX6 promoter with characteristics of a CpG island by luciferase reporter assay. Then, the CpG methylation status around the NGX6 promoter region in colon cancer cell lines and colorectal tumor tissues was examined by methylation-specific PCR and bisulfite DNA sequencing. Finally, 5-Aza-2'-deoxycytidine (5-Aza-dC treatment was used to confirm the correlation between NGX6 promoter methylation and its gene inactivation. Results The sequence spanning positions -157 to +276 was identified as the NGX6 promoter, in which no canonical TATA boxes were found, while two CAAT boxes and GC boxes were discovered. Methylation status was observed more frequently in 40 colorectal cancer samples than in 40 adjacent normal mucosa samples (18/40 versus 7/40; P Conclusions Down-regulation of NGX6 gene is related to the promoter methylation. DNA methylation of NGX6 promoter might be a potential molecular marker for diagnosis or prognosis, or serve as a therapeutic target.

  4. Cancer gene profiling in non-small cell lung cancers reveals activating mutations in JAK2 and JAK3 with therapeutic implications

    Directory of Open Access Journals (Sweden)

    Shuyu D. Li

    2017-10-01

    Full Text Available Abstract Background Next-generation sequencing (NGS of cancer gene panels are widely applied to enable personalized cancer therapy and to identify novel oncogenic mutations. Methods We performed targeted NGS on 932 clinical cases of non-small-cell lung cancers (NSCLCs using the Ion AmpliSeq™ Cancer Hotspot panel v2 assay. Results Actionable mutations were identified in 65% of the cases with available targeted therapeutic options, including 26% of the patients with mutations in National Comprehensive Cancer Network (NCCN guideline genes. Most notably, we discovered JAK2 p.V617F somatic mutation, a hallmark of myeloproliferative neoplasms, in 1% (9/932 of the NSCLCs. Analysis of cancer cell line pharmacogenomic data showed that a high level of JAK2 expression in a panel of NSCLC cell lines is correlated with increased sensitivity to a selective JAK2 inhibitor. Further analysis of TCGA genomic data revealed JAK2 gain or loss due to genetic alterations in NSCLC clinical samples are associated with significantly elevated or reduced PD-L1 expression, suggesting that the activating JAK2 p.V617F mutation could confer sensitivity to both JAK inhibitors and anti-PD1 immunotherapy. We also detected JAK3 germline activating mutations in 6.7% (62/932 of the patients who may benefit from anti-PD1 treatment, in light of recent findings that JAK3 mutations upregulate PD-L1 expression. Conclusion Taken together, this study demonstrated the clinical utility of targeted NGS with a focused hotspot cancer gene panel in NSCLCs and identified activating mutations in JAK2 and JAK3 with clinical implications inferred through integrative analysis of cancer genetic, genomic, and pharmacogenomic data. The potential of JAK2 and JAK3 mutations as response markers for the targeted therapy against JAK kinases or anti-PD1 immunotherapy warrants further investigation.

  5. IGF-Regulated Genes in Prostate Cancer

    National Research Council Canada - National Science Library

    Roberts, Charles

    2003-01-01

    We hypothesized that genes that are differentially expressed as a result of the decreased IGF-I receptor gene expression seen in metastatic prostate cancer contribute to prostate cancer progression...

  6. IGF-Regulated Genes in Prostate Cancer

    National Research Council Canada - National Science Library

    Roberts, Charles T., Jr

    2005-01-01

    We hypothesized that genes that are differentially expressed as a result of the decreased IGF-I receptor gene expression seen in metastatic prostate cancer contribute to prostate cancer progression...

  7. Polyamine Metabolites Profiling for Characterization of Lung and Liver Cancer Using an LC-Tandem MS Method with Multiple Statistical Data Mining Strategies: Discovering Potential Cancer Biomarkers in Human Plasma and Urine

    Directory of Open Access Journals (Sweden)

    Huarong Xu

    2016-08-01

    Full Text Available Polyamines, one of the most important kind of biomarkers in cancer research, were investigated in order to characterize different cancer types. An integrative approach which combined ultra-high performance liquid chromatography—tandem mass spectrometry detection and multiple statistical data processing strategies including outlier elimination, binary logistic regression analysis and cluster analysis had been developed to discover the characteristic biomarkers of lung and liver cancer. The concentrations of 14 polyamine metabolites in biosamples from lung (n = 50 and liver cancer patients (n = 50 were detected by a validated UHPLC-MS/MS method. Then the concentrations were converted into independent variables to characterize patients of lung and liver cancer by binary logic regression analysis. Significant independent variables were regarded as the potential biomarkers. Cluster analysis was engaged for further verifying. As a result, two values was discovered to identify lung and liver cancer, which were the product of the plasma concentration of putrescine and spermidine; and the ratio of the urine concentration of S-adenosyl-l-methionine and N-acetylspermidine. Results indicated that the established advanced method could be successfully applied to characterize lung and liver cancer, and may also enable a new way of discovering cancer biomarkers and characterizing other types of cancer.

  8. Expression of circadian clock genes and proteins in urothelial cancer is related to cancer-associated genes

    International Nuclear Information System (INIS)

    Litlekalsoy, Jorunn; Rostad, Kari; Kalland, Karl-Henning; Hostmark, Jens G.; Laerum, Ole Didrik

    2016-01-01

    The purpose of this study was to evaluate invasive and metastatic potential of urothelial cancer by investigating differential expression of various clock genes/proteins participating in the 24 h circadian rhythms and to compare these gene expressions with transcription of other cancer-associated genes. Twenty seven paired samples of tumour and benign tissue collected from patients who underwent cystectomy were analysed and compared to 15 samples of normal bladder tissue taken from patients who underwent cystoscopy for benign prostate hyperplasia (unrelated donors). Immunohistochemical analyses were made for clock and clock-related proteins. In addition, the gene-expression levels of 22 genes (clock genes, casein kinases, oncogenes, tumour suppressor genes and cytokeratins) were analysed by real-time quantitative PCR (qPCR). Considerable up- or down-regulation and altered cellular distribution of different clock proteins, a reduction of casein kinase1A1 (CSNK1A1) and increase of casein kinase alpha 1 E (CSNK1E) were found. The pattern was significantly correlated with simultaneous up-regulation of stimulatory tumour markers, and a down-regulation of several suppressor genes. The pattern was mainly seen in aneuploid high-grade cancers. Considerable alterations were also found in the neighbouring bladder mucosa. The close correlation between altered expression of various clock genes and common tumour markers in urothelial cancer indicates that disturbed function in the cellular clock work may be an important additional mechanism contributing to cancer progression and malignant behaviour. The online version of this article (doi:10.1186/s12885-016-2580-y) contains supplementary material, which is available to authorized users

  9. Fingerprints in cancer cells

    International Nuclear Information System (INIS)

    Servomaa, K.

    1994-01-01

    Gene research has shown that factors causing cancer, or carcinogens, may leave marks typical of each particular carcinogen (fingerprints) in the genotype of the cell. Radiation, for instance, may leave such fingerprints in a cancer cell. In particular, the discovery of a gene called p53 has yielded much new information on fingerprints. It has been discovered, for example, that toxic fungus and UV-radiation each leave fingerprints in the p53 gene. Based on the detection of fingerprints, it may be possible in the future to tell a cancer patient what factor had trigged the maglinancy

  10. Lung cancer gene expression database analysis incorporating prior knowledge with support vector machine-based classification method

    Directory of Open Access Journals (Sweden)

    Huang Desheng

    2009-07-01

    Full Text Available Abstract Background A reliable and precise classification is essential for successful diagnosis and treatment of cancer. Gene expression microarrays have provided the high-throughput platform to discover genomic biomarkers for cancer diagnosis and prognosis. Rational use of the available bioinformation can not only effectively remove or suppress noise in gene chips, but also avoid one-sided results of separate experiment. However, only some studies have been aware of the importance of prior information in cancer classification. Methods Together with the application of support vector machine as the discriminant approach, we proposed one modified method that incorporated prior knowledge into cancer classification based on gene expression data to improve accuracy. A public well-known dataset, Malignant pleural mesothelioma and lung adenocarcinoma gene expression database, was used in this study. Prior knowledge is viewed here as a means of directing the classifier using known lung adenocarcinoma related genes. The procedures were performed by software R 2.80. Results The modified method performed better after incorporating prior knowledge. Accuracy of the modified method improved from 98.86% to 100% in training set and from 98.51% to 99.06% in test set. The standard deviations of the modified method decreased from 0.26% to 0 in training set and from 3.04% to 2.10% in test set. Conclusion The method that incorporates prior knowledge into discriminant analysis could effectively improve the capacity and reduce the impact of noise. This idea may have good future not only in practice but also in methodology.

  11. Methylated genes as new cancer biomarkers.

    LENUS (Irish Health Repository)

    Duffy, M J

    2012-02-01

    Aberrant hypermethylation of promoter regions in specific genes is a key event in the formation and progression of cancer. In at least some situations, these aberrant alterations occur early in the formation of malignancy and appear to be tumour specific. Multiple reports have suggested that measurement of the methylation status of the promoter regions of specific genes can aid early detection of cancer, determine prognosis and predict therapy responses. Promising DNA methylation biomarkers include the use of methylated GSTP1 for aiding the early diagnosis of prostate cancer, methylated PITX2 for predicting outcome in lymph node-negative breast cancer patients and methylated MGMT in predicting benefit from alkylating agents in patients with glioblastomas. However, prior to clinical utilisation, these findings require validation in prospective clinical studies. Furthermore, assays for measuring gene methylation need to be standardised, simplified and evaluated in external quality assurance programmes. It is concluded that methylated genes have the potential to provide a new generation of cancer biomarkers.

  12. HER2 Genetic Link to Breast Cancer

    Science.gov (United States)

    When researchers discovered the HER2 gene's importance to breast cancer growth, this led to the development of trastuzumab and other treatments that have improved survival for women with HER2-positive breast cancer.

  13. Germline mutations in candidate predisposition genes in individuals with cutaneous melanoma and at least two independent additional primary cancers.

    Science.gov (United States)

    Pritchard, Antonia L; Johansson, Peter A; Nathan, Vaishnavi; Howlie, Madeleine; Symmons, Judith; Palmer, Jane M; Hayward, Nicholas K

    2018-01-01

    While a number of autosomal dominant and autosomal recessive cancer syndromes have an associated spectrum of cancers, the prevalence and variety of cancer predisposition mutations in patients with multiple primary cancers have not been extensively investigated. An understanding of the variants predisposing to more than one cancer type could improve patient care, including screening and genetic counselling, as well as advancing the understanding of tumour development. A cohort of 57 patients ascertained due to their cutaneous melanoma (CM) diagnosis and with a history of two or more additional non-cutaneous independent primary cancer types were recruited for this study. Patient blood samples were assessed by whole exome or whole genome sequencing. We focussed on variants in 525 pre-selected genes, including 65 autosomal dominant and 31 autosomal recessive cancer predisposition genes, 116 genes involved in the DNA repair pathway, and 313 commonly somatically mutated in cancer. The same genes were analysed in exome sequence data from 1358 control individuals collected as part of non-cancer studies (UK10K). The identified variants were classified for pathogenicity using online databases, literature and in silico prediction tools. No known pathogenic autosomal dominant or previously described compound heterozygous mutations in autosomal recessive genes were observed in the multiple cancer cohort. Variants typically found somatically in haematological malignancies (in JAK1, JAK2, SF3B1, SRSF2, TET2 and TYK2) were present in lymphocyte DNA of patients with multiple primary cancers, all of whom had a history of haematological malignancy and cutaneous melanoma, as well as colorectal cancer and/or prostate cancer. Other potentially pathogenic variants were discovered in BUB1B, POLE2, ROS1 and DNMT3A. Compared to controls, multiple cancer cases had significantly more likely damaging mutations (nonsense, frameshift ins/del) in tumour suppressor and tyrosine kinase genes and

  14. Rearranged anaplastic lymphoma kinase (ALK) gene found for the first time in adult-onset papillary thyroid cancer cases among atomic bomb survivors

    International Nuclear Information System (INIS)

    Hamatani, K.; Mukai, M.; Takahashi, K.; Nakachi, K.; Kusunoki, Y.; Hayashi, Y.

    2012-01-01

    Full text of the publication follows: Thyroid cancer is one of the malignancies most strongly associated with ionizing radiation in humans. Epidemiology studies of atomic bomb (A-bomb) survivors have indicated that excess relative risk of papillary thyroid cancer per Gy was remarkably high in the survivors. We therefore aim to clarify mechanisms linking A-bomb radiation exposure and development of papillary thyroid cancer. Toward this end, we intend to clarify characteristics of gene alterations occurring in radiation-associated adult-onset papillary thyroid cancer from the Life Span Study cohort of A-bomb survivors. We have thus far found that with increased radiation dose, papillary thyroid cancer cases with chromosomal rearrangements (mainly RET/PTC rearrangements) significantly increased and papillary thyroid cancer cases with point mutations (mainly BRAF-V600E) significantly decreased. Papillary thyroid cancer cases with non-detected gene alterations that carried no mutations in RET, NTRK1, BRAF or RAS genes tended to increase with increased radiation dose. In addition, we found that relative frequency of these papillary thyroid cancer cases significantly decreased with time elapsed since exposure. Through analysis of papillary thyroid cancer cases with non-detected gene alterations, we recently discovered a new type of rearrangement for the first time in papillary thyroid cancer, i.e., rearranged anaplastic lymphoma kinase (ALK) gene, although identification of any partner gene(s) is needed. Specifically, rearrangement of ALK was found in 10 of 19 exposed papillary thyroid cancer cases with non-detected gene alterations but not in any of the six non-exposed papillary thyroid cancer cases. Furthermore, papillary thyroid cancer with ALK rearrangement was frequently found in the cases with high radiation dose or with short time elapsed since A-bomb exposure. These results suggest that chromosomal rearrangement, typically of RET and ALK, may play an important

  15. A network-based drug repositioning infrastructure for precision cancer medicine through targeting significantly mutated genes in the human cancer genomes.

    Science.gov (United States)

    Cheng, Feixiong; Zhao, Junfei; Fooksa, Michaela; Zhao, Zhongming

    2016-07-01

    Development of computational approaches and tools to effectively integrate multidomain data is urgently needed for the development of newly targeted cancer therapeutics. We proposed an integrative network-based infrastructure to identify new druggable targets and anticancer indications for existing drugs through targeting significantly mutated genes (SMGs) discovered in the human cancer genomes. The underlying assumption is that a drug would have a high potential for anticancer indication if its up-/down-regulated genes from the Connectivity Map tended to be SMGs or their neighbors in the human protein interaction network. We assembled and curated 693 SMGs in 29 cancer types and found 121 proteins currently targeted by known anticancer or noncancer (repurposed) drugs. We found that the approved or experimental cancer drugs could potentially target these SMGs in 33.3% of the mutated cancer samples, and this number increased to 68.0% by drug repositioning through surveying exome-sequencing data in approximately 5000 normal-tumor pairs from The Cancer Genome Atlas. Furthermore, we identified 284 potential new indications connecting 28 cancer types and 48 existing drugs (adjusted P < .05), with a 66.7% success rate validated by literature data. Several existing drugs (e.g., niclosamide, valproic acid, captopril, and resveratrol) were predicted to have potential indications for multiple cancer types. Finally, we used integrative analysis to showcase a potential mechanism-of-action for resveratrol in breast and lung cancer treatment whereby it targets several SMGs (ARNTL, ASPM, CTTN, EIF4G1, FOXP1, and STIP1). In summary, we demonstrated that our integrative network-based infrastructure is a promising strategy to identify potential druggable targets and uncover new indications for existing drugs to speed up molecularly targeted cancer therapeutics. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All

  16. Theranostic Imaging of Cancer Gene Therapy.

    Science.gov (United States)

    Sekar, Thillai V; Paulmurugan, Ramasamy

    2016-01-01

    Gene-directed enzyme prodrug therapy (GDEPT) is a promising therapeutic approach for treating cancers of various phenotypes. This strategy is independent of various other chemotherapeutic drugs used for treating cancers where the drugs are mainly designed to target endogenous cellular mechanisms, which are different in various cancer subtypes. In GDEPT an external enzyme, which is different from the cellular proteins, is expressed to convert the injected prodrug in to a toxic metabolite, that normally kill cancer cells express this protein. Theranostic imaging is an approach used to directly monitor the expression of these gene therapy enzymes while evaluating therapeutic effect. We recently developed a dual-GDEPT system where we combined mutant human herpes simplex thymidine kinase (HSV1sr39TK) and E. coli nitroreductase (NTR) enzyme, to improve therapeutic efficiency of cancer gene therapy by simultaneously injecting two prodrugs at a lower dose. In this approach we use two different prodrugs such as ganciclovir (GCV) and CB1954 to target two different cellular mechanisms to kill cancer cells. The developed dual GDEPT system was highly efficacious than that of either of the system used independently. In this chapter, we describe the complete protocol involved for in vitro and in vivo imaging of therapeutic cancer gene therapy evaluation.

  17. Methylated genes as new cancer biomarkers

    DEFF Research Database (Denmark)

    Brunner, Nils; Duffy, M.J; Napieralski, R.

    2009-01-01

    Aberrant hypermethylation of promoter regions in specific genes is a key event in the formation and progression of cancer. In at least some situations, these aberrant alterations occur early in the formation of malignancy and appear to be tumour specific. Multiple reports have suggested that meas......Aberrant hypermethylation of promoter regions in specific genes is a key event in the formation and progression of cancer. In at least some situations, these aberrant alterations occur early in the formation of malignancy and appear to be tumour specific. Multiple reports have suggested...... that measurement of the methylation status of the promoter regions of specific genes can aid early detection of cancer, determine prognosis and predict therapy responses. Promising DNA methylation biomarkers include the use of methylated GSTP1 for aiding the early diagnosis of prostate cancer, methylated PITX2...... for predicting outcome in lymph node-negative breast cancer patients and methylated MGMT in predicting benefit from alkylating agents in patients with glioblastomas. However, prior to clinical utilisation, these findings require validation in prospective clinical studies. Furthermore, assays for measuring gene...

  18. Identification of Logic Relationships between Genes and Subtypes of Non-Small Cell Lung Cancer

    Science.gov (United States)

    Su, Yansen; Pan, Linqiang

    2014-01-01

    Non-small cell lung cancer (NSCLC) has two major subtypes: adenocarcinoma (AC) and squamous cell carcinoma (SCC). The diagnosis and treatment of NSCLC are hindered by the limited knowledge about the pathogenesis mechanisms of subtypes of NSCLC. It is necessary to research the molecular mechanisms related with AC and SCC. In this work, we improved the logic analysis algorithm to mine the sufficient and necessary conditions for the presence states (presence or absence) of phenotypes. We applied our method to AC and SCC specimens, and identified lower and higher logic relationships between genes and two subtypes of NSCLC. The discovered relationships were independent of specimens selected, and their significance was validated by statistic test. Compared with the two earlier methods (the non-negative matrix factorization method and the relevance analysis method), the current method outperformed these methods in the recall rate and classification accuracy on NSCLC and normal specimens. We obtained biomarkers. Among biomarkers, genes have been used to distinguish AC from SCC in practice, and other six genes were newly discovered biomarkers for distinguishing subtypes. Furthermore, NKX2-1 has been considered as a molecular target for the targeted therapy of AC, and other genes may be novel molecular targets. By gene ontology analysis, we found that two biological processes (‘epidermis development’ and ‘cell adhesion’) were closely related with the tumorigenesis of subtypes of NSCLC. More generally, the current method could be extended to other complex diseases for distinguishing subtypes and detecting the molecular targets for targeted therapy. PMID:24743794

  19. Gastric Cancer Associated Genes Identified by an Integrative Analysis of Gene Expression Data

    Directory of Open Access Journals (Sweden)

    Bing Jiang

    2017-01-01

    Full Text Available Gastric cancer is one of the most severe complex diseases with high morbidity and mortality in the world. The molecular mechanisms and risk factors for this disease are still not clear since the cancer heterogeneity caused by different genetic and environmental factors. With more and more expression data accumulated nowadays, we can perform integrative analysis for these data to understand the complexity of gastric cancer and to identify consensus players for the heterogeneous cancer. In the present work, we screened the published gene expression data and analyzed them with integrative tool, combined with pathway and gene ontology enrichment investigation. We identified several consensus differentially expressed genes and these genes were further confirmed with literature mining; at last, two genes, that is, immunoglobulin J chain and C-X-C motif chemokine ligand 17, were screened as novel gastric cancer associated genes. Experimental validation is proposed to further confirm this finding.

  20. The bystander effect of cancer gene therapy

    International Nuclear Information System (INIS)

    Lumniczky, K.; Safrany, G.

    2008-01-01

    Cancer gene therapy is a new, promising therapeutic agent. In the clinic, it should be used in combination with existing modalities, such as tumour irradiation. First, we summarise the most important fields of cancer gene therapy: gene directed enzyme pro-drug therapy; the activation of an anti-tumour immune attack; restoration of the wild type p53 status; the application of new, replication competent and oncolytic viral vectors; tumour specific, as well as radiation- and hypoxia-induced gene expression. Special emphasizes are put on the combined effect of these modalities with local tumour irradiation. Using the available vector systems, only a small portion of the cancer cells will contain the therapeutic genes under therapeutic situations. Bystander cell killing might contribute to the success of various gene therapy protocols. We summarise the evidences that lethal bystander effects may occur during cancer gene therapy. Bystander effects are especially important in the gene directed enzyme pro-drug therapy. There, bystander cell killing might have different routes: cell communication through gap junction intercellular contacts; release of toxic metabolites into the neighbourhood or to larger distances; phagocytosis of apoptotic bodies; and the activation of the immune system. Bystander cell killing can be enhanced by the introduction of gap junction proteins into the cells, by further activating the immune system with immune-stimulatory molecules, or by introducing genes into the cells that help the transfer of cytotoxic genes and / or metabolites into the bystander cells. In conclusion, there should be additional improvements in cancer gene therapy for the more efficient clinical application. (orig.)

  1. Systematic assessment of multi-gene predictors of pan-cancer cell line sensitivity to drugs exploiting gene expression data [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Linh Nguyen

    2017-03-01

    Full Text Available Background: Selected gene mutations are routinely used to guide the selection of cancer drugs for a given patient tumour. Large pharmacogenomic data sets, such as those by Genomics of Drug Sensitivity in Cancer (GDSC consortium, were introduced to discover more of these single-gene markers of drug sensitivity. Very recently, machine learning regression has been used to investigate how well cancer cell line sensitivity to drugs is predicted depending on the type of molecular profile. The latter has revealed that gene expression data is the most predictive profile in the pan-cancer setting. However, no study to date has exploited GDSC data to systematically compare the performance of machine learning models based on multi-gene expression data against that of widely-used single-gene markers based on genomics data. Methods: Here we present this systematic comparison using Random Forest (RF classifiers exploiting the expression levels of 13,321 genes and an average of 501 tested cell lines per drug. To account for time-dependent batch effects in IC50 measurements, we employ independent test sets generated with more recent GDSC data than that used to train the predictors and show that this is a more realistic validation than standard k-fold cross-validation. Results and Discussion: Across 127 GDSC drugs, our results show that the single-gene markers unveiled by the MANOVA analysis tend to achieve higher precision than these RF-based multi-gene models, at the cost of generally having a poor recall (i.e. correctly detecting only a small part of the cell lines sensitive to the drug. Regarding overall classification performance, about two thirds of the drugs are better predicted by the multi-gene RF classifiers. Among the drugs with the most predictive of these models, we found pyrimethamine, sunitinib and 17-AAG. Conclusions: Thanks to this unbiased validation, we now know that this type of models can predict in vitro tumour response to some of these

  2. Identifying Cancer Driver Genes Using Replication-Incompetent Retroviral Vectors

    Directory of Open Access Journals (Sweden)

    Victor M. Bii

    2016-10-01

    Full Text Available Identifying novel genes that drive tumor metastasis and drug resistance has significant potential to improve patient outcomes. High-throughput sequencing approaches have identified cancer genes, but distinguishing driver genes from passengers remains challenging. Insertional mutagenesis screens using replication-incompetent retroviral vectors have emerged as a powerful tool to identify cancer genes. Unlike replicating retroviruses and transposons, replication-incompetent retroviral vectors lack additional mutagenesis events that can complicate the identification of driver mutations from passenger mutations. They can also be used for almost any human cancer due to the broad tropism of the vectors. Replication-incompetent retroviral vectors have the ability to dysregulate nearby cancer genes via several mechanisms including enhancer-mediated activation of gene promoters. The integrated provirus acts as a unique molecular tag for nearby candidate driver genes which can be rapidly identified using well established methods that utilize next generation sequencing and bioinformatics programs. Recently, retroviral vector screens have been used to efficiently identify candidate driver genes in prostate, breast, liver and pancreatic cancers. Validated driver genes can be potential therapeutic targets and biomarkers. In this review, we describe the emergence of retroviral insertional mutagenesis screens using replication-incompetent retroviral vectors as a novel tool to identify cancer driver genes in different cancer types.

  3. Gene therapy for lung cancer.

    Science.gov (United States)

    Toloza, Eric M; Morse, Michael A; Lyerly, H Kim

    2006-09-01

    Lung cancer patients suffer a 15% overall survival despite advances in chemotherapy, radiation therapy, and surgery. This unacceptably low survival rate is due to the usual finding of advanced disease at diagnosis. However, multimodality strategies using conventional therapies only minimally improve survival rates even in early stages of lung cancer. Attempts to improve survival in advanced disease using various combinations of platinum-based chemotherapy have demonstrated that no regimen is superior, suggesting a therapeutic plateau and the need for novel, more specific, and less toxic therapeutic strategies. Over the past three decades, the genetic etiology of cancer has been gradually delineated, albeit not yet completely. Understanding the molecular events that occur during the multistep process of bronchogenic carcinogenesis may make these tasks more surmountable. During these same three decades, techniques have been developed which allow transfer of functional genes into mammalian cells. For example, blockade of activated tumor-promoting oncogenes or replacement of inactivated tumor-suppressing or apoptosis-promoting genes can be achieved by gene therapy. This article will discuss the therapeutic implications of these molecular changes associated with bronchogenic carcinomas and will then review the status of gene therapies for treatment of lung cancer. (c) 2006 Wiley-Liss, Inc.

  4. A novel method to discover fluoroquinolone antibiotic resistance (qnr genes in fragmented nucleotide sequences

    Directory of Open Access Journals (Sweden)

    Boulund Fredrik

    2012-12-01

    Full Text Available Abstract Background Broad-spectrum fluoroquinolone antibiotics are central in modern health care and are used to treat and prevent a wide range of bacterial infections. The recently discovered qnr genes provide a mechanism of resistance with the potential to rapidly spread between bacteria using horizontal gene transfer. As for many antibiotic resistance genes present in pathogens today, qnr genes are hypothesized to originate from environmental bacteria. The vast amount of data generated by shotgun metagenomics can therefore be used to explore the diversity of qnr genes in more detail. Results In this paper we describe a new method to identify qnr genes in nucleotide sequence data. We show, using cross-validation, that the method has a high statistical power of correctly classifying sequences from novel classes of qnr genes, even for fragments as short as 100 nucleotides. Based on sequences from public repositories, the method was able to identify all previously reported plasmid-mediated qnr genes. In addition, several fragments from novel putative qnr genes were identified in metagenomes. The method was also able to annotate 39 chromosomal variants of which 11 have previously not been reported in literature. Conclusions The method described in this paper significantly improves the sensitivity and specificity of identification and annotation of qnr genes in nucleotide sequence data. The predicted novel putative qnr genes in the metagenomic data support the hypothesis of a large and uncharacterized diversity within this family of resistance genes in environmental bacterial communities. An implementation of the method is freely available at http://bioinformatics.math.chalmers.se/qnr/.

  5. The gene regulatory network for breast cancer: Integrated regulatory landscape of cancer hallmarks

    Directory of Open Access Journals (Sweden)

    Frank eEmmert-Streib

    2014-02-01

    Full Text Available In this study, we infer the breast cancer gene regulatory network from gene expression data. This network is obtained from the application of the BC3Net inference algorithm to a large-scale gene expression data set consisting of $351$ patient samples. In order to elucidate the functional relevance of the inferred network, we are performing a Gene Ontology (GO analysis for its structural components. Our analysis reveals that most significant GO-terms we find for the breast cancer network represent functional modules of biological processes that are described by known cancer hallmarks, including translation, immune response, cell cycle, organelle fission, mitosis, cell adhesion, RNA processing, RNA splicing and response to wounding. Furthermore, by using a curated list of census cancer genes, we find an enrichment in these functional modules. Finally, we study cooperative effects of chromosomes based on information of interacting genes in the beast cancer network. We find that chromosome $21$ is most coactive with other chromosomes. To our knowledge this is the first study investigating the genome-scale breast cancer network.

  6. Systematic assessment of multi-gene predictors of pan-cancer cell line sensitivity to drugs exploiting gene expression data [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Linh Nguyen

    2016-12-01

    Full Text Available Background: Selected gene mutations are routinely used to guide the selection of cancer drugs for a given patient tumour. Large pharmacogenomic data sets were introduced to discover more of these single-gene markers of drug sensitivity. Very recently, machine learning regression has been used to investigate how well cancer cell line sensitivity to drugs is predicted depending on the type of molecular profile. The latter has revealed that gene expression data is the most predictive profile in the pan-cancer setting. However, no study to date has exploited GDSC data to systematically compare the performance of machine learning models based on multi-gene expression data against that of widely-used single-gene markers based on genomics data. Methods: Here we present this systematic comparison using Random Forest (RF classifiers exploiting the expression levels of 13,321 genes and an average of 501 tested cell lines per drug. To account for time-dependent batch effects in IC50 measurements, we employ independent test sets generated with more recent GDSC data than that used to train the predictors and show that this is a more realistic validation than K-fold cross-validation. Results and Discussion: Across 127 GDSC drugs, our results show that the single-gene markers unveiled by the MANOVA analysis tend to achieve higher precision than these RF-based multi-gene models, at the cost of generally having a poor recall (i.e. correctly detecting only a small part of the cell lines sensitive to the drug. Regarding overall classification performance, about two thirds of the drugs are better predicted by multi-gene RF classifiers. Among the drugs with the most predictive of these models, we found pyrimethamine, sunitinib and 17-AAG. Conclusions: We now know that this type of models can predict in vitro tumour response to these drugs. These models can thus be further investigated on in vivo tumour models.

  7. Nonviral Delivery Systems For Cancer Gene Therapy: Strategies And Challenges.

    Science.gov (United States)

    Shim, Gayong; Kim, Dongyoon; Le, Quoc-Viet; Park, Gyu Thae; Kwon, Taekhyun; Oh, Yu-Kyoung

    2018-01-19

    Gene therapy has been receiving widespread attention due to its unique advantage in regulating the expression of specific target genes. In the field of cancer gene therapy, modulation of gene expression has been shown to decrease oncogenic factors in cancer cells or increase immune responses against cancer. Due to the macromolecular size and highly negative physicochemical features of plasmid DNA, efficient delivery systems are an essential ingredient for successful gene therapy. To date, a variety of nanostructures and materials have been studied as nonviral gene delivery systems. In this review, we will cover nonviral delivery strategies for cancer gene therapy, with a focus on target cancer genes and delivery materials. Moreover, we will address current challenges and perspectives for nonviral delivery-based cancer gene therapeutics. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Cancer Outlier Analysis Based on Mixture Modeling of Gene Expression Data

    Directory of Open Access Journals (Sweden)

    Keita Mori

    2013-01-01

    Full Text Available Molecular heterogeneity of cancer, partially caused by various chromosomal aberrations or gene mutations, can yield substantial heterogeneity in gene expression profile in cancer samples. To detect cancer-related genes which are active only in a subset of cancer samples or cancer outliers, several methods have been proposed in the context of multiple testing. Such cancer outlier analyses will generally suffer from a serious lack of power, compared with the standard multiple testing setting where common activation of genes across all cancer samples is supposed. In this paper, we consider information sharing across genes and cancer samples, via a parametric normal mixture modeling of gene expression levels of cancer samples across genes after a standardization using the reference, normal sample data. A gene-based statistic for gene selection is developed on the basis of a posterior probability of cancer outlier for each cancer sample. Some efficiency improvement by using our method was demonstrated, even under settings with misspecified, heavy-tailed t-distributions. An application to a real dataset from hematologic malignancies is provided.

  9. Discovering functions of unannotated genes from a transcriptome survey of wild fungal isolates.

    Science.gov (United States)

    Ellison, Christopher E; Kowbel, David; Glass, N Louise; Taylor, John W; Brem, Rachel B

    2014-04-01

    Most fungal genomes are poorly annotated, and many fungal traits of industrial and biomedical relevance are not well suited to classical genetic screens. Assigning genes to phenotypes on a genomic scale thus remains an urgent need in the field. We developed an approach to infer gene function from expression profiles of wild fungal isolates, and we applied our strategy to the filamentous fungus Neurospora crassa. Using transcriptome measurements in 70 strains from two well-defined clades of this microbe, we first identified 2,247 cases in which the expression of an unannotated gene rose and fell across N. crassa strains in parallel with the expression of well-characterized genes. We then used image analysis of hyphal morphologies, quantitative growth assays, and expression profiling to test the functions of four genes predicted from our population analyses. The results revealed two factors that influenced regulation of metabolism of nonpreferred carbon and nitrogen sources, a gene that governed hyphal architecture, and a gene that mediated amino acid starvation resistance. These findings validate the power of our population-transcriptomic approach for inference of novel gene function, and we suggest that this strategy will be of broad utility for genome-scale annotation in many fungal systems. IMPORTANCE Some fungal species cause deadly infections in humans or crop plants, and other fungi are workhorses of industrial chemistry, including the production of biofuels. Advances in medical and industrial mycology require an understanding of the genes that control fungal traits. We developed a method to infer functions of uncharacterized genes by observing correlated expression of their mRNAs with those of known genes across wild fungal isolates. We applied this strategy to a filamentous fungus and predicted functions for thousands of unknown genes. In four cases, we experimentally validated the predictions from our method, discovering novel genes involved in the

  10. A Review of ERCC1 Gene in Bladder Cancer: Implications for Carcinogenesis and Resistance to Chemoradiotherapy

    Directory of Open Access Journals (Sweden)

    Atsunari Kawashima

    2012-01-01

    Full Text Available The excision repair cross-complementing group 1 (ERCC1 gene performs a critical incision step in DNA repair and is reported to be correlated with carcinogenesis and resistance to drug or ionizing radiation therapy. We reviewed the correlation between ERCC1 and bladder cancer. In carcinogenesis, several reports discussed the relation between ERCC1 single nucleotide polymorphisms and carcinogenesis in bladder cancer only in case-control studies. Regarding the relation between ERCC1 and resistance to chemoradiotherapy, in vitro and clinical studies indicate that ERCC1 might be related to resistance to radiation therapy rather than cisplatin therapy. It is controversial whether ERCC1 predicts prognosis of bladder cancer treated with cisplatin-based chemotherapy. Tyrosine kinase receptors or endothelial-mesenchymal transition are reported to regulate the expression of ERCC1, and further study is needed to clarify the mechanism of ERCC1 expression and resistance to chemoradiotherapy in vitro and to discover novel therapies for advanced and metastatic bladder cancer.

  11. A Review of ERCC1 Gene in Bladder Cancer: Implications for Carcinogenesis and Resistance to Chemoradiotherapy.

    Science.gov (United States)

    Kawashima, Atsunari; Takayama, Hitoshi; Tsujimura, Akira

    2012-01-01

    The excision repair cross-complementing group 1 (ERCC1) gene performs a critical incision step in DNA repair and is reported to be correlated with carcinogenesis and resistance to drug or ionizing radiation therapy. We reviewed the correlation between ERCC1 and bladder cancer. In carcinogenesis, several reports discussed the relation between ERCC1 single nucleotide polymorphisms and carcinogenesis in bladder cancer only in case-control studies. Regarding the relation between ERCC1 and resistance to chemoradiotherapy, in vitro and clinical studies indicate that ERCC1 might be related to resistance to radiation therapy rather than cisplatin therapy. It is controversial whether ERCC1 predicts prognosis of bladder cancer treated with cisplatin-based chemotherapy. Tyrosine kinase receptors or endothelial-mesenchymal transition are reported to regulate the expression of ERCC1, and further study is needed to clarify the mechanism of ERCC1 expression and resistance to chemoradiotherapy in vitro and to discover novel therapies for advanced and metastatic bladder cancer.

  12. Gene therapy for prostate cancer.

    LENUS (Irish Health Repository)

    Tangney, Mark

    2012-01-31

    Cancer remains a leading cause of morbidity and mortality. Despite advances in understanding, detection, and treatment, it accounts for almost one-fourth of all deaths per year in Western countries. Prostate cancer is currently the most commonly diagnosed noncutaneous cancer in men in Europe and the United States, accounting for 15% of all cancers in men. As life expectancy of individuals increases, it is expected that there will also be an increase in the incidence and mortality of prostate cancer. Prostate cancer may be inoperable at initial presentation, unresponsive to chemotherapy and radiotherapy, or recur following appropriate treatment. At the time of presentation, patients may already have metastases in their tissues. Preventing tumor recurrence requires systemic therapy; however, current modalities are limited by toxicity or lack of efficacy. For patients with such metastatic cancers, the development of alternative therapies is essential. Gene therapy is a realistic prospect for the treatment of prostate and other cancers, and involves the delivery of genetic information to the patient to facilitate the production of therapeutic proteins. Therapeutics can act directly (eg, by inducing tumor cells to produce cytotoxic agents) or indirectly by upregulating the immune system to efficiently target tumor cells or by destroying the tumor\\'s vasculature. However, technological difficulties must be addressed before an efficient and safe gene medicine is achieved (primarily by developing a means of delivering genes to the target cells or tissue safely and efficiently). A wealth of research has been carried out over the past 20 years, involving various strategies for the treatment of prostate cancer at preclinical and clinical trial levels. The therapeutic efficacy observed with many of these approaches in patients indicates that these treatment modalities will serve as an important component of urological malignancy treatment in the clinic, either in isolation or

  13. EXSPRESSION OF MDR-GENES AND MONORESISTANCE GENES IN NON-SMALL-CELL LUNG CANCER

    Directory of Open Access Journals (Sweden)

    E. L. Yumov

    2014-01-01

    Full Text Available We studied the expression of multidrug resistance genes (MDR and monoresistance genes in normal bronchial tissue and tumor tissue of the non-small cell lung cancer (NSCLC after neoadjuvant chemotherapy (NACT (vinorelbine-carboplatine. The study included 30 patients with NSCLC (Т2–4N0–3M0. Normal bronchial tissue, normal lung tissue and tumor tissue collected during surgery following neoadjuvant chemotherapy (NACT served as a material of the study. The expression levels of MDR genes (ABCB1, ABCB2, ABCC1, ABCC2, ABCС5, ABCG1, ABCG2, GSTP and MVP, and monoresistance genes (BRCA1, ERCC1, RRM1, TOP1, TOP2A, TUBB3 and TYMS were estimated by quantitative reverse transcriptase PCR (RT-qPCR. The expression levels of some MDR genes and monoresistance genes (АВСВ1, АВСВ2, ABCG1, ERCC1, GSTP1 and MVP were significantly higher in the bronchi than in tumor tissue. The expression of ABCG1, ABCG2 and ERCC1 genes was higher in patients with T1-2 cancer than in patients with T3-4 cancer. Patients with adenocarcinoma had higher expression of BRCA1, MVP and ABCB1 genes than patients with squamous cell lung cancer. A tendency towards reduction in the expression level of MDR-genes and monoresistance genes was observed in patients with partial tumor regression compared to that observed in patients with stable disease. These findings were consistent with the previous data on reduction in the MDR-gene expression after chemotherapy with a good response in breast cancer patients.

  14. Identification of Human HK Genes and Gene Expression Regulation Study in Cancer from Transcriptomics Data Analysis

    Science.gov (United States)

    Zhang, Zhang; Liu, Jingxing; Wu, Jiayan; Yu, Jun

    2013-01-01

    The regulation of gene expression is essential for eukaryotes, as it drives the processes of cellular differentiation and morphogenesis, leading to the creation of different cell types in multicellular organisms. RNA-Sequencing (RNA-Seq) provides researchers with a powerful toolbox for characterization and quantification of transcriptome. Many different human tissue/cell transcriptome datasets coming from RNA-Seq technology are available on public data resource. The fundamental issue here is how to develop an effective analysis method to estimate expression pattern similarities between different tumor tissues and their corresponding normal tissues. We define the gene expression pattern from three directions: 1) expression breadth, which reflects gene expression on/off status, and mainly concerns ubiquitously expressed genes; 2) low/high or constant/variable expression genes, based on gene expression level and variation; and 3) the regulation of gene expression at the gene structure level. The cluster analysis indicates that gene expression pattern is higher related to physiological condition rather than tissue spatial distance. Two sets of human housekeeping (HK) genes are defined according to cell/tissue types, respectively. To characterize the gene expression pattern in gene expression level and variation, we firstly apply improved K-means algorithm and a gene expression variance model. We find that cancer-associated HK genes (a HK gene is specific in cancer group, while not in normal group) are expressed higher and more variable in cancer condition than in normal condition. Cancer-associated HK genes prefer to AT-rich genes, and they are enriched in cell cycle regulation related functions and constitute some cancer signatures. The expression of large genes is also avoided in cancer group. These studies will help us understand which cell type-specific patterns of gene expression differ among different cell types, and particularly for cancer. PMID:23382867

  15. Can gene fusions serve for fingerprints of radiogenic cancers?

    International Nuclear Information System (INIS)

    Nakamura, Nori

    2016-01-01

    It has been recognized that malignancies in blood cells often bear specific chromosome translocations or gene fusions. In recent years, the presence of fusion genes became to be known also among solid cancers as driver mutations. However, representative solid cancers bearing specific gene fusions are limited to cancers of thyroid, prostate, and sarcomas among which only thyroid cancer risk is known to be related to radiation exposures. On the other hand, it is extremely rare to find recurrent reciprocal translocations among common cancers such as in the lung, stomach, breast, and colon, which form a major component of radiation risks. It is therefore unlikely that radiation increases the risk of cancer by inducing specific translocations (gene fusions) but more likely through induction of mutations (including deletions). Although gene fusions could play a role in radiation carcinogenesis, it does not seem good enough to serve for a radiation fingerprint. (author)

  16. Discovering biological progression underlying microarray samples.

    Directory of Open Access Journals (Sweden)

    Peng Qiu

    2011-04-01

    Full Text Available In biological systems that undergo processes such as differentiation, a clear concept of progression exists. We present a novel computational approach, called Sample Progression Discovery (SPD, to discover patterns of biological progression underlying microarray gene expression data. SPD assumes that individual samples of a microarray dataset are related by an unknown biological process (i.e., differentiation, development, cell cycle, disease progression, and that each sample represents one unknown point along the progression of that process. SPD aims to organize the samples in a manner that reveals the underlying progression and to simultaneously identify subsets of genes that are responsible for that progression. We demonstrate the performance of SPD on a variety of microarray datasets that were generated by sampling a biological process at different points along its progression, without providing SPD any information of the underlying process. When applied to a cell cycle time series microarray dataset, SPD was not provided any prior knowledge of samples' time order or of which genes are cell-cycle regulated, yet SPD recovered the correct time order and identified many genes that have been associated with the cell cycle. When applied to B-cell differentiation data, SPD recovered the correct order of stages of normal B-cell differentiation and the linkage between preB-ALL tumor cells with their cell origin preB. When applied to mouse embryonic stem cell differentiation data, SPD uncovered a landscape of ESC differentiation into various lineages and genes that represent both generic and lineage specific processes. When applied to a prostate cancer microarray dataset, SPD identified gene modules that reflect a progression consistent with disease stages. SPD may be best viewed as a novel tool for synthesizing biological hypotheses because it provides a likely biological progression underlying a microarray dataset and, perhaps more importantly, the

  17. Systematic Search for Gene-Gene Interaction Effect on Prostate Cancer Risk

    Science.gov (United States)

    2013-07-01

    Systematic Search for Gene-Gene Interaction 5a. CONTRACT NUMBER Effect on Prostate Cancer Risk 5b. GRANT NUMBER W81XWH-09-1-0488 5c. PROGRAM...Supported by this grant ) 1. Tao S, Wang Z, Feng J, Hsu FC, Jin G, Kin ST, Zhang Z, Gronberg H, Zheng, SL, Isaacs WB, XU J, Sun J. A Genome-Wide Search for...order interactions among estrogen- metabolism genes in sporadic breast cancer. Am J Hum Genet, 69, 138-47. 48. Marchini, J., Donnelly, P. and Cardon

  18. miRNA-Processing Gene Methylation and Cancer Risk.

    Science.gov (United States)

    Joyce, Brian T; Zheng, Yinan; Zhang, Zhou; Liu, Lei; Kocherginsky, Masha; Murphy, Robert; Achenbach, Chad J; Musa, Jonah; Wehbe, Firas; Just, Allan; Shen, Jincheng; Vokonas, Pantel; Schwartz, Joel; Baccarelli, Andrea A; Hou, Lifang

    2018-05-01

    Background: Dysregulation of miRNA and methylation levels are epigenetic hallmarks of cancer, potentially linked via miRNA-processing genes. Studies have found genetic alterations to miRNA-processing genes in cancer cells and human population studies. Our objective was to prospectively examine changes in DNA methylation of miRNA-processing genes and their associations with cancer risk. Methods: We examined cohort data from the Department of Veterans' Affairs Normative Aging Study. Participants were assessed every 3 to 5 years starting in 1999 through 2013 including questionnaires, medical record review, and blood collection. Blood from 686 consenting participants was analyzed using the Illumina 450K BeadChip array to measure methylation at CpG sites throughout the genome. We selected 19 genes based on a literature review, with 519 corresponding CpG sites. We then used Cox proportional hazards models to examine associations with cancer incidence, and generalized estimating equations to examine associations with cancer prevalence. Associations at false discovery rate time to cancer development (positively for cg06751583, inversely for cg23230564 and cg21034183), whereas methylation of one CpG site ( DROSHA : cg16131300) was positively associated with cancer prevalence. Conclusions: DNA methylation of DROSHA , a key miRNA-processing gene, and TNRC6B may play a role in early carcinogenesis. Impact: Changes in miRNA processing may exert multiple effects on cancer development, including protecting against it via altered global miRNAs, and may be a useful early detection biomarker of cancer. Cancer Epidemiol Biomarkers Prev; 27(5); 550-7. ©2018 AACR . ©2018 American Association for Cancer Research.

  19. Methylation of Breast Cancer Predisposition Genes in Early-Onset Breast Cancer: Australian Breast Cancer Family Registry.

    Directory of Open Access Journals (Sweden)

    Cameron M Scott

    Full Text Available DNA methylation can mimic the effects of both germline and somatic mutations for cancer predisposition genes such as BRCA1 and p16INK4a. Constitutional DNA methylation of the BRCA1 promoter has been well described and is associated with an increased risk of early-onset breast cancers that have BRCA1-mutation associated histological features. The role of methylation in the context of other breast cancer predisposition genes has been less well studied and often with conflicting or ambiguous outcomes. We examined the role of methylation in known breast cancer susceptibility genes in breast cancer predisposition and tumor development. We applied the Infinium HumanMethylation450 Beadchip (HM450K array to blood and tumor-derived DNA from 43 women diagnosed with breast cancer before the age of 40 years and measured the methylation profiles across promoter regions of BRCA1, BRCA2, ATM, PALB2, CDH1, TP53, FANCM, CHEK2, MLH1, MSH2, MSH6 and PMS2. Prior genetic testing had demonstrated that these women did not carry a germline mutation in BRCA1, ATM, CHEK2, PALB2, TP53, BRCA2, CDH1 or FANCM. In addition to the BRCA1 promoter region, this work identified regions with variable methylation at multiple breast cancer susceptibility genes including PALB2 and MLH1. Methylation at the region of MLH1 in these breast cancers was not associated with microsatellite instability. This work informs future studies of the role of methylation in breast cancer susceptibility gene silencing.

  20. Glycosyltransferase Gene Expression Profiles Classify Cancer Types and Propose Prognostic Subtypes

    Science.gov (United States)

    Ashkani, Jahanshah; Naidoo, Kevin J.

    2016-05-01

    Aberrant glycosylation in tumours stem from altered glycosyltransferase (GT) gene expression but can the expression profiles of these signature genes be used to classify cancer types and lead to cancer subtype discovery? The differential structural changes to cellular glycan structures are predominantly regulated by the expression patterns of GT genes and are a hallmark of neoplastic cell metamorphoses. We found that the expression of 210 GT genes taken from 1893 cancer patient samples in The Cancer Genome Atlas (TCGA) microarray data are able to classify six cancers; breast, ovarian, glioblastoma, kidney, colon and lung. The GT gene expression profiles are used to develop cancer classifiers and propose subtypes. The subclassification of breast cancer solid tumour samples illustrates the discovery of subgroups from GT genes that match well against basal-like and HER2-enriched subtypes and correlates to clinical, mutation and survival data. This cancer type glycosyltransferase gene signature finding provides foundational evidence for the centrality of glycosylation in cancer.

  1. A Gene Gravity Model for the Evolution of Cancer Genomes: A Study of 3,000 Cancer Genomes across 9 Cancer Types

    Science.gov (United States)

    Lin, Chen-Ching; Zhao, Junfei; Jia, Peilin; Li, Wen-Hsiung; Zhao, Zhongming

    2015-01-01

    Cancer development and progression result from somatic evolution by an accumulation of genomic alterations. The effects of those alterations on the fitness of somatic cells lead to evolutionary adaptations such as increased cell proliferation, angiogenesis, and altered anticancer drug responses. However, there are few general mathematical models to quantitatively examine how perturbations of a single gene shape subsequent evolution of the cancer genome. In this study, we proposed the gene gravity model to study the evolution of cancer genomes by incorporating the genome-wide transcription and somatic mutation profiles of ~3,000 tumors across 9 cancer types from The Cancer Genome Atlas into a broad gene network. We found that somatic mutations of a cancer driver gene may drive cancer genome evolution by inducing mutations in other genes. This functional consequence is often generated by the combined effect of genetic and epigenetic (e.g., chromatin regulation) alterations. By quantifying cancer genome evolution using the gene gravity model, we identified six putative cancer genes (AHNAK, COL11A1, DDX3X, FAT4, STAG2, and SYNE1). The tumor genomes harboring the nonsynonymous somatic mutations in these genes had a higher mutation density at the genome level compared to the wild-type groups. Furthermore, we provided statistical evidence that hypermutation of cancer driver genes on inactive X chromosomes is a general feature in female cancer genomes. In summary, this study sheds light on the functional consequences and evolutionary characteristics of somatic mutations during tumorigenesis by propelling adaptive cancer genome evolution, which would provide new perspectives for cancer research and therapeutics. PMID:26352260

  2. Expression of KLK2 gene in prostate cancer

    Directory of Open Access Journals (Sweden)

    Sajad Shafai

    2018-01-01

    Conclusion: The expression of KLK2 gene in people with prostate cancer is the higher than the healthy person; finally, according to the results, it could be mentioned that the KLK2 gene considered as a useful factor in prostate cancer, whose expression is associated with progression and development of the prostate cancer.

  3. Undefined familial colorectal cancer and the role of pleiotropism in cancer susceptibility genes.

    Science.gov (United States)

    Dobbins, Sara E; Broderick, Peter; Chubb, Daniel; Kinnersley, Ben; Sherborne, Amy L; Houlston, Richard S

    2016-10-01

    Although family history is a major risk factor for colorectal cancer (CRC) a genetic diagnosis cannot be obtained in over 50 % of familial cases when screened for known CRC cancer susceptibility genes. The genetics of undefined-familial CRC is complex and recent studies have implied additional clinically actionable mutations for CRC in susceptibility genes for other cancers. To clarify the contribution of non-CRC susceptibility genes to undefined-familial CRC we conducted a mutational screen of 114 cancer susceptibility genes in 847 patients with early-onset undefined-familial CRC and 1609 controls by analysing high-coverage exome sequencing data. We implemented American College of Medical Genetics and Genomics standards and guidelines for assigning pathogenicity to variants. Globally across all 114 cancer susceptibility genes no statistically significant enrichment of likely pathogenic variants was shown (6.7 % cases 57/847, 5.3 % controls 85/1609; P = 0.15). Moreover there was no significant enrichment of mutations in genes such as TP53 or BRCA2 which have been proposed for clinical testing in CRC. In conclusion, while we identified genes that may be considered interesting candidates as determinants of CRC risk warranting further research, there is currently scant evidence to support a role for genes other than those responsible for established CRC syndromes in the clinical management of familial CRC.

  4. Combining Gene Signatures Improves Prediction of Breast Cancer Survival

    Science.gov (United States)

    Zhao, Xi; Naume, Bjørn; Langerød, Anita; Frigessi, Arnoldo; Kristensen, Vessela N.; Børresen-Dale, Anne-Lise; Lingjærde, Ole Christian

    2011-01-01

    Background Several gene sets for prediction of breast cancer survival have been derived from whole-genome mRNA expression profiles. Here, we develop a statistical framework to explore whether combination of the information from such sets may improve prediction of recurrence and breast cancer specific death in early-stage breast cancers. Microarray data from two clinically similar cohorts of breast cancer patients are used as training (n = 123) and test set (n = 81), respectively. Gene sets from eleven previously published gene signatures are included in the study. Principal Findings To investigate the relationship between breast cancer survival and gene expression on a particular gene set, a Cox proportional hazards model is applied using partial likelihood regression with an L2 penalty to avoid overfitting and using cross-validation to determine the penalty weight. The fitted models are applied to an independent test set to obtain a predicted risk for each individual and each gene set. Hierarchical clustering of the test individuals on the basis of the vector of predicted risks results in two clusters with distinct clinical characteristics in terms of the distribution of molecular subtypes, ER, PR status, TP53 mutation status and histological grade category, and associated with significantly different survival probabilities (recurrence: p = 0.005; breast cancer death: p = 0.014). Finally, principal components analysis of the gene signatures is used to derive combined predictors used to fit a new Cox model. This model classifies test individuals into two risk groups with distinct survival characteristics (recurrence: p = 0.003; breast cancer death: p = 0.001). The latter classifier outperforms all the individual gene signatures, as well as Cox models based on traditional clinical parameters and the Adjuvant! Online for survival prediction. Conclusion Combining the predictive strength of multiple gene signatures improves prediction of breast

  5. Combining gene signatures improves prediction of breast cancer survival.

    Directory of Open Access Journals (Sweden)

    Xi Zhao

    Full Text Available BACKGROUND: Several gene sets for prediction of breast cancer survival have been derived from whole-genome mRNA expression profiles. Here, we develop a statistical framework to explore whether combination of the information from such sets may improve prediction of recurrence and breast cancer specific death in early-stage breast cancers. Microarray data from two clinically similar cohorts of breast cancer patients are used as training (n = 123 and test set (n = 81, respectively. Gene sets from eleven previously published gene signatures are included in the study. PRINCIPAL FINDINGS: To investigate the relationship between breast cancer survival and gene expression on a particular gene set, a Cox proportional hazards model is applied using partial likelihood regression with an L2 penalty to avoid overfitting and using cross-validation to determine the penalty weight. The fitted models are applied to an independent test set to obtain a predicted risk for each individual and each gene set. Hierarchical clustering of the test individuals on the basis of the vector of predicted risks results in two clusters with distinct clinical characteristics in terms of the distribution of molecular subtypes, ER, PR status, TP53 mutation status and histological grade category, and associated with significantly different survival probabilities (recurrence: p = 0.005; breast cancer death: p = 0.014. Finally, principal components analysis of the gene signatures is used to derive combined predictors used to fit a new Cox model. This model classifies test individuals into two risk groups with distinct survival characteristics (recurrence: p = 0.003; breast cancer death: p = 0.001. The latter classifier outperforms all the individual gene signatures, as well as Cox models based on traditional clinical parameters and the Adjuvant! Online for survival prediction. CONCLUSION: Combining the predictive strength of multiple gene signatures improves

  6. The power of the age standardized incidence rate to discover the gene link between cancer diseases: development of a new epidemiological method to save money, time, and effort for genetic scientists.

    Science.gov (United States)

    Alghamdi, Ibrahim G; Hussain, Issam I; Alghamdi, Mohamed S; El-Sheemy, Mohammed A

    2015-01-01

    This study provides an incipient epidemiological rule using the concept of direct method of standardization to determine the genetic link between cancer diseases. The overall 8 or 10 years age standardized incidence rate (ASIR) for both cancer diseases, for example (A) and (B) should be calculated for all regions of the country. A line chart should be used to display the overall ASIR trend of both diseases (A and B). Pearson's correlation can be used to determine the strength of the association between the overall ASIRs of both diseases. The overlap or opposite direction of the overall ASIR trend of both diseases (A and B) should be determined and studied for possible associations between cancer diseases. If the trend of the overall 8 or 10 years ASIR of a disease (A) follows that of disease (B) in all regions of the country, then the genes of patients with both diseases (A and B) will be highly homogeneous, and they should be studied in the region with the highest and lowest overall ASIR for both diseases (A and B). In addition, if there is an opposite direction or overlapping trend for both diseases (A and B) in certain regions of the country or among specific groups of people with the same demographic characteristics, then the genes of patients will be investigated for both diseases to identify the potential gene link between cancer diseases. This study revealed that the overall ASIR trends of female breast cancer, prostate cancer, and ovarian cancer are very similar in all regions of Saudi Arabia and England. Our epidemiological evidence helps to save money, time, and effort for testing the potential gene link between cancer diseases.

  7. Discovering a Reliable Heat-Shock Factor-1 Inhibitor to Treat Human Cancers: Potential Opportunity for Phytochemists

    Directory of Open Access Journals (Sweden)

    Murugesan Velayutham

    2018-04-01

    Full Text Available Heat-shock factor-1 (HSF-1 is an important transcription factor that regulates pathogenesis of many human diseases through its extensive transcriptional regulation. Especially, it shows pleiotropic effects in human cancer, and hence it has recently received increased attention of cancer researchers. After myriad investigations on HSF-1, the field has advanced to the phase where there is consensus that finding a potent and selective pharmacological inhibitor for this transcription factor will be a major break-through in the treatment of various human cancers. Presently, all reported inhibitors have their limitations, made evident at different stages of clinical trials. This brief account summarizes the advances with tested natural products as HSF-1 inhibitors and highlights the necessity of phytochemistry in this endeavor of discovering a potent pharmacological HSF-1 inhibitor.

  8. Association of -330 interleukin-2 gene polymorphism with oral cancer.

    Science.gov (United States)

    Singh, Prithvi Kumar; Kumar, Vijay; Ahmad, Mohammad Kaleem; Gupta, Rajni; Mahdi, Abbas Ali; Jain, Amita; Bogra, Jaishri; Chandra, Girish

    2017-12-01

    Cytokines play an important role in the development of cancer. Several single-nucleotide polymorphisms (SNPs) of cytokine genes have been reported to be associated with the development and severity of inflammatory diseases and cancer predisposition. This study was undertaken to evaluate a possible association of interleukin 2 (IL-2) (- 330A>C) gene polymorphisms with the susceptibility to oral cancer. The SNP in IL-2 (-330A>C) gene was genotyped in 300 oral cancer patients and in similar number of healthy volunteers by polymerase chain reaction (PCR)-restriction fragment length polymorphism and the association of the gene with the disease was evaluated. IL-2 (-330A>C) gene polymorphism was significantly associated with oral cancer whereas it was neither associated with clinicopathological status nor with cancer pain. The AC heterozygous genotype was significantly associated with oral cancer patients as compared to controls [odds ratio (OR): 3.0; confidence interval (CI): 2.14-4.20; Poral cancer (OR: 1.80; CI: 1.39-2.33; PC) gene polymorphism was also associated with oral cancer in tobacco smokers and chewers. Our results showed that oral cancer patients had significantly higher frequency of AA genotype but significantly lower frequency of AC genotype and C allele compared to controls. The IL-2 AC genotype and C allele of IL-2 (-330A>C) gene polymorphisms could be potential protective factors and might reduce the risk of oral cancer in Indian population.

  9. Anti-EGFR immunonanoparticles containing IL12 and salmosin genes for targeted cancer gene therapy.

    Science.gov (United States)

    Kim, Jung Seok; Kang, Seong Jae; Jeong, Hwa Yeon; Kim, Min Woo; Park, Sang Il; Lee, Yeon Kyung; Kim, Hong Sung; Kim, Keun Sik; Park, Yong Serk

    2016-09-01

    Tumor-directed gene delivery is of major interest in the field of cancer gene therapy. Varied functionalizations of non-viral vectors have been suggested to enhance tumor targetability. In the present study, we prepared two different types of anti-EGF receptor (EGFR) immunonanoparticles containing pDNA, neutrally charged liposomes and cationic lipoplexes, for tumor-directed transfection of cancer therapeutic genes. Even though both anti-EGFR immunonanoparticles had a high binding affinity to the EGFR-positive cancer cells, the anti-EGFR immunolipoplex formulation exhibited approximately 100-fold higher transfection to the target cells than anti-EGFR immunoliposomes. The lipoplex formulation also showed a higher transfection to SK-OV-3 tumor xenografts in mice. Thus, IL12 and/or salmosin genes were loaded in the anti-EGFR immunolipoplexes and intravenously administered to mice carrying SK-OV-3 tumors. Co-transfection of IL12 and salmosin genes using anti-EGFR immunolipoplexes significantly reduced tumor growth and pulmonary metastasis. Furthermore, combinatorial treatment with doxorubicin synergistically inhibited tumor growth. These results suggest that anti-EGFR immunolipoplexes containing pDNA encoding therapeutic genes could be utilized as a gene-transfer modality for cancer gene therapy.

  10. A Classification Framework Applied to Cancer Gene Expression Profiles

    Directory of Open Access Journals (Sweden)

    Hussein Hijazi

    2013-01-01

    Full Text Available Classification of cancer based on gene expression has provided insight into possible treatment strategies. Thus, developing machine learning methods that can successfully distinguish among cancer subtypes or normal versus cancer samples is important. This work discusses supervised learning techniques that have been employed to classify cancers. Furthermore, a two-step feature selection method based on an attribute estimation method (e.g., ReliefF and a genetic algorithm was employed to find a set of genes that can best differentiate between cancer subtypes or normal versus cancer samples. The application of different classification methods (e.g., decision tree, k-nearest neighbor, support vector machine (SVM, bagging, and random forest on 5 cancer datasets shows that no classification method universally outperforms all the others. However, k-nearest neighbor and linear SVM generally improve the classification performance over other classifiers. Finally, incorporating diverse types of genomic data (e.g., protein-protein interaction data and gene expression increase the prediction accuracy as compared to using gene expression alone.

  11. Deregulation of an imprinted gene network in prostate cancer.

    Science.gov (United States)

    Ribarska, Teodora; Goering, Wolfgang; Droop, Johanna; Bastian, Klaus-Marius; Ingenwerth, Marc; Schulz, Wolfgang A

    2014-05-01

    Multiple epigenetic alterations contribute to prostate cancer progression by deregulating gene expression. Epigenetic mechanisms, especially differential DNA methylation at imprinting control regions (termed DMRs), normally ensure the exclusive expression of imprinted genes from one specific parental allele. We therefore wondered to which extent imprinted genes become deregulated in prostate cancer and, if so, whether deregulation is due to altered DNA methylation at DMRs. Therefore, we selected presumptive deregulated imprinted genes from a previously conducted in silico analysis and from the literature and analyzed their expression in prostate cancer tissues by qRT-PCR. We found significantly diminished expression of PLAGL1/ZAC1, MEG3, NDN, CDKN1C, IGF2, and H19, while LIT1 was significantly overexpressed. The PPP1R9A gene, which is imprinted in selected tissues only, was strongly overexpressed, but was expressed biallelically in benign and cancerous prostatic tissues. Expression of many of these genes was strongly correlated, suggesting co-regulation, as in an imprinted gene network (IGN) reported in mice. Deregulation of the network genes also correlated with EZH2 and HOXC6 overexpression. Pyrosequencing analysis of all relevant DMRs revealed generally stable DNA methylation between benign and cancerous prostatic tissues, but frequent hypo- and hyper-methylation was observed at the H19 DMR in both benign and cancerous tissues. Re-expression of the ZAC1 transcription factor induced H19, CDKN1C and IGF2, supporting its function as a nodal regulator of the IGN. Our results indicate that a group of imprinted genes are coordinately deregulated in prostate cancers, independently of DNA methylation changes.

  12. Nanoparticles for cancer gene therapy: Recent advances, challenges, and strategies.

    Science.gov (United States)

    Wang, Kui; Kievit, Forrest M; Zhang, Miqin

    2016-12-01

    Compared to conventional treatments, gene therapy offers a variety of advantages for cancer treatment including high potency and specificity, low off-target toxicity, and delivery of multiple genes that concurrently target cancer tumorigenesis, recurrence, and drug resistance. In the past decades, gene therapy has undergone remarkable progress, and is now poised to become a first line therapy for cancer. Among various gene delivery systems, nanoparticles have attracted much attention because of their desirable characteristics including low toxicity profiles, well-controlled and high gene delivery efficiency, and multi-functionalities. This review provides an overview on gene therapeutics and gene delivery technologies, and highlight recent advances, challenges and insights into the design and the utility of nanoparticles in gene therapy for cancer treatment. Copyright © 2016. Published by Elsevier Ltd.

  13. Genetic Variation Linked to Lung Cancer Survival in White Smokers | Center for Cancer Research

    Science.gov (United States)

    CCR investigators have discovered evidence that links lung cancer survival with genetic variations (called single nucleotide polymorphisms) in the MBL2 gene, a key player in innate immunity. The variations in the gene, which codes for a protein called the mannose-binding lectin, occur in its promoter region, where the RNA polymerase molecule binds to start transcription, and in the first exon that is responsible for the correct structure of MBL. The findings appear in the September 19, 2007, issue of the Journal of the National Cancer Institute.

  14. The power of the age standardized incidence rate to discover the gene link between cancer diseases: development of a new epidemiological method to save money, time, and effort for genetic scientists

    Science.gov (United States)

    Alghamdi, Ibrahim G; Hussain, Issam I; Alghamdi, Mohamed S; El-Sheemy, Mohammed A

    2015-01-01

    Background This study provides an incipient epidemiological rule using the concept of direct method of standardization to determine the genetic link between cancer diseases. Methods The overall 8 or 10 years age standardized incidence rate (ASIR) for both cancer diseases, for example (A) and (B) should be calculated for all regions of the country. A line chart should be used to display the overall ASIR trend of both diseases (A and B). Pearson’s correlation can be used to determine the strength of the association between the overall ASIRs of both diseases. The overlap or opposite direction of the overall ASIR trend of both diseases (A and B) should be determined and studied for possible associations between cancer diseases. Results If the trend of the overall 8 or 10 years ASIR of a disease (A) follows that of disease (B) in all regions of the country, then the genes of patients with both diseases (A and B) will be highly homogeneous, and they should be studied in the region with the highest and lowest overall ASIR for both diseases (A and B). In addition, if there is an opposite direction or overlapping trend for both diseases (A and B) in certain regions of the country or among specific groups of people with the same demographic characteristics, then the genes of patients will be investigated for both diseases to identify the potential gene link between cancer diseases. Conclusion This study revealed that the overall ASIR trends of female breast cancer, prostate cancer, and ovarian cancer are very similar in all regions of Saudi Arabia and England. Our epidemiological evidence helps to save money, time, and effort for testing the potential gene link between cancer diseases. PMID:25878508

  15. GOBO: gene expression-based outcome for breast cancer online.

    Directory of Open Access Journals (Sweden)

    Markus Ringnér

    Full Text Available Microarray-based gene expression analysis holds promise of improving prognostication and treatment decisions for breast cancer patients. However, the heterogeneity of breast cancer emphasizes the need for validation of prognostic gene signatures in larger sample sets stratified into relevant subgroups. Here, we describe a multifunctional user-friendly online tool, GOBO (http://co.bmc.lu.se/gobo, allowing a range of different analyses to be performed in an 1881-sample breast tumor data set, and a 51-sample breast cancer cell line set, both generated on Affymetrix U133A microarrays. GOBO supports a wide range of applications including: 1 rapid assessment of gene expression levels in subgroups of breast tumors and cell lines, 2 identification of co-expressed genes for creation of potential metagenes, 3 association with outcome for gene expression levels of single genes, sets of genes, or gene signatures in multiple subgroups of the 1881-sample breast cancer data set. The design and implementation of GOBO facilitate easy incorporation of additional query functions and applications, as well as additional data sets irrespective of tumor type and array platform.

  16. [A novel chemo-resistant gene MSX2 discovered by establishment of two pancreatic cancer drug resistant cell lines JF305/CDDP and PANC-1/GEM].

    Science.gov (United States)

    Yuan, W; Sui, C G; Ma, X; Ma, J

    2018-05-23

    Objective: To explore new multidrug resistant genes of pancreatic cancer by establishment and characterization of chemo-resistant cell lines. Methods: The cisplatin-resistant cell line JF305/CDDP and the gemcitabine-resistant cell line PANC-1/GEM were induced by high-dose intermittent treatment. CCK-8 assay was used to detect the 50% inhibiting concentration (IC(50)), drug resistance index (R), cross-resistance, and growth difference of different cells. The changes of cell cycle and migration ability of drug-resistant cells were determined by flow cytometry and transwell assay, respectively. And then real-time fluorescence quantitative PCR was used to detect the expression of multidrug resistance-related genes. Results: The drug resistance indexes of JF305/CDDP and PANC-1/GEM were 15.3 and 27.31, respectively, and there was cross-resistance. Compared with the parental cells, the proliferation rate of JF305/CDDP was decreased by 40% on the fourth day ( P PANC-1 cells upregulated MRP2 level ( P PANC-1/GEM, were successfully established. MSX2 might be a new drug resistance related gene in pancreatic cancer cells by up-regulation of MRP2 expression.

  17. Gene Signature in Sessile Serrated Polyps Identifies Colon Cancer Subtype

    Science.gov (United States)

    Kanth, Priyanka; Bronner, Mary P.; Boucher, Kenneth M.; Burt, Randall W.; Neklason, Deborah W.; Hagedorn, Curt H.; Delker, Don A.

    2016-01-01

    Sessile serrated colon adenoma/polyps (SSA/Ps) are found during routine screening colonoscopy and may account for 20–30% of colon cancers. However, differentiating SSA/Ps from hyperplastic polyps (HP) with little risk of cancer is challenging and complementary molecular markers are needed. Additionally, the molecular mechanisms of colon cancer development from SSA/Ps are poorly understood. RNA sequencing was performed on 21 SSA/Ps, 10 HPs, 10 adenomas, 21 uninvolved colon and 20 control colon specimens. Differential expression and leave-one-out cross validation methods were used to define a unique gene signature of SSA/Ps. Our SSA/P gene signature was evaluated in colon cancer RNA-Seq data from The Cancer Genome Atlas (TCGA) to identify a subtype of colon cancers that may develop from SSA/Ps. A total of 1422 differentially expressed genes were found in SSA/Ps relative to controls. Serrated polyposis syndrome (n=12) and sporadic SSA/Ps (n=9) exhibited almost complete (96%) gene overlap. A 51-gene panel in SSA/P showed similar expression in a subset of TCGA colon cancers with high microsatellite instability (MSI-H). A smaller seven-gene panel showed high sensitivity and specificity in identifying BRAF mutant, CpG island methylator phenotype high (CIMP-H) and MLH1 silenced colon cancers. We describe a unique gene signature in SSA/Ps that identifies a subset of colon cancers likely to develop through the serrated pathway. These gene panels may be utilized for improved differentiation of SSA/Ps from HPs and provide insights into novel molecular pathways altered in colon cancer arising from the serrated pathway. PMID:27026680

  18. Ensemble of gene signatures identifies novel biomarkers in colorectal cancer activated through PPARγ and TNFα signaling.

    Directory of Open Access Journals (Sweden)

    Stefano Maria Pagnotta

    Full Text Available We describe a novel bioinformatic and translational pathology approach, gene Signature Finder Algorithm (gSFA to identify biomarkers associated with Colorectal Cancer (CRC survival. Here a robust set of CRC markers is selected by an ensemble method. By using a dataset of 232 gene expression profiles, gSFA discovers 16 highly significant small gene signatures. Analysis of dichotomies generated by the signatures results in a set of 133 samples stably classified in good prognosis group and 56 samples in poor prognosis group, whereas 43 remain unreliably classified. AKAP12, DCBLD2, NT5E and SPON1 are particularly represented in the signatures and selected for validation in vivo on two independent patients cohorts comprising 140 tumor tissues and 60 matched normal tissues. Their expression and regulatory programs are investigated in vitro. We show that the coupled expression of NT5E and DCBLD2 robustly stratifies our patients in two groups (one of which with 100% survival at five years. We show that NT5E is a target of the TNF-α signaling in vitro; the tumor suppressor PPARγ acts as a novel NT5E antagonist that positively and concomitantly regulates DCBLD2 in a cancer cell context-dependent manner.

  19. Advances in molecular biomarkers for gastric cancer: miRNAs as emerging novel cancer markers.

    Science.gov (United States)

    Wu, Hua-Hsi; Lin, Wen-chang; Tsai, Kuo-Wang

    2014-01-23

    Carcinoma of the stomach is one of the most prevalent cancer types in the world. Although the incidence of gastric cancer is declining, the outcomes of gastric cancer patients remain dismal because of the lack of effective biomarkers to detect early gastric cancer. Modern biomedical research has explored many potential gastric cancer biomarker genes by utilising serum protein antigens, oncogenic genes or gene families through improving molecular biological technologies, such as microarray, RNA-Seq and the like. Recently, the small noncoding microRNAs (miRNAs) have been suggested to be critical regulators in the oncogenesis pathways and to serve as useful clinical biomarkers. This new class of biomarkers is emerging as a novel molecule for cancer diagnosis and prognosis, including gastric cancer. By translational suppression of target genes, miRNAs play a significant role in the gastric cancer cell physiology and tumour progression. There are potential implications of previously discovered gastric cancer molecular biomarkers and their expression modulations by respective miRNAs. Therefore, many miRNAs are found to play oncogenic roles or tumour-suppressing functions in human cancers. With the surprising stability of miRNAs in tissues, serum or other body fluids, miRNAs have emerged as a new type of cancer biomarker with immeasurable clinical potential.

  20. ANALYSES ON DIFFERENTIALLY EXPRESSED GENES ASSOCIATED WITH HUMAN BREAST CANCER

    Institute of Scientific and Technical Information of China (English)

    MENG Xu-li; DING Xiao-wen; XU Xiao-hong

    2006-01-01

    Objective: To investigate the molecular etiology of breast cancer by way of studying the differential expression and initial function of the related genes in the occurrence and development of breast cancer. Methods: Two hundred and eighty-eight human tumor related genes were chosen for preparation of the oligochips probe. mRNA was extracted from 16 breast cancer tissues and the corresponding normal breast tissues, and cDNA probe was prepared through reverse-transcription and hybridized with the gene chip. A laser focused fluorescent scanner was used to scan the chip. The different gene expressions were thereafter automatically compared and analyzed between the two sample groups. Cy3/Cy5>3.5 meant significant up-regulation. Cy3/Cy5<0.25 meant significant down-regulation. Results: The comparison between the breast cancer tissues and their corresponding normal tissues showed that 84 genes had differential expression in the Chip. Among the differently expressed genes, there were 4 genes with significant down-regulation and 6 with significant up-regulation. Compared with normal breast tissues, differentially expressed genes did partially exist in the breast cancer tissues. Conclusion: Changes in multi-gene expression regulations take place during the occurrence and development of breast cancer; and the research on related genes can help understanding the mechanism of tumor occurrence.

  1. Relevance of Fusion Genes in Pediatric Cancers: Toward Precision Medicine

    Directory of Open Access Journals (Sweden)

    Célia Dupain

    2017-03-01

    Full Text Available Pediatric cancers differ from adult tumors, especially by their very low mutational rate. Therefore, their etiology could be explained in part by other oncogenic mechanisms such as chromosomal rearrangements, supporting the possible implication of fusion genes in the development of pediatric cancers. Fusion genes result from chromosomal rearrangements leading to the juxtaposition of two genes. Consequently, an abnormal activation of one or both genes is observed. The detection of fusion genes has generated great interest in basic cancer research and in the clinical setting, since these genes can lead to better comprehension of the biological mechanisms of tumorigenesis and they can also be used as therapeutic targets and diagnostic or prognostic biomarkers. In this review, we discuss the molecular mechanisms of fusion genes and their particularities in pediatric cancers, as well as their relevance in murine models and in the clinical setting. We also point out the difficulties encountered in the discovery of fusion genes. Finally, we discuss future perspectives and priorities for finding new innovative therapies in childhood cancer.

  2. Preliminary screening of the radiosensitivity-associated genes on colorectal cancer

    International Nuclear Information System (INIS)

    Xing Chungen; Yang Xiaodong; Zhou Liying; Wu Yongyou; Jiang Yinfen; Dai Hong; Lv Xiaodong; Gong Wei

    2007-01-01

    The screening of radiosensitive genes of human colorectal cancer was made by gene chip. Two human colorectal cancer cell lines LOVO and SW480 were cultivated and the total RNA was extracted from at least lxl0 7 cells. Then the gene expression profiling was performed by HG-U133 Plus 2.0 Array and the difference of gene expression has been analyzed. The results shows that there are 16882 genes expressed in LOVO cell and 17114 genes expressed in SW480 cell through gene expression profiling. It has been found that the genes with 2-fold expressed differentially include 908 genes up-regulated and 1312 genes down-regulated. The same genes, such as Fas and NFkB which is up-regulated, Caspas6, and RAD21 which is down-regulated, have been proved to be related to radiosensitivity. The genes with high expression level including CEACAM5, THBS1, SERPINE2, ARL7, HPGD in LOVO cell may also be related to the radiosensitivity. And the genes with high expression level including SCD, NQ01, LYZ, KRT20, ATP1B1 in SW480 cell may be related to the radioresistance of human colorectal cancer. It could be concluded that the radiosensitivity of colorectal cancer can be reflected from gene and protein expression level. And gene expression profiling is a fast and sensitive tool to predict the radiosensitivity and screen radiosensitive genes of colorectal cancer. (authors)

  3. Id-1 gene and gene products as therapeutic targets for treatment of breast cancer and other types of carcinoma

    Science.gov (United States)

    Desprez, Pierre-Yves; Campisi, Judith

    2014-08-19

    A method for treatment of breast cancer and other types of cancer. The method comprises targeting and modulating Id-1 gene expression, if any, for the Id-1 gene, or gene products in breast or other epithelial cancers in a patient by delivering products that modulate Id-1 gene expression. When expressed, Id-1 gene is a prognostic indicator that cancer cells are invasive and metastatic.

  4. CCDB: a curated database of genes involved in cervix cancer.

    Science.gov (United States)

    Agarwal, Subhash M; Raghav, Dhwani; Singh, Harinder; Raghava, G P S

    2011-01-01

    The Cervical Cancer gene DataBase (CCDB, http://crdd.osdd.net/raghava/ccdb) is a manually curated catalog of experimentally validated genes that are thought, or are known to be involved in the different stages of cervical carcinogenesis. In spite of the large women population that is presently affected from this malignancy still at present, no database exists that catalogs information on genes associated with cervical cancer. Therefore, we have compiled 537 genes in CCDB that are linked with cervical cancer causation processes such as methylation, gene amplification, mutation, polymorphism and change in expression level, as evident from published literature. Each record contains details related to gene like architecture (exon-intron structure), location, function, sequences (mRNA/CDS/protein), ontology, interacting partners, homology to other eukaryotic genomes, structure and links to other public databases, thus augmenting CCDB with external data. Also, manually curated literature references have been provided to support the inclusion of the gene in the database and establish its association with cervix cancer. In addition, CCDB provides information on microRNA altered in cervical cancer as well as search facility for querying, several browse options and an online tool for sequence similarity search, thereby providing researchers with easy access to the latest information on genes involved in cervix cancer.

  5. Inferring causal genomic alterations in breast cancer using gene expression data

    Science.gov (United States)

    2011-01-01

    Background One of the primary objectives in cancer research is to identify causal genomic alterations, such as somatic copy number variation (CNV) and somatic mutations, during tumor development. Many valuable studies lack genomic data to detect CNV; therefore, methods that are able to infer CNVs from gene expression data would help maximize the value of these studies. Results We developed a framework for identifying recurrent regions of CNV and distinguishing the cancer driver genes from the passenger genes in the regions. By inferring CNV regions across many datasets we were able to identify 109 recurrent amplified/deleted CNV regions. Many of these regions are enriched for genes involved in many important processes associated with tumorigenesis and cancer progression. Genes in these recurrent CNV regions were then examined in the context of gene regulatory networks to prioritize putative cancer driver genes. The cancer driver genes uncovered by the framework include not only well-known oncogenes but also a number of novel cancer susceptibility genes validated via siRNA experiments. Conclusions To our knowledge, this is the first effort to systematically identify and validate drivers for expression based CNV regions in breast cancer. The framework where the wavelet analysis of copy number alteration based on expression coupled with the gene regulatory network analysis, provides a blueprint for leveraging genomic data to identify key regulatory components and gene targets. This integrative approach can be applied to many other large-scale gene expression studies and other novel types of cancer data such as next-generation sequencing based expression (RNA-Seq) as well as CNV data. PMID:21806811

  6. PTH Gene Polymorphism and Breast Cancer Risk in Kazakhstan

    Directory of Open Access Journals (Sweden)

    Nurgul Sikhayeva

    2014-12-01

    Full Text Available Introduction. Breast cancer is the most common type of cancer among women. In Kazakhstan, breast cancer holds first place among causes of women death caused by cancer in the 45-55 year age group . Many studies have shown that the risk of acquiring breast cancer may be related to the level of calcium in the blood serum. One of the important regulators of calcium metabolism in the body is the parathyroid hormone. Single nucleotide polymorphisms in the gene encoding the parathyroid hormone (PTH are associated with breast cancer development risk, and may modify the associative interaction between the levels of calcium intake and breast cancer. Experimental studies have shown that PTH gene has a carcinogenic effect. At least three studies showed a weak positive correlation between the risk of acquiring breast cancer and primary hyperparathyroidism, a state with high levels of PTH and often high levels of calcium. The aim of this investigation was to evaluate potential association between PTH gene polymorphism and breast cancer risk among Kazakhstani women.Methods. Female breast cancer patients (n = 429 and matched control women (n = 373 were recruited into a case – control study,. Genomic DNA was extracted from peripheral venous blood of study participants using Wizard® Genomic DNA Purification Kit (Promega, USA. Detection of PTH gene polymorphism (rs1459015 was done by means of the TaqMan® SNP Genotyping Assay of real-time PCR. Statistical analysis was conducted using SPSS 19.0.Results. PTH gene alleles were in Hardy–Weinberg equilibrium (p > 0.05. Distribution was 59% CC, 35% CT, 6% TT in the group with breast cancer and 50% CC, 43% CT, 6% TT in the control group. Total difference (between the group with breast cancer and the control group in allele frequencies for PTH polymorphism was not significant (p > 0.05. No association was found between rs1459015 TT and breast cancer risk (OR = 1.039; 95%, CI 0.740 - 1.297; p = 0.893.Conclusion. We

  7. A comparison of 12-gene colon cancer assay gene expression in African American and Caucasian patients with stage II colon cancer.

    Science.gov (United States)

    Govindarajan, Rangaswamy; Posey, James; Chao, Calvin Y; Lu, Ruixiao; Jadhav, Trafina; Javed, Ahmed Y; Javed, Awais; Mahmoud, Fade A; Osarogiagbon, Raymond U; Manne, Upender

    2016-06-18

    African American (AA) colon cancer patients have a worse prognosis than Caucasian (CA) colon cancer patients, however, reasons for this disparity are not well understood. To determine if tumor biology might contribute to differential prognosis, we measured recurrence risk and gene expression using the Oncotype DX® Colon Cancer Assay (12-gene assay) and compared the Recurrence Score results and gene expression profiles between AA patients and CA patients with stage II colon cancer. We retrieved demographic, clinical, and archived tumor tissues from stage II colon cancer patients at four institutions. The 12-gene assay and mismatch repair (MMR) status were performed by Genomic Health (Redwood City, California). Student's t-test and the Wilcoxon rank sum test were used to compare Recurrence Score data and gene expression data from AA and CA patients (SAS Enterprise Guide 5.1). Samples from 122 AA and 122 CA patients were analyzed. There were 118 women (63 AA, 55 CA) and 126 men (59 AA, 67 CA). Median age was 66 years for AA patients and 68 for CA patients. Age, gender, year of surgery, pathologic T-stage, tumor location, the number of lymph nodes examined, lymphovascular invasion, and MMR status were not significantly different between groups (p = 0.93). The mean Recurrence Score result for AA patients (27.9 ± 12.8) and CA patients (28.1 ± 11.8) was not significantly different and the proportions of patients with high Recurrence Score values (≥41) were similar between the groups (17/122 AA; 15/122 CA). None of the gene expression variables, either single genes or gene groups (cell cycle group, stromal group, BGN1, FAP, INHBA1, Ki67, MYBL2, cMYC and GADD45B), was significantly different between the racial groups. After controlling for clinical and pathologic covariates, the means and distributions of Recurrence Score results and gene expression profiles showed no statistically significant difference between patient groups. The distribution of

  8. A comparison of 12-gene colon cancer assay gene expression in African American and Caucasian patients with stage II colon cancer

    International Nuclear Information System (INIS)

    Govindarajan, Rangaswamy; Posey, James; Chao, Calvin Y.; Lu, Ruixiao; Jadhav, Trafina; Javed, Ahmed Y.; Javed, Awais; Mahmoud, Fade A.; Osarogiagbon, Raymond University; Manne, Upender

    2016-01-01

    African American (AA) colon cancer patients have a worse prognosis than Caucasian (CA) colon cancer patients, however, reasons for this disparity are not well understood. To determine if tumor biology might contribute to differential prognosis, we measured recurrence risk and gene expression using the Oncotype DX® Colon Cancer Assay (12-gene assay) and compared the Recurrence Score results and gene expression profiles between AA patients and CA patients with stage II colon cancer. We retrieved demographic, clinical, and archived tumor tissues from stage II colon cancer patients at four institutions. The 12-gene assay and mismatch repair (MMR) status were performed by Genomic Health (Redwood City, California). Student’s t-test and the Wilcoxon rank sum test were used to compare Recurrence Score data and gene expression data from AA and CA patients (SAS Enterprise Guide 5.1). Samples from 122 AA and 122 CA patients were analyzed. There were 118 women (63 AA, 55 CA) and 126 men (59 AA, 67 CA). Median age was 66 years for AA patients and 68 for CA patients. Age, gender, year of surgery, pathologic T-stage, tumor location, the number of lymph nodes examined, lymphovascular invasion, and MMR status were not significantly different between groups (p = 0.93). The mean Recurrence Score result for AA patients (27.9 ± 12.8) and CA patients (28.1 ± 11.8) was not significantly different and the proportions of patients with high Recurrence Score values (≥41) were similar between the groups (17/122 AA; 15/122 CA). None of the gene expression variables, either single genes or gene groups (cell cycle group, stromal group, BGN1, FAP, INHBA1, Ki67, MYBL2, cMYC and GADD45B), was significantly different between the racial groups. After controlling for clinical and pathologic covariates, the means and distributions of Recurrence Score results and gene expression profiles showed no statistically significant difference between patient groups. The distribution of Recurrence Score

  9. DDEC: Dragon database of genes implicated in esophageal cancer

    International Nuclear Information System (INIS)

    Essack, Magbubah; Radovanovic, Aleksandar; Schaefer, Ulf; Schmeier, Sebastian; Seshadri, Sundararajan V; Christoffels, Alan; Kaur, Mandeep; Bajic, Vladimir B

    2009-01-01

    Esophageal cancer ranks eighth in order of cancer occurrence. Its lethality primarily stems from inability to detect the disease during the early organ-confined stage and the lack of effective therapies for advanced-stage disease. Moreover, the understanding of molecular processes involved in esophageal cancer is not complete, hampering the development of efficient diagnostics and therapy. Efforts made by the scientific community to improve the survival rate of esophageal cancer have resulted in a wealth of scattered information that is difficult to find and not easily amendable to data-mining. To reduce this gap and to complement available cancer related bioinformatic resources, we have developed a comprehensive database (Dragon Database of Genes Implicated in Esophageal Cancer) with esophageal cancer related information, as an integrated knowledge database aimed at representing a gateway to esophageal cancer related data. Manually curated 529 genes differentially expressed in EC are contained in the database. We extracted and analyzed the promoter regions of these genes and complemented gene-related information with transcription factors that potentially control them. We further, precompiled text-mined and data-mined reports about each of these genes to allow for easy exploration of information about associations of EC-implicated genes with other human genes and proteins, metabolites and enzymes, toxins, chemicals with pharmacological effects, disease concepts and human anatomy. The resulting database, DDEC, has a useful feature to display potential associations that are rarely reported and thus difficult to identify. Moreover, DDEC enables inspection of potentially new 'association hypotheses' generated based on the precompiled reports. We hope that this resource will serve as a useful complement to the existing public resources and as a good starting point for researchers and physicians interested in EC genetics. DDEC is freely accessible to academic

  10. Gene Expression Correlation for Cancer Diagnosis: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Binbing Ling

    2014-01-01

    Full Text Available Poor prognosis for late-stage, high-grade, and recurrent cancers has been motivating cancer researchers to search for more efficient biomarkers to identify the onset of cancer. Recent advances in constructing and dynamically analyzing biomolecular networks for different types of cancer have provided a promising novel strategy to detect tumorigenesis and metastasis. The observation of different biomolecular networks associated with normal and cancerous states led us to hypothesize that correlations for gene expressions could serve as valid indicators of early cancer development. In this pilot study, we tested our hypothesis by examining whether the mRNA expressions of three randomly selected cancer-related genes PIK3C3, PIM3, and PTEN were correlated during cancer progression and the correlation coefficients could be used for cancer diagnosis. Strong correlations (0.68≤r≤1.0 were observed between PIK3C3 and PIM3 in breast cancer, between PIK3C3 and PTEN in breast and ovary cancers, and between PIM3 and PTEN in breast, kidney, liver, and thyroid cancers during disease progression, implicating that the correlations for cancer network gene expressions could serve as a supplement to current clinical biomarkers, such as cancer antigens, for early cancer diagnosis.

  11. Hierarchical clustering of breast cancer methylomes revealed differentially methylated and expressed breast cancer genes.

    Directory of Open Access Journals (Sweden)

    I-Hsuan Lin

    Full Text Available Oncogenic transformation of normal cells often involves epigenetic alterations, including histone modification and DNA methylation. We conducted whole-genome bisulfite sequencing to determine the DNA methylomes of normal breast, fibroadenoma, invasive ductal carcinomas and MCF7. The emergence, disappearance, expansion and contraction of kilobase-sized hypomethylated regions (HMRs and the hypomethylation of the megabase-sized partially methylated domains (PMDs are the major forms of methylation changes observed in breast tumor samples. Hierarchical clustering of HMR revealed tumor-specific hypermethylated clusters and differential methylated enhancers specific to normal or breast cancer cell lines. Joint analysis of gene expression and DNA methylation data of normal breast and breast cancer cells identified differentially methylated and expressed genes associated with breast and/or ovarian cancers in cancer-specific HMR clusters. Furthermore, aberrant patterns of X-chromosome inactivation (XCI was found in breast cancer cell lines as well as breast tumor samples in the TCGA BRCA (breast invasive carcinoma dataset. They were characterized with differentially hypermethylated XIST promoter, reduced expression of XIST, and over-expression of hypomethylated X-linked genes. High expressions of these genes were significantly associated with lower survival rates in breast cancer patients. Comprehensive analysis of the normal and breast tumor methylomes suggests selective targeting of DNA methylation changes during breast cancer progression. The weak causal relationship between DNA methylation and gene expression observed in this study is evident of more complex role of DNA methylation in the regulation of gene expression in human epigenetics that deserves further investigation.

  12. Vitamin D metabolic pathway genes and pancreatic cancer risk.

    Directory of Open Access Journals (Sweden)

    Hannah Arem

    Full Text Available Evidence on the association between vitamin D status and pancreatic cancer risk is inconsistent. This inconsistency may be partially attributable to variation in vitamin D regulating genes. We selected 11 vitamin D-related genes (GC, DHCR7, CYP2R1, VDR, CYP27B1, CYP24A1, CYP27A1, RXRA, CRP2, CASR and CUBN totaling 213 single nucleotide polymorphisms (SNPs, and examined associations with pancreatic adenocarcinoma. Our study included 3,583 pancreatic cancer cases and 7,053 controls from the genome-wide association studies of pancreatic cancer PanScans-I-III. We used the Adaptive Joint Test and the Adaptive Rank Truncated Product statistic for pathway and gene analyses, and unconditional logistic regression for SNP analyses, adjusting for age, sex, study and population stratification. We examined effect modification by circulating vitamin D concentration (≤50, >50 nmol/L for the most significant SNPs using a subset of cohort cases (n = 713 and controls (n = 878. The vitamin D metabolic pathway was not associated with pancreatic cancer risk (p = 0.830. Of the individual genes, none were associated with pancreatic cancer risk at a significance level of p<0.05. SNPs near the VDR (rs2239186, LRP2 (rs4668123, CYP24A1 (rs2762932, GC (rs2282679, and CUBN (rs1810205 genes were the top SNPs associated with pancreatic cancer (p-values 0.008-0.037, but none were statistically significant after adjusting for multiple comparisons. Associations between these SNPs and pancreatic cancer were not modified by circulating concentrations of vitamin D. These findings do not support an association between vitamin D-related genes and pancreatic cancer risk. Future research should explore other pathways through which vitamin D status might be associated with pancreatic cancer risk.

  13. Suppression subtractive hybridization identified differentially expressed genes in lung adenocarcinoma: ERGIC3 as a novel lung cancer-related gene

    International Nuclear Information System (INIS)

    Wu, Mingsong; Tu, Tao; Huang, Yunchao; Cao, Yi

    2013-01-01

    To understand the carcinogenesis caused by accumulated genetic and epigenetic alterations and seek novel biomarkers for various cancers, studying differentially expressed genes between cancerous and normal tissues is crucial. In the study, two cDNA libraries of lung cancer were constructed and screened for identification of differentially expressed genes. Two cDNA libraries of differentially expressed genes were constructed using lung adenocarcinoma tissue and adjacent nonmalignant lung tissue by suppression subtractive hybridization. The data of the cDNA libraries were then analyzed and compared using bioinformatics analysis. Levels of mRNA and protein were measured by quantitative real-time polymerase chain reaction (q-RT-PCR) and western blot respectively, as well as expression and localization of proteins were determined by immunostaining. Gene functions were investigated using proliferation and migration assays after gene silencing and gene over-expression. Two libraries of differentially expressed genes were obtained. The forward-subtracted library (FSL) and the reverse-subtracted library (RSL) contained 177 and 59 genes, respectively. Bioinformatic analysis demonstrated that these genes were involved in a wide range of cellular functions. The vast majority of these genes were newly identified to be abnormally expressed in lung cancer. In the first stage of the screening for 16 genes, we compared lung cancer tissues with their adjacent non-malignant tissues at the mRNA level, and found six genes (ERGIC3, DDR1, HSP90B1, SDC1, RPSA, and LPCAT1) from the FSL were significantly up-regulated while two genes (GPX3 and TIMP3) from the RSL were significantly down-regulated (P < 0.05). The ERGIC3 protein was also over-expressed in lung cancer tissues and cultured cells, and expression of ERGIC3 was correlated with the differentiated degree and histological type of lung cancer. The up-regulation of ERGIC3 could promote cellular migration and proliferation in vitro. The

  14. Prostate Cancer Epigenetics: A Review on Gene Regulation

    Directory of Open Access Journals (Sweden)

    Lena Diaw

    2007-01-01

    Full Text Available Prostate cancer is the most common cancer in men in western countries, and its incidence is increasing steadily worldwide. Molecular changes including both genetic and epigenetic events underlying the development and progression of this disease are still not well understood. Epigenetic events are involved in gene regulation and occur through different mechanisms such as DNA methylation and histone modifi cations. Both DNA methylation and histone modifi cations affect gene regulation and play important roles either independently or by interaction in tumor initiation and progression. This review will discuss the genes associated with epigenetic alterations in prostate cancer progression: their regulation and importance as possible markers for the disease.

  15. Differential epigenetic regulation of TOX subfamily high mobility group box genes in lung and breast cancers.

    Directory of Open Access Journals (Sweden)

    Mathewos Tessema

    Full Text Available Aberrant cytosine methylation affects regulation of hundreds of genes during cancer development. In this study, a novel aberrantly hypermethylated CpG island in cancer was discovered within the TOX2 promoter. TOX2 was unmethylated in normal cells but 28% lung (n = 190 and 23% breast (n = 80 tumors were methylated. Expression of two novel TOX2 transcripts identified was significantly reduced in primary lung tumors than distant normal lung (p<0.05. These transcripts were silenced in methylated lung and breast cancer cells and 5-Aza-2-deoxycytidine treatment re-expressed both. Extension of these assays to TOX, TOX3, and TOX4 genes that share similar genomic structure and protein homology with TOX2 revealed distinct methylation profiles by smoking status, histology, and cancer type. TOX was almost exclusively methylated in breast (43% than lung (5% cancer, whereas TOX3 was frequently methylated in lung (58% than breast (30% tumors. TOX4 was unmethylated in all samples and showed the highest expression in normal lung. Compared to TOX4, expression of TOX, TOX2 and TOX3 in normal lung was 25, 44, and 88% lower, respectively, supporting the premise that reduced promoter activity confers increased susceptibility to methylation during lung carcinogenesis. Genome-wide assays revealed that siRNA-mediated TOX2 knockdown modulated multiple pathways while TOX3 inactivation targeted neuronal development and function. Although these knockdowns did not result in further phenotypic changes of lung cancer cells in vitro, the impact on tissue remodeling, inflammatory response, and cell differentiation pathways suggest a potential role for TOX2 in modulating tumor microenvironment.

  16. Bioinformatics analysis of breast cancer bone metastasis related gene-CXCR4

    Institute of Scientific and Technical Information of China (English)

    Heng-Wei Zhang; Xian-Fu Sun; Ya-Ning He; Jun-Tao Li; Xu-Hui Guo; Hui Liu

    2013-01-01

    Objective: To analyze breast cancer bone metastasis related gene-CXCR4. Methods: This research screened breast cancer bone metastasis related genes by high-flux gene chip. Results:It was found that the expressions of 396 genes were different including 165 up-regulations and 231 down-regulations. The expression of chemokine receptor CXCR4 was obviously up-regulated in the tissue with breast cancer bone metastasis. Compared with the tissue without bone metastasis, there was significant difference, which indicated that CXCR4 played a vital role in breast cancer bone metastasis. Conclusions: The bioinformatics analysis of CXCR4 can provide a certain basis for the occurrence and diagnosis of breast cancer bone metastasis, target gene therapy and evaluation of prognosis.

  17. Inference of cancer-specific gene regulatory networks using soft computing rules.

    Science.gov (United States)

    Wang, Xiaosheng; Gotoh, Osamu

    2010-03-24

    Perturbations of gene regulatory networks are essentially responsible for oncogenesis. Therefore, inferring the gene regulatory networks is a key step to overcoming cancer. In this work, we propose a method for inferring directed gene regulatory networks based on soft computing rules, which can identify important cause-effect regulatory relations of gene expression. First, we identify important genes associated with a specific cancer (colon cancer) using a supervised learning approach. Next, we reconstruct the gene regulatory networks by inferring the regulatory relations among the identified genes, and their regulated relations by other genes within the genome. We obtain two meaningful findings. One is that upregulated genes are regulated by more genes than downregulated ones, while downregulated genes regulate more genes than upregulated ones. The other one is that tumor suppressors suppress tumor activators and activate other tumor suppressors strongly, while tumor activators activate other tumor activators and suppress tumor suppressors weakly, indicating the robustness of biological systems. These findings provide valuable insights into the pathogenesis of cancer.

  18. Integrative analysis of survival-associated gene sets in breast cancer.

    Science.gov (United States)

    Varn, Frederick S; Ung, Matthew H; Lou, Shao Ke; Cheng, Chao

    2015-03-12

    Patient gene expression information has recently become a clinical feature used to evaluate breast cancer prognosis. The emergence of prognostic gene sets that take advantage of these data has led to a rich library of information that can be used to characterize the molecular nature of a patient's cancer. Identifying robust gene sets that are consistently predictive of a patient's clinical outcome has become one of the main challenges in the field. We inputted our previously established BASE algorithm with patient gene expression data and gene sets from MSigDB to develop the gene set activity score (GSAS), a metric that quantitatively assesses a gene set's activity level in a given patient. We utilized this metric, along with patient time-to-event data, to perform survival analyses to identify the gene sets that were significantly correlated with patient survival. We then performed cross-dataset analyses to identify robust prognostic gene sets and to classify patients by metastasis status. Additionally, we created a gene set network based on component gene overlap to explore the relationship between gene sets derived from MSigDB. We developed a novel gene set based on this network's topology and applied the GSAS metric to characterize its role in patient survival. Using the GSAS metric, we identified 120 gene sets that were significantly associated with patient survival in all datasets tested. The gene overlap network analysis yielded a novel gene set enriched in genes shared by the robustly predictive gene sets. This gene set was highly correlated to patient survival when used alone. Most interestingly, removal of the genes in this gene set from the gene pool on MSigDB resulted in a large reduction in the number of predictive gene sets, suggesting a prominent role for these genes in breast cancer progression. The GSAS metric provided a useful medium by which we systematically investigated how gene sets from MSigDB relate to breast cancer patient survival. We used

  19. Bacterial Toxins for Oncoleaking Suicidal Cancer Gene Therapy.

    Science.gov (United States)

    Pahle, Jessica; Walther, Wolfgang

    For suicide gene therapy, initially prodrug-converting enzymes (gene-directed enzyme-producing therapy, GDEPT) were employed to intracellularly metabolize non-toxic prodrugs into toxic compounds, leading to the effective suicidal killing of the transfected tumor cells. In this regard, the suicide gene therapy has demonstrated its potential for efficient tumor eradication. Numerous suicide genes of viral or bacterial origin were isolated, characterized, and extensively tested in vitro and in vivo, demonstrating their therapeutic potential even in clinical trials to treat cancers of different entities. Apart from this, growing efforts are made to generate more targeted and more effective suicide gene systems for cancer gene therapy. In this regard, bacterial toxins are an alternative to the classical GDEPT strategy, which add to the broad spectrum of different suicide approaches. In this context, lytic bacterial toxins, such as streptolysin O (SLO) or the claudin-targeted Clostridium perfringens enterotoxin (CPE) represent attractive new types of suicide oncoleaking genes. They permit as pore-forming proteins rapid and also selective toxicity toward a broad range of cancers. In this chapter, we describe the generation and use of SLO as well as of CPE-based gene therapies for the effective tumor cell eradication as promising, novel suicide gene approach particularly for treatment of therapy refractory tumors.

  20. Prevalence and Penetrance of Major Genes and Polygenes for Colorectal Cancer

    Science.gov (United States)

    Win, Aung Ko; Jenkins, Mark A.; Dowty, James G.; Antoniou, Antonis C.; Lee, Andrew; Giles, Graham G.; Buchanan, Daniel D.; Clendenning, Mark; Rosty, Christophe; Ahnen, Dennis J.; Thibodeau, Stephen N.; Casey, Graham; Gallinger, Steven; Le Marchand, Loïc; Haile, Robert W.; Potter, John D.; Zheng, Yingye; Lindor, Noralane M.; Newcomb, Polly A.; Hopper, John L.; MacInnis, Robert J.

    2016-01-01

    Background While high-risk mutations in identified major susceptibility genes (DNA mismatch repair genes and MUTYH) account for some familial aggregation of colorectal cancer, their population prevalence and the causes of the remaining familial aggregation are not known. Methods We studied the families of 5,744 colorectal cancer cases (probands) recruited from population cancer registries in the USA, Canada and Australia and screened probands for mutations in mismatch repair genes and MUTYH. We conducted modified segregation analyses using the cancer history of first-degree relatives, conditional on the proband’s age at diagnosis. We estimated the prevalence of mutations in the identified genes, the prevalence of and hazard ratio for unidentified major gene mutations, and the variance of the residual polygenic component. Results We estimated that 1 in 279 of the population carry mutations in mismatch repair genes (MLH1= 1 in 1946, MSH2= 1 in 2841, MSH6= 1 in 758, PMS2= 1 in 714), 1 in 45 carry mutations in MUTYH, and 1 in 504 carry mutations associated with an average 31-fold increased risk of colorectal cancer in unidentified major genes. The estimated polygenic variance was reduced by 30–50% after allowing for unidentified major genes and decreased from 3.3 for age colorectal cancer. Impact Our findings could aid gene discovery and development of better colorectal cancer risk prediction models. PMID:27799157

  1. Quantitative DNA methylation analysis of candidate genes in cervical cancer.

    Directory of Open Access Journals (Sweden)

    Erin M Siegel

    Full Text Available Aberrant DNA methylation has been observed in cervical cancer; however, most studies have used non-quantitative approaches to measure DNA methylation. The objective of this study was to quantify methylation within a select panel of genes previously identified as targets for epigenetic silencing in cervical cancer and to identify genes with elevated methylation that can distinguish cancer from normal cervical tissues. We identified 49 women with invasive squamous cell cancer of the cervix and 22 women with normal cytology specimens. Bisulfite-modified genomic DNA was amplified and quantitative pyrosequencing completed for 10 genes (APC, CCNA, CDH1, CDH13, WIF1, TIMP3, DAPK1, RARB, FHIT, and SLIT2. A Methylation Index was calculated as the mean percent methylation across all CpG sites analyzed per gene (~4-9 CpG site per sequence. A binary cut-point was defined at >15% methylation. Sensitivity, specificity and area under ROC curve (AUC of methylation in individual genes or a panel was examined. The median methylation index was significantly higher in cases compared to controls in 8 genes, whereas there was no difference in median methylation for 2 genes. Compared to HPV and age, the combination of DNA methylation level of DAPK1, SLIT2, WIF1 and RARB with HPV and age significantly improved the AUC from 0.79 to 0.99 (95% CI: 0.97-1.00, p-value = 0.003. Pyrosequencing analysis confirmed that several genes are common targets for aberrant methylation in cervical cancer and DNA methylation level of four genes appears to increase specificity to identify cancer compared to HPV detection alone. Alterations in DNA methylation of specific genes in cervical cancers, such as DAPK1, RARB, WIF1, and SLIT2, may also occur early in cervical carcinogenesis and should be evaluated.

  2. Robust multi-tissue gene panel for cancer detection

    Directory of Open Access Journals (Sweden)

    Talantov Dmitri

    2010-06-01

    Full Text Available Abstract Background We have identified a set of genes whose relative mRNA expression levels in various solid tumors can be used to robustly distinguish cancer from matching normal tissue. Our current feature set consists of 113 gene probes for 104 unique genes, originally identified as differentially expressed in solid primary tumors in microarray data on Affymetrix HG-U133A platform in five tissue types: breast, colon, lung, prostate and ovary. For each dataset, we first identified a set of genes significantly differentially expressed in tumor vs. normal tissue at p-value = 0.05 using an experimentally derived error model. Our common cancer gene panel is the intersection of these sets of significantly dysregulated genes and can distinguish tumors from normal tissue on all these five tissue types. Methods Frozen tumor specimens were obtained from two commercial vendors Clinomics (Pittsfield, MA and Asterand (Detroit, MI. Biotinylated targets were prepared using published methods (Affymetrix, CA and hybridized to Affymetrix U133A GeneChips (Affymetrix, CA. Expression values for each gene were calculated using Affymetrix GeneChip analysis software MAS 5.0. We then used a software package called Genes@Work for differential expression discovery, and SVM light linear kernel for building classification models. Results We validate the predictability of this gene list on several publicly available data sets generated on the same platform. Of note, when analysing the lung cancer data set of Spira et al, using an SVM linear kernel classifier, our gene panel had 94.7% leave-one-out accuracy compared to 87.8% using the gene panel in the original paper. In addition, we performed high-throughput validation on the Dana Farber Cancer Institute GCOD database and several GEO datasets. Conclusions Our result showed the potential for this panel as a robust classification tool for multiple tumor types on the Affymetrix platform, as well as other whole genome arrays

  3. The development of genes associated with radiosensitivity of cervical cancer

    International Nuclear Information System (INIS)

    Li Hongyan; Chen Zhihua; He Guifang

    2007-01-01

    It has a good application prospect to predict effects of radiotherapy by examining radiosensitivity of patients with cervical cancers before their radiotherapy. Prediction of tumor cell radiosensitivity according to their level of gene expression and gene therapy to reverse radio-resistance prior to radiation on cervical cancers are heated researches on tumor therapy. The expression of some proliferation-related genes, apoptosis-related genes and hypoxia-related genes can inerease the radiosensitivity of cervical cancer. Microarray technology may have more direct applications to the study of biological pathway contributing to radiation resistance and may lead to development of alternative treatment modalities. (authors)

  4. Metabolome analysis for discovering biomarkers of gastroenterological cancer.

    Science.gov (United States)

    Suzuki, Makoto; Nishiumi, Shin; Matsubara, Atsuki; Azuma, Takeshi; Yoshida, Masaru

    2014-09-01

    Improvements in analytical technologies have made it possible to rapidly determine the concentrations of thousands of metabolites in any biological sample, which has resulted in metabolome analysis being applied to various types of research, such as clinical, cell biology, and plant/food science studies. The metabolome represents all of the end products and by-products of the numerous complex metabolic pathways operating in a biological system. Thus, metabolome analysis allows one to survey the global changes in an organism's metabolic profile and gain a holistic understanding of the changes that occur in organisms during various biological processes, e.g., during disease development. In clinical metabolomic studies, there is a strong possibility that differences in the metabolic profiles of human specimens reflect disease-specific states. Recently, metabolome analysis of biofluids, e.g., blood, urine, or saliva, has been increasingly used for biomarker discovery and disease diagnosis. Mass spectrometry-based techniques have been extensively used for metabolome analysis because they exhibit high selectivity and sensitivity during the identification and quantification of metabolites. Here, we describe metabolome analysis using liquid chromatography-mass spectrometry, gas chromatography-mass spectrometry, and capillary electrophoresis-mass spectrometry. Furthermore, the findings of studies that attempted to discover biomarkers of gastroenterological cancer are also outlined. Finally, we discuss metabolome analysis-based disease diagnosis. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Bacteria as vectors for gene therapy of cancer.

    LENUS (Irish Health Repository)

    Baban, Chwanrow K

    2012-01-31

    Anti-cancer therapy faces major challenges, particularly in terms of specificity of treatment. The ideal therapy would eradicate tumor cells selectively with minimum side effects on normal tissue. Gene or cell therapies have emerged as realistic prospects for the treatment of cancer, and involve the delivery of genetic information to a tumor to facilitate the production of therapeutic proteins. However, there is still much to be done before an efficient and safe gene medicine is achieved, primarily developing the means of targeting genes to tumors safely and efficiently. An emerging family of vectors involves bacteria of various genera. It has been shown that bacteria are naturally capable of homing to tumors when systemically administered resulting in high levels of replication locally. Furthermore, invasive species can deliver heterologous genes intra-cellularly for tumor cell expression. Here, we review the use of bacteria as vehicles for gene therapy of cancer, detailing the mechanisms of action and successes at preclinical and clinical levels.

  6. Targeted cancer gene therapy : the flexibility of adenoviral gene therapy vectors

    NARCIS (Netherlands)

    Rots, MG; Curiel, DT; Gerritsen, WR; Haisma, HJ

    2003-01-01

    Recombinant adenoviral vectors are promising reagents for therapeutic interventions in humans, including gene therapy for biologically complex diseases like cancer and cardiovascular diseases. In this regard, the major advantage of adenoviral vectors is their superior in vivo gene transfer

  7. Distinguishing between cancer driver and passenger gene alteration candidates via cross-species comparison: a pilot study

    International Nuclear Information System (INIS)

    Ji, Xinglai; Tang, Jie; Halberg, Richard; Busam, Dana; Ferriera, Steve; Peña, Maria Marjorette O; Venkataramu, Chinnambally; Yeatman, Timothy J; Zhao, Shaying

    2010-01-01

    We are developing a cross-species comparison strategy to distinguish between cancer driver- and passenger gene alteration candidates, by utilizing the difference in genomic location of orthologous genes between the human and other mammals. As an initial test of this strategy, we conducted a pilot study with human colorectal cancer (CRC) and its mouse model C57BL/6J Apc Min/+ , focusing on human 5q22.2 and 18q21.1-q21.2. We first performed bioinformatics analysis on the evolution of 5q22.2 and 18q21.1-q21.2 regions. Then, we performed exon-targeted sequencing, real time quantitative polymerase chain reaction (qPCR), and real time quantitative reverse transcriptase PCR (qRT-PCR) analyses on a number of genes of both regions with both human and mouse colon tumors. These two regions (5q22.2 and 18q21.1-q21.2) are frequently deleted in human CRCs and encode genuine colorectal tumor suppressors APC and SMAD4. They also encode genes such as MCC (mutated in colorectal cancer) with their role in CRC etiology unknown. We have discovered that both regions are evolutionarily unstable, resulting in genes that are clustered in each human region being found scattered at several distinct loci in the genome of many other species. For instance, APC and MCC are within 200 kb apart in human 5q22.2 but are 10 Mb apart in the mouse genome. Importantly, our analyses revealed that, while known CRC driver genes APC and SMAD4 were disrupted in both human colorectal tumors and tumors from Apc Min/+ mice, the questionable MCC gene was disrupted in human tumors but appeared to be intact in mouse tumors. These results indicate that MCC may not actually play any causative role in early colorectal tumorigenesis. We also hypothesize that its disruption in human CRCs is likely a mere result of its close proximity to APC in the human genome. Expanding this pilot study to the entire genome may identify more questionable genes like MCC, facilitating the discovery of new CRC driver gene candidates

  8. Distinguishing between cancer driver and passenger gene alteration candidates via cross-species comparison: a pilot study.

    Science.gov (United States)

    Ji, Xinglai; Tang, Jie; Halberg, Richard; Busam, Dana; Ferriera, Steve; Peña, Maria Marjorette O; Venkataramu, Chinnambally; Yeatman, Timothy J; Zhao, Shaying

    2010-08-13

    We are developing a cross-species comparison strategy to distinguish between cancer driver- and passenger gene alteration candidates, by utilizing the difference in genomic location of orthologous genes between the human and other mammals. As an initial test of this strategy, we conducted a pilot study with human colorectal cancer (CRC) and its mouse model C57BL/6J ApcMin/+, focusing on human 5q22.2 and 18q21.1-q21.2. We first performed bioinformatics analysis on the evolution of 5q22.2 and 18q21.1-q21.2 regions. Then, we performed exon-targeted sequencing, real time quantitative polymerase chain reaction (qPCR), and real time quantitative reverse transcriptase PCR (qRT-PCR) analyses on a number of genes of both regions with both human and mouse colon tumors. These two regions (5q22.2 and 18q21.1-q21.2) are frequently deleted in human CRCs and encode genuine colorectal tumor suppressors APC and SMAD4. They also encode genes such as MCC (mutated in colorectal cancer) with their role in CRC etiology unknown. We have discovered that both regions are evolutionarily unstable, resulting in genes that are clustered in each human region being found scattered at several distinct loci in the genome of many other species. For instance, APC and MCC are within 200 kb apart in human 5q22.2 but are 10 Mb apart in the mouse genome. Importantly, our analyses revealed that, while known CRC driver genes APC and SMAD4 were disrupted in both human colorectal tumors and tumors from ApcMin/+ mice, the questionable MCC gene was disrupted in human tumors but appeared to be intact in mouse tumors. These results indicate that MCC may not actually play any causative role in early colorectal tumorigenesis. We also hypothesize that its disruption in human CRCs is likely a mere result of its close proximity to APC in the human genome. Expanding this pilot study to the entire genome may identify more questionable genes like MCC, facilitating the discovery of new CRC driver gene candidates.

  9. CDC91L1 (PIG-U) is a newly discovered oncogene in human bladder cancer.

    NARCIS (Netherlands)

    Guo, Z.; Linn, J.F.; Wu, G.; Anzick, S.L.; Eisenberger, C.F.; Halachmi, S.; Cohen, Y.; Fomenkov, A.; Hoque, M.O.; Okami, K.; Steiner, G.; Engles, J.M.; Osada, M.; Moon, C.; Ratovitski, E.; Trent, J.M.; Meltzer, P.S.; Westra, W.H.; Kiemeney, L.A.L.M.; Schoenberg, M.P.; Sidransky, D.; Trink, B.

    2004-01-01

    Genomic amplification at 20q11-13 is a common event in human cancers. We isolated a germline translocation breakpoint at 20q11 from a bladder cancer patient. We identified CDC91L1, the gene encoding CDC91L1 (also called phosphatidylinositol glycan class U (PIG-U), a transamidase complex unit in the

  10. Text mining in cancer gene and pathway prioritization.

    Science.gov (United States)

    Luo, Yuan; Riedlinger, Gregory; Szolovits, Peter

    2014-01-01

    Prioritization of cancer implicated genes has received growing attention as an effective way to reduce wet lab cost by computational analysis that ranks candidate genes according to the likelihood that experimental verifications will succeed. A multitude of gene prioritization tools have been developed, each integrating different data sources covering gene sequences, differential expressions, function annotations, gene regulations, protein domains, protein interactions, and pathways. This review places existing gene prioritization tools against the backdrop of an integrative Omic hierarchy view toward cancer and focuses on the analysis of their text mining components. We explain the relatively slow progress of text mining in gene prioritization, identify several challenges to current text mining methods, and highlight a few directions where more effective text mining algorithms may improve the overall prioritization task and where prioritizing the pathways may be more desirable than prioritizing only genes.

  11. Transcriptome analysis of recurrently deregulated genes across multiple cancers identifies new pan-cancer biomarkers

    DEFF Research Database (Denmark)

    Kaczkowski, Bogumil; Tanaka, Yuji; Kawaji, Hideya

    2016-01-01

    Genes that are commonly deregulated in cancer are clinically attractive as candidate pan-diagnostic markers and therapeutic targets. To globally identify such targets, we compared Cap Analysis of Gene Expression (CAGE) profiles from 225 different cancer cell lines and 339 corresponding primary cell...

  12. DDEC: Dragon database of genes implicated in esophageal cancer

    KAUST Repository

    Essack, Magbubah

    2009-07-06

    Background: Esophageal cancer ranks eighth in order of cancer occurrence. Its lethality primarily stems from inability to detect the disease during the early organ-confined stage and the lack of effective therapies for advanced-stage disease. Moreover, the understanding of molecular processes involved in esophageal cancer is not complete, hampering the development of efficient diagnostics and therapy. Efforts made by the scientific community to improve the survival rate of esophageal cancer have resulted in a wealth of scattered information that is difficult to find and not easily amendable to data-mining. To reduce this gap and to complement available cancer related bioinformatic resources, we have developed a comprehensive database (Dragon Database of Genes Implicated in Esophageal Cancer) with esophageal cancer related information, as an integrated knowledge database aimed at representing a gateway to esophageal cancer related data. Description: Manually curated 529 genes differentially expressed in EC are contained in the database. We extracted and analyzed the promoter regions of these genes and complemented gene-related information with transcription factors that potentially control them. We further, precompiled text-mined and data-mined reports about each of these genes to allow for easy exploration of information about associations of EC-implicated genes with other human genes and proteins, metabolites and enzymes, toxins, chemicals with pharmacological effects, disease concepts and human anatomy. The resulting database, DDEC, has a useful feature to display potential associations that are rarely reported and thus difficult to identify. Moreover, DDEC enables inspection of potentially new \\'association hypotheses\\' generated based on the precompiled reports. Conclusion: We hope that this resource will serve as a useful complement to the existing public resources and as a good starting point for researchers and physicians interested in EC genetics. DDEC is

  13. A systematic study on drug-response associated genes using baseline gene expressions of the Cancer Cell Line Encyclopedia

    Science.gov (United States)

    Liu, Xiaoming; Yang, Jiasheng; Zhang, Yi; Fang, Yun; Wang, Fayou; Wang, Jun; Zheng, Xiaoqi; Yang, Jialiang

    2016-03-01

    We have studied drug-response associated (DRA) gene expressions by applying a systems biology framework to the Cancer Cell Line Encyclopedia data. More than 4,000 genes are inferred to be DRA for at least one drug, while the number of DRA genes for each drug varies dramatically from almost 0 to 1,226. Functional enrichment analysis shows that the DRA genes are significantly enriched in genes associated with cell cycle and plasma membrane. Moreover, there might be two patterns of DRA genes between genders. There are significantly shared DRA genes between male and female for most drugs, while very little DRA genes tend to be shared between the two genders for a few drugs targeting sex-specific cancers (e.g., PD-0332991 for breast cancer and ovarian cancer). Our analyses also show substantial difference for DRA genes between young and old samples, suggesting the necessity of considering the age effects for personalized medicine in cancers. Lastly, differential module and key driver analyses confirm cell cycle related modules as top differential ones for drug sensitivity. The analyses also reveal the role of TSPO, TP53, and many other immune or cell cycle related genes as important key drivers for DRA network modules. These key drivers provide new drug targets to improve the sensitivity of cancer therapy.

  14. ICan: an integrated co-alteration network to identify ovarian cancer-related genes.

    Science.gov (United States)

    Zhou, Yuanshuai; Liu, Yongjing; Li, Kening; Zhang, Rui; Qiu, Fujun; Zhao, Ning; Xu, Yan

    2015-01-01

    Over the last decade, an increasing number of integrative studies on cancer-related genes have been published. Integrative analyses aim to overcome the limitation of a single data type, and provide a more complete view of carcinogenesis. The vast majority of these studies used sample-matched data of gene expression and copy number to investigate the impact of copy number alteration on gene expression, and to predict and prioritize candidate oncogenes and tumor suppressor genes. However, correlations between genes were neglected in these studies. Our work aimed to evaluate the co-alteration of copy number, methylation and expression, allowing us to identify cancer-related genes and essential functional modules in cancer. We built the Integrated Co-alteration network (ICan) based on multi-omics data, and analyzed the network to uncover cancer-related genes. After comparison with random networks, we identified 155 ovarian cancer-related genes, including well-known (TP53, BRCA1, RB1 and PTEN) and also novel cancer-related genes, such as PDPN and EphA2. We compared the results with a conventional method: CNAmet, and obtained a significantly better area under the curve value (ICan: 0.8179, CNAmet: 0.5183). In this paper, we describe a framework to find cancer-related genes based on an Integrated Co-alteration network. Our results proved that ICan could precisely identify candidate cancer genes and provide increased mechanistic understanding of carcinogenesis. This work suggested a new research direction for biological network analyses involving multi-omics data.

  15. Inference of Cancer-specific Gene Regulatory Networks Using Soft Computing Rules

    Directory of Open Access Journals (Sweden)

    Xiaosheng Wang

    2010-03-01

    Full Text Available Perturbations of gene regulatory networks are essentially responsible for oncogenesis. Therefore, inferring the gene regulatory networks is a key step to overcoming cancer. In this work, we propose a method for inferring directed gene regulatory networks based on soft computing rules, which can identify important cause-effect regulatory relations of gene expression. First, we identify important genes associated with a specific cancer (colon cancer using a supervised learning approach. Next, we reconstruct the gene regulatory networks by inferring the regulatory relations among the identified genes, and their regulated relations by other genes within the genome. We obtain two meaningful findings. One is that upregulated genes are regulated by more genes than downregulated ones, while downregulated genes regulate more genes than upregulated ones. The other one is that tumor suppressors suppress tumor activators and activate other tumor suppressors strongly, while tumor activators activate other tumor activators and suppress tumor suppressors weakly, indicating the robustness of biological systems. These findings provide valuable insights into the pathogenesis of cancer.

  16. Current status of gene therapy for breast cancer: progress and challenges

    Directory of Open Access Journals (Sweden)

    McCrudden CM

    2014-11-01

    Full Text Available Cian M McCrudden, Helen O McCarthySchool of Pharmacy, Queen’s University Belfast, Belfast, UKAbstract: Breast cancer is characterized by a series of genetic mutations and is therefore ideally placed for gene therapy intervention. The aim of gene therapy is to deliver a nucleic acid-based drug to either correct or destroy the cells harboring the genetic aberration. More recently, cancer gene therapy has evolved to also encompass delivery of RNA interference technologies, as well as cancer DNA vaccines. However, the bottleneck in creating such nucleic acid pharmaceuticals lies in the delivery. Deliverability of DNA is limited as it is prone to circulating nucleases; therefore, numerous strategies have been employed to aid with biological transport. This review will discuss some of the viral and nonviral approaches to breast cancer gene therapy, and present the findings of clinical trials of these therapies in breast cancer patients. Also detailed are some of the most recent developments in nonviral approaches to targeting in breast cancer gene therapy, including transcriptional control, and the development of recombinant, multifunctional bio-inspired systems. Lastly, DNA vaccines for breast cancer are documented, with comment on requirements for successful pharmaceutical product development.Keywords: breast cancer, gene therapy, nonviral, clinical trial

  17. Anti-Angiogenic Gene Therapy for Prostate Cancer

    Science.gov (United States)

    2004-04-01

    S. Parvovirus vectors for cancer gene therapy. Expert. Opin. Bid. Ther., 2004, 4: 53-64. Ponnazhagan, S., and Hoover, F. Delivery of DNA to tumor... vaccine with plasmid adjuvants 95h Annual Meeting of the American Society for Cancer Research, Orlando, FL, April 2004. Chaudhuri, T.R., Cao, Z...with recombinant AAV vectors results in sustained expression in a dog model of hemophilia. Gene Ther., 5: 40-49, 1998. 2ś 35. Bohl, D., Bosch, A

  18. Discovering the miR-26a-5p Targetome in Prostate Cancer Cells

    DEFF Research Database (Denmark)

    Rizzo, Milena; Berti, Gabriele; Russo, Francesco

    2017-01-01

    Purpose. miR-26a-5p is a tumor suppressor (TS) miRNA often downregulated in several tumor tissues and tumor cell lines. In this work, we performed the re-expression of the miR-26a-5p in DU-145 prostate cancer cells to collect genes interacting with miR-26a-5p and analyzed their integration...... in the tumorigenesis related pathways. Methods. The transfection of DU-145 prostate cancer cells with miR-26a-5p was done using nucleofection. The biological effects induced by miR-26a-5p re-expression were detected with routine assays for cell proliferation, cell cycle, survival, apoptosis and cell migration. The mi...... to integrate target genes in KEGG pathways and Protein-Protein Interaction networks (PPINs) and modules were built. Results. miR-26a-5p exerted an anti-proliferative effect acting at several levels, by decreasing survival and migration and inducing both cell cycle block and apoptosis. The analysis of the mi...

  19. Discovering gene annotations in biomedical text databases

    Directory of Open Access Journals (Sweden)

    Ozsoyoglu Gultekin

    2008-03-01

    Full Text Available Abstract Background Genes and gene products are frequently annotated with Gene Ontology concepts based on the evidence provided in genomics articles. Manually locating and curating information about a genomic entity from the biomedical literature requires vast amounts of human effort. Hence, there is clearly a need forautomated computational tools to annotate the genes and gene products with Gene Ontology concepts by computationally capturing the related knowledge embedded in textual data. Results In this article, we present an automated genomic entity annotation system, GEANN, which extracts information about the characteristics of genes and gene products in article abstracts from PubMed, and translates the discoveredknowledge into Gene Ontology (GO concepts, a widely-used standardized vocabulary of genomic traits. GEANN utilizes textual "extraction patterns", and a semantic matching framework to locate phrases matching to a pattern and produce Gene Ontology annotations for genes and gene products. In our experiments, GEANN has reached to the precision level of 78% at therecall level of 61%. On a select set of Gene Ontology concepts, GEANN either outperforms or is comparable to two other automated annotation studies. Use of WordNet for semantic pattern matching improves the precision and recall by 24% and 15%, respectively, and the improvement due to semantic pattern matching becomes more apparent as the Gene Ontology terms become more general. Conclusion GEANN is useful for two distinct purposes: (i automating the annotation of genomic entities with Gene Ontology concepts, and (ii providing existing annotations with additional "evidence articles" from the literature. The use of textual extraction patterns that are constructed based on the existing annotations achieve high precision. The semantic pattern matching framework provides a more flexible pattern matching scheme with respect to "exactmatching" with the advantage of locating approximate

  20. Integrating Multiple Microarray Data for Cancer Pathway Analysis Using Bootstrapping K-S Test

    Directory of Open Access Journals (Sweden)

    Bing Han

    2009-01-01

    Full Text Available Previous applications of microarray technology for cancer research have mostly focused on identifying genes that are differentially expressed between a particular cancer and normal cells. In a biological system, genes perform different molecular functions and regulate various biological processes via interactions with other genes thus forming a variety of complex networks. Therefore, it is critical to understand the relationship (e.g., interactions between genes across different types of cancer in order to gain insights into the molecular mechanisms of cancer. Here we propose an integrative method based on the bootstrapping Kolmogorov-Smirnov test and a large set of microarray data produced with various types of cancer to discover common molecular changes in cells from normal state to cancerous state. We evaluate our method using three key pathways related to cancer and demonstrate that it is capable of finding meaningful alterations in gene relations.

  1. Dr. Stefan Ambs: Increasing Diversity in Cancer Research: One Lab at a Time

    Science.gov (United States)

    As part of the series “Increasing Diversity in Cancer Research,” CRCHD interviewed Dr. Stefan Ambs, an investigator at NCI’s Center for Cancer Research, who is using novel approaches to discover gene differences in the tumors of African American patients.

  2. Hereditary Ovarian Cancer: Not Only BRCA 1 and 2 Genes

    Directory of Open Access Journals (Sweden)

    Angela Toss

    2015-01-01

    Full Text Available More than one-fifth of ovarian tumors have hereditary susceptibility and, in about 65–85% of these cases, the genetic abnormality is a germline mutation in BRCA genes. Nevertheless, several other suppressor genes and oncogenes have been associated with hereditary ovarian cancers, including the mismatch repair (MMR genes in Lynch syndrome, the tumor suppressor gene, TP53, in the Li-Fraumeni syndrome, and several other genes involved in the double-strand breaks repair system, such as CHEK2, RAD51, BRIP1, and PALB2. The study of genetic discriminators and deregulated pathways involved in hereditary ovarian syndromes is relevant for the future development of molecular diagnostic strategies and targeted therapeutic approaches. The recent development and implementation of next-generation sequencing technologies have provided the opportunity to simultaneously analyze multiple cancer susceptibility genes, reduce the delay and costs, and optimize the molecular diagnosis of hereditary tumors. Particularly, the identification of mutations in ovarian cancer susceptibility genes in healthy women may result in a more personalized cancer risk management with tailored clinical and radiological surveillance, chemopreventive approaches, and/or prophylactic surgeries. On the other hand, for ovarian cancer patients, the identification of mutations may provide potential targets for biologic agents and guide treatment decision-making.

  3. The power of the age standardized incidence rate to discover the gene link between cancer diseases: development of a new epidemiological method to save money, time, and effort for genetic scientists

    Directory of Open Access Journals (Sweden)

    Alghamdi IG

    2015-03-01

    Full Text Available Ibrahim G Alghamdi,1,2 Issam I Hussain,1 Mohamed S Alghamdi,3 Mohammed A El-Sheemy4 1School of Life Sciences, University of Lincoln, Lincoln, UK; 2College of Medicine, University of Al-Baha, Al-Baha, Saudi Arabia; 3Ministry of Health, General Directorate of Health Affairs Al-Baha, Al-Baha, Saudi Arabia; 4Lincoln Hospital, Research and Development United, Lincolnshire Hospitals NHS Trust, Lincoln, UK Background: This study provides an incipient epidemiological rule using the concept of direct method of standardization to determine the genetic link between cancer diseases. Methods: The overall 8 or 10 years age standardized incidence rate (ASIR for both cancer diseases, for example (A and (B should be calculated for all regions of the country. A line chart should be used to display the overall ASIR trend of both diseases (A and B. Pearson’s correlation can be used to determine the strength of the association between the overall ASIRs of both diseases. The overlap or opposite direction of the overall ASIR trend of both diseases (A and B should be determined and studied for possible associations between cancer diseases. Results: If the trend of the overall 8 or 10 years ASIR of a disease (A follows that of disease (B in all regions of the country, then the genes of patients with both diseases (A and B will be highly homogeneous, and they should be studied in the region with the highest and lowest overall ASIR for both diseases (A and B. In addition, if there is an opposite direction or overlapping trend for both diseases (A and B in certain regions of the country or among specific groups of people with the same demographic characteristics, then the genes of patients will be investigated for both diseases to identify the potential gene link between cancer diseases. Conclusion: This study revealed that the overall ASIR trends of female breast cancer, prostate cancer, and ovarian cancer are very similar in all regions of Saudi Arabia and England

  4. Gene expression in colorectal cancer

    DEFF Research Database (Denmark)

    Birkenkamp-Demtroder, Karin; Christensen, Lise Lotte; Olesen, Sanne Harder

    2002-01-01

    Understanding molecular alterations in colorectal cancer (CRC) is needed to define new biomarkers and treatment targets. We used oligonucleotide microarrays to monitor gene expression of about 6,800 known genes and 35,000 expressed sequence tags (ESTs) on five pools (four to six samples in each...... pool) of total RNA from left-sided sporadic colorectal carcinomas. We compared normal tissue to carcinoma tissue from Dukes' stages A-D (noninvasive to distant metastasis) and identified 908 known genes and 4,155 ESTs that changed remarkably from normal to tumor tissue. Based on intensive filtering 226...

  5. Endocrine aspects of cancer gene therapy.

    Science.gov (United States)

    Barzon, Luisa; Boscaro, Marco; Palù, Giorgio

    2004-02-01

    The field of cancer gene therapy is in continuous expansion, and technology is quickly moving ahead as far as gene targeting and regulation of gene expression are concerned. This review focuses on the endocrine aspects of gene therapy, including the possibility to exploit hormone and hormone receptor functions for regulating therapeutic gene expression, the use of endocrine-specific genes as new therapeutic tools, the effects of viral vector delivery and transgene expression on the endocrine system, and the endocrine response to viral vector delivery. Present ethical concerns of gene therapy and the risk of germ cell transduction are also discussed, along with potential lines of innovation to improve cell and gene targeting.

  6. The potential for tumor suppressor gene therapy in head and neck cancer.

    Science.gov (United States)

    Birkeland, Andrew C; Ludwig, Megan L; Spector, Matthew E; Brenner, J Chad

    2016-01-01

    Head and neck squamous cell carcinoma remains a highly morbid and fatal disease. Importantly, genomic sequencing of head and neck cancers has identified frequent mutations in tumor suppressor genes. While targeted therapeutics increasingly are being investigated in head and neck cancer, the majority of these agents are against overactive/overexpressed oncogenes. Therapy to restore lost tumor suppressor gene function remains a key and under-addressed niche in trials for head and neck cancer. Recent advances in gene editing have captured the interest of both the scientific community and the public. As our technology for gene editing and gene expression modulation improves, addressing lost tumor suppressor gene function in head and neck cancers is becoming a reality. This review will summarize new techniques, challenges to implementation, future directions, and ethical ramifications of gene therapy in head and neck cancer.

  7. Cancer gene therapy targeting angiogenesis: An updated Review

    Science.gov (United States)

    Liu, Ching-Chiu; Shen, Zan; Kung, Hsiang-Fu; Lin, Marie CM

    2006-01-01

    Since the relationship between angiogenesis and tumor growth was established by Folkman in 1971, scientists have made efforts exploring the possibilities in treating cancer by targeting angiogenesis. Inhibition of angiogenesis growth factors and administration of angiogenesis inhibitors are the basics of anti-angiogenesis therapy. Transfer of anti-angiogenesis genes has received attention recently not only because of the advancement of recombinant vectors, but also because of the localized and sustained expression of therapeutic gene product inside the tumor after gene transfer. This review provides the up-to-date information about the strategies and the vectors studied in the field of anti-angiogenesis cancer gene therapy. PMID:17109514

  8. RET is a potential tumor suppressor gene in colorectal cancer

    Science.gov (United States)

    Luo, Yanxin; Tsuchiya, Karen D.; Park, Dong Il; Fausel, Rebecca; Kanngurn, Samornmas; Welcsh, Piri; Dzieciatkowski, Slavomir; Wang, Jianping; Grady, William M.

    2012-01-01

    Cancer arises as the consequence of mutations and epigenetic alterations that activate oncogenes and inactivate tumor suppressor genes. Through a genome-wide screen for methylated genes in colon neoplasms, we identified aberrantly methylated RET in colorectal cancer. RET, a transmembrane receptor tyrosine kinase and a receptor for the GDNF-family ligands, was one of the first oncogenes to be identified and has been shown to be an oncogene in thyroid cancer and pheochromocytoma. However, unexpectedly, we found RET is methylated in 27% of colon adenomas and in 63% of colorectal cancers, and now provide evidence that RET has tumor suppressor activity in colon cancer. The aberrant methylation of RET correlates with decreased RET expression, whereas the restoration of RET in colorectal cancer cell lines results in apoptosis. Furthermore, in support of a tumor suppressor function of RET, mutant RET has also been found in primary colorectal cancer. We now show that these mutations inactivate RET, which is consistent with RET being a tumor suppressor gene in the colon. These findings suggest that the aberrant methylation of RET and the mutational inactivation of RET promote colorectal cancer formation and that RET can serve as a tumor suppressor gene in the colon. Moreover, the increased frequency of methylated RET in colon cancers compared to adenomas suggests RET inactivation is involved in the progression of colon adenomas to cancer. PMID:22751117

  9. Polymorphisms in inflammation pathway genes and endometrial cancer risk

    Science.gov (United States)

    Delahanty, Ryan J.; Xiang, Yong-Bing; Spurdle, Amanda; Beeghly-Fadiel, Alicia; Long, Jirong; Thompson, Deborah; Tomlinson, Ian; Yu, Herbert; Lambrechts, Diether; Dörk, Thilo; Goodman, Marc T.; Zheng, Ying; Salvesen, Helga B.; Bao, Ping-Ping; Amant, Frederic; Beckmann, Matthias W.; Coenegrachts, Lieve; Coosemans, An; Dubrowinskaja, Natalia; Dunning, Alison; Runnebaum, Ingo B.; Easton, Douglas; Ekici, Arif B.; Fasching, Peter A.; Halle, Mari K.; Hein, Alexander; Howarth, Kimberly; Gorman, Maggie; Kaydarova, Dylyara; Krakstad, Camilla; Lose, Felicity; Lu, Lingeng; Lurie, Galina; O’Mara, Tracy; Matsuno, Rayna K.; Pharoah, Paul; Risch, Harvey; Corssen, Madeleine; Trovik, Jone; Turmanov, Nurzhan; Wen, Wanqing; Lu, Wei; Cai, Qiuyin; Zheng, Wei; Shu, Xiao-Ou

    2013-01-01

    Background Experimental and epidemiological evidence have suggested that chronic inflammation may play a critical role in endometrial carcinogenesis. Methods To investigate this hypothesis, a two-stage study was carried out to evaluate single nucleotide polymorphisms (SNPs) in inflammatory pathway genes in association with endometrial cancer risk. In stage 1, 64 candidate pathway genes were identified and 4,542 directly genotyped or imputed SNPs were analyzed among 832 endometrial cancer cases and 2,049 controls, using data from the Shanghai Endometrial Cancer Genetics Study. Linkage disequilibrium of stage 1 SNPs significantly associated with endometrial cancer (PAsian- and European-ancestry samples. Conclusions These findings lend support to the hypothesis that genetic polymorphisms in genes involved in the inflammatory pathway may contribute to genetic susceptibility to endometrial cancer. Impact Statement This study adds to the growing evidence that inflammation plays an important role in endometrial carcinogenesis. PMID:23221126

  10. A Normalization-Free and Nonparametric Method Sharpens Large-Scale Transcriptome Analysis and Reveals Common Gene Alteration Patterns in Cancers.

    Science.gov (United States)

    Li, Qi-Gang; He, Yong-Han; Wu, Huan; Yang, Cui-Ping; Pu, Shao-Yan; Fan, Song-Qing; Jiang, Li-Ping; Shen, Qiu-Shuo; Wang, Xiao-Xiong; Chen, Xiao-Qiong; Yu, Qin; Li, Ying; Sun, Chang; Wang, Xiangting; Zhou, Jumin; Li, Hai-Peng; Chen, Yong-Bin; Kong, Qing-Peng

    2017-01-01

    Heterogeneity in transcriptional data hampers the identification of differentially expressed genes (DEGs) and understanding of cancer, essentially because current methods rely on cross-sample normalization and/or distribution assumption-both sensitive to heterogeneous values. Here, we developed a new method, Cross-Value Association Analysis (CVAA), which overcomes the limitation and is more robust to heterogeneous data than the other methods. Applying CVAA to a more complex pan-cancer dataset containing 5,540 transcriptomes discovered numerous new DEGs and many previously rarely explored pathways/processes; some of them were validated, both in vitro and in vivo , to be crucial in tumorigenesis, e.g., alcohol metabolism ( ADH1B ), chromosome remodeling ( NCAPH ) and complement system ( Adipsin ). Together, we present a sharper tool to navigate large-scale expression data and gain new mechanistic insights into tumorigenesis.

  11. Meta-analysis of Cancer Gene Profiling Data.

    Science.gov (United States)

    Roy, Janine; Winter, Christof; Schroeder, Michael

    2016-01-01

    The simultaneous measurement of thousands of genes gives the opportunity to personalize and improve cancer therapy. In addition, the integration of meta-data such as protein-protein interaction (PPI) information into the analyses helps in the identification and prioritization of genes from these screens. Here, we describe a computational approach that identifies genes prognostic for outcome by combining gene profiling data from any source with a network of known relationships between genes.

  12. TCGA bladder cancer study reveals potential drug targets

    Science.gov (United States)

    Investigators with TCGA have identified new potential therapeutic targets for a major form of bladder cancer, including important genes and pathways that are disrupted in the disease. They also discovered that, at the molecular level, some subtypes of bla

  13. Functional genomics identifies specific vulnerabilities in PTEN-deficient breast cancer.

    Science.gov (United States)

    Tang, Yew Chung; Ho, Szu-Chi; Tan, Elisabeth; Ng, Alvin Wei Tian; McPherson, John R; Goh, Germaine Yen Lin; Teh, Bin Tean; Bard, Frederic; Rozen, Steven G

    2018-03-22

    Phosphatase and tensin homolog (PTEN) is one of the most frequently inactivated tumor suppressors in breast cancer. While PTEN itself is not considered a druggable target, PTEN synthetic-sick or synthetic-lethal (PTEN-SSL) genes are potential drug targets in PTEN-deficient breast cancers. Therefore, with the aim of identifying potential targets for precision breast cancer therapy, we sought to discover PTEN-SSL genes present in a broad spectrum of breast cancers. To discover broad-spectrum PTEN-SSL genes in breast cancer, we used a multi-step approach that started with (1) a genome-wide short interfering RNA (siRNA) screen of ~ 21,000 genes in a pair of isogenic human mammary epithelial cell lines, followed by (2) a short hairpin RNA (shRNA) screen of ~ 1200 genes focused on hits from the first screen in a panel of 11 breast cancer cell lines; we then determined reproducibility of hits by (3) identification of overlaps between our results and reanalyzed data from 3 independent gene-essentiality screens, and finally, for selected candidate PTEN-SSL genes we (4) confirmed PTEN-SSL activity using either drug sensitivity experiments in a panel of 19 cell lines or mutual exclusivity analysis of publicly available pan-cancer somatic mutation data. The screens (steps 1 and 2) and the reproducibility analysis (step 3) identified six candidate broad-spectrum PTEN-SSL genes (PIK3CB, ADAMTS20, AP1M2, HMMR, STK11, and NUAK1). PIK3CB was previously identified as PTEN-SSL, while the other five genes represent novel PTEN-SSL candidates. Confirmation studies (step 4) provided additional evidence that NUAK1 and STK11 have PTEN-SSL patterns of activity. Consistent with PTEN-SSL status, inhibition of the NUAK1 protein kinase by the small molecule drug HTH-01-015 selectively impaired viability in multiple PTEN-deficient breast cancer cell lines, while mutations affecting STK11 and PTEN were largely mutually exclusive across large pan-cancer data sets. Six genes showed PTEN

  14. Prostate cancer metastasis-driving genes: hurdles and potential approaches in their identification

    Directory of Open Access Journals (Sweden)

    Yan Ting Chiang

    2014-08-01

    Full Text Available Metastatic prostate cancer is currently incurable. Metastasis is thought to result from changes in the expression of specific metastasis-driving genes in nonmetastatic prostate cancer tissue, leading to a cascade of activated downstream genes that set the metastatic process in motion. Such genes could potentially serve as effective therapeutic targets for improved management of the disease. They could be identified by comparative analysis of gene expression profiles of patient-derived metastatic and nonmetastatic prostate cancer tissues to pinpoint genes showing altered expression, followed by determining whether silencing of such genes can lead to inhibition of metastatic properties. Various hurdles encountered in this approach are discussed, including (i the need for clinically relevant, nonmetastatic and metastatic prostate cancer tissues such as xenografts of patients' prostate cancers developed via subrenal capsule grafting technology and (ii limitations in the currently available methodology for identification of master regulatory genes.

  15. Novel genetic variants in miR-191 gene and familial ovarian cancer

    International Nuclear Information System (INIS)

    Shen, Jie; DiCioccio, Richard; Odunsi, Kunle; Lele, Shashikant B; Zhao, Hua

    2010-01-01

    Half of the familial aggregation of ovarian cancer can't be explained by any known risk genes, suggesting the existence of other genetic risk factors. Some of these unknown factors may not be traditional protein encoding genes. MicroRNA (miRNA) plays a critical role in tumorigenesis, but it is still unknown if variants in miRNA genes lead to predisposition to cancer. Considering the fact that miRNA regulates a number of tumor suppressor genes (TSGs) and oncogenes, genetic variations in miRNA genes could affect the levels of expression of TSGs or oncogenes and, thereby, cancer risk. To test this hypothesis in familial ovarian cancer, we screened for genetic variants in thirty selected miRNA genes, which are predicted to regulate key ovarian cancer genes and are reported to be misexpressed in ovarian tumor tissues, in eighty-three patients with familial ovarian cancer. All of the patients are non-carriers of any known BRCA1/2 or mismatch repair (MMR) gene mutations. Seven novel genetic variants were observed in four primary or precursor miRNA genes. Among them, three rare variants were found in the precursor or primary precursor of the miR-191 gene. In functional assays, the one variant located in the precursor of miR-191 resulted in conformational changes in the predicted secondary structures, and consequently altered the expression of mature miR-191. In further analysis, we found that this particular variant exists in five family members who had ovarian cancer. Our findings suggest that there are novel genetic variants in miRNA genes, and those certain genetic variants in miRNA genes can affect the expression of mature miRNAs and, consequently, might alter the regulation of TSGs or oncogenes. Additionally, the variant might be potentially associated with the development of familial ovarian cancer

  16. Genome-wide identification of key modulators of gene-gene interaction networks in breast cancer.

    Science.gov (United States)

    Chiu, Yu-Chiao; Wang, Li-Ju; Hsiao, Tzu-Hung; Chuang, Eric Y; Chen, Yidong

    2017-10-03

    With the advances in high-throughput gene profiling technologies, a large volume of gene interaction maps has been constructed. A higher-level layer of gene-gene interaction, namely modulate gene interaction, is composed of gene pairs of which interaction strengths are modulated by (i.e., dependent on) the expression level of a key modulator gene. Systematic investigations into the modulation by estrogen receptor (ER), the best-known modulator gene, have revealed the functional and prognostic significance in breast cancer. However, a genome-wide identification of key modulator genes that may further unveil the landscape of modulated gene interaction is still lacking. We proposed a systematic workflow to screen for key modulators based on genome-wide gene expression profiles. We designed four modularity parameters to measure the ability of a putative modulator to perturb gene interaction networks. Applying the method to a dataset of 286 breast tumors, we comprehensively characterized the modularity parameters and identified a total of 973 key modulator genes. The modularity of these modulators was verified in three independent breast cancer datasets. ESR1, the encoding gene of ER, appeared in the list, and abundant novel modulators were illuminated. For instance, a prognostic predictor of breast cancer, SFRP1, was found the second modulator. Functional annotation analysis of the 973 modulators revealed involvements in ER-related cellular processes as well as immune- and tumor-associated functions. Here we present, as far as we know, the first comprehensive analysis of key modulator genes on a genome-wide scale. The validity of filtering parameters as well as the conservativity of modulators among cohorts were corroborated. Our data bring new insights into the modulated layer of gene-gene interaction and provide candidates for further biological investigations.

  17. Alteration of gene expression and DNA methylation in drug-resistant gastric cancer.

    Science.gov (United States)

    Maeda, Osamu; Ando, Takafumi; Ohmiya, Naoki; Ishiguro, Kazuhiro; Watanabe, Osamu; Miyahara, Ryoji; Hibi, Yoko; Nagai, Taku; Yamada, Kiyofumi; Goto, Hidemi

    2014-04-01

    The mechanisms of drug resistance in cancer are not fully elucidated. To study the drug resistance of gastric cancer, we analyzed gene expression and DNA methylation profiles of 5-fluorouracil (5-FU)- and cisplatin (CDDP)-resistant gastric cancer cells and biopsy specimens. Drug-resistant gastric cancer cells were established with culture for >10 months in a medium containing 5-FU or CDDP. Endoscopic biopsy specimens were obtained from gastric cancer patients who underwent chemotherapy with oral fluoropyrimidine S-1 and CDDP. Gene expression and DNA methylation analyses were performed using microarray, and validated using real-time PCR and pyrosequencing, respectively. Out of 17,933 genes, 541 genes commonly increased and 569 genes decreased in both 5-FU- and CDDP-resistant AGS cells. Genes with expression changed by drugs were related to GO term 'extracellular region' and 'p53 signaling pathway' in both 5-FU- and CDDP-treated cells. Expression of 15 genes including KLK13 increased and 12 genes including ETV7 decreased, in both drug-resistant cells and biopsy specimens of two patients after chemotherapy. Out of 10,365 genes evaluated with both expression microarray and methylation microarray, 74 genes were hypermethylated and downregulated, or hypomethylated and upregulated in either 5-FU-resistant or CDDP-resistant cells. Of these genes, expression of 21 genes including FSCN1, CPT1C and NOTCH3, increased from treatment with a demethylating agent. There are alterations of gene expression and DNA methylation in drug-resistant gastric cancer; they may be related to mechanisms of drug resistance and may be useful as biomarkers of gastric cancer drug sensitivity.

  18. Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Directory of Open Access Journals (Sweden)

    Hua-Sheng Chiu

    2018-04-01

    Full Text Available Summary: Long noncoding RNAs (lncRNAs are commonly dysregulated in tumors, but only a handful are known to play pathophysiological roles in cancer. We inferred lncRNAs that dysregulate cancer pathways, oncogenes, and tumor suppressors (cancer genes by modeling their effects on the activity of transcription factors, RNA-binding proteins, and microRNAs in 5,185 TCGA tumors and 1,019 ENCODE assays. Our predictions included hundreds of candidate onco- and tumor-suppressor lncRNAs (cancer lncRNAs whose somatic alterations account for the dysregulation of dozens of cancer genes and pathways in each of 14 tumor contexts. To demonstrate proof of concept, we showed that perturbations targeting OIP5-AS1 (an inferred tumor suppressor and TUG1 and WT1-AS (inferred onco-lncRNAs dysregulated cancer genes and altered proliferation of breast and gynecologic cancer cells. Our analysis indicates that, although most lncRNAs are dysregulated in a tumor-specific manner, some, including OIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergistically dysregulate cancer pathways in multiple tumor contexts. : Chiu et al. present a pan-cancer analysis of lncRNA regulatory interactions. They suggest that the dysregulation of hundreds of lncRNAs target and alter the expression of cancer genes and pathways in each tumor context. This implies that hundreds of lncRNAs can alter tumor phenotypes in each tumor context. Keywords: lncRNA, regulation, modulation, cancer gene, pan-cancer, noncoding RNA, microRNA, RNA-binding proteins, interactome

  19. Comparing the DNA hypermethylome with gene mutations in human colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Kornel E Schuebel

    2007-09-01

    Full Text Available We have developed a transcriptome-wide approach to identify genes affected by promoter CpG island DNA hypermethylation and transcriptional silencing in colorectal cancer. By screening cell lines and validating tumor-specific hypermethylation in a panel of primary human colorectal cancer samples, we estimate that nearly 5% or more of all known genes may be promoter methylated in an individual tumor. When directly compared to gene mutations, we find larger numbers of genes hypermethylated in individual tumors, and a higher frequency of hypermethylation within individual genes harboring either genetic or epigenetic changes. Thus, to enumerate the full spectrum of alterations in the human cancer genome, and to facilitate the most efficacious grouping of tumors to identify cancer biomarkers and tailor therapeutic approaches, both genetic and epigenetic screens should be undertaken.

  20. MTAP deletion confers enhanced dependency on the PRMT5 arginine methyltransferase in cancer cells | Office of Cancer Genomics

    Science.gov (United States)

    The discovery of cancer dependencies has the potential to inform therapeutic strategies and to identify putative drug targets. Integrating data from comprehensive genomic profiling of cancer cell lines and from functional characterization of cancer cell dependencies, we discovered that loss of the enzyme methylthioadenosine phosphorylase (MTAP) confers a selective dependence on protein arginine methyltransferase 5 (PRMT5) and its binding partner WDR77. MTAP is frequently lost due to its proximity to the commonly deleted tumor suppressor gene, CDKN2A.

  1. Cross-species global and subset gene expression profiling identifies genes involved in prostate cancer response to selenium

    Directory of Open Access Journals (Sweden)

    Dhir Rajiv

    2004-08-01

    Full Text Available Abstract Background Gene expression technologies have the ability to generate vast amounts of data, yet there often resides only limited resources for subsequent validation studies. This necessitates the ability to perform sorting and prioritization of the output data. Previously described methodologies have used functional pathways or transcriptional regulatory grouping to sort genes for further study. In this paper we demonstrate a comparative genomics based method to leverage data from animal models to prioritize genes for validation. This approach allows one to develop a disease-based focus for the prioritization of gene data, a process that is essential for systems that lack significant functional pathway data yet have defined animal models. This method is made possible through the use of highly controlled spotted cDNA slide production and the use of comparative bioinformatics databases without the use of cross-species slide hybridizations. Results Using gene expression profiling we have demonstrated a similar whole transcriptome gene expression patterns in prostate cancer cells from human and rat prostate cancer cell lines both at baseline expression levels and after treatment with physiologic concentrations of the proposed chemopreventive agent Selenium. Using both the human PC3 and rat PAII prostate cancer cell lines have gone on to identify a subset of one hundred and fifty-four genes that demonstrate a similar level of differential expression to Selenium treatment in both species. Further analysis and data mining for two genes, the Insulin like Growth Factor Binding protein 3, and Retinoic X Receptor alpha, demonstrates an association with prostate cancer, functional pathway links, and protein-protein interactions that make these genes prime candidates for explaining the mechanism of Selenium's chemopreventive effect in prostate cancer. These genes are subsequently validated by western blots showing Selenium based induction and using

  2. Inherited variation in circadian rhythm genes and risks of prostate cancer and three other cancer sites in combined cancer consortia.

    Science.gov (United States)

    Gu, Fangyi; Zhang, Han; Hyland, Paula L; Berndt, Sonja; Gapstur, Susan M; Wheeler, William; Ellipse Consortium, The; Amos, Christopher I; Bezieau, Stephane; Bickeböller, Heike; Brenner, Hermann; Brennan, Paul; Chang-Claude, Jenny; Conti, David V; Doherty, Jennifer Anne; Gruber, Stephen B; Harrison, Tabitha A; Hayes, Richard B; Hoffmeister, Michael; Houlston, Richard S; Hung, Rayjean J; Jenkins, Mark A; Kraft, Peter; Lawrenson, Kate; McKay, James; Markt, Sarah; Mucci, Lorelei; Phelan, Catherine M; Qu, Conghui; Risch, Angela; Rossing, Mary Anne; Wichmann, H-Erich; Shi, Jianxin; Schernhammer, Eva; Yu, Kai; Landi, Maria Teresa; Caporaso, Neil E

    2017-11-01

    Circadian disruption has been linked to carcinogenesis in animal models, but the evidence in humans is inconclusive. Genetic variation in circadian rhythm genes provides a tool to investigate such associations. We examined associations of genetic variation in nine core circadian rhythm genes and six melatonin pathway genes with risk of colorectal, lung, ovarian and prostate cancers using data from the Genetic Associations and Mechanisms in Oncology (GAME-ON) network. The major results for prostate cancer were replicated in the Prostate, Lung, Colorectal and Ovarian (PLCO) cancer screening trial, and for colorectal cancer in the Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO). The total number of cancer cases and controls was 15,838/18,159 for colorectal, 14,818/14,227 for prostate, 12,537/17,285 for lung and 4,369/9,123 for ovary. For each cancer site, we conducted gene-based and pathway-based analyses by applying the summary-based Adaptive Rank Truncated Product method (sARTP) on the summary association statistics for each SNP within the candidate gene regions. Aggregate genetic variation in circadian rhythm and melatonin pathways were significantly associated with the risk of prostate cancer in data combining GAME-ON and PLCO, after Bonferroni correction (p pathway  circadian rhythm pathway in GAME-ON (p pathway  = 0.021); this association was not confirmed in GECCO (p pathway  = 0.76) or the combined data (p pathway  = 0.17). No significant association was observed for ovarian and lung cancer. These findings support a potential role for circadian rhythm and melatonin pathways in prostate carcinogenesis. Further functional studies are needed to better understand the underlying biologic mechanisms. © 2017 UICC.

  3. Prevalence of deleterious ATM germline mutations in gastric cancer patients.

    Science.gov (United States)

    Huang, Dong-Sheng; Tao, Hou-Quan; He, Xu-Jun; Long, Ming; Yu, Sheng; Xia, Ying-Jie; Wei, Zhang; Xiong, Zikai; Jones, Sian; He, Yiping; Yan, Hai; Wang, Xiaoyue

    2015-12-01

    Besides CDH1, few hereditary gastric cancer predisposition genes have been previously reported. In this study, we discovered two germline ATM mutations (p.Y1203fs and p.N1223S) in a Chinese family with a history of gastric cancer by screening 83 cancer susceptibility genes. Using a published exome sequencing dataset, we found deleterious germline mutations of ATM in 2.7% of 335 gastric cancer patients of different ethnic origins. The frequency of deleterious ATM mutations in gastric cancer patients is significantly higher than that in general population (p=0.0000435), suggesting an association of ATM mutations with gastric cancer predisposition. We also observed biallelic inactivation of ATM in tumors of two gastric cancer patients. Further evaluation of ATM mutations in hereditary gastric cancer will facilitate genetic testing and risk assessment.

  4. Progress in nonviral gene therapy for breast cancer and what comes next?

    Science.gov (United States)

    Bottai, Giulia; Truffi, Marta; Corsi, Fabio; Santarpia, Libero

    2017-05-01

    The possibility of correcting defective genes and modulating gene expression through gene therapy has emerged as a promising treatment strategy for breast cancer. Furthermore, the relevance of tumor immune microenvironment in supporting the oncogenic process has paved the way for novel immunomodulatory applications of gene therapy. Areas covered: In this review, the authors describe the most relevant delivery systems, focusing on nonviral vectors, along with the description of the major approaches used to modify target cells, including gene transfer, RNA interference (RNAi), and epigenetic regulation. Furthermore, they highlight innovative therapeutic strategies and the application of gene therapy in clinical trials for breast cancer. Expert opinion: Gene therapy has the potential to impact breast cancer research. Further efforts are required to increase the clinical application of RNAi-based therapeutics, especially in combination with conventional treatments. Innovative strategies, including genome editing and stem cell-based systems, may contribute to translate gene therapy into clinical practice. Immune-based approaches have emerged as an attractive therapeutic opportunity for selected breast cancer patients. However, several challenges need to be addressed before considering gene therapy as an actual option for the treatment of breast cancer.

  5. A Catalog of Genes Homozygously Deleted in Human Lung Cancer and the Candidacy of PTPRD as a Tumor Suppressor Gene

    Science.gov (United States)

    Kohno, Takashi; Otsuka, Ayaka; Girard, Luc; Sato, Masanori; Iwakawa, Reika; Ogiwara, Hideaki; Sanchez-Cespedes, Montse; Minna, John D.; Yokota, Jun

    2010-01-01

    A total of 176 genes homozygously deleted in human lung cancer were identified by DNA array-based whole genome scanning of 52 lung cancer cell lines and subsequent genomic PCR in 74 cell lines, including the 52 cell lines scanned. One or more exons of these genes were homozygously deleted in one (1%) to 20 (27%) cell lines. These genes included known tumor suppressor genes, e.g., CDKN2A/p16, RB1, and SMAD4, and candidate tumor suppressor genes whose hemizygous or homozygous deletions were reported in several types of human cancers, such as FHIT, KEAP1, and LRP1B/LRP-DIP. CDKN2A/p16 and p14ARF located in 9p21 were most frequently deleted (20/74, 27%). The PTPRD gene was most frequently deleted (8/74, 11%) among genes mapping to regions other than 9p21. Somatic mutations, including a nonsense mutation, of the PTPRD gene were detected in 8/74 (11%) of cell lines and 4/95 (4%) of surgical specimens of lung cancer. Reduced PTPRD expression was observed in the majority (>80%) of cell lines and surgical specimens of lung cancer. Therefore, PTPRD is a candidate tumor suppressor gene in lung cancer. Microarray-based expression profiling of 19 lung cancer cell lines also indicated that some of the 176 genes, such as KANK and ADAMTS1, are preferentially inactivated by epigenetic alterations. Genetic/epigenetic as well as functional studies of these 176 genes will increase our understanding of molecular mechanisms behind lung carcinogenesis. PMID:20073072

  6. Prostate Cancer Epigenetics: A Review on Gene Regulation

    OpenAIRE

    Diaw, Lena; Woodson, Karen; Gillespie, John W.

    2007-01-01

    Prostate cancer is the most common cancer in men in western countries, and its incidence is increasing steadily worldwide. Molecular changes including both genetic and epigenetic events underlying the development and progression of this disease are still not well understood. Epigenetic events are involved in gene regulation and occur through different mechanisms such as DNA methylation and histone modifi cations. Both DNA methylation and histone modifi cations affect gene regulation and play ...

  7. Correlation between the methylation of APC gene promoter and colon cancer.

    Science.gov (United States)

    Li, Bing-Qiang; Liu, Peng-Peng; Zhang, Cai-Hua

    2017-08-01

    The present study was planned to explore the correlation between the methylation of APC (adenomatous polyposis coli) and colon carcinogenesis. Colon cancer tissues and tumor-adjacent normal tissues of 60 colon cancer patients (who received surgical operation in our hospital from January 2012 to December 2014) were collected. SW1116 cells in human colon cancer tissues were selected for culturing. 5-aza-2c-deoxycytidine (5-aza-dC) was utilized as an inhibitor of the methylation for APC gene. Methylation specific PCR (MSP) was utilized for detection of APC methylation in SW1116 cells. The MTT and Transwell assays were performed to detect the effect of the methylation of APC gene on the proliferation and invasive abilities of SW1116 cells. The correlation between the methylation of APC gene and pathological parameters of colon cancer patients was analyzed. MSP results revealed that 41 cases (68.33%) showed methylation of APC gene in colon cancer tissues. No methylation of APC gene was found in tumor-adjacent normal tissues. 5-aza-dC was able to inhibit the methylation of APC gene in SW1116 cells. APC gene methylation was correlated with tumor size, differentiation degree, lymph node metastasis and Dukes staging. In conclusion, the levels of the methylation of APC in colon cancer tissues and SW1116 cells are relatively high. The methylation of APC promoted the proliferation and invasion abilities of SW1116 cells. Furthermore, methylation is correlated with a variety of clinicopathological features of colon cancer patients.

  8. Identification of valid reference genes for gene expression studies of human stomach cancer by reverse transcription-qPCR

    International Nuclear Information System (INIS)

    Rho, Hyun-Wook; Lee, Byoung-Chan; Choi, Eun-Seok; Choi, Il-Ju; Lee, Yeon-Su; Goh, Sung-Ho

    2010-01-01

    Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) is a powerful method for the analysis of gene expression. Target gene expression levels are usually normalized to a consistently expressed reference gene also known as internal standard, in the same sample. However, much effort has not been expended thus far in the search for reference genes suitable for the study of stomach cancer using RT-qPCR, although selection of optimal reference genes is critical for interpretation of results. We assessed the suitability of six possible reference genes, beta-actin (ACTB), glyceraldehydes-3-phosphate dehydrogenase (GAPDH), hypoxanthine phosphoribosyl transferase 1 (HPRT1), beta-2-microglobulin (B2M), ribosomal subunit L29 (RPL29) and 18S ribosomal RNA (18S rRNA) in 20 normal and tumor stomach tissue pairs of stomach cancer patients and 6 stomach cancer cell lines, by RT-qPCR. Employing expression stability analyses using NormFinder and geNorm algorithms we determined the order of performance of these reference genes and their variation values. This RT-qPCR study showed that there are statistically significant (p < 0.05) differences in the expression levels of HPRT1 and 18S rRNA in 'normal-' versus 'tumor stomach tissues'. The stability analyses by geNorm suggest B2M-GAPDH, as best reference gene combination for 'stomach cancer cell lines'; RPL29-HPRT1, for 'all stomach tissues'; and ACTB-18S rRNA, for 'all stomach cell lines and tissues'. NormFinder also identified B2M as the best reference gene for 'stomach cancer cell lines', RPL29-B2M for 'all stomach tissues', and 18S rRNA-ACTB for 'all stomach cell lines and tissues'. The comparisons of normalized expression of the target gene, GPNMB, showed different interpretation of target gene expression depend on best single reference gene or combination. This study validated RPL29 and RPL29-B2M as the best single reference

  9. Identification of valid reference genes for gene expression studies of human stomach cancer by reverse transcription-qPCR

    Directory of Open Access Journals (Sweden)

    Lee Yeon-Su

    2010-05-01

    Full Text Available Abstract Background Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR is a powerful method for the analysis of gene expression. Target gene expression levels are usually normalized to a consistently expressed reference gene also known as internal standard, in the same sample. However, much effort has not been expended thus far in the search for reference genes suitable for the study of stomach cancer using RT-qPCR, although selection of optimal reference genes is critical for interpretation of results. Methods We assessed the suitability of six possible reference genes, beta-actin (ACTB, glyceraldehydes-3-phosphate dehydrogenase (GAPDH, hypoxanthine phosphoribosyl transferase 1 (HPRT1, beta-2-microglobulin (B2M, ribosomal subunit L29 (RPL29 and 18S ribosomal RNA (18S rRNA in 20 normal and tumor stomach tissue pairs of stomach cancer patients and 6 stomach cancer cell lines, by RT-qPCR. Employing expression stability analyses using NormFinder and geNorm algorithms we determined the order of performance of these reference genes and their variation values. Results This RT-qPCR study showed that there are statistically significant (p Conclusion This study validated RPL29 and RPL29-B2M as the best single reference genes and combination, for RT-qPCR analysis of 'all stomach tissues', and B2M and B2M-GAPDH as the best single reference gene and combination, for 'stomach cancer cell lines'. Use of these validated reference genes should provide more exact interpretation of differential gene expressions at transcription level in stomach cancer.

  10. Methodological issues in detecting gene-gene interactions in breast cancer susceptibility: a population-based study in Ontario

    Directory of Open Access Journals (Sweden)

    Onay Venus

    2007-08-01

    Full Text Available Abstract Background There is growing evidence that gene-gene interactions are ubiquitous in determining the susceptibility to common human diseases. The investigation of such gene-gene interactions presents new statistical challenges for studies with relatively small sample sizes as the number of potential interactions in the genome can be large. Breast cancer provides a useful paradigm to study genetically complex diseases because commonly occurring single nucleotide polymorphisms (SNPs may additively or synergistically disturb the system-wide communication of the cellular processes leading to cancer development. Methods In this study, we systematically studied SNP-SNP interactions among 19 SNPs from 18 key genes involved in major cancer pathways in a sample of 398 breast cancer cases and 372 controls from Ontario. We discuss the methodological issues associated with the detection of SNP-SNP interactions in this dataset by applying and comparing three commonly used methods: the logistic regression model, classification and regression trees (CART, and the multifactor dimensionality reduction (MDR method. Results Our analyses show evidence for several simple (two-way and complex (multi-way SNP-SNP interactions associated with breast cancer. For example, all three methods identified XPD-[Lys751Gln]*IL10-[G(-1082A] as the most significant two-way interaction. CART and MDR identified the same critical SNPs participating in complex interactions. Our results suggest that the use of multiple statistical approaches (or an integrated approach rather than a single methodology could be the best strategy to elucidate complex gene interactions that have generally very different patterns. Conclusion The strategy used here has the potential to identify complex biological relationships among breast cancer genes and processes. This will lead to the discovery of novel biological information, which will improve breast cancer risk management.

  11. Mithramycin is a gene-selective Sp1 inhibitor that identifies a biological intersection between cancer and neurodegeneration.

    Science.gov (United States)

    Sleiman, Sama F; Langley, Brett C; Basso, Manuela; Berlin, Jill; Xia, Li; Payappilly, Jimmy B; Kharel, Madan K; Guo, Hengchang; Marsh, J Lawrence; Thompson, Leslie Michels; Mahishi, Lata; Ahuja, Preeti; MacLellan, W Robb; Geschwind, Daniel H; Coppola, Giovanni; Rohr, Jürgen; Ratan, Rajiv R

    2011-05-04

    Oncogenic transformation of postmitotic neurons triggers cell death, but the identity of genes critical for degeneration remain unclear. The antitumor antibiotic mithramycin prolongs survival of mouse models of Huntington's disease in vivo and inhibits oxidative stress-induced death in cortical neurons in vitro. We had correlated protection by mithramycin with its ability to bind to GC-rich DNA and globally displace Sp1 family transcription factors. To understand how antitumor drugs prevent neurodegeneration, here we use structure-activity relationships of mithramycin analogs to discover that selective DNA-binding inhibition of the drug is necessary for its neuroprotective effect. We identify several genes (Myc, c-Src, Hif1α, and p21(waf1/cip1)) involved in neoplastic transformation, whose altered expression correlates with protective doses of mithramycin or its analogs. Most interestingly, inhibition of one these genes, Myc, is neuroprotective, whereas forced expression of Myc induces Rattus norvegicus neuronal cell death. These results support a model in which cancer cell transformation shares key genetic components with neurodegeneration.

  12. A strategy to discover genes that carry multi-allelic or mono-allelic risk for common diseases: A cohort allelic sums test (CAST)

    International Nuclear Information System (INIS)

    Morgenthaler, Stephan; Thilly, William G.

    2007-01-01

    A method is described to discover if a gene carries one or more allelic mutations that confer risk for any specified common disease. The method does not depend upon genetic linkage of risk-conferring mutations to high frequency genetic markers such as single nucleotide polymorphisms. Instead, the sums of allelic mutation frequencies in case and control cohorts are determined and a statistical test is applied to discover if the difference in these sums is greater than would be expected by chance. A statistical model is presented that defines the ability of such tests to detect significant gene-disease relationships as a function of case and control cohort sizes and key confounding variables: zygosity and genicity, environmental risk factors, errors in diagnosis, limits to mutant detection, linkage of neutral and risk-conferring mutations, ethnic diversity in the general population and the expectation that among all exonic mutants in the human genome greater than 90% will be neutral with regard to any effect on disease risk. Means to test the null hypothesis for, and determine the statistical power of, each test are provided. For this 'cohort allelic sums test' or 'CAST', the statistical model and test are provided as an Excel (TM) program, CASTAT (C) at http://epidemiology.mit.edu. Based on genetics, technology and statistics, a strategy of enumerating the mutant alleles carried in the exons and splice sites of the estimated ∼25,000 human genes in case cohort samples of 10,000 persons for each of 100 common diseases is proposed and evaluated: A wide range of possible conditions of multi-allelic or mono-allelic and monogenic, multigenic or polygenic (including epistatic) risk are found to be detectable using the statistical criteria of 1 or 10 ''false positive'' gene associations per 25,000 gene-disease pair-wise trials and a statistical power of >0.8. Using estimates of the distribution of both neutral and gene-inactivating nondeleterious mutations in humans and

  13. Gene set-based module discovery in the breast cancer transcriptome

    Directory of Open Access Journals (Sweden)

    Zhang Michael Q

    2009-02-01

    Full Text Available Abstract Background Although microarray-based studies have revealed global view of gene expression in cancer cells, we still have little knowledge about regulatory mechanisms underlying the transcriptome. Several computational methods applied to yeast data have recently succeeded in identifying expression modules, which is defined as co-expressed gene sets under common regulatory mechanisms. However, such module discovery methods are not applied cancer transcriptome data. Results In order to decode oncogenic regulatory programs in cancer cells, we developed a novel module discovery method termed EEM by extending a previously reported module discovery method, and applied it to breast cancer expression data. Starting from seed gene sets prepared based on cis-regulatory elements, ChIP-chip data, and gene locus information, EEM identified 10 principal expression modules in breast cancer based on their expression coherence. Moreover, EEM depicted their activity profiles, which predict regulatory programs in each subtypes of breast tumors. For example, our analysis revealed that the expression module regulated by the Polycomb repressive complex 2 (PRC2 is downregulated in triple negative breast cancers, suggesting similarity of transcriptional programs between stem cells and aggressive breast cancer cells. We also found that the activity of the PRC2 expression module is negatively correlated to the expression of EZH2, a component of PRC2 which belongs to the E2F expression module. E2F-driven EZH2 overexpression may be responsible for the repression of the PRC2 expression modules in triple negative tumors. Furthermore, our network analysis predicts regulatory circuits in breast cancer cells. Conclusion These results demonstrate that the gene set-based module discovery approach is a powerful tool to decode regulatory programs in cancer cells.

  14. Risk of metachronous colon cancer following surgery for rectal cancer in mismatch repair gene mutation carriers.

    Science.gov (United States)

    Win, Aung Ko; Parry, Susan; Parry, Bryan; Kalady, Matthew F; Macrae, Finlay A; Ahnen, Dennis J; Young, Graeme P; Lipton, Lara; Winship, Ingrid; Boussioutas, Alex; Young, Joanne P; Buchanan, Daniel D; Arnold, Julie; Le Marchand, Loïc; Newcomb, Polly A; Haile, Robert W; Lindor, Noralane M; Gallinger, Steven; Hopper, John L; Jenkins, Mark A

    2013-06-01

    Despite regular surveillance colonoscopy, the metachronous colorectal cancer risk for mismatch repair (MMR) gene mutation carriers after segmental resection for colon cancer is high and total or subtotal colectomy is the preferred option. However, if the index cancer is in the rectum, management decisions are complicated by considerations of impaired bowel function. We aimed to estimate the risk of metachronous colon cancer for MMR gene mutation carriers who underwent a proctectomy for index rectal cancer. This retrospective cohort study comprised 79 carriers of germline mutation in a MMR gene (18 MLH1, 55 MSH2, 4 MSH6, and 2 PMS2) from the Colon Cancer Family Registry who had had a proctectomy for index rectal cancer. Cumulative risks of metachronous colon cancer were calculated using the Kaplan-Meier method. During median 9 years (range 1-32 years) of observation since the first diagnosis of rectal cancer, 21 carriers (27 %) were diagnosed with metachronous colon cancer (incidence 24.25, 95 % confidence interval [CI] 15.81-37.19 per 1,000 person-years). Cumulative risk of metachronous colon cancer was 19 % (95 % CI 9-31 %) at 10 years, 47 (95 % CI 31-68 %) at 20 years, and 69 % (95 % CI 45-89 %) at 30 years after surgical resection. The frequency of surveillance colonoscopy was 1 colonoscopy per 1.16 years (95 % CI 1.01-1.31 years). The AJCC stages of the metachronous cancers, where available, were 72 % stage I, 22 % stage II, and 6 % stage III. Given the high metachronous colon cancer risk for MMR gene mutation carriers diagnosed with an index rectal cancer, proctocolectomy may need to be considered.

  15. In silico analysis of SNPs of SYK gene Involved in Oral Cancer

    Directory of Open Access Journals (Sweden)

    Sarita Swain

    2017-12-01

    Full Text Available Oral cancer is the sixth most common cancer in the world. Oral cancer is the cancer of the oral cavity and pharynx, including cancer of the lip, tongue, salivary glands, gum, floor and other areas of the mouth. The aim of the study is to identify SNPs using dbSNP and predict the effect of mutation using Predict SNP. The association of genes is done by STRING. The disease and drugs associated with the genes are obtained from Webgestalt. The prediction of binding site is done by CASTp. The interaction of ligand and protein is done by using Autodock and Visualised through Discovery studio, pymol, Ligplot. From this report we found that oral cancer differs from person to person based on their genes and genetic interactions and expressions which recommend the clinicians to go for personalized medicine rather that generalized medicine for the patients with oral cancer. Seeking the importance of genetic background of oral cancer patients further studies can be done by mining of non-synonymous SNPs associated with genes for causing oral cancer.

  16. Association of −330 interleukin-2 gene polymorphism with oral cancer

    Directory of Open Access Journals (Sweden)

    Prithvi Kumar Singh

    2017-01-01

    >Results: IL-2 (−330A>C gene polymorphism was significantly associated with oral cancer whereas it was neither associated with clinicopathological status nor with cancer pain. The AC heterozygous genotype was significantly associated with oral cancer patients as compared to controls [odds ratio (OR: 3.0; confidence interval (CI: 2.14-4.20; PC gene polymorphism was also associated with oral cancer in tobacco smokers and chewers. >Interpretation & conclusions: Our results showed that oral cancer patients had significantly higher frequency of AA genotype but significantly lower frequency of AC genotype and C allele compared to controls. The IL-2 AC genotype and C allele of IL-2 (−330A>C gene polymorphisms could be potential protective factors and might reduce the risk of oral cancer in Indian population.

  17. Cancer tumors as Metazoa 1.0: tapping genes of ancient ancestors

    International Nuclear Information System (INIS)

    Davies, P C W; Lineweaver, C H

    2011-01-01

    The genes of cellular cooperation that evolved with multicellularity about a billion years ago are the same genes that malfunction to cause cancer. We hypothesize that cancer is an atavistic condition that occurs when genetic or epigenetic malfunction unlocks an ancient 'toolkit' of pre-existing adaptations, re-establishing the dominance of an earlier layer of genes that controlled loose-knit colonies of only partially differentiated cells, similar to tumors. The existence of such a toolkit implies that the progress of the neoplasm in the host organism differs distinctively from normal Darwinian evolution. Comparative genomics and the phylogeny of basal metazoans, opisthokonta and basal multicellular eukaryotes should help identify the relevant genes and yield the order in which they evolved. This order will be a rough guide to the reverse order in which cancer develops, as mutations disrupt the genes of cellular cooperation. Our proposal is consistent with current understanding of cancer and explains the paradoxical rapidity with which cancer acquires a suite of mutually-supportive complex abilities. Finally we make several predictions and suggest ways to test this model

  18. Gene expression profiles in stages II and III colon cancers

    DEFF Research Database (Denmark)

    Thorsteinsson, Morten; Kirkeby, Lene T; Hansen, Raino

    2012-01-01

    PURPOSE: A 128-gene signature has been proposed to predict outcome in patients with stages II and III colorectal cancers. In the present study, we aimed to reproduce and validate the 128-gene signature in external and independent material. METHODS: Gene expression data from the original material...... were retrieved from the Gene Expression Omnibus (GEO) (n¿=¿111) in addition to a Danish data set (n¿=¿37). All patients had stages II and III colon cancers. A Prediction Analysis of Microarray classifier, based on the 128-gene signature and the original training set of stage I (n¿=¿65) and stage IV (n...... correctly predicted as stage IV-like, and the remaining patients were predicted as stage I-like and unclassifiable, respectively. Stage II patients could not be stratified. CONCLUSIONS: The 128-gene signature showed reproducibility in stage III colon cancer, but could not predict recurrence in stage II...

  19. Corruption of the intra-gene DNA methylation architecture is a hallmark of cancer.

    Science.gov (United States)

    Bartlett, Thomas E; Zaikin, Alexey; Olhede, Sofia C; West, James; Teschendorff, Andrew E; Widschwendter, Martin

    2013-01-01

    Epigenetic processes--including DNA methylation--are increasingly seen as having a fundamental role in chronic diseases like cancer. It is well known that methylation levels at particular genes or loci differ between normal and diseased tissue. Here we investigate whether the intra-gene methylation architecture is corrupted in cancer and whether the variability of levels of methylation of individual CpGs within a defined gene is able to discriminate cancerous from normal tissue, and is associated with heterogeneous tumour phenotype, as defined by gene expression. We analysed 270985 CpGs annotated to 18272 genes, in 3284 cancerous and 681 normal samples, corresponding to 14 different cancer types. In doing so, we found novel differences in intra-gene methylation pattern across phenotypes, particularly in those genes which are crucial for stem cell biology; our measures of intra-gene methylation architecture are a better determinant of phenotype than measures based on mean methylation level alone (K-S test [Formula: see text] in all 14 diseases tested). These per-gene methylation measures also represent a considerable reduction in complexity, compared to conventional per-CpG beta-values. Our findings strongly support the view that intra-gene methylation architecture has great clinical potential for the development of DNA-based cancer biomarkers.

  20. Finding cancer genes in copy number data and insertional mutagenesis data

    NARCIS (Netherlands)

    Klijn, C.N.

    2011-01-01

    Cancer is a genetic disease. Step-wise alteration of genes that have a normal function in the cell can lead to the transformation of a healthy cell into a malignant cancer cell. Cancer genes provide several traits to the cell that allow it to become malignant. These traits have been researched for

  1. Methylation of cancer-stem-cell-associated Wnt target genes predicts poor prognosis in colorectal cancer patients

    NARCIS (Netherlands)

    de Sousa E Melo, Felipe; Colak, Selcuk; Buikhuisen, Joyce; Koster, Jan; Cameron, Kate; de Jong, Joan H.; Tuynman, Jurriaan B.; Prasetyanti, Pramudita R.; Fessler, Evelyn; van den Bergh, Saskia P.; Rodermond, Hans; Dekker, Evelien; van der Loos, Chris M.; Pals, Steven T.; van de Vijver, Marc J.; Versteeg, Rogier; Richel, Dick J.; Vermeulen, Louis; Medema, Jan Paul

    2011-01-01

    Gene signatures derived from cancer stem cells (CSCs) predict tumor recurrence for many forms of cancer. Here, we derived a gene signature for colorectal CSCs defined by high Wnt signaling activity, which in agreement with previous observations predicts poor prognosis. Surprisingly, however, we

  2. Are Toll-like receptor gene polymorphisms associated with prostate cancer?

    International Nuclear Information System (INIS)

    Kutikhin, Anton G; Yuzhalin, Arseniy E

    2012-01-01

    The suggestion that there is a connection between chronic intraprostatic inflammation and prostate cancer was declared some years ago. As Toll-like receptors (TLRs) are the key players in the processes of chronic intraprostatic inflammation, there is a hypothesis that TLR gene polymorphisms may be associated with prostate cancer risk. Although a number of comprehensive studies have been conducted on large samples in various countries, reliable connections between these single nucleotide polymorphisms and prostate cancer risk, stage, grade, aggressiveness, ability to metastasize, and mortality have not been detected. Results have also varied slightly in different populations. The data obtained regarding the absence of connection between the polymorphisms of the genes encoding interleukin-1 receptor-associated kinases (IRAK1 and IRAK4) and prostate cancer risk might indicate a lack of association between inherited variation in the TLR signaling pathway and prostate cancer risk. It is possible to consider that polymorphisms of genes encoding TLRs and proteins of the TLR pathway also do not play a major role in the etiology and pathogenesis of prostate cancer. Feasibly, it would be better to focus research on associations between TLR single nucleotide polymorphisms and cancer risk in other infection-related cancer types

  3. Targeted sequencing of established and candidate colorectal cancer genes in the Colon Cancer Family Registry Cohort.

    Science.gov (United States)

    Raskin, Leon; Guo, Yan; Du, Liping; Clendenning, Mark; Rosty, Christophe; Lindor, Noralane M; Gruber, Stephen B; Buchanan, Daniel D

    2017-11-07

    The underlying genetic cause of colorectal cancer (CRC) can be identified for 5-10% of all cases, while at least 20% of CRC cases are thought to be due to inherited genetic factors. Screening for highly penetrant mutations in genes associated with Mendelian cancer syndromes using next-generation sequencing (NGS) can be prohibitively expensive for studies requiring large samples sizes. The aim of the study was to identify rare single nucleotide variants and small indels in 40 established or candidate CRC susceptibility genes in 1,046 familial CRC cases (including both MSS and MSI-H tumor subtypes) and 1,006 unrelated controls from the Colon Cancer Family Registry Cohort using a robust and cost-effective DNA pooling NGS strategy. We identified 264 variants in 38 genes that were observed only in cases, comprising either very rare (minor allele frequency cancer susceptibility genes BAP1, CDH1, CHEK2, ENG, and MSH3 . For the candidate CRC genes, we identified likely pathogenic variants in the helicase domain of POLQ and in the LRIG1 , SH2B3 , and NOS1 genes and present their clinicopathological characteristics. Using a DNA pooling NGS strategy, we identified novel germline mutations in established CRC susceptibility genes in familial CRC cases. Further studies are required to support the role of POLQ , LRIG1 , SH2B3 and NOS1 as CRC susceptibility genes.

  4. Investigation of the molecular relationship between breast cancer and obesity by candidate gene prioritization methods

    Directory of Open Access Journals (Sweden)

    Saba Garshasbi

    2015-10-01

    Full Text Available Background: Cancer and obesity are two major public health concerns. More than 12 million cases of cancer are reported annually. Many reports confirmed obesity as a risk factor for cancer. The molecular relationship between obesity and breast cancer has not been clear yet. The purpose of this study was to investigate priorities of effective genes in the molecular relationship between obesity and breast cancer. Methods: In this study, computer simulation method was used for prioritizing the genes that involved in the molecular links between obesity and breast cancer in laboratory of systems biology and bioinformatics (LBB, Tehran University, Tehran, Iran, from March to July 2014. In this study, ENDEAVOUR software was used for prioritizing the genes and integrating multiple data sources was used for data analysis. Training genes were selected from effective genes in obesity and/or breast cancer. Two groups of candidate genes were selected. The first group was included the existential genes in 5 common region chromosomes (between obesity and breast cancer and the second group was included the results of genes microarray data analysis of research Creighton, et al (In 2012 on patients with breast cancer. The microarray data were analyzed with GER2 software (R online software on GEO website. Finally, both training and candidate genes were entered in ENDEAVOUR software package. Results: The candidate genes were prioritized to four style and five genes in ten of the first priorities were repeated twice. In other word, the outcome of prioritizing of 72 genes (Product of microarray data analysis and genes of 5 common chromosome regions (Between obesity and breast cancer showed, 5 genes (TNFRSF10B, F2, IGFALS, NTRK3 and HSP90B1 were the priorities in the molecular connection between obesity and breast cancer. Conclusion: There are some common genes between breast cancer and obesity. So, molecular relationship is confirmed. In this study the possible effect

  5. The prediction of candidate genes for cervix related cancer through gene ontology and graph theoretical approach.

    Science.gov (United States)

    Hindumathi, V; Kranthi, T; Rao, S B; Manimaran, P

    2014-06-01

    With rapidly changing technology, prediction of candidate genes has become an indispensable task in recent years mainly in the field of biological research. The empirical methods for candidate gene prioritization that succors to explore the potential pathway between genetic determinants and complex diseases are highly cumbersome and labor intensive. In such a scenario predicting potential targets for a disease state through in silico approaches are of researcher's interest. The prodigious availability of protein interaction data coupled with gene annotation renders an ease in the accurate determination of disease specific candidate genes. In our work we have prioritized the cervix related cancer candidate genes by employing Csaba Ortutay and his co-workers approach of identifying the candidate genes through graph theoretical centrality measures and gene ontology. With the advantage of the human protein interaction data, cervical cancer gene sets and the ontological terms, we were able to predict 15 novel candidates for cervical carcinogenesis. The disease relevance of the anticipated candidate genes was corroborated through a literature survey. Also the presence of the drugs for these candidates was detected through Therapeutic Target Database (TTD) and DrugMap Central (DMC) which affirms that they may be endowed as potential drug targets for cervical cancer.

  6. Identification of candidate new cancer susceptibility genes using yeast genomics

    International Nuclear Information System (INIS)

    Brown, M.; Brown, J.A.; Game, J.C.

    2003-01-01

    A large proportion of cancer susceptibility syndromes are the result of mutations in genes in DNA repair or in cell-cycle checkpoints in response to DNA damage, such as ataxia telangiectasia (AT), Fanconi's anemia (FA), Bloom's syndrome (BS), Nijmegen breakage syndrome (NBS), and xeroderma pigmentosum (XP). Mutations in these genes often cause gross chromosomal instability leading to an increased mutation rate of all genes including those directly responsible for cancer. We have proposed that because the orthologs of these genes in budding yeast, S. cerevisiae, confer protection against killing by DNA damaging agents it should be possible to identify new cancer susceptibility genes by identifying yeast genes whose deletion causes sensitivity to DNA damage. We therefore screened the recently completed collection of individual gene deletion mutants to identify genes that affect sensitivity to DNA-damaging agents. Screening for sensitivity in this obtained up to now with the F98 glioma model othe fact that each deleted gene is replaced by a cassette containing two molecular 'barcodes', or 20-mers, that uniquely identify the strain when DNA from a pool of strains is hybridized to an oligonucleotide array containing the complementary sequences of the barcodes. We performed the screen with UV, IR, H 2 0 2 and other DNA damaging agents. In addition to identifying genes already known to confer resistance to DNA damaging agents we have identified, and individually confirmed, several genes not previously associated with resistance. Several of these are of unknown function. We have also examined the chromosomal stability of selected strains and found that IR sensitive strains often but not always exhibit genomic instability. We are presently constructing a yeast artificial chromosome to globally interrogate all the genes in the deletion pool for their involvement in genomic stability. This work shows that budding yeast is a valuable eukaryotic model organism to identify

  7. Barriers to early presentation of self-discovered breast cancer in Singapore and Malaysia: a qualitative multicentre study.

    Science.gov (United States)

    Lim, Jennifer N W; Potrata, Barbara; Simonella, Leonardo; Ng, Celene W Q; Aw, Tar-Ching; Dahlui, Maznah; Hartman, Mikael; Mazlan, Rifhan; Taib, Nur Aishah

    2015-12-21

    To explore and compare barriers to early presentation of self-discovered breast cancer in Singapore and Malaysia. A qualitative interview study with thematic analysis of transcripts. 67 patients with self-discovered breast symptoms were included in the analysis. Of these, 36% were of Malay ethnicity, 39% were Chinese and 25% Indian, with an average age of 58 years (range 24-82 years). The number of women diagnosed at early stages of cancer almost equalled those at advanced stages. Approximately three-quarters presented with a painless lump, one-quarter experienced a painful lump and 10% had atypical symptoms. University hospital setting in Singapore and Malaysia. Patients revealed barriers to early presentation not previously reported: the poor quality of online website information about breast symptoms, financial issues and the negative influence of relatives in both countries, while perceived poor quality of care and services in state-run hospitals and misdiagnosis by healthcare professionals were reported in Malaysia. The pattern of presentation by ethnicity remained unchanged where more Malay delayed help-seeking and had more advanced cancer compared to Chinese and Indian patients. There are few differences in the pattern of presentation and in the reported barriers to seek medical care after symptom discovery between Singapore and Malaysia despite their differing economic status. Strategies to reduce delayed presentation are: a need to improve knowledge of disease, symptoms and causes, quality of care and services, and quality of online information; and addressing fear of diagnosis, treatment and hospitalisation, with more effort focused on the Malay ethnic group. Training is needed to avoid missed diagnoses and other factors contributing to delay among health professionals. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  8. Distinct gene expression profiles in ovarian cancer linked to Lynch syndrome

    DEFF Research Database (Denmark)

    Jönsson, Jenny-Maria; Bartuma, Katarina; Dominguez-Valentin, Mev

    2014-01-01

    Ovarian cancer linked to Lynch syndrome represents a rare subset that typically presents at young age as early-stage tumors with an overrepresentation of endometrioid and clear cell histologies. We investigated the molecular profiles of Lynch syndrome-associated and sporadic ovarian cancer...... with the aim to identify key discriminators and central tumorigenic mechanisms in hereditary ovarian cancer. Global gene expression profiling using whole-genome c-DNA-mediated Annealing, Selection, extension, and Ligation was applied to 48 histopathologically matched Lynch syndrome-associated and sporadic...... ovarian cancers. Lynch syndrome-associated and sporadic ovarian cancers differed by 349 significantly deregulated genes, including PTPRH, BIRC3, SHH and TNFRSF6B. The genes involved were predominantly linked to cell growth, proliferation, and cell-to-cell signaling and interaction. When stratified...

  9. Id-1 and Id-2 genes and products as markers of epithelial cancer

    Science.gov (United States)

    Desprez, Pierre-Yves [El Cerrito, CA; Campisi, Judith [Berkeley, CA

    2008-09-30

    A method for detection and prognosis of breast cancer and other types of cancer. The method comprises detecting expression, if any, for both an Id-1 and an Id-2 genes, or the ratio thereof, of gene products in samples of breast tissue obtained from a patient. When expressed, Id-1 gene is a prognostic indicator that breast cancer cells are invasive and metastatic, whereas Id-2 gene is a prognostic indicator that breast cancer cells are localized and noninvasive in the breast tissue.

  10. Gene expression signatures for colorectal cancer microsatellite status and HNPCC

    DEFF Research Database (Denmark)

    Kruhøffer, M; Jensen, J L; Laiho, P

    2005-01-01

    The majority of microsatellite instable (MSI) colorectal cancers are sporadic, but a subset belongs to the syndrome hereditary non-polyposis colorectal cancer (HNPCC). Microsatellite instability is caused by dysfunction of the mismatch repair (MMR) system that leads to a mutator phenotype, and MSI...... of 101 stage II and III colorectal cancers (34 MSI, 67 microsatellite stable (MSS)) using high-density oligonucleotide microarrays. From these data, we constructed a nine-gene signature capable of separating the mismatch repair proficient and deficient tumours. Subsequently, we demonstrated...... is correlated to prognosis and response to chemotherapy. Gene expression signatures as predictive markers are being developed for many cancers, and the identification of a signature for MMR deficiency would be of interest both clinically and biologically. To address this issue, we profiled the gene expression...

  11. Integrative gene network construction to analyze cancer recurrence using semi-supervised learning.

    Science.gov (United States)

    Park, Chihyun; Ahn, Jaegyoon; Kim, Hyunjin; Park, Sanghyun

    2014-01-01

    The prognosis of cancer recurrence is an important research area in bioinformatics and is challenging due to the small sample sizes compared to the vast number of genes. There have been several attempts to predict cancer recurrence. Most studies employed a supervised approach, which uses only a few labeled samples. Semi-supervised learning can be a great alternative to solve this problem. There have been few attempts based on manifold assumptions to reveal the detailed roles of identified cancer genes in recurrence. In order to predict cancer recurrence, we proposed a novel semi-supervised learning algorithm based on a graph regularization approach. We transformed the gene expression data into a graph structure for semi-supervised learning and integrated protein interaction data with the gene expression data to select functionally-related gene pairs. Then, we predicted the recurrence of cancer by applying a regularization approach to the constructed graph containing both labeled and unlabeled nodes. The average improvement rate of accuracy for three different cancer datasets was 24.9% compared to existing supervised and semi-supervised methods. We performed functional enrichment on the gene networks used for learning. We identified that those gene networks are significantly associated with cancer-recurrence-related biological functions. Our algorithm was developed with standard C++ and is available in Linux and MS Windows formats in the STL library. The executable program is freely available at: http://embio.yonsei.ac.kr/~Park/ssl.php.

  12. Integrative gene network construction to analyze cancer recurrence using semi-supervised learning.

    Directory of Open Access Journals (Sweden)

    Chihyun Park

    Full Text Available BACKGROUND: The prognosis of cancer recurrence is an important research area in bioinformatics and is challenging due to the small sample sizes compared to the vast number of genes. There have been several attempts to predict cancer recurrence. Most studies employed a supervised approach, which uses only a few labeled samples. Semi-supervised learning can be a great alternative to solve this problem. There have been few attempts based on manifold assumptions to reveal the detailed roles of identified cancer genes in recurrence. RESULTS: In order to predict cancer recurrence, we proposed a novel semi-supervised learning algorithm based on a graph regularization approach. We transformed the gene expression data into a graph structure for semi-supervised learning and integrated protein interaction data with the gene expression data to select functionally-related gene pairs. Then, we predicted the recurrence of cancer by applying a regularization approach to the constructed graph containing both labeled and unlabeled nodes. CONCLUSIONS: The average improvement rate of accuracy for three different cancer datasets was 24.9% compared to existing supervised and semi-supervised methods. We performed functional enrichment on the gene networks used for learning. We identified that those gene networks are significantly associated with cancer-recurrence-related biological functions. Our algorithm was developed with standard C++ and is available in Linux and MS Windows formats in the STL library. The executable program is freely available at: http://embio.yonsei.ac.kr/~Park/ssl.php.

  13. Whole-exome sequencing of muscle-invasive bladder cancer identifies recurrent mutations of UNC5C and prognostic importance of DNA repair gene mutations on survival.

    Science.gov (United States)

    Yap, Kai Lee; Kiyotani, Kazuma; Tamura, Kenji; Antic, Tatjana; Jang, Miran; Montoya, Magdeline; Campanile, Alexa; Yew, Poh Yin; Ganshert, Cory; Fujioka, Tomoaki; Steinberg, Gary D; O'Donnell, Peter H; Nakamura, Yusuke

    2014-12-15

    Because of suboptimal outcomes in muscle-invasive bladder cancer even with multimodality therapy, determination of potential genetic drivers offers the possibility of improving therapeutic approaches and discovering novel prognostic indicators. Using pTN staging, we case-matched 81 patients with resected ≥pT2 bladder cancers for whom perioperative chemotherapy use and disease recurrence status were known. Whole-exome sequencing was conducted in 43 cases to identify recurrent somatic mutations and targeted sequencing of 10 genes selected from the initial screening in an additional 38 cases was completed. Mutational profiles along with clinicopathologic information were correlated with recurrence-free survival (RFS) in the patients. We identified recurrent novel somatic mutations in the gene UNC5C (9.9%), in addition to TP53 (40.7%), KDM6A (21.0%), and TSC1 (12.3%). Patients who were carriers of somatic mutations in DNA repair genes (one or more of ATM, ERCC2, FANCD2, PALB2, BRCA1, or BRCA2) had a higher overall number of somatic mutations (P = 0.011). Importantly, after a median follow-up of 40.4 months, carriers of somatic mutations (n = 25) in any of these six DNA repair genes had significantly enhanced RFS compared with noncarriers [median, 32.4 vs. 14.8 months; hazard ratio of 0.46, 95% confidence interval (CI), 0.22-0.98; P = 0.0435], after adjustment for pathologic pTN staging and independent of adjuvant chemotherapy usage. Better prognostic outcomes of individuals carrying somatic mutations in DNA repair genes suggest these mutations as favorable prognostic events in muscle-invasive bladder cancer. Additional mechanistic investigation into the previously undiscovered role of UNC5C in bladder cancer is warranted. ©2014 American Association for Cancer Research.

  14. Molecular MR imaging of cancer gene therapy. Ferritin transgene reporter takes the stage

    International Nuclear Information System (INIS)

    Hasegawa, Sumitaka; Furukawa, Takako; Saga, Tsuneo

    2010-01-01

    Molecular imaging using magnetic resonance (MR) imaging has been actively investigated and made rapid progress in the past decade. Applied to cancer gene therapy, the technique's high spatial resolution allows evaluation of gene delivery into target tissues. Because noninvasive monitoring of the duration, location, and magnitude of transgene expression in tumor tissues or cells provides useful information for assessing therapeutic efficacy and optimizing protocols, molecular imaging is expected to become a critical step in the success of cancer gene therapy in the near future. We present a brief overview of the current status of molecular MR imaging, especially in vivo reporter gene imaging using ferritin and other reporters, discuss its application to cancer gene therapy, and present our research of MR imaging detection of electroporation-mediated cancer gene therapy using the ferritin reporter gene. (author)

  15. Bronchial airway gene expression in smokers with lung or head and neck cancer

    International Nuclear Information System (INIS)

    Van Dyck, Eric; Nazarov, Petr V; Muller, Arnaud; Nicot, Nathalie; Bosseler, Manon; Pierson, Sandrine; Van Moer, Kris; Palissot, Valérie; Mascaux, Céline; Knolle, Ulrich; Ninane, Vincent; Nati, Romain; Bremnes, Roy M; Vallar, Laurent; Berchem, Guy; Schlesser, Marc

    2014-01-01

    Cigarette smoking is the major cause of cancers of the respiratory tract, including non-small cell lung cancer (NSCLC) and head and neck cancer (HNC). In order to better understand carcinogenesis of the lung and upper airways, we have compared the gene expression profiles of tumor-distant, histologically normal bronchial biopsy specimens obtained from current smokers with NSCLC or HNC (SC, considered as a single group), as well as nonsmokers (NS) and smokers without cancer (SNC). RNA from a total of 97 biopsies was used for gene expression profiling (Affymetrix HG-U133 Plus 2.0 array). Differentially expressed genes were used to compare NS, SNC, and SC, and functional analysis was carried out using Ingenuity Pathway Analysis (IPA). Smoking-related cancer of the respiratory tract was found to affect the expression of genes encoding xenobiotic biotransformation proteins, as well as proteins associated with crucial inflammation/immunity pathways and other processes that protect the airway from the chemicals in cigarette smoke or contribute to carcinogenesis. Finally, we used the prediction analysis for microarray (PAM) method to identify gene signatures of cigarette smoking and cancer, and uncovered a 15-gene signature that distinguished between SNC and SC with an accuracy of 83%. Thus, gene profiling of histologically normal bronchial biopsy specimens provided insight into cigarette-induced carcinogenesis of the respiratory tract and gene signatures of cancer in smokers

  16. Identifying the Gene Signatures from Gene-Pathway Bipartite Network Guarantees the Robust Model Performance on Predicting the Cancer Prognosis

    Directory of Open Access Journals (Sweden)

    Li He

    2014-01-01

    Full Text Available For the purpose of improving the prediction of cancer prognosis in the clinical researches, various algorithms have been developed to construct the predictive models with the gene signatures detected by DNA microarrays. Due to the heterogeneity of the clinical samples, the list of differentially expressed genes (DEGs generated by the statistical methods or the machine learning algorithms often involves a number of false positive genes, which are not associated with the phenotypic differences between the compared clinical conditions, and subsequently impacts the reliability of the predictive models. In this study, we proposed a strategy, which combined the statistical algorithm with the gene-pathway bipartite networks, to generate the reliable lists of cancer-related DEGs and constructed the models by using support vector machine for predicting the prognosis of three types of cancers, namely, breast cancer, acute myeloma leukemia, and glioblastoma. Our results demonstrated that, combined with the gene-pathway bipartite networks, our proposed strategy can efficiently generate the reliable cancer-related DEG lists for constructing the predictive models. In addition, the model performance in the swap analysis was similar to that in the original analysis, indicating the robustness of the models in predicting the cancer outcomes.

  17. Aberrantly methylated genes in human papillary thyroid cancer and their association with BRAF/RAS mutation.

    Directory of Open Access Journals (Sweden)

    Yasuko eKikuchi

    2013-12-01

    Full Text Available Cancer arises through accumulation of epigenetic and genetic alteration. Aberrant promoter methylation is a common epigenetic mechanism of gene silencing in cancer cells. We here performed genome-wide analysis of DNA methylation of promoter regions by Infinium HumanMethylation27 BeadChip, using 14 clinical papillary thyroid cancer samples and 10 normal thyroid samples. Among the 14 papillary cancer cases, 11 showed frequent aberrant methylation, but the other three cases showed no aberrant methylation at all. Distribution of the hypermethylation among cancer samples was non-random, which implied existence of a subset of preferentially methylated papillary thyroid cancer. Among 25 frequently methylated genes, methylation status of six genes (HIST1H3J, POU4F2, SHOX2, PHKG2, TLX3, HOXA7 was validated quantitatively by pyrosequencing. Epigenetic silencing of these genes in methylated papillary thyroid cancer cell lines was confirmed by gene re-expression following treatment with 5-aza-2'-deoxycytidine and trichostatin A, and detected by real-time RT-PCR. Methylation of these six genes was validated by analysis of additional 20 papillary thyroid cancer and 10 normal samples. Among the 34 cancer samples in total, 26 cancer samples with preferential methylation were significantly associated with mutation of BRAF/RAS oncogene (P=0.04, Fisher’s exact test. Thus we identified new genes with frequent epigenetic hypermethylation in papillary thyroid cancer, two subsets of either preferentially methylated or hardly methylated papillary thyroid cancer, with a concomitant occurrence of oncogene mutation and gene methylation. These hypermethylated genes may constitute potential biomarkers for papillary thyroid cancer.

  18. Hereditary cancer genes are highly susceptible to splicing mutations

    Science.gov (United States)

    Soemedi, Rachel; Maguire, Samantha; Murray, Michael F.; Monaghan, Sean F.

    2018-01-01

    Substitutions that disrupt pre-mRNA splicing are a common cause of genetic disease. On average, 13.4% of all hereditary disease alleles are classified as splicing mutations mapping to the canonical 5′ and 3′ splice sites. However, splicing mutations present in exons and deeper intronic positions are vastly underreported. A recent re-analysis of coding mutations in exon 10 of the Lynch Syndrome gene, MLH1, revealed an extremely high rate (77%) of mutations that lead to defective splicing. This finding is confirmed by extending the sampling to five other exons in the MLH1 gene. Further analysis suggests a more general phenomenon of defective splicing driving Lynch Syndrome. Of the 36 mutations tested, 11 disrupted splicing. Furthermore, analyzing past reports suggest that MLH1 mutations in canonical splice sites also occupy a much higher fraction (36%) of total mutations than expected. When performing a comprehensive analysis of splicing mutations in human disease genes, we found that three main causal genes of Lynch Syndrome, MLH1, MSH2, and PMS2, belonged to a class of 86 disease genes which are enriched for splicing mutations. Other cancer genes were also enriched in the 86 susceptible genes. The enrichment of splicing mutations in hereditary cancers strongly argues for additional priority in interpreting clinical sequencing data in relation to cancer and splicing. PMID:29505604

  19. Hereditary cancer genes are highly susceptible to splicing mutations.

    Directory of Open Access Journals (Sweden)

    Christy L Rhine

    2018-03-01

    Full Text Available Substitutions that disrupt pre-mRNA splicing are a common cause of genetic disease. On average, 13.4% of all hereditary disease alleles are classified as splicing mutations mapping to the canonical 5' and 3' splice sites. However, splicing mutations present in exons and deeper intronic positions are vastly underreported. A recent re-analysis of coding mutations in exon 10 of the Lynch Syndrome gene, MLH1, revealed an extremely high rate (77% of mutations that lead to defective splicing. This finding is confirmed by extending the sampling to five other exons in the MLH1 gene. Further analysis suggests a more general phenomenon of defective splicing driving Lynch Syndrome. Of the 36 mutations tested, 11 disrupted splicing. Furthermore, analyzing past reports suggest that MLH1 mutations in canonical splice sites also occupy a much higher fraction (36% of total mutations than expected. When performing a comprehensive analysis of splicing mutations in human disease genes, we found that three main causal genes of Lynch Syndrome, MLH1, MSH2, and PMS2, belonged to a class of 86 disease genes which are enriched for splicing mutations. Other cancer genes were also enriched in the 86 susceptible genes. The enrichment of splicing mutations in hereditary cancers strongly argues for additional priority in interpreting clinical sequencing data in relation to cancer and splicing.

  20. Nanoparticle-mediated delivery of suicide genes in cancer therapy.

    Science.gov (United States)

    Vago, Riccardo; Collico, Veronica; Zuppone, Stefania; Prosperi, Davide; Colombo, Miriam

    2016-09-01

    Conventional chemotherapeutics have been employed in cancer treatment for decades due to their efficacy in killing the malignant cells, but the other side of the coin showed off-target effects, onset of drug resistance and recurrences. To overcome these limitations, different approaches have been investigated and suicide gene therapy has emerged as a promising alternative. This approach consists in the introduction of genetic materials into cancerous cells or the surrounding tissue to cause cell death or retard the growth of the tumor mass. Despite promising results obtained both in vitro and in vivo, this innovative approach has been limited, for long time, to the treatment of localized tumors, due to the suboptimal efficiency in introducing suicide genes into cancer cells. Nanoparticles represent a valuable non-viral delivery system to protect drugs in the bloodstream, to improve biodistribution, and to limit side effects by achieving target selectivity through surface ligands. In this scenario, the real potential of suicide genes can be translated into clinically viable treatments for patients. In the present review, we summarize the recent advances of inorganic nanoparticles as non-viral vectors in terms of therapeutic efficacy, targeting capacity and safety issues. We describe the main suicide genes currently used in therapy, with particular emphasis on toxin-encoding genes of bacterial and plant origin. In addition, we discuss the relevance of molecular targeting and tumor-restricted expression to improve treatment specificity to cancer tissue. Finally, we analyze the main clinical applications, limitations and future perspectives of suicide gene therapy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Growth Inhibition of Breast Cancer in Rat by AAV Mediated Angiostatin Gene

    Institute of Scientific and Technical Information of China (English)

    LI Ran; CHEN Hong; REN Chang-shan

    2007-01-01

    Objective: To observe growth inhibition effect of adeno-associated viral vectors (AAV) mediated angiostatin (ANG) gene on implanted breast cancer in rat and its mechanism. Methods: Gene transfer technique was used to transfer AAV-ANG to the tumor. Growth curves were drawn to observe the growth of breast cancer implanted in rat, and immunohistochemical method was used to detect the effects of angiostatin on microvesel density (MVD) of breast cancer implanted in rat. Results: Angiostatin inhibited the growth of breast cancer implanted in rat and decreased the microvessel density of tumor. Conclusion: Expression of an angiostatin transgene can suppress the growth of breast cancer implanted in rat through the inhibition of the growth of microvessels, surggesting that angiostatin gene transfer technique may be effective against breast cancer.

  2. A seven-gene CpG-island methylation panel predicts breast cancer progression

    International Nuclear Information System (INIS)

    Li, Yan; Melnikov, Anatoliy A.; Levenson, Victor; Guerra, Emanuela; Simeone, Pasquale; Alberti, Saverio; Deng, Youping

    2015-01-01

    DNA methylation regulates gene expression, through the inhibition/activation of gene transcription of methylated/unmethylated genes. Hence, DNA methylation profiling can capture pivotal features of gene expression in cancer tissues from patients at the time of diagnosis. In this work, we analyzed a breast cancer case series, to identify DNA methylation determinants of metastatic versus non-metastatic tumors. CpG-island methylation was evaluated on a 56-gene cancer-specific biomarker microarray in metastatic versus non-metastatic breast cancers in a multi-institutional case series of 123 breast cancer patients. Global statistical modeling and unsupervised hierarchical clustering were applied to identify a multi-gene binary classifier with high sensitivity and specificity. Network analysis was utilized to quantify the connectivity of the identified genes. Seven genes (BRCA1, DAPK1, MSH2, CDKN2A, PGR, PRKCDBP, RANKL) were found informative for prognosis of metastatic diffusion and were used to calculate classifier accuracy versus the entire data-set. Individual-gene performances showed sensitivities of 63–79 %, 53–84 % specificities, positive predictive values of 59–83 % and negative predictive values of 63–80 %. When modelled together, these seven genes reached a sensitivity of 93 %, 100 % specificity, a positive predictive value of 100 % and a negative predictive value of 93 %, with high statistical power. Unsupervised hierarchical clustering independently confirmed these findings, in close agreement with the accuracy measurements. Network analyses indicated tight interrelationship between the identified genes, suggesting this to be a functionally-coordinated module, linked to breast cancer progression. Our findings identify CpG-island methylation profiles with deep impact on clinical outcome, paving the way for use as novel prognostic assays in clinical settings. The online version of this article (doi:10.1186/s12885-015-1412-9) contains supplementary

  3. NF-kappa B genes have a major role in Inflammatory Breast Cancer

    International Nuclear Information System (INIS)

    Lerebours, Florence; Vacher, Sophie; Andrieu, Catherine; Espie, Marc; Marty, Michel; Lidereau, Rosette; Bieche, Ivan

    2008-01-01

    IBC (Inflammatory Breast cancer) is a rare form of breast cancer with a particular phenotype. New molecular targets are needed to improve the treatment of this rapidly fatal disease. Given the role of NF-κB-related genes in cell proliferation, invasiveness, angiogenesis and inflammation, we postulated that they might be deregulated in IBC. We measured the mRNA expression levels of 60 NF-κB-related genes by using real-time quantitative RT-PCR in a well-defined series of 35 IBCs, by comparison with 22 stage IIB and III non inflammatory breast cancers. Twenty-four distant metastases of breast cancer served as 'poor prognosis' breast tumor controls. Thirty-five (58%) of the 60 NF-κB-related genes were significantly upregulated in IBC compared with non IBC. The upregulated genes were NF-κB genes (NFKB1, RELA, IKBKG, NFKBIB, NFKB2, REL, CHUK), apoptosis genes (MCL1L, TNFAIP3/A20, GADD45B, FASLG, MCL1S, IER3L, TNFRSF10B/TRAILR2), immune response genes (CD40, CD48, TNFSF11/RANKL, TNFRSF11A/RANK, CCL2/MCP-1, CD40LG, IL15, GBP1), proliferation genes (CCND2, CCND3, CSF1R, CSF1, SOD2), tumor-promoting genes (CXCL12, SELE, TNC, VCAM1, ICAM1, PLAU/UPA) or angiogenesis genes (PTGS2/COX2, CXCL1/GRO1). Only two of these 35 genes (PTGS2/COX2 and CXCL1/GRO1)were also upregulated in breast cancer metastases. We identified a five-gene molecular signature that matched patient outcomes, consisting of IL8 and VEGF plus three NF-κB-unrelated genes that we had previously identified as prognostic markers in the same series of IBC. The NF-κB pathway appears to play a major role in IBC, possibly contributing to the unusual phenotype and aggressiveness of this form of breast cancer. Some upregulated NF-κB-related genes might serve as novel therapeutic targets in IBC

  4. Random Subspace Aggregation for Cancer Prediction with Gene Expression Profiles

    Directory of Open Access Journals (Sweden)

    Liying Yang

    2016-01-01

    Full Text Available Background. Precisely predicting cancer is crucial for cancer treatment. Gene expression profiles make it possible to analyze patterns between genes and cancers on the genome-wide scale. Gene expression data analysis, however, is confronted with enormous challenges for its characteristics, such as high dimensionality, small sample size, and low Signal-to-Noise Ratio. Results. This paper proposes a method, termed RS_SVM, to predict gene expression profiles via aggregating SVM trained on random subspaces. After choosing gene features through statistical analysis, RS_SVM randomly selects feature subsets to yield random subspaces and training SVM classifiers accordingly and then aggregates SVM classifiers to capture the advantage of ensemble learning. Experiments on eight real gene expression datasets are performed to validate the RS_SVM method. Experimental results show that RS_SVM achieved better classification accuracy and generalization performance in contrast with single SVM, K-nearest neighbor, decision tree, Bagging, AdaBoost, and the state-of-the-art methods. Experiments also explored the effect of subspace size on prediction performance. Conclusions. The proposed RS_SVM method yielded superior performance in analyzing gene expression profiles, which demonstrates that RS_SVM provides a good channel for such biological data.

  5. Google goes cancer: improving outcome prediction for cancer patients by network-based ranking of marker genes.

    Directory of Open Access Journals (Sweden)

    Christof Winter

    Full Text Available Predicting the clinical outcome of cancer patients based on the expression of marker genes in their tumors has received increasing interest in the past decade. Accurate predictors of outcome and response to therapy could be used to personalize and thereby improve therapy. However, state of the art methods used so far often found marker genes with limited prediction accuracy, limited reproducibility, and unclear biological relevance. To address this problem, we developed a novel computational approach to identify genes prognostic for outcome that couples gene expression measurements from primary tumor samples with a network of known relationships between the genes. Our approach ranks genes according to their prognostic relevance using both expression and network information in a manner similar to Google's PageRank. We applied this method to gene expression profiles which we obtained from 30 patients with pancreatic cancer, and identified seven candidate marker genes prognostic for outcome. Compared to genes found with state of the art methods, such as Pearson correlation of gene expression with survival time, we improve the prediction accuracy by up to 7%. Accuracies were assessed using support vector machine classifiers and Monte Carlo cross-validation. We then validated the prognostic value of our seven candidate markers using immunohistochemistry on an independent set of 412 pancreatic cancer samples. Notably, signatures derived from our candidate markers were independently predictive of outcome and superior to established clinical prognostic factors such as grade, tumor size, and nodal status. As the amount of genomic data of individual tumors grows rapidly, our algorithm meets the need for powerful computational approaches that are key to exploit these data for personalized cancer therapies in clinical practice.

  6. H-RAS, K-RAS, and N-RAS gene activation in human bladder cancers.

    Science.gov (United States)

    Przybojewska, B; Jagiello, A; Jalmuzna, P

    2000-08-01

    Bladder cancer is one of the leading causes of cancer death in most developed countries. In this work, 19 bladder cancer specimens, along with their infiltrations of the urinary bladder wall from the same patients, were examined for the presence of H-RAS, K-RAS, and N-RAS activation using a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay. The H-RAS activation was found in 15 (about 84%) of the 19 bladder cancers studied. The same results were obtained in the infiltrating urinary bladder wall samples. N-RAS gene mutations were observed in all cases (except 1) in which H-RAS gene mutations were detected. The results suggest a strong relationship between H-RAS and N-RAS gene activation in bladder cancer. Changes in the K-RAS gene in bladder cancers seem to be a rare event; this is in agreement with findings of other authors. We found activation of the gene in one specimen of bladder cancer and its infiltration of the urinary bladder wall in the same patient.

  7. Impact of Maspin Polymorphism rs2289520 G/C and Its Interaction with Gene to Gene, Alcohol Consumption Increase Susceptibility to Oral Cancer Occurrence.

    Science.gov (United States)

    Yang, Po-Yu; Miao, Nae-Fang; Lin, Chiao-Wen; Chou, Ying-Erh; Yang, Shun-Fa; Huang, Hui-Chuan; Chang, Hsiu-Ju; Tsai, Hsiu-Ting

    2016-01-01

    The purpose of this study was to identify gene polymorphisms of mammary serine protease inhibitor (Maspin) specific to patients with oral cancer susceptibility and clinicopathological status. Three single-nucleotide polymorphisms (SNPs) of the Maspin gene from 741 patients with oral cancer and 601 non-cancer controls were analyzed by real-time PCR. The participants with G/G homozygotes or with G/C heterozygotes of Maspin rs2289520 polymorphism had a 2.07-fold (p = 0.01) and a 2.01-fold (p = 0.02) risk of developing oral cancer compared to those with C/C homozygotes. Moreover, gene-gene interaction increased the risk of oral cancer susceptibility among subjects expose to oral cancer related risk factors, including areca, alcohol, and tobacco consumption. G allele of Maspin rs2289520 polymorphism may be a factor that increases the susceptibility to oral cancer. The interactions of gene to oral cancer-related environmental risk factors have a synergetic effect that can further enhance oral cancer development.

  8. Gene expression analysis of FABP4 in gastric cancer

    Directory of Open Access Journals (Sweden)

    Abdulkarim Yasin Karim

    2016-06-01

    Full Text Available Purpose: Gastric cancer has high incidence and mortality rate in several countries and is still one of the most frequent and lethal disease. In this study, we aimed to determine diagnostic markers in gastric cancer by molecular techniques; include mRNA expression analysis of FABP4 gene. Fatty acid binding protein 4 (FABP4 gene encodes the fatty acid binding protein found in adipocytes. The protein encoded by FABP4 are a family of small, highly conserved, cytoplasmic proteins that bind long-chain fatty acids and other hydrophobic ligands. It is thought that FABPs roles include fatty acid uptake, transport, and metabolism. Material and Methods: Total RNA were extracted from paired tumor and normal tissues of 47 gastric cancer. The mRNA expression level of FABP4 was measured employing semi- quantitative reverse transcription- polymerase chain reaction (RT- PCR. Results: The mRNA expression level of FABP4 was significantly decreased (down- regulated. Conclusion: Down-regulation of FABP4 gene seems to occur at the initial steps of gastric cancer development. In order to confirm the relationship between the gastric tumor and FABP4 gene, further analysis like immunohistochemistry and epigenetc techniques are necessary. [Cukurova Med J 2016; 41(2.000: 248-252

  9. Towards prostate cancer gene therapy: Development of a chlorotoxin-targeted nanovector for toxic (melittin) gene delivery.

    Science.gov (United States)

    Tarokh, Zahra; Naderi-Manesh, Hossein; Nazari, Mahboobeh

    2017-03-01

    Prostate cancer is the second leading cause of death due to cancer in men. Owing to shortcomings in the current treatments, other therapies are being considered. Toxic gene delivery is one of the most effective methods for cancer therapy. Cationic polymers are able to form stable nanoparticles via interaction with nucleic acids electrostatically. Branched polyethylenimine that contains amine groups has notable buffering capacity and the ability to escape from endosome through the proton sponge effect. However, the cytotoxicity of this polymer is high, and modification is one of the applicable strategies to overcome this problem. In this study, PEI was targeted with chlorotoxin (CTX) via N-succinimidyl 3-(2-pyridyldithio) propionate (SPDP) cross-linker. CTX can bind specifically to matrix metalloproteinase-2 that is overexpressed in certain cancers. Melittin as the major component of bee venom has been reported to have anti-cancer activity. This was thus selected to deliver to PC3 cell line. Flow cytometry analysis revealed that transfection efficiency of targeted nanoparticles is significantly higher compared to non-targeted nanoparticles. Targeted nanoparticles carrying the melittin gene also decreased cell viability of PC3 cells significantly while no toxic effects were observed on NIH3T3 cell line. Therefore, CTX-targeted nanoparticles carrying the melittin gene could serve as an appropriate gene delivery system for prostate and other MMP-2 positive cancer cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Identification of Gene Biomarkers for Distinguishing Small-Cell Lung Cancer from Non-Small-Cell Lung Cancer Using a Network-Based Approach

    Directory of Open Access Journals (Sweden)

    Fei Long

    2015-01-01

    Full Text Available Lung cancer consists of two main subtypes: small-cell lung cancer (SCLC and non-small-cell lung cancer (NSCLC that are classified according to their physiological phenotypes. In this study, we have developed a network-based approach to identify molecular biomarkers that can distinguish SCLC from NSCLC. By identifying positive and negative coexpression gene pairs in normal lung tissues, SCLC, or NSCLC samples and using functional association information from the STRING network, we first construct a lung cancer-specific gene association network. From the network, we obtain gene modules in which genes are highly functionally associated with each other and are either positively or negatively coexpressed in the three conditions. Then, we identify gene modules that not only are differentially expressed between cancer and normal samples, but also show distinctive expression patterns between SCLC and NSCLC. Finally, we select genes inside those modules with discriminating coexpression patterns between the two lung cancer subtypes and predict them as candidate biomarkers that are of diagnostic use.

  11. Screening for susceptibility genes in hereditary non-polyposis colorectal cancer.

    Science.gov (United States)

    Yu, Li; Yin, Bo; Qu, Kaiying; Li, Jingjing; Jin, Qiao; Liu, Ling; Liu, Chunlan; Zhu, Yuxing; Wang, Qi; Peng, Xiaowei; Zhou, Jianda; Cao, Peiguo; Cao, Ke

    2018-06-01

    In the present study, hereditary non-polyposis colorectal cancer (HNPCC) susceptibility genes were screened for using whole exome sequencing in 3 HNPCC patients from 1 family and using single nucleotide polymorphism (SNP) genotyping assays in 96 other colorectal cancer and control samples. Peripheral blood was obtained from 3 HNPCC patients from 1 family; the proband and the proband's brother and cousin. High-throughput sequencing was performed using whole exome capture technology. Sequences were aligned against the HAPMAP, dbSNP130 and 1,000 Genome Project databases. Reported common variations and synonymous mutations were filtered out. Non-synonymous single nucleotide variants in the 3 HNPCC patients were integrated and the candidate genes were identified. Finally, SNP genotyping was performed for the genes in 96 peripheral blood samples. In total, 60.4 Gb of data was retrieved from the 3 HNPCC patients using whole exome capture technology. Subsequently, according to certain screening criteria, 15 candidate genes were identified. Among the 96 samples that had been SNP genotyped, 92 were successfully genotyped for 15 gene loci, while genotyping for HTRA1 failed in 4 sporadic colorectal cancer patient samples. In 12 control subjects and 81 sporadic colorectal cancer patients, genotypes at 13 loci were wild-type, namely DDX20, ZFYVE26, PIK3R3, SLC26A8, ZEB2, TP53INP1, SLC11A1, LRBA, CEBPZ, ETAA1, SEMA3G, IFRD2 and FAT1 . The CEP290 genotype was mutant in 1 sporadic colorectal cancer patient and was wild-type in all other subjects. A total of 5 of the 12 control subjects and 30 of the 81 sporadic colorectal cancer patients had a mutant HTRA1 genotype. In all 3 HNPCC patients, the same mutant genotypes were identified at all 15 gene loci. Overall, 13 potential susceptibility genes for HNPCC were identified, namely DDX20, ZFYVE26, PIK3R3, SLC26A8, ZEB2, TP53INP1, SLC11A1, LRBA, CEBPZ, ETAA1, SEMA3G, IFRD2 and FAT1 .

  12. Extracting Fitness Relationships and Oncogenic Patterns among Driver Genes in Cancer.

    Science.gov (United States)

    Zhang, Xindong; Gao, Lin; Jia, Songwei

    2017-12-25

    Driver mutation provides fitness advantage to cancer cells, the accumulation of which increases the fitness of cancer cells and accelerates cancer progression. This work seeks to extract patterns accumulated by driver genes ("fitness relationships") in tumorigenesis. We introduce a network-based method for extracting the fitness relationships of driver genes by modeling the network properties of the "fitness" of cancer cells. Colon adenocarcinoma (COAD) and skin cutaneous malignant melanoma (SKCM) are employed as case studies. Consistent results derived from different background networks suggest the reliability of the identified fitness relationships. Additionally co-occurrence analysis and pathway analysis reveal the functional significance of the fitness relationships with signaling transduction. In addition, a subset of driver genes called the "fitness core" is recognized for each case. Further analyses indicate the functional importance of the fitness core in carcinogenesis, and provide potential therapeutic opportunities in medicinal intervention. Fitness relationships characterize the functional continuity among driver genes in carcinogenesis, and suggest new insights in understanding the oncogenic mechanisms of cancers, as well as providing guiding information for medicinal intervention.

  13. Molecular studies on the function of tumor suppressor gene in gastrointestinal cancer

    International Nuclear Information System (INIS)

    Kim, You Cheoul

    1993-01-01

    Cancer of stomach, colon and liver are a group of the most common cancer in Korea. However, results with current therapeutic modalities are still unsatisfactory. The intensive efforts have been made to understand basic pathogenesis and to find better therapeutic tools for the treatment of this miserable disease. We studies the alteration of tumor suppressor gene in various Gastrointestinal cancer in Korea. Results showed that genetic alteration of Rb gene was in 83% of colorectal cancer. Our results suggest that genetic alteration of Rb gene is crucially involved in the tumorigenesis of colorectum in Korea. (Author)

  14. FERAL : Network-based classifier with application to breast cancer outcome prediction

    NARCIS (Netherlands)

    Allahyar, A.; De Ridder, J.

    2015-01-01

    Motivation: Breast cancer outcome prediction based on gene expression profiles is an important strategy for personalize patient care. To improve performance and consistency of discovered markers of the initial molecular classifiers, network-based outcome prediction methods (NOPs) have been proposed.

  15. [Establishment of a comprehensive database for laryngeal cancer related genes and the miRNAs].

    Science.gov (United States)

    Li, Mengjiao; E, Qimin; Liu, Jialin; Huang, Tingting; Liang, Chuanyu

    2015-09-01

    By collecting and analyzing the laryngeal cancer related genes and the miRNAs, to build a comprehensive laryngeal cancer-related gene database, which differs from the current biological information database with complex and clumsy structure and focuses on the theme of gene and miRNA, and it could make the research and teaching more convenient and efficient. Based on the B/S architecture, using Apache as a Web server, MySQL as coding language of database design and PHP as coding language of web design, a comprehensive database for laryngeal cancer-related genes was established, providing with the gene tables, protein tables, miRNA tables and clinical information tables of the patients with laryngeal cancer. The established database containsed 207 laryngeal cancer related genes, 243 proteins, 26 miRNAs, and their particular information such as mutations, methylations, diversified expressions, and the empirical references of laryngeal cancer relevant molecules. The database could be accessed and operated via the Internet, by which browsing and retrieval of the information were performed. The database were maintained and updated regularly. The database for laryngeal cancer related genes is resource-integrated and user-friendly, providing a genetic information query tool for the study of laryngeal cancer.

  16. Shared Gene Expression Alterations in Nasal and Bronchial Epithelium for Lung Cancer Detection.

    Science.gov (United States)

    2017-07-01

    We previously derived and validated a bronchial epithelial gene expression biomarker to detect lung cancer in current and former smokers. Given that bronchial and nasal epithelial gene expression are similarly altered by cigarette smoke exposure, we sought to determine if cancer-associated gene expression might also be detectable in the more readily accessible nasal epithelium. Nasal epithelial brushings were prospectively collected from current and former smokers undergoing diagnostic evaluation for pulmonary lesions suspicious for lung cancer in the AEGIS-1 (n = 375) and AEGIS-2 (n = 130) clinical trials and gene expression profiled using microarrays. All statistical tests were two-sided. We identified 535 genes that were differentially expressed in the nasal epithelium of AEGIS-1 patients diagnosed with lung cancer vs those with benign disease after one year of follow-up ( P  cancer-associated gene expression alterations between the two airway sites ( P  lung cancer classifier derived in the AEGIS-1 cohort that combined clinical factors (age, smoking status, time since quit, mass size) and nasal gene expression (30 genes) had statistically significantly higher area under the curve (0.81; 95% confidence interval [CI] = 0.74 to 0.89, P  = .01) and sensitivity (0.91; 95% CI = 0.81 to 0.97, P  = .03) than a clinical-factor only model in independent samples from the AEGIS-2 cohort. These results support that the airway epithelial field of lung cancer-associated injury in ever smokers extends to the nose and demonstrates the potential of using nasal gene expression as a noninvasive biomarker for lung cancer detection. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. lncRNA Gene Signatures for Prediction of Breast Cancer Intrinsic Subtypes and Prognosis

    Directory of Open Access Journals (Sweden)

    Silu Zhang

    2018-01-01

    Full Text Available Background: Breast cancer is intrinsically heterogeneous and is commonly classified into four main subtypes associated with distinct biological features and clinical outcomes. However, currently available data resources and methods are limited in identifying molecular subtyping on protein-coding genes, and little is known about the roles of long non-coding RNAs (lncRNAs, which occupies 98% of the whole genome. lncRNAs may also play important roles in subgrouping cancer patients and are associated with clinical phenotypes. Methods: The purpose of this project was to identify lncRNA gene signatures that are associated with breast cancer subtypes and clinical outcomes. We identified lncRNA gene signatures from The Cancer Genome Atlas (TCGA RNAseq data that are associated with breast cancer subtypes by an optimized 1-Norm SVM feature selection algorithm. We evaluated the prognostic performance of these gene signatures with a semi-supervised principal component (superPC method. Results: Although lncRNAs can independently predict breast cancer subtypes with satisfactory accuracy, a combined gene signature including both coding and non-coding genes will give the best clinically relevant prediction performance. We highlighted eight potential biomarkers (three from coding genes and five from non-coding genes that are significantly associated with survival outcomes. Conclusion: Our proposed methods are a novel means of identifying subtype-specific coding and non-coding potential biomarkers that are both clinically relevant and biologically significant.

  18. The relationship between Prostate CAncer gene 3 (PCA3) and prostate cancer significance

    NARCIS (Netherlands)

    van Poppel, Hein; Haese, Alexander; Graefen, Markus; de la Taille, Alexandre; Irani, Jacques; de Reijke, Theo; Remzi, Mesut; Marberger, Michael

    2012-01-01

    OBJECTIVE To evaluate the relationship between Prostate CAncer gene 3 (PCA3) and prostate cancer significance. PATIENTS AND METHODS Clinical data from two multi-centre European open-label, prospective studies evaluating the clinical utility of the PCA3 assay in guiding initial and repeat biopsy

  19. Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context.

    Science.gov (United States)

    Chiu, Hua-Sheng; Somvanshi, Sonal; Patel, Ektaben; Chen, Ting-Wen; Singh, Vivek P; Zorman, Barry; Patil, Sagar L; Pan, Yinghong; Chatterjee, Sujash S; Sood, Anil K; Gunaratne, Preethi H; Sumazin, Pavel

    2018-04-03

    Long noncoding RNAs (lncRNAs) are commonly dysregulated in tumors, but only a handful are known to play pathophysiological roles in cancer. We inferred lncRNAs that dysregulate cancer pathways, oncogenes, and tumor suppressors (cancer genes) by modeling their effects on the activity of transcription factors, RNA-binding proteins, and microRNAs in 5,185 TCGA tumors and 1,019 ENCODE assays. Our predictions included hundreds of candidate onco- and tumor-suppressor lncRNAs (cancer lncRNAs) whose somatic alterations account for the dysregulation of dozens of cancer genes and pathways in each of 14 tumor contexts. To demonstrate proof of concept, we showed that perturbations targeting OIP5-AS1 (an inferred tumor suppressor) and TUG1 and WT1-AS (inferred onco-lncRNAs) dysregulated cancer genes and altered proliferation of breast and gynecologic cancer cells. Our analysis indicates that, although most lncRNAs are dysregulated in a tumor-specific manner, some, including OIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergistically dysregulate cancer pathways in multiple tumor contexts. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  20. Gene expression analysis identifies global gene dosage sensitivity in cancer

    DEFF Research Database (Denmark)

    Fehrmann, Rudolf S. N.; Karjalainen, Juha M.; Krajewska, Malgorzata

    2015-01-01

    Many cancer-associated somatic copy number alterations (SCNAs) are known. Currently, one of the challenges is to identify the molecular downstream effects of these variants. Although several SCNAs are known to change gene expression levels, it is not clear whether each individual SCNA affects gen...

  1. Inferring gene dependency network specific to phenotypic alteration based on gene expression data and clinical information of breast cancer.

    Science.gov (United States)

    Zhou, Xionghui; Liu, Juan

    2014-01-01

    Although many methods have been proposed to reconstruct gene regulatory network, most of them, when applied in the sample-based data, can not reveal the gene regulatory relations underlying the phenotypic change (e.g. normal versus cancer). In this paper, we adopt phenotype as a variable when constructing the gene regulatory network, while former researches either neglected it or only used it to select the differentially expressed genes as the inputs to construct the gene regulatory network. To be specific, we integrate phenotype information with gene expression data to identify the gene dependency pairs by using the method of conditional mutual information. A gene dependency pair (A,B) means that the influence of gene A on the phenotype depends on gene B. All identified gene dependency pairs constitute a directed network underlying the phenotype, namely gene dependency network. By this way, we have constructed gene dependency network of breast cancer from gene expression data along with two different phenotype states (metastasis and non-metastasis). Moreover, we have found the network scale free, indicating that its hub genes with high out-degrees may play critical roles in the network. After functional investigation, these hub genes are found to be biologically significant and specially related to breast cancer, which suggests that our gene dependency network is meaningful. The validity has also been justified by literature investigation. From the network, we have selected 43 discriminative hubs as signature to build the classification model for distinguishing the distant metastasis risks of breast cancer patients, and the result outperforms those classification models with published signatures. In conclusion, we have proposed a promising way to construct the gene regulatory network by using sample-based data, which has been shown to be effective and accurate in uncovering the hidden mechanism of the biological process and identifying the gene signature for

  2. The role of S100 genes in breast cancer progression.

    LENUS (Irish Health Repository)

    McKiernan, Eadaoin

    2012-02-01

    The S100 gene family encode low molecular weight proteins implicated in cancer progression. In this study, we analyzed the expression of four S100 genes in one cohort of patients with breast cancer and 16 S100 genes in a second cohort. In both cohorts, the expression of S100A8 and S1009 mRNA level was elevated in high-grade compared to low-grade tumors and in estrogen receptor-negative compared to estrogen receptor-positive tumors. None of the S100 transcripts investigated were significantly associated with the presence of lymph node metastasis. Notably, multiple S100 genes, including S100A1, S100A2, S100A4, S100A6, S100A8, S100A9, S100A10, S100A11, and S100A14 were upregulated in basal-type breast cancers compared to non-basal types. Using Spearman\\'s correlation analysis, several S100 transcripts correlated significantly with each other, the strongest correlation has been found between S100A8 and S100A9 (r = 0.889, P < 0.001, n = 295). Of the 16 S100 transcripts investigated, only S100A11 and S100A14 were significantly associated with patient outcome. Indeed, these two transcripts predicted outcome in the cohort of patients that did not receive systemic adjuvant therapy. Based on our findings, we conclude that the different S100 genes play varying roles in breast cancer progression. Specific S100 genes are potential targets for the treatment of basal-type breast cancers.

  3. The role of S100 genes in breast cancer progression.

    LENUS (Irish Health Repository)

    McKiernan, Eadaoin

    2011-06-01

    The S100 gene family encode low molecular weight proteins implicated in cancer progression. In this study, we analyzed the expression of four S100 genes in one cohort of patients with breast cancer and 16 S100 genes in a second cohort. In both cohorts, the expression of S100A8 and S1009 mRNA level was elevated in high-grade compared to low-grade tumors and in estrogen receptor-negative compared to estrogen receptor-positive tumors. None of the S100 transcripts investigated were significantly associated with the presence of lymph node metastasis. Notably, multiple S100 genes, including S100A1, S100A2, S100A4, S100A6, S100A8, S100A9, S100A10, S100A11, and S100A14 were upregulated in basal-type breast cancers compared to non-basal types. Using Spearman\\'s correlation analysis, several S100 transcripts correlated significantly with each other, the strongest correlation has been found between S100A8 and S100A9 (r = 0.889, P < 0.001, n = 295). Of the 16 S100 transcripts investigated, only S100A11 and S100A14 were significantly associated with patient outcome. Indeed, these two transcripts predicted outcome in the cohort of patients that did not receive systemic adjuvant therapy. Based on our findings, we conclude that the different S100 genes play varying roles in breast cancer progression. Specific S100 genes are potential targets for the treatment of basal-type breast cancers.

  4. Immune mechanisms and immuno therapy of thyroid cancer

    International Nuclear Information System (INIS)

    Samuel, A.M.

    1999-01-01

    In recent years the role of immune mechanisms in the induction and progress of cancer has been established. The importance of oncogenes, growth suppressor genes, gene regulation immune surveillance and the interactions of the various components of the immune system in the pathogenesis and progress of cancers is being extensively studied. In fact, the newer concepts of using immune reactions as a modality of therapy is being explored in conjunction with the treatments for cancer. The increased hope and enthusiasm for tumor immunotherapy is in a large part due to animal studies and a better understanding about surface antigens on tumors, major histocompatibility complex molecules, adhesion molecules, cytokines and a variety of newly discovered molecules which play a role in immune interactions

  5. Rapid evolution of cancer/testis genes on the X chromosome

    Directory of Open Access Journals (Sweden)

    Simpson Andrew J

    2007-05-01

    Full Text Available Abstract Background Cancer/testis (CT genes are normally expressed only in germ cells, but can be activated in the cancer state. This unusual property, together with the finding that many CT proteins elicit an antigenic response in cancer patients, has established a role for this class of genes as targets in immunotherapy regimes. Many families of CT genes have been identified in the human genome, but their biological function for the most part remains unclear. While it has been shown that some CT genes are under diversifying selection, this question has not been addressed before for the class as a whole. Results To shed more light on this interesting group of genes, we exploited the generation of a draft chimpanzee (Pan troglodytes genomic sequence to examine CT genes in an organism that is closely related to human, and generated a high-quality, manually curated set of human:chimpanzee CT gene alignments. We find that the chimpanzee genome contains homologues to most of the human CT families, and that the genes are located on the same chromosome and at a similar copy number to those in human. Comparison of putative human:chimpanzee orthologues indicates that CT genes located on chromosome X are diverging faster and are undergoing stronger diversifying selection than those on the autosomes or than a set of control genes on either chromosome X or autosomes. Conclusion Given their high level of diversifying selection, we suggest that CT genes are primarily responsible for the observed rapid evolution of protein-coding genes on the X chromosome.

  6. Comparative analysis of gene expression in normal and cancer human prostate cell lines

    Directory of Open Access Journals (Sweden)

    E. E. Rosenberg

    2014-04-01

    Full Text Available Prostate cancer is one of the main causes of mortality in men with malignant tumors. The urgent problem was a search for biomarkers of prostate cancer, which would allow distinguishing between aggressive metastatic and latent tumors. The aim of this work was to search for differentially expressed genes in normal epithelial cells PNT2 and prostate cancer cell lines LNCaP, DU145 and PC3, produced from tumors with different aggressiveness and metas­tatic ability. Such genes might be used to create a panel of prognostic markers for aggressiveness and metastasis. Relative gene expression of 65 cancer-related genes was determined by the quantitative polymerase chain reaction (Q-PCR. Expression of 29 genes was changed in LNCaP cells, 20 genes in DU145 and 16 genes in PC3 cell lines, compared with normal line PNT2. The obtained data make it possible to conclude that the epithelial-mesenchymal cell transition took place, which involved the loss of epithelial markers, reduced cell adhesion and increased migration. We have also found few differentially expressed genes among 3 prostate cancer cell lines. We have found that genes, involved in cell adhesion (CDH1, invasiveness and metastasis (IL8, CXCL2 and cell cycle control (P16, CCNE1 underwent most changes. These genes might be used for diagnosis and prognosis of invasive metastatic prostate tumors.

  7. Frequent epigenetic inactivation of Wnt antagonist genes in breast cancer

    Science.gov (United States)

    Suzuki, H; Toyota, M; Caraway, H; Gabrielson, E; Ohmura, T; Fujikane, T; Nishikawa, N; Sogabe, Y; Nojima, M; Sonoda, T; Mori, M; Hirata, K; Imai, K; Shinomura, Y; Baylin, S B; Tokino, T

    2008-01-01

    Although mutation of APC or CTNNB1 (β-catenin) is rare in breast cancer, activation of Wnt signalling is nonetheless thought to play an important role in breast tumorigenesis, and epigenetic silencing of Wnt antagonist genes, including the secreted frizzled-related protein (SFRP) and Dickkopf (DKK) families, has been observed in various tumours. In breast cancer, frequent methylation and silencing of SFRP1 was recently documented; however, altered expression of other Wnt antagonist genes is largely unknown. In the present study, we found frequent methylation of SFRP family genes in breast cancer cell lines (SFRP1, 7 out of 11, 64%; SFRP2, 11 out of 11, 100%; SFRP5, 10 out of 11, 91%) and primary breast tumours (SFRP1, 31 out of 78, 40%; SFRP2, 60 out of 78, 77%; SFRP5, 55 out of 78, 71%). We also observed methylation of DKK1, although less frequently, in cell lines (3 out of 11, 27%) and primary tumours (15 out of 78, 19%). Breast cancer cell lines express various Wnt ligands, and overexpression of SFRPs inhibited cancer cell growth. In addition, overexpression of a β-catenin mutant and depletion of SFRP1 using small interfering RNA synergistically upregulated transcriptional activity of T-cell factor/lymphocyte enhancer factor. Our results confirm the frequent methylation and silencing of Wnt antagonist genes in breast cancer, and suggest that their loss of function contributes to activation of Wnt signalling in breast carcinogenesis. PMID:18283316

  8. VarWalker: personalized mutation network analysis of putative cancer genes from next-generation sequencing data.

    Science.gov (United States)

    Jia, Peilin; Zhao, Zhongming

    2014-02-01

    A major challenge in interpreting the large volume of mutation data identified by next-generation sequencing (NGS) is to distinguish driver mutations from neutral passenger mutations to facilitate the identification of targetable genes and new drugs. Current approaches are primarily based on mutation frequencies of single-genes, which lack the power to detect infrequently mutated driver genes and ignore functional interconnection and regulation among cancer genes. We propose a novel mutation network method, VarWalker, to prioritize driver genes in large scale cancer mutation data. VarWalker fits generalized additive models for each sample based on sample-specific mutation profiles and builds on the joint frequency of both mutation genes and their close interactors. These interactors are selected and optimized using the Random Walk with Restart algorithm in a protein-protein interaction network. We applied the method in >300 tumor genomes in two large-scale NGS benchmark datasets: 183 lung adenocarcinoma samples and 121 melanoma samples. In each cancer, we derived a consensus mutation subnetwork containing significantly enriched consensus cancer genes and cancer-related functional pathways. These cancer-specific mutation networks were then validated using independent datasets for each cancer. Importantly, VarWalker prioritizes well-known, infrequently mutated genes, which are shown to interact with highly recurrently mutated genes yet have been ignored by conventional single-gene-based approaches. Utilizing VarWalker, we demonstrated that network-assisted approaches can be effectively adapted to facilitate the detection of cancer driver genes in NGS data.

  9. DDPC: Dragon database of genes associated with prostate cancer

    KAUST Repository

    Maqungo, Monique

    2010-09-29

    Prostate cancer (PC) is one of the most commonly diagnosed cancers in men. PC is relatively difficult to diagnose due to a lack of clear early symptoms. Extensive research of PC has led to the availability of a large amount of data on PC. Several hundred genes are implicated in different stages of PC, which may help in developing diagnostic methods or even cures. In spite of this accumulated information, effective diagnostics and treatments remain evasive. We have developed Dragon Database of Genes associated with Prostate Cancer (DDPC) as an integrated knowledgebase of genes experimentally verified as implicated in PC. DDPC is distinctive from other databases in that (i) it provides pre-compiled biomedical text-mining information on PC, which otherwise require tedious computational analyses, (ii) it integrates data on molecular interactions, pathways, gene ontologies, gene regulation at molecular level, predicted transcription factor binding sites on promoters of PC implicated genes and transcription factors that correspond to these binding sites and (iii) it contains DrugBank data on drugs associated with PC. We believe this resource will serve as a source of useful information for research on PC. DDPC is freely accessible for academic and non-profit users via http://apps.sanbi.ac.za/ddpc/ and http://cbrc .kaust.edu.sa/ddpc/. The Author(s) 2010.

  10. MIM, a Potential Metastasis Suppressor Gene in Bladder Cancer

    Directory of Open Access Journals (Sweden)

    Young-Goo Lee

    2002-01-01

    Full Text Available Using a modified version of the mRNA differential display technique, five human bladder cancer cell lines from low grade to metastatic were analyzed to identify differences in gene expression. A 316-bp cDNA (C11300 was isolated that was not expressed in the metastatic cell line TccSuP. Sequence analysis revealed that this gene was identical to KIAA 0429, has a 5.3-kb transcript that mapped to 8824.1. The protein is predicted to be 356 amino acids in size and has an actin-binding WH2 domain. Northern blot revealed expression in multiple normal tissues, but none in a metastatic breast cancer cell line (SKBR3 or in metastatic prostatic cancer cell lines (LNCaP, PC3. We have named this gene Missing in Metastasis (MIM and our data suggest that it may be involved in cytoskeletal organization.

  11. Bone Metastasis in Advanced Breast Cancer: Analysis of Gene Expression Microarray.

    Science.gov (United States)

    Cosphiadi, Irawan; Atmakusumah, Tubagus D; Siregar, Nurjati C; Muthalib, Abdul; Harahap, Alida; Mansyur, Muchtarruddin

    2018-03-08

    Approximately 30% to 40% of breast cancer recurrences involve bone metastasis (BM). Certain genes have been linked to BM; however, none have been able to predict bone involvement. In this study, we analyzed gene expression profiles in advanced breast cancer patients to elucidate genes that can be used to predict BM. A total of 92 advanced breast cancer patients, including 46 patients with BM and 46 patients without BM, were identified for this study. Immunohistochemistry and gene expression analysis was performed on 81 formalin-fixed paraffin-embedded samples. Data were collected through medical records, and gene expression of 200 selected genes compiled from 6 previous studies was performed using NanoString nCounter. Genetic expression profiles showed that 22 genes were significantly differentially expressed between breast cancer patients with metastasis in bone and other organs (BM+) and non-BM, whereas subjects with only BM showed 17 significantly differentially expressed genes. The following genes were associated with an increasing incidence of BM in the BM+ group: estrogen receptor 1 (ESR1), GATA binding protein 3 (GATA3), and melanophilin with an area under the curve (AUC) of 0.804. In the BM group, the following genes were associated with an increasing incidence of BM: ESR1, progesterone receptor, B-cell lymphoma 2, Rab escort protein, N-acetyltransferase 1, GATA3, annexin A9, and chromosome 9 open reading frame 116. ESR1 and GATA3 showed an increased strength of association with an AUC of 0.928. A combination of the identified 3 genes in BM+ and 8 genes in BM showed better prediction than did each individual gene, and this combination can be used as a training set. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  12. COMPLEXO: identifying the missing heritability of breast cancer via next generation collaboration.

    Science.gov (United States)

    Southey, Melissa C; Park, Daniel J; Nguyen-Dumont, Tu; Campbell, Ian; Thompson, Ella; Trainer, Alison H; Chenevix-Trench, Georgia; Simard, Jacques; Dumont, Martine; Soucy, Penny; Thomassen, Mads; Jønson, Lars; Pedersen, Inge S; Hansen, Thomas Vo; Nevanlinna, Heli; Khan, Sofia; Sinilnikova, Olga; Mazoyer, Sylvie; Lesueur, Fabienne; Damiola, Francesca; Schmutzler, Rita; Meindl, Alfons; Hahnen, Eric; Dufault, Michael R; Chris Chan, Tl; Kwong, Ava; Barkardóttir, Rosa; Radice, Paolo; Peterlongo, Paolo; Devilee, Peter; Hilbers, Florentine; Benitez, Javier; Kvist, Anders; Törngren, Therese; Easton, Douglas; Hunter, David; Lindstrom, Sara; Kraft, Peter; Zheng, Wei; Gao, Yu-Tang; Long, Jirong; Ramus, Susan; Feng, Bing-Jian; Weitzel, Jeffrey N; Nathanson, Katherine; Offit, Kenneth; Joseph, Vijai; Robson, Mark; Schrader, Kasmintan; Wang, San; Kim, Yeong C; Lynch, Henry; Snyder, Carrie; Tavtigian, Sean; Neuhausen, Susan; Couch, Fergus J; Goldgar, David E

    2013-06-21

    Linkage analysis, positional cloning, candidate gene mutation scanning and genome-wide association study approaches have all contributed significantly to our understanding of the underlying genetic architecture of breast cancer. Taken together, these approaches have identified genetic variation that explains approximately 30% of the overall familial risk of breast cancer, implying that more, and likely rarer, genetic susceptibility alleles remain to be discovered.

  13. Common variants of xeroderma pigmentosum genes and prostate cancer risk.

    Science.gov (United States)

    Mirecka, Aneta; Paszkowska-Szczur, Katarzyna; Scott, Rodney J; Górski, Bohdan; van de Wetering, Thierry; Wokołorczyk, Dominika; Gromowski, Tomasz; Serrano-Fernandez, Pablo; Cybulski, Cezary; Kashyap, Aniruddh; Gupta, Satish; Gołąb, Adam; Słojewski, Marcin; Sikorski, Andrzej; Lubiński, Jan; Dębniak, Tadeusz

    2014-08-10

    The genetic basis of prostate cancer (PC) is complex and appears to involve multiple susceptibility genes. A number of studies have evaluated a possible correlation between several NER gene polymorphisms and PC risk, but most of them evaluated only single SNPs among XP genes and the results remain inconsistent. Out of 94 SNPs located in seven XP genes (XPA-XPG) a total of 15 SNPs were assayed in 720 unselected patients with PC and compared to 1121 healthy adults. An increased risk of disease was associated with the XPD SNP, rs1799793 (Asp312Asn) AG genotype (OR=2.60; p<0.001) and with the AA genotype (OR=531; p<0.0001) compared to the control population. Haplotype analysis of XPD revealed one protective haplotype and four associated with an increased disease risk, which showed that the A allele (XPD rs1799793) appeared to drive the main effect on promoting prostate cancer risk. Polymorphism in XPD gene appears to be associated with the risk of prostate cancer. Copyright © 2014. Published by Elsevier B.V.

  14. Multiple Gene-Environment Interactions on the Angiogenesis Gene-Pathway Impact Rectal Cancer Risk and Survival

    Directory of Open Access Journals (Sweden)

    Noha Sharafeldin

    2017-09-01

    Full Text Available Characterization of gene-environment interactions (GEIs in cancer is limited. We aimed at identifying GEIs in rectal cancer focusing on a relevant biologic process involving the angiogenesis pathway and relevant environmental exposures: cigarette smoking, alcohol consumption, and animal protein intake. We analyzed data from 747 rectal cancer cases and 956 controls from the Diet, Activity and Lifestyle as a Risk Factor for Rectal Cancer study. We applied a 3-step analysis approach: first, we searched for interactions among single nucleotide polymorphisms on the pathway genes; second, we searched for interactions among the genes, both steps using Logic regression; third, we examined the GEIs significant at the 5% level using logistic regression for cancer risk and Cox proportional hazards models for survival. Permutation-based test was used for multiple testing adjustment. We identified 8 significant GEIs associated with risk among 6 genes adjusting for multiple testing: TNF (OR = 1.85, 95% CI: 1.10, 3.11, TLR4 (OR = 2.34, 95% CI: 1.38, 3.98, and EGR2 (OR = 2.23, 95% CI: 1.04, 4.78 with smoking; IGF1R (OR = 1.69, 95% CI: 1.04, 2.72, TLR4 (OR = 2.10, 95% CI: 1.22, 3.60 and EGR2 (OR = 2.12, 95% CI: 1.01, 4.46 with alcohol; and PDGFB (OR = 1.75, 95% CI: 1.04, 2.92 and MMP1 (OR = 2.44, 95% CI: 1.24, 4.81 with protein. Five GEIs were associated with survival at the 5% significance level but not after multiple testing adjustment: CXCR1 (HR = 2.06, 95% CI: 1.13, 3.75 with smoking; and KDR (HR = 4.36, 95% CI: 1.62, 11.73, TLR2 (HR = 9.06, 95% CI: 1.14, 72.11, EGR2 (HR = 2.45, 95% CI: 1.42, 4.22, and EGFR (HR = 6.33, 95% CI: 1.95, 20.54 with protein. GEIs between angiogenesis genes and smoking, alcohol, and animal protein impact rectal cancer risk. Our results support the importance of considering the biologic hypothesis to characterize GEIs associated with cancer outcomes.

  15. Highly preserved consensus gene modules in human papilloma virus 16 positive cervical cancer and head and neck cancers.

    Science.gov (United States)

    Zhang, Xianglan; Cha, In-Ho; Kim, Ki-Yeol

    2017-12-26

    In this study, we investigated the consensus gene modules in head and neck cancer (HNC) and cervical cancer (CC). We used a publicly available gene expression dataset, GSE6791, which included 42 HNC, 14 normal head and neck, 20 CC and 8 normal cervical tissue samples. To exclude bias because of different human papilloma virus (HPV) types, we analyzed HPV16-positive samples only. We identified 3824 genes common to HNC and CC samples. Among these, 977 genes showed high connectivity and were used to construct consensus modules. We demonstrated eight consensus gene modules for HNC and CC using the dissimilarity measure and average linkage hierarchical clustering methods. These consensus modules included genes with significant biological functions, including ATP binding and extracellular exosome. Eigengen network analysis revealed the consensus modules were highly preserved with high connectivity. These findings demonstrate that HPV16-positive head and neck and cervical cancers share highly preserved consensus gene modules with common potentially therapeutic targets.

  16. Polymorphisms of Selected DNA Repair Genes and Lung Cancer in Chromium Exposure.

    Science.gov (United States)

    Halasova, E; Matakova, T; Skerenova, M; Krutakova, M; Slovakova, P; Dzian, A; Javorkova, S; Pec, M; Kypusova, K; Hamzik, J

    2016-01-01

    Chromium is a well-known mutagen and carcinogen involved in lung cancer development. DNA repair genes play an important role in the elimination of genetic changes caused by chromium exposure. In the present study, we investigated the polymorphisms of the following DNA repair genes: XRCC3, participating in the homologous recombination repair, and hMLH1 and hMSH2, functioning in the mismatch repair. We focused on the risk the polymorphisms present in the development of lung cancer regarding the exposure to chromium. We analyzed 106 individuals; 45 patients exposed to chromium with diagnosed lung cancer and 61 healthy controls. Genotypes were determined by a PCR-RFLP method. We unravelled a potential for increased risk of lung cancer development in the hMLH1 (rs1800734) AA genotype in the recessive model. In conclusion, gene polymorphisms in the DNA repair genes underscores the risk of lung cancer development in chromium exposed individuals.

  17. NMD Microarray Analysis for Rapid Genome-Wide Screen of Mutated Genes in Cancer

    Directory of Open Access Journals (Sweden)

    Maija Wolf

    2005-01-01

    Full Text Available Gene mutations play a critical role in cancer development and progression, and their identification offers possibilities for accurate diagnostics and therapeutic targeting. Finding genes undergoing mutations is challenging and slow, even in the post-genomic era. A new approach was recently developed by Noensie and Dietz to prioritize and focus the search, making use of nonsense-mediated mRNA decay (NMD inhibition and microarray analysis (NMD microarrays in the identification of transcripts containing nonsense mutations. We combined NMD microarrays with array-based CGH (comparative genomic hybridization in order to identify inactivation of tumor suppressor genes in cancer. Such a “mutatomics” screening of prostate cancer cell lines led to the identification of inactivating mutations in the EPHB2 gene. Up to 8% of metastatic uncultured prostate cancers also showed mutations of this gene whose loss of function may confer loss of tissue architecture. NMD microarray analysis could turn out to be a powerful research method to identify novel mutated genes in cancer cell lines, providing targets that could then be further investigated for their clinical relevance and therapeutic potential.

  18. RNA-seq reveals more consistent reference genes for gene expression studies in human non-melanoma skin cancers

    Directory of Open Access Journals (Sweden)

    Van L.T. Hoang

    2017-08-01

    Full Text Available Identification of appropriate reference genes (RGs is critical to accurate data interpretation in quantitative real-time PCR (qPCR experiments. In this study, we have utilised next generation RNA sequencing (RNA-seq to analyse the transcriptome of a panel of non-melanoma skin cancer lesions, identifying genes that are consistently expressed across all samples. Genes encoding ribosomal proteins were amongst the most stable in this dataset. Validation of this RNA-seq data was examined using qPCR to confirm the suitability of a set of highly stable genes for use as qPCR RGs. These genes will provide a valuable resource for the normalisation of qPCR data for the analysis of non-melanoma skin cancer.

  19. Gene expression of circulating tumour cells in breast cancer patients

    Directory of Open Access Journals (Sweden)

    Bölke E

    2009-09-01

    Full Text Available Abstract Background The diagnostic tools to predict the prognosis in patients suffering from breast cancer (BC need further improvements. New technological achievements like the gene profiling of circulating tumour cells (CTC could help identify new prognostic markers in the clinical setting. Furthermore, gene expression patterns of CTC might provide important informations on the mechanisms of tumour cell metastasation. Materials and methods We performed realtime-PCR and multiplex-PCR analyses following immunomagnetic separation of CTC. Peripheral blood (PB samples of 63 patients with breast cancer of various stages were analyzed and compared to a control group of 14 healthy individuals. After reverse-transcription, we performed multiplex PCR using primers for the genes ga733.3, muc-1 and c-erbB2. Mammaglobin1, spdef and c-erbB2 were analyzed applying realtime-PCR. Results ga733.2 overexpression was found in 12.7% of breast cancer cases, muc-1 in 15.9%, mgb1 in 9.1% and spdef in 12.1%. In this study, c-erbB2 did not show any significant correlation to BC, possibly due to a highly ambient expression. Besides single gene analyses, gene profiles were additionally evaluated. Highly significant correlations to BC were found in single gene analyses of ga733.2 and muc-1 and in gene profile analyses of ga733.3*muc-1 and GA7 ga733.3*muc-1*mgb1*spdef. Conclusion Our study reveals that the single genes ga733.3, muc-1 and the gene profiles ga733.3*muc-1 and ga733.3*3muc-1*mgb1*spdef can serve as markers for the detection of CTC in BC. The multigene analyses found highly positive levels in BC patients. Our study indicates that not single gene analyses but subtle patterns of multiple genes lead to rising accuracy and low loss of specificity in detection of breast cancer cases.

  20. Gene therapy a promising treatment for breast cancer: current scenario in pakistan

    International Nuclear Information System (INIS)

    Muzavir, S.R.; Zahra, S.A.; Ahmad, A.

    2012-01-01

    Breast cancer is one of the most common cancers among women around the world. It accounts for 22.9% of all the cancers and 18% of all female cancers in the world. One million new cases of breast cancer are diagnosed every year. Pakistan has more alarming situation with 90,000 new cases and ending up into 40,000 deaths annually. The risk factor for a female to develop breast cancer as compared with male is 100 : 1. The traditional way of treatment is by surgery, chemotherapy or radiotherapy. Advanced breast cancer is very difficult to treat with any of the traditional treatment options. A new treatment option in the form of gene therapy can be a promising treatment for breast cancer. Gene therapy provides treatment option in the form of targeting mutated gene, expression of cancer markers on the surface of cells, blocking the metastasis and induction of apoptosis, etc. Gene therapy showed very promising results for treatment of various cancers. All this is being trialed, experimented and practiced outside of Pakistan. Therefore, there is an immense need that this kind of work should be started in Pakistan. There are many good research institutes as well as well-reputed hospitals in Pakistan. Presently, there is a need to develop collaboration between research institutes and hospitals, so that the basic work and clinical trials can be done to treat breast cancer patients in the country. This collaboration will prove to be very healthy and will not only strength research institute but also will be very beneficial for cancer patients. (author)

  1. Distinct Gene Expression Signatures in Lynch Syndrome and Familial Colorectal Cancer Type X

    DEFF Research Database (Denmark)

    Valentin, Mev; Therkildsen, Christina; Veerla, Srinivas

    2013-01-01

    Heredity is estimated to cause at least 20% of colorectal cancer. The hereditary nonpolyposis colorectal cancer subset is divided into Lynch syndrome and familial colorectal cancer type X (FCCTX) based on presence of mismatch repair (MMR) gene defects.......Heredity is estimated to cause at least 20% of colorectal cancer. The hereditary nonpolyposis colorectal cancer subset is divided into Lynch syndrome and familial colorectal cancer type X (FCCTX) based on presence of mismatch repair (MMR) gene defects....

  2. CRISPR/Cas9 for cancer research and therapy.

    Science.gov (United States)

    Zhan, Tianzuo; Rindtorff, Niklas; Betge, Johannes; Ebert, Matthias P; Boutros, Michael

    2018-04-16

    CRISPR/Cas9 has become a powerful method for making changes to the genome of many organisms. First discovered in bacteria as part of an adaptive immune system, CRISPR/Cas9 and modified versions have found a widespread use to engineer genomes and to activate or to repress the expression of genes. As such, CRISPR/Cas9 promises to accelerate cancer research by providing an efficient technology to dissect mechanisms of tumorigenesis, identify targets for drug development, and possibly arm cells for cell-based therapies. Here, we review current applications of the CRISPR/Cas9 technology for cancer research and therapy. We describe novel Cas9 variants and how they are used in functional genomics to discover novel cancer-specific vulnerabilities. Furthermore, we highlight the impact of CRISPR/Cas9 in generating organoid and mouse models of cancer. Finally, we provide an overview of the first clinical trials that apply CRISPR/Cas9 as a therapeutic approach against cancer. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Transgelin gene is frequently downregulated by promoter DNA hypermethylation in breast cancer.

    Science.gov (United States)

    Sayar, Nilufer; Karahan, Gurbet; Konu, Ozlen; Bozkurt, Betul; Bozdogan, Onder; Yulug, Isik G

    2015-01-01

    CpG hypermethylation in gene promoters is a frequent mechanism of tumor suppressor gene silencing in various types of cancers. It usually occurs at early steps of cancer progression and can be detected easily, giving rise to development of promising biomarkers for both detection and progression of cancer, including breast cancer. 5-aza-2'-deoxycytidine (AZA) is a DNA demethylating and anti-cancer agent resulting in induction of genes suppressed via DNA hypermethylation. Using microarray expression profiling of AZA- or DMSO-treated breast cancer and non-tumorigenic breast (NTB) cells, we identified for the first time TAGLN gene as a target of DNA hypermethylation in breast cancer. TAGLN expression was significantly and frequently downregulated via promoter DNA hypermethylation in breast cancer cells compared to NTB cells, and also in 13/21 (61.9 %) of breast tumors compared to matched normal tissues. Analyses of public microarray methylation data showed that TAGLN was also hypermethylated in 63.02 % of tumors compared to normal tissues; relapse-free survival of patients was worse with higher TAGLN methylation; and methylation levels could discriminate between tumors and healthy tissues with 83.14 % sensitivity and 100 % specificity. Additionally, qRT-PCR and immunohistochemistry experiments showed that TAGLN expression was significantly downregulated in two more independent sets of breast tumors compared to normal tissues and was lower in tumors with poor prognosis. Colony formation was increased in TAGLN silenced NTB cells, while decreased in overexpressing BC cells. TAGLN gene is frequently downregulated by DNA hypermethylation, and TAGLN promoter methylation profiles could serve as a future diagnostic biomarker, with possible clinical impact regarding the prognosis in breast cancer.

  4. Identifying candidate driver genes by integrative ovarian cancer genomics data

    Science.gov (United States)

    Lu, Xinguo; Lu, Jibo

    2017-08-01

    Integrative analysis of molecular mechanics underlying cancer can distinguish interactions that cannot be revealed based on one kind of data for the appropriate diagnosis and treatment of cancer patients. Tumor samples exhibit heterogeneity in omics data, such as somatic mutations, Copy Number Variations CNVs), gene expression profiles and so on. In this paper we combined gene co-expression modules and mutation modulators separately in tumor patients to obtain the candidate driver genes for resistant and sensitive tumor from the heterogeneous data. The final list of modulators identified are well known in biological processes associated with ovarian cancer, such as CCL17, CACTIN, CCL16, CCL22, APOB, KDF1, CCL11, HNF1B, LRG1, MED1 and so on, which can help to facilitate the discovery of biomarkers, molecular diagnostics, and drug discovery.

  5. Gene Delivery for Metastatic Prostate Cancer Cells

    National Research Council Canada - National Science Library

    Pang, Shen

    2001-01-01

    .... Enhanced by the bystander effect, the specific expression of the DTA gene causes significant cell death in prostate cancer cell cultures, with very low background cell eradication in control cell lines...

  6. An integrative multi-platform analysis for discovering biomarkers of osteosarcoma

    International Nuclear Information System (INIS)

    Li, Guodong; Zhang, Wenjuan; Zeng, Huazong; Chen, Lei; Wang, Wenjing; Liu, Jilong; Zhang, Zhiyu; Cai, Zhengdong

    2009-01-01

    SELDI-TOF-MS (Surface Enhanced Laser Desorption/Ionization-Time of Flight-Mass Spectrometry) has become an attractive approach for cancer biomarker discovery due to its ability to resolve low mass proteins and high-throughput capability. However, the analytes from mass spectrometry are described only by their mass-to-charge ratio (m/z) values without further identification and annotation. To discover potential biomarkers for early diagnosis of osteosarcoma, we designed an integrative workflow combining data sets from both SELDI-TOF-MS and gene microarray analysis. After extracting the information for potential biomarkers from SELDI data and microarray analysis, their associations were further inferred by link-test to identify biomarkers that could likely be used for diagnosis. Immuno-blot analysis was then performed to examine whether the expression of the putative biomarkers were indeed altered in serum from patients with osteosarcoma. Six differentially expressed protein peaks with strong statistical significances were detected by SELDI-TOF-MS. Four of the proteins were up-regulated and two of them were down-regulated. Microarray analysis showed that, compared with an osteoblastic cell line, the expression of 653 genes was changed more than 2 folds in three osteosarcoma cell lines. While expression of 310 genes was increased, expression of the other 343 genes was decreased. The two sets of biomarkers candidates were combined by the link-test statistics, indicating that 13 genes were potential biomarkers for early diagnosis of osteosarcoma. Among these genes, cytochrome c1 (CYC-1) was selected for further experimental validation. Link-test on datasets from both SELDI-TOF-MS and microarray high-throughput analysis can accelerate the identification of tumor biomarkers. The result confirmed that CYC-1 may be a promising biomarker for early diagnosis of osteosarcoma

  7. MNS16A tandem repeats minisatellite of human telomerase gene: a risk factor for colorectal cancer.

    Science.gov (United States)

    Hofer, Philipp; Baierl, Andreas; Feik, Elisabeth; Führlinger, Gerhard; Leeb, Gernot; Mach, Karl; Holzmann, Klaus; Micksche, Michael; Gsur, Andrea

    2011-06-01

    Telomerase reactivation and expression of human telomerase gene [human telomerase reverse transcriptase (hTERT)] are hallmarks of unlimited proliferation potential of cancer cells. A polymorphic tandem repeats minisatellite of hTERT gene, termed MNS16A was reported to influence hTERT expression. To assess the role of MNS16A as potential biomarker for colorectal cancer (CRC), we investigated for the first time the association of MNS16A genotypes with risk of colorectal polyps and CRC. In the ongoing colorectal cancer study of Austria (CORSA), 3842 Caucasian participants were recruited within a large screening project in the province Burgenland including 90 CRC cases, 308 high-risk polyps, 1022 low-risk polyps and 1822 polyp free controls verified by colonoscopy. MNS16A genotypes were determined by polymerase chain reaction from genomic DNA. Associations of MNS16A genotypes with CRC risk were estimated by logistic regression analysis computing odds ratios (ORs) and 95% confidence intervals (CIs). We identified five different variable number of tandem repeats (VNTRs) of MNS16A including VNTR-364, a newly discovered rare variant. VNTR-274 allele was associated with a 2.7-fold significantly increased risk of CRC compared with the VNTR-302 wild-type (OR = 2.69; 95% CI = 1.11-6.50; P = 0.028). In our CORSA study, the medium length VNTR-274 was identified as risk factor for CRC. Although, this population-based study herewith reports the largest cohort size concerning MNS16A thus far, further large-scale studies in diverse populations are warranted to confirm hTERT MNS16A genotype as potential biomarker for assessment of CRC risk.

  8. A stochastic model for identifying differential gene pair co-expression patterns in prostate cancer progression

    Directory of Open Access Journals (Sweden)

    Mao Yu

    2009-07-01

    Full Text Available Abstract Background The identification of gene differential co-expression patterns between cancer stages is a newly developing method to reveal the underlying molecular mechanisms of carcinogenesis. Most researches of this subject lack an algorithm useful for performing a statistical significance assessment involving cancer progression. Lacking this specific algorithm is apparently absent in identifying precise gene pairs correlating to cancer progression. Results In this investigation we studied gene pair co-expression change by using a stochastic process model for approximating the underlying dynamic procedure of the co-expression change during cancer progression. Also, we presented a novel analytical method named 'Stochastic process model for Identifying differentially co-expressed Gene pair' (SIG method. This method has been applied to two well known prostate cancer data sets: hormone sensitive versus hormone resistant, and healthy versus cancerous. From these data sets, 428,582 gene pairs and 303,992 gene pairs were identified respectively. Afterwards, we used two different current statistical methods to the same data sets, which were developed to identify gene pair differential co-expression and did not consider cancer progression in algorithm. We then compared these results from three different perspectives: progression analysis, gene pair identification effectiveness analysis, and pathway enrichment analysis. Statistical methods were used to quantify the quality and performance of these different perspectives. They included: Re-identification Scale (RS and Progression Score (PS in progression analysis, True Positive Rate (TPR in gene pair analysis, and Pathway Enrichment Score (PES in pathway analysis. Our results show small values of RS and large values of PS, TPR, and PES; thus, suggesting that gene pairs identified by the SIG method are highly correlated with cancer progression, and highly enriched in disease-specific pathways. From

  9. Integrative mining of traditional Chinese medicine literature and MEDLINE for functional gene networks.

    Science.gov (United States)

    Zhou, Xuezhong; Liu, Baoyan; Wu, Zhaohui; Feng, Yi

    2007-10-01

    The amount of biomedical data in different disciplines is growing at an exponential rate. Integrating these significant knowledge sources to generate novel hypotheses for systems biology research is difficult. Traditional Chinese medicine (TCM) is a completely different discipline, and is a complementary knowledge system to modern biomedical science. This paper uses a significant TCM bibliographic literature database in China, together with MEDLINE, to help discover novel gene functional knowledge. We present an integrative mining approach to uncover the functional gene relationships from MEDLINE and TCM bibliographic literature. This paper introduces TCM literature (about 50,000 records) as one knowledge source for constructing literature-based gene networks. We use the TCM diagnosis, TCM syndrome, to automatically congregate the related genes. The syndrome-gene relationships are discovered based on the syndrome-disease relationships extracted from TCM literature and the disease-gene relationships in MEDLINE. Based on the bubble-bootstrapping and relation weight computing methods, we have developed a prototype system called MeDisco/3S, which has name entity and relation extraction, and online analytical processing (OLAP) capabilities, to perform the integrative mining process. We have got about 200,000 syndrome-gene relations, which could help generate syndrome-based gene networks, and help analyze the functional knowledge of genes from syndrome perspective. We take the gene network of Kidney-Yang Deficiency syndrome (KYD syndrome) and the functional analysis of some genes, such as CRH (corticotropin releasing hormone), PTH (parathyroid hormone), PRL (prolactin), BRCA1 (breast cancer 1, early onset) and BRCA2 (breast cancer 2, early onset), to demonstrate the preliminary results. The underlying hypothesis is that the related genes of the same syndrome will have some biological functional relationships, and will constitute a functional network. This paper presents

  10. ABRAXAS (FAM175A) and Breast Cancer Susceptibility: No Evidence of Association in the Breast Cancer Family Registry.

    Science.gov (United States)

    Renault, Anne-Laure; Lesueur, Fabienne; Coulombe, Yan; Gobeil, Stéphane; Soucy, Penny; Hamdi, Yosr; Desjardins, Sylvie; Le Calvez-Kelm, Florence; Vallée, Maxime; Voegele, Catherine; Hopper, John L; Andrulis, Irene L; Southey, Melissa C; John, Esther M; Masson, Jean-Yves; Tavtigian, Sean V; Simard, Jacques

    2016-01-01

    Approximately half of the familial aggregation of breast cancer remains unexplained. This proportion is less for early-onset disease where familial aggregation is greater, suggesting that other susceptibility genes remain to be discovered. The majority of known breast cancer susceptibility genes are involved in the DNA double-strand break repair pathway. ABRAXAS is involved in this pathway and mutations in this gene impair BRCA1 recruitment to DNA damage foci and increase cell sensitivity to ionizing radiation. Moreover, a recurrent germline mutation was reported in Finnish high-risk breast cancer families. To determine if ABRAXAS could be a breast cancer susceptibility gene in other populations, we conducted a population-based case-control mutation screening study of the coding exons and exon/intron boundaries of ABRAXAS in the Breast Cancer Family Registry. In addition to the common variant p.Asp373Asn, sixteen distinct rare variants were identified. Although no significant difference in allele frequencies between cases and controls was observed for the identified variants, two variants, p.Gly39Val and p.Thr141Ile, were shown to diminish phosphorylation of gamma-H2AX in MCF7 human breast adenocarcinoma cells, an important biomarker of DNA double-strand breaks. Overall, likely damaging or neutral variants were evenly represented among cases and controls suggesting that rare variants in ABRAXAS may explain only a small proportion of hereditary breast cancer.

  11. Cancer Risks Associated with Inherited Mutations in Ovarian Cancer Susceptibility Genes Beyond BRCA1 and BRCA2

    Science.gov (United States)

    2016-05-01

    25 other candidate genes in the Fanconi anemia-BRCA pathway: ATR, BABAM1, BAP1, BLM, BRCC3, BRE, CHEK1, ERCC1, ERCC4 (FANCQ), FANCA , FANCB, FANCC...AWARD NUMBER: W81XWH-13-1-0484 TITLE: Cancer Risks Associated with Inherited Mutations in Ovarian Cancer Susceptibility Genes Beyond BRCA1 and...DNA repair genes on small core biopsy specimens iv) begun accessioning samples from the phase 2 rucaparib trial (Ariel 2, NCT01891344). 15

  12. Mutation analysis of breast cancer gene BRCA among breast cancer Jordanian females

    International Nuclear Information System (INIS)

    Atoum, Manar F.; Al-Kayed, Sameer A.

    2004-01-01

    To screen mutations of the tumor suppressor breast cancer susceptibility gene 1 (BRCA1) within 3 exons among Jordanian breast cancer females. A total of 135 Jordanian breast cancer females were genetically analyzed by denaturing gradient electrophoresis (DGGE) for mutation detection in 3 BRCA1 exons (2, 11 and 20) between 2000-2002 in Al-Basheer Hospital, Amman, Jordan. Of the studied patients 50 had a family history of breast cancer, 28 had a family history of cancer other than breast cancer, and 57 had no family history of any cancer. Five germline mutations were detected among breast cancer females with a family history of breast cancers (one in exon 2 and 4 mutations in exon 11). Another germline mutation (within exon 11) was detected among breast cancer females with family history of cancer other than breast cancer, and no mutation was detected among breast cancer females with no family history of any cancer or among normal control females. Screening mutations within exon 2, exon 11 and exon 20 showed that most screened mutations were within BRCA1 exon 11 among breast cancer Jordanian families with a family history of breast cancer. (author)

  13. Mutational analysis of the BRCA1 gene in 30 Czech ovarian cancer ...

    Indian Academy of Sciences (India)

    Ovarian cancer is one of the most severe of oncological diseases. Inherited mutations in cancer susceptibility genes play a causal role in 5–10% of newly diagnosed tumours. BRCA1 and BRCA2 gene alterations are found in the majority of these cases. The aim of this study was to analyse the BRCA1 gene in the ovarian ...

  14. Pan-cancer analysis of TCGA data reveals notable signaling pathways

    International Nuclear Information System (INIS)

    Neapolitan, Richard; Horvath, Curt M.; Jiang, Xia

    2015-01-01

    A signal transduction pathway (STP) is a network of intercellular information flow initiated when extracellular signaling molecules bind to cell-surface receptors. Many aberrant STPs have been associated with various cancers. To develop optimal treatments for cancer patients, it is important to discover which STPs are implicated in a cancer or cancer-subtype. The Cancer Genome Atlas (TCGA) makes available gene expression level data on cases and controls in ten different types of cancer including breast cancer, colon adenocarcinoma, glioblastoma, kidney renal papillary cell carcinoma, low grade glioma, lung adenocarcinoma, lung squamous cell carcinoma, ovarian carcinoma, rectum adenocarcinoma, and uterine corpus endometriod carcinoma. Signaling Pathway Impact Analysis (SPIA) is a software package that analyzes gene expression data to identify whether a pathway is relevant in a given condition. We present the results of a study that uses SPIA to investigate all 157 signaling pathways in the KEGG PATHWAY database. We analyzed each of the ten cancer types mentioned above separately, and we perform a pan-cancer analysis by grouping the data for all the cancer types. In each analysis several pathways were found to be markedly more significant than all the other pathways. We call them notable. Research has already established a connection between many of these pathways and the corresponding cancer type. However, some of our discovered pathways appear to be new findings. Altogether there were 37 notable findings in the separate analyses, 26 of them occurred in 7 pathways. These 7 pathways included the 4 notable pathways discovered in the pan-cancer analysis. So, our results suggest that these 7 pathways account for much of the mechanisms of cancer. Furthermore, by looking at the overlap among pathways, we identified possible regions on the pathways where the aberrant activity is occurring. We obtained 37 notable findings concerning 18 pathways. Some of them appear to be

  15. Characterization of differentially expressed genes involved in pathways associated with gastric cancer.

    Directory of Open Access Journals (Sweden)

    Hao Li

    Full Text Available To explore the patterns of gene expression in gastric cancer, a total of 26 paired gastric cancer and noncancerous tissues from patients were enrolled for gene expression microarray analyses. Limma methods were applied to analyze the data, and genes were considered to be significantly differentially expressed if the False Discovery Rate (FDR value was 2. Subsequently, Gene Ontology (GO categories were used to analyze the main functions of the differentially expressed genes. According to the Kyoto Encyclopedia of Genes and Genomes (KEGG database, we found pathways significantly associated with the differential genes. Gene-Act network and co-expression network were built respectively based on the relationships among the genes, proteins and compounds in the database. 2371 mRNAs and 350 lncRNAs considered as significantly differentially expressed genes were selected for the further analysis. The GO categories, pathway analyses and the Gene-Act network showed a consistent result that up-regulated genes were responsible for tumorigenesis, migration, angiogenesis and microenvironment formation, while down-regulated genes were involved in metabolism. These results of this study provide some novel findings on coding RNAs, lncRNAs, pathways and the co-expression network in gastric cancer which will be useful to guide further investigation and target therapy for this disease.

  16. Gene Therapy for Pancreatic Cancer: Specificity, Issues and Hopes.

    Science.gov (United States)

    Rouanet, Marie; Lebrin, Marine; Gross, Fabian; Bournet, Barbara; Cordelier, Pierre; Buscail, Louis

    2017-06-08

    A recent death projection has placed pancreatic ductal adenocarcinoma as the second cause of death by cancer in 2030. The prognosis for pancreatic cancer is very poor and there is a great need for new treatments that can change this poor outcome. Developments of therapeutic innovations in combination with conventional chemotherapy are needed urgently. Among innovative treatments the gene therapy offers a promising avenue. The present review gives an overview of the general strategy of gene therapy as well as the limitations and stakes of the different experimental in vivo models, expression vectors (synthetic and viral), molecular tools (interference RNA, genome editing) and therapeutic genes (tumor suppressor genes, antiangiogenic and pro-apoptotic genes, suicide genes). The latest developments in pancreatic carcinoma gene therapy are described including gene-based tumor cell sensitization to chemotherapy, vaccination and adoptive immunotherapy (chimeric antigen receptor T-cells strategy). Nowadays, there is a specific development of oncolytic virus therapies including oncolytic adenoviruses, herpes virus, parvovirus or reovirus. A summary of all published and on-going phase-1 trials is given. Most of them associate gene therapy and chemotherapy or radiochemotherapy. The first results are encouraging for most of the trials but remain to be confirmed in phase 2 trials.

  17. EVALUATION OF THE PROGNOSTIC VALUE OF nm23 GENE EXPRESSION IN BREAST CANCER

    Institute of Scientific and Technical Information of China (English)

    刘红; 毛慧生; 傅西林; 方志沂; 冯玉梅; 范宇; 李树玲

    2002-01-01

    Objective: To investigate the expression of nm23 gene and evaluate its prognostic value in breast cancer. Methods: nm23 expressions were detected in 101 breast cancer patients (group 1) by immunohistochemistry. RT-PCR and immunohistochemistry were used to measure expressions of nm23 gene in another 68 patients with breast cancer (group 2). Results: nm23 gene expression in group 1 was inversely associated with distant metastasis and lymph node metastasis (P<0.05). In 44 patients with negative lymph node, 9 cases progressed to distant metastasis, 7 of them (77.8%) showed low expression of nm23 gene (P<0.05). In 57 patients with positive lymph node, 24 our of 29 patients who had no distant metastasis (82.8%) expressed nm23 gene at high level (P<0.05). Meanwhile, there were 6 patients with distant metastasis in the group 2, all of thenm expressed nm23 gene mRNA at low level. Conclusion: The results showed that nm23 gene might play an independent role in predicting prognosis of breast cancer.

  18. Suicide genes or p53 gene and p53 target genes as targets for cancer gene therapy by ionizing radiation

    International Nuclear Information System (INIS)

    Liu Bing; Chinese Academy of Sciences, Beijing; Zhang Hong

    2005-01-01

    Radiotherapy has some disadvantages due to the severe side-effect on the normal tissues at a curative dose of ionizing radiation (IR). Similarly, as a new developing approach, gene therapy also has some disadvantages, such as lack of specificity for tumors, limited expression of therapeutic gene, potential biological risk. To certain extent, above problems would be solved by the suicide genes or p53 gene and its target genes therapies targeted by ionizing radiation. This strategy not only makes up the disadvantage from radiotherapy or gene therapy alone, but also promotes success rate on the base of lower dose. By present, there have been several vectors measuring up to be reaching clinical trials. This review focused on the development of the cancer gene therapy through suicide genes or p53 and its target genes mediated by IR. (authors)

  19. Automated Identification of Core Regulatory Genes in Human Gene Regulatory Networks.

    Directory of Open Access Journals (Sweden)

    Vipin Narang

    Full Text Available Human gene regulatory networks (GRN can be difficult to interpret due to a tangle of edges interconnecting thousands of genes. We constructed a general human GRN from extensive transcription factor and microRNA target data obtained from public databases. In a subnetwork of this GRN that is active during estrogen stimulation of MCF-7 breast cancer cells, we benchmarked automated algorithms for identifying core regulatory genes (transcription factors and microRNAs. Among these algorithms, we identified K-core decomposition, pagerank and betweenness centrality algorithms as the most effective for discovering core regulatory genes in the network evaluated based on previously known roles of these genes in MCF-7 biology as well as in their ability to explain the up or down expression status of up to 70% of the remaining genes. Finally, we validated the use of K-core algorithm for organizing the GRN in an easier to interpret layered hierarchy where more influential regulatory genes percolate towards the inner layers. The integrated human gene and miRNA network and software used in this study are provided as supplementary materials (S1 Data accompanying this manuscript.

  20. Ensemble attribute profile clustering: discovering and characterizing groups of genes with similar patterns of biological features

    Directory of Open Access Journals (Sweden)

    Bissell MJ

    2006-03-01

    Full Text Available Abstract Background Ensemble attribute profile clustering is a novel, text-based strategy for analyzing a user-defined list of genes and/or proteins. The strategy exploits annotation data present in gene-centered corpora and utilizes ideas from statistical information retrieval to discover and characterize properties shared by subsets of the list. The practical utility of this method is demonstrated by employing it in a retrospective study of two non-overlapping sets of genes defined by a published investigation as markers for normal human breast luminal epithelial cells and myoepithelial cells. Results Each genetic locus was characterized using a finite set of biological properties and represented as a vector of features indicating attributes associated with the locus (a gene attribute profile. In this study, the vector space models for a pre-defined list of genes were constructed from the Gene Ontology (GO terms and the Conserved Domain Database (CDD protein domain terms assigned to the loci by the gene-centered corpus LocusLink. This data set of GO- and CDD-based gene attribute profiles, vectors of binary random variables, was used to estimate multiple finite mixture models and each ensuing model utilized to partition the profiles into clusters. The resultant partitionings were combined using a unanimous voting scheme to produce consensus clusters, sets of profiles that co-occured consistently in the same cluster. Attributes that were important in defining the genes assigned to a consensus cluster were identified. The clusters and their attributes were inspected to ascertain the GO and CDD terms most associated with subsets of genes and in conjunction with external knowledge such as chromosomal location, used to gain functional insights into human breast biology. The 52 luminal epithelial cell markers and 89 myoepithelial cell markers are disjoint sets of genes. Ensemble attribute profile clustering-based analysis indicated that both lists

  1. STAT3 Target Genes Relevant to Human Cancers

    International Nuclear Information System (INIS)

    Carpenter, Richard L.; Lo, Hui-Wen

    2014-01-01

    Since its discovery, the STAT3 transcription factor has been extensively studied for its function as a transcriptional regulator and its role as a mediator of development, normal physiology, and pathology of many diseases, including cancers. These efforts have uncovered an array of genes that can be positively and negatively regulated by STAT3, alone and in cooperation with other transcription factors. Through regulating gene expression, STAT3 has been demonstrated to play a pivotal role in many cellular processes including oncogenesis, tumor growth and progression, and stemness. Interestingly, recent studies suggest that STAT3 may behave as a tumor suppressor by activating expression of genes known to inhibit tumorigenesis. Additional evidence suggested that STAT3 may elicit opposing effects depending on cellular context and tumor types. These mixed results signify the need for a deeper understanding of STAT3, including its upstream regulators, parallel transcription co-regulators, and downstream target genes. To help facilitate fulfilling this unmet need, this review will be primarily focused on STAT3 downstream target genes that have been validated to associate with tumorigenesis and/or malignant biology of human cancers

  2. Expression analysis of cancer-testis genes in prostate cancer reveals candidates for immunotherapy.

    Science.gov (United States)

    Faramarzi, Sepideh; Ghafouri-Fard, Soudeh

    2017-09-01

    Prostate cancer is a prevalent disorder among men with a heterogeneous etiological background. Several molecular events and signaling perturbations have been found in this disorder. Among genes whose expressions have been altered during the prostate cancer development are cancer-testis antigens (CTAs). This group of antigens has limited expression in the normal adult tissues but aberrant expression in cancers. This property provides them the possibility to be used as cancer biomarkers and immunotherapeutic targets. Several CTAs have been shown to be immunogenic in prostate cancer patients and some of the have entered clinical trials. Based on the preliminary data obtained from these trials, it is expected that CTA-based therapeutic options are beneficial for at least a subset of prostate cancer patients.

  3. Approaches to diagnose DNA mismatch repair gene defects in cancer

    DEFF Research Database (Denmark)

    Peña-Diaz, Javier; Rasmussen, Lene Juel

    2016-01-01

    development was first observed in colorectal cancer patients that carried inactivating germline mutations in MMR genes and the disease was named as hereditary non-polyposis colorectal cancer (HNPCC). Currently, a growing list of cancers is found to be MMR defective and HNPCC has been renamed Lynch syndrome...

  4. The CpG island methylator phenotype (CIMP) in colorectal cancer.

    Science.gov (United States)

    Nazemalhosseini Mojarad, Ehsan; Kuppen, Peter Jk; Aghdaei, Hamid Asadzadeh; Zali, Mohammad Reza

    2013-01-01

    It is clear that colorectal cancer (CRC) develops through multiple genetic and epigenetic pathways. These pathways may be determined on the basis of three molecular features: (i) mutations in DNA mismatch repair genes, leading to a DNA microsatellite instability (MSI) phenotype, (ii) mutations in APC and other genes that activate Wnt pathway, characterized by chromosomal instability (CIN) phenotype, and (iii) global genome hypermethylation, resulting in switch off of tumor suppressor genes, indicated as CpG island methylator phenotype (CIMP). Each of these pathways is characterized by specific pathological features, mechanisms of carcinogenesis and process of tumor development. The molecular aspects of these pathways have been used clinically in the diagnosis, screening and management of patients with colorectal cancer. In this review we especially describe various aspects of CIMP, one of the important and rather recently discovered pathways that lead to colorectal cancer.

  5. GSNFS: Gene subnetwork biomarker identification of lung cancer expression data.

    Science.gov (United States)

    Doungpan, Narumol; Engchuan, Worrawat; Chan, Jonathan H; Meechai, Asawin

    2016-12-05

    Gene expression has been used to identify disease gene biomarkers, but there are ongoing challenges. Single gene or gene-set biomarkers are inadequate to provide sufficient understanding of complex disease mechanisms and the relationship among those genes. Network-based methods have thus been considered for inferring the interaction within a group of genes to further study the disease mechanism. Recently, the Gene-Network-based Feature Set (GNFS), which is capable of handling case-control and multiclass expression for gene biomarker identification, has been proposed, partly taking into account of network topology. However, its performance relies on a greedy search for building subnetworks and thus requires further improvement. In this work, we establish a new approach named Gene Sub-Network-based Feature Selection (GSNFS) by implementing the GNFS framework with two proposed searching and scoring algorithms, namely gene-set-based (GS) search and parent-node-based (PN) search, to identify subnetworks. An additional dataset is used to validate the results. The two proposed searching algorithms of the GSNFS method for subnetwork expansion are concerned with the degree of connectivity and the scoring scheme for building subnetworks and their topology. For each iteration of expansion, the neighbour genes of a current subnetwork, whose expression data improved the overall subnetwork score, is recruited. While the GS search calculated the subnetwork score using an activity score of a current subnetwork and the gene expression values of its neighbours, the PN search uses the expression value of the corresponding parent of each neighbour gene. Four lung cancer expression datasets were used for subnetwork identification. In addition, using pathway data and protein-protein interaction as network data in order to consider the interaction among significant genes were discussed. Classification was performed to compare the performance of the identified gene subnetworks with three

  6. The genetic alteration of retinoblastoma gene in esophageal cancer

    International Nuclear Information System (INIS)

    Cho, Jae Il; Shim, Yung Mok; Kim, Chang Min

    1994-12-01

    Retinoblastoma(RB) gene is the prototype of tumor suppressor gene and it's alteration have been frequently observed in a large number of human tumors. To investigate the role of RB in esophageal cancer, we studied 36 esophageal cancer tissues with Southern blot analysis to detect gross LOH and PCR-SSCP method to find minute LOH and mutation, if any. In the cases with abnormalities, the nucleotide sequence analysis was performed. Allelic loss of chromosome 13q14 occurred in 20 out of 32 informative cases (62.5%) by Southern analysis. Furthermore, PCR-LOH added three positive cases. Mobility shift by PCR-SSCP was observed in one case at exon 22, which showed 1 bp deletion in codon 771 of RB gene resulting in frame shift mutation. Besides, nine PCR-band alteration in tumor tissue compared with normal tissue were observed in exon 14 and 22, but mutation was not found on sequencing analysis suggesting the epigenetic alteration in tumor tissue. Analysis of the clinical data did not show any difference depending upon RB alteration. However, the total incidence of RB gene may play an important role in the development of esophageal cancer. The main genetic alteration of RB gene was deletion detected by Southern blot and one bp deletion leading to frame shift was also observed. 8 figs, 5 tabs. (Author)

  7. The genetic alteration of retinoblastoma gene in esophageal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jae Il; Shim, Yung Mok; Kim, Chang Min [Korea Cancer Center Hospital of Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-12-01

    Retinoblastoma(RB) gene is the prototype of tumor suppressor gene and it`s alteration have been frequently observed in a large number of human tumors. To investigate the role of RB in esophageal cancer, we studied 36 esophageal cancer tissues with Southern blot analysis to detect gross LOH and PCR-SSCP method to find minute LOH and mutation, if any. In the cases with abnormalities, the nucleotide sequence analysis was performed. Allelic loss of chromosome 13q14 occurred in 20 out of 32 informative cases (62.5%) by Southern analysis. Furthermore, PCR-LOH added three positive cases. Mobility shift by PCR-SSCP was observed in one case at exon 22, which showed 1 bp deletion in codon 771 of RB gene resulting in frame shift mutation. Besides, nine PCR-band alteration in tumor tissue compared with normal tissue were observed in exon 14 and 22, but mutation was not found on sequencing analysis suggesting the epigenetic alteration in tumor tissue. Analysis of the clinical data did not show any difference depending upon RB alteration. However, the total incidence of RB gene may play an important role in the development of esophageal cancer. The main genetic alteration of RB gene was deletion detected by Southern blot and one bp deletion leading to frame shift was also observed. 8 figs, 5 tabs. (Author).

  8. Identification of Driving ALK Fusion Genes and Genomic Landscape of Medullary Thyroid Cancer.

    Directory of Open Access Journals (Sweden)

    Jun Ho Ji

    2015-08-01

    Full Text Available The genetic landscape of medullary thyroid cancer (MTC is not yet fully understood, although some oncogenic mutations have been identified. To explore genetic profiles of MTCs, formalin-fixed, paraffin-embedded tumor tissues from MTC patients were assayed on the Ion AmpliSeq Cancer Panel v2. Eighty-four sporadic MTC samples and 36 paired normal thyroid tissues were successfully sequenced. We discovered 101 hotspot mutations in 18 genes in the 84 MTC tissue samples. The most common mutation was in the ret proto-oncogene, which occurred in 47 cases followed by mutations in genes encoding Harvey rat sarcoma viral oncogene homolog (N = 14, serine/threonine kinase 11 (N = 11, v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog (N = 6, mutL homolog 1 (N = 4, Kiesten rat sarcoma viral oncogene homolog (N = 3 and MET proto-oncogene (N = 3. We also evaluated anaplastic lymphoma kinase (ALK rearrangement by immunohistochemistry and break-apart fluorescence in situ hybridization (FISH. Two of 98 screened cases were positive for ALK FISH. To identify the genomic breakpoint and 5' fusion partner of ALK, customized targeted cancer panel sequencing was performed using DNA from tumor samples of the two patients. Glutamine:fructose-6-phosphate transaminase 1 (GFPT1-ALK and echinoderm microtubule-associated protein-like 4 (EML4-ALK fusions were identified. Additional PCR analysis, followed by Sanger sequencing, confirmed the GFPT1-ALK fusion, indicating that the fusion is a result of intra-chromosomal translocation or deletion. Notably, a metastatic MTC case harboring the EML4-ALK fusion showed a dramatic response to an ALK inhibitor, crizotinib. In conclusion, we found several genetic mutations in MTC and are the first to identify ALK fusions in MTC. Our results suggest that the EML4-ALK fusion in MTC may be a potential driver mutation and a valid target of ALK inhibitors. Furthermore, the GFPT1-ALK fusion may be a potential candidate for molecular

  9. Amyloid precursor protein regulates migration and metalloproteinase gene expression in prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Miyazaki, Toshiaki; Ikeda, Kazuhiro; Horie-Inoue, Kuniko [Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama 350-1241 (Japan); Inoue, Satoshi, E-mail: INOUE-GER@h.u-tokyo.ac.jp [Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama 350-1241 (Japan); Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655 (Japan); Department of Anti-Aging Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655 (Japan)

    2014-09-26

    Highlights: • APP knockdown reduced proliferation and migration of prostate cancer cells. • APP knockdown reduced expression of metalloproteinase and EMT-related genes. • APP overexpression promoted LNCaP cell migration. • APP overexpression increased expression of metalloproteinase and EMT-related genes. - Abstract: Amyloid precursor protein (APP) is a type I transmembrane protein, and one of its processed forms, β-amyloid, is considered to play a central role in the development of Alzheimer’s disease. We previously showed that APP is a primary androgen-responsive gene in prostate cancer and that its increased expression is correlated with poor prognosis for patients with prostate cancer. APP has also been implicated in several human malignancies. Nevertheless, the mechanism underlying the pro-proliferative effects of APP on cancers is still not well-understood. In the present study, we explored a pathophysiological role for APP in prostate cancer cells using siRNA targeting APP (siAPP). The proliferation and migration of LNCaP and DU145 prostate cancer cells were significantly suppressed by siAPP. Differentially expressed genes in siAPP-treated cells compared to control siRNA-treated cells were identified by microarray analysis. Notably, several metalloproteinase genes, such as ADAM10 and ADAM17, and epithelial–mesenchymal transition (EMT)-related genes, such as VIM, and SNAI2, were downregulated in siAPP-treated cells as compared to control cells. The expression of these genes was upregulated in LNCaP cells stably expressing APP when compared with control cells. APP-overexpressing LNCaP cells exhibited enhanced migration in comparison to control cells. These results suggest that APP may contribute to the proliferation and migration of prostate cancer cells by modulating the expression of metalloproteinase and EMT-related genes.

  10. Blood Gene Expression Profiling of Breast Cancer Survivors Experiencing Fibrosis

    International Nuclear Information System (INIS)

    Landmark-Hoyvik, Hege; Dumeaux, Vanessa; Reinertsen, Kristin V.; Edvardsen, Hege; Fossa, Sophie D.; Borresen-Dale, Anne-Lise

    2011-01-01

    Purpose: To extend knowledge on the mechanisms and pathways involved in maintenance of radiation-induced fibrosis (RIF) by performing gene expression profiling of whole blood from breast cancer (BC) survivors with and without fibrosis 3-7 years after end of radiotherapy treatment. Methods and Materials: Gene expression profiles from blood were obtained for 254 BC survivors derived from a cohort of survivors, treated with adjuvant radiotherapy for breast cancer 3-7 years earlier. Analyses of transcriptional differences in blood gene expression between BC survivors with fibrosis (n = 31) and BC survivors without fibrosis (n = 223) were performed using R version 2.8.0 and tools from the Bioconductor project. Gene sets extracted through a literature search on fibrosis and breast cancer were subsequently used in gene set enrichment analysis. Results: Substantial differences in blood gene expression between BC survivors with and without fibrosis were observed, and 87 differentially expressed genes were identified through linear analysis. Transforming growth factor-β1 signaling was identified as the most significant gene set, showing a down-regulation of most of the core genes, together with up-regulation of a transcriptional activator of the inhibitor of fibrinolysis, Plasminogen activator inhibitor 1 in the BC survivors with fibrosis. Conclusion: Transforming growth factor-β1 signaling was found down-regulated during the maintenance phase of fibrosis as opposed to the up-regulation reported during the early, initiating phase of fibrosis. Hence, once the fibrotic tissue has developed, the maintenance phase might rather involve a deregulation of fibrinolysis and altered degradation of extracellular matrix components.

  11. Association Study between Folate Pathway Gene Single Nucleotide Polymorphisms and Gastric Cancer in Koreans

    Directory of Open Access Journals (Sweden)

    Jae-Young Yoo

    2012-09-01

    Full Text Available Gastric cancer is ranked as the most common cancer in Koreans. A recent molecular biological study about the folate pathway gene revealed the correlation with a couple of cancer types. In the folate pathway, several genes are involved, including methylenetetrahydrofolate reductase (MTHFR, methyltetrahydrofolate-homocysteine methyltransferase reductase (MTRR, and methyltetrahydrofolate-homocysteine methyltransferase (MTR. The MTHFR gene has been reported several times for the correlation with gastric cancer risk. However, the association of the MTRR or MTR gene has not been reported to date. In this study, we investigated the association between the single nucleotide polymorphisms (SNPs of the MTHFR, MTRR, and MTR genes and the risk of gastric cancer in Koreans. To identify the genetic association with gastric cancer, we selected 17 SNPs sites in folate pathway-associated genes of MTHFR, MTR, and MTRR and tested in 1,261 gastric cancer patients and 375 healthy controls. By genotype analysis, estimating odds ratios and 95% confidence intervals (CI, rs1801394 in the MTRR gene showed increased risk for gastric cacner, with statistical significance both in the codominant model (odds ratio [OR], 1.39; 95% CI, 1.04 to 1.85 and dominant model (OR, 1.34; 95% CI, 1.02 to 1.75. Especially, in the obese group (body mass index ≥ 25 kg/m2, the codominant (OR, 9.08; 95% CI, 1.01 to 94.59 and recessive model (OR, 3.72; 95% CI, 0.92 to 16.59 showed dramatically increased risk (p < 0.05. In conclusion, rs1801394 in the MTRR gene is associated with gastric cancer risk, and its functional significance need to be validated.

  12. Discovering susceptibility genes for allergic rhinitis and allergy using a genome-wide association study strategy.

    Science.gov (United States)

    Li, Jingyun; Zhang, Yuan; Zhang, Luo

    2015-02-01

    Allergic rhinitis and allergy are complex conditions, in which both genetic and environmental factors contribute to the pathogenesis. Genome-wide association studies (GWASs) employing common single-nucleotide polymorphisms have accelerated the search for novel and interesting genes, and also confirmed the role of some previously described genes which may be involved in the cause of allergic rhinitis and allergy. The aim of this review is to provide an overview of the genetic basis of allergic rhinitis and the associated allergic phenotypes, with particular focus on GWASs. The last decade has been marked by the publication of more than 20 GWASs of allergic rhinitis and the associated allergic phenotypes. Allergic diseases and traits have been shown to share a large number of genetic susceptibility loci, of which IL33/IL1RL1, IL-13-RAD50 and C11orf30/LRRC32 appear to be important for more than two allergic phenotypes. GWASs have further reflected the genetic heterogeneity underlying allergic phenotypes. Large-scale genome-wide association strategies are underway to discover new susceptibility variants for allergic rhinitis and allergic phenotypes. Characterization of the underlying genetics provides us with an insight into the potential targets for future studies and the corresponding interventions.

  13. Genetic polymorphisms of the GNRH1 and GNRHR genes and risk of breast cancer in the National Cancer Institute Breast and Prostate Cancer Cohort Consortium (BPC3

    Directory of Open Access Journals (Sweden)

    Lund Eiliv

    2009-07-01

    Full Text Available Abstract Background Gonadotropin releasing hormone (GNRH1 triggers the release of follicle stimulating hormone and luteinizing hormone from the pituitary. Genetic variants in the gene encoding GNRH1 or its receptor may influence breast cancer risk by modulating production of ovarian steroid hormones. We studied the association between breast cancer risk and polymorphisms in genes that code for GNRH1 and its receptor (GNRHR in the large National Cancer Institute Breast and Prostate Cancer Cohort Consortium (NCI-BPC3. Methods We sequenced exons of GNRH1 and GNRHR in 95 invasive breast cancer cases. Resulting single nucleotide polymorphisms (SNPs were genotyped and used to identify haplotype-tagging SNPs (htSNPS in a panel of 349 healthy women. The htSNPs were genotyped in 5,603 invasive breast cancer cases and 7,480 controls from the Cancer Prevention Study-II (CPS-II, European Prospective Investigation on Cancer and Nutrition (EPIC, Multiethnic Cohort (MEC, Nurses' Health Study (NHS, and Women's Health Study (WHS. Circulating levels of sex steroids (androstenedione, estradiol, estrone and testosterone were also measured in 4713 study subjects. Results Breast cancer risk was not associated with any polymorphism or haplotype in the GNRH1 and GNRHR genes, nor were there any statistically significant interactions with known breast cancer risk factors. Polymorphisms in these two genes were not strongly associated with circulating hormone levels. Conclusion Common variants of the GNRH1 and GNRHR genes are not associated with risk of invasive breast cancer in Caucasians.

  14. Genetic polymorphisms of the GNRH1 and GNRHR genes and risk of breast cancer in the National Cancer Institute Breast and Prostate Cancer Cohort Consortium (BPC3)

    International Nuclear Information System (INIS)

    Canzian, Federico; Calle, Eugenia E; Chanock, Stephen; Clavel-Chapelon, Francoise; Dossus, Laure; Feigelson, Heather Spencer; Haiman, Christopher A; Hankinson, Susan E; Hoover, Robert; Hunter, David J; Isaacs, Claudine; Kaaks, Rudolf; Lenner, Per; Lund, Eiliv; Overvad, Kim; Palli, Domenico; Pearce, Celeste Leigh; Quiros, Jose R; Riboli, Elio; Stram, Daniel O; Thomas, Gilles; Thun, Michael J; Cox, David G; Trichopoulos, Dimitrios; Gils, Carla H van; Ziegler, Regina G; Henderson, Katherine D; Henderson, Brian E; Berg, Christine; Bingham, Sheila; Boeing, Heiner; Buring, Julie

    2009-01-01

    Gonadotropin releasing hormone (GNRH1) triggers the release of follicle stimulating hormone and luteinizing hormone from the pituitary. Genetic variants in the gene encoding GNRH1 or its receptor may influence breast cancer risk by modulating production of ovarian steroid hormones. We studied the association between breast cancer risk and polymorphisms in genes that code for GNRH1 and its receptor (GNRHR) in the large National Cancer Institute Breast and Prostate Cancer Cohort Consortium (NCI-BPC3). We sequenced exons of GNRH1 and GNRHR in 95 invasive breast cancer cases. Resulting single nucleotide polymorphisms (SNPs) were genotyped and used to identify haplotype-tagging SNPs (htSNPS) in a panel of 349 healthy women. The htSNPs were genotyped in 5,603 invasive breast cancer cases and 7,480 controls from the Cancer Prevention Study-II (CPS-II), European Prospective Investigation on Cancer and Nutrition (EPIC), Multiethnic Cohort (MEC), Nurses' Health Study (NHS), and Women's Health Study (WHS). Circulating levels of sex steroids (androstenedione, estradiol, estrone and testosterone) were also measured in 4713 study subjects. Breast cancer risk was not associated with any polymorphism or haplotype in the GNRH1 and GNRHR genes, nor were there any statistically significant interactions with known breast cancer risk factors. Polymorphisms in these two genes were not strongly associated with circulating hormone levels. Common variants of the GNRH1 and GNRHR genes are not associated with risk of invasive breast cancer in Caucasians

  15. Prediction of epigenetically regulated genes in breast cancer cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Loss, Leandro A; Sadanandam, Anguraj; Durinck, Steffen; Nautiyal, Shivani; Flaucher, Diane; Carlton, Victoria EH; Moorhead, Martin; Lu, Yontao; Gray, Joe W; Faham, Malek; Spellman, Paul; Parvin, Bahram

    2010-05-04

    Methylation of CpG islands within the DNA promoter regions is one mechanism that leads to aberrant gene expression in cancer. In particular, the abnormal methylation of CpG islands may silence associated genes. Therefore, using high-throughput microarrays to measure CpG island methylation will lead to better understanding of tumor pathobiology and progression, while revealing potentially new biomarkers. We have examined a recently developed high-throughput technology for measuring genome-wide methylation patterns called mTACL. Here, we propose a computational pipeline for integrating gene expression and CpG island methylation profles to identify epigenetically regulated genes for a panel of 45 breast cancer cell lines, which is widely used in the Integrative Cancer Biology Program (ICBP). The pipeline (i) reduces the dimensionality of the methylation data, (ii) associates the reduced methylation data with gene expression data, and (iii) ranks methylation-expression associations according to their epigenetic regulation. Dimensionality reduction is performed in two steps: (i) methylation sites are grouped across the genome to identify regions of interest, and (ii) methylation profles are clustered within each region. Associations between the clustered methylation and the gene expression data sets generate candidate matches within a fxed neighborhood around each gene. Finally, the methylation-expression associations are ranked through a logistic regression, and their significance is quantified through permutation analysis. Our two-step dimensionality reduction compressed 90% of the original data, reducing 137,688 methylation sites to 14,505 clusters. Methylation-expression associations produced 18,312 correspondences, which were used to further analyze epigenetic regulation. Logistic regression was used to identify 58 genes from these correspondences that showed a statistically signifcant negative correlation between methylation profles and gene expression in the

  16. An Entropy-based gene selection method for cancer classification using microarray data

    Directory of Open Access Journals (Sweden)

    Krishnan Arun

    2005-03-01

    Full Text Available Abstract Background Accurate diagnosis of cancer subtypes remains a challenging problem. Building classifiers based on gene expression data is a promising approach; yet the selection of non-redundant but relevant genes is difficult. The selected gene set should be small enough to allow diagnosis even in regular clinical laboratories and ideally identify genes involved in cancer-specific regulatory pathways. Here an entropy-based method is proposed that selects genes related to the different cancer classes while at the same time reducing the redundancy among the genes. Results The present study identifies a subset of features by maximizing the relevance and minimizing the redundancy of the selected genes. A merit called normalized mutual information is employed to measure the relevance and the redundancy of the genes. In order to find a more representative subset of features, an iterative procedure is adopted that incorporates an initial clustering followed by data partitioning and the application of the algorithm to each of the partitions. A leave-one-out approach then selects the most commonly selected genes across all the different runs and the gene selection algorithm is applied again to pare down the list of selected genes until a minimal subset is obtained that gives a satisfactory accuracy of classification. The algorithm was applied to three different data sets and the results obtained were compared to work done by others using the same data sets Conclusion This study presents an entropy-based iterative algorithm for selecting genes from microarray data that are able to classify various cancer sub-types with high accuracy. In addition, the feature set obtained is very compact, that is, the redundancy between genes is reduced to a large extent. This implies that classifiers can be built with a smaller subset of genes.

  17. Bayesian logistic regression in detection of gene-steroid interaction for cancer at PDLIM5 locus.

    Science.gov (United States)

    Wang, Ke-Sheng; Owusu, Daniel; Pan, Yue; Xie, Changchun

    2016-06-01

    The PDZ and LIM domain 5 (PDLIM5) gene may play a role in cancer, bipolar disorder, major depression, alcohol dependence and schizophrenia; however, little is known about the interaction effect of steroid and PDLIM5 gene on cancer. This study examined 47 single-nucleotide polymorphisms (SNPs) within the PDLIM5 gene in the Marshfield sample with 716 cancer patients (any diagnosed cancer, excluding minor skin cancer) and 2848 noncancer controls. Multiple logistic regression model in PLINK software was used to examine the association of each SNP with cancer. Bayesian logistic regression in PROC GENMOD in SAS statistical software, ver. 9.4 was used to detect gene- steroid interactions influencing cancer. Single marker analysis using PLINK identified 12 SNPs associated with cancer (Plogistic regression in PROC GENMOD showed that both rs6532496 and rs951613 revealed strong gene-steroid interaction effects (OR=2.18, 95% CI=1.31-3.63 with P = 2.9 × 10⁻³ for rs6532496 and OR=2.07, 95% CI=1.24-3.45 with P = 5.43 × 10⁻³ for rs951613, respectively). Results from Bayesian logistic regression showed stronger interaction effects (OR=2.26, 95% CI=1.2-3.38 for rs6532496 and OR=2.14, 95% CI=1.14-3.2 for rs951613, respectively). All the 12 SNPs associated with cancer revealed significant gene-steroid interaction effects (P logistic regression and OR=2.59, 95% CI=1.4-3.97 from Bayesian logistic regression; respectively). This study provides evidence of common genetic variants within the PDLIM5 gene and interactions between PLDIM5 gene polymorphisms and steroid use influencing cancer.

  18. Molecular biology of breast cancer metastasis: Genetic regulation of human breast carcinoma metastasis

    International Nuclear Information System (INIS)

    Welch, Danny R; Steeg, Patricia S; Rinker-Schaeffer, Carrie W

    2000-01-01

    The present is an overview of recent data that describes the genetic underpinnings of the suppression of cancer metastasis. Despite the explosion of new information about the genetics of cancer, only six human genes have thus far been shown to suppress metastasis functionally. Not all have been shown to be functional in breast carcinoma. Several additional genes inhibit various steps of the metastatic cascade, but do not necessarily block metastasis when tested using in vivo assays. The implications of this are discussed. Two recently discovered metastasis suppressor genes block proliferation of tumor cells at a secondary site, offering a new target for therapeutic intervention

  19. The rapamycin-regulated gene expression signature determines prognosis for breast cancer

    Directory of Open Access Journals (Sweden)

    Tsavachidis Spiridon

    2009-09-01

    Full Text Available Abstract Background Mammalian target of rapamycin (mTOR is a serine/threonine kinase involved in multiple intracellular signaling pathways promoting tumor growth. mTOR is aberrantly activated in a significant portion of breast cancers and is a promising target for treatment. Rapamycin and its analogues are in clinical trials for breast cancer treatment. Patterns of gene expression (metagenes may also be used to simulate a biologic process or effects of a drug treatment. In this study, we tested the hypothesis that the gene-expression signature regulated by rapamycin could predict disease outcome for patients with breast cancer. Results Colony formation and sulforhodamine B (IC50 in vitro and in vivo gene expression data identified a signature, termed rapamycin metagene index (RMI, of 31 genes upregulated by rapamycin treatment in vitro as well as in vivo (false discovery rate of 10%. In the Miller dataset, RMI did not correlate with tumor size or lymph node status. High (>75th percentile RMI was significantly associated with longer survival (P = 0.015. On multivariate analysis, RMI (P = 0.029, tumor size (P = 0.015 and lymph node status (P = 0.001 were prognostic. In van 't Veer study, RMI was not associated with the time to develop distant metastasis (P = 0.41. In the Wang dataset, RMI predicted time to disease relapse (P = 0.009. Conclusion Rapamycin-regulated gene expression signature predicts clinical outcome in breast cancer. This supports the central role of mTOR signaling in breast cancer biology and provides further impetus to pursue mTOR-targeted therapies for breast cancer treatment.

  20. Infrequent alterations of the P53 gene in rat skin cancers induced by ionising-radiation

    International Nuclear Information System (INIS)

    Jin, Y.; Burns, F.J.; Garte, S.J.; Hosselet, S.; New York Univ., NY

    1996-01-01

    Radiation carcinogenesis almost certainly involves multiple genetic alterations. Identification of such genetic alterations would provide information to help understand better the molecular mechanism or radiation carcinogenesis. The energy released by ionizing radiation has the potential to produce DNA strand breaks, major gene deletions or rearrangements, and other base damages. Alterations of the p53 gene, a common tumour suppressor gene altered in human cancers, were examined in radiation-induced rat skin cancers. Genomic DNA from a total of 33rat skin cancers induced by ionizing radiation was examined by Southern blot hybridization for abnormal restriction fragment patterns in the p53 gene. A abnormal p53 restriction pattern was found in one of 16 cancers induced by electron radiation and in one of nine cancers induced by neon ions. The genomic DNA from representative cancers, including the two with an abnormal restriction pattern was further examined by polymerase chain reaction amplification and direct sequencing in exons 5-8 of the p53 gene. The results showed that one restriction fragment length polymorphism (RFLP)-positive cancer induced by electron radiation had a partial gene deletion which was defined approximately between exons 2-8, while none of the other cancers showed sequence changes. Our results indicate that the alterations in the critical binding region of the p53 gene are infrequent in rat skin cancers induced by either electron or neon ion radiation. (Author)

  1. Optimization of laser capture microdissection and RNA amplification for gene expression profiling of prostate cancer

    Directory of Open Access Journals (Sweden)

    Vasmatzis George

    2007-03-01

    Full Text Available Abstract Background To discover prostate cancer biomarkers, we profiled gene expression in benign and malignant cells laser capture microdissected (LCM from prostate tissues and metastatic prostatic adenocarcinomas. Here we present methods developed, optimized, and validated to obtain high quality gene expression data. Results RNase inhibitor was included in solutions used to stain frozen tissue sections for LCM, which improved RNA quality significantly. Quantitative PCR assays, requiring minimal amounts of LCM RNA, were developed to determine RNA quality and concentration. SuperScript II™ reverse transcriptase was replaced with SuperScript III™, and SpeedVac concentration was eliminated to optimize linear amplification. The GeneChip® IVT labeling kit was used rather than the Enzo BioArray™ HighYield™ RNA transcript labeling kit since side-by-side comparisons indicated high-end signal saturation with the latter. We obtained 72 μg of labeled complementary RNA on average after linear amplification of about 2 ng of total RNA. Conclusion Unsupervised clustering placed 5/5 normal and 2/2 benign prostatic hyperplasia cases in one group, 5/7 Gleason pattern 3 cases in another group, and the remaining 2/7 pattern 3 cases in a third group with 8/8 Gleason pattern 5 cases and 3/3 metastatic prostatic adenocarcinomas. Differential expression of alpha-methylacyl coenzyme A racemase (AMACR and hepsin was confirmed using quantitative PCR.

  2. Common Genetic Variation In Cellular Transport Genes and Epithelial Ovarian Cancer (EOC) Risk

    DEFF Research Database (Denmark)

    Chornokur, Ganna; Lin, Hui-Yi; Tyrer, Jonathan P

    2015-01-01

    . As DNA damage and uncontrolled proliferation are hallmarks of cancer, including epithelial ovarian cancer (EOC), we hypothesized that inherited variation in the cellular transport genes contributes to EOC risk. METHODS: In total, DNA samples were obtained from 14,525 case subjects with invasive EOC......BACKGROUND: Defective cellular transport processes can lead to aberrant accumulation of trace elements, iron, small molecules and hormones in the cell, which in turn may promote the formation of reactive oxygen species, promoting DNA damage and aberrant expression of key regulatory cancer genes...... and from 23,447 controls from 43 sites in the Ovarian Cancer Association Consortium (OCAC). Two hundred seventy nine SNPs, representing 131 genes, were genotyped using an Illumina Infinium iSelect BeadChip as part of the Collaborative Oncological Gene-environment Study (COGS). SNP analyses were conducted...

  3. Clinical adenoviral gene therapy for prostate cancer

    Czech Academy of Sciences Publication Activity Database

    Schenk, E.; Essand, M.; Bangma, Ch. H.; Barber, Ch.; Behr, J.-P.; Briggs, S.; Carlisle, R.; Cheng, W.-S.; Danielsson, A.; Dautzenberg, I. J. C.; Dzojic, H.; Erbacher, P.; Fisher, K.; Frazier, A.; Georgopoulos, L. J.; Hoeben, R.; Kochanek, S.; Koppers-Lalic, D.; Kraaij, R.; Kreppel, F.; Lindholm, L.; Magnusson, M.; Maitland, N.; Neuberg, P.; Nilsson, B.; Ogris, M.; Remy, J.-S.; Scaife, M.; Schooten, E.; Seymour, L.; Totterman, T.; Uil, T. G.; Ulbrich, Karel; Veldhoven-Zweistra, J. L. M.; de Vrij, J.; van Weerden, W.; Wagner, E.; Willemsen, R.

    2010-01-01

    Roč. 21, č. 7 (2010), s. 807-813 ISSN 1043-0342 EU Projects: European Commission(XE) 512087 - GIANT Keywords : adenovirus * gene delivery * prostate cancer Subject RIV: CD - Macromolecular Chemistry Impact factor: 4.829, year: 2010

  4. Association of Protein Translation and Extracellular Matrix Gene Sets with Breast Cancer Metastasis: Findings Uncovered on Analysis of Multiple Publicly Available Datasets Using Individual Patient Data Approach.

    Directory of Open Access Journals (Sweden)

    Nilotpal Chowdhury

    Full Text Available Microarray analysis has revolutionized the role of genomic prognostication in breast cancer. However, most studies are single series studies, and suffer from methodological problems. We sought to use a meta-analytic approach in combining multiple publicly available datasets, while correcting for batch effects, to reach a more robust oncogenomic analysis.The aim of the present study was to find gene sets associated with distant metastasis free survival (DMFS in systemically untreated, node-negative breast cancer patients, from publicly available genomic microarray datasets.Four microarray series (having 742 patients were selected after a systematic search and combined. Cox regression for each gene was done for the combined dataset (univariate, as well as multivariate - adjusted for expression of Cell cycle related genes and for the 4 major molecular subtypes. The centre and microarray batch effects were adjusted by including them as random effects variables. The Cox regression coefficients for each analysis were then ranked and subjected to a Gene Set Enrichment Analysis (GSEA.Gene sets representing protein translation were independently negatively associated with metastasis in the Luminal A and Luminal B subtypes, but positively associated with metastasis in Basal tumors. Proteinaceous extracellular matrix (ECM gene set expression was positively associated with metastasis, after adjustment for expression of cell cycle related genes on the combined dataset. Finally, the positive association of the proliferation-related genes with metastases was confirmed.To the best of our knowledge, the results depicting mixed prognostic significance of protein translation in breast cancer subtypes are being reported for the first time. We attribute this to our study combining multiple series and performing a more robust meta-analytic Cox regression modeling on the combined dataset, thus discovering 'hidden' associations. This methodology seems to yield new and

  5. Association of Protein Translation and Extracellular Matrix Gene Sets with Breast Cancer Metastasis: Findings Uncovered on Analysis of Multiple Publicly Available Datasets Using Individual Patient Data Approach.

    Science.gov (United States)

    Chowdhury, Nilotpal; Sapru, Shantanu

    2015-01-01

    Microarray analysis has revolutionized the role of genomic prognostication in breast cancer. However, most studies are single series studies, and suffer from methodological problems. We sought to use a meta-analytic approach in combining multiple publicly available datasets, while correcting for batch effects, to reach a more robust oncogenomic analysis. The aim of the present study was to find gene sets associated with distant metastasis free survival (DMFS) in systemically untreated, node-negative breast cancer patients, from publicly available genomic microarray datasets. Four microarray series (having 742 patients) were selected after a systematic search and combined. Cox regression for each gene was done for the combined dataset (univariate, as well as multivariate - adjusted for expression of Cell cycle related genes) and for the 4 major molecular subtypes. The centre and microarray batch effects were adjusted by including them as random effects variables. The Cox regression coefficients for each analysis were then ranked and subjected to a Gene Set Enrichment Analysis (GSEA). Gene sets representing protein translation were independently negatively associated with metastasis in the Luminal A and Luminal B subtypes, but positively associated with metastasis in Basal tumors. Proteinaceous extracellular matrix (ECM) gene set expression was positively associated with metastasis, after adjustment for expression of cell cycle related genes on the combined dataset. Finally, the positive association of the proliferation-related genes with metastases was confirmed. To the best of our knowledge, the results depicting mixed prognostic significance of protein translation in breast cancer subtypes are being reported for the first time. We attribute this to our study combining multiple series and performing a more robust meta-analytic Cox regression modeling on the combined dataset, thus discovering 'hidden' associations. This methodology seems to yield new and interesting

  6. Stem cells’ guided gene therapy of cancer: New frontier in personalized and targeted therapy

    Directory of Open Access Journals (Sweden)

    Mavroudi M

    2014-01-01

    Full Text Available Diagnosis and therapy of cancer remain to be the greatest challenges for all physicians working in clinical oncology and molecular medicine. The grim statistics speak for themselves with reports of 1,638,910 men and women diagnosed with cancer and nearly 577,190 patients passed away due to cancer in the USA in 2012. For practicing clinicians, who treat patients suffering from advanced cancers with contemporary systemic therapies, the main challenge is to attain therapeutic efficacy, while minimizing side effects. Unfortunately, all contemporary systemic therapies cause side effects. In treated patients, these side effects may range from nausea to damaged tissues. In cancer survivors, the iatrogenic outcomes of systemic therapies may include genomic mutations and their consequences. Therefore, there is an urgent need for personalized and targeted therapies. Recently, we reviewed the current status of suicide gene therapy for cancer. Herein, we discuss the novel strategy: genetically engineered stem guided gene therapy. Stem cells have the unique potential for self-renewal and differentiation. This potential is the primary reason for introducing them into medicine to regenerate injured or degenerated organs, as well as to rejuvenate aging tissues. Recent advances in genetic engineering and stem cell research have created the foundations for genetic engineering of stem cells as the vectors for delivery of therapeutic transgenes. Specifically in oncology, the stem cells are genetically engineered to deliver the cell suicide inducing genes selectively to the cancer cells. Expression of the transgenes kills the cancer cells, while leaving healthy cells unaffected. Herein, we present various strategies to bioengineer suicide inducing genes and stem cell vectors. Moreover, we review results of the main preclinical studies and clinical trials. However, the main risk for therapeutic use of stem cells is their cancerous transformation. Therefore, we

  7. Gene expression analysis in prostate cancer: the importance of the endogenous control.

    LENUS (Irish Health Repository)

    Vajda, Alice

    2013-03-01

    Aberrant gene expression is a hallmark of cancer. Quantitative reverse-transcription PCR (qRT-PCR) is the gold-standard for quantifying gene expression, and commonly employs a house-keeping gene (HKG) as an endogenous control to normalize results; the choice of which is critical for accurate data interpretation. Many factors, including sample type, pathological state, and oxygen levels influence gene expression including putative HKGs. The aim of this study was to determine the suitability of commonly used HKGs for qRT-PCR in prostate cancer.

  8. Gene expression profiling of liver cancer stem cells by RNA-sequencing.

    Directory of Open Access Journals (Sweden)

    David W Y Ho

    Full Text Available BACKGROUND: Accumulating evidence supports that tumor growth and cancer relapse are driven by cancer stem cells. Our previous work has demonstrated the existence of CD90(+ liver cancer stem cells (CSCs in hepatocellular carcinoma (HCC. Nevertheless, the characteristics of these cells are still poorly understood. In this study, we employed a more sensitive RNA-sequencing (RNA-Seq to compare the gene expression profiling of CD90(+ cells sorted from tumor (CD90(+CSCs with parallel non-tumorous liver tissues (CD90(+NTSCs and elucidate the roles of putative target genes in hepatocarcinogenesis. METHODOLOGY/PRINCIPAL FINDINGS: CD90(+ cells were sorted respectively from tumor and adjacent non-tumorous human liver tissues using fluorescence-activated cell sorting. The amplified RNAs of CD90(+ cells from 3 HCC patients were subjected to RNA-Seq analysis. A differential gene expression profile was established between CD90(+CSCs and CD90(+NTSCs, and validated by quantitative real-time PCR (qRT-PCR on the same set of amplified RNAs, and further confirmed in an independent cohort of 12 HCC patients. Five hundred genes were differentially expressed (119 up-regulated and 381 down-regulated genes between CD90(+CSCs and CD90(+NTSCs. Gene ontology analysis indicated that the over-expressed genes in CD90(+CSCs were associated with inflammation, drug resistance and lipid metabolism. Among the differentially expressed genes, glypican-3 (GPC3, a member of glypican family, was markedly elevated in CD90(+CSCs compared to CD90(+NTSCs. Immunohistochemistry demonstrated that GPC3 was highly expressed in forty-two human liver tumor tissues but absent in adjacent non-tumorous liver tissues. Flow cytometry indicated that GPC3 was highly expressed in liver CD90(+CSCs and mature cancer cells in liver cancer cell lines and human liver tumor tissues. Furthermore, GPC3 expression was positively correlated with the number of CD90(+CSCs in liver tumor tissues. CONCLUSIONS

  9. Gene Expression Profiling of Liver Cancer Stem Cells by RNA-Sequencing

    Science.gov (United States)

    Lam, Chi Tat; Ng, Michael N. P.; Yu, Wan Ching; Lau, Joyce; Wan, Timothy; Wang, Xiaoqi; Yan, Zhixiang; Liu, Hang; Fan, Sheung Tat

    2012-01-01

    Background Accumulating evidence supports that tumor growth and cancer relapse are driven by cancer stem cells. Our previous work has demonstrated the existence of CD90+ liver cancer stem cells (CSCs) in hepatocellular carcinoma (HCC). Nevertheless, the characteristics of these cells are still poorly understood. In this study, we employed a more sensitive RNA-sequencing (RNA-Seq) to compare the gene expression profiling of CD90+ cells sorted from tumor (CD90+CSCs) with parallel non-tumorous liver tissues (CD90+NTSCs) and elucidate the roles of putative target genes in hepatocarcinogenesis. Methodology/Principal Findings CD90+ cells were sorted respectively from tumor and adjacent non-tumorous human liver tissues using fluorescence-activated cell sorting. The amplified RNAs of CD90+ cells from 3 HCC patients were subjected to RNA-Seq analysis. A differential gene expression profile was established between CD90+CSCs and CD90+NTSCs, and validated by quantitative real-time PCR (qRT-PCR) on the same set of amplified RNAs, and further confirmed in an independent cohort of 12 HCC patients. Five hundred genes were differentially expressed (119 up-regulated and 381 down-regulated genes) between CD90+CSCs and CD90+NTSCs. Gene ontology analysis indicated that the over-expressed genes in CD90+CSCs were associated with inflammation, drug resistance and lipid metabolism. Among the differentially expressed genes, glypican-3 (GPC3), a member of glypican family, was markedly elevated in CD90+CSCs compared to CD90+NTSCs. Immunohistochemistry demonstrated that GPC3 was highly expressed in forty-two human liver tumor tissues but absent in adjacent non-tumorous liver tissues. Flow cytometry indicated that GPC3 was highly expressed in liver CD90+CSCs and mature cancer cells in liver cancer cell lines and human liver tumor tissues. Furthermore, GPC3 expression was positively correlated with the number of CD90+CSCs in liver tumor tissues. Conclusions/Significance The identified genes

  10. Tumor suppressor genes that escape from X-inactivation contribute to cancer sex bias

    Science.gov (United States)

    Dunford, Andrew; Weinstock, David M.; Savova, Virginia; Schumacher, Steven E.; Cleary, John P.; Yoda, Akinori; Sullivan, Timothy J.; Hess, Julian M.; Gimelbrant, Alexander A.; Beroukhim, Rameen; Lawrence, Michael S.; Getz, Gad; Lane, Andrew A.

    2016-01-01

    There is a striking and unexplained male predominance across many cancer types. A subset of X chromosome (chrX) genes can escape X-inactivation, which would protect females from complete functional loss by a single mutation. To identify putative “Escape from X-Inactivation Tumor Suppressor” (EXITS) genes, we compared somatic alterations from >4100 cancers across 21 tumor types for sex bias. Six of 783 non-pseudoautosomal region (PAR) chrX genes (ATRX, CNKSR2, DDX3X, KDM5C, KDM6A, and MAGEC3) more frequently harbored loss-of-function mutations in males (based on false discovery rate <0.1), compared to zero of 18,055 autosomal and PAR genes (P<0.0001). Male-biased mutations in genes that escape X-inactivation were observed in combined analysis across many cancers and in several individual tumor types, suggesting a generalized phenomenon. We conclude that biallelic expression of EXITS genes in females explains a portion of the reduced cancer incidence compared to males across a variety of tumor types. PMID:27869828

  11. Tumor-suppressor genes that escape from X-inactivation contribute to cancer sex bias.

    Science.gov (United States)

    Dunford, Andrew; Weinstock, David M; Savova, Virginia; Schumacher, Steven E; Cleary, John P; Yoda, Akinori; Sullivan, Timothy J; Hess, Julian M; Gimelbrant, Alexander A; Beroukhim, Rameen; Lawrence, Michael S; Getz, Gad; Lane, Andrew A

    2017-01-01

    There is a striking and unexplained male predominance across many cancer types. A subset of X-chromosome genes can escape X-inactivation, which would protect females from complete functional loss by a single mutation. To identify putative 'escape from X-inactivation tumor-suppressor' (EXITS) genes, we examined somatic alterations from >4,100 cancers across 21 tumor types for sex bias. Six of 783 non-pseudoautosomal region (PAR) X-chromosome genes (ATRX, CNKSR2, DDX3X, KDM5C, KDM6A, and MAGEC3) harbored loss-of-function mutations more frequently in males (based on a false discovery rate < 0.1), in comparison to zero of 18,055 autosomal and PAR genes (Fisher's exact P < 0.0001). Male-biased mutations in genes that escape X-inactivation were observed in combined analysis across many cancers and in several individual tumor types, suggesting a generalized phenomenon. We conclude that biallelic expression of EXITS genes in females explains a portion of the reduced cancer incidence in females as compared to males across a variety of tumor types.

  12. Vasopressin Gene-Related Products in the Management of Breast Cancer

    National Research Council Canada - National Science Library

    North, William

    1998-01-01

    .... The VP gene is expressed by seemingly all breast cancers and by all DCIS, and this information coupled with an absence of VP gene-related products from fibrocystic disease potentially provides us...

  13. Using gene expression in patients with endometrial intraepithelial neoplasia to assess the risk of cancer

    Directory of Open Access Journals (Sweden)

    Koah Vierkoetter

    2018-05-01

    Full Text Available Patients diagnosed with an endometrial cancer precursor lesion on biopsy may be found to have endometrial cancer at the time of subsequent surgery. The current study seeks to identify patients with endometrial intraepithelial neoplasia (EIN on biopsy that may be harboring an occult carcinoma. Immunohistochemical stains for gene loss of expression (LOE for 6 genes, PTEN, ARID1A, MSH6, MSH2, MLH1, and PMS2, were performed on 113 biopsy specimens with EIN. For the 95 patients with follow-up histology, 40 patients had cancer, 41 had EIN, and 14 had normal endometrium. PTEN LOE was found frequently in both EIN and endometrial cancer, and therefore had low positive predictive value. All specimens with ARID1A, MSH6, MSH2, MLH1, or PMS2 LOE on biopsy were subsequently found to have cancer. LOE of any gene was associated with modest sensitivity (0.78 in identifying patients with endometrial cancer who had EIN on biopsy. Further investigation is warranted to determine if gene LOE is a useful clinical tool when evaluating patients with EIN on biopsy. Keywords: Endometrial intraepithelial neoplasia, Endometrial cancer, Gene expression, PTEN, ARID1A, Mismatch repair genes

  14. Genetic variation of clock genes and cancer risk: a field synopsis and meta-analysis.

    Science.gov (United States)

    Benna, Clara; Helfrich-Förster, Charlotte; Rajendran, Senthilkumar; Monticelli, Halenya; Pilati, Pierluigi; Nitti, Donato; Mocellin, Simone

    2017-04-04

    The number of studies on the association between clock genes' polymorphisms and cancer susceptibility has increased over the last years but the results are often conflicting and no comprehensive overview and quantitative summary of the evidence in this field is available. Literature search identified 27 eligible studies comprising 96756 subjects (cases: 38231) and investigating 687 polymorphisms involving 14 clock genes. Overall, 1025 primary and subgroup meta-analyses on 366 gene variants were performed. Study distribution by tumor was as follows: breast cancer (n=15), prostate cancer (n=3), pancreatic cancer (n=2), non-Hodgkin's lymphoma (n=2), glioma (n=1), chronic lymphocytic leukemia (n=1), colorectal cancer (n=1), non-small cell lung cancer (n=1) and ovarian cancer (n=1).We identified 10 single nucleotide polymorphisms (SNPs) significantly associated with cancer risk: NPAS2 rs10165970 (mixed and breast cancer shiftworkers), rs895520 (mixed), rs17024869 (breast) and rs7581886 (breast); CLOCK rs3749474 (breast) and rs11943456 (breast); RORA rs7164773 (breast and breast cancer postmenopausal), rs10519097 (breast); RORB rs7867494 (breast cancer postmenopausal), PER3 rs1012477 (breast cancer subgroups) and assessed the level of quality evidence to be intermediate. We also identified polymorphisms with lower quality statistically significant associations (n=30). Our work supports the hypothesis that genetic variation of clock genes might affect cancer risk. These findings also highlight the need for more efforts in this research field in order to fully establish the contribution of clock gene variants to the risk of developing cancer. We conducted a systematic review and meta-analysis of the evidence on the association between clock genes' germline variants and the risk of developing cancer. To assess result credibility, summary evidence was graded according to the Venice criteria and false positive report probability (FPRP) was calculated to further validate

  15. Characterization of transformation related genes in oral cancer cells.

    Science.gov (United States)

    Chang, D D; Park, N H; Denny, C T; Nelson, S F; Pe, M

    1998-04-16

    A cDNA representational difference analysis (cDNA-RDA) and an arrayed filter technique were used to characterize transformation-related genes in oral cancer. From an initial comparison of normal oral epithelial cells and a human papilloma virus (HPV)-immortalized oral epithelial cell line, we obtained 384 differentially expressed gene fragments and arrayed them on a filter. Two hundred and twelve redundant clones were identified by three rounds of back hybridization. Sequence analysis of the remaining clones revealed 99 unique clones corresponding to 69 genes. The expression of these transformation related gene fragments in three nontumorigenic HPV-immortalized oral epithelial cell lines and three oral cancer cell lines were simultaneously monitored using a cDNA array hybridization. Although there was a considerable cell line-to-cell line variability in the expression of these clones, a reliable prediction of their expression could be made from the cDNA array hybridization. Our study demonstrates the utility of combining cDNA-RDA and arrayed filters in high-throughput gene expression difference analysis. The differentially expressed genes identified in this study should be informative in studying oral epithelial cell carcinogenesis.

  16. Statistical Redundancy Testing for Improved Gene Selection in Cancer Classification Using Microarray Data

    Directory of Open Access Journals (Sweden)

    J. Sunil Rao

    2007-01-01

    Full Text Available In gene selection for cancer classifi cation using microarray data, we define an eigenvalue-ratio statistic to measure a gene’s contribution to the joint discriminability when this gene is included into a set of genes. Based on this eigenvalueratio statistic, we define a novel hypothesis testing for gene statistical redundancy and propose two gene selection methods. Simulation studies illustrate the agreement between statistical redundancy testing and gene selection methods. Real data examples show the proposed gene selection methods can select a compact gene subset which can not only be used to build high quality cancer classifiers but also show biological relevance.

  17. DNA copy-number alterations underlie gene expression differences between microsatellite stable and unstable colorectal cancers

    DEFF Research Database (Denmark)

    Jorissen, Robert N; Lipton, Lara; Gibbs, Peter

    2008-01-01

    Purpose: About 15% of colorectal cancers harbor microsatellite instability (MSI). MSI-associated gene expression changes have been identified in colorectal cancers, but little overlap exists between signatures hindering an assessment of overall consistency. Little is known about the causes...... and downstream effects of differential gene expression. Experimental Design: DNA microarray data on 89 MSI and 140 microsatellite-stable (MSS) colorectal cancers from this study and 58 MSI and 77 MSS cases from three published reports were randomly divided into test and training sets. MSI-associated gene......-number data. Results: MSI-associated gene expression changes in colorectal cancers were found to be highly consistent across multiple studies of primary tumors and cancer cell lines from patients of different ethnicities (P

  18. A Gene Module-Based eQTL Analysis Prioritizing Disease Genes and Pathways in Kidney Cancer

    Directory of Open Access Journals (Sweden)

    Mary Qu Yang

    Full Text Available Clear cell renal cell carcinoma (ccRCC is the most common and most aggressive form of renal cell cancer (RCC. The incidence of RCC has increased steadily in recent years. The pathogenesis of renal cell cancer remains poorly understood. Many of the tumor suppressor genes, oncogenes, and dysregulated pathways in ccRCC need to be revealed for improvement of the overall clinical outlook of the disease. Here, we developed a systems biology approach to prioritize the somatic mutated genes that lead to dysregulation of pathways in ccRCC. The method integrated multi-layer information to infer causative mutations and disease genes. First, we identified differential gene modules in ccRCC by coupling transcriptome and protein-protein interactions. Each of these modules consisted of interacting genes that were involved in similar biological processes and their combined expression alterations were significantly associated with disease type. Then, subsequent gene module-based eQTL analysis revealed somatic mutated genes that had driven the expression alterations of differential gene modules. Our study yielded a list of candidate disease genes, including several known ccRCC causative genes such as BAP1 and PBRM1, as well as novel genes such as NOD2, RRM1, CSRNP1, SLC4A2, TTLL1 and CNTN1. The differential gene modules and their driver genes revealed by our study provided a new perspective for understanding the molecular mechanisms underlying the disease. Moreover, we validated the results in independent ccRCC patient datasets. Our study provided a new method for prioritizing disease genes and pathways. Keywords: ccRCC, Causative mutation, Pathways, Protein-protein interaction, Gene module, eQTL

  19. Prostate cancer-associated gene expression alterations determined from needle biopsies.

    Science.gov (United States)

    Qian, David Z; Huang, Chung-Ying; O'Brien, Catherine A; Coleman, Ilsa M; Garzotto, Mark; True, Lawrence D; Higano, Celestia S; Vessella, Robert; Lange, Paul H; Nelson, Peter S; Beer, Tomasz M

    2009-05-01

    To accurately identify gene expression alterations that differentiate neoplastic from normal prostate epithelium using an approach that avoids contamination by unwanted cellular components and is not compromised by acute gene expression changes associated with tumor devascularization and resulting ischemia. Approximately 3,000 neoplastic and benign prostate epithelial cells were isolated using laser capture microdissection from snap-frozen prostate biopsy specimens provided by 31 patients who subsequently participated in a clinical trial of preoperative chemotherapy. cDNA synthesized from amplified total RNA was hybridized to custom-made microarrays composed of 6,200 clones derived from the Prostate Expression Database. Expression differences for selected genes were verified using quantitative reverse transcription-PCR. Comparative analyses identified 954 transcript alterations associated with cancer (q transport. Genes down-regulated in prostate cancers were enriched in categories related to immune response, cellular responses to pathogens, and apoptosis. A heterogeneous pattern of androgen receptor expression changes was noted. In exploratory analyses, androgen receptor down-regulation was associated with a lower probability of cancer relapse after neoadjuvant chemotherapy followed by radical prostatectomy. Assessments of tumor phenotypes based on gene expression for treatment stratification and drug targeting of oncogenic alterations may best be ascertained using biopsy-based analyses where the effects of ischemia do not complicate interpretation.

  20. Help seeking behavior of women with self-discovered breast cancer symptoms: a meta-ethnographic synthesis of patient delay.

    Directory of Open Access Journals (Sweden)

    Zohreh Khakbazan

    Full Text Available BACKGROUND AND OBJECTIVE: Patient delay makes a critical contribution to late diagnosis and poor survival in cases of breast cancer. Identifying the factors that influence patient delay could provide information for adopting strategies that shorten this delay. The aim of this meta-ethnography was to synthesize existing qualitative evidence in order to gain a new understanding of help seeking behavior in women with self-discovered breast cancer symptoms and to determine the factors that influence patient delay. METHODS: The design was a meta-ethnography approach. A systematic search of the articles was performed in different databases including Elsevier, PubMed, ProQuest and SCOPUS. Qualitative studies with a focus on help seeking behaviors in women with self-discovered breast cancer symptoms and patient delay, published in the English language between 1990 and 2013 were included. The quality appraisal of the articles was carried out using the Critical Appraisal Skills Programme qualitative research checklist and 13 articles met the inclusion criteria. The synthesis was conducted according to Noblit and Hare's meta-ethnographic approach (1988, through reciprocal translational analysis and lines-of-argument. FINDINGS: The synthesis led to identification of eight repeated key concepts including: symptom detection, initial symptom interpretation, symptom monitoring, social interaction, emotional reaction, priority of medical help, appraisal of health services and personal-environmental factors. Symptom interpretation is identified as the important step of the help seeking process and which changed across the process through active monitoring of their symptoms, social interactions and emotional reactions. The perceived seriousness of the situation, priority to receive medical attention, perceived inaccessibility and unacceptability of the health care system influenced women's decision-making about utilizing health services. CONCLUSION: Help seeking

  1. Automated Detection of Cancer Associated Genes Using a Combined Fuzzy-Rough-Set-Based F-Information and Water Swirl Algorithm of Human Gene Expression Data.

    Directory of Open Access Journals (Sweden)

    Pugalendhi Ganesh Kumar

    Full Text Available This study describes a novel approach to reducing the challenges of highly nonlinear multiclass gene expression values for cancer diagnosis. To build a fruitful system for cancer diagnosis, in this study, we introduced two levels of gene selection such as filtering and embedding for selection of potential genes and the most relevant genes associated with cancer, respectively. The filter procedure was implemented by developing a fuzzy rough set (FR-based method for redefining the criterion function of f-information (FI to identify the potential genes without discretizing the continuous gene expression values. The embedded procedure is implemented by means of a water swirl algorithm (WSA, which attempts to optimize the rule set and membership function required to classify samples using a fuzzy-rule-based multiclassification system (FRBMS. Two novel update equations are proposed in WSA, which have better exploration and exploitation abilities while designing a self-learning FRBMS. The efficiency of our new approach was evaluated on 13 multicategory and 9 binary datasets of cancer gene expression. Additionally, the performance of the proposed FRFI-WSA method in designing an FRBMS was compared with existing methods for gene selection and optimization such as genetic algorithm (GA, particle swarm optimization (PSO, and artificial bee colony algorithm (ABC on all the datasets. In the global cancer map with repeated measurements (GCM_RM dataset, the FRFI-WSA showed the smallest number of 16 most relevant genes associated with cancer using a minimal number of 26 compact rules with the highest classification accuracy (96.45%. In addition, the statistical validation used in this study revealed that the biological relevance of the most relevant genes associated with cancer and their linguistics detected by the proposed FRFI-WSA approach are better than those in the other methods. The simple interpretable rules with most relevant genes and effectively

  2. mRNA/microRNA gene expression profile in microsatellite unstable colorectal cancer

    Directory of Open Access Journals (Sweden)

    Calin George A

    2007-08-01

    Full Text Available Abstract Background Colorectal cancer develops through two main genetic instability pathways characterized by distinct pathologic features and clinical outcome. Results We investigated colon cancer samples (23 characterized by microsatellite stability, MSS, and 16 by high microsatellite instability, MSI-H for genome-wide expression of microRNA (miRNA and mRNA. Based on combined miRNA and mRNA gene expression, a molecular signature consisting of twenty seven differentially expressed genes, inclusive of 8 miRNAs, could correctly distinguish MSI-H versus MSS colon cancer samples. Among the differentially expressed miRNAs, various members of the oncogenic miR-17-92 family were significantly up-regulated in MSS cancers. The majority of protein coding genes were also up-regulated in MSS cancers. Their functional classification revealed that they were most frequently associated with cell cycle, DNA replication, recombination, repair, gastrointestinal disease and immune response. Conclusion This is the first report that indicates the existence of differences in miRNA expression between MSS versus MSI-H colorectal cancers. In addition, the work suggests that the combination of mRNA/miRNA expression signatures may represent a general approach for improving bio-molecular classification of human cancer.

  3. Selenium nanoparticles: potential in cancer gene and drug delivery.

    Science.gov (United States)

    Maiyo, Fiona; Singh, Moganavelli

    2017-05-01

    In recent decades, colloidal selenium nanoparticles have emerged as exceptional selenium species with reported chemopreventative and therapeutic properties. This has sparked widespread interest in their use as a carrier of therapeutic agents with results displaying synergistic effects of selenium with its therapeutic cargo and improved anticancer activity. Functionalization remains a critical step in selenium nanoparticles' development for application in gene or drug delivery. In this review, we highlight recent developments in the synthesis and functionalization strategies of selenium nanoparticles used in cancer drug and gene delivery systems. We also provide an update of recent preclinical studies utilizing selenium nanoparticles in cancer therapeutics.

  4. FGF receptor genes and breast cancer susceptibility

    DEFF Research Database (Denmark)

    Agarwal, D; Pineda, S; Michailidou, K

    2014-01-01

    Background:Breast cancer is one of the most common malignancies in women. Genome-wide association studies have identified FGFR2 as a breast cancer susceptibility gene. Common variation in other fibroblast growth factor (FGF) receptors might also modify risk. We tested this hypothesis by studying...... genotyped single-nucleotide polymorphisms (SNPs) and imputed SNPs in FGFR1, FGFR3, FGFR4 and FGFRL1 in the Breast Cancer Association Consortium.Methods:Data were combined from 49 studies, including 53 835 cases and 50 156 controls, of which 89 050 (46 450 cases and 42 600 controls) were of European ancestry......, 12 893 (6269 cases and 6624 controls) of Asian and 2048 (1116 cases and 932 controls) of African ancestry. Associations with risk of breast cancer, overall and by disease sub-type, were assessed using unconditional logistic regression.Results:Little evidence of association with breast cancer risk...

  5. Leucine zipper, down regulated in cancer-1 gene expression in prostate cancer

    OpenAIRE

    Salemi, Michele; Barone, Nunziata; La Vignera, Sandro; Condorelli, Rosita A.; Recupero, Domenico; Galia, Antonio; Fraggetta, Filippo; Aiello, Anna Maria; Pepe, Pietro; Castiglione, Roberto; Vicari, Enzo; Calogero, Aldo E.

    2016-01-01

    Numerous genetic alterations have been implicated in the development of prostate cancer (PCa). DNA and protein microarrays have enabled the identification of genes associated with apoptosis, which is important in PCa development. Despite the molecular mechanisms are not entirely understood, inhibition of apoptosis is a critical pathophysiological factor that contributes to the onset and progression of PCa. Leucine zipper, down-regulated in cancer 1 (LDOC-1) is a known regulator of the nuclear...

  6. ColoLipidGene: signature of lipid metabolism-related genes to predict prognosis in stage-II colon cancer patients

    Science.gov (United States)

    Vargas, Teodoro; Moreno-Rubio, Juan; Herranz, Jesús; Cejas, Paloma; Molina, Susana; González-Vallinas, Margarita; Mendiola, Marta; Burgos, Emilio; Aguayo, Cristina; Custodio, Ana B.; Machado, Isidro; Ramos, David; Gironella, Meritxell; Espinosa-Salinas, Isabel; Ramos, Ricardo; Martín-Hernández, Roberto; Risueño, Alberto; De Las Rivas, Javier; Reglero, Guillermo; Yaya, Ricardo; Fernández-Martos, Carlos; Aparicio, Jorge; Maurel, Joan; Feliu, Jaime; de Molina, Ana Ramírez

    2015-01-01

    Lipid metabolism plays an essential role in carcinogenesis due to the requirements of tumoral cells to sustain increased structural, energetic and biosynthetic precursor demands for cell proliferation. We investigated the association between expression of lipid metabolism-related genes and clinical outcome in intermediate-stage colon cancer patients with the aim of identifying a metabolic profile associated with greater malignancy and increased risk of relapse. Expression profile of 70 lipid metabolism-related genes was determined in 77 patients with stage II colon cancer. Cox regression analyses using c-index methodology was applied to identify a metabolic-related signature associated to prognosis. The metabolic signature was further confirmed in two independent validation sets of 120 patients and additionally, in a group of 264 patients from a public database. The combined analysis of these 4 genes, ABCA1, ACSL1, AGPAT1 and SCD, constitutes a metabolic-signature (ColoLipidGene) able to accurately stratify stage II colon cancer patients with 5-fold higher risk of relapse with strong statistical power in the four independent groups of patients. The identification of a group of 4 genes that predict survival in intermediate-stage colon cancer patients allows delineation of a high-risk group that may benefit from adjuvant therapy, and avoids the toxic and unnecessary chemotherapy in patients classified as low-risk group. PMID:25749516

  7. PLGA-Chitosan nanoparticle-mediated gene delivery for oral cancer treatment: A brief review

    Science.gov (United States)

    Bakar, L. M.; Abdullah, M. Z.; Doolaanea, A. A.; Ichwan, S. J. A.

    2017-08-01

    Cancer becomes a serious issue on society with increasing of their growth and proliferation, either in well economic developed countries or not. Recent years, oral cancer is one of the most threatening diseases impairing the quality of life of the patient. Scientists have emphasised on application of gene therapy for oral cancer by using nanoparticle as transportation vectors as a new alternative platform in order to overcome the limitations of conventional approaches. In modern medicine, nanotechnologies’ application, such as nanoparticles-mediated gene delivery, is one of promising tool for therapeutic devices. The objective of this article is to present a brief review summarizes on the current progress of nanotechnology-based gene delivery treatment system targeted for oral cancer.

  8. The Integrative Method Based on the Module-Network for Identifying Driver Genes in Cancer Subtypes

    Directory of Open Access Journals (Sweden)

    Xinguo Lu

    2018-01-01

    Full Text Available With advances in next-generation sequencing(NGS technologies, a large number of multiple types of high-throughput genomics data are available. A great challenge in exploring cancer progression is to identify the driver genes from the variant genes by analyzing and integrating multi-types genomics data. Breast cancer is known as a heterogeneous disease. The identification of subtype-specific driver genes is critical to guide the diagnosis, assessment of prognosis and treatment of breast cancer. We developed an integrated frame based on gene expression profiles and copy number variation (CNV data to identify breast cancer subtype-specific driver genes. In this frame, we employed statistical machine-learning method to select gene subsets and utilized an module-network analysis method to identify potential candidate driver genes. The final subtype-specific driver genes were acquired by paired-wise comparison in subtypes. To validate specificity of the driver genes, the gene expression data of these genes were applied to classify the patient samples with 10-fold cross validation and the enrichment analysis were also conducted on the identified driver genes. The experimental results show that the proposed integrative method can identify the potential driver genes and the classifier with these genes acquired better performance than with genes identified by other methods.

  9. Identification of DNA methylation changes associated with human gastric cancer

    Directory of Open Access Journals (Sweden)

    Park Jung-Hoon

    2011-12-01

    Full Text Available Abstract Background Epigenetic alteration of gene expression is a common event in human cancer. DNA methylation is a well-known epigenetic process, but verifying the exact nature of epigenetic changes associated with cancer remains difficult. Methods We profiled the methylome of human gastric cancer tissue at 50-bp resolution using a methylated DNA enrichment technique (methylated CpG island recovery assay in combination with a genome analyzer and a new normalization algorithm. Results We were able to gain a comprehensive view of promoters with various CpG densities, including CpG Islands (CGIs, transcript bodies, and various repeat classes. We found that gastric cancer was associated with hypermethylation of 5' CGIs and the 5'-end of coding exons as well as hypomethylation of repeat elements, such as short interspersed nuclear elements and the composite element SVA. Hypermethylation of 5' CGIs was significantly correlated with downregulation of associated genes, such as those in the HOX and histone gene families. We also discovered long-range epigenetic silencing (LRES regions in gastric cancer tissue and identified several hypermethylated genes (MDM2, DYRK2, and LYZ within these regions. The methylation status of CGIs and gene annotation elements in metastatic lymph nodes was intermediate between normal and cancerous tissue, indicating that methylation of specific genes is gradually increased in cancerous tissue. Conclusions Our findings will provide valuable data for future analysis of CpG methylation patterns, useful markers for the diagnosis of stomach cancer, as well as a new analysis method for clinical epigenomics investigations.

  10. Establishment of a 12-gene expression signature to predict colon cancer prognosis

    Directory of Open Access Journals (Sweden)

    Dalong Sun

    2018-06-01

    Full Text Available A robust and accurate gene expression signature is essential to assist oncologists to determine which subset of patients at similar Tumor-Lymph Node-Metastasis (TNM stage has high recurrence risk and could benefit from adjuvant therapies. Here we applied a two-step supervised machine-learning method and established a 12-gene expression signature to precisely predict colon adenocarcinoma (COAD prognosis by using COAD RNA-seq transcriptome data from The Cancer Genome Atlas (TCGA. The predictive performance of the 12-gene signature was validated with two independent gene expression microarray datasets: GSE39582 includes 566 COAD cases for the development of six molecular subtypes with distinct clinical, molecular and survival characteristics; GSE17538 is a dataset containing 232 colon cancer patients for the generation of a metastasis gene expression profile to predict recurrence and death in COAD patients. The signature could effectively separate the poor prognosis patients from good prognosis group (disease specific survival (DSS: Kaplan Meier (KM Log Rank p = 0.0034; overall survival (OS: KM Log Rank p = 0.0336 in GSE17538. For patients with proficient mismatch repair system (pMMR in GSE39582, the signature could also effectively distinguish high risk group from low risk group (OS: KM Log Rank p = 0.005; Relapse free survival (RFS: KM Log Rank p = 0.022. Interestingly, advanced stage patients were significantly enriched in high 12-gene score group (Fisher’s exact test p = 0.0003. After stage stratification, the signature could still distinguish poor prognosis patients in GSE17538 from good prognosis within stage II (Log Rank p = 0.01 and stage II & III (Log Rank p = 0.017 in the outcome of DFS. Within stage III or II/III pMMR patients treated with Adjuvant Chemotherapies (ACT and patients with higher 12-gene score showed poorer prognosis (III, OS: KM Log Rank p = 0.046; III & II, OS: KM Log Rank p = 0.041. Among stage II/III pMMR patients

  11. Targeted Gene Therapy of Cancer: Second Amendment toward Holistic Therapy.

    Science.gov (United States)

    Barar, Jaleh; Omidi, Yadollah

    2013-01-01

    It seems solid tumors are developing smart organs with specialized cells creating specified bio-territory, the so called "tumor microenvironment (TME)", in which there is reciprocal crosstalk among cancer cells, immune system cells and stromal cells. TME as an intricate milieu also consists of cancer stem cells (CSCs) that can resist against chemotherapies. In solid tumors, metabolism and vascularization appears to be aberrant and tumor interstitial fluid (TIF) functions as physiologic barrier. Thus, chemotherapy, immunotherapy and gene therapy often fail to provide cogent clinical outcomes. It looms that it is the time to accept the fact that initiation of cancer could be generation of another form of life that involves a cluster of thousands of genes, while we have failed to observe all aspects of it. Hence, the current treatment modalities need to be re-visited to cover all key aspects of disease using combination therapy based on the condition of patients. Perhaps personalized cluster of genes need to be simultaneously targeted.

  12. Targeted Gene Therapy of Cancer: Second Amendment toward Holistic Therapy

    Directory of Open Access Journals (Sweden)

    Jaleh Barar

    2013-02-01

    Full Text Available It seems solid tumors are developing smart organs with specialized cells creating specified bio-territory, the so called “tumor microenvironment (TME”, in which there is reciprocal crosstalk among cancer cells, immune system cells and stromal cells. TME as an intricate milieu also consists of cancer stem cells (CSCs that can resist against chemotherapies. In solid tumors, metabolism and vascularization appears to be aberrant and tumor interstitial fluid (TIF functions as physiologic barrier. Thus, chemotherapy, immunotherapy and gene therapy often fail to provide cogent clinical outcomes. It looms that it is the time to accept the fact that initiation of cancer could be generation of another form of life that involves a cluster of thousands of genes, while we have failed to observe all aspects of it. Hence, the current treatment modalities need to be re-visited to cover all key aspects of disease using combination therapy based on the condition of patients. Perhaps personalized cluster of genes need to be simultaneously targeted.

  13. Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    NARCIS (Netherlands)

    Chiu, Hua Sheng; Somvanshi, Sonal; Patel, Ektaben; Chen, Ting Wen; Singh, Vivek P.; Zorman, Barry; Patil, Sagar L.; Pan, Yinghong; Chatterjee, Sujash S.; Caesar-Johnson, Samantha J.; Demchok, John A.; Felau, Ina; Kasapi, Melpomeni; Ferguson, Martin L.; Hutter, Carolyn M.; Sofia, Heidi J.; Tarnuzzer, Roy; Wang, Zhining; Yang, Liming; Zenklusen, Jean C.; Zhang, Jiashan (Julia); Chudamani, Sudha; Liu, Jia; Lolla, Laxmi; Naresh, Rashi; Pihl, Todd; Sun, Qiang; Wan, Yunhu; Wu, Ye; Cho, Juok; DeFreitas, Timothy; Frazer, Scott; Gehlenborg, Nils; Getz, Gad; Heiman, David I.; Kim, Jaegil; Lawrence, Michael S.; Lin, Pei; Meier, Sam; Noble, Michael S.; Saksena, Gordon; Voet, Doug; Zhang, Hailei; Bernard, Brady; Chambwe, Nyasha; Dhankani, Varsha; Knijnenburg, Theo; Kramer, Roger; Leinonen, Kalle; Liu, Yuexin; Miller, Michael; Reynolds, Sheila; Shmulevich, Ilya; Thorsson, Vesteinn; Zhang, Wei; Akbani, Rehan; Broom, Bradley M.; Hegde, Apurva M.; Ju, Zhenlin; Kanchi, Rupa S.; Korkut, Anil; Li, Jun; Liang, Han; Ling, Shiyun; Liu, Wenbin; Lu, Yiling; Mills, Gordon B.; Ng, Kwok Shing; Rao, Arvind; Ryan, Michael; Wang, Jing; Weinstein, John N.; Zhang, Jiexin; Abeshouse, Adam; Armenia, Joshua; Chakravarty, Debyani; Chatila, Walid K.; de Bruijn, Ino; Gao, Jianjiong; Gross, Benjamin E.; Heins, Zachary J.; Kundra, Ritika; La, Konnor; Ladanyi, Marc; Luna, Augustin; Nissan, Moriah G.; Ochoa, Angelica; Phillips, Sarah M.; Reznik, Ed; Sanchez-Vega, Francisco; Sander, Chris; Schultz, Nikolaus; Sheridan, Robert; Sumer, S. Onur; Sun, Yichao; Taylor, Barry S.; Wang, Jioajiao; Zhang, Hongxin; Anur, Pavana; Peto, Myron; Spellman, Paul; Benz, Christopher; Stuart, Joshua M.; Wong, Christopher K.; Yau, Christina; Hayes, D. Neil; Parker, Joel S.; Wilkerson, Matthew D.; Ally, Adrian; Balasundaram, Miruna; Bowlby, Reanne; Brooks, Denise; Carlsen, Rebecca; Chuah, Eric; Dhalla, Noreen; Holt, Robert; Jones, Steven J.M.; Kasaian, Katayoon; Lee, Darlene; Ma, Yussanne; Marra, Marco A.; Mayo, Michael; Moore, Richard A.; Mungall, Andrew J.; Mungall, Karen; Robertson, A. Gordon; Sadeghi, Sara; Schein, Jacqueline E.; Sipahimalani, Payal; Tam, Angela; Thiessen, Nina; Tse, Kane; Wong, Tina; Berger, Ashton C.; Beroukhim, Rameen; Cherniack, Andrew D.; Cibulskis, Carrie; Gabriel, Stacey B.; Gao, Galen F.; Ha, Gavin; Meyerson, Matthew; Schumacher, Steven E.; Shih, Juliann; Kucherlapati, Melanie H.; Kucherlapati, Raju S.; Baylin, Stephen; Cope, Leslie; Danilova, Ludmila; Bootwalla, Moiz S.; Lai, Phillip H.; Maglinte, Dennis T.; Van Den Berg, David J.; Weisenberger, Daniel J.; Auman, J. Todd; Balu, Saianand; Bodenheimer, Tom; Fan, Cheng; Hoadley, Katherine A.; Hoyle, Alan P.; Jefferys, Stuart R.; Jones, Corbin D.; Meng, Shaowu; Mieczkowski, Piotr A.; Mose, Lisle E.; Perou, Amy H.; Perou, Charles M.; Roach, Jeffrey; Shi, Yan; Simons, Janae V.; Skelly, Tara; Soloway, Matthew G.; Tan, Donghui; Veluvolu, Umadevi; Fan, Huihui; Hinoue, Toshinori; Laird, Peter W.; Shen, Hui; Zhou, Wanding; Bellair, Michelle; Chang, Kyle; Covington, Kyle; Creighton, Chad J.; Dinh, Huyen; Doddapaneni, Harsha Vardhan; Donehower, Lawrence A.; Drummond, Jennifer; Gibbs, Richard A.; Glenn, Robert; Hale, Walker; Han, Yi; Hu, Jianhong; Korchina, Viktoriya; Lee, Sandra; Lewis, Lora; Li, Wei; Liu, Xiuping; Morgan, Margaret; Morton, Donna; Muzny, Donna; Santibanez, Jireh; Sheth, Margi; Shinbrot, Eve; Wang, Linghua; Wang, Min; Wheeler, David A.; Xi, Liu; Zhao, Fengmei; Hess, Julian; Appelbaum, Elizabeth L.; Bailey, Matthew; Cordes, Matthew G.; Ding, Li; Fronick, Catrina C.; Fulton, Lucinda A.; Fulton, Robert S.; Kandoth, Cyriac; Mardis, Elaine R.; McLellan, Michael D.; Miller, Christopher A.; Schmidt, Heather K.; Wilson, Richard K.; Crain, Daniel; Curley, Erin; Gardner, Johanna; Lau, Kevin; Mallery, David; Morris, Scott; Paulauskis, Joseph; Penny, Robert; Shelton, Candace; Shelton, Troy; Sherman, Mark; Thompson, Eric; Yena, Peggy; Bowen, Jay; Gastier-Foster, Julie M.; Gerken, Mark; Leraas, Kristen M.; Lichtenberg, Tara M.; Ramirez, Nilsa C.; Wise, Lisa; Zmuda, Erik; Corcoran, Niall; Costello, Tony; Hovens, Christopher; Carvalho, Andre L.; de Carvalho, Ana C.; Fregnani, José H.; Longatto-Filho, Adhemar; Reis, Rui M.; Scapulatempo-Neto, Cristovam; Silveira, Henrique C.S.; Vidal, Daniel O.; Burnette, Andrew; Eschbacher, Jennifer; Hermes, Beth; Noss, Ardene; Singh, Rosy; Anderson, Matthew L.; Castro, Patricia D.; Ittmann, Michael; Huntsman, David; Kohl, Bernard; Le, Xuan; Thorp, Richard; Andry, Chris; Duffy, Elizabeth R.; Lyadov, Vladimir; Paklina, Oxana; Setdikova, Galiya; Shabunin, Alexey; Tavobilov, Mikhail; McPherson, Christopher; Warnick, Ronald; Berkowitz, Ross; Cramer, Daniel; Feltmate, Colleen; Horowitz, Neil; Kibel, Adam; Muto, Michael; Raut, Chandrajit P.; Malykh, Andrei; Barnholtz-Sloan, Jill S.; Barrett, Wendi; Devine, Karen; Fulop, Jordonna; Ostrom, Quinn T.; Shimmel, Kristen; Wolinsky, Yingli; Sloan, Andrew E.; De Rose, Agostino; Giuliante, Felice; Goodman, Marc; Karlan, Beth Y.; Hagedorn, Curt H.; Eckman, John; Harr, Jodi; Myers, Jerome; Tucker, Kelinda; Zach, Leigh Anne; Deyarmin, Brenda; Hu, Hai; Kvecher, Leonid; Larson, Caroline; Mural, Richard J.; Somiari, Stella; Vicha, Ales; Zelinka, Tomas; Bennett, Joseph; Iacocca, Mary; Rabeno, Brenda; Swanson, Patricia; Latour, Mathieu; Lacombe, Louis; Têtu, Bernard; Bergeron, Alain; McGraw, Mary; Staugaitis, Susan M.; Chabot, John; Hibshoosh, Hanina; Sepulveda, Antonia; Su, Tao; Wang, Timothy; Potapova, Olga; Voronina, Olga; Desjardins, Laurence; Mariani, Odette; Roman-Roman, Sergio; Sastre, Xavier; Stern, Marc Henri; Cheng, Feixiong; Signoretti, Sabina; Berchuck, Andrew; Bigner, Darell; Lipp, Eric; Marks, Jeffrey; McCall, Shannon; McLendon, Roger; Secord, Angeles; Sharp, Alexis; Behera, Madhusmita; Brat, Daniel J.; Chen, Amy; Delman, Keith; Force, Seth; Khuri, Fadlo; Magliocca, Kelly; Maithel, Shishir; Olson, Jeffrey J.; Owonikoko, Taofeek; Pickens, Alan; Ramalingam, Suresh; Shin, Dong M.; Sica, Gabriel; Van Meir, Erwin G.; Zhang, Hongzheng; Eijckenboom, Wil; Gillis, Ad; Korpershoek, Esther; Looijenga, Leendert; Oosterhuis, Wolter; Stoop, Hans; van Kessel, Kim E.; Zwarthoff, Ellen C.; Calatozzolo, Chiara; Cuppini, Lucia; Cuzzubbo, Stefania; DiMeco, Francesco; Finocchiaro, Gaetano; Mattei, Luca; Perin, Alessandro; Pollo, Bianca; Chen, Chu; Houck, John; Lohavanichbutr, Pawadee; Hartmann, Arndt; Stoehr, Christine; Stoehr, Robert; Taubert, Helge; Wach, Sven; Wullich, Bernd; Kycler, Witold; Murawa, Dawid; Wiznerowicz, Maciej; Chung, Ki; Edenfield, W. Jeffrey; Martin, Julie; Baudin, Eric; Bubley, Glenn; Bueno, Raphael; De Rienzo, Assunta; Richards, William G.; Kalkanis, Steven; Mikkelsen, Tom; Noushmehr, Houtan; Scarpace, Lisa; Girard, Nicolas; Aymerich, Marta; Campo, Elias; Giné, Eva; Guillermo, Armando López; Van Bang, Nguyen; Hanh, Phan Thi; Phu, Bui Duc; Tang, Yufang; Colman, Howard; Evason, Kimberley; Dottino, Peter R.; Martignetti, John A.; Gabra, Hani; Juhl, Hartmut; Akeredolu, Teniola; Stepa, Serghei; Hoon, Dave; Ahn, Keunsoo; Kang, Koo Jeong; Beuschlein, Felix; Breggia, Anne; Birrer, Michael; Bell, Debra; Borad, Mitesh; Bryce, Alan H.; Castle, Erik; Chandan, Vishal; Cheville, John; Copland, John A.; Farnell, Michael; Flotte, Thomas; Giama, Nasra; Ho, Thai; Kendrick, Michael; Kocher, Jean Pierre; Kopp, Karla; Moser, Catherine; Nagorney, David; O'Brien, Daniel; O'Neill, Brian Patrick; Patel, Tushar; Petersen, Gloria; Que, Florencia; Rivera, Michael; Roberts, Lewis; Smallridge, Robert; Smyrk, Thomas; Stanton, Melissa; Thompson, R. Houston; Torbenson, Michael; Yang, Ju Dong; Zhang, Lizhi; Brimo, Fadi; Ajani, Jaffer A.; Gonzalez, Ana Maria Angulo; Behrens, Carmen; Bondaruk, Jolanta; Broaddus, Russell; Czerniak, Bogdan; Esmaeli, Bita; Fujimoto, Junya; Gershenwald, Jeffrey; Guo, Charles; Lazar, Alexander J.; Logothetis, Christopher; Meric-Bernstam, Funda; Moran, Cesar; Ramondetta, Lois; Rice, David; Sood, Anil; Tamboli, Pheroze; Thompson, Timothy; Troncoso, Patricia; Tsao, Anne; Wistuba, Ignacio; Carter, Candace; Haydu, Lauren; Hersey, Peter; Jakrot, Valerie; Kakavand, Hojabr; Kefford, Richard; Lee, Kenneth; Long, Georgina; Mann, Graham; Quinn, Michael; Saw, Robyn; Scolyer, Richard; Shannon, Kerwin; Spillane, Andrew; Stretch, Jonathan; Synott, Maria; Thompson, John; Wilmott, James; Al-Ahmadie, Hikmat; Chan, Timothy A.; Ghossein, Ronald; Gopalan, Anuradha; Levine, Douglas A.; Reuter, Victor; Singer, Samuel; Singh, Bhuvanesh; Tien, Nguyen Viet; Broudy, Thomas; Mirsaidi, Cyrus; Nair, Praveen; Drwiega, Paul; Miller, Judy; Smith, Jennifer; Zaren, Howard; Park, Joong Won; Hung, Nguyen Phi; Kebebew, Electron; Linehan, W. Marston; Metwalli, Adam R.; Pacak, Karel; Pinto, Peter A.; Schiffman, Mark; Schmidt, Laura S.; Vocke, Cathy D.; Wentzensen, Nicolas; Worrell, Robert; Yang, Hannah; Moncrieff, Marc; Goparaju, Chandra; Melamed, Jonathan; Pass, Harvey; Botnariuc, Natalia; Caraman, Irina; Cernat, Mircea; Chemencedji, Inga; Clipca, Adrian; Doruc, Serghei; Gorincioi, Ghenadie; Mura, Sergiu; Pirtac, Maria; Stancul, Irina; Tcaciuc, Diana; Albert, Monique; Alexopoulou, Iakovina; Arnaout, Angel; Bartlett, John; Engel, Jay; Gilbert, Sebastien; Parfitt, Jeremy; Sekhon, Harman; Thomas, George; Rassl, Doris M.; Rintoul, Robert C.; Bifulco, Carlo; Tamakawa, Raina; Urba, Walter; Hayward, Nicholas; Timmers, Henri; Antenucci, Anna; Facciolo, Francesco; Grazi, Gianluca; Marino, Mirella; Merola, Roberta; de Krijger, Ronald; Gimenez-Roqueplo, Anne Paule; Piché, Alain; Chevalier, Simone; McKercher, Ginette; Birsoy, Kivanc; Barnett, Gene; Brewer, Cathy; Farver, Carol; Naska, Theresa; Pennell, Nathan A.; Raymond, Daniel; Schilero, Cathy; Smolenski, Kathy; Williams, Felicia; Morrison, Carl; Borgia, Jeffrey A.; Liptay, Michael J.; Pool, Mark; Seder, Christopher W.; Junker, Kerstin; Omberg, Larsson; Dinkin, Mikhail; Manikhas, George; Alvaro, Domenico; Bragazzi, Maria Consiglia; Cardinale, Vincenzo; Carpino, Guido; Gaudio, Eugenio; Chesla, David; Cottingham, Sandra; Dubina, Michael; Moiseenko, Fedor; Dhanasekaran, Renumathy; Becker, Karl Friedrich; Janssen, Klaus Peter; Slotta-Huspenina, Julia; Abdel-Rahman, Mohamed H.; Aziz, Dina; Bell, Sue; Cebulla, Colleen M.; Davis, Amy; Duell, Rebecca; Elder, J. Bradley; Hilty, Joe; Kumar, Bahavna; Lang, James; Lehman, Norman L.; Mandt, Randy; Nguyen, Phuong; Pilarski, Robert; Rai, Karan; Schoenfield, Lynn; Senecal, Kelly; Wakely, Paul; Hansen, Paul; Lechan, Ronald; Powers, James; Tischler, Arthur; Grizzle, William E.; Sexton, Katherine C.; Kastl, Alison; Henderson, Joel; Porten, Sima; Waldmann, Jens; Fassnacht, Martin; Asa, Sylvia L.; Schadendorf, Dirk; Couce, Marta; Graefen, Markus; Huland, Hartwig; Sauter, Guido; Schlomm, Thorsten; Simon, Ronald; Tennstedt, Pierre; Olabode, Oluwole; Nelson, Mark; Bathe, Oliver; Carroll, Peter R.; Chan, June M.; Disaia, Philip; Glenn, Pat; Kelley, Robin K.; Landen, Charles N.; Phillips, Joanna; Prados, Michael; Simko, Jeffry; Smith-McCune, Karen; VandenBerg, Scott; Roggin, Kevin; Fehrenbach, Ashley; Kendler, Ady; Sifri, Suzanne; Steele, Ruth; Jimeno, Antonio; Carey, Francis; Forgie, Ian; Mannelli, Massimo; Carney, Michael; Hernandez, Brenda; Campos, Benito; Herold-Mende, Christel; Jungk, Christin; Unterberg, Andreas; von Deimling, Andreas; Bossler, Aaron; Galbraith, Joseph; Jacobus, Laura; Knudson, Michael; Knutson, Tina; Ma, Deqin; Milhem, Mohammed; Sigmund, Rita; Godwin, Andrew K.; Madan, Rashna; Rosenthal, Howard G.; Adebamowo, Clement; Adebamowo, Sally N.; Boussioutas, Alex; Beer, David; Giordano, Thomas; Mes-Masson, Anne Marie; Saad, Fred; Bocklage, Therese; Landrum, Lisa; Mannel, Robert; Moore, Kathleen; Moxley, Katherine; Postier, Russel; Walker, Joan; Zuna, Rosemary; Feldman, Michael; Valdivieso, Federico; Dhir, Rajiv; Luketich, James; Pinero, Edna M.Mora; Quintero-Aguilo, Mario; Carlotti, Carlos Gilberto; Dos Santos, Jose Sebastião; Kemp, Rafael; Sankarankuty, Ajith; Tirapelli, Daniela; Catto, James; Agnew, Kathy; Swisher, Elizabeth; Creaney, Jenette; Robinson, Bruce; Shelley, Carl Simon; Godwin, Eryn M.; Kendall, Sara; Shipman, Cassaundra; Bradford, Carol; Carey, Thomas; Haddad, Andrea; Moyer, Jeffey; Peterson, Lisa; Prince, Mark; Rozek, Laura; Wolf, Gregory; Bowman, Rayleen; Fong, Kwun M.; Yang, Ian; Korst, Robert; Rathmell, W. Kimryn; Fantacone-Campbell, J. Leigh; Hooke, Jeffrey A.; Kovatich, Albert J.; Shriver, Craig D.; DiPersio, John; Drake, Bettina; Govindan, Ramaswamy; Heath, Sharon; Ley, Timothy; Van Tine, Brian; Westervelt, Peter; Rubin, Mark A.; Lee, Jung Il; Aredes, Natália D.; Mariamidze, Armaz; Sood, Anil K.; Gunaratne, Preethi H.; Sumazin, Pavel

    2018-01-01

    Long noncoding RNAs (lncRNAs) are commonly dysregulated in tumors, but only a handful are known to play pathophysiological roles in cancer. We inferred lncRNAs that dysregulate cancer pathways, oncogenes, and tumor suppressors (cancer genes) by modeling their effects on the activity of transcription

  14. Lineage relationship of prostate cancer cell types based on gene expression

    Directory of Open Access Journals (Sweden)

    Ware Carol B

    2011-05-01

    Full Text Available Abstract Background Prostate tumor heterogeneity is a major factor in disease management. Heterogeneity could be due to multiple cancer cell types with distinct gene expression. Of clinical importance is the so-called cancer stem cell type. Cell type-specific transcriptomes are used to examine lineage relationship among cancer cell types and their expression similarity to normal cell types including stem/progenitor cells. Methods Transcriptomes were determined by Affymetrix DNA array analysis for the following cell types. Putative prostate progenitor cell populations were characterized and isolated by expression of the membrane transporter ABCG2. Stem cells were represented by embryonic stem and embryonal carcinoma cells. The cancer cell types were Gleason pattern 3 (glandular histomorphology and pattern 4 (aglandular sorted from primary tumors, cultured prostate cancer cell lines originally established from metastatic lesions, xenografts LuCaP 35 (adenocarcinoma phenotype and LuCaP 49 (neuroendocrine/small cell carcinoma grown in mice. No detectable gene expression differences were detected among serial passages of the LuCaP xenografts. Results Based on transcriptomes, the different cancer cell types could be clustered into a luminal-like grouping and a non-luminal-like (also not basal-like grouping. The non-luminal-like types showed expression more similar to that of stem/progenitor cells than the luminal-like types. However, none showed expression of stem cell genes known to maintain stemness. Conclusions Non-luminal-like types are all representatives of aggressive disease, and this could be attributed to the similarity in overall gene expression to stem and progenitor cell types.

  15. Genetic variation in genes of the fatty acid synthesis pathway and breast cancer risk

    DEFF Research Database (Denmark)

    Campa, Daniele; McKay, James; Sinilnikova, Olga

    2009-01-01

    and FASN) is related to breast cancer risk and body-mass index (BMI) by studying 1,294 breast cancer cases and 2,452 controls from the European Prospective Investigation on Cancer (EPIC). We resequenced the FAS gene and combined information of SNPs found by resequencing and SNPs from public databases....... Using a tagging approach and selecting 20 SNPs, we covered all the common genetic variation of these genes. In this study we were not able to find any statistically significant association between the SNPs in the FAS, ChREBP and SREPB-1 genes and an increased risk of breast cancer overall...

  16. CAsubtype: An R Package to Identify Gene Sets Predictive of Cancer Subtypes and Clinical Outcomes.

    Science.gov (United States)

    Kong, Hualei; Tong, Pan; Zhao, Xiaodong; Sun, Jielin; Li, Hua

    2018-03-01

    In the past decade, molecular classification of cancer has gained high popularity owing to its high predictive power on clinical outcomes as compared with traditional methods commonly used in clinical practice. In particular, using gene expression profiles, recent studies have successfully identified a number of gene sets for the delineation of cancer subtypes that are associated with distinct prognosis. However, identification of such gene sets remains a laborious task due to the lack of tools with flexibility, integration and ease of use. To reduce the burden, we have developed an R package, CAsubtype, to efficiently identify gene sets predictive of cancer subtypes and clinical outcomes. By integrating more than 13,000 annotated gene sets, CAsubtype provides a comprehensive repertoire of candidates for new cancer subtype identification. For easy data access, CAsubtype further includes the gene expression and clinical data of more than 2000 cancer patients from TCGA. CAsubtype first employs principal component analysis to identify gene sets (from user-provided or package-integrated ones) with robust principal components representing significantly large variation between cancer samples. Based on these principal components, CAsubtype visualizes the sample distribution in low-dimensional space for better understanding of the distinction between samples and classifies samples into subgroups with prevalent clustering algorithms. Finally, CAsubtype performs survival analysis to compare the clinical outcomes between the identified subgroups, assessing their clinical value as potentially novel cancer subtypes. In conclusion, CAsubtype is a flexible and well-integrated tool in the R environment to identify gene sets for cancer subtype identification and clinical outcome prediction. Its simple R commands and comprehensive data sets enable efficient examination of the clinical value of any given gene set, thus facilitating hypothesis generating and testing in biological and

  17. New genes linked to lung cancer susceptibility in Asian women

    Science.gov (United States)

    An international group of scientists has identified three genes that predispose Asian women who have never smoked to lung cancer. The discovery of specific genetic variations, which have not previously been associated with lung cancer risk in other popul

  18. Up-regulation of integrin β3 in radioresistant pancreatic cancer impairs adenovirus-mediated gene therapy

    International Nuclear Information System (INIS)

    Egami, Takuya; Ohuchida, Kenoki; Yasui, Takaharu; Onimaru, Manabu; Toma, Hiroki; Sato, Norihiro; Tanaka, Masao; Mizumoto, Kazuhiro; Matsumoto, Kunio

    2009-01-01

    Adenovirus-mediated gene therapy is a promising approach for the treatment of pancreatic cancer. We previously reported that radiation enhanced adenovirus-mediated gene expression in pancreatic cancer, suggesting that adenoviral gene therapy might be more effective in radioresistant pancreatic cancer cells. In the present study, we compared the transduction efficiency of adenovirus-delivered genes in radiosensitive and radioresistant cells, and investigated the underlying mechanisms. We used an adenovirus expressing the hepatocyte growth factor antagonist, NK4 (Ad-NK4), as a representative gene therapy. We established two radioresistant human pancreatic cancer cell lines using fractionated irradiation. Radiosensitive and radioresistant pancreatic cancer cells were infected with Ad-NK4, and NK4 levels in the cells were measured. In order to investigate the mechanisms responsible for the differences in the transduction efficiency between these cells, we measured expression of the genes mediating adenovirus infection and endocytosis. The results revealed that NK4 levels in radioresistant cells were significantly lower (P<0.01) than those in radiosensitive cells, although there were no significant differences in adenovirus uptake between radiosensitive cells and radioresistant cells. Integrin β3 was up-regulated and the Coxsackie virus and adenovirus receptor was down-regulated in radioresistant cells, and inhibition of integrin β3 promoted adenovirus gene transfer. These results suggest that inhibition of integrin β3 in radioresistant pancreatic cancer cells could enhance adenovirus-mediated gene therapy. (author)

  19. Personalizing gene therapy in gastric cancer.

    Science.gov (United States)

    Vogiatzi, P; Cassone, M; Claudio, P P

    2006-11-01

    Gene therapy was proposed many decades ago as a more straightforward and definitive way of curing human diseases, but only recently technical advancements and improved knowledge have allowed its active development as a broad and promising research field. After the first successes in the cure of genetic and infectious diseases, it has been actively investigated as a means to decrease the burden and suffering generated by cancer. The field of gastric cancer is witnessing an impressive flourishing of studies testing the possibilities and actual efficacy of the many different strategies employed in gene therapy, and overall results seem to be two-sided: while original ideas and innovative protocols are providing extremely interesting contributions with great potential, more advanced-phase studies concluded so far have fallen short of expectations regarding efficacy, although invariably demonstrating little or no toxicity. An overview of the major efforts in this field is provided here, and a critical discussion is presented on the single strategies undertaken and on the overall balance between potentiality and pitfalls. Copyright 2006 Prous Science. All rights reserved.

  20. Selected Aspects of Molecular Diagnostics of Constitutional Alterations in BRCA1 and BRCA2 Genes Associated with Increased Risk of Breast Cancer in the Polish Population

    Directory of Open Access Journals (Sweden)

    Górski Bohdan

    2006-08-01

    discovered in 8.1% and NBS1 mutation (657del5 in 0.8% of the patients. The changes were more frequent in the study than the control group. However, the risk of breast cancer was significantly higher for only three of them. Two changes, namely 5382insC and C61G of the BRCA1 gene revealed a high penetrance (OR 6.2 and 15.0, respectively, while I157T of the CHEK2 gene was associated with a low risk of breast cancer (OR 1.4. Mutations of the BRCA1, CHEK2 and NSB1 genes were significantly more frequent in patients with breast cancer diagnosed prior to 50 years of age. The mean age at diagnosis was 47.2 years for carriers of the BRCA1 mutation, 50.7 years for NBS1 and 54.2 for CHEK2. The mean age at diagnosis in the group of patients without any if the mutations described above was 56.1 years. When breast cancer patients with the diagnosis before and after 50 years of age were compared, the greatest difference in the frequency of mutation was revealed for the BRCA1 gene (5.5% vs 1.5%. BRCA1 mutations were significantly more frequent I familial aggregates of the tumor (10.8%, but were also present in sporadic cases (1.8%. For the CHEK2 and NBS1 genes, there was no correlation between frequency and family history of cancer in probands. 5. A higher frequency of heterozygous carriers of 5972C/T polymorphism of the BRCA2 gene was demonstrated for breast cancer prior to 50 years of age (OR 1.4. the risk of breast cancer prior to 50 years of age was particularly high in 5972T/T homozygote (OR 4.7. This polymorphism was associated with breast cancer notable for intraductal growth. Conclusions 1. Efficient molecular diagnostics of genetic predisposition to breast/ovarian cancer in Poland could be based on relatively simple tests disclosing some of the most frequent recurrent mutations of the BRCA1 gene. 2. The risk of breast cancer seems to be only slightly higher in carriers of some BRCA1 gene mutations. This finding should be taken into account during work on prevention schemes for

  1. Expression of glucocorticoid and progesterone nuclear receptor genes in archival breast cancer tissue

    International Nuclear Information System (INIS)

    Smith, Robert A; Lea, Rod A; Curran, Joanne E; Weinstein, Stephen R; Griffiths, Lyn R

    2003-01-01

    Previous studies in our laboratory have shown associations of specific nuclear receptor gene variants with sporadic breast cancer. In order to investigate these findings further, we conducted the present study to determine whether expression levels of the progesterone and glucocorticoid nuclear receptor genes vary in different breast cancer grades. RNA was extracted from paraffin-embedded archival breast tumour tissue and converted into cDNA. Sample cDNA underwent PCR using labelled primers to enable quantitation of mRNA expression. Expression data were normalized against the 18S ribosomal gene multiplex and analyzed using analysis of variance. Analysis of variance indicated a variable level of expression of both genes with regard to breast cancer grade (P = 0.00033 for glucocorticoid receptor and P = 0.023 for progesterone receptor). Statistical analysis indicated that expression of the progesterone nuclear receptor is elevated in late grade breast cancer tissue

  2. Evaluation of Fanconi anaemia genes FANCA, FANCC and FANCL in cervical cancer susceptibility.

    Science.gov (United States)

    Juko-Pecirep, Ivana; Ivansson, Emma L; Gyllensten, Ulf B

    2011-08-01

    Disrupting the function of any of the 13 Fanconi anaemia (FA) genes causes a DNA repair deficiency disorder, with patients being susceptible to a number of cancer types. Variation in the family of FA genes has been suggested to affect risk of cervical cancer. The current study evaluates the influence of three genes in the FA pathway on cervical cancer risk in Swedish women. TagSNPs in FANCA, FANCC and FANCL were selected using the Tagger algorithm in Haploview. A total of 81 tagSNPs were genotyped in 782 cases (CIN3 or ICC) and 775 controls using the Illumina GoldenGate Assay and statistically analyzed for association with cervical cancer. 72 SNPs were successfully genotyped in >98% of the samples. Nominal associations were detected for FANCA rs11649196 (p=0.05) and rs4128763 in FANCC (p=0.02). The associations did not withstand correction for multiple testing. The current study does not support that genetic variation in FANCA, FANCC or FANCL genes affects susceptibility to cervical cancer in the Swedish population. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. A Search for Gene Fusions/Translocations in Breast Cancer

    Science.gov (United States)

    2013-11-01

    2008). The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320, 1344–1349. Palanisamy, N., Ateeq, B., Kalyana-Sundaram...census of human cancer genes. Nat Rev Cancer 4, 177–183. [2] Santarius T, Shipley J, Brewer D, Stratton MR, and Cooper CS (2010). A census of amplified

  4. Discretization of Gene Expression Data Unmasks Molecular Subgroups Recurring in Different Human Cancer Types.

    Directory of Open Access Journals (Sweden)

    Manfred Beleut

    Full Text Available Despite the individually different molecular alterations in tumors, the malignancy associated biological traits are strikingly similar. Results of a previous study using renal cell carcinoma (RCC as a model pointed towards cancer-related features, which could be visualized as three groups by microarray based gene expression analysis. In this study, we used a mathematic model to verify the presence of these groups in RCC as well as in other cancer types. We developed an algorithm for gene-expression deviation profiling for analyzing gene expression data of a total of 8397 patients with 13 different cancer types and normal tissues. We revealed three common Cancer Transcriptomic Profiles (CTPs which recurred in all investigated tumors. Additionally, CTPs remained robust regardless of the functions or numbers of genes analyzed. CTPs may represent common genetic fingerprints, which potentially reflect the closely related biological traits of human cancers.

  5. Simultaneous gene silencing of Bcl-2, XIAP and Survivin re-sensitizes pancreatic cancer cells towards apoptosis

    International Nuclear Information System (INIS)

    Rückert, Felix; Samm, Nicole; Lehner, Anne-Kathrin; Saeger, Hans-Detlev; Grützmann, Robert; Pilarsky, Christian

    2010-01-01

    Pancreatic ductal adenocarcinoma shows a distinct apoptosis resistance, which contributes significantly to the aggressive nature of this tumor and constrains the effectiveness of new therapeutic strategies. Apoptosis resistance is determined by the net balance of the cells pro-and anti-apoptotic 'control mechanisms'. Numerous dysregulated anti-apoptotic genes have been identified in pancreatic cancer and seem to contribute to the high anti-apoptotic buffering capacity. We aimed to compare the benefit of simultaneous gene silencing (SGS) of several candidate genes with conventional gene silencing of single genes. From literature search we identified the anti-apoptotic genes XIAP, Survivin and Bcl-2 as commonly upregulated in pancreatic cancer. We performed SGS and silencing of single candidate genes using siRNA molecules in two pancreatic cancer cell lines. Effectiveness of SGS was assessed by qRT-PCR and western blotting. Apoptosis induction was measured by flow cytometry and caspase activation. Simultaneous gene silencing reduced expression of the three target genes effectively. Compared to silencing of a single target or control, SGS of these genes resulted in a significant higher induction of apoptosis in pancreatic cancer cells. In the present study we performed a subliminal silencing of different anti-apoptotic target genes simultaneously. Compared to silencing of single target genes, SGS had a significant higher impact on apoptosis induction in pancreatic cancer cells. Thereby, we give further evidence for the concept of an anti-apoptotic buffering capacity of pancreatic cancer cells

  6. Efficacy of laser capture microdissection plus RT-PCR technique in analyzing gene expression levels in human gastric cancer and colon cancer

    International Nuclear Information System (INIS)

    Makino, Hiroshi; Uetake, Hiroyuki; Danenberg, Kathleen; Danenberg, Peter V; Sugihara, Kenichi

    2008-01-01

    Thymidylate synthase, dihydropyrimidine dehydrogenase, thymidine phosphorylase, and orotate phosphoribosyltransferase gene expressions are reported to be valid predictive markers for 5-fluorouracil sensitivity to gastrointestinal cancer. For more reliable predictability, their expressions in cancer cells and stromal cells in the cancerous tissue (cancerous stroma) have been separately investigated using laser capture microdissection. Thymidylate synthase, dihydropyrimidine dehydrogenase, thymidine phosphorylase, and orotate phosphoribosyltransferase mRNA in cancer cells and cancerous stroma from samples of 47 gastric and 43 colon cancers were separately quantified by reverse transcription polymerase chain reaction after laser capture microdissection. In both gastric and colon cancers, thymidylate synthase and orotate phosphoribosyltransferase mRNA expressions were higher (p < 0.0001, p <0.0001 respectively in gastric cancer and P = 0.0002, p < 0.0001 respectively in colon cancer) and dihydropyrimidine dehydrogenase mRNA expressions were lower in cancer cells than in cancerous stroma (P = 0.0136 in gastric cancer and p < 0.0001 in colon cancer). In contrast, thymidine phosphorylase mRNA was higher in cancer cells than in cancerous stroma in gastric cancer (p < 0.0001) and lower in cancer cells than in cancerous stroma in colon cancer (P = 0.0055). By using this method, we could estimate gene expressions separately in cancer cells and stromal cells from colon and gastric cancers, in spite of the amount of stromal tissue. Our method is thought to be useful for accurately evaluating intratumoral gene expressions

  7. MicroRNA genes and their target 3'-untranslated regions are infrequently somatically mutated in ovarian cancers.

    Directory of Open Access Journals (Sweden)

    Georgina L Ryland

    Full Text Available MicroRNAs are key regulators of gene expression and have been shown to have altered expression in a variety of cancer types, including epithelial ovarian cancer. MiRNA function is most often achieved through binding to the 3'-untranslated region of the target protein coding gene. Mutation screening using massively-parallel sequencing of 712 miRNA genes in 86 ovarian cancer cases identified only 5 mutated miRNA genes, each in a different case. One mutation was located in the mature miRNA, and three mutations were predicted to alter the secondary structure of the miRNA transcript. Screening of the 3'-untranslated region of 18 candidate cancer genes identified one mutation in each of AKT2, EGFR, ERRB2 and CTNNB1. The functional effect of these mutations is unclear, as expression data available for AKT2 and EGFR showed no increase in gene transcript. Mutations in miRNA genes and 3'-untranslated regions are thus uncommon in ovarian cancer.

  8. Telomere structure and maintenance gene variants and risk of five cancer types

    Science.gov (United States)

    Karami, Sara; Han, Younghun; Pande, Mala; Cheng, Iona; Rudd, James; Pierce, Brandon L.; Nutter, Ellen L.; Schumacher, Fredrick R.; Kote-Jarai, Zsofia; Lindstrom, Sara; Witte, John S.; Fang, Shenying; Han, Jiali; Kraft, Peter; Hunter, David; Song, Fengju; Hung, Rayjean J.; McKay, James; Gruber, Stephen B.; Chanock, Stephen J.; Risch, Angela; Shen, Hongbing; Haiman, Christopher A.; Boardman, Lisa; Ulrich, Cornelia M.; Casey, Graham; Peters, Ulrike; Al Olama, Ali Amin; Berchuck, Andrew; Berndt, Sonja I.; Bezieau, Stephane; Brennan, Paul; Brenner, Hermann; Brinton, Louise; Caporaso, Neil; Chan, Andrew T.; Chang-Claude, Jenny; Christiani, David C.; Cunningham, Julie M.; Easton, Douglas; Eeles, Rosalind A.; Eisen, Timothy; Gala, Manish; Gallinger, Steven J.; Gayther, Simon A.; Goode, Ellen L.; Grönberg, Henrik; Henderson, Brian E.; Houlston, Richard; Joshi, Amit D.; Küry, Sébastien; Landi, Mari T.; Le Marchand, Loic; Muir, Kenneth; Newcomb, Polly A.; Permuth-Wey, Jenny; Pharoah, Paul; Phelan, Catherine; Potter, John D.; Ramus, Susan J.; Risch, Harvey; Schildkraut, Joellen; Slattery, Martha L.; Song, Honglin; Wentzensen, Nicolas; White, Emily; Wiklund, Fredrik; Zanke, Brent W.; Sellers, Thomas A.; Zheng, Wei; Chatterjee, Nilanjan; Amos, Christopher I.; Doherty, Jennifer A.

    2016-01-01

    Telomeres cap chromosome ends, protecting them from degradation, double-strand breaks, and end-to-end fusions. Telomeres are maintained by telomerase, a reverse transcriptase encoded by TERT, and an RNA template encoded by TERC. Loci in the TERT and adjoining CLPTM1L region are associated with risk of multiple cancers. We therefore investigated associations between variants in 22 telomere structure and maintenance gene regions and colorectal, breast, prostate, ovarian, and lung cancer risk. We performed subset-based meta-analyses of 204,993 directly-measured and imputed SNPs among 61,851 cancer cases and 74,457 controls of European descent. Independent associations for SNP minor alleles were identified using sequential conditional analysis (with gene-level P-value cutoffs ≤3.08×10−5). Of the thirteen independent SNPs observed to be associated with cancer risk, novel findings were observed for seven loci. Across the TERT-CLPTML1 region, rs12655062 was associated positively with prostate cancer, and inversely with colorectal and ovarian cancers, and rs115960372 was associated positively with prostate cancer. Across the TERC region, rs75316749 was positively associated with colorectal, breast, ovarian, and lung cancers. Across the DCLRE1B region, rs974404 and rs12144215 were inversely associated with prostate and lung cancers, and colorectal, breast, and ovarian cancers, respectively. Near POT1, rs116895242 was inversely associated with colorectal, ovarian, and lung cancers, and RTEL1 rs34978822 was inversely associated with prostate and lung cancers. The complex association patterns in telomere-related genes across cancer types may provide insight into mechanisms through which telomere dysfunction in different tissues influences cancer risk. PMID:27459707

  9. NLRC5: a newly discovered MHC class I transactivator (CITA)

    OpenAIRE

    Meissner, Torsten B.; Li, Amy; Kobayashi, Koichi S.

    2011-01-01

    Major histocompatibility complex (MHC) class I and class II are crucial for the function of the human adaptive immune system. An NLR protein, CIITA (MHC class II transactivator), is a master regulator of MHC class II gene expression as well as of some of the genes involved in MHC class II antigen presentation. It has recently been discovered that another member of the NLR protein family, NLRC5, transcriptionally activates MHC class I genes, and thus acts as “CITA” (MHC class I transactivator)...

  10. In silico analysis and verification of S100 gene expression in gastric cancer

    International Nuclear Information System (INIS)

    Liu, Ji; Li, Xue; Dong, Guang-Long; Zhang, Hong-Wei; Chen, Dong-Li; Du, Jian-Jun; Zheng, Jian-Yong; Li, Ji-Peng; Wang, Wei-Zhong

    2008-01-01

    The S100 protein family comprises 22 members whose protein sequences encompass at least one EF-hand Ca 2+ binding motif. They were involved in the regulation of a number of cellular processes such as cell cycle progression and differentiation. However, the expression status of S100 family members in gastric cancer was not known yet. Combined with analysis of series analysis of gene expression, virtual Northern blot and microarray data, the expression levels of S100 family members in normal and malignant stomach tissues were systematically investigated. The expression of S100A3 was further evaluated by quantitative RT-PCR. At least 5 S100 genes were found to be upregulated in gastric cance by in silico analysis. Among them, four genes, including S100A2, S100A4, S100A7 and S100A10, were reported to overexpressed in gastric cancer previously. The expression of S100A3 in eighty patients of gastric cancer was further examined. The results showed that the mean expression levels of S100A3 in gastric cancer tissues were 2.5 times as high as in adjacent non-tumorous tissues. S100A3 expression was correlated with tumor differentiation and TNM (Tumor-Node-Metastasis) stage of gastric cancer, which was relatively highly expressed in poorly differentiated and advanced gastric cancer tissues (P < 0.05). To our knowledge this is the first report of systematic evaluation of S100 gene expressions in gastric cancers by multiple in silico analysis. The results indicated that overexpression of S100 gene family members were characteristics of gastric cancers and S100A3 might play important roles in differentiation and progression of gastric cancer

  11. Recurrently Mutated Genes Differ between Leptomeningeal and Solid Lung Cancer Brain Metastases.

    Science.gov (United States)

    Li, Yingmei; Liu, Boxiang; Connolly, Ian David; Kakusa, Bina Wasunga; Pan, Wenying; Nagpal, Seema; Montgomery, Stephen B; Hayden Gephart, Melanie

    2018-03-29

    When compared with solid brain metastases from NSCLC, leptomeningeal disease (LMD) has unique growth patterns and is rapidly fatal. Patients with LMD do not undergo surgical resection, limiting the tissue available for scientific research. In this study we performed whole exome sequencing on eight samples of LMD to identify somatic mutations and compared the results with those for 26 solid brain metastases. We found that taste 2 receptor member 31 gene (TAS2R31) and phosphodiesterase 4D interacting protein gene (PDE4DIP) were recurrently mutated among LMD samples, suggesting involvement in LMD progression. Together with a retrospective review of the charts of an additional 44 patients with NSCLC LMD, we discovered a surprisingly low number of KRAS mutations (n = 4 [7.7%]) but a high number of EGFR mutations (n = 33 [63.5%]). The median interval for development of LMD from NSCLC was shorter in patients with mutant EGFR (16.3 months) than in patients with wild-type EGFR (23.9 months) (p = 0.017). Targeted analysis of recurrent mutations thus presents a useful complement to the existing diagnostic tool kit, and correlations of EGFR in LMD and KRAS in solid metastases suggest that molecular distinctions or systemic treatment pressure underpin the differences in growth patterns within the brain. Copyright © 2018 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  12. Rrp1b, a new candidate susceptibility gene for breast cancer progression and metastasis.

    Directory of Open Access Journals (Sweden)

    Nigel P S Crawford

    2007-11-01

    Full Text Available A novel candidate metastasis modifier, ribosomal RNA processing 1 homolog B (Rrp1b, was identified through two independent approaches. First, yeast two-hybrid, immunoprecipitation, and functional assays demonstrated a physical and functional interaction between Rrp1b and the previous identified metastasis modifier Sipa1. In parallel, using mouse and human metastasis gene expression data it was observed that extracellular matrix (ECM genes are common components of metastasis predictive signatures, suggesting that ECM genes are either important markers or causal factors in metastasis. To investigate the relationship between ECM genes and poor prognosis in breast cancer, expression quantitative trait locus analysis of polyoma middle-T transgene-induced mammary tumor was performed. ECM gene expression was found to be consistently associated with Rrp1b expression. In vitro expression of Rrp1b significantly altered ECM gene expression, tumor growth, and dissemination in metastasis assays. Furthermore, a gene signature induced by ectopic expression of Rrp1b in tumor cells predicted survival in a human breast cancer gene expression dataset. Finally, constitutional polymorphism within RRP1B was found to be significantly associated with tumor progression in two independent breast cancer cohorts. These data suggest that RRP1B may be a novel susceptibility gene for breast cancer progression and metastasis.

  13. Cyclooxygenase and lipoxygenase gene expression in the inflammogenesis of breast cancer.

    Science.gov (United States)

    Kennedy, Brian M; Harris, Randall E

    2018-05-07

    We examined the expression of major inflammatory genes, cyclooxygenase-1 and 2 (COX1, COX2) and arachidonate 5-lipoxygenase (ALOX5) in 1090 tumor samples of invasive breast cancer from The Cancer Genome Atlas (TCGA). Mean cyclooxygenase expression (COX1 + COX2) ranked in the upper 99th percentile of all 20,531 genes and surprisingly, the mean expression of COX1 was more than tenfold higher than COX2. Highly significant correlations were observed between COX2 with eight tumor-promoting genes (EGR2, IL6, RGS2, B3GNT5, SGK1, SLC2A3, SFRP1 and ETS2) and between ALOX5 and ten tumor promoter genes (CD33, MYOF1, NLRP1, GAB3, CD4, IFR8, CYTH4, BTK, FGR, CD37). Expression of CYP19A1 (aromatase) was significantly correlated with COX2, but only in tumors positive for ER, PR and HER2. Tumor-promoting genes correlated with the expression of COX1, COX2, and ALOX5 are known to effectively increase mitogenesis, mutagenesis, angiogenesis, cell survival, immunosuppression and metastasis in the pathogenesis of breast cancer.

  14. Cell cycle genes and ovarian cancer susceptibility: a tagSNP analysis

    DEFF Research Database (Denmark)

    Cunningham, J M; Vierkant, R A; Sellers, T A

    2009-01-01

    BACKGROUND: Dysregulation of the cell cycle is a hallmark of many cancers including ovarian cancer, a leading cause of gynaecologic cancer mortality worldwide. METHODS: We examined single nucleotide polymorphisms (SNPs) (n=288) from 39 cell cycle regulation genes, including cyclins, cyclin......-dependent kinases (CDKs) and CDK inhibitors, in a two-stage study. White, non-Hispanic cases (n=829) and ovarian cancer-free controls (n=941) were genotyped using an Illumina assay. RESULTS: Eleven variants in nine genes (ABL1, CCNB2, CDKN1A, CCND3, E2F2, CDK2, E2F3, CDC2, and CDK7) were associated with risk...... of ovarian cancer in at least one genetic model. Seven SNPs were then assessed in four additional studies with 1689 cases and 3398 controls. Association between risk of ovarian cancer and ABL1 rs2855192 found in the original population [odds ratio, OR(BB vs AA) 2.81 (1.29-6.09), P=0.01] was also observed...

  15. A functional polymorphism at microRNA-629-binding site in the 3'-untranslated region of NBS1 gene confers an increased risk of lung cancer in Southern and Eastern Chinese population.

    Science.gov (United States)

    Yang, Lei; Li, Yinyan; Cheng, Mei; Huang, Dongsheng; Zheng, Jian; Liu, Bin; Ling, Xiaoxuan; Li, Qingchu; Zhang, Xin; Ji, Weidong; Zhou, Yifeng; Lu, Jiachun

    2012-02-01

    The genetic variations in NBS1 gene have been reported to be associated with cancer risk. The polymorphisms in 3'-untranslated region (3'-UTR) of NBS1 might affect gene's function and thus contribute to cancer susceptibility. We hypothesized that these polymorphisms of NBS1 are associated with the lung cancer risk. In two independent case-control studies conducted in Southern and Eastern Chinese, we genotyped three tagSNPs (rs14448, rs13312986 and rs2735383) in Southern Chinese and then validated the discovered association in Eastern Chinese. No significant association was observed for rs13312986 and rs14448; we only found that the rs2735383CC genotype had a significantly increased risk of lung cancer under a recessive genetic model in the total 1559 cases versus 1679 controls (odds ratio = 1.40, 95% confidence interval = 1.18-1.66, P = 0.0001) when compared with GG or GC genotypes; the rs2735383CC genotype carriers had lower messenger RNA and protein expression levels in tumor tissues than those of other genotypes as quantitative polymerase chain reaction and western blot shown. Luciferase assay revealed that the rs2735383C allele had a lower transcription activity than G allele, and the hsa-miR-629 but not hsa-miR-499-5P had effect on modulation of NBS1 gene in vitro. We further observed that the X-ray radiation induced more chromatid breaks in lymphocyte cells from the carriers of rs2735383CC homozygote than those from the subjects with other genotypes (P = 0.0008). Our data suggested that the rs2735383G>C variation contributes to an increased risk of lung cancer by diminishing gene's expression through binding of microRNA-629 to the polymorphic site in the 3'-UTR of NBS1 gene.

  16. Finding Combination of Features from Promoter Regions for Ovarian Cancer-related Gene Group Classification

    KAUST Repository

    Olayan, Rawan S.

    2012-01-01

    In classification problems, it is always important to use the suitable combination of features that will be employed by classifiers. Generating the right combination of features usually results in good classifiers. In the situation when the problem is not well understood, data items are usually described by many features in the hope that some of these may be the relevant or most relevant ones. In this study, we focus on one such problem related to genes implicated in ovarian cancer (OC). We try to recognize two important OC-related gene groups: oncogenes, which support the development and progression of OC, and oncosuppressors, which oppose such tendencies. For this, we use the properties of promoters of these genes. We identified potential “regulatory features” that characterize OC-related oncogenes and oncosuppressors promoters. In our study, we used 211 oncogenes and 39 oncosuppressors. For these, we identified 538 characteristic sequence motifs from their promoters. Promoters are annotated by these motifs and derived feature vectors used to develop classification models. We made a comparison of a number of classification models in their ability to distinguish oncogenes from oncosuppressors. Based on 10-fold cross-validation, the resultant model was able to separate the two classes with sensitivity of 96% and specificity of 100% with the complete set of features. Moreover, we developed another recognition model where we attempted to distinguish oncogenes and oncosuppressors as one group from other OC-related genes. That model achieved accuracy of 82%. We believe that the results of this study will help in discovering other OC-related oncogenes and oncosuppressors not identified as yet.

  17. Finding Combination of Features from Promoter Regions for Ovarian Cancer-related Gene Group Classification

    KAUST Repository

    Olayan, Rawan S.

    2012-12-01

    In classification problems, it is always important to use the suitable combination of features that will be employed by classifiers. Generating the right combination of features usually results in good classifiers. In the situation when the problem is not well understood, data items are usually described by many features in the hope that some of these may be the relevant or most relevant ones. In this study, we focus on one such problem related to genes implicated in ovarian cancer (OC). We try to recognize two important OC-related gene groups: oncogenes, which support the development and progression of OC, and oncosuppressors, which oppose such tendencies. For this, we use the properties of promoters of these genes. We identified potential “regulatory features” that characterize OC-related oncogenes and oncosuppressors promoters. In our study, we used 211 oncogenes and 39 oncosuppressors. For these, we identified 538 characteristic sequence motifs from their promoters. Promoters are annotated by these motifs and derived feature vectors used to develop classification models. We made a comparison of a number of classification models in their ability to distinguish oncogenes from oncosuppressors. Based on 10-fold cross-validation, the resultant model was able to separate the two classes with sensitivity of 96% and specificity of 100% with the complete set of features. Moreover, we developed another recognition model where we attempted to distinguish oncogenes and oncosuppressors as one group from other OC-related genes. That model achieved accuracy of 82%. We believe that the results of this study will help in discovering other OC-related oncogenes and oncosuppressors not identified as yet.

  18. Common Genetic Variation In Cellular Transport Genes and Epithelial Ovarian Cancer (EOC) Risk

    OpenAIRE

    Chornokur, Ganna; Lin, Hui-Yi; Tyrer, Jonathan P.; Lawrenson, Kate; Dennis, Joe; Amankwah, Ernest K.; Qu, Xiaotao; Tsai, Ya-Yu; Jim, Heather S. L.; Chen, Zhihua; Chen, Ann Y.; Permuth-Wey, Jennifer; Aben, Katja KH.; Anton-Culver, Hoda; Antonenkova, Natalia

    2015-01-01

    Background\\ud \\ud Defective cellular transport processes can lead to aberrant accumulation of trace elements, iron, small molecules and hormones in the cell, which in turn may promote the formation of reactive oxygen species, promoting DNA damage and aberrant expression of key regulatory cancer genes. As DNA damage and uncontrolled proliferation are hallmarks of cancer, including epithelial ovarian cancer (EOC), we hypothesized that inherited variation in the cellular transport genes contribu...

  19. Screening the Drug Sensitivity Genes Related to GEM and CDDP in the Lung Cancer Cell-lines

    Directory of Open Access Journals (Sweden)

    Chunyu YANG

    2009-10-01

    Full Text Available Background and objective Screening of small-cell lung cancer (SCLC and non-small cell lung cancer (NSCLC cell lines with gemcitabine hydrochloride (GEM and cisplatin (CDDP related to drug sensitivity gene might clarify the action mechanism of anti-cancer drugs and provide a new clue for overcoming drug resistance and the development of new anti-cancer drugs, and also provide theoretical basis for the clinical treatment of individual. Methods The drug sensitivity of CDDP and GEM in 4 SCLC cell lines and 6 NSCLC cell lines was determined using MTT colorimetric assay, while the cDNA macroarray was applied to detect the gene expression state related to drug sensitivity of 10 lung cancer cell line in 1 291, and the correlation between the two was analysized. Results There were 6 genes showing significant positive correlation (r≥0.632, P < 0.05 with GEM sensitivity; 45 genes positively related to CDDP; another 41 genes related to both GEM and CDDP (r≥± 0.4. Lung cancer with GEM and CDDP sensitivity of two types of drugs significantly related genes were Metallothinein (Signal transduction molecules, Cathepsin B (Organization protease B and TIMP1 (Growth factor; the GEM, CDDP sensitivity associated genes of lung cancer cell lines mainly distributed in Metallothinein, Cathepsin B, growth factor TIMP1 categories. Conclusion There existed drug-related sensitive genes of GEM, CDDP in SCLC and NSCLC cell lines; of these genes, Metallothinein, Cathepsin B and TIMP1 genes presented a significant positive correlation with GEM drug sensitivity, a significant negative correlation with CDDP drug sensitivity.

  20. Genome-wide gene copy number and expression analysis of primary gastric tumors and gastric cancer cell lines

    International Nuclear Information System (INIS)

    Junnila, Siina; Kokkola, Arto; Karjalainen-Lindsberg, Marja-Liisa; Puolakkainen, Pauli; Monni, Outi

    2010-01-01

    Gastric cancer is one of the most common malignancies worldwide and the second most common cause of cancer related death. Gene copy number alterations play an important role in the development of gastric cancer and a change in gene copy number is one of the main mechanisms for a cancer cell to control the expression of potential oncogenes and tumor suppressor genes. To highlight genes of potential biological and clinical relevance in gastric cancer, we carried out a systematic array-based survey of gene expression and copy number levels in primary gastric tumors and gastric cancer cell lines and validated the results using an affinity capture based transcript analysis (TRAC assay) and real-time qRT-PCR. Integrated microarray analysis revealed altogether 256 genes that were located in recurrent regions of gains or losses and had at least a 2-fold copy number- associated change in their gene expression. The expression levels of 13 of these genes, ALPK2, ASAP1, CEACAM5, CYP3A4, ENAH, ERBB2, HHIPL2, LTB4R, MMP9, PERLD1, PNMT, PTPRA, and OSMR, were validated in a total of 118 gastric samples using either the qRT-PCR or TRAC assay. All of these 13 genes were differentially expressed between cancerous samples and nonmalignant tissues (p < 0.05) and the association between copy number and gene expression changes was validated for nine (69.2%) of these genes (p < 0.05). In conclusion, integrated gene expression and copy number microarray analysis highlighted genes that may be critically important for gastric carcinogenesis. TRAC and qRT-PCR analyses validated the microarray results and therefore the role of these genes as potential biomarkers for gastric cancer

  1. Roles of the Y chromosome genes in human cancers

    Directory of Open Access Journals (Sweden)

    Tatsuo Kido

    2015-06-01

    Full Text Available Male and female differ genetically by their respective sex chromosome composition, that is, XY as male and XX as female. Although both X and Y chromosomes evolved from the same ancestor pair of autosomes, the Y chromosome harbors male-specific genes, which play pivotal roles in male sex determination, germ cell differentiation, and masculinization of various tissues. Deletions or translocation of the sex-determining gene, SRY, from the Y chromosome causes disorders of sex development (previously termed as an intersex condition with dysgenic gonads. Failure of gonadal development results not only in infertility, but also in increased risks of germ cell tumor (GCT, such as gonadoblastoma and various types of testicular GCT. Recent studies demonstrate that either loss of Y chromosome or ectopic expression of Y chromosome genes is closely associated with various male-biased diseases, including selected somatic cancers. These observations suggest that the Y-linked genes are involved in male health and diseases in more frequently than expected. Although only a small number of protein-coding genes are present in the male-specific region of Y chromosome, the impacts of Y chromosome genes on human diseases are still largely unknown, due to lack of in vivo models and differences between the Y chromosomes of human and rodents. In this review, we highlight the involvement of selected Y chromosome genes in cancer development in men.

  2. Exome sequencing reveals frequent deleterious germline variants in cancer susceptibility genes in women with invasive breast cancer undergoing neoadjuvant chemotherapy.

    Science.gov (United States)

    Ellingson, Marissa S; Hart, Steven N; Kalari, Krishna R; Suman, Vera; Schahl, Kimberly A; Dockter, Travis J; Felten, Sara J; Sinnwell, Jason P; Thompson, Kevin J; Tang, Xiaojia; Vedell, Peter T; Barman, Poulami; Sicotte, Hugues; Eckel-Passow, Jeanette E; Northfelt, Donald W; Gray, Richard J; McLaughlin, Sarah A; Moreno-Aspitia, Alvaro; Ingle, James N; Moyer, Ann M; Visscher, Daniel W; Jones, Katie; Conners, Amy; McDonough, Michelle; Wieben, Eric D; Wang, Liewei; Weinshilboum, Richard; Boughey, Judy C; Goetz, Matthew P

    2015-09-01

    When sequencing blood and tumor samples to identify targetable somatic variants for cancer therapy, clinically relevant germline variants may be uncovered. We evaluated the prevalence of deleterious germline variants in cancer susceptibility genes in women with breast cancer referred for neoadjuvant chemotherapy and returned clinically actionable results to patients. Exome sequencing was performed on blood samples from women with invasive breast cancer referred for neoadjuvant chemotherapy. Germline variants within 142 hereditary cancer susceptibility genes were filtered and reviewed for pathogenicity. Return of results was offered to patients with deleterious variants in actionable genes if they were not aware of their result through clinical testing. 124 patients were enrolled (median age 51) with the following subtypes: triple negative (n = 43, 34.7%), HER2+ (n = 37, 29.8%), luminal B (n = 31, 25%), and luminal A (n = 13, 10.5%). Twenty-eight deleterious variants were identified in 26/124 (21.0%) patients in the following genes: ATM (n = 3), BLM (n = 1), BRCA1 (n = 4), BRCA2 (n = 8), CHEK2 (n = 2), FANCA (n = 1), FANCI (n = 1), FANCL (n = 1), FANCM (n = 1), FH (n = 1), MLH3 (n = 1), MUTYH (n = 2), PALB2 (n = 1), and WRN (n = 1). 121/124 (97.6%) patients consented to return of research results. Thirteen (10.5%) had actionable variants, including four that were returned to patients and led to changes in medical management. Deleterious variants in cancer susceptibility genes are highly prevalent in patients with invasive breast cancer referred for neoadjuvant chemotherapy undergoing exome sequencing. Detection of these variants impacts medical management.

  3. Telomere structure and maintenance gene variants and risk of five cancer types.

    Science.gov (United States)

    Karami, Sara; Han, Younghun; Pande, Mala; Cheng, Iona; Rudd, James; Pierce, Brandon L; Nutter, Ellen L; Schumacher, Fredrick R; Kote-Jarai, Zsofia; Lindstrom, Sara; Witte, John S; Fang, Shenying; Han, Jiali; Kraft, Peter; Hunter, David J; Song, Fengju; Hung, Rayjean J; McKay, James; Gruber, Stephen B; Chanock, Stephen J; Risch, Angela; Shen, Hongbing; Haiman, Christopher A; Boardman, Lisa; Ulrich, Cornelia M; Casey, Graham; Peters, Ulrike; Amin Al Olama, Ali; Berchuck, Andrew; Berndt, Sonja I; Bezieau, Stephane; Brennan, Paul; Brenner, Hermann; Brinton, Louise; Caporaso, Neil; Chan, Andrew T; Chang-Claude, Jenny; Christiani, David C; Cunningham, Julie M; Easton, Douglas; Eeles, Rosalind A; Eisen, Timothy; Gala, Manish; Gallinger, Steven J; Gayther, Simon A; Goode, Ellen L; Grönberg, Henrik; Henderson, Brian E; Houlston, Richard; Joshi, Amit D; Küry, Sébastien; Landi, Mari T; Le Marchand, Loic; Muir, Kenneth; Newcomb, Polly A; Permuth-Wey, Jenny; Pharoah, Paul; Phelan, Catherine; Potter, John D; Ramus, Susan J; Risch, Harvey; Schildkraut, Joellen; Slattery, Martha L; Song, Honglin; Wentzensen, Nicolas; White, Emily; Wiklund, Fredrik; Zanke, Brent W; Sellers, Thomas A; Zheng, Wei; Chatterjee, Nilanjan; Amos, Christopher I; Doherty, Jennifer A

    2016-12-15

    Telomeres cap chromosome ends, protecting them from degradation, double-strand breaks, and end-to-end fusions. Telomeres are maintained by telomerase, a reverse transcriptase encoded by TERT, and an RNA template encoded by TERC. Loci in the TERT and adjoining CLPTM1L region are associated with risk of multiple cancers. We therefore investigated associations between variants in 22 telomere structure and maintenance gene regions and colorectal, breast, prostate, ovarian, and lung cancer risk. We performed subset-based meta-analyses of 204,993 directly-measured and imputed SNPs among 61,851 cancer cases and 74,457 controls of European descent. Independent associations for SNP minor alleles were identified using sequential conditional analysis (with gene-level p value cutoffs ≤3.08 × 10 -5 ). Of the thirteen independent SNPs observed to be associated with cancer risk, novel findings were observed for seven loci. Across the DCLRE1B region, rs974494 and rs12144215 were inversely associated with prostate and lung cancers, and colorectal, breast, and prostate cancers, respectively. Across the TERC region, rs75316749 was positively associated with colorectal, breast, ovarian, and lung cancers. Across the DCLRE1B region, rs974404 and rs12144215 were inversely associated with prostate and lung cancers, and colorectal, breast, and prostate cancers, respectively. Near POT1, rs116895242 was inversely associated with colorectal, ovarian, and lung cancers, and RTEL1 rs34978822 was inversely associated with prostate and lung cancers. The complex association patterns in telomere-related genes across cancer types may provide insight into mechanisms through which telomere dysfunction in different tissues influences cancer risk. © 2016 UICC.

  4. Gene expression in early stage cervical cancer

    NARCIS (Netherlands)

    Biewenga, Petra; Buist, Marrije R.; Moerland, Perry D.; van Thernaat, Emiel Ver Loren; van Kampen, Antoine H. C.; ten Kate, Fiebo J. W.; Baas, Frank

    2008-01-01

    Objective. Pelvic lymph node metastases are the main prognostic factor for survival in early stage cervical cancer, yet accurate detection methods before surgery are lacking. In this study, we examined whether gene expression profiling can predict the presence of lymph node metastasis in early stage

  5. Gene expression patterns associated with p53 status in breast cancer

    International Nuclear Information System (INIS)

    Troester, Melissa A; Herschkowitz, Jason I; Oh, Daniel S; He, Xiaping; Hoadley, Katherine A; Barbier, Claire S; Perou, Charles M

    2006-01-01

    Breast cancer subtypes identified in genomic studies have different underlying genetic defects. Mutations in the tumor suppressor p53 occur more frequently in estrogen receptor (ER) negative, basal-like and HER2-amplified tumors than in luminal, ER positive tumors. Thus, because p53 mutation status is tightly linked to other characteristics of prognostic importance, it is difficult to identify p53's independent prognostic effects. The relation between p53 status and subtype can be better studied by combining data from primary tumors with data from isogenic cell line pairs (with and without p53 function). The p53-dependent gene expression signatures of four cell lines (MCF-7, ZR-75-1, and two immortalized human mammary epithelial cell lines) were identified by comparing p53-RNAi transduced cell lines to their parent cell lines. Cell lines were treated with vehicle only or doxorubicin to identify p53 responses in both non-induced and induced states. The cell line signatures were compared with p53-mutation associated genes in breast tumors. Each cell line displayed distinct patterns of p53-dependent gene expression, but cell type specific (basal vs. luminal) commonalities were evident. Further, a common gene expression signature associated with p53 loss across all four cell lines was identified. This signature showed overlap with the signature of p53 loss/mutation status in primary breast tumors. Moreover, the common cell-line tumor signature excluded genes that were breast cancer subtype-associated, but not downstream of p53. To validate the biological relevance of the common signature, we demonstrated that this gene set predicted relapse-free, disease-specific, and overall survival in independent test data. In the presence of breast cancer heterogeneity, experimental and biologically-based methods for assessing gene expression in relation to p53 status provide prognostic and biologically-relevant gene lists. Our biologically-based refinements excluded genes

  6. A panel of genes methylated with high frequency in colorectal cancer

    International Nuclear Information System (INIS)

    Mitchell, Susan M; Beetson, Iain; Rand, Keith N; McEvoy, Aidan; Thomas, Melissa L; Baker, Rohan T; Wattchow, David A; Young, Graeme P; Lockett, Trevor J; Pedersen, Susanne K; LaPointe, Lawrence C; Ross, Jason P; Molloy, Peter L; Drew, Horace R; Ho, Thu; Brown, Glenn S; Saunders, Neil FW; Duesing, Konsta R; Buckley, Michael J; Dunne, Rob

    2014-01-01

    The development of colorectal cancer (CRC) is accompanied by extensive epigenetic changes, including frequent regional hypermethylation particularly of gene promoter regions. Specific genes, including SEPT9, VIM1 and TMEFF2 become methylated in a high fraction of cancers and diagnostic assays for detection of cancer-derived methylated DNA sequences in blood and/or fecal samples are being developed. There is considerable potential for the development of new DNA methylation biomarkers or panels to improve the sensitivity and specificity of current cancer detection tests. Combined epigenomic methods – activation of gene expression in CRC cell lines following DNA demethylating treatment, and two novel methods of genome-wide methylation assessment – were used to identify candidate genes methylated in a high fraction of CRCs. Multiplexed amplicon sequencing of PCR products from bisulfite-treated DNA of matched CRC and non-neoplastic tissue as well as healthy donor peripheral blood was performed using Roche 454 sequencing. Levels of DNA methylation in colorectal tissues and blood were determined by quantitative methylation specific PCR (qMSP). Combined analyses identified 42 candidate genes for evaluation as DNA methylation biomarkers. DNA methylation profiles of 24 of these genes were characterised by multiplexed bisulfite-sequencing in ten matched tumor/normal tissue samples; differential methylation in CRC was confirmed for 23 of these genes. qMSP assays were developed for 32 genes, including 15 of the sequenced genes, and used to quantify methylation in tumor, adenoma and non-neoplastic colorectal tissue and from healthy donor peripheral blood. 24 of the 32 genes were methylated in >50% of neoplastic samples, including 11 genes that were methylated in 80% or more CRCs and a similar fraction of adenomas. This study has characterised a panel of 23 genes that show elevated DNA methylation in >50% of CRC tissue relative to non-neoplastic tissue. Six of these genes

  7. Cross-organism learning method to discover new gene functionalities.

    Science.gov (United States)

    Domeniconi, Giacomo; Masseroli, Marco; Moro, Gianluca; Pinoli, Pietro

    2016-04-01

    Knowledge of gene and protein functions is paramount for the understanding of physiological and pathological biological processes, as well as in the development of new drugs and therapies. Analyses for biomedical knowledge discovery greatly benefit from the availability of gene and protein functional feature descriptions expressed through controlled terminologies and ontologies, i.e., of gene and protein biomedical controlled annotations. In the last years, several databases of such annotations have become available; yet, these valuable annotations are incomplete, include errors and only some of them represent highly reliable human curated information. Computational techniques able to reliably predict new gene or protein annotations with an associated likelihood value are thus paramount. Here, we propose a novel cross-organisms learning approach to reliably predict new functionalities for the genes of an organism based on the known controlled annotations of the genes of another, evolutionarily related and better studied, organism. We leverage a new representation of the annotation discovery problem and a random perturbation of the available controlled annotations to allow the application of supervised algorithms to predict with good accuracy unknown gene annotations. Taking advantage of the numerous gene annotations available for a well-studied organism, our cross-organisms learning method creates and trains better prediction models, which can then be applied to predict new gene annotations of a target organism. We tested and compared our method with the equivalent single organism approach on different gene annotation datasets of five evolutionarily related organisms (Homo sapiens, Mus musculus, Bos taurus, Gallus gallus and Dictyostelium discoideum). Results show both the usefulness of the perturbation method of available annotations for better prediction model training and a great improvement of the cross-organism models with respect to the single-organism ones

  8. Depletion of Mediator Kinase Module Subunits Represses Superenhancer-Associated Genes in Colon Cancer Cells.

    Science.gov (United States)

    Kuuluvainen, Emilia; Domènech-Moreno, Eva; Niemelä, Elina H; Mäkelä, Tomi P

    2018-06-01

    In cancer, oncogene activation is partly mediated by acquired superenhancers, which therefore represent potential targets for inhibition. Superenhancers are enriched for BRD4 and Mediator, and both BRD4 and the Mediator MED12 subunit are disproportionally required for expression of superenhancer-associated genes in stem cells. Here we show that depletion of Mediator kinase module subunit MED12 or MED13 together with MED13L can be used to reduce expression of cancer-acquired superenhancer genes, such as the MYC gene, in colon cancer cells, with a concomitant decrease in proliferation. Whereas depletion of MED12 or MED13/MED13L caused a disproportional decrease of superenhancer gene expression, this was not seen with depletion of the kinases cyclin-dependent kinase 9 (CDK8) and CDK19. MED12-MED13/MED13L-dependent superenhancer genes were coregulated by β-catenin, which has previously been shown to associate with MED12. Importantly, β-catenin depletion caused reduced binding of MED12 at the MYC superenhancer. The effect of MED12 or MED13/MED13L depletion on cancer-acquired superenhancer gene expression was more specific than and partially distinct from that of BRD4 depletion, with the most efficient inhibition seen with combined targeting. These results identify a requirement of MED12 and MED13/MED13L for expression of acquired superenhancer genes in colon cancer, implicating these Mediator subunits as potential therapeutic targets for colon cancer, alone or together with BRD4. Copyright © 2018 American Society for Microbiology.

  9. Genetic polymorphism in three glutathione s-transferase genes and breast cancer risk

    Energy Technology Data Exchange (ETDEWEB)

    Woldegiorgis, S.; Ahmed, R.C.; Zhen, Y.; Erdmann, C.A.; Russell, M.L.; Goth-Goldstein, R.

    2002-04-01

    The role of the glutathione S-transferase (GST) enzyme family is to detoxify environmental toxins and carcinogens and to protect organisms from their adverse effects, including cancer. The genes GSTM1, GSTP1, and GSTT1 code for three GSTs involved in the detoxification of carcinogens, such as polycyclic aromatic hydrocarbons (PAHs) and benzene. In humans, GSTM1 is deleted in about 50% of the population, GSTT1 is absent in about 20%, whereas the GSTP1 gene has a single base polymorphism resulting in an enzyme with reduced activity. Epidemiological studies indicate that GST polymorphisms increase the level of carcinogen-induced DNA damage and several studies have found a correlation of polymorphisms in one of the GST genes and an increased risk for certain cancers. We examined the role of polymorphisms in genes coding for these three GST enzymes in breast cancer. A breast tissue collection consisting of specimens of breast cancer patients and non-cancer controls was analyzed by polymerase chain reaction (PCR) for the presence or absence of the GSTM1 and GSTT1 genes and for GSTP1 single base polymorphism by PCR/RFLP. We found that GSTM1 and GSTT1 deletions occurred more frequently in cases than in controls, and GSTP1 polymorphism was more frequent in controls. The effective detoxifier (putative low-risk) genotype (defined as presence of both GSTM1 and GSTT1 genes and GSTP1 wild type) was less frequent in cases than controls (16% vs. 23%, respectively). The poor detoxifier (putative high-risk) genotype was more frequent in cases than controls. However, the sample size of this study was too small to provide conclusive results.

  10. Molecular Genetics and Gene Therapy in Esophageal Cancer: a Review Article

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Noori Daloii Ph.D.

    2011-06-01

    Full Text Available Background: With approximately 386,000 deaths per year, esophageal cancer is the 6th most common cause of death due to cancer in the world. This cancer, like any other cancer, is the outcome of genetic alterations or environmental factors such as tobacco smoke and gastro-esophageal reflux. Tobacco smoking is a major etiologic factor for esophageal squamous cell carcinoma in western countries, and it increases the risk by approximately 3 to 5 folds. Chronic gastro-esophageal reflux usually leads to the replacement of squamous mucosa by intestinal-type Barrett’s metaplastic mucosa which is considered the most important factor causing esophageal adenocarcinoma. In contrast to esophageal adenocarcinoma, different risk factors and mechanisms, such as mutations in oncogenes and tumor suppressor genes, play an important role in causing esophageal squamous cell carcinoma. Molecular studies on esophageal cancers have revealed frequent genetic abnormalities in esophageal squamous cell carcinoma and adenocarcinoma, including altered expression of p53, p16, cyclin D1, EGFR, E-cadherin, COX-2, iNOS, RARs, Rb, hTERT, p21, APC, c-MYC, VEGF, TGT-α and NF-κB. Many studies have focused on the role of different polymorphisms such as aldehyde dehydrogenase 2 and alcohol dehydrogenase 2 in causing esophageal cancer. Different agents including bestatin, curcumin, black raspberries, 5-lipoxygenase (LOX and COX-2 inhibitors have been found to play a role in inhibiting esophageal carcinogenesis. Different gene therapy approaches including p53 and p21WAF1 replacement gene therapies and therapy by suicide genes have also been experimented. Moreover, efforts have been made to use nanotechnology and aptamer technology in this regard.

  11. HSD3B and gene-gene interactions in a pathway-based analysis of genetic susceptibility to bladder cancer.

    Directory of Open Access Journals (Sweden)

    Angeline S Andrew

    Full Text Available Bladder cancer is the 4(th most common cancer among men in the U.S. We analyzed variant genotypes hypothesized to modify major biological processes involved in bladder carcinogenesis, including hormone regulation, apoptosis, DNA repair, immune surveillance, metabolism, proliferation, and telomere maintenance. Logistic regression was used to assess the relationship between genetic variation affecting these processes and susceptibility in 563 genotyped urothelial cell carcinoma cases and 863 controls enrolled in a case-control study of incident bladder cancer conducted in New Hampshire, U.S. We evaluated gene-gene interactions using Multifactor Dimensionality Reduction (MDR and Statistical Epistasis Network analysis. The 3'UTR flanking variant form of the hormone regulation gene HSD3B2 was associated with increased bladder cancer risk in the New Hampshire population (adjusted OR 1.85 95%CI 1.31-2.62. This finding was successfully replicated in the Texas Bladder Cancer Study with 957 controls, 497 cases (adjusted OR 3.66 95%CI 1.06-12.63. The effect of this prevalent SNP was stronger among males (OR 2.13 95%CI 1.40-3.25 than females (OR 1.56 95%CI 0.83-2.95, (SNP-gender interaction P = 0.048. We also identified a SNP-SNP interaction between T-cell activation related genes GATA3 and CD81 (interaction P = 0.0003. The fact that bladder cancer incidence is 3-4 times higher in males suggests the involvement of hormone levels. This biologic process-based analysis suggests candidate susceptibility markers and supports the theory that disrupted hormone regulation plays a role in bladder carcinogenesis.

  12. The overmethylated genes in Helicobacter pylori-infected gastric mucosa are demethylated in gastric cancers

    Directory of Open Access Journals (Sweden)

    Choi Sang-Wook

    2010-11-01

    Full Text Available Abstract Background The transitional-CpG sites between weakly methylated genes and densely methylated retroelements are overmethylated in the gastric mucosa infected with Helicobacter pylori (H. pylori and they are undermethylated in the gastric cancers depending on the level of loss of heterozygosity (LOH events. This study delineated the transitional-CpG methylation patterns of CpG-island-containing and -lacking genes in view of the retroelements. Methods The transitional-CpG sites of eight CpG-island-containing genes and six CpG-island-lacking genes were semi-quantitatively examined by performing radioisotope-labelling methylation-specific PCR under stringent conditions. The level of LOH in the gastric cancers was estimated using the 40 microsatellite markers on eight cancer-associated chromosomes. Each gene was scored as overmethylated or undermethylated based on an intermediate level of transitional-CpG methylation common in the H. pylori-negative gastric mucosa. Results The eight CpG-island genes examined were overmethylated depending on the proximity to the nearest retroelement in the H. pylori-positive gastric mucosa. The six CpG-island-lacking genes were similarly methylated in the H. pylori-positive and -negative gastric mucosa. In the gastric cancers, long transitional-CpG segments of the CpG-island genes distant from the retroelements remained overmethylated, whereas the overmethylation of short transitional-CpG segments close to the retroelements was not significant. Both the CpG-island-containing and -lacking genes tended to be decreasingly methylated in a LOH-level-dependent manner. Conclusions The overmethylated genes under the influence of retroelement methylation in the H. pylori-infected stomach are demethylated in the gastric cancers influenced by LOH.

  13. Bridging cancer biology with the clinic: relative expression of a GRHL2-mediated gene-set pair predicts breast cancer metastasis.

    Directory of Open Access Journals (Sweden)

    Xinan Yang

    Full Text Available Identification and characterization of crucial gene target(s that will allow focused therapeutics development remains a challenge. We have interrogated the putative therapeutic targets associated with the transcription factor Grainy head-like 2 (GRHL2, a critical epithelial regulatory factor. We demonstrate the possibility to define the molecular functions of critical genes in terms of their personalized expression profiles, allowing appropriate functional conclusions to be derived. A novel methodology, relative expression analysis with gene-set pairs (RXA-GSP, is designed to explore the potential clinical utility of cancer-biology discovery. Observing that Grhl2-overexpression leads to increased metastatic potential in vitro, we established a model assuming Grhl2-induced or -inhibited genes confer poor or favorable prognosis respectively for cancer metastasis. Training on public gene expression profiles of 995 breast cancer patients, this method prioritized one gene-set pair (GRHL2, CDH2, FN1, CITED2, MKI67 versus CTNNB1 and CTNNA3 from all 2717 possible gene-set pairs (GSPs. The identified GSP significantly dichotomized 295 independent patients for metastasis-free survival (log-rank tested p = 0.002; severe empirical p = 0.035. It also showed evidence of clinical prognostication in another independent 388 patients collected from three studies (log-rank tested p = 3.3e-6. This GSP is independent of most traditional prognostic indicators, and is only significantly associated with the histological grade of breast cancer (p = 0.0017, a GRHL2-associated clinical character (p = 6.8e-6, Spearman correlation, suggesting that this GSP is reflective of GRHL2-mediated events. Furthermore, a literature review indicates the therapeutic potential of the identified genes. This research demonstrates a novel strategy to integrate both biological experiments and clinical gene expression profiles for extracting and elucidating the genomic

  14. SATB1 tethers multiple gene loci to reprogram expression profiledriving breast cancer metastasis

    Energy Technology Data Exchange (ETDEWEB)

    Han, Hye-Jung; Kohwi, Yoshinori; Kohwi-Shigematsu, Terumi

    2006-07-13

    Global changes in gene expression occur during tumor progression, as indicated by expression profiling of metastatic tumors. How this occurs is poorly understood. SATB1 functions as a genome organizer by folding chromatin via tethering multiple genomic loci and recruiting chromatin remodeling enzymes to regulate chromatin structure and expression of a large number of genes. Here we show that SATB1 is expressed at high levels in aggressive breast cancer cells, and is undetectable in non-malignant breast epithelial cells. Importantly, RNAi-mediated removal of SATB1 from highly-aggressive MDA-MB-231 cells altered the expression levels of over 1200 genes, restored breast-like acinar polarity in three-dimensional cultures, and prevented the metastastic phenotype in vivo. Conversely, overexpression of SATB1 in the less-aggressive breast cancer cell line Hs578T altered the gene expression profile and increased metastasis dramatically in vivo. Thus, SATB1 is a global regulator of gene expression in breast cancer cells, directly regulating crucial metastasis-associated genes, including ERRB2 (HER2/NEU), TGF-{beta}1, matrix metalloproteinase 3, and metastasin. The identification of SATB1 as a protein that re-programs chromatin organization and transcription profiles to promote breast cancer metastasis suggests a new model for metastasis and may provide means of therapeutic intervention.

  15. MeInfoText 2.0: gene methylation and cancer relation extraction from biomedical literature

    Directory of Open Access Journals (Sweden)

    Fang Yu-Ching

    2011-12-01

    Full Text Available Abstract Background DNA methylation is regarded as a potential biomarker in the diagnosis and treatment of cancer. The relations between aberrant gene methylation and cancer development have been identified by a number of recent scientific studies. In a previous work, we used co-occurrences to mine those associations and compiled the MeInfoText 1.0 database. To reduce the amount of manual curation and improve the accuracy of relation extraction, we have now developed MeInfoText 2.0, which uses a machine learning-based approach to extract gene methylation-cancer relations. Description Two maximum entropy models are trained to predict if aberrant gene methylation is related to any type of cancer mentioned in the literature. After evaluation based on 10-fold cross-validation, the average precision/recall rates of the two models are 94.7/90.1 and 91.8/90% respectively. MeInfoText 2.0 provides the gene methylation profiles of different types of human cancer. The extracted relations with maximum probability, evidence sentences, and specific gene information are also retrievable. The database is available at http://bws.iis.sinica.edu.tw:8081/MeInfoText2/. Conclusion The previous version, MeInfoText, was developed by using association rules, whereas MeInfoText 2.0 is based on a new framework that combines machine learning, dictionary lookup and pattern matching for epigenetics information extraction. The results of experiments show that MeInfoText 2.0 outperforms existing tools in many respects. To the best of our knowledge, this is the first study that uses a hybrid approach to extract gene methylation-cancer relations. It is also the first attempt to develop a gene methylation and cancer relation corpus.

  16. Axin gene methylation status correlates with radiosensitivity of lung cancer cells

    International Nuclear Information System (INIS)

    Yang, Lian-He; Stoecker, Maggie; Wang, Endi; Xu, Ke; Wang, En-Hua; Han, Yang; Li, Guang; Xu, Hong-Tao; Jiang, Gui-Yang; Miao, Yuan; Zhang, Xiu-Peng; Zhao, Huan-Yu; Xu, Zheng-Fan

    2013-01-01

    We previously reported that Axin1 (Axin) is down-regulated in many cases of lung cancer, and X-ray irradiation increased Axin expression and inhibited lung cancer cells. The mechanisms, however, were not clear. Four lung cancer cell lines were used to detect the methylation status of Axin with or without X-ray treatment. Real-time PCR was used to quantify the expression of Axin, and western blot analysis was applied to measure protein levels of Axin, β-catenin, Cyclin D1, MMP-7, DNMTS, MeCP2 and acetylated histones. Flow cytometric analysis, colony formation assay, transwell assay and xenograft growth experiment were used to study the biological behavior of the cells with hypermethylated or unmethylated Axin gene after X-ray treatment. Hypermethylated Axin gene was detected in 2 of 4 cell lines, and it correlated inversely with Axin expression. X-ray treatment significantly up-regulated Axin expression in H446 and H157 cells, which possess intrinsic hypermethylation of the Axin gene (P<0.01), but did not show up-regulation in LTE and H460 cells, which have unmethylated Axin gene. 2Gy X-ray significantly reduced colony formation (from 71% to 10.5%) in H157 cells, while the reduction was lower in LTE cells (from 71% to 20%). After X-ray irradiation, xenograft growth was significantly decreased in H157 cells (from 1.15 g to 0.28 g) in comparison with LTE cells (from 1.06 g to 0.65 g). Significantly decreased cell invasiveness and increased apoptosis were also observed in H157 cells treated with X-ray irradiation (P<0.01). Down-regulation of DNMTs and MeCP2 and up-regulation of acetylated histones could be detected in lung cancer cells. X-ray-induced inhibition of lung cancer cells may be mediated by enhanced expression of Axin via genomic DNA demethylation and histone acetylation. Lung cancer cells with a different methylation status of the Axin gene showed different radiosensitivity, suggesting that the methylation status of the Axin gene may be one important factor

  17. Functional annotation of rare gene aberration drivers of pancreatic cancer | Office of Cancer Genomics

    Science.gov (United States)

    As we enter the era of precision medicine, characterization of cancer genomes will directly influence therapeutic decisions in the clinic. Here we describe a platform enabling functionalization of rare gene mutations through their high-throughput construction, molecular barcoding and delivery to cancer models for in vivo tumour driver screens. We apply these technologies to identify oncogenic drivers of pancreatic ductal adenocarcinoma (PDAC).

  18. Endosomal gene expression: a new indicator for prostate cancer patient prognosis?

    LENUS (Irish Health Repository)

    Johnson, Ian R D

    2015-11-10

    Prostate cancer continues to be a major cause of morbidity and mortality in men, but a method for accurate prognosis in these patients is yet to be developed. The recent discovery of altered endosomal biogenesis in prostate cancer has identified a fundamental change in the cell biology of this cancer, which holds great promise for the identification of novel biomarkers that can predict disease outcomes. Here we have identified significantly altered expression of endosomal genes in prostate cancer compared to non-malignant tissue in mRNA microarrays and confirmed these findings by qRT-PCR on fresh-frozen tissue. Importantly, we identified endosomal gene expression patterns that were predictive of patient outcomes. Two endosomal tri-gene signatures were identified from a previously published microarray cohort and had a significant capacity to stratify patient outcomes. The expression of APPL1, RAB5A, EEA1, PDCD6IP, NOX4 and SORT1 were altered in malignant patient tissue, when compared to indolent and normal prostate tissue. These findings support the initiation of a case-control study using larger cohorts of prostate tissue, with documented patient outcomes, to determine if different combinations of these new biomarkers can accurately predict disease status and clinical progression in prostate cancer patients.

  19. The clinical impact of hypoxia-regulated gene expression in loco-regional gastroesophageal cancer

    DEFF Research Database (Denmark)

    Winther, M.; Alsner, J.; Tramm, T.

    2015-01-01

    Purpose/Objective: In a former study (1), the hypoxia gene expression classifier, developed in head and neck squamous cell carcinomas, was applied in 89 patients with loco-regional gastroesophageal cancer (GC). Analysis of the 15 genes was indicative of hypoxia being more profound in esophagus...... and display greater heterogeneity compared to AC. However, previous indications that the hypoxia classifier might hold prognostic significance in ESCC patients could not be confirmed. Ongoing work includes in vitro studies of esophageal cancer cell lines in order to identify alternative hypoxia induced genes...... and to further explore the prognostic value of hypoxia in patients with loco-regional gastroesophageal cancer. (Figure Presented)....

  20. Cytoplasmic chromatin triggers inflammation in senescence and cancer.

    Science.gov (United States)

    Dou, Zhixun; Ghosh, Kanad; Vizioli, Maria Grazia; Zhu, Jiajun; Sen, Payel; Wangensteen, Kirk J; Simithy, Johayra; Lan, Yemin; Lin, Yanping; Zhou, Zhuo; Capell, Brian C; Xu, Caiyue; Xu, Mingang; Kieckhaefer, Julia E; Jiang, Tianying; Shoshkes-Carmel, Michal; Tanim, K M Ahasan Al; Barber, Glen N; Seykora, John T; Millar, Sarah E; Kaestner, Klaus H; Garcia, Benjamin A; Adams, Peter D; Berger, Shelley L

    2017-10-19

    Chromatin is traditionally viewed as a nuclear entity that regulates gene expression and silencing. However, we recently discovered the presence of cytoplasmic chromatin fragments that pinch off from intact nuclei of primary cells during senescence, a form of terminal cell-cycle arrest associated with pro-inflammatory responses. The functional significance of chromatin in the cytoplasm is unclear. Here we show that cytoplasmic chromatin activates the innate immunity cytosolic DNA-sensing cGAS-STING (cyclic GMP-AMP synthase linked to stimulator of interferon genes) pathway, leading both to short-term inflammation to restrain activated oncogenes and to chronic inflammation that associates with tissue destruction and cancer. The cytoplasmic chromatin-cGAS-STING pathway promotes the senescence-associated secretory phenotype in primary human cells and in mice. Mice deficient in STING show impaired immuno-surveillance of oncogenic RAS and reduced tissue inflammation upon ionizing radiation. Furthermore, this pathway is activated in cancer cells, and correlates with pro-inflammatory gene expression in human cancers. Overall, our findings indicate that genomic DNA serves as a reservoir to initiate a pro-inflammatory pathway in the cytoplasm in senescence and cancer. Targeting the cytoplasmic chromatin-mediated pathway may hold promise in treating inflammation-related disorders.

  1. Sequencing analysis of SLX4/FANCP gene in Italian familial breast cancer cases.

    Directory of Open Access Journals (Sweden)

    Irene Catucci

    Full Text Available Breast cancer can be caused by germline mutations in several genes that are responsible for different hereditary cancer syndromes. Some of the genes causing the Fanconi anemia (FA syndrome, such as BRCA2, BRIP1, PALB2, and RAD51C, are associated with high or moderate risk of developing breast cancer. Very recently, SLX4 has been established as a new FA gene raising the question of its implication in breast cancer risk. This study aimed at answering this question sequencing the entire coding region of SLX4 in 526 familial breast cancer cases from Italy. We found 81 different germline variants and none of these were clearly pathogenic. The statistical power of our sample size allows concluding that in Italy the frequency of carriers of truncating mutations of SLX4 may not exceed 0.6%. Our results indicate that testing for SLX4 germline mutations is unlikely to be relevant for the identification of individuals at risk of breast cancer, at least in the Italian population.

  2. Advances in Viral Vector-Based TRAIL Gene Therapy for Cancer

    International Nuclear Information System (INIS)

    Norian, Lyse A.; James, Britnie R.; Griffith, Thomas S.

    2011-01-01

    Numerous biologic approaches are being investigated as anti-cancer therapies in an attempt to induce tumor regression while circumventing the toxic side effects associated with standard chemo- or radiotherapies. Among these, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has shown particular promise in pre-clinical and early clinical trials, due to its preferential ability to induce apoptotic cell death in cancer cells and its minimal toxicity. One limitation of TRAIL use is the fact that many tumor types display an inherent resistance to TRAIL-induced apoptosis. To circumvent this problem, researchers have explored a number of strategies to optimize TRAIL delivery and to improve its efficacy via co-administration with other anti-cancer agents. In this review, we will focus on TRAIL-based gene therapy approaches for the treatment of malignancies. We will discuss the main viral vectors that are being used for TRAIL gene therapy and the strategies that are currently being attempted to improve the efficacy of TRAIL as an anti-cancer therapeutic

  3. The WSB1 gene is involved in pancreatic cancer progression.

    Directory of Open Access Journals (Sweden)

    Cendrine Archange

    Full Text Available BACKGROUND: Pancreatic cancer cells generate metastases because they can survive the stress imposed by the new environment of the host tissue. To mimic this process, pancreatic cancer cells which are not stressed in standard culture conditions are injected into nude mice. Because they develop xenografts, they should have developed adequate stress response. Characterizing that response might provide new strategies to interfere with pancreatic cancer metastasis. METHODOLOGY/PRINCIPAL FINDINGS: In the human pancreatic cancer cell lines Panc-1, Mia-PaCa2, Capan-1, Capan-2 and BxPC3, we used Affymetrix DNA microarrays to compare the expressions of 22.000 genes in vitro and in the corresponding xenografts. We identified 228 genes overexpressed in xenografts and characterized the implication of one of them, WSB1, in the control of apoptosis and cell proliferation. WSB1 generates 3 alternatively spliced transcripts encoding distinct protein isoforms. In xenografts and in human pancreatic tumors, global expression of WSB1 mRNA is modestly increased whereas isoform 3 is strongly overexpressed and isoforms 1 and 2 are down-regulated. Treating Mia-PaCa2 cells with stress-inducing agents induced similar changes. Whereas retrovirus-forced expression of WSB1 isoforms 1 and 2 promoted cell growth and sensitized the cells to gemcitabine- and doxorubicin-induced apoptosis, WSB1 isoform 3 expression reduced cell proliferation and enhanced resistance to apoptosis, showing that stress-induced modulation of WSB1 alternative splicing increases resistance to apoptosis of pancreatic cancer cells. CONCLUSIONS/SIGNIFICANCE: Data on WSB1 regulation support the hypothesis that activation of stress-response mechanisms helps cancer cells establishing metastases and suggest relevance to cancer development of other genes overexpressed in xenografts.

  4. Detection of p53 gene mutations in bronchial biopsy samples of patients with lung cancer

    International Nuclear Information System (INIS)

    Irshad, S.; Nawaz, T.

    2008-01-01

    Lung cancer is the malignant transformation and expansion of lung tissue. It is the most lethal of all cancers worldwide, responsible for 1.2 million deaths annually. The goal of this study was to detect the p53 gene mutations in lung cancer, in local population of Lahore, Pakistan. These mutations were screened in the bronchial biopsy lung cancer tissue samples. For this purpose microtomed tissue sections were collected. Following DNA extraction from tissue sections, the p53 mutations were detected by amplifying Exon 7 (145 bp) and Exon 8 (152 bp) of the p53 gene. PCR then followed by single-strand conformation polymorphism analysis for screening the p53 gene mutations. This results of SSCP were visualized of silver staining. The results showed different banding pattern indicating the presence of mutation. Majority of the mutations were found in Exon 7. Exon 7 of p53 gene may be the mutation hotspot in lung cancer. In lung cancer, the most prevalent mutations of p53 gene are G -> T transversions; other types of insertions and deletions are also expected, however, the exact nature of mutations in presented work could be confirmed by direct sequencing. (author)

  5. Adenovirus-derived vectors for prostate cancer gene therapy

    Czech Academy of Sciences Publication Activity Database

    de Vrij, J.; Willemsen, R. A.; Lindholm, L.; Hoeben, R. C.; Bangma, Ch. H.; Barber, Ch.; Behr, J.-P.; Briggs, S.; Carlisle, R.; Cheng, W.-S.; Dautzenberg, I. J. C.; de Ridder, C.; Dzojic, H.; Erbacher, P.; Essand, M.; Fisher, K.; Frazier, A.; Georgopoulos, L. J.; Jennings, I.; Kochanek, S.; Koppers-Lalic, D.; Kraaij, R.; Kreppel, F.; Magnusson, M.; Maitland, N.; Neuberg, P.; Nugent, R.; Ogris, M.; Remy, J.-S.; Scaife, M.; Schenk, E.; Schooten, E.; Seymour, L.; Slade, M.; Szyjanowicz, P.; Totterman, T.; Uil, T. G.; Ulbrich, Karel; van der Weel, L.; van Weerden, W.; Wagner, E.; Zuber, G.

    2010-01-01

    Roč. 21, č. 7 (2010), s. 795-805 ISSN 1043-0342 EU Projects: European Commission(XE) 512087 - GIANT Keywords : adenovirus * gene delivery * prostate cancer Subject RIV: CD - Macromolecular Chemistry Impact factor: 4.829, year: 2010

  6. Differentially expressed androgen-regulated genes in androgen-sensitive tissues reveal potential biomarkers of early prostate cancer.

    Directory of Open Access Journals (Sweden)

    Dogus Murat Altintas

    Full Text Available BACKGROUND: Several data favor androgen receptor implication in prostate cancer initiation through the induction of several gene activation programs. The aim of the study is to identify potential biomarkers for early diagnosis of prostate cancer (PCa among androgen-regulated genes (ARG and to evaluate comparative expression of these genes in normal prostate and normal prostate-related androgen-sensitive tissues that do not (or rarely give rise to cancer. METHODS: ARG were selected in non-neoplastic adult human prostatic epithelial RWPE-1 cells stably expressing an exogenous human androgen receptor, using RNA-microarrays and validation by qRT-PCR. Expression of 48 preselected genes was quantified in tissue samples (seminal vesicles, prostate transitional zones and prostate cancers, benign prostatic hypertrophy obtained from surgical specimens using TaqMan® low-density arrays. The diagnostic performances of these potential biomarkers were compared to that of genes known to be associated with PCa (i.e. PCA3 and DLX1. RESULTS AND DISCUSSION: By crossing expression studies in 26 matched PCa and normal prostate transitional zone samples, and 35 matched seminal vesicle and PCa samples, 14 genes were identified. Similarly, 9 genes were overexpressed in 15 benign prostatic hypertrophy samples, as compared to PCa samples. Overall, we selected 8 genes of interest to evaluate their diagnostic performances in comparison with that of PCA3 and DLX1. Among them, 3 genes: CRYAB, KCNMA1 and SDPR, were overexpressed in all 3 reference non-cancerous tissues. The areas under ROC curves of these genes reached those of PCA3 (0.91 and DLX1 (0.94. CONCLUSIONS: We identified ARG with reduced expression in PCa and with significant diagnostic values for discriminating between cancerous and non-cancerous prostatic tissues, similar that of PCA3. Given their expression pattern, they could be considered as potentially protective against prostate cancer. Moreover, they could

  7. Alternative Splicing as a Target for Cancer Treatment.

    Science.gov (United States)

    Martinez-Montiel, Nancy; Rosas-Murrieta, Nora Hilda; Anaya Ruiz, Maricruz; Monjaraz-Guzman, Eduardo; Martinez-Contreras, Rebeca

    2018-02-11

    Alternative splicing is a key mechanism determinant for gene expression in metazoan. During alternative splicing, non-coding sequences are removed to generate different mature messenger RNAs due to a combination of sequence elements and cellular factors that contribute to splicing regulation. A different combination of splicing sites, exonic or intronic sequences, mutually exclusive exons or retained introns could be selected during alternative splicing to generate different mature mRNAs that could in turn produce distinct protein products. Alternative splicing is the main source of protein diversity responsible for 90% of human gene expression, and it has recently become a hallmark for cancer with a full potential as a prognostic and therapeutic tool. Currently, more than 15,000 alternative splicing events have been associated to different aspects of cancer biology, including cell proliferation and invasion, apoptosis resistance and susceptibility to different chemotherapeutic drugs. Here, we present well established and newly discovered splicing events that occur in different cancer-related genes, their modification by several approaches and the current status of key tools developed to target alternative splicing with diagnostic and therapeutic purposes.

  8. The Circadian Rhythm Gene Arntl2 Is a Metastasis Susceptibility Gene for Estrogen Receptor-Negative Breast Cancer.

    Directory of Open Access Journals (Sweden)

    Ngoc-Han Ha

    2016-09-01

    Full Text Available Breast cancer mortality is primarily due to metastasis rather than primary tumors, yet relatively little is understood regarding the etiology of metastatic breast cancer. Previously, using a mouse genetics approach, we demonstrated that inherited germline polymorphisms contribute to metastatic disease, and that these single nucleotide polymorphisms (SNPs could be used to predict outcome in breast cancer patients. In this study, a backcross between a highly metastatic (FVB/NJ and low metastatic (MOLF/EiJ mouse strain identified Arntl2, a gene encoding a circadian rhythm transcription factor, as a metastasis susceptibility gene associated with progression, specifically in estrogen receptor-negative breast cancer patients. Integrated whole genome sequence analysis with DNase hypersensitivity sites reveals SNPs in the predicted promoter of Arntl2. Using CRISPR/Cas9-mediated substitution of the MOLF promoter, we demonstrate that the SNPs regulate Arntl2 transcription and affect metastatic burden. Finally, analysis of SNPs associated with ARNTL2 expression in human breast cancer patients revealed reproducible associations of ARNTL2 expression quantitative trait loci (eQTL SNPs with disease-free survival, consistent with the mouse studies.

  9. Genetic variants in hormone-related genes and risk of breast cancer.

    Directory of Open Access Journals (Sweden)

    Tess Clendenen

    Full Text Available Sex hormones play a key role in the development of breast cancer. Certain polymorphic variants (SNPs and repeat polymorphisms in hormone-related genes are associated with sex hormone levels. However, the relationship observed between these genetic variants and breast cancer risk has been inconsistent. We conducted a case-control study nested within two prospective cohorts to assess the relationship between specific genetic variants in hormone-related genes and breast cancer risk. In total, 1164 cases and 2111 individually-matched controls were included in the study. We did not observe an association between potential functional genetic polymorphisms in the estrogen pathway, SHBG rs6259, ESR1 rs2234693, CYP19 rs10046 and rs4775936, and UGT1A1 rs8175347, or the progesterone pathway, PGR rs1042838, with the risk of breast cancer. Our results suggest that these genetic variants do not have a strong effect on breast cancer risk.

  10. Analysis of Kras gene from induced pancreatic cancer rats administered with Momordicacharantia and Ocimumbasilicum leaf extracts

    Directory of Open Access Journals (Sweden)

    J.B. Minari

    2018-04-01

    Full Text Available Objective: To analyze K-ras gene from induced pancreatic cancer rats administered with Momordicacharantia and Ocimumbasilicum leaf extracts. Methods: Twenty-five (25 adult rats weighing between 90–120 g were divided into 5 groups namely RA, RB, RC, NC and PC, each group had 5 rats. The PC which served as the control was fed with normal fish meal and water ad libitum; the NC which is the negative control received 20 mg/ml/week of Nitrosamines only while other groups received different concentrations of aqueous extract of both M. charantia and O. basilicum (200 mg, 100 mg, 50 mg and Nitrosamine. Qualitative phytochemical screening of the aqueous extract of both M. charantia and O. basilicum was carried out. The extraction of DNA was done using Jena Bioscience DNA preparation kit and the protocol was based on the spin column based genomic DNA purification from blood, animal and plant cells. Agarose gel electrophoresis was used to analyze the K-ras gene extracted from the pancreas tissues of experimental rats while hematoxylinand eosin staining was used for histological assay. Results: Phytochemical screening revealed the presence of alkaloids, tannins, flavonoids, saponins and glycosides in M. charantia while saponins, tannins and glycosides were discovered in O. basilicum. Significant reduction in the weight of rats treated with 200 mg of aqueous extracts of M. charantia and O. basilicum while rats that were dosed with nitrosamines only showed a slight increase in weight in the first three weeks when compared to the positive control. Histological studies revealed that there is both enlargement and reduction in the islet cell size, with one of the sections showing a normal islet cell size. While the agarose gel electrophoresis revealed that there may be possibility of prevention of damage to k-ras gene as a result of the effect of plants extract. Conclusion: This work has shown that the leaf extracts of both M. charantia and O. basilicum

  11. Pancreatic Cancer Gene Therapy: From Molecular Targets to Delivery Systems

    Energy Technology Data Exchange (ETDEWEB)

    Fillat, Cristina, E-mail: cristina.fillat@crg.es; Jose, Anabel; Ros, Xavier Bofill-De; Mato-Berciano, Ana; Maliandi, Maria Victoria; Sobrevals, Luciano [Programa Gens i Malaltia, Centre de Regulació Genòmica-CRG, UPF, Parc de Recerca Biomedica de Barcelona-PRBB and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona (Spain)

    2011-01-18

    The continuous identification of molecular changes deregulating critical pathways in pancreatic tumor cells provides us with a large number of novel candidates to engineer gene-targeted approaches for pancreatic cancer treatment. Targets—both protein coding and non-coding—are being exploited in gene therapy to influence the deregulated pathways to facilitate cytotoxicity, enhance the immune response or sensitize to current treatments. Delivery vehicles based on viral or non-viral systems as well as cellular vectors with tumor homing characteristics are a critical part of the design of gene therapy strategies. The different behavior of tumoral versus non-tumoral cells inspires vector engineering with the generation of tumor selective products that can prevent potential toxic-associated effects. In the current review, a detailed analysis of the different targets, the delivery vectors, the preclinical approaches and a descriptive update on the conducted clinical trials are presented. Moreover, future possibilities in pancreatic cancer treatment by gene therapy strategies are discussed.

  12. DeBi: Discovering Differentially Expressed Biclusters using a Frequent Itemset Approach

    Directory of Open Access Journals (Sweden)

    Vingron Martin

    2011-06-01

    Full Text Available Abstract Background The analysis of massive high throughput data via clustering algorithms is very important for elucidating gene functions in biological systems. However, traditional clustering methods have several drawbacks. Biclustering overcomes these limitations by grouping genes and samples simultaneously. It discovers subsets of genes that are co-expressed in certain samples. Recent studies showed that biclustering has a great potential in detecting marker genes that are associated with certain tissues or diseases. Several biclustering algorithms have been proposed. However, it is still a challenge to find biclusters that are significant based on biological validation measures. Besides that, there is a need for a biclustering algorithm that is capable of analyzing very large datasets in reasonable time. Results Here we present a fast biclustering algorithm called DeBi (Differentially Expressed BIclusters. The algorithm is based on a well known data mining approach called frequent itemset. It discovers maximum size homogeneous biclusters in which each gene is strongly associated with a subset of samples. We evaluate the performance of DeBi on a yeast dataset, on synthetic datasets and on human datasets. Conclusions We demonstrate that the DeBi algorithm provides functionally more coherent gene sets compared to standard clustering or biclustering algorithms using biological validation measures such as Gene Ontology term and Transcription Factor Binding Site enrichment. We show that DeBi is a computationally efficient and powerful tool in analyzing large datasets. The method is also applicable on multiple gene expression datasets coming from different labs or platforms.

  13. Characterizing the Genetic Basis for Nicotine Induced Cancer Development: A Transcriptome Sequencing Study.

    Directory of Open Access Journals (Sweden)

    Jasmin H Bavarva

    Full Text Available Nicotine is a known risk factor for cancer development and has been shown to alter gene expression in cells and tissue upon exposure. We used Illumina® Next Generation Sequencing (NGS technology to gain unbiased biological insight into the transcriptome of normal epithelial cells (MCF-10A to nicotine exposure. We generated expression data from 54,699 transcripts using triplicates of control and nicotine stressed cells. As a result, we identified 138 differentially expressed transcripts, including 39 uncharacterized genes. Additionally, 173 transcripts that are primarily associated with DNA replication, recombination, and repair showed evidence for alternative splicing. We discovered the greatest nicotine stress response by HPCAL4 (up-regulated by 4.71 fold and NPAS3 (down-regulated by -2.73 fold; both are genes that have not been previously implicated in nicotine exposure but are linked to cancer. We also discovered significant down-regulation (-2.3 fold and alternative splicing of NEAT1 (lncRNA that may have an important, yet undiscovered regulatory role. Gene ontology analysis revealed nicotine exposure influenced genes involved in cellular and metabolic processes. This study reveals previously unknown consequences of nicotine stress on the transcriptome of normal breast epithelial cells and provides insight into the underlying biological influence of nicotine on normal cells, marking the foundation for future studies.

  14. Role of APC and DNA mismatch repair genes in the development of colorectal cancers

    Directory of Open Access Journals (Sweden)

    Roy Deodutta

    2003-12-01

    Full Text Available Abstract Colorectal cancer is the third most common cause of cancer-related death in both men and women in the western hemisphere. According to the American Cancer Society, an estimated 105,500 new cases of colon cancer with 57,100 deaths will occur in the U.S. in 2003, accounting for about 10% of cancer deaths. Among the colon cancer patients, hereditary risk contributes approximately 20%. The main inherited colorectal cancers are the familial adenomatous polyposis (FAP and the hereditary nonpolyposis colorectal cancers (HNPCC. The FAP and HNPCC are caused due to mutations in the adenomatous polyposis coli (APC and DNA mismatch repair (MMR genes. The focus of this review is to summarize the functions of APC and MMR gene products in the development of colorectal cancers.

  15. HAP1 gene expression is associated with radiosensitivity in breast cancer cells

    International Nuclear Information System (INIS)

    Wu, Jing; Zhang, Jun-ying; Yin, Li; Wu, Jian-zhong; Guo, Wen-jie; Wu, Jian-feng; Chen, Meng; Xia, You-you; Tang, Jin-hai; Ma, Yong-chao; He, Xia

    2015-01-01

    Highlights: • Overexpression of HAP1 gene promotes apoptosis in MCF-7 cells after irradiation. • HAP1 reduces tumor volume in nude mice xenograft models after irradiation. • HAP1 increases radiosensitivity of breast cancer cells in vitro and vivo. - Abstract: Objectives: The purpose of this study was to investigate the relationship between huntingtin-associated protein1 (HAP1) gene and radiation therapy of breast cancer cells. Methods: HAP1 gene was transfected into breast cancer MCF-7 cells, which was confirmed by quantitative reverse transcription-polymerase chain reaction analysis (qRT-PCR) and Western blot in vitro. The changes of cell radiosensitivity were assessed by colony formation assay. Apoptosis were examined by flow cytometry. The expressions of two radiation-induced genes were evaluated by Western blot. Tumor growth was investigated in nude mice xenograft models in vivo. Results: Our data showed that HAP1 gene expression was significantly increased in HAP1-transfected MCF-7 cells in comparison with the parental cells or negative control cells. The survival rate in MCF-7/HAP1 cells was significantly decreased after irradiation (0, 2, 4, 6, 8 Gy), compared to cells in MCF-7 and MCF-7/Pb groups in vitro. HAP1 gene increased apoptosis in MCF-7 cells after irradiation. Additionally, the tumor volume and weight in MCF-7/HAP1 + RT group were observably lower than in MCF-7/HAP1 group and MCF-7/Pb + RT group. Conclusion: The present study indicated that HAP1 gene expression was related to the radiosensitivity of breast cancer cells and may play an important role in the regulation of cellular radiosensitivity

  16. Use of deep whole-genome sequencing data to identify structure risk variants in breast cancer susceptibility genes.

    Science.gov (United States)

    Guo, Xingyi; Shi, Jiajun; Cai, Qiuyin; Shu, Xiao-Ou; He, Jing; Wen, Wanqing; Allen, Jamie; Pharoah, Paul; Dunning, Alison; Hunter, David J; Kraft, Peter; Easton, Douglas F; Zheng, Wei; Long, Jirong

    2018-03-01

    Functional disruptions of susceptibility genes by large genomic structure variant (SV) deletions in germlines are known to be associated with cancer risk. However, few studies have been conducted to systematically search for SV deletions in breast cancer susceptibility genes. We analysed deep (> 30x) whole-genome sequencing (WGS) data generated in blood samples from 128 breast cancer patients of Asian and European descent with either a strong family history of breast cancer or early cancer onset disease. To identify SV deletions in known or suspected breast cancer susceptibility genes, we used multiple SV calling tools including Genome STRiP, Delly, Manta, BreakDancer and Pindel. SV deletions were detected by at least three of these bioinformatics tools in five genes. Specifically, we identified heterozygous deletions covering a fraction of the coding regions of BRCA1 (with approximately 80kb in two patients), and TP53 genes (with ∼1.6 kb in two patients), and of intronic regions (∼1 kb) of the PALB2 (one patient), PTEN (three patients) and RAD51C genes (one patient). We confirmed the presence of these deletions using real-time quantitative PCR (qPCR). Our study identified novel SV deletions in breast cancer susceptibility genes and the identification of such SV deletions may improve clinical testing.

  17. Machine Learning-Assisted Network Inference Approach to Identify a New Class of Genes that Coordinate the Functionality of Cancer Networks.

    Science.gov (United States)

    Ghanat Bari, Mehrab; Ung, Choong Yong; Zhang, Cheng; Zhu, Shizhen; Li, Hu

    2017-08-01

    Emerging evidence indicates the existence of a new class of cancer genes that act as "signal linkers" coordinating oncogenic signals between mutated and differentially expressed genes. While frequently mutated oncogenes and differentially expressed genes, which we term Class I cancer genes, are readily detected by most analytical tools, the new class of cancer-related genes, i.e., Class II, escape detection because they are neither mutated nor differentially expressed. Given this hypothesis, we developed a Machine Learning-Assisted Network Inference (MALANI) algorithm, which assesses all genes regardless of expression or mutational status in the context of cancer etiology. We used 8807 expression arrays, corresponding to 9 cancer types, to build more than 2 × 10 8 Support Vector Machine (SVM) models for reconstructing a cancer network. We found that ~3% of ~19,000 not differentially expressed genes are Class II cancer gene candidates. Some Class II genes that we found, such as SLC19A1 and ATAD3B, have been recently reported to associate with cancer outcomes. To our knowledge, this is the first study that utilizes both machine learning and network biology approaches to uncover Class II cancer genes in coordinating functionality in cancer networks and will illuminate our understanding of how genes are modulated in a tissue-specific network contribute to tumorigenesis and therapy development.

  18. Radiosensitivity of cancer cells against carbon-ion beams in an aspect of the p53 gene status

    International Nuclear Information System (INIS)

    Takahashi, Akihisa; Ohnishi, Takeo; Matsumoto, Hideki

    2004-01-01

    We can easily understand that radiation sensitivities of cancer cells are dependent on the status of cancer-related genes. It is important to clarify which genes affect radiation sensitivity and reflect the effectiveness of radiation therapy for cancer cells. We have studied about the function of a tumor suppressor gene of p53, because p53 controls apoptosis, cell cycle and DNA repair from an aspect of important roles in cell fate. By analysis of function of p53 gene, therefore, we aim to predict the therapeutic effectiveness and to select the modalities of cancer therapies such as radiotherapy, chemotherapy and hyperthermia. As a final goal, we want to accept the most effective therapy, namely tailor-made cancer therapy, for each patient. Here, we introduce that carbon-beam therapy induced the expression of p53-independent apoptosis-related genes and NO radicals in mutated p53 cancer cells. (author)

  19. A Novel Functional Screen for New Breast Cancer Genes

    National Research Council Canada - National Science Library

    King, Mary-Claire; Welcsh, Piri L

    2005-01-01

    Genetic instability is a hallmark of tumor development. Mechanisms for maintenance of genomic stability are heterogeneous and identification of the genes responsible a critical goal of cancer biologists...

  20. Epigenetic changes of DNA repair genes in cancer.

    Science.gov (United States)

    Lahtz, Christoph; Pfeifer, Gerd P

    2011-02-01

    'Every Hour Hurts, The Last One Kills'. That is an old saying about getting old. Every day, thousands of DNA damaging events take place in each cell of our body, but efficient DNA repair systems have evolved to prevent that. However, our DNA repair system and that of most other organisms are not as perfect as that of Deinococcus radiodurans, for example, which is able to repair massive amounts of DNA damage at one time. In many instances, accumulation of DNA damage has been linked to cancer, and genetic deficiencies in specific DNA repair genes are associated with tumor-prone phenotypes. In addition to mutations, which can be either inherited or somatically acquired, epigenetic silencing of DNA repair genes may promote tumorigenesis. This review will summarize current knowledge of the epigenetic inactivation of different DNA repair components in human cancer.

  1. Cancer cell specific cytotoxic gene expression mediated by ARF tumor suppressor promoter constructs

    International Nuclear Information System (INIS)

    Kurayoshi, Kenta; Ozono, Eiko; Iwanaga, Ritsuko; Bradford, Andrew P.; Komori, Hideyuki; Ohtani, Kiyoshi

    2014-01-01

    Highlights: • ARF promoter showed higher responsiveness to deregulated E2F activity than the E2F1 promoter. • ARF promoter showed higher cancer cell-specificity than E2F1 promoter to drive gene expression. • HSV-TK driven by ARF promoter showed higher cancer cell-specific cytotoxicity than that driven by E2F1 promoter. - Abstract: In current cancer treatment protocols, such as radiation and chemotherapy, side effects on normal cells are major obstacles to radical therapy. To avoid these side effects, a cancer cell-specific approach is needed. One way to specifically target cancer cells is to utilize a cancer specific promoter to express a cytotoxic gene (suicide gene therapy) or a viral gene required for viral replication (oncolytic virotherapy). For this purpose, the selected promoter should have minimal activity in normal cells to avoid side effects, and high activity in a wide variety of cancers to obtain optimal therapeutic efficacy. In contrast to the AFP, CEA and PSA promoters, which have high activity only in a limited spectrum of tumors, the E2F1 promoter exhibits high activity in wide variety of cancers. This is based on the mechanism of carcinogenesis. Defects in the RB pathway and activation of the transcription factor E2F, the main target of the RB pathway, are observed in almost all cancers. Consequently, the E2F1 promoter, which is mainly regulated by E2F, has high activity in wide variety of cancers. However, E2F is also activated by growth stimulation in normal growing cells, suggesting that the E2F1 promoter may also be highly active in normal growing cells. In contrast, we found that the tumor suppressor ARF promoter is activated by deregulated E2F activity, induced by forced inactivation of pRB, but does not respond to physiological E2F activity induced by growth stimulation. We also found that the deregulated E2F activity, which activates the ARF promoter, is detected only in cancer cell lines. These observations suggest that ARF promoter

  2. Cancer cell specific cytotoxic gene expression mediated by ARF tumor suppressor promoter constructs

    Energy Technology Data Exchange (ETDEWEB)

    Kurayoshi, Kenta [Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337 (Japan); Ozono, Eiko [Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary, University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ (United Kingdom); Iwanaga, Ritsuko; Bradford, Andrew P. [Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045 (United States); Komori, Hideyuki [Center for Stem Cell Biology, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109 (United States); Ohtani, Kiyoshi, E-mail: btm88939@kwansei.ac.jp [Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337 (Japan)

    2014-07-18

    Highlights: • ARF promoter showed higher responsiveness to deregulated E2F activity than the E2F1 promoter. • ARF promoter showed higher cancer cell-specificity than E2F1 promoter to drive gene expression. • HSV-TK driven by ARF promoter showed higher cancer cell-specific cytotoxicity than that driven by E2F1 promoter. - Abstract: In current cancer treatment protocols, such as radiation and chemotherapy, side effects on normal cells are major obstacles to radical therapy. To avoid these side effects, a cancer cell-specific approach is needed. One way to specifically target cancer cells is to utilize a cancer specific promoter to express a cytotoxic gene (suicide gene therapy) or a viral gene required for viral replication (oncolytic virotherapy). For this purpose, the selected promoter should have minimal activity in normal cells to avoid side effects, and high activity in a wide variety of cancers to obtain optimal therapeutic efficacy. In contrast to the AFP, CEA and PSA promoters, which have high activity only in a limited spectrum of tumors, the E2F1 promoter exhibits high activity in wide variety of cancers. This is based on the mechanism of carcinogenesis. Defects in the RB pathway and activation of the transcription factor E2F, the main target of the RB pathway, are observed in almost all cancers. Consequently, the E2F1 promoter, which is mainly regulated by E2F, has high activity in wide variety of cancers. However, E2F is also activated by growth stimulation in normal growing cells, suggesting that the E2F1 promoter may also be highly active in normal growing cells. In contrast, we found that the tumor suppressor ARF promoter is activated by deregulated E2F activity, induced by forced inactivation of pRB, but does not respond to physiological E2F activity induced by growth stimulation. We also found that the deregulated E2F activity, which activates the ARF promoter, is detected only in cancer cell lines. These observations suggest that ARF promoter

  3. Genetic Mechanisms of Immune Evasion in Colorectal Cancer.

    Science.gov (United States)

    Grasso, Catherine S; Giannakis, Marios; Wells, Daniel K; Hamada, Tsuyoshi; Mu, Xinmeng Jasmine; Quist, Michael; Nowak, Jonathan A; Nishihara, Reiko; Qian, Zhi Rong; Inamura, Kentaro; Morikawa, Teppei; Nosho, Katsuhiko; Abril-Rodriguez, Gabriel; Connolly, Charles; Escuin-Ordinas, Helena; Geybels, Milan S; Grady, William M; Hsu, Li; Hu-Lieskovan, Siwen; Huyghe, Jeroen R; Kim, Yeon Joo; Krystofinski, Paige; Leiserson, Mark D M; Montoya, Dennis J; Nadel, Brian B; Pellegrini, Matteo; Pritchard, Colin C; Puig-Saus, Cristina; Quist, Elleanor H; Raphael, Ben J; Salipante, Stephen J; Shin, Daniel Sanghoon; Shinbrot, Eve; Shirts, Brian; Shukla, Sachet; Stanford, Janet L; Sun, Wei; Tsoi, Jennifer; Upfill-Brown, Alexander; Wheeler, David A; Wu, Catherine J; Yu, Ming; Zaidi, Syed H; Zaretsky, Jesse M; Gabriel, Stacey B; Lander, Eric S; Garraway, Levi A; Hudson, Thomas J; Fuchs, Charles S; Ribas, Antoni; Ogino, Shuji; Peters, Ulrike

    2018-06-01

    To understand the genetic drivers of immune recognition and evasion in colorectal cancer, we analyzed 1,211 colorectal cancer primary tumor samples, including 179 classified as microsatellite instability-high (MSI-high). This set includes The Cancer Genome Atlas colorectal cancer cohort of 592 samples, completed and analyzed here. MSI-high, a hypermutated, immunogenic subtype of colorectal cancer, had a high rate of significantly mutated genes in important immune-modulating pathways and in the antigen presentation machinery, including biallelic losses of B2M and HLA genes due to copy-number alterations and copy-neutral loss of heterozygosity. WNT/β-catenin signaling genes were significantly mutated in all colorectal cancer subtypes, and activated WNT/β-catenin signaling was correlated with the absence of T-cell infiltration. This large-scale genomic analysis of colorectal cancer demonstrates that MSI-high cases frequently undergo an immunoediting process that provides them with genetic events allowing immune escape despite high mutational load and frequent lymphocytic infiltration and, furthermore, that colorectal cancer tumors have genetic and methylation events associated with activated WNT signaling and T-cell exclusion. Significance: This multi-omic analysis of 1,211 colorectal cancer primary tumors reveals that it should be possible to better monitor resistance in the 15% of cases that respond to immune blockade therapy and also to use WNT signaling inhibitors to reverse immune exclusion in the 85% of cases that currently do not. Cancer Discov; 8(6); 730-49. ©2018 AACR. This article is highlighted in the In This Issue feature, p. 663 . ©2018 American Association for Cancer Research.

  4. CGMIM: Automated text-mining of Online Mendelian Inheritance in Man (OMIM to identify genetically-associated cancers and candidate genes

    Directory of Open Access Journals (Sweden)

    Jones Steven

    2005-03-01

    Full Text Available Abstract Background Online Mendelian Inheritance in Man (OMIM is a computerized database of information about genes and heritable traits in human populations, based on information reported in the scientific literature. Our objective was to establish an automated text-mining system for OMIM that will identify genetically-related cancers and cancer-related genes. We developed the computer program CGMIM to search for entries in OMIM that are related to one or more cancer types. We performed manual searches of OMIM to verify the program results. Results In the OMIM database on September 30, 2004, CGMIM identified 1943 genes related to cancer. BRCA2 (OMIM *164757, BRAF (OMIM *164757 and CDKN2A (OMIM *600160 were each related to 14 types of cancer. There were 45 genes related to cancer of the esophagus, 121 genes related to cancer of the stomach, and 21 genes related to both. Analysis of CGMIM results indicate that fewer than three gene entries in OMIM should mention both, and the more than seven-fold discrepancy suggests cancers of the esophagus and stomach are more genetically related than current literature suggests. Conclusion CGMIM identifies genetically-related cancers and cancer-related genes. In several ways, cancers with shared genetic etiology are anticipated to lead to further etiologic hypotheses and advances regarding environmental agents. CGMIM results are posted monthly and the source code can be obtained free of charge from the BC Cancer Research Centre website http://www.bccrc.ca/ccr/CGMIM.

  5. A Critical Perspective On Microarray Breast Cancer Gene Expression Profiling

    NARCIS (Netherlands)

    Sontrop, H.M.J.

    2015-01-01

    Microarrays offer biologists an exciting tool that allows the simultaneous assessment of gene expression levels for thousands of genes at once. At the time of their inception, microarrays were hailed as the new dawn in cancer biology and oncology practice with the hope that within a decade diseases

  6. Molecular markers for tumor cell dissemination in female cancers

    International Nuclear Information System (INIS)

    Obermayr, E.

    2009-01-01

    In the fight against cancer many advances have been made in early detection and treatment of the disease during the last few decades. Nevertheless, many patients still die of cancer due to metastatic spreading of the disease. Tumor cell dissemination may occur very early and usually is not discovered at the time of initial diagnosis. In these cases, the mere excision of the primary tumor is an insufficient treatment. Microscopic tumor residues will remain in the blood, lymph nodes, or the bone marrow and will cause disease recurrence. To improve the patient's prognosis, a sensitive tool for the detection of single tumor cells supplementing conventional diagnostic procedures is required. As the blood is more easily accessible than the bone marrow or tissue biopsies, we intended to identify gene markers for the detection of circulating tumor cells in the blood of cancer patients. We focused on patients with breast, ovarian, endometrial or cervical cancer. Starting from a genome-wide gene expression analysis of tumor cells and blood cells, we found six genes higher expression levels in cancer patients compared to healthy women. These findings suggest that an increased expression of these genes in the blood indicates the presence of circulating tumor cells inducing future metastases and thus the need for adjuvant therapy assisting the primary treatment. Measuring the expression levels of these six genes in the blood may supplement conventional diagnostic tests and improve the patient's prognosis. (author) [de

  7. Silencing of Taxol-Sensitizer Genes in Cancer Cells: Lack of Sensitization Effects

    International Nuclear Information System (INIS)

    Huang, Shang-Lang; Chao, Chuck C.-K.

    2015-01-01

    A previous genome-wide screening analysis identified a panel of genes that sensitize the human non-small-cell lung carcinoma cell line NCI-H1155 to taxol. However, whether the identified genes sensitize other cancer cells to taxol has not been examined. Here, we silenced the taxol-sensitizer genes identified (acrbp, atp6v0d2, fgd4, hs6st2, psma6, and tubgcp2) in nine other cancer cell types (including lung, cervical, ovarian, and hepatocellular carcinoma cell lines) that showed reduced cell viability in the presence of a sub-lethal concentration of taxol. Surprisingly, none of the genes studied increased sensitivity to taxol in the tested panel of cell lines. As observed in H1155 cells, SKOV3 cells displayed induction of five of the six genes studied in response to a cell killing dose of taxol. The other cell types were much less responsive to taxol. Notably, four of the five inducible taxol-sensitizer genes tested (acrbp, atp6v0d2, psma6, and tubgcp2) were upregulated in a taxol-resistant ovarian cancer cell line. These results indicate that the previously identified taxol-sensitizer loci are not conserved genetic targets involved in inhibiting cell proliferation in response to taxol. Our findings also suggest that regulation of taxol-sensitizer genes by taxol may be critical for acquired cell resistance to the drug

  8. Silencing of Taxol-Sensitizer Genes in Cancer Cells: Lack of Sensitization Effects

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Shang-Lang [Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan (China); Chao, Chuck C.-K., E-mail: cckchao@mail.cgu.edu.tw [Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan (China); Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan (China); Department of Medical Research and Development, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan (China)

    2015-06-16

    A previous genome-wide screening analysis identified a panel of genes that sensitize the human non-small-cell lung carcinoma cell line NCI-H1155 to taxol. However, whether the identified genes sensitize other cancer cells to taxol has not been examined. Here, we silenced the taxol-sensitizer genes identified (acrbp, atp6v0d2, fgd4, hs6st2, psma6, and tubgcp2) in nine other cancer cell types (including lung, cervical, ovarian, and hepatocellular carcinoma cell lines) that showed reduced cell viability in the presence of a sub-lethal concentration of taxol. Surprisingly, none of the genes studied increased sensitivity to taxol in the tested panel of cell lines. As observed in H1155 cells, SKOV3 cells displayed induction of five of the six genes studied in response to a cell killing dose of taxol. The other cell types were much less responsive to taxol. Notably, four of the five inducible taxol-sensitizer genes tested (acrbp, atp6v0d2, psma6, and tubgcp2) were upregulated in a taxol-resistant ovarian cancer cell line. These results indicate that the previously identified taxol-sensitizer loci are not conserved genetic targets involved in inhibiting cell proliferation in response to taxol. Our findings also suggest that regulation of taxol-sensitizer genes by taxol may be critical for acquired cell resistance to the drug.

  9. The associations between immunity-related genes and breast cancer prognosis in Korean women.

    Directory of Open Access Journals (Sweden)

    Jaesung Choi

    Full Text Available We investigated the role of common genetic variation in immune-related genes on breast cancer disease-free survival (DFS in Korean women. 107 breast cancer patients of the Seoul Breast Cancer Study (SEBCS were selected for this study. A total of 2,432 tag single nucleotide polymorphisms (SNPs in 283 immune-related genes were genotyped with the GoldenGate Oligonucleotide pool assay (OPA. A multivariate Cox-proportional hazard model and polygenic risk score model were used to estimate the effects of SNPs on breast cancer prognosis. Harrell's C index was calculated to estimate the predictive accuracy of polygenic risk score model. Subsequently, an extended gene set enrichment analysis (GSEA-SNP was conducted to approximate the biological pathway. In addition, to confirm our results with current evidence, previous studies were systematically reviewed. Sixty-two SNPs were statistically significant at p-value less than 0.05. The most significant SNPs were rs1952438 in SOCS4 gene (hazard ratio (HR = 11.99, 95% CI = 3.62-39.72, P = 4.84E-05, rs2289278 in TSLP gene (HR = 4.25, 95% CI = 2.10-8.62, P = 5.99E-05 and rs2074724 in HGF gene (HR = 4.63, 95% CI = 2.18-9.87, P = 7.04E-05. In the polygenic risk score model, the HR of women in the 3rd tertile was 6.78 (95% CI = 1.48-31.06 compared to patients in the 1st tertile of polygenic risk score. Harrell's C index was 0.813 with total patients and 0.924 in 4-fold cross validation. In the pathway analysis, 18 pathways were significantly associated with breast cancer prognosis (P<0.1. The IL-6R, IL-8, IL-10RB, IL-12A, and IL-12B was associated with the prognosis of cancer in data of both our study and a previous study. Therefore, our results suggest that genetic polymorphisms in immune-related genes have relevance to breast cancer prognosis among Korean women.

  10. Novel liposomal combination treatments using dual genes knockdown in oral cancer treatment

    Science.gov (United States)

    Wu, Jyun-Sian; Yeh, Chia-Hsien; Huang, Leaf; Hsu, Yih-Chih

    2018-02-01

    Small interfering RNA (siRNA) can be used to treat tumor because it can effectively knockdown target oncoprotein expression and it leads to cancer cell death and apoptosis. Hypoxia-inducible factors-1 (HIF-1) is a transcription factor gene. Its high expression of tumor hypoxia cells, activation of transcription factor HIF-1α and angiogenesis found in most cancerous tissues. HIF-1α protein in cancer cells are critical to cell survival, tumor growth and proliferation. Epidermal growth factor receptor (EGFR) gene is another common head and neck oncogene. The dual self-designed siRNA sequences were encapsulated in the lipid-calcium-phosphate (LCP) and targeted to sigma receptors on the surface of cancer cells via binding to amino ethyl anisamide (AEAA). We used human oral cancer cells to establish the xenograft animal model to study the combination therapy for therapeutic results.

  11. Interleukin gene polymorphisms in Chinese Han population with breast cancer, a case-control study.

    Science.gov (United States)

    Zuo, Xiaoxiao; Li, Miao; Yang, Ya; Liang, Tiansong; Yang, Hongyao; Zhao, Xinhan; Yang, Daoke

    2018-04-06

    Cytokines are known as important regulators of the cancer involved in inflammatory and immunological responses. This fact and plethora of gene polymorphism data prompted us to investigate IL1 gene polymorphisms in breast cancer (BC) patients. Totally, 530 patients with BC and 628 healthy control women were studied. The genetic polymorphisms for IL1 were analyzed by Massarray Sequencing method. Three single nucleotide polymorphisms (SNPs) identified in IL1B, IL1R1 gene are thought to influence breast cancer risk. The results of the association between IL-1B, IL1R1 polymorphisms and breast cancer risk have significant. We found that the variant TT genotype of rs10490571 was associated with a significantly increased breast cancer risk (TT vs. CC: OR = 2.82, 95% CI = 1.12-7.08, P = 0.047 for the codominant model). For rs16944 (AG vs. GG: OR = 0.60, 95% CI = 0.41-0.90, P = 0.034 for the codominant model) and rs1143623 (CG vs. CC: OR = 0.65, 95% CI = 0.45-0.94, P = 0.023 for the codominant model) have significant associations were found in genetic models. In conclusion, the present analysis suggests a correlation of polymorphic markers within the IL-1 gene locus with the risk in developing breast cancer. Taken together with our finding that IL1B, IL1R1 gene three SNP are also associated with the risk for the disease, we suggest that inflammation via innate and adaptive immunity contributes to multifactorial hereditary predisposition to pathogenesis of the breast cancer.

  12. A systems genetics approach identifies CXCL14, ITGAX, and LPCAT2 as novel aggressive prostate cancer susceptibility genes.

    Directory of Open Access Journals (Sweden)

    Kendra A Williams

    2014-11-01

    Full Text Available Although prostate cancer typically runs an indolent course, a subset of men develop aggressive, fatal forms of this disease. We hypothesize that germline variation modulates susceptibility to aggressive prostate cancer. The goal of this work is to identify susceptibility genes using the C57BL/6-Tg(TRAMP8247Ng/J (TRAMP mouse model of neuroendocrine prostate cancer. Quantitative trait locus (QTL mapping was performed in transgene-positive (TRAMPxNOD/ShiLtJ F2 intercross males (n = 228, which facilitated identification of 11 loci associated with aggressive disease development. Microarray data derived from 126 (TRAMPxNOD/ShiLtJ F2 primary tumors were used to prioritize candidate genes within QTLs, with candidate genes deemed as being high priority when possessing both high levels of expression-trait correlation and a proximal expression QTL. This process enabled the identification of 35 aggressive prostate tumorigenesis candidate genes. The role of these genes in aggressive forms of human prostate cancer was investigated using two concurrent approaches. First, logistic regression analysis in two human prostate gene expression datasets revealed that expression levels of five genes (CXCL14, ITGAX, LPCAT2, RNASEH2A, and ZNF322 were positively correlated with aggressive prostate cancer and two genes (CCL19 and HIST1H1A were protective for aggressive prostate cancer. Higher than average levels of expression of the five genes that were positively correlated with aggressive disease were consistently associated with patient outcome in both human prostate cancer tumor gene expression datasets. Second, three of these five genes (CXCL14, ITGAX, and LPCAT2 harbored polymorphisms associated with aggressive disease development in a human GWAS cohort consisting of 1,172 prostate cancer patients. This study is the first example of using a systems genetics approach to successfully identify novel susceptibility genes for aggressive prostate cancer. Such

  13. Identification of upstream transcription factors (TFs) for expression signature genes in breast cancer.

    Science.gov (United States)

    Zang, Hongyan; Li, Ning; Pan, Yuling; Hao, Jingguang

    2017-03-01

    Breast cancer is a common malignancy among women with a rising incidence. Our intention was to detect transcription factors (TFs) for deeper understanding of the underlying mechanisms of breast cancer. Integrated analysis of gene expression datasets of breast cancer was performed. Then, functional annotation of differentially expressed genes (DEGs) was conducted, including Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. Furthermore, TFs were identified and a global transcriptional regulatory network was constructed. Seven publically available GEO datasets were obtained, and a set of 1196 DEGs were identified (460 up-regulated and 736 down-regulated). Functional annotation results showed that cell cycle was the most significantly enriched pathway, which was consistent with the fact that cell cycle is closely related to various tumors. Fifty-three differentially expressed TFs were identified, and the regulatory networks consisted of 817 TF-target interactions between 46 TFs and 602 DEGs in the context of breast cancer. Top 10 TFs covering the most downstream DEGs were SOX10, NFATC2, ZNF354C, ARID3A, BRCA1, FOXO3, GATA3, ZEB1, HOXA5 and EGR1. The transcriptional regulatory networks could enable a better understanding of regulatory mechanisms of breast cancer pathology and provide an opportunity for the development of potential therapy.

  14. Identification of certain cancer-mediating genes using Gaussian ...

    Indian Academy of Sciences (India)

    2015-09-29

    Sep 29, 2015 ... mance of GFI is compared with 19 exiting cluster validity indices. The results .... Using k-means algorithm on human lung expression data, we have found ... of possible genes that mediate the development of a cancer. In other ...

  15. Effect of hrHPV infection on anti-apoptotic gene and pro-apoptotic gene expression in cervical cancer tissue

    Directory of Open Access Journals (Sweden)

    Min-Er Tang

    2016-09-01

    Full Text Available Objective: To study the effect of hrHPV infection on anti-apoptotic gene and pro-apoptotic gene expression in cervical cancer tissue. Methods: A total of 56 patients with cervical cancer, 94 cases of patients with cervical intraepithelial neoplasia and 48 cases of patients with chronic cervicitis who were treated in our hospital from May 2013 to December 2015 were selected for study and included in malignant group, precancerous lesion group and benign group respectively. hrHPV infection as well as the expression of anti-apoptotic genes and proapoptotic genes in cervical tissue were detected. Results: hrHPV infection rate and viral load in cervical tissue of malignant group were significantly higher than those of precancerous lesion group and benign group; P27 and p16 levels in cervical tissue of malignant group were significantly lower than those of precancerous lesion group and benign group, and K-ras, c-myc, Prdx4 and TNFAIP8 levels were significantly higher than those of precancerous lesion group and benign group; the greater the HPV virus load, the lower the p27 and p16 levels and the higher the K-ras, c-myc, Prdx4 and TNFAIP8 levels in cervical tissue. Conclusions: hrHPV infection can result in tumor suppressor genes p27 and p16 expression deletion and increase the expression of proto-oncogene and apoptosis-inhibiting genes, and it is associated with the occurrence and development of cervical cancer.

  16. Interleukin gene polymorphisms and breast cancer: a case control study and systematic literature review

    International Nuclear Information System (INIS)

    Balasubramanian, SP; Azmy, IAF; Higham, SE; Wilson, AG; Cross, SS; Cox, A; Brown, NJ; Reed, MW

    2006-01-01

    Interleukins and cytokines play an important role in the pathogenesis of many solid cancers. Several single nucleotide polymorphisms (SNPs) identified in cytokine genes are thought to influence the expression or function of these proteins and many have been evaluated for their role in inflammatory disease and cancer predisposition. The aim of this study was to evaluate any role of specific SNPs in the interleukin genes IL1A, IL1B, IL1RN, IL4R, IL6 and IL10 in predisposition to breast cancer susceptibility and severity. Candidate single nucleotide polymorphisms (SNPs) in key cytokine genes were genotyped in breast cancer patients and in appropriate healthy volunteers who were similar in age, race and sex. Genotyping was performed using a high throughput allelic discrimination method. Data on clinico-pathological details and survival were collected. A systematic review of Medline English literature was done to retrieve previous studies of these polymorphisms in breast cancer. None of the polymorphisms studied showed any overall predisposition to breast cancer susceptibility, severity or to time to death or occurrence of distant metastases. The results of the systematic review are summarised. Polymorphisms within key interleukin genes (IL1A, IL1B, IL1RN, IL4R, IL6 and IL10 do not appear to play a significant overall role in breast cancer susceptibility or severity

  17. Vectors for Inhaled Gene Therapy in Lung Cancer. Application for Nano Oncology and Safety of Bio Nanotechnology

    Science.gov (United States)

    Zarogouldis, Paul; Karamanos, Nikos K.; Porpodis, Konstantinos; Domvri, Kalliopi; Huang, Haidong; Hohenforst-Schimdt, Wolfgang; Goldberg, Eugene P.; Zarogoulidis, Konstantinos

    2012-01-01

    Novel aerosol therapeutic modalities have been investigated for lung cancer. Inhaled gene therapy has presented safety and effectiveness previously in cystic fibrosis. However, safety concerns have been raised regarding the safety of non-viral vectors for inhaled gene therapy in lung cancer, and therefore small steps have been made towards this multifunctional treatment modality. During the last decade, numerous new nanocomplexes have been created and investigated as a safe gene delivery nano-vehicle. These formulations are multifunctional; they can be used as either local therapy or carrier for an effective inhaled gene therapy for lung cancer. Herein, we present current and future perspectives of nanocomplexes for inhaled gene therapy treatment in lung cancer. PMID:23109824

  18. The Relationship between FHIT Gene Promoter Methylation and Lung Cancer Risk: 
a Meta-analysis

    Directory of Open Access Journals (Sweden)

    Yichang SUN

    2014-03-01

    Full Text Available Background and objective Tumor-suppressor gene promoter DNA methylation in tumor cells is associated with its reduced expression. FHIT (fragile histindine triad was one of the important tumor suppressor genes which was found hypermethylated in the promoter region in most of tumors. The aim of this study is to evaluate the relationship between FIHT gene promother methylation and lung cancer risk by meta-analysis. Methods By searching Pubmed, CNKI and Wanfang, the open published articles related to FHIT gene promoter methylation and lung carcinoma risk were collected. The odds ratio (OR and range of FHIT gene of cancer tissue of lung cancer patients compared with normal lung tissue, plasma and the bronchial lavage fluid were pooled by statistical software Stata 11.0. Results Eleven studies were finally included in this meta-analysis. The median methylation rate were Pmedian=40.0% (0-68.3%, Pmedian=8.7% (0-35.0%, Pmedian=33.3% (17.1%-38.3% and Pmedian=35.9% (31.1%-50.8% in cancer tissue, NLT, BALF and plasm respectively. The pooled results showed the methylation rate in tumor tissue was much higer than that of NLT OR=5.82 (95%CI: 3.74-9.06, P0.05 and plasma OR=1.41 (95%CI: 0.90-2.20, P>0.05. Conclusion Hypermethylation of FHIT gene promoter region was found more frequent in cancer tissue than that of NLT which may demonstrated association between lung cancer risk and FHIT gene promoter methylation.

  19. Multiple loci with different cancer specificities within the 8q24 gene desert

    DEFF Research Database (Denmark)

    Ghoussaini, M.; Song, H.; Koessler, T.

    2008-01-01

    this gene desert were specifically associated with risks of different cancers. One block was solely associated with risk of breast cancer, three others were associated solely with the risk of prostate cancer, and a fifth was associated with the risk of prostate, colorectal, and ovarian cancer...

  20. Germline pathogenic variants in PALB2 and other cancer-predisposing genes in families with hereditary diffuse gastric cancer without CDH1 mutation: a whole-exome sequencing study.

    Science.gov (United States)

    Fewings, Eleanor; Larionov, Alexey; Redman, James; Goldgraben, Mae A; Scarth, James; Richardson, Susan; Brewer, Carole; Davidson, Rosemarie; Ellis, Ian; Evans, D Gareth; Halliday, Dorothy; Izatt, Louise; Marks, Peter; McConnell, Vivienne; Verbist, Louis; Mayes, Rebecca; Clark, Graeme R; Hadfield, James; Chin, Suet-Feung; Teixeira, Manuel R; Giger, Olivier T; Hardwick, Richard; di Pietro, Massimiliano; O'Donovan, Maria; Pharoah, Paul; Caldas, Carlos; Fitzgerald, Rebecca C; Tischkowitz, Marc

    2018-04-26

    Germline pathogenic variants in the E-cadherin gene (CDH1) are strongly associated with the development of hereditary diffuse gastric cancer. There is a paucity of data to guide risk assessment and management of families with hereditary diffuse gastric cancer that do not carry a CDH1 pathogenic variant, making it difficult to make informed decisions about surveillance and risk-reducing surgery. We aimed to identify new candidate genes associated with predisposition to hereditary diffuse gastric cancer in affected families without pathogenic CDH1 variants. We did whole-exome sequencing on DNA extracted from the blood of 39 individuals (28 individuals diagnosed with hereditary diffuse gastric cancer and 11 unaffected first-degree relatives) in 22 families without pathogenic CDH1 variants. Genes with loss-of-function variants were prioritised using gene-interaction analysis to identify clusters of genes that could be involved in predisposition to hereditary diffuse gastric cancer. Protein-affecting germline variants were identified in probands from six families with hereditary diffuse gastric cancer; variants were found in genes known to predispose to cancer and in lesser-studied DNA repair genes. A frameshift deletion in PALB2 was found in one member of a family with a history of gastric and breast cancer. Two different MSH2 variants were identified in two unrelated affected individuals, including one frameshift insertion and one previously described start-codon loss. One family had a unique combination of variants in the DNA repair genes ATR and NBN. Two variants in the DNA repair gene RECQL5 were identified in two unrelated families: one missense variant and a splice-acceptor variant. The results of this study suggest a role for the known cancer predisposition gene PALB2 in families with hereditary diffuse gastric cancer and no detected pathogenic CDH1 variants. We also identified new candidate genes associated with disease risk in these families. UK Medical

  1. Reactivation of CDX2 in Gastric Cancer as Mark for Gene Silencing Memory

    International Nuclear Information System (INIS)

    Kameoka, Yuri; Kitazawa, Riko; Ariasu, Kanazu; Tachibana, Ryosuke; Mizuno, Yosuke; Haraguchi, Ryuma; Kitazawa, Sohei

    2015-01-01

    To explore the epigenetic mechanism that reactivates CDX2 (a homeobox transcription factor that serves as a tumor-suppressor gene) in intestinal-type gastric cancer during cancer progression, we examined the methylation status of the CDX2 gene promoter and the expression pattern of methyl-CpG binding protein-2 (MeCP2). From archives of the pathology records of surgically excised advanced stomach cancer cases in the Department of Molecular Pathology, Ehime University in a past decate (n=265), 10 cases of intestinal-type tubular adenocarcinoma, well-differentiated type (wel) with minor poorly-differentiated adenocarcinoma (por) components were selected. The expression pattern of CDX2, MUC2 and MeCP2 in these 10 cases was analyzed by immunohistochemistry. The cancerous and non-cancerous areas were selectively obtained by microdissection, and the methylation status of the CDX2 promoter of each area was assessed by methylation-specific polymerase chain reaction (MSP). In all 10 cases, CDX2 expression was clearly observed in the nucleus of the non-cancerous background of the intestinal metaplasic area, where the unmethylation pattern of the CDX2 gene promoter prevailed with reduced MeCP2 expression. In this metaplastic area, CDX2 expression was co-localized with its target gene, MUC2. CDX2 expression then disappeared from the deep invasive wel area. Reflecting the reduced CDX2 expression, microdissected samples from all the wel areas showed hypermethylation of the CDX2 gene promoter by MSP, with prominent MeCP2 expression. Interestingly, while hypermethylation of the CDX2 gene promoter was maintained in the por area in 8 of the 10 cases, CDX2 expression was restored in por areas where MeCP2 expression was markedly and selectively reduced. The other two cases, however, showed a constant MeCP2 expression level comparable to the surrounding deep invasive wel area with negative CDX2 expression. Therefore, gene silencing by hypermethylation may be overcome by the reduction of

  2. Cytotoxic T lymphocyte associated molecule -4 (CTLA-4 gene polymorphisms in ovarian cancer patients

    Directory of Open Access Journals (Sweden)

    Sirous Naeimi

    2010-09-01

    Full Text Available Background: Ovarian cancer is a relatively common cancer among postmenopausal women. Nowadays, there is controversy about immunotherapy of ovarian cancer patients with interleukins such as interferon to reach better out come in prognosis of patients under chemotherapy. CTLA-4 is a gene, which has an important role in homeostasis and regulation of immune response. Inhibitory nature of CTLA-4 is proved to be of significance in autoimmune diseases as well as in cancer. In this study we intend to find out the relationship between polymorphisms of this gene at the sites of +49 A/G and -318 C/T and ovarian cancer.Methods: The polymorphisms of the CTLA-4 gene at the sites of +49 A/G exon and -318 C/T promoter were investigated. Blood samples of 73 patients with ovarian cancer and 115 healthy subjects used for DNA extraction. Two groups genotypes and alleles were determined using PCR method and compared by statistical t-student test.Results: There was no statistically significant difference in genotypes and alleles prevalence of +49 A/G and -317 C/T between two groups (p>0.05.Conclusion: Further researches with larger sample size while paying attention to the relation between the gene polymorphism and stage and type of tumor is recommended.

  3. Gene expression profiling leads to discovery of correlation of matrix metalloproteinase 11 and heparanase 2 in breast cancer progression

    International Nuclear Information System (INIS)

    Fu, Junjie; Khaybullin, Ravil; Zhang, Yanping; Xia, Amy; Qi, Xin

    2015-01-01

    In order to identify biomarkers involved in breast cancer, gene expression profiling was conducted using human breast cancer tissues. Total RNAs were extracted from 150 clinical patient tissues covering three breast cancer subtypes (Luminal A, Luminal B, and Triple negative) as well as normal tissues. The expression profiles of a total of 50,739 genes were established from a training set of 32 samples using the Agilent Sure Print G3 Human Gene Expression Microarray technology. Data were analyzed using Agilent Gene Spring GX 12.6 software. The expression of several genes was validated using real-time RT-qPCR. Data analysis with Agilent GeneSpring GX 12.6 software showed distinct expression patterns between cancer and normal tissue samples. A group of 28 promising genes were identified with ≥ 10-fold changes of expression level and p-values < 0.05. In particular, MMP11 and HPSE2 were closely examined due to the important roles they play in cancer cell growth and migration. Real-time RT-qPCR analyses of both training and testing sets validated the gene expression profiles of MMP11 and HPSE2. Our findings identified these 2 genes as a novel breast cancer biomarker gene set, which may facilitate the diagnosis and treatment in breast cancer clinical therapies

  4. Transcriptional and epigenetic regulation of KIAA1199 gene expression in human breast cancer.

    Directory of Open Access Journals (Sweden)

    Cem Kuscu

    Full Text Available Emerging evidence has demonstrated that upregulated expression of KIAA1199 in human cancer bodes for poor survival. The regulatory mechanism controlling KIAA1199 expression in cancer remains to be characterized. In the present study, we have isolated and characterized the human KIAA1199 promoter in terms of regulation of KIAA1199 gene expression. A 3.3 kb fragment of human genomic DNA containing the 5'-flanking sequence of the KIAA1199 gene possesses both suppressive and activating elements. Employing a deletion mutagenesis approach, a 1.4 kb proximal region was defined as the basic KIAA1199 promoter containing a TATA-box close to the transcription start site. A combination of 5'-primer extension study with 5'RACE DNA sequencing analysis revealed one major transcription start site that is utilized in the human KIAA1199 gene. Bioinformatics analysis suggested that the 1.4 kb KIAA1199 promoter contains putative activating regulatory elements, including activator protein-1(AP-1, Twist-1, and NF-κB sites. Sequential deletion and site-direct mutagenesis analysis demonstrated that the AP-1 and distal NF-κB sites are required for KIAA1199 gene expression. Further analyses using an electrophoretic mobility-shift assay and chromatin immunoprecipitation confirmed the requirement of these cis- and trans-acting elements in controlling KIAA1199 gene expression. Finally, we found that upregulated KIAA1199 expression in human breast cancer specimens correlated with hypomethylation of the regulatory region. Involvement of DNA methylation in regulation of KIAA1199 expression was recapitulated in human breast cancer cell lines. Taken together, our study unraveled the regulatory mechanisms controlling KIAA1199 gene expression in human cancer.

  5. Identification of differentially expressed genes and signaling pathways in ovarian cancer by integrated bioinformatics analysis

    Directory of Open Access Journals (Sweden)

    Yang X

    2018-03-01

    Full Text Available Xiao Yang,1 Shaoming Zhu,2 Li Li,3 Li Zhang,1 Shu Xian,1 Yanqing Wang,1 Yanxiang Cheng1 1Department of Obstetrics and Gynecology, 2Department of Urology, Renmin Hospital of Wuhan University, 3Department of Pharmacology, Wuhan University Health Science Center, Wuhan, Hubei, People’s Republic of China Background: The mortality rate associated with ovarian cancer ranks the highest among gynecological malignancies. However, the cause and underlying molecular events of ovarian cancer are not clear. Here, we applied integrated bioinformatics to identify key pathogenic genes involved in ovarian cancer and reveal potential molecular mechanisms. Results: The expression profiles of GDS3592, GSE54388, and GSE66957 were downloaded from the Gene Expression Omnibus (GEO database, which contained 115 samples, including 85 cases of ovarian cancer samples and 30 cases of normal ovarian samples. The three microarray datasets were integrated to obtain differentially expressed genes (DEGs and were deeply analyzed by bioinformatics methods. The gene ontology (GO and Kyoto Encyclopedia of Genes and Genomes (KEGG pathway enrichments of DEGs were performed by DAVID and KOBAS online analyses, respectively. The protein–protein interaction (PPI networks of the DEGs were constructed from the STRING database. A total of 190 DEGs were identified in the three GEO datasets, of which 99 genes were upregulated and 91 genes were downregulated. GO analysis showed that the biological functions of DEGs focused primarily on regulating cell proliferation, adhesion, and differentiation and intracellular signal cascades. The main cellular components include cell membranes, exosomes, the cytoskeleton, and the extracellular matrix. The molecular functions include growth factor activity, protein kinase regulation, DNA binding, and oxygen transport activity. KEGG pathway analysis showed that these DEGs were mainly involved in the Wnt signaling pathway, amino acid metabolism, and the

  6. Identifying novel genes and biological processes relevant to the development of cancer therapy-induced mucositis: An informative gene network analysis.

    Directory of Open Access Journals (Sweden)

    Cielito C Reyes-Gibby

    Full Text Available Mucositis is a complex, dose-limiting toxicity of chemotherapy or radiotherapy that leads to painful mouth ulcers, difficulty eating or swallowing, gastrointestinal distress, and reduced quality of life for patients with cancer. Mucositis is most common for those undergoing high-dose chemotherapy and hematopoietic stem cell transplantation and for those being treated for malignancies of the head and neck. Treatment and management of mucositis remain challenging. It is expected that multiple genes are involved in the formation, severity, and persistence of mucositis. We used Ingenuity Pathway Analysis (IPA, a novel network-based approach that integrates complex intracellular and intercellular interactions involved in diseases, to systematically explore the molecular complexity of mucositis. As a first step, we searched the literature to identify genes that harbor or are close to the genetic variants significantly associated with mucositis. Our literature review identified 27 candidate genes, of which ERCC1, XRCC1, and MTHFR were the most frequently studied for mucositis. On the basis of this 27-gene list, we used IPA to generate gene networks for mucositis. The most biologically significant novel molecules identified through IPA analyses included TP53, CTNNB1, MYC, RB1, P38 MAPK, and EP300. Additionally, uracil degradation II (reductive and thymine degradation pathways (p = 1.06-08 were most significant. Finally, utilizing 66 SNPs within the 8 most connected IPA-derived candidate molecules, we conducted a genetic association study for oral mucositis in the head and neck cancer patients who were treated using chemotherapy and/or radiation therapy (186 head and neck cancer patients with oral mucositis vs. 699 head and neck cancer patients without oral mucositis. The top ranked gene identified through this association analysis was RB1 (rs2227311, p-value = 0.034, odds ratio = 0.67. In conclusion, gene network analysis identified novel molecules and

  7. Identifying novel genes and biological processes relevant to the development of cancer therapy-induced mucositis: An informative gene network analysis.

    Science.gov (United States)

    Reyes-Gibby, Cielito C; Melkonian, Stephanie C; Wang, Jian; Yu, Robert K; Shelburne, Samuel A; Lu, Charles; Gunn, Gary Brandon; Chambers, Mark S; Hanna, Ehab Y; Yeung, Sai-Ching J; Shete, Sanjay

    2017-01-01

    Mucositis is a complex, dose-limiting toxicity of chemotherapy or radiotherapy that leads to painful mouth ulcers, difficulty eating or swallowing, gastrointestinal distress, and reduced quality of life for patients with cancer. Mucositis is most common for those undergoing high-dose chemotherapy and hematopoietic stem cell transplantation and for those being treated for malignancies of the head and neck. Treatment and management of mucositis remain challenging. It is expected that multiple genes are involved in the formation, severity, and persistence of mucositis. We used Ingenuity Pathway Analysis (IPA), a novel network-based approach that integrates complex intracellular and intercellular interactions involved in diseases, to systematically explore the molecular complexity of mucositis. As a first step, we searched the literature to identify genes that harbor or are close to the genetic variants significantly associated with mucositis. Our literature review identified 27 candidate genes, of which ERCC1, XRCC1, and MTHFR were the most frequently studied for mucositis. On the basis of this 27-gene list, we used IPA to generate gene networks for mucositis. The most biologically significant novel molecules identified through IPA analyses included TP53, CTNNB1, MYC, RB1, P38 MAPK, and EP300. Additionally, uracil degradation II (reductive) and thymine degradation pathways (p = 1.06-08) were most significant. Finally, utilizing 66 SNPs within the 8 most connected IPA-derived candidate molecules, we conducted a genetic association study for oral mucositis in the head and neck cancer patients who were treated using chemotherapy and/or radiation therapy (186 head and neck cancer patients with oral mucositis vs. 699 head and neck cancer patients without oral mucositis). The top ranked gene identified through this association analysis was RB1 (rs2227311, p-value = 0.034, odds ratio = 0.67). In conclusion, gene network analysis identified novel molecules and biological

  8. Tumor suppressor genes that escape from X-inactivation contribute to cancer sex bias

    OpenAIRE

    Dunford, Andrew; Weinstock, David M.; Savova, Virginia; Schumacher, Steven E.; Cleary, John P.; Yoda, Akinori; Sullivan, Timothy J.; Hess, Julian M.; Gimelbrant, Alexander A.; Beroukhim, Rameen; Lawrence, Michael S.; Getz, Gad; Lane, Andrew A.

    2016-01-01

    There is a striking and unexplained male predominance across many cancer types. A subset of X chromosome (chrX) genes can escape X-inactivation, which would protect females from complete functional loss by a single mutation. To identify putative “Escape from X-Inactivation Tumor Suppressor” (EXITS) genes, we compared somatic alterations from >4100 cancers across 21 tumor types for sex bias. Six of 783 non-pseudoautosomal region (PAR) chrX genes (ATRX, CNKSR2, DDX3X, KDM5C, KDM6A, and MAGEC3) ...

  9. Analysis of PSPHL as a Candidate Gene Influencing the Racial Disparity in Endometrial Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Allard, Jay E. [Walter Reed Army Medical Center, Washington, DC (United States); Chandramouli, Gadisetti V. R. [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University College of Human Medicine, Grand Rapids, MI (United States); Stagliano, Katherine [Curtis and Elizabeth Anderson Cancer Institute at Memorial Health University Medical Center, Savannah, GA (United States); Hood, Brian L. [Women’s Health Integrated Research Center at Inova Health System, Annandale, VA (United States); Litzi, Tracy [Walter Reed Army Medical Center, Washington, DC (United States); Women’s Health Integrated Research Center at Inova Health System, Annandale, VA (United States); Shoji, Yutaka [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University College of Human Medicine, Grand Rapids, MI (United States); Curtis and Elizabeth Anderson Cancer Institute at Memorial Health University Medical Center, Savannah, GA (United States); Boyd, Jeff [Curtis and Elizabeth Anderson Cancer Institute at Memorial Health University Medical Center, Savannah, GA (United States); Fox Chase Cancer Center, Philadelphia, PA (United States); Berchuck, Andrew [Division of Gynecologic Oncology, Duke University, Durham, NC (United States); Conrads, Thomas P. [Curtis and Elizabeth Anderson Cancer Institute at Memorial Health University Medical Center, Savannah, GA (United States); Maxwell, G. Larry [Walter Reed Army Medical Center, Washington, DC (United States); Women’s Health Integrated Research Center at Inova Health System, Annandale, VA (United States); Risinger, John I., E-mail: john.risinger@hc.msu.edu [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University College of Human Medicine, Grand Rapids, MI (United States); Curtis and Elizabeth Anderson Cancer Institute at Memorial Health University Medical Center, Savannah, GA (United States)

    2012-07-04

    Endometrial cancer is the most commonly diagnosed gynecologic malignancy in the United States. A well recognized disparity by race in both incidence and survival outcome exists for this cancer. Specifically Caucasians are about two times more likely to develop endometrial cancer than are African-Americans. However, African-American women are more likely to die from this disease than are Caucasians. The basis for this disparity remains unknown. Previous studies have identified differences in the types and frequencies of gene mutations among endometrial cancers from Caucasians and African-Americans suggesting that the tumors from these two groups might have differing underlying genetic defects. We performed a gene expression microarray study in an effort to identify differentially expressed transcripts between African-American and Caucasian women’s endometrial cancers. Our gene expression screen identified a list of potential biomarkers that are differentially expressed between these two groups of cancers. Of these we identified a poorly characterized transcript with a region of homology to phospho serine phosphatase (PSPH) and designated phospho serine phosphatase like (PSPHL) as the most differentially over-expressed gene in cancers from African-Americans. We further clarified the nature of expressed transcripts. Northern blot analysis confirmed the message was limited to a transcript of under 1 kB. Sequence analysis of transcripts confirmed two alternate open reading frame (ORF) isoforms due to alternative splicing events. Splice specific primer sets confirmed both isoforms were differentially expressed in tissues from Caucasians and African-Americans. We further examined the expression in other tissues from women to include normal endometrium, normal and malignant ovary. In all cases PSPHL expression was more often present in tissues from African-Americans than Caucasians. Our data confirm the African-American based expression of the PSPHL transcript in

  10. Analysis of PSPHL as a Candidate Gene Influencing the Racial Disparity in Endometrial Cancer

    International Nuclear Information System (INIS)

    Allard, Jay E.; Chandramouli, Gadisetti V. R.; Stagliano, Katherine; Hood, Brian L.; Litzi, Tracy; Shoji, Yutaka; Boyd, Jeff; Berchuck, Andrew; Conrads, Thomas P.; Maxwell, G. Larry; Risinger, John I.

    2012-01-01

    Endometrial cancer is the most commonly diagnosed gynecologic malignancy in the United States. A well recognized disparity by race in both incidence and survival outcome exists for this cancer. Specifically Caucasians are about two times more likely to develop endometrial cancer than are African-Americans. However, African-American women are more likely to die from this disease than are Caucasians. The basis for this disparity remains unknown. Previous studies have identified differences in the types and frequencies of gene mutations among endometrial cancers from Caucasians and African-Americans suggesting that the tumors from these two groups might have differing underlying genetic defects. We performed a gene expression microarray study in an effort to identify differentially expressed transcripts between African-American and Caucasian women’s endometrial cancers. Our gene expression screen identified a list of potential biomarkers that are differentially expressed between these two groups of cancers. Of these we identified a poorly characterized transcript with a region of homology to phospho serine phosphatase (PSPH) and designated phospho serine phosphatase like (PSPHL) as the most differentially over-expressed gene in cancers from African-Americans. We further clarified the nature of expressed transcripts. Northern blot analysis confirmed the message was limited to a transcript of under 1 kB. Sequence analysis of transcripts confirmed two alternate open reading frame (ORF) isoforms due to alternative splicing events. Splice specific primer sets confirmed both isoforms were differentially expressed in tissues from Caucasians and African-Americans. We further examined the expression in other tissues from women to include normal endometrium, normal and malignant ovary. In all cases PSPHL expression was more often present in tissues from African-Americans than Caucasians. Our data confirm the African-American based expression of the PSPHL transcript in

  11. Discovering potential Streptomyces hormone producers by using disruptants of essential biosynthetic genes as indicator strains.

    Science.gov (United States)

    Thao, Nguyen B; Kitani, Shigeru; Nitta, Hiroko; Tomioka, Toshiya; Nihira, Takuya

    2017-10-01

    Autoregulators are low-molecular-weight signaling compounds that control the production of many secondary metabolites in actinomycetes and have been referred to as 'Streptomyces hormones'. Here, potential producers of Streptomyces hormones were investigated in 40 Streptomyces and 11 endophytic actinomycetes. Production of γ-butyrolactone-type (IM-2, VB) and butenolide-type (avenolide) Streptomyces hormones was screened using Streptomyces lavendulae FRI-5 (ΔfarX), Streptomyces virginiae (ΔbarX) and Streptomyces avermitilis (Δaco), respectively. In these strains, essential biosynthetic genes for Streptomyces hormones were disrupted, enabling them to respond solely to the externally added hormones. The results showed that 20% of each of the investigated strains produced IM-2 and VB, confirming that γ-butyrolactone-type Streptomyces hormones are the most common in actinomycetes. Unlike the γ-butyrolactone type, butenolide-type Streptomyces hormones have been discovered in recent years, but their distribution has been unclear. Our finding that 24% of actinomycetes (12 of 51 strains) showed avenolide activity revealed for the first time that the butenolide-type Streptomyces hormone is also common in actinomycetes.

  12. Operator dependent choice of prostate cancer biopsy has limited impact on a gene signature analysis for the highly expressed genes IGFBP3 and F3 in prostate cancer epithelial cells.

    Directory of Open Access Journals (Sweden)

    Zhuochun Peng

    Full Text Available BACKGROUND: Predicting the prognosis of prostate cancer disease through gene expression analysis is receiving increasing interest. In many cases, such analyses are based on formalin-fixed, paraffin embedded (FFPE core needle biopsy material on which Gleason grading for diagnosis has been conducted. Since each patient typically has multiple biopsy samples, and since Gleason grading is an operator dependent procedure known to be difficult, the impact of the operator's choice of biopsy was evaluated. METHODS: Multiple biopsy samples from 43 patients were evaluated using a previously reported gene signature of IGFBP3, F3 and VGLL3 with potential prognostic value in estimating overall survival at diagnosis of prostate cancer. A four multiplex one-step qRT-PCR test kit, designed and optimized for measuring the signature in FFPE core needle biopsy samples was used. Concordance of gene expression levels between primary and secondary Gleason tumor patterns, as well as benign tissue specimens, was analyzed. RESULTS: The gene expression levels of IGFBP3 and F3 in prostate cancer epithelial cell-containing tissue representing the primary and secondary Gleason patterns were high and consistent, while the low expressed VGLL3 showed more variation in its expression levels. CONCLUSION: The assessment of IGFBP3 and F3 gene expression levels in prostate cancer tissue is independent of Gleason patterns, meaning that the impact of operator's choice of biopsy is low.

  13. Effectiveness of gene expression profiling for response prediction of rectal cancer to preoperative radiotherapy

    International Nuclear Information System (INIS)

    Ojima, Eiki; Inoue, Yasuhiro; Miki, Chikao; Kusunoki, Masato; Mori, Masaki

    2007-01-01

    Our aim was to determine whether the expression levels of specific genes could predict clinical radiosensitivity in human colorectal cancer. Radioresistant colorectal cancer cell lines were established by repeated X-ray exposure (total, 100 Gy), and the gene expressions of the parent and radioresistant cell lines were compared in a microarray analysis. To verify the microarray data, we carried out a reverse transcriptase-polymerase chain reaction analysis of identified genes in clinical samples from 30 irradiated rectal cancer patients. A comparison of the intensity data for the parent and three radioresistant cell lines revealed 17 upregulated and 142 downregulated genes in all radioresistant cell lines. Next, we focused on two upregulated genes, PTMA (prothymosin α) and EIF5a2 (eukaryotic translation initiation factor 5A), in the radioresistant cell lines. In clinical samples, the expression of PTMA was significantly higher in the minor effect group than in the major effect group (P=0.004), but there were no significant differences in EIF5a2 expression between the two groups. We identified radiation-related genes in colorectal cancer and demonstrated that PTMA may play an important role in radiosensitivity. Our findings suggest that PTMA may be a novel marker for predicting the effectiveness of radiotherapy in clinical cases. (author)

  14. Methylation of the SPARC gene promoter and its clinical implication in pancreatic cancer

    Directory of Open Access Journals (Sweden)

    Lv Shunli

    2010-03-01

    Full Text Available Abstract Background The secreted protein acidic and rich in cysteine (SPARC plays a pivotal role in regulating cell-matrix interactions and tumor angiogenesis, proliferation, and migration. Detection of SPARC gene methylation may be useful as a tumorigenesis marker for early detection of pancreatic cancer. Methods Methylation of the SPARC gene transcriptional regulation region (TRR was detected using bisulfite-specific (BSP PCR-based sequencing analysis in 40 cases of pancreatic cancer and the adjacent normal tissues, 6 chronic pancreatitis tissues, and 6 normal pancreatic tissues. BSP cloning-based sequencing analysis was also performed in selected cases. Clinicopathological data from the cancer patients were collected and analyzed. Results Analysis of SPARC gene TRR methylation showed two hypermethylation wave peak regions: CpG Region 1 (CpG site 1-7 and CpG Region 2 (CpG site 8-12. Pancreatic tissues have shown methylation in both regions with gradual increases from normal, chronic pancreatitis, and adjacent normal tissues to cancerous tissues. However, Methylation of CpG Region 2 was more sensitive than CpG Region 1 in pancreatic tumorigenesis. Furthermore, the methylation level of CpG Region 2 was associated with increased tumor size and exposure to the risk factors (tobacco smoke and alcohol consumption for developing pancreatic cancer. Conclusion Methylation of the SPARC gene, specifically CpG Region 2, may be an early event during pancreatic tumorigenesis and should be further evaluated as a tumorigenesis marker for early detection of pancreatic cancer.

  15. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes.

    Science.gov (United States)

    Biankin, Andrew V; Waddell, Nicola; Kassahn, Karin S; Gingras, Marie-Claude; Muthuswamy, Lakshmi B; Johns, Amber L; Miller, David K; Wilson, Peter J; Patch, Ann-Marie; Wu, Jianmin; Chang, David K; Cowley, Mark J; Gardiner, Brooke B; Song, Sarah; Harliwong, Ivon; Idrisoglu, Senel; Nourse, Craig; Nourbakhsh, Ehsan; Manning, Suzanne; Wani, Shivangi; Gongora, Milena; Pajic, Marina; Scarlett, Christopher J; Gill, Anthony J; Pinho, Andreia V; Rooman, Ilse; Anderson, Matthew; Holmes, Oliver; Leonard, Conrad; Taylor, Darrin; Wood, Scott; Xu, Qinying; Nones, Katia; Fink, J Lynn; Christ, Angelika; Bruxner, Tim; Cloonan, Nicole; Kolle, Gabriel; Newell, Felicity; Pinese, Mark; Mead, R Scott; Humphris, Jeremy L; Kaplan, Warren; Jones, Marc D; Colvin, Emily K; Nagrial, Adnan M; Humphrey, Emily S; Chou, Angela; Chin, Venessa T; Chantrill, Lorraine A; Mawson, Amanda; Samra, Jaswinder S; Kench, James G; Lovell, Jessica A; Daly, Roger J; Merrett, Neil D; Toon, Christopher; Epari, Krishna; Nguyen, Nam Q; Barbour, Andrew; Zeps, Nikolajs; Kakkar, Nipun; Zhao, Fengmei; Wu, Yuan Qing; Wang, Min; Muzny, Donna M; Fisher, William E; Brunicardi, F Charles; Hodges, Sally E; Reid, Jeffrey G; Drummond, Jennifer; Chang, Kyle; Han, Yi; Lewis, Lora R; Dinh, Huyen; Buhay, Christian J; Beck, Timothy; Timms, Lee; Sam, Michelle; Begley, Kimberly; Brown, Andrew; Pai, Deepa; Panchal, Ami; Buchner, Nicholas; De Borja, Richard; Denroche, Robert E; Yung, Christina K; Serra, Stefano; Onetto, Nicole; Mukhopadhyay, Debabrata; Tsao, Ming-Sound; Shaw, Patricia A; Petersen, Gloria M; Gallinger, Steven; Hruban, Ralph H; Maitra, Anirban; Iacobuzio-Donahue, Christine A; Schulick, Richard D; Wolfgang, Christopher L; Morgan, Richard A; Lawlor, Rita T; Capelli, Paola; Corbo, Vincenzo; Scardoni, Maria; Tortora, Giampaolo; Tempero, Margaret A; Mann, Karen M; Jenkins, Nancy A; Perez-Mancera, Pedro A; Adams, David J; Largaespada, David A; Wessels, Lodewyk F A; Rust, Alistair G; Stein, Lincoln D; Tuveson, David A; Copeland, Neal G; Musgrove, Elizabeth A; Scarpa, Aldo; Eshleman, James R; Hudson, Thomas J; Sutherland, Robert L; Wheeler, David A; Pearson, John V; McPherson, John D; Gibbs, Richard A; Grimmond, Sean M

    2012-11-15

    Pancreatic cancer is a highly lethal malignancy with few effective therapies. We performed exome sequencing and copy number analysis to define genomic aberrations in a prospectively accrued clinical cohort (n = 142) of early (stage I and II) sporadic pancreatic ductal adenocarcinoma. Detailed analysis of 99 informative tumours identified substantial heterogeneity with 2,016 non-silent mutations and 1,628 copy-number variations. We define 16 significantly mutated genes, reaffirming known mutations (KRAS, TP53, CDKN2A, SMAD4, MLL3, TGFBR2, ARID1A and SF3B1), and uncover novel mutated genes including additional genes involved in chromatin modification (EPC1 and ARID2), DNA damage repair (ATM) and other mechanisms (ZIM2, MAP2K4, NALCN, SLC16A4 and MAGEA6). Integrative analysis with in vitro functional data and animal models provided supportive evidence for potential roles for these genetic aberrations in carcinogenesis. Pathway-based analysis of recurrently mutated genes recapitulated clustering in core signalling pathways in pancreatic ductal adenocarcinoma, and identified new mutated genes in each pathway. We also identified frequent and diverse somatic aberrations in genes described traditionally as embryonic regulators of axon guidance, particularly SLIT/ROBO signalling, which was also evident in murine Sleeping Beauty transposon-mediated somatic mutagenesis models of pancreatic cancer, providing further supportive evidence for the potential involvement of axon guidance genes in pancreatic carcinogenesis.

  16. Polymorphisms in fatty acid metabolism-related genes are associated with colorectal cancer risk

    DEFF Research Database (Denmark)

    Hoeft, B.; Linseisen, J.; Beckmann, L.

    2010-01-01

    as contributing factor to colon carcinogenesis. We examined the association between genetic variability in 43 fatty acid metabolism-related genes and colorectal risk in 1225 CRC cases and 2032 controls participating in the European Prospective Investigation into Cancer and Nutrition study. Three hundred......Colorectal cancer (CRC) is the third most common malignant tumor and the fourth leading cause of cancer death worldwide. The crucial role of fatty acids for a number of important biological processes suggests a more in-depth analysis of inter-individual differences in fatty acid metabolizing genes...... variants with CRC risk. Our results support the key role of prostanoid signaling in colon carcinogenesis and suggest a relevance of genetic variation in fatty acid metabolism-related genes and CRC risk....

  17. Genome-wide diet-gene interaction analyses for risk of colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Jane C Figueiredo

    2014-04-01

    Full Text Available Dietary factors, including meat, fruits, vegetables and fiber, are associated with colorectal cancer; however, there is limited information as to whether these dietary factors interact with genetic variants to modify risk of colorectal cancer. We tested interactions between these dietary factors and approximately 2.7 million genetic variants for colorectal cancer risk among 9,287 cases and 9,117 controls from ten studies. We used logistic regression to investigate multiplicative gene-diet interactions, as well as our recently developed Cocktail method that involves a screening step based on marginal associations and gene-diet correlations and a testing step for multiplicative interactions, while correcting for multiple testing using weighted hypothesis testing. Per quartile increment in the intake of red and processed meat were associated with statistically significant increased risks of colorectal cancer and vegetable, fruit and fiber intake with lower risks. From the case-control analysis, we detected a significant interaction between rs4143094 (10p14/near GATA3 and processed meat consumption (OR = 1.17; p = 8.7E-09, which was consistently observed across studies (p heterogeneity = 0.78. The risk of colorectal cancer associated with processed meat was increased among individuals with the rs4143094-TG and -TT genotypes (OR = 1.20 and OR = 1.39, respectively and null among those with the GG genotype (OR = 1.03. Our results identify a novel gene-diet interaction with processed meat for colorectal cancer, highlighting that diet may modify the effect of genetic variants on disease risk, which may have important implications for prevention.

  18. Gene expression and epigenetic discovery screen reveal methylation of SFRP2 in prostate cancer.

    LENUS (Irish Health Repository)

    Perry, Antoinette S

    2013-04-15

    Aberrant activation of Wnts is common in human cancers, including prostate. Hypermethylation associated transcriptional silencing of Wnt antagonist genes SFRPs (Secreted Frizzled-Related Proteins) is a frequent oncogenic event. The significance of this is not known in prostate cancer. The objectives of our study were to (i) profile Wnt signaling related gene expression and (ii) investigate methylation of Wnt antagonist genes in prostate cancer. Using TaqMan Low Density Arrays, we identified 15 Wnt signaling related genes with significantly altered expression in prostate cancer; the majority of which were upregulated in tumors. Notably, histologically benign tissue from men with prostate cancer appeared more similar to tumor (r = 0.76) than to benign prostatic hyperplasia (BPH; r = 0.57, p < 0.001). Overall, the expression profile was highly similar between tumors of high (≥ 7) and low (≤ 6) Gleason scores. Pharmacological demethylation of PC-3 cells with 5-Aza-CdR reactivated 39 genes (≥ 2-fold); 40% of which inhibit Wnt signaling. Methylation frequencies in prostate cancer were 10% (2\\/20) (SFRP1), 64.86% (48\\/74) (SFRP2), 0% (0\\/20) (SFRP4) and 60% (12\\/20) (SFRP5). SFRP2 methylation was detected at significantly lower frequencies in high-grade prostatic intraepithelial neoplasia (HGPIN; 30%, (6\\/20), p = 0.0096), tumor adjacent benign areas (8.82%, (7\\/69), p < 0.0001) and BPH (11.43% (4\\/35), p < 0.0001). The quantitative level of SFRP2 methylation (normalized index of methylation) was also significantly higher in tumors (116) than in the other samples (HGPIN = 7.45, HB = 0.47, and BPH = 0.12). We show that SFRP2 hypermethylation is a common event in prostate cancer. SFRP2 methylation in combination with other epigenetic markers may be a useful biomarker of prostate cancer.

  19. Identification of genes with altered expression in medullary breast cancer vs. ductal breast cancer and normal breast epithelia

    DEFF Research Database (Denmark)

    Gjerstorff, Morten; Benoit, Vivian; Laenkholm, Anne-Vibeke

    2006-01-01

    to both immunological and endogenous cellular factors, although little is known about the distinct biology of MCB that may contribute to the improved outcome of MCB patients. To identify candidate genes, we performed gene array expression analysis of cell lines of MCB, ductal breast cancer and normal......Medullary breast cancer (MCB) is a morphologically and biologically distinct subtype that, despite cytologically highly malignant characteristics, has a favorable prognosis compared to the more common infiltrating ductal breast carcinoma. MCB metastasizes less frequently, which has been attributed...... breast epithelia, and the differential expression of a panel of candidate genes was further validated by quantitative PCR and immunohistochemical analysis of cell lines and tumor biopsies. A limited number of genes, including several members of the GAGE and insulin growth factor binding protein (IGFBP...

  20. Common Genetic Variation In Cellular Transport Genes and Epithelial Ovarian Cancer (EOC) Risk.

    Science.gov (United States)

    Chornokur, Ganna; Lin, Hui-Yi; Tyrer, Jonathan P; Lawrenson, Kate; Dennis, Joe; Amankwah, Ernest K; Qu, Xiaotao; Tsai, Ya-Yu; Jim, Heather S L; Chen, Zhihua; Chen, Ann Y; Permuth-Wey, Jennifer; Aben, Katja K H; Anton-Culver, Hoda; Antonenkova, Natalia; Bruinsma, Fiona; Bandera, Elisa V; Bean, Yukie T; Beckmann, Matthias W; Bisogna, Maria; Bjorge, Line; Bogdanova, Natalia; Brinton, Louise A; Brooks-Wilson, Angela; Bunker, Clareann H; Butzow, Ralf; Campbell, Ian G; Carty, Karen; Chang-Claude, Jenny; Cook, Linda S; Cramer, Daniel W; Cunningham, Julie M; Cybulski, Cezary; Dansonka-Mieszkowska, Agnieszka; du Bois, Andreas; Despierre, Evelyn; Dicks, Ed; Doherty, Jennifer A; Dörk, Thilo; Dürst, Matthias; Easton, Douglas F; Eccles, Diana M; Edwards, Robert P; Ekici, Arif B; Fasching, Peter A; Fridley, Brooke L; Gao, Yu-Tang; Gentry-Maharaj, Aleksandra; Giles, Graham G; Glasspool, Rosalind; Goodman, Marc T; Gronwald, Jacek; Harrington, Patricia; Harter, Philipp; Hein, Alexander; Heitz, Florian; Hildebrandt, Michelle A T; Hillemanns, Peter; Hogdall, Claus K; Hogdall, Estrid; Hosono, Satoyo; Jakubowska, Anna; Jensen, Allan; Ji, Bu-Tian; Karlan, Beth Y; Kelemen, Linda E; Kellar, Mellissa; Kiemeney, Lambertus A; Krakstad, Camilla; Kjaer, Susanne K; Kupryjanczyk, Jolanta; Lambrechts, Diether; Lambrechts, Sandrina; Le, Nhu D; Lee, Alice W; Lele, Shashi; Leminen, Arto; Lester, Jenny; Levine, Douglas A; Liang, Dong; Lim, Boon Kiong; Lissowska, Jolanta; Lu, Karen; Lubinski, Jan; Lundvall, Lene; Massuger, Leon F A G; Matsuo, Keitaro; McGuire, Valerie; McLaughlin, John R; McNeish, Iain; Menon, Usha; Milne, Roger L; Modugno, Francesmary; Moysich, Kirsten B; Ness, Roberta B; Nevanlinna, Heli; Eilber, Ursula; Odunsi, Kunle; Olson, Sara H; Orlow, Irene; Orsulic, Sandra; Weber, Rachel Palmieri; Paul, James; Pearce, Celeste L; Pejovic, Tanja; Pelttari, Liisa M; Pike, Malcolm C; Poole, Elizabeth M; Risch, Harvey A; Rosen, Barry; Rossing, Mary Anne; Rothstein, Joseph H; Rudolph, Anja; Runnebaum, Ingo B; Rzepecka, Iwona K; Salvesen, Helga B; Schernhammer, Eva; Schwaab, Ira; Shu, Xiao-Ou; Shvetsov, Yurii B; Siddiqui, Nadeem; Sieh, Weiva; Song, Honglin; Southey, Melissa C; Spiewankiewicz, Beata; Sucheston, Lara; Teo, Soo-Hwang; Terry, Kathryn L; Thompson, Pamela J; Thomsen, Lotte; Tangen, Ingvild L; Tworoger, Shelley S; van Altena, Anne M; Vierkant, Robert A; Vergote, Ignace; Walsh, Christine S; Wang-Gohrke, Shan; Wentzensen, Nicolas; Whittemore, Alice S; Wicklund, Kristine G; Wilkens, Lynne R; Wu, Anna H; Wu, Xifeng; Woo, Yin-Ling; Yang, Hannah; Zheng, Wei; Ziogas, Argyrios; Hasmad, Hanis N; Berchuck, Andrew; Iversen, Edwin S; Schildkraut, Joellen M; Ramus, Susan J; Goode, Ellen L; Monteiro, Alvaro N A; Gayther, Simon A; Narod, Steven A; Pharoah, Paul D P; Sellers, Thomas A; Phelan, Catherine M

    2015-01-01

    Defective cellular transport processes can lead to aberrant accumulation of trace elements, iron, small molecules and hormones in the cell, which in turn may promote the formation of reactive oxygen species, promoting DNA damage and aberrant expression of key regulatory cancer genes. As DNA damage and uncontrolled proliferation are hallmarks of cancer, including epithelial ovarian cancer (EOC), we hypothesized that inherited variation in the cellular transport genes contributes to EOC risk. In total, DNA samples were obtained from 14,525 case subjects with invasive EOC and from 23,447 controls from 43 sites in the Ovarian Cancer Association Consortium (OCAC). Two hundred seventy nine SNPs, representing 131 genes, were genotyped using an Illumina Infinium iSelect BeadChip as part of the Collaborative Oncological Gene-environment Study (COGS). SNP analyses were conducted using unconditional logistic regression under a log-additive model, and the FDR q<0.2 was applied to adjust for multiple comparisons. The most significant evidence of an association for all invasive cancers combined and for the serous subtype was observed for SNP rs17216603 in the iron transporter gene HEPH (invasive: OR = 0.85, P = 0.00026; serous: OR = 0.81, P = 0.00020); this SNP was also associated with the borderline/low malignant potential (LMP) tumors (P = 0.021). Other genes significantly associated with EOC histological subtypes (p<0.05) included the UGT1A (endometrioid), SLC25A45 (mucinous), SLC39A11 (low malignant potential), and SERPINA7 (clear cell carcinoma). In addition, 1785 SNPs in six genes (HEPH, MGST1, SERPINA, SLC25A45, SLC39A11 and UGT1A) were imputed from the 1000 Genomes Project and examined for association with INV EOC in white-European subjects. The most significant imputed SNP was rs117729793 in SLC39A11 (per allele, OR = 2.55, 95% CI = 1.5-4.35, p = 5.66x10-4). These results, generated on a large cohort of women, revealed associations between inherited cellular transport

  1. Functional heterogeneity of cancer-associated fibroblasts from human colon tumors shows specific prognostic gene expression signature.

    Science.gov (United States)

    Herrera, Mercedes; Islam, Abul B M M K; Herrera, Alberto; Martín, Paloma; García, Vanesa; Silva, Javier; Garcia, Jose M; Salas, Clara; Casal, Ignacio; de Herreros, Antonio García; Bonilla, Félix; Peña, Cristina

    2013-11-01

    Cancer-associated fibroblasts (CAF) actively participate in reciprocal communication with tumor cells and with other cell types in the microenvironment, contributing to a tumor-permissive neighborhood and promoting tumor progression. The aim of this study is the characterization of how CAFs from primary human colon tumors promote migration of colon cancer cells. Primary CAF cultures from 15 primary human colon tumors were established. Their enrichment in CAFs was evaluated by the expression of various epithelial and myofibroblast specific markers. Coculture assays of primary CAFs with different colon tumor cells were performed to evaluate promigratory CAF-derived effects on cancer cells. Gene expression profiles were developed to further investigate CAF characteristics. Coculture assays showed significant differences in fibroblast-derived paracrine promigratory effects on cancer cells. Moreover, the association between CAFs' promigratory effects on cancer cells and classic fibroblast activation or stemness markers was observed. CAF gene expression profiles were analyzed by microarray to identify deregulated genes in different promigratory CAFs. The gene expression signature, derived from the most protumorogenic CAFs, was identified. Interestingly, this "CAF signature" showed a remarkable prognostic value for the clinical outcome of patients with colon cancer. Moreover, this prognostic value was validated in an independent series of 142 patients with colon cancer, by quantitative real-time PCR (qRT-PCR), with a set of four genes included in the "CAF signature." In summary, these studies show for the first time the heterogeneity of primary CAFs' effect on colon cancer cell migration. A CAF gene expression signature able to classify patients with colon cancer into high- and low-risk groups was identified.

  2. The Fanconi anemia family of genes and its correlation with breast cancer susceptibility and breast cancer features.

    Science.gov (United States)

    Barroso, E; Pita, G; Arias, J I; Menendez, P; Zamora, P; Blanco, M; Benitez, J; Ribas, G

    2009-12-01

    Fanconi anemia (FA) family of proteins participates in the DNA repair pathway by homologous recombination, and it is currently formed by 13 genes. Some of these proteins also confer susceptibility to hereditary breast and ovarian cancer (HBOC), since FANCD1 is the BRCA2 breast cancer susceptibility gene, and FANCN/PALB2 and FANCJ/BRIP1 explain 2% of non-BRCA1/2 HBOC families. Thus, there is an important connection between FA and BRCA pathways. In a previous case-control association study analysing FANCA, FANCD2 and FANCL, we reported an association between FANCD2 and sporadic breast cancer (BC) risk (OR = 1.35). In order to know whether variants in other FA genes could also be involved in this association, we have extended our study with the rest of FA genes and some others implicated in the BRCA pathway. We have also analyzed the correlation with survival, nodal metastasis and hormonal receptors (ER- and PR-). A total of 61 SNPs in ten FA genes (FANC-B, -C, -D1, -E, -F, -G, -I, -J, -M, -N) and five FA related genes (ATM, ATR, BRCA1, H2AX and USP1) were studied in a total of 547 consecutive and nonrelated sporadic BC cases and 552 unaffected controls from the Spanish population. Association analyses reported marginal statistically significant results with the minor allele of intronic SNPs in three genes: BRCA1, BRCA2/FANCD1, and ATM. Survival association with SNPs on FANCC and BRCA2/FANCD1 genes were also reported. Sub-group analyses revealed associations between SNPs on FANCI and ATM and nodal metastasis status and between FANCJ/BRIP1 and FANCN/PALB2 and PR- status.

  3. Single-gene prognostic signatures for advanced stage serous ovarian cancer based on 1257 patient samples.

    Science.gov (United States)

    Zhang, Fan; Yang, Kai; Deng, Kui; Zhang, Yuanyuan; Zhao, Weiwei; Xu, Huan; Rong, Zhiwei; Li, Kang

    2018-04-16

    We sought to identify stable single-gene prognostic signatures based on a large collection of advanced stage serous ovarian cancer (AS-OvCa) gene expression data and explore their functions. The empirical Bayes (EB) method was used to remove the batch effect and integrate 8 ovarian cancer datasets. Univariate Cox regression was used to evaluate the association between gene and overall survival (OS). The Database for Annotation, Visualization and Integrated Discovery (DAVID) tool was used for the functional annotation of genes for Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The batch effect was removed by the EB method, and 1257 patient samples were used for further analysis. We selected 341 single-gene prognostic signatures with FDR matrix organization, focal adhesion and DNA replication which are closely associated with cancer. We used the EB method to remove the batch effect of 8 datasets, integrated these datasets and identified stable prognosis signatures for AS-OvCa.

  4. Integrative analysis of gene expression and DNA methylation using unsupervised feature extraction for detecting candidate cancer biomarkers.

    Science.gov (United States)

    Moon, Myungjin; Nakai, Kenta

    2018-04-01

    Currently, cancer biomarker discovery is one of the important research topics worldwide. In particular, detecting significant genes related to cancer is an important task for early diagnosis and treatment of cancer. Conventional studies mostly focus on genes that are differentially expressed in different states of cancer; however, noise in gene expression datasets and insufficient information in limited datasets impede precise analysis of novel candidate biomarkers. In this study, we propose an integrative analysis of gene expression and DNA methylation using normalization and unsupervised feature extractions to identify candidate biomarkers of cancer using renal cell carcinoma RNA-seq datasets. Gene expression and DNA methylation datasets are normalized by Box-Cox transformation and integrated into a one-dimensional dataset that retains the major characteristics of the original datasets by unsupervised feature extraction methods, and differentially expressed genes are selected from the integrated dataset. Use of the integrated dataset demonstrated improved performance as compared with conventional approaches that utilize gene expression or DNA methylation datasets alone. Validation based on the literature showed that a considerable number of top-ranked genes from the integrated dataset have known relationships with cancer, implying that novel candidate biomarkers can also be acquired from the proposed analysis method. Furthermore, we expect that the proposed method can be expanded for applications involving various types of multi-omics datasets.

  5. The BRCA1 and BRCA2 Genes in Early-Onset Breast Cancer Patients.

    Science.gov (United States)

    Saleem, Mohamed; Ghazali, Mohd Bazli; Wahab, Md Azlan Mohamed Abdul; Yusoff, Narazah Mohd; Mahsin, Hakimah; Seng, Ch'ng Ewe; Khalid, Imran Abdul; Rahman, Mohd Nor Gohar; Yahaya, Badrul Hisham

    2018-04-24

    Approximately 5-10% of breast cancers are attributable to genetic susceptibility. Mutations in the BRCA1 and BRCA2 genes are the best known genetic factors to date. The goal of this study was to determine the structure and distribution of haplotypes of the BRCA1 and BRCA2 genes in early-onset breast cancer patients. We enrolled 70 patients diagnosed with early-onset breast cancer. A total of 21 SNPs (11 on BRCA1 and 10 on BRCA2) and 1 dinucleotide deletion on BRCA1 were genotyped using nested allele-specific PCR methods. Linkage disequilibrium (LD) analysis was conducted, and haplotypes were deduced from the genotype data. Two tightly linked LD blocks were observed on each of the BRCA1 and BRCA2 genes. Variant-free haplotypes (TAT-AG for BRCA1 and ATA-AAT for BRCA2) were observed at a frequency of more than 50% on each gene along with variable frequencies of derived haplotypes. The variant 3'-subhaplotype CGC displayed strong LD with 5'-subhaplotypes GA, AA, and GG on BRCA1 gene. Haplotypes ATA-AGT, ATC-AAT, and ATA-AAC were the variant haplotypes frequent on BRCA2 gene. Although the clinical significance of these derived haplotypes has not yet been established, it is expected that some of these haplotypes, especially the less frequent subhaplotypes, eventually will be shown to be indicative of a predisposition to early-onset breast cancer.

  6. Molecular perspectives in differentiated thyroid cancer.

    Science.gov (United States)

    Buffet, C; Groussin, L

    2015-02-01

    Progress in understanding the molecular genetics of thyroid cancer in the last 20 years has accelerated recently with the advent of high-throughput sequencing technologies known as Next-Generation Sequencing. Besides classical molecular abnormalities involving the MAPK (Mitogen Activated Protein Kinase) and PI3K (PhosphoInositide 3-Kinase) pathways that play a key role in follicular-derived thyroid tumorigenesis, new molecular abnormalities have been discovered. The major advances in recent years have been the discovery of new somatic driver gene point mutations (such as RASAL1 [RAS protein activator Like 1] mutations in follicular cancer) and/or mutations that have prognostic value (such as TERT [Telomerase reverse transcriptase] promoter mutations); new chromosomal rearrangements, usually having close connection with exposure to ionizing radiation (such as ALK [Anaplastic Lymphoma Kinase] rearrangements); and deregulation of some gene or microRNA expression representing a molecular signature. Progress made in understanding the molecular mechanisms of thyroid cancer offers new perspectives for the diagnosis of the benign or malignant status of a thyroid nodule, to refine prognosis and offer new perspectives of targeted therapy for radioiodine-refractory cancers. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  7. Cancer gene therapy with targeted adenoviruses.

    Science.gov (United States)

    Bachtarzi, Houria; Stevenson, Mark; Fisher, Kerry

    2008-11-01

    Clinical experience with adenovirus vectors has highlighted the need for improved delivery and targeting. This manuscript aims to provide an overview of the techniques currently under development for improving adenovirus delivery to malignant cells in vivo. Primary research articles reporting improvements in adenoviral gene delivery are described. Strategies include genetic modification of viral coat proteins, non-genetic modifications including polymer encapsulation approaches and pharmacological interventions. Reprogramming adenovirus tropism in vitro has been convincingly demonstrated using a range of genetic and physical strategies. These studies have provided new insights into our understanding of virology and the field is progressing. However, there are still some limitations that need special consideration before adenovirus-targeted cancer gene therapy emerges as a routine treatment in the clinical setting.

  8. Feature genes in metastatic breast cancer identified by MetaDE and SVM classifier methods.

    Science.gov (United States)

    Tuo, Youlin; An, Ning; Zhang, Ming

    2018-03-01

    The aim of the present study was to investigate the feature genes in metastatic breast cancer samples. A total of 5 expression profiles of metastatic breast cancer samples were downloaded from the Gene Expression Omnibus database, which were then analyzed using the MetaQC and MetaDE packages in R language. The feature genes between metastasis and non‑metastasis samples were screened under the threshold of PSVM) classifier training and verification. The accuracy of the SVM classifier was then evaluated using another independent dataset from The Cancer Genome Atlas database. Finally, function and pathway enrichment analyses for genes in the SVM classifier were performed. A total of 541 feature genes were identified between metastatic and non‑metastatic samples. The top 10 genes with the highest betweenness centrality values in the PPI network of feature genes were Nuclear RNA Export Factor 1, cyclin‑dependent kinase 2 (CDK2), myelocytomatosis proto‑oncogene protein (MYC), Cullin 5, SHC Adaptor Protein 1, Clathrin heavy chain, Nucleolin, WD repeat domain 1, proteasome 26S subunit non‑ATPase 2 and telomeric repeat binding factor 2. The cyclin‑dependent kinase inhibitor 1A (CDKN1A), E2F transcription factor 1 (E2F1), and MYC interacted with CDK2. The SVM classifier constructed by the top 30 feature genes was able to distinguish metastatic samples from non‑metastatic samples [correct rate, specificity, positive predictive value and negative predictive value >0.89; sensitivity >0.84; area under the receiver operating characteristic curve (AUROC) >0.96]. The verification of the SVM classifier in an independent dataset (35 metastatic samples and 143 non‑metastatic samples) revealed an accuracy of 94.38% and AUROC of 0.958. Cell cycle associated functions and pathways were the most significant terms of the 30 feature genes. A SVM classifier was constructed to assess the possibility of breast cancer metastasis, which presented high accuracy in several

  9. Cancer : A reproductive strategy of "ultra-selfish" genes?

    NARCIS (Netherlands)

    Schuiling, GA

    2004-01-01

    A hypothesis is presented in which the process of "malignant transformation" which ultimately results in the rapidly dividing tumor(s)(cells) causing "cancer", is regarded as an evolved reproductive strategy of "ultra-selfish" (proto-)(onco-) genes, already present in the genome, or introduced by a

  10. Genes influenced by the non-muscle isoform of Myosin light chain kinase impact human cancer prognosis.

    Directory of Open Access Journals (Sweden)

    Tong Zhou

    Full Text Available The multifunctional non-muscle isoform of myosin light chain kinase (nmMLCK is critical to the rapid dynamic coordination of the cytoskeleton involved in cancer cell proliferation and migration. We identified 45 nmMLCK-influenced genes by bioinformatic filtering of genome-wide expression in wild type and nmMLCK knockout (KO mice exposed to preclinical models of murine acute inflammatory lung injury, pathologies that are well established to include nmMLCK as an essential participant. To determine whether these nmMLCK-influenced genes were relevant to human cancers, the 45 mouse genes were matched to 38 distinct human orthologs (M38 signature (GeneCards definition and underwent Kaplan-Meier survival analysis in training and validation cohorts. These studies revealed that in training cohorts, the M38 signature successfully identified cancer patients with poor overall survival in breast cancer (P<0.001, colon cancer (P<0.001, glioma (P<0.001, and lung cancer (P<0.001. In validation cohorts, the M38 signature demonstrated significantly reduced overall survival for high-score patients of breast cancer (P = 0.002, colon cancer (P = 0.035, glioma (P = 0.023, and lung cancer (P = 0.023. The association between M38 risk score and overall survival was confirmed by univariate Cox proportional hazard analysis of overall survival in the both training and validation cohorts. This study, providing a novel prognostic cancer gene signature derived from a murine model of nmMLCK-associated lung inflammation, strongly supports nmMLCK-involved pathways in tumor growth and progression in human cancers and nmMLCK as an attractive candidate molecular target in both inflammatory and neoplastic processes.

  11. Clinical Omics Analysis of Colorectal Cancer Incorporating Copy Number Aberrations and Gene Expression Data

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Yoshida

    2010-07-01

    Full Text Available Background: Colorectal cancer (CRC is one of the most frequently occurring cancers in Japan, and thus a wide range of methods have been deployed to study the molecular mechanisms of CRC. In this study, we performed a comprehensive analysis of CRC, incorporating copy number aberration (CRC and gene expression data. For the last four years, we have been collecting data from CRC cases and organizing the information as an “omics” study by integrating many kinds of analysis into a single comprehensive investigation. In our previous studies, we had experienced difficulty in finding genes related to CRC, as we observed higher noise levels in the expression data than in the data for other cancers. Because chromosomal aberrations are often observed in CRC, here, we have performed a combination of CNA analysis and expression analysis in order to identify some new genes responsible for CRC. This study was performed as part of the Clinical Omics Database Project at Tokyo Medical and Dental University. The purpose of this study was to investigate the mechanism of genetic instability in CRC by this combination of expression analysis and CNA, and to establish a new method for the diagnosis and treatment of CRC. Materials and methods: Comprehensive gene expression analysis was performed on 79 CRC cases using an Affymetrix Gene Chip, and comprehensive CNA analysis was performed using an Affymetrix DNA Sty array. To avoid the contamination of cancer tissue with normal cells, laser micro-dissection was performed before DNA/RNA extraction. Data analysis was performed using original software written in the R language. Result: We observed a high percentage of CNA in colorectal cancer, including copy number gains at 7, 8q, 13 and 20q, and copy number losses at 8p, 17p and 18. Gene expression analysis provided many candidates for CRC-related genes, but their association with CRC did not reach the level of statistical significance. The combination of CNA and gene

  12. Quantitative RT-PCR analysis of estrogen receptor gene expression in laser microdissected prostate cancer tissue.

    Science.gov (United States)

    Walton, Thomas J; Li, Geng; McCulloch, Thomas A; Seth, Rashmi; Powe, Desmond G; Bishop, Michael C; Rees, Robert C

    2009-06-01

    Real-time quantitative RT-PCR analysis of laser microdissected tissue is considered the most accurate technique for determining tissue gene expression. The discovery of estrogen receptor beta (ERbeta) has focussed renewed interest on the role of estrogen receptors in prostate cancer, yet few studies have utilized the technique to analyze estrogen receptor gene expression in prostate cancer. Fresh tissue was obtained from 11 radical prostatectomy specimens and from 6 patients with benign prostate hyperplasia. Pure populations of benign and malignant prostate epithelium were laser microdissected, followed by RNA isolation and electrophoresis. Quantitative RT-PCR was performed using primers for androgen receptor (AR), estrogen receptor beta (ERbeta), estrogen receptor alpha (ERalpha), progesterone receptor (PGR) and prostate specific antigen (PSA), with normalization to two housekeeping genes. Differences in gene expression were analyzed using the Mann-Whitney U-test. Correlation coefficients were analyzed using Spearman's test. Significant positive correlations were seen when AR and AR-dependent PSA, and ERalpha and ERalpha-dependent PGR were compared, indicating a representative population of RNA transcripts. ERbeta gene expression was significantly over-expressed in the cancer group compared with benign controls (P cancer group (P prostate cancer specimens. In concert with recent studies the findings suggest differential production of ERbeta splice variants, which may play important roles in the genesis of prostate cancer. (c) 2009 Wiley-Liss, Inc.

  13. Integration of gene dosage and gene expression in non-small cell lung cancer, identification of HSP90 as potential target.

    Directory of Open Access Journals (Sweden)

    Mariëlle I Gallegos Ruiz

    Full Text Available BACKGROUND: Lung cancer causes approximately 1.2 million deaths per year worldwide, and non-small cell lung cancer (NSCLC represents 85% of all lung cancers. Understanding the molecular events in non-small cell lung cancer (NSCLC is essential to improve early diagnosis and treatment for this disease. METHODOLOGY AND PRINCIPAL FINDINGS: In an attempt to identify novel NSCLC related genes, we performed a genome-wide screening of chromosomal copy number changes affecting gene expression using microarray based comparative genomic hybridization and gene expression arrays on 32 radically resected tumor samples from stage I and II NSCLC patients. An integrative analysis tool was applied to determine whether chromosomal copy number affects gene expression. We identified a deletion on 14q32.2-33 as a common alteration in NSCLC (44%, which significantly influenced gene expression for HSP90, residing on 14q32. This deletion was correlated with better overall survival (P = 0.008, survival was also longer in patients whose tumors had low expression levels of HSP90. We extended the analysis to three independent validation sets of NSCLC patients, and confirmed low HSP90 expression to be related with longer overall survival (P = 0.003, P = 0.07 and P = 0.04. Furthermore, in vitro treatment with an HSP90 inhibitor had potent antiproliferative activity in NSCLC cell lines. CONCLUSIONS: We suggest that targeting HSP90 will have clinical impact for NSCLC patients.

  14. Dynamic changes of tumor gene expression during repeated pressurized intraperitoneal aerosol chemotherapy (PIPAC) in women with peritoneal cancer

    International Nuclear Information System (INIS)

    Rezniczek, Günther A.; Jüngst, Friederike; Jütte, Hendrik; Tannapfel, Andrea; Hilal, Ziad; Hefler, Lukas A.; Reymond, Marc-André; Tempfer, Clemens B.

    2016-01-01

    Intraperitoneal chemotherapy is used to treat peritoneal cancer. The pattern of gene expression changes of peritoneal cancer during intraperitoneal chemotherapy has not been studied before. Pressurized intraperitoneal aerosol chemotherapy is a new form of intraperitoneal chemotherapy using repeated applications and allowing repeated tumor sampling during chemotherapy. Here, we present the analysis of gene expression changes during pressurized intraperitoneal aerosol chemotherapy with doxorubicin and cisplatin using a 22-gene panel. Total RNA was extracted from 152 PC samples obtained from 63 patients in up to six cycles of intraperitoneal chemotherapy. Quantitative real-time PCR was used to determine the gene expression levels. For select genes, immunohistochemistry was used to verify gene expression changes observed on the transcript level on the protein level. Observed (changes in) expression levels were correlated with clinical outcomes. Gene expression profiles differed significantly between peritoneal cancer and non- peritoneal cancer samples and between ascites-producing and non ascites-producing peritoneal cancers. Changes of gene expression patterns during repeated intraperitoneal chemotherapy cycles were prognostic of overall survival, suggesting a molecular tumor response of peritoneal cancer. Specifically, downregulation of the whole gene panel during intraperitoneal chemotherapy was associated with better treatment response and survival. In summary, molecular changes of peritoneal cancer during pressurized intraperitoneal aerosol chemotherapy can be documented and may be used to refine individual treatment and prognostic estimations. The online version of this article (doi:10.1186/s12885-016-2668-4) contains supplementary material, which is available to authorized users

  15. Finding biological process modifications in cancer tissues by mining gene expression correlations

    Directory of Open Access Journals (Sweden)

    Storari Sergio

    2006-01-01

    Full Text Available Abstract Background Through the use of DNA microarrays it is now possible to obtain quantitative measurements of the expression of thousands of genes from a biological sample. This technology yields a global view of gene expression that can be used in several ways. Functional insight into expression profiles is routinely obtained by using Gene Ontology terms associated to the cellular genes. In this paper, we deal with functional data mining from expression profiles, proposing a novel approach that studies the correlations between genes and their relations to Gene Ontology (GO. By using this "functional correlations comparison" we explore all possible pairs of genes identifying the affected biological processes by analyzing in a pair-wise manner gene expression patterns and linking correlated pairs with Gene Ontology terms. Results We apply here this "functional correlations comparison" approach to identify the existing correlations in hepatocarcinoma (161 microarray experiments and to reveal functional differences between normal liver and cancer tissues. The number of well-correlated pairs in each GO term highlights several differences in genetic interactions between cancer and normal tissues. We performed a bootstrap analysis in order to compute false detection rates (FDR and confidence limits. Conclusion Experimental results show the main advantage of the applied method: it both picks up general and specific GO terms (in particular it shows a fine resolution in the specific GO terms. The results obtained by this novel method are highly coherent with the ones proposed by other cancer biology studies. But additionally they highlight the most specific and interesting GO terms helping the biologist to focus his/her studies on the most relevant biological processes.

  16. Epigenetic Alteration by DNA Promoter Hypermethylation of Genes Related to Transforming Growth Factor-β (TGF-β) Signaling in Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Khin, Sann Sanda [Kobe University Graduate School of Medicine, Division of Diagnostic Molecular Pathology, Kobe 650-0017 (Japan); Pathology Research Unit, Department of Medical Research (Central Myanmar), Naypyitaw, Union of (Myanmar); Kitazawa, Riko [Kobe University Graduate School of Medicine, Division of Diagnostic Molecular Pathology, Kobe 650-0017 (Japan); Ehime University Graduate School of Medicine, Toon 791-0295, Ehime (Japan); Kondo, Takeshi; Idei, Yuka; Fujimoto, Masayo [Kobe University Graduate School of Medicine, Division of Diagnostic Molecular Pathology, Kobe 650-0017 (Japan); Haraguchi, Ryuma [Ehime University Graduate School of Medicine, Toon 791-0295, Ehime (Japan); Mori, Kiyoshi [Kobe University Graduate School of Medicine, Division of Diagnostic Molecular Pathology, Kobe 650-0017 (Japan); Kitazawa, Sohei, E-mail: kitazawa@m.ehime-u.ac.jp [Kobe University Graduate School of Medicine, Division of Diagnostic Molecular Pathology, Kobe 650-0017 (Japan); Ehime University Graduate School of Medicine, Toon 791-0295, Ehime (Japan)

    2011-03-03

    Epigenetic alterations in cancer, especially DNA methylation and histone modification, exert a significant effect on the deregulated expression of cancer-related genes and lay an epigenetic pathway to carcinogenesis and tumor progression. Global hypomethylation and local hypermethylation of CpG islands in the promoter region, which result in silencing tumor suppressor genes, constitute general and major epigenetic modification, the hallmark of the neoplastic epigenome. Additionally, methylation-induced gene silencing commonly affects a number of genes and increases with cancer progression. Indeed, cancers with a high degree of methylation (CpG island methylator phenotype/CIMP) do exist and represent a distinct subset of certain cancers including colorectal, bladder and kidney. On the other hand, signals from the microenvironment, especially those from transforming growth factor-β (TGF-β), induce targeted de novo epigenetic alterations of cancer-related genes. While TGF-β signaling has been implicated in two opposite roles in cancer, namely tumor suppression and tumor promotion, its deregulation is also partly induced by epigenetic alteration itself. Although the epigenetic pathway to carcinogenesis and cancer progression has such reciprocal complexity, the important issue is to identify genes or signaling pathways that are commonly silenced in various cancers in order to find early diagnostic and therapeutic targets. In this review, we focus on the epigenetic alteration by DNA methylation and its role in molecular modulations of the TGF-β signaling pathway that cause or underlie altered cancer-related gene expression in both phases of early carcinogenesis and late cancer progression.

  17. Epigenetic Alteration by DNA Promoter Hypermethylation of Genes Related to Transforming Growth Factor-β (TGF-β) Signaling in Cancer

    International Nuclear Information System (INIS)

    Khin, Sann Sanda; Kitazawa, Riko; Kondo, Takeshi; Idei, Yuka; Fujimoto, Masayo; Haraguchi, Ryuma; Mori, Kiyoshi; Kitazawa, Sohei

    2011-01-01

    Epigenetic alterations in cancer, especially DNA methylation and histone modification, exert a significant effect on the deregulated expression of cancer-related genes and lay an epigenetic pathway to carcinogenesis and tumor progression. Global hypomethylation and local hypermethylation of CpG islands in the promoter region, which result in silencing tumor suppressor genes, constitute general and major epigenetic modification, the hallmark of the neoplastic epigenome. Additionally, methylation-induced gene silencing commonly affects a number of genes and increases with cancer progression. Indeed, cancers with a high degree of methylation (CpG island methylator phenotype/CIMP) do exist and represent a distinct subset of certain cancers including colorectal, bladder and kidney. On the other hand, signals from the microenvironment, especially those from transforming growth factor-β (TGF-β), induce targeted de novo epigenetic alterations of cancer-related genes. While TGF-β signaling has been implicated in two opposite roles in cancer, namely tumor suppression and tumor promotion, its deregulation is also partly induced by epigenetic alteration itself. Although the epigenetic pathway to carcinogenesis and cancer progression has such reciprocal complexity, the important issue is to identify genes or signaling pathways that are commonly silenced in various cancers in order to find early diagnostic and therapeutic targets. In this review, we focus on the epigenetic alteration by DNA methylation and its role in molecular modulations of the TGF-β signaling pathway that cause or underlie altered cancer-related gene expression in both phases of early carcinogenesis and late cancer progression

  18. A strategy to discover new organizers identifies a putative heart organizer.

    Science.gov (United States)

    Anderson, Claire; Khan, Mohsin A F; Wong, Frances; Solovieva, Tatiana; Oliveira, Nidia M M; Baldock, Richard A; Tickle, Cheryll; Burt, Dave W; Stern, Claudio D

    2016-08-25

    Organizers are regions of the embryo that can both induce new fates and impart pattern on other regions. So far, surprisingly few organizers have been discovered, considering the number of patterned tissue types generated during development. This may be because their discovery has relied on transplantation and ablation experiments. Here we describe a new approach, using chick embryos, to discover organizers based on a common gene expression signature, and use it to uncover the anterior intestinal portal (AIP) endoderm as a putative heart organizer. We show that the AIP can induce cardiac identity from non-cardiac mesoderm and that it can pattern this by specifying ventricular and suppressing atrial regional identity. We also uncover some of the signals responsible. The method holds promise as a tool to discover other novel organizers acting during development.

  19. Promoter Hypermethylation of the ATM Gene as a Novel Biomarker for Breast Cancer

    Science.gov (United States)

    Begam, Nasrin; Jamil, Kaiser; Raju, Suryanarayana G

    2017-11-26

    Background: Breast cancer may be induced by activation of protooncogenes to oncogenes and in many cases inactivation of tumor suppressor genes. Ataxia telangiectasia mutated (ATM) is an important tumor suppressor gene which plays central roles in the maintenance of genomic integrity by activating cell cycle checkpoints and promoting repair of double-strand breaks of DNA. In breast cancer, decrease ATM expression correlates with a poor outcome; however, the molecular mechanisms underlying downregulation are still unclear. Promoter hypermethylation may contribute in downregulation. Hence the present investigation was designed to evaluate promoter methylation and expression of the ATM gene in breast cancer cases, and to determine links with clinical and demographic manifestations, in a South Indian population. Methods: Tumor biopsy samples were collected from 50 pathologically confirmed sporadic breast cancer cases. DNA was isolated from tumor and adjacent non-tumorous regions, and sodium bisulfite conversion and methylation-specific PCR were performed using MS-PCR primers for the ATM promoter region. In addition, ATM mRNA expression was also analyzed for all samples using real-time PCR. Results: Fifty eight percent (58%) of cancer tissue samples showed promoter hypermethylation for the ATM gene, in contrast to only 4.44% of normal tissues (p= 0.0001). Furthermore, ATM promoter methylation was positively associated with age (p = 0.01), tumor size (p=0.045) and advanced stage of disease i.e. stages III and IV (p =0.019). An association between promoter hypermethylation and lower expression of ATM mRNA was also found (p=0.035). Conclusion: We report for the first time that promoter hypermethylation of ATM gene may be useful as a potential new biomarker for breast cancer, especially in the relatively young patients. Creative Commons Attribution License

  20. An integrative multi-dimensional genetic and epigenetic strategy to identify aberrant genes and pathways in cancer

    Directory of Open Access Journals (Sweden)

    Lockwood William W

    2010-05-01

    Full Text Available Abstract Background Genomics has substantially changed our approach to cancer research. Gene expression profiling, for example, has been utilized to delineate subtypes of cancer, and facilitated derivation of predictive and prognostic signatures. The emergence of technologies for the high resolution and genome-wide description of genetic and epigenetic features has enabled the identification of a multitude of causal DNA events in tumors. This has afforded the potential for large scale integration of genome and transcriptome data generated from a variety of technology platforms to acquire a better understanding of cancer. Results Here we show how multi-dimensional genomics data analysis would enable the deciphering of mechanisms that disrupt regulatory/signaling cascades and downstream effects. Since not all gene expression changes observed in a tumor are causal to cancer development, we demonstrate an approach based on multiple concerted disruption (MCD analysis of genes that facilitates the rational deduction of aberrant genes and pathways, which otherwise would be overlooked in single genomic dimension investigations. Conclusions Notably, this is the first comprehensive study of breast cancer cells by parallel integrative genome wide analyses of DNA copy number, LOH, and DNA methylation status to interpret changes in gene expression pattern. Our findings demonstrate the power of a multi-dimensional approach to elucidate events which would escape conventional single dimensional analysis and as such, reduce the cohort sample size for cancer gene discovery.

  1. Multiple Patterns of FHIT Gene Homozygous Deletion in Egyptian Breast Cancer Patients

    International Nuclear Information System (INIS)

    Ismail, H.M.S.; Zakhary, N.I.; Medhat, A.M.; Karim, A.M.

    2011-01-01

    Fragile histidine triad (FHIT) gene encodes a putative tumour suppressor protein. Loss of Fhit protein in cancer is attributed to different genetic alterations that affect the FHIT gene structure. In this study, we investigated the pattern of homozygous deletion that target the FHIT gene exons 3 to 9 genomic structure in Egyptian breast cancer patients. We have found that 65% (40 out of 62) of the cases exhibited homozygous deletion in at least one FHIT exon. The incidence of homozygous deletion was not associated with patients clinico pathological parameters including patients age, tumour grade, tumour type, and lymph node involvement. Using correlation analysis, we have observed a strong correlation between homozygous deletions of exon 3 and exon 4 (P<0.0001). Deletions in exon 5 were positively correlated with deletions in exon 7 (P<0.0001), Exon 8 (P<0.027), and exon 9 (P=0.04). Additionally, a strong correlation was observed between exons 8 and exon 9 (P<0.0001).We conclude that FHIT gene exons are homozygously deleted at high frequency in Egyptian women population diagnosed with breast cancer. Three different patterns of homozygous deletion were observed in this population indicating different mechanisms of targeting FHIT gene genomic structure.

  2. Time- and dose-dependent effects of curcumin on gene expression in human colon cancer cells

    Directory of Open Access Journals (Sweden)

    van Erk Marjan J

    2004-05-01

    Full Text Available Abstract Background Curcumin is a spice and a coloring food compound with a promising role in colon cancer prevention. Curcumin protects against development of colon tumors in rats treated with a colon carcinogen, in colon cancer cells curcumin can inhibit cell proliferation and induce apoptosis, it is an anti-oxidant and it can act as an anti-inflammatory agent. The aim of this study was to elucidate mechanisms and effect of curcumin in colon cancer cells using gene expression profiling. Methods Gene expression changes in response to curcumin exposure were studied in two human colon cancer cell lines, using cDNA microarrays with four thousand human genes. HT29 cells were exposed to two different concentrations of curcumin and gene expression changes were followed in time (3, 6, 12, 24 and 48 hours. Gene expression changes after short-term exposure (3 or 6 hours to curcumin were also studied in a second cell type, Caco-2 cells. Results Gene expression changes (>1.5-fold were found at all time points. HT29 cells were more sensitive to curcumin than Caco-2 cells. Early response genes were involved in cell cycle, signal transduction, DNA repair, gene transcription, cell adhesion and xenobiotic metabolism. In HT29 cells curcumin modulated a number of cell cycle genes of which several have a role in transition through the G2/M phase. This corresponded to a cell cycle arrest in the G2/M phase as was observed by flow cytometry. Functional groups with a similar expression profile included genes involved in phase-II metabolism that were induced by curcumin after 12 and 24 hours. Expression of some cytochrome P450 genes was downregulated by curcumin in HT29 and Caco-2 cells. In addition, curcumin affected expression of metallothionein genes, tubulin genes, p53 and other genes involved in colon carcinogenesis. Conclusions This study has extended knowledge on pathways or processes already reported to be affected by curcumin (cell cycle arrest, phase

  3. Copy-number and gene dependency analysis reveals partial copy loss of wild-type SF3B1 as a novel cancer vulnerability. | Office of Cancer Genomics

    Science.gov (United States)

    Genomic instability is a hallmark of human cancer, and results in widespread somatic copy number alterations. We used a genome-scale shRNA viability screen in human cancer cell lines to systematically identify genes that are essential in the context of particular copy-number alterations (copy-number associated gene dependencies). The most enriched class of copy-number associated gene dependencies was CYCLOPS (Copy-number alterations Yielding Cancer Liabilities Owing to Partial losS) genes, and spliceosome components were the most prevalent.

  4. Noise-induced multistability in the regulation of cancer by genes and pseudogenes

    Energy Technology Data Exchange (ETDEWEB)

    Petrosyan, K. G., E-mail: pkaren@phys.sinica.edu.tw [Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan (China); Hu, Chin-Kun, E-mail: huck@phys.sinica.edu.tw [Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan (China); National Center for Theoretical Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Business School, University of Shanghai for Science and Technology, Shanghai 200093 (China)

    2016-07-28

    We extend a previously introduced model of stochastic gene regulation of cancer to a nonlinear case having both gene and pseudogene messenger RNAs (mRNAs) self-regulated. The model consists of stochastic Boolean genetic elements and possesses noise-induced multistability (multimodality). We obtain analytical expressions for probabilities for the case of constant but finite number of microRNA molecules which act as a noise source for the competing gene and pseudogene mRNAs. The probability distribution functions display both the global bistability regime as well as even-odd number oscillations for a certain range of model parameters. Statistical characteristics of the mRNA’s level fluctuations are evaluated. The obtained results of the extended model advance our understanding of the process of stochastic gene and pseudogene expressions that is crucial in regulation of cancer.

  5. Presymptomatic breast cancer in Egypt: role of BRCA1 and BRCA2 tumor suppressor genes mutations detection

    Directory of Open Access Journals (Sweden)

    Hashishe Mervat M

    2010-06-01

    Full Text Available Abstract Background Breast cancer is one of the most common diseases affecting women. Inherited susceptibility genes, BRCA1 and BRCA2, are considered in breast, ovarian and other common cancers etiology. BRCA1 and BRCA2 genes have been identified that confer a high degree of breast cancer risk. Objective Our study was performed to identify germline mutations in some exons of BRCA1 and BRCA2 genes for the early detection of presymptomatic breast cancer in females. Methods This study was applied on Egyptian healthy females who first degree relatives to those, with or without a family history, infected with breast cancer. Sixty breast cancer patients, derived from 60 families, were selected for molecular genetic testing of BRCA1 and BRCA2 genes. The study also included 120 healthy first degree female relatives of the patients, either sisters and/or daughters, for early detection of presymptomatic breast cancer mutation carriers. Genomic DNA was extracted from peripheral blood lymphocytes of all the studied subjects. Universal primers were used to amplify four regions of the BRCA1 gene (exons 2,8,13 and 22 and one region (exon 9 of BRCA2 gene using specific PCR. The polymerase chain reaction was carried out. Single strand conformation polymorphism assay and heteroduplex analysis were used to screen for mutations in the studied exons. In addition, DNA sequencing of the normal and mutated exons were performed. Results Mutations in both BRCA1 and BRCA2 genes were detected in 86.7% of the families. Current study indicates that 60% of these families were attributable to BRCA1 mutations, while 26.7% of them were attributable to BRCA2 mutations. Results showed that four mutations were detected in the BRCA1 gene, while one mutation was detected in the BRCA2 gene. Asymptomatic relatives, 80(67% out of total 120, were mutation carriers. Conclusions BRCA1 and BRCA2 genes mutations are responsible for a significant proportion of breast cancer. BRCA mutations

  6. Cancer: a reproductive strategy of "ultra-selfish" genes?

    Science.gov (United States)

    Schuiling, G A

    2004-01-01

    A hypothesis is presented in which the process of "malignant transformation" which ultimately results in the rapidly dividing tumor(s)(cells) causing "cancer", is regarded as an evolved reproductive strategy of "ultra-selfish" (proto-)(onco-) genes, already present in the genome, or introduced by a virus.

  7. Overexpressed Genes/ESTs and Characterization of Distinct Amplicons on 17823 in Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Ayse E. Erson

    2001-01-01

    Full Text Available 17823 is a frequent site of gene amplification in breast cancer. Several lines of evidence suggest the presence of multiple amplicons on 17823. To characterize distinct amplicons on 17823 and localize putative oncogenes, we screened genes and expressed sequence tags (ESTs in existing physical and radiation hybrid maps for amplification and overexpression in breast cancer cell lines by semiquantitative duplex PCR, semiquantitative duplex RT-PCR, Southern blot, Northern blot analyses. We identified two distinct amplicons on 17823, one including TBX2 and another proximal region including RPS6KB1 (PS6K and MUL. In addition to these previously reported overexpressed genes, we also identified amplification and overexpression of additional uncharacterized genes and ESTs, some of which suggest potential oncogenic activity. In conclusion, we have further defined two distinct regions of gene amplification and overexpression on 17823 with identification of new potential oncogene candidates. Based on the amplification and overexpression patterns of known and as of yet unrecognized genes on 17823, it is likely that some of these genes mapping to the discrete amplicons function as oncogenes and contribute to tumor progression in breast cancer cells.

  8. Identification of endogenous control genes for normalisation of real-time quantitative PCR data in colorectal cancer.

    LENUS (Irish Health Repository)

    Kheirelseid, Elrasheid A H

    2010-01-01

    BACKGROUND: Gene expression analysis has many applications in cancer diagnosis, prognosis and therapeutic care. Relative quantification is the most widely adopted approach whereby quantification of gene expression is normalised relative to an endogenously expressed control (EC) gene. Central to the reliable determination of gene expression is the choice of control gene. The purpose of this study was to evaluate a panel of candidate EC genes from which to identify the most stably expressed gene(s) to normalise RQ-PCR data derived from primary colorectal cancer tissue. RESULTS: The expression of thirteen candidate EC genes: B2M, HPRT, GAPDH, ACTB, PPIA, HCRT, SLC25A23, DTX3, APOC4, RTDR1, KRTAP12-3, CHRNB4 and MRPL19 were analysed in a cohort of 64 colorectal tumours and tumour associated normal specimens. CXCL12, FABP1, MUC2 and PDCD4 genes were chosen as target genes against which a comparison of the effect of each EC gene on gene expression could be determined. Data analysis using descriptive statistics, geNorm, NormFinder and qBasePlus indicated significant difference in variances between candidate EC genes. We determined that two genes were required for optimal normalisation and identified B2M and PPIA as the most stably expressed and reliable EC genes. CONCLUSION: This study identified that the combination of two EC genes (B2M and PPIA) more accurately normalised RQ-PCR data in colorectal tissue. Although these control genes might not be optimal for use in other cancer studies, the approach described herein could serve as a template for the identification of valid ECs in other cancer types.

  9. Potential microRNA-mediated oncogenic intercellular communication revealed by pan-cancer analysis

    Science.gov (United States)

    Li, Yue; Zhang, Zhaolei

    2014-11-01

    Carcinogenesis consists of oncogenesis and metastasis, and intriguingly microRNAs (miRNAs) are involved in both processes. Although aberrant miRNA activities are prevalent in diverse tumor types, the exact mechanisms for how they regulate cancerous processes are not always clear. To this end, we performed a large-scale pan-cancer analysis via a novel probabilistic approach to infer recurrent miRNA-target interactions implicated in 12 cancer types using data from The Cancer Genome Atlas. We discovered ~20,000 recurrent miRNA regulations, which are enriched for cancer-related miRNAs/genes. Notably, miRNA 200 family (miR-200/141/429) is among the most prominent miRNA regulators, which is known to be involved in metastasis. Importantly, the recurrent miRNA regulatory network is not only enriched for cancer pathways but also for extracellular matrix (ECM) organization and ECM-receptor interactions. The results suggest an intriguing cancer mechanism involving miRNA-mediated cell-to-cell communication, which possibly involves delivery of tumorigenic miRNA messengers to adjacent cells via exosomes. Finally, survival analysis revealed 414 recurrent-prognostic associations, where both gene and miRNA involved in each interaction conferred significant prognostic power in one or more cancer types. Together, our comprehensive pan-cancer analysis provided not only biological insights into metastasis but also brought to bear the clinical relevance of the proposed recurrent miRNA-gene associations.

  10. Gene expression profiling demonstrates WNT/β-catenin pathway genes alteration in Mexican patients with colorectal cancer and diabetes mellitus.

    Science.gov (United States)

    Ivonne Wence-Chavez, Laura; Palomares-Chacon, Ulises; Pablo Flores-Gutierrez, Juan; Felipe Jave-Suarez, Luis; Del Carmen Aguilar-Lemarroy, Adriana; Barros-Nunez, Patricio; Esperanza Flores-Martinez, Silvia; Sanchez-Corona, Jose; Alejandra Rosales-Reynoso, Monica

    2017-01-01

    Several studies have shown a strong association between diabetes mellitus (DM) and increased risk of colorectal cancer (CRC). The fundamental mechanisms that support this association are not entirely understood; however, it is believed that hyperinsulinemia and hyperglycemia may be involved. Some proposed mechanisms include upregulation of mitogenic signaling pathways like MAPK, PI3K, mTOR, and WNT, which are involved in cell proliferation, growth, and cancer cell survival. The purpose of this study was to evaluate the gene expression profile and identify differently expressed genes involved in mitogenic pathways in CRC patients with and without DM. In this study, microarray analysis of gene expression followed by quantitative PCR (qPCR) was performed in cancer tissue from CRC patients with and without DM to identify the gene expression profiles and validate the differently expressed genes. Among the study groups, some differently expressed genes were identified. However, when bioinformatics clustering tools were used, a significant modulation of genes involved in the WNT pathway was evident. Therefore, we focused on genes participating in this pathway, such as WNT3A, LRP6, TCF7L2, and FRA-1. Validation of the expression levels of those genes by qPCR showed that CRC patients without type 2 diabetes mellitus (T2DM) expressed significantly more WNT3Ay LRP6, but less TCF7L2 and FRA-1 compared to controls, while in CRC patients with DM the expression levels of WNT3A, LRP6, TCF7L2, and FRA-1 were significantly higher compared to controls. Our results suggest that WNT/β-catenin pathway is upregulated in patients with CRC and DM, demonstrating its importance and involvement in both pathologies.

  11. Evaluation of candidate stromal epithelial cross-talk genes identifies association between risk of serous ovarian cancer and TERT, a cancer susceptibility "hot-spot"

    DEFF Research Database (Denmark)

    Johnatty, Sharon E; Beesley, Jonathan; Chen, Xiaoqing

    2010-01-01

    We hypothesized that variants in genes expressed as a consequence of interactions between ovarian cancer cells and the host micro-environment could contribute to cancer susceptibility. We therefore used a two-stage approach to evaluate common single nucleotide polymorphisms (SNPs) in 173 genes...

  12. Prognostic significance of glucose transporter-1 (GLUT1) gene expression in rectal cancer after preoperative chemoradiotherapy

    International Nuclear Information System (INIS)

    Saigusa, Susumu; Toiyama, Yuji; Tanaka, Koji; Okugawa, Yoshinaga; Fujikawa, Hiroyuki; Matsushita, Kohei; Uchida, Keiichi; Inoue, Yasuhiro; Kusunoki, Masato

    2012-01-01

    Most cancer cells exhibit increased glycolysis. The elevated glucose transporter 1 (GLUT1) expression has been reported to be associated with resistance to therapeutic agents and a poor prognosis. We wondered whether GLUT1 expression was associated with the clinical outcome in rectal cancer after preoperative chemoradiotherapy (CRT), and whether glycolysis inhibition could represent a novel anticancer treatment. We obtained total RNA from residual cancer cells using microdissection from a total of 52 rectal cancer specimens from patients who underwent preoperative CRT. We performed transcriptional analyzes, and studied the association of the GLUT1 gene expression levels with the clinical outcomes. In addition, we examined each proliferative response of three selected colorectal cancer cell lines to a glycolysis inhibitor, 3-bromopyruvic acid (3-BrPA), with regard to their expression of the GLUT1 gene. An elevated GLUT1 gene expression was associated with a high postoperative stage, the presence of lymph node metastasis, and distant recurrence. Moreover, elevated GLUT1 gene expression independently predicted both the recurrence-free and overall survival. In the in vitro studies, we observed that 3-BrPA significantly suppressed the proliferation of colon cancer cells with high GLUT1 gene expression, compared with those with low expression. An elevated GLUT1 expression may be a useful predictor of distant recurrence and poor prognosis in rectal cancer patients after preoperative CRT. (author)

  13. Classification of Breast Cancer Subtypes by combining Gene Expression and DNA Methylation Data

    Directory of Open Access Journals (Sweden)

    List Markus

    2014-06-01

    Full Text Available Selecting the most promising treatment strategy for breast cancer crucially depends on determining the correct subtype. In recent years, gene expression profiling has been investigated as an alternative to histochemical methods. Since databases like TCGA provide easy and unrestricted access to gene expression data for hundreds of patients, the challenge is to extract a minimal optimal set of genes with good prognostic properties from a large bulk of genes making a moderate contribution to classification. Several studies have successfully applied machine learning algorithms to solve this so-called gene selection problem. However, more diverse data from other OMICS technologies are available, including methylation. We hypothesize that combining methylation and gene expression data could already lead to a largely improved classification model, since the resulting model will reflect differences not only on the transcriptomic, but also on an epigenetic level. We compared so-called random forest derived classification models based on gene expression and methylation data alone, to a model based on the combined features and to a model based on the gold standard PAM50. We obtained bootstrap errors of 10-20% and classification error of 1-50%, depending on breast cancer subtype and model. The gene expression model was clearly superior to the methylation model, which was also reflected in the combined model, which mainly selected features from gene expression data. However, the methylation model was able to identify unique features not considered as relevant by the gene expression model, which might provide deeper insights into breast cancer subtype differentiation on an epigenetic level.

  14. Integrative analysis of genome-wide gene copy number changes and gene expression in non-small cell lung cancer.

    Directory of Open Access Journals (Sweden)

    Verena Jabs

    Full Text Available Non-small cell lung cancer (NSCLC represents a genomically unstable cancer type with extensive copy number aberrations. The relationship of gene copy number alterations and subsequent mRNA levels has only fragmentarily been described. The aim of this study was to conduct a genome-wide analysis of gene copy number gains and corresponding gene expression levels in a clinically well annotated NSCLC patient cohort (n = 190 and their association with survival. While more than half of all analyzed gene copy number-gene expression pairs showed statistically significant correlations (10,296 of 18,756 genes, high correlations, with a correlation coefficient >0.7, were obtained only in a subset of 301 genes (1.6%, including KRAS, EGFR and MDM2. Higher correlation coefficients were associated with higher copy number and expression levels. Strong correlations were frequently based on few tumors with high copy number gains and correspondingly increased mRNA expression. Among the highly correlating genes, GO groups associated with posttranslational protein modifications were particularly frequent, including ubiquitination and neddylation. In a meta-analysis including 1,779 patients we found that survival associated genes were overrepresented among highly correlating genes (61 of the 301 highly correlating genes, FDR adjusted p<0.05. Among them are the chaperone CCT2, the core complex protein NUP107 and the ubiquitination and neddylation associated protein CAND1. In conclusion, in a comprehensive analysis we described a distinct set of highly correlating genes. These genes were found to be overrepresented among survival-associated genes based on gene expression in a large collection of publicly available datasets.

  15. Engineering and Functional Characterization of Fusion Genes Identifies Novel Oncogenic Drivers of Cancer. | Office of Cancer Genomics

    Science.gov (United States)

    Oncogenic gene fusions drive many human cancers, but tools to more quickly unravel their functional contributions are needed. Here we describe methodology permitting fusion gene construction for functional evaluation. Using this strategy, we engineered the known fusion oncogenes, BCR-ABL1, EML4-ALK, and ETV6-NTRK3, as well as 20 previously uncharacterized fusion genes identified in TCGA datasets.

  16. Role of TLR4 gene polymorphisms in the colorectal cancer risk ...

    African Journals Online (AJOL)

    Saniya Nissar

    2016-05-26

    May 26, 2016 ... This is an open access article under the CC BY-NC-ND license ... eliminate infectious pathogens and cancer debris [5–7]. The TLR4 gene is .... evidence of involvement of TLR4 gene in driving CRC and this. TLR4 may serve ...

  17. Alternative splicing and differential gene expression in colon cancer detected by a whole genome exon array

    Directory of Open Access Journals (Sweden)

    Sugnet Charles

    2006-12-01

    Full Text Available Abstract Background Alternative splicing is a mechanism for increasing protein diversity by excluding or including exons during post-transcriptional processing. Alternatively spliced proteins are particularly relevant in oncology since they may contribute to the etiology of cancer, provide selective drug targets, or serve as a marker set for cancer diagnosis. While conventional identification of splice variants generally targets individual genes, we present here a new exon-centric array (GeneChip Human Exon 1.0 ST that allows genome-wide identification of differential splice variation, and concurrently provides a flexible and inclusive analysis of gene expression. Results We analyzed 20 paired tumor-normal colon cancer samples using a microarray designed to detect over one million putative exons that can be virtually assembled into potential gene-level transcripts according to various levels of prior supporting evidence. Analysis of high confidence (empirically supported transcripts identified 160 differentially expressed genes, with 42 genes occupying a network impacting cell proliferation and another twenty nine genes with unknown functions. A more speculative analysis, including transcripts based solely on computational prediction, produced another 160 differentially expressed genes, three-fourths of which have no previous annotation. We also present a comparison of gene signal estimations from the Exon 1.0 ST and the U133 Plus 2.0 arrays. Novel splicing events were predicted by experimental algorithms that compare the relative contribution of each exon to the cognate transcript intensity in each tissue. The resulting candidate splice variants were validated with RT-PCR. We found nine genes that were differentially spliced between colon tumors and normal colon tissues, several of which have not been previously implicated in cancer. Top scoring candidates from our analysis were also found to substantially overlap with EST-based bioinformatic

  18. The emerging pathogenic and therapeutic importance of the anaplastic lymphoma kinase gene.

    LENUS (Irish Health Repository)

    Kelleher, Fergal C

    2012-02-01

    The anaplastic lymphoma kinase gene (ALK) is a gene on chromosome 2p23 that has expression restricted to the brain, testis and small intestine but is not expressed in normal lymphoid tissue. It has similarity to the insulin receptor subfamily of kinases and is emerging as having increased pathologic and potential therapeutic importance in malignant disease. This gene was originally established as being implicated in the pathogenesis of rare diseases including inflammatory myofibroblastic tumour (IMT) and ALK-positive anaplastic large cell lymphoma, which is a subtype of non-Hodgkin\\'s lymphoma. Recently the number of diseases in which ALK is implicated in their pathogenesis has increased. In 2007, an inversion of chromosome 2 involving ALK and a fusion partner gene in a subset of non-small cell lung cancer was discovered. In 2008, publications emerged implicating ALK in familial and sporadic cases of neuroblastoma, a childhood cancer of the sympatho-adrenal system. Chromosomal abnormalities involving ALK are translocations, amplifications or mutations. Chromosomal translocations are the longest recognised ALK genetic abnormality. When translocations occur a fusion gene is created between ALK and a gene partner. This has been described in ALK-positive anaplastic large cell lymphoma in which ALK is fused to NPM (nucleolar protein gene) and in non-small cell lung cancer where ALK is fused to EML4 (Echinoderm microtubule-associated protein 4). The most frequently described partner genes in inflammatory myofibroblastic tumour are tropomyosin 3\\/4 (TMP3\\/4), however in IMTs a diversity of ALK fusion partners have been found, with the ability to homodimerise a common characteristic. Point mutations and amplification of the ALK gene occur in the childhood cancer neuroblastoma. Therapeutic targeting of ALK fusion genes using tyrosine kinase inhibition, vaccination using an ALK specific antigen and treatment using viral vectors for RNAi are emerging potential therapeutic

  19. Real-time PCR analysis of genes encoding tumor antigens in esophageal tumors and a cancer vaccine

    DEFF Research Database (Denmark)

    Weinert, Brian T; Krishnadath, Kausilia K; Milano, Francesca

    2009-01-01

    Tumor antigens are the primary target of therapeutic cancer vaccines. We set out to define and compare the expression pattern of tumor antigen genes in esophagus carcinoma biopsies and in an allogeneic tumor lysate-based cancer vaccine, MelCancerVac. Cells used for vaccine production were treated...... in the production of the vaccine. Quantitative PCR was used to assay 74 tumor antigen genes in patients with squamous cell carcinoma of the esophagus. 81% (13/16) of tumors expressed more than five cancer/testis (CT) antigens. A total of 96 genes were assayed in the tumor cell clone (DDM1.7) used to make tumor cell...

  20. HFE gene C282Y variant is associated with colorectal cancer in Caucasians: a meta-analysis.

    Science.gov (United States)

    Chen, Weidong; Zhao, Hua; Li, Tiegang; Yao, Hongliang

    2013-08-01

    The HFE gene has been suggested to play an important role in the pathogenesis of colorectal cancer. However, the results have been conflicting. In this study, we performed a meta-analysis to clarify the association of HFE gene C282Y variant with colorectal cancer. PubMed and Embase were retrieved to identify the potential literature. Pooled odds ratio (OR) with 95 % confidence interval (CI) was calculated using fixed- or random-effects model. A total of eight papers including nine studies (7,588 colorectal cancer cases and 81,571 controls) for HFE gene C282Y variant were included in the meta-analysis. The result indicated that HFE gene C282Y variant was significantly associated with colorectal cancer under recessive model (OR = 2.00, 95 % CI = 1.32-3.04), with no evidence of between-study heterogeneity (I (2) = 0.2 %, p = 0.432). Further subgroup analysis by number of cases suggested the effect was significant in studies with more than 500 cases (OR = 2.51, 95 % CI = 1.58-3.98, I (2) = 0.0 %, p = 0.921), but not in studies with less than 500 cases (OR = 0.75, 95 % CI = 0.28-1.97, I (2) = 0.0 %, p = 0.622). The current meta-analysis supported the positive association of HFE gene C282Y variant with colorectal cancer. Further large-scale studies with the consideration for gene-gene/gene-environment interactions should be conducted to investigate the association.

  1. Prediction of metastasis from low-malignant breast cancer by gene expression profiling

    DEFF Research Database (Denmark)

    Thomassen, Mads; Tan, Qihua; Eiriksdottir, Freyja

    2007-01-01

    examined in these studies is the low-risk patients for whom outcome is very difficult to predict with currently used methods. These patients do not receive adjuvant treatment according to the guidelines of the Danish Breast Cancer Cooperative Group (DBCG). In this study, 26 tumors from low-risk patients...... with different characteristics and risk, expression-based classification specifically developed in low-risk patients have higher predictive power in this group.......Promising results for prediction of outcome in breast cancer have been obtained by genome wide gene expression profiling. Some studies have suggested that an extensive overtreatment of breast cancer patients might be reduced by risk assessment with gene expression profiling. A patient group hardly...

  2. Leucine zipper, down regulated in cancer-1 gene expression in prostate cancer

    Science.gov (United States)

    Salemi, Michele; Barone, Nunziata; La Vignera, Sandro; Condorelli, Rosita A.; Recupero, Domenico; Galia, Antonio; Fraggetta, Filippo; Aiello, Anna Maria; Pepe, Pietro; Castiglione, Roberto; Vicari, Enzo; Calogero, Aldo E.

    2016-01-01

    Numerous genetic alterations have been implicated in the development of prostate cancer (PCa). DNA and protein microarrays have enabled the identification of genes associated with apoptosis, which is important in PCa development. Despite the molecular mechanisms are not entirely understood, inhibition of apoptosis is a critical pathophysiological factor that contributes to the onset and progression of PCa. Leucine zipper, down-regulated in cancer 1 (LDOC-1) is a known regulator of the nuclear factor (NF)-mediated pathway of apoptosis through the inhibition of NF-κB. The present study investigated the expression of the LDOC-1 gene in LNCaP, PC-3, PNT1A and PNT2 prostate cell lines by reverse transcription-quantitative polymerase chain reaction. In addition LDOC-1 protein expression in normal prostate tissues and PCa was studied by immunohistochemistry. LDOC-1 messenger RNA resulted overexpressed in LNCaP and PC-3 PCa cell lines compared with the two normal prostate cell lines PNT1A and PNT2. The results of immunohistochemistry demonstrated a positive cytoplasmic LDOC-1 staining in all PCa and normal prostate samples, whereas no nuclear staining was observed in any sample. Furthermore, a more intense signal was evidenced in PCa samples. LDOC-1 gene overexpression in PCa suggests an activity of LDOC-1 in PCa cell lines. PMID:27698860

  3. Evaluation of candidate stromal epithelial cross-talk genes identifies association between risk of serous ovarian cancer and TERT, a cancer susceptibility "hot-spot"

    DEFF Research Database (Denmark)

    Johnatty, Sharon E; Beesley, Jonathan; Chen, Xiaoqing

    2010-01-01

    We hypothesized that variants in genes expressed as a consequence of interactions between ovarian cancer cells and the host micro-environment could contribute to cancer susceptibility. We therefore used a two-stage approach to evaluate common single nucleotide polymorphisms (SNPs) in 173 genes in...

  4. Correlation of SHOX2 Gene Amplification and DNA Methylation in Lung Cancer Tumors

    International Nuclear Information System (INIS)

    Schneider, Katja U; Liebenberg, Volker; Kneip, Christoph; Seegebarth, Anke; Erdogan, Fikret; Rappold, Gudrun; Schmidt, Bernd; Dietrich, Dimo; Fleischhacker, Michael; Leschber, Gunda; Merk, Johannes; Schäper, Frank; Stapert, Henk R; Vossenaar, Erik R; Weickmann, Sabine

    2011-01-01

    DNA methylation in the SHOX2 locus was previously used to reliably detect lung cancer in a group of critical controls, including 'cytologically negative' samples with no visible tumor cell content, at a high specificity based on the analysis of bronchial lavage samples. This study aimed to investigate, if the methylation correlates with SHOX2 gene expression and/or copy number alterations. An amplification of the SHOX2 gene locus together with the observed tumor-specific hypermethylation might explain the good performance of this marker in bronchial lavage samples. SHOX2 expression, gene copy number and DNA methylation were determined in lung tumor tissues and matched morphologically normal adjacent tissues (NAT) from 55 lung cancer patients. Quantitative HeavyMethyl (HM) real-time PCR was used to detect SHOX2 DNA methylation levels. SHOX2 expression was assayed with quantitative real-time PCR, and copy numbers alterations were measured with conventional real-time PCR and array CGH. A hypermethylation of the SHOX2 locus in tumor tissue as compared to the matched NAT from the same patient was detected in 96% of tumors from a group of 55 lung cancer patients. This correlated highly significantly with the frequent occurrence of copy number amplification (p < 0.0001), while the expression of the SHOX2 gene showed no difference. Frequent gene amplification correlated with hypermethylation of the SHOX2 gene locus. This concerted effect qualifies SHOX2 DNA methylation as a biomarker for lung cancer diagnosis, especially when sensitive detection is needed, i.e. in bronchial lavage or blood samples

  5. IRGM gene polymorphisms and risk of gastric cancer.

    NARCIS (Netherlands)

    Burada, F.; Plantinga, T.S.; Ioana, M.; Rosentul, D.; Angelescu, C.; Joosten, L.A.B.; Netea, M.G.; Saftoiu, A.

    2012-01-01

    OBJECTIVE: The study aimed to assess the possible association of polymorphisms in the autophagy gene IRGM (rs13361189 and rs4958847) with the risk of gastric cancer. METHODS: A total of 102 patients with gastric adenocarcinoma, 52 with chronic gastritis and 351 healthy controls were included in this

  6. Study the Molecular Association between a Deletion Mutation in CHEK2 gene (5395 bp and Breast Cancer

    Directory of Open Access Journals (Sweden)

    Manijeh Jalilvand

    2015-07-01

    Full Text Available Background & Objectives: Breast cancer is the most common cancer among women and the second most common cause of cancer death. Genetic factors play an important role in the development of breast cancer. Among these genetic factors, CHEk2 (checkpoint kinase 2 gene, as a tumor suppressor gene, plays a critical role in DNA repair. Germline mutations in CEHK2 result in the loss of this feature. One of the mutations in CHEK2 gene is a 5395 bp deletion mutation which has been associated with the increasing risk of Breast Cancer in some populations in the world.  In the present study, we investigated the association between a 5395 bp deletion mutation in CHEK2 gene and the risk of Breast Cancer in the women of an Iranian population. Methods: Pathologic information of 38 cases under the age of 45 and 62 cases over the age of 45 referring to surgery ward of Milad Hospital in Tehran were extracted. 100 healthy controls were included in the study as well. After obtaining informed consent, 5 mL whole blood was taken DNA was successfully isolated. Multiplex PCR was used to investigate the association between a 5395bp deletion mutation in CHEK2 gene and increasing risk of Breast Cancer among patients. Results: The 5395bp deletion mutation in CHEK2 gene was not found in any of the participating groups of patients or heathy controls. Conclusion: The present study revealed that there is no significant relation between increasing the risk of Breast Cancer and bearing large deletion mutation in exon 9 and exon 10 of CHECK2 gene.

  7. Identification of genes regulating migration and invasion using a new model of metastatic prostate cancer

    International Nuclear Information System (INIS)

    Banyard, Jacqueline; Chung, Ivy; Migliozzi, Matthew; Phan, Derek T; Wilson, Arianne M; Zetter, Bruce R; Bielenberg, Diane R

    2014-01-01

    Understanding the complex, multistep process of metastasis remains a major challenge in cancer research. Metastasis models can reveal insights in tumor development and progression and provide tools to test new intervention strategies. To develop a new cancer metastasis model, we used DU145 human prostate cancer cells and performed repeated rounds of orthotopic prostate injection and selection of subsequent lymph node metastases. Tumor growth, metastasis, cell migration and invasion were analyzed. Microarray analysis was used to identify cell migration- and cancer-related genes correlating with metastasis. Selected genes were silenced using siRNA, and their roles in cell migration and invasion were determined in transwell migration and Matrigel invasion assays. Our in vivo cycling strategy created cell lines with dramatically increased tumorigenesis and increased ability to colonize lymph nodes (DU145LN1-LN4). Prostate tumor xenografts displayed increased vascularization, enlarged podoplanin-positive lymphatic vessels and invasive margins. Microarray analysis revealed gene expression profiles that correlated with metastatic potential. Using gene network analysis we selected 3 significantly upregulated cell movement and cancer related genes for further analysis: EPCAM (epithelial cell adhesion molecule), ITGB4 (integrin β4) and PLAU (urokinase-type plasminogen activator (uPA)). These genes all showed increased protein expression in the more metastatic DU145-LN4 cells compared to the parental DU145. SiRNA knockdown of EpCAM, integrin-β4 or uPA all significantly reduced cell migration in DU145-LN4 cells. In contrast, only uPA siRNA inhibited cell invasion into Matrigel. This role of uPA in cell invasion was confirmed using the uPA inhibitors, amiloride and UK122. Our approach has identified genes required for the migration and invasion of metastatic tumor cells, and we propose that our new in vivo model system will be a powerful tool to interrogate the metastatic

  8. Epigenetic Alteration by DNA Promoter Hypermethylation of Genes Related to Transforming Growth Factor-β (TGF-β Signaling in Cancer

    Directory of Open Access Journals (Sweden)

    Kiyoshi Mori

    2011-03-01

    Full Text Available Epigenetic alterations in cancer, especially DNA methylation and histone modification, exert a significant effect on the deregulated expression of cancer-related genes and lay an epigenetic pathway to carcinogenesis and tumor progression. Global hypomethylation and local hypermethylation of CpG islands in the promoter region, which result in silencing tumor suppressor genes, constitute general and major epigenetic modification, the hallmark of the neoplastic epigenome. Additionally, methylation-induced gene silencing commonly affects a number of genes and increases with cancer progression. Indeed, cancers with a high degree of methylation (CpG island methylator phenotype/CIMP do exist and represent a distinct subset of certain cancers including colorectal, bladder and kidney. On the other hand, signals from the microenvironment, especially those from transforming growth factor-β (TGF-β, induce targeted de novo epigenetic alterations of cancer-related genes. While TGF-β signaling has been implicated in two opposite roles in cancer, namely tumor suppression and tumor promotion, its deregulation is also partly induced by epigenetic alteration itself. Although the epigenetic pathway to carcinogenesis and cancer progression has such reciprocal complexity, the important issue is to identify genes or signaling pathways that are commonly silenced in various cancers in order to find early diagnostic and therapeutic targets. In this review, we focus on the epigenetic alteration by DNA methylation and its role in molecular modulations of the TGF-β signaling pathway that cause or underlie altered cancer-related gene expression in both phases of early carcinogenesis and late cancer progression.

  9. Germ line mutations of mismatch repair genes in hereditary nonpolyposis colorectal cancer patients with small bowel cancer: International Society for Gastrointestinal Hereditary Tumours Collaborative Study

    DEFF Research Database (Denmark)

    Park, Jae-Gahb; Kim, Duck-Woo; Hong, Chang Won

    2006-01-01

    PURPOSE: The aim of study was to determine the clinical characteristics and mutational profiles of the mismatch repair genes in hereditary nonpolyposis colorectal cancer (HNPCC) patients with small bowel cancer (SBC). EXPERIMENTAL DESIGN: A questionnaire was mailed to 55 members of the Internatio......PURPOSE: The aim of study was to determine the clinical characteristics and mutational profiles of the mismatch repair genes in hereditary nonpolyposis colorectal cancer (HNPCC) patients with small bowel cancer (SBC). EXPERIMENTAL DESIGN: A questionnaire was mailed to 55 members...... of the International Society for Gastrointestinal Hereditary Tumours, requesting information regarding patients with HNPCC-associated SBC and germ line mismatch repair gene mutations. RESULTS: The study population consisted of 85 HNPCC patients with identified mismatch repair gene mutations and SBCs. SBC was the first...... HNPCC-associated malignancy in 14 of 41 (34.1%) patients for whom a personal history of HNPCC-associated cancers was available. The study population harbored 69 different germ line mismatch repair gene mutations, including 31 mutations in MLH1, 34 in MSH2, 3 in MSH6, and 1 in PMS2. We compared...

  10. Analysis of PALB2 gene in BRCA1/BRCA2 negative Spanish hereditary breast/ovarian cancer families with pancreatic cancer cases.

    Directory of Open Access Journals (Sweden)

    Ana Blanco

    Full Text Available BACKGROUND: The PALB2 gene, also known as FANCN, forms a bond and co-localizes with BRCA2 in DNA repair. Germline mutations in PALB2 have been identified in approximately 1% of familial breast cancer and 3-4% of familial pancreatic cancer. The goal of this study was to determine the prevalence of PALB2 mutations in a population of BRCA1/BRCA2 negative breast cancer patients selected from either a personal or family history of pancreatic cancer. METHODS: 132 non-BRCA1/BRCA2 breast/ovarian cancer families with at least one pancreatic cancer case were included in the study. PALB2 mutational analysis was performed by direct sequencing of all coding exons and intron/exon boundaries, as well as multiplex ligation-dependent probe amplification. RESULTS: Two PALB2 truncating mutations, the c.1653T>A (p.Tyr551Stop previously reported, and c.3362del (p.Gly1121ValfsX3 which is a novel frameshift mutation, were identified. Moreover, several PALB2 variants were detected; some of them were predicted as pathological by bioinformatic analysis. Considering truncating mutations, the prevalence rate of our population of BRCA1/2-negative breast cancer patients with pancreatic cancer is 1.5%. CONCLUSIONS: The prevalence rate of PALB2 mutations in non-BRCA1/BRCA2 breast/ovarian cancer families, selected from either a personal or family pancreatic cancer history, is similar to that previously described for unselected breast/ovarian cancer families. Future research directed towards identifying other gene(s involved in the development of breast/pancreatic cancer families is required.

  11. Vasopressin Gene-Related Products in the Management of Breast Cancer

    National Research Council Canada - National Science Library

    North, William

    1999-01-01

    ...), and this information coupled with an absence of vasopressin gene-related products from fibrocystic disease potentially provides us with a new screening test for distinguishing both breast cancer...

  12. Cancer as quasi-attractor in the gene expression phase space

    Science.gov (United States)

    Giuliani, A.

    2017-09-01

    It takes no more than 250 tissue types to build up a metazoan, and each tissue has a specific and largely invariant gene expression signature. This implies the `viable configurations' correspondent to a given activated/inactivated expression pattern over the entire genome are very few. This points to the presence of few `low energy deep valleys' correspondent to the allowed states of the system and is a direct consequence of the fact genes do not work by alone but embedded into genetic expression networks. Statistical thermodynamics formalism focusing on the changes in the degree of correlation of the studied systems allows to detect transition behavior in gene expression phase space resembling the phase transition of physical-chemistry studies. In this realm cancer can be intended as a sort of `parasite' sub-attractor of the corresponding healthy tissue that, in the case of disease, is `kinetically entrapped' into a sub-optimal solution. The consequences of such a state of affair for cancer therapies are potentially huge.

  13. DDPC: Dragon database of genes associated with prostate cancer

    KAUST Repository

    Maqungo, Monique; Kaur, Mandeep; Kwofie, Samuel K.; Radovanovic, Aleksandar; Schaefer, Ulf; Schmeier, Sebastian; Oppon, Ekow; Christoffels, Alan; Bajic, Vladimir B.

    2010-01-01

    associated with Prostate Cancer (DDPC) as an integrated knowledgebase of genes experimentally verified as implicated in PC. DDPC is distinctive from other databases in that (i) it provides pre-compiled biomedical text-mining information on PC, which otherwise

  14. Identification of target genes of transcription factor activator protein 2 gamma in breast cancer cells

    International Nuclear Information System (INIS)

    Ailan, He; Shuanglin, Xiang; Xiangwen, Xiao; Daolong, Ren; Lu, Gan; Xiaofeng, Ding; Xi, Qiao; Xingwang, Hu; Rushi, Liu; Jian, Zhang

    2009-01-01

    Activator protein 2 gamma (AP-2γ) is a member of the transcription factor activator protein-2 (AP-2) family, which is developmentally regulated and plays a role in human neoplasia. AP-2γ has been found to be overexpressed in most breast cancers, and have a dual role to inhibit tumor initiation and promote tumor progression afterwards during mammary tumorigensis. To identify the gene targets that mediate its effects, we performed chromatin immunoprecipitation (ChIP) to isolate AP-2γ binding sites on genomic DNA from human breast cancer cell line MDA-MB-453. 20 novel DNA fragments proximal to potential AP-2γ targets were obtained. They are categorized into functional groups of carcinogenesis, metabolism and others. A combination of sequence analysis, reporter gene assays, quantitative real-time PCR, electrophoretic gel mobility shift assays and immunoblot analysis further confirmed the four AP-2γ target genes in carcinogenesis group: ErbB2, CDH2, HPSE and IGSF11. Our results were consistent with the previous reports that ErbB2 was the target gene of AP-2γ. Decreased expression and overexpression of AP-2γ in human breast cancer cells significantly altered the expression of these four genes, indicating that AP-2γ directly regulates them. This suggested that AP-2γ can coordinate the expression of a network of genes, involving in carcinogenesis, especially in breast cancer. They could serve as therapeutic targets against breast cancers in the future

  15. The genetic alteration of MTS1/CDKN2 gene in esophageal cancer

    International Nuclear Information System (INIS)

    Zo, Jae Ill; Paik, Hee Jong; Park, Jong Ho; Kim, Mi Hee

    1996-12-01

    MTS1/CDKN2 gene plays a key role in cell cycle regulation, and there have been many studies about the significance of this gene in tumorigenesis. To investigate the frequency of MTS1/CDKN2 gene alteration in Korean esophageal cancer, we studied 36 esophageal cancer tissues with paired PCR analysis to detect homozygous deletion and PCR-SSCP methods to find minute mutations, if any. In the cases with abnormalities, the nucleotide sequence analysis was performed. And in cases without RB gene a alterations, direct sequence analysis was also done. There was no homozygous deletions. Mobility shift by PCR-SSCP was observed in four cases at exon 2, which showed 1 bp deletion in codon 97 of mutation in codon 100 which changed TAT (Tyr) from GAT (Asp). But there were not MTS1/CDKN2 gene alterations in cases without Rb gene alterations. Analysis of clinical data did not show any differences depending upon MTS1/CDKN2 gene alterations. Therefore the MTS1/CDKN2 gene mutations were infrequent events and do not play a major role in the group of patients examined. More study for contribution of methylation in MTS1/CDKN2 gene for inactivation of p16 should be done before evaluation and application of MTS1/CDKN2 gene in tumorigenesis and as an candidate of gene therapy. (author). 15 refs

  16. The genetic alteration of MTS1/CDKN2 gene in esophageal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Zo, Jae Ill; Paik, Hee Jong; Park, Jong Ho; Kim, Mi Hee [Korea Cancer Center Hospital, Seoul (Korea, Republic of)

    1996-12-01

    MTS1/CDKN2 gene plays a key role in cell cycle regulation, and there have been many studies about the significance of this gene in tumorigenesis. To investigate the frequency of MTS1/CDKN2 gene alteration in Korean esophageal cancer, we studied 36 esophageal cancer tissues with paired PCR analysis to detect homozygous deletion and PCR-SSCP methods to find minute mutations, if any. In the cases with abnormalities, the nucleotide sequence analysis was performed. And in cases without RB gene a alterations, direct sequence analysis was also done. There was no homozygous deletions. Mobility shift by PCR-SSCP was observed in four cases at exon 2, which showed 1 bp deletion in codon 97 of mutation in codon 100 which changed TAT (Tyr) from GAT (Asp). But there were not MTS1/CDKN2 gene alterations in cases without Rb gene alterations. Analysis of clinical data did not show any differences depending upon MTS1/CDKN2 gene alterations. Therefore the MTS1/CDKN2 gene mutations were infrequent events and do not play a major role in the group of patients examined. More study for contribution of methylation in MTS1/CDKN2 gene for inactivation of p16 should be done before evaluation and application of MTS1/CDKN2 gene in tumorigenesis and as an candidate of gene therapy. (author). 15 refs.

  17. Common Genetic Variation in Circadian Rhythm Genes and Risk of Epithelial Ovarian Cancer (EOC).

    Science.gov (United States)

    Jim, Heather S L; Lin, Hui-Yi; Tyrer, Jonathan P; Lawrenson, Kate; Dennis, Joe; Chornokur, Ganna; Chen, Zhihua; Chen, Ann Y; Permuth-Wey, Jennifer; Aben, Katja Kh; Anton-Culver, Hoda; Antonenkova, Natalia; Bruinsma, Fiona; Bandera, Elisa V; Bean, Yukie T; Beckmann, Matthias W; Bisogna, Maria; Bjorge, Line; Bogdanova, Natalia; Brinton, Louise A; Brooks-Wilson, Angela; Bunker, Clareann H; Butzow, Ralf; Campbell, Ian G; Carty, Karen; Chang-Claude, Jenny; Cook, Linda S; Cramer, Daniel W; Cunningham, Julie M; Cybulski, Cezary; Dansonka-Mieszkowska, Agnieszka; du Bois, Andreas; Despierre, Evelyn; Sieh, Weiva; Doherty, Jennifer A; Dörk, Thilo; Dürst, Matthias; Easton, Douglas F; Eccles, Diana M; Edwards, Robert P; Ekici, Arif B; Fasching, Peter A; Fridley, Brooke L; Gao, Yu-Tang; Gentry-Maharaj, Aleksandra; Giles, Graham G; Glasspool, Rosalind; Goodman, Marc T; Gronwald, Jacek; Harter, Philipp; Hasmad, Hanis N; Hein, Alexander; Heitz, Florian; Hildebrandt, Michelle A T; Hillemanns, Peter; Hogdall, Claus K; Hogdall, Estrid; Hosono, Satoyo; Iversen, Edwin S; Jakubowska, Anna; Jensen, Allan; Ji, Bu-Tian; Karlan, Beth Y; Kellar, Melissa; Kiemeney, Lambertus A; Krakstad, Camilla; Kjaer, Susanne K; Kupryjanczyk, Jolanta; Vierkant, Robert A; Lambrechts, Diether; Lambrechts, Sandrina; Le, Nhu D; Lee, Alice W; Lele, Shashi; Leminen, Arto; Lester, Jenny; Levine, Douglas A; Liang, Dong; Lim, Boon Kiong; Lissowska, Jolanta; Lu, Karen; Lubinski, Jan; Lundvall, Lene; Massuger, Leon F A G; Matsuo, Keitaro; McGuire, Valerie; McLaughlin, John R; McNeish, Ian; Menon, Usha; Milne, Roger L; Modugno, Francesmary; Thomsen, Lotte; Moysich, Kirsten B; Ness, Roberta B; Nevanlinna, Heli; Eilber, Ursula; Odunsi, Kunle; Olson, Sara H; Orlow, Irene; Orsulic, Sandra; Palmieri Weber, Rachel; Paul, James; Pearce, Celeste L; Pejovic, Tanja; Pelttari, Liisa M; Pike, Malcolm C; Poole, Elizabeth M; Schernhammer, Eva; Risch, Harvey A; Rosen, Barry; Rossing, Mary Anne; Rothstein, Joseph H; Rudolph, Anja; Runnebaum, Ingo B; Rzepecka, Iwona K; Salvesen, Helga B; Schwaab, Ira; Shu, Xiao-Ou; Shvetsov, Yurii B; Siddiqui, Nadeem; Song, Honglin; Southey, Melissa C; Spiewankiewicz, Beata; Sucheston-Campbell, Lara; Teo, Soo-Hwang; Terry, Kathryn L; Thompson, Pamela J; Tangen, Ingvild L; Tworoger, Shelley S; van Altena, Anne M; Vergote, Ignace; Walsh, Christine S; Wang-Gohrke, Shan; Wentzensen, Nicolas; Whittemore, Alice S; Wicklund, Kristine G; Wilkens, Lynne R; Wu, Anna H; Wu, Xifeng; Woo, Yin-Ling; Yang, Hannah; Zheng, Wei; Ziogas, Argyrios; Amankwah, Ernest; Berchuck, Andrew; Schildkraut, Joellen M; Kelemen, Linda E; Ramus, Susan J; Monteiro, Alvaro N A; Goode, Ellen L; Narod, Steven A; Gayther, Simon A; Pharoah, Paul D P; Sellers, Thomas A; Phelan, Catherine M

    Disruption in circadian gene expression, whether due to genetic variation or environmental factors (e.g., light at night, shiftwork), is associated with increased incidence of breast, prostate, gastrointestinal and hematologic cancers and gliomas. Circadian genes are highly expressed in the ovaries where they regulate ovulation; circadian disruption is associated with several ovarian cancer risk factors (e.g., endometriosis). However, no studies have examined variation in germline circadian genes as predictors of ovarian cancer risk and invasiveness. The goal of the current study was to examine single nucleotide polymorphisms (SNPs) in circadian genes BMAL1, CRY2, CSNK1E, NPAS2, PER3, REV1 and TIMELESS and downstream transcription factors KLF10 and SENP3 as predictors of risk of epithelial ovarian cancer (EOC) and histopathologic subtypes. The study included a test set of 3,761 EOC cases and 2,722 controls and a validation set of 44,308 samples including 18,174 (10,316 serous) cases and 26,134 controls from 43 studies participating in the Ovarian Cancer Association Consortium (OCAC). Analysis of genotype data from 36 genotyped SNPs and 4600 imputed SNPs indicated that the most significant association was rs117104877 in BMAL1 (OR = 0.79, 95% CI = 0.68-0.90, p = 5.59 × 10 -4 ]. Functional analysis revealed a significant down regulation of BMAL1 expression following cMYC overexpression and increasing transformation in ovarian surface epithelial (OSE) cells as well as alternative splicing of BMAL1 exons in ovarian and granulosa cells. These results suggest that variation in circadian genes, and specifically BMAL1 , may be associated with risk of ovarian cancer, likely through disruption of hormonal pathways.

  18. Mesenchymal Stem Cell-Based Tumor-Targeted Gene Therapy in Gastrointestinal Cancer

    OpenAIRE

    Bao, Qi; Zhao, Yue; Niess, Hanno; Conrad, Claudius; Schwarz, Bettina; Jauch, Karl-Walter; Huss, Ralf; Nelson, Peter J.; Bruns, Christiane J.

    2012-01-01

    Mesenchymal stem (or stromal) cells (MSCs) are nonhematopoietic progenitor cells that can be obtained from bone marrow aspirates or adipose tissue, expanded and genetically modified in vitro, and then used for cancer therapeutic strategies in vivo. Here, we review available data regarding the application of MSC-based tumor-targeted therapy in gastrointestinal cancer, provide an overview of the general history of MSC-based gene therapy in cancer research, and discuss potential problems associa...

  19. Progress in Tissue Specimens Alternative for the Driver Genes Testing of Non-small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Yan SUN

    2015-06-01

    Full Text Available Target treatment based on driver genes in advanced non-small cell lung cancer is very important currently. Tumor tissues is the gold standard for driver genes testing. However, most of patients could not get the gene information for lack of enough tissues. To explore the tissue specimens alternatives is a hot spot in clinical work. This report reviews the tissue specimen alternatives of driver gene testing in non-small cell lung cancer.

  20. Common Genetic Variation In Cellular Transport Genes and Epithelial Ovarian Cancer (EOC Risk.

    Directory of Open Access Journals (Sweden)

    Ganna Chornokur

    Full Text Available Defective cellular transport processes can lead to aberrant accumulation of trace elements, iron, small molecules and hormones in the cell, which in turn may promote the formation of reactive oxygen species, promoting DNA damage and aberrant expression of key regulatory cancer genes. As DNA damage and uncontrolled proliferation are hallmarks of cancer, including epithelial ovarian cancer (EOC, we hypothesized that inherited variation in the cellular transport genes contributes to EOC risk.In total, DNA samples were obtained from 14,525 case subjects with invasive EOC and from 23,447 controls from 43 sites in the Ovarian Cancer Association Consortium (OCAC. Two hundred seventy nine SNPs, representing 131 genes, were genotyped using an Illumina Infinium iSelect BeadChip as part of the Collaborative Oncological Gene-environment Study (COGS. SNP analyses were conducted using unconditional logistic regression under a log-additive model, and the FDR q<0.2 was applied to adjust for multiple comparisons.The most significant evidence of an association for all invasive cancers combined and for the serous subtype was observed for SNP rs17216603 in the iron transporter gene HEPH (invasive: OR = 0.85, P = 0.00026; serous: OR = 0.81, P = 0.00020; this SNP was also associated with the borderline/low malignant potential (LMP tumors (P = 0.021. Other genes significantly associated with EOC histological subtypes (p<0.05 included the UGT1A (endometrioid, SLC25A45 (mucinous, SLC39A11 (low malignant potential, and SERPINA7 (clear cell carcinoma. In addition, 1785 SNPs in six genes (HEPH, MGST1, SERPINA, SLC25A45, SLC39A11 and UGT1A were imputed from the 1000 Genomes Project and examined for association with INV EOC in white-European subjects. The most significant imputed SNP was rs117729793 in SLC39A11 (per allele, OR = 2.55, 95% CI = 1.5-4.35, p = 5.66x10-4.These results, generated on a large cohort of women, revealed associations between inherited cellular

  1. Common Genetic Variation In Cellular Transport Genes and Epithelial Ovarian Cancer (EOC) Risk

    Science.gov (United States)

    Chornokur, Ganna; Lin, Hui-Yi; Tyrer, Jonathan P.; Lawrenson, Kate; Dennis, Joe; Amankwah, Ernest K.; Qu, Xiaotao; Tsai, Ya-Yu; Jim, Heather S. L.; Chen, Zhihua; Chen, Ann Y.; Permuth-Wey, Jennifer; Aben, Katja KH.; Anton-Culver, Hoda; Antonenkova, Natalia; Bruinsma, Fiona; Bandera, Elisa V.; Bean, Yukie T.; Beckmann, Matthias W.; Bisogna, Maria; Bjorge, Line; Bogdanova, Natalia; Brinton, Louise A.; Brooks-Wilson, Angela; Bunker, Clareann H.; Butzow, Ralf; Campbell, Ian G.; Carty, Karen; Chang-Claude, Jenny; Cook, Linda S.; Cramer, Daniel W.; Cunningham, Julie M.; Cybulski, Cezary; Dansonka-Mieszkowska, Agnieszka; du Bois, Andreas; Despierre, Evelyn; Dicks, Ed; Doherty, Jennifer A.; Dörk, Thilo; Dürst, Matthias; Easton, Douglas F.; Eccles, Diana M.; Edwards, Robert P.; Ekici, Arif B.; Fasching, Peter A.; Fridley, Brooke L.; Gao, Yu-Tang; Gentry-Maharaj, Aleksandra; Giles, Graham G.; Glasspool, Rosalind; Goodman, Marc T.; Gronwald, Jacek; Harrington, Patricia; Harter, Philipp; Hein, Alexander; Heitz, Florian; Hildebrandt, Michelle A. T.; Hillemanns, Peter; Hogdall, Claus K.; Hogdall, Estrid; Hosono, Satoyo; Jakubowska, Anna; Jensen, Allan; Ji, Bu-Tian; Karlan, Beth Y.; Kelemen, Linda E.; Kellar, Mellissa; Kiemeney, Lambertus A.; Krakstad, Camilla; Kjaer, Susanne K.; Kupryjanczyk, Jolanta; Lambrechts, Diether; Lambrechts, Sandrina; Le, Nhu D.; Lee, Alice W.; Lele, Shashi; Leminen, Arto; Lester, Jenny; Levine, Douglas A.; Liang, Dong; Lim, Boon Kiong; Lissowska, Jolanta; Lu, Karen; Lubinski, Jan; Lundvall, Lene; Massuger, Leon F. A. G.; Matsuo, Keitaro; McGuire, Valerie; McLaughlin, John R.; McNeish, Iain; Menon, Usha; Milne, Roger L.; Modugno, Francesmary; Moysich, Kirsten B.; Ness, Roberta B.; Nevanlinna, Heli; Eilber, Ursula; Odunsi, Kunle; Olson, Sara H.; Orlow, Irene; Orsulic, Sandra; Weber, Rachel Palmieri; Paul, James; Pearce, Celeste L.; Pejovic, Tanja; Pelttari, Liisa M.; Pike, Malcolm C.; Poole, Elizabeth M.; Risch, Harvey A.; Rosen, Barry; Rossing, Mary Anne; Rothstein, Joseph H.; Rudolph, Anja; Runnebaum, Ingo B.; Rzepecka, Iwona K.; Salvesen, Helga B.; Schernhammer, Eva; Schwaab, Ira; Shu, Xiao-Ou; Shvetsov, Yurii B.; Siddiqui, Nadeem; Sieh, Weiva; Song, Honglin; Southey, Melissa C.; Spiewankiewicz, Beata; Sucheston, Lara; Teo, Soo-Hwang; Terry, Kathryn L.; Thompson, Pamela J.; Thomsen, Lotte; Tangen, Ingvild L.; Tworoger, Shelley S.; van Altena, Anne M.; Vierkant, Robert A.; Vergote, Ignace; Walsh, Christine S.; Wang-Gohrke, Shan; Wentzensen, Nicolas; Whittemore, Alice S.; Wicklund, Kristine G.; Wilkens, Lynne R.; Wu, Anna H.; Wu, Xifeng; Woo, Yin-Ling; Yang, Hannah; Zheng, Wei; Ziogas, Argyrios; Hasmad, Hanis N.; Berchuck, Andrew; Iversen, Edwin S.; Schildkraut, Joellen M.; Ramus, Susan J.; Goode, Ellen L.; Monteiro, Alvaro N. A.; Gayther, Simon A.; Narod, Steven A.; Pharoah, Paul D. P.; Sellers, Thomas A.; Phelan, Catherine M.

    2015-01-01

    Background Defective cellular transport processes can lead to aberrant accumulation of trace elements, iron, small molecules and hormones in the cell, which in turn may promote the formation of reactive oxygen species, promoting DNA damage and aberrant expression of key regulatory cancer genes. As DNA damage and uncontrolled proliferation are hallmarks of cancer, including epithelial ovarian cancer (EOC), we hypothesized that inherited variation in the cellular transport genes contributes to EOC risk. Methods In total, DNA samples were obtained from 14,525 case subjects with invasive EOC and from 23,447 controls from 43 sites in the Ovarian Cancer Association Consortium (OCAC). Two hundred seventy nine SNPs, representing 131 genes, were genotyped using an Illumina Infinium iSelect BeadChip as part of the Collaborative Oncological Gene-environment Study (COGS). SNP analyses were conducted using unconditional logistic regression under a log-additive model, and the FDR q<0.2 was applied to adjust for multiple comparisons. Results The most significant evidence of an association for all invasive cancers combined and for the serous subtype was observed for SNP rs17216603 in the iron transporter gene HEPH (invasive: OR = 0.85, P = 0.00026; serous: OR = 0.81, P = 0.00020); this SNP was also associated with the borderline/low malignant potential (LMP) tumors (P = 0.021). Other genes significantly associated with EOC histological subtypes (p<0.05) included the UGT1A (endometrioid), SLC25A45 (mucinous), SLC39A11 (low malignant potential), and SERPINA7 (clear cell carcinoma). In addition, 1785 SNPs in six genes (HEPH, MGST1, SERPINA, SLC25A45, SLC39A11 and UGT1A) were imputed from the 1000 Genomes Project and examined for association with INV EOC in white-European subjects. The most significant imputed SNP was rs117729793 in SLC39A11 (per allele, OR = 2.55, 95% CI = 1.5-4.35, p = 5.66x10-4). Conclusion These results, generated on a large cohort of women, revealed associations

  2. Phase I metabolic genes and risk of lung cancer: multiple polymorphisms and mRNA expression.

    Directory of Open Access Journals (Sweden)

    Melissa Rotunno

    2009-05-01

    Full Text Available Polymorphisms in genes coding for enzymes that activate tobacco lung carcinogens may generate inter-individual differences in lung cancer risk. Previous studies had limited sample sizes, poor exposure characterization, and a few single nucleotide polymorphisms (SNPs tested in candidate genes. We analyzed 25 SNPs (some previously untested in 2101 primary lung cancer cases and 2120 population controls from the Environment And Genetics in Lung cancer Etiology (EAGLE study from six phase I metabolic genes, including cytochrome P450s, microsomal epoxide hydrolase, and myeloperoxidase. We evaluated the main genotype effects and genotype-smoking interactions in lung cancer risk overall and in the major histology subtypes. We tested the combined effect of multiple SNPs on lung cancer risk and on gene expression. Findings were prioritized based on significance thresholds and consistency across different analyses, and accounted for multiple testing and prior knowledge. Two haplotypes in EPHX1 were significantly associated with lung cancer risk in the overall population. In addition, CYP1B1 and CYP2A6 polymorphisms were inversely associated with adenocarcinoma and squamous cell carcinoma risk, respectively. Moreover, the association between CYP1A1 rs2606345 genotype and lung cancer was significantly modified by intensity of cigarette smoking, suggesting an underlying dose-response mechanism. Finally, increasing number of variants at CYP1A1/A2 genes revealed significant protection in never smokers and risk in ever smokers. Results were supported by differential gene expression in non-tumor lung tissue samples with down-regulation of CYP1A1 in never smokers and up-regulation in smokers from CYP1A1/A2 SNPs. The significant haplotype associations emphasize that the effect of multiple SNPs may be important despite null single SNP-associations, and warrants consideration in genome-wide association studies (GWAS. Our findings emphasize the necessity of post

  3. Inhibitory effect of Survivin promoter-regulated oncolytic adenovirus carrying P53 gene against gallbladder cancer.

    Science.gov (United States)

    Liu, Chen; Sun, Bin; An, Ni; Tan, Weifeng; Cao, Lu; Luo, Xiangji; Yu, Yong; Feng, Feiling; Li, Bin; Wu, Mengchao; Su, Changqing; Jiang, Xiaoqing

    2011-12-01

    Gene therapy has become an important strategy for treatment of malignancies, but problems remains concerning the low gene transferring efficiency, poor transgene expression and limited targeting specific tumors, which have greatly hampered the clinical application of tumor gene therapy. Gallbladder cancer is characterized by rapid progress, poor prognosis, and aberrantly high expression of Survivin. In the present study, we used a human tumor-specific Survivin promoter-regulated oncolytic adenovirus vector carrying P53 gene, whose anti-cancer effect has been widely confirmed, to construct a wide spectrum, specific, safe, effective gene-viral therapy system, AdSurp-P53. Examining expression of enhanced green fluorecent protein (EGFP), E1A and the target gene P53 in the oncolytic adenovirus system validated that Survivin promoter-regulated oncolytic adenovirus had high proliferation activity and high P53 expression in Survivin-positive gallbladder cancer cells. Our in vitro cytotoxicity experiment demonstrated that AdSurp-P53 possessed a stronger cytotoxic effect against gallbladder cancer cells and hepatic cancer cells. The survival rate of EH-GB1 cells was lower than 40% after infection of AdSurp-P53 at multiplicity of infection (MOI) = 1 pfu/cell, while the rate was higher than 90% after infection of Ad-P53 at the same MOI, demonstrating that AdSurp-P53 has a potent cytotoxicity against EH-GB1 cells. The tumor growth was greatly inhibited in nude mice bearing EH-GB1 xenografts when the total dose of AdSurp-P53 was 1 × 10(9) pfu, and terminal dUTP nick end-labeling (TUNEL) revealed that the apoptotic rate of cancer cells was (33.4 ± 8.4)%. This oncolytic adenovirus system overcomes the long-standing shortcomings of gene therapy: poor transgene expression and targeting of only specific tumors, with its therapeutic effect better than the traditional Ad-P53 therapy regimen already on market; our system might be used for patients with advanced gallbladder cancer and

  4. Screening for common copy-number variants in cancer genes.

    Science.gov (United States)

    Tyson, Jess; Majerus, Tamsin M O; Walker, Susan; Armour, John A L

    2010-12-01

    For most cases of colorectal cancer that arise without a family history of the disease, it is proposed that an appreciable heritable component of predisposition is the result of contributions from many loci. Although progress has been made in identifying single nucleotide variants associated with colorectal cancer risk, the involvement of low-penetrance copy number variants is relatively unexplored. We have used multiplex amplifiable probe hybridization (MAPH) in a fourfold multiplex (QuadMAPH), positioned at an average resolution of one probe per 2 kb, to screen a total of 1.56 Mb of genomic DNA for copy number variants around the genes APC, AXIN1, BRCA1, BRCA2, CTNNB1, HRAS, MLH1, MSH2, and TP53. Two deletion events were detected, one upstream of MLH1 in a control individual and the other in APC in a colorectal cancer patient, but these do not seem to correspond to copy number polymorphisms with measurably high population frequencies. In summary, by means of our QuadMAPH assay, copy number measurement data were of sufficient resolution and accuracy to detect any copy number variants with high probability. However, this study has demonstrated a very low incidence of deletion and duplication variants within intronic and flanking regions of these nine genes, in both control individuals and colorectal cancer patients. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. Progress in developing cationic vectors for non-viral systemic gene therapy against cancer.

    OpenAIRE

    Morille , Marie; Passirani , Catherine; Vonarbourg , Arnaud; Clavreul , Anne; Benoit , Jean-Pierre

    2008-01-01

    International audience; Initially, gene therapy was viewed as an approach for treating hereditary diseases, but its potential role in the treatment of acquired diseases such as cancer is now widely recognized. The understanding of the molecular mechanisms involved in cancer and the development of nucleic acid delivery systems are two concepts that have led to this development. Systemic gene delivery systems are needed for therapeutic application to cells inaccessible by percutaneous injection...

  6. Systems Biology-Based Investigation of Cellular Antiviral Drug Targets Identified by Gene-Trap Insertional Mutagenesis.

    Directory of Open Access Journals (Sweden)

    Feixiong Cheng

    2016-09-01

    Full Text Available Viruses require host cellular factors for successful replication. A comprehensive systems-level investigation of the virus-host interactome is critical for understanding the roles of host factors with the end goal of discovering new druggable antiviral targets. Gene-trap insertional mutagenesis is a high-throughput forward genetics approach to randomly disrupt (trap host genes and discover host genes that are essential for viral replication, but not for host cell survival. In this study, we used libraries of randomly mutagenized cells to discover cellular genes that are essential for the replication of 10 distinct cytotoxic mammalian viruses, 1 gram-negative bacterium, and 5 toxins. We herein reported 712 candidate cellular genes, characterizing distinct topological network and evolutionary signatures, and occupying central hubs in the human interactome. Cell cycle phase-specific network analysis showed that host cell cycle programs played critical roles during viral replication (e.g. MYC and TAF4 regulating G0/1 phase. Moreover, the viral perturbation of host cellular networks reflected disease etiology in that host genes (e.g. CTCF, RHOA, and CDKN1B identified were frequently essential and significantly associated with Mendelian and orphan diseases, or somatic mutations in cancer. Computational drug repositioning framework via incorporating drug-gene signatures from the Connectivity Map into the virus-host interactome identified 110 putative druggable antiviral targets and prioritized several existing drugs (e.g. ajmaline that may be potential for antiviral indication (e.g. anti-Ebola. In summary, this work provides a powerful methodology with a tight integration of gene-trap insertional mutagenesis testing and systems biology to identify new antiviral targets and drugs for the development of broadly acting and targeted clinical antiviral therapeutics.

  7. A resampling-based meta-analysis for detection of differential gene expression in breast cancer

    International Nuclear Information System (INIS)

    Gur-Dedeoglu, Bala; Konu, Ozlen; Kir, Serkan; Ozturk, Ahmet Rasit; Bozkurt, Betul; Ergul, Gulusan; Yulug, Isik G

    2008-01-01

    Accuracy in the diagnosis of breast cancer and classification of cancer subtypes has improved over the years with the development of well-established immunohistopathological criteria. More recently, diagnostic gene-sets at the mRNA expression level have been tested as better predictors of disease state. However, breast cancer is heterogeneous in nature; thus extraction of differentially expressed gene-sets that stably distinguish normal tissue from various pathologies poses challenges. Meta-analysis of high-throughput expression data using a collection of statistical methodologies leads to the identification of robust tumor gene expression signatures. A resampling-based meta-analysis strategy, which involves the use of resampling and application of distribution statistics in combination to assess the degree of significance in differential expression between sample classes, was developed. Two independent microarray datasets that contain normal breast, invasive ductal carcinoma (IDC), and invasive lobular carcinoma (ILC) samples were used for the meta-analysis. Expression of the genes, selected from the gene list for classification of normal breast samples and breast tumors encompassing both the ILC and IDC subtypes were tested on 10 independent primary IDC samples and matched non-tumor controls by real-time qRT-PCR. Other existing breast cancer microarray datasets were used in support of the resampling-based meta-analysis. The two independent microarray studies were found to be comparable, although differing in their experimental methodologies (Pearson correlation coefficient, R = 0.9389 and R = 0.8465 for ductal and lobular samples, respectively). The resampling-based meta-analysis has led to the identification of a highly stable set of genes for classification of normal breast samples and breast tumors encompassing both the ILC and IDC subtypes. The expression results of the selected genes obtained through real-time qRT-PCR supported the meta-analysis results. The

  8. A resampling-based meta-analysis for detection of differential gene expression in breast cancer

    Directory of Open Access Journals (Sweden)

    Ergul Gulusan

    2008-12-01

    Full Text Available Abstract Background Accuracy in the diagnosis of breast cancer and classification of cancer subtypes has improved over the years with the development of well-established immunohistopathological criteria. More recently, diagnostic gene-sets at the mRNA expression level have been tested as better predictors of disease state. However, breast cancer is heterogeneous in nature; thus extraction of differentially expressed gene-sets that stably distinguish normal tissue from various pathologies poses challenges. Meta-analysis of high-throughput expression data using a collection of statistical methodologies leads to the identification of robust tumor gene expression signatures. Methods A resampling-based meta-analysis strategy, which involves the use of resampling and application of distribution statistics in combination to assess the degree of significance in differential expression between sample classes, was developed. Two independent microarray datasets that contain normal breast, invasive ductal carcinoma (IDC, and invasive lobular carcinoma (ILC samples were used for the meta-analysis. Expression of the genes, selected from the gene list for classification of normal breast samples and breast tumors encompassing both the ILC and IDC subtypes were tested on 10 independent primary IDC samples and matched non-tumor controls by real-time qRT-PCR. Other existing breast cancer microarray datasets were used in support of the resampling-based meta-analysis. Results The two independent microarray studies were found to be comparable, although differing in their experimental methodologies (Pearson correlation coefficient, R = 0.9389 and R = 0.8465 for ductal and lobular samples, respectively. The resampling-based meta-analysis has led to the identification of a highly stable set of genes for classification of normal breast samples and breast tumors encompassing both the ILC and IDC subtypes. The expression results of the selected genes obtained through real

  9. The application of nonsense-mediated mRNA decay inhibition to the identification of breast cancer susceptibility genes

    International Nuclear Information System (INIS)

    Johnson, Julie K; Waddell, Nic; Chenevix-Trench, Georgia

    2012-01-01

    Identification of novel, highly penetrant, breast cancer susceptibility genes will require the application of additional strategies beyond that of traditional linkage and candidate gene approaches. Approximately one-third of inherited genetic diseases, including breast cancer susceptibility, are caused by frameshift or nonsense mutations that truncate the protein product [1]. Transcripts harbouring premature termination codons are selectively and rapidly degraded by the nonsense-mediated mRNA decay (NMD) pathway. Blocking the NMD pathway in any given cell will stabilise these mutant transcripts, which can then be detected using gene expression microarrays. This technique, known as gene identification by nonsense-mediated mRNA decay inhibition (GINI), has proved successful in identifying sporadic nonsense mutations involved in many different cancer types. However, the approach has not yet been applied to identify germline mutations involved in breast cancer. We therefore attempted to use GINI on lymphoblastoid cell lines (LCLs) from multiple-case, non- BRCA1/2 breast cancer families in order to identify additional high-risk breast cancer susceptibility genes. We applied GINI to a total of 24 LCLs, established from breast-cancer affected and unaffected women from three multiple-case non-BRCA1/2 breast cancer families. We then used Illumina gene expression microarrays to identify transcripts stabilised by the NMD inhibition. The expression profiling identified a total of eight candidate genes from these three families. One gene, PPARGC1A, was a candidate in two separate families. We performed semi-quantitative real-time reverse transcriptase PCR of all candidate genes but only PPARGC1A showed successful validation by being stabilised in individuals with breast cancer but not in many unaffected members of the same family. Sanger sequencing of all coding and splice site regions of PPARGC1A did not reveal any protein truncating mutations. Haplotype analysis using short

  10. Annotating gene sets by mining large literature collections with protein networks.

    Science.gov (United States)

    Wang, Sheng; Ma, Jianzhu; Yu, Michael Ku; Zheng, Fan; Huang, Edward W; Han, Jiawei; Peng, Jian; Ideker, Trey

    2018-01-01

    Analysis of patient genomes and transcriptomes routinely recognizes new gene sets associated with human disease. Here we present an integrative natural language processing system which infers common functions for a gene set through automatic mining of the scientific literature with biological networks. This system links genes with associated literature phrases and combines these links with protein interactions in a single heterogeneous network. Multiscale functional annotations are inferred based on network distances between phrases and genes and then visualized as an ontology of biological concepts. To evaluate this system, we predict functions for gene sets representing known pathways and find that our approach achieves substantial improvement over the conventional text-mining baseline method. Moreover, our system discovers novel annotations for gene sets or pathways without previously known functions. Two case studies demonstrate how the system is used in discovery of new cancer-related pathways with ontological annotations.

  11. Common filaggrin gene mutations and risk of cervical cancer

    DEFF Research Database (Denmark)

    Bager, Peter; Wohlfahrt, Jan; Sørensen, Erik

    2015-01-01

    BACKGROUND: As carriers of filaggrin gene (FLG) mutations may have a compromised cervical mucosal barrier against human papillomavirus infection, our primary objective was to study their risk of cervical cancer. METHODS: We genotyped 586 cervical cancer patients for the two most common FLG...... mutations, R501X and 2282del4, using blood from the Copenhagen Hospital Biobank, Denmark. Controls (n = 8050) were genotyped in previous population-based studies. Information on cervical cancer, mortality and emigration were obtained from national registers. Odds ratios (OR) were estimated by logistic...... and stratification by cancer stage. RESULTS: The primary results showed that FLG mutations were not associated with the risk of cervical cancer (6.3% of cases and 7.7% of controls were carriers; OR adjusted 0.81, 95% CI 0.57-1.14; OR adjusted+ weighted 0.96, 95% CI 0.58-1.57). Among cases, FLG mutations increased...

  12. Identifying miRNA and gene modules of colon cancer associated with pathological stage by weighted gene co-expression network analysis

    Directory of Open Access Journals (Sweden)

    Zhou X

    2018-05-01

    Full Text Available Xian-guo Zhou,1,2,* Xiao-liang Huang,1,2,* Si-yuan Liang,1–3 Shao-mei Tang,1,2 Si-kao Wu,1,2 Tong-tong Huang,1,2 Zeng-nan Mo,1,2,4 Qiu-yan Wang1,2,5 1Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China; 2Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China; 3Department of Colorectal Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China; 4Department of Urology and Nephrology, The First Affiliated Hospital of Guangxi, Medical University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China; 5Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China *These authors contributed equally to this work Introduction: Colorectal cancer (CRC is the fourth most common cause of cancer-related mortality worldwide. The tumor, node, metastasis (TNM stage remains the standard for CRC prognostication. Identification of meaningful microRNA (miRNA and gene modules or representative biomarkers related to the pathological stage of colon cancer helps to predict prognosis and reveal the mechanisms behind cancer progression.Materials and methods: We applied a systems biology approach by combining differential expression analysis and weighted gene co-expression network analysis (WGCNA to detect the pathological stage-related miRNA and gene modules and construct a miRNA–gene network. The Cancer Genome Atlas (TCGA colon adenocarcinoma (CAC RNA-sequencing data and miRNA-sequencing data were subjected to WGCNA analysis, and the GSE29623, GSE35602 and GSE39396 were utilized to validate and

  13. Candidate gene analysis using imputed genotypes: cell cycle single-nucleotide polymorphisms and ovarian cancer risk

    DEFF Research Database (Denmark)

    Goode, Ellen L; Fridley, Brooke L; Vierkant, Robert A

    2009-01-01

    Polymorphisms in genes critical to cell cycle control are outstanding candidates for association with ovarian cancer risk; numerous genes have been interrogated by multiple research groups using differing tagging single-nucleotide polymorphism (SNP) sets. To maximize information gleaned from......, and rs3212891; CDK2 rs2069391, rs2069414, and rs17528736; and CCNE1 rs3218036. These results exemplify the utility of imputation in candidate gene studies and lend evidence to a role of cell cycle genes in ovarian cancer etiology, suggest a reduced set of SNPs to target in additional cases and controls....

  14. Advance in plasma SEPT9 gene methylation assay for colorectal cancer early detection.

    Science.gov (United States)

    Wang, Yu; Chen, Pei-Min; Liu, Rong-Bin

    2018-01-15

    This review article summarizes the research advances of the plasma-based SEPT9 gene methylation assay for the clinical detection of colorectal cancer and its limitations. Colorectal cancer is a common malignancy with a poor prognosis and a high mortality, for which early detection and diagnosis are particularly crucial for the high-risk groups. Increasing evidence supported that SEPT9 gene methylation is associated with the pathogenesis of colorectal cancer and that detecting the level of methylation of SEPT9 in the peripheral blood can be used for screening of colorectal cancer in susceptible populations. In recent years, the data obtained in clinical studies demonstrated that the SEPT9 gene methylation assay has a good diagnostic performance with regard to both sensitivity and specificity with the advantage of better acceptability, convenience and compliance with serological testing compared with fecal occult blood tests and carcinoembryonic antigen for colorectal cancer (CRC). Furthermore, the combination of multiple methods or markers has become a growing trend for CRC detection and screening. Nevertheless, the clinical availability of the methylated SEPT9 assay is still limited because of the large degree of sample heterogeneity caused by demographic characteristics, pathological features, comorbidities and/or technique selection. Another factor is the cost-effectiveness of colorectal cancer screening strategies that hinders its large-scale application. In addition, improvements in its accuracy in detecting adenomas and premalignant polyps are required.

  15. CLINICAL SIGNIFICANCE OF 5αα-REDUCTASE AND ANDROGEN RECEPTOR GENE POLYMORPHISMS IN PROSTATE CANCER

    Directory of Open Access Journals (Sweden)

    O. B. Loran

    2014-07-01

    Full Text Available The development of prostate cancer is inseparably linked with the effect of androgens on the fundamental prostatic intracellular processes,such as proliferation, apoptosis, which is realized through a number of second messengers. Major of them are the AR gene encoding androgenreceptors and the SRD5A2 gene encoding 5α-reductase enzyme. This paper deals with the study of the role of these genes in prostate cancer.  

  16. TOP1 gene copy numbers are increased in cancers of the bile duct and pancreas

    DEFF Research Database (Denmark)

    Grunnet, Mie; Calatayud, Dan; Schultz, Nicolai Aa.

    2015-01-01

    ) poison. Top1 protein, TOP1 gene copy number and mRNA expression, respectively, have been proposed as predictive biomarkers of response to irinotecan in other cancers. Here we investigate the occurrence of TOP1 gene aberrations in cancers of the bile ducts and pancreas. Material and methods. TOP1...

  17. [Breast cancer genetics. BRCA1 and BRCA2: the main genes for disease predisposition].

    Science.gov (United States)

    Ruiz-Flores, P; Calderón-Garcidueñas, A L; Barrera-Saldaña, H A

    2001-01-01

    Breast cancer is among the most common world cancers. In Mexico this neoplasm has been progressively increasing since 1990 and is expected to continue. The risk factors for this disease are age, some reproductive factors, ionizing radiation, contraceptives, obesity and high fat diets, among other factors. The main risk factor for BC is a positive family history. Several families, in which clustering but no mendelian inheritance exists, the BC is due probably to mutations in low penetrance genes and/or environmental factors. In families with autosomal dominant trait, the BRCA1 and BRCA2 genes are frequently mutated. These genes are the two main BC susceptibility genes. BRCA1 predispose to BC and ovarian cancer, while BRCA2 mutations predispose to BC in men and women. Both are long genes, tumor suppressors, functioning in a cell cycle dependent manner, and it is believed that both switch on the transcription of several genes, and participate in DNA repair. The mutations profile of these genes is known in developed countries, while in Latin America their search has just began. A multidisciplinary group most be responsible of the clinical management of patients with mutations in BRCA1 and BRCA2, and the risk assignment and Genetic counseling most be done carefully.

  18. Olaparib Approved for Breast Cancers with BRCA Gene Mutations

    Science.gov (United States)

    The Food and Drug Administration has approved olaparib (Lynparza®) to treat metastatic breast cancers that have inherited mutations in the BRCA1 or BRCA2 genes as well as a companion diagnostic test for selecting candidates for the therapy.

  19. Nuclear Imaging for Assessment of Prostate Cancer Gene Therapy

    Science.gov (United States)

    2007-03-01

    thymidine kinase transfected EL4 cells . Further exploration of Tc-99m conjugated potential HSV1-TK substrates is still undergoing in our laboratory...prostate cancer cells , has been demonstrated the utility for tissue-specific toxic gene therapy for prostate cancer[10, 11]. Therefore, an adenovirus...BJ5183 together with pAdeasy-1, the viral DNA plasmid. The pAdeasy-1 is E1 and E3 deleted, its E1 function can be complemented in 293A cells . The

  20. Preferential Allele Expression Analysis Identifies Shared Germline and Somatic Driver Genes in Advanced Ovarian Cancer

    Science.gov (United States)

    Halabi, Najeeb M.; Martinez, Alejandra; Al-Farsi, Halema; Mery, Eliane; Puydenus, Laurence; Pujol, Pascal; Khalak, Hanif G.; McLurcan, Cameron; Ferron, Gwenael; Querleu, Denis; Al-Azwani, Iman; Al-Dous, Eman; Mohamoud, Yasmin A.; Malek, Joel A.; Rafii, Arash

    2016-01-01

    Identifying genes where a variant allele is preferentially expressed in tumors could lead to a better understanding of cancer biology and optimization of targeted therapy. However, tumor sample heterogeneity complicates standard approaches for detecting preferential allele expression. We therefore developed a novel approach combining genome and transcriptome sequencing data from the same sample that corrects for sample heterogeneity and identifies significant preferentially expressed alleles. We applied this analysis to epithelial ovarian cancer samples consisting of matched primary ovary and peritoneum and lymph node metastasis. We find that preferentially expressed variant alleles include germline and somatic variants, are shared at a relatively high frequency between patients, and are in gene networks known to be involved in cancer processes. Analysis at a patient level identifies patient-specific preferentially expressed alleles in genes that are targets for known drugs. Analysis at a site level identifies patterns of site specific preferential allele expression with similar pathways being impacted in the primary and metastasis sites. We conclude that genes with preferentially expressed variant alleles can act as cancer drivers and that targeting those genes could lead to new therapeutic strategies. PMID:26735499