WorldWideScience

Sample records for canberra tokamak

  1. Canberra waste assay systems

    International Nuclear Information System (INIS)

    Canberra Industries, Inc. (USA) offers complete solutions and turnkey systems for qualifying and quantifying drums of radioactive waste. Different Waste Assay Systems are available for low-, medium-, and high activity barrels. Such systems scan the segments of the drums. The gamma-emitting nuclides present in the radioactive waste are identified from the spectra of the gamma-rays emitted and their activities are quantified. The spectrum of each segment of the waste container is analysed separately and the results are summed for total drum inventory reporting. The Waste Assay specific Canberra software is an easy-to-use menu driven program. It offers automatic procedures for routine work but interactive mode is also available to investigate particular cases. The way of analysis and the format and contents of the report can be customized. Additional Quality Control program module monitors system parameters. The measured and calculated values of each waste container are saved into a relational database. Canberra offers mathematical efficiency calibration services for different drum types, with different waste densities and different activities. This new theoretical approach of efficiency calibration eliminates the need of calibration drums, thus saving costs. For field applications Canberra developed a portable In-Situ Object Counting System. This system determines efficiency calibration for any kind of objects after the user enters its size and density, furthermore the type of shielding and the distance between the detector and the object. (author)

  2. Low background germanium detector technology from Canberra

    International Nuclear Information System (INIS)

    Full text: Since Eurisys Mesures and Canberra merged into one company under the wings of Cogema-Areva in February 2001, decades of know-how and experience in building Germanium detectors for low level gamma ray analysis have been brought together. This vast experience means that Canberra can offer a large variety of 'low level detectors' depending on the application. The complexity and cost of these detectors increase with the decreasing detection limits that our customers want to obtain. In this paper we give a short overview of the various categories of 'low level HP Ge detectors' that we produce. We present some examples of detection limits that can be obtained with each of these and we show what measures are taken to come to the next lower limit of detection. The spectroscopist should be aware, however, that the detection limit that can be obtained with a particular source and isotope mix depends in the first place on the choice of the detector element geometry and size, and on the geometry of the cryostat and source. Reference discusses this aspect of the optimum counting conditions. The choice of the shielding and the location of the detector-shield combination (above or below ground level) comes in second place. The precise design and choice of materials for the cryostat -- the subject of this paper -- are generally only the third factor of importance. The simplest low level gamma counting system that we consider in this paper consists of a standard high purity germanium detector in a standard lead shield. The cryostat materials used for these standard detectors are selected mainly for their mechanical properties and cost. Selection of the cryostat materials for their radio-purity comes only in the second place. The contribution of their activities to the background in the spectrum is neglectable since the measuring times are usually limited (typically 1 hour) and the background coming from the room and from the sample is generally higher. Detection limits

  3. Low background Germanium detector technology from Canberra

    International Nuclear Information System (INIS)

    Full text: Since Eurisys Mesures and Canberra merged into one company under the wings of Cogema-Areva in February 2001, decades of know-how and experience in building Germanium detectors for low level gamma ray analysis have been brought together. This vast experience means that Canberra can offer a large variety of 'low level detectors' depending on the application. The complexity and cost of these detectors increase with the decreasing detection limits that our customers want to obtain. In this paper we give a short overview of the various categories of 'low level HP Ge detectors' that we produce. We present some examples of detection limits that can be obtained with each of these and we show what measures are taken to come to the next lower limit of detection. The spectroscopist should be aware, however, that the detection limit that can be obtained with a particular source and isotope mix depends in the first place on the choice of the detector element geometry and size, and on the geometry of the cryostat and source. Reference discusses this aspect of the optimum counting conditions. The choice of the shielding and the location of the detector-shield combination (above or below ground level) comes in second place. The precise design and choice of materials for the cryostat - the subject of this paper - are generally only the third factor of importance. The simplest low level gamma counting system that we consider in this paper consists of a standard high purity germanium detector in a standard lead shield. The cryostat materials used for these standard detectors are selected mainly for their mechanical properties and cost. Selection of the cryostat materials for their radio-purity comes only in second place. The contribution of their activities to the background in the spectrum is negligible since the measuring times are usually limited (typically 1 hour) and the background coming from the room and the sample is generally higher. Detection limits that are

  4. FRIDAY PRAYER AND AN INDONESIAN ISLAMIC IDENTITY IN CANBERRA, AUSTRALIA

    Directory of Open Access Journals (Sweden)

    Syamsul Rijal

    2009-06-01

    Full Text Available This paper analyses the meaning of Friday prayer for Indonesian Muslims students in Canberra, Australia. Due to the nature of obligatory prayer (s}ala>h in Islam, it is hard to identify the symbolic meaning of every movement of prayer for the Muslim participants. However, using Bowen‎‎’‎‎s analysis, this paper emphasizes the social significance of Friday prayer for its participants in a particular place and time. It argues that Friday prayer is viewed by Indonesian Muslim participants as a medium to strengthen their Islamic faith and their membership of the Indonesian Islamic community in Canberra. Being a minority group, facing a prevailing Western culture, they try to maintain their faith and create social cohesion among Indonesian Muslims through their participation in this Islamic ritual.

  5. FRIDAY PRAYER AND AN INDONESIAN ISLAMIC IDENTITY IN CANBERRA, AUSTRALIA

    OpenAIRE

    Syamsul Rijal

    2009-01-01

    This paper analyses the meaning of Friday prayer for Indonesian Muslims students in Canberra, Australia. Due to the nature of obligatory prayer (s}ala>h) in Islam, it is hard to identify the symbolic meaning of every movement of prayer for the Muslim participants. However, using Bowen‎‎’‎‎s analysis, this paper emphasizes the social significance of Friday prayer for its participants in a particular place and time. It argues that Friday prayer is viewed by Indonesian Muslim participants as ...

  6. Report of the Canberra commission. Eliminating nuclear weapons

    International Nuclear Information System (INIS)

    This book was originally published in Australia under the title: 'Report of the Canberra commission on the elimination of nuclear weapons'. The aim of this report in to convince any reader that the elimination of nuclear weapons has become a necessary goal at the end of this century. After a summary of the political conclusions of the commission, a first part presents the debate about nuclear weapons while a second part describes the different steps that must be followed to completely eliminate the nuclear weapons worldwide. Details about verification, legal aspects and actions are given in appendixes. (J.S.)

  7. Pu-238 assay performance with the Canberra IQ3 system

    International Nuclear Information System (INIS)

    Canberra Industries has recently completed a demonstration project at the Westinghouse Savannah River Site (WSRC) to characterize 55-gallon drums containing Pu-238 contaminated waste. The goal of this project was to detect and quantify Pu-238 contaminated waste. The goal of this project was to detect and quantify Pu-238 waste to detection limits of less than 50 nCi/g using gamma assay techniques. This would permit reclassification of these drums from transuranic (TRU) waste to low-level waste (LLW). The instrument used for this assay was a Canberra IQ3 high sensitivity gamma assay system, mounted in a trailer. The results of the measurements demonstrate achievement of detection levels as low as 1 nCi/g for low density waste drums, and good correlation with known concentrations in several test drums. In addition, the data demonstrates significant advantages for using large area low-energy germanium detectors for achieving the lowest possible MDAs for gamma rays in the 80-250 keV range. 1 fig., 2 tabs

  8. Pu-238 assay performance with the Canberra IQ3 system

    Energy Technology Data Exchange (ETDEWEB)

    Booth, L.; Gillespie, B.; Seaman, G.

    1997-11-01

    Canberra Industries has recently completed a demonstration project at the Westinghouse Savannah River Site (WSRC) to characterize 55-gallon drums containing Pu-238 contaminated waste. The goal of this project was to detect and quantify Pu-238 contaminated waste. The goal of this project was to detect and quantify Pu-238 waste to detection limits of less than 50 nCi/g using gamma assay techniques. This would permit reclassification of these drums from transuranic (TRU) waste to low-level waste (LLW). The instrument used for this assay was a Canberra IQ3 high sensitivity gamma assay system, mounted in a trailer. The results of the measurements demonstrate achievement of detection levels as low as 1 nCi/g for low density waste drums, and good correlation with known concentrations in several test drums. In addition, the data demonstrates significant advantages for using large area low-energy germanium detectors for achieving the lowest possible MDAs for gamma rays in the 80-250 keV range. 1 fig., 2 tabs.

  9. Mother Tongue, Mothering, and (Transnational Identity: Indonesian Mothers in Canberra, Australia

    Directory of Open Access Journals (Sweden)

    Ariane Utomo

    2014-12-01

    Full Text Available This article focuses on the cultural-linguistic maintenance rationales, efforts, and experiences of a group of Indonesian mothers residing in Canberra, Australia. The conceptual framework rests on the premise of a bidirectional relationship between migration and mothering, and how this dynamic shapes the identities of both migrant mothers and, potentially, their children. The article’s auto-ethnographic approach centers on my involvement in a small community organization in Canberra that runs Indonesian language and dancing classes, primarily targeting young children of parents with Indonesian background. I argue that, while mothers’ collective efforts in this institutional setting may not be effective enough in achieving a native level of language proficiency among second generation children, the club facilitates the production of shared transnational identities among migrant mothers and the mothers’ collective aspirations for their children’s transnational identities.

  10. Programs for the automatic gamma-ray measurement with CANBERRA 8100/QUANTA system

    International Nuclear Information System (INIS)

    Some programs have been prepared for the automatic operation of the CANBERRA 8100/QUANTA System for the gamma-ray spectrum measurement. The main parts of these programs are: (1) to collect and record on magnetic disks the data of gamma-ray spectra automatically, while the recorded data are analyzed to estimate the nuclides which generate photopeaks of spectra and to calculate those concentrations; (2) to draw plotted diagrams of pulse height distributions of gamma-ray spectra data and other data by the additional digital plotter; and etc. (author)

  11. Verification of HEPA Filter Analysis for the Canberra Q2 Waste Assay System

    Energy Technology Data Exchange (ETDEWEB)

    Casella, V.R.

    2002-12-06

    Data from measurements of a standard 20 inches x 20 inches source positioned on the end and in the middle of a HEPA filter verified that assaying HEPA filters with the Canberra Q2 and using the standard drum calibration with a percent full parameter of 70 percent gives acceptable results for gamma rays above 122 keV. For the gamma-ray energy range of 122 keV to 1400 keV, nuclide concentrations would be somewhat overestimated by from about 35 percent (122 keV) to about 10 percent (1400 keV). Also, Am-241 (60 keV) is conservatively overestimated by about a factor of 2.6 using this configuration.

  12. Varennes Tokamak

    International Nuclear Information System (INIS)

    A consortium of five organizations under the leadership of IREQ, the Institute de Recherche d'Hydro-Quebec has completed a conceptual design study for a tokamak device, and in January 1981 its construction was authorized with funding being provided principally by Hydro-Quebec and the National Research Council, as well as by the Ministre d'Education du Quebec and Natural Sciences and Engineering Research Council of Canada (NSERC). The device will form the focus of Canada's magnetic-fusion program and will be located in IREQ's laboratories in Varennes. Presently the machine layout is being finalized from the physics point of view and work has started on equipment design and specification. The Tokamak de Varennes will be an experimental device, the purpose of which is to study plasma and other fusion related phenomena. In particular it will study: 1. Plasma impurities and plasma/liner interaction; 2. Long pulse or quasi-continuous operation using plasma rampdown and eventually plasma current reversal in order to maintain the plasma; and 3. Advanced diagnostics

  13. Evaluation of a Novel Hybrid Spectroscopic System Developed at Canberra-AREVA

    International Nuclear Information System (INIS)

    Radiometric systems used to screen and prevent illicit trafficking of radiological materials are designed with the goal of being very sensitive and selective. While high sensitivity of such non proliferation technologies enhances the probability of detection, selectivity is also needed to accurately corroborate or refute manifests of legal shipments and to better avoid false alarms caused by innocuous sources. Selectivity is best achieved using high resolution spectroscopy detectors, but such detectors are limited in size and by cost. The efficiency of a spectroscopic measurement system can be improved by adding detectors to the system and combining all the signals. Historically, this has been done using detectors of the same type, all with the same peak response function. Summing measured spectra with matched energy calibrations allows analysis of the final summation spectrum using the common peak response function. The benefit is improved sensitivity at the cost of the additional detectors and additional calculations to match energy calibrations prior to spectral summing. This traditional approach does not support combining different types of detectors with very different peak response functions. Standard summing would require subsequent analysis of the summed spectrum using a complex multi-modal peak response function dependent on the relative efficiency ratio as a function of energy. A novel approach developed at CANBERRA-AREVA has been proposed for combining spectroscopy detectors of any type, producing a hybrid spectrum that can be analyzed with a simple peak response function, accommodating existing analysis methods. This hybrid detection system (Patent pending) would combine detectors of different types into a single spectroscopy system. A hybrid detection system might combine a higher efficiency, lower resolution detector with a lower efficiency, higher resolution detector, achieving both higher efficiency and better energy resolution in a single system. A

  14. Background frequency of Bacillus species at the Canberra Airport: A 12 month study.

    Science.gov (United States)

    Gahan, Michelle E; Thomas, Rory; Rossi, Rebecca; Nelson, Michelle; Roffey, Paul; Richardson, Michelle M; McNevin, Dennis

    2015-12-01

    Anthrax, caused by Bacillus anthracis, is a naturally occurring disease in Australia. Whilst mainly limited to livestock in grazing regions of Victoria and New South Wales, movement of people, stock and vehicles means B. anthracis could be present outside this region. Of particular interest is the "background" prevalence of B. anthracis at transport hubs including airports. The aim of this study was to determine the background frequency of B. anthracis and the commonly used hoax agent Bacillus thuringiensis at the Canberra Airport over a 12 month period. Samples were collected daily for seven days each month from August 2011-July 2012 and analyzed using species specific real-time polymerase chain reaction. Fourteen samples (of a total of 575) were positive for the B. anthracis PL3 genomic marker, 24 for the cya (pXO1) plasmid marker and five for the capB (pXO2) plasmid marker. Whilst five samples were positive for both PL3 and cya, no samples were positive for all three markers hence there is no evidence to suggest the presence of pathogenic B. anthracis strains. B. anthracis targets were detected primarily in February 2012 and B. thuringiensis peaked in October and November 2011 and again in April and May 2012. This study provides a rapid method to screen for, and differentiate, Bacillus species. Armed with this information investigators will be able to discriminate a "threat" from "background" frequencies should the need arise. PMID:26298416

  15. Termoska pro tokamak

    Czech Academy of Sciences Publication Activity Database

    Řípa, Milan

    2014-01-01

    Roč. 7, prosinec (2014), s. 16-17 Institutional support: RVO:61389021 Keywords : fusion * tokamak * cryostat * ITER Subject RIV: BL - Plasma and Gas Discharge Physics http://3pol.cz/1604-termoska-pro-tokamak

  16. Development of a method to transfer counting data from series-88 multi parameter Canberra system to ND-560 computer

    International Nuclear Information System (INIS)

    A method has been developed to transfer counting data from the SERIES-88 multi parameter CANBERRA system to ND-560 computer. The Series-88MP CANBERRA system can be used as single parameter system in Pulse Height Analysis (PHA) mode as well as multi parameter system in List mode simultaneously. The magnetic tape containing the data of Series-88MP CANBERRA system is read in PRIME-450 computer in BINARY format with a density of 800 bpi using MAGNET option. The file is read from the magnetic tape using record size as 2 x 384 in the case of PHA mode and 2 x 2048 in the case of List mode. A computer program was developed in PRIME-450 computer to convert the data from BINARY format to digital format. This digital output is transfered to ND-560 computer after storing on a magnetic tape in the EBCDIC format. Suitable computer programs were developed in ND-560 computer to convert this digital data of PHA mode and List mode to actual output. (author)

  17. A Statistical Analysis of the Performance of First Year Engineering Students at UNSW Canberra and the Impact of the State where They Undertook Year 12 Study

    CERN Document Server

    Arnold, John F

    2015-01-01

    UNSW Canberra at the Australian Defence Force Academy is a unique institution in Australia as it attracts its undergraduate students from all Australian states and territories more or less in accord with the distribution of the Australian population. Each course at UNSW Canberra is then made up of a cohort of students who have undertaken secondary education in the different states and territories but who, at university, are undertaking the same course with the same assessment as one another. This allows some comparison to be made as to how the various state and territory secondary education systems have prepared them for their tertiary study at UNSW Canberra. In this paper we conduct a preliminary analysis of the performance of UNSW Canberra engineering students in the first year, first semester courses Engineering Mathematics 1A and Engineering Physics 1A. The results obtained thus far demonstrate that while there is little difference in performance between students from most states and territories, performa...

  18. PPPL tokamak program

    International Nuclear Information System (INIS)

    The economic prospects of the tokamak are reviewed briefly and found to be favorable - if the size of ignited tokamak plasmas can be kept small and appropriate auxiliary systems can be developed. The main objectives of the Princeton Plasma Physics Laboratory tokamak program are: (1) exploration of the physics of high-temperature toroidal confinement, in TFTR; (2) maximization of the tokamak beta value, in PBX; (3) development of reactor-relevant rf techniques, in PLT

  19. A Statistical Analysis of the Performance of First Year Engineering Students at UNSW Canberra and the Impact of the State where They Undertook Year 12 Study

    OpenAIRE

    Arnold, John F.; Sidhu, Leesa A.

    2015-01-01

    UNSW Canberra at the Australian Defence Force Academy is a unique institution in Australia as it attracts its undergraduate students from all Australian states and territories more or less in accord with the distribution of the Australian population. Each course at UNSW Canberra is then made up of a cohort of students who have undertaken secondary education in the different states and territories but who, at university, are undertaking the same course with the same assessment as one another. ...

  20. Status of tokamak research

    International Nuclear Information System (INIS)

    An overall review of the tokamak program is given with particular emphasis upon developments over the past five years in the theoretical and experimental elements of the program. A summary of the key operating parameters for the principal tokamaks throughout the world is given. Also discussed are key issues in plasma confinement, plasma heating, and tokamak design

  1. Geochemical and microbiological fingerprinting of airborne dust that fell in Canberra, Australia, in October 2002

    Science.gov (United States)

    de Deckker, Patrick; Abed, Raeid M. M.; de Beer, Dirk; Hinrichs, Kai-Uwe; O'Loingsigh, Tadhg; Schefuß, Enno; Stuut, Jan-Berend W.; Tapper, Nigel J.; van der Kaars, Sander

    2008-12-01

    During the night of 22-23 October 2002, a large amount of airborne dust fell with rain over Canberra, located some 200 km from Australia's east coast, and at an average altitude of 650 m. It is estimated that during that night about 6 g m-2 of aeolian dust fell. We have conducted a vast number of analyses to "fingerprint" some of the dust and used the following techniques: grain size analysis; scanning electron microscope imagery; major, trace, and rare earth elemental, plus Sr and Nd isotopic analyses; organic compound analyses with respective compound-specific isotope analyses; pollen extraction to identify the vegetation sources; and molecular cloning of 16S rRNA genes in order to identify dust bacterial composition. DNA analyses show that most obtained 16S rRNA sequences belong mainly to three groups: Proteobacteria (25%), Bacteriodetes (23%), and gram-positive bacteria (23%). In addition, we investigated the meteorological conditions that led to the dust mobilization and transport using model and satellite data. Grain sizes of the mineral dust show a bimodal distribution typical of proximal dust, rather than what is found over oceans, and the bimodal aspect of size distribution confirms wet deposition by rain droplets. The inorganic geochemistry points to a source along/near the Darling River in NW New South Wales, a region that is characteristically semiarid, and both the organic chemistry and palynoflora of the dust confirm the location of this source area. Meteorological reconstructions of the event again clearly identify the area near Bourke-Cobar as being the source of the dust. This study paves the way for determining the export of Australian airborne dust both in the oceans and other continents.

  2. Tokamak Systems Code

    International Nuclear Information System (INIS)

    The FEDC Tokamak Systems Code calculates tokamak performance, cost, and configuration as a function of plasma engineering parameters. This version of the code models experimental tokamaks. It does not currently consider tokamak configurations that generate electrical power or incorporate breeding blankets. The code has a modular (or subroutine) structure to allow independent modeling for each major tokamak component or system. A primary benefit of modularization is that a component module may be updated without disturbing the remainder of the systems code as long as the imput to or output from the module remains unchanged

  3. Tokamak engineering mechanics

    International Nuclear Information System (INIS)

    Provides a systematic introduction to tokamaks in engineering mechanics. Includes design guides based on full mechanical analysis, which makes it possible to accurately predict load capacity and temperature increases. Presents comprehensive information on important design factors involving materials. Covers the latest advances in and up-to-date references on tokamak devices. Numerous examples reinforce the understanding of concepts and provide procedures for design. Tokamak Engineering Mechanics offers concise and thorough coverage of engineering mechanics theory and application for tokamaks, and the material is reinforced by numerous examples. Chapter topics include general principles, static mechanics, dynamic mechanics, thermal fluid mechanics and multiphysics structural mechanics of tokamak structure analysis. The theoretical principle of the design and the methods of the analysis for various components and load conditions are presented, while the latest engineering technologies are also introduced. The book will provide readers involved in the study of mechanical/fusion engineering with a general understanding of tokamak engineering mechanics.

  4. Tokamak engineering mechanics

    CERN Document Server

    Song, Yuntao; Du, Shijun

    2013-01-01

    Tokamak Engineering Mechanics offers concise and thorough coverage of engineering mechanics theory and application for tokamaks, and the material is reinforced by numerous examples. Chapter topics include general principles, static mechanics, dynamic mechanics, thermal fluid mechanics and multiphysics structural mechanics of tokamak structure analysis. The theoretical principle of the design and the methods of the analysis for various components and load conditions are presented, while the latest engineering technologies are also introduced. The book will provide readers involved in the study

  5. Tokamak concept innovations

    International Nuclear Information System (INIS)

    This document contains the results of the IAEA Specialists' Meeting on Tokamak Concept Innovations held 13-17 January 1986 in Vienna. Although it is the most advanced fusion reactor concept the tokamak is not without its problems. Most of these problems should be solved within the ongoing R and D studies for the next generation of tokamaks. Emphasis for this meeting was placed on innovations that would lead to substantial improvements in a tokamak reactor, even if they involved a radical departure from present thinking

  6. Tokamak ARC damage

    International Nuclear Information System (INIS)

    Tokamak fusion reactors will have large plasma currents of approximately 10 MA with hundreds of megajoules stored in the magnetic fields. When a major plasma instability occurs, the disruption of the plasma current induces voltage in the adjacent conducting structures, giving rise to large transient currents. The induced voltages may be sufficiently high to cause arcing across sector gaps or from one protruding component to another. This report reviews a tokamak arcing scenario and provides guidelines for designing tokamaks to minimize the possibility of arc damage

  7. International tokamak reactor

    International Nuclear Information System (INIS)

    Since 1978, the US, the European Communities, Japan, and the Soviet Union have collaborated on the definition, conceptual design, data base assessment, and analysis of critical technical issues for a tokamak engineering test reactor, called the International Tokamak Reactor (INTOR). During 1985-1986, this activity has been expanded in scope to include evaluation of concept innovations that could significantly improve the tokamak as a commercial reactor. The purposes of this paper are to summarize the present INTOR design concept and to summarize the work on concept innovations

  8. Survey of Tokamak experiments

    International Nuclear Information System (INIS)

    The survey covers the following topics:- Introduction and history of tokamak research; review of tokamak apparatus, existing and planned; remarks on measurement techniques and their limitations; main results in terms of electron and ion temperatures, plasma density, containment times, etc. Empirical scaling; range of operating densities; impurities, origin, behaviour and control (including divertors); data on fluctuations and instabilities in tokamak plasmas; data on disruptive instabilities; experiments on shaped cross-sections; present experimental evidence on β limits; auxiliary heating; experimental and theoretical problems for the future. (author)

  9. The Thor tokamak experiment

    International Nuclear Information System (INIS)

    The main characteristics of the plasma produced in Thor tokamak discharges are described. The machine performances are outlined and the experimental results relevant to the equilibrium, the stability and the control of the discharge regimes are discussed in detail. (author)

  10. Modular tokamak magnetic system

    Science.gov (United States)

    Yang, Tien-Fang

    1988-01-01

    A modular tokamak system comprised of a plurality of interlocking moldules. Each module is comprised of a vacuum vessel section, a toroidal field coil, moldular saddle coils which generate a poloidal magnetic field and ohmic heating coils.

  11. Research using small tokamaks

    International Nuclear Information System (INIS)

    These proceedings of the IAEA-sponsored meeting held in Nice, France 10-11 October, 1988, contain the manuscripts of the 21 reports dealing with research using small tokamaks. The purpose of this meeting was to highlight some of the achievements of small tokamaks and alternative magnetic confinement concepts and assess the suitability of starting new programs, particularly in developing countries. Papers presented were either review papers, or were detailed descriptions of particular experiments or concepts. Refs, figs and tabs

  12. Tokamak simulation code manual

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Moon Kyoo; Oh, Byung Hoon; Hong, Bong Keun; Lee, Kwang Won [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-01-01

    The method to use TSC (Tokamak Simulation Code) developed by Princeton plasma physics laboratory is illustrated. In KT-2 tokamak, time dependent simulation of axisymmetric toroidal plasma and vertical stability have to be taken into account in design phase using TSC. In this report physical modelling of TSC are described and examples of application in JAERI and SERI are illustrated, which will be useful when TSC is installed KAERI computer system. (Author) 15 refs., 6 figs., 3 tabs.

  13. Tokamak simulation code manual

    International Nuclear Information System (INIS)

    The method to use TSC (Tokamak Simulation Code) developed by Princeton plasma physics laboratory is illustrated. In KT-2 tokamak, time dependent simulation of axisymmetric toroidal plasma and vertical stability have to be taken into account in design phase using TSC. In this report physical modelling of TSC are described and examples of application in JAERI and SERI are illustrated, which will be useful when TSC is installed KAERI computer system. (Author) 15 refs., 6 figs., 3 tabs

  14. Joint research using small tokamaks

    International Nuclear Information System (INIS)

    Small tokamaks have an important role in fusion research. More than 40 small tokamaks are operational. Research on small tokamaks has created a scientific basis for the scaling-up to larger tokamaks. Well-known scientific and engineering schools, which are now determining the main directions of fusion science and technology, have been established through research on small tokamaks. Combined efforts within a network of small and medium size tokamaks will further enhance the contribution of small tokamaks. A new concept of interactive coordinated research using small tokamaks in the mainstream fusion science areas, in testing of new diagnostics, materials and technologies as well as in education, training and broadening of the geography of fusion research in the scope of the IAEA Coordinated Research Project, is presented

  15. Joint research using small tokamaks

    International Nuclear Information System (INIS)

    Small tokamaks have an important role in fusion research. More than 40 small tokamaks are operational. Research on small tokamaks has created a scientific basis for the scaling-up to larger tokamaks. Well-known scientific and engineering schools, which are now determining the main directions of fusion science and technology, have been established through research on small tokamaks. Combined efforts within a network of small and medium size tokamaks will further enhance the contribution of small tokamaks. A new concept of interactive co-ordinated research using small tokamaks in the mainstream fusion science areas, in testing of new diagnostics, materials and technologies as well as in education, training and broadening of the geography of fusion research in the scope of the IAEA Co-ordinated Research Project is presented. (author)

  16. Texas Experimental Tokamak

    International Nuclear Information System (INIS)

    This progress report covers the period from November 1, 1990 to April 30, 1993. During that period, TEXT was operated as a circular tokamak with a material limiter. It was devoted to the study of basic plasma physics, in particular to study of fluctuations, turbulence, and transport. The purpose is to operate and maintain TEXT Upgrade as a complete facility for applied tokamak physics, specifically to conduct a research program under the following main headings: (1) to elucidate the mechanisms of working gas, impurity, and thermal transport in tokamaks, in particular to understand the role of turbulence; (2) to study physics of the edge plasma, in particular the turbulence; (3) to study the physics or resonant magnetic fields (ergodic magnetic divertors, intra island pumping); and (4) to study the physics of electron cyclotron heating (ECRH). Results of studies in each of these areas are reported

  17. Microwave Tokamak Experiment

    International Nuclear Information System (INIS)

    The Microwave Tokamak Experiment, now under construction at the Laboratory, will use microwave heating from a free-electron laser. The intense microwave pulses will be injected into the tokamak to realize several goals, including a demonstration of the effects of localized heat deposition within magnetically confined plasma, a better understanding of energy confinement in tokamaks, and use of the new free-electron laser technology for plasma heating. The experiment, soon to be operational, provides an opportunity to study dense plasmas heated by powers unprecedented in the electron-cyclotron frequency range required by the especially high magnetic fields used with the MTX and needed for reactors. 1 references, 5 figures, 3 tables

  18. The development of the Canberra symptom scorecard: a tool to monitor the physical symptoms of patients with advanced tumours

    International Nuclear Information System (INIS)

    Patients with advanced (incurable) tumours usually experience a diverse burden of symptoms. Although many symptom assessment instruments are available, we examined whether these addressed tumour-related symptoms. We reviewed existing symptom assessment instruments and found a number of deficiencies such as instruments being too long or burdensome, too short, or measuring quality of life rather than tumour-related symptoms. Others focused on emotional, rather than physical symptoms. Therefore, we decided to devise a new symptom instrument. A list of 20 symptoms common in patients with advanced tumours generated from the literature and existing instruments, was ranked according to prevalence by 202 Australian clinicians. Following clinicians' responses, the list was revised and two severity assessment scales (functional severity and distress severity) added. The resultant 18-item list was assessed in 44 outpatients with advanced tumours. Patient responses indicated that a shorter questionnaire of 11 items, reflecting three main symptom clusters, provided a good representation of physical symptoms. An additional symptom that is an important predictor of survival was added, making a 12-item questionnaire, which was entitled 'The Canberra Symptom Scorecard' (CSS). For symptom severity, the distress severity scale was more appropriate than the functional severity scale. The CSS focuses on tumour-related physical symptoms. It is about to be assessed in patients with advanced tumours receiving palliative treatments, when it will also be validated against existing instruments

  19. The development of the Canberra symptom scorecard: a tool to monitor the physical symptoms of patients with advanced tumours

    Directory of Open Access Journals (Sweden)

    Shadbolt Bruce

    2003-12-01

    Full Text Available Abstract Background Patients with advanced (incurable tumours usually experience a diverse burden of symptoms. Although many symptom assessment instruments are available, we examined whether these addressed tumour-related symptoms. Methods We reviewed existing symptom assessment instruments and found a number of deficiencies such as instruments being too long or burdensome, too short, or measuring quality of life rather than tumour-related symptoms. Others focused on emotional, rather than physical symptoms. Therefore, we decided to devise a new symptom instrument. A list of 20 symptoms common in patients with advanced tumours generated from the literature and existing instruments, was ranked according to prevalence by 202 Australian clinicians. Following clinicians' responses, the list was revised and two severity assessment scales (functional severity and distress severity added. The resultant 18-item list was assessed in 44 outpatients with advanced tumours. Results Patient responses indicated that a shorter questionnaire of 11 items, reflecting three main symptom clusters, provided a good representation of physical symptoms. An additional symptom that is an important predictor of survival was added, making a 12-item questionnaire, which was entitled "The Canberra Symptom Scorecard" (CSS. For symptom severity, the distress severity scale was more appropriate than the functional severity scale. Conclusion The CSS focuses on tumour-related physical symptoms. It is about to be assessed in patients with advanced tumours receiving palliative treatments, when it will also be validated against existing instruments.

  20. Research using small tokamaks

    International Nuclear Information System (INIS)

    The technical reports contained in this collection of papers on research using small tokamaks fall into four main categories, i.e., (i) experimental work (heating, stability, plasma radial profiles, fluctuations and transport, confinement, ultra-low-q tokamaks, wall physics, a.o.), (ii) diagnostics (beam probes, laser scattering, X-ray tomography, laser interferometry, electron-cyclotron absorption and emission systems), (iii) theory (strong turbulence, effects of heating on stability, plasma beta limits, wave absorption, macrostability, low-q tokamak configurations and bootstrap currents, turbulent heating, stability of vortex flows, nonlinear islands growth, plasma-drift-induced anomalous transport, ergodic divertor design, a.o.), and (iv) new technical facilities (varistors applied to establish constant current and loop voltage in HT-6M), lower-hybrid-current-drive systems for HT-6B and HT-6M, radio-frequency systems for HT-6M ICR heating experimentation, and applications of fiber optics for visible and vacuum ultraviolet radiation detection as applied to tokamaks and reversed-field pinches. A total number of 51 papers are included in the collection. Refs, figs and tabs

  1. Reconnection in tokamaks

    International Nuclear Information System (INIS)

    Calculations with several different computer codes based on the resistive MHD equations have shown that (m = 1, n = 1) tearing modes in tokamak plasmas grow by magnetic reconnection. The observable behavior predicted by the codes has been confirmed in detail from the waveforms of signals from x-ray detectors and recently by x-ray tomographic imaging

  2. Advanced tokamak concepts

    NARCIS (Netherlands)

    Oomens, A. A. M.

    1996-01-01

    From a discussion of fusion reactor designs based on today's well-established experience gained in the operation of large tokamaks, it is concluded that such reactors are economically not attractive. The physics involved in the various options for concept improvement is described and the main e

  3. Advanced tokamak concepts

    NARCIS (Netherlands)

    Oomens, A. A. M.

    1998-01-01

    From a discussion of fusion reactor designs based on today's well-established experience gained in the operation of large tokamaks, it is concluded that such reactors are economically not attractive. The physics involved in the various options for concept improvement is described and the main e

  4. Research using small tokamaks

    International Nuclear Information System (INIS)

    This document consists of a collection of papers presented at the IAEA Technical Committee Meeting on Research Using Small Tokamaks. It contains 22 papers on a wide variety of research aspects, including diagnostics, design, transport, equilibrium, stability, and confinement. Some of these papers are devoted to other concepts (stellarators, compact tori). Refs, figs and tabs

  5. Sawtooth phenomena in tokamaks

    International Nuclear Information System (INIS)

    A review of experimental and theoretical investigaions of sawtooth phenomena in tokamaks is presented. Different types of sawtooth oscillations, scaling laws and methods of interanl disruption stabilization are described. Theoretical models of the sawtooth instability are discussed. 122 refs.; 4 tabs

  6. IFS Numerical Laboratory Tokamak

    International Nuclear Information System (INIS)

    A numerical laboratory of a tokamak plasma is being developed. This consists of the backbone (the overall manager in terms of the MPPL programming language), and the modularized components that can be plugged in or out for a particular run and their hierarchical arrangement. The components include various metrics for overall geometry various dynamics, field calculations, and diagnoses. 2 refs

  7. Tokamaks (Second Edition)

    International Nuclear Information System (INIS)

    The first edition of John Wesson's book on tokamaks, published in 1987, established itself as essential reading for researchers in the field of magnetic confinement fusion: it was an excellent introduction for students to tokamak physics and also a valuable reference work for the more experienced. The second edition, published in 1997, has been completely rewritten and substantially enlarged (680 pages compared with 300). The new edition maintains the aim of providing a simple introduction to basic tokamak physics, but also includes discussion of the substantial advances in fusion research during the past decade. The new book, like its predecessor, is well written and commendable for its clarity and accuracy. In fact many of the chapters are written by a series of co-authors bringing the benefits of a wide range of expertise but, by careful editing, Wesson has maintained a uniformity of style and presentation. The chapter headings and coverage for the most part remain the same - but are expanded considerably and brought up to date. The most substantial change is that the single concluding chapter in the first edition on 'Experiments' has been replaced by three chapters: 'Tokamak experiments' which deals with some of the earlier key experiments plus a selection of recent small and medium-sized devices, 'Large experiments' which gives an excellent summary of the main results from the four large tokamaks - TFTR, JET, JT60/JT60U and DIII-D, and 'The future' which gives a very short (possibly too short in my opinion) account of reactors and ITER. This is an excellent book, which I strongly recommend should have a place - on the desk rather than in the bookshelf - of researchers in magnetic confinement fusion. (book review)

  8. Transport in gyrokinetic tokamaks

    International Nuclear Information System (INIS)

    A comprehensive study of transport in full-volume gyrokinetic (gk) simulations of ion temperature gradient driven turbulence in core tokamak plasmas is presented. Though this ''gyrokinetic tokamak'' is much simpler than experimental tokamaks, such simplicity is an asset, because a dependable nonlinear transport theory for such systems should be more attainable. Toward this end, we pursue two related lines of inquiry. (1) We study the scalings of gk tokamaks with respect to important system parameters. In contrast to real machines, the scalings of larger gk systems (a/ρs approx-gt 64) with minor radius, with current, and with a/ρs are roughly consistent with the approximate theoretical expectations for electrostatic turbulent transport which exist as yet. Smaller systems manifest quite different scalings, which aids in interpreting differing mass-scaling results in other work. (2) With the goal of developing a first-principles theory of gk transport, we use the gk data to infer the underlying transport physics. The data indicate that, of the many modes k present in the simulation, only a modest number (Nk ∼ 10) of k dominate the transport, and for each, only a handful (Np ∼ 5) of couplings to other modes p appear to be significant, implying that the essential transport physics may be described by a far simpler system than would have been expected on the basis of earlier nonlinear theory alone. Part of this analysis is the inference of the coupling coefficients Mkpq governing the nonlinear mode interactions, whose measurement from tokamak simulation data is presented here for the first time

  9. Large Aspect Ratio Tokamak Study

    International Nuclear Information System (INIS)

    The Large Aspect Ratio Tokamak Study (LARTS) at Oak Ridge National Laboratory (ORNL) investigated the potential for producing a viable longburn tokamak reactor by enhancing the volt-second capability of the ohmic heating transformer through the use of high aspect ratio designs. The plasma physics, engineering, and economic implications of high aspect ratio tokamaks were assessed in the context of extended burn operation. Using a one-dimensional transport code plasma startup and burn parameters were addressed. The pulsed electrical power requirements for the poloidal field system, which have a major impact on reactor economics, were minimized by optimizing the startup and shutdown portions of the tokamak cycle. A representative large aspect ratio tokamak with an aspect ratio of 8 was found to achieve a burn time of 3.5 h at capital cost only approx. 25% greater than that of a moderate aspect ratio design tokamak

  10. Next tokamak facility

    International Nuclear Information System (INIS)

    Design studies on a superconducting, long-pulse, current-driven, ignited tokamak, called the Toroidal Fusion Core Demonstration (TFCD), are being conducted by the Fusion Engineering Design Center (FEDC) and Princeton Plasma Physics Laboratory (PPPL) with additional broad community involvement. Options include the use of all-superconducting toroidal field (TF) coils, a superconducting-copper hybrid arrangement of TF coils, or all-copper TF coils. Only the first two options have been considered to date. The general feasibility of these approaches has been established with the goal of high performance (ignition, approx. 390 MW; wall loading approx. 2.2 MW/m2) at minimum capital cost. The preconceptual effort will be completed in early FY 1984 and a selection made from the indicated options. The TFCD is judged to represent a reasonable necessary step between the Tokamak Fusion Test Reactor (TFTR) and the Engineering Test Reactor

  11. Tokamak fusion reactor exhaust

    International Nuclear Information System (INIS)

    This report presents a compilation of papers dealing with reactor exhaust which were produced as part of the TIGER Tokamak Installation for Generating Electricity study at Culham. The papers are entitled: (1) Exhaust impurity control and refuelling. (2) Consideration of the physical problems of a self-consistent exhaust and divertor system for a long burn Tokamak. (3) Possible bundle divertors for INTOR and TIGER. (4) Consideration of various magnetic divertor configurations for INTOR and TIGER. (5) A appraisal of divertor experiments. (6) Hybrid divertors on INTOR. (7) Refuelling and the scrape-off layer of INTOR. (8) Simple modelling of the scrape-off layer. (9) Power flow in the scrape-off layer. (10) A model of particle transport within the scrape-off plasma and divertor. (11) Controlled recirculation of exhaust gas from the divertor into the scrape-off plasma. (U.K.)

  12. Tritium catalyzed deuterium tokamaks

    International Nuclear Information System (INIS)

    A preliminary assessment of the promise of the Tritium Catalyzed Deuterium (TCD) tokamak power reactors relative to that of deuterium-tritium (D-T) and catalyzed deuterium (Cat-D) tokamaks is undertaken. The TCD mode of operation is arrived at by converting the 3He from the D(D,n)3He reaction into tritium, by neutron capture in the blanket; the tritium thus produced is fed into the plasma. There are three main parts to the assessment: blanket study, reactor design and economic analysis and an assessment of the prospects for improvements in the performance of TCD reactors (and in the promise of the TCD mode of operation, in general)

  13. Tokamak pump limiters

    International Nuclear Information System (INIS)

    Recent experiments with a scoop limiter without active internal pumping have been carried out in the PDX tokamak with up to 6MW of auxiliary neutral beam heating. Experiments have also been done with a rotating head pump limiter in the PLT tokamak in conjunction with RF plasma heating. Extensive experiments have been done in the ISX-B tokamak and first experiments have been completed with the ALT-I limiter in TEXTOR. The pump limiter modules in these latter two machines have internal getter pumping. Experiments in ISX-B are with ohmic and auxiliary neutral beam heating. The results in ISX-B and TEXTOR show that active density control and particle removal is achieved with pump limiters. In ISX-B, the boundary layer (or scape-off layer) plasma partially screens the core plasma from gas injection. In both ISX-B and TEXTOR, the pressure internal to the module scales linearly with plasma density but in ISX-B, with neutral beam injection, a nonlinear increase is observed at the highest densities studied. Plasma plugging is the suspected cause. Results from PDX suggest that a region may exist in which core plasma energy confinement improves using a pump limiter during neutral beam injection. Asymmetric radial profiles and an increased edge electron temperature are observed in discharges with improved confinement. The injection of small amounts of neon into ISX-B has more clearly shown an improved electron core energy confinement during neutral beam injection. While carried out with a regular limiter, this Z-mode of operation is ideal for use with pump limiters and should be a way to achieve energy confinement times similar to values for H-mode tokamak plasmas. The implication of all these results for the design of a reactor pump limiter is described

  14. [High beta tokamak research

    International Nuclear Information System (INIS)

    Our activities on High Beta Tokamak Research during the past 20 months of the present grant period can be divided into six areas: reconstruction and modeling of high beta equilibria in HBT; measurement and analysis of MHD instabilities observed in HBT; measurements of impurity transport; diagnostic development on HBT; numerical parameterization of the second stability regime; and conceptual design and assembly of HBT-EP. Each of these is described in some detail in the sections of this progress report

  15. Magnetic confinement experiment -- 1: Tokamaks

    International Nuclear Information System (INIS)

    This report reviews presentations made at the 15th IAEA Conference on Plasma Physics and Controlled Nuclear Fusion on experimental tokamak physics, particularly on advances in core plasma physics, divertor and edge physics, heating and current drive, and tokamak concept optimization

  16. Polarization spectroscopy of tokamak plasmas

    International Nuclear Information System (INIS)

    Measurements of polarization of spectral lines emitted by tokamak plasmas provide information about the plasma internal magnetic field and the current density profile. The methods of polarization spectroscopy, as applied to the tokamak diagnostic, are reviewed with emphasis on the polarimetry of motional Stark effect in hydrogenic neutral beam emissions. 25 refs., 7 figs

  17. The tokamak as a neutron source

    International Nuclear Information System (INIS)

    This paper describes the tokamak in its role as a neutron source, with emphasis on experimental results for D-D neutron production. The sections summarize tokamak operation, sources of fusion and non-fusion neutrons, principal neutron detection methods and their calibration, neutron energy spectra and fluxes outside the tokamak plasma chamber, history of neutron production in tokamaks, neutron emission and fusion power gain from JET and TFTR (the largest present-day tokamaks), and D-T neutron production from burnup of D-D tritons. This paper also discusses the prospects for future tokamak neutron production and potential applications of tokamak neutron sources. 100 refs., 16 figs., 4 tabs

  18. Tore Supra tokamak

    International Nuclear Information System (INIS)

    This part of the electricity uses chapter of the Engineers Techniques collection is entirely devoted to the technical description of Tore Supra tokamak. A thermonuclear fusion device with magnetic confinement control such as Tore Supra concentrates a huge amount of high power electro-technical and electronic equipments. These power systems play a major role and are sometimes boosted to their extreme limits. From these equipments we can find: big superconducting magnets, big cooled copper magnets, high-voltage power supplies with thyristors (320 MVA installed), several MW hyper-frequency sources, several MW accelerated atom injectors, cryogenic, heat extraction, high-vacuum pumping systems, etc.. The components developed for these applications are numerous and frequently original: superconductor for variable magnetic field, DC static circuit breaker with high switch-off capability (0.7 GVA), 2 MW tetrodes, 500 kW klystrons, 500 kW gyrotrons, very low temperature (3 deg. K) electromechanical pumps, etc.. Tore Supra is a good example of the various applications of electricity and a testimony of the constant progress of the techniques mastered by electricians. This chapter is divided in 5 parts. Part 1 gives some general informations about thermonuclear fusion research, tokamak principles and electrotechnical systems of fusion research devices. Part 2 describes the Tore Supra tokamak, its aims and specificities, its internal components, the poloidal field system and the plasma heating systems. Part 3 concerns the power pulse sources: distribution network, poloidal field power supply, plasma heating systems, and ergodic divertor power supply. Part 4 describes the permanent electric power supplies for the auxiliary systems: toroidal field, cryogenic installation, cooling-drying loops. The last chapter briefly summarizes the perspectives of nuclear fusion research. (J.S.)

  19. Tokamak burn control

    International Nuclear Information System (INIS)

    Research of the fusion plasma thermal instability and its control is reviewed. General models of the thermonuclear plasma are developed. Techniques of stability analysis commonly employed in burn control research are discussed. Methods for controlling the plasma against the thermal instability are reviewed. Emphasis is placed on applications to tokamak confinement concepts. Additional research which extends the results of previous research is suggested. Issues specific to the development of control strategies for mid-term engineering test reactors are identified and addressed. 100 refs., 24 figs., 10 tabs

  20. Maximum entropy tokamak configurations

    International Nuclear Information System (INIS)

    The new entropy concept for the collective magnetic equilibria is applied to the description of the states of a tokamak subject to ohmic and auxiliary heating. The condition for the existence of steady state plasma states with vanishing entropy production implies, on one hand, the resilience of specific current density profiles and, on the other, severe restrictions on the scaling of the confinement time with power and current. These restrictions are consistent with Goldston scaling and with the existence of a heat pinch. (author)

  1. Understanding disruptions in tokamaks

    International Nuclear Information System (INIS)

    This paper describes progress achieved since 2007 in understanding disruptions in tokamaks, when the effect of plasma current sharing with the wall was introduced into theory. As a result, the toroidal asymmetry of the plasma current measurements during vertical disruption event (VDE) on the Joint European Torus was explained. A new kind of plasma equilibria and mode coupling was introduced into theory, which can explain the duration of the external kink 1/1 mode during VDE. The paper presents first results of numerical simulations using a free boundary plasma model, relevant to disruptions.

  2. Tokamak instrumentation and controls

    Energy Technology Data Exchange (ETDEWEB)

    Becraft, W. R.; Bettis, E. S.; Houlberg, W. A.; Onega, R. J.; Stone, R. S.

    1979-02-01

    The three areas of study emphasis to date are: (1) Physics implications for controls, (2) Computer simulation, and (3) Shutdown/aborts. This document reports on the FY 78 efforts (the first year of these studies) to address these problems. Transient scenario options for the startup of a tokamak are developed, and the implications for the control system are discussed. This document also presents a hybrid computer simulation (analog and digital) of the Impurity Study Experiment (ISX-B) which is now being used for corroborative controls investigations. The simulation will be expanded to represent a TNS/ETF machine.

  3. Demonstration tokamak power plant

    Energy Technology Data Exchange (ETDEWEB)

    Abdou, M.; Baker, C.; Brooks, J.; Ehst, D.; Mattas, R.; Smith, D.L.; DeFreece, D.; Morgan, G.D.; Trachsel, C.

    1983-01-01

    A conceptual design for a tokamak demonstration power plant (DEMO) was developed. A large part of the study focused on examining the key issues and identifying the R and D needs for: (1) current drive for steady-state operation, (2) impurity control and exhaust, (3) tritium breeding blanket, and (4) reactor configuration and maintenance. Impurity control and exhaust will not be covered in this paper but is discussed in another paper in these proceedings, entitled Key Issues of FED/INTOR Impurity Control System.

  4. ITER tokamak device

    Science.gov (United States)

    Doggett, J.; Salpietro, E.; Shatalov, G.

    1991-07-01

    The results of the Conceptual Design Activities for the International Thermonuclear Experimental Reactor (ITER) are summarized. These activities, carried out between April 1988 and December 1990, produced a consistent set of technical characteristics and preliminary plans for co-ordinated research and development support of ITER, a conceptual design, a description of design requirements and a preliminary construction schedule and cost estimate. After a description of the design basis, an overview is given of the tokamak device, its auxiliary systems, facility and maintenance. The interrelation and integration of the various subsystems that form the ITER tokamak concept are discussed. The 16 ITER equatorial port allocations, used for nuclear testing, diagnostics, fueling, maintenance, and heating and current drive, are given, as well as a layout of the reactor building. Finally, brief descriptions are given of the major ITER sub-systems, i.e., (1) magnet systems (toroidal and poloidal field coils and cryogenic systems), (2) containment structures (vacuum and cryostat vessels, machine gravity supports, attaching locks, passive loops and active coils), (3) first wall, (4) divertor plate (design and materials, performance and lifetime, a.o.), (5) blanket/shield system, (6) maintenance equipment, (7) current drive and heating, (8) fuel cycle system, and (9) diagnostics.

  5. Axisymmetric control in tokamaks

    International Nuclear Information System (INIS)

    Vertically elongated tokamak plasmas are intrinsically susceptible to vertical axisymmetric instabilities as a result of the quadrupole field which must be applied to produce the elongation. The present work analyzes the axisymmetric control necessary to stabilize elongated equilibria, with special application to the Alcator C-MOD tokamak. A rigid current-conserving filamentary plasma model is applied to Alcator C-MOD stability analysis, and limitations of the model are addressed. A more physically accurate nonrigid plasma model is developed using a perturbed equilibrium approach to estimate linearized plasma response to conductor current variations. This model includes novel flux conservation and vacuum vessel stabilization effects. It is found that the nonrigid model predicts significantly higher growth rates than predicted by the rigid model applied to the same equilibria. The nonrigid model is then applied to active control system design. Multivariable pole placement techniques are used to determine performance optimized control laws. Formalisms are developed for implementing and improving nominal feedback laws using the C-MOD digital-analog hybrid control system architecture. A proportional-derivative output observer which does not require solution of the nonlinear Ricatti equation is developed to help accomplish this implementation. The nonrigid flux conserving perturbed equilibrium plasma model indicates that equilibria with separatrix elongation of at least sep = 1.85 can be stabilized robustly with the present control architecture and conductor/sensor configuration

  6. Time-resolved spectroscopy in the Rijnhuizen Tokamak Project tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Box, F.M.A.; Kolk, E. van de [Associatie Euratom-FOM, Nieuwegein (Netherlands). FOM-Instituut voor Plasmafysica; Howard, J. [Plasma Research Laboratory, Research School of Physical Science and Engineering, Australian National University, Canberra 0200 (Australia); Meijer, F.G. [Physics Faculty, University of Amsterdam, Amsterdam (Netherlands)

    1997-03-01

    At the Rijnhuizen Tokamak Project tokamak spectrometers are used to diagnose the velocity distribution and abundances of impurity ions. Quantities can be measured as a function of time, and the temporal resolution depends on the line emissivity and can be as good as 0.2 ms for the strongest lines. Several spectrometers, equipped with a charge-coupled device array, are being used with spectral ranges in the visible, the vacuum UV and the extreme UV. (orig.)

  7. Research using small tokamaks

    International Nuclear Information System (INIS)

    The technical reports in this document were presented at the IAEA Technical Committee Meeting ''Research on Small Tokamaks'', September 1990, in three sessions, viz., (1) Plasma Modes, Control, and Internal Phenomena, (2) Edge Phenomena, and (3) Advanced Configurations and New Facilities. In Section (1) experiments at controlling low mode number modes, feedback control using external coils, lower-hybrid current drive for the stabilization of sawtooth activity and continuous (1,1) mode, and unmodulated and fast modulated ECRH mode stabilization experiments were reported, as well as the relation to disruptions and transport of low m,n modes and magnetic island growth; static magnetic perturbations by helical windings causing mode locking and sawtooth suppression; island widths and frequency of the m=2 tearing mode; ultra-fast cooling due to pellet injection; and, finally, some papers on advanced diagnostics, i.e., lithium-beam activated charge-exchange spectroscopy, and detection through laser scattering of discrete Alfven waves. In Section (2), experimental edge physics results from a number of machines were presented (positive biasing on HYBTOK II enhancing the radial electric field and improving confinement; lower hybrid current drive on CASTOR improving global particle confinement, good current drive efficiency in HT-6B showing stabilization of sawteeth and Mirnov oscillations), as well as diagnostic developments (multi-chord time resolved soft and ultra-soft X-ray plasma radiation detection on MT-1; measurements on electron capture cross sections in multi-charged ion-atom collisions; development of a diagnostic neutral beam on Phaedrus-T). Theoretical papers discussed the influence of sheared flow and/or active feedback on edge microstability, large edge electric fields, and two-fluid modelling of non-ambipolar scrape-off layers. Section (3) contained (i) a proposal to construct a spherical tokamak ''Proto-Eta'', (ii) an analysis of ultra-low-q and runaway

  8. Spherical tokamak development in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, Gerson Otto; Bosco, Edson Del; Ferreira, Julio Guimaraes [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Lab. Associado de Plasma] (and others)

    2003-07-01

    The general characteristics of spherical tokamaks, or spherical tori, with a brief view of work in this area already performed or in progress at several institutions worldwide are described. The paper presents also the steps in the development of the ETE (Experiment Tokamak spheric) project, its research program, technical characteristics and operating conditions as of December, 2002 a the Associated Plasma Laboratory (LAP) of the National Space Research Institute (INPE) in Brazil. (author)

  9. Bootstrap current in a tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Kessel, C.E.

    1994-03-01

    The bootstrap current in a tokamak is examined by implementing the Hirshman-Sigmar model and comparing the predicted current profiles with those from two popular approximations. The dependences of the bootstrap current profile on the plasma properties are illustrated. The implications for steady state tokamaks are presented through two constraints; the pressure profile must be peaked and {beta}{sub p} must be kept below a critical value.

  10. Bootstrap current in a tokamak

    International Nuclear Information System (INIS)

    The bootstrap current in a tokamak is examined by implementing the Hirshman-Sigmar model and comparing the predicted current profiles with those from two popular approximations. The dependences of the bootstrap current profile on the plasma properties are illustrated. The implications for steady state tokamaks are presented through two constraints; the pressure profile must be peaked and βp must be kept below a critical value

  11. The ETE spherical Tokamak project

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, Gerson Otto; Andrade, Maria Celia Ramos de; Barbosa, Luis Filipe Wiltgen [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Lab. Associado de Plasma] [and others]. E-mail: ludwig@plasma.inpe.br

    1999-07-01

    This paper describes the general characteristics of spherical tokamaks, with a brief overview of work in the area of spherical torus already performed or in progress at several institutions. The paper presents also the historical development of the ETE (Spherical Tokamak Experiment) project, its research program, technical characteristics and status of construction in September, 1998 at the Associated plasma Laboratory (LAP) of the National Institute for Space Research (INPE) in Brazil. (author)

  12. Spherical tokamak development in Brazil

    International Nuclear Information System (INIS)

    The general characteristics of spherical tokamaks, or spherical tori, with a brief view of work in this area already performed or in progress at several institutions worldwide are described. The paper presents also the steps in the development of the ETE (Experiment Tokamak spheric) project, its research program, technical characteristics and operating conditions as of December, 2002 a the Associated Plasma Laboratory (LAP) of the National Space Research Institute (INPE) in Brazil. (author)

  13. Spheromak injection into a tokamak

    OpenAIRE

    Brown, M R; Bellan, P. M.

    1990-01-01

    Recent results from the Caltech spheromak injection experiment [to appear in Phys. Rev. Lett.] are reported. First, current drive by spheromak injection into the ENCORE tokamak as a result of the process of magnetic helicity injection is observed. An initial 30% increase in plasma current is observed followed by a drop by a factor of 3 because of sudden plasma cooling. Second, spheromak injection results in an increase of tokamak central density by a factor of 6. The high-current/high-density...

  14. Confinement and diffusion in tokamaks

    International Nuclear Information System (INIS)

    The effect of electric field fluctuations on confinement and diffusion in tokamak is discussed. Based on the experimentally determined cross-field turbolent diffusion coefficient, D∼3.7*cTe/eB(δni/ni)rms which is also derived by a simple theory, the cross-field diffusion time, tp=a2/D, is calculated and compared to experimental results from 51 tokamak for standard Ohmic operation

  15. Stellarator - tokamak configurations

    International Nuclear Information System (INIS)

    The stellarator configuration and tokamak configuration with helical fields have been studied both from an equilibrium and stability point of view. The model was restricted to a surface current model with a sharp boundary between plasma and vacuum. A general derivation of equilibrium and stability based on the Energy Principle is given. Physically the unstable modes are identified as external global modes. Detailed numerical results in different parameter regimes are presented and discussed. Critical β-limits for equilibrium and stability are obtained and in particular it is shown that in certain parameter ranges there exist a high-β as well as a low-β-region of stability. 7 refs., 14 figs

  16. The ARIES tokamak reactor study

    International Nuclear Information System (INIS)

    The ARIES study is a community effort to develop several visions of tokamaks as fusion power reactors. The aims are to determine the potential economics, safety, and environmental features of a range of possible tokamak reactors, and to identify physics and technology areas with the highest leverage for achieving the best tokamak reactor. Three ARIES visions are planned, each having a different degree of extrapolation from the present data base in physics and technology. The ARIES-I design assumes a minimum extrapolation from current tokamak physics (e.g., 1st stability) and incorporates technological advances that can be available in the next 20 to 30 years. ARIES-II is a DT-burning tokamak which would operate at a higher beta in the 2nd MHD stability regime. It employs both potential advances in the physics and expected advances in technology and engineering. ARIES-II will examine the potential of the tokamak and the D3He fuel cycle. This report is a collection of 14 papers on the results of the ARIES study which were presented at the IEEE 13th Symposium on Fusion Engineering (October 2-6, 1989, Knoxville, TN). This collection describes the ARIES research effort, with emphasis on the ARIES-I design, summarizing the major results, the key technical issues, and the central conclusions

  17. The ARIES tokamak reactor study

    Energy Technology Data Exchange (ETDEWEB)

    1989-10-01

    The ARIES study is a community effort to develop several visions of tokamaks as fusion power reactors. The aims are to determine the potential economics, safety, and environmental features of a range of possible tokamak reactors, and to identify physics and technology areas with the highest leverage for achieving the best tokamak reactor. Three ARIES visions are planned, each having a different degree of extrapolation from the present data base in physics and technology. The ARIES-I design assumes a minimum extrapolation from current tokamak physics (e.g., 1st stability) and incorporates technological advances that can be available in the next 20 to 30 years. ARIES-II is a DT-burning tokamak which would operate at a higher beta in the 2nd MHD stability regime. It employs both potential advances in the physics and expected advances in technology and engineering. ARIES-II will examine the potential of the tokamak and the D{sup 3}He fuel cycle. This report is a collection of 14 papers on the results of the ARIES study which were presented at the IEEE 13th Symposium on Fusion Engineering (October 2-6, 1989, Knoxville, TN). This collection describes the ARIES research effort, with emphasis on the ARIES-I design, summarizing the major results, the key technical issues, and the central conclusions.

  18. Magnetohydrodynamic instability, feedback stabilization, and disruption study for the Korea superconducting tokamak advanced research tokamak

    International Nuclear Information System (INIS)

    Passive and active feedback stabilization schemes being considered in Korea Superconducting Tokamak Advanced Research (KSTAR) device for the stabilization of the resistive magnetohydrodynamic modes such as the resistive wall and the neoclassical tearing are briefly introduced. A short summary is also presented on the tokamak simulation results of disruption dynamics and load in the KSTAR tokamak obtained using the tokamak simulation code (TSC)

  19. The upgradation of Aditya Tokamak

    International Nuclear Information System (INIS)

    Aditya Tokamak is the first Indian tokamak, indigenously built and commissioned at the Institute for Plasma Research, Gandhinagar, Gujarat, India, in September, 1989. Aditya Tokamak has been in operation since more than 25 years. More than 30,000 discharges are taken and a large number of experiments are carried out, with plasma current ranging from 50 KA to 150 KA, lasting for 100 to 250 milliseconds. Various types of wall conditioning techniques and different hot plasma diagnostics are tested and operated on Aditya Tokamak. The experiments for turbulent particle transport and turbulence in the edge plasma, gas puffing, lithium coating, mitigation, plasma disruption, limiter and electron biasing, runaway discharges etc. led to many interesting results contributing immensely to the world of thermonuclear fusion. Experiments on Pre-ionization and Plasma heating by ICRH and ECRH are also worked out. The scientific objectives of Aditya tokamak Upgrade include Low loop voltage plasma start-up with strong pre-ionization having a good plasma control system. The upgrade is designed keeping in mind the experiments, disruption mitigation studies relevant to future fusion devices, runway mitigation studies, demonstration of Radio-frequency heating and current drive etc. This upgraded Aditya tokamak will be used for basic studies on plasma confinement and scaling to larger devices, development and testing of new diagnostics etc. This machine will be easily accessible compared to SST-1 and will be very useful for generation of technical and scientific expertise for future fusion devices. In this paper, especial features of the upgrade including various aspects of designing of new components for Aditya Upgrade tokamak is presented

  20. Bibliography of fusion product physics in tokamaks

    International Nuclear Information System (INIS)

    Almost 700 citations have been compiled as the first step in reviewing the recent research on tokamak fusion product effects in tokamaks. The publications are listed alphabetically by the last name of the first author and by subject category

  1. Moving Divertor Plates in a Tokamak

    International Nuclear Information System (INIS)

    Moving divertor plates could help solve some of the problems of the tokamak divertor through mechanical ingenuity rather than plasma physics. These plates would be passively heated on each pass through the tokamak and cooled and reprocessed outside the tokamak. There are many design options using varying plate shapes, orientations, motions, coatings, and compositions

  2. Fusion potential for spherical and compact tokamaks

    International Nuclear Information System (INIS)

    The tokamak is the most successful fusion experiment today. Despite this, the conventional tokamak has a long way to go before being realized into an economically viable power plant. In this master thesis work, two alternative tokamak configurations to the conventional tokamak has been studied, both of which could be realized to a lower cost. The fusion potential of the spherical and the compact tokamak have been examined with a comparison of the conventional tokamak in mind. The difficulties arising in the two configurations have been treated from a physical point of view concerning the fusion plasma and from a technological standpoint evolving around design, materials and engineering. Both advantages and drawbacks of either configuration have been treated relative to the conventional tokamak. The spherical tokamak shows promising plasma characteristics, notably a high β-value but have troubles with high heat loads and marginal tritium breeding. The compact tokamak operates at a high plasma density and a high magnetic field enabling it to be built considerably smaller than any other tokamak. The most notable down-side being high heat loads and neutron transport problems. With the help of theoretical reactor studies, extrapolating from where we stand today, it is conceivable that the spherical tokamak is closer of being realized of the two. But, as this study shows, the compact tokamak power plant concept offers the most appealing prospect

  3. Moving Divertor Plates in a Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    S.J. Zweben, H. Zhang

    2009-02-12

    Moving divertor plates could help solve some of the problems of the tokamak divertor through mechanical ingenuity rather than plasma physics. These plates would be passively heated on each pass through the tokamak and cooled and reprocessed outside the tokamak. There are many design options using varying plate shapes, orientations, motions, coatings, and compositions.

  4. Fusion potential for spherical and compact tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Sandzelius, Mikael

    2003-02-01

    The tokamak is the most successful fusion experiment today. Despite this, the conventional tokamak has a long way to go before being realized into an economically viable power plant. In this master thesis work, two alternative tokamak configurations to the conventional tokamak has been studied, both of which could be realized to a lower cost. The fusion potential of the spherical and the compact tokamak have been examined with a comparison of the conventional tokamak in mind. The difficulties arising in the two configurations have been treated from a physical point of view concerning the fusion plasma and from a technological standpoint evolving around design, materials and engineering. Both advantages and drawbacks of either configuration have been treated relative to the conventional tokamak. The spherical tokamak shows promising plasma characteristics, notably a high {beta}-value but have troubles with high heat loads and marginal tritium breeding. The compact tokamak operates at a high plasma density and a high magnetic field enabling it to be built considerably smaller than any other tokamak. The most notable down-side being high heat loads and neutron transport problems. With the help of theoretical reactor studies, extrapolating from where we stand today, it is conceivable that the spherical tokamak is closer of being realized of the two. But, as this study shows, the compact tokamak power plant concept offers the most appealing prospect.

  5. Tokamak experimental power reactor

    International Nuclear Information System (INIS)

    A tokamak experimental power reactor has been designed that is capable of producing net electric power over a wide range of possible operating conditions. A net production of 81 MW of electricity is expected from the design reference conditions that assume a value of 0.07 for beta-toroidal, a maximum toroidal magnetic field of 9 T and a thermal conversion efficiency of 30%. Impurity control is achieved through the use of a low-Z first wall coating. This approach allows a burn time of 60 seconds without the incorporation of a divertor. The system is cooled by a dual pressurized water/steam system that could potentially provide thermal efficiencies as high as 39%. The first surface facing the plasma is a low-Z coated water cooled panel that is attached to a 20 cm thick blanket module. The vacuum boundary is removed a total of 22 cm from the plasma, thereby minimizing the amount of radiation damage in this vital component. Consideration is given in the design to the possible use of the EPR as a materials test reactor. It is estimated that the total system could be built for less than 550 million dollars

  6. Advanced tokamak burning plasma experiment

    International Nuclear Information System (INIS)

    A new reduced size ITER-RC superconducting tokamak concept is proposed with the goals of studying burn physics either in an inductively driven standard tokamak (ST) mode of operation, or in a quasi-steady state advanced tokamak (AT) mode sustained by non-inductive means. This is achieved by reducing the radiation shield thickness protecting the superconducting magnet by 0.34 m relative to ITER and limiting the burn mode of operation to pulse lengths as allowed by the TF coil warming up to the current sharing temperature. High gain (Q≅10) burn physics studies in a reversed shear equilibrium, sustained by RF and NB current drive techniques, may be obtained. (author)

  7. Plasma boundary phenomena in tokamaks

    International Nuclear Information System (INIS)

    The focus of this review is on processes occurring at the edge, and on the connection between boundary plasma - the scrape-off layer (SOL) and the radiating layer - and central plasma processes. Techniques used for edge diagnosis are reviewed and basic experimental information (ne and Te) is summarized. Simple models of the SOL are summarized, and the most important effects of the boundary plasma - the influence on the fuel particles, impurities, and energy - on tokamak operation dealt with. Methods of manipulating and controlling edge conditions in tokamaks and the experimental data base for the edge during auxiliary heating of tokamaks are reviewed. Fluctuations and asymmetries at the edge are also covered. (9 tabs., 134 figs., 879 refs.)

  8. Computational studies of tokamak plasmas

    International Nuclear Information System (INIS)

    Computational studies of tokamak plasmas are extensively advanced. Many computational codes have been developed by using several kinds of models, i.e., the finite element formulation of MHD equations, the time dependent multidimensional fluid model, and the particle model with the Monte-Carlo method. These codes are applied to the analyses of the equilibrium of an axisymmetric toroidal plasma (SELENE), the time evolution of the high-beta tokamak plasma (APOLLO), the low-n MHD stability (ERATO-J) and high-n ballooning mode stability (BOREAS) in the INTOR tokamak, the nonlinear MHD stability, such as the positional instability (AEOLUS-P), resistive internal mode (AEOLUS-I) etc., and the divertor functions. (author)

  9. Summary discussion: An integrated advanced tokamak reactor

    International Nuclear Information System (INIS)

    The tokamak concept improvement workshop addressed a wide range of issues involved in the development of a more attractive tokamak. The agenda for the workshop progressed from a general discussion of the long-range energy context (with the objective being the identification of a set of criteria and ''figures of merit'' for measuring the attractiveness of a tokamak concept) to particular opportunities for the improvement of the tokamak concept. The discussions concluded with a compilation of research program elements leading to an improved tokamak concept

  10. STARFIRE: a commercial tokamak reactor

    International Nuclear Information System (INIS)

    The purpose of this document is to provide an interim status report on the STARFIRE project for the period of May to September 1979. The basic objective of the STARFIRE project is to develop a design concept for a commercial tokamak fusion electric power plant based on the deuterium/tritium/lithium fuel cycle. The key technical objective is to develop the best embodiment of the tokamak as a power reactor consistent with credible engineering solutions to design problems. Another key goal of the project is to give careful attention to the safety and environmental features of a commercial fusion reactor

  11. LHCD experiments on tokamak CASTOR

    International Nuclear Information System (INIS)

    A short survey is given of the experimental activities at the small Prague tokamak CASTOR. They concern primarily the LH current drive using multijunction waveguide grills as launching antennae. During two last years the, efforts were focused on a study of the electrostatic and magnetic fluctuations under conditions of combined inductive/LHCD regimes and of the relation of the level of these fluctuations to the anomalous particles transport in tokamak CASTOR. Results of the study are discussed in some detail. (author). 24 figs., 51 refs

  12. Joint research using small tokamaks

    Czech Academy of Sciences Publication Activity Database

    Gryaznevich, M.P.; Del Bosco, E.; Malaquias, A.; Mank, G.; Van Oost, G.; He, Yexi; Hegazy, H.; Hirose, A.; Hron, Martin; Kuteev, B.; Ludwig, G.O.; Nascimento, I.C.; Silva, C.; Vorobyev, G.M.

    2005-01-01

    Roč. 45, č. 10 (2005), S245-S254. ISSN 0029-5515. [Fusion Energy Conference contributions. Vilamoura, 1.11.2004-6.11.2004] Institutional research plan: CEZ:AV0Z20430508 Keywords : small tokamaks * thermonuclear fusion Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.418, year: 2005

  13. RF preionization in Tokamak thor

    International Nuclear Information System (INIS)

    During the study of the RF preionization in Tokamak Thor was observed that the starting of the plasma and its time behaviour were correlated with the presence of resonance conditions both at the electron cyclotron frequency Ωsub(deg) and at its sub-harmonics Ωsub(deg)/n. These results are supported by a simple qualitative calculation

  14. Integral torque balance in tokamaks

    International Nuclear Information System (INIS)

    The study is aimed at clarifying the balance between the sinks and sources in the problem of intrinsic plasma rotation in tokamaks reviewed recently by deGrassie (2009 Plasma Phys. Control. Fusion 51 124047). The integral torque on the toroidal plasma is calculated analytically using the most general magnetohydrodynamic (MHD) plasma model taking account of plasma anisotropy and viscosity. The contributions due to several mechanisms are separated and compared. It is shown that some of them, though, possibly, important in establishing the rotation velocity profile in the plasma, may give small input into the integral torque, but an important contribution can come from the magnetic field breaking the axial symmetry of the configuration. In tokamaks, this can be the error field, the toroidal field ripple or the magnetic perturbation created by the correction coils in the dedicated experiments. The estimates for the error-field-induced electromagnetic torque show that the amplitude of this torque is comparable to the typical values of torques introduced into the plasma by neutral beam injection. The obtained relations allow us to quantify the effect that can be produced by the existing correction coils in tokamaks on the plasma rotation, which can be used in experiments to study the origin and physics of intrinsic rotation in tokamaks. Several problems are proposed for theoretical studies and experimental tests.

  15. Edge plasma diagnostics in tokamaks

    Czech Academy of Sciences Publication Activity Database

    Stöckel, Jan; Brotánková, Jana; Hron, Martin; Adámek, Jiří; Ďuran, Ivan; Van Oost, G.; Peleman, P.; Gunn, J.; Devynck, P.; Martines, E.; Schrittwieser, R.; Kocan, M.

    Kudowa Zdrój : -, 2006, s. 910-935. [Sixth International Workshop and Summer School Towards Fusion Energy - Plasma Physics, Diagnostics, Spin-offs. Kudowa Zdrój (PL), 18.09.2006-22.09.2006] Institutional research plan: CEZ:AV0Z20430508 Keywords : tokamak * diagnostics * heating Subject RIV: BL - Plasma and Gas Discharge Physics

  16. Tokamak experimental power reactor studies

    International Nuclear Information System (INIS)

    The principal results of a scoping and project definition study for the Tokamak Experimental Power Reactor are presented. Objectives are discussed; a preliminary conceptual design is described; detailed parametric, survey and sensitivity studies are presented; and research and development requirements are outlined. (U.S.)

  17. Assembly of Aditya upgrade tokamak

    International Nuclear Information System (INIS)

    The existing Aditya tokamak, a medium sized tokamak with limiter configuration is being upgraded to a tokamak with divertor configuration. At present the existing ADITYA tokamak has been dismantled up to bottom plinth on which the whole assembly of toroidal field (TF) coils and vacuum vessel rested. The major components of ADITYA machine includes 20 TF coils and its structural components, 9 Ohmic coils and its clamps, 4 BV coils and its clamps as well as their busbar connections, vacuum vessel and its supports and buckling cylinder, which are all being dismantled. The re-assembly of the ADITYA Upgrade tokamak started with installation and positioning of new buckling cylinder and central solenoid (TR1) coil. After that the inner sections of TF coils are placed following which in-situ winding, installation, positioning and support mounting of two pairs of new inner divertor coils have been carried out. After securing the TF coils with top I-beams the new torus shaped vacuum vessel with circular cross-section in 2 halves have been installed. The assembly of TF structural components such as top and bottom guiding wedges, driving wedges, top and bottom compression ring, inner and outer fish plates and top inverted triangle has been carried out in an appropriate sequence. The assembly of outer sections of TF coils along with the proper placements of top auxiliary TR and vertical field coils with proper alignment and positioning with the optical metrology instrument mainly completes the reassembly. Detailed re-assembly steps and challenges faced during re-assembly will be discussed in this paper. (author)

  18. Transport of Dust Particles in Tokamak Devices

    Energy Technology Data Exchange (ETDEWEB)

    Pigarov, A Y; Smirnov, R D; Krasheninnikov, S I; Rognlien, T D; Rozenberg, M

    2006-06-06

    Recent advances in the dust transport modeling in tokamak devices are discussed. Topics include: (1) physical model for dust transport; (2) modeling results on dynamics of dust particles in plasma; (3) conditions necessary for particle growth in plasma; (4) dust spreading over the tokamak; (5) density profiles for dust particles and impurity atoms associated with dust ablation in tokamak plasma; and (6) roles of dust in material/tritium migration.

  19. Microwave Tokamak Experiment: Overview and status

    International Nuclear Information System (INIS)

    The Microwave Tokamak Experiment, now under construction at the Laboratory, will use microwave heating from a free-electron laser. The intense microwave pulses will be injected into the tokamak to realize several goals, including a demonstration of the effects of localized heat deposition within magnetically confined plasma, a better understanding of energy confinement in tokamaks, and use of the new free-electron laser technology for plasma heating. 3 figs., 3 tabs

  20. Bootstrap Current in Spherical Tokamaks

    Institute of Scientific and Technical Information of China (English)

    王中天; 王龙

    2003-01-01

    Variational principle for the neoclassical theory has been developed by including amomentum restoring term in the electron-electron collisional operator, which gives an additionalfree parameter maximizing the heat production rate. All transport coefficients are obtained in-cluding the bootstrap current. The essential feature of the study is that the aspect ratio affects thefunction of the electron-electron collision operator through a geometrical factor. When the aspectratio approaches to unity, the fraction of circulating particles goes to zero and the contribution toparticle flux from the electron-electron collision vanishes. The resulting diffusion coefficient is inrough agreement with Hazeltine. When the aspect ratio approaches to infinity, the results are inagreement with Rosenbluth. The formalism gives the two extreme cases a connection. The theoryis particularly important for the calculation of bootstrap current in spherical tokamaks and thepresent tokamaks, in which the square root of the inverse aspect ratio, in general, is not small.

  1. Comprehensive numerical modelling of tokamaks

    International Nuclear Information System (INIS)

    We outline a plan for the development of a comprehensive numerical model of tokamaks. The model would consist of a suite of independent, communicating packages describing the various aspects of tokamak performance (core and edge transport coefficients and profiles, heating, fueling, magnetic configuration, etc.) as well as extensive diagnostics. These codes, which may run on different computers, would be flexibly linked by a user-friendly shell which would allow run-time specification of packages and generation of pre- and post-processing functions, including workstation-based visualization of output. One package in particular, the calculation of core transport coefficients via gyrokinetic particle simulation, will become practical on the scale required for comprehensive modelling only with the advent of teraFLOP computers. Incremental effort at LLNL would be focused on gyrokinetic simulation and development of the shell

  2. Frascati Tokamak transformer switching system

    International Nuclear Information System (INIS)

    Plasma ionization and heating, in the Frascati Tokamak, is obtained generating an emf along the plasma column, by switching the dc current flowing in the Tokamak transformer. 30 kA flowing in the 60 mH transformer inductance must be commutated into a resistance to generate 40 kV across the transformer itself. Studies and tests to solve this problem have been conducted, on different types of breakers, in cooperation between Tecnomasio Italiano Brown Boveri, Milan and Laboratori Gas Ionizzati, Frascati. Satisfactory results have finally been obtained using a DLF commercial air blast breaker in a chopper type circuit. A capacitor bank in parallel to the breaker is discharged immediately after the contacts separation and the arc in the switching element is extinguished at the first current zero. A saturable reactance in series with the breaker reduces the current decay rate to allow sufficient deionization time

  3. Burn Control Mechanisms in Tokamaks

    Science.gov (United States)

    Hill, Maxwell; Stacey, Weston

    2013-10-01

    Burn control and passive safety in accident scenarios will be an important design consideration in future tokamaks, especially those used as a neutron source for fusion-fission hybrid reactors, such as the Subcritical Advanced Burner Reactor (SABR) concept. At Georgia Tech, we are developing a new burning plasma dynamics code to investigate passive safety mechanisms that could prevent power excursions in tokamak reactors. This code solves the coupled set of balance equations governing burning plasmas in conjunction with a two-point SOL-divertor model. Predictions have been benchmarked against data from DIII-D. We are examining several potential negative feedback mechanisms to limit power excursions: i) ion-orbit loss, ii) thermal instabilities, iii) the degradation of alpha-particle confinement resulting from ripples in the toroidal field, iv) modifications to the radial current profile, v) ``divertor choking'' and vi) Type 1 ELMs.

  4. Equilibrium Reconstruction in EAST Tokamak

    Institute of Scientific and Technical Information of China (English)

    QIAN Jinping; WAN Baonian; L. L. LAO; SHEN Biao; S. A. SABBAGH; SUN Youwen; LIU Dongmei; XIAO Singjia; REN Qilong; GONG Xianzu; LI Jiangang

    2009-01-01

    Reconstruction of experimental axisymmetric equilibria is an important part of toka-mak data analysis. Fourier expansion is applied to reconstruct the vessel current distribution in EFIT code. Benchmarking and testing calculations are performed to evaluate and validate this algorithm. Two cases for circular and non-circular plasma discharges are presented. Fourier ex-pansion used to fit the eddy current is a robust method and the real time EFIT can be introduced to the plasma control system in the coming campaign.

  5. Shear Alfven waves in tokamaks

    International Nuclear Information System (INIS)

    Shear Alfven waves in an axisymmetric tokamak are examined within the framework of the linearized ideal MHD equations. Properties of the shear Alfven continuous spectrum are studied both analytically and numerically. Implications of these results in regards to low frequency rf heating of toroidally confined plasmas are discussed. The structure of the spatial singularities associated with these waves is determined. A reduced set of ideal MHD equations is derived to describe these waves in a very low beta plasma

  6. Magnetic confinement experiment. I: Tokamaks

    International Nuclear Information System (INIS)

    Reports were presented at this conference of important advances in all the key areas of experimental tokamak physics: Core Plasma Physics, Divertor and Edge Physics, Heating and Current Drive, and Tokamak Concept Optimization. In the area of Core Plasma Physics, the biggest news was certainly the production of 9.2 MW of fusion power in the Tokamak Fusion Test Reactor, and the observation of unexpectedly favorable performance in DT plasmas. There were also very important advances in the performance of ELM-free H- (and VH-) mode plasmas and in quasi-steady-state ELM'y operation in JT-60U, JET, and DIII-D. In all three devices ELM-free H-modes achieved nTτ's ∼ 2.5x greater than ELM'ing H-modes, but had not been sustained in quasi-steady-state. Important progress has been made on the understanding of the physical mechanism of the H-mode in DIII-D, and on the operating range in density for the H-mode in Compass and other devices

  7. Estimated total emissions of trace gases from the Canberra Wildfires of 2003: a new method using satellite measurements of aerosol optical depth & the MOZART chemical transport model

    Directory of Open Access Journals (Sweden)

    C. Paton-Walsh

    2010-06-01

    Full Text Available In this paper we describe a new method for estimating trace gas emissions from large vegetation fires using satellite measurements of aerosol optical depth (AOD at 550 nm, combined with an atmospheric chemical transport model. The method uses a threshold value to screen out normal levels of AOD that may be caused by raised dust, sea salt aerosols or diffuse smoke transported from distant fires. Using this method we infer an estimated total emission of 15±5 Tg of carbon monoxide, 0.05±0.02 Tg of hydrogen cyanide, 0.11±0.03 Tg of ammonia, 0.25±0.07 Tg of formaldehyde, 0.03±0.01 of acetylene, 0.10±0.03 Tg of ethylene, 0.03±0.01 Tg of ethane, 0.21±0.06 Tg of formic acid and 0.28±0.09 Tg of methanol released to the atmosphere from the Canberra fires of 2003. An assessment of the uncertainties in the new method is made and we show that our estimate agrees (within expected uncertainties with estimates made using current conventional methods of multiplying together factors for the area burned, fuel load, the combustion efficiency and the emission factor for carbon monoxide. A simpler estimate derived directly from the satellite AOD measurements is also shown to be in agreement with conventional estimates, suggesting that the method may, under certain meteorological conditions, be applied without the complication of using a chemical transport model. The new method is suitable for estimating emissions from distinct large fire episodes and although it has some significant uncertainties, these are largely independent of the uncertainties inherent in conventional techniques. Thus we conclude that the new method is a useful additional tool for characterising emissions from vegetation fires.

  8. Metrology measurements for Aditya tokamak upgradation

    International Nuclear Information System (INIS)

    After 25 years of Aditya tokamak (midsized, air-core, R0= 75 cm, a = 25 cm) operation achieving high temperature circular plasmas in limiter configuration, upgrading it to Aditya-U tokamak with divertor configuration has been planned and the upgradation is under progress. The upgradation process include dismantling of the existing Aditya tokamak to its base level and re-erect it by placing new subsystems like new vacuum vessel of circular cross-section, new buckling cylinder etc. Apposite alignment of subsystems, mainly all the magnetic coil systems in all grades and scales of tokamak is very crucial and essential, as misaligned magnetic coil system scan generate error magnetic fields, which can significantly impact the plasma formation and sustainment in a tokamak. With this motivation, position and alignment measurement of the existing magnetic coils and structural components of ADITYA tokamak is carried out for the very first time with the optical metrology instrument. Prior to carrying out measurement exercise, machine datum has been transferred to the reference on the wall of tokamak hall using five-point laser and the machine center has been transformed to the four wall of tokamak hall. All position measurements are done with respect to machine major axis in cylindrical geometry. Measurement includes existing radial (R) and elevation (Z) positions of all magnetic coils and various structural components within the accuracy of ± 1 mm. More than 5000 data points are recorded using optical metrology instrument. Again the elevation references are transferred to the primary network established and the angular references are transformed on the floor of the tokamak hall. These results will serve as ready reference for reassembly and alignment of Aditya - Upgrade tokamak. In this paper detailed position measurements of different subsystems of old Aditya tokamak and the relocation of them along with new ones using the optical metrology instruments will be presented

  9. Theory of high-beta tokamaks

    International Nuclear Information System (INIS)

    The theoretical researches on high beta tokamak are reviewed. The ballooning mode instability is thought to be the most serious problem for the high beta tokamaks, and the theoretical results on the ballooning mode instability are discussed in detail. The experimental results in high beta belt pinch devices are also discussed. (author)

  10. Tokamak plasma position dynamics and feedback control

    International Nuclear Information System (INIS)

    The perturbation equations of a tokamak plasma equilibrium position are developed. Solution of the approximated perturbation equations is carried out. A unique, simple, and useful plasma displacement dynamics transfer function of a tokamak is developed. The dominant time constants of the dynamics transfer function are determined in a symbolic form

  11. Economic evaluation of tokamak power plants

    International Nuclear Information System (INIS)

    This study reports the impact of plasma operating characteristics, engineering options, and technology on the capital cost trends of tokamak power plants. Tokamak power systems are compared to other advanced energy systems and found to be economically competitive. A three-phase strategy for demonstrating commercial feasibility of fusion power, based on a common-site multiple-unit concept, is presented

  12. The disruptive instability in Tokamak plasmas

    NARCIS (Netherlands)

    Salzedas, F.J.B.

    2001-01-01

    Studies performed in RTP (Rijnhuizen Tokamak Project) of the most violent and dangerous instability in tokamak plasmas, the major disruption, are presented. A particular class of disruptions is analyzed, namely the density limit disruption, which occur in high density plasmas. The radiative te

  13. Physics of compact ignition tokamak designs

    International Nuclear Information System (INIS)

    Models for predicting plasma performance in compact ignition experiments are constructed on the basis of theoretical and empirical constraints and data from tokamak experiments. Emphasis is placed on finding transport and confinement models which reproduce results of both ohmically and auxiliary heated tokamak data. Illustrations of the application of the models to compact ignition designs are given

  14. The ARIES-I tokamak reactor study

    International Nuclear Information System (INIS)

    This report contains an overview of the Aries-I tokamak reactor study. The following topics are discussed on this tokamak: Systems studies; equilibrium, stability, and transport; summary and conclusions; current drive; impurity control system; tritium systems; magnet engineering; fusion-power-core engineering; power conversion; Aries-I safety design and analysis; design layout and maintenance; and start-up and operations

  15. Engineering Design of KSTAR tokamak main structure

    International Nuclear Information System (INIS)

    The main components of the KSTAR (Korea Superconducting Tokamak Advanced Research) tokamak including vacuum vessel, plasma facing components, cryostat, thermal shield and magnet supporting structure are in the final stage of engineering design. Hundai Heavy Industries (HHI) has been involved in the engineering design of these components. The current configuration and the final engineering design results for the KSTAR main structure are presented. (author)

  16. Summary report on tokamak confinement experiments

    International Nuclear Information System (INIS)

    There are currently five major US tokamaks being operated and one being constructed under the auspices of the Division of Toroidal Confinement Systems. The currently operating tokamaks include: Alcator C at the Massachusetts Institute of Technology, Doublet III at the General Atomic Company, the Impurity Studies Experiment (ISX-B) at the Oak Ridge National Laboratory, and the Princeton Large Torus (PLT) and the Poloidal Divertor Experiment (PDX) at the Princeton Plasma Physics Laboratory. The Tokamak Fusion Test Reactor (TFTR) is under construction at Princeton and should be completed by December 1982. There is one major tokamak being funded by the Division of Applied Plasma Physics. The Texas Experimental Tokamak (TEXT) is being operated as a user facility by the University of Texas. The TEXT facility includes a complete set of standard diagnostics and a data acquisition system available to all users

  17. Natural current profiles in a tokamak

    International Nuclear Information System (INIS)

    In this paper I show how one may arrive at a universal, or natural, family of Tokamak profiles using only accepted physical principles. These particular profiles are similar to ones proposed previously on the basis of ad hoc variational principles and the point of the present paper is to provide a justification for them. However in addition, the present work provides an interesting view of Tokamak fluctuations and leads to a new result -- a relationship between the inward particle pinch velocity, the diffusion coefficient and the current profile. The basic Tokamak model is described in this paper. Then an analogy is developed between Tokamak profiles and the equilibrium of a realisable dynamical system. Then the equations governing the natural Tokamak profiles are derived by applying standard statistical mechanics to this analog. The profiles themselves are calculated and some other results of the theory are described

  18. Potential turbulence in tokamak plasmas

    International Nuclear Information System (INIS)

    Microscopic potential turbulence in tokamak plasmas are investigated by a multi-sample-volume heavy ion beam probe. The wavenumber/frequency spectra S(k,ω) of the plasmas potential fluctuation as well as density fluctuation are obtained for the first time. The instantaneous turbulence-driven particle flux, calculated from potential and density turbulence has oscillations of which amplitude is about 100 times larger than the steady-state outwards flux, showing sporadic behaviours. We also observed large-scale coherent potential oscillations with the frequency around 10-40 kHz. (author)

  19. The bootstrap current in tokamaks

    International Nuclear Information System (INIS)

    The properties of the Hirshman equation for the bootstrap in the tokamak and the difference between it and the simpler Hinton-Hazeltine equation are discussed. The Hirshman model, which takes into account finite-aspect-ratio effects, is used to calculate the bootstrap current in the plasma in a circular cross section with Te = Ti. Approximate upper and lower bounds on the bootstrap current are obtained. These restrict the range of variation of the current as the temperature and density profiles vary. 16 refs., 9 figs

  20. Breakdown in the pretext tokamak

    International Nuclear Information System (INIS)

    Data are presented on the application of ion cyclotron resonance RF power to preionization in tokamaks. We applied 0.3-3 kW at 12 MHz to hydrogen and obtained a visible discharge, but found no scaling of breakdown voltage with any parameter we were able to vary. A possible explanation for this, which implies that higher RF power would have been much more effective, is discussed. Finally, we present our investigation of the dV/dt dependence of breakdown voltage in PRETEXT, a phenomenon also seen in JFT-2. The breakdown is discussed in terms of the physics of Townsend discharges

  1. Cluster storage for COMPASS tokamak

    Czech Academy of Sciences Publication Activity Database

    Písačka, Jan; Hron, Martin; Janky, Filip; Pánek, Radomír

    2012-01-01

    Roč. 87, č. 12 (2012), s. 2238-2241. ISSN 0920-3796. [IAEA Technical Meeting on Control, Data Acquisition, and Remote Participation for Fusion Research/8./. San Francisco, 20.06.2011-24.06.2011] R&D Projects: GA ČR GAP205/11/2470; GA MŠk 7G10072; GA MŠk(CZ) LM2011021 Institutional research plan: CEZ:AV0Z20430508 Keywords : COMPASS * Tokamak * Codac * Cluster * GlusterFS * Storage Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.842, year: 2012 http://dx.doi.org/10.1016/j.fusengdes.2012.09.006

  2. Anomalous particle pinch in Tokamaks

    International Nuclear Information System (INIS)

    The diffusion coefficient in phase space usually varies with the particle energy. A consequence is the dependence of the fluid particle flux on the temperature gradient. If the diffusion coefficient in phase space decreases with the energy in the bulk of the thermal distribution function, the particle thermodiffusion coefficient which links the particle flux to the temperature gradient is negative. This is a possible explanation for the inward particle pinch that is observed in tokamaks. A quasilinear theory shows that such a thermodiffusion is generic for a tokamak electrostatic turbulence at low frequency. This effect adds to the particle flux associated with the radial gradient of magnetic field. This behavior is illustrated with a perturbed electric potential, for which the trajectories of charged particle guiding centers are calculated. The diffusion coefficient of particles is computed and compared to the quasilinear theory, which predicts a divergence at low velocity. It is shown that at low velocity, the actual diffusion coefficient increases, but remains lower than the quasilinear value. Nevertheless, this differential diffusion between cold and fast particles leads to an inward flux of particles. (author)

  3. Enhancement of confinement in tokamaks

    International Nuclear Information System (INIS)

    A plausible interpretation of the experimental evidence is that energy confinement in tokamaks is governed by two separate considerations: (1) the need for resistive MHD kink-stability, which limits the permissible range of current profiles - and therefore normally also the range of temperature profiles; and (2) the presence of strongly anomalous microscopic energy transport near the plasma edge, which calibrates the amplitude of the global temperature profile, thus determining the energy confinement time tau/sub E/. Correspondingly, there are two main paths towards the enhancement of tokamak confinement: (1) Configurational optimization, to increase the MHD-stable energy content of the plasma core, can evidently be pursued by varying the cross-sectional shape of the plasma and/or finding stable radial profiles with central q-values substantially below unity - but crossing from ''first'' to ''second'' stability within the peak-pressure region would have the greatest ultimate potential. (2) Suppression of edge turbulence, so as to improve the heat insulation in the outer plasma shell, can be pursued by various local stabilizing techniques, such as use of a poloidal divertor. The present confinement model and initial TFTR pellet-injection results suggest that the introduction of a super-high-density region within the plasma core should be particularly valuable for enhancing ntau/subE/. In D-T operation, a centrally peaked plasma pressure profile could possibly lend itself to alpha-particle-driven entry into the second-stability regime

  4. Cluster storage for COMPASS tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Pisacka, J., E-mail: pisacka@ipp.cas.cz [Institute of Plasma Physics AS CR, v.v.i., Association EURATOM/IPP.CR, Za Slovankou 3, 182 00 Praha 8 (Czech Republic); Hron, M., E-mail: hron@ipp.cas.cz [Institute of Plasma Physics AS CR, v.v.i., Association EURATOM/IPP.CR, Za Slovankou 3, 182 00 Praha 8 (Czech Republic); Janky, F., E-mail: jankyf@ipp.cas.cz [Institute of Plasma Physics AS CR, v.v.i., Association EURATOM/IPP.CR, Za Slovankou 3, 182 00 Praha 8 (Czech Republic); Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holesovickach 2, 180 00 Praha 8 (Czech Republic); Panek, R., E-mail: panek@ipp.cas.cz [Institute of Plasma Physics AS CR, v.v.i., Association EURATOM/IPP.CR, Za Slovankou 3, 182 00 Praha 8 (Czech Republic)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer New data storage system needed for the COMPASS tokamak. Black-Right-Pointing-Pointer Distributed, fault-tolerant, parallel, scalable, non-proprietary. Black-Right-Pointing-Pointer GlusterFS selected for testing on a small test bed. Black-Right-Pointing-Pointer Aggregated reading throughput reached 300 MiB/s for 6 clients - very good result. - Abstract: The COMPASS tokamak is expected to produce several gigabytes of data per shot in near future. A new storage system is needed to accommodate and access all the data. It should be scalable, fault-tolerant, and parallel. It should not be based on proprietary solutions to maintain independence from hardware and software manufacturers and preferably it should be built on inexpensive commodity hardware. One of the promising distributed parallel fault-tolerant file systems, GlusterFS, was selected for testing. The aim of the work was to make initial tests of a particular small GlusterFS setup to confirm its aptitude for the COMPASS storage system. Aggregated reading throughput from multiple NFS clients was one of the most important figures that were benchmarked, it scaled well with the number of clients, starting just above 60 MiB/s for 1 client and going slightly over 300 MiB/s for 6 clients.

  5. Cluster storage for COMPASS tokamak

    International Nuclear Information System (INIS)

    Highlights: ► New data storage system needed for the COMPASS tokamak. ► Distributed, fault-tolerant, parallel, scalable, non-proprietary. ► GlusterFS selected for testing on a small test bed. ► Aggregated reading throughput reached 300 MiB/s for 6 clients – very good result. - Abstract: The COMPASS tokamak is expected to produce several gigabytes of data per shot in near future. A new storage system is needed to accommodate and access all the data. It should be scalable, fault-tolerant, and parallel. It should not be based on proprietary solutions to maintain independence from hardware and software manufacturers and preferably it should be built on inexpensive commodity hardware. One of the promising distributed parallel fault-tolerant file systems, GlusterFS, was selected for testing. The aim of the work was to make initial tests of a particular small GlusterFS setup to confirm its aptitude for the COMPASS storage system. Aggregated reading throughput from multiple NFS clients was one of the most important figures that were benchmarked, it scaled well with the number of clients, starting just above 60 MiB/s for 1 client and going slightly over 300 MiB/s for 6 clients.

  6. Predictive Modeling of Tokamak Configurations*

    Science.gov (United States)

    Casper, T. A.; Lodestro, L. L.; Pearlstein, L. D.; Bulmer, R. H.; Jong, R. A.; Kaiser, T. B.; Moller, J. M.

    2001-10-01

    The Corsica code provides comprehensive toroidal plasma simulation and design capabilities with current applications [1] to tokamak, reversed field pinch (RFP) and spheromak configurations. It calculates fixed and free boundary equilibria coupled to Ohm's law, sources, transport models and MHD stability modules. We are exploring operations scenarios for both the DIII-D and KSTAR tokamaks. We will present simulations of the effects of electron cyclotron heating (ECH) and current drive (ECCD) relevant to the Quiescent Double Barrier (QDB) regime on DIII-D exploring long pulse operation issues. KSTAR simulations using ECH/ECCD in negative central shear configurations explore evolution to steady state while shape evolution studies during current ramp up using a hyper-resistivity model investigate startup scenarios and limitations. Studies of high bootstrap fraction operation stimulated by recent ECH/ECCD experiments on DIIID will also be presented. [1] Pearlstein, L.D., et al, Predictive Modeling of Axisymmetric Toroidal Configurations, 28th EPS Conference on Controlled Fusion and Plasma Physics, Madeira, Portugal, June 18-22, 2001. * Work performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

  7. Tokamak Physics Experiment divertor design

    International Nuclear Information System (INIS)

    The Tokamak Physics Experiment (TPX) tokamak requires a symmetric up/down double-null divertor capable of operation with steady-state heat flux as high as 7.5 MW/m2. The divertor is designed to operate in the radiative mode and employs a deep slot configuration with gas puffing lines to enhance radiative divertor operation. Pumping is provided by cryopumps that pump through eight vertical ports in the floor and ceiling of the vessel. The plasma facing surface is made of carbon-carbon composite blocks (macroblocks) bonded to multiple parallel copper tubes oriented vertically. Water flowing at 6 m/s is used, with the critical heat flux (CHF) margin improved by the use of enhanced heat transfer surfaces. In order to extend the operating period where hands on maintenance is allowed and to also reduce dismantling and disposal costs, the TPX design emphasizes the use of low activation materials. The primary materials used in the divertor are titanium, copper, and carbon-carbon composite. The low activation material selection and the planned physics operation will allow personnel access into the vacuum vessel for the first 2 years of operation. The remote handling system requires that all plasma facing components (PFCs) are configured as modular components of restricted dimensions with special provisions for lifting, alignment, mounting, attachment, and connection of cooling lines, and instrumentation and diagnostics services

  8. Atomic physics in tokamak plasmas

    International Nuclear Information System (INIS)

    Tokamak discharges produce hydrogen-isotope plasmas in a quasi-steady state, with radial electron temperature, Tsub(e)(r), and density nsub(e)(r), distribution usually centrally peaked, with typical values Tsub(e)(0) approx.= 1 - 3 keV, nsub(e)(r) approx.= 1014 cm-3. Besides hydrogen, the plasma contains small quantities of carbon, oxygen, various construction or wall-conditioning materials such as Fe, Cr, Ni, Ti, Zr, Mo, and perhaps elements added for special diagnostic purposes, e.g., Si, Sc, Al, or noble gases. These elements are spatially fairly homogeneously distributed, with the different ionization states occurring near radial locations where Tsub(e)(r) approx.= Esub(i), the ionization potential. Thus, spectroscopic measurements of various plasma properties, such as ion temperatures, plasma motions or oscillations, radial transport rates, etc. are automatically endowed with spatial resolution. Furthermore the emitted spectra, even of heavier elements such as Fe or Ni, are fairly simple because only the ground levels are appreciably populated under the prevailing plasma conditions. Identification of near-ground transitions, including particularly magnetic dipole and intercombination transitions of ions with ionization potentials in the several keV range, and determination of their collisional and radiative transition probabilities will be required for development of appropriate diagnostics of tokamak-type plasma approaching the prospective fusion reactor conditions. (orig.)

  9. Control of a burning tokamak plasma

    Energy Technology Data Exchange (ETDEWEB)

    Burmeister, R.E.; Mandrekas, J.; Stacey, W.M.

    1993-03-01

    This report is a review of the literature relevant to the control of the thermonuclear burn in a tokamak plasma. Some basic tokamak phenomena are reviewed, and then control by modulation of auxiliary heating and fueling is discussed. Other possible control methods such as magnetic ripple, plasma compression, and impurity injection as well as more recent proposed methods such as divertor biasing and L- to H-mode transition are also reviewed. The applications of modern control theory to the tokamak burn control problem are presented. The control results are summarized and areas of further research are identified.

  10. Fast IR diodes thermometer for tokamak

    International Nuclear Information System (INIS)

    A 30 channel fast IR pyrometry array has been constructed for tokamak, which has 0.5 μs time response, 10 mm diameter spatial resolution and 5 degree C temperature resolution. The temperature measuring range is from 250 degree C to 1200 degree C. The two dimensional temperature profiles of the first wall during both major and minor disruptions can be measured with an accuracy of about 1% measuring temperature, which is adequate for tokamak experiments. This gives a very useful tool for the disruption study, especially for the divertor physics and edge heat flux research on tokamak and other magnetic confinement devices

  11. Tokamak Plasmas : Mirnov coil data analysis for tokamak ADITYA

    Indian Academy of Sciences (India)

    D Raju; R Jha; P K Kaw; S K Mattoo; Y C Saxena; Aditya Team

    2000-11-01

    The spatial and temporal structures of magnetic signal in the tokamak ADITYA is analysed using recently developed singular value decomposition (SVD) technique. The analysis technique is first tested with simulated data and then applied to the ADITYA Mirnov coil data to determine the structure of current peturbation as the discharge progresses. It is observed that during the current rise phase, current perturbation undergoes transition from = 5 poloidal structure to = 4 and then to = 3. At the time of current termination, = 2 perturbation is observed. It is observed that the mode frequency remains nearly constant (≈10 kHz) when poloidal mode structure changes from = 4 to = 2. This may be either an indication of mode coupling or a consequences of changes in the plasma electron temperature and density scale length.

  12. Plasma equilibrium and instabilities in tokamaks

    International Nuclear Information System (INIS)

    A phenomenological introduction of some of the main theoretical and experimental features on equilibrium and instabilities in tokamaks is presented. In general only macroscopic effects are considered, being the plasma described as a fluid. (L.C.)

  13. Power and particle exhaust in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Stambaugh, R.D.

    1998-01-01

    The status of power and particle exhaust research in tokamaks is reviewed in the light of ITER requirements. There is a sound basis for ITER`s nominal design positions; important directions for further research are identified.

  14. Robust Sliding Mode Control for Tokamaks

    Directory of Open Access Journals (Sweden)

    I. Garrido

    2012-01-01

    Full Text Available Nuclear fusion has arisen as an alternative energy to avoid carbon dioxide emissions, being the tokamak a promising nuclear fusion reactor that uses a magnetic field to confine plasma in the shape of a torus. However, different kinds of magnetohydrodynamic instabilities may affect tokamak plasma equilibrium, causing severe reduction of particle confinement and leading to plasma disruptions. In this sense, numerous efforts and resources have been devoted to seeking solutions for the different plasma control problems so as to avoid energy confinement time decrements in these devices. In particular, since the growth rate of the vertical instability increases with the internal inductance, lowering the internal inductance is a fundamental issue to address for the elongated plasmas employed within the advanced tokamaks currently under development. In this sense, this paper introduces a lumped parameter numerical model of the tokamak in order to design a novel robust sliding mode controller for the internal inductance using the transformer primary coil as actuator.

  15. Tokamak research in the Soviet Union

    International Nuclear Information System (INIS)

    Important milestones on the way to the tokamak fusion reactor are recapitulated. Soviet tokamak research concentrated at the I.V. Kurchatov Institute in Moscow, the A.F. Ioffe Institute in Leningrad and the Physical-Technical Institute in Sukhumi successfully provides necessary scientific and technological data for reactor design. Achievments include, the successful operation of the first tokamak with superconducting windings (T-7) and the gyrotron set for microwave plasma heating in the T-10 tokamak. The following problems have intensively been studied: Various methods of additional plasma heating, heat and particle transport, and impurity control. The efficiency of electron-cyclotron resonance heating was demonstrated. In the Joule heating regime, both the heat conduction and diffusion rates are anomalously high, but the electron heat conduction rate decreases with increasing plasma density. Progress in impurity control makes it possible to obtain a plasma with effective charge approaching unity. (J.U.)

  16. The ARIES-I tokamak reactor study

    International Nuclear Information System (INIS)

    This report discusses the following topics on the Aries-I Tokamak: Design description; systems studies and economics; reactor plasma physics; magnet engineering; fusion-power-ore engineering; and environmental and safety features

  17. Synchrotron radiation in inhomogeneous tokamak plasmas

    International Nuclear Information System (INIS)

    Synchrotron emission in a tokamak configuration with inhomogeneous plasma parameters is considered to investigate the effects of the temperature profile and vertical elongation on the radiation loss. Using the numerical solution of the transfer equation for ITER-like plasma parameters, several new results on the radiated energy in a Maxwellian plasma have been derived. In particular: (i) synchrotron loss is profile dependent, namely, at constant average thermal energy, the emitted radiation increases with the peak temperature, (ii) an analytical formula of the global loss in inhomogeneous tokamak plasmas with arbitrary vertical elongation is established, (iii) the maximum of the frequency emission spectrum is a linear function of the volume average temperature, (iiii) high frequency synchrotron radiation is entirely due to electrons with energy much greater than the thermal energy. The need for experimental investigations on synchrotron emission in present-day large tokamaks to determine the effect of reflections of the complex tokamak first wall is stressed

  18. Edge plasma studies on the CASTOR tokamak

    Czech Academy of Sciences Publication Activity Database

    Hron, Martin; Peleman, P.; Spolaore, M.; Martines, E.; Hronová-Bilyková, Olena; Dejarnac, Renaud; Devynck, P.; Brotánková, Jana; Sentkerestiová, Jana; Ďuran, Ivan; Gunn, J.; Stöckel, Jan; Van Oost, G.; Adámek, Jiří; van de Peppel, L.; Štěpán, Michal

    Krakow : Euratom - IPPLM Association, 2006 - (Zagorski, R.), - [IEA Large Tokamak IA Workshop on Edge Transport in Fusion plasmas. Kraków (PL), 11.09.2006-13.09.2006] Institutional research plan: CEZ:AV0Z20430508 Keywords : tokamak * plasma * scrape-off layer * turbulence * interchange instability Subject RIV: BL - Plasma and Gas Discharge Physics http://www.etfp2006.ifpilm.waw.pl/presentations.html

  19. The ETE spherical Tokamak project. IAEA report

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, Gerson Otto; Del Bosco, E.; Berni, L.A.; Ferreira, J.G.; Oliveira, R.M.; Andrade, M.C.R.; Shibata, C.S.; Barroso, J.J.; Castro, P.J.; Patire Junior, H. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Lab. Associado de Plasma]. E-mail: ludwig@plasma.inpe.br

    2002-07-01

    This paper describes the general characteristics of spherical tokamaks, or spherical tori, with a brief overview of work in this area already performed or in progress at several institutions worldwide. The paper presents also the historical development of the ETE (Spherical Tokamak Experiment) project, its research program, technical characteristics and operating conditions as of October, 2002 at the Associated Plasma Laboratory (LAP) of the National Space Research Institute (INPE) in Brazil. (author)

  20. D-D tokamak reactor studies

    International Nuclear Information System (INIS)

    A tokamak D-D reactor design, utilizing the advantages of a deuterium-fueled reactor but with parameters not unnecessarily extended from existing D-T designs, is presented. Studies leading to the choice of a design and initial studies of the design are described. The studies are in the areas of plasma engineering, first-wall/blanket/shield design, magnet design, and tritium/fuel/vacuum requirements. Conclusions concerning D-D tokamak reactors are stated

  1. Plasma diagnostics using synchrotron radiation in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Fidone, I.; Giruzzi, G.; Granata, G.

    1995-09-01

    This report deal with the use of synchrotron radiation in tokamaks. The main advantage of this new method is that it enables to overcome several deficiencies, caused by cut-off, refraction, and harmonic overlap. It also makes it possible to enhance the informative contents of the familiar low harmonic scheme. The basic theory of the method is presented and illustrated by numerical applications, for plasma parameters of relevance in present and next step tokamaks. (TEC). 10 refs., 13 figs.

  2. Thermonuclear ignition in the next generation tokamaks

    International Nuclear Information System (INIS)

    The extrapolation of experimental rules describing energy confinement and magnetohydrodynamic - stability limits, in known tokamaks, allow to show that stable thermonuclear ignition equilibria should exist in this configuration, if the product aBtx of the dimensions by a magnetic-field power is large enough. Quantitative application of this result to several next-generation tokamak projects show that those kinds of equilibria could exist in such devices, which would also have enough additional heating power to promote an effective accessible ignition

  3. Epoxide insulation for Tokamak coils

    International Nuclear Information System (INIS)

    The construction and testing of 12-tonne toroidal-field electromagnets for the Joint European Torus by Brown Boveri and Cie (Mannheim) are described. The principle of Tokamak confinement of a plasma which acts as the secondary winding of a transformer is explained. The Cu conductors are sanded and coated with epoxide adhesive before being wrapped in 7mm thick woven glass fibre, dried by heating under vacuum, impregnated and encapsulated in 1.2 tonnes of Araldite, which is solidified under pressure of 4 atmospheres and hardened for ten hours at 1500C. The prototype withstood tests involving 25,000 flexure cycles at 1.1 MN and 2 Hz, 2,000 quarter-hour 10kA heating cycles between 840 and 200C, and exposure to 500 million rads. 32 such coils were constructed at the rate of one every three weeks. (M.B.D.)

  4. Tokamak plasma interaction with limiters

    International Nuclear Information System (INIS)

    The importance of plasma purity is first discussed in terms of the general requirements of controlled thermonuclear fusion. The tokamak approach to fusion and its inherent problem of plasma contamination are introduced. A main source of impurities is due to the bombardment of the limiter by energetic particles and thus the three main aspects of the plasma-limiter interaction are reviewed, boundary plasma conditions, fuelling/recycling and impurity production. The experiments, carried out on the DITE tokamak at Culham Laboratory, UK, investigated these three topics and the results are compared with predicted behaviour; new physical phenomena are presented in all three areas. Simple one-dimensional fluid equations are found to adequately describe the SOL plasma, except in regard to the pre-sheath electric field and ambipolarity; that is, the electric field adjacent to the limiter surface appears to be weak and the associated plasma flow can be non-ambipolar. Recycling of fuel particles from the limiter is observed to be near unity at all times. The break-up behaviour of recycled and gas puffed D2 molecules is dependent on the electron temperature, as expected. Impurity production at the limiter is chemical erosion of graphite being negligible. Deposition of limiter and wall-produced impurities is found on the limiter. The spatial distributions of impurities released from the limiter are observed and are in good agreement with a sputtered atom transport code. Finally, preliminary experiments on the transport of impurity ions along field lines away from the limiter have been performed and compared with simple analytic theory. The results suggest that the pre-sheath electric field in the SOL is much weaker than the simple fluid model would predict

  5. JT-60SA project for JA-EU broader approach satellite tokamak and national centralized tokamak

    International Nuclear Information System (INIS)

    JT-60 Super Advanced (JT-60SA) project is the joint project of ITER satellite tokamak by Japan and EU with Japanese Tokamak. The background, objects, device design, management of JT-60SA is stated. It consists of six chapters: the first chapter describes introduction, the second chapter states the objects of tokamak device complementing ITER, the third chapter contains research subjects and device performance such as plasma performance and demand for devices, operation scenario, control of MHD instability, and control of heat and particles, the forth chapter design of devices, the fifth chapter management and the sixth conclusion. In order to realize prototype reactor, improvement research of tokamak, development of reactor engineering technology, fusion reactor researches, tokamak theory and simulation, and social and environment safety research has to be advanced. (S.Y.)

  6. Particle and energy balances in tokamak plasmas

    International Nuclear Information System (INIS)

    Computational and experimental studies on particle and energy balances in tokamak plasmas are described. Firstly, concerning the modeling of tokamak plasmas, the particle balance considering diffusion and recycling, and the energy balance considering transport and energy losses due to impurities are discussed. Production mechanisms of gaseous and metallic impurities, which play important role in tokamak plasmas, are also discussed from a viewpoint of plasma-wall interactions. Scaling laws of density, temperature and energy confinement time are shown on the basis of recent data. Secondarily, tokamak plasmas are simulated with the above model, and anomalous diffusion and electron thermal conduction are indicated. Characteristics of a future tokamak plasma are also simulated. Stationary impurity density distributions and related energy losses, such as bremsstrahlung, ionization and excitation, are calculated taking into account diffusion and ionization processes. Edge cooling by oxygen impurities is described quantitatively compared with experiments. Permissible impurity levels of carbon, oxygen and iron in future large tokamaks are estimated. Thirdly, experimental studies on surface cleaning methods of the first wall are described; discharge cleaning in JFT-2, baking effect on the outgassing rates of wall materials, surface treatment of high-temperature molybdenum by oxygen and hydrogen gases, and in-situ coating of molybdenum by a coaxial magnetron sputter method. Lastly, problems in future large tokamaks aiming at break-even or self-ignited plasma are discussed quantitatively, such as trapped particle instabilities, impurities and additional heating. It is predicted that new conceptions will be necessary to overcome the problems and attain the fusion goal. (auth.)

  7. The JT-60 tokamak machine

    International Nuclear Information System (INIS)

    JT-60 is a large tokamak experimental device under construction at JAERI with main device parameters of R=3.0m, a=0.95m, Bsub(t)=45kG, and Isub(p)=2.7Ma. Its basic aim is to produce and confine hydrogen plasmas of temperatures in a multi-keV range and of confinement times comparable to a second, and to study its plasma-physics properties as well as engineering problems associated with them. The JT-60 tokamak machine is mainly composed of a vacuum vessel, toroidal field (TF) coils, poloidal field (PF) coils, and support structures. The vacuum vessel is a high toroidal chamber with an egg-shaped crossection, consisting of sectorial rigid rings and parallel bellows made from Inconel 625. It is baked out at a maximum temperature up to 5000C. Several kinds of first walls made from molybdenum are bolt-jointed to the vacuum vessel for its protection. The vacuum vessel is almost completely finished with design and is deeply into manufacturing. The TF system consists of 18 unit coils located around a torus axis at regular intervals. The unit coil composed of two pancakes are wedge-shaped at the section close to a torus axis and encased in a high-manganese non-magnetic steel case. Fabrication of the TF coils will be finished in May 1981. The PF coils are composed of ohmic heating coils, vertical field coils, horizontal field coils, and quadrupole field coils located inside the TF coil bore and outside the vacuum vessel, and magnetic limiter coils placed in the vacuum vessel. Its mechanical and thermal design is almost completed are composed of the upper and lower support structures, support comuns of the vacuum vessel, and central column made from high-manganese non-magnetic steel. The structural analysis was completed including a seismic analysis and the fabrication is now in progress. The first plasma is expected to be produced in October 1984. (orig.)

  8. Plasma Physics Regimes in Tokamaks with Li Walls

    International Nuclear Information System (INIS)

    Low recycling regimes with a plasma limited by a lithium wall surface suggest enhanced stability and energy confinement, both necessary for tokamak reactors. These regimes could make ignition feasible in compact tokamaks. Ignited Spherical Tokamaks (IST), self-sufficient in the bootstrap current, are introduced as a necessary step for development of the physics and technology of power reactors

  9. Small tokamaks for fusion technology testing

    International Nuclear Information System (INIS)

    Small steady-state tokamaks for testing divertors and fusion nuclear technologies are considered. Based on present physics and technology data and explanation to reduce R0/a, H-D-fueled tokamaks with R0 ∼ 0.6--0.75 m, R0/a ∼ 1.8--2.5, and Bt0 ∼ 1.4--2.2 T can be driven with Ptot ∼ 4.5 MW to maintain Ip ∼ 0.5 MA and produce the ITER-level plasma edge and divertor conditions. Given an adequate steady-state divertor solution and Q∼1 operation based on fusion through the suprathermal component, D-T-fueled tokamaks with R0 ∼ 0.8 m, R0/a ∼ 2, and Bt0 ∼ 4 T can be driven with Ptot ∼ 15 MW to maintain Ip ∼ 4.6 MA and produce an peak neutron wall load WL ∼ 1 MW/m2. Such devices appear possible if the plasma properties at the power R0/a remain tokamak-like and, for the D-T case, can unshielded center core is feasible. The use of a single conductor as the inboard leg of the toroidal field coils for this purpose is discussed. The physics issues and the design features are identified for such tokamaks with a testing duty for factor goal of 10--20%

  10. Three novel tokamak plasma regimes in TFTR

    International Nuclear Information System (INIS)

    Aside from extending ''standard'' ohmic and neutral beam heating studies to advanced plasma parameters, TFTR has encountered a number of special plasma regimes that have the potential to shed new light on the physics of tokamak confinement and the optimal design of future D-T facilities: (1) High-powered, neutral beam heating at low plasma densities can maintain a highly reactive hot-ion population (with quasi-steady-state beam fueling and current drive) in a tokamak configuration of modest bulk-plasma confinement requirements. (2) Plasma displacement away from limiter contact lends itself to clarification of the role of edge-plasma recycling and radiation cooling within the overall pattern of tokamak heat flow. (3) Noncentral auxiliary heating (with a ''hollow'' power-deposition profile) should serve to raise the central tokamak plasma temperature without deterioration of central region confinement, thus facilitating the study of alpha-heating effects in TFTR. The experimental results of regime (3) support the theory that tokamak profile consistency is related to resistive kink stability and that the global energy confinement time is determined by transport properties of the plasma edge region

  11. Three novel tokamak plasma regimes in TFTR

    Energy Technology Data Exchange (ETDEWEB)

    Furth, H.P.

    1985-10-01

    Aside from extending ''standard'' ohmic and neutral beam heating studies to advanced plasma parameters, TFTR has encountered a number of special plasma regimes that have the potential to shed new light on the physics of tokamak confinement and the optimal design of future D-T facilities: (1) High-powered, neutral beam heating at low plasma densities can maintain a highly reactive hot-ion population (with quasi-steady-state beam fueling and current drive) in a tokamak configuration of modest bulk-plasma confinement requirements. (2) Plasma displacement away from limiter contact lends itself to clarification of the role of edge-plasma recycling and radiation cooling within the overall pattern of tokamak heat flow. (3) Noncentral auxiliary heating (with a ''hollow'' power-deposition profile) should serve to raise the central tokamak plasma temperature without deterioration of central region confinement, thus facilitating the study of alpha-heating effects in TFTR. The experimental results of regime (3) support the theory that tokamak profile consistency is related to resistive kink stability and that the global energy confinement time is determined by transport properties of the plasma edge region.

  12. Electron thermal transport in tokamak plasmas

    International Nuclear Information System (INIS)

    The process of fusion of small nuclei thereby releasing energy, as it occurs continuously in the sun, is essential for the existence of mankind. The same process applied in a controlled way on earth would provide a clean and an abundant energy source, and be the long term solution of the energy problem. Nuclear fusion requires an extremely hot (108 K) ionized gas, a plasma, that can only be maintained if it is kept insulated from any material wall. In the so called 'tokamak' this is achieved by using magnetic fields. The termal insulation, which is essential if one wants to keep the plasma at the high 'fusion' temperature, can be predicted using basic plasma therory. A comparison with experiments in tokamaks, however, showed that the electron enery losses are ten to hundred times larger than this theory predicts. This 'anomalous transport' of thermal energy implies that, to reach the condition for nuclear fusion, a fusion reactor must have very large dimensions. This may put the economic feasibility of fusion power in jeopardy. Therefore, in a worldwide collaboration, physicists study tokamak plasmas in an attempt to understand and control the energy losses. From a scientific point of view, the mechanisms driving anomalous transport are one of the challenges in fudamental plasma physics. In Nieuwegein, a tokamak experiment (the Rijnhuizen Tokamak Project, RTP) is dedicated to the study of anomalous transport, in an international collaboration with other laboratories. (orig./WL)

  13. Simulation of burning tokamak plasmas

    International Nuclear Information System (INIS)

    To simulate dynamical behaviour of tokamak fusion reactors, a zero-dimensional time-dependent particle and power balance code has been developed. The zero-dimensional plasma model is based on particle and power balance equations that have been integrated over the plasma volume using prescribed profiles for plasma parameters. Therefore, the zero-dimensional model describes the global dynamics of a fusion reactor. The zero-dimensional model has been applied to study reactor start-up, and plasma responses to changes in the plasma confinement, fuelling rate, and impurity concentration, as well as to study burn control via fuelling modulation. Predictions from the zero-dimensional code have been compared with experimental data and with transport calculations of a higher dimensionality. In all cases, a good agreement was found. The advantage of the zero-dimensional code, as compared to higher-dimensional transport codes, is the possibility to quickly scan the interdependencies between reactor parameters. (88 refs., 58 figs., 6 tabs.)

  14. THOR tokamak magnetic field system

    International Nuclear Information System (INIS)

    The THOR Machine is an iron cored Tokamak having a major radius of 0.52 m and a minor radius of 0.17 m giving an aspect ratio of 3:1. It has a low ripple toroidal field of 1 T and an iron core giving 0.24 Vs. The maximum plasma current is expected to be in the region of 80x103 A. The maximum toroidal field ripple on axis is of the order of 0.01% and 2.5% at the plasma edge. The equilibrium of the plasma is achieved by means of a D.C. vertical field and a 1 cm thick copper shell. The D.C. field is cancelled during the rise time of the plasma current by means of pulsed reverse vertical field windings placed between the copper shell and the vacuum vessel. The design of this field system represents a compromise between obtaining adequate field penetration through the relatively thin vacuum vessel and maintaining the mechanical strength necessary to withstand the transient magnetic forces. Energy for the toroidal field system is supplied by a 15 kV 600 kJ capacitor bank and for the ohmic heating and reverse vertical fields by 5 kV 25 kJ and 50 kJ banks respectively. The problems encountered in the design, development and manufacture of these field systems are discussed. (author)

  15. Stability analysis of tokamak plasmas

    International Nuclear Information System (INIS)

    In a tokamak plasma, the energy transport is mainly turbulent. In order to increase the fusion reactions rate, it is needed to improve the energy confinement. The present work is dedicated to the identification of the key parameters leading to plasmas with a better confined energy in order to guide the future experiments. For this purpose, a numerical code has been developed. It calculates the growth rates characterizing the instabilities onset. The stability analysis is completed by the evaluation of the shearing rate of the rotation due to the radial electric field. When this shearing rate is greater than the growth rate the ion turbulence is fully stabilised. The shearing rate and the growth rate are determined from the density, temperature and security factor profiles of a given plasma. Three types of plasmas have been analysed. In the Radiative Improved modes of TEXTOR, high charge number ions seeding lowers the growth rates. In Tore Supra-high density plasmas, a strong magnetic shear and/or a more efficient ion heating linked to a bifurcation of the toroidal rotation direction (which is not understood) trigger the improvement of the confinement. In other Tore Supra plasmas, locally steep electron pressure gradients have been obtained following magnetic shear reversal. This locally negative magnetic shear has a stabilizing effect. In these three families of plasmas, the growth rates decrease, the confinement improves, the density and temperature profiles are steeper. This steepening induces an increase of the rotation shearing rate, which then maintains the confinement high quality. (author)

  16. Microtearing modes in tokamak discharges

    Science.gov (United States)

    Rafiq, T.; Weiland, J.; Kritz, A. H.; Luo, L.; Pankin, A. Y.

    2016-06-01

    Microtearing modes (MTMs) have been identified as a source of significant electron thermal transport in tokamak discharges. In order to describe the evolution of these discharges, it is necessary to improve the prediction of electron thermal transport. This can be accomplished by utilizing a model for transport driven by MTMs in whole device predictive modeling codes. The objective of this paper is to develop the dispersion relation that governs the MTM driven transport. A unified fluid/kinetic approach is used in the development of a nonlinear dispersion relation for MTMs. The derivation includes the effects of electrostatic and magnetic fluctuations, arbitrary electron-ion collisionality, electron temperature and density gradients, magnetic curvature, and the effects associated with the parallel propagation vector. An iterative nonlinear approach is used to calculate the distribution function employed in obtaining the nonlinear parallel current and the nonlinear dispersion relation. The third order nonlinear effects in magnetic fluctuations are included, and the influence of third order effects on a multi-wave system is considered. An envelope equation for the nonlinear microtearing modes in the collision dominant limit is introduced in order to obtain the saturation level. In the limit that the mode amplitude does not vary along the field line, slab geometry, and strong collisionality, the fluid dispersion relation for nonlinear microtearing modes is found to agree with the kinetic dispersion relation.

  17. Tokamak x ray diagnostic instrumentation

    International Nuclear Information System (INIS)

    Three classes of x-ray diagnostic instruments enable measurement of a variety of tokamak physics parameters from different features of the x-ray emission spectrum. (1) The soft x-ray (1 to 50 keV) pulse-height-analysis (PHA) diagnostic measures impurity concentrations from characteristic line intensities and the continuum enhancement, and measures the electron temperature from the continuum slope. (2) The Bragg x-ray crystal spectrometer (XCS) measures the ion temperature and neutral-beam-induced toroidal rotation velocity from the Doppler broadening and wavelength shift, respectively, of spectral lines of medium-Z impurity ions. Impurity charge state distributions, precise wavelengths, and inner-shell excitation and recombination rates can also be studied. X rays are diffracted and focused by a bent crystal onto a position-sensitive detector. The spectral resolving power E/ΔE is greater than 104 and time resolution is 10 ms. (3) The x-ray imaging system (XIS) measures the spatial structure of rapid fluctuations (0.1 to 100 kHZ) providing information on MHD phenomena, impurity transport rates, toroidal rotation velocity, plasma position, and the electron temperature profile. It uses an array of silicon surface-barrier diodes which view different chords of the plasma through a common slot aperture and operate in current (as opposed to counting) mode. The effectiveness of shields to protect detectors from fusion-neutron radiation effects has been studied both theoretically and experimentally

  18. Simulation of runaway electrons in Tokamak disruptions

    International Nuclear Information System (INIS)

    Self-consistent modelling of the generation of runaway electrons and the evolution of the toroidal electric field during tokamak disruptions is presented. The process of runaway generation is analysed by combining a relativistic kinetic equation for the electrons with Maxwell's equations for the electric field. Such modelling allows for a quantitative assessment of the runaway generation during disruptions in present day tokamak experiments, and to extrapolate to future tokamaks like ITER. It is found that the current profile can change dramatically during a disruption, such that the post disruption current, carried mainly by the runaway electrons, is significantly more peaked than the current profile before the disruption. In fact, it is found that the central current density can increase in spite of a reduction in the total current. (authors)

  19. Activation analysis of the compact ignition tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Selcow, E.C.

    1986-01-01

    The US fusion program has completed the conceptual design of a compact tokamak device that achieves ignition. The high neutron wall loadings associated with this compact deuterium-tritium-burning device indicate that radiation-related issues may be significant considerations in the overall system design. Sufficient shielding will be requied for the radiation protection of both reactor components and occupational personnel. A close-in igloo shield has been designed around the periphery of the tokamak structure to permit personnel access into the test cell after shutdown and limit the total activation of the test cell components. This paper describes the conceptual design of the igloo shield system and discusses the major neutronic concerns related to the design of the Compact Ignition Tokamak.

  20. Activation analysis of the compact ignition tokamak

    International Nuclear Information System (INIS)

    The US fusion program has completed the conceptual design of a compact tokamak device that achieves ignition. The high neutron wall loadings associated with this compact deuterium-tritium-burning device indicate that radiation-related issues may be significant considerations in the overall system design. Sufficient shielding will be requied for the radiation protection of both reactor components and occupational personnel. A close-in igloo shield has been designed around the periphery of the tokamak structure to permit personnel access into the test cell after shutdown and limit the total activation of the test cell components. This paper describes the conceptual design of the igloo shield system and discusses the major neutronic concerns related to the design of the Compact Ignition Tokamak

  1. Effect of impurity radiation on tokamak equilibrium

    International Nuclear Information System (INIS)

    The energy loss from a tokamak plasma due to the radiation from impurities is of great importance in the overall energy balance. Taking the temperature dependence of this loss for two impurities characteristic of those present in existing tokamak plasmas, the condition for radial power balance is derived. For the impurities considered (oxygen and iron) it is found that the radiation losses are concentrated in a thin outer layer of the plasma and the equilibrium condition places an upper limit on the plasma paraticle number density in this region. This limiting density scales with mean current density in the same manner as is experimentally observed for the peak number density of tokamak plasmas. The stability of such equilibria is also discussed. (author)

  2. Mass spectrometry instrumentation in TN (Novillo Tokamak)

    International Nuclear Information System (INIS)

    The mass spectrophotometry in the residual gases analysis in high vacuum systems, in particular in the Novillo Tokamak (TN), where pressures are required to be of the order 10-7 Torr, is carried out through an instrumental support with infrastructure configured in parallel to the experimental planning in this device. In the Novillo as well as other Tokamaks, it is necessary to condition the vacuum chamber for improving the main discharge parameters. At the present time, in this Tokamak the conditioning quality is presented determined by means of a mass spectrophotometer. A general instrumental description is presented associated with the Novillo conditioning, as well as the spectras obtained before and after operation. (Author)

  3. Current drive by spheromak injection into a tokamak

    OpenAIRE

    Brown, M. R.; Bellan, P. M.

    1990-01-01

    We report the first observation of current drive by injection of a spheromak plasma into a tokamak (Caltech ENCORE small reasearch tokamak) due to the process of helicity injection. After an abrupt 30% increase, the tokamak current decays by a factor of 3 due to plasma cooling caused by the merging of the relatively cold spheromak with the tokamak. The tokamak density profile peaks sharply due to the injected spheromak plasma (n¯3 increases by a factor of 6) then becomes hollow, suggestive of...

  4. Periodic disruptions in the MT-1 tokamak

    International Nuclear Information System (INIS)

    Disruptive instabilities are common phenomena in toroidal devices, especially in tokamaks. Three types can be distinguished: internal, minor and major disruptions. Periodic minor disruptions in the MT-1 tokamak were measured systematically with values of the limiter safety factor between 4 and 10. The density limit as a function of plasma current and horizontal displacement was investigated. Precursor oscillations always appear before the instability with increasing amplitude but can be observed at the density limit with quasi-stationary amplitude. Phase correlation between precursor oscillations were measured with Mirnov coils and x-ray detectors, and they show good agreement with a simple magnetic island model. (R.P.) 11 refs.; 6 figs

  5. Can better modelling improve tokamak control?

    International Nuclear Information System (INIS)

    The control of present day tokamaks usually relies upon primitive modelling and TCV is used to illustrate this. A counter example is provided by the successful implementation of high order SISO controllers on COMPASS-D. Suitable models of tokamaks are required to exploit the potential of modern control techniques. A physics based MIMO model of TCV is presented and validated with experimental closed loop responses. A system identified open loop model is also presented. An enhanced controller based on these models is designed and the performance improvements discussed. (author) 5 figs., 9 refs

  6. Tokamak power systems studies, FY 1985

    Energy Technology Data Exchange (ETDEWEB)

    Baker, C.C.; Brooks, J.N.; Ehst, D.A.; Smith, D.L.; Sze, D.K.

    1985-12-01

    The Tokamak Power System Studies (TPSS) at ANL in FY-1985 were devoted to exploring innovative design concepts which have the potential for making substantial improvements in the tokamak as a commercial power reactor. Major objectives of this work included improved reactor economics, improved environmental and safety features, and the exploration of a wide range of reactor plant outputs with emphasis on reduced plant sizes compared to STARFIRE. The activities concentrated on three areas: plasma engineering, impurity control, and blanket/first wall/shield technology. 205 refs., 125 figs., 107 tabs.

  7. First experiments with SST-1 tokamak

    International Nuclear Information System (INIS)

    Full text: SST-1, a steady state superconducting tokamak, is at advanced stage of erection at the Institute for Plasma Research. The objectives of SST-1 include studying the physics of the plasma processes in tokamak under steady state conditions and learning technologies related to the steady state operation of the tokamak. These studies are expected to contribute to the tokamak physics database for very long pulse operations. The SST-1 tokamak is a large aspect ratio tokamak, configured to run double null diverted plasmas with significant elongation and triangularity. The machine has a major radius of 1.1 m, minor radius of 0.20 m, a toroidal field of 3.0 T at plasma center and a plasma current of 220 kA. Hydrogen gas will be used and plasma discharge duration will be 1000 s. Superconducting (SC) magnets are deployed for both the toroidal and poloidal field coils in SST-1. An Ohmic transformer is provided for plasma breakdown and initial current ramp up. SST-1 deploys a fully welded ultra high vacuum vessel, made up of 16 vessel sectors having ports and 16 rings with D- shaped cross-section, which are welded in-situ during the SST-1 assembly. Liquid nitrogen cooled radiation shield are deployed between the vacuum vessel and SC magnets as well as Sc magnets and cryostat, to minimize the radiation losses at the Sc magnets. In SST-1 tokamak, the auxiliary current drive will be based on 1.0 MW of Lower Hybrid current drive (LHCD) at 3.7 GHz. Auxiliary heating systems include 1 MW of Ion Cyclotron Resonance Frequency system (ICRF) at 22 MHz to 91 MHz, 0.2 MW of Electron Cyclotron Resonance heating at 84 GHz and a Neutral Beam Injection (NBI) system with peak power of 0.8 MW (at 80 keV) with variable beam energy in range of 10-80 keV. The ICRF system would also be used for initial breakdown and wall conditioning experiments. The assembly of the SST-1 tokamak is nearing completion. The cool down of the Superconducting magnets is scheduled to start by middle of year 2004

  8. Electron cyclotron emission diagnostics on KSTAR tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, S. H. [Korea Atomic Energy Research Institute, 1045 Daedeokdaero, Daejeon 305-353 (Korea, Republic of); Lee, K. D.; Kwon, M. [National Fusion Research Institute, 113 Gwahangno, Daejeon 305-333 (Korea, Republic of); Kogi, Y. [Fukuoka Institute of Technology, Higashiku, Fukuoka 811-0295 (Japan); Kawahata, K.; Nagayama, Y. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Mase, A. [KASTEC, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan)

    2010-10-15

    A new electron cyclotron emission (ECE) diagnostics system was installed for the Second Korea Superconducting Tokamak Advanced Research (KSTAR) campaign. The new ECE system consists of an ECE collecting optics system, an overmode circular corrugated waveguide system, and 48 channel heterodyne radiometer with the frequency range of 110-162 GHz. During the 2 T operation of the KSTAR tokamak, the electron temperatures as well as its radial profiles at the high field side were measured and sawtooth phenomena were also observed. We also discuss the effect of a window on in situ calibration.

  9. Electron cyclotron emission diagnostics on KSTAR tokamak.

    Science.gov (United States)

    Jeong, S H; Lee, K D; Kogi, Y; Kawahata, K; Nagayama, Y; Mase, A; Kwon, M

    2010-10-01

    A new electron cyclotron emission (ECE) diagnostics system was installed for the Second Korea Superconducting Tokamak Advanced Research (KSTAR) campaign. The new ECE system consists of an ECE collecting optics system, an overmode circular corrugated waveguide system, and 48 channel heterodyne radiometer with the frequency range of 110-162 GHz. During the 2 T operation of the KSTAR tokamak, the electron temperatures as well as its radial profiles at the high field side were measured and sawtooth phenomena were also observed. We also discuss the effect of a window on in situ calibration. PMID:21033954

  10. A method for tokamak neutronics calculations

    International Nuclear Information System (INIS)

    This paper presents a new method for neutron transport calculation in tokamak fusion reactors. The computational procedure is based on the solution of the even-parity transport equation in a toroidal geometry. The angular neutron distribution is treated by even-parity spherical harmonic expansion, while the spatial dependence is approximated by using R-function finite elements that are defined for regions of arbitrary geometric shape. In order to test the method, calculation of a simplified tokamak model is carried out. The results are compared with the results from the literature and for the same order of accuracy a reduction of the number of spatial unknowns is shown. (author)

  11. Electronic system of TBR tokamak device

    International Nuclear Information System (INIS)

    The electronics developed as a part of the TBR project, which involves the construction of a small tokamak at the Physics Institute of the University of Sao Paulo, is described. On the basis of tokamak parameter values, the electronics for the toroidal field, ohmic/heating and vertical field systems is presented, including capacitors bank, switches, triggering circuits and power supplies. A controlled power oscilator used in discharge cleaning and pre-ionization is also described. The performance of the system as a function of the desired plasma parameters is discussed. (Author)

  12. Tokamak Engineering Technology Facility scoping study

    Energy Technology Data Exchange (ETDEWEB)

    Stacey, W.M. Jr.; Abdou, M.A.; Bolta, C.C.

    1976-03-01

    A scoping study for a Tokamak Engineering Technology Facility (TETF) is presented. The TETF is a tokamak with R = 3 m and I/sub p/ = 1.4 MA based on the counterstreaming-ion torus mode of operation. The primary purpose of TETF is to demonstrate fusion technologies for the Experimental Power Reactor (EPR), but it will also serve as an engineering and radiation test facility. TETF has several technological systems (e.g., superconducting toroidal-field coil, tritium fuel cycle, impurity control, first wall) that are prototypical of EPR.

  13. Radial electric fields for improved tokamak performance

    International Nuclear Information System (INIS)

    The influence of externally-imposed radial electric fields on the fusion energy output, energy multiplication, and alpha-particle ash build-up in a TFTR-sized, fusing tokamak plasma is explored. In an idealized tokamak plasma, an externally-imposed radial electric field leads to plasma rotation, but no charge current flows across the magnetic fields. However, a realistically-low neutral density profile generates a non-zero cross-field conductivity and the species dependence of this conductivity allows the electric field to selectively alter radial particle transport

  14. Tokamak Spectroscopy for X-Ray Astronomy

    Science.gov (United States)

    Fournier, Kevin B.; Finkenthal, M.; Pacella, D.; May, M. J.; Soukhanovskii, V.; Mattioli, M.; Leigheb, M.; Rice, J. E.

    2000-01-01

    This paper presents the measured x-ray and Extreme Ultraviolet (XUV) spectra of three astrophysically abundant elements (Fe, Ca and Ne) from three different tokamak plasmas. In every case, each spectrum touches on an issue of atomic physics that is important for simulation codes to be used in the analysis of high spectral resolution data from current and future x-ray telescopes. The utility of the tokamak as a laboratory test bed for astrophysical data is demonstrated. Simple models generated with the HULLAC suite of codes demonstrate how the atomic physics issues studied can affect the interpretation of astrophysical data.

  15. Multichannel submillimeter interferometer for tokamak density measurements

    International Nuclear Information System (INIS)

    A two-channel, submillimeter (SMM) laser, electron-density interferometer has been operated successfully on the ISX tokamak. The interferometer is the first phase of a diagnostic system to measure the tokamak plasma current density using the Faraday rotation of the polarization vector of SMM laser beams. Deuterated formic acid lasers (lambda = 0.381 mm) have produced cw power of 10 mW. The interferometer has performed successfully for line-averaged electron densities as high as 8 x 1013 cm-3

  16. Tokamak power systems studies, FY 1985

    International Nuclear Information System (INIS)

    The Tokamak Power System Studies (TPSS) at ANL in FY-1985 were devoted to exploring innovative design concepts which have the potential for making substantial improvements in the tokamak as a commercial power reactor. Major objectives of this work included improved reactor economics, improved environmental and safety features, and the exploration of a wide range of reactor plant outputs with emphasis on reduced plant sizes compared to STARFIRE. The activities concentrated on three areas: plasma engineering, impurity control, and blanket/first wall/shield technology. 205 refs., 125 figs., 107 tabs

  17. A need for non-tokamak approaches to magnetic fusion energy

    International Nuclear Information System (INIS)

    Focusing exclusively on conventional tokamak physics in the quest for commercial fusion power is premature, and the options for both advanced-tokamak and non-tokamak concepts need continued investigation. The basis for this claim is developed, and promising advanced-tokamak and non-tokamak options are suggested

  18. Spontaneous generation of rotation in tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Parra Diaz, Felix [Oxford University

    2013-12-24

    Three different aspects of intrinsic rotation have been treated. i) A new, first principles model for intrinsic rotation [F.I. Parra, M. Barnes and P.J. Catto, Nucl. Fusion 51, 113001 (2011)] has been implemented in the gyrokinetic code GS2. The results obtained with the code are consistent with several experimental observations, namely the rotation peaking observed after an L-H transition, the rotation reversal observed in Ohmic plasmas, and the change in rotation that follows Lower Hybrid wave injection. ii) The model in [F.I. Parra, M. Barnes and P.J. Catto, Nucl. Fusion 51, 113001 (2011)] has several simplifying assumptions that seem to be satisfied in most tokamaks. To check the importance of these hypotheses, first principles equations that do not rely on these simplifying assumptions have been derived, and a version of these new equations has been implemented in GS2 as well. iii) A tokamak cross-section that drives large intrinsic rotation has been proposed for future large tokamaks. In large tokamaks, intrinsic rotation is expected to be very small unless some up-down asymmetry is introduced. The research conducted under this contract indicates that tilted ellipticity is the most efficient way to drive intrinsic rotation.

  19. INTEGRATED PLASMA CONTROL FOR ADVANCED TOKAMAKS

    International Nuclear Information System (INIS)

    OAK-B135 Advanced tokamaks (AT) are distinguished from conventional tokamaks by their high degree of shaping, achievement of profiles optimized for high confinement and stability characteristics, and active stabilization of MHD instabilities to attain high values of normalized beta and confinement. These high performance fusion devices thus require accurate regulation of the plasma boundary, internal profiles, pumping, fueling, and heating, as well as simultaneous and well-coordinated MHD control action to stabilize such instabilities as tearing modes and resistive wall modes. Satisfying the simultaneous demands on control accuracy, reliability, and performance for all of these subsystems requires a high degree of integration in both design and operation of the plasma control system in an advanced tokamak. The present work describes the approach, benefits, and progress made in integrated plasma control with application examples drawn from the DIII-D tokamak. The approach includes construction of plasma and system response models, validation of models against operating experiments, design of integrated controllers which operate in concert with one another as well as with supervisory modules, simulation of control action against off-line and actual machine control platforms, and iteration of the design-test loop to optimize performance

  20. Microinstabilities in weak density gradient tokamak systems

    International Nuclear Information System (INIS)

    A prominent characteristic of auxiliary-heated tokamak discharges which exhibit improved (''H-mode type'') confinement properties is that their density profiles tend to be much flatter over most of the plasma radius. Depsite this favorable trend, it is emphasized here that, even in the limit of zero density gradient, low-frequency microinstabilities can persist due to the nonzero temperature gradient

  1. High βp bootstrap tokamak reactor

    International Nuclear Information System (INIS)

    Basic characteristics of a steady state tokamak fusion reactor is presented. The minimum required energy multiplication factor Q is found to be 20 to 30 for the feasibility of the fusion reactor. Such a high Q steady state tokamak operation is possible, within our present knowledge of the operational constraints and the current drive physics, when a large fraction of the plasma current is carried by the bootstrap current. Operation at high βp (≥2.0) and high qψ (=4-5) with relatively small εβp (3) and fusion output power (2.5 GW) and is consistent with the present knowledges of the plasma physics of the tokamak, namely the Troyon limit, the energy confinement scalings, the bootstrap current, the current drive efficiency (NB current drive with the total power of 70 MW and the beam energy of 1 MeV) with a favorable aspect on the formation of the cold and dense diverter plasma-condition. From the economical aspect of the tokamak fusion reactor, a more compact reactor is favorable. The use of the high field magnet with Bmax = 16T (for example Ti-doped Nb3Sn conductor) enables to reduce the total machine size to 50% of the above-described conventional design, namely Rp = 7m, Vp = 760m-3, PF = 2.8 GW. (author)

  2. Tokamak fusion test reactor. Final design report

    International Nuclear Information System (INIS)

    Detailed data are given for each of the following areas: (1) system requirements, (2) the tokamak system, (3) electrical power systems, (4) experimental area systems, (5) experimental complex, (6) neutral beam injection system, (7) diagnostic system, and (8) central instrumentation control and data acquisition system

  3. Advanced tokamak concepts and reactor designs

    NARCIS (Netherlands)

    Oomens, A. A. M.

    2000-01-01

    From a discussion of fusion reactor designs based on today's well-established experience gained in the operation of large tokamaks, it is concluded that such reactors are economically not attractive. The physics involved in the various options for concept improvement is described, some examples

  4. Plasma-gun fueling for tokamak reactors

    International Nuclear Information System (INIS)

    In light of the uncertain extrapolation of gas puffing for reactor fueling and certain limitations to pellet injection, the snowplow plasma gun has been studied as a fueling device. Based on current understanding of gun and plasma behavior a design is proposed, and its performance is predicted in a tokamak reactor environment

  5. UCLA Tokamak Program Close Out Report.

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Robert John [UCLA/retired

    2014-02-04

    The results of UCLA experimental fusion program are summarized. Starting with smaller devices like Microtor, Macrotor, CCT and ending the research on the large (5 m) Electric Tokamak. CCT was the most diagnosed device for H-mode like physics and the effects of rotation induced radial fields. ICRF heating was also studied but plasma heating of University Type Tokamaks did not produce useful results due to plasma edge disturbances of the antennae. The Electric Tokamak produced better confinement in the seconds range. However, it presented very good particle confinement due to an "electric particle pinch". This effect prevented us from reaching a quasi steady state. This particle accumulation effect was numerically explained by Shaing's enhanced neoclassical theory. The PI believes that ITER will have a good energy confinement time but deleteriously large particle confinement time and it will disrupt on particle pinching at nominal average densities. The US fusion research program did not study particle transport effects due to its undue focus on the physics of energy confinement time. Energy confinement time is not an issue for energy producing tokamaks. Controlling the ash flow will be very expensive.

  6. Toroidal Alfven wave stability in ignited tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, C.Z.; Fu, G.Y.; Van Dam, J.W.

    1989-01-01

    The effects of fusion-product alpha particles on the stability of global-type shear Alfven waves in an ignited tokamak plasma are investigated in toroidal geometry. Finite toroidicity can lead to stabilization of the global Alfven eigenmodes, but it induces a new global shear Alfven eigenmodes, which is strongly destabilized via transit resonance with alpha particles. 8 refs., 2 figs.

  7. Radioactivity evaluation for the KSTAR tokamak

    International Nuclear Information System (INIS)

    The deuterium-deuterium (D-D) reaction in the KSTAR (Korea Superconducting Tokamak Advanced Research) tokamak generates neutrons with a peak yield of 2.5 x 1016 s-1 through a pulse operation of 300 s. Since the structure material of the tokamak is irradiated with neutrons, this environment will restrict work around and inside the tokamak from a radiation protection physics point of view after shutdown. Identification of neutron-produced radionuclides and evaluation of absorbed dose in the structure material are needed to develop a guiding principle for radiation protection. The activation level was evaluated by MCNP4C2 and an inventory code, FISPACT. The absorbed dose in the working area decreased by 4.26 x 10-4 mrem h-1 in the inner vessel 1.5 d after shutdown. Furthermore, tritium strongly contributes to the contamination in the graphite tile. The amount of tritium produced by neutrons was 3.03 x 106 Bq kg-1 in the carbon graphite of a plasma-facing wall. (authors)

  8. Compact tokamak reactors. Part 1 (analytic results)

    International Nuclear Information System (INIS)

    We discuss the possible use of tokamaks for thermonuclear power plants, in particular tokamaks with low aspect ratio and copper toroidal field coils. Three approaches are presented. First we review and summarize the existing literature. Second, using simple analytic estimates, the size of the smallest tokamak to produce an ignited plasma is derived. This steady state energy balance analysis is then extended to determine the smallest tokamak power plant, by including the power required to drive the toroidal field, and considering two extremes of plasma current drive efficiency. The analytic results will be augmented by a numerical calculation which permits arbitrary plasma current drive efficiency; the results of which will be presented in Part II. Third, a scaling from any given reference reactor design to a copper toroidal field coil device is discussed. Throughout the paper the importance of various restrictions is emphasized, in particular plasma current drive efficiency, plasma confinement, plasma safety factor, plasma elongation, plasma beta, neutron wall loading, blanket availability and recirculating electric power. We conclude that the latest published reactor studies, which show little advantage in using low aspect ratio unless remarkably high efficiency plasma current drive and low safety factor are combined, can be reproduced with the analytic model

  9. Analysis of sawtooth relaxation oscillations in tokamaks

    International Nuclear Information System (INIS)

    Sawtooth relaxation oscillations are analyzed using the Kadomtsev's disruption model and a thermal relaxation model. The sawtooth period is found to be very sensitive to the thermal conduction loss. Qualitative agreement between these calculations and the sawtooth period observed in several tokamaks is demonstrated

  10. Material erosion and migration in tokamaks

    International Nuclear Information System (INIS)

    The issue of first wall and divertor target lifetime represents one of the greatest challenges facing the successful demonstration of integrated tokamak burning plasma operation, even in the case of the planned next step device, ITER, which will run at a relatively low duty cycle in comparison to future fusion power plants. Material erosion by continuous or transient plasma ion and neutral impact, the subsequent transport of the released impurities through and by the plasma and their deposition and/or eventual re-erosion constitute the process of migration. Its importance is now recognized by a concerted research effort throughout the international tokamak community, comprising a wide variety of devices with differing plasma configurations, sizes and plasma-facing component material. No single device, however, operates with the first wall material mix currently envisaged for ITER, and all are far from the ITER energy throughput and divertor particle fluxes and fluences. This paper aims to review the basic components of material erosion and migration in tokamaks, illustrating each by way of examples from current research and attempting to place them in the context of the next step device. Plans for testing an ITER-like first wall material mix on the JET tokamak will also be briefly outlined

  11. INTEGRATED PLASMA CONTROL FOR ADVANCED TOKAMAKS

    Energy Technology Data Exchange (ETDEWEB)

    HUMPHREYS,D.A; FERRON,J.R; JOHNSON,R.D; LEUER,J.A; PENAFLOR,B.G; WALKER,M.L; WELANDER,A.S; KHAYRUTDINOV,R.R; DOKOUKA,V; EDGELL,D.H; FRANSSON,C.M

    2003-10-01

    OAK-B135 Advanced tokamaks (AT) are distinguished from conventional tokamaks by their high degree of shaping, achievement of profiles optimized for high confinement and stability characteristics, and active stabilization of MHD instabilities to attain high values of normalized beta and confinement. These high performance fusion devices thus require accurate regulation of the plasma boundary, internal profiles, pumping, fueling, and heating, as well as simultaneous and well-coordinated MHD control action to stabilize such instabilities as tearing modes and resistive wall modes. Satisfying the simultaneous demands on control accuracy, reliability, and performance for all of these subsystems requires a high degree of integration in both design and operation of the plasma control system in an advanced tokamak. The present work describes the approach, benefits, and progress made in integrated plasma control with application examples drawn from the DIII-D tokamak. The approach includes construction of plasma and system response models, validation of models against operating experiments, design of integrated controllers which operate in concert with one another as well as with supervisory modules, simulation of control action against off-line and actual machine control platforms, and iteration of the design-test loop to optimize performance.

  12. Characterization of the Tokamak Novillo in cleaning regime; Caracterizacion del Tokamak Novillo en regimen de limpieza

    Energy Technology Data Exchange (ETDEWEB)

    Lopez C, R.; Melendez L, L.; Valencia A, R.; Chavez A, E.; Colunga S, S.; Gaytan G, E

    1992-02-15

    In this work the obtained results of the investigation about the experimental characterization of those low energy pulsed discharges of the Tokamak Novillo are reported. With this it is possible to fix the one operation point but appropriate of the Tokamak to condition the chamber in the smallest possible time for the cleaning discharges regime before beginning the main discharge. The characterization of the cleaning discharges in those Tokamaks is an unique process and characteristic of each device, since the good points of operation are consequence of those particularities of the design of the machine. In the case of the Tokamak Novillo, besides characterizing it a contribution is made to the cleaning discharges regime which consists on the one product of the current peak to peak of plasma by the duration of the discharge Ip{sub t} like reference parameter for the optimization of the operation of the device in the cleaning discharge regime. The maximum value of the parameter I{sub (p)}t, under different work conditions, allowed to find the good operation point to condition the discharges chamber of the Tokamak Novillo in short time and to arrive to a regime in which is not necessary the preionization for the obtaining of the cleaning discharges. (Author)

  13. First experiments on the TO-2 tokamak with a divertor

    International Nuclear Information System (INIS)

    Long stable discharges have been obtained in a recetrack tokamak with toroidal divertors in low plasma density regime. Divertors sharply limit plasma filament cross section, plasma density decreasing by an order at 1 cm length near the separatrix. 8 mm thick well formed flux of plasma appears at the divertor plate. Divertor power efficiency at different modes of operation is 50- 70 %. As compared to the TO-1 nondivertor tokamak some plasma filament hot zone expansion is recorded in the TO-2 tokamak

  14. Banana orbits in elliptic tokamaks with hole currents

    Science.gov (United States)

    Martin, P.; Castro, E.; Puerta, J.

    2015-03-01

    Ware Pinch is a consequence of breaking of up-down symmetry due to the inductive electric field. This symmetry breaking happens, though up-down symmetry for magnetic surface is assumed. In previous work Ware Pinch and banana orbits were studied for tokamak magnetic surface with ellipticity and triangularity, but up-down symmetry. Hole currents appear in large tokamaks and their influence in Ware Pinch and banana orbits are now considered here for tokamaks magnetic surfaces with ellipticity and triangularity.

  15. Steady State Advanced Tokamak (SSAT): The mission and the machine

    International Nuclear Information System (INIS)

    Extending the tokamak concept to the steady state regime and pursuing advances in tokamak physics are important and complementary steps for the magnetic fusion energy program. The required transition away from inductive current drive will provide exciting opportunities for advances in tokamak physics, as well as important impetus to drive advances in fusion technology. Recognizing this, the Fusion Policy Advisory Committee and the US National Energy Strategy identified the development of steady state tokamak physics and technology, and improvements in the tokamak concept, as vital elements in the magnetic fusion energy development plan. Both called for the construction of a steady state tokamak facility to address these plan elements. Advances in physics that produce better confinement and higher pressure limits are required for a similar unit size reactor. Regimes with largely self-driven plasma current are required to permit a steady-state tokamak reactor with acceptable recirculating power. Reliable techniques of disruption control will be needed to achieve the availability goals of an economic reactor. Thus the central role of this new tokamak facility is to point the way to a more attractive demonstration reactor (DEMO) than the present data base would support. To meet the challenges, we propose a new ''Steady State Advanced Tokamak'' (SSAT) facility that would develop and demonstrate optimized steady state tokamak operating mode. While other tokamaks in the world program employ superconducting toroidal field coils, SSAT would be the first major tokamak to operate with a fully superconducting coil set in the elongated, divertor geometry planned for ITER and DEMO

  16. Systems studies of high-field tokamak ignition experiments

    International Nuclear Information System (INIS)

    A study of the interaction between the physics of ignition and the engineering constraints in the design of compact, high-field tokamak ignition demonstration devices is presented. The studies investigate the effects the various electron and ion thermal diffusivities, which result from the many tokamak scaling laws, have on the design parameters of an ignition device and show the feasibility of building and igniting a compact tokamak (R<1m). The relevant machine technology is discussed

  17. Disruption generated secondary runaway electrons in present day tokamaks

    International Nuclear Information System (INIS)

    An analysis of the runaway electron secondary generation during disruptions in present day tokamaks (JET, JT-60U, TEXTOR) was made. It was shown that even for tokamaks with the plasma current I approx 100 kA the secondary generation may dominate the runaway production during disruptions. In the same time in tokamaks with I approx 1 MA the runaway electron secondary generation during disruptions may be suppressed

  18. Numerical studies of edge localized instabilities in tokamaks

    International Nuclear Information System (INIS)

    A new computational tool, edge localized instabilities in tokamaks equilibria (ELITE), has been developed to help our understanding of short wavelength instabilities close to the edge of tokamak plasmas. Such instabilities may be responsible for the edge localized modes observed in high confinement H-mode regimes, which are a serious concern for next step tokamaks because of the high transient power loads which they can impose on divertor target plates. ELITE uses physical insight gained from analytic studies of peeling and ballooning modes to provide an efficient way of calculating the edge ideal magnetohydrodynamic stability properties of tokamaks. This paper describes the theoretical formalism which forms the basis for the code

  19. Design and construction of the KSTAR tokamak

    International Nuclear Information System (INIS)

    The extensive design effort has been focused on two major aspects of the KSTAR project mission, steady-state operation capability and 'advanced tokamak' physics. The steady-state aspect of mission is reflected in the choice of superconducting magnets, provision of actively cooled in-vessel components, and long-pulse current-drive and heating systems. The 'advanced tokamak' aspect of the mission is incorporated in the design features associated with flexible plasma shaping, double-null divertor and passive stabilizers, internal control coils , and a comprehensive set of diagnostics. Substantial progress in engineering has been made on superconducting magnets, vacuum vessel, plasma facing components, and power supplies. The new KSTAR experimental facility with cryogenic system and de-ionized water-cooling and main power systems has been designed, and the construction work has been on-going for completion in year 2004. (author)

  20. The tokamak - an imperfect frame of refernce

    International Nuclear Information System (INIS)

    It is attempted to assess the suitability of tokamaks for fusion power plants on the basis of existing design studies by reference to the reality of energy production in fission power plants. A definition of suitability criteria and a discussion of their relation to the most important features of power plants are followed by a comparative treatment. For example, the mean volumetric net electric power density in the nuclear islands of tokamak power plant designs is only 2,5 to 4 E of the value common today in light water reactor nuclear islands. In addition, configuration problems, auxiliary power requirements and energy payback time are discussed and taken into account in the assessment. (orig.)

  1. Magnetic sensor for steady state tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Neyatani, Yuzuru; Mori, Katsuharu; Oguri, Shigeru; Kikuchi, Mitsuru [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    1996-06-01

    A new type of magnetic sensor has been developed for the measurement of steady state magnetic fields without DC-drift such as integration circuit. The electromagnetic force induced to the current which leads to the sensor was used for the measurement. For the high frequency component which exceeds higher than the vibration frequency of sensor, pick-up coil was used through the high pass filter. From the results using tokamak discharges, this sensor can measure the magnetic field in the tokamak discharge. During {approx}2 hours measurement, no DC drift was observed. The sensor can respond {approx}10ms of fast change of magnetic field during disruptions. We confirm the extension of measured range to control the current which leads to the sensor. (author).

  2. The physics of tokamak start-up

    International Nuclear Information System (INIS)

    Tokamak start-up on present-day devices usually relies on inductively induced voltage from a central solenoid. In some cases, inductive startup is assisted with auxiliary power from electron cyclotron radio frequency heating. International Thermonuclear Experimental Reactor, the National Spherical Torus Experiment Upgrade and JT60, now under construction, will make use of the understanding gained from present-day devices to ensure successful start-up. Design of a spherical tokamak (ST) with DT capability for nuclear component testing would require an alternative to a central solenoid because the small central column in an ST has insufficient space to provide shielding for the insulators in the solenoid. Alternative start-up techniques such as induction using outer poloidal field coils, electron Bernstein wave start-up, coaxial helicity injection, and point source helicity injection have been used with success, but require demonstration of scaling to higher plasma current

  3. Microinstability theory in tokamaks: a review

    International Nuclear Information System (INIS)

    Significant investigations in the area of tokamak microinstability theory are reviewed. Emphasis is given to the work covering the period from 1970 through 1976. Special attention is focused on low-frequency electrostatic drift-type modes, which are generally believed to be the dominant tokamak microinstabilities under normal operating conditions. The basic linear formalism including electromagnetic (finite beta) modifications is presented along with a general survey of the numerous papers investigating specific linear and nonlinear effects on these modes. Estimates of the associated anomalous transport and confinement times are discussed, and a summary of relevant experimental results is given. Studies of the nonelectrostatic and high-frequency instabilities associated with the presence of high energy ions from neutral beam injection (or with the presence of alpha particles from fusion reactions) are also surveyed

  4. Rapidly Moving Divertor Plates In A Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    S. Zweben

    2011-05-16

    It may be possible to replace conventional actively cooled tokamak divertor plates with a set of rapidly moving, passively cooled divertor plates on rails. These plates would absorb the plasma heat flux with their thermal inertia for ~10-30 sec, and would then be removed from the vessel for processing. When outside the tokamak, these plates could be cooled, cleaned, recoated, inspected, and then returned to the vessel in an automated loop. This scheme could provide nearoptimal divertor surfaces at all times, and avoid the need to stop machine operation for repair of damaged or eroded plates. We describe various possible divertor plate designs and access geometries, and discuss an initial design for a movable and removable divertor module for NSTX-U.

  5. Runaway acceleration during magnetic reconnection in tokamaks

    International Nuclear Information System (INIS)

    In this paper, the basic theory of runaway electron production is reviewed and recent progress is discussed. The mechanisms of primary and secondary generation of runaway electrons are described and their dynamics during a tokamak disruption is analysed, both in a simple analytical model and through numerical Monte Carlo simulation. A simple criterion for when these mechanisms generate a significant runaway current is derived, and the first self-consistent simulations of the electron kinetics in a tokamak disruption are presented. Radial cross-field diffusion is shown to inhibit runaway avalanches, as indicated in recent experiments on JET and JT-60U. Finally, the physics of relativistic post-disruption runaway electrons is discussed, in particular their slowing down due to emission of synchrotron radiation, and their ability to produce electron-positron pairs in collisions with bulk plasma ions and electrons

  6. Rapidly Moving Divertor Plates In A Tokamak

    International Nuclear Information System (INIS)

    It may be possible to replace conventional actively cooled tokamak divertor plates with a set of rapidly moving, passively cooled divertor plates on rails. These plates would absorb the plasma heat flux with their thermal inertia for ∼10-30 sec, and would then be removed from the vessel for processing. When outside the tokamak, these plates could be cooled, cleaned, recoated, inspected, and then returned to the vessel in an automated loop. This scheme could provide nearoptimal divertor surfaces at all times, and avoid the need to stop machine operation for repair of damaged or eroded plates. We describe various possible divertor plate designs and access geometries, and discuss an initial design for a movable and removable divertor module for NSTX-U.

  7. The Spherical Tokamak MEDUSA for Costa Rica

    Science.gov (United States)

    Ribeiro, Celso; Vargas, Ivan; Guadamuz, Saul; Mora, Jaime; Ansejo, Jose; Zamora, Esteban; Herrera, Julio; Chaves, Esteban; Romero, Carlos

    2012-10-01

    The former spherical tokamak (ST) MEDUSA (Madison EDUcation Small Aspect.ratio tokamak, R>=3.6, under design[2]) and also the ongoing activities in low temperature plasmas. Courses in plasma physics at undergraduate and post-graduate joint programme levels are regularly conducted. The scientific programme is intend to clarify several issues in relevant physics for conventional and mainly STs, including transport, heating and current drive via Alfv'en wave, and natural divertor STs with ergodic magnetic limiter[3,4]. [1] G.D.Garstka, PhD thesis, University of Wisconsin at Madison, 1997 [2] L.Barillas et al., Proc. 19^th Int. Conf. Nucl. Eng., Japan, 2011 [3] C.Ribeiro et al., IEEJ Trans. Electrical and Electronic Eng., 2012(accepted) [4] C.Ribeiro et al., Proc. 39^th EPS Conf. Contr. Fusion and Plasma Phys., Sweden, 2012

  8. Module description of TOKAMAK equilibrium code MEUDAS

    International Nuclear Information System (INIS)

    The analysis of an axisymmetric MHD equilibrium serves as a foundation of TOKAMAK researches, such as a design of devices and theoretical research, the analysis of experiment result. For this reason, also in JAERI, an efficient MHD analysis code has been developed from start of TOKAMAK research. The free boundary equilibrium code ''MEUDAS'' which uses both the DCR method (Double-Cyclic-Reduction Method) and a Green's function can specify the pressure and the current distribution arbitrarily, and has been applied to the analysis of a broad physical subject as a code having rapidity and high precision. Also the MHD convergence calculation technique in ''MEUDAS'' has been built into various newly developed codes. This report explains in detail each module in ''MEUDAS'' for performing convergence calculation in solving the MHD equilibrium. (author)

  9. Module description of TOKAMAK equilibrium code MEUDAS

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Masaei; Hayashi, Nobuhiko; Matsumoto, Taro; Ozeki, Takahisa [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    2002-01-01

    The analysis of an axisymmetric MHD equilibrium serves as a foundation of TOKAMAK researches, such as a design of devices and theoretical research, the analysis of experiment result. For this reason, also in JAERI, an efficient MHD analysis code has been developed from start of TOKAMAK research. The free boundary equilibrium code ''MEUDAS'' which uses both the DCR method (Double-Cyclic-Reduction Method) and a Green's function can specify the pressure and the current distribution arbitrarily, and has been applied to the analysis of a broad physical subject as a code having rapidity and high precision. Also the MHD convergence calculation technique in ''MEUDAS'' has been built into various newly developed codes. This report explains in detail each module in ''MEUDAS'' for performing convergence calculation in solving the MHD equilibrium. (author)

  10. Global migration of impurities in tokamaks

    International Nuclear Information System (INIS)

    The migration of impurities in tokamaks has been studied with the help of tracer-injection (13C and 15N) experiments in JET and ASDEX Upgrade since 2001. We have identified a common pattern for the migrating particles: scrape-off layer flows drive impurities from the low-field side towards the high-field side of the vessel. Migration is also sensitive to the density and magnetic configuration of the plasma, and strong local variations in the resulting deposition patterns require 3D treatment of the migration process. Moreover, re-erosion of the deposited particles has to be taken into account to properly describe the migration process during steady-state operation of the tokamak. (paper)

  11. KTM Tokamak operation scenarios software infrastructure

    International Nuclear Information System (INIS)

    One of the largest problems for tokamak devices such as Kazakhstan Tokamak for Material Testing (KTM) is the operation scenarios' development and execution. Operation scenarios may be varied often, so a convenient hardware and software solution is required for scenario management and execution. Dozens of diagnostic and control subsystems with numerous configuration settings may be used in an experiment, so it is required to automate the subsystem configuration process to coordinate changes of the related settings and to prevent errors. Most of the diagnostic and control subsystems software at KTM was unified using an extra software layer, describing the hardware abstraction interface. The experiment sequence was described using a command language. The whole infrastructure was brought together by a universal communication protocol supporting various media, including Ethernet and serial links. The operation sequence execution infrastructure was used at KTM to carry out plasma experiments.

  12. KTM Tokamak operation scenarios software infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Pavlov, V.; Baystrukov, K.; Golobkov, YU.; Ovchinnikov, A.; Meaentsev, A.; Merkulov, S.; Lee, A. [National Research Tomsk Polytechnic University, Tomsk (Russian Federation); Tazhibayeva, I.; Shapovalov, G. [National Nuclear Center (NNC), Kurchatov (Kazakhstan)

    2014-10-15

    One of the largest problems for tokamak devices such as Kazakhstan Tokamak for Material Testing (KTM) is the operation scenarios' development and execution. Operation scenarios may be varied often, so a convenient hardware and software solution is required for scenario management and execution. Dozens of diagnostic and control subsystems with numerous configuration settings may be used in an experiment, so it is required to automate the subsystem configuration process to coordinate changes of the related settings and to prevent errors. Most of the diagnostic and control subsystems software at KTM was unified using an extra software layer, describing the hardware abstraction interface. The experiment sequence was described using a command language. The whole infrastructure was brought together by a universal communication protocol supporting various media, including Ethernet and serial links. The operation sequence execution infrastructure was used at KTM to carry out plasma experiments.

  13. Boundary Plasma Turbulence Simulations for Tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Xu, X; Umansky, M; Dudson, B; Snyder, P

    2008-05-15

    The boundary plasma turbulence code BOUT models tokamak boundary-plasma turbulence in a realistic divertor geometry using modified Braginskii equations for plasma vorticity, density (ni), electron and ion temperature (T{sub e}; T{sub i}) and parallel momenta. The BOUT code solves for the plasma fluid equations in a three dimensional (3D) toroidal segment (or a toroidal wedge), including the region somewhat inside the separatrix and extending into the scrape-off layer; the private flux region is also included. In this paper, a description is given of the sophisticated physical models, innovative numerical algorithms, and modern software design used to simulate edge-plasmas in magnetic fusion energy devices. The BOUT code's unique capabilities and functionality are exemplified via simulations of the impact of plasma density on tokamak edge turbulence and blob dynamics.

  14. Electromagnetic effects of plasma disruptions in tokamaks

    International Nuclear Information System (INIS)

    The tokamak is modeled as typically 100 mutually-coupled toroidal circuits. The self and mutual inductances and the currents and voltages are calculated. Using the calculated currents, the poloidal magnetic field and the electromagnetic forces as functions of space and time are calculated. The major conclusion of the analysis is that the torus sectors should be electrically connected to each other near the plasma. Such connections reduce the structural loads, eliminate arcing, and reduce the induced potentials in the poloidal field coils

  15. Confinement scaling and ignition in tokamaks

    International Nuclear Information System (INIS)

    A drift wave turbulence model is used to compute the scaling and magnitude of central electron temperature and confinement time of tokamak plasmas. The results are in accord with experiment. Application to ignition experiments shows that high density (1 to 2) . 1015 cm-3, high field, B/sub T/ > 10 T, but low temperature T approx. 6 keV constitute the optimum path to ignition

  16. Smaller coil systems for tokamak reactors

    International Nuclear Information System (INIS)

    Ripple reduction by ferro-magnetic iron shielding is used to reduce the size of the toroidal field coils down to 7.8 by 10.4 m bore for a commercial tokamak reactor design with plasma parameters similar to STARFIRE. For maximum effectiveness, it is found that the blocks of ferromagnetic iron shielding should have triangular cross section and should be placed as close to the plasma as possible

  17. Comparison of tokamak burn cycle options

    International Nuclear Information System (INIS)

    Experimental confirmation of noninductive current drive has spawned a number of suggestions as to how this technique can be used to extend the fusion burn period and improve the reactor prospects of tokamaks. Several distinct burn cycles, which employ various combinations of Ohmic and noninductive current generation, are possible, and we will study their relative costs and benefits for both a commerical reactor as well as an INTOR-class device. We begin with a review of the burn cycle options

  18. Microwave correllation reflectometry for tokamak CASTOR

    Czech Academy of Sciences Publication Activity Database

    Nanobashvili, S.; Žáček, František; Zajac, Jaromír

    2005-01-01

    Roč. 55, č. 6 (2005), s. 701-719. ISSN 0011-4626 R&D Projects: GA AV ČR IAA1043101 Grant ostatní: GA EU(EU) INTAS ´2001 1B-2056 Institutional research plan: CEZ:AV0Z20430508 Keywords : microwaves * tokamak * plasma * turbulence * reflectometry Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.360, year: 2005

  19. Bifurcated Helical Core Equilibrium States in Tokamaks

    International Nuclear Information System (INIS)

    Full text: Tokamaks with weak to moderate reversed central magnetic shear in which the minimum of the inverse rotational transform qmin is in the neighbourhood of unity can trigger bifurcated MagnetoHydroDynamic (MHD) equilibrium states. In addition to the standard axisymmetric branch that can be obtained with standard Grad-Shafranov solvers, a novel branch with a three-dimensional (3D) helical core has been computed with the ANIMEC code, an anisotropic pressure extension of the VMEC code. The solutions have imposed nested magnetic flux surfaces and are similar to saturated ideal internal kink modes. The difference in energy between both possible branches is very small. Plasma elongation, current and β enhance the susceptibility for bifurcations to occur. An initial value nonlinear ideal MHD evolution of the axisymmetric branch compares favourably with the helical core equilibrium structures calculated. Peaked prescribed pressure profiles reproduce the 'snake' structures observed in many tokamaks which has led to a new explanation of the snake as a bifurcated helical equilibrium state that results from a saturated ideal internal kink in which pellets or impurities induce a hollow current profile. Snake equilibrium structures are computed in free boundary TCV tokamak simulations. Magnetic field ripple and resonant magnetic perturbations in MAST free boundary calculations do not alter the helical core deformation in a significant manner when qmin is near unity. These bifurcated solutions constitute a paradigm shift that motivates the application of tools developed for stellarator research in tokamak physics investigations. The examination of fast ion confinement in this class of equilibria is performed with the VENUS code in which a coordinate independent noncanonical phase-space Lagrangian formulation of guiding centre drift orbit theory has been implemented. (author)

  20. Tore Supra. Basic design Tokamak system

    International Nuclear Information System (INIS)

    This document describes the basic design for the main components of the Tokamak system of Tora Supra. As such, it focuses on the engineering problems, and refers to last year report on Tora Supra (EUR-CEA-1021) for objectives and experimental programme of the apparatus on one hand, and for qualifying tests of the main technical solutions on the other hand. Superconducting toroidal field coil system, vacuum vessels and radiation shields, poloidal field system and cryogenic system are described

  1. Frascati Tokamak Upgrade (FTU): Results and developments

    International Nuclear Information System (INIS)

    In the present note the relation is examined between the FTU experimental programme and the most important issues in controlled thermonuclear fusion researches. FTU is a high-density, high magnetic field tokamak devoted to the study of plasma heating and current drive, energy and particle confinement and plasma-wall interaction. The most important FTU results and their relevance for ITER will be discussed

  2. Self-Organized Stationary States of Tokamaks.

    Science.gov (United States)

    Jardin, S C; Ferraro, N; Krebs, I

    2015-11-20

    We demonstrate that in a 3D resistive magnetohydrodynamic simulation, for some parameters it is possible to form a stationary state in a tokamak where a saturated interchange mode in the center of the discharge drives a near helical flow pattern that acts to nonlinearly sustain the configuration by adjusting the central loop voltage through a dynamo action. This could explain the physical mechanism for maintaining stationary nonsawtoothing "hybrid" discharges, often referred to as "flux pumping." PMID:26636854

  3. Tokamak with liquid metal toroidal field coil

    Science.gov (United States)

    Ohkawa, Tihiro; Schaffer, Michael J.

    1981-01-01

    Tokamak apparatus includes a pressure vessel for defining a reservoir and confining liquid therein. A toroidal liner disposed within the pressure vessel defines a toroidal space within the liner. Liquid metal fills the reservoir outside said liner. Electric current is passed through the liquid metal over a conductive path linking the toroidal space to produce a toroidal magnetic field within the toroidal space about the major axis thereof. Toroidal plasma is developed within the toroidal space about the major axis thereof.

  4. Lower hybrid heating of tokamaks to ignition

    International Nuclear Information System (INIS)

    The incorporation of a quasi-linear collisional wave damping model of lower hybrid electron heating into a radial transport code reveals favourable prospects for heating tokamak plasmas to ignition. The RF frequencies considered here are such that the wave interaction is primarily with the electrons. For a particular test reactor design, 30 MW of lower hybrid power used in conjunction with a programmed plasma density start-up suffices to initiate a self-sustained thermonuclear burn. (author)

  5. Fusion technology applications of the spherical tokamak

    International Nuclear Information System (INIS)

    Fusion technology applications of the spherical tokamak are presented, exploiting its high β capability, normal conducting TF coils, compact core, high natural elongation, disruption resilience and low capital cost. We concentrate here on two particular applications: a volume neutron source (VNS) for component testing and a power plant, addressing engineering and physics issues for steady state operation. The prospect of nearer term burning plasma ST devices are discussed in the conclusions. (author)

  6. Development of Atomic Beam Probe for tokamaks

    Czech Academy of Sciences Publication Activity Database

    Berta, M.; Anda, G.; Aradi, M.; Bencze, A.; Buday, Cs.; Kiss, I.G.; Tulipán, Sz.; Veres, G.; Zoletnik, S.; Havlíček, Josef; Háček, Pavel

    2013-01-01

    Roč. 88, č. 11 (2013), s. 2875-2880. ISSN 0920-3796 R&D Projects: GA MŠk(CZ) LM2011021 Institutional support: RVO:61389021 Keywords : ABP * Plasma diagnostics * COMPASS tokamak * Current density * Plasma density profile measurement Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.149, year: 2013 http://www.sciencedirect.com/science/article/pii/S0920379613005048#

  7. Self-Organized Stationary States of Tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Jardin, S. C. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Ferraro, N. [General Atomics, San Diego, CA (United States); Krebs, I. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Max-Plank-Institut fur Plasmaphysik, Garching, Germany

    2015-11-01

    We demonstrate that in a 3D resistive magnetohydrodynamic simulation, for some parameters it is possible to form a stationary state in a tokamak where a saturated interchange mode in the center of the discharge drives a near helical flow pattern that acts to nonlinearly sustain the configuration by adjusting the central loop voltage through a dynamo action. This could explain the physical mechanism for maintaining stationary nonsawtoothing "hybrid" discharges, often referred to as "flux pumping."

  8. Tokamak exhaust process for the ITER project

    International Nuclear Information System (INIS)

    The ITER project calls for an unprecedented amount of hydrogen isotopes to be processed. To facilitate environmental responsibility and economic application of fusion technology, the re-use of hydrogen isotopes is vital. The US ITER Project Office (USIPO) is responsible for the front end of the ITER Tritium Plant, the Tokamak Exhaust Processing (TEP) System. The TEP system must separate the Tokamak exhaust gases into a stream containing only hydrogen isotopes and a stream containing only non-hydrogen gases. The USIPO has selected the Savannah River National Laboratory (SRNL) in partnership with the Los Alamos National Laboratory (LANL) to complete the TEP portion of the project. SRNL's participation builds on the laboratory's decades of work with hydrogen and its isotopes deuterium and tritium - providing the applied research and development that supports the Savannah River Site's handling of tritium. SRNL's experience and expertise in large-scale tritium processing systems and its track record of effective project execution are a unique combination that is key to the success of the ITER project. LANL brings to the partnership experience and expertise in tritium processing technologies specific to the fusion program. This knowledge and understanding were gained through the development and operation of the Tritium Systems Test Assembly at Los Alamos for over 20 years starting in the late 1970's. The US's implementation of the tokamak exhaust processing (TEP) system will provide a technically mature, robust, and cost-effective solution for the separation of hydrogen isotopes from the tokamak exhaust stream. The TEP technology, design challenges, and project status will be presented. (orig.)

  9. MHD stability of an almost circular tokamak

    International Nuclear Information System (INIS)

    In a tokamak, the ratio β between the plasma pressure and that of the magnetic field is limited by the appearance of instabilities. The magnetic field in a tokamak reactor will always be limited by technological constraints. It is therefore crucial to know what factors have an effect on the β limit, since a zero resistivity plasma fluid model allows for theoretical reproduction of the β limits observed experimentally. Theoretical studies have shown that the distributions of pressure and current density may have a substantial effect on the β limit. The effect of the current density and pressure distributions on the β limit has been studied for tokamak with a circular core section. The best results are obtained when the current density is concentrated in the centre of the section and is nil at the periphery. But the second region of stability against ballooning modes cannot be obtained in a circular tokamak owing to the destabilisation of the universal modes. This study was then extended to the stability of plasmas the section of which is almost circular and has a point of reflection. Such configurations are vital for fusion since they allow systems in which the confinement time does not deteriorate with an increase in the additional heating power. The β limit was calculated for different positions of the reflection point. The results show that when it is displaced from the interior towards the exterior of the torus, the stability of the overall modes is progressively improved until it is vertical. But if the point of reflection is further displaced from this vertical position towards the exterior of the torus, localised modes close to the edge of the plasma are destabilised and bring about a drop in the β limit. (author) figs., tabs., 80 refs

  10. Tokamaks: from A D Sakharov to the present (the 60-year history of tokamaks)

    International Nuclear Information System (INIS)

    The paper is prepared on the basis of the report presented at the session of the Physical Sciences Division of the Russian Academy of Sciences (RAS) at the Lebedev Physical Institute, RAS on 25 May 2011, devoted to the 90-year jubilee of Academician Andrei D Sakharov - the initiator of controlled nuclear fusion research in the USSR. The 60-year history of plasma research work in toroidal devices with a longitudinal magnetic field suggested by Andrei D Sakharov and Igor E Tamm in 1950 for the confinement of fusion plasma and known at present as tokamaks is described in brief. The recent (2006) agreement among Russia, the EU, the USA, Japan, China, the Republic of Korea, and India on the joint construction of the international thermonuclear experimental reactor (ITER) in France based on the tokamak concept is discussed. Prospects for using the tokamak as a thermonuclear (14 MeV) neutron source are examined. (conferences and symposia)

  11. Tokamaks: from A D Sakharov to the present (the 60-year history of tokamaks)

    Science.gov (United States)

    Azizov, E. A.

    2012-02-01

    The paper is prepared on the basis of the report presented at the session of the Physical Sciences Division of the Russian Academy of Sciences (RAS) at the Lebedev Physical Institute, RAS on 25 May 2011, devoted to the 90-year jubilee of Academician Andrei D Sakharov - the initiator of controlled nuclear fusion research in the USSR. The 60-year history of plasma research work in toroidal devices with a longitudinal magnetic field suggested by Andrei D Sakharov and Igor E Tamm in 1950 for the confinement of fusion plasma and known at present as tokamaks is described in brief. The recent (2006) agreement among Russia, the EU, the USA, Japan, China, the Republic of Korea, and India on the joint construction of the international thermonuclear experimental reactor (ITER) in France based on the tokamak concept is discussed. Prospects for using the tokamak as a thermonuclear (14 MeV) neutron source are examined.

  12. SST and ADITYA tokamak research in India

    International Nuclear Information System (INIS)

    Steady state operation of tokamaks plays an important role in high temperature magnetically confined plasma research. Steady state Superconducting Tokamak (SST) programme in India deals with the development of various technologies in this direction. SST-1 machine has been engineered and is being fabricated at the Institute for Plasma Research. The objectives of the machine are to study physics of plasma processes under steady state condition and develop the technologies related to steady state operation. Various sub-systems are being prototyped and developed. SST-1 is a large aspect ratio machine with a major radius of 1.1 m and a plasma minor radius of 0.2 m with elongation of 1.7 to 1.9 and triangularity of 0.5 to 0.7. It has been designed for 1000 sec operation at 3 T toroidal magnetic eld. Neutral beam Injection and Radio frequency heating systems are being developed to heat the plasma. Lower hybrid Current Drive system would sustain 200 kA of plasma current during 1000 sec operation. ADITYA tokamak has been upgraded with new diagnostics and RF heating systems. Thomson Scattering and ECE diagnostics have been operated. 200 kW Ion Cyclotron Resonance Heating (ICRH) and 200 kW Electron Cyclotron Resonance Heating (ECRH) systems have been successfully commissioned. RF assisted initial breakdown experiments have been initiated with these systems. (author)

  13. Management and protection system for superconducting tokamak

    Science.gov (United States)

    Juszczyk, B.; Wojenski, A.; Zienkiewicz, P.; Kasprowicz, G.; Pozniak, K.; Romaniuk, R.

    2015-09-01

    This paper describes system for a diagnostics of a high-voltage power supply section of tokamaks. System is designed to assure reliability and safety of power supply subsystems. It is divided into two main components: remote and local. Remote part is located near tokamak, whereas local part can be localised away from the tokamak area. The remote side consists of custom, standalone devices. On the other hand, the local device is based on the uTCA.4 architecture. Components are connected with an optic fibre over a link-layer protocol which provides high throughput, low latency and transmission redundancy. All main operations ie. data processing, transmission etc. are performed on the FPGA devices. At the local side there is one device treated as a master device. It implements sort of a routing table which connects consecutive system inputs and outputs. It also provides possibility for some user defined data processing. This document contains general system overview, short description of hardware used in the project and gateware implementation.

  14. ADX - Advanced Divertor and RF Tokamak Experiment

    Science.gov (United States)

    Greenwald, Martin; Labombard, Brian; Bonoli, Paul; Irby, Jim; Terry, Jim; Wallace, Greg; Vieira, Rui; Whyte, Dennis; Wolfe, Steve; Wukitch, Steve; Marmar, Earl

    2015-11-01

    The Advanced Divertor and RF Tokamak Experiment (ADX) is a design concept for a compact high-field tokamak that would address boundary plasma and plasma-material interaction physics challenges whose solution is critical for the viability of magnetic fusion energy. This device would have two crucial missions. First, it would serve as a Divertor Test Tokamak, developing divertor geometries, materials and operational scenarios that could meet the stringent requirements imposed in a fusion power plant. By operating at high field, ADX would address this problem at a level of power loading and other plasma conditions that are essentially identical to those expected in a future reactor. Secondly, ADX would investigate the physics and engineering of high-field-side launch of RF waves for current drive and heating. Efficient current drive is an essential element for achieving steady-state in a practical, power producing fusion device and high-field launch offers the prospect of higher efficiency, better control of the current profile and survivability of the launching structures. ADX would carry out this research in integrated scenarios that simultaneously demonstrate the required boundary regimes consistent with efficient current drive and core performance.

  15. Experimental and theoretical basis for advanced tokamaks

    International Nuclear Information System (INIS)

    In this paper, arguments will be presented to support the attractiveness of advanced tokamaks as fusion reactors. The premise that all improved confinement regimes obtained to date were limited by magnetohydrodynamic stability will be established from experimental results. Accessing the advanced tokamak regime, therefore, requires means to overcome and enhance the beta limit. We will describe a number of ideas involving control of the plasma internal profiles, e.g. to achieve this. These approaches will have to be compatible with the underlying mechanisms for confinement improvement, such as shear rotation suppression of turbulence. For steady-state, there is a trade-off between full bootstrap current operation and the ability to control current profiles. The coupling between current drive and stability dictates the choice of sources and suggests an optimum for the bootstrap fraction. We summarize by presenting the future plans of the US confinement devices, DIII-D, PBX-M, C-Mod, to address the advanced tokamak physics issues and provide a database for the design of next-generation experiments

  16. Relativistic runaway electrons in tokamak plasmas

    International Nuclear Information System (INIS)

    Runaway electrons are inherently present in a tokamak, in which an electric field is applied to drive a toroidal current. The experimental work is performed in the tokamak TEXTOR. Here runaway electrons can acquire energies of up to 30 MeV. The runaway electrons are studied by measuring their synchrotron radiation, which is emitted in the infrared wavelength range. The studies presented are unique in the sense that they are the first ones in tokamak research to employ this radiation. Hitherto, studies of runaway electrons revealed information about their loss in the edge of the discharge. The behaviour of confined runaways was still a terra incognita. The measurement of the synchrotron radiation allows a direct observation of the behaviour of runaway electrons in the hot core of the plasma. Information on the energy, the number and the momentum distribution of the runaway electrons is obtained. The production rate of the runaway electrons, their transport and the runaway interaction with plasma waves are studied. (orig./HP)

  17. The minimum dissipation state for tokamaks

    International Nuclear Information System (INIS)

    The principle of minimum dissipation rate subject to helicity and energy balance is applied to tokamaks with an arbitrary aspect ratio. We solved the resulting Euler-Lagrange equations analytically and numerically. It is found that for low and general aspect ratio tokamaks, there exists different typical minimum dissipation state, corresponding to the typical experimental current profile respectively. It is also found that there exist different types of relaxed states in different regions of the parameter space for a selected device. Three forms of current profile are presented under different experimental conditions for a low aspect ratio tokamak like NSTX. The first peaks in the edge region of the high field side similar as the typical experimental form. The second peaks in the central region on the equatorial plane. The third may have a hole or reverse in the central part. E0/ηB0 is the key parameter in determining the final relaxed state; both the second and the third states could be obtained violently by increasing it to be above a critical value. (author)

  18. Electron cyclotron emission from tokamak plasmas

    International Nuclear Information System (INIS)

    Emitted electron radiation can be used as a diagnostic signal to measure the electron temperature of a thermonuclear plasma. This type of diagnostics is well established in tokamak physics. In ch. 2 of this thesis the development, calibration and special design features are treated of a six-channel prototype of a twelve-channel grating spectrometer which is built for JET at Culham for electron cyclotron emission (ECE) measurements. In order to test this prototype measurements have been performed with the T-10 tokamak at the Kurchatov Institute in Moscow. With this prototype nearly half of the temperature profile of the T-10 could be measured. Detailed observations of sawteeth instabilities have been performed. Plasma heating by electron cyclotron resonance heating experiments was studied. A detailed description of these measurements and results is given in ch. 3. Often ECE spectra from tokamaks showed non-thermal features. In order to interprete them a computer code Notec has been developed. This code that calculates the ECE radiation emerging from the plasma for a 3-D configuration, is described in ch. 4. Some preliminary results and applications are presented. (Auth.)

  19. The Spherical Tokamak MEDUSA for Mexico

    Science.gov (United States)

    Ribeiro, C.; Salvador, M.; Gonzalez, J.; Munoz, O.; Tapia, A.; Arredondo, V.; Chavez, R.; Nieto, A.; Gonzalez, J.; Garza, A.; Estrada, I.; Jasso, E.; Acosta, C.; Briones, C.; Cavazos, G.; Martinez, J.; Morones, J.; Almaguer, J.; Fonck, R.

    2011-10-01

    The former spherical tokamak MEDUSA (Madison EDUcation Small Aspect.ratio tokamak, R Mexico, as part of an agreement between the Faculties of Mech.-Elect. Eng. and Phy. Sci.-Maths. The main objective for having MEDUSA is to train students in plasma physics & technical related issues, aiming a full design of a medium size device (e.g. Tokamak-T). Details of technical modifications and a preliminary scientific programme will be presented. MEDUSA-MX will also benefit any developments in the existing Mexican Fusion Network. Strong liaison within national and international plasma physics communities is expected. New activities on plasma & engineering modeling are expected to be developed in parallel by using the existing facilities such as a multi-platform computer (Silicon Graphics Altix XE250, 128G RAM, 3.7TB HD, 2.7GHz, quad-core processor), ancillary graph system (NVIDIA Quadro FE 2000/1GB GDDR-5 PCI X16 128, 3.2GHz), and COMSOL Multiphysics-Solid Works programs.

  20. Nonlinear simulation studies of tokamaks and STs

    International Nuclear Information System (INIS)

    The multilevel physics, massively parallel plasma simulation code, M3D has been used to study spherical toris (STs) and tokamaks. The magnitude of outboard shift of density profiles relative to electron temperature profiles seen in NSTX under strong toroidal flow is explained. Internal reconnection events in ST discharges can be classified depending on the crash mechanism, just as in tokamak discharges; a sawtooth crash, disruption due to stochasticity, or high-β disruption. Toroidal shear flow can reduce linear growth of internal kink. It has a strong stabilizing effect nonlinearly and causes mode saturation if its profile is maintained, e.g. through a fast momentum source. Normally, however, the flow profile itself flattens during the reconnection process, allowing a complete reconnection to occur. In some cases, the maximum density and pressure spontaneously occur inside the island and cause mode saturation. Gyrokinetic hot particle/MHD hybrid studies of NSTX show the effects of fluid compression on a fast-ion driven n = 1 mode. MHD studies of recent tokamak experiments with a central current hole indicate that the current clamping is due to sawtooth-like crashes, but with n = 0. (author)

  1. Nonlinear simulation studies of tokamaks and ST's

    International Nuclear Information System (INIS)

    The multilevel physics, massively parallel plasma simulation code, M3D has been used to study ST's and tokamaks. The magnitude of outboard shift of density profiles relative to electron temperature profiles seen in NSTX under strong toroidal flow is explained. IRE's in ST discharges can be classified depending on the crash mechanism, just as in tokamak discharges; a sawtooth crash, disruption due to stochasticity, or high-β disruption. Toroidal shear flow can reduce linear growth of internal kink. It has a strong stabilizing effect nonlinearly and causes mode saturation if its profile is maintained, e.g., through a fast momentum source. Normally however, the flow profile itself flattens during the reconnection process, allowing a complete reconnection to occur. In some cases, the maximum density and pressure spontaneously occur inside the island and cause mode saturation. Gyrokinetic hot particle/MHD hybrid studies of NSTX show the effects of fluid compression on a fast-ion-driven n=1 mode. MHD studies of recent tokamak experiments with a central current hole indicate that the current clamping is due to sawtooth-like crashes, but with n=0. (author)

  2. Collisionless microtearing modes in standard tokamak configurations

    International Nuclear Information System (INIS)

    Microtearing Modes (MTM) are electromagnetic microinstabilities occurring in magnetically confined fusion plasmas driven by parallel electron current and collisions in the presence of electron temperature gradient. MTMs were first predicted to occur in such plasmas in early 70s. Collisional MTMs have recently gathered attention in Spherical Tokamak configurations and RFPs. Very recently collisional MTMs have been reported in configuration relevant to standard tokamak, namely ASDEX-U. Perhaps for the first time, we show the existence of MTMs in purely collisionless limit and in large aspect ratio tokamak configurations using fully gyrokinetic full radius linear calculations. The physics of both electron scale as well as minor radius scale are resolved in the studies. Results of the studies, such as the 2-D structure of the mode and the dependence of growth rates on plasma pressure, perpendicular (to B0) wavelength spectrum and the effect of Landau damping and magnetic drift resonance will be presented. A comparison with another electromagnetic mode, namely Kinetic Ballooning Mode, which is driven by ion temperature gradient will also be shown. (author)

  3. Design of the ITER tokamak assembly tools

    International Nuclear Information System (INIS)

    ITER tokamak assembly is mainly composed of lower cryostat activities, sector sub-assembly, sector assembly, in-vessel activities and ex-vessel activities. The main tools for sector sub-assembly procedures consists of upending tool, sector lifting tool, vacuum vessel support and bracing tool and sector sub-assembly tool. Conceptual design of assembly tools for sector sub-assembly procedures is described herein. The basic structure for upending tool has been developed under the assumption that upending is performed with crane which will be installed in Tokamak building. Sector lifting tool is designed to adjust the position of a sector to minimize the difference between the center of the tokamak building crane and the center of gravity of the sector. Sector sub-assembly tool is composed of special frame for the fine adjustment of position control with 6 degrees of freedom. The design of VV support and bracing tool for four kinds of VV 40 deg. sectors has been developed. Also, structural analysis for upending tool, sector sub-assembly tool has been studied using ANSYS for the situation of an applied load with the same dead weight multiplied by 3/4. The results of structural analyses for these tools were below the allowable values

  4. ECH on the MTX [Microwave Tokamak Experiment

    International Nuclear Information System (INIS)

    The Microwave Tokamak Experiment (MTX) at LLNL is investigating the heating of high density Tokamak plasmas using an intense pulse FEL. Our first experiments, now beginning, will study the absorption and plasma heating of single FEL pulses (20 ns pulse length and peak power up to 2 GW) at a frequency of 140 GHz. A later phase of experiments also at 140 GHz will study FEL heating at 5 kHz rate for a pulse train up to 50 pulses (35 ns pulse length and peak power up to 4 GW). Future operations are planned at 250 GHz with an average power of 2 MW for a pulse train of 0.5 s. The microwave output of the FEL is transported quasi-optically to the tokamak through a window-less, evacuated pipe of 20 in. diameter, using a six mirror system. Computational modelling of the non-linear absorption for the MTX geometry predicts single-pass absorption of 40% at a density and temperature of 1.8 /times/ 1020m/sup /minus/3/ and 1 keV, respectively. To measure plasma microwave absorption and backscatter, diagnostics are available to measure forward and reflected power (parallel wire grid beam-splitter and mirror directional couplers) and power transmitted through the plasma (segmented calorimeter and waveguide detector). Other fast diagnostics include ECE, Thompson scattering, soft x-rays, and fast magnetic probes. 8 refs., 2 figs

  5. Deposit of thin films for Tokamaks conditioning

    International Nuclear Information System (INIS)

    As a main objective of this work, we present some experimental results obtained from studying the process of extracting those impurities created by the interaction plasma with its vessel wall in the case of Novillo tokamak. Likewise, we describe the main cleaning and conditioning techniques applied to it, fundamentally that of glow discharge cleaning at a low electron temperature (-6 to 4.5 x 10-6 Ω-m, thus taking the Zef value from 3.46 to 2.07 which considerably improved the operational parameters of the machine. With a view to justifying the fact that controlled nuclear fusion is a feasible alternative for the energy demand that humanity will face in the future, we review in Chapter 1 some fundamentals of the energy production by nuclear fusion reactions while, in Chapter 2, we examine two relevant plasma wall interaction processes. Our experimental array used to produce both cleaning and intense plasma discharges is described in Chapter 3 along with the associated diagnostics equipment. Chapter 4 contains a description of the vessel conditioning techniques followed in the process. Finally, we report our results in Chapter 5 while, in Chapter 6, some conclusions and remarks are presented. It is widely known that tokamak impurities are generated mainly by the plasma-wall interaction, particularly in the presence of high potentials between the plasma sheath and the limiter or wall. Given that impurities affect most adversely the plasma behaviour, understanding and controlling the impurity extraction mechanisms is crucial for optimizing the cleaning and wall conditioning discharge processes. Our study of one impurity extraction mechanism for both low and high Z in Novillo tokamak was carried out though mass spectrometry, optical emission spectroscopy and plasma resistivity measurement. Such mechanism depends fundamentally on the mass of the ions that interact with the wall during the plasma current formation phase. The reaction products generated by the glow

  6. Material erosion and migration in tokamaks

    International Nuclear Information System (INIS)

    Material migration is one of the outstanding issues facing successful long pulse, high power tokamak operation, both for the next step device, ITER, and the longer term economic and technological viability of fusion power. Erosion of tokamak first wall surfaces may occur via a number of processes, both steady state and transient, the relative importance of each of which depends sensitively on the nature of the driving mechanism and the wall material itself. The subsequent transport of this eroded material through the plasma and its redeposition, often in locations remote from the point of release, constitute the foundation of material migration. Such material movement is intimately linked with the critical issue of tritium retention (via the process of co-deposition), which, in ITER and beyond, will determine the duration over which the tokamak may be operated before removal of the retained fraction is imposed by nuclear safety restrictions. Of the three processes: erosion, large-scale material transport and co-deposition, transport is currently the least understood, leading to large uncertainties in the predicted T-retention in ITER, independently of the chosen wall materials. The low duty cycle and reduced energy and particle fluxes to first wall surfaces in today's tokamaks mean that the phenomena of migration is of no practical consequence to their operation. In steady state reactor-class devices, however, annual migration rates are currently predicted to be in the range of tons, even in the absence of transient events. These estimates are nevertheless associated with considerable uncertainty and, although the situation is unlikely to be completely resolved by the time ITER is constructed, a clearer understanding of the global migration picture is emerging from ongoing physics studies in current devices. In particular, the influential role of erosion at main chamber surfaces, followed by subsequent transfer to the divertor and the delicate erosion

  7. Commercial feasibility of fusion power based on the tokamak concept

    International Nuclear Information System (INIS)

    The impact of plasma operating characteristics, engineering options, and technology on the capital cost trends of tokamak power plants is determined. Tokamak power systems are compared to other advanced energy systems and found to be economically competitive. A three-phase strategy for demonstrating commercial feasibility of fusion power, based on a common-site multiple-unit concept, is presented

  8. Fokker-Planck/Transport model for neutral beam driven tokamaks

    International Nuclear Information System (INIS)

    The application of nonlinear Fokker-Planck models to the study of beam-driven plasmas is briefly reviewed. This evolution of models has led to a Fokker-Planck/Transport (FPT) model for neutral-beam-driven Tokamaks, which is described in detail. The FPT code has been applied to the PLT, PDX, and TFTR Tokamaks, and some representative results are presented

  9. Tokamak plasma self-organization-synergetics of magnetic trap plasmas

    NARCIS (Netherlands)

    Razumova, K. A.; Andreev, V. F.; Eliseev, L. G.; Kislov, A. Y.; La Haye, R. J.; Lysenko, S. E.; Melnikov, A. V.; Notkin, G. E.; Pavlov, Y. D.; Kantor, M. Y.

    2011-01-01

    Analysis of a wide range of experimental results in plasma magnetic confinement investigations shows that in most cases, plasmas are self-organized. In the tokamak case, it is realized in the self-consistent pressure profile, which permits the tokamak plasma to be macroscopically MHD stable. Existin

  10. Recent progress on the Compact Ignition Tokamak (CIT)

    International Nuclear Information System (INIS)

    This report describes work done on the Compact Ignition Tokamak (CIT), both at the Princeton Plasma Physics Laboratory (PPPL) and at other fusion laboratories in the United States. The goal of CIT is to reach ignition in a tokamak fusion device in the mid-1990's. Scientific and engineering features of the design are described, as well as projected cost and schedule

  11. Design and construction of electronic components for a ''Novillo'' Tokamak

    International Nuclear Information System (INIS)

    The goal of this effort was to design, construct and make functional the electronic components for a ''Novillo'' Tokamak currently being experimentally investigated at the National Institute of Nuclear Research in Mexico. The problem was to develop programmable electronic switches capable of discharging high voltage kilowatt energies stored in capacitator banks onto the coils of the Tokamak. (author)

  12. Recent experiments and upgradation plans for Aditya Tokamak

    International Nuclear Information System (INIS)

    Several experiments relevant to the operation of future big tokamaks including ITER and also contributing significantly to the tokamak based thermonuclear fusion research have been carried out in Aditya tokamak recently. Low loop voltage start-up of plasma current has been successfully obtained with ICR and ECR preionization. Reduced runaway generation is achieved by applying a local vertical magnetic field at one toroidal location. Plasma disruptions, a sudden loss of equilibrium and confinement, has been successfully mitigated through application of bias voltage on a Molybdenum (Mo) electrode placed inside the last closed flux surface (LCFS). Extensive studies on plasma flows, effect of gas puff on flows in the Scrape off layer (SOL) and impurity transport has been carried out. Effect of Helium glow discharge cleaning (GDC) on partial pressures and plasma parameters have also been studied for plasma performance improvement. To contribute more to the bigger tokamaks operated in the divertor configuration, the existing Aditya tokamak with limiter configuration, which is in operation for 24 years, is planned to be upgraded to a divertor machine. The main aim of the Aditya-U tokamak is to have a small/mid-size tokamak with divertor operation and higher duty cycle, which will be test bed for new diagnostics, the students can be trained and those experiments can be tried out which are not desirable in big tokamaks, such as runaway mitigation and disruption control. Details of experimental results and upgradation plan will be discussed in the talk. (author)

  13. Advanced tokamak operating modes in TPX and ITER

    International Nuclear Information System (INIS)

    A program is described to develop the advanced tokamak physics required for an economic steady-state fusion reactor on existing (short-pulse) tokamak experiments; to extend these operating modes to long-pulse on TPX; and finally to demonstrate them in a long-pulse D-T plasma on ITER

  14. Recent progress on the Compact Ignition Tokamak (CIT)

    Energy Technology Data Exchange (ETDEWEB)

    Ignat, D.W.

    1987-01-01

    This report describes work done on the Compact Ignition Tokamak (CIT), both at the Princeton Plasma Physics Laboratory (PPPL) and at other fusion laboratories in the United States. The goal of CIT is to reach ignition in a tokamak fusion device in the mid-1990's. Scientific and engineering features of the design are described, as well as projected cost and schedule.

  15. Lower hybrid heating experiments in tokamaks: an overview

    International Nuclear Information System (INIS)

    Lower hybrid wave propagation theory relevant to heating fusion grade plasmas (tokamaks) is reviewed. A brief discussion of accessibility, absorption, and toroidal ray propagation is given. The main part of the paper reviews recent results in heating experiments on tokamaks. Both electron and ion heating regimes will be discussed. The prospects of heating to high temperatures in reactor grade plasmas will be evaluated

  16. Progress and prospects in understanding the physics of tokamak experiments

    International Nuclear Information System (INIS)

    A whistle-stop tour of the diverse physics of tokamak plasma confinement. This talk will illustrate the way in which fusion research on tokamaks has led to important and interesting physics results, and discuss some of the scientific challenges still ahead before fusion's potential can be established

  17. Experimental data base of Tokamak KTM physical diagnostics

    International Nuclear Information System (INIS)

    The process of software creation of experimental data storage of Tokamak KTM physical diagnostics based on analysis of storage methods of operating Tokamaks data is considered. Task of specific kinds of information storage is solved; experimental data base that is thr part of system providing information analysis performance in the post-start period is developed.(author)

  18. Experimental studies of tokamak plasma in IPP Prague

    International Nuclear Information System (INIS)

    A short survey is given of the experimental activities at the small Prague tokamak CASTOR during recent years. At present, investigation is primarily aimed at the anomalous transport and plasma-wall interaction in the tokamak under conditions of combined OH/LHCD regimes. Moreover, some New diagnostic methods were also developed and certain improvements in the CASTOR performance were achieved. (author). 41 refs

  19. Role of the tokamak ISTTOK on the EURATOM fusion programme

    International Nuclear Information System (INIS)

    This paper describes the role of the tokamak ISTTOK on the development of the portuguese fusion research team, in the frame of the EURATOM Fusion Programme. Main tasks on education and training, control and data acquisition, diagnostics and tokamak physics are summarized. Work carried out on ISTTOK in collaboration with foreign teams is also reported. (author)

  20. Measurement and analysis of the radiation losses in DAMAVAND Tokamak

    International Nuclear Information System (INIS)

    Radiation losses play an important role on reaching to break-even conditions in Tokamaks. In this paper the results of measurement by a bolometer in Damavand Tokamak have been presented and analyzed. Meanwhile, we have explained our future research program on the base of last modifications in the control system of the DAMAVAND.

  1. Desirable engineering features of the next-generation tokamak device

    International Nuclear Information System (INIS)

    Recent scoping studies examined a series of superconducting, long-pulse Driven Current Tokamak (DCT) devices. One class of options is an ignited, D-T burning device designated DCT-8. It was concluded that the DCT-8 is a most attracttive engineering option to adequately bridge the gap between the Tokamak Fusion Test Reactor (TFTR) and the Engineering Test Reactor

  2. Tokamak Plasmas : Measurement of temperature fluctuations and anomalous transport in the SINP tokamak

    Indian Academy of Sciences (India)

    R Kumar; S K Saha

    2000-11-01

    Temperature fluctuations have been measured in the edge region of the SINP tokamak. We find that these fluctuations have a comparatively high level (30–40%) and a broad spectrum. The temperature fluctuations show a quite high coherence with density and potential fluctuations and contribute considerably to the anomalous particle flux.

  3. System assessment of helical reactors in comparison with tokamaks

    International Nuclear Information System (INIS)

    A comparative assessment of tokamak and helical reactors has been performed using equivalent physics/engineering model and common costing model. Higher-temperature plasma operation is required in tokamak reactors to increase bootstrap current fraction and to reduce current-drive (CD) power. In helical systems, lower-temperature operation is feasible and desirable to reduce helical ripple transport. The capital cost of helical reactor is rather high, however, the cost of electricity (COE) is almost same as that of tokamak reactor because of smaller re-circulation power (no CD power) and less-frequent blanket replacement (lower neutron wall loading). The standard LHD-type helical reactor with 5% beta value is economically equivalent to the standard tokamak with 3% beta. The COE of lower-aspect ratio helical reactor is on the same level of high-βN tokamak reactors. (author)

  4. High performance operational limits of tokamak and helical systems

    International Nuclear Information System (INIS)

    The plasma operational boundaries of tokamak and helical systems are surveyed and compared with each other. Global confinement scaling laws are similar and gyro-Bohm like, however, local transport process is different due to sawtooth oscillations in tokamaks and ripple transport loss in helical systems. As for stability limits, achievable tokamak beta is explained by ideal or resistive MHD theories. On the other hand, beta values obtained so far in helical system are beyond ideal Mercier mode limits. Density limits in tokamak are often related to the coupling between radiation collapse and disruptive MHD instabilities, but the slow radiation collapse is dominant in the helical system. The pulse length of both tokamak and helical systems is on the order of hours in small machines, and the longer-pulsed good-confinement plasma operations compatible with radiative divertors are anticipated in both systems in the future. (author)

  5. The Experiments of the small Spherical Tokamak Gutta

    International Nuclear Information System (INIS)

    GUTTA is a small spherical tokamak (R = 16cm, a = 8cm, Ip = 150kA) operating at the St. Petersburg State University since 2004 in the scope of the IAEA CRP ''Joint Research using Small Tokamaks''. Main scientific activities on GUTTA include development of new and improvement of existing mathematical models of plasma control, relevant for application on large tokamaks and ITER and verification of them on GUTTA; studies on the ECRH/EBW assisted breakdown and non-solenoid plasma formation in low aspect ratio tokamak; development of diagnostics; training and education of students.In this paper design properties of Gutta will be presented. Regimes of operation of the tokamak and plasma shape parameters are described and first results of the plasma formation and start-up studied will be discussed

  6. Physics design of an ultra-long pulsed tokamak reactor

    International Nuclear Information System (INIS)

    A pulsed tokamak reactor driven only by inductive current drive has recently revived, because the non-inductive current drive efficiency seems to be too low to realize a steady-state tokamak reactor with sufficiently high energy gain Q. Essential problems in pulsed operation mode is considered to be material fatigue due to cyclic operation and expensive energy storage system to keep continuous electric output during a dwell time. To overcome these problems, we have proposed an ultra-long pulsed tokamak reactor called IDLT (abbr. Inductively operated Day-Long Tokamak), which has the major and minor radii of 10 m and 1.87 m, respectively, sufficiently to ensure the burning period of about ten hours. Here we discuss physical features of inductively operated tokamak plasmas, employing the similar constraints with ITER CDA design for engineering issues. (author) 9 refs., 2 figs., 1 tab

  7. Industry roles in the Tokamak Physics Experiment

    International Nuclear Information System (INIS)

    There are several distinguishing features of the Tokamak Physics Experiment (TPX) to be found in the TPX program and in the organizations for constructing and operating the machine. Programmatically, TPX addresses several issues critical to the viability of magnetic fusion power plants. Organizationally, it is a multi-institutional partnership to construct and operate the machine and carry out its program mission. An important part of the construction partnership is the integrated industrial responsibility for design, R ampersand D, and construction. The TPX physics design takes advantage of recent research on advanced tokamak operating modes achieved for time scales of the order of seconds that are consistent with continuous operation. This synergism of high performance (higher power density) modes with plasma current driven mostly by internal pressure (boot-strap effect) points toward tokamak power plants that will be cost-competitive and operate continuously. A large fraction of the project is subcontracted to industry. By policy, these contracts are at a high level in the project breakdown of work, giving contractors much of the overall responsibility for a given major system. That responsibility often includes design and R ampersand D in addition to the fabrication of the system in question. Each contract is managed through one of three national laboratories: PPPL, LLNL, and ORNL. Separate contracts for system integration and construction management round out the industry involvement in the project. This integrated, major responsibility attracts high-level corporate attention within each company, which are major corporations with long-standing interest in fusion. Through the contracts already established on the TPX project, a new standard for industry involvement in fusion has been set, and these industries will be well prepared for future fusion projects

  8. MHD stability of advanced tokamak scenarios

    International Nuclear Information System (INIS)

    Tokamak plasmas with a non-monotonic q-profile (current profile) and negative shear in the plasma centre have been associated with improved confinement and large pressure gradients in the region of negative shear. In JET, this regime, has been obtained with pellet injection (the PEP mode) and in DIII-D by ramping the plasma elongation. In JET, the phase of improved confinement is transient and usually ends in a collapse due to an MHD instability which leads to a redistribution of the current and a monotonic q-profile. The infernal mode, which is driven by a large pressure gradient in the region of low shear near the minimum in the q-profile, is the most likely candidate for the observed instability. To extend the transient phase to steady state, control of the shape of the current density profile is essential. The modelling of these advanced tokamak scenarios with a non-monotonic q-profile using non-inductive current drive of lower hybrid waves, fast waves, and neutral beams is discussed elsewhere. The aim is to find suitable initial states and to maintain MHD stability when the plasma β is built up. For this purpose, the robustness of the MHD stability of these configurations is studied with respect to changes in the position and in the depth of the minimum in q, and in the shape of the q and pressure profile. The classes of equilibria chosen for the analysis are based on the modelling of the current-drive schemes for advanced tokamak scenarios in JET. The toroidal ideal and resistive MHD stability code CASTOR is used for the stability calculations. (author) 7 refs., 4 figs

  9. Mathematical modeling plasma transport in tokamaks

    International Nuclear Information System (INIS)

    In this work, the author applied a systematic calibration, validation and application procedure based on the methodology of mathematical modeling to international thermonuclear experimental reactor (ITER) ignition studies. The multi-mode plasma transport model used here includes a linear combination of drift wave branch and ballooning branch instabilities with two a priori uncertain constants to account for anomalous plasma transport in tokamaks. A Bayesian parameter estimation method is used including experimental calibration error/model offsets and error bar rescaling factors to determine the two uncertain constants in the transport model with quantitative confidence level estimates for the calibrated parameters, which gives two saturation levels of instabilities. This method is first tested using a gyroBohm multi-mode transport model with a pair of DIII-D discharge experimental data, and then applied to calibrating a nominal multi-mode transport model against a broad database using twelve discharges from seven different tokamaks. The calibrated transport model is then validated on five discharges from JT-60 with no adjustable constants. The results are in a good agreement with experimental data. Finally, the resulting class of multi-mode tokamak plasma transport models is applied to the transport analysis of the ignition probability in a next generation machine, ITER. A reference simulation of basic ITER engineering design activity (EDA) parameters shows that a self-sustained thermonuclear burn with 1.5 GW output power can be achieved provided that impurity control makes radiative losses sufficiently small at an average plasma density of 1.2 X 1020/m3 with 50 MW auxiliary heating. The ignition probability of ITER for the EDA parameters, can be formally as high as 99.9% in the present context. The same probability for concept design activity (CDA) parameters of ITER, which has smaller size and lower current, is only 62.6%

  10. The physics of an ignited tokamak

    International Nuclear Information System (INIS)

    There appears to be a consensus that time has come to embark on the design and construction of the next generation of tokamaks which is at the origin of the ITER initiative. Different proposals have been made based on different appreciation as to the size of the step which can be taken, related to considerations of cost, risk and duration of construction. A class of devices which may be considered the last the very high-field, high density ALCATOR-Frascati line of tokamaks have been proposed for some years specifically for this purpose. Today there remain three such projects: Ignitor, Ignitex and CIT. The technology chosen limits the pulse length to a few seconds. These devices have evolved through the years becoming larger and much more expensive than originally anticipated, increasing the pressure to do more than just a simple demonstration of ignition. There is another class of more ambitious devices which aim at creating long burning plasmas in conditions as close as possible to those of a tokamak reactor in order to address all the plasma physics problems associated with long burn. Three such projects, NET, the european next step after JET, ITER and JIT are good examples of this approach. The ideal would be to design a device with sufficient margin to study burning plasmas over a wide range of parameters. The object of this didactic presentation is to describe the common physics basis of all these projects, compare their expected performance using present knowledge and list the physics problems associated with a burning plasma experiment. The comparison is not meant to be a judgement since the important parameter is the cost/benefit ratio which is a matter of appreciation at this stage. 6 refs., 3 figs., 1 tab

  11. U-probe for the COMPASS Tokamak

    Czech Academy of Sciences Publication Activity Database

    Kovařík, Karel; Ďuran, Ivan; Stöckel, Jan; Seidl, Jakub; Šesták, David; Brotánková, J.; Spolaore, M.; Martines, E.; Vianello, N.; Hidalgo, C.; Pedrosa, M. A.

    Prague : MATFYZPRESS, 2011 - (Šafránková, J.; Pavlů, J.), s. 227-232 ISBN 978-80-7378-185-9. - (WDS. 2). [WDS 2011 - Annual Conference of Doctoral Students /20./. Prague (CZ), 31.05.2011-03.06.2011] R&D Projects: GA ČR GD202/08/H057; GA MŠk 7G09042; GA MŠk 7G10072 Grant ostatní: EUROATOM(XE) FU07-CT-2007-00060 Institutional research plan: CEZ:AV0Z20430508 Keywords : edge plasma * filaments * tokamak Subject RIV: BL - Plasma and Gas Discharge Physics

  12. Atomic Beam Probe Diagnostic for COMPASS Tokamak

    Czech Academy of Sciences Publication Activity Database

    Háček, Pavel; Weinzettl, Vladimír; Stöckel, Jan; Anda, G.; Veres, G.; Zoletnik, S.; Berta, M.

    Vol. 2. Prague: MATFYZPRESS, 2010 - (Šafránková, J.; Pavlů, J.), s. 7-11. (WDS'10). ISBN 978-80-7378-140-8. [Annual Conference of Doctoral Students - WDS 2010 /19th./. Prague (CZ), 01.06.2010-04.06.2010] R&D Projects: GA ČR GA202/09/1467 Institutional research plan: CEZ:AV0Z20430508 Keywords : plasma diagnostics * tokamak * COMPASS * beam diagnostics Subject RIV: BL - Plasma and Gas Discharge Physics http://server.ipp.cas.cz/~vwei/work/wds2010_201_f2.pdf

  13. ECRH current drive in tokamak plasmas

    International Nuclear Information System (INIS)

    The current drive by electron cyclotron resonance heating (ECRH) is investigated in a typical magnetic field of tokamak with circular cross section. The trapped electrons and the modification of electron-cyclotron resonance condition by the relativistic mass increase are shown to have significant effects on the efficiency of this current drive. The efficiency strongly depends on the values of the parallel velocity u0 of resonant electrons, the inverse aspect ratio ε, the poloidal angle θ0 of absorption point, and the relativistic parameter S, which represents the strength of the relativistic correction to the resonance condition. (author)

  14. Scaling studies of beam-heated tokamaks

    International Nuclear Information System (INIS)

    Parametric scaling of neutral beam-heated tokamaks is examined to determine the trade-off between beam energy and power. It is shown that over a wide range of plasma parameters and assumed transport properties, the center mean plasma temperature is a function of P/sub A/E/sub B//sup delta/, where E/sub B/ and P/sub A/ are the beam energy and power per unit area, respectively, and delta is a calculable constant of order unity

  15. Progress on Joint Experiments on Small Tokamaks

    Czech Academy of Sciences Publication Activity Database

    Gryaznevich, M.P.; Van Oost, G.; Del Bosco, E.; Berta, M.; Brotánková, Jana; Dejarnac, Renaud; Dufková, Edita; Ďuran, Ivan; Hron, Martin; Zajac, Jaromír; Malaquias, A.; Mank, G.; Peleman, P.; Sentkerestiová, Jana; Stöckel, Jan; Weinzettl, Vladimír; Zoletnik, S.; Tál, B.; Ferreira, J.; Fonseca, A.; Hegazy, H.; Kuznetsov, Y.; Ruchko, L.; Vorobyev, G.M.; Ovsyannikov, A.; Sukhov, E.; Singh, A.; Kuteev, B.; Melnikov, A.; Vershkov, V.; Kirneva, N.; Kirnev, G.; Budaev, V.; Sokolov, M.; Talebitaher, A.; Khorshid, P.; Ramos, G.; El Chama Neto, I.; Kraemer-Flecken, A.W.; Soldatov, V.; Marques Fonseca, A.M.; Gutierrez-Tapia, C.R.; Krupnik, L.I.

    Warsaw: EPS, 2007, P-1.070-P-1.070. (Europhysics Conference Abstracts). ISBN 978-83-926290-0-9. [EPS Conference on Plasma Physics/34th./. Warsaw (PL), 02.07.2007-06.07.2007] R&D Projects: GA AV ČR KJB100430504 Grant ostatní: EU(XE) INTAS 100008-8046 Institutional research plan: CEZ:AV0Z20430508 Source of funding: R - rámcový projekt EK Keywords : tokamak * edge plasma * turbulence * improved confinement * plasma diagnostics Subject RIV: BL - Plasma and Gas Discharge Physics http://www.eps2007.ifpilm.waw.pl/pdf2/P1_070.pdf

  16. Bootstrap current estimate in the ETE Tokamak

    International Nuclear Information System (INIS)

    First estimates of the bootstrap current in the ETE small aspect ratio tokamak using the Hirshman single ion collisionless model show that we can expect from 25 to 55% of total bootstrap current depending on the optimization level of the plasma parameter profiles. Higher levels of bootstrap current are limited by peaked pressure profiles and βpol values which must be kept under a critical level due to stability conditions. Different methods for the trapped particle fraction calculation are also illustrated in this paper. (author). 7 refs., 5 figs., 1 tab

  17. Density measurement systems at SST Tokamak

    International Nuclear Information System (INIS)

    Electromagnetic wave experiences a phase difference while passing through the plasma with respect to the reference arm. This phase information gives line averaged electron plasma density. At SST-1 Tokamak, two microwave interferometer systems - (1) 100 GHz homodyne system and (2) 140 GHz phase locked heterodyne system, have been designed, developed and installed. In this paper developed systems performances as well as measurement descriptions are explained. A comparative study has been done to understand the measurement capabilities of the two independent systems and a good agreement is obtained. The measured density of the recent plasma discharges after first wall installation is in the range of 2 - 5 x 1012/ cm3. (author)

  18. Magnetic microtearing coherence in tokamak plasmas

    International Nuclear Information System (INIS)

    The analyses of the microtearing-modes coherence is effected. The tokamak characteristics, concerning fusion, electromagnetic confinement and turbulence are reviewed. The nature of the tearing modes, the variational principle of linear mode studies, a linear study in collisional and non-collisional plasma conditions are summarized, before studying the microtearing-mode coherence. The flux line configuration in the presence of a magnetic turbulence, the plasma response to a microtearing perturbation and instability, in the presence of a radial-electrons diffusion, is described. The autocoherence of microtearing modes in non-linear conditions are analyzed

  19. Infrared Thermography on the COMPASS Tokamak

    Czech Academy of Sciences Publication Activity Database

    Vondráček, Petr; Horáček, Jan; Cahyna, Pavel; Pánek, Radomír; Uličný, J.

    Vol. 2. Prague : MATFYZPRESS, 2013 - (Šafránková, J.; Pavlů, J.), s. 80-85 ISBN 978-80-7378-251-1. - (WDS). [Annual Conference of Doctoral Students – WDS 2013 /22./. Praha (CZ), 04.06.2013-07.06.2013] R&D Projects: GA ČR(CZ) GAP205/12/2327; GA MŠk(CZ) LM2011021 Institutional support: RVO:61389021 Keywords : Plasma diagnostics * infrared camera * tokamak Subject RIV: BL - Plasma and Gas Discharge Physic s http://www.mff.cuni.cz/veda/konference/wds/proc/pdf13/WDS13_212_f2_Vondracek.pdf

  20. Profile control for an alternative spherical tokamak

    International Nuclear Information System (INIS)

    Magnetically driven plasma guns that are inserted around a flux conserver at definite angular intervals are considered. The creation and the control of plasma channels are examined. By means of the hybrid model developed, both a system analysis of the Alternative Spherical Tokamak (AST) and relevant computational experiments have been carried out. In addition, by using the results obtained from the numerical scheme, the complex non-inductive current drive mechanisms of bootstrap and helicity injection in the AST system are discussed in detail. (author). 2 refs, 2 figs

  1. First Spectroscopic Measurements on the COMPASS Tokamak

    Czech Academy of Sciences Publication Activity Database

    Naydenkova, Diana; Stöckel, Jan; Weinzettl, Vladimír; Šesták, David; Havlíček, Josef

    Vol. 2. Prague : MATFYZPRESS, Prague, 2009 - (Šafránková, J.; Pavlů, J.), s. 158-162 ISBN 978-80-7378-102-6. [Annual conference of doctoral students - WDS 2009 /18./. Prague (CZ), 02.06.2009-05.06.2009] R&D Projects: GA ČR GD202/08/H057 Institutional research plan: CEZ:AV0Z20430508 Keywords : COMPASS * tokamak * spectroscopic measurements Subject RIV: BL - Plasma and Gas Discharge Physics http://www.mff.cuni.cz/veda/konference/wds/contents/pdf09/WDS09_227_f2_Naydenkova.pdf

  2. Heat transport in the RTP tokamak

    International Nuclear Information System (INIS)

    Transport studies in the RTP tokamak are reported. The topics covered are: (1) generation of steady state hollow electron temperature profiles with negative central shear, and the effects on heat transport; (2) measurements of transport phenomena during the flight of a pellet through the plasma; (3) demonstration of transport barriers; (4) dependence of the diffusivity on qa, density, temperature and temperature gradient; (5) possibility to describe transient transport by a local mode; (6) test particle transport in chaotic magnetic fields. (author). 13 refs, 6 figs

  3. Inward energy transport in tokamak plasmas

    International Nuclear Information System (INIS)

    Peaked electron temperature profiles are observed in the DIII-D tokamak during electron cyclotron heating despite the fact that >75% of the input power is deposited significantly off axis. Power balance analysis indicates a net inward flow of energy for electrons. An inward energy flow is not compatible with diffusive or critical gradient models. A time-dependent perturbation technique is employed to estimate the conductive loss and the nondiffusive part of the energy transport. The nondiffusive component of the transport appears only at radii smaller than that of the heating location

  4. DIII-D Advanced Tokamak Research Overview

    International Nuclear Information System (INIS)

    This paper reviews recent progress in the development of long-pulse, high performance discharges on the DIII-D tokamak. It is highlighted by a discharge achieving simultaneously βNH of 9, bootstrap current fraction of 0.5, noninductive current fraction of 0.75, and sustained for 16 energy confinement times. The physics challenge has changed in the long-pulse regime. Non-ideal MHD modes are limiting the stability, fast ion driven modes may play a role in fast ion transport which limits the stored energy and plasma edge behavior can affect the global performance. New control tools are being developed to address these issues

  5. Spherical tokamak research for fusion reactor

    International Nuclear Information System (INIS)

    Between ITER and the commercial fusion reactor, there are many technological problems to be solved such as cost, neutron and steady-state operation. In the conceptual design of VECTOR and Slim CS reactors it was shown that the key is 'low aspect ratio'. The spherical tokamak (ST) has been expected as the base for fusion reactors. In US, ST is considered as a non-superconducting reactor for use in the neutron irradiation facility. Conceptual design of the superconducting ST reactor is conducted in Japan and Korea independently. In the present article, the prospect of the ST reactor design is discussed. (author)

  6. Diagnostics with emissive probes in small tokamaks

    International Nuclear Information System (INIS)

    The toroidal magnetic confinement of a hot fusion plasma still poses extremely difficult physical problems. Especially in the edge region, where strong gradients of the plasma density, potential and temperature are present, electrostatic instabilities, appearing as oscillations, waves or fluctuations, determine the stability of the entire plasma ring and the plasma loss perpendicular to the magnetic field. Here we present a new method for a direct measurement of the electric plasma potential and its fluctuations by means of electron emissive probes, which has successfully been used in two small tokamaks, the CASTOR in Prague and the ISTTOK in Lisbon.(author)

  7. The spherical tokamak fusion power plant

    International Nuclear Information System (INIS)

    The design of a 1GW(e) steady state fusion power plant, based on the spherical tokamak concept, has been further iterated towards a fully self-consistent solution taking account of plasma physics, engineering and neutronics constraints. In particular a plausible solution to exhaust handling is proposed and the steam cycle refined to further improve efficiency. The physics design takes full account of confinement, MHD stability and steady state current drive. It is proposed that such a design may offer a fusion power plant which is easy to maintain: an attractive feature for the power plants following ITER. (author)

  8. Application of MDSplus on EAST Tokamak

    International Nuclear Information System (INIS)

    EAST is a fully superconducting Tokamak in China used for controlled fusion research. MDSplus, a special software package for fusion research, has been used successfully as a central repository for analysed data and PCS (Plasma Control System) data since the debugging experiment in the spring of 2006. In this paper, the reasons for choosing MDSplus as the analysis database and the way to use it are presented in detail, along with the solution to the problem that part of the MDSplus library does not work in the multithread mode. The experiment showed that the data system based on MDSplus operated stably and it could provide a better performance especially for remote users

  9. Present status of TCA/BR Tokamak

    International Nuclear Information System (INIS)

    The TCA tokamak is being partially reconstructed and reassembled in the Plasma Laboratory of The University of Sao Paulo, and afterwards it will be named TCA/BR. The first discharges are expected by June/July of next year. The main scientific objectives envisaged for the machine are: Alfven wave heating and current drive, confinement improvement, disruptions and turbulence. In this paper we also describe: (i) the present status of the project; (ii) the diagnostic system; (iii) the control and data acquisition system; (iv) the RF system for the excitation of Alfven waves, that are being developed, and also the results of predictive transport simulations of its performance. (author)

  10. Recent experimental results in Novillo Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Melendez L, L.; Flores O, A.; Valencia A, R.; Lopez C, R.; Chavez A, E.; Olayo G, M.G.; Cruz C, G. [Instituto Nacional de Investigaciones Nucleares, Mexico City (Mexico); Mirnov, S.V. [Triniti Div. of Fusion Reactor Physics, Troitsk, Moscow Region (Russian Federation)

    1994-12-31

    Several experiments performed in Novillo Tokamak: spectroscopic impurities determination, analysis of a thick film deposited on the glow discharge electrode after boronization, estimation of Z{sub off} value from impurity partial pressures and preliminary X-rays analysis are described. For these experimental works a monochromator integrated with a photomultiplier tube, a NaI detector and a mass spectrometer as part of the diagnostic systems were used as well as facilities of the chemical division of the chemical division of the institution. (author). 6 refs, 3 figs.

  11. Differential and Integral Models of TOKAMAK

    Directory of Open Access Journals (Sweden)

    Ivo Dolezel

    2004-01-01

    Full Text Available Modeling of 3D electromagnetic phenomena in TOKAMAK with typically distributed main and additional coils is not an easy business. Evaluated must be not only distribution of the magnetic field, but also forces acting in particular coils. Use of differential methods (such as FDM or FEM for this purpose may be complicated because of geometrical incommensurability of particular subregions in the investigated area or problems with the boundary conditions. That is why integral formulation of the problem may sometimes be an advantages. The theoretical analysis is illustrated on an example processed by both methods, whose results are compared and discussed.

  12. Diagnostic Lithium Beam System for COMPASS Tokamak

    Czech Academy of Sciences Publication Activity Database

    Háček, P.; Weinzettl, Vladimír; Stöckel, Jan; Anda, G.; Veres, G.; Zoletnik, S.; Berta, M.

    Prague : MATFYZPRESS, 2011 - (Šafránková, J.; Pavlů, J.), s. 215-220 ISBN 978-80-7378-185-9. - (WDS. 2). [WDS 2011 - Annual Conference of Doctoral Students /20./. Prague (CZ), 31.05.2011-03.06.2011] R&D Projects: GA ČR GA202/09/1467 Institutional research plan: CEZ:AV0Z20430508 Keywords : plasma diagnostics * tokamak, COMPASS * beam diagnostics Subject RIV: BL - Plasma and Gas Discharge Physics http:// server .ipp.cas.cz/~vwei/work/wds2010_201_f2.pdf

  13. Tokamak physics experiment: Diagnostic windows study

    International Nuclear Information System (INIS)

    We detail the study of diagnostic windows and window thermal stress remediation in the long-pulse, high-power Tokamak Physics Experiment (TPX) operation. The operating environment of the TPX diagnostic windows is reviewed, thermal loads on the windows estimated, and cooling requirements for the windows considered. Applicable window-cooling technology from other fields is reviewed and its application to the TPX windows considered. Methods for TPX window thermal conditioning are recommended, with some discussion of potential implementation problems provided. Recommendations for further research and development work to ensure performance of windows in the TPX system are presented

  14. Tokamak GOLEM for fusion education - chapter 4

    Czech Academy of Sciences Publication Activity Database

    Hernandez-Arriaga, D.; Brotánková, J.; Grover, O.; Kocman, J.; Markovič, Tomáš; Odstrčil, M.; Odstrčil, T.; Růžičková, T.; Stöckel, Jan; Svoboda, V.; Vondrášek, G.

    Vol. 37D. Mulhouse: European Physical Society, 2013 - (Naulin, V.; Angioni, C.; Borghesi, M.; Ratynskaia, S.; Poedts, S.; Donné, T.; Kurki-Suonio, T.; Äkäslompolo, S.; Hakola, A.; Airila, M.), P2.410-P2.410. (Europhysics Conference Abstracts). ISBN 2-914771-84-3. [European Physical Society Conference on Plasma Physics /40./. Espoo (FI), 01.07.2013-05.07.2013] Institutional support: RVO:61389021 Keywords : tokamak * GOLEM * plasma Subject RIV: BL - Plasma and Gas Discharge Physics http://ocs.ciemat.es/EPS2013PAP/pdf/P2.410.pdf

  15. Natural elongation and triangularity of tokamak equilibria

    International Nuclear Information System (INIS)

    Quasianalytic formulas are calculated for the elongation κ and triangularity δ of the plasma surface of a free-boundary tokamak equilibrium. The final results give κ and δ as functions of five quantities: the inverse aspect ratio ε, the poloidal beta βp, the internal inductance li, and the quadrupole and hexapole moments of the externally applied field. The agreement with numerically computed equilibria is found to be quite good when A≥3, κ≤1.5, and δ≤0.2 and when the plasma is limited by the vacuum vessel wall and not diverted by the presence of a separatrix on the plasma surface

  16. Explosive Ballooning Flux Tubes in Tokamaks

    CERN Document Server

    Ham, C J; Brochard, G; Wilson, H R

    2016-01-01

    Tokamak stability to, potentially explosive, `ballooning' displacements of elliptical magnetic flux tubes is examined in large aspect ratio equilibrium. Above a critical pressure gradient the energy stored in the plasma may be lowered by finite (but not infinitesimal) displacements of such tubes (metastability). Above a higher pressure gradient, the linear stability boundary, such tubes are linearly and nonlinearly unstable. The flux tube displacement can be of the order of the pressure gradient scale length. Plasma transport from displaced flux tubes may result in rapid loss of confinement.

  17. Application of MDSplus on EAST Tokamak

    Institute of Scientific and Technical Information of China (English)

    QU Lianzheng; LUO Jiarong; LI lingling; ZHANG Mingxing; WANG Yong

    2007-01-01

    EAST is a fully superconducting Tokamak in China used for controlled fusion research. MDSplus, a special software package for fusion research, has been used successfully as a central repository for analysed data and PCS (Plasma Control System) data since the debugging experiment in the spring of 2006 . In this paper, the reasons for choosing MDSplus as the analysis database and the way to use it are presented in detail, along with the solution to the problem that part of the MDSplus library does not work in the multithread mode. The experiment showed that the data system based on MDSplus operated stably and it could provide a better performance especially for remote users.

  18. Dust divertor for a tokamak fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tang, X Z [Los Alamos National Laboratory; Delzanno, G L [Los Alamos National Laboratory

    2009-01-01

    Micron-size tungsten particulates find equilibrium position in the magnetized plasma sheath in the normal direction of the divertor surface, but are convected poloidally and toroidally by the sonic-ion-flow drag parallel to the divertor surface. The natural circulation of dust particles in the magnetized plasma sheath can be used to set up a flowing dust shield that absorbs and exhausts most of the tokamak heat flux to the divertor. The size of the particulates and the choice of materials offer substantial room for optimization.

  19. Bolometer measurement on HT-6B tokamak

    International Nuclear Information System (INIS)

    This paper discribes the structure, methods of calibration and measurement system of a metal foil resistor bolometer which is developed for measuring the radiation power of high temperature plasmas. The radiation loss and neutral flux loss in HT-6B tokamak have been measured by using the bolometer. The following results were obtained: (1) A large, nearly constant fraction (∼50%) of the input power was lost to the wall by radiation and energetic neutrals during the quasisteady phase of a normal discharges; (2) The power loss linearly increased with the discharge current Ip; (3) During disruption, most of the plasma energy was lost by radiation and neutrals

  20. Iron forbidden lines in tokamak discharges

    International Nuclear Information System (INIS)

    Several spectrum lines from forbidden transitions in the ground configurations of highly ionized atoms have been observed in the PLT tokamak discharges. Such lines allow localized observations, in the high-temperature regions of the plasma, of ion-temperatures, plasma motions, and spatial distributions of ions. Measured absolute intensities of the forbidden lines have been compared with simultaneous observations of the ion resonance lines and with model calculations in order to deduce the mechanism of level populaions by means of electron collisions and radiative transitions

  1. Electron cyclotron emission imaging in tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Munsat, Tobin; Domier, Calvin W.; Kong, Xiangyu; Liang, Tianran; Luhmann, Jr.; Neville C.; Tobias, Benjamin J.; Lee, Woochang; Park, Hyeon K.; Yun, Gunsu; Classen, Ivo. G. J.; Donne, Anthony J. H.

    2010-07-01

    We discuss the recent history and latest developments of the electron cyclotron emission imaging diagnostic technique, wherein electron temperature is measured in magnetically confined plasmas with two-dimensional spatial resolution. The key enabling technologies for this technique are the large-aperture optical systems and the linear detector arrays sensitive to millimeter-wavelength radiation. We present the status and recent progress on existing instruments as well as new systems under development for future experiments. We also discuss data analysis techniques relevant to plasma imaging diagnostics and present recent temperature fluctuation results from the tokamak experiment for technology oriented research (TEXTOR).

  2. Digital controlled pulsed electric system of the ETE tokamak. First report; Sistema eletrico pulsado com controle digital do Tokamak ETE (experimento Tokamak esferico). Primeiro relatorio

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Luis Felipe de F.P.W.; Del Bosco, Edson

    1997-12-31

    This reports presents a summary on the thermonuclear fusion and application for energy supply purposes. The tokamak device operation and the magnetic field production systems are described. The ETE tokamak is a small aspect ratio device designed for plasma physics and thermonuclear fusion studies, which presently is under construction at the Laboratorio Associado de Plasma (LAP), Instituto Nacional de Pesquisas Espaciais (INPE) - S.J. dos Campos - S. Paulo. (author) 55 refs., 40 figs.

  3. Tokamak advanced pump limiter experiments and analysis

    International Nuclear Information System (INIS)

    Experiments with pump limiter modules on several operating tokamaks establish such limiters as efficient collectors of particles and has demonstrated the importance of ballistic scattering as predicted theoretically. Plasma interaction with recycling neutral gas appears to become important as the plasma density increases and the effective ionization mean free path within the module decreases. In limiters with particle collection but without active internal pumping, the neutral gas pressure is found to vary nonlinearly with the edge plasma density at the highest densities studies. Both experiments and theory indicate that the energy spectrum of gas atoms in the pump ducting is non-thermal, consistent with the results of Monte Carlo neutral atom transport calculations. The distribution of plasma power over the front surface of such modules has been measured and appears to be consistent with the predictions of simple theory. Initial results from the latest experiment on the ISX-B tokamak with an actively pumped limiter module demonstrates that the core plasma density can be controlled with a pump limiter and that the scrape-off layer plasma can partially screen the core plasma from gas injection. The results from module pump limiter experiments and from the theory and design analysis of advanced pump limiters for reactors are used to suggest the major features of a definitive, axisymmetric, toroidal belt pump limiter experiment

  4. Magnetic diagnostics for the lithium tokamak experiment.

    Science.gov (United States)

    Berzak, L; Kaita, R; Kozub, T; Majeski, R; Zakharov, L

    2008-10-01

    The lithium tokamak experiment (LTX) is a spherical tokamak with R(0)=0.4 m, a=0.26 m, B(TF) approximately 3.4 kG, I(P) approximately 400 kA, and pulse length approximately 0.25 s. The focus of LTX is to investigate the novel low-recycling lithium wall operating regime for magnetically confined plasmas. This regime is reached by placing an in-vessel shell conformal to the plasma last closed flux surface. The shell is heated and then coated with liquid lithium. An extensive array of magnetic diagnostics is available to characterize the experiment, including 80 Mirnov coils (single and double axis, internal and external to the shell), 34 flux loops, 3 Rogowskii coils, and a diamagnetic loop. Diagnostics are specifically located to account for the presence of a secondary conducting surface and engineered to withstand both high temperatures and incidental contact with liquid lithium. The diagnostic set is therefore fabricated from robust materials with heat and lithium resistance and is designed for electrical isolation from the shell and to provide the data required for highly constrained equilibrium reconstructions. PMID:19044600

  5. ICRF heating experiments in JFT-2 tokamak

    International Nuclear Information System (INIS)

    This is an experimental study of ICRF heating on JFT-2 Tokamak in Japan Atomic Energy Research Institute. In this study, we first clarified physical and engineering problems of ICRF heating of tokamak plasma. Next, we optimized the design of the ICRF heating system, and the plasma parameters for the heating. Finally, we could demonstrate a high efficiency of this additional heating method by launching RF power which is two or three times as large as an ohmic input power to a plasma. And we achieved following things. (1) We optimized a design of an antenna, and we improved a durability of the system for high voltage. With the result that we achieved the maximum power density on an antenna. (2) We demonstrated that electron heating regime and ion heating regime can be easily accessed by controlling plasma parameters. Also we found the optimum heating conditions in each heating regime. (3) We experimentally clarified the production mechanism of impurities during ICRF heating. We could reduce the influx of metal impurity ions to a plasma by employing low z materials for limiters and antenna shields. Consequently, we improved a heating efficiency of electrons. Next, we studied a power balance of plasma during ICRF heating, and we could compare heating characteristics of ICRF with other additional heatings on JFT-2. (author)

  6. Compact ignition tokamak physics and engineering basis

    International Nuclear Information System (INIS)

    The Compact Ignition Tokamak (CIT) is a high-field, compact tokamak design whose objective is the study of physics issues associated with burning plasmas. The toroidal and poloidal field coils employ a copper-steel laminate, manufactured by explosive-bonding techniques, to support the forces generated by the design fields: 10 T toroidal field at the plasma center; 21 T in the OH solenoid. A combination of internal and external PF coils provides control of the equilibrium and the ability to sweep the magnetic separatrix across the divertor plates during a pulse. At temperatures and βα levels characteristic of ITER designs, the fusion power in CIT approaches 800 MW and can be the limiting factor in the pulse length. Ignition requires that the confinement time exceed present L-mode scalings by about a factor of two, which is anticipated to occur as a result of the operational flexibility incorporated into the design. Conventional operating limits given by 20 e and qψ ≤ 3.2 have been chosen and, in the case of MHD limits, have been justified by ideal stability analysis. The power required for CIT ignition ranges from 10 MW to 40 MW or more, depending on confinement assumptions, and either ICRF or ECRF heating, or both, will be used. (author). 17 refs, 6 figs, 1 tab

  7. THOR tokamak engineering design and experimental programme

    International Nuclear Information System (INIS)

    The THOR machine is an iron cored tokamak having a major radius of 0.52m and a minor radius of 0.17m giving an aspect ratio of 3.1. It has a low ripple toroidal field of 1T and a volt-second capability of 0.24. The maximum plasma current is expected to be in the region of 80 x 103A. Stabilisation of the plasma is achieved by means of a D.C. vertical field and a 1cm thick copper shell. The D.C. field is cancelled during the rise time of the plasma current by means of a pulsed reverse vertical field. Energy for the toroidal, ohmic heating and reverse vertical field systems is supplied from capacitors having a stored energy capability of 685kJ. The aims of the experimental programme include the control and study of the transition from the normal quasi-resistive tokamak regime to the low density slide-away condition. The non-Maxwellian character of the electron distribution function, typical of the slide-away regime, where strong emission around the ion plasma frequency and consequent ion heating have been observed (Alcator), will be studied by a combined transversal and tangential Thomson scattering experiment

  8. Ion cyclotron system design for KSTAR tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Hong, B. G.; Hwang, C. K.; Jeong, S. H.; Yoony, J. S.; Bae, Y. D.; Kwak, J. G.; Ju, M. H

    1998-05-01

    The KSTAR (Korean Superconducting Tokamak Advanced Research) tokamak (R=1.8 m, a=0.5 m, k=2, b=3.5T, I=2MA, t=300 s) is being constructed to do long-pulse, high-b, advanced-operating-mode fusion physics experiments. The ion cyclotron (IC) system (in conjunction with an 8-MW neutral beam and a 1.5-MW lower hybrid system) will provide heating and current drive capability for the machine. The IC system will deliver 6 MW of RF power to the plasma in the 25 to 60 MHz frequency range, using a single four-strap antenna mounted in a midplane port. It will be used for ion heating, fast-wave current drive (FWCD), and mode-conversion current drive (MCCD). The phasing between current straps in the antenna will be adjustable quickly during operation to provide the capability of changing the current-drive efficiency. This report describes the design of the IC system hardware: the electrical characteristics of the antenna and the matching system, the requirements on the power sources, and electrical analyses of the launcher. (author). 7 refs., 2 tabs., 40 figs.

  9. Ion cyclotron system design for KSTAR tokamak

    International Nuclear Information System (INIS)

    The KSTAR (Korean Superconducting Tokamak Advanced Research) tokamak (R=1.8 m, a=0.5 m, k=2, b=3.5T, I=2MA, t=300 s) is being constructed to do long-pulse, high-b, advanced-operating-mode fusion physics experiments. The ion cyclotron (IC) system (in conjunction with an 8-MW neutral beam and a 1.5-MW lower hybrid system) will provide heating and current drive capability for the machine. The IC system will deliver 6 MW of RF power to the plasma in the 25 to 60 MHz frequency range, using a single four-strap antenna mounted in a midplane port. It will be used for ion heating, fast-wave current drive (FWCD), and mode-conversion current drive (MCCD). The phasing between current straps in the antenna will be adjustable quickly during operation to provide the capability of changing the current-drive efficiency. This report describes the design of the IC system hardware: the electrical characteristics of the antenna and the matching system, the requirements on the power sources, and electrical analyses of the launcher. (author). 7 refs., 2 tabs., 40 figs

  10. Conceptual tokamak design at high neutron fluence

    International Nuclear Information System (INIS)

    For the future fusion reactor, it is important to design an experimental device that can be performed testing in-vessel components including tritium breeding modules relevant to the future fusion reactor with high neutron fluence. To realize this requirement, a conceptual tokamak design has been performed in accordance with plasma performance and shape at quasi-steady-state operation. One of the promising scenarios for this purpose is proposed to produce the plasma at the outward shifted radial position with a small minor radius for reasonable plasma parameters. From the analytical results, an appropriate space can be found for neutron shielding so that additional neutron shielding can be installed to protect the tokamak components from any neutron damages under the neutron fluence of 1 MWa m-2. Based on the structural analyses, a two-stage blanket module concept is proposed, i.e. one shielding block with the first wall assembly during high Q operation and two shielding blocks or additional tritium breeding modules during quasi-steady state operation

  11. Sawtooth driven particle transport in tokamak plasmas

    International Nuclear Information System (INIS)

    The radial transport of particles in tokamaks is one of the most stringent issues faced by the magnetic confinement fusion community, because the fusion power is proportional to the square of the pressure, and also because accumulation of heavy impurities in the core leads to important power losses which can lead to a 'radiative collapse'. Sawteeth and the associated periodic redistribution of the core quantities can significantly impact the radial transport of electrons and impurities. In this thesis, we perform numerical simulations of sawteeth using a nonlinear tridimensional magnetohydrodynamic code called XTOR-2F to study the particle transport induced by sawtooth crashes. We show that the code recovers, after the crash, the fine structures of electron density that are observed with fast-sweeping reflectometry on the JET and TS tokamaks. The presence of these structure may indicate a low efficiency of the sawtooth in expelling the impurities from the core. However, applying the same code to impurity profiles, we show that the redistribution is quantitatively similar to that predicted by Kadomtsev's model, which could not be predicted a priori. Hence finally the sawtooth flushing is efficient in expelling impurities from the core. (author)

  12. System studies of compact ignition tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Galambos, J.D.; Blackfield, D.T.; Peng, Y.K.M.; Reid, R.L.; Strickler, D.J.; Selcow, E.

    1987-08-01

    The new Tokamak Systems Code, used to investigate Compact Ignition Tokamaks (CITs), can simultaneously vary many parameters, satisfy many constraints, and minimize or maximize a figure of merit. It is useful in comparing different CIT design configurations over wide regions of parameter space and determining a desired design point for more detailed physics and engineering analysis, as well as for performing sensitivity studies for physics or engineering issues. Operational windows in major radius (R) and toroidal field (B) space for fixed ignition margin are calculated for the Ignifed and Inconel candidate CITs. The minimum R bounds are predominantly physics limited, and the maximum R portions of the windows are engineering limited. For a modified Kaye-Goldston plasma-energy-confinement scaling, the minimum size is 1.15 m for the Ignifed device and 1.25 m for the Inconel device. With the Ignition Technical Oversight Committee (ITOC) physics guidance of B/sup 2/a/q and I/sub p/ >10 MA, the Ignifed and Base-line Inconel devices have a minimum size of 1.2 and 1.25 m and a toroidal field of 11 and 10.4 T, respectively. Sensitivity studies show Ignifed to be more sensitive to coil temperature changes than the Inconel device, whereas the Inconel device is more sensitive to stress perturbations.

  13. Thomson scattering on the PRETEXT Tokamak

    International Nuclear Information System (INIS)

    Ruby laser Thomson scattering was performed on the PRETEXT tokamak. A 10 Joule Q-switched laser and a 1 meter 10 channel polychromator were used to diagnose the electron temperature and density profiles in the PRETEXT plasma. These parameters were measured as a function of time and radial position on a shot to shot basis. The density measurement was calibrated by Rayleigh and Raman scattering and by comparison with data from a 4 mm microwave interferometer. Electron densities ranging from 1 x 1012 cm-3 to 2 x 1013 cm-3 and temperatures ranging from 3 eV to 400 eV were observed. Detailed measurements were made throughout the 40 ms discharge with particular emphasis on the current rise phase. The Thomson scattering data was used as input to a one dimensional magnetic diffusion code. This code modelled the evolution of the current density and safety factor profiles. The results of this analysis were compared with existing theories of tokamak current penetration. The growth of resitive MHD tearing modes was proposed as a likely explanation for the anomalously rapid current penetration observed in PRETEXT

  14. Discrete compressional Alfven eigenmode spectrum in tokamaks

    International Nuclear Information System (INIS)

    The spectrum of Compressional Alfven Eigenmodes (CAE) is analyzed and shown to be discrete in tokamaks with low aspect ratio, such as the National Spherical Torus Experiment (NSTX), as well as in the conventional tokamaks, such as DIII-D. The study is focused on recent similarity experiments on NSTX and DIII-D in which sub-cyclotron frequency instabilities of CAEs were observed at similar plasma conditions [W.W. Heidbrink, et.al. Nuclear Fusion 46, 2006, in press]. The global ideal MHD code NOVA recovers the main properties of these modes predicted by theory and observed in both devices. The discrete spectrum of CAEs is characterized by three quantum mode numbers for each eigenmode, (M;S;n), where M, S, and n are poloidal, radial and toroidal mode numbers, respectively. The expected mode frequency splitting corresponding to each of these mode numbers seems to be observed in experiments and is consistent with our numerical analysis. The polarization of the observed magnetic field oscillations in NSTX was measured and is also consistent with the numerical analysis, which helps to identify them as CAE activity. CAE mode structure was obtained and shown to be localized in both radial and poloidal directions with typical radial localization toward the plasma edge and poloidal localization at the low field side of the plasma cross section. (author)

  15. Discrete compressional Alfven eigenmode spectrum in tokamaks

    International Nuclear Information System (INIS)

    The spectrum of compressional Alfven eigenmodes (CAE) is analysed and shown to be discrete in tokamaks with low aspect ratio, such as the National Spherical Torus Experiment (NSTX), as well as in conventional tokamaks, such as DIII-D. The study is focused on recent similarity experiments on NSTX and DIII-D in which sub-cyclotron frequency instabilities of CAEs were observed at similar plasma conditions (W.W. Heidbrink et al 2006 Nucl. Fusion 46 324). The global ideal MHD code NOVA recovers the main properties of these modes predicted by theory and observed in both devices. The discrete spectrum of CAEs is characterized by three quantum mode numbers for each eigenmode (M, S and n), where M, S and n are poloidal, radial and toroidal mode numbers, respectively. The expected mode frequency splitting corresponding to each of these mode numbers seems to be observed in experiments and is consistent with our numerical analysis. The polarization of the observed magnetic field oscillations in NSTX was measured and is also consistent with the numerical analysis, which helps to identify them as CAE activity. CAE mode structure was obtained and shown to be localized in both radial and poloidal directions with typical radial localization toward the plasma edge and poloidal localization at the low field side of the plasma cross section

  16. Integrated plasma control for high performance tokamaks

    International Nuclear Information System (INIS)

    Sustaining high performance in a tokamak requires controlling many equilibrium shape and profile characteristics simultaneously with high accuracy and reliability, while suppressing a variety of MHD instabilities. Integrated plasma control, the process of designing high-performance tokamak controllers based on validated system response models and confirming their performance in detailed simulations, provides a systematic method for achieving and ensuring good control performance. For present-day devices, this approach can greatly reduce the need for machine time traditionally dedicated to control optimization, and can allow determination of high-reliability controllers prior to ever producing the target equilibrium experimentally. A full set of tools needed for this approach has recently been completed and applied to present-day devices including DIII-D, NSTX and MAST. This approach has proven essential in the design of several next-generation devices including KSTAR, EAST, JT-60SC, and ITER. We describe the method, results of design and simulation tool development, and recent research producing novel approaches to equilibrium and MHD control in DIII-D. (author)

  17. Vertical displacement and position control in tokamaks

    International Nuclear Information System (INIS)

    Free-boundary nearly rigid displacements are considered in a plasma confined by a magnetic field consisting of one part generated by the plasma current density, and one part being due to steady currents in fixed external conductors. An induced surface current effect and a related force on the plasma arise when the externally applied field is inhomogeneous in the direction of displacement. This additional force has not been taken into account in conventional MHD theory. In the particular case of tokamaks , the induced surface current effect has two impacts on vertical nearly rigid displacements. First, there arises an additional restoring force and a positive contribution to the change in potential energy when the externally applied field is inhomogeneous in the vertical direction. A special design of poloidal field coils can thus provide new means for vertical position control in tokamaks, also in the case of strongly elongated cross-sections. Second, an earlier simplified model, in which the plasma is represented by a line current, has to be modified since the plasma is a highly conducting body of finite size. 4 refs

  18. Overview on Chinese tokamak experimental progress

    International Nuclear Information System (INIS)

    Tokamak experiment research in China has made important progress. The main efforts subjected to quasi-steady state operation, LHCD, plasma heating with ICRF, IBW, NBI, ECRH, fueling with pellet and supersonic molecular beam, first wall conditioning technique. Plasma parameters in experiments were much improved, such as ne=8x1019m-3, plasma pulse >10Sec. ICRF boronization and conditioning made Zeff close to unit. Steady state full LH wave current drive has been achieved for more than 3 seconds. LHCD ramp up and recharge have also been demonstrated. The Best ηCDexp∼0.5(1+0.085 exp(4.8(BT-1.45))neICDRp/PLH=1019m-2A/W. Quasi steady state H-mode like plasma with density close to Greenwald limit was obtained by LHCD, in which energy confinement time was nearly 5 times longer than the Ohmic case. The synergy between IBW, pellet and LHCD was tested. Research on the mechanism of macro-turbulence has been extensively carried out experimentally. Ac operation of tokamak was successfully demonstrated. (author)

  19. Alfven wave studies on a tokamak

    International Nuclear Information System (INIS)

    The continuum modes of the shear Alfven resonance are studied on the Tokapole II device, a small tokamak operated in a four node poloidal divertor configuration. A variety of antenna designs and the efficiency with which they deliver energy to the resonant layer are discussed. The spatial structure of the driven waves is studied by means of magnetic probes inserted into the current channel. In an attempt to optimize the coupling of energy in to the resonant layer, the angle of antenna currents with respect to the equilibrium field, antenna size, and plasma-to-antenna distance are varied. The usefulness of Faraday shields, particle shields, and local limiters are investigated. Antennas should be well shielded, either a dense Faraday shield or particle shield being satisfactory. The antenna should be large and very near to the plasma. The wave magnetic fields measured show a spatial resonance, the position of which varies with the value of the equilibrium field and mass density. They are polarized perpendicular to the equilibrium field. A wave propagates radially in to the resonant surface where it is converted to the shear Alfven wave. The signal has a short risetime and does not propagate far toroidally. These points are all consistent with a strongly damped shear Alfven wave. Comparisons of this work to theoretical predictions and results from other tokamaks are made

  20. Anomalous transport in the tokamak edge

    International Nuclear Information System (INIS)

    The tokamak edge has been studied with arrays of Langmuir and magnetic probes on the DITE and COMPASS-C devices. Measurements of plasma parameters such as density, temperature and radial magnetic field were taken in order to elucidate the character, effect on transport and origin of edge fluctuations. The tokamak edge is a strongly-turbulent environment, with large electrostatic fluctuation levels and broad spectra. The observations, including direct correlation measurements, are consistent with a picture in which the observed magnetic field fluctuations are driven by the perturbations in electrostatic parameters. The propagation characteristics of the turbulence, investigated using digital spectral techniques, appear to be dominated by the variation of the radial electric field, both in limiter and divertor plasmas. A shear layer is formed, associated in each case with the last closed flux surface. In the shear layer, the electrostatic wavenumber spectra are significantly broader. The predictions of a drift wave model (DDGDT) and of a family of models evolving from the rippling mode (RGDT group), are compared with experimental results. RGDT, augmented by impurity radiation effects, is shown to be the most reasonable candidate to explain the nature of the edge turbulence, only failing in its estimate of the wavenumber range. (Author)

  1. Lithium-cooled blankets for advanced tokamaks

    International Nuclear Information System (INIS)

    The main objective of the Tokamak Power System Studies (TPSS) at Argonne National Lab. during fiscal year 1985 was to explore innovative design concepts that have the potential for significant enhancement of the attractiveness of a tokamak-based power plant. Activities in the area of plasma engineering resulted in a reference reactor concept, which served as a model for the impurity control and first-wall/blanket/shield studies. The liquid-metal-cooled first-wall/blanket/shield design activity was centered around the vanadium alloy structure and liquid-lithium coolant leading blanket concept as identified by the Blanket Comparison and Selection Study (BCSS). A ferritic steel structure and a LiPb breeder were considered as backup options. The magnetohydrodynamics (MHD) effects associated with self-cooled liquid-metal blanket/first-wall systems are substantially reduced by the lower magnetic fields required for higher plasmas, the lower neutron wall loading resulting from reduced power output, and the smaller reactor size of the TPSS model reactor. Therefore, improved performance characteristics of self-cooled liquid-metal blanket concepts are achievable mainly because the design constraints are more relaxed compared to the BCSS guidelines. Key aspects of the designs evaluated in the current study include the following: (1) design simplicity; (2) use of the first wall as an impurity control device; (3) modular first-wall/blanket/reflector/shield construction; and (4) integrated first-wall/blanket/reflector/shield

  2. Physics evaluation of compact tokamak ignition experiments

    International Nuclear Information System (INIS)

    At present, several approaches for compact, high-field tokamak ignition experiments are being considered. A comprehensive method for analyzing the potential physics operating regimes and plasma performance characteristics of such ignition experiments with O-D (analytic) and 1-1/2-D (WHIST) transport models is presented. The results from both calculations are in agreement and show that there are regimes in parameter space in which a class of small (R/sub o/ approx. 1-2 m), high-field (B/sub o/ approx. 8-13 T) tokamaks with aB/sub o/2/q/sub */ approx. 25 +- 5 and kappa = b/a approx. 1.6-2.0 appears ignitable for a reasonable range of transport assumptions. Considering both the density and beta limits, an evaluation of the performance is presented for various forms of chi/sub e/ and chi/sub i/, including degradation at high power and sawtooth activity. The prospects of ohmic ignition are also examined. 16 refs., 13 figs

  3. Texas Experimental Tokamak impurity injection system

    International Nuclear Information System (INIS)

    Summary investigation of impurity transport and measurements of ion temperature are facilitated by injecting controlled quantities of selected impurities into tokamaks as diagnostic probes. The impurity injector now in use on the Texas Experimental Tokamak (TEXT) was designed for reliable, automatic operation. In this system, a thin film of the desired impurity is placed near the edge of the plasma. The light pulse from a Q-switched ruby laser is directed to a preselected point on the target. A small part of the impurity film evaporates and drifts into the plasma. The laser beam may be scanned to many points on the target so that enough impurity pulses can be obtained from a single target to allow a full day's operation. The scanning assembly and associated electronics are designed to operate with minimum intervention and to facilitate rapid repair and modification. The system is fully automatic but also incorporates both remote and local manual control capabilities to permit system calibration and troubleshooting. In the event of component failure, its self-diagnostic capability can indicate the area for repair. The system is demonstrating its effectiveness and reliability in the support of three different experimental programs. Engineering aspects of the system are discussed in this paper

  4. System studies of compact ignition tokamaks

    International Nuclear Information System (INIS)

    The new Tokamak Systems Code, used to investigate Compact Ignition Tokamaks (CITs), can simultaneously vary many parameters, satisfy many constraints, and minimize or maximize a figure of merit. It is useful in comparing different CIT design configurations over wide regions of parameter space and determining a desired design point for more detailed physics and engineering analysis, as well as for performing sensitivity studies for physics or engineering issues. Operational windows in major radius (R) and toroidal field (B) space for fixed ignition margin are calculated for the Ignifed and Inconel candidate CITs. The minimum R bounds are predominantly physics limited, and the maximum R portions of the windows are engineering limited. For a modified Kaye-Goldston plasma-energy-confinement scaling, the minimum size is 1.15 m for the Ignifed device and 1.25 m for the Inconel device. With the Ignition Technical Oversight Committee (ITOC) physics guidance of B2a/q and I/sub p/ >10 MA, the Ignifed and Base-line Inconel devices have a minimum size of 1.2 and 1.25 m and a toroidal field of 11 and 10.4 T, respectively. Sensitivity studies show Ignifed to be more sensitive to coil temperature changes than the Inconel device, whereas the Inconel device is more sensitive to stress perturbations

  5. X-ray diagnostics of tokamak plasmas

    International Nuclear Information System (INIS)

    In this review, the authors venture into a new arena for work in atomic X-ray spectroscopy which can be dubbed tokamak X-ray spectroscopy diagnostics (TOXRASD). Not only is the experimental development exciting, but the measurements explore areas of atomic and plasma physics which have been inaccessible until just recently. Even though much of the present experimental effort is oriented towards obtaining a TOXRASD for fusion conditions, the new results touch upon some very basic atomic physics questions as well. Much effort has gone into the study of few electron systems, i.e., H-, He-, and Li-like ions with the purpose of utilizing the characteristic X-ray emission for diagnosing laboratory and astronomical plasmas or with the aim of developing the diagnostics, i.e., extending our understanding of the relationship between X-ray line emission and the plasma conditions under which the ions are formed and their ground states excited. However, the emission from highly charged heavy ions, such as neon-like molybdenum, has also attracted interest. Here the focus of the discussion is around results of the latest vintage from the TOXRASD project at the Alcator C tokamak at MIT. 38 references, 14 figures

  6. Boronization of Russian tokamaks from carborane precursors

    International Nuclear Information System (INIS)

    A new and cheap boronization technique using the nontoxic and nonexplosive solid substance carborane has been developed and successfully applied to the Russian tokamaks T-11M, T-3M, T-10 and TUMAN-3. The glow discharge in a mixture of He and carborane vapor produced the amorphous B/C coating with the B/C ratio varied from 2.0-3.7. The deposition rate was about 150 nm/h. The primary effect of boronization was a significant reduction of the impurity influx and the plasma impurity contamination, a sharp decrease of the plasma radiated power, and a decrease of the effective charge. Boronization strongly suppressed the impurity influx caused by additional plasma heating. ECR- and ICR-heating as well as ECR current drive were more effective in boronized vessels. Boronization resulted in a significant extension of the Ne- and q-region of stable tokamak operation. The density limit rose strongly. In Ohmic H-mode energy confinement time increased significantly (by a factor of 2) after boronization. It rose linearly with plasma current Ip and was 10 times higher than Neo-Alcator time at maximum current. ((orig.))

  7. Equilibrium reconstruction in the START tokamak

    Science.gov (United States)

    Appel, L. C.; Bevir, M. K.; Walsh, M. J.

    2001-02-01

    The computation of magnetic equilibria in the START spherical tokamak is more difficult than those in more conventional large aspect ratio tokamaks. This difficulty arises partly as a result of the use of induction compression to generate high current plasma, as this precludes the positioning of magnetic diagnostics close to the outboard side of the plasma. In addition, the effect of a conducting wall with a high, but finite, conductivity must be included. A method is presented for obtaining plasma equilibrium reconstructions based on the EFIT code. New constraints are used to relate isoflux surface locations deduced from radial profile measurements of electron temperature. A model of flux diffusion through the vessel wall is developed. It is shown that neglecting flux diffusion in the vessel wall can lead to a significant underestimate in the calculation of the plasma βt. Using a relatively sparse set of magnetic signals, βt can be obtained to within a fractional error of +/-10%. Using constraints to relate isoflux surface locations, the principle involved in determining the internal q profile is demonstrated.

  8. Module of lithium divertor for KTM tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Lyublinski, I., E-mail: yublinski@yandex.ru [FSUE ' Red Star' , Moscow (Russian Federation); Vertkov, A.; Evtikhin, V.; Balakirev, V.; Ionov, D.; Zharkov, M. [FSUE ' Red Star' , Moscow (Russian Federation); Tazhibayeva, I. [IAE NNC RK, Kurchatov (Kazakhstan); Mirnov, S. [TRINITI, Troitsk, Moscow Region (Russian Federation); Khomiakov, S.; Mitin, D. [OJSC Dollezhal Institute, Moscow (Russian Federation); Mazzitelli, G. [ENEA RC Frascati (Italy); Agostini, P. [ENEA RC Brasimone (Italy)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Problems of PFE degradation, tritium accumulation and plasma pollution can be overcome by the use of liquid lithium-metal with low Z. Black-Right-Pointing-Pointer Capillary-porous system (CPS) - new material in which liquid lithium fill a solid matrix from porous material. Black-Right-Pointing-Pointer Lithium divertor module for KTM tokamak is under development. Black-Right-Pointing-Pointer Lithium filled tungsten felt is offered as the base plasma facing material of divertor. Black-Right-Pointing-Pointer Results of this project addresses to the progress in the field of fusion neutrons source and fusion energy source creation. - Abstract: Activity on projects of ITER and DEMO reactors has shown that solution of problems of divertor target plates and other plasma facing elements (PFEs) based on the solid plasma facing materials cause serious difficulties. Problems of PFE degradation, tritium accumulation and plasma pollution can be overcome by the use of liquid lithium-metal with low Z. Application of lithium will allow to create a self-renewal and MHD stable liquid metal surface of the in-vessel devices possessing practically unlimited service life; to reduce power flux due to intensive re-irradiation on lithium atoms in plasma periphery that will essentially facilitate a problem of heat removal from PFE; to reduce Z{sub eff} of plasma to minimally possible level close to 1; to exclude tritium accumulation, that is provided with absence of dust products and an opportunity of the active control of the tritium contents in liquid lithium. Realization of these advantages is based on use of so-called lithium capillary-porous system (CPS) - new material in which liquid lithium fill a solid matrix from porous material. The progress in development of lithium technology and also activity in lithium experiments in the tokamaks TFTR, T-11M, T-10, FTU, NSTX, HT-7 and stellarator TJ II permits of solving the problems in development of

  9. High pressure tokamaks. [Review of equilibrium and stability problems

    Energy Technology Data Exchange (ETDEWEB)

    Bateman, G.

    1978-05-01

    The successful development of the neutral beam injection method of heating tokamaks has opened up a new range of theoretically predicted phenomena to be explored. This article, intended for the nonspecialist, reviews the existing experimental observations and theoretical understanding of tokamak equilibrium and large scale stability. Then a survey is presented of the new phenomena, such as flux conserving sequences of equilibria and pressure-driven ballooning modes, that are expected to accompany the significantly enhanced plasma pressure to be produced in tokamaks now under construction.

  10. Ions Measurement at the Edge of HT-7 Tokamak

    Institute of Scientific and Technical Information of China (English)

    Ling Bili; Wang Enyao; Gao wei; Wan Baonian; Li Jiangang

    2005-01-01

    A reliable method of measuring ions and ion temperature in tokamak plasma is necessary, for which an omegatron-like instrument has been developed on the HT-7 tokamak. The basic layout of the omegatron-like instrument is shown in this article. The measurement of working gas ion has been performed in the last experimental campaign on HT-7 tokamak. The relations among ion current, the electron repeller voltage and trap voltage have been investigated. This omegatron-like instrument has also provided the edge-plasma ion temperature.

  11. Nonneutralized charge effects on tokamak edge magnetohydrodynamic stability

    Science.gov (United States)

    Zheng, Linjin; Horton, W.; Miura, H.; Shi, T. H.; Wang, H. Q.

    2016-08-01

    Owing to the large ion orbits, excessive electrons can accumulate at tokamak edge. We find that the nonneutralized electrons at tokamak edge can contribute an electric compressive stress in the direction parallel to magnetic field by their mutual repulsive force. By extending the Chew-Goldburger-Low theory (Chew et al., 1956 [13]), it is shown that this newly recognized compressive stress can significantly change the plasma average magnetic well, so that a stabilization of magnetohydrodynamic modes in the pedestal can result. This linear stability regime helps to explain why in certain parameter regimes the tokamak high confinement can be rather quiet as observed experimentally.

  12. 3He functions in tokamak-pumped laser systems

    International Nuclear Information System (INIS)

    3He placed in an annular cell around a tokamak fusion generator can convert moderated fusion neutrons to energetic ions by the 3He(n,p)T reaction, and thereby excite gaseous lasants mixed with the 3He while simultaneously breeding tritium. The total 3He inventory is about 4 kg for large tokamak devices. Special configurations of toroidal-field magnets, neutron moderators and beryllium reflectors are required to permit nearly uniform neutron current into the laser cell with minimal attenuation. The annular laser radiation can be combined into a single output beam at the top of the tokamak

  13. Soft x-ray tomography on tokamaks using flux coordinates

    International Nuclear Information System (INIS)

    Methods of inverting line integrated data using coordinates, which are adapted to problems arising from Hamiltonian flows, are presented. They are exemplified for measurements of soft x-rays on tokamaks with widely arbitrary poloidal cross section. Boundary conditions can be met and cause fewer 'ghosts' for most of the present day tokamaks. The soft x-ray measurements are then used to improve the flux function Ψ as obtained from codes using magnetic measurements as input. We investigate oscillatory phenomena such as sawtooth crash precursors on tokamaks by decomposing the profiles into space-like eigenfunctions and their time dependencies. (author)

  14. Filamentation, current profiles and transport in a tokamak

    International Nuclear Information System (INIS)

    A Tokamak with slightly imperfect magnetic surfaces should have a microscopically filamented current structure. If so, its equilibrium has an exact analog in the dynamics of interacting charged rods. Then there will be a natural current-profile, analogous to thermal equilibrium of the rods (and the natural profile can be calculated by conventional statistical mechanics). This would account for the phenomenon of profile consistency or resilience in Tokamaks. In addition to the natural profiles, this filamentary model also predicts an anomalous inward flux of both heat and particles in a Tokamak, as well as an anomalous diffusion. These 'inward-pinch' components are related to the current gradient

  15. Toroidal and poloidal momentum transport studies in tokamaks

    DEFF Research Database (Denmark)

    Tala, T.; Crombé, K.; Vries, P.C. de; Ferreira, J.; Mantica, P.; Peeters, A.G.; Andrew, Y.; Budny, R.; Corrigan, G.; Eriksson, A.; Garbet, X.; Giroud, C.; Hua, M.-D.; Nordman, H.; Naulin, Volker; Nave, M.F.F.; Parail, V.; Rantamäki, K.; Scott, B.D.; Strand, P.; Tardini, G.; Thyagaraja, A.; Weiland, J.; Zastrow, K.-D.

    The present status of understanding of toroidal and poloidal momentum transport in tokamaks is presented in this paper. Similar energy confinement and momentum confinement times, i.e. τE/τφ ≈ 1 have been reported on several tokamaks. It is more important though, to study the local transport both in...... the core and edge plasma separately as, for example, in the core plasma, a large scatter in the ratio of the local effective momentum diffusivity to the ion heat diffusivity χφeff/χi,eff among different tokamaks can be found. For example, the value of effective Prandtl number is typically around χφeff...

  16. Flux surface shaping effects on tokamak edge turbulence and flows

    International Nuclear Information System (INIS)

    The influence of shaping of magnetic flux surfaces in tokamaks on gyro-fluid edge turbulence is studied numerically. Magnetic field shaping in tokamaks is mainly due to elongation, triangularity, shift and the presence of a divertor X-point. A series of tokamak configurations with varying elongation 1 ≤ κ ≥ 2 and triangularity 0 ≤ δ ≤ 0.4, and an actual ASDEX Upgrade divertor configuration are obtained with the equilibrium code HELENA and implemented into the gyro-fluid turbulence code GEM. The study finds minimal impact on the zonal flow physics itself, but strong impact on the turbulence and transport. (authors)

  17. Tokamak Plasmas : Internal magnetic field measurement in tokamak plasmas using a Zeeman polarimeter

    Indian Academy of Sciences (India)

    M Jagadeeshwari; J Govindarajan

    2000-11-01

    In a tokamak plasma, the poloidal magnetic field profile closely depends on the current density profile. We can deduce the internal magnetic field from the analysis of circular polarization of the spectral lines emitted by the plasma. The theory of the measurement and a detailed design of the Zeeman polarimeter constructed to measure the poloidal field profile in the ADITYA tokamak are presented. The Fabry-Perot which we have employed in our design, with photodiode arrays followed by lock-in detection of the polarization signal, allows the measurement of the fractional circular polarization. In this system He-II line with wavelength 4686 Å is adopted as the monitoring spectral line. The line emission used in the present measurement is not well localized in the plasma, necessiating the use of a spatial inversion procedure to obtain the local values of the field.

  18. Development of a free boundary Tokamak Equilibrium Solver (TES) for Advanced Study of Tokamak Equilibria

    CERN Document Server

    Jeon, Y M

    2015-01-01

    A free-boundary Tokamak Equilibrium Solver (TES), developed for advanced study of tokamak equilibra, is described with two distinctive features. One is a generalized method to resolve the intrinsic axisymmetric instability, which is encountered after all in equilibrium calculation with a free-boundary condition. The other is an extension to deal with a new divertor geometry such as snowflake or X divertors. For validations, the uniqueness of a solution is confirmed by the independence on variations of computational domain, the mathematical correctness and accuracy of equilibrium profiles are checked by a direct comparison with an analytic equilibrium known as a generalized Solovev equilibrium, and the governing force balance relation is tested by examining the intrinsic axisymmetric instabilities. As a valuable application, a snowflake equilibrium that requires a second order zero of the poloidal magnetic field is discussed in the circumstance of KSTAR coil system.

  19. Tokamak Plasmas : Observation of floating potential asymmetry in the edge plasma of the SINP tokamak

    Indian Academy of Sciences (India)

    Krishnendu Bhattacharyya; N R Ray

    2000-11-01

    Edge plasma properties in a tokamak is an interesting subject of study from the view point of confinement and stability of tokamak plasma. The edge plasma of SINP-tokamak has been investigated using specially designed Langmuir probes. We have observed a poloidal asymmetry of floating potentials, particularly the top-bottom floating potential differences are quite noticeable, which in turn produces a vertical electric field (v). This v remains throughout the discharge but changes its direction at certain point of time which seems to depend on applied vertical magnetic field v).

  20. Equilibrium reconstruction in the TCA/Br tokamak; Reconstrucao do equilibrio no tokamak TCA/BR

    Energy Technology Data Exchange (ETDEWEB)

    Sa, Wanderley Pires de

    1996-12-31

    The accurate and rapid determination of the Magnetohydrodynamic (MHD) equilibrium configuration in tokamaks is a subject for the magnetic confinement of the plasma. With the knowledge of characteristic plasma MHD equilibrium parameters it is possible to control the plasma position during its formation using feed-back techniques. It is also necessary an on-line analysis between successive discharges to program external parameters for the subsequent discharges. In this work it is investigated the MHD equilibrium configuration reconstruction of the TCA/BR tokamak from external magnetic measurements, using a method that is able to fast determine the main parameters of discharge. The thesis has two parts. Firstly it is presented the development of an equilibrium code that solves de Grad-Shafranov equation for the TCA/BR tokamak geometry. Secondly it is presented the MHD equilibrium reconstruction process from external magnetic field and flux measurements using the Function Parametrization FP method. this method. This method is based on the statistical analysis of a database of simulated equilibrium configurations, with the goal of obtaining a simple relationship between the parameters that characterize the equilibrium and the measurements. The results from FP are compared with conventional methods. (author) 68 refs., 31 figs., 16 tabs.

  1. A review of ELMs in divertor tokamaks

    International Nuclear Information System (INIS)

    This paper reviews what is known about edge localized modes (ELMs), with an emphasis on their effect on the scrape-off layer and divertor plasmas. ELM effects have been measured in the ASDEX-U, C-Mod, COMPASS-D, DIII-D, JET, JFT-2M,JT-60U, and TCV tokamaks and are reported here. At least three types of ELMs have been identified and their salient features determined. Type-1 giant ELMs can cause the sudden loss of up to 10-15% of the plasma stored energy but their amplitude (ΔW/W) does not increase with increasing power. Type- 3 ELMs are observed near the H-mode power threshold and produce small energy dumps (1-3% of the stored energy). All ELMs increase the scrape- off layer plasma and produce particle fluxes on the divertor targets which are as much as ten times larger that the quiescent phase between ELMs. The divertor heat pulse is largest on the inner target, unlike that of L-Mode or quiescent H-mode; some tokamaks report radial structure in the heat flux profile which is suggestive of islands or helical structures. The power scaling of Type-1 ELM amplitude and frequency have been measured in several tokamaks and has recently been applied to predictions of the ELM Size in ITER. Concern over the expected ELM amplitude has led to a number of experiments aimed at demonstrating active control of ELMs. Impurity gas injection with feedback control on the radiation loss in ASDEX-U suggests that a promising mode of operation (the CDH-mode) with a very small type-3 ELMs can be maintained with heating power sell above the H-mode threshold, where giant type-1 ELMs can be maintained with heating power well above the H-mode threshold, where Giant type-1 ELMs are normally observed. While ELMs have many potential negative effects, the beneficial effect of ELMs in providing density control and limiting the core plasma impurity content in high confinement H- mode discharges should not be overlooked

  2. Lantern Festival —— Canberra, Australia

    Institute of Scientific and Technical Information of China (English)

    Carol Keil

    2009-01-01

    <正>Each year, for the last 21 years, the ACT Branch of the Australia China Friendship Society has celebrated the Lantern Festival on the shores of Lake Burley Griffin. In preparation for the Festival we hold a lantern-making workshop for the general public

  3. Compact ignition tokamak studies, ignitor concept, configuration status

    International Nuclear Information System (INIS)

    The viewgraphs present design features of the Compact Ignition Tokamak with emphasis on the magnet coils. The magnet coils are discussed with respect to preload, external torque and structural aspects

  4. Compact Ignition Tokamak Program: status of FEDC studies

    International Nuclear Information System (INIS)

    Viewgraphs on the Compact Ignition Tokamak Program comprise the report. The technical areas discussed are the mechanical configuration status, magnet analysis, stress analysis, cooling between burns, TF coil joint, and facility/device layout options

  5. Vesmírný tokamak na Zemi

    Czech Academy of Sciences Publication Activity Database

    Řípa, Milan

    2007-01-01

    Roč. 15, č. 3 (2007), s. 12-14. ISSN 1210-4612 Institutional research plan: CEZ:AV0Z20430508 Keywords : fusion * technology * material * tokamak * ITER Subject RIV: BL - Plasma and Gas Discharge Physics

  6. Engineering development aspects of the HL-2A tokamak

    International Nuclear Information System (INIS)

    The HL-2A tokamak (design values: major radius 1.65 m, minor radius 0.4 m, plasma current 0.48 MA and toroidal field 2.8 T) is the first tokamak with an operating divertor in China. It is characterized by a large closed divertor chamber. This unique feature will make significant contributions to enhance our understanding of complex divertor plasma physics and to help validating divertor physics modelings. The engineering design, development, testing and commissioning of the HL-2A tokamak are described in this paper. Preliminary results show that the HL-2A tokamak has been successfully operated in the divertor configuration. The major parameters: plasma current Ip=168 kA, toroidal field BT=1.4 T, plasma line average density ne=1.7 x 1019 m-3, limiting vacuum pv=4.6 x 10-6 Pa, were achieved at the end of 2003. (authors)

  7. HYFIRE: a tokamak- high-temperature electrolysis system

    International Nuclear Information System (INIS)

    Brookhaven National Laboratory is involved in a conceptual design study of a commercial nuclear power system which utilizes high-temperature electrolysis to produce synthetic fuels. The system is called HYFIRE. It includes a tokamak fusion power reactor supplying electrical and thermal energy to an array of electrolytes. The electrolytes produce hydrogen which can be used either directly as a fuel or in the production of hydrocarbons. The purpose of the study is to provide a mechanism for DOE to further assess the commercial potential of fusion using a tokamak reactor to produce synthetic fuel. The HYFIRE design is based on the tokamak commercial power reactor, STARFIRE. STARFIRE uses the deuterium/tritium/lithium fuel cycle. The HYFIRE study assumes the plasma shape and characteristics of STARFIRE study but uses a different blanket design. This study is particularly interested in the possibility of using the STARFIRE tokamak in the production of synthetic fuels

  8. The 110 GHz ECRH system on the RTP tokamak

    International Nuclear Information System (INIS)

    A 110 GHz 500 kW gyrotron has recently been installed at the RTP tokamak. Some of the technical aspects associated with the gyrotron, the power supplies, and the quasi-optical transmission line are described. (orig.)

  9. Joint Czechoslovak-Soviet workshop on current drive in tokamaks

    International Nuclear Information System (INIS)

    At the Joint Czechoslovak-Soviet Workshop on Current Drive in Tokamaks, five papers dealing with issues of general interest were presented. In a theoretical paper by Klima and Pavlo a one-dimensional model of the lower-hybrid current drive is described and the results of its analysis are used in a numerical simulation using T-7 tokamak parameters. In the second theoretical paper by Vojtsekhovich, Parail and Pereverzev the influence of the LH wave spectrum on the efficiency of the current drive is studied. Two papers deal with a new microwave system designed for experiments on LHCD in the T-7 tokamak. In particular, the power spectra of new four-waveguide grills are computed. In the last paper the non-inductive start-up of the discharge in the T-7 tokamak by means of electron cyclotron waves is investigated. (J.U.)

  10. TFTR/JET INTOR workshop on plasma transport tokamaks

    International Nuclear Information System (INIS)

    This report summarizes the proceedings of a Workshop on transport models for prediction and analysis of tokamak plasma confinement. Summaries of papers on theory, predictive modeling, and data analysis are included

  11. Investigation of Aditya Tokamak plasmas with lithiumized wall

    International Nuclear Information System (INIS)

    The lithium coating on plasma facing components of tokamak leads to better plasma properties through the reduction in impurities and controlling the hydrogen recycling. In Aditya tokamak, lithiumization of vacuum vessel wall is regularly carried out prior to its daily operation using lithium rod exposed to overnight glow discharge-cleaning plasma. Spectroscopic studies of Aditya tokamak plasmas shows the reduction of hydrogen (Hα at 656.3 nm) and oxygen (O II at 441.6 nm) as compared to discharges without the lithium coated walls. This clearly indicates reduction of recycling and impurity influxes from the wall, respectively. After Li coating, plasma stored energy increases significantly and plasmas with higher electron densities are obtained. Estimation of energy confinement time shows that it increases after lithimization and becomes comparable to the values predicated by Neo-Alcator scaling for ohmically heated tokamak plasma. Further analysis indicates that recycling must be low to achieve better plasma confinement. (author)

  12. Burning plasma simulation and environmental assessment of tokamak, spherical tokamak and helical reactors

    International Nuclear Information System (INIS)

    Burning plasma simulation in tokamak (TR), spherical tokamak (ST) and helical (HR) reactors were carried out focusing on Internal Transport Barrier (ITB) plasma operations using the TOTAL-T (Toroidal Transport Analysis Linkage - Tokamak) code coupled with GLF23 turbulent transport code and NCLASS neoclassical transport codes, and TOTAL-H (Helical) code with multi-helicity helical ripple transport analysis code. The effectiveness of these ITB transport coefficients is checked using experimental data of JT-60U and LHD. It clarified the requirement of deep penetration of high-field-side (HFS) pellet injection fueling to realize steady-state advanced burning operation in TR and ST. The neoclassical ripple transport plays an important role on the ITB operation in HR. Moreover, economical and environmental assessments were performed for these three type reactors by the PEC (Physics Engineering and Cost) system code in the case of four blanket designs (Li/V, Flibe/FS(Ferritic Steel), LiPb/SiC, FF(Fission- Fusion) Hybrid). In the present analysis, maximum field of superconducting coil is assumed 13 T, instead of maximum normal conductor strength of 8T in ST reactor. The tolerable neutron wall fluence is assumed 20 MW.Yr/m"2 in the case of LiPb/SiC blanket system, which determines the replacement cycle of blanket modules. As for cost analysis, the fusion island (FI) cost of ST-1 is lowest. However, its fusion thermal power is largest and the TR is superior in cost of electricity (COE). Among four blanket designs Flibe/FS is superior in cost, because ferritic steel (FS) is much cheaper than vanadium (V). The life-cycle CO2 emission amount per output electric power and the energy payback ratio are also evaluated. The ST reactor is favorable in CO2 emission reduction, because rather compact and simple normal conducting coil system is adopted here. The ST and TR need more frequent blanket exchanges than HR with lower neutron wall load. However, HR is still expensive and has

  13. Objectives and design of the JT-60 superconducting tokamak

    International Nuclear Information System (INIS)

    A fully superconducting tokamak named as JT-60SC is designed for the modification program of JT-60 to enhance economical and environmental attractiveness in tokamak fusion reactors. JT-60SC aims at realizing high-beta steady-state operation in the use of low radio-activation ferritic steel in low ν and ρ regime relevant to the reactor plasmas. Objectives, research issues, plasma control schemes and a conceptual design for JT-60SC are presented. (author)

  14. NEOCLASSICAL TRANSPORT IN A TOKAMAK WITH ELECTRIC SHEAR

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Neoclassical transport theory for a tokamak in the presence of a large radial electric field with shear is developed using Hamiltonian formalism. Diffusion coefficients are derived in both the plateau and banana regimes where the squeezing factor in coefficients can greatly affect diffusion at the plasma edge. Rotation speeds are calculated in the scrape-off region. They are in good agreement with the measurements on the TdeV tokamak.

  15. q Measurements during sawtooth oscillations in a low q tokamak

    International Nuclear Information System (INIS)

    The central safety factor during a sawtooth oscillation in material-limiter tokamak discharges in the TOKAPOLE II poloidal divertor tokamak is measured to be constant at 0.7 during a sawtooth oscillation. This result is identical to that observed earlier in the same device in magnetic-limiter discharges. Thus, the presence of scrape-off plasma beyond the divertor separatrix is not responsible for the absence of total reconnection. 12 refs., 3 figs

  16. Development of tokamak reactor systems analysis code 'TORSAC'

    International Nuclear Information System (INIS)

    This report describes Tokamak Reactor Systems Analysis Code ''TORSAC'' which has been developed in order to assess the impact of the design choises on reactor systems and to improve tokamak designs in wide parameter range. This computer code has following functions. (1) Systematic sensitivity analysis for a set of given design parameters, (2) Cost calculation of a new reactor concept designed automatically as a result of systematic sensitivity analysis. (author)

  17. Automated Fault Detection for DIII-D Tokamak Experiments

    International Nuclear Information System (INIS)

    An automated fault detection software system has been developed and was used during 1999 DIII-D plasma operations. The Fault Identification and Communication System (FICS) executes automatically after every plasma discharge to check dozens of subsystems for proper operation and communicates the test results to the tokamak operator. This system is now used routinely during DIII-D operations and has led to an increase in tokamak productivity

  18. Technique for plasma filament stabilization in a tokamak

    International Nuclear Information System (INIS)

    The invention is related to the field of automatic control of thermonuclear device processes and can be used in control systems of plasma filament stabilization by large radius in tokamak type thermolnuclear devices. The economic effect of the suggested technique is caused by improvement of stabilization of optimum (from the viewpoint of the decrease of plasma energy losses) plasma filament position in the tokamak-reactor which results in the decrease of power of additional plasma heating systems

  19. Operating tokamaks with steady-state toroidal current

    International Nuclear Information System (INIS)

    Continuous operation of a tokamak requires, among other things, a means of continuously providing the toroidal current. Various methods have been proposed to provide this current including methods which utilize radio-frequency waves in any of several frequency regimes. Here we elaborate on the prospects of incorporating these current-drive techniques in tokamak reactors, concentrating on the theoretical minimization of the power requirements

  20. Experimental observations related to the thermodynamic properties of tokamak plasmas

    International Nuclear Information System (INIS)

    The coarse-grained tokamak plasma description derived from the magnetic entropy concept presents appealing features as it involves a simple mathematics and it identifies a limited set of characteristic parameters of the macroscopic equilibrium. In this paper a comprehensive review of the work done in order to check the reliability of the Stationary Magnetic Entropy predictions against experimental data collected from different tokamaks, plasma regimes and heating methods is reported. (author)

  1. Design of a microwave calorimeter for the microwave tokamak experiment

    Energy Technology Data Exchange (ETDEWEB)

    Marinak, M. (California Univ., Berkeley, CA (USA))

    1988-10-07

    The initial design of a microwave calorimeter for the Microwave Tokamak Experiment is presented. The design is optimized to measure the refraction and absorption of millimeter rf microwaves as they traverse the toroidal plasma of the Alcator C tokamak. Techniques utilized can be adapted for use in measuring high intensity pulsed output from a microwave device in an environment of ultra high vacuum, intense fields of ionizing and non-ionizing radiation and intense magnetic fields. 16 refs.

  2. An emerging understanding of H-mode discharges in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Groebner, R.J.

    1992-12-01

    A remarkable degree of consistency of experimental results from tokamaks throughout the world has developed with regard to the phenomenology of the transition from L-mode to H-mode confinement in tokamaks. The transition is initiated in a narrow layer at the plasma periphery where density fluctuations are suppressed and steep gradients of temperature and density form in a region with large first and second radial derivatives in the [upsilon][sub E][sup [yields

  3. Analysis of material removed from UCLA tokamaks Microtor and Macrotor

    International Nuclear Information System (INIS)

    This paper reports a first effort to examine the surface of the UCLA tokamaks, Microtor and Macrotor, by analyzing samples that have been exposed to plasma discharge and cleaning for long periods. The samples were sent to the Surface Science Section at the Pacific Northwest Laboratory (PNL). There, Auger electron spectrometry and sputter profile techniques were used to examine the samples, which had been handled in atmospheric conditions after being removed from the tokamak

  4. Design of selected subsystems for COMPASS tokamak operation

    Czech Academy of Sciences Publication Activity Database

    Janky, Filip; Pereira, T.; Hron, Martin; Pánek, Radomír; Fernandes, H.

    Aix-en-Provence : IAEA, 2009. s. 80-80. ISBN N. [Seventh IAEATechnical Meeting on Control, Data Acquisition, and Remote Participation for Fusion Research. 15.06.2009-19.06.2009, Aix-en-Provence] Institutional research plan: CEZ:AV0Z20430508 Keywords : tokamak * Compass * machine control * tokamak operation Subject RIV: BL - Plasma and Gas Discharge Physics http://www-fusion-magnetique.cea.fr/tmiaea2009/ website /data/articles/000080.pdf

  5. Recent experiments on the STOR-M Tokamak

    International Nuclear Information System (INIS)

    Recent experiments on the STOR-M tokamak have been focused on basic tokamak physics and technology development for controlled thermonuclear fusion research. Active control of the magnetohydrodynamic (MHD) instabilities has been achieved by helical resonant magnetic perturbations (RMPs). Improved confinement has been induced by gas puffing during ohmic discharges. Modification of toroidal flow velocities by a tangentially injected compact torus (CT) plasmoid to the STOR-M discharge has been observed. (author)

  6. Fishbone instability excited by electrons in a tokamak

    International Nuclear Information System (INIS)

    Fishbone instability in Tokamak plasma is often produced by deeply trapped suprathermal ions. Theoretical analysis indicates that the instability can be excited by barely trapped suprathermal electrons. Negative magnetic shear help exciting electron fishbone or suppress ion one, while positive shear is opposite. The fishbone instability purely driven by suprathermal trapped electrons is firstly identified by using electron cyclotron resonance heating (ECRH) in the HL-1M Tokamak

  7. Design of a microwave calorimeter for the microwave tokamak experiment

    International Nuclear Information System (INIS)

    The initial design of a microwave calorimeter for the Microwave Tokamak Experiment is presented. The design is optimized to measure the refraction and absorption of millimeter rf microwaves as they traverse the toroidal plasma of the Alcator C tokamak. Techniques utilized can be adapted for use in measuring high intensity pulsed output from a microwave device in an environment of ultra high vacuum, intense fields of ionizing and non-ionizing radiation and intense magnetic fields. 16 refs

  8. Runaway electron generation in tokamak disruptions

    International Nuclear Information System (INIS)

    The time evolution of the plasma current during a tokamak disruption is calculated by solving the equations for runaway electron production simultaneously with the induction equation for the toroidal electric field. The resistive diffusion time in a post-disruption plasma is typically comparable to the runaway avalanche growth time. Accordingly, the toroidal electric field induced after the thermal quench of a disruption diffuses radially through the plasma at the same time as it accelerates runaway electrons, which in turn back-react on the electric field. When these processes are accounted for in a self-consistent way, it is found that (1) the efficiency and time scale of runaway generation agrees with JET experiments; (2) the runaway current profile typically becomes more peaked than the pre-disruption current profile; and (3) can easily become radially in the shape of filaments. It is also shown that higher runaway electron generation is expected if the thermal quench is sufficiently fast. (authors)

  9. Cooldown of the Compact Ignition Tokamak

    International Nuclear Information System (INIS)

    Cooldown of the Compact Ignition Tokamak (CIT) with the baseline liquid nitrogen cooling system was analyzed. On the basis of this analysis and present knowledge of the two-phase heat transfer, the current baseline CIT can be cooled down in about 1.5 h. An extensive heat transfer test program is recommended to reduce uncertainty in the heat transfer performance and to explore methods for minimizing the cooldown time. An alternate CIT cooldown system is described which uses a pressurized gaseous helium coolant in a closed-loop system. It is shown analytically that this system will cool down the CIT well within 1 h. Confidence in this analysis is sufficiently high that a heat transfer test program would not be necessary. The added cost of this alternate system is estimated to be about $5.3 million. This helium cooling system represents a reasonable backup approach to liquid nitrogen cooling of the CIT. 3 refs., 12 figs., 3 tabs

  10. Safety factor profile control in a tokamak

    CERN Document Server

    Bribiesca Argomedo, Federico; Prieur, Christophe

    2014-01-01

    Control of the Safety Factor Profile in a Tokamak uses Lyapunov techniques to address a challenging problem for which even the simplest physically relevant models are represented by nonlinear, time-dependent, partial differential equations (PDEs). This is because of the  spatiotemporal dynamics of transport phenomena (magnetic flux, heat, densities, etc.) in the anisotropic plasma medium. Robustness considerations are ubiquitous in the analysis and control design since direct measurements on the magnetic flux are impossible (its estimation relies on virtual sensors) and large uncertainties remain in the coupling between the plasma particles and the radio-frequency waves (distributed inputs). The Brief begins with a presentation of the reference dynamical model and continues by developing a Lyapunov function for the discretized system (in a polytopic linear-parameter-varying formulation). The limitations of this finite-dimensional approach motivate new developments in the infinite-dimensional framework. The t...

  11. Natural Fueling of a Tokamak Fusion Reactor

    CERN Document Server

    Wan, Weigang; Chen, Yang; Perkins, Francis W

    2009-01-01

    A natural fueling mechanism that helps to maintain the main core deuterium and tritium (DT) density profiles in a tokamak fusion reactor is discussed. In H-mode plasmas dominated by ion- temperature gradient (ITG) driven turbulence, cold DT ions near the edge will naturally pinch radially inward towards the core. This mechanism is due to the quasi-neutral heat flux dominated nature of ITG turbulence and still applies when trapped and passing kinetic electron effects are included. Fueling using shallow pellet injection or supersonic gas jets is augmented by an inward pinch of could DT fuel. The natural fueling mechanism is demonstrated using the three-dimensional toroidal electromagnetic gyrokinetic turbulence code GEM and is analyzed using quasilinear theory. Profiles similar to those used for conservative ITER transport modeling that have a completely flat density profile are examined and it is found that natural fueling actually reduces the linear growth rates and energy transport.

  12. The alignment of bootstrap current in tokamak

    International Nuclear Information System (INIS)

    By calculating the trapped particle fraction, solving the Grand-Shafranov equation describing plasma equilibrium, and using Harris model, the magnitude and alignment of the bootstrap current in tokamak are calculated and analysed under the conventional shear regimes and also the negative central shear regimes. The conclusion authors obtained are: through adjusting the profile parameters of plasma density, temperature and current, and the elongation k and triangularity d which describe the plasma shape, the alignment of bootstrap current profile with the equilibrium current profile can be produced; the negative central shear regimes are advantage ous to produce bootstrap current, and the profile of bootstrap current is well-aligned with the equilibrium current profile. By comparing authors' calculated results, the optimized parameters are obtained under the conventional shear and the negative central shear regimes

  13. Power oscillator in the Tokamaks training

    International Nuclear Information System (INIS)

    This work reports the results obtained from the cleaning of the Novillo Tokamak Chamber, using an A.F. Taylor Discharge Cleaning (TDC) in H2 with a power oscillator of 20 k W and 17.5 k Hz. The plasma temperature in the discharge was of one electron-volt (Te ≅ 1 eV) with a moderate electron density ne ≅ 4 x 1011 cm-3. This discharge cleaning was found helpful in the removal of C and O via the formation of pumping compounds such as CH4 and H2O. A residual gas analyzer was used to monitor the partial pressure of these and other compounds, indicating removal rates as high as two monolayers/hour at the beginning of the discharge. A value of Zeff = 3 was estimated for a discharge of 7 k A after conditioning. (Author)

  14. Argonne Plasma Engineering Experiment (APEX) Tokamak

    International Nuclear Information System (INIS)

    The Argonne Plasma Engineering Experiment (APEX) Tokamak was designed to provide hot plasmas for reactor-relevant experiments with rf heating (current drive) and plasma wall experiments, principally in-situ low-Z wall coating and maintenance. The device, sized to produce energetic plasmas at minimum cost, is small (R = 51 cm, r = 15 cm) but capable of high currents (100 kA) and long pulse durations (100 ms). A design using an iron central core with no return legs, pure tension tapewound toroidal field coils, digital radial position control, and UHV vacuum technology was used. Diagnostics include monochrometers, x-ray detectors, and a microwave interferometer and radiometer for density and temperature measurements. Stable 100 ms shots were produced with electron temperatures in the range 500 to 1000 eV. Initial results included studies of thermal desorption and recoating of wall materials

  15. Beam-induced tensor pressure tokamak equilibria

    International Nuclear Information System (INIS)

    D-shaped tensor pressure tokamak equilibria induced by neutral-beam injection are computed. The beam pressure components are evaluated from the moments of a distribution function that is a solution of the Fokker-Planck equation in which the pitch-angle scattering operator is ignored. The level-psub(perpendicular) contours undergo a significant shift away from the outer edge of the device with respect to the flux surfaces for perpendicular beam injection into broad-pressure-profile equilibria. The psub(parallel) contours undergo a somewhat smaller inward shift with respect to the flux surfaces for both parallel and perpendicular injection into broad-pressure-profile equilibria. For peaked-pressure-profile equilibria, the level pressure contours nearly co-incide with the flux surfaces. (author)

  16. Sliding Mode Control of a Tokamak Transformer

    Energy Technology Data Exchange (ETDEWEB)

    Romero, J. A.; Coda, S.; Felici, F.; Moret, J. M.; Paley, J.; Sevillano, G.; Garrido, I.; Le, H. B.

    2012-06-08

    A novel inductive control system for a tokamak transformer is described. The system uses the flux change provided by the transformer primary coil to control the electric current and the internal inductance of the secondary plasma circuit load. The internal inductance control is used to regulate the slow flux penetration in the highly conductive plasma due to the skin effect, providing first-order control over the shape of the plasma current density profile. Inferred loop voltages at specific locations inside the plasma are included in a state feedback structure to improve controller performance. Experimental tests have shown that the plasma internal inductance can be controlled inductively for a whole pulse starting just 30ms after plasma breakdown. The details of the control system design are presented, including the transformer model, observer algorithms and controller design. (Author) 67 refs.

  17. The Procedure for Assembling the EAST Tokamak

    Institute of Scientific and Technical Information of China (English)

    Wu Songtao

    2005-01-01

    Due to the complicated constitution and high precision requirements of the EAST superconducting tokamak, a meticulous assembling procedure and measurement scheme must be established. The big size and mass of the EAST machine's components and complicated configuration with tight installation tolerances call for a highly careful assembling procedure. The assembling procedure consists of three main sub-procedures for the assembling of the base, of the tori of the VV, the vacuum vessel TS and the TF, and of the peripheral parts respectively. Before the assembly, a reference framework has been set up by means of an industrial measurement system with reference fiducial targets fixed on the wall of the test hall. In this paper, the assembling procedure is described in detail, the survey control system of the assembly is discussed, and progress in the assembly work is also reported.

  18. Decommissioning of the Tokamak Fusion Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    E. Perry; J. Chrzanowski; C. Gentile; R. Parsells; K. Rule; R. Strykowsky; M. Viola

    2003-10-28

    The Tokamak Fusion Test Reactor (TFTR) at the Princeton Plasma Physics Laboratory was operated from 1982 until 1997. The last several years included operations with mixtures of deuterium and tritium. In September 2002, the three year Decontamination and Decommissioning (D&D) Project for TFTR was successfully completed. The need to deal with tritium contamination as well as activated materials led to the adaptation of many techniques from the maintenance work during TFTR operations to the D&D effort. In addition, techniques from the decommissioning of fission reactors were adapted to the D&D of TFTR and several new technologies, most notably the development of a diamond wire cutting process for complex metal structures, were developed. These techniques, along with a project management system that closely linked the field crews to the engineering staff who developed the techniques and procedures via a Work Control Center, resulted in a project that was completed safely, on time, and well below budget.

  19. ITER tokamak buildings and equipment layout

    International Nuclear Information System (INIS)

    The International Thermonuclear Experimental Reactor (ITER) design has evolved to a level of maturity that has enabled the building designers to define the major dimensions and characteristics of the cluster of buildings that contain the tokamak and adjacent support equipment. Three-dimensional building models developed in a CATIA database provide the framework for the equipment layout. This article describes the preliminary layout of all major pieces of equipment, large bore pipes, ducts, busbars and other services. It is anticipated that some features of the layout will change as equipment design is advanced and future decisions are made, but these changes are not expected to alter the basic building design and any necessary changes are facilitated by the 3-D CATIA models. 1 ref., 6 figs

  20. Pellet injection experiments on the TFR tokamak

    International Nuclear Information System (INIS)

    The essential results of the pellet injection experiments carried out on the TFR Tokamak from 1983 until the shut-down of the machine in June 1986, are summarized. Hydrogen and deuterium pellets, occasionally doped with neon, were injected into ohmically and also additionally NB and ECR heated plasmas. Direct observation of the pellet trajectories yields insight in the properties of the ablation clouds. Measurements of the bulk plasma show a rapid temperature evolution during and just after the ablation process. The electron density changes radially on a much longer time scale. Transport simulations in particular for multi-pellet injection leads to the conclusion that the transport coefficients for the density transport are not drastically modified during the density relaxation phase

  1. RF current drive components in a tokamak

    International Nuclear Information System (INIS)

    Theoretical analysis of low frequency current drive in a tokamak is presented. The global model discussed includes kinetic hot plasma effects and collisions. It is found that all kinds of wave-plasma interactions (resonant wave-electron interaction, resonant wave-ion interaction and collisions) can contribute to the current drive. The analysis presented stresses the two new current drive components, the resonant helicity current and the nonresonant collisionless current. Helicity current drive is proportional to the parallel helicity flux and to the wave damping strength, which is defined by the wave-plasma interaction process. The collisionless part of the nonresonant current is proportional to wave damping on ions. However, this is an electron current, and wave-ion interaction just creates necessary polarization of the wave to drive a current. The resistive MHD limit is considered as well, and the correct expression for the RF driven current including the Alfven resonance effect, is given. (author) 17 refs

  2. Tokamak fusion reactor start-up simulation

    Energy Technology Data Exchange (ETDEWEB)

    Ling, K.M.; Jardin, S.C.; Perkins, F.W.

    1986-02-01

    A simulation code TSEC (Time-dependent Spectral Equilibrium Code) has been developed to model the axisymmetric evolution of a tokamak on the resistive (L/R) time scale of the external coils, conductors, or shell. The electromagnetic interaction between the plasma and the external circuit is taken into account in a self-consistent manner. TSEC is Lagrangian and utilizes magnetic flux coordinates with spectral decomposition in the angle variable theta. The plasma is modeled as a finite-size, zero-inertia, finite-pressure fluid which adjusts its position and shape to remain in free-boundary equilibrium consistent with the currents in the external circuits. At the heart of TSEC is a fast method of calculating the self-consistent free-boundary plasma equilibrium at each time step which is based on the minimization of a certain mean-square error. 3 refs., 6 figs., 3 tabs.

  3. Tokamak fusion reactor start-up simulation

    International Nuclear Information System (INIS)

    A simulation code TSEC (Time-dependent Spectral Equilibrium Code) has been developed to model the axisymmetric evolution of a tokamak on the resistive (L/R) time scale of the external coils, conductors, or shell. The electromagnetic interaction between the plasma and the external circuit is taken into account in a self-consistent manner. TSEC is Lagrangian and utilizes magnetic flux coordinates with spectral decomposition in the angle variable theta. The plasma is modeled as a finite-size, zero-inertia, finite-pressure fluid which adjusts its position and shape to remain in free-boundary equilibrium consistent with the currents in the external circuits. At the heart of TSEC is a fast method of calculating the self-consistent free-boundary plasma equilibrium at each time step which is based on the minimization of a certain mean-square error. 3 refs., 6 figs., 3 tabs

  4. Toroidal microinstability studies of high temperature tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Rewoldt, G.; Tang, W.M.

    1989-07-01

    Results from comprehensive kinetic microinstability calculations are presented showing the effects of toroidicity on the ion temperature gradient mode and its relationship to the trapped-electron mode in high-temperature tokamak plasmas. The corresponding particle and energy fluxes have also been computed. It is found that, although drift-type microinstabilities persist over a wide range of values of the ion temperature gradient parameter /eta//sub i/ /equivalent to/ (dlnT/sub i//dr)/(dlnn/sub i//dr), the characteristic features of the dominant mode are those of the /eta//sub i/-type instability when /eta//sub i/ > /eta//sub ic/ /approximately/1.2 to 1.4 and of the trapped-electron mode when /eta//sub i/ < /eta//sub ic/. 16 refs., 7 figs.

  5. Nonlinear dynamics in the Tokamak edge

    International Nuclear Information System (INIS)

    The nonlinear character of the Tokamak edge results from a unique combination of parameters, leading to a wide dynamical range for most processes. The energetically consistent gyrokinetic equilibrium is emphasised. Edge turbulence computed gyrokinetically exhibits energetic contact to mesoscale MHD and does not follow linear scaling. Gyrofluid studies show self consistent profiles, currents and flows which are kicked out of equilibrium to varying degree. L-mode turbulence and ELM crash phenomenology are both examples of energetic contact between turbulence and MHD, with opposite causality. The overall equilibrium is a statistical saturation rather than a state to which the plasma dissipatively converges (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. TRAIL - a tokamak rail gun limiter

    International Nuclear Information System (INIS)

    An attractive new limiter concept is investigated. The TRAIL (Tokamak Rail Gun Limiter) system impacts a stream of moderate velocity pellets (100 to 200 m/sec) through the plasma edge region to absorb energy and define the plasma boundary. The pellets are recycled after cooling, to the injector of an E-M mass accelerator. Heat fluxes of approx. 30,000 W/cm2 can be readily accommodated by the pellets, with very low recirculating power requirements (approx. 0.1%) for the accelerator. The mass accelerator velocity requirements are well within the present state of the art (several Km/sec). Accelerators injecting pellets at approx. 1 Km/sec can be used to control local plasma temperature and current profiles and to act as energy absorbers to shut down the plasma without damage to the first wall if a plasma disruption occurs. (author)

  7. Trail-A Tokamak RAIL Gun Limiter

    International Nuclear Information System (INIS)

    An attractive new limiter concept is investigated. The Tokamak RAIl Gun Limiter (TRAIL) system directs a stream of moderate velocity pellets (100 to 200 m/s) through the plasma edge region to absorb energy and define the plasma boundary. The pellets are recycled, after cooling, to the injector in an electromagnetic mass accelerator. Heat fluxes of about30000 W/cm2 can be readily accommodated by the pellets, with very low recirculating power requirements ( about0.1%) for the accelerator. The mass accelerator velocity requirements are well within the present state of the art (several kilometres per second). Accelerators injecting pellets at about1 km/s can be used to control local plasma temperature and current profiles and to act as energy absorbers to shut down the plasma without damage to the first wall if a plasma disruption occurs

  8. Instrumentation and controls of an ignited tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Becraft, W.R.; Golzy, J.; Houlberg, W.A.; Kukielka, C.A.; Onega R.J.; Raju, G.V.S.; Stone, R.S.

    1980-10-01

    The instrumentation and controls (I and C) of an ignited plasma magnetically confined in a tokamak configuration needs increased emphasis in the following areas: (1) physics implications for control; (2) plasma shaping/position control; and (3) control to prevent disruptive instabilities. This document reports on the FY 1979 efforts in these and other areas. Also presented are discusssions in the areas of: (1) diagnostics suitable for the Engineering Test Facility (ETF); and (2) future research and development (R and D) needs. The appendices focus attention on some preliminary ideas about the measurement of the deuteron-triton (D-T) ratio in the plasma, synchrotron radiation, and divertor control. Finally, an appendix documenting the thermal consequences to the first wall of a MPD is presented.

  9. Computational studies in tokamak equilibrium and transport

    International Nuclear Information System (INIS)

    This thesis is concerned with some problems arising in the magnetic confinement approach to controlled thermonuclear fusion. The work address the numerical modelling of equilibrium and transport properties of a confined plasma and the interpretation of experimental data. The thesis is divided in two parts. Part 1 is devoted to some aspects of the MHD equilibrium problem, both in the 'direct' formulation (given an equation for the plasma current, the corresponding equilibrium is to be determined) and in the 'inverse' formulation (the interpretation of measurements at the plasma edge). Part 2 is devoted to numerical studies of the edge plasma. The appropriate Navier-Stokes system of fluid equations is solved in a two-dimensional geometry. The main interest of this work is to develop an understanding of particle and energy transport in the scrape-off layer and onto material boundaries, and also to contribute to the conceptual design of the NET/INTOR tokamak reactor experiment. (Auth.)

  10. Real time analysis of tokamak discharge parameters

    International Nuclear Information System (INIS)

    The techniques used in implementing two applications of real time analysis of data from the DIII-D tokamak are described. These tasks, which are demanding in both the speed of data acquisition and the speed of computation, execute on hardware capable of acquiring 40 million data samples per second and executing 80 million floating point operations per second. In the first case, a feedback control algorithm executing at a 10 kHz cycle frequency is used to specify the current in the poloidal field coils in order to control the discharge shape. In the second, fast Fourier transforms of Mirnov probe data are used to find the amplitude and frequency of each of eight toroidal mode numbers as a function of time during the discharge. Data sampled continuously at 500 kHz are used to produce results at 2 msec intervals

  11. Pumped limiter results on TFR Tokamak plasma

    International Nuclear Information System (INIS)

    Pump limiter experiments are carried out in the TFR Tokamak. The pump limiter is located in the outer part of the torus, its double- throat head is made of graphite tiles and it is pumped by a 2000 ls-1 titanium sublimation pump. The first attempts showed that the exhaust efficiency of this pump limiter was low (ε = 1.5% of the total plasma particle efflux). To improve these results, a new limiter head with a single longer throat has been built; particles were better trapped and the pumping provided an important decrease of the recycling coefficient. Geometric features mainly explain the increase by a factor 3.5 of the exhaust efficiency (ε = 5.5%). Ion temperature of the order of a few eV has been deduced from Doppler broadening measurements at the neutralizer plate of the pump limiter

  12. FRESCO: fusion reactor simulation code for tokamaks

    International Nuclear Information System (INIS)

    The study of the dynamics of tokamak fusion reactors, a zero-dimensional particle and power balance code FRESCO (Fusion Reactor Simulation Code) has been developed at the Department of Technical Physics of Helsinki University of Technology. The FRESCO code is based on zero-dimensional particle and power balance equations averaged over prescribed plasma profiles. In the report the data structure of the FRESCO code is described, including the description of the COMMON statements, program input, and program output. The general structure of the code is described, including the description of subprograms and functions. The physical model used and examples of the code performance are also included in the report. (121 tabs.) (author)

  13. General Tokamak Circuit Simulation Program-GTCSP

    International Nuclear Information System (INIS)

    General Tokamak Circuit Simulation Program (GTCSP) was originally developed for the design work of JT-60 Power Supply System in JAERI. Therefore the prepared models (components) to be analyzed are generator, thyristor converter and coils. This is one of the unique points of GTCSP in comparison with other conventional electric circuit analysis program, because they make a circuit from the small devices such as resister, coil, condenser, transistor and so on. However, GTCSP is also clearly conventional because it is possible to construct an electric circuit freely with the prepared components. Moreover, a similar function could be realized by addition a new component to GTCSP. This report is assumed to be used as an User Manual of the GTCSP, not only to present the development and the analytical functions. Then some useful examples are described, and how to get graphic outputs are also mentioned. (author)

  14. Instrumentation and controls of an ignited tokamak

    International Nuclear Information System (INIS)

    The instrumentation and controls (I and C) of an ignited plasma magnetically confined in a tokamak configuration needs increased emphasis in the following areas: (1) physics implications for control; (2) plasma shaping/position control; and (3) control to prevent disruptive instabilities. This document reports on the FY 1979 efforts in these and other areas. Also presented are discusssions in the areas of: (1) diagnostics suitable for the Engineering Test Facility (ETF); and (2) future research and development (R and D) needs. The appendices focus attention on some preliminary ideas about the measurement of the deuteron-triton (D-T) ratio in the plasma, synchrotron radiation, and divertor control. Finally, an appendix documenting the thermal consequences to the first wall of a MPD is presented

  15. Decommissioning of the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    The Tokamak Fusion Test Reactor (TFTR) at the Princeton Plasma Physics Laboratory was operated from 1982 until 1997. The last several years included operations with mixtures of deuterium and tritium. In September 2002, the three year Decontamination and Decommissioning (D and D) Project for TFTR was successfully completed. The need to deal with tritium contamination as well as activated materials led to the adaptation of many techniques from the maintenance work during TFTR operations to the D and D effort. In addition, techniques from the decommissioning of fission reactors were adapted to the D and D of TFTR and several new technologies, most notably the development of a diamond wire cutting process for complex metal structures, were developed. These techniques, along with a project management system that closely linked the field crews to the engineering staff who developed the techniques and procedures via a Work Control Center, resulted in a project that was completed safely, on time, and well below budget

  16. Dissipative nonlinear structures in tokamak plasmas

    Directory of Open Access Journals (Sweden)

    K. A. Razumova

    2001-01-01

    Full Text Available A lot of different kinds of instabilities may be developed in high temperature plasma located in a strong toroidal magnetic field (tokamak plasma. Nonlinear effects in the instability development result in plasma self-organization. Such plasma has a geometrically complicated configuration, consisting of the magnetic surfaces imbedded into each other and split into islands with various characteristic numbers of helical twisting. The self-consistency of the processes means that the transport coefficients in plasma do not depend just on the local parameters, being a function of the whole plasma configuration and of the forces affecting it. By disrupting the bonds between separate magnetic surfaces filled with islands, one can produce zones of reduced transport in the plasma, i.e. “internal thermal barriers”, allowing one essentially to increase the plasma temperature and density.

  17. Vertically stabilized elongated cross-section tokamak

    Science.gov (United States)

    Sheffield, George V.

    1977-01-01

    This invention provides a vertically stabilized, non-circular (minor) cross-section, toroidal plasma column characterized by an external separatrix. To this end, a specific poloidal coil means is added outside a toroidal plasma column containing an endless plasma current in a tokamak to produce a rectangular cross-section plasma column along the equilibrium axis of the plasma column. By elongating the spacing between the poloidal coil means the plasma cross-section is vertically elongated, while maintaining vertical stability, efficiently to increase the poloidal flux in linear proportion to the plasma cross-section height to achieve a much greater plasma volume than could be achieved with the heretofore known round cross-section plasma columns. Also, vertical stability is enhanced over an elliptical cross-section plasma column, and poloidal magnetic divertors are achieved.

  18. Radiation power measurement on the ADITYA tokamak

    Science.gov (United States)

    Tahiliani, Kumudni; Jha, Ratneshwar; Gopalkrishana, M. V.; Doshi, Kalpesh; Rathod, Vipal; Hansalia, Chandresh; ADITYA Team

    2009-08-01

    The radiation power loss and its variation with plasma density and current are studied in the ADITYA tokamak. The radiation power loss varies from 20% to 40% of the input power for different discharges. The radiation fraction decreases with increasing plasma current but it increases with increasing line-averaged central density. The radiated power behavior has also been studied in discharges with short pulses of molecular beam injection (MBI) and gas puff (GP). The increase in radiation loss is limited to the edge chords in the case of GP, but it extends to the core region for MBI fueling. The MBI seems to indicate reduction in the edge recycling. It is observed that during the density limit disruption, the radiated power loss is more in the current quench phase as compared with the thermal quench phase and comes mainly from the plasma edge.

  19. Interactions of tokamak plasma with solid walls

    International Nuclear Information System (INIS)

    The interactions of tokamak fusion plasmas with solid walls of the devices were investigated on special model systems. The elastic recoil detection method was used for the determination of absolute hydrogen concentration. For the calibration of the method the scattering cross sections were measured in large ranges of scattering angle and energy. The erosion and deformation of wall surfaces were investigated by reemission of accelerated He ions. Theoretical models were developed to describe the surface undulation discovered earlier, caused by large dose He irradiation. The surface sputtering and segregation were investigated by nuclear methods and the mechanism of sputtering was simulated by computer. The surface deformation and gas reemission of Al surfaces were analyzed by Ar implementation and heat treatment. (D.Gy.) 6 figs

  20. Passive runaway electron suppression in tokamak disruptions

    International Nuclear Information System (INIS)

    Runaway electrons created in disruptions pose a serious problem for tokamaks with large current. It would be desirable to have a runaway electron suppression method which is passive, i.e., a method that does not rely on an uncertain disruption prediction system. One option is to let the large electric field inherent in the disruption drive helical currents in the wall. This would create ergodic regions in the plasma and increase the runaway losses. Whether these regions appear at a suitable time and place to affect the formation of the runaway beam depends on disruption parameters, such as electron temperature and density. We find that it is difficult to ergodize the central plasma before a beam of runaway current has formed. However, the ergodic outer region will make the Ohmic current profile contract, which can lead to instabilities that yield large runaway electron losses

  1. Ignition probabilities for Compact Ignition Tokamak designs

    International Nuclear Information System (INIS)

    A global power balance code employing Monte Carlo techniques had been developed to study the ''probability of ignition'' and has been applied to several different configurations of the Compact Ignition Tokamak (CIT). Probability distributions for the critical physics parameters in the code were estimated using existing experimental data. This included a statistical evaluation of the uncertainty in extrapolating the energy confinement time. A substantial probability of ignition is predicted for CIT if peaked density profiles can be achieved or if one of the two higher plasma current configurations is employed. In other cases, values of the energy multiplication factor Q of order 10 are generally obtained. The Ignitor-U and ARIES designs are also examined briefly. Comparisons of our empirically based confinement assumptions with two theory-based transport models yield conflicting results. 41 refs., 11 figs

  2. Charged fusion products in a Tokamak

    International Nuclear Information System (INIS)

    In fusion reactions, charged particules are generated; they are more or less confined in the magnetic fields. Results reachable by charged fusion products analysis justify the work, especially on the large experiments like Tore-Supra or J.E.T., where the power produced may reach a few MW. They can be used as diagnostic for the plasma, and as experimental prediction of the confinement of alpha particules, which is necessary for the reactor. Practical use of a semi-conductor detector on a Tokamak is technically difficult: the problems have been studied on T.F.R. Encouraging results have been obtained, with 3 MeV (D-D) and 15 MeV (D-He3) proton spectra. Calculations on particle trajectories, damping and scattering in Tore Supra are also presented

  3. Low Z impurity transport in tokamaks

    International Nuclear Information System (INIS)

    Low Z impurity transport in tokamaks was simulated with a one-dimensional impurity transport model including both neoclassical and anomalous transport. The neoclassical fluxes are due to collisions between the background plasma and impurity ions as well as collisions between the various ionization states. The evaluation of the neoclassical fluxes takes into account the different collisionality regimes of the background plasma and the impurity ions. A limiter scrapeoff model is used to define the boundary conditions for the impurity ions in the plasma periphery. In order to account for the spectroscopic measurements of power radiated by the lower ionization states, fluxes due to anomalous transport are included. The sensitivity of the results to uncertainties in rate coefficients and plasma parameters in the periphery are investigated. The implications of the transport model for spectroscopic evaluation of impurity concentrations, impurity fluxes, and radiated power from line emission measurements are discussed

  4. Ion cyclotron emission in tokamak plasmas

    International Nuclear Information System (INIS)

    Detection of α(3.5 MeV) fusion products will be of major importance for the achievement of self sustained discharges in fusion thermonuclear reactors. Due to their cyclotronic gyration in the confining magnetic field of a tokamak, α particles are suspected to radiate in the radio-frequency band [RF: 10-500 MHz]. Our aim is to determine whether detection of RF emission radiated from a reactor plasma can provide information concerning those fusion products. We observed experimentally that the RF emission radiated from fast ions situated in the core of the discharge is detectable with a probe located at the plasma edge. For that purpose, fast temporal acquisition of spectral power was achieved in a narrow frequency band. We also propose two complementary models for this emission. In the first one, we describe locally the energy transfer between the photon population and the plasma and we compute the radiation equilibrium taking place in the tokamak. α particles are not the unique species involved in the equilibrium and it is necessary to take into account all other species present in the plasma (Deuterium, Tritium, electrons,...). Our second model consists in the numerical resolution of the Maxwell-Vlasov with the use of a variational formulation, in which all polarizations are considered and the 4 first cyclotronic harmonics are included in a 1-D slab geometry. The development of this second model leads to the proposal for an experimental set up aiming to the feasibility demonstration of a routine diagnostic providing the central α density in a reactor. (author)

  5. Injection of pellets into the TCA tokamak

    International Nuclear Information System (INIS)

    This thesis presents experimental results from the analysis of the ablation process of pellets injected into the TCA tokamak. The determination of scaling laws relating the pellet penetration to the pellet and plasma parameters preceding injection, were used to improve the understanding of the interaction of the pellet with the plasma since a) the pellet and plasma conditions preceding injection were varied over a large range, and b) the estimation of the penetration depth takes into account the influence of striations in the deposition profile. Over 400 pellets with a range of sizes and speeds were injected into a range of plasma parameters in order to create a database from which the scaling laws could be deduced. The ablation characteristics were principally measured with two CCD video cameras, which provided good spatial resolution, and two filtered photomultiplier tubes, which provided good temporal resolution of the light emitted from the pellet ablation cloud. In the text, the traditional methods of analysing these diagnostics are examined with special reference to the presumptions that a) the pellet velocity is constant in the plasma, and b) the light intensity determined from the ablation cloud is proportional to the ablation rate. After successive data reduction from the database, in order to separate the effects of varying different parameters, the main observations were that, a) the pellet penetration varies as the square root of the pellet velocity, b) the scaling laws for the other parameters strongly depend on whether the pellet has sufficient velocity to reach the q=1 rational magnetic surface in the tokamak. (author) 45 refs

  6. Next tokamak design. Swimming pool type

    International Nuclear Information System (INIS)

    In order to relieve the difficulties of repair and maintenance and to make the reactor size compact, a concept of swimming pool type reactor which is installed in a waterpool has been proposed. A design study of the concept as the Next Tokamak has been carried out with the following major parameters. The reactor has a double null poloidal divertor and blanket with tritium breeding ratio of >1.0, fusion power 420 MW, major radius 5.3 m, plasma radius 1.1 m, Bt on axis 5.2 T, plasma current 3.9 MA. The design study covers the reactor overall systems including reactor structure, reactor cooling system, repair and maintenance, reactor building, etc. As the result of this study the following conclusions were reached. The advantages over a conventional tokamak reactor are as follows: (1) The size of TF coil can be considerably reduced while retaining sufficient space for repair and maintenance because a solid shield is eliminated. (2) Since the distances between plasma and PF coils become small, the required capacity of electric power supply is reduced. (3) Technologies for the repair and maintenance are simplified and disassembling and reassembling of vacuum vessel can be done with realistic and credible remote handling technique. (4) The problem caused by radiation streaming can be considerably eased. (5) Radioactive waste disposal is reduced considerably because a solid shield is eliminated. (6) Because a vacuum vessel may be easily replaced in this concept, it will have a convenient flexibility for an experimental reactor. (7) Advantages of this concept can be also applied to a power reactor. Recently we started a new design of SPTR with slightly modified plasma parameters aiming for smaller-size reactor. In this paper the new design will be discussed briefly. (author)

  7. MHD stability limits in the TCV Tokamak

    International Nuclear Information System (INIS)

    Magnetohydrodynamic (MHD) instabilities can limit the performance and degrade the confinement of tokamak plasmas. The Tokamak a Configuration Variable (TCV), unique for its capability to produce a variety of poloidal plasma shapes, has been used to analyse various instabilities and compare their behaviour with theoretical predictions. These instabilities are perturbations of the magnetic field, which usually extend to the plasma edge where they can be detected with magnetic pick-up coils as magnetic fluctuations. A spatially dense set of magnetic probes, installed inside the TCV vacuum vessel, allows for a fast observation of these fluctuations. The structure and temporal evolution of coherent modes is extracted using several numerical methods. In addition to the setup of the magnetic diagnostic and the implementation of analysis methods, the subject matter of this thesis focuses on four instabilities, which impose local and global stability limits. All of these instabilities are relevant for the operation of a fusion reactor and a profound understanding of their behaviour is required in order to optimise the performance of such a reactor. Sawteeth, which are central relaxation oscillations common to most standard tokamak scenarios, have a significant effect on central plasma parameters. In TCV, systematic scans of the plasma shape have revealed a strong dependence of their behaviour on elongation κ and triangularity δ, with high κ, and low δ leading to shorter sawteeth with smaller crashes. This shape dependence is increased by applying central electron cyclotron heating. The response to additional heating power is determined by the role of ideal or resistive MHD in triggering the sawtooth crash. For plasma shapes where additional heating and consequently, a faster increase of the central pressure shortens the sawteeth, the low experimental limit of the pressure gradient within the q = 1 surface is consistent with ideal MHD predictions. The observed decrease

  8. MHD stability limits in the TCV Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Reimerdes, H. [Ecole Polytechnique Federale de Lausanne, Centre de Recherches en Physique des Plasmas (CRPP), CH-1015 Lausanne (Switzerland)

    2001-07-01

    Magnetohydrodynamic (MHD) instabilities can limit the performance and degrade the confinement of tokamak plasmas. The Tokamak a Configuration Variable (TCV), unique for its capability to produce a variety of poloidal plasma shapes, has been used to analyse various instabilities and compare their behaviour with theoretical predictions. These instabilities are perturbations of the magnetic field, which usually extend to the plasma edge where they can be detected with magnetic pick-up coils as magnetic fluctuations. A spatially dense set of magnetic probes, installed inside the TCV vacuum vessel, allows for a fast observation of these fluctuations. The structure and temporal evolution of coherent modes is extracted using several numerical methods. In addition to the setup of the magnetic diagnostic and the implementation of analysis methods, the subject matter of this thesis focuses on four instabilities, which impose local and global stability limits. All of these instabilities are relevant for the operation of a fusion reactor and a profound understanding of their behaviour is required in order to optimise the performance of such a reactor. Sawteeth, which are central relaxation oscillations common to most standard tokamak scenarios, have a significant effect on central plasma parameters. In TCV, systematic scans of the plasma shape have revealed a strong dependence of their behaviour on elongation {kappa} and triangularity {delta}, with high {kappa}, and low {delta} leading to shorter sawteeth with smaller crashes. This shape dependence is increased by applying central electron cyclotron heating. The response to additional heating power is determined by the role of ideal or resistive MHD in triggering the sawtooth crash. For plasma shapes where additional heating and consequently, a faster increase of the central pressure shortens the sawteeth, the low experimental limit of the pressure gradient within the q = 1 surface is consistent with ideal MHD predictions. The

  9. Abstracts of the International seminar 'Experimental possibilities of KTM tokamak and research programme'

    International Nuclear Information System (INIS)

    The International seminar 'Experimental possibilities of KTM tokamak and research programme' was held in 10-12 October 2005 in Astana city (Kazakhstan). The seminar was dedicated to problems of KTM tokamak commissioning. The Collection of abstracts comprises 45 papers

  10. Effect of externally applied resonance magnetic perturbation on current decay during tokamak disruption

    International Nuclear Information System (INIS)

    Disruption is one of the most critical issues in tokamaks. A resonance magnetic perturbation (RMP) coil system will be installed in future tokamaks such as the International Thermonuclear Experimental Reactor to mitigate edge localized modes. In this study, the effect of RMP on tokamak disruption was investigated using the small tokamak device HYBTOK-II. It was found statistically that an externally applied RMP leads to faster current quench during disruption. (author)

  11. Superconducting magnets and cryogenics for the steady state superconducting tokamak SST-1

    International Nuclear Information System (INIS)

    SST-1 is a steady state superconducting tokamak for studying the physics of the plasma processes in tokamak under steady state conditions and to learn technologies related to the steady state operation of the tokamak. SST-1 will have superconducting magnets made from NbTi based conductors operating at 4.5 K temperature. The design of the superconducting magnets and the cryogenic system of SST-1 tokamak are described. (author)

  12. A Review of Fusion and Tokamak Research Towards Steady-State Operation: A JAEA Contribution

    OpenAIRE

    Mitsuru Kikuchi

    2010-01-01

    Providing a historical overview of 50 years of fusion research, a review of the fundamentals and concepts of fusion and research efforts towards the implementation of a steady state tokamak reactor is presented. In 1990, a steady-state tokamak reactor (SSTR) best utilizing the bootstrap current was developed. Since then, significant efforts have been made in major tokamaks, including JT-60U, exploring advanced regimes relevant to the steady state operation of tokamaks. In this paper, the fund...

  13. Development of 3D ferromagnetic model of tokamak core with strong toroidal asymmetry

    DEFF Research Database (Denmark)

    Markovič, Tomáš; Gryaznevich, Mikhail; Ďuran, Ivan; Svoboda, Vojtěch; Pánek, Radomír

    Fully 3D model of strongly asymmetric tokamak core, based on boundary integral method approach (i.e. characterization of ferromagnet by its surface) is presented. The model is benchmarked on measurements on tokamak GOLEM, as well as compared to 2D axisymmetric core equivalent for this tokamak...

  14. Importance of effects due to fusion α-particles for tokamak reactor design

    International Nuclear Information System (INIS)

    Issues related to the presence of fusion α-particles which are of importance for the design of a tokamak reactor are listed and shortly discussed. It is concluded that these issues, although to a large extent directly connected with the general problems of tokamak physics, require more attention to provide the information needed for designing a tokamak reactor. (orig.)

  15. Bootstrap current fraction scaling for a tokamak reactor design study

    International Nuclear Information System (INIS)

    Highlights: • New bootstrap current fraction scalings for systems codes were derived by solving the Hirshman–Sigmar model. • Nine self-consistent MHD equilibria were constructed in order to compare the bootstrap current fraction values. • Wilson formula most successfully predicted the bootstrap current fraction, but it requires current density profile index. • The new scaling formulas and IPDG accurately estimated the fBS values for the normal and weakly reversed shear tokamaks. - Abstract: We have derived new bootstrap current fraction scalings for systems codes by solving the Hirshman–Sigmar model, which is valid for arbitrary aspect ratios and collision conditions. The bootstrap current density calculation module in the ACCOME code was used with the matrix inversion method without the large aspect ratio assumption. Nine self-consistent MHD equilibria, which cover conventional, advanced and spherical tokamaks with normal or reversed shear, were constructed using numerical calculations in order to compare the bootstrap current fraction values with those of the new model and all six existing models. The Wilson formula successfully predicted the bootstrap current fraction, but it requires current density profile index for the calculation. The new scaling formulas and IPDG accurately estimated the bootstrap current fraction for the normal and weakly reversed shear tokamaks, regardless of the aspect ratio. However, none of the existing models except the Wilson formula can accurately estimate the bootstrap current fraction for the reversed shear tokamaks, which is promising for the advanced tokamak operation mode

  16. Characterization of the Tokamak Novillo in cleaning regime

    International Nuclear Information System (INIS)

    In this work the obtained results of the investigation about the experimental characterization of those low energy pulsed discharges of the Tokamak Novillo are reported. With this it is possible to fix the one operation point but appropriate of the Tokamak to condition the chamber in the smallest possible time for the cleaning discharges regime before beginning the main discharge. The characterization of the cleaning discharges in those Tokamaks is an unique process and characteristic of each device, since the good points of operation are consequence of those particularities of the design of the machine. In the case of the Tokamak Novillo, besides characterizing it a contribution is made to the cleaning discharges regime which consists on the one product of the current peak to peak of plasma by the duration of the discharge Ipt like reference parameter for the optimization of the operation of the device in the cleaning discharge regime. The maximum value of the parameter I(p)t, under different work conditions, allowed to find the good operation point to condition the discharges chamber of the Tokamak Novillo in short time and to arrive to a regime in which is not necessary the preionization for the obtaining of the cleaning discharges. (Author)

  17. Power supplies and quench protection for the Tokamak Physics Experiment

    International Nuclear Information System (INIS)

    The Tokamak Physics Experiment (TPX) is an advanced tokamak project aimed at the production of quasi-steady state plasmas with advanced shape, heating, and particle control. TPX is to be built at the Princeton Plasma Physics Laboratory (PPPL) using many of the facilities from the Tokamak Fusion Test Reactor (TFTR). First plasma is scheduled for the year 2000. TPX will be the first tokamak to utilize superconducting (SC) magnets in both the toroidal field (TF) and poloidal field (PF) systems. This is a new feature which requires not only a departure from the traditional tokamak power supply schemes but also that ultra-reliable quench protection devices be used to rapidly discharge the stored energy from the magnets in the event of a quench. This paper describes the plan and basis for the adaptation and augmentation of the PPPL/TFTR power system facilities to supply TPX. Following a description of the basic operational requirements, four major areas are addressed, namely the AC power system, the TF power supply, the PF power supply, and quench protection for the TF and PF systems

  18. Impurities in the Lithium Tokamak Experiment

    Science.gov (United States)

    Boyle, D. P.; Bell, R. E.; Kaita, R.; Majeski, R.; Biewer, T. M.; Gray, T. K.; Tritz, K.; Widmann, K.

    2014-10-01

    The Lithium Tokamak Experiment (LTX) is designed to study the low-recycling regime through the use of close-fitting, lithium-coated, heatable shell quadrants surrounding the plasma volume. Lithium coatings can getter and bury impurities, but they can also become covered by impurity compounds. Liquefied coatings can both dissolve impurity compounds and bring them to the surface, while sputtering and evaporation rates increase strongly with temperature. Here, we use spectroscopic measurements to assess the effects of varying wall conditions on plasma impurities, mainly Li, C, and O. A passive Doppler spectroscopy system measures toroidal and poloidal impurity profiles using fixed-wavelength and variable-wavelength visible spectrometers. In addition, survey and high-resolution extreme ultraviolet spectrometers detect emission from higher charge states. Preliminary results show that fresh Li coatings generally reduced C and O emission. C emission decreased sharply following the first solid Li coatings. Inverted toroidal profiles in a discharge with solid Li coatings show peaked Li III emissivity and temperature profiles. Recently, experiments with fresh liquid coatings led to especially strong O reduction. Results from these and additional experiments will be presented. Supported by US DOE Contracts DE-AC02-09CH11466 and DE-AC05-00OR22725.

  19. Tokamak blanket design study, final report

    International Nuclear Information System (INIS)

    A cylindrical module concept was developed, analyzed, and incorporated in a tokamak blanket system that includes piping systems, vacuum boundary sealing, and support structures. The design is based on the use of state-of-the-art structural materials (20% cold-worked type 316 stainless steel), lithium as the breeding material, and pressurized helium as the coolant. The module design consists of nested concentric cylinders (with an outer diameter of 10 cm) and features direct wall cooling by helium flowing between the outer (first-wall) cylinder and the inner (lithium-containing) cylinder. Each cylinder can withstand full coolant pressure, thus enhancing reliability. Results show that stainless steel is a viable material for a first wall subjected to a neutron wall loading of 4 MW/m2 and a particle heat flux of 1 MW/m2. Lifetime analysis shows that the first-wall design meets the goal of operating at 20-min cycles with 95% duty for 100,000 cycles. To reduce system complexity, a larger 20-cm-diam module also was analyzed for incorporation in the blanket assembly. Reliability assessment indicates that it may be possible to double the module in size from 10 to 20 cm in diameter. With a modest increase in coolant pumping power, a blanket assembly comprising 20-cm-diam modules can still achieve 100,000 operating cycles - equivalent to a 3.6-year design lifetime - with only one or two helium coolant leaks into the plasma

  20. Empirical particle transport model for tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Petravic, M.; Kuo-Petravic, G.

    1986-08-01

    A simple empirical particle transport model has been constructed with the purpose of gaining insight into the L- to H-mode transition in tokamaks. The aim was to construct the simplest possible model which would reproduce the measured density profiles in the L-regime, and also produce a qualitatively correct transition to the H-regime without having to assume a completely different transport mode for the bulk of the plasma. Rather than using completely ad hoc constructions for the particle diffusion coefficient, we assume D = 1/5 chi/sub total/, where chi/sub total/ approx. = chi/sub e/ is the thermal diffusivity, and then use the kappa/sub e/ = n/sub e/chi/sub e/ values derived from experiments. The observed temperature profiles are then automatically reproduced, but nontrivially, the correct density profiles are also obtained, for realistic fueling rates and profiles. Our conclusion is that it is sufficient to reduce the transport coefficients within a few centimeters of the surface to produce the H-mode behavior. An additional simple assumption, concerning the particle mean-free path, leads to a convective transport term which reverses sign a few centimeters inside the surface, as required by the H-mode density profiles.

  1. Aspects of Tokamak toroidal magnet protection

    International Nuclear Information System (INIS)

    Simple but conservative geometric models are used to estimate the potential for damage to a Tokamak reactor inner wall and blanket due to a toroidal magnet field collapse. The ofly potential hazard found to exist is due to the MHD pressure rise in a lithium blanket. A survey is made of proposed protection methods for superconducting torgidal magnets. It is found that the two general classificatigls of protectign methods are thermal and electrical. Computer programs were developed which aldow the toroidal magnet set to be modeled as a set of circular filaments. A simple thermal model of the conductor was used which allows heat transfer to the magnet structure and which includes the effect of temperature dependent properties. To be effective in large magnets an electrical protection system should remove at least 50% of the stored energy in the protection circuit assuming that all of the superconductor in the circuit quenches when the circuit is activated. A protection system design procedure based on this criterion was developed

  2. Diamagnetic measurements on the Alcator C tokamak

    International Nuclear Information System (INIS)

    A procedure for determining the total thermal energy content of a magnetically confined plasma from a measurement of the plasma magnetization has been successfully implemented on the Alcator C tokamak. When a plasma is confined by a magnetic field, the kinetic pressure of the plasma is supported by an interaction between the confining magnetic field and drift currents which flow in the plasma. These drift currents induce an additional magnetic field which can be measured by means of appropriately positioned pickup coils. From a measurement of this magnetic field and of the confining magnetic field, one can calculate the spatially averaged plasma pressure, which is related to the thermal energy content of the plasma by the equation of state of the plasma. The theory on which this measurement is based is described in detail. The fields and currents which flow in the plasma are related to the confining magnetic field and the plasma pressure by requiring that the plasma be in equilibrium, i.e., by balancing the forces due to pressure gradients against those due to magnetic interactions. The apparatus used to make this measurement is described and some example data analyses are carried out

  3. Interlock system for the COMPASS tokamak

    Czech Academy of Sciences Publication Activity Database

    Hron, Martin; Sova, J.; Šíba, J.; Kovář, J.; Adámek, Jiří; Pánek, Radomír; Havlíček, Josef; Písačka, Jan; Mlynář, Jan; Stöckel, Jan

    2010-01-01

    Roč. 85, 3-4 (2010), s. 505-508. ISSN 0920-3796. [IAEA Technical Meeting on Control, Data Acquisition and Remote Participation for Fusion Research/7th./. Aix – en – Provence, 15.06.2009-19.06.2009] R&D Projects: GA MŠk 7G09042; GA ČR GD202/08/H057 Institutional research plan: CEZ:AV0Z20430508 Keywords : Tokamak operation * Interlock * Personnel safety Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.143, year: 2010 http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V3C-5003BXW-1&_user=6542793&_coverDate=07%2F31%2F2010&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_acct=C000070123&_version=1&_urlVersion=0&_userid=6542793&md5=ef5794d05cc6530a905d1de43aa0ac6a&searchtype=a

  4. Physics issues of high bootstrap current tokamaks

    International Nuclear Information System (INIS)

    Physics issues of a tokamak plasma with a hollow current profile produced by a large bootstrap current are discussed based on experiments in JT-60U. An internal transport barrier for both ions and electrons was obtained just inside the radius of zero magnetic shear in JT-60U. Analysis of the toroidal ITG microinstability by toroidal particle simulation shows that weak and negative shear reduces the toroidal coupling and suppresses the ITG mode. A hard beta limit was observed in JT-60U negative shear experiments. Ideal MHD mode analysis shows that the n = 1 pressure-driven kink mode is a plausible candidate. One of the methods to improve the beta limit against the kink mode is to widen the negative shear region, which can induce a broader pressure profile resulting in a higher beta limit. The TAE mode for the hollow current profile is less unstable than that for the monotonic current profile. The reason is that the continuum gaps near the zero shear region are not aligned when the radius of qmin is close to the region of high ∇ne. Finally, a method for stable start-up for a plasma with a hollow current profile is describe, and stable sustainment of a steady-state plasma with high bootstrap current is discussed. (Author)

  5. Plasma transport in a Compact Ignition Tokamak

    International Nuclear Information System (INIS)

    Nominal predicted plasma conditions in a Compact Ignition Tokamak (CIT) are illustrated by transport simulations using experimentally calibrated plasma transport models. The range of uncertainty in these predictions is explored by using various models that have given almost equally good fits to experimental data. Using a transport model that best fits the data, thermonuclear ignition occurs in a CIT design with a major radius of 1.32 m, plasma half-width of 0.43 mn, elongation of 2.0, and toroidal field and plasma current ramped in 6 s from 1.7 to 10.4 T and 0.7 to 10 MA, respectively. Ignition is facilitated by 20 MW of heating deposited off the magnetic axis near the /sup 3/He minority cyclotron resonance layer. Under these conditions, sawtooth oscillations are small and have little impact on ignition. Tritium inventory is minimized by preconditioning most discharges with deuterium. Tritium is injected, in large frozen pellets, only after minority resonance preheating. Variations of the transport model, impurity influx, heating profile, and pellet ablation rates have a large effect on ignition and on the maximum beta that can be achieved

  6. Physics aspects of the compact ignition tokamak

    International Nuclear Information System (INIS)

    The Compact Ignition Tokamak (CIT) is a proposed modest-size ignition experiment designed to study the physics of alpha particle heating. The basic concept is to achieve ignition in a modest-size minimum cost experiment by using a high plasma density to achieve nτE ≅ 2 x 1020 s/m3 required for ignition. The high density requires a high toroidal field (10 T). The high toroidal field allows a large plasma current (10 MA) which provides a high level of ohmic heating, improves the energy confinement, and allows a relatively high beta (≅ 6%). The present CIT design also has a high degree of elongation (κ ≅ 1.8) to aid in producing the large plasma current. A double null poloidal divertor and pellet injection are part of the design to provide impurity and particle control, improve the confinement, and provide flexibility for improving the plasma profiles. Auxiliary heating is expected to be necessary to achieve ignition, and 10-20 MW of ICRF is to be provided. (orig.)

  7. Physics aspects of the Compact Ignition Tokamak

    International Nuclear Information System (INIS)

    The Compact Ignition Tokamak (CIT) is a proposed modest-size ignition experiment designed to study the physics of alpha-particle heating. The basic concept is to achieve ignition in a modest-size minimum cost experiment by using a high plasma density to achieve the condition of ntau/sub E/ ∼ 2 x 1020 sec m-3 required for ignition. The high density requires a high toroidal field (10 T). The high toroidal field allows a large plasma current (10 MA) which improves the energy confinement, and provides a high level of ohmic heating. The present CIT design also has a gigh degree of elongation (k ∼ 1.8) to aid in producing the large plasma current. A double null poloidal divertor and a pellet injector are part of the design to provide impurity and particle control, improve the confinement, and provide flexibility for impurity and particle control, improve the confinement, and provide flexibility for improving the plasma profiles. Since auxiliary heating is expected to be necessary to achieve ignition, 10 to 20 MW of Ion Cyclotron Radio Frequency (ICRF) is to be provided

  8. Continuous tokamak operation with an internal transformer

    International Nuclear Information System (INIS)

    A large improvement in efficiency of current drive in a tokamak can be obtained using neutral beam injection to drive the current in a plasma which has low density and high resistivity. The current established under such conditions acts as the primary of a transformer to drive current in an ignited high-density plasma. In the context of a model of plasma confinement and fusion reactor costs, it is shown that such transformer action has substantial advantages over strict steady-state current drive. It is also shown that cycling plasma density and fusion power is essential for effective operation of an internal transformer cycle. Fusion power loading must be periodically reduced for intervals whose duration is comparable to the maximum of the particle confinement and thermal inertia time scales for plasma fueling and heating. The design of neutron absorption blankets which can tolerate reduced power loading for such short intervals is identified as a critical problem in the design of fusion power reactors

  9. Continuous tokamak operation with an internal transformer

    International Nuclear Information System (INIS)

    A large improvement in efficiency of current drive in a tokamak can be obtained using neutral beam injection to drive the current in a plasma which has low density and high resistivity. The current established under such conditions acts as the primary of a transformer to drive current in an ignited high-density plasma. In the context of a model of plasma confinement and fusion reactor costs, it is shown that such transformer action has substantial advantages over strict steady-state current drive. It is also shown that cycling plasma density and fusion power is essential for effective operation of an internal transformer cycle. Fusion power loading must be periodically reduced for intervals whose duration is comparable to the maximum of the particle confinement and thermal inertia timescales for plasma fueling and heating. The design of neutron absorption blankets which can tolerate reduced power loading for such short intervals is identified as a critical problem in the design of fusion power reactors

  10. Lower hybrid current drive in tokamak plasmas

    International Nuclear Information System (INIS)

    Past ten years progress on Lower Hybrid Current Drive (LHCD) experiments have demonstrated the largest non-inductive current (3.6 MA, JT-60U), the longest current sustainment (2 hours, TRIAM-1M), non-inductive current drive at the highest density (n-bare - 1020m-3, ALCATOR-C) and the highest current drive efficiency (ηCD = 3.5x1019 m-2A/W, JT-60). These results indicate that LHCD is one of the most promising methods to drive non-inductive current in the present tokamak plasmas. This paper presents recent experimental results on LHCD experiments. Basic theories of LH waves, the wave propagation and the current drive are briefly summarized. The main part of this paper describes several important results and their physical pictures on recent LHCD experiments; 1) the experimental set-up, 2) the current drive efficiency, 3) the control of current profile and MHD activities, 4) the global energy confinement, 5) the global power flow, 6) fast electron behavior, 7) interaction between LH waves and thermal/fast ions, 8) combination with other CD method. (author)

  11. Ripple-assisted fueling in tokamak reactors

    International Nuclear Information System (INIS)

    This paper reports on the technique of ripple injection that has been proposed for refueling in tokamak reactors. The usefulness of ripple-assisted fueling has been investigated by using an orbit-following Monte Carlo code. The penetration depth strongly depends on the beam energy. The ripple-enhanced outward flow of ripple-detrapped fast ions is not a serious problem. If Eb/Te0 ≤ 4 is chosen, the fuel efficiency becomes >80%. There is an optimum toroidal angle of the injection beamline to enhance the penetration depth of fast ions, and the range of angles that are effective for fueling is rather wide. The loss of alpha particles incident to the fueling has also been investigated by using the same code. By regulating the shape of the ripple-well region, the total alpha-particle loss can be reduced to < 5%. Ripple-assisted fueling in the International Thermonuclear Experimental Reactor (ITER) has also been investigated. Because of the small aspect ratio, the field ripple is strongly decayed in the plasma. Consequently, central fueling presents some difficulties in ITER. However, fueling near one-half of the plasma minor radius is possible with an ∼ 6% alpha-particle power loss

  12. Demonstration tokamak-power-plant study (DEMO)

    International Nuclear Information System (INIS)

    A study of a Demonstration Tokamak Power Plant (DEMO) has been completed. The study's objective was to develop a conceptual design of a prototype reactor which would precede commercial units. Emphasis has been placed on defining and analyzing key design issues and R and D needs in five areas: noninductive current drivers, impurity control systems, tritium breeding blankets, radiation shielding, and reactor configuration and maintenance features. The noninductive current drive analysis surveyed a wide range of candidates and selected relativistic electron beams for the reference reactor. The impurity control analysis considered both a single-null poloidal divertor and a pumped limiter. A pumped limiter located at the outer midplane was selected for the reference design because of greater engineering simplicity. The blanket design activity focused on two concepts: a Li2O solid breeder with high pressure water cooling and a lead-rich Li-Pb eutectic liquid metal breeder (17Li-83Pb). The reference blanket concept is the Li2O option with a PCA structural material. The first wall concept is a beryllium-clad corrugated panel design. The radiation shielding effort concentrated on reducing the cost of bulk and penetration shielding; the relatively low-cost outborad shield is composed of concrete, B4C, lead, and FE 1422 structural material

  13. Zeeman spectroscopy of tokamak edge plasmas

    International Nuclear Information System (INIS)

    Zeeman spectroscopy is a valuable tool both for diagnostic purposes, and for more fundamental studies of atomic and molecular processes in the boundary region of magnetically confined fusion plasmas (B ≅ 1 to 10 T). The method works well when the Zeeman (Paschen-Back) effect plays an important, or dominant, role in relation to other broadening mechanisms (Doppler, Stark, resonant excitation transfer) in determining the spectral line shape. For impurity species identification and temperature determination, Zeeman spectroscopy has advantages over charge-exchange recombination spectroscopy from highly excited radiator states, since spectral features practically unique to the species under investigation are analysed. It also provides useful information on probable mechanisms of line production (e.g. sputtering mechanisms, electron impact-induced dissociative excitation from molecules in the edge plasma), and on the temperature evolution of lower charge states in the process of convection inwards or diffusion outwards from the hotter plasma interior. Where different physical processes are responsible for different sections of the line profile -- especially in the case of hydrogen isotopes -- Zeeman spectroscopy can provide a set of characteristic temperatures for each section. The method is introduced in both passive and active spectroscopy, and general principles of the Zeeman effect are discussed with special reference to regimes of interest for the tokamak. Relevant physical processes (sputtering mechanisms, electron impact-induced dissociative excitation from molecules in the edge plasma, and ion-atom collisional heating mechanisms) are illustrated by sample spectra

  14. Maintainability features of the compact ignition tokamak

    International Nuclear Information System (INIS)

    The Compact Ignition Tokamak (CIT) is a deuterium-tritium (D-T) device envisaged to be the next experimental reactor in the US Fusion Program. The reactor will initially operate in a nonactivated hydrogen phase for approximately two years. This will permit verification of the integrity of the total system and allow hands-on repair to equipment which has experienced shakedown and early operation failures. Once D-T operations commence, reactor maintenance will require remote handling techniques. An evaluation has been completed to determine what maintenance operations must be performed on the CIT. A maintenance philosophy has been developed which is based upon the use of manipulator systems and robotics in the test cell. Replacement of life-limited equipment will be accomplished using a modular design approach for components, with simple remotely operable interfaces. Examples of operations to be done remotely include: (1) replacing of rf antennae and Faraday shields, (2) uncoupling diagnostic and fueling penetrations, (3) removing of all port covers, and (4) replacing first wall armor tiles, optical mirrors, and vacuum windows

  15. Physics aspects of the Compact Ignition Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Post, D.; Bateman, G.; Houlberg, W.; Bromberg, L.; Cohn, D.; Colestock, P.; Hughes, M.; Ignat, D.; Izzo, R.; Jardin, S.

    1986-11-01

    The Compact Ignition Tokamak (CIT) is a proposed modest-size ignition experiment designed to study the physics of alpha-particle heating. The basic concept is to achieve ignition in a modest-size minimum cost experiment by using a high plasma density to achieve the condition of ntau/sub E/ approx. 2 x 10/sup 20/ sec m/sup -3/ required for ignition. The high density requires a high toroidal field (10 T). The high toroidal field allows a large plasma current (10 MA) which improves the energy confinement, and provides a high level of ohmic heating. The present CIT design also has a gigh degree of elongation (k approx. 1.8) to aid in producing the large plasma current. A double null poloidal divertor and a pellet injector are part of the design to provide impurity and particle control, improve the confinement, and provide flexibility for impurity and particle control, improve the confinement, and provide flexibility for improving the plasma profiles. Since auxiliary heating is expected to be necessary to achieve ignition, 10 to 20 MW of Ion Cyclotron Radio Frequency (ICRF) is to be provided.

  16. Saturation of Alfven modes in tokamaks

    Science.gov (United States)

    White, Roscoe; Gorelenkov, Nikolai; Gorelenkova, Marina; Podesta, Mario; Chen, Yang

    2015-11-01

    The effect of Alfven modes on high energetic particles in tokamaks is important in general, and could be of significance for ITER. This work is a combination of analytic models and numerical simulation to find the saturation levels of unstable Alfven modes and the resulting effect on beam and alpha particle distributions. Solving the drift kinetic equation with a guiding center code in the presence of Alfven modes driven unstable by a distribution of high energy particles requires the use of a δf formalism, wherby the initial distribution f0 is assumed to be a steady state high energy particle distribution in the absense of the modes, and f =f0 + δf describes the particle distribution in the presence of the modes. The Hamiltonian is written as H =H0 +H1 with H0 giving the unperturbed motion, conserving particle energy E, toroidal canonical momentum Pζ, and magnetic moment μ. By writing the initial particle distribution in terms of these variables, a simple means of calculating mode-particle energy and momentum transfer results, giving a very accurate δf formalism.

  17. Control of the vertical instability in tokamaks

    International Nuclear Information System (INIS)

    The problem of control of the vertical instability is formulated for a massless filamentary plasma. The massless approximation is justified by an examination of the role of inertia in the control problem. The system is solved using Laplace transform techniques. The linear system is studied to determine the stability boundaries. It is found that the system can be stabilized up to a critical decay index, which is predominantly a function of the geometry of the passive stabilizing shell. A second, smaller critical index, which is a function of the geometry of the control coils, determines the limit of stability in the absence of derivative gain in the control circuit. The system is also studied numerically in order to incorporate the non-linear effects of power supply dynamics. The power supply bandwidth requirement is determined by the open-loop growth rate of the instability. The system is studied for a number of control coil options which are available on the DIII-D tokamak. It is found that many of the coils will not provide adequate stabilization and that the use of inboard coils is advantageous in stabilizing the system up to the critical index. Experiments carried out on DIII-D confirm the appropriateness of the model. Using the results of the model study, we have stabilized DIII-D plasmas with decay indices up to 98% of the critical index. Measurement of the plasma vertical position is also discussed. (author) 27 figs., 6 refs

  18. Aspects of Tokamak toroidal magnet protection

    Energy Technology Data Exchange (ETDEWEB)

    Green, R.W.; Kazimi, M.S.

    1979-07-01

    Simple but conservative geometric models are used to estimate the potential for damage to a Tokamak reactor inner wall and blanket due to a toroidal magnet field collapse. The only potential hazard found to exist is due to the MHD pressure rise in a lithium blanket. A survey is made of proposed protection methods for superconducting toroidal magnets. It is found that the two general classifications of protection methods are thermal and electrical. Computer programs were developed which allow the toroidal magnet set to be modeled as a set of circular filaments. A simple thermal model of the conductor was used which allows heat transfer to the magnet structure and which includes the effect of temperature dependent properties. To be effective in large magnets an electrical protection system should remove at least 50% of the stored energy in the protection circuit assuming that all of the superconductor in the circuit quenches when the circuit is activated. A protection system design procedure based on this criterion was developed.

  19. Experimental results from the TFTR tokamak

    International Nuclear Information System (INIS)

    Recent experiments on TFTR have extended the operating regime of TFTR in both ohmic- and neutral-beam-heated discharges. The TFTR tokamak has reached its original machine design specifications (I/sub p/ = 2.5 MA and B/sub T/ = 5.2 T). Initial neutral-beam-heating experiments used up to 6.3 MW of deuterium beams. With the recent installation of two additional beamlines, the power has been increased up to 11 MW. A deuterium pellet injector was used to increase the central density to 2.5 x 1020 m-3 in high current discharges. At the opposite extreme, by operating at low plasma current (I/sub p/ ∼ 0.8 MA) and low density (anti n/sub e/ ∼ 1 x 1019 m-3), high ion temperatures (9 +- 2 keV) and rotation speeds (7 x 105 m/s) have been achieved during injection. In addition, plasma compression experiments have demonstrated acceleration of beam ions from 82 keV to 150 keV, in accord with expectations. The wide operating range of TFTR, together with an extensive set of diagnostics and a flexible control system, has facilitated transport and scaling studies of both ohmic- and neutral-beam-heated discharges. The results of these confinement studies are presented

  20. Industry roles in the Tokamak Physics Experiment

    International Nuclear Information System (INIS)

    The Tokamak Physics Experiment (TPX) is the first major fusion project opportunity in many years for US industry. Both the TPX management and the Department of Energy's Office of Fusion Energy are committed to creating industry roles that are integrated throughout the project and that appropriately use the capabilities they offer. To address industry roles in TPX it is first appropriate to describe the collaborative national approach taken for this program. The Director of the Princeton Plasma Physics Laboratory (PPPL) was asked by DOE to set up this national team structure, and the current senior management positions and delegated responsibilities reflect that approach. While reporting lines and delegated roles are clear in the organization chart for TPX, one way to view, it, different from that of the individuals responsible upward through this management structure for various elements of the project, is through institutional responsibilities to the senior management team. In this view the management team relies on several national laboratories, each using industry contracts for major sub-systems and components, to execute the project. These responsibilities for design and for contracting are listed, showing that all major contracts will come through three national laboratories, forming teams for their responsible activities

  1. Thermo-Oxidation of Tokamak Carbon Dust

    Energy Technology Data Exchange (ETDEWEB)

    J.W. Davis; B.W.N. Fitzpatrick; J.P. Sharpe; A.A. Haasz

    2008-04-01

    The oxidation of dust and flakes collected from the DIII-D tokamak, and various commercial dust specimens, has been measured at 350 ºC and 2.0 kPa O2 pressure. Following an initial small mass loss, most of the commercial dust specimens showed very little effect due to O2 exposure. Similarly, dust collected from underneath DIII-D tiles, which is thought to comprise largely Grafoil™ particulates, also showed little susceptibility to oxidation at this temperature. However, oxidation of the dust collected from tile surfaces has led to ~ 18% mass loss after 8 hours; thereafter, little change in mass was observed. This suggests that the surface dust includes some components of different composition and/or structure – possibly fragments of codeposited layers. The oxidation of codeposit flakes scraped form DIII-D upper divertor tiles showed an initial 25% loss in mass due to heating in vacuum, and the gradual loss of 30-38% mass during the subsequent 24 hours exposure to O2. This behavior is significantly different from that observed for the oxidation of thinner DIII-D codeposit specimens which were still adhered to tile surfaces, and this is thought to be related to the low deuterium content (D/C ~ 0.03 – 0.04) of the flakes.

  2. Electrostatic turbulence in the Tokamak TBR-1

    International Nuclear Information System (INIS)

    Characteristics of turbulence at plasma edge of tokamak TBR - 1 are determined from measurements of potentials and density fluctuations, done with a square array of four single Langmuir probes. Two adjacent probes are used to measure the floating potential of the plasma in either poloidal or toroidal directions, the remaining two probes are used to measure saturation current also in poloidal and toroidal directions. Using multiple shot data from the four probe array the radial fluctuation density (n∼) and floating potential (φ∼) profiles are estimated. Analysing the fluctuations spectra the wavenumber-frequency spectrum S(k,ω) from two points measurements is determined. An extension of the cross-correlation concept to a three points correlations leads to the estimation of the fluctuation induced particle flux, from which the particle diffusion coefficient and the convected heat flux can be estimated. All this measurements were performed with and without a resonant magnetic field to verify the eventual influence of this field on the data already mentioned. It was verified that the particle flux is outward and due to electrostatic fluctuations with frequencies lower than 150 khz. (author)

  3. Neoclassical transport of impurtities in tokamak plasmas

    International Nuclear Information System (INIS)

    Tokamak plasmas are inherently comprised of multiple ion species. This is due to wall-bred impurities and, in future reactors, will result from fusion-born alpha particles. Relatively small concentrations of highly charged non-hydrogenic impurities can strongly influence plasma transport properties whenever n/sub I/e/sub I/2/n/sub H/e2 greater than or equal to (m/sub e//m/sub H/)/sup 1/2/. The determination of the complete neoclassical Onsager matrix for a toroidally confined multispecies plasma, which provides the linear relation between the surface averaged radial fluxes and the thermodynamic forces (i.e., gradients of density and temperature, and the parallel electric field), is reviewed. A closed set of one-dimensional moment equations is presented for the time evolution of thermodynamic and magnetic field quantities which results from collisional transport of the plasma and two dimensional motion of the magnetic flux surface geometry. The effects of neutral beam injection on the equilibrium and transport properties of a toroidal plasma are consistently included

  4. Prospects for pilot plants based on the tokamak, spherical tokamak and stellarator

    Science.gov (United States)

    Menard, J. E.; Bromberg, L.; Brown, T.; Burgess, T.; Dix, D.; El-Guebaly, L.; Gerrity, T.; Goldston, R. J.; Hawryluk, R. J.; Kastner, R.; Kessel, C.; Malang, S.; Minervini, J.; Neilson, G. H.; Neumeyer, C. L.; Prager, S.; Sawan, M.; Sheffield, J.; Sternlieb, A.; Waganer, L.; Whyte, D.; Zarnstorff, M.

    2011-10-01

    A potentially attractive next-step towards fusion commercialization is a pilot plant, i.e. a device ultimately capable of small net electricity production in as compact a facility as possible and in a configuration scalable to a full-size power plant. A key capability for a pilot-plant programme is the production of high neutron fluence enabling fusion nuclear science and technology (FNST) research. It is found that for physics and technology assumptions between those assumed for ITER and nth-of-a-kind fusion power plant, it is possible to provide FNST-relevant neutron wall loading in pilot devices. Thus, it may be possible to utilize a single facility to perform FNST research utilizing reactor-relevant plasma, blanket, coil and auxiliary systems and maintenance schemes while also targeting net electricity production. In this paper three configurations for a pilot plant are considered: the advanced tokamak, spherical tokamak and compact stellarator. A range of configuration issues is considered including: radial build and blanket design, magnet systems, maintenance schemes, tritium consumption and self-sufficiency, physics scenarios and a brief assessment of research needs for the configurations.

  5. TSC [Tokamak Simulation Code] disruption scenarios and CIT [Compact Ignition Tokamak] vacuum vessel force evolution

    International Nuclear Information System (INIS)

    The Tokamak Simulation Code and the TWIR postprocessor code have been used to develop credible plasma disruption scenarios for the Compact Ignition Tokamak (CIT) in order to predict the evolution of forces on CIT conducting structures and to provide results required for detailed structural design analysis. The extreme values of net radial and vertical vacuum vessel (VV) forces were found to be FR=-12.0 MN/rad and FZ=-3.0 MN/rad, respectively, for the CIT 2.1-m, 11-MA design. Net VV force evolution was found to be altered significantly by two mechanisms not noted previously. The first, due to poloidal VV currents arising from increased plasma paramagnetism during thermal quench, reduces the magnitude of the extreme FR by 15-50% and modifies the distribution of forces substantially. The second effect is that slower plasma current decay rates give more severe net vertical VV loads because the current decay occurs when the plasma has moved farther from midplane than is the case for faster decay rates. 7 refs., 9 figs., 1 tab

  6. Deposit of thin films for Tokamaks conditioning; Deposito de peliculas delgadas para acondicionar Tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Valencia A, R

    2006-07-01

    As a main objective of this work, we present some experimental results obtained from studying the process of extracting those impurities created by the interaction plasma with its vessel wall in the case of Novillo tokamak. Likewise, we describe the main cleaning and conditioning techniques applied to it, fundamentally that of glow discharge cleaning at a low electron temperature (<10 eV), both in noble and reactive gases, as well as the conditioning by thin film deposits of hydrogen rich amorphous carbon (carbonization) leading to a reduction in the plasma resistivity from 8.99 x 10{sup -6} to 4.5 x 10{sup -6} {omega}-m, thus taking the Z{sub ef} value from 3.46 to 2.07 which considerably improved the operational parameters of the machine. With a view to justifying the fact that controlled nuclear fusion is a feasible alternative for the energy demand that humanity will face in the future, we review in Chapter 1 some fundamentals of the energy production by nuclear fusion reactions while, in Chapter 2, we examine two relevant plasma wall interaction processes. Our experimental array used to produce both cleaning and intense plasma discharges is described in Chapter 3 along with the associated diagnostics equipment. Chapter 4 contains a description of the vessel conditioning techniques followed in the process. Finally, we report our results in Chapter 5 while, in Chapter 6, some conclusions and remarks are presented. It is widely known that tokamak impurities are generated mainly by the plasma-wall interaction, particularly in the presence of high potentials between the plasma sheath and the limiter or wall. Given that impurities affect most adversely the plasma behaviour, understanding and controlling the impurity extraction mechanisms is crucial for optimizing the cleaning and wall conditioning discharge processes. Our study of one impurity extraction mechanism for both low and high Z in Novillo tokamak was carried out though mass spectrometry, optical emission

  7. Minimum size Q = 1 and ignited spherical tokamak devices

    International Nuclear Information System (INIS)

    The authors find minimum sized Spherical Tokamak (ST) configurations capable of Q∼1 (scientific break-even) and ignition. For Q∼1 cases, the authors normalize their models to the JET device. They find comparable plasma power balance performance in an ST configuration of major radius ∼0.7 m, using both global and 3/2 D plasma transport modeling. For ignited plasma, they first normalize the plasma modeling to the ITER device. They find similar ignited plasma performance capabilities in an ST configuration of major radius 1.2 m. These are much smaller size plasmas than the standard tokamak counterparts, indicating a potentially easier path towards commercial applications. Also, they find that the quantity IA is not a good figure-of-merit for comparing performance of widely different tokamak configurations

  8. A control approach for plasma density in tokamak machines

    International Nuclear Information System (INIS)

    Highlights: •We show a control approach for line plasma density in tokamak. •We show a control approach for pressure in a tokamak chamber. •We show experimental results using one valve. -- Abstract: In tokamak machines, chamber pre-fill is crucial to attain plasma breakdown, while plasma density control is instrumental for several tasks such as machine protection and achievement of desired plasma performances. This paper sets the principles of a new control strategy for attaining both chamber pre-fill and plasma density regulation. Assuming that the actuation mean is a piezoelectric valve driven by a varying voltage, the proposed control laws ensure convergence to reference values of chamber pressure during pre-fill, and of plasma density during plasma discharge. Experimental results at FTU are presented to discuss weaknesses and strengths of the proposed control strategy. The whole system has been implemented by using the MARTe framework [1

  9. Estimation of Z{sub eff} in Novillo Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Valencia, R. [Instituto Nacional de Investigaciones Nucleares, Mexico City (Mexico). Plasma Phys. Lab.; Olayo, G. [Instituto Nacional de Investigaciones Nucleares, Mexico City (Mexico). Plasma Phys. Lab.; Cruz, G. [Instituto Nacional de Investigaciones Nucleares, Mexico City (Mexico). Plasma Phys. Lab.; Lopez, R. [Instituto Nacional de Investigaciones Nucleares, Mexico City (Mexico). Plasma Phys. Lab.; Chavez, E. [Instituto Nacional de Investigaciones Nucleares, Mexico City (Mexico). Plasma Phys. Lab.; Melendez, L. [Instituto Nacional de Investigaciones Nucleares, Mexico City (Mexico). Plasma Phys. Lab.; Flores, A. [Instituto Nacional de Investigaciones Nucleares, Mexico City (Mexico). Plasma Phys. Lab.; Gaytan, E. [Instituto Nacional de Investigaciones Nucleares, Mexico City (Mexico). Plasma Phys. Lab.

    1996-03-01

    We estimated the Z{sub eff} in the Novillo Tokamak after having applied a HeGDC process through two different methods: anomaly factor and mass spectrometry. The first one gave a Z{sub eff} value of 2.07 for a tokamak discharge of 4350 A plasma current and 3 V of loop voltage. By mass spectrometry 30 s after the discharge had finished a Z{sub eff} of 4.19 was obtained for the same discharge. By mass spectrometry we observed that the Z{sub eff} value is a time function. Furthermore this method is helpful for evaluating the level of impurities after many discharges in Novillo Tokamak. (orig.).

  10. The Dynamic Mutation Characteristics of Thermonuclear Reaction in Tokamak

    Directory of Open Access Journals (Sweden)

    Jing Li

    2014-01-01

    Full Text Available The stability and bifurcations of multiple limit cycles for the physical model of thermonuclear reaction in Tokamak are investigated in this paper. The one-dimensional Ginzburg-Landau type perturbed diffusion equations for the density of the plasma and the radial electric field near the plasma edge in Tokamak are established. First, the equations are transformed to the average equations with the method of multiple scales and the average equations turn to be a Z2-symmetric perturbed polynomial Hamiltonian system of degree 5. Then, with the bifurcations theory and method of detection function, the qualitative behavior of the unperturbed system and the number of the limit cycles of the perturbed system for certain groups of parameter are analyzed. At last, the stability of the limit cycles is studied and the physical meaning of Tokamak equations under these parameter groups is given.

  11. The Dynamic Mutation Characteristics of Thermonuclear Reaction in Tokamak

    Science.gov (United States)

    Li, Jing; Quan, Tingting; Zhang, Wei; Deng, Wei

    2014-01-01

    The stability and bifurcations of multiple limit cycles for the physical model of thermonuclear reaction in Tokamak are investigated in this paper. The one-dimensional Ginzburg-Landau type perturbed diffusion equations for the density of the plasma and the radial electric field near the plasma edge in Tokamak are established. First, the equations are transformed to the average equations with the method of multiple scales and the average equations turn to be a Z2-symmetric perturbed polynomial Hamiltonian system of degree 5. Then, with the bifurcations theory and method of detection function, the qualitative behavior of the unperturbed system and the number of the limit cycles of the perturbed system for certain groups of parameter are analyzed. At last, the stability of the limit cycles is studied and the physical meaning of Tokamak equations under these parameter groups is given. PMID:24892099

  12. Anomalous diffusion and transport beta limits in dense tokamak plasmas

    International Nuclear Information System (INIS)

    For tokamak plasmas which are sufficiently large and/or dense that the ionization source on axis may be neglected, particle balance is achieved by the inward diffusion due to the Ware pinch compensating the outward flow due to both neoclassical and anomalous diffusion. Insertion of measured data into the particle flux balance relation determines the anomalous particle diffusion coefficient Dsub(A); comparison of the results from a variety of tokamaks implies that the dominant dependence on machine and/or plasma parameters is Dsub(A) proportional to 1/n. Particle flux balance also implies an upper bound on the central value of βsub(e), the limiting value being obtained when the plasma parameters are chosen such that Dsub(A)<< Dsub(NEO). This limit has been computed for circular-cross-section tokamaks, and the results so obtained are of the same order as magnetohydrodynamic beta limits. (author)

  13. A control approach for plasma density in tokamak machines

    Energy Technology Data Exchange (ETDEWEB)

    Boncagni, Luca, E-mail: luca.boncagni@enea.it [EURATOM – ENEA Fusion Association, Frascati Research Center, Division of Fusion Physics, Rome, Frascati (Italy); Pucci, Daniele; Piesco, F.; Zarfati, Emanuele [Dipartimento di Ingegneria Informatica, Automatica e Gestionale ' ' Antonio Ruberti' ' , Sapienza Università di Roma (Italy); Mazzitelli, G. [EURATOM – ENEA Fusion Association, Frascati Research Center, Division of Fusion Physics, Rome, Frascati (Italy); Monaco, S. [Dipartimento di Ingegneria Informatica, Automatica e Gestionale ' ' Antonio Ruberti' ' , Sapienza Università di Roma (Italy)

    2013-10-15

    Highlights: •We show a control approach for line plasma density in tokamak. •We show a control approach for pressure in a tokamak chamber. •We show experimental results using one valve. -- Abstract: In tokamak machines, chamber pre-fill is crucial to attain plasma breakdown, while plasma density control is instrumental for several tasks such as machine protection and achievement of desired plasma performances. This paper sets the principles of a new control strategy for attaining both chamber pre-fill and plasma density regulation. Assuming that the actuation mean is a piezoelectric valve driven by a varying voltage, the proposed control laws ensure convergence to reference values of chamber pressure during pre-fill, and of plasma density during plasma discharge. Experimental results at FTU are presented to discuss weaknesses and strengths of the proposed control strategy. The whole system has been implemented by using the MARTe framework [1].

  14. Joint Experiments on the Tokamaks CASTOR and T-10

    International Nuclear Information System (INIS)

    Small tokamaks may significantly contribute to the better understanding of phenomena in a wide range of fields such as plasma confiement and energy transport; plasma stability in different magnetic configurations; plasma turbulence and its impact on local and global plasma parameters; processes at the plasma edge and plasma-wall interaction; scenarios of additional heating and non-inductive current drive; new methods of plasma profile and parameter control; development of novel plasma diagnostics; benchmarking of new numerical codes and so on. Furthermore, due to the compactness, flexibility, low operation costs and high skill of their personnel small tokamaks are very convenient to develop and test new materials and technologies. Small tokamaks are suitable and important for broad international cooperation, providing the necessary environment and manpower to conduct dedicated joint research programmes. In addition, the experimental work on small tokamaks is very appropriate for the education of students, scientific activities of post-graduate students and for the training of personnel for large tokamaks. The first Joint (Host Laboratory) Experiment (JE1) has been carried out in 2005 on the CASTOR tokamak at the IPP Prague, Czech Republic. It was jointly organized by the IPP-ASCR and KFKI HAC, Budapest, involved 20 scientists from 7 countries and was supported through the IAEA and the ICTP, Trieste. The objective of JE1 was to perform studies of plasma edge turbulence and plasma confinement. Following the success of JE1, JE2 has been performed on T-10 at RRC 'Kurchatov Institute' in Moscow; 30 scientists from 13 countries participated in this experiment. This experiment aimed to continue JE1 turbulence studies, now extending them to the plasma core. Results of JE1 and JE2 will be overviewed and compared

  15. Fractal structure of films deposited in a tokamak

    Science.gov (United States)

    Budaev, V. P.; Khimchenko, L. N.

    2007-04-01

    The surface of amorphous films deposited in the T-10 tokamak was studied in a scanning tunnel microscope. The surface relief on a scale from 10 nm to 100 μm showed a stochastic surface topography and revealed a hierarchy of grains. The observed variety of irregular structures of the films was studied within the framework of the concept of scale invariance using the methods of fractal geometry and statistical physics. The experimental probability density distribution functions of the surface height variations are close in shape to the Cauchy distribution. The stochastic surface topography of the films is characterized by a Hurst parameter of H = 0.68-0.85, which is evidence of a nontrivial self-similarity of the film structure. The fractal character and porous structure of deposited irregular films must be considered as an important issue related to the accumulation of tritium in the ITER project. The process of film growth on the surface of tokamak components exposed to plasma has been treated within the framework of the general concept of inhomogeneous surface growth. A strong turbulence of the edge plasma in tokamaks can give rise to fluctuations in the incident flux of particles, which leads to the growth of fractal films with grain dimensions ranging from nano-to micrometer scale. The shape of the surface of some films found in the T-10 tokamak has been interpreted using a model of diffusion-limited aggregation (DLA). The growth of films according to the discrete DLA model was simulated using statistics of fluctuations observed in a turbulent edge plasma of the T-10 tokamak. The modified DLA model reproduces well the main features of the surface of some films deposited in tokamaks.

  16. Injection of intense ion beam into a tokamak

    International Nuclear Information System (INIS)

    We describe an experiment to investigate the direct injection of an intense ion beam into a tokamak by means of the polarization drift. Confinement of 100 keV ions in the UCI tokamak (r = 15 cm, R = 60 cm, B/sub T/ = 6 kG) requires operation with a plasma current of 56 kA corresponding to q (limiter) = 2. Trapped ions are to be detected by a charge-exchange analyzer. The present status of the experiment will be discussed

  17. New High Resolution Thomson Scattering system for the COMPASS tokamak

    Czech Academy of Sciences Publication Activity Database

    Brotánková, Jana; Bělský, Petr; Weinzettl, Vladimír; Böhm, Petr

    Vol. 2. Prague : MATFYZPRESS, Prague, 2007 - (Šafránková, J.; Pavlů, J.), s. 218-223 ISBN 978-80-7378-024-1. [Annual Conference of Doctoral Students - WDS 2007 /16./. Prague (CZ), 05.06.2007-08.06.2007] R&D Projects: GA ČR GD202/03/H162 Institutional research plan: CEZ:AV0Z20430508 Keywords : Thomson Scattering * tokamak * diagnostics * laser * electron temperature * electron density * COMPASS tokamak Subject RIV: BL - Plasma and Gas Discharge Physics http://www.mff.cuni.cz/veda/konference/wds/contents/wds07.htm#ppm

  18. Poloidal and parallel plasma viscosities in tokamak geometry

    International Nuclear Information System (INIS)

    The poloidal and parallel plasma viscosities in tokamak geometry in Hamada coordinates are calculated from the drift kinetic equation, including a large mass flow velocity without imposing the usual constraint that VpB/(vtiBp) be small. Here, Vp is the poloidal plasma flow velocity, vti is the ion thermal speed, B is the magnetic field strength, and Bp is the poloidal magnetic field strength. With this extended validity, the poloidal and parallel viscosities are useful in modeling the radial electric field in the edge region of a tokamak in the enhanced confinement regime

  19. Bootstrap current increment after siliconization on the HT-7 tokamak

    International Nuclear Information System (INIS)

    The authors present some results for the estimation of the bootstrap current after siliconization on the HT-7 tokamak. After siliconization, the plasma pressure gradient and the electron temperature near the boundary are larger than before siliconization. These factors influence the ratio of the bootstrap current to the total plasma current which increases from several per cent to above 10%. The results are expected to explain the previous experimental phenomena that, after siliconization, the plasma current profile is broadened and the higher current can be obtained easily on the HT-7 tokamak experiment

  20. DIII-D tokamak long range plan. Revision 3

    International Nuclear Information System (INIS)

    The DIII-D Tokamak Long Range Plan for controlled thermonuclear magnetic fusion research will be carried out with broad national and international participation. The plan covers: (1) operation of the DIII-D tokamak to conduct research experiments to address needs of the US Magnetic Fusion Program; (2) facility modifications to allow these new experiments to be conducted; and (3) collaborations with other laboratories to integrate DIII-D research into the national and international fusion programs. The period covered by this plan is 1 November 19983 through 31 October 1998

  1. Optimization of tokamak plasma equilibrium control in TOKASTAR-2

    International Nuclear Information System (INIS)

    To improve capability of tokamak plasma equilibrium control in TOKASTAR-2, a pair of pulsed vertical field coils (PVF coils) was installed in 2012. Optimization of PVF coil current waveform was made with re-calculation using TOSCA code in varying the conditions of tokamak discharge. Then, simulation of the electric circuit of PVF coil system with LTspice code was done to find the optimum capacitance and charging voltage of capacitor for PVF coils consistent to the optimal current waveform. Eventually capacitor parameters for PVF coils to be used as base for experiment were obtained. (author)

  2. Research using small tokamaks. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    The technical reports in these proceedings were presented at the IAEA Technical Committee Meeting on research Using Small Tokamaks, held in Ahmedabad, India, 6-7 December 1995. The purpose of this annual meeting is to provide a forum for the exchange of information on various small and medium sized plasma experiments, not only for tokamaks. The potential benefits of these research programmes are to: test theories, such as effects of the plasma rotation; check empirical scalings, such as density limits; develop fusion technology hardware; develop plasma diagnostics; such as tomography; and to train scientists, engineers, technicians, and students, particularly in developing IAEA Member States

  3. Stability of Tokamaks with respect to slip motions

    International Nuclear Information System (INIS)

    Using the energy principle in Tokamaks we investigate a class of perturbations which, if unstable, cannot be stabilized by the toroidal main field. On the assumptions of usual Tokamak ordering and in the limit of infinite aspect ratio, these perturbations are shown to be minimizing among all axisymmetric perturbations. In the case of finite aspect ratio, a detailed stability analysis is carried out using a constant pressure surface current model with elliptic, triangular or rectangular plasma cross-section. Definite stabilization by toroidal effects and by beta poloidal is demonstrated. (orig.)

  4. Soft X-ray tomography on HT-6B tokamak

    International Nuclear Information System (INIS)

    The tomography method for deriving soft X-ray local emissivities on HT-6B tokamak, using one horizontal array of 23 soft X-ray detectors, is described. This method has been applied to study of sawtooth oscillation and large m = 1 oscillation on HT-6B tokamak. It has been found that the large m = 1 oscillation on soft X-ray signal is caused by the rotation of plasma column containing perturbation. The reconstructed images in the phase before a sawtooth crash have shown the hot plasma core move gradually toward one side, this is considered that as the increasing m=1 kink mode. (author). 5 refs, 7 figs

  5. Influence of magnetic field ripple on plasma rotation in tokamaks

    International Nuclear Information System (INIS)

    The problem of plasma rotation in tokamaks with injection is considered. It is shown that the experimental results obtained in the PLT and ISX-B tokamaks can be explained by the presence of the magnetic-field ripple, provided that localized particles exist. The analysis carried out is based on the general expression for the magnetic-field ripple. This expression, which is derived in the present paper, describes the ripple distribution over the plasma cross-section for both the ordinary case and the case of shunted or damaged coils. (author)

  6. Turbulent and neoclassical toroidal momentum transport in tokamak plasmas

    International Nuclear Information System (INIS)

    The goal of magnetic confinement devices such as tokamaks is to produce energy from nuclear fusion reactions in plasmas at low densities and high temperatures. Experimentally, toroidal flows have been found to significantly improve the energy confinement, and therefore the performance of the machine. As extrinsic momentum sources will be limited in future fusion devices such as ITER, an understanding of the physics of toroidal momentum transport and the generation of intrinsic toroidal rotation in tokamaks would be an important step in order to predict the rotation profile in experiments. Among the mechanisms expected to contribute to the generation of toroidal rotation is the transport of momentum by electrostatic turbulence, which governs heat transport in tokamaks. Due to the low collisionality of the plasma, kinetic modeling is mandatory for the study of tokamak turbulence. In principle, this implies the modeling of a six-dimensional distribution function representing the density of particles in position and velocity phase-space, which can be reduced to five dimensions when considering only frequencies below the particle cyclotron frequency. This approximation, relevant for the study of turbulence in tokamaks, leads to the so-called gyrokinetic model and brings the computational cost of the model within the presently available numerical resources. In this work, we study the transport of toroidal momentum in tokamaks in the framework of the gyrokinetic model. First, we show that this reduced model is indeed capable of accurately modeling momentum transport by deriving a local conservation equation of toroidal momentum, and verifying it numerically with the gyrokinetic code GYSELA. Secondly, we show how electrostatic turbulence can break the axisymmetry and generate toroidal rotation, while a strong link between turbulent heat and momentum transport is identified, as both exhibit the same large-scale avalanche-like events. The dynamics of turbulent transport are

  7. Fusion-product transport in axisymmetric tokamaks: losses and thermalization

    International Nuclear Information System (INIS)

    High-energy fusion-product losses from an axisymmetric tokamak plasma are studied. Prompt-escape loss fluxes (i.e. prior to slowing down) are calculated including the non-separable dependence of flux as a function of poloidal angle and local angle-of-incidence at the first wall. Fusion-product (fp) thermalization and heating are calculated assuming classical slowing down. The present analytical model describes fast ion orbits and their distribution function in realistic, high-β, non-circular tokamak equilibria. First-orbit losses, trapping effects, and slowing-down drifts are also treated

  8. Generation of plasma rotation by ICRH in tokamaks

    International Nuclear Information System (INIS)

    A physical mechanism to generate plasma rotation by ICRH is presented in a tokamak geometry. By breaking the omnigenity of resonant ion orbits, ICRH can induce a non-ambipolar minor-radial flow of resonant ions. This induces a return current jpr in the plasma, which then drives plasma rotation through the jprxB force. It is estimated that the fast-wave power in the present-day tokamak experiments can be strong enough to give a significant modification to plasma rotation. (author)

  9. Physics programmes and goals of large tokamak experiments

    International Nuclear Information System (INIS)

    This report describes physics programmes and goals of four large Tokamak experiments (LTX); i.e., JET, TFTR, JT-60 and T-15. Physics problems foreseen in LTX are reviewed in the light of presently available results from Tokamaks in operation. Programmes and objectives of LTX are described by each project. Their various aspects are then reviewed. Possible collaborative programmes among the projects are briefly discussed. The report is based on the discussion held at the physics session of the fourth IAEA Technical Committee Meeting on LTX (Tokyo, April 1980). It is compiled from contributions by session chairmen of the meeting and appropriate persons of each project. (author)

  10. Adaptive grid finite element model of the tokamak scrapeoff layer

    Energy Technology Data Exchange (ETDEWEB)

    Kuprat, A.P.; Glasser, A.H. [Los Alamos National Lab., NM (United States)

    1995-07-01

    The authors discuss unstructured grids for application to transport in the tokamak edge SOL. They have developed a new metric with which to judge element elongation and resolution requirements. Using this method, the authors apply a standard moving finite element technique to advance the SOL equations while inserting/deleting dynamically nodes that violate an elongation criterion. In a tokamak plasma, this method achieves a more uniform accuracy, and results in highly stretched triangular finite elements, except near separatrix X-point where transport is more isotropic.

  11. A Midsize Tokamak As Fast Track To Burning Plasmas

    International Nuclear Information System (INIS)

    This paper presents a midsize tokamak as a fast track to the investigation of burning plasmas. It is shown that it could reach large values of energy gain ((ge) 10) with only a modest improvement in confinement over the scaling that was used for designing the International Thermonuclear Experimental Reactor (ITER). This could be achieved by operating in a low plasma recycling regime that experiments indicate can lead to improved plasma confinement. The possibility of reaching the necessary conditions of low recycling using a more efficient magnetic divertor than those of present tokamaks is discussed.

  12. A Midsize Tokamak As Fast Track To Burning Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    E. Mazzucato

    2010-07-14

    This paper presents a midsize tokamak as a fast track to the investigation of burning plasmas. It is shown that it could reach large values of energy gain (≥10) with only a modest improvement in confinement over the scaling that was used for designing the International Thermonuclear Experimental Reactor (ITER). This could be achieved by operating in a low plasma recycling regime that experiments indicate can lead to improved plasma confinement. The possibility of reaching the necessary conditions of low recycling using a more efficient magnetic divertor than those of present tokamaks is discussed.

  13. Data processing system for spectroscopy at Novillo Tokamak

    International Nuclear Information System (INIS)

    Taking as basis some proposed methodologies by software engineering it was designed and developed a data processing system coming from the diagnostic equipment by spectroscopy, for the study of plasma impurities, during the cleaning discharges. the data acquisition is realized through an electronic interface which communicates the computer with the spectroscopy system of Novillo Tokamak. The data were obtained starting from files type text and processed for their subsequently graphic presentation. For development of this system named PRODATN (Processing of Data for Spectroscopy in Novillo Tokamak) was used the LabVIEW graphic programming language. (Author)

  14. ELECTRON CYCLOTRON CURRENT DRIVE EFFICIENCY IN GENERAL TOKAMAK GEOMETRY

    International Nuclear Information System (INIS)

    Green's-function techniques are used to calculate electron cyclotron current drive (ECCD) efficiency in general tokamak geometry in the low-collisionality regime. Fully relativistic electron dynamics is employed in the theoretical formulation. The high-velocity collision model is used to model Coulomb collisions and a simplified quasi-linear rf diffusion operator describes wave-particle interactions. The approximate analytic solutions which are benchmarked with a widely used ECCD model, facilitate time-dependent simulations of tokamak operational scenarios using the non-inductive current drive of electron cyclotron waves

  15. What is the fate of runaway positrons in tokamaks?

    CERN Document Server

    Liu, Jian; Fisch, Nathaniel J; Teng, Qian; Wang, Xiaogang

    2015-01-01

    Massive runaway positrons are generated by runaway electrons in tokamaks. The fate of these positrons encodes valuable information about the runaway dynamics. The phase space dynamics of a runaway position is investigated using a Lagrangian that incorporates the tokamak geometry, loop voltage, radiation and collisional effects. It is found numerically that runaway positrons will drift out of the plasma to annihilate on the first wall, with an in-plasma annihilation possibility less than 0.1\\%. The dynamics of runaway positrons provides signatures that can be observed as diagnostic tools.

  16. Electron cyclotron emission diagnostics on HT-7 tokamak

    International Nuclear Information System (INIS)

    An electron cyclotron emission (ECE) diagnostic system measures the electron cyclotron emission from optically thick plasma that is limited to the blackbody radiation limit of the plasma at the cyclotron resonance location. This provides an electron temperature profile for plasmas with spatially varying magnetic fields, such as a tokamak. The second harmonic x-mode electron cyclotron emission (ECE) at frequency range 98-126 GHz is normally used in HT-7 tokamak to measure electron temperature, which is the only ECE detectable mode with optical depth >1. The theoretical review of ECE emission and its radiometry is briefly summarized. (authors)

  17. Equilibrium analysis of tokamak discharges with anisotropic pressure

    International Nuclear Information System (INIS)

    Equilibrium reconstruction is the essential tool for determining the field configuration and current density in a tokamak discharge. Most equilibrium reconstruction codes use the Grad-Shafranov equation, which relies on the assumption of isotropic pressure. This property is often violated for additionally heated discharges. We report on the implementation of an anisotropic pressure model for the equilibrium reconstruction code EFIT. The anisotropy model exhibits more degrees of freedom and makes the reconstruction more sensitive to experimental errors. We use a regularisation technique (L-curve) that attempts to generate an optimal equilibrium. The algorithm is applied to selected high performance discharges of the tokamaks JET and Tore Supra. (authors)

  18. Recent Activities on the Experimental Research Programme Using Small Tokamaks

    International Nuclear Information System (INIS)

    A new concept of interactive co-ordinated research using small tokamaks in the mainstream fusion science areas, in testing of new diagnostics, materials and technologies as well as in education, training and broadening of the geography of fusion research in the scope of the IAEA Co-ordinated Research Project (CRP) is discussed in this paper. Besides the presentation of the recent activities on the experimental research programme using small tokamaks and scientific results achieved at the participating laboratories, information is provided about the organisation of the co-ordinated research project. Future plans of the co-ordinated activities within the CRP are discussed

  19. Design and Analysis of the Thermal Shield of EAST Tokamak

    Science.gov (United States)

    Xie, Han; Liao, Ziying

    2008-04-01

    EAST (Experimental Advanced Superconducting Tokamak) is a tokamak with superconducting toroidal and poloidal magnets operated at 4.5 K. In order to reduce the thermal load applied on the surfaces of all cryogenically cooled components and keep the heat load of the cryogenic system at a minimum, a continuous radiation shield system located between the magnet system and warm components is adopted. The main loads to which the thermal shield system is subjected are gravity, seismic, electromagnetic and thermal gradients. This study employed NASTRAN and ANSYS finite element codes to analyze the stress under a spectrum of loading conditions and combinations, providing a theoretical basis for an optimization design of the structure.

  20. Multichannel bolometer for radiation measurements on the TCA tokamak

    International Nuclear Information System (INIS)

    A multichannel radiation bolometer has been developed for the Tokamak Chauffage Alfven (TCA) tokamak. It has 16 equally spaced chords that view the plasma through a narrow horizontal slit. Almost an entire vertical plasma cross section can be observed. The bolometer operates on the basis of a semiconducting element which serves as a temperature-dependent resistance. A new electronic circuit has been developed which takes advantage of the semiconductor characteristics of the detector by using feedback techniques. Measurements made with this instrument are discussed

  1. A concept for next step advanced tokamak fusion device

    International Nuclear Information System (INIS)

    A concept is introduced for initiating the design study of a special class of tokamak, which has a magnetic confinement configuration intermediate between contemporary advanced tokamak and the recently established spherical torus (ST, also well known by the name 'spherical tokamak'). The leading design parameter in the present proposal is a dimensionless geometrical parameter the machine aspect ratio A = R0/a0 = 2.0, where the parameters a0 and R0 denote, respectively, the plasma (equatorial)minor radius and the plasma major radius. The aim of this choice is to technologically and experimentally go beyond the aspect ratio frontier (R0/a0 ≅ 2.5) of present day tokamaks and enter a broad unexplored domain existing on the (a0, R0) parameter space in current international tokamak database, between the data region already moderately well covered by the advanced conventional tokamaks and the data region planned to be covered by STs. Plasma minor radius a0 has been chosen to be the second basic design parameter, and consequently, the plasma major radius R0 is regarded as a dependent design parameter. In the present concept, a nominal plasma minor radius a0 = 1.2 m is adopted to be the principal design value, and smaller values of a0 can be used for auxiliary design purposes, to establish extensive database linkage with existing tokamaks. Plasma minor radius can also be adjusted by mechanical and/or electromagnetic means to smaller values during experiments, for making suitable data linkages to existing machines with higher aspect ratios and smaller plasma minor radii. The basic design parameters proposed enable the adaptation of several confinement techniques recently developed by STs, and thereby a specially arranged central-bore region insider the envisioned tokamak torus, with retrieved space in the direction of plasma minor radius, will be available for technological adjustments and maneuvering to facilitate implementation of engineering instrumentation and real

  2. High and low frequency Alfven modes in tokamaks

    International Nuclear Information System (INIS)

    We present an analysis of the typical features of shear Alfven waves in tokamak plasmas in a frequency domain ranging from the ''high'' frequencies (ω ≅ νA/2qR0; νA being the Alfven speed and qR0 the tokamak connection length) of the toroidal gap to the ''low'' frequencies, comparable with the thermal ion diamagnetic frequency, ω*pi and/or the thermal ion transit frequency ωti = νti/qR0 (νti being the ion thermal speed). (author)

  3. TIBER: Tokamak Ignition/Burn Experimental Research. Final design report

    International Nuclear Information System (INIS)

    The Tokamak Ignition/Burn Experimental Research (TIBER) device is the smallest superconductivity tokamak designed to date. In the design plasma shaping is used to achieve a high plasma beta. Neutron shielding is minimized to achieve the desired small device size, but the superconducting magnets must be shielded sufficiently to reduce the neutron heat load and the gamma-ray dose to various components of the device. Specifications of the plasma-shaping coil, the shielding, coaling, requirements, and heating modes are given. 61 refs., 92 figs., 30 tabs

  4. What is the fate of runaway positrons in tokamaks?

    International Nuclear Information System (INIS)

    Massive runaway positrons are generated by runaway electrons in tokamaks. The fate of these positrons encodes valuable information about the runaway dynamics. The phase space dynamics of a runaway position is investigated using a Lagrangian that incorporates the tokamak geometry, loop voltage, radiation and collisional effects. It is found numerically that runaway positrons will drift out of the plasma to annihilate on the first wall, with an in-plasma annihilation possibility less than 0.1%. The dynamics of runaway positrons provides signatures that can be observed as diagnostic tools

  5. Atomic data for integrated tokamak modelling

    International Nuclear Information System (INIS)

    The Integrated Tokamak Modeling Task Force (ITM-TF) was set up in 2004. The main target is to coordinate the European fusion modeling effort and providing a complete European modeling structure for International Thermonuclear Experimental Reactor (ITER), with the highest degree of flexibility. For the accurate simulation of the processes in the active fusion reactor in the ITM-TF, numerous atomic, molecular, nuclear and surface related data are required. In this work we present total-, single- and multiple-ionization and charge exchange cross sections in close connection to the ITM-TF. Interpretation of these cross sections in multi-electron ion-atom collisions is a challenging task for theories. The main difficulty is caused by the many-body feature of the collision, involving the projectile, projectile electron(s), target nucleus, and target electron(s). The classical trajectory Monte Carlo (CTMC) method has been quite successful in dealing with the atomic processes in ion-atom collisions. One of the advantages of the CTMC method is that many-body interactions are exactly taken into account related CTMC simulations for a various collision systems are presented. To highlight the efficiency of the method we present electron emission cross sections in collision between dressed Alq+ ions with He target. The theory delivers separate spectra for electrons emitted from the target and the projectile. By summing these two components in the rest frame of the target we may make a comparison with available experimental data. For the collision system in question, a significant contribution from Fermi-shuttle ionization has to be expected in the spectra at energies higher than E=0.5 me (nV)2, where me is the mass of the electron, V the projectile velocity and n an integer greater than 1. We found enhanced electron yields compared to first order theory in this region of CTMC spectra, which can be directly attributed to the contribution of Fermi-shuttle type multiple scattering

  6. Technology and physics in the Tokamak Program: The need for an integrated, steady-state RandD tokamak experiment

    International Nuclear Information System (INIS)

    The Steady-state Tokamak (STE) Experiment is a proposed superconducting-coil, hydrogen-plasma tokamak device intended to address the integrated non-nuclear issues of steady state, high-power tokamak physics and technology. Such a facility has been called for in the US program plan for the mid 1990's, and will play a unique role in the world-wide fusion effort. Information from STE on steady-state current drive, plasma control, and high power technology will contribute significantly to the operating capabilities of future steady-state devices. This paper reviews preliminary designs and expected technological contributions to the US and world fusion reactor research from each of the above mentioned reactor systems. This document is intended as a proposal and feasibility discussion and does not include exhaustive technical reviews. 12 figs., 3 tabs

  7. Magnetic flux reconstruction methods for shaped tokamaks

    International Nuclear Information System (INIS)

    The use of a variational method permits the Grad-Shafranov (GS) equation to be solved by reducing the problem of solving the 2D non-linear partial differential equation to the problem of minimizing a function of several variables. This high speed algorithm approximately solves the GS equation given a parameterization of the plasma boundary and the current profile (p' and FF' functions). The author treats the current profile parameters as unknowns. The goal is to reconstruct the internal magnetic flux surfaces of a tokamak plasma and the toroidal current density profile from the external magnetic measurements. This is a classic problem of inverse equilibrium determination. The current profile parameters can be evaluated by several different matching procedures. Matching of magnetic flux and field at the probe locations using the Biot-Savart law and magnetic Green's function provides a robust method of magnetic reconstruction. The matching of poloidal magnetic field on the plasma surface provides a unique method of identifying the plasma current profile. However, the power of this method is greatly compromised by the experimental errors of the magnetic signals. The Casing Principle provides a very fast way to evaluate the plasma contribution to the magnetic signals. It has the potential of being a fast matching method. The performance of this method is hindered by the accuracy of the poloidal magnetic field computed from the equilibrium solver. A flux reconstruction package has been implemented which integrates a vacuum field solver using a filament model for the plasma, a multi-layer perception neural network as an interface, and the volume integration of plasma current density using Green's functions as a matching method for the current profile parameters. The flux reconstruction package is applied to compare with the ASEQ and EFIT data. The results are promising

  8. First results from the T-10 tokamak

    International Nuclear Information System (INIS)

    Measurements of plasma parameters are made on the T-10 tokamak with a toroidal magnetic field of 3.5 T and a plasma current of 0.4 MA. In macroscopically stable discharges of 1 s duration, the central electron temperature is Tsub(e)(0)=1.2 keV, the mean electron density reaches a value of nsub(e)=5X1013 cm-3, and the central ion temperature is measured to be 0.6-0.8 keV. The thermonuclear neutron yield reaches a value of 4X109 neutrons per shot, in agreement with the Tsub(i)(0) value measured by charge exchange. Sawtooth X-ray oscillations are observed. The effective ionic charge is found to be less than 2 for the inner region of the plasma column. The energy confinement time tausub(E) is calculated from the experimental profiles of the plasma parameters. The value of tausub(E) is 40 ms and increases up to 60 ms, while nsub(e) is increased up to 8.5X1013 cm-3 as a result of cold-gas injection by a pulse valve. Violent disruption is observed in several regimes. Hard-X-ray and neutron radiation bursts take place during the disruption, both in hydrogen and in deuterium. More intensive and prolonged radiation fluxes of hard X-rays and non-thermonuclear neutrons are observed in some discharges where very intensive beams of relativistic runaway electrons seem to exist. (author)

  9. Magnetic flux reconstruction methods for shaped tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Tsui, Chi-Wa

    1993-12-01

    The use of a variational method permits the Grad-Shafranov (GS) equation to be solved by reducing the problem of solving the 2D non-linear partial differential equation to the problem of minimizing a function of several variables. This high speed algorithm approximately solves the GS equation given a parameterization of the plasma boundary and the current profile (p` and FF` functions). The author treats the current profile parameters as unknowns. The goal is to reconstruct the internal magnetic flux surfaces of a tokamak plasma and the toroidal current density profile from the external magnetic measurements. This is a classic problem of inverse equilibrium determination. The current profile parameters can be evaluated by several different matching procedures. Matching of magnetic flux and field at the probe locations using the Biot-Savart law and magnetic Green`s function provides a robust method of magnetic reconstruction. The matching of poloidal magnetic field on the plasma surface provides a unique method of identifying the plasma current profile. However, the power of this method is greatly compromised by the experimental errors of the magnetic signals. The Casing Principle provides a very fast way to evaluate the plasma contribution to the magnetic signals. It has the potential of being a fast matching method. The performance of this method is hindered by the accuracy of the poloidal magnetic field computed from the equilibrium solver. A flux reconstruction package has been implemented which integrates a vacuum field solver using a filament model for the plasma, a multi-layer perception neural network as an interface, and the volume integration of plasma current density using Green`s functions as a matching method for the current profile parameters. The flux reconstruction package is applied to compare with the ASEQ and EFIT data. The results are promising.

  10. Magnet design approach for pulsed tokamak reactors

    International Nuclear Information System (INIS)

    A choice of various operating modes of a tokamak reactor will have considerable impact on the fatigue lives and cost of ohmic heating (OH), equilibrium field (EF), and toroidal field (TF) coils. OH and EF coil requirements and their costs, as well as the effects of the fringing fields of the EF coils on the TF coils, have been studied under cyclic operation in the range of N = 102 to 106 cycles, spanning the range from a noninductively driven reactor (STARFIRE) to a conventional ohmically driven reactor. For a reference design of TF coils the design of the central OH solenoid has been studied as a function of its maximum field, B /SUP OH/. Increasing requirements for structural support lead to only negligible increases in voltseconds for B /SUP OH/greater than or equal to 10.0 T. Fatigue failure of the OH coil is not a concern for N less than or equal to 105; for N about 106 fatigue limits the strain to small values, resulting in small increases in structural requirements and modest decreases in volt-seconds. Should noninductive current drive be achievable the authors note that this not only eliminates the OH coil, but it also permits EF coil placement in the inboard region, which facilitates the creation of highly shaped plasma cross sections (large triangularity, or bean-shaped equilibria). They have computed the stored energy, coil configuration and fringing fields for a number of EF coil design options. For pulsed operation these EF coil fields result in three major problems. First, the induced eddy currents introduce additional heating to the TF magnets, which increases cryogenic demands compared to steady-state operation. Second, of greater concern, these EF coils impart out-of-plane forces and turning moments to the TF coil structure. In this case fatigue failure is a severe design constraint. Finally, pulsed operation of the EF coils requires large, expensive power supplies

  11. Resistive MHD in tokamak edge regions

    International Nuclear Information System (INIS)

    Several results on resistive MHD in tokamak edge regions, relevant to the H-mode transition, are presented: quasilinear drift tearing modes as an H-mode trigger; stabilization of drift tearing modes by sheared poloidal rotation; and the effect of sheared rotation on electrostatic drift resistive ballooning modes. Quasilinear drift tearing modes have a critical Δ'∼Te3/BT2, which might give a threshold similar to the observed scaling. The quasilinear regime is valid for island widths as large as the tearing layer width, which can be about 1-3 cm, for typical edge parameters. Cross field thermal conductivity has an essential role in maintaining quasilinear islands. Stabilization of the modes might trigger the H-mode, if destruction of magnetic surfaces around the separatrix increases edge transport, and shorts out a radial electric field. Because drift effects do not persist in the nonlinear regime, drift stabilization does not work for larger islands. Sheared rotation is an effective stabilization mechanism in both quasilinear and nonlinear regimes of the drift tearing mode. In the quasilinear regime, velocity shear increases the critical Δ'. The required velocity gradient to stabilize a nonlinear island is large, but experimental parameters appear adequate to provide stabilization. Sheared rotation also has a stabilizing effect on electrostatic resistive ballooning modes. Only the drift resistive ballooning mode survives above a critical edge Te. The linear growth rate of these modes is slowed by sheared rotation, when the poloidal velocity gradient exceeds the drift frequency. A resonance can occur when v'θ = ω*, giving a growth rate proportional to η1/2. For shorter wavelengths, the growth rate is not affected by the rotation

  12. Magnet systems for ''Bean-Shaped'' tokamak

    International Nuclear Information System (INIS)

    Bean-shaping of tokamak plasmas offers a method of reaching stable operation at (beta) > 10%. In order to establish the indentation of the ''bean'', a set of high- current ''pushing coils'' (> 5 MA in a reactor) must be located at the midplane as close as possible to the inboard edge of the plasma. If located in the bore of the TF coils, then maintenance of the pushing coils may be impossible, and the interlocking coils may prevent reactor modularity. If located outside, the required pushing-coil current may be unacceptably large. This dilemma is overcome with a unique TF coil design in which the inboard leg is bent outward in the form of an arc. The pushing coils are housed in the midplane indentation of this arc, just outside the TF coils but adequately close to the plasma. The arched coil transfers forces to the top and bottom legs, where it can be reacted by a clamp structure if necessary. This technique would allow demountable joints to be placed near the inoard leg (for copper TF coils). Another design approach to the pushing coils is to use liquid Li or Na as the conductor and coolant. The liquid metal ''coils'' can be placed immediately adjacent to the plasma, giving optimal control of the plasma shape with minimal coil current, although modularity of the reactor may have to be surrendered. Conceptual designs are presented of PF and TF coil systems for an ignition test reactor with about 14% and for a full-scale demonstration reactor with about 20%, both using copper TF coils

  13. HESTER: a hot-electron superconducting tokamak experimental reactor at M.I.T

    International Nuclear Information System (INIS)

    HESTER is an experimental tokamak, designed to resolve many of the central questions in the tokamak development program in the 1980's. It combines several unique features with new perspectives on the other major tokamak experiments scheduled for the next decade. The overall objectives of HESTER, in rough order of their presently perceived importance, are the achievement of reactor-like wall-loadings and plasma parameters for long pulse periods, determination of a good, reactor-relevant method of steady-state or very long pulse tokamak current drive, duplication of the planned very high temperature neutral injection experiments using only radio frequency heating, a demonstration of true steady-state tokamak operation, integration of a high-performance superconducting magnet system into a tokamak experiment, determination of the best methods of long term impurity control, and studies of transport and pressure limits in high field, high aspect ratio tokamak plasmas. These objectives are described

  14. Data processing system for spectroscopy at Novillo Tokamak; Sistema de procesamiento de datos para espectroscopia en el Tokamak Novillo

    Energy Technology Data Exchange (ETDEWEB)

    Ortega C, G.; Gaytan G, E. [Instituto Tecnologico de Toluca, Instituto nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1998-07-01

    Taking as basis some proposed methodologies by software engineering it was designed and developed a data processing system coming from the diagnostic equipment by spectroscopy, for the study of plasma impurities, during the cleaning discharges. the data acquisition is realized through an electronic interface which communicates the computer with the spectroscopy system of Novillo Tokamak. The data were obtained starting from files type text and processed for their subsequently graphic presentation. For development of this system named PRODATN (Processing of Data for Spectroscopy in Novillo Tokamak) was used the LabVIEW graphic programming language. (Author)

  15. Analysis of images from videocameras in the Frascati Tokamak Upgrade tokamak

    International Nuclear Information System (INIS)

    The plasma edge interaction in FTU tokamak is monitored by wide angle videocameras. Data are acquired as movies or single frames at a rate of 50 frames/s. The images show interesting features of the plasma such as the presence of Marfes or runaways and give useful information on the status of large parts of the vacuum vessel and toroidal limiter. Due to the large number of data available visual inspection of the movies is often insufficient to correlate the images to the experimental findings. This article illustrates a number of applications developed in order to correlate the images with plasma signals and to search the image database for specific features relevant to the discharge

  16. Ion cyclotron emission in tokamak plasmas; Emission cyclotronique ionique dans les plasmas de tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Fraboulet, D.

    1996-09-17

    Detection of {alpha}(3.5 MeV) fusion products will be of major importance for the achievement of self sustained discharges in fusion thermonuclear reactors. Due to their cyclotronic gyration in the confining magnetic field of a tokamak, {alpha} particles are suspected to radiate in the radio-frequency band [RF: 10-500 MHz]. Our aim is to determine whether detection of RF emission radiated from a reactor plasma can provide information concerning those fusion products. We observed experimentally that the RF emission radiated from fast ions situated in the core of the discharge is detectable with a probe located at the plasma edge. For that purpose, fast temporal acquisition of spectral power was achieved in a narrow frequency band. We also propose two complementary models for this emission. In the first one, we describe locally the energy transfer between the photon population and the plasma and we compute the radiation equilibrium taking place in the tokamak. {alpha} particles are not the unique species involved in the equilibrium and it is necessary to take into account all other species present in the plasma (Deuterium, Tritium, electrons,...). Our second model consists in the numerical resolution of the Maxwell-Vlasov with the use of a variational formulation, in which all polarizations are considered and the 4 first cyclotronic harmonics are included in a 1-D slab geometry. The development of this second model leads to the proposal for an experimental set up aiming to the feasibility demonstration of a routine diagnostic providing the central {alpha} density in a reactor. (author). 166 refs.

  17. Observation of finite-. beta. MHD phenomena in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    McGuire, K.M.

    1984-09-01

    Stable high-beta plasmas are required for the tokamak to attain an economical fusion reactor. Recently, intense neutral beam heating experiments in tokamaks have shown new effects on plasma stability and confinement associated with high beta plasmas. The observed spectrum of MHD fluctuations at high beta is clearly dominated by the n = 1 mode when the q = 1 surface is in the plasma. The m/n = 1/1 mode drives other n = 1 modes through toroidal coupling and n > 1 modes through nonlinear coupling. On PDX, with near perpendicular injection, a resonant interaction between the n = 1 internal kink and the trapped fast ions results in loss of beam particles and heating power. Key parameters in the theory are the value of q/sub 0/ and the injection angle. High frequency broadband magnetic fluctuations have been observed on ISX-B and D-III and a correlation with the deterioration of plasma confinement was reported. During enhanced confinement (H-mode) discharges in divertor plasmas, two new edge instabilities were observed, both localized radially near the separatrix. By assembling results from the different tokamak experiments, it is found that the simple theoretical ideal MHD beta limit has not been exceeded. Whether this represents an ultimate tokamak limit or if beta optimized configurations (Dee- or bean-shaped plasmas) can exceed this limit and perhaps enter a second regime of stability remains to be clarified.

  18. Economic evaluation of fissile fuel production using resistive magnet tokamaks

    International Nuclear Information System (INIS)

    The application of resistive magnet tokamaks to fissile fuel production has been studied. Resistive magnets offer potential advantages over superconducting magnets in terms of robustness, less technology development required and possibility of demountable joints. Optimization studies within conservatively specified constraints for a compact machine result in a major radius of 3.81 m and 618 MW fusion power and a blanket space envelope of 0.35 m inboard and 0.75 m outboard. This machine is called the Resistive magnet Tokamak Fusion Breeder (RTFB). A computer code was developed to estimate the cost of the resistive magnet tokamak breeder. This code scales from STARFIRE values where appropriate and calculates costs of other systems directly. The estimated cost of the RTFB is $3.01 B in 1984 dollars. The cost of electricity on the same basis as STARFIRE is 42.4 mills/kWhre vs 44.9 mills/kWhre for STARFIRE (this does not include the fuel value or fuel cycle costs for the RTFB). The breakeven cost of U3O8 is $150/lb when compared to a PWR on the once through uranium fuel cycle with no inflation and escalation. On the same basis, the breakeven cost for superconducting tokamak and tandem mirror fusion breeders is $160/lb and $175/lb. Thus, the RTFB appears to be competitive in breakeven U3O8 cost with superconducting magnet fusion breeders and offers the potential advantages of resistive magnet technology

  19. General engineering commissioning of the HL-1M Tokamak

    International Nuclear Information System (INIS)

    This paper presents the general commissioning of the HL-1M Tokamak. The combined engineering test operation is a great success. Stable plasma equilibrium and discharge waveforms with good repetitiveness and wide flat-top are obtained, which are of particular advantage for physical experiments

  20. Conceptual design of Remote Control System for EAST tokamak

    International Nuclear Information System (INIS)

    Highlights: • A new design conception for remote control for EAST tokamak is proposed. • Rich Internet application (RIA) was selected to implement the user interface. • Some security mechanism was used to fulfill security requirement. - Abstract: The international collaboration becomes popular in tokamak research like in many other fields of science, because the experiment facilities become larger and more expensive. The traditional On-site collaboration Model that has to spend much money and time on international travel is not fit for the more frequent international collaboration. The Remote Control System (RCS), as an extension of the Central Control System for the EAST tokamak, is designed to provide an efficient and economical way to international collaboration. As a remote user interface, the RCS must integrate with the Central Control System for EAST tokamak to perform discharge control function. This paper presents a design concept delineating a few key technical issues and addressing all significant details in the system architecture design. With the aim of satisfying system requirements, the RCS will select rich Internet application (RIA) as a user interface, Java as a back-end service and Secure Socket Layer Virtual Private Network (SSL VPN) for securable Internet communication