WorldWideScience

Sample records for canada-india reactor

  1. Canada-India Reactor (CIR)

    Energy Technology Data Exchange (ETDEWEB)

    None

    1960-12-15

    Design information on the Canada-India Reactor is presented. Data are given on reactor physics, the core, fuel elements, core heat transfer, control, reactor vessel, fluid flow, reflector and shielding, containment, cost estimates, and research facilities. Drawings of vertical and horizontal sections of the reactor and fluid flow are included. (M.C.G.)

  2. How Canada's and India's nuclear roles have been sadly misrepresented

    International Nuclear Information System (INIS)

    Bindon, G.; Mukerji, S.

    1977-01-01

    The authors are concerned to remove misunderstandings about the termination of nuclear cooperation between Canada and India following India's explosion of a nuclear device in 1974. The history of the cooperation between the two countries, leading to the construction of the Rajasthan-1 reactor, is recounted. It is suggested that India had long intended to explode a nuclear device, consistent with its refusal to sign the nonproliferation treaty; surprise was therefore unwarranted. The value of the Rajasthan contract to the Canadian nuclear industry is emphasized, on the grounds that it came at a crucial time, just after Douglas Point had reached full power in 1962. The authors seem to believe that Canadian industry will suffer in that it will be more difficult to achieve agreements with developing countries in the future. This is made the occasion for some general criticism of the Canadian nuclear programme, but not of the Indian, which is held to be more diversified, and therefore able to develop supposedly practical and better alternatives to nuclear energy. (N.D.H.)

  3. Introducing small modular reactors into Canada

    International Nuclear Information System (INIS)

    Humphries, J.R.

    2012-01-01

    In recent years there has been a growing interest in smaller, simpler reactors for generating electricity and process heat. This is evidenced in the growing body of literature and the increasingly frequent meetings and conferences on the subject. The interest in Small Modular Reactors (SMRs) is driven to a large extent by the desire to reduce capital costs, to reduce greenhouse gas emissions, to replace retiring fossil plants that do not meet today's environmental standards, and to provide power in locations away from large electrical grids. These drivers are as important in Canada as they are in the U.S., where the design and licensing of SMRs is being most vigorously pursued. They have led to a growing interest in Canada as a potentially significant market for SMRs, particularly in the Western Provinces of Alberta and Saskatchewan and in the remote First Nations communities of Northern Canada. There is a growing body of literature addressing the regulation and licensing of Small Modular Reactors in the U.S. Issues being identified in there can generally be categorized as licensing framework issues, licensing application issues, and design and manufacturing issues. Many of these issues are embedded in the US regulatory framework and can only be resolved through changes in the regulations. For the most part these issues are equally applicable in Canada and will need to be addressed in introducing SMRs here. A significant difference, however, is that these issues can be addressed within the Canadian regulatory framework without requiring changes in the regulations. The CNSC has taken a very proactive stance regarding the licensing of small reactors in Canada. They have published two new Regulatory Documents stipulating the requirements for licensing small reactors. A key feature is that they allow the application of a 'graded approach' in which the stringency of the design measures and analyses applied are commensurate with the level of risk posed by

  4. Canada's reactor exports

    International Nuclear Information System (INIS)

    Morrison, R.W.

    1981-01-01

    A brief sketch of the development of Canada's nuclear exports is presented and some of the factors which influence the ability to export reactors have been identified. The potential market for CANDUs is small and will develop slowly. The competition will be tough. There are few good prospects for immediate export orders in the next two or three years. Nonetheless there are reasonable opportunities for CANDU exports, especially in the mid-to-late 1980s. Such sales could be of great benefit to Canada and could do much to sustain the domestic nuclear industry. Apart from its excellent economic and technical performance, the main attraction of the CANDU seems to be the autonomy it confers on purchasing countries, the effectiveness with which the associated technology can be transferred, and the diversification it offers to countries which wish to reduce their dependence on the major industrial suppliers. Each sales opportunity is unique, and marketing strategy will have to be tailored to the customer's needs. Over the next decade, the factors susceptible to Canadian government action which are most likely to influence CANDU exports will be the political commitment of the government to those reactor exports, the performance established by the four 600 MWe CANDUs now nearing completion, the continuing successful operation of the nuclear program in Ontario, and the co-ordination of the different components of Canada's nuclear program (AECL, nuclear industry, utilities, and government) in putting forth a coherent marketing effort and following through with effective project management

  5. Nuclear options for India : nature of the crisis

    International Nuclear Information System (INIS)

    Subrahmanyam, K.V.

    1981-01-01

    The CANDU type reactor has been selected as the basis of India's nuclear power programme. This reactor runs on natural uranium fuel, but requires heavy water of which India still has no adequate supply. Due to the underground nuclear explosion test at Pokhran, Canada stopped its aid to the nuclear programme. The progress of the programme is, therefore, hampered. Wisdom of the present breeder test reactor project is also questioned. (M.G.B.)

  6. The first university research reactor in India

    International Nuclear Information System (INIS)

    Murty, G.S.

    1999-01-01

    As the first university research reactor in India, the low power, pool type with fixed core and low enriched uranium fuel research reactor is under construction in the Andhra university campus, Andhra Pradesh, India. The reactor is expected to be commissioned during 2001-2002. The mission of the reactor is to play the research center as a regional research facility catering to the needs of academic institutions and industrial organizations of this region of the country. Further, to encourage interdisplinary and multidisplinary research activities, to supply radioisotope and labelled compounds to the user institutions and to create awareness towards the peaceful uses of atomic energy. This report describes its objectives, status and future plans in brief. (H. Itami)

  7. The first university research reactor in India

    Energy Technology Data Exchange (ETDEWEB)

    Murty, G.S. [Co-ordinator, Low Power Research Reactor, Andhra Univ., Visakapatnam (India)

    1999-08-01

    As the first university research reactor in India, the low power, pool type with fixed core and low enriched uranium fuel research reactor is under construction in the Andhra university campus, Andhra Pradesh, India. The reactor is expected to be commissioned during 2001-2002. The mission of the reactor is to play the research center as a regional research facility catering to the needs of academic institutions and industrial organizations of this region of the country. Further, to encourage interdisplinary and multidisplinary research activities, to supply radioisotope and labelled compounds to the user institutions and to create awareness towards the peaceful uses of atomic energy. This report describes its objectives, status and future plans in brief. (H. Itami)

  8. Use of enriched uranium in Canada's power reactors

    International Nuclear Information System (INIS)

    Dormuth, K.W.; Jackson, D.P.

    2011-01-01

    Recent trends in Canadian nuclear power reactor design and proposed development of nuclear power in Canada have indicated the possibility that Canada will break with its tradition of natural uranium fuelled systems, designed for superior neutron economy and, hence, superior uranium utilization. For instance, the Darlington B new reactor project procurement process included three reactor designs, all employing enriched fuel, although a natural uranium reactor design was included at a late stage in the ensuing environmental assessment for the project as an alternative technology. An evaluation of the alternative designs should include an assessment of the environmental implications through the entire fuel cycle, which unfortunately is not required by the environmental assessment process. Examples of comparative environmental implications of the reactor designs throughout the fuel cycle indicate the importance of these considerations when making a design selection. As Canada does not have enrichment capability, a move toward the use of enriched fuel would mean that Canada would be exporting natural uranium and buying back enriched uranium with value added. From a waste management perspective, Canada would need to deal with mill, refinery, and conversion tailings, as well as with the used fuel from its own reactors, while the enrichment supplier would retain depleted uranium with some commercial value. On the basis of reasoned estimates based on publicly available information, it is expected that enrichment in Canada is likely to be more profitable than exporting natural uranium and buying back enriched uranium. Further, on the basis of environmental assessments for enrichment facilities in other countries, it is expected that an environmental assessment of a properly sited enrichment facility would result in approval. (author)

  9. Review of fast reactor activities in India

    International Nuclear Information System (INIS)

    Paranjpe, S.R.

    1982-01-01

    A review of fast reactor activities in India is introduced. One stage of construction of the Fast Breeder Test Reactor (FBTR) and design studies for 500MWe Prototype Fast Breeder Reactor (PFBR) are briefly summarized. The emphasis is on fast reactor physics, materials studies, radiochemistry, and the safety and fuel reprocessing programme

  10. Relationship between academic motivation and mathematics achievement among Indian adolescents in Canada and India.

    Science.gov (United States)

    Areepattamannil, Shaljan

    2014-01-01

    This study examined the relationships between academic motivation-intrinsic motivation, extrinsic motivation, amotivation-and mathematics achievement among 363 Indian adolescents in India and 355 Indian immigrant adolescents in Canada. Results of hierarchical multiple regression analyses showed that intrinsic motivation, extrinsic motivation, and amotivation were not statistically significantly related to mathematics achievement among Indian adolescents in India. In contrast, both intrinsic motivation and extrinsic motivation were statistically significantly related to mathematics achievement among Indian immigrant adolescents in Canada. While intrinsic motivation was a statistically significant positive predictor of mathematics achievement among Indian immigrant adolescents in Canada, extrinsic motivation was a statistically significant negative predictor of mathematics achievement among Indian immigrant adolescents in Canada. Amotivation was not statistically significantly related to mathematics achievement among Indian immigrant adolescents in Canada. Implications of the findings for pedagogy and practice are discussed.

  11. Status of power reactor fuel reprocessing in India

    International Nuclear Information System (INIS)

    Kansra, V.P.

    1999-01-01

    Spent fuel reprocessing in India started with the commissioning of the Trombay Plutonium Plant in 1964. This plant was intended for processing spent fuel from the 40 MWth research reactor CIRUS and recovering plutonium required for the research and development activities of the Indian Atomic Energy programme. India's nuclear energy programme aims at the recycle of plutonium in view of the limited national resources of natural uranium and abundant quantities of thorium. This is based on the approach which aims at separating the plutonium from the power reactor spent fuel, use it in the fast reactors to breed 233 U and utilise the 233 U generated to sustain a virtually endless source of power through thorium utilisation. The separated plutonium is also being utilised to fabricate MOX fuel for use in thermal reactors. Spent fuel treatment and extracting plutonium from it makes economic sense and a necessity for the Indian nuclear power programme. This paper describes the status and trends in the Indian programme for the reprocessing of power reactor fuels. The extraction of plutonium can also be seen as a far more positive approach to long-term waste management. The closed cycle approach visualised and pursued by the pioneers in the field is now steadily moving India towards the goal of a sustainable source of power through nuclear energy. The experience in building, operating and refurbishing the reprocessing facilities for uranium and thorium has resulted in acquiring the technological capability for designing, constructing, operating and maintaining reprocessing plants to match India's growing nuclear power programme. (author)

  12. Future development in heavy water reactors in Canada

    International Nuclear Information System (INIS)

    Donnelly, J.; Hart, R.G.

    1982-01-01

    1982 marks the 35th anniversary of the start-up of Canada's first research and test reactor, NRX. Its first power reactor has been operating successfully for the past 20 years. With 5,000 MWe of domestic capacity installed, Canada's major CANDU (Canada Deuterium, Uranium) nuclear program has a further 9,500 MWe under construction in Canada for completion by 1990 as well as committed offshore projects in Argentina, Korea and Romania. The CANDU operating record, by any measure of performance, has been outstanding. This performance is largely due to the discipline imposed on the development, design, construction and operation by two fundamental choices: natural uranium and heavy water. The impact of these two choices on availability, fuel utilization, safety and economics is discussed. Future plans call for building on those characteristics which have made CANDU so successful. When time for change comes, current assessments indicate that it will be possible to convert to more efficient advanced fuel cycles without major changes to the basic CANDU design. Primary attention is being focussed on thorium fuel cycles to ensure an abundant and continuing supply of low cost energy for the long term. The resource savings available from these fuel cycles in expanding systems are reviewed and compared with those available from LWR's and Fast Breeders. The results clearly illustrate the versatility of the CANDU reactor. It can benefit from enrichment plants or get along without them. It can complement LWR's or compete with them. It can complement Fast Breeder Reactors or compete with them as well. In the very long term CANDU's and Fast Breeders combined offer the potential of burning all the world's uranium and all the world's thorium. (author)

  13. Intrinsic Motivation, Extrinsic Motivation, and Academic Achievement among Indian Adolescents in Canada and India

    Science.gov (United States)

    Areepattamannil, Shaljan; Freeman, John G.; Klinger, Don A.

    2011-01-01

    The purpose of the present study was to examine the relationships among intrinsic motivation, extrinsic motivation, and academic achievement for the Indian immigrant adolescents in Canada in comparison to their counterparts in India. Descriptive discriminant analysis indicated that the Indian immigrant adolescents in Canada had higher intrinsic…

  14. Review of fast reactor activities in India (1982-83)

    International Nuclear Information System (INIS)

    Paranjpe, S.R.

    1983-01-01

    A review of fast reactor activities in India in 1982-1983 is given. One stage of construction of Fast Breeder Test Reactor (FBTR) is briefly described. The emphasis is on design studies for the 500 MWe Prototype Fast Breeder Reactor (PFBR). The main features of this design are introduced

  15. Power programmes review: Nuclear power for India

    International Nuclear Information System (INIS)

    1959-01-01

    India will require a substantial increase in the generation of electrical power to meet the demands of her developing economy. A survey of available resources has been made in the context of development envisaged under the country's five-year plans and it is felt that atomic energy will have to be used in increasing quantities to supplement conventional fuel resources in order to attain the anticipated power targets in the next two decades. It has, therefore, been decided that a small beginning will be made with the erection and commissioning of anatomic power station of 250 MW (electric) capacity by the end of 1964. The installation of a further 750 MW of nuclear power by the end of the third five-year plan period, i.e. by March 1966, is under consideration. Present Pattern and future demand of energy is discussed, as well as available resources and immediate needs. Concerning nuclear fuel cycle and cost estimates it is stated that India's uranium reserves are not large enough to sustain a very long-term programme of power generation, but the reserves for thorium are. Therefore India's nuclear power production will have to be based primarily on thorium with a rather complicated fuel cycles and first, second and third generation atomic power stations. The Atomic Energy Establishment Trombay is India's national centre for research in the peaceful uses of atomic energy. India's first reactor, Apsara, which is of the swimming pool type, has been in operation for more than three years now and two other research reactors are under construction. These are the Canada-India Reactor, which is being built under the Colombo Plan in collaboration with Canada, and Zerlina, which is being designed and built by Indian scientists and engineers. The Canada-India Reactor will be a versatile high flux research reactor and will have facilities in which various power reactor concepts can be tried out in the so-called loop experiments. In addition, it will produce considerable

  16. Power programmes review: Nuclear power for India

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1959-10-15

    India will require a substantial increase in the generation of electrical power to meet the demands of her developing economy. A survey of available resources has been made in the context of development envisaged under the country's five-year plans and it is felt that atomic energy will have to be used in increasing quantities to supplement conventional fuel resources in order to attain the anticipated power targets in the next two decades. It has, therefore, been decided that a small beginning will be made with the erection and commissioning of anatomic power station of 250 MW (electric) capacity by the end of 1964. The installation of a further 750 MW of nuclear power by the end of the third five-year plan period, i.e. by March 1966, is under consideration. Present Pattern and future demand of energy is discussed, as well as available resources and immediate needs. Concerning nuclear fuel cycle and cost estimates it is stated that India's uranium reserves are not large enough to sustain a very long-term programme of power generation, but the reserves for thorium are. Therefore India's nuclear power production will have to be based primarily on thorium with a rather complicated fuel cycles and first, second and third generation atomic power stations. The Atomic Energy Establishment Trombay is India's national centre for research in the peaceful uses of atomic energy. India's first reactor, Apsara, which is of the swimming pool type, has been in operation for more than three years now and two other research reactors are under construction. These are the Canada-India Reactor, which is being built under the Colombo Plan in collaboration with Canada, and Zerlina, which is being designed and built by Indian scientists and engineers. The Canada-India Reactor will be a versatile high flux research reactor and will have facilities in which various power reactor concepts can be tried out in the so-called loop experiments. In addition, it will produce considerable

  17. Rationale and design of South Asian Birth Cohort (START: a Canada-India collaborative study

    Directory of Open Access Journals (Sweden)

    Anand Sonia S

    2013-01-01

    Full Text Available Abstract Background People who originate from the Indian subcontinent (South Asians suffer among the highest rates of type 2 diabetes in the world. Prior evidence suggests that metabolic risk factors develop early in life and are influenced by maternal and paternal behaviors, the intrauterine environment, and genetic factors. The South Asian Birth Cohort Study (START will investigate the environmental and genetic basis of adiposity among 750 South Asian offspring recruited from highly divergent environments, namely, rural and urban India and urban Canada. Methods Detailed information on health behaviors including diet and physical activity, and blood samples for metabolic parameters and DNA are collected from pregnant women of South Asian ancestry who are free of significant chronic disease. They also undergo a provocative test to diagnose impaired glucose tolerance and gestational diabetes. At delivery, cord blood and newborn anthropometric indices (i.e. birth weight, length, head circumference and skin fold thickness are collected. The mother and growing offspring are followed prospectively and information on the growth trajectory, adiposity and health behaviors will be collected annually up to age 3 years. Our aim is to recruit a minimum of 750 mother-infant pairs equally divided between three divergent environments: rural India, urban India, and Canada. Summary The START cohort will increase our understanding of the environmental and genetic determinants of adiposity and related metabolic abnormalities among South Asians living in India and Canada.

  18. Maintaining excellence: planning a new multi-purpose research reactor for Canada

    International Nuclear Information System (INIS)

    Whitlock, J.

    2011-01-01

    This paper outlines the need for a multi-purpose research reactor for Canada. The main objective of this paper is to stimulate a discussion and increase the profile for the need to develop a national strategy to meet the long term research reactor needs.

  19. India: nuclear policy, opportunities and challenges

    International Nuclear Information System (INIS)

    Vaddevolu Balaji Nagendra Kumar

    2009-01-01

    From the policy point of view, India nuclear scenario can be classified into three phases. During the first phase lasting between 1947 (the time of India independence) and 1974 (when India conducted the first nuclear test), India emphasized the peaceful use of nuclear energy. Many developed countries including the countries of NATO (North Atlantic Treaty Organization) including the USA, the Canada and France apart from the erstwhile USSR (Union of Soviet Socialist Republic) cooperated with India in the construction of Nuclear power reactors, supply of Fuel and providing technical knowledge. This cooperation lasted for about 27 years from 1947 and 1974. During the second phase lasting between 1974 (the time when India conducted the first nuclear test for military purpose) and 2008 (when Indian Parliament ratified the Indo-US Nuclear Deal), India refused to sign the CTBT (Comprehensive Nuclear Test Ban Treaty) and reserved the right to use nuclear energy for military purpose. Indian insecurity was due to the presence of China - a nuclear power in the neighbourhood, the high probability of Pakistan - another neighbour Becoming the nuclear power and the unwillingness of the major nuclear powers : viz : the USA and USSR to provide a nuclear umbrella to India. The phase was marked by nuclear sanctions imposed against India by the US and the non cooperation from the nuclear powers in building nuclear power reactors and dissemination of technical knowledge. The phase did however lead to India efforts towards self reliance in nuclear technology and the advancement of knowledge leading to the construction of FBR (Fast Breeder Reactors) and the possibility of fructifying the Thorium based reactors. The third and present phase from the year 2008 when Indian Parliament ratified the Indo-US Nuclear deal symbolizes the recognition of India's Scientific and technological Prowess by major nuclear powers, the benefits of India knowledge to the world and realization of the fact that

  20. Status of fast breeder reactors and associated fuel cycle in India

    International Nuclear Information System (INIS)

    Chellapandi, P.

    2009-01-01

    Full text: India is the largest democracy with the current population of about 1.05 billion and is on a road to rapid growth in economy. An impressive average domestic product (GDP) growth rate of about 8 % per year has been achieved in 2006-07 and it is targeted to touch 10 % per year for the next 10 years. Towards realizing this targeted growth, development activities are planned based on well-conceived road map and clear vision. Like elsewhere, the energy and electricity growth in India are also closely linked to growth in economy. Indices of socio-economic development like literacy, longevity, GDP and human development are directly dependent upon the per capita energy consumption of a country. India is aiming to reach at least per capita energy consumption equal to the present world average (2200 kWh/a) by 2030 from the current value of (660 kWh/a). The current installed capacity of ∼138 GW(e) needs to be increased to about 600 GWe by 2030 assuming the population of about 1.4 billion. Energy strategists in the country have realized the importance of judicious mix of energy resources to meet this challenge. A large share of nuclear energy is an inevitable choice in this judicious energy mix from resources, sustainability and environment considerations. The nuclear is expected to contribute about 63 GWe by 2030, which will be steadily increased to 275 GWe by 2052, against the total projected capacity of 1344 GWe. The three stage visionary programme of India envisages Water Reactors (first stage), Fast Breeders with high breeding (second stage) and Thorium based Reactors as third stage. Closed fuel cycle in all stages is an essential ingredient. The success of each stage depends upon expeditious maturity of the earlier stage as India has limited indigenous resources of uranium, but vast resources of thorium. India ranks high in nuclear technology scale with strong R and D, high quality human resources, sound infrastructure, unwavering Government support and

  1. Evolution of nuclear reactor containments in India: Addressing the present day challenges

    Energy Technology Data Exchange (ETDEWEB)

    Kakodkar, Anil, E-mail: kakodkar@barc.gov.in

    2014-04-01

    Indigenously developed Pressurized Heavy Water Reactors (PHWRs) that form the backbone of current stage of nuclear power development in India have seen continuous evolution of their containment systems. This evolution that has taken place over implementation of 18 PHWRs (200/220/540 MWe) has encompassed all aspects of containment design, viz. the structural system, energy management system, radio-activity management and hydrogen management system. As a part of ongoing efforts toward strengthening of safety performance, India is also ready with the design of Advance Heavy Water Reactor (AHWR), which represents a technology demonstrator for advanced reactor systems and for thorium utilization. This reactor has a number of improved passive safety features and it is capable of meeting the demanding safety challenges that future reactor system would be expected to meet as a result of emerging expectations in the background of accidents over the past three decades viz. those at Three Mile Island (1979), Chernobyl (1986) and most recently at Fukushima (2011). In this lecture I shall focus on the evolution of nuclear reactor containments in India and highlight the design, associated structural and thermal hydraulics safety assessment made over the years for the improvement of containment performance.

  2. The control of emissions from nuclear power reactors in Canada

    International Nuclear Information System (INIS)

    Gorman, D.J.; Neil, B.C.J.; Chatterjee, R.M.

    1988-01-01

    Nuclear power reactors in Canada are of the CANDU pressurised heavy water design. These are located in the provinces of Ontario, Quebec, and New Brunswick. Most of the nuclear generating capacity is in the province of Ontario which has 16 commissioned reactors with a total capacity of 11,500 MWe. There are four reactors under construction with an additional capacity of 3400 MWe. Nuclear power currently accounts for approximately 50% of the electrical power generation of Ontario. Regulation of the reactors is a Federal Government responsibility administered by the Atomic Energy Control Board (AECB) which licenses the reactors and sets occupational and public dose limits

  3. The Canadian initiative to bring the international thermonuclear experimental reactor to Canada

    International Nuclear Information System (INIS)

    James, R.A.

    1996-01-01

    The International Thermonuclear Experimental Reactor (ITER) is the next step in fusion research. It is expected to be the last major experimental facility, before the construction of a prototype commercial reactor. The Engineering Design Activities (EDA) of ITER are being funded by the USA, Japan, the Russian Federation, and the European Union, with each of the major parties contributing about 25% of the cost. Canada participates as part of the European coalition. The EDA is due to be completed in 1998, and the major funding partners are preparing for the decision on the siting and construction of ITER. The Canadian Fusion Fuels Technology Project (CFFTP) formed a Canadian ITER Siting Task Group to study siting ITER in Canada. The study indicated that hosting ITER would provide significant benefits, both technological and economic, to Canada. We have also confirmed that there would be substantial benefits to the ITER Project. CFFTP then formed a Canadian ITER Siting Board, with representation from a broad range of stakeholders, to champion, 'Canada as Host'. This paper briefly outlines the ITER Project, and the benefits to both Canada and the Project of a Canadian site. With this as background, the paper discusses the international scene and assesses Canada's prospects of being chosen to host ITER. (author)

  4. Gestures of India: A Study of Emblems among Punjabi Residents of Canada.

    Science.gov (United States)

    King, Christopher R.

    Based on the theoretical concepts and research methodology of Paul Ekman and Wallace Friesen, a study examined the emblems (gestures with exact verbal meanings) of Punjabi (India) immigrants in Canada. A limited repertoire of 63 emblems was elicited from nine Punjabi informants and then shown to nine Canadian citizens and one United States…

  5. Intercomparison of techniques for inspection and diagnostics of heavy water reactor pressure tubes: Flaw detection and characterization [Phase 1] [Sample summary reports of pressure tube samples from Argentina, India, Canada, Republic of Korea, and Romania

    International Nuclear Information System (INIS)

    2006-05-01

    Nuclear power plants with heavy water reactors (HWRs) comprise nine percent of today's operating nuclear units, and more are under construction. Efficient and accurate inspection and diagnostic techniques for various reactor components and systems are an important factor in assuring reliable and safe plant operation. To foster international collaboration in the efficient and safe use of nuclear power, the IAEA conducted a Coordinated Research Programme (CRP) on Inter-comparison of Techniques for HWR Pressure Tube Inspection and Diagnostics. This CRP was carried out within the frame of the IAEA Department of Nuclear Energy's Technical Working Group on Advanced Technologies for HWRs (the TWG-HWR). The TWG-HWR is a group of experts nominated by their governments and designated by the IAEA to provide advice and to support implementation of the IAEA's project on advanced technologies for HWRs. The objective of the CRP was to inter-compare non-destructive inspection and diagnostic techniques, in use and being developed, for structural integrity assessment of HWR pressure tubes. During the first phase of this CRP, participants have investigated the capability of different techniques to detect and characterize flaws. During the second phase of this CRP, participants collaborated to detect and characterize hydride blisters and to determine the hydrogen concentration in Zirconium alloys. The intent was to identify the most effective pressure tube inspection and diagnostic methods, and to identify further development needs. The organizations that have participated in this CRP are: - The Comision Nacional de Energia Atomica (CNEA), Argentina; - Atomic Energy of Canada Ltd. (AECL); Chalk River Laboratories (CRL), Canada; - The Research Institute of Nuclear Power Operations (RINPO), China National Nuclear Corporation (CNNC), China; - Bhabha Atomic Research Centre (BARC), India; - The Korea Electric Power Research Institute (KEPRI), Republic of Korea; - The Korea Atomic Energy

  6. Management of radioactive wastes at power reactor sites in India

    International Nuclear Information System (INIS)

    Amalraj, R.V.; Balu, K.

    Indian nuclear power programme, at the present stage, is based on natural uranium fuelled heavy water moderated CANDU type reactors except for the first nuclear power station consisting of two units of enriched uranium fuelled, light water moderated, BWR type of reactors. Some of the salient aspects of radioactive waste management at power reactor sites in India are discussed. Brief reviews are presented on treatment of wastes, their disposal and environmental aspects. Indian experience in power reactor waste management is also summarised identifying some of the areas needing further work. (auth.)

  7. Perceived Benefits, Facilitators, Disadvantages, and Barriers for Physical Activity Amongst South Asian Adolescents in India and Canada.

    Science.gov (United States)

    Rajaraman, Divya; Correa, Natasha; Punthakee, Zubin; Lear, Scott A; Jayachitra, Krishnaswamy G; Vaz, Mario; Swaminathan, Sumathi

    2015-07-01

    The purpose of this study was to understand perceived benefits, facilitators, disadvantages, and barriers for physical activity among South Asian adolescents in India and Canada. Thirteen focus group discussions with South Asian (origin) adolescent boys and girls of different nutritional status and socioeconomic status in rural and urban India and urban Canada. Across the groups, fitness and 'energy' were perceived to be major benefits of physical activity. In India, better academic performance was highlighted, while health benefits were well detailed in Canadian groups. In all settings, friends, family, and teachers were perceived as facilitators of as well as barriers to physical activity. Lack of a safe space to play was a major concern for urban adolescents, while academic pressures and preference for other sedentary recreational activities were common barriers across all groups. Girls were less likely than boys to be interested in physical activity, with girls' participation in India further limited by societal restrictions. The study suggests key areas for promotion of physical activity among South Asian adolescents: balance between academic pressure and opportunities for physical activity, especially in India; urban planning for a built environment conducive to physical activity; and gender-sensitive programming to promote girls' activity which also addresses culture-specific barriers.

  8. Bridging the energy gap through small and medium sized nuclear reactors in India

    International Nuclear Information System (INIS)

    Srivastava, R.

    1987-01-01

    India is the only country in the world which is employing small sized nuclear reactors for its nuclear power programme. It has now embarked on a programme of augmenting the contribution of the nuclear power by way of employing both medium and small sized nuclear reactors in the next 15 years. This paper discusses the Indian experience and its efforts for industrial mobilisation for rapidly constructing 235/500 MWe nuclear reactor units in a period of about 8 to 9 years. The current energy situation in India and this context the near term role of nuclear power for supplementing the existing sources of commercial energy have been evaluated. Nuclear power has reached such a stage of maturity whereby it has now become a commercially viable source of electricity and it could be utilised on large scale to bridge the energy gap. At present six reactor units of 210/235 MWe capacity are in operation and eight more are in different stages of construction. While we are continuing with the construction of 235 MWe units, a programme of being pursued to construct 550 MWe capacity reactor units from midnineties onwards. This has become possible with the strengthening of regional electricity grids and simultaneous efforts undertaken for augmentation of fuel supply, heavy water production and industrial infrastructure. For a developing country like India, implementation of a sizable nuclear power programme has posed certain special challenges as major inputs are required to be made available with indigeneous efforts. This paper discusses such challenges and presents the ways and means adopted to surmount them. Other developing countries with conditions comparable to those in India could benefit from Indian experience in this regard. This paper also proposes India's willingness to cooperate with other countries for exchange of information and assistance in terms of technical knowhow. (author)

  9. Impact of the Three Mile Island accident on reactor safety and licensing in Canada

    International Nuclear Information System (INIS)

    Harvie, J.D.

    1980-06-01

    This paper discusses the implications of the accident at Three Mile Island on reactor safety and licensing in Canada. Reactor safety principles which can be learned from, or are reaffirmed by, the accident are reviewed. It is concluded that reactor safety demands a firm commitment to safety by all those involved in the nuclear industry. (auth)

  10. Status of fast breeder reactor development in India

    International Nuclear Information System (INIS)

    Bhoje, S.B.

    1996-01-01

    The energy scenario and economic conditions in India are presented. India needs considerable energy for its rapid industrialisation with the liberal economic policy. Nuclear energy with FBR is the only large scale energy resource other than coal, available in the country. The present economic constraints have delayed the construction of new NPPs. The performance of operating reactors has improved considerably during the year. Operating experience of FBTR has been detailed particularly the reactivity incident and its investigations. Updated design of 500 MWe PFBR is presented. Various R and D works in support of FBR in the engineering, metallurgy, chemistry, reprocessing, safety etc. are detailed. (author)

  11. Status of fast breeder reactor development in India

    Energy Technology Data Exchange (ETDEWEB)

    Bhoje, S B [Reactor Group, IGCAR, Kalpakkam (India)

    1996-07-01

    The energy scenario and economic conditions in India are presented. India needs considerable energy for its rapid industrialisation with the liberal economic policy. Nuclear energy with FBR is the only large scale energy resource other than coal, available in the country. The present economic constraints have delayed the construction of new NPPs. The performance of operating reactors has improved considerably during the year. Operating experience of FBTR has been detailed particularly the reactivity incident and its investigations. Updated design of 500 MWe PFBR is presented. Various R and D works in support of FBR in the engineering, metallurgy, chemistry, reprocessing, safety etc. are detailed. (author)

  12. Decontamination and decommissioning techniques for research reactors

    International Nuclear Information System (INIS)

    Oh, Won Zin; Won, H. J.; Jung, C. H.; Choi, W. K.; Kim, G. N.; Lee, K. W.

    2002-05-01

    Evaluation of soil decontamination process and the liquid decontamination waste treatment technology are investigation of organic acid as a decontamination agent, investigation of the liquid waste purification process and identification of recycling the decontamination agents. Participation on IAEA CRP meeting are preparation of IAEA technical report on 'studies on decommissioning of TRIGA reactors and site restoration technologies' and exchange the research result, technology, experience and safety regulation of the research reactor D and D of USA, Great Britain, Canada, Belgium, Italy, India and so forth

  13. Balancing the risks: the NRU reactor and the isotope crisis in Canada

    International Nuclear Information System (INIS)

    Morrison, B.; Meneley, D.

    2008-01-01

    The extended shutdown of the NRU reactor at Chalk River at the end of 2007 caused a critical shortage of medical radioisotopes in Canada and the world, led to a unique meeting of Canada's Parliament to pass emergency legislation, and cost the President of the Canadian Nuclear Safety Commission her job. This paper, based on the public record, reviews these events from the perspective of the balance of risk between the safety of the NRU reactor and the impact of a shortage of isotopes. This leads to important questions about the mandate, independence and flexibility of the nuclear regulator, relations between the regulator, the government, and the licensee, and the government's overall management of risks. We argue that the government approaches individual risks in isolation and needs a mechanism to deal with multiple risks. (author)

  14. Status of sodium cooled fast reactors with closed fuel cycle in India

    International Nuclear Information System (INIS)

    Raj, B.

    2007-01-01

    Fast reactors form the second stage of India's 3-stage nuclear power programme. The seed for India's fast reactor programme was sown through the construction of the Fast Breeder Test Reactor (FBTR) at IGCAR, Kalpakkam, that was commissioned in 1985. FBTR has operated with an unique, indigenously developed plutonium rich mixed carbide fuel, which has reached a burn up as high as 155 GWd/t without any fuel failure in the core. The sodium systems in the reactor have performed excellently. The availability of the reactor has been as high as 92% in the recent campaigns. The fuel discharged from FBTR up to 100 GWd/t has been reprocessed successfully. The experience gained in the construction, commissioning and operation of FBTR has provided the necessary confidence to launch a Prototype FBR of 500 MWe capacity (PFBR). This reactor will be fuelled by uranium, plutonium mixed oxide. The reactor construction started in 2003 and the reactor is scheduled to be commissioned by 2010. The design of the reactor has incorporated the worldwide operating experience from the FBRs and has addressed various safety issues reported in literature, besides introducing a number of innovative features which have reduced the unit energy cost and contributed to its enhanced safety. Simultaneous with the construction of the reactor, the fuel cycle of the reactor has been addressed in a comprehensive manner and construction of a fuel cycle facility has been initiated. Subsequent to the PFBR, 4 more reactors with identical design are proposed to be constructed. Various elements of reactor design are being carefully analysed with the aim of introducing innovative features towards further reduction in unit energy cost and enhancing safety in these reactors

  15. Small modular reactors (SMRs) - the way forward for the nuclear industry in Canada?

    International Nuclear Information System (INIS)

    Sam-Aggrey, H.

    2014-01-01

    Small Modular Reactors (SMRs) are being touted as safer, more cost effective and more flexible than traditional nuclear power plants (NPPs). Consequently, it has been argued that SMR technology is pivotal to the revitalization of the nuclear industry at the national and global levels. Drawing mainly on previously published literature, this paper explores the suitability of SMRs for various niche market applications in Canada. The paper examines the potential role of SMRs in providing an opportunity for remote mines and communities in northern Canada to reduce their vulnerability and dependence on costly, high-carbon diesel fuel. Other niche market applications of SMRs explored include: SMRs deployment in Saskatchewan for grid augmentation and as replacement options for Saskatchewan's ageing coal plants; the use of SMRs for bitumen extraction in the Oil Sands, and the potential use of SMRs in Canadian-owned foreign based mines. The socio-economic benefits of SMR deployments are also discussed. Building an SMR industry in Canada could complement the country's extensive expertise in uranium mining, reactor technology, plant operation, nuclear research, and environmental and safety standards, thereby enhancing Canada's ability to offer services throughout the entire nuclear life cycle. The paper also outlines some of the technical, economic and social barriers that could impede the successful introduction of SMRs in Canada. (author)

  16. A Review of Fast Reactor Programme in India, April 1930

    International Nuclear Information System (INIS)

    Paranjpe, S.R.

    1980-01-01

    Nuclear energy has to play a significant role in the energy resources of India in the next century. To-day's apparently vast reserves of fossil fuels would be under severe strain due to rapidly increasing demand for energy. Long-term perspective planning requires Nuclear Energy to play a significant role from early part of the next century and share a major load. But, India is not endowed with vast reserves of uranium and must therefore aim to utilise more abundant thorium reserves which are estimated to be about 350,000 tonnes. Department of Atomic Energy which is responsible for the development of nuclear energy in India has therefore planned a step-wise approach consisting of: (i) First phase of the programme of natural uranium based thermal reactors to produce power and plutonium which is the basis of the next phase. (ii) Second phase of the programme to produce power and breed more and more plutonium through fast breeder deployment so as to build sufficient inventories of fissile material which can then become the basis of the third stage. (iii) To utilise thorium with the help of fissile material produced by 2nd phase of Breeder Reactors

  17. A Review of Fast Reactor Programme in India, April 1930

    Energy Technology Data Exchange (ETDEWEB)

    Paranjpe, S. R. [Reactor Research Centre Kalpakkam, Tamil Nadu (India)

    1980-10-15

    Nuclear energy has to play a significant role in the energy resources of India in the next century. To-day's apparently vast reserves of fossil fuels would be under severe strain due to rapidly increasing demand for energy. Long-term perspective planning requires Nuclear Energy to play a significant role from early part of the next century and share a major load. But, India is not endowed with vast reserves of uranium and must therefore aim to utilise more abundant thorium reserves which are estimated to be about 350,000 tonnes. Department of Atomic Energy which is responsible for the development of nuclear energy in India has therefore planned a step-wise approach consisting of: (i) First phase of the programme of natural uranium based thermal reactors to produce power and plutonium which is the basis of the next phase. (ii) Second phase of the programme to produce power and breed more and more plutonium through fast breeder deployment so as to build sufficient inventories of fissile material which can then become the basis of the third stage. (iii) To utilise thorium with the help of fissile material produced by 2nd phase of Breeder Reactors.

  18. Review of fast reactor activities in India

    Energy Technology Data Exchange (ETDEWEB)

    Paranjpe, S R [Reactor Research Centre, Kalpakkam, Tamil Nadu (India)

    1981-05-01

    It may be recalled that In the presentation at the last meeting of the IWGFR (13th Annual meeting), a broad outline of India's nuclear energy programme and the role of fast breeders in the programme has been provided. The steps taken to enable the fast breeders to fulfil their role have also been described. In brief, fast breeder reactors are considered as an essential and integral part of the programme of nuclear energy and constitute the second step in the programme, the first being the construction of natural uranium heavy water moderated reactors which will consume natural uranium but will produce plutonium to fuel fast breeder reactors. This basic position has remained unchanged and the Government is now taking steps to build a large number of heavy water reactors, say 10 million Kw capacity in the next 20 years. This defines the time frame for developing the fast breeder technology in the country. It has therefore been decided to mobilise the efforts towards design, construction and operation of a medium sized (about 500 M We) reactor by mid-nineties. Thus, the climate for fast breeder reactors is good and there is a good deal of enthusiasm amongst the scientists and engineers working in the field although the actual implementation of the programme during the year had to face certain difficulties.

  19. Review of fast reactor activities in India

    International Nuclear Information System (INIS)

    Paranjpe, S.R.

    1981-01-01

    It may be recalled that In the presentation at the last meeting of the IWGFR (13th Annual meeting), a broad outline of India's nuclear energy programme and the role of fast breeders in the programme has been provided. The steps taken to enable the fast breeders to fulfil their role have also been described. In brief, fast breeder reactors are considered as an essential and integral part of the programme of nuclear energy and constitute the second step in the programme, the first being the construction of natural uranium heavy water moderated reactors which will consume natural uranium but will produce plutonium to fuel fast breeder reactors. This basic position has remained unchanged and the Government is now taking steps to build a large number of heavy water reactors, say 10 million Kw capacity in the next 20 years. This defines the time frame for developing the fast breeder technology in the country. It has therefore been decided to mobilise the efforts towards design, construction and operation of a medium sized (about 500 M We) reactor by mid-nineties. Thus, the climate for fast breeder reactors is good and there is a good deal of enthusiasm amongst the scientists and engineers working in the field although the actual implementation of the programme during the year had to face certain difficulties

  20. Providing India with Internet access anywhere there is electricity - and Canada with commercial opportunity

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Access to high-speed Internet service is booming all over the world but the cost of optic cable installation and other related broadband delivery technology is still too high for many developing countries to afford. A Canada-India R & D group is working on a broadband technology delivered over the power line in order to provide internet access wherever there is electricity. Moreover, the application of such a technology in rural India could also improve the distribution and management of India's national electrical grid, as the risk of electricity theft can be monitored by power assumption tracking. Since the required infrastructure is already in place across the country, this project could be deployed rapidly and in a cost-efficient manner, providing thousands of potential opportunities for rural dwellers as well as for Indian and international companies.

  1. Performance of water cooled nuclear power reactor fuels in India – Defects, failures and their mitigation

    International Nuclear Information System (INIS)

    Ganguly, Chaitanyamoy

    2015-01-01

    Water cooled and moderated nuclear power reactors account for more than 95% of the operating reactors in the world today. Light water reactors (LWRs) consisting of pressurized water reactor (PWR), their Russian counterpart namely VVER and boiling water reactor (BWR) will continue to dominate the nuclear power market. Pressurized heavy water reactor (PHWR), also known as CANDU, is the backbone of the nuclear power program in India. Updates on LWR and PHWR fuel performance are being periodically published by IAEA, OECD-NEA and the World Nuclear Association (WNA), highlighting fuel failure rate and the mitigation of fuel defects and failures. These reports clearly indicate that there has been significant improvement in in – pile fuel performance over the years and the present focus is to achieve zero fuel failure in high burn up and high performance fuels. The present paper summarizes the status of PHWR and LWR fuel performance in India, highlighting the manufacturing and the related quality control and inspection steps that are being followed at the PHWR fuel fabrication plant in order to achieve zero manufacturing defect which could contribute to achieving zero in – pile failure rate in operating and upcoming PHWR units in India. (author)

  2. The Text of a Safeguards Agreement between the Agency, Canada and India

    International Nuclear Information System (INIS)

    1974-01-01

    The text of the agreement between the Agency, the Government of Canada and the Government of India providing for the Agency to apply safeguards in connection with the Agreement of 16 December 1963 between those Governments relating to the Rajasthan Atomic Power Station and the Douglas Point Nuclear Generating Station is reproduced in Part I below for the information of all Members. The texts of the latter Agreement and of a supplementary agreement amending it are reproduced in Parts II and III respectively

  3. The Text of a Safeguards Agreement between the Agency, Canada and India

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1974-11-06

    The text of the agreement between the Agency, the Government of Canada and the Government of India providing for the Agency to apply safeguards in connection with the Agreement of 16 December 1963 between those Governments relating to the Rajasthan Atomic Power Station and the Douglas Point Nuclear Generating Station is reproduced in Part I below for the information of all Members. The texts of the latter Agreement and of a supplementary agreement amending it are reproduced in Parts II and III respectively.

  4. Canada

    International Nuclear Information System (INIS)

    Thexton, H.E.

    1987-01-01

    The development of CANDU (Canada Deuterium Uranium) type reactors in Canada is traced. What is CANDU? and how does it differ from a pressurized water reactor? Whey did Canada adopt this design? What factors have led to its success? These questions are asked and answered. First the design itself is explained. Technical problems are considered and figures on operating reliability presented. The economic advantages of CANDU are shown by comparing electricity generating costs at CANDU stations with those at coal-fired stations. Future CANDU options are discussed and prospects for CANDU considered. (U.K.)

  5. Selected power reactor projects in Canada and the United States of America

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1964-11-01

    As part of its activities in connection with the development of nuclear power, the IAEA has undertaken a continuing study of the technology and economics of power reactors, with particular reference to the needs of the developing countries. Information on the progress made in eight power reactor projects, namely those of Bonus, Pathfinder, Elk River, Piqua, Hallam, Experimental Gas-Cooled Reactor (EGCR), High-Temperature Gas-Cooled Reactor (HTGCR) and Nuclear Power Demonstration (NPD), is presented in this report. Developments during the past year are shown, emphasis being placed on operating experience in the case of those reactors which have become critical. The Agency is grateful to the Governments of Canada and the USA, who have extended the necessary facilities for covering he different power reactor projects in their respective countries. The cooperation received from the reactor manufacturers, builders and operators is also gratefully acknowledged. It is hoped that this report will be of interest to reactor technologists and operators and those interested in the application of nuclear power.

  6. Selected power reactor projects in Canada and the United States of America

    International Nuclear Information System (INIS)

    1964-01-01

    As part of its activities in connection with the development of nuclear power, the IAEA has undertaken a continuing study of the technology and economics of power reactors, with particular reference to the needs of the developing countries. Information on the progress made in eight power reactor projects, namely those of Bonus, Pathfinder, Elk River, Piqua, Hallam, Experimental Gas-Cooled Reactor (EGCR), High-Temperature Gas-Cooled Reactor (HTGCR) and Nuclear Power Demonstration (NPD), is presented in this report. Developments during the past year are shown, emphasis being placed on operating experience in the case of those reactors which have become critical. The Agency is grateful to the Governments of Canada and the USA, who have extended the necessary facilities for covering he different power reactor projects in their respective countries. The cooperation received from the reactor manufacturers, builders and operators is also gratefully acknowledged. It is hoped that this report will be of interest to reactor technologists and operators and those interested in the application of nuclear power

  7. Development of small reactor safety criteria in Canada

    International Nuclear Information System (INIS)

    Ernst, P.C.; French, P.M.; Axford, D.J.; Snell, V.G.

    1990-01-01

    A number of new small reactor designs have been proposed in Canada over the last several years and some have reached the stage where licensing discussions have been initiated with the Atomic Energy Control Board (AECB). An inter-organizational Small Reactor Criteria (SRC) working group was formed in 1988 to propose safety and licensing criteria for these small reactors. Two levels of criteria are proposed. The first level forms a safety philosophy and the second is a set of criteria for specific reactor applications. The safety philosophy consists of three basic safety objectives together with evaluation criteria, and fourteen fundamental principles measured by specific criteria, which must be implemented to meet the safety objectives. Two of the fourteen principles are prime: defence in depth, and safety culture; the other twelve principles can be seen as deriving from them. A benefit of this approach is that the concepts of defence in depth and safety culture become well-defined. The objectives and principles are presented in the paper and their criteria are summarized. The second level of criteria, under development, will form a safety application set and will provide small reactor criteria in a number of general areas, such as regulatory process and safety assessment, as well as for specific reactor life-cycle activities, from siting through to decommissioning. The criteria are largely deterministic. However, the frequencies and consequences of postulated accidents are assessed against numerical criteria to assist in judging the acceptability of plant design, operation, and proposed siting. All criteria proposed are designed to be testable in some evidentiary fashion, readily enabling an assessment of compliance for a given proposal

  8. About other countries in the Copenhagen process: India, Russia, OPEC, Canada and Brazil

    International Nuclear Information System (INIS)

    2009-06-01

    This report proposes analyses of the postures of other countries than China, United States or European countries six months before the Copenhagen Conference: India, Russia, OPEC countries, Canada, and Brazil. India displays some characteristics of a developing country as far its electrification rate, its proportion of rural population and its poverty level are concerned, and, even though this country is aware of environmental challenges, is more concerned by the security of its energy supplies. OPEC countries fear that the struggle against climate change would result in a decrease of oil demand. Russia is facing several challenges: it is the third world CO 2 emitter, it aims at doubling its GDP between 2000 and 2010 and would therefore increase its emissions, its economy mainly relies on hydrocarbon production and exports, and its government wants to decrease its domestic gas consumption because its low cost gas fields are running out. Canada possesses important oil reserves and its greenhouse gas emissions have been recently increasing but its posture is evolving towards a more environment friendly posture. Brazil is the fourth greenhouse gas emitter, mostly because of deforestation, and tries to find the balance between a necessary struggle against this deforestation and defending its agricultural interests. The authors mention for each country the participation to previous conference and the eventual signing or ratification of environmental international agreements

  9. Advances in heavy water reactors

    International Nuclear Information System (INIS)

    1994-03-01

    The current IAEA programme in advanced nuclear power technology promotes technical information exchange between Member States with major development programmes. The Technical Committee Meeting (TCM) on Advances in Heavy Water Reactors was organized by the IAEA in the framework of the activities of the International Working Group on Advanced Technologies for Water Cooled Reactors (IWGATWR) and hosted by the Atomic Energy of Canada Limited. Sixty-five participants from nine countries (Canada, Czech Republic, India, German, Japan, Republic of Korea, Pakistan, Romania and USA) and the IAEA attended the TCM. Thirty-four papers were presented and discussed in five sessions. A separate abstract was prepared for each of these papers. All recommendations which were addressed by the participants of the Technical Committee meeting to the IWGATWR have been submitted to the 5th IWGATWR meeting in September 1993. They were reviewed and used as input for the preparation of the IAEA programme in the area of advanced water cooled reactors. This TCM was mainly oriented towards advances in HWRs and on projects which are now in the design process and under discussion. Refs, figs and tabs

  10. Perceptions of healthy eating amongst Indian adolescents in India and Canada.

    Science.gov (United States)

    Correa, Natasha; Rajaraman, Divya; Swaminathan, Sumathi; Vaz, Mario; Jayachitra, K G; Lear, Scott A; Punthakee, Zubin

    2017-09-01

    Dietary patterns have contributed to the rising prevalence of overweight and obesity among Indian adolescents. Yet there are limited studies on their perspectives on healthy eating. The purpose of this study was to understand perceptions and attitudes of Indian-origin adolescents in India and Canada that may contribute to healthy eating behaviour. Qualitative data collection and analysis of 13 focus group discussions (FGD) was conducted among 34 boys and 39 girls (total number of participants: 73) of different weight and socioeconomic status (SES) in rural and urban India, and urban Canada aged 11-18 years. All adolescents perceived homemade foods, and foods high in vitamins, minerals and fiber as healthy. Rural Indian adolescents also identified contaminant-free food as important. Opinions differed regarding the health value of consuming meat, and amongst Canadian adolescents, the health impact of Western versus Indian diets. Identified benefits of healthy eating included improved energy for Indians, and disease prevention for Canadians and urban Indians. Identified barriers across all settings included peers; and availability, access and affordability of unhealthy foods. Urban Indians and Canadian girls also reported academic stress and lack of time as barriers. Canadian girls reported limited parental supervision during mealtimes as an additional barrier. Facilitators to healthy eating included parents, friends and personal preferences for healthy foods. This study suggests potential targets for family-based and school-based education programs and policies to improve dietary habits of Indian and Indo-Canadian adolescents which include, culturally focused nutrition education and guidelines, academic stress management strategies, parental education, food hygiene regulations and restriction on the sale and advertising of unhealthy foods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. India's baseline plan for nuclear energy self-sufficiency

    International Nuclear Information System (INIS)

    Bucher, R.G.

    2009-01-01

    United Nations Conference on the Peaceful Uses of Atomic Energy in 1958. The paper described a three stage plan for a sustainable nuclear energy program consistent with India's limited uranium but abundant thorium natural resources. In the first stage, natural uranium would be used to fuel graphite or heavy water moderated reactors. Plutonium extracted from the spent fuel of these thermal reactors would drive fast reactors in the second stage that would contain thorium blankets for breeding uranium-233 (U-233). In the final stage, this U-233 would fuel thorium burning reactors that would breed and fission U-233 in situ. This three stage blueprint still reigns as the core of India's civil nuclear power program. India's progress in the development of nuclear power, however, has been impacted by its isolation from the international nuclear community for its development of nuclear weapons and consequent refusal to sign the Nuclear Nonproliferation Treaty (NPT). Initially, India was engaged in numerous cooperative research programs with foreign countries; for example, under the 'Atoms for Peace' program, India acquired the Cirus reactor, a 40 MWt research reactor from Canada moderated with heavy water from the United States. India was also actively engaged in negotiations for the NPT. But, on May 18, 1974, India conducted a 'peaceful nuclear explosion' at Pokharan using plutonium produced by the Cirus reactor, abruptly ending the era of international collaboration. India then refused to sign the NPT, which it viewed as discriminatory since it would be required to join as a non-nuclear weapons state. As a result of India's actions, the Nuclear Suppliers Group (NSG) was created in 1975 to establish guidelines 'to apply to nuclear transfers for peaceful purposes to help ensure that such transfers would not be diverted to unsafeguarded nuclear fuel cycle or nuclear explosive activities. These nuclear export controls have forced India to be largely self-sufficient in all nuclear

  12. Nuclear security regulatory framework analysis for small modular reactors in Canada and abroad

    Energy Technology Data Exchange (ETDEWEB)

    Farah, A., E-mail: amjad.farah@uoit.ca [University of Ontario Institute of Technology, Oshawa, ON (Canada)

    2015-07-01

    Small Modular Reactors (SMRs) are gaining global attention as a potential solution for future power plants due to claims of flexibility and cost effectiveness, while maintaining or increasing safety and security. With the change of design and the potential deployment in remote areas, however, challenges arise from a regulatory standpoint, to meet the safety and security regulations while maintaining economic feasibility. This work comprises of a review of the nuclear security regulatory frameworks in place for SMRs in Canada, USA and the IAEA; how they compare to each other, and to those of large reactors. The goal is to gauge what needs to be adjusted in order to address the changes in design between the two reactor sizes. Some key challenges concern the type of reactor, transportation of reactor components and fuel to remote areas, reduced security staff, and increased complexity of emergency planning and evacuation procedures. (author)

  13. Nuclear security regulatory framework analysis for small modular reactors in Canada and abroad

    International Nuclear Information System (INIS)

    Farah, A.

    2015-01-01

    Small Modular Reactors (SMRs) are gaining global attention as a potential solution for future power plants due to claims of flexibility and cost effectiveness, while maintaining or increasing safety and security. With the change of design and the potential deployment in remote areas, however, challenges arise from a regulatory standpoint, to meet the safety and security regulations while maintaining economic feasibility. This work comprises of a review of the nuclear security regulatory frameworks in place for SMRs in Canada, USA and the IAEA; how they compare to each other, and to those of large reactors. The goal is to gauge what needs to be adjusted in order to address the changes in design between the two reactor sizes. Some key challenges concern the type of reactor, transportation of reactor components and fuel to remote areas, reduced security staff, and increased complexity of emergency planning and evacuation procedures. (author)

  14. Ready to regulate small reactors in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Herstead, S.; Cook, S.; De Vos, M.; Howden, B.D. [Canadian Nuclear Safety Commission, Ottawa, Ontario (Canada)

    2012-07-01

    The success of any new build project is reliant upon all stakeholders - applicants, vendors, contractors and regulatory agencies - being ready to do their part. Over the past several years, the Canadian Nuclear Safety Commission (CNSC) has been working to ensure that it has the appropriate regulatory framework and internal processes in place for the timely and efficient licensing of all types of reactor, regardless of size. The CNSC's general nuclear safety objective requires that nuclear facilities be designed and operated in a manner that will protect the health, safety and security of persons and the environment from unreasonable risk, and to implement Canada's international commitments on the peaceful use of nuclear energy. For smaller facilities, this has traditionally allowed for the use of a graded approach to achieving safety.

  15. International collaboration between nuclear research centres and the role of research reactors

    International Nuclear Information System (INIS)

    Dodd, B.

    2001-01-01

    A research reactor is a core facility in many nuclear research centres (NRCs) of Member States and it is logical that it should be the focus of any international collaboration between such centres. There are several large and sophisticated research reactors in operation in both developed and developing Member States, such as Belgium, China, Egypt, France, Hungary, Indonesia, India, Japan, ROK, Netherlands, South Africa and the USA. There are also several new, large reactors under construction or being planned such as those in Australia, Canada, China, France, Germany, and Thailand. It is felt that the utilization of these reactors can be enhanced by international co-operation to achieve common goals in research and applications. (author)

  16. Canada's Fusion Program

    International Nuclear Information System (INIS)

    Jackson, D. P.

    1990-01-01

    Canada's fusion strategy is based on developing specialized technologies in well-defined areas and supplying these technologies to international fusion projects. Two areas are specially emphasized in Canada: engineered fusion system technologies, and specific magnetic confinement and materials studies. The Canadian Fusion Fuels Technology Project focuses on the first of these areas. It tritium and fusion reactor fuel systems, remote maintenance and related safety studies. In the second area, the Centre Canadian de fusion magnetique operates the Tokamak de Varennes, the main magnetic fusion device in Canada. Both projects are partnerships linking the Government of Canada, represented by Atomic Energy of Canada Limited, and provincial governments, electrical utilities, universities and industry. Canada's program has extensive international links, through which it collaborates with the major world fusion programs, including participation in the International Thermonuclear Experimental Reactor project

  17. CANDU nuclear reactor technology

    International Nuclear Information System (INIS)

    Kakaria, B. K.

    1994-01-01

    AECL has over 40 years of experience in the nuclear field. Over the past 20 years, this unique Canadian nuclear technology has made a worldwide presence, In addition to 22 CANDU reactors in Canada, there are also two in India, one in Pakistan, one in Argentina, four in Korea and five in Romania. CANDU advancements are based on evolutionary plant improvements. They consist of system performance improvements, design technology improvements and research and development in support of advanced nuclear power. Given the good performance of CANOU plants, it is important that this CANDU operating experience be incorporated into new and repeat designs

  18. Technology development of fast reactor fuel reprocessing technology in India

    International Nuclear Information System (INIS)

    Natarajan, R.; Raj, Baldev

    2009-01-01

    India is committed to the large scale induction of fast breeder reactors beginning with the construction of 500 MWe Prototype Fast Breeder Reactor, PFBR. Closed fuel cycle is a prerequisite for the success of the fast reactors to reduce the external dependence of the fuel. In the Indian context, spent fuel reprocessing, with as low as possible out of pile fissile inventory, is another important requirement for increasing the share in power generation through nuclear route as early as possible. The development of this complex technology is being carried out in four phases, the first phase being the developmental phase, in which major R and D issues are addressed, while the second phase is the design, construction and operation of a pilot plant, called CORAL (COmpact Reprocessing facility for Advanced fuels in Lead shielded cell. The third phase is the construction and operation of Demonstration of Fast Reactor Fuel Reprocessing Plant (DFRP) which will provide experience in fast reactor fuel reprocessing with high availability factors and plant throughput. The design, construction and operation of the commercial plant (FRP) for reprocessing of PFBR fuel is the fourth phase, which will provide the requisite confidence for the large scale induction of fast reactors

  19. Probability safety assessment activities in India for new and advanced reactors

    International Nuclear Information System (INIS)

    Guptan, R.; Ghagde, S.G.; Nama, R.; Varde, P.V.; Vinod, G.; Arul, J.; Solanki, R.B.

    2012-01-01

    This paper discusses, in brief, the salient features of the Level 1 PSA for New and Advanced reactors in India. The features of Level 1 PSA for new reactors are being discussed through a case study of 540 MWe twin unit (comprises of Unit 3 and 4) PHWRs at TAPS. The reactors uses Heavy water moderator and pressurized heavy water coolant, natural uranium fuel and horizontal pressure tubes. The major feature of PSA of advanced reactors is also discussed through the specific issues that were encountered during PSA modeling of AHWR (Advanced Heavy Water Reactor) and 700 MWe PHWR. The results of the PSA indicate that a fairly high level of redundancies exists in TAPS-3 and -4 design. It is recommended that staggered testing philosophy should be adopted especially for Emergency Core Cooling System, to reduce the probability of common cause failure among the motorized valves. It is also recommended to emphasize the importance of Small Break LOCA in general and their consequences in the licensing process of the plant operators

  20. Fuel Management of WWER-1000 Reactors of Kudankulam Nuclear Power Plant, India

    International Nuclear Information System (INIS)

    Pandey, Y.; Chauhan, A.

    2008-01-01

    Two units of WWER-1000 reactors of Russian design are under construction at Kudankulam site in India. These reactors are expected to be commissioned in 2008. The fuel management services for these reactors shall be carried out using Russian Computer codes. This paper includes a brief description of the core, fuel assembly lattice and physics modeling of the lattice and core for these reactors. Presented in this paper are the salient features of the core load pattern designs and fuel performance for 8 operating cycles of these reactors. The paper describes key improvements in the core load pattern designs to enhance the fuel utilization and its thermal behaviour. Presented in the paper are also the on site fuel management strategies with regard to fuel inventory and nuclear material accounting. A computer code for Fuel Inventory and Nuclear Material Accounting (FINMAC) has been developed for this purpose. The code FINMAC takes care of receipt of fresh fuel, flow between various accounting sub areas (ASAs), burnup or production of nuclear isotopes in the reactor cores and discharge from the reactor core. The code generates Material Balance Reports (MBRs) and Composition of Ending Inventory Reports (COEIs) as per the IAEA standards. (authors)

  1. Storage of spent fuel from power reactors in India management and experience

    International Nuclear Information System (INIS)

    Changrani, R.D.; Bajpai, D.D.; Kodilkar, S.S.

    1999-01-01

    The spent fuel management programme in India is based on closing the nuclear fuel cycle with reprocessing option. This will enable the country to enhance energy security through maximizing utilization of available limited uranium resources while pursuing its Three Stage Nuclear Power Programme. Storage of spent fuel in water pools remains as prevailing mode in the near term. In view of inventory build up of spent fuel, an Away-From-Reactor (AFR) On-Site (OS) spent fuel storage facility has been made operational at Tarapur. Dry storage casks also have been developed as 'add on' system for additional storage of spent fuels. The paper describes the status and experience pertaining to spent fuel storage practices in India. (author)

  2. Tritium resources available for fusion reactors

    Science.gov (United States)

    Kovari, M.; Coleman, M.; Cristescu, I.; Smith, R.

    2018-02-01

    The tritium required for ITER will be supplied from the CANDU production in Ontario, but while Ontario may be able to supply 8 kg for a DEMO fusion reactor in the mid-2050s, it will not be able to provide 10 kg at any realistic starting time. The tritium required to start DEMO will depend on advances in plasma fuelling efficiency, burnup fraction, and tritium processing technology. It is in theory possible to start up a fusion reactor with little or no tritium, but at an estimated cost of 2 billion per kilogram of tritium saved, it is not economically sensible. Some heavy water reactor tritium production scenarios with varying degrees of optimism are presented, with the assumption that only Canada, the Republic of Korea, and Romania make tritium available to the fusion community. Results for the tritium available for DEMO in 2055 range from zero to 30 kg. CANDU and similar heavy water reactors could in theory generate additional tritium in a number of ways: (a) adjuster rods containing lithium could be used, giving 0.13 kg per year per reactor; (b) a fuel bundle with a burnable absorber has been designed for CANDU reactors, which might be adapted for tritium production; (c) tritium production could be increased by 0.05 kg per year per reactor by doping the moderator with lithium-6. If a fusion reactor is started up around 2055, governments in Canada, Argentina, China, India, South Korea and Romania will have the opportunity in the years leading up to that to take appropriate steps: (a) build, refurbish or upgrade tritium extraction facilities; (b) extend the lives of heavy water reactors, or build new ones; (c) reduce tritium sales; (d) boost tritium production in the remaining heavy water reactors. All of the alternative production methods considered have serious economic and regulatory drawbacks, and the risk of diversion of tritium or lithium-6 would also be a major concern. There are likely to be serious problems with supplying tritium for future

  3. Recent developments in iodine chemistry in Canada. Present and future applications to reactor safety

    International Nuclear Information System (INIS)

    Fluke, R.J.; Weaver, K.R.; Kupferschmidt, W.C.H.; Wren, J.C.; Ball, J.M.; Evans, G.J.

    1997-01-01

    In Canada, there exists a mature research programme directed towards resolving the nuclear safety and licensing questions surrounding fission product iodine. This integrated programme has had the long term objectives of developing a mechanistic understanding of the important aspects of iodine behaviour in containment, and of producing a mechanistic computer code to predict iodine behaviour under conditions of interest. The research is funded by Canadian Utilities and AECL through the CANDU Owners Group. In parallel with the research, an applications effort is underway to put existing research results into service for the resolution of reactor safety and licensing issues, as well as to identify and develop solutions for more comprehensive problems, such as chemical mitigation strategies to control post-accident iodine release. The present paper describes (a) the present status and objectives of R and D on iodine, its recent evolution and its significant achievements, (b) the analytical tools that are emerging from this programme and (c) existing and planned future applications of the results of the iodine R and D programme. The author concludes with an assessment of the impact that the iodine programme has had on reactor safety and licensing questions in Canada

  4. Plant maintenance and advanced reactors issue, 2008

    Energy Technology Data Exchange (ETDEWEB)

    Agnihotri, Newal [ed.

    2009-09-15

    The focus of the September-October issue is on plant maintenance and advanced reactors. Major articles/reports in this issue include: Technologies of national importance, by Tsutomu Ohkubo, Japan Atomic Energy Agency, Japan; Modeling and simulation advances brighten future nuclear power, by Hussein Khalil, Argonne National Laboratory, Energy and desalination projects, by Ratan Kumar Sinha, Bhabha Atomic Research Centre, India; A plant with simplified design, by John Higgins, GE Hitachi Nuclear Energy; A forward thinking design, by Ray Ganthner, AREVA; A passively safe design, by Ed Cummins, Westinghouse Electric Company; A market-ready design, by Ken Petrunik, Atomic Energy of Canada Limited, Canada; Generation IV Advanced Nuclear Energy Systems, by Jacques Bouchard, French Commissariat a l'Energie Atomique, France, and Ralph Bennett, Idaho National Laboratory; Innovative reactor designs, a report by IAEA, Vienna, Austria; Guidance for new vendors, by John Nakoski, U.S. Nuclear Regulatory Commission; Road map for future energy, by John Cleveland, International Atomic Energy Agency, Vienna, Austria; and, Vermont's largest source of electricity, by Tyler Lamberts, Entergy Nuclear Operations, Inc. The Industry Innovation article is titled Intelligent monitoring technology, by Chris Demars, Exelon Nuclear.

  5. Reactor core simulations in Canada

    International Nuclear Information System (INIS)

    Roy, R.; Koclas, J.; Shen, W.; Jenkins, D. A.; Altiparmakov, D.; Rouben, B.

    2004-01-01

    This review will address the current simulation flow-chart currently used for reactor-physics simulations in the Canadian industry. The neutron behaviour in heavy-water moderated power reactors is quite different from that in other power reactors, thus the core physics approximations are somewhat different Some codes used are particular to the context of heavy-water reactors, and the paper focuses on this aspect. The paper also shows simulations involving new design features of the Advanced Candu Reactor TM (ACR TM), and provides insight into future development, expected in the coming years. (authors)

  6. Overview of fast reactor structural materials programme in India

    International Nuclear Information System (INIS)

    Rodriguez, P.; Paranjpe, S.R.; Chetal, S.C.; Mannan, S.L.; Ray, S.K.; Seetharaman, V.; Srinivasan, G.

    The fast reactor structural materials activities in India comprise of the programme on the materials for the Fast Breeder Test Reactor (FBTR), the construction of which is nearing completion, and the programme on the candidate materials for the Prototype Fast Breeder Reactor (PFBR) which is now in the design stage. For the materials in use in FBTR, the main thrust has been towards detailed evaluation and documentation of long term (creep) properties of type 316 stainless steel base material in air. For the PFBR the philosophy has been to identify the candidate materials and to evolve a wider scope for the testing and evaluation programmes. The major structural component is identified as variants of type 304 stainless steel and the programmes undertaken include study of low cycle fatigue properties and environmental effects on creep and stress rupture properties. Evaluations of aging embrittlement of type 316 stainless steel base material and weldments are also in progress. The paper lists the testing programmes identified for adoption in the near future. These include creep-fatigue damage studies and fracture mechanics studies on weldments for type 304 stainless steel and testing programme on 2.25 Cr-1 Mo and 9 Cr-1 Mo steels, the identified candidate materials for steam generators. The development efforts also include a comprehensive programme on inelastic analysis procedure. (author)

  7. Canada puts emphasis on SMR

    International Nuclear Information System (INIS)

    Anon.

    2017-01-01

    Thanks to hydroelectricity and 16% share of nuclear power, Canada is among the few countries to respect GIEC's 2050 climate objectives: producing 80% of electricity without emitting CO 2 . In the context of a growing power demand, Canada has integrated nuclear energy in its energy scenarios. Small Modular Reactors (SMR) are considered as an efficient means to replace diesel generators used in small isolated communities. Several North America start-ups such as Terrestrial Energy that develops molten salt reactors, have moved to Canada. The British firm Moltex has chosen Canadian Nuclear Safety Authority (CCSN for the certification of its 4. generation reactor. In Ontario, Canada's most populated province, nuclear energy produces 60% of its electricity consumption and has allowed the progressive shutdown of all coal-fed power plants of the province. Between 2000 and 2013 nuclear power increased by 20% whereas the coal share in power production dropped by 27%. The 2014 Toronto Public Health report highlights that since 2004 premature mortality has dropped by 23% and the hospitalization due to air pollution by 41%. (A.C.)

  8. Trend of R and D publications in pressurised heavy water reactors: A study using INIS and other databases

    International Nuclear Information System (INIS)

    Kumar, V.; Kalyane, V.L.; Prakasan, E.R.; Kumar, A.; Sagar, A.; Mohan, L.

    2004-01-01

    Digital databases INIS (1970-2002), INSPEC (1969-2002), Chemical Abstracts (1977-2002), ISMEC (1973-June 2002), Web of Sciences (1974-2002), and Science Citation Index (1982-2002), were used for comprehensive retrieval of bibliographic details of research publications on Pressurized Heavy Water Reactor (PHWR) research. Among the countries contributing to PHWR research, India (having 1737 papers) is the forerunner followed by Canada (1492), Romania (508) and Argentina (334). Collaboration of Canadian researchers with researchers of other countries resulted in 75 publications. Among the most productive researchers in this field, the first 15 are from India. Top three contributors to PHWR publications with their respective authorship credits are: H.S. Kushwaha (106), Anil Kakodkar (100) and V. Venkat Raj (76). Prominent interdomainary interactions in PHWR subfields are: Specific nuclear reactors and associated plants with General studies of nuclear reactors (481), followed by Environmental sciences (185), and Materials science (154). Number of publications dealing with Geosciences aspect of environmental sciences are 141. Romania, Argentina, India and Republic of Korea have used mostly (≥75%) non-conventional media for publications. Out of the 4851 publications, 1228 have been published in 292 distinct journals. Top most journals publishing PHWR papers are: Radiation Protection and Environment (continued from: Bulletin of Radiation Protection since 1997), India (115); Nuclear Engineering International, UK (84); and Transactions of the American Nuclear Society, USA (68). (author)

  9. Canada country report

    International Nuclear Information System (INIS)

    Cottrill, Cheryl

    2008-01-01

    1 - Nuclear 2007 highlights: New Build Applications and Environmental Assessments (Ontario Power Generation (OPG), Bruce Power, Bruce Power Alberta), Refurbishments (Bruce Power's Bruce A Units 1 and 2 Restart Project, NB Power's Refurbishment of Point Lepreau, New Brunswick, Atomic Energy of Canada Limited (AECL) NRU 50. Anniversary, expansion of the solid radioactive waste storage facilities at Gentilly-2 nuclear generating station, Ontario Power Generation (OPG) Deep Geologic Repository..); 2. Nuclear overview: a. Energy policy (Future of nuclear power, state of the projects, schedule, Refurbishment), b. Public acceptance, Statements from Government Officials in Canada; c. Nuclear equipment (number and type); d. Nuclear waste management, Deep Geologic Repository; e. Nuclear research at AECL; f. Other nuclear activities (Cameco Corporation, MDS Nordion); 3. Nuclear competencies; 4. WIN 2007 Main Achievements: GIRLS Science Club, Skills Canada, WiN-Canada Web site, Book Launch, WINFO, 2007 WiN-Canada conference 4 - Summary: - 14.6% of Canada's electricity is provided by Candu nuclear reactors; Nuclear equipment: 10 Research or isotope producing reactors - Pool-Type; Slowpoke 2; Sub-Critical assembly; NRU; and Maple; 22 Candu reactors providing electricity production - 18 of which are currently operating. Public acceptance: 41% feel nuclear should play more of a role, 67% support refurbishment, 48% support new build, 13% point gender gap in support, with men supporting more than women. Energy policy: Future of nuclear power - recognition that nuclear is part of the solution across Canada; New Build - 3 applications to regulator to prepare a site for new build, in Provinces of Ontario and Alberta, with one feasibility study underway in New Brunswick; Refurbishment - Provinces of Ontario (2010) and New Brunswick (2009). Nuclear waste management policy: Proposal submitted to regulator to prepare, construct and operate a deep geologic disposal facility in Ontario

  10. Small power reactor projects in the United States of America and Canada. Information gathered as a result of invitations from Member States

    International Nuclear Information System (INIS)

    1962-01-01

    As part of its activities in connection with the development of nuclear power, and in response to the resolutions adopted by the General Conference, the Agency has been undertaking a continuing study of the technology and economics of small and medium sized power reactors, particularly with reference to the needs of the less-developed countries. This report summarizes the information gathered on the small power reactor projects in the United States of America and Canada, as a result of the opportunity afforded by these Member States to the Agency. It may be recalled that, at the third regular session of the General Conference, the United States Government offered to provide the Agency with relevant technical and economic data on several small power reactor projects of its Atomic Energy Commission. The Agency accepted the offer and since June 1960 it has sent one or two staff members at approximately six-monthly intervals to follow the development of nine power reactor projects in the United States which represent six different reactor systems. Last year, the Agency issued a report summarizing the information obtained through their visits and study of available published literature. The present document, which should be read in conjunction with that document, brings the information up to date and provides additional information on certain phases of the projects already discussed in the last report. Three more power reactor projects are also dealt with, namely the experimental gas-cooled reactor (EGCR), the high temperature gas-cooled reactor (HTGR) and the Hallam nuclear power facility (HNPF). Early in 1962, the Canadian Government expressed its willingness to make available to the Agency relevant information on the NPD and CANDU projects. The coverage of the NPD reactor is based upon the published information supplied by AECL of Canada and the visit by one of the staff members to the NPD site. The Agency wishes to acknowledge with thanks the co-operation extended

  11. Fusion Canada issue 8

    International Nuclear Information System (INIS)

    1989-08-01

    A short bulletin from the National Fusion Program. Included in this issue are Canada-ITER contributions, NET Fuel Processing Loop, Bilateral Meeting for Canada-Europe, report from Tokamak de Varennes and a report from the University of Toronto on materials research for Fusion Reactors. 3 figs

  12. Fusion Canada issue 8

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-08-01

    A short bulletin from the National Fusion Program. Included in this issue are Canada-ITER contributions, NET Fuel Processing Loop, Bilateral Meeting for Canada-Europe, report from Tokamak de Varennes and a report from the University of Toronto on materials research for Fusion Reactors. 3 figs.

  13. Update on reactors and reactor instruments in Asia

    Science.gov (United States)

    Rao, K. R.

    1991-10-01

    The 1980s have seen the commissioning of several medium flux (∼10 14 neutrons/cm 2s) research reactors in Asia. The reactors are based on indigenous design and development in India and China. At Dhruva reactor (India), a variety of neutron spectrometers have been established that have provided useful data related to the structure of high- Tc materials, phonon density of states, magnetic moment distributions and micellar aggregation during the last couple of years. Polarised neutron analysis, neutron interferometry and neutron spin echo methods are some of the new techniques under development. The spectrometers and associated automaton, detectors and neutron guides have all been indigenously developed. This paper summarises the developments and on-going activities in Bangladesh, China, India, Indonesia, Korea, Malaysia, the Philippines and Thailand.

  14. Update on reactors and reactor instruments in Asia

    International Nuclear Information System (INIS)

    Rao, K.R.

    1991-01-01

    The 1980s have seen the commissioning of several medium flux (∝10 14 neutrons/cm 2 s) research reactors in Asia. The reactors are based on indigenous design and development in India and China. At Dhruva reactor (India), a variety of neutron spectrometers have been established that have provided useful data related to the structure of high-Tc materials, phonon density of states, magnetic moment distributions and micellar aggregation during the last couple of years. Polarised neutron analysis, neutron interferometry and neutron spin echo methods are some of the new techniques under development. The spectrometers and associated automaton, detectors and neutron guides have all been indigenously developed. This paper summarises the developments and on-going activities in Bangladesh, China, India, Indonesia, Korea, Malaysia, the Philippines and Thailand. (orig.)

  15. A review of fast reactor programme in India - April 1992

    Energy Technology Data Exchange (ETDEWEB)

    Paranjpe, S R [Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu (India)

    1992-07-01

    There is no change in the basic policy for development of nuclear energy in India. Fast Breeder Reactors are required to be available commercially to supply increasing quantities of nuclear energy when the first phase programme of deployment of Pressurised Heavy Water Reactors would be reaching the limit imposed by indigenously available natural uranium. Based on presently proven reserves of economically exploitable uranium one cannot expect to support more than 10 to 15 million kilowatt of installed capacity of PHWRs. The immediate goal of the Fast Reactor Programme therefore, remains completion by 2002-2003 of the first 500 MWe Prototype Fast Breeder Reactor which will become the first reactor in the series of reactors to be built there afterwards. This will enable addition of one 500 MWe reactor each year even if the first phase of programme of PHWR is limited to 6.0 million kilowatt. The capital cost of installed kilowatt for FBRs is expected to be comparable to the capital cost per kilowatt for PHWRS. It is expected to launch the construction of PFBR in the next 2 or 3 years as soon as the over all economic condition shows some improvement. In the meantime, manufacturing development of important NSS components like Steam Generators, Sodium Pumps, Main Vessel and Inner Vessel has been initiated. Detailed designs of Control Rod Drive Mechanism (Primary) has been completed and contacts with the manufacturers are being established to identify the industry which would be entrusted with the responsibility of manufacturing the Control Rod Drive Mechanisms. Manufacturing technology for making cladding tubes of D9 stainless steel has been developed and significant progress has been made towards the production of hexagonal wrapper (i.e. Hex-Cans). Inclined Fuel Transfer Machine for loading and unloading the fuel from the Main Vessel has been designed and manufacturing of the prototype machine has been initiated. It is hoped that these steps will enable timely completion

  16. CANDU reactors, their regulation in Canada, and the identification of relevant NRC safety issues

    International Nuclear Information System (INIS)

    Charak, I.; Kier, P.H.

    1995-04-01

    Atomic Energy of Canada, Limited (AECL) and its subsidiary in the US, are considering submitting the CANDU 3 design for standard design certification under 10 CFR Part 52. CANDU reactors are pressurized heavy water power reactors. They have some substantially different safety responses and safety systems than the LWRs that the commercial power reactor licensing regulations of the US Nuclear Regulatory Commission (NRC) have been developed to deal with. In this report, the authors discuss the basic design characteristics of CANDU reactors, specifically of the CANDU 3 where possible, and some safety-related consequences of these characteristics. The authors also discuss the Canadian regulatory provisions, and the CANDU safety systems that have evolved to satisfy the Canadian regulatory requirements as of December 1992. Finally, the authors identify NRC regulations, mainly in 10 CFR Parts 50 and 100, with issues for CANDU 3 reactor designs. In all, eleven such regulatory issues are identified. They are: (1) the ATWS rule (section 50.62); (2) station blackout (section 50.63); (3) conformance with Standard Review Plan (SRP); (4) appropriateness of the source term (section 50.34(f) and section 100.11); (5) applicability of reactor coolant pressure boundary (RCPB) requirements (section 50.55a, etc); (6) ECCS acceptance criteria (section 50.46)(b); (7) combustible gas control (section 50.44, etc); (8) power coefficient of reactivity (GDC 11); (9) seismic design (Part 100); (10) environmental impacts of the fuel cycle (section 51.51); and (11) (standards section 50.55a)

  17. Nuclear fuel for light water reactors

    International Nuclear Information System (INIS)

    Etemad, A.

    1976-01-01

    The goal of the present speech is to point out some of the now-a-day existing problems related to the fuel cycle of light water reactors and to foresee their present and future solutions. Economical aspects of nuclear power generation have been considerably improving, partly through technological advancements and partly due to the enlargement of unit capacity. The fuel cycle, defined in the course of this talk, discusses the exploration, mining, ore concentration, purification, conversion, enrichment, manufacturing of fuel elements, their utilization in a reactor, their discharge and subsequent storage, reprocessing, and their re-use or disposal. Uranium market in the world and the general policy of several uranium owning countries are described. The western world requirement for uranium until the year 2000, uranium resources and the nuclear power programs in the United States, Australia, Canada, South Africa, France, India, Spain, and Argentina are discussed. The participation of Iran in a large uranium enrichment plant based on French diffusion technology is mentioned

  18. Followings of nuclear cooperation with India

    International Nuclear Information System (INIS)

    Nahla, Nasr

    2009-01-01

    This article speaks about the agreements of nuclear cooperation between India and USA,France and Russia. The Nuclear Suppliers Group,NSG, opened the door to the civil nuclear commercial with India, with the support of Canada, after 35 years of forbidden. The responsibility of NSG and any country enters in new arrangements for nuclear civil cooperation with India to assure the action of India towards its commitments to support world efforts for non-nuclear proliferation

  19. India's nuclear program

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    India made an early commitment to being as self-sufficient as possible in nuclear energy and has largely achieved that goal. The country operates eight nuclear reactors with a total capacity of 1,304 MWe, and it remains committed to an aggressive growth plan for its nuclear industry, with six reactors currently under construction, and as many as twelve more planned. India also operates several heavy water production facilities, fabrication facilities, reprocessing works, and uranium mines and mills. Due to India's decision not to sign the Treaty on the Non-Proliferation of Nuclear Weapons (NPT), the country has had to develop nearly all of its nuclear industry and infrastructure domestically. Overall, India's nuclear power program is self-contained and well integrated, with plans to expand to provide up to ten percent of the country's electrical generating capacity

  20. History of Nuclear India

    Science.gov (United States)

    Chaturvedi, Ram

    2000-04-01

    India emerged as a free and democratic country in 1947, and entered into the nuclear age in 1948 by establishing the Atomic Energy Commission (AEC), with Homi Bhabha as the chairman. Later on the Department of Atomic Energy (DAE) was created under the Office of the Prime Minister Jawahar Lal Nehru. Initially the AEC and DAE received international cooperation, and by 1963 India had two research reactors and four nuclear power reactors. In spite of the humiliating defeat in the border war by China in 1962 and China's nuclear testing in 1964, India continued to adhere to the peaceful uses of nuclear energy. On May 18, 1974 India performed a 15 kt Peaceful Nuclear Explosion (PNE). The western powers considered it nuclear weapons proliferation and cut off all financial and technical help, even for the production of nuclear power. However, India used existing infrastructure to build nuclear power reactors and exploded both fission and fusion devices on May 11 and 13, 1998. The international community viewed the later activity as a serious road block for the Non-Proliferation Treaty and the Comprehensive Test Ban Treaty; both deemed essential to stop the spread of nuclear weapons. India considers these treaties favoring nuclear states and is prepared to sign if genuine nuclear disarmament is included as an integral part of these treaties.

  1. U.S.-India safeguards dispute

    International Nuclear Information System (INIS)

    Sweet, W.

    1978-01-01

    The current U.S.-India dispute over nuclear safeguards is likely to be the single most important test of the Carter administration's anti-proliferation policies. The Carter administration wants India to accept comprehensive safeguards that would bar further production of nuclear explosives. The Desai government wants to maintain unsafeguarded facilities, in effect keeping the weapons option open. It has been a basic tenet of Indian nuclear policy since the mid-1950s that the big powers must disarm if the small powers are to renounce acquisition of nuclear weapons. As a matter of practical policy, India is willing to forego a nuclear deterrent only if sustained world pressure keeps China's nuclear aspirations in check. As a matter of basic principle, India regards it as unfair and imperialistic that the heavily armed big powers ask for special assurances from the lightly armed small powers. India takes the position that it will cooperate with the United States only voluntarily and only if the nuclear weapon states or at least the superpowers start to clean up their own act. The superpowers must (1) negotiate a comprehensive test ban treaty; (2) accept full-scope safeguards themselves, which would be tantamount to a ban on any further production of weapons-grade materials; and (3) make significant moves toward total nuclear disarmament. The dependence of India on the United States for nuclear supplies is almost negligible. India's major nuclear facilities in operation or under construction include five research reactors, seven power reactors and three reprocessing facilities. Of these 15 facilities, the United States supplied only one (the Tarapur reactor) and 12 of them are not under IAEA safeguards. The United States, in short, is threatening to terminate supplies of low-enriched uranium for just one reactor unless India places these 12 facilities under IAEA safeguards

  2. Future Perspectives for Small and Medium Sized Reactors in India. Annex V

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-12-15

    Innovative small and medium sized reactors (SMRs) have several features that are expected to affect their future development and deployment in India. These include the: - Potential for simpler designs and reduced demands for human intervention, resulting in fewer potentially unsafe actions; - Potential for construction close to population centres, due to enhanced safety; - Potential of using the capability and capacity of local industries to enable their participation in the design and construction of such reactors, and high adaptability to the standardization and modular construction approach; - Potential to achieve low upfront capital costs. Future SMR concepts, employing increased use of passive safety features and capable of producing both electricity and high temperature process heat, may find application in specific regions of the country to supply both electricity and process heat, through distributed deployment. The following sections describe future SMR design concepts meeting the above mentioned objectives, and highlight their projected economic competitiveness.

  3. Actuarial Sciences Graduate Training Program (India-Waterloo ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    30 sept. 2009 ... The explosive growth of India's economy has led to a proliferation of insurance companies and a dire need for actuarial professionals. The University of Waterloo (Ontario) Canada has established a program to build actuarial talent for India's financial services including four elements: short professional ...

  4. Nuclear energy's continuing benefits to Canada

    International Nuclear Information System (INIS)

    Gray, J.L.

    1981-06-01

    The goal of the Canadian nuclear power program when it began twenty years ago was to reduce Canadian dependence on imported coal. This goal has been met, with 35 percent of Ontario's electricity being produced by CANDU reactors. These reactors have been proven reliable and safe, and provide a considerable cost advantage over coal. The CANDU reactor was developed with the strengths and limitations of Canadian industry in mind, the newest stations have over 85 percent Canadian-manufactured components. A similar benefit should be found in many countries with manufacturing capabilities comparable to Canada's. The use of natural uranium as a fuel has been a wise choice both technically and economically. A new industry was created in Canada in order to gain an assured supply of heavy water. The personnel brought to or trained in Canada to work in all parts of the nuclear industry represent a valuable asset in themselves. Radioisotope exports are making a significant contribution. Nuclear power is likely to make its greatest impact in the next century, when it will be a necessity

  5. Licensing of MAPLE reactors in Canada

    International Nuclear Information System (INIS)

    Lee, A.G.; Labrie, J.P.; Langman, V.J.

    1999-01-01

    Full text: The Operating Licence for a MAPLE reactor (i.e., a 10 MW(th), pool-type reactor), has been approved by the Atomic Energy Control Board (AECB) on August 16th, 1999. This Operating Licence has been obtained within three years of the initiation of the MDS Nordion Medical Isotopes Reactor (MMIR) project, which entails the design, construction and commissioning of two 10 MW MAPLE reactors at AECL's Chalk River Laboratories. The scope and nature of the information required by the AECB, the licensing process and highlights of the events which led to successfully obtaining the Operating Licence for the MAPLE reactor are discussed. These discussions address all phases of the licensing process (i.e., the environmental assessment in support of siting, the Preliminary Safety Analysis Report, PSAR, in support of design, procurement and construction, the Final Safety Analysis Report, FSAR, in support of commissioning and operations, and the development of suitable quality assurance subprograms for each phase). An overview of some of the unique technical aspects associated with the MAPLE reactors, and how they have been addressed during the licensing process are also provided (e.g., applying CSA N285.0, General Requirements for Pressure-Retaining Systems and Components in CANDU Nuclear Power Plants, to a small, low pressure, low temperature research reactor, confirmation of the performance of the driver fuel via laboratory and/or in-reactor testing, validation of the computer codes used to perform the safety analyses, critical parameter uncertainty assessment, full scale hydraulic testing of the performance of the design, fuel handling, human factors validation, operator training and certification). (author)

  6. All projects related to india | Page 14 | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Region: South Asia, Central Asia, Far East Asia, India ... INFORMATION CENTRES, MANAGEMENT TRAINING, INFORMATION ... over minor variants of existing products, both in developed and developing countries. ... Region: Canada, North and Central America, Europe, United Kingdom, India, Pakistan, South Asia, ...

  7. Status of fast reactor development in India. April 1999 - March 2000

    International Nuclear Information System (INIS)

    Lee, S.M.

    2000-01-01

    Electricity growth rate in India in 1999-2000 improved compared to the previous year and the installed electric capacity reached 97.5 GWe, with about 2 GWe nuclear. The nuclear power plants performed very well with average capacity factor of over 79%. Two new 220 MWe reactors, Kaiga-2 and RAPS-3, were commissioned during the year. FBTR was operated at various power levels up to 12.5 MWt and a peak burnup of 51500 MWd/t achieved. Test irradiation of Zr-Nb pressurized capsules were completed in FBTR for the PHWR programme. Detailed design and technology development for PFBR were continued. Review of the chapters of the PSAR by two level safety committees was continued. The 'rapid' environmental impact assessment report was prepared and measurements for the detailed report are in progress. R and D in reactor physics, shielding, engineering development, safety engineering, structural mechanics thermal hydraulics, instrumentation, metallurgy, non-destructive evaluation, chemistry and reprocessing were continued. These include cover gas heat transfer, sodium heaters, sodium pumps, drive mechanisms, flow restrictor devices, buckling damage, sodium-concrete interaction, activity transport in sodium, fuel development, materials testing and characterisation, corrosion measurements and electrochemical meters. (author)

  8. Canada's nuclear power programme

    International Nuclear Information System (INIS)

    Peden, W.

    1976-01-01

    Although Canada has developed the CANDU type reactor, and has an ambitious programme of nuclear power plant construction, there has been virtually no nuclear controversy. This progress was seen as a means to bring Canada out of the 'resource cow' era, and onto a more equal footing with technologically elite nations. However the Indian nuclear explosion test, waste storage problems, contamination problems arising from use of uranium ore processing waste as land fill and subsidised sale of nuclear power plants to Argentina and South Korea have initiated public and parliamentary interest. Some economists have also maintained that Canada is approaching over-supply of nuclear power and over-investment in plant. Canada has no official overall energy production plan and alternative sources have not been evaluated. (JIW)

  9. Historical construction costs of global nuclear power reactors

    International Nuclear Information System (INIS)

    Lovering, Jessica R.; Yip, Arthur; Nordhaus, Ted

    2016-01-01

    The existing literature on the construction costs of nuclear power reactors has focused almost exclusively on trends in construction costs in only two countries, the United States and France, and during two decades, the 1970s and 1980s. These analyses, Koomey and Hultman (2007); Grubler (2010), and Escobar-Rangel and Lévêque (2015), study only 26% of reactors built globally between 1960 and 2010, providing an incomplete picture of the economic evolution of nuclear power construction. This study curates historical reactor-specific overnight construction cost (OCC) data that broaden the scope of study substantially, covering the full cost history for 349 reactors in the US, France, Canada, West Germany, Japan, India, and South Korea, encompassing 58% of all reactors built globally. We find that trends in costs have varied significantly in magnitude and in structure by era, country, and experience. In contrast to the rapid cost escalation that characterized nuclear construction in the United States, we find evidence of much milder cost escalation in many countries, including absolute cost declines in some countries and specific eras. Our new findings suggest that there is no inherent cost escalation trend associated with nuclear technology. - Highlights: •Comprehensive analysis of nuclear power construction cost experience. •Coverage for early and recent reactors in seven countries. •International comparisons and re-evaluation of learning. •Cost trends vary by country and era; some experience cost stability or decline.

  10. A licensing discussion: SMRs in Canada

    International Nuclear Information System (INIS)

    De Vos, M.

    2013-01-01

    The CNSC (Canadian AECB) is ready to regulate Small Modular Reactors (SMR) facilities in Canada. The CNSC is well situated to engage with proponents of SMR reactors in design reviews or licensing discussions. A risk-informed (graded) approach is possible in many instances for reactors but it is not a relaxation of requirements. The vendor design review process helps reduce regulatory risks by encouraging early engagement.

  11. New about research reactors

    International Nuclear Information System (INIS)

    Egorenkov, P.M.

    2001-01-01

    The multi-purpose research reactor MAPLE (Canada) and concept of new reactor MAPLE-CNF as will substitute the known Canadian research reactor NRU are described. New reactor will be used as contributor for investigations into materials, neutron beams and further developments for the CANDU type reactor. The Budapest research reactor (BRR) and its application after the last reconstruction are considered also [ru

  12. Nuclear India. Vol. II. [India's nuclear policy

    Energy Technology Data Exchange (ETDEWEB)

    Jain, J P

    1974-01-01

    The book contains 186 documents on India's nuclear policy covering a period from November 1948 to May 1974. It thus forms a comprehensive documentary account of India's nuclear policy. They include: texts of India's agreements for cooperation on the peaceful uses of atomic energy with the USA and Canada, the summary conclusions of India's atomic energy program for the decade 1970-80, the resolutions and amendments moved by India, the communications sent and the statements made by Indian representatives in various international forums--the conference of the IAEA statute, the Annual General Conference of the IAEA and its committees and the Board of Governors, the UN General Assembly and its First Committee, the conference of the Committee on Disarmaments etc. It also contains texts or extracts from the papers presented, statements made, and addresses and talks delivered by H. J. Bhabha, V. A. Sarabhai, H. N. Sethna and other eminent scientists at the international conferences on the peaceful uses of atomic energy, IAEA discussions on PNE, etc. Policy statements by India's Prime Ministers Nehru, Shastri and (Mrs.) Gandhi, and Foreign Ministers Chagla and Swaran Singh, made from time to time in the Lok Sabha and the Rajya Sabha--the two houses of the Indian parliaments--are also included. The sources of these documents are listed at the end. (MCB)

  13. All projects related to india | Page 2 | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2015-12-01

    Malignant brain tumours are the most common cause of death among children with cancer, but there is no known cure. This project will advance research in this important field. Start Date: December 1, 2015. Topic: BRAIN, MATERNAL AND CHILD HEALTH, CANCER, THERAPY, CANADA. Region: India, Canada, Israel.

  14. Enhancements to the SLOWPOKE-2 nuclear research reactor at the Royal Military College of Canada

    Energy Technology Data Exchange (ETDEWEB)

    Hungler, P.C.; Andrews, M.T.; Weir, R.D.; Nielson, K.S.; Chan, P.K.; Bennett, L.G.I., E-mail: paul.hungler@rmc.ca [Royal Military College of Canada, Kingston, Ontario (Canada)

    2014-07-01

    In 1985 a Safe Low Power C(K)ritical Experiment (SLOWPOKE) nuclear research reactor was installed at the Royal Military College of Canada (RMCC). The reactor at nominally 20 kW thermal was named SLOWPOKE-2 and the core was designed to have a total of 198 fuel pins with Low Enriched Uranium (LEU) fuel (19.89% U-235). Installation of the reactor was intended to provide an education tool for members of the Canadian Armed Forces (CAF) and an affordable neutron source for the application of neutron activation analysis (NAA) and radioisotope production. Today, the SLOWPOKE-2 at RMCC continues to be a key education tool for undergraduate and post-graduate students and successfully conducts NAA and isotope production as per its original design intent. RMCC has significantly upgraded the facility and instruments to develop capabilities such as delayed neutron and gamma counting (DNGC) and neutron imaging, including 2D thermal neutron radiography and 3D thermal neutron tomography. These unique nuclear capabilities have been applied to relevant issues in the CAF. The analog control system originally installed in 1985 has been removed and replaced in 2001 by the SLOWPOKE Integrated Reactor Control and Instrumentation System (SIRCIS) which is a digital controller. This control system continues to evolve with SIRCIS V2 currently in operation. The continual enhancement of the facility, instruments and systems at the SLOWPOKE-2 at RMCC will be discussed, including an update on RMCC's refueling plan. (author)

  15. Enhancements to the SLOWPOKE-2 nuclear research reactor at the Royal Military College of Canada

    International Nuclear Information System (INIS)

    Hungler, P.C.; Andrews, M.T.; Weir, R.D.; Nielson, K.S.; Chan, P.K.; Bennett, L.G.I.

    2014-01-01

    In 1985 a Safe Low Power C(K)ritical Experiment (SLOWPOKE) nuclear research reactor was installed at the Royal Military College of Canada (RMCC). The reactor at nominally 20 kW thermal was named SLOWPOKE-2 and the core was designed to have a total of 198 fuel pins with Low Enriched Uranium (LEU) fuel (19.89% U-235). Installation of the reactor was intended to provide an education tool for members of the Canadian Armed Forces (CAF) and an affordable neutron source for the application of neutron activation analysis (NAA) and radioisotope production. Today, the SLOWPOKE-2 at RMCC continues to be a key education tool for undergraduate and post-graduate students and successfully conducts NAA and isotope production as per its original design intent. RMCC has significantly upgraded the facility and instruments to develop capabilities such as delayed neutron and gamma counting (DNGC) and neutron imaging, including 2D thermal neutron radiography and 3D thermal neutron tomography. These unique nuclear capabilities have been applied to relevant issues in the CAF. The analog control system originally installed in 1985 has been removed and replaced in 2001 by the SLOWPOKE Integrated Reactor Control and Instrumentation System (SIRCIS) which is a digital controller. This control system continues to evolve with SIRCIS V2 currently in operation. The continual enhancement of the facility, instruments and systems at the SLOWPOKE-2 at RMCC will be discussed, including an update on RMCC's refueling plan. (author)

  16. Facility at CIRUS reactor for thermal neutron induced prompt γ-ray spectroscopic studies

    International Nuclear Information System (INIS)

    Biswas, D.C.; Danu, L.S.; Mukhopadhyay, S.; Kinage, L.A.; Prashanth, P.N.; Goswami, A.; Sahu, A.K.; Shaikh, A.M.; Chatterjee, A.; Choudhury, R.K.; Kailas, S.

    2013-01-01

    A facility for prompt γ-ray spectroscopic studies using thermal neutrons from a radial beam line of Canada India Research Utility Services (CIRUS) reactor, Bhabha Atomic Research Centre (BARC), has been developed. To carry out on-line spectroscopy experiments, two clover germanium detectors were used for the measurement of prompt γ rays. For the first time, the prompt γ–γ coincidence technique has been used to study the thermal neutron induced fission fragment spectroscopy (FFS) in 235 U(n th , f). Using this facility, experiments have also been carried out for on-line γ-ray spectroscopic studies in 113 Cd(n th , γ) reaction

  17. Nuclear emergency preparedness in Canada

    International Nuclear Information System (INIS)

    1993-03-01

    The preparedness of utilities and government agencies at various levels for dealing with nuclear emergencies occurring at nuclear reactors in Canada is reviewed and assessed. The review is centered on power reactors, but selected research reactors are included also. Emergency planning in the U.S.A., Germany and France, and international recommendations on emergency planning are reviewed to provide background and a basis for comparison. The findings are that Canadians are generally well protected by existing nuclear emergency plans at the electric utility and provincial levels but there are improvements that can be made, mainly at the federal level and in federal-provincial coordination. Ten issues of importance are identified: commitment to nuclear emergency planning by the federal government; division of federal and provincial roles and responsibilities; auditing of nuclear emergency preparedness of all levels of government and of electric utilities; the availability of technical guidance appropriate to Canada; protective action levels for public health and safety; communication with the public; planning and response for the later phases of a nuclear emergency; off-site exercises and training; coordination of international assistance; and emergency planning for research reactors. (L.L.) 79 refs., 2 tabs

  18. Thorium utilisation in thermal reactors

    International Nuclear Information System (INIS)

    Balakrishnan, K.

    1997-01-01

    It is now more or less accepted that the best way to use thorium is in thermal reactors. This is due to the fact that U233 is a good material in the thermal spectrum. Studies of different thorium cycles in various reactor concepts had been carried out in the early days of nuclear power. After three decades of neglect, the world is once again looking at thorium with some interest. We in India have been studying thorium cycles in most of the existing thermal reactor concepts, with greater emphasis on heavy water reactors. In this paper, we report some of the work done in India on different thorium cycles in the Indian pressurized heavy water reactor (PHWR), and also give a description of the design of the advanced heavy water reactor (AHWR). (author). 1 ref., 2 tabs., 5 figs

  19. Structure of roofing cover for NPP reactor compartment in India. Ustrojstvo krovel'nogo pokrytiya reaktornogo otdeleniya AEhS v Indii

    Energy Technology Data Exchange (ETDEWEB)

    Movchan, S V

    1990-04-01

    Technology of fabrication of the roofing cover for NPP reactor compartments in India is briefly described. The cover is two-layer. The underlying thermal-hydroinsulating layer with the thickness of 100 mm is produced of beaten brick on lime-sand mortar. Facing layer of ceramic tile is applied to it.

  20. Positive Experience with Small and Medium Sized Reactors in India, Lessons Learned in the Previous Two Decades and Future Plans. Annex IV

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-12-15

    India has limited uranium resources and about one third of the world's thorium resources. With a view to utilizing these resources in the country for electricity generation, a long term three stage programme has been evolved as a strategy. At the second International Conference on Peaceful Uses of Atomic Energy in Geneva in September 1957, H. Bhabha and N.B. Prasad presented a paper on a study of the contribution of atomic energy to a power programme in India. This paper elaborated the three stage programme of natural uranium fuelled pressurized heavy water reactors (PHWRs) in the first stage, fast breeder reactors (FBRs) using the spent fuel of the second stage, and thorium based reactor systems in the third stage. This three stage programme has been accepted over the years and still holds good, even today. The focus in India, from the very beginning of the programme, has been to make nuclear power self-reliant. Towards this objective, development of human resources, research and development for all aspects of the nuclear fuel cycle, and establishment of an infrastructure for the manufacturing of nuclear components within the country were targeted well before launching the nuclear power programme. Some of the initial activities, over a period of time, have been shaped as industrial units of the government, as well as industries in the country. Such an approach has greatly contributed to the self-reliance of the nuclear power programme, in addition to the benefits to the overall industrial infrastructure in the country. The establishment of research reactors, facilities and laboratories to support the nuclear power programme and related fuel cycle activities at the Bhabha Atomic Research Centre, and the Indira Gandhi Centre for Atomic Research for the FBR programme has made a significant contribution to the national capacity in the frontier areas of nuclear science and technology.

  1. The evolution of Canadian research reactors: 1942 to 1992

    International Nuclear Information System (INIS)

    Lidstone, R.F.

    1992-01-01

    Research reactors have played a central role in the development of the Canadian nuclear program. Major benefits arising from the operation of Canada's research reactors include the development and demonstration of Canada deuterium uranium (CANDU) power reactors and the creation of an international business based on the production of medical and industrial radioisotopes. Insofar as practicable, nuclear engineers have based each design on the evolutionary development of appropriate technology for Canada. This approach has resulted in several generations of multipurpose reactors with a common heritage of neutronic efficiency. A focus on neutronic efficiency stemmed from the incentive for direct use of Canada's abundant uranium resources; the desired reliance on natural-uranium fuels promoted interest in efficient moderators, especially heavy water, and structural materials with a low affinity for absorbing neutrons, such as aluminum and zirconium alloys

  2. Canada : tous les projets | Page 3 | CRDI - Centre de recherches ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Ce projet produira des données probantes pour aider à orienter les stratégies de traitement chez les patients atteints de déficits de la mémoire et à réduire les symptômes associés à la maladie d'Alzheimer. Région: Canada, Israel, India. Programme: Programme de recherche en santé Canada-Israël. Financement total ...

  3. The safety of Ontario's nuclear power reactors. A scientific and technical review. A submission to the Ontario Nuclear Safety Review by Atomic Energy Canada Limited

    International Nuclear Information System (INIS)

    1987-01-01

    This submission comments on the evolution of the Canadian nuclear program, the management of safety, and the reactor design, analysis, operation and research programs that contribute to the safety of the CANDU reactor and provide assurance of safety to the regulatory agency and to the public. The CANDU reactor system has been designed and developed with close cooperation between Atomic Energy of Canada Ltd. (AECL), utilities, manufacturers, and the Atomic Energy Control Board (AECB). The AECB has the responsibility, on behalf of the public, for establishing acceptable standards with respect to public risk and for establishing through independent review that these standards are satisfied. The plant designer has responsibility for defining how those standards will be met. The plant operator has responsibility for operating within the framework of those standards. The Canadian approach to safety design is based on the philosophy of defence in depth. Defence in depth is achieved through a high level of equipment quality, system redundancy and fail-safe design; regulating and process systems designed to maintain all process systems within acceptable operating parameters; and, independent safety systems to shut down the reactor, provide long-term cooling, and contain potential release of radioactivity in the event of an accident. The resulting design meets regulatory requirements not only in Canada but also in other countries. Probabilistic safety and risk evaluations show that the CANDU design offers a level of safety and least as good as other commercially available reactor designs

  4. All projects related to canada | Page 13 | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    ... and Zambia using existing collaborations between Africa, Canada and the United States. ... Malnutrition afflicts more people in India than anywhere else in the ... Gender equality in migration as a policy objective requires an understanding of ...

  5. Nuclear technology in Canada

    International Nuclear Information System (INIS)

    1983-01-01

    This pamphlet provides a summary of the research being carried out by Atomic Energy of Canada Limited. The design and development of the CANDU type reactor are highlighted and the contribution of nuclear technology to medicine, agriculture and the Canadian economy is briefly discussed

  6. Electricity - a great asset for Canada

    International Nuclear Information System (INIS)

    Chretien, Jean.

    1983-06-01

    Canada has a great national asset in its ability to generate electricity economically from its abundant hydro, coal, and uranium resources. Its nuclear industry has an excellent product. Despite lack of orders for now, the CANDU will be a competitive force when the reactor market recovers. Canada has a proven record of reliability for electricity trade with the United States. There appear to be some opportunities for plants in Canada dedicated to the export of electric power. The federal government is prepared to work closely with the provinces to develop projects which will be attractive to customers in the United States

  7. Current Status of World Nuclear Fuel Cycle Technology (I): Canada and Latin America

    International Nuclear Information System (INIS)

    Choi, Hang Bok; Ko, Won Il

    2007-05-01

    Canada produces about one third of the world's uranium mine output, most of it from two new mines. After 2007 Canadian production is expected to increase further as more new mines come into production. About 15% of Canada's electricity comes from nuclear power, using indigenous technology, and 18 reactors provide over 12,500 MWe of power. Mexico has two nuclear reactors generating almost 5% of its electricity. Its first commercial nuclear power reactor began operating in 1989. There is some government support for expanding nuclear energy to reduce reliance on natural gas. Argentina has two nuclear reactors generating nearly one tenth of its electricity. Its first commercial nuclear power reactor began operating in 1974. Brazil has two nuclear reactors generating 4% of its electricity. Its first commercial nuclear power reactor began operating in 1982

  8. All projects related to Canada | Page 5 | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Project. After a decade of laboratory and pilot plant work in Canada and India, ... countries where there are shortages of mental health specialist resources. ... rates in the world, Nigeria has identified maternal and child health as a priority issue.

  9. Small reactors in the Canadian context: opportunities and challenges

    Energy Technology Data Exchange (ETDEWEB)

    Walker, R.S. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2013-07-01

    This presentation discusses the opportunities and challenges for small reactors in Canada. It concludes by suggesting that the success of small reactors in Canada will depend on a number of factors including private sector investment, access to international markets, stable, equitable and adaptable regulatory regime, public trust and technology.

  10. All projects related to Canada | Page 11 | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Region: Brazil, South America, Canada, North and Central America, India, Far East Asia, South Korea, Central Asia, South Asia. Program: Networked Economies. Total Funding: CA$ 203,800.00. Mainstreaming Community-based Research: Institutional Arrangements for Research Partnerships Between Community Groups ...

  11. High-level radioactive waste in Canada. Background paper

    International Nuclear Information System (INIS)

    Fawcett, R.

    1993-11-01

    The disposal of radioactive waste is one of the most challenging environmental problems facing Canada today. Since the Second World War, when Canadian scientists first started to investigate nuclear reactions, there has been a steady accumulation of such waste. Research reactors built in the early postwar years produced small amounts of radioactive material but the volume grew steadily as the nuclear power reactors constructed during the 1960s and 1970s began to spawn used fuel bundles. Although this radioactive refuse has been safely stored for the short term, no permanent disposal system has yet been fully developed and implemented. Canada is not alone in this regard. A large number of countries use nuclear power reactors but none has yet put in place a method for the long-term disposal of the radioactive waste. Scientists and engineers throughout the world are investigating different possibilities; however, enormous difficulties remain. In Canada, used fuel bundles from nuclear reactors are defined as high-level waste; all other waste created at different stages in the nuclear fuel cycle is classified as low-level. Although disposal of low-level waste is an important issue, it is a more tractable problem than the disposal of high-level waste, on which this paper will concentrate. The paper discusses the nuclear fuel waste management program in Canada, where a long-term disposal plan has been under development by scientists and engineers over the past 15 years, but will not be completed for some time. Also discussed are responses to the program by parliamentary committees and aboriginal and environmental groups, and the work in the area being conducted in other countries. (author). 1 tab

  12. High-level radioactive waste in Canada. Background paper

    Energy Technology Data Exchange (ETDEWEB)

    Fawcett, R [Library of Parliament, Ottawa, ON (Canada). Science and Technology Div.

    1993-11-01

    The disposal of radioactive waste is one of the most challenging environmental problems facing Canada today. Since the Second World War, when Canadian scientists first started to investigate nuclear reactions, there has been a steady accumulation of such waste. Research reactors built in the early postwar years produced small amounts of radioactive material but the volume grew steadily as the nuclear power reactors constructed during the 1960s and 1970s began to spawn used fuel bundles. Although this radioactive refuse has been safely stored for the short term, no permanent disposal system has yet been fully developed and implemented. Canada is not alone in this regard. A large number of countries use nuclear power reactors but none has yet put in place a method for the long-term disposal of the radioactive waste. Scientists and engineers throughout the world are investigating different possibilities; however, enormous difficulties remain. In Canada, used fuel bundles from nuclear reactors are defined as high-level waste; all other waste created at different stages in the nuclear fuel cycle is classified as low-level. Although disposal of low-level waste is an important issue, it is a more tractable problem than the disposal of high-level waste, on which this paper will concentrate. The paper discusses the nuclear fuel waste management program in Canada, where a long-term disposal plan has been under development by scientists and engineers over the past 15 years, but will not be completed for some time. Also discussed are responses to the program by parliamentary committees and aboriginal and environmental groups, and the work in the area being conducted in other countries. (author). 1 tab.

  13. Problems and prospects of small and medium power reactors

    International Nuclear Information System (INIS)

    Matin, A.

    1977-01-01

    Prior to 1973 it was generally believed that small and medium power reactors (SMPRs) had a potentially large market and only their high capital costs prevented their large scale commercial application. In December, 1973, crude oil price rose from US $2.50 per barrel to more than US $11 per barrel. This changed the economic position of SMPRs so much so that even 100-200 MWe nuclear reactors were considered economic compared to oil-fired plants. A Market Survey by the International Atomic Energy Agency in 1974 showed that the potential market for reactors ranging from 150 to 400 MWe during 1980-1990 amounted to 140 units with a total installed capacity of 38,000 MWe. This potential market did not, however, generate the desired interest among the reactor manufacturers. So far only three manufacturers based in Europe have shown interest in SMPRs and at present small reactors are being built commercially only in India. Among developing countries, Bangladesh, Jamaica and Kuwait are seriously looking for reactors in sizes of 100-200 MWe. The paper analyses the historic background of SMPRs and problems related to their commercial application and suggests the following actions: i) The British 100 MWe SGHWR is considered proven and suitable for small grids and hence deserves financial support by British/International Financing Agencies. ii) Any re-engineered or slightly re-designed version of operating small light water reactors will find wider acceptability than available new adaptions of marine reactors. Manufacturers of operating small LWRs may be encouraged through international financial assistance to make such designs commercially available. iii) Small CANDU reactors may be suitable for most developing countries and need technical and economic support from Canada for their export. iv) The Agency must continue their effort more vigorously for making SMPRs commercially available to small developing countries

  14. The Canadian R and D program targeted at CANDU reactors

    International Nuclear Information System (INIS)

    Moeck, E.O.

    1988-01-01

    CANDU reactors produce electricity cheaply and reliably, with miniscule risk to the population and minimal impact on the environment. About half of Ontario's electricity and a third of New Brunswick's are generated by CANDU power plants. Hydro Quebec and utilities in Argentina, India, Pakistan, and the Republic of Korea also successfully operate CANDU reactors. Romania will soon join their ranks. The proven record of excellent performance of CANDUs is due in part to the first objective of the vigorous R and D program: namely, to sustain and improve existing CANDU power-plant technology. The second objective is to develop improved nuclear power plants that will remain competitive compared with alternative energy supplies. The third objective is to continue to improve our understanding of the processes underlying reactor safety and develop improved technology to mitigate the consequences of upset conditions. These three objectives are addressed by individual R and D programs in the areas of CANDU fuel channels, reduced operating costs, reduced capital costs, reactor safety research, and IAEA safeguards. The work is carried out mainly at three centres of Atomic Energy of Canada Limited--the Chalk River Nuclear Laboratories, the Whiteshell Nuclear Research Establishment, and the Sheridan Park Engineering Laboratories--and at Ontario Hydro's Research Laboratories. Canadian universities, consultants, manufacturers, and suppliers also provide expertise in their areas of specialization

  15. Current Status of World Nuclear Fuel Cycle Technology (I): Canada and Latin America

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hang Bok; Ko, Won Il

    2007-05-15

    Canada produces about one third of the world's uranium mine output, most of it from two new mines. After 2007 Canadian production is expected to increase further as more new mines come into production. About 15% of Canada's electricity comes from nuclear power, using indigenous technology, and 18 reactors provide over 12,500 MWe of power. Mexico has two nuclear reactors generating almost 5% of its electricity. Its first commercial nuclear power reactor began operating in 1989. There is some government support for expanding nuclear energy to reduce reliance on natural gas. Argentina has two nuclear reactors generating nearly one tenth of its electricity. Its first commercial nuclear power reactor began operating in 1974. Brazil has two nuclear reactors generating 4% of its electricity. Its first commercial nuclear power reactor began operating in 1982.

  16. Future of nuclear S&T in Canada

    International Nuclear Information System (INIS)

    Didsbury, R.

    2015-01-01

    'Full text:' Nuclear R&D started more than 70 years ago has led to establishment of successful nuclear industry and placed Canada among the ranks of Tier 1 nuclear nations with a full spectrum of capabilities and resources in nuclear technology. Recently, Canada's nuclear industry leaders endorsed a 25-year vision that sees Canada thriving as a Tier 1 nation; aligned, integrated trusted, and working collaboratively to deliver innovative, life-enhancing solutions for Canada and the world. The leaders have committed to realizing this longer-term vision through several actions including, commitment to support a strong Canadian nuclear science, technology and innovation agenda. Nuclear R&D in Canada will be largely informed and influenced by the international and domestic nuclear landscapes. Intergovernmental Panel on Climate Change (IPCC) recognizes the need for nuclear in stabilizing atmospheric carbon in ever growing demand for energy. In several industrialized and developing nations, new fleets of reactors are being built; with over 200 planned new constructions. International agencies and intergovernmental forums are engaged in several new collaborative initiatives including closing the back end of the fuel cycle, development of next generation safer and more efficient and small-modular reactor systems, improving nuclear safeguards and security measures, development of non-power applications, management of nuclear waste, reducing radiological exposures and responding to emergencies. Domestically, although there is no plan for a new build in the near- or medium-term, Ontario's Long-Term Energy Plan calls for maintaining nuclear contribution constant in the overall energy mix and the successful refurbishments will be a key to maintaining this mix. The Government has also undertaken restructuring of AECL to position the nuclear industry for success. There are potential opportunities for CANDU supply chain in the international market. The prototype

  17. Future of nuclear S&T in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Didsbury, R. [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada)

    2015-07-01

    'Full text:' Nuclear R&D started more than 70 years ago has led to establishment of successful nuclear industry and placed Canada among the ranks of Tier 1 nuclear nations with a full spectrum of capabilities and resources in nuclear technology. Recently, Canada's nuclear industry leaders endorsed a 25-year vision that sees Canada thriving as a Tier 1 nation; aligned, integrated trusted, and working collaboratively to deliver innovative, life-enhancing solutions for Canada and the world. The leaders have committed to realizing this longer-term vision through several actions including, commitment to support a strong Canadian nuclear science, technology and innovation agenda. Nuclear R&D in Canada will be largely informed and influenced by the international and domestic nuclear landscapes. Intergovernmental Panel on Climate Change (IPCC) recognizes the need for nuclear in stabilizing atmospheric carbon in ever growing demand for energy. In several industrialized and developing nations, new fleets of reactors are being built; with over 200 planned new constructions. International agencies and intergovernmental forums are engaged in several new collaborative initiatives including closing the back end of the fuel cycle, development of next generation safer and more efficient and small-modular reactor systems, improving nuclear safeguards and security measures, development of non-power applications, management of nuclear waste, reducing radiological exposures and responding to emergencies. Domestically, although there is no plan for a new build in the near- or medium-term, Ontario's Long-Term Energy Plan calls for maintaining nuclear contribution constant in the overall energy mix and the successful refurbishments will be a key to maintaining this mix. The Government has also undertaken restructuring of AECL to position the nuclear industry for success. There are potential opportunities for CANDU supply chain in the international market. The prototype

  18. India's nuclear power programme and constraints encountered in its implementation

    International Nuclear Information System (INIS)

    Sethna, H.N.; Srinivasan, M.R.

    1977-01-01

    Nuclear power development in India is based on natural-uranium fuelled pressurized heavy-water reactors. However, to acquire early experience in operation and maintenance of nuclear power stations, India's first atomic power station comprised two units of boiling-water reactors. Subsequent nuclear power stations currently in operation or under construction employ natural-uranium heavy-water reactors and each is a two-reactor installation. While the first two nuclear power stations employ reactors of 200MW capacity, the subsequent stations employ reactors with an output of 235MW. Heavy-water reactors of 500-MW capacity are foreseen for the period beyond 1985. The first nuclear power station was essentially fully imported: the second, which employs heavy-water reactors, has already made a significant contribution of equipment manufactured in India. For the third nuclear power station and for the subsequent one, practically all equipment is being manufactured indigenously. The nuclear power station at Narora is in a seismic region and hence the design is substantially more advanced than those at the earlier sites and also employs concepts which will be used in the 500-MW reactors. Efforts are being made in India to integrate power generation systems into larger regional grids and eventually into a national grid; however, the distributed nature of power generation at present and other infrastructural limitations still favour small and medium-size plants only. The paper reports the efforts made since the mid-1960s in establishing capability for design and manufacture of all equipment and systems required for nuclear power plants. A major constraint in expanding the nuclear power capacity is naturally related to the competing demands on available national resources. The paper also discusses constraints other than purely technological and financial, and describes the efforts being made to overcome them. (author)

  19. Nuclear reactors for the future

    International Nuclear Information System (INIS)

    Vijayan, P.K.; Kamble, M.T.; Dulera, I.V.

    2013-01-01

    For the sustainable development of nuclear power plants with enhanced safety features, economic competitiveness, proliferation resistance and physical protection, several advanced reactor developments have been initiated world-wide. The major advanced reactor initiatives and the proposed advanced reactor concepts have been briefly reviewed along with their advantages and challenges. Various advanced reactor designs being pursued in India have also been briefly described in the paper. (author)

  20. Canada : tous les projets | Page 9 | CRDI - Centre de recherches ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Sujet: AFRICA SOUTH OF SAHARA, BIOTECHNOLOGY, AGRICULTURAL INNOVATIONS, Disease control, AGRICULTURAL RESEARCH, ECONOMIC DEVELOPMENT. Région: Kenya, North ... Région: Brazil, South America, Canada, North and Central America, India, Far East Asia, South Korea, Central Asia, South Asia.

  1. Status of fast reactor development in India. April 1998 - March 1999

    International Nuclear Information System (INIS)

    Lee, S.M.

    1999-01-01

    Electricity growth rate in India in 1998-99 improved compared to the previous year and the installed electric capacity reached 93.25 GWe. The thermal nuclear power plants performed very well with average capacity factor of over 72%. The Kalpakkam Reprocessing Plant was commissioned. FBTR was operated at various power levels and a peak fuel burn-up of 49000 MWd/t achieved. Test irradiation of Zr-Nb was undertaken in FBTR for the PHWR programme. Refurbishing of the plant included new state of the art neutronic channels. Detailed design of PFBR was continued. The review of the chapters of the PSAR by an IGCAR Internal Safety Committee and by the AERB PFBR-Project Design Safety Committee was continued. Work on Environmental Impact Assessment Report, for obtaining clearance from the concerned environmental authorities, for the project has been started Technology development for PFBR included core subassemblies, main vessel, inner vessel, IHX, steam generator, roof slab, drive mechanism, control plug etc. Indigenous manufacture of raw materials has been also taken up. R and D in reactor physics, shielding, engineering development, instrumentation, thermal hydraulics, structural mechanics, metallurgy, non-destructive examination, chemistry, reprocessing and safety was continued. These include cover gas heat and mass transfer, SA hydraulic tests, thermal striping studies, fuel development for PFBR, corrosion and material property studies on steels, PIE of FBTR fuel and developments for the pilot plant for fast reactor fuel reprocessing. (author)

  2. Status of fast reactor development in India. April 1998 - March 1999

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S M [Safety Research, Health Physics, Information Services, Instrumentation and Electronics Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu (India)

    1999-07-01

    Electricity growth rate in India in 1998-99 improved compared to the previous year and the installed electric capacity reached 93.25 GWe. The thermal nuclear power plants performed very well with average capacity factor of over 72%. The Kalpakkam Reprocessing Plant was commissioned. FBTR was operated at various power levels and a peak fuel burn-up of 49000 MWd/t achieved. Test irradiation of Zr-Nb was undertaken in FBTR for the PHWR programme. Refurbishing of the plant included new state of the art neutronic channels. Detailed design of PFBR was continued. The review of the chapters of the PSAR by an IGCAR Internal Safety Committee and by the AERB PFBR-Project Design Safety Committee was continued. Work on Environmental Impact Assessment Report, for obtaining clearance from the concerned environmental authorities, for the project has been started Technology development for PFBR included core subassemblies, main vessel, inner vessel, IHX, steam generator, roof slab, drive mechanism, control plug etc. Indigenous manufacture of raw materials has been also taken up. R and D in reactor physics, shielding, engineering development, instrumentation, thermal hydraulics, structural mechanics, metallurgy, non-destructive examination, chemistry, reprocessing and safety was continued. These include cover gas heat and mass transfer, SA hydraulic tests, thermal striping studies, fuel development for PFBR, corrosion and material property studies on steels, PIE of FBTR fuel and developments for the pilot plant for fast reactor fuel reprocessing. (author)

  3. Status of fast reactor development in India (April 1996 - March 1997)

    International Nuclear Information System (INIS)

    Bhoje, S.B.

    1998-01-01

    India generated 395 TWh of electricity during, 4 April 1996 to March 1997. Oil import bill during the year was $9.3 billion. The operating performance of the thermal power reactors has considerably improved during the year and has enhanced the confidence level in nuclear energy in the government and the public. Construction of 4x220 MWe PHWR is continued at two locations. Start of construction of 2x220 MWe PHWR, 2x500 MWe PHWR and 2x1000 MWe WWER (Russian collaboration) and 500 MWe PFBR have been proposed in the IX Plan (1997- 2002). The 13 party coalition government is discussing the IX plan proposals in the power sector. Operation of FBTR at 10.5 MWt is continued The maximum fuel burnup reached is 32,000 MWd/t without any failure. Targeted burnup is 50,000 MWd/t. Post irradiation examination has been completed on one fuel subassembly taken out at 25,000 MWd/t. The performance of the fuel is very good. Turbine was rolled up to synchronous speed of 3000 rpm several times during the year and operation was found to be smooth. TG synchronisation with grid will be achieved during the reactor operation at 12.5 MWt, with the addition of fuel subassemblies in the core. All the activities related to the revision of conceptual design from 4 loop to 2 loop concept are almost complete for the 500 MWe Prototype Fast Breeder Reactor. The main options for the reactor are sodium coolant, pool type, MOX fuel, 2 primary sodium pumps, 2 secondary loops with 4 SG in each loop. The important design activities carried out during the year are plant dynamic studies, decay heat removal analysis, design of pump to grid plate pipe, scram and LOR parameters, location of secondary sodium pump in the secondary sodium circuit and design of fuel handling machines. Important experimental R and D work carried out during the year were testing of prototype primary sodium pump in water, operation of a large sodium test rig to study the heat and mass transfer in the cover gas, testing of dummy fuel

  4. Canada's nuclear achievement. Technical and economic perspectives

    International Nuclear Information System (INIS)

    Rummery, T.E.; Macpherson, J.A.

    1995-01-01

    Canada's leading role and eminent accomplishments in nuclear development now span more than half a century. They encompass aspects as diverse as the design and sale of nuclear power reactors and research reactor technology, to the establishment of a corps of scientists, engineers and technologists with the expertise to address a wide scope of important nuclear science issues. The success of a country of modest technical and financial resources, like Canada, in the highly technical and very competitive nuclear field is surprising to many Canadians, and does not fit the usual image we have of ourselves as 'drawers of water and hewers of wood'. For this reason alone, Canada's nuclear achievement makes an interesting and timely story. To address the many facets of Canada's nuclear activities over the past 50 years would obviously require space far beyond that available in this paper. We have therefore limited this review to highlights we judge to be the most pertinent and interesting from an historical, technical and economic perspective. We also indicate briefly our view of the future of nuclear power in the overall context of energy needs in a world that is becoming more industrial and increasingly environmentally conscious. (author) 22 refs., 7 figs

  5. Nuclear power - replacement of pressure tubes in CANDU reactors

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    The CANDU pressure tube reactor is an effective electricity generator. While most units have been built in Canada, units are successfully operated in Argentina and Korea as well as India and Pakistan, which have early versions of the same concept. Units are also under construction in Korea and Romania. The main constructional components of a CANDU core are the calandria vessel, the fuel channels and the reactivity control mechanisms. The fuel channel, in particular the pressure tubes, see an environment comprising high flux, high temperature water at high pressures, which induces changes in the properties and dimensions of the channel components. From the first, fuel channels were designed to be replaced because of the difficulty in predicting the behaviour of zirconium alloys in such service over a long period of time. In fact some phenomena, that were not known at the time of the earliest designs, have led to unacceptable changes in the properties of the channels and these early reactors have had to be retubed at half their intended life. These deficiencies have been corrected in the latest designs and fuel channels in reactors that have commenced operation over the last 10 years, are predicted to reach the intended 30 years life before replacement is necessary. The changing of fuel channels, the details and experience of which are explained, has been shown to be an effective way of refurbishing the CANDU reactor, extending its lifetime a further 25-30 years. (author)

  6. Uranium in Canada

    International Nuclear Information System (INIS)

    1987-09-01

    Canadian uranium exploration and development efforts in 1985 and 1986 resulted in a significant increase in estimates of measured uranium resources. New discoveries have more than made up for production during 1985 and 1986, and for the elimination of some resources from the overall estimates, due to the sustained upward pressure on production costs and the stagnation of uranium prices in real terms. Canada possesses a large portion of the world's uranium resources that are of current economic interest and remains the major focus of inter-national uranium exploration activity. Expenditures for uranium exploration in Canada in 1985 and 1986 were $32 million and $33 million, respectively. Although much lower than the $130 million total reported for 1979, expenditures for 1987 are forecast to increase. Exploration and surface development drilling in 1985 and 1986 were reported to be 183 000 m and 165σ2 000 m, respectively, 85 per cent of which was in Saskatchewan. Canada has maintained its position as the world's leading producer and exporter of uranium. By the year 2000, Canada's annual uranium requirements will be about 2 100 tU. Canada's known uranium resources are more than sufficient to meet the 30-year fuel requirements of those reactors in Canada that are either in operation now or expected to be in service by the late 1990s. A substantial portion of Canada's identified uranium resources is thus surplus to Canadian needs and available for export. Annual sales currently approach $1 billion, of which exports account for 85 per cent. Forward domestic and export contract commitments totalled 73 000 tU and 62 000 tU, respectively, as of early 1987

  7. Country Report on Building Energy Codes in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Shui, Bin; Evans, Meredydd

    2009-04-06

    This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America . This reports gives an overview of the development of building energy codes in Canada, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, lighting, and water heating) for commercial and residential buildings in Canada.

  8. The nuclear industry in Canada

    International Nuclear Information System (INIS)

    Anderson, D.; Broughton, W.

    1992-01-01

    The nuclear industry in Canada comprises three identifiable groups: (1) Atomic Energy of Canada Limited (AECL), (2) electrical utilities that use nuclear power plants, (3) private engineering and manufacturing companies. At the end of World War II, AECL was charged with investigating and developing peaceful uses of atomic power. Included in the results is the Canada deuterium uranium (CANDU) reactor, a peculiarly Canadian design. The AECL maintains research capability and operates as the prime nuclear steam supply system supplier. Utilities in three Canadian provinces operate nuclear power plants, New Brunswick, Quebec, and Ontario, with the majority in Ontario. From the beginning of the nuclear program in Canada, private industry has been an important partner to AECL and the utilities, filling roles as manufacturing subcontractors and as component designers. The prime objective of this paper is to illuminate the role of private industry in developing and maintaining a competitive world-class nuclear industry

  9. canada : tous les projets | Page 14 | CRDI - Centre de recherches ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Sujet: Science and Technology, MEDICAL RESEARCH, HUMAN GENETICS, GENETIC ENGINEERING, BIOTECHNOLOGY. Région: Brazil, South America, China, Far East Asia, India, South Africa, North of Sahara, South of Sahara, North and Central America, Central Asia, South Asia, Canada. Programme: Économies en ...

  10. canada : tous les projets | Page 16 | CRDI - Centre de recherches ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Sujet: Science and Technology, MEDICAL RESEARCH, HUMAN GENETICS, GENETIC ENGINEERING, BIOTECHNOLOGY. Région: Brazil, South America, China, Far East Asia, India, South Africa, North of Sahara, South of Sahara, North and Central America, Central Asia, South Asia, Canada. Programme: Économies en ...

  11. Environmental assessment for the manufacture and shipment of nuclear reactor fuel from the United States to Canada

    International Nuclear Information System (INIS)

    Rangel, R.C.

    1999-01-01

    The US Department of Energy (DOE) has declared 41.9 tons (38 metric tons) of weapons-usable plutonium surplus to the United States' defense needs. A DOE Programmatic Environmental Impact Statement analyzed strategies for plutonium storage and dispositioning. In one alternative, plutonium as a mixed oxide (MOX) fuel would be irradiated (burned) in a reengineered heavy-water-moderated reactor, such as the Canadian CANDU design. In an Environmental Assessment (EA), DOE proposes to fabricate and transport to Canada a limited amount of MOX fuel as part of the Parallex (parallel experiment) Project. MOX fuel from the US and Russia would be used by Canada to conduct performance tests at Chalk River Laboratories. MOX fuel would be fabricated at Los Alamos National Laboratory and transported in approved container(s) to a Canadian port(s) of entry on one to three approved routes. The EA analyzes the environmental and human health effects from MOX fuel fabrication and transportation. Under the Proposed Action, MOX fuel fabrication would not result in adverse effects to the involved workers or public. Analysis showed that the shipment(s) of MOX fuel would not adversely affect the public, truck crew, and environment along the transportation routes

  12. Environmental radioactivity in Canada, 1981

    International Nuclear Information System (INIS)

    McGregor, R.G.; Quinn, J.M.; Tracy, B.L.

    1983-01-01

    The radiological surveillance program of the Department of National Health and Welfare is conducted for the purpose of determining levels of environmental radioactivity in Canada and assessing the resulting population exposures. Special investigations were carried out during 1981 on bottled mineral waters and in conjunction with unusual occurences at nuclear reactor sites and a uranium refinery. Dose commitments have been estimated for the ongoing natural radioactivity, fallout and reactor studies. All measurements made during the year are below the limits recommended by the International Commission on Radiological Protection

  13. Government, utilities, industry and universities: partners for nuclear development in Canada and abroad

    International Nuclear Information System (INIS)

    Hurst, D.G.; Woolston, J.E.

    1971-09-01

    In Canada, eleven power reactors installed or committed at four sites will provide 5 520 MW(e) for an investment of $1 800 million. Uranium production during the decade 1958-1967 totalled 79 700 tonnes U 3 O 8 worth $1 621 million. For nuclear research, development and control, the federal government employs about 6 000 people and spends about $80 million/year which includes the cost of operating three major research reactors (> 30 MW each). Aggregate commercial isotope production has reached 14 megacuries, and Canada has about 3 000 licensed users. Three power and two research reactors of Canadian design are or will be installed in developing countries overseas. Legislation in 1946 made atomic energy a federal responsibility and established an Atomic Energy Control Board. The Board's regulations, which deal primarily with health, safety and security, are administered with the co-operation of appropriate departments of the federal and provincial governments. Large-scale nuclear research began in 1941 and continued under the National Research Council until 1952 when the federal government created a public corporation, Atomic Energy of Canada Limited, to take over both research and the exploitation of atomic energy. Another public corporation, Eldorado Nuclear Limited, conducts research and development on the processing of uranium and operates Canada's only uranium refinery, but prospecting and mining is undertaken largely by private companies. The publicly owned electrical utilities of Ontario and Quebec operate nuclear power stations and participate, with governments, in their financing. Private industry undertakes extensive development and manufacturing, mainly under contract to Atomic Energy of Canada Limited and the utilities, and industry has formed its own Canadian Nuclear Association. Canadian universities undertake nuclear research, and receive significant government support; one has operated a research reactor since 1959. Canada's nuclear program is

  14. CANDU Safety R&D Status, Challenges, and Prospects in Canada

    Directory of Open Access Journals (Sweden)

    W. Shen

    2015-01-01

    Full Text Available In Canada, safe operation of CANDU (CANada Deuterium Uranium; it is a registered trademark of Atomic Energy of Canada Limited reactors is supported by a full-scope program of nuclear safety research and development (R&D in key technical areas. Key nuclear R&D programs, facilities, and expertise are maintained in order to address the unique features of the CANDU as well as generic technology areas common to CANDU and LWR (light water reactor. This paper presents an overview of the CANDU safety R&D which includes background, drivers, current status, challenges, and future directions. This overview of the Canadian nuclear safety R&D programs includes those currently conducted by the COG (CANDU Owners Group, AECL (Atomic Energy of Canada Limited, Candu Energy Inc., and the CNSC (Canadian Nuclear Safety Commission and by universities via UNENE (University Network of Excellence in Nuclear Engineering sponsorship. In particular, the nuclear safety R&D program related to the emerging CANDU ageing issues is discussed. The paper concludes by identifying directions for the future nuclear safety R&D.

  15. Overview of Canada's uranium industry

    International Nuclear Information System (INIS)

    Lowell, A.F.

    1982-06-01

    This paper places Canada's uranium industry in its international context. Most uranium, except that produced in the United States, is traded internationally. A brief history of the industry worldwide is given to show how the principal producing areas have fared to date. The industry is young, highly cyclical, and still far from achieving stability. Uranium is a single end-use commodity, entirely dependent on the generation of electricity in nuclear stations, and is without price elasticity: lowering the price does not increase demand. The typical nuclear fuel processing chain has not encouraged or led to much vertical integration. Uranium is subject to more governmental control than any other commodity. The principal market is located in the industrial countries of western Europe, the United States, Canada, and the far east. The uranium supply-demand situation is reviewed, including the current and near-term oversupply and the longer term outlook to 1995. The major negative impact of reactor cancellations and deferments in the United States is discussed. Because of the difficulty in getting reactors on line, it has become easier to forecast the demand for uranium over the next 10 years. It is more difficult to predict how that demand will be met from the more than ample competing sources. Canada's potential for supplying a significant portion of this demand is considered in relation to producers and potential new producers in other countries

  16. Indian advanced nuclear reactors

    International Nuclear Information System (INIS)

    Saha, D.; Sinha, R.K.

    2005-01-01

    For sustainable development of nuclear energy, a number of important issues like safety, waste management, economics etc. are to be addressed. To do this, a number of advanced reactor designs as well as fuel cycle technologies are being pursued worldwide. The advanced reactors being developed in India are the AHWR and the CHTR. Both the reactors use thorium based fuel and have many passive features. This paper describes the Indian advanced reactors and gives a brief account of the international initiatives for the sustainable development of nuclear energy. (author)

  17. Energies in India

    International Nuclear Information System (INIS)

    Gama, Michel

    2013-01-01

    Based on information gathered during a mission in India, and also from reports and local newspapers and magazines, the author gives an overview of the energy issue in India: population, energy consumption, greenhouse gas emissions, electricity consumption, economic activities and life conditions, biomass production, potential for solar energy production, hydraulic energy production and operators, situation regarding coal, oil and natural gas as primary energies, situation of the nuclear industry and sector (international agreements and cooperation, reactor fleet, research centres). A table indicates the level and percentage of the different produced and imported consumed primary and final energies

  18. Opportunities and challenges related to the development of small modular reactors in mines in the Northern Territories of Canada

    Energy Technology Data Exchange (ETDEWEB)

    Sam-Aggrey, H., E-mail: godfree17@hotmail.com [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada)

    2016-06-15

    Small modular reactors (SMRs) are being touted as safer, more cost effective, and more flexible than traditional nuclear power plants. Consequently, it has been argued that SMR technology is pivotal to the revitalization of the nuclear industry at the national and global levels. Drawing mainly on previously published literature, this paper explores the opportunities and challenges related to the deployment of SMRs in the northern territories of Canada. The paper examines the potential role of SMRs in providing an opportunity for remote mines in northern Canada to reduce their vulnerability and dependence on costly, high-carbon diesel fuel. The paper also outlines and discusses some of the potential socio-economic barriers that could impede the successful introduction of SMRs in the territories. These issues include: economic factors (such as the price of primary minerals and economics of mineral exploration, and the cost of SMR deployment), the lack of infrastructure in the territories to support mining developments, and the issues pertaining to the social acceptance of nuclear power generation. (author)

  19. Uranium in Canada

    International Nuclear Information System (INIS)

    1985-09-01

    In 1974 the Minister of Energy, Mines and Resources (EMR) established a Uranium Resource Appraisal Group (URAG) within EMR to audit annually Canada's uranium resources for the purpose of implementing the federal government's uranium export policy. A major objective of this policy was to ensure that Canadian uranium supplies would be sufficient to meet the needs of Canada's nuclear power program. As projections of installed nuclear power growth in Canada over the long term have been successively revised downwards (the concern about domestic security of supply is less relevant now than it was 10 years ago) and as Canadian uranium supply capabilities have expanded significantly. Canada has maintained its status as the western world's leading exporter of uranium and has become the world's leading producer. Domestic uranium resource estimates have increased to 551 000 tonnes U recoverable from mineable ore since URAG completed its last formal assessment (1982). In 1984, Canada's five primary uranium producers employed some 5800 people at their mining and milling operations, and produced concentrates containing some 11 170 tU. It is evident from URAG's 1984 assessment that Canada's known uranium resources, recoverable at uranium prices of $150/kg U or less, are more than sufficient to meet the 30-year fuelling requirements of those reactors that are either in opertaion now or committed or expected to be in-service by 1995. A substantial portion of Canada's identified uranium resources, recoverable within the same price range, is thus surplus to Canadian needs and available for export. Sales worth close to $1 billion annually are assured. Uranium exploration expenditures in Canada in 1983 and 1984 were an estimated $41 million and $35 million, respectively, down markedly from the $128 million reported for 1980. Exploration drilling and surface development drilling in 1983 and 1984 were reported to be 153 000 m and 197 000 m, respectively, some 85% of which was in

  20. india : tous les projets | Page 2 | CRDI - Centre de recherches pour ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Ce projet produira des données probantes pour aider à orienter les stratégies de traitement chez les patients atteints de déficits de la mémoire et à réduire les symptômes associés à la maladie d'Alzheimer. Région: Canada, Israel, India. Programme: Programme de recherche en santé Canada-Israël. Financement total ...

  1. International Thermonuclear Experimental Reactor

    International Nuclear Information System (INIS)

    Blevins, J.D.; Stasko, R.R.

    1989-09-01

    An international design team comprised of members from Canada, Europe, Japan, the Soviet Union, and the United States of America, are designing an experimental fusion test reactor. The engineering and testing objectives of this International Thermonuclear Experimental Reactor (ITER) are to validate the design and to demonstrate controlled ignition, extended burn of a deuterium and tritium plasma, and achieve steady state using technology expected to be available by 1990. The concept maximizes flexibility while allowing for a variety of plasma configurations and operating scenarios. During physics phase operation, the machine produces a 22 MA plasma current. In the technology phase, the machine can be reconfigured with a thicker shield and a breeding blanket to operate with an 18 MA plasma current at a major radius of 5.5 meters. Canada's involvement in the areas of safety, facility design, reactor configuration and maintenance builds on our internationally recognized design and operational expertise in developing tritium processes and CANDU related technologies

  2. Nuclear India: a dream gone sour

    International Nuclear Information System (INIS)

    Smith, Hugo; Cutler, J.

    1992-01-01

    India has the fastest growing nuclear programme in the world. Initially American and Canadian technology was used and reactors built to western designs. Now, however, India is self sufficient over all the fuel cycle from uranium mining to waste processing. Reactors are built to Indian design. This article, based on information collected for a television programme shown in the UK in September 1992, claims that workers in the nuclear industry and people living near nuclear plant are knowingly exposed to very high radiation levels. This has resulted in many deaths and congenital abnormalities in children. The industry is surrounded by secrecy and no information is given to those who work in it; military stockpiling for nuclear weapons is suspected. (UK)

  3. MAPLE research reactor beam-tube performance

    International Nuclear Information System (INIS)

    Lee, A.G.; Lidstone, R.F.; Gillespie, G.E.

    1989-05-01

    Atomic Energy of Canada Limited (AECL) has been developing the MAPLE (Multipurpose Applied Physics Lattice Experimental) reactor concept as a medium-flux neutron source to meet contemporary research reactor applications. This paper gives a brief description of the MAPLE reactor and presents some results of computer simulations used to analyze the neutronic performance. The computer simulations were performed to identify how the MAPLE reactor may be adapted to beam-tube applications such as neutron radiography

  4. NPP construction cost in Canada

    International Nuclear Information System (INIS)

    Gorshkov, A.L.

    1988-01-01

    The structure of capital costs during NPP construction in Canada is considered. Capital costs comprise direct costs (cost of the ground and ground rights, infrastructure, reactor equipment, turbogenerators, electrotechnical equipment, auxiliary equipment), indirect costs (construction equipment and services, engineering works and management services, insurance payments, freight, training, operating expenditures), capital per cents for the period of construction and cost of heavy water storages. It proceeds from the analysis of the construction cost structure for a NPP with the CANDU reactor of unit power of 515, 740 and 880 MW, that direct costs make up on the average 62%

  5. Landmark survey tracks decade of changes in India's rural schools ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2011-12-21

    Dec 21, 2011 ... These are just a few comments from parents of school-aged children in rural ... Landmark survey tracks decade of changes in India's rural schools ... funded by Canada's International Development Research Centre (IDRC).

  6. The first university research reactor in India

    International Nuclear Information System (INIS)

    Murthy, G.S.

    1999-01-01

    At low power research reactor is being set up in Andhra University to cater to the needs of researchers and isotope users by the Department of Atomic Energy in collaboration with Andhra University. This reactor is expected to be commissioned by 2001-02. Departments like Chemistry, Earth Sciences, Physics, Life Sciences, Pharmacy, Medicine and Engineering would be the beneficiaries of the availability of this reactor. In this paper, details of the envisaged research programme and training activities are discussed. (author)

  7. Fast reactor programme in India

    Indian Academy of Sciences (India)

    2015-09-04

    , mainly pressurized heavy water reactors (PHWRs) to .... plug housing 12 absorber rod drive mechanisms is supported on ... state-of-art erection equipments and construction methodologies and .... This decision is taken after.

  8. The Storage of Thermal Reactor Safety Analysis data (STRESA)

    International Nuclear Information System (INIS)

    Tanarro Colodron, J.

    2016-01-01

    Full text: Storage of Thermal Reactor Safety Analysis data (STRESA) is an online information system that contains three technical databases: 1) European Nuclear Research Facilities, open to all online visitors; 2) Nuclear Experiments, available only to registered users; 3) Results Data, being the core content of the information system, its availability depends on the role and organisation of each user. Its main purpose is to facilitate the exchange of experimental data produced by large Euratom funded scientific projects addressing severe accidents, providing at the same time a secure repository for this information. Due to its purpose and architecture, it has become an important asset for networks of excellence as SARNET or NUGENIA. The Severe Accident ResearchNetwork of Excellence (SARNET)was set up in 2004 under the aegis of the research Euratom Framework Programmes to study severe accidents in watercooled nuclear power plants. Coordinated by the IRSN, SARNET unites 43 organizations involved in research on nuclear reactor safety in 18 European countries plus the USA, Canada, South Korea and India. In 2013, SARNET became fully integrated in the Technical Area N2(TA2), named “Severe accidents” of NUGENIA association, devoted to R&D on fission technology of Generation II and III. (author

  9. Research reactor put Canada in the nuclear big time

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    The history of the NRX reactor is briefly recounted. When NRX started up in 1947, it was the most powerful neutron source in the world. It is now the oldest research reactor still operating. NRX had to be rebuilt after an accident in 1952, and its calandria was changed again in 1970. Loops in NRX were used to test fuel for the Nautilus submarine, and the first zircaloy pressure tube in the world. At the present time, NRX is in a 'hot standby' condition as a backup to the NRU reactor, which is used mainly for isotope production. NRX will be decommissioned after completion and startup of the new MAPLE-X reactor

  10. Thermal-hydraulic interfacing code modules for CANDU reactors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W.S.; Gold, M.; Sills, H. [Ontario Hydro Nuclear, Toronto (Canada)] [and others

    1997-07-01

    The approach for CANDU reactor safety analysis in Ontario Hydro Nuclear (OHN) and Atomic Energy of Canada Limited (AECL) is presented. Reflecting the unique characteristics of CANDU reactors, the procedure of coupling the thermal-hydraulics, reactor physics and fuel channel/element codes in the safety analysis is described. The experience generated in the Canadian nuclear industry may be useful to other types of reactors in the areas of reactor safety analysis.

  11. Thermal-hydraulic interfacing code modules for CANDU reactors

    International Nuclear Information System (INIS)

    Liu, W.S.; Gold, M.; Sills, H.

    1997-01-01

    The approach for CANDU reactor safety analysis in Ontario Hydro Nuclear (OHN) and Atomic Energy of Canada Limited (AECL) is presented. Reflecting the unique characteristics of CANDU reactors, the procedure of coupling the thermal-hydraulics, reactor physics and fuel channel/element codes in the safety analysis is described. The experience generated in the Canadian nuclear industry may be useful to other types of reactors in the areas of reactor safety analysis

  12. canada : tous les projets | Page 8 | CRDI - Centre de recherches ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Région: Brazil, South America, Canada, North and Central America, India, Far East Asia, South Korea, Central Asia, South Asia. Programme: Économies en réseaux. Financement total : CA$ 203,800.00. Modalités institutionnelles pour faire des partenariats de recherche universités-communautés une pratique courante.

  13. The training and qualification of nuclear power plant operations personnel in Canada. A regulatory overview

    International Nuclear Information System (INIS)

    Thomas, R.

    1993-01-01

    This report gives the history of training programmes for reactor operation personnel in Canada. With increased experience in reactor operation and awareness of reactor safety, more importance is given to the selection of a candidate and his training as control room operator or shift supervisor

  14. Tenth annual conference of the CFD Society of Canada (CFD 2002). Proceedings

    International Nuclear Information System (INIS)

    Barron, R.M.

    2002-01-01

    The Tenth Annual Conference of the CFD Society of Canada, CFD 2002, was held in Windsor, Ontario from June 9-11, 2002. Contributions and participation were from many countries including Canada, United States, United Kingdom, France, Belgium, Germany, Iran, India, Pakistan, China, Japan, Singapore, Kuwait and Russia. The proceedings are a collection of the papers received covering the spectrum of computational fluid dynamics (CFD) from fundamental advances to improved algorithms to traditional and innovative applications. There is also a special session on automotive applications

  15. Design requirements for new nuclear reactor facilities in Canada

    International Nuclear Information System (INIS)

    Shim, S.; Ohn, M.; Harwood, C.

    2012-01-01

    The Canadian Nuclear Safety Commission (CNSC) has been establishing the regulatory framework for the efficient and effective licensing of new nuclear reactor facilities. This regulatory framework includes the documentation of the requirements for the design and safety analysis of new nuclear reactor facilities, regardless of size. For this purpose, the CNSC has published the design and safety analysis requirements in the following two sets of regulatory documents: 1. RD-337, Design of New Nuclear Power Plants and RD-310, Safety Analysis for Nuclear Power Plants; and 2. RD-367, Design of Small Reactor Facilities and RD-308, Deterministic Safety Analysis for Small Reactor Facilities. These regulatory documents have been modernized to document past practices and experience and to be consistent with national and international standards. These regulatory documents provide the requirements for the design and safety analysis at a high level presented in a hierarchical structure. These documents were developed in a technology neutral approach so that they can be applicable for a wide variety of water cooled reactor facilities. This paper highlights two particular aspects of these regulatory documents: The use of a graded approach to make the documents applicable for a wide variety of nuclear reactor facilities including nuclear power plants (NPPs) and small reactor facilities; and, Design requirements that are new and different from past Canadian practices. Finally, this paper presents some of the proposed changes in RD-337 to implement specific details of the recommendations of the CNSC Fukushima Task Force Report. Major changes were not needed as the 2008 version of RD-337 already contained requirements to address most of the lessons learned from the Fukushima event of March 2011. (author)

  16. A report of the overall working group of the AEC Committee on Development of Advanced Power Reactors

    International Nuclear Information System (INIS)

    1979-01-01

    The AEC Committee on Development of Advanced Power Reactors was set up in April, 1978, following on the previous AEC Special Committee on Development of Advanced Power Reactors, in order to study on the complementary power reactors between current LWRs and future FBRs. The subjects of study by the overall working group are the status of advanced power reactors in views of the nuclear fuel cycle, the impacts on industries, the selection of reactor types under present international circumstances, and the evaluation of advanced power reactors in their technology and economy. The following matters are described: evaluations in view of the nuclear fuel cycle, i.e. the features of the ATR of Japan and CANDU reactors of Canada; international problems concerning nuclear nonproliferation and securing of uranium; problems in the diversification of power reactor types concerning the expenditure and technology; problems of technology in the ATR of Japan, CANDU reactors of Canada and Pu utilization for LWRs; and the economy of D 2 O power reactors, i.e. the ATR of Japan and CANDU reactors of Canada. (J.P.N.)

  17. A study on the establishment of component/equipment performance criteria considering Heavy Water Reactor characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Keun Sun; Kwon, Young Chul; Lee, Min Kyu; Lee, Yun Soo [Sunmoon Univ., Asan (Korea, Republic of); Chang, Seong Hoong; Ryo, Chang Hyun [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of); Kim, Soong Pyung; Hwnag, Jung Rye; Chung, Chul Kee [Chosun Univ., Gwangju (Korea, Republic of)

    2002-03-15

    Foreign and domestic technology trends, regulatory requirements, design and researches for heavy water reactors are analyzed. Safety design guides of Canada industry and regulatory documents and consultative documents of Canada regulatory agency are reviewed. Applicability of MOST guidance 16 Revision 'guidance for technical criteria of nuclear reactor facility' is reviewed. Specific performance criteria are established for components and facilities for heavy water reactor.

  18. Life extension activities and modernization strategies for instrumentation ampersand control systems of research and power reactors in India

    International Nuclear Information System (INIS)

    Chaganty, S.P.; Bairi, B.R.

    1993-01-01

    Based on three and half decades of experience gained in the operation and maintenance of Instrumentation and Control Systems of nuclear reactors in India, specific investigations were made to understand various aspects of aging. The analysis of the failure rates of various instruments, plant outage figures and obsolescence of components have necessitated the replacement of instrumentation to improve the reliability and performance. The aging models available were used to determine the extent of performance degradation and to formulate maintenance strategies. The nuclear instrumentation of the aging research reactors at Bhabha Atomic Research Centre (BARC) has been replaced with high reliability equipment using modern integrated circuits. This has resulted in an improvement in the mean time between failure (MTBF) by a factor of five. The neutronic instrumentation of Fast Breeder Test Reactor (FBTR) at Madras is currently being upgraded with the introduction of microprocessor based safety units for reactivity computation and online testing of safety logic with Fine Impulse Technique. The operating experience has also indicated the necessity of developing online surveillance methods and status monitoring of various systems to detect aging. Online cable insulation measurement technique and noise analysis methods for vibration monitoring have been developed. Campbell method of signal processing has been successfully used in extending the useful life of Local Power Range monitors in the Boiling Water Reactor at Tarapur. In order to improve reliability, accuracy and provide efficient man machine interface, microprocessor based systems with online testing features have been installed in power reactors. These include the high performance reactor regulating system and centralised radiation monitoring systems commissioned at Kakrapara power station. The paper describes the above systems and the modernization strategies for nuclear instrumentation and control

  19. Canada's commitment to nuclear technology

    International Nuclear Information System (INIS)

    Stewart, Murray J.

    1998-01-01

    This paper gives a broad update on all facets of the Canadian nuclear industry and demonstrates Canada's continuing commitment to nuclear technology. Canada has developed a global leadership position in nuclear technology for power generation, uranium production and isotope supply. This commitment is being further enhanced by successes in international markets with Candu technology, new uranium mine developments in our province of Saskatchewan, and expanding isotope capabilities including the construction of two new production reactors. Korea's economy is benefiting through collaboration with Canada's leading nuclear companies, both in Korea and Canada. These collaborations have the potential to expand considerably with the implementation of the Kyoto Framework Convention on Climate Change and the anticipated increased demand for new nuclear power generation installations in all major global markets. Much has been publicized about the situation surrounding Ontario Hydro Nuclear and its nuclear recovery program. This paper gives the background and highlights the actions within Ontario and Ontario Hydro designed to ensure the long term recovery of all twenty nuclear units in Ontario. The presentation at the conference will bring the audience completely up-to-date on recent events. (author)

  20. The relationship between natural uranium and advanced fuel cycles in CANDU reactors

    International Nuclear Information System (INIS)

    Lane, A.D.; McDonnell, F.N.; Griffiths, J.

    1988-11-01

    CANDU is the most uranium-economic type of thermal power reactor, and is the only type used in Canada. CANDU reactors consume approximately 15% of Canadian uranium production and support a fuel service industry valued at ∼$250 M/a. In addition to their once-through, natural-uranium fuel cycle, CANDU reactors are capable of operating with slightly-enriched uranium (SEU), uranium-plutonium and thorium cycles, more efficiently than other reactors. Only SEU is economically attractive in Canada now, but the other cycles are of interest to countries without indigenous fuel resources. A program is underway to establish the fuel technologies necessary for the use of SEU and the other fuel cycles in CANDU reactors. 22 refs

  1. India's nuclear power programme and constraints encountered in its implementation

    International Nuclear Information System (INIS)

    Sethna, H.N.; Srinivasan, M.R.

    1977-01-01

    Nuclear power development in India is based on the natural uranium fuelled pressurised heavy water reactors. However, in order to acquire early experience in operation and maintenance of nuclear power stations, India's first atomic power station comprised of two units of boiling water reactors. Subsequent nuclear power stations currently in operation or under construction employ natural uranium heavy water reactors and each of the stations is a two reactor installation. While the first two nuclear power stations employ reactors with an output of 235 MW. 500 MW heavy water reactors are visualised for the period beyond 1985. The first nuclear power station was essentially fully imported; the second nuclear power station which employs heavy water reactors already has a significant contribution of equipment manufactured in India. For the third nuclear power station and the subsequent one, practically all equipment is being manufactured indigenously. The nuclear power station at Narora is in a seismic region and hence the design is substantially more advanced than the ones at the earlier sites and also employs concepts which will be used in the 500 MW reactors. Efforts are being made in the country to integrate power generation systems into larger regional grids and eventually into a national grid; however, the distributed nature of power generation at present and other infrastructural limitations still favour small and medium size plants only. The paper brings out the efforts put in over the last ten years in establishing capability for design and manufacture of all equipment and systems required for nuclear power plants. A major constraint in expanding the nuclear power capacity is naturally related to the competing demands on available national resources. The paper also discusses other constraints than purely technological and financial and describes how efforts are being made to overcome these contraints

  2. The advanced MAPLE reactor concept

    International Nuclear Information System (INIS)

    Lidstone, R.F.; Lee, A.G.; Gillespie, G.E.; Smith, H.J.

    1989-01-01

    In Canada the need for advanced neutron sources has long been recognized. During the past several years Atomic Energy of Canada Limited (AECL) has been developing the new MAPLE multipurpose reactor concept. To date, the MAPLE program has focused on the development of a modest-cost multipurpose medium-flux neutron source to meet contemporary requirements for applied and basic research using neutron beams, for small-scale materials testing and analysis and for radioisotope production. The basic MAPLE concept incorporates a compact light-water cooled and moderated core within a heavy water primary reflector to generate strong neutron flux levels in a variety of irradiation facilities. In view of renewed Canadian interest in a high-flux neutron source, the MAPLE group has begun to explore advanced concepts based on AECL's experience with heavy water reactors. The overall objective is to define a high-flux facility that will support materials testing for advanced power reactors, new developments in extracted neutron-beam applications, and/or production of radioisotopes. The design target is to attain performance levels of HFR-Grenoble, HFBR, HFIR in a new heavy water-cooled, -moderated,-reflected reactor based on rodded LEU fuel. Physics, shielding, and thermohydraulic studies have been performed for the MAPLE heavy water reactor. 14 refs., 4 figs., 1 tab

  3. Environmental radioactivity in Canada, July - December 1979

    International Nuclear Information System (INIS)

    1980-10-01

    In this report data are presented for the natural background levels of radiation experienced in Canada during the last half of 1979, and for the radiation doses received due to fallout and the operation of nuclear power plants, the Nanticoke coal-fired power plant, and various research reactors

  4. Tritium activities in Canada

    International Nuclear Information System (INIS)

    Gierszewski, P.

    1995-01-01

    Canadian tritium activites comprise three major interests: utilites, light manufacturers, and fusion. There are 21 operating CANDU reactors in Canada; 19 with Ontario Hydro and one each with Hydro Quebec and New Brunswick Power. There are two light manufacturers, two primary tritium research facilities (at AECL Chalk River and Ontario Hydro Technologies), and a number of industry and universities involved in design, construction, and general support of the other tritium activities. The largest tritum program is in support of the CANDU reactors, which generate tritium in the heavy water as a by-product of normal operation. Currently, there are about 12 kg of tritium locked up in the heavy water coolant and moderator of these reactors. The fusion work is complementary to the light manufacturing, and is concerned with tritium handling for the ITER program. This included design, development and application of technologies related to Isotope Separation, tritium handling, (tritiated) gas separation, tritium-materials interaction, and plasma fueling

  5. Fast breeder reactor safety : a perspective

    International Nuclear Information System (INIS)

    Kale, R.D.

    1992-01-01

    Taking into consideration India's limited reserves of natural and vast reserves of thorium, the fast reactor route holds a great promise for India's energy supply in future. The fast reactor fueled with 239 Pu/ 238 U (unused or depleted) produces (breeds) more fissionable fuel material 239 Pu than it consumes. Calculations show that a fast breeder reactor (FBR) increases energy potential of natural uranium by about 60 times. As the fast reactor can also convert 232 Th into 233 U which is a fissionable material, it can make India's thorium reserves a source of almost inexhaustible energy supply for a long time to come. Significant advantage of FBR plants cooled by sodium and their world-wide operating experience are reviewed. There are two main safety issues of FBR, one nuclear and the other non-nuclear. The nuclear issue concerns core disruptive accident and the non-nuclear one concerns the high chemical energy potential of sodium. These two issues are analysed and it is pointed that they are manageable by current design, construction and operational practices. Main findings of safety research during the last six to eight years in West European Countries and United States of America (US) are summarised. Three stage engineered safety provision incorporated into the design of the sodium cooled Fast Breeder Test Reactor (FBTR) commissioned at Kalpakkam are explained. The important design safety features of FBTR such as primary system containment, emergency core cooling, plant protection system, inherent safety features achieved through reactivity coefficients, and natural convection cooling are discussed. Theoretical analysis and experimental research in fast reactor safety carried out at the Indira Gandhi Centre for Atomic Research during the past some years are reviewed. (M.G.B.)

  6. Restructuring of Canada's nuclear utilities: recent developments

    International Nuclear Information System (INIS)

    Guindon, S.

    1998-01-01

    Business decisions relating to the electric power sector are a provincial responsibility in Canada. The federal government looks to the three nuclear utilities to manage their nuclear assets and maintain them in a way that maximizes their reliability, efficiency and overall performance. A significant development in Canada's nuclear sector in the past year was the Ontario Hydro Nuclear Asset Optimization Plan. Structural change in the North American electricity market is a major impetus for decisions regarding nuclear assets by Canada's electric power utilities. The Ontario government is now taking steps to introduce competition in the Ontario Electricity market. The province of New Brunswick, which has one reactor at Point Lepreau which supplies one-third of the province's electricity, is also taking measures to introduce competition in its electricity market. (author)

  7. ZEEP: Canada's first nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Green, R.E.; Okazaki, A. [retired, Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2015-09-15

    In 1905 Albert Einstein published his historic paper on special relativity, which contained the equation E=mc 2. The significance of this mass-energy relationship became evident with the discovery of nuclear fission in 1939, when it was realized that large amounts of energy would be released in a fission chain reaction. Canadian scientists were involved in this field from the beginning and their efforts resulted in the startup in September 1945 of the ZEEP reactor at Chalk River, the first reactor to go critical outside the USA. In this paper we recall some of the events that led to the construction of ZEEP, and describe the role it played in the development of the Canadian nuclear energy program. (author)

  8. Achieving Homi Bhabha's vision for the future of India

    International Nuclear Information System (INIS)

    Lauvergeon, Anne

    2009-01-01

    Full text: More than four decades ago, as Dr Homi Jehangir Bhabha pronounced the concept of the 3-stage nuclear program, he was addressing the need for nuclear energy in developing countries. His vision was to develop Indian nuclear infrastructure, considering the lack of domestic energy resources and the need to develop new technology. Nuclear Energy has a great role to play in India and India can now play a key role in the development of nuclear energy. If the planned role of the thorium resource makes the 3-stage program unique, France and India share the same vision about the overall role of nuclear energy. They both consider nuclear as part of the solution for a sustained economic growth in a carbon-constrained world, addressing climate change issues. France and India share the same nuclear history: France was one of the first countries to start cooperation with Indian nuclear institutes in the early 50's (CEA-TIFR agreement in 1951) and when international nuclear trade with India eventually resumed at the end of 2008, AREVA was the first supplier of natural uranium to DAE for use in NPCIL safeguarded reactors. India has great plans to develop its infrastructure and add electric generation capacities. In addition to the domestic effort and the strengths of the existing nuclear industrial and scientific base in the country, India can draw great benefits from cooperating with foreign reactor vendors: It will help capacity addition going faster and keeps in line with the 3-stage program. Nuclear power is a long-term investment that India can afford. The intrinsic benefits of larger size imported reactors in rapidly growing economies are manifold: benefits to the grid, ability to meet pace of demand faster, ability to place reactors closer to power utilization centers-all this has a true value, also called positive externalities. Efficient cooperation between Indian and foreign industries and efficient cooperation in project management will be key to achieve these

  9. Overview on recent developments: alternative isotope production methods in Canada

    International Nuclear Information System (INIS)

    Huynh, K.

    2012-01-01

    The purpose of this paper is to provide an update on the Government of Canada's programs in alternative isotope production methods for securing supply of technetium 99m for Canadians. The supply disruptions of isotopes in 2007 and 2009/2010 caused by unplanned outages at AECL's National Research Universal (NRU) reactor highlighted the fragility of the supply chain that delivers medical isotopes, specifically Technetium 99m (Tc99m) to patients in Canada and globally. Tc99m, which is derived from its parent, molybdenum99 (Mo99) is the most widely used medical isotope for imaging, and accounts for 80 percent of nuclear medicine diagnostic procedures. Prior to the outage, nearly all the Mo99 produced for the world market came from five aging government owned research reactors in Canada, France, the Netherlands, Belgium and South Africa. The NRU, the largest of these, produced about 30 to 40 percent of the world supply of isotopes prior to 2009 - since its return to service in 2010, its world market share is estimated at 15 to 20%.

  10. Atomic Energy of Canada Limited 2007 annual financial report

    International Nuclear Information System (INIS)

    2007-01-01

    This is the annual report of Atomic Energy of Canada Limited for the year ending March 31, 2007 and summarizes the financial activities of AECL during the period 2006-2007. The highlights for this period include increase in consolidated commercial revenue by 40%, progress on the Cernavoda reactor, increased investment in the safety and performance of the CANDU fleet and a memorandum of understanding with Natural Resources Canada to govern implementation of a five-year waste management and decommissioning plan.

  11. The multi-role nature of the SLOWPOKE-2 facility at the Royal Military College of Canada

    International Nuclear Information System (INIS)

    Bennett, L.G.I.; Beeley, P.A.

    1994-01-01

    After up to a decade of successful operation of seven SLOWPOKE-2 reactors within Canada and in Jamaica, an eighth SLOWPOKE-2 research reactor was installed at the Royal Military College of Canada in 1985. Its open pool was one factor that allowed the authors to develop a variety of research capabilities beyond those being established for NAA. A description of the research projects to date will serve to indicate the diversity of this facility. (author) 14 refs.; 4 figs.; 1 tab

  12. India | Page 4 | IDRC - International Development Research Centre

    International Development Research Centre (IDRC) Digital Library (Canada)

    Researchers in Canada, Israel and India believe music can offer clues about the ability of the brain to transfer learning. This article is part of an ongoing series of stories about innovative projects in the developing world, a partnership between IDRC and Canadian Geographic. Read the full story · Read more about Tuning ...

  13. The Maple reactor project

    International Nuclear Information System (INIS)

    Malkoske, G.R.; Labrie, J.-P.

    2003-01-01

    MDS Nordion supplies the majority of the world's reactor-produced medical isotopes. These isotopes are currently produced in the NRU reactor at AECL's Chalk River Laboratories (CRL). Medical isotopes and related technology are relied upon around the world to prevent, diagnose and treat disease. The NRU reactor, which has played a key role in supplying medical isotopes to date, has been in operation for over 40 years. Replacing this aging reactor has been a priority for MDS Nordion to assure the global nuclear medicine community that Canada will continue to be a dependable supplier of medical isotopes. MDS Nordion contracted AECL to construct two MAPLE reactors dedicated to the production of medical isotopes. The MDS Nordion Medical Isotope Reactor (MMIR) project started in September 1996. This paper describes the MAPLE reactors that AECL has built at its CRL site, and will operate for MDS Nordion. (author)

  14. The advanced MAPLE reactor concept

    International Nuclear Information System (INIS)

    Lidstone, R.F.; Lee, A.G.; Gillespie, G.E.; Smith, H.J.

    1989-01-01

    High-flux neutron sources are continuing to be of interest both in Canada and internationally to support materials testing for advanced power reactors, new developments in extracted-neutron-beam applications, and commercial production of selected radioisotopes. The advanced MAPLE reactor concept has been developed to meet these needs. The advanced MAPLE reactor is a new tank-type D 2 O reactor that uses rodded low-enrichment uranium fuel in a compact annular core to generate peak thermal-neutron fluxes of 1 x 10 19 n·s -1 in a central irradiation rig with a thermal power output of 50 MW. Capital and incremental development costs are minimized by using MAPLE reactor technology to the greatest extent practicable

  15. Canada : tous les projets | Page 3 | CRDI - Centre de recherches ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Ce projet produira des données probantes pour aider à orienter les stratégies de traitement chez les patients atteints de déficits de la mémoire et à réduire les symptômes associés à la maladie d'Alzheimer. Région: India, Canada, Israel. Programme: Foundations for Innovation. Financement total : CA$ 669,937.00.

  16. Reactivity requirements and safety systems for heavy water reactors

    International Nuclear Information System (INIS)

    Kati, S.L.; Rustagi, R.S.

    1977-01-01

    The natural uranium fuelled pressurised heavy water reactors are currently being installed in India. In the design of nuclear reactors, adequate attention has to be given to the safety systems. In recent years, several design modifications having bearing on safety, in the reactor processes, protective and containment systems have been made. These have resulted either from new trends in safety and reliability standards or as a result of feed-back from operating reactors of this type. The significant areas of modifications that have been introduced in the design of Indian PHWR's are: sophisticated theoretical modelling of reactor accidents, reactivity control, two independent fast acting systems, full double containment and improved post-accident depressurisation and building clean-up. This paper brings out the evolution of design of safety systems for heavy water reactors. A short review of safety systems which have been used in different heavy water reactors, of varying sizes, has been made. In particular, the safety systems selected for the latest 235 MWe twin reactor unit station in Narora, in Northern India, have been discussed in detail. Research and Development efforts made in this connection are discussed. The experience of design and operation of the systems in Rajasthan and Kalpakkam reactors has also been outlined

  17. Canada in the world power market

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    The role of Canadian exports in power projects and industrial development throughout the world is discussed in a series of regional articles. Interest in Canada's CANDU reactor system by Yugoslavia, Mexico and Japan is discussed along with progress being made with the CANDU project in Korea. Other technological projects for the Americas, Europe, Asia and Africa are also described. (T.I.)

  18. Uranium in Canada

    International Nuclear Information System (INIS)

    1989-01-01

    In 1988 Canada's five uranium producers reported output of concentrate containing a record 12,470 metric tons of uranium (tU), or about one third of total Western world production. Shipments exceeded 13,200 tU, valued at $Cdn 1.1 billion. Most of Canada's uranium output is available for export for peaceful purposes, as domestic requirements represent about 15 percent of production. The six uranium marketers signed new sales contracts for over 11,000 tU, mostly destined for the United States. Annual exports peaked in 1987 at 12,790 tU, falling back to 10,430 tU in 1988. Forward domestic and export contract commitments were more than 70,000 tU and 60,000 tU, respectively, as of early 1989. The uranium industry in Canada was restructured and consolidated by merger and acquisition, including the formation of Cameco. Three uranium projects were also advanced. The Athabasca Basin is the primary target for the discovery of high-grade low-cost uranium deposits. Discovery of new reserves in 1987 and 1988 did not fully replace the record output over the two-year period. The estimate of overall resources as of January 1989 was down by 4 percent from January 1987 to a total (measured, indicated and inferred) of 544,000 tU. Exploration expenditures reached $Cdn 37 million in 1987 and $59 million in 1988, due largely to the test mining programs at the Cigar Lake and Midwest projects in Saskatchewan. Spot market prices fell to all-time lows from 1987 to mid-1989, and there is little sign of relief. Canadian uranium production capability could fall below 12,000 tU before the late 1990s; however, should market conditions warrant output could be increased beyond 15,000 tU. Canada's known uranium resources are more than sufficient to meet the 30-year fuel requirements of those reactors in Canada that are now or are expected to be in service by the late 1990s. There is significant potential for discovering additional uranium resources. Canada's uranium production is equivalent, in

  19. Review of fast reactor activities in India (1983-84)

    International Nuclear Information System (INIS)

    Paranjpe, S.R.

    1984-01-01

    The last year was very significant for the Indian Nuclear Energy Programme as the first indigeneously built heavy water moderated natural uranium reactor called Madras Atomic Power Plant Unit-I was made operational and connected to the grid. The power level has been gradually increased and the reactor has been operating at a power level of 200 MWe (temporarily limited by Plutonium build up during approach to equilibrium core loading). The 'plutonium peak' will be crossed shortly clearing the way for raising the reactor to the full power of 235 MWe gross. The second unit of MAPP, is well advanced and barring unforeseen difficulties, is expected to become operational during this financial year. This has been a big morale booster for the programme in general and the Fast Reactor Programme in particular as plutonium produced in these reactors is expected to be the inventory for Prototype Fast Breeder Reactors. It may be recalled that in the last report to this group, a reference was made to initiation of some preliminary design studies for such a reactor

  20. The Canadian research reactor spent fuel situation

    International Nuclear Information System (INIS)

    Ernst, P.C.

    1996-01-01

    This paper summarizes the present research reactor spent fuel situation in Canada. The research reactors currently operating are listed along with the types of fuel that they utilize. Other shut down research reactors contributing to the storage volume are included for completeness. The spent fuel storage facilities associated with these reactors and the methods used to determine criticality safety are described. Finally the current inventory of spent fuel and where it is stored is presented along with concerns for future storage. (author). 3 figs

  1. Environmental radioactivity in Canada 1986

    International Nuclear Information System (INIS)

    1987-01-01

    The radiological surveillance program of the Department of National Health and Welfare is conducted for the purpose of determining levels of environmental radioactivity in Canada and assessing the resulting population exposures. During 1986 the program was strongly influenced by radioactive fallout on Canada resulting from the Chernobyl nuclear reactor accident on April 26, 1986 in the Soviet Ukraine. The Environmental Radiation Hazards Division (ERHD) increased its frequency of analyses of environmental samples immediately following the accident. Interim screening limits for foodstuffs were developed. A measurement program for radioactivity in domestic and imported foods was implemented. The ERHD measurement program was supplemented by additional measurements conducted by many other private and government laboratories. Radiation doses to Canadian from Chernobyl fallout were extremely low with no group in the population receiving more than 10 microsieverts

  2. IAEA issues recommendations regarding temporary restart of Dutch reactor

    International Nuclear Information System (INIS)

    2009-01-01

    Full text: An IAEA-led international team of nuclear reactor safety experts completed a safety review mission on 18 February at the High Flux Reactor (HFR) at Petten, in the Netherlands. The mission was conducted at the request of the Government of the Netherlands to review a set of previous evaluations made by the Dutch regulatory authority regarding the reactor's safety. The IAEA mission made a series of recommendations to enhance the safety of the year-long temporary restart. The recommendations included: - Performance of the monitoring system for leaks should be rigorously checked during the interim year of operation; - Temporary operation of the HFR cannot be extended beyond 1 March 2010; and - In case of any detected leakage from the coolant pipes, the reactor should be shut down immediately and repaired before restarting. The international team was composed of one IAEA staff member and five external experts from Argentina, Canada, France, India and South Africa. The IAEA's main conclusions and recommendations were presented in The Hague to the Ministry of Housing, Spatial Planning and the Environment and several other ministries. The team also provided a summary of its findings to the Netherlands Regulatory Authority. The team's final report will be submitted within two weeks. The HFR at Petten is one of five research reactors in the world that produces radioactive medical isotopes, used an estimated 40 million times annually for cancer treatment and the diagnosis of heart attacks. Prolonged outages at any of these five reactors have a far-reaching impact on medical treatments and diagnoses for patients around the globe. Since August 2008, the HFR reactor has been in shut-down status due to corrosion of pipes in its primary cooling circuit. The Nuclear Research and Consultancy Group (NRG), the operating organization for Petten, proposed a one-year restart of the HFR reactor, which was approved by the Dutch regulatory body. The reactor then resumed operation

  3. Validation of NESTLE against static reactor benchmark problems

    International Nuclear Information System (INIS)

    Mosteller, R.D.

    1996-01-01

    The NESTLE advanced nodal code was developed at North Carolina State University with support from Los Alamos National Laboratory and Idaho National Engineering Laboratory. It recently has been benchmarked successfully against measured data from pressurized water reactors (PWRs). However, NESTLE's geometric capabilities are very flexible, and it can be applied to a variety of other types of reactors. This study presents comparisons of NESTLE results with those from other codes for static benchmark problems for PWRs, boiling water reactors (BWRs), high-temperature gas-cooled reactors (HTGRs), and Canada deuterium uranium (CANDU) heavy-water reactors (HWRs)

  4. Fortification of foods with vitamin D in India.

    Science.gov (United States)

    G, Ritu; Gupta, Ajay

    2014-09-12

    Vitamin D deficiency is widely prevalent in India, despite abundant sunshine. Fortification of staple foods with vitamin D is a viable strategy to target an entire population. Vitamin D fortification programs implemented in the United States and Canada have improved the vitamin D status in these countries, but a significant proportion of the population is still vitamin D deficient. Before fortification programs are designed and implemented in India, it is necessary to study the efficacy of the American and Canadian vitamin D fortification programs and then improve upon them to suit the Indian scenario. This review explores potential strategies that could be used for the fortification of foods in the Indian context. These strategies have been proposed considering the diverse dietary practices necessitated by social, economic, cultural and religious practices and the diverse climatic conditions in India. Fortification of staple foods, such as chapati flour, maida, rice flour and rice, may be more viable strategies. Targeted fortification strategies to meet the special nutritional needs of children in India are discussed separately in a review entitled, "Fortification of foods with vitamin D in India: Strategies targeted at children".

  5. Role of thorium in ensuring long term energy security to India

    International Nuclear Information System (INIS)

    Malhotra, S.K.

    2013-01-01

    Role of nuclear power in ensuring energy security to the world is inevitable due to a) dwindling fossil fuel resources and b) need for minimising green house gas emission that poses the risk of global climate change. India, keeping in mind its limited uranium and vast thorium resources, is pursuing a three stage nuclear power programme. The first stage is based on reactors that use uranium as fuel. It comprises of the indigenous Pressurised Heavy Water Reactors using natural uranium as fuel and light water reactors that employ enriched uranium as fuel and are to be set up in technical collaboration with other countries. The second stage is based on fast breeder reactors that employ plutonium derived from reprocessing of spent fuel from the first stage reactors. The third stage envisages reactors which will employ thorium based fuel after its irradiation in the second stage reactors. This programme is sequential in nature and has an ultimate objective of securing long term energy security to India through judicial use of its thorium resources. Thorium based reactors offer advantages in terms of better neutronic characteristics of thorium, it being better fertile host for plutonium disposition and better thermo-mechanical properties and slower fuel deterioration of thorium oxide. It is planned to introduce thorium in the Indian Nuclear Power Programme after sufficient (about 200 GWe) capacity build-up in the second stage. DAE is a global leader in the development of the entire thorium fuel cycle. It has a mature technology for extraction of thorium and preparation of thoria pellets. It has long back carried out irradiation of thoria pellets in its research reactors and also in PHWRs, post irradiation examination and reprocessing of irradiated thoria, fabrication of 233 U based fuel. It has KAMINI - the world's only operating reactor employing 233 U as fuel. An Advanced Heavy Water Reactor (AHWR) has been designed as a technology demonstrator for large scale

  6. Atomic Energy of Canada Limited annual report 1999-2000

    International Nuclear Information System (INIS)

    2000-01-01

    This is the annual report of the Atomic Energy of Canada Limited for the year ending March 31, 2000, and summarizes the activities of AECL during the period 1999-2000. The activities covered in this report include the CANDU reactor business, with the completion of the Wolsong unit 4 in the Republic of Korea, progress in the construction of two CANDU reactors for the Qinshan CANDU project in China, as well as the service business with Ontario Power Generation in the rehabilitation and life extension of operating CANDU reactors. In the R and D programs there is on-going effort towards the next generation of reactor technologies for CANDU nuclear power plants, discussions continue on the funding for the Canadian Neutron Facility for materials research (CNF) and progress being made on the Maple medical isotope reactor

  7. Atomic Energy of Canada Limited annual report 1999-2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    This is the annual report of the Atomic Energy of Canada Limited for the year ending March 31, 2000, and summarizes the activities of AECL during the period 1999-2000. The activities covered in this report include the CANDU reactor business, with the completion of the Wolsong unit 4 in the Republic of Korea, progress in the construction of two CANDU reactors for the Qinshan CANDU project in China, as well as the service business with Ontario Power Generation in the rehabilitation and life extension of operating CANDU reactors. In the R and D programs there is on-going effort towards the next generation of reactor technologies for CANDU nuclear power plants, discussions continue on the funding for the Canadian Neutron Facility for materials research (CNF) and progress being made on the Maple medical isotope reactor.

  8. Nuclear fuel cycle assessment of India: A technical study for U.S.-India cooperation

    Science.gov (United States)

    Krishna, Taraknath Woddi Venkat

    The recent civil nuclear cooperation proposed by the Bush Administration and the Government of India has heightened the necessity of assessing India's nuclear fuel cycle inclusive of nuclear materials and facilities. This agreement proposes to change the long-standing U.S. policy of preventing the spread of nuclear weapons by denying nuclear technology transfer to non-NPT signatory states. The nuclear tests in 1998 have convinced the world community that India would never relinquish its nuclear arsenal. This has driven the desire to engage India through civilian nuclear cooperation. The cornerstone of any civilian nuclear technological support necessitates the separation of military and civilian facilities. A complete nuclear fuel cycle assessment of India emphasizes the entwinment of the military and civilian facilities and would aid in moving forward with the separation plan. To estimate the existing uranium reserves in India, a complete historical assessment of ore production, conversion, and processing capabilities was performed using open source information and compared to independent reports. Nuclear energy and plutonium production (reactor- and weapons-grade) was simulated using declared capacity factors and modern simulation tools. The three-stage nuclear power program entities and all the components of civilian and military significance were assembled into a flowsheet to allow for a macroscopic vision of the Indian fuel cycle. A detailed view of the nuclear fuel cycle opens avenues for technological collaboration. The fuel cycle that grows from this study exploits domestic thorium reserves with advanced international technology and optimized for the existing system. To utilize any appreciable fraction of the world's supply of thorium, nuclear breeding is necessary. The two known possibilities for production of more fissionable material in the reactor than is consumed as fuel are fast breeders or thermal breeders. This dissertation analyzes a thermal

  9. Comparison of Heavy Water Reactor Thermalhydraulic Code Predictions with Small Break LOCA Experimental Data

    International Nuclear Information System (INIS)

    2012-08-01

    Activities within the frame of the IAEA's Technical Working Group on Advanced Technologies for HWRs (TWG-HWR) are conducted in a project within the IAEA's subprogramme on nuclear power reactor technology development. The objective of the activities on HWRs is to foster, within the frame of the TWG-HWR, information exchange and cooperative research on technology development for current and future HWRs, with an emphasis on safety, economics and fuel resource sustainability. One of the activities recommended by the TWG-HWR was an international standard problem exercise entitled Intercomparison and Validation of Computer Codes for Thermalhydraulics Safety Analyses. Intercomparison and validation of computer codes used in different countries for thermalhydraulics safety analyses will enhance the confidence in the predictions made by these codes. However, the intercomparison and validation exercise needs a set of reliable experimental data. Two RD-14M small break loss of coolant accident (SBLOCA) tests, simulating HWR LOCA behaviour, conducted by Atomic Energy of Canada Ltd (AECL), were selected for this validation project. This report provides a comparison of the results obtained from eight participating organizations from six countries (Argentina, Canada, China, India, Republic of Korea, and Romania), utilizing four different computer codes (ATMIKA, CATHENA, MARS-KS, and RELAP5). General conclusions are reached and recommendations made.

  10. India's participation in the ITER (International Thermonuclear Experimental Reactor) collaboration

    International Nuclear Information System (INIS)

    Deshpande, Shishir

    2012-01-01

    Keeping its vision of developing fusion energy as a viable source, India joined the ITER collaboration in December 2005. ITER is a seven party collaboration with China, EU, India, Japan, S. Korea, Russia and the USA. ITER has a challenging mission of achieving Q=10 figure of merit at 500 MW fusion power output. The construction of ITER is structured as a set of 'in-kind' procurement packages to be executed by the partners. This involves all activities like design, prototyping, testing, shipping and assembly with commissioning at the ITER site at Cadarache, France. Currently, ITER presents the only opportunity to carry out novel experiments with burning plasmas and the new realms of fusion physics. It is important to participate in such experiments with a view for their exploitation in future. This talk summarizes the ITER device, its key challenges, role played by India and how these enmesh with the future of domestic program in fusion research. (author)

  11. Atomic Energy of Canada Limited annual report 1989-1990

    International Nuclear Information System (INIS)

    1990-01-01

    In 1990, after a comprehensive industry review, the Canadian government announced that steps would be taken to revitalize the nuclear industry. Canada's nuclear utilities made a commitment to bear a large share of the cost of nuclear research and development. Atomic Energy of Canada Limited (AECL) reported its first financial loss in twelve years, as anticipated at the start of the year. Four of the 20 CANDU reactors operating worldwide were in the top ten based on lifetime performance. By year-end one foreign and two domestic utilities had announced their intention to build more CANDU units. The federal government has agreed to stabilize AECL's research funding at 1989-90 levels ($31.5 million above levels planned in 1985), has authorized AECL to negotiate with New Brunswick to build Point Lepreau-2 as the prototype for the CANDU-3 reactor, and has allowed the restructuring of AECL so utility and private sector investors can become equity partners in AECL CANDU

  12. Tritium handling experience at Atomic Energy of Canada Limited

    Energy Technology Data Exchange (ETDEWEB)

    Suppiah, S.; McCrimmon, K.; Lalonde, S.; Ryland, D.; Boniface, H.; Muirhead, C.; Castillo, I. [Atomic Energy of Canad Limited - AECL, Chalk River Laboratories, Chalk River, ON (Canada)

    2015-03-15

    Canada has been a leader in tritium handling technologies as a result of the successful CANDU reactor technology used for power production. Over the last 50 to 60 years, capabilities have been established in tritium handling and tritium management in CANDU stations, tritium removal processes for heavy and light water, tritium measurement and monitoring, and understanding the effects of tritium on the environment. This paper outlines details of tritium-related work currently being carried out at Atomic Energy of Canada Limited (AECL). It concerns the CECE (Combined Electrolysis and Catalytic Exchange) process for detritiation, tritium-compatible electrolysers, tritium permeation studies, and tritium powered batteries. It is worth noting that AECL offers a Tritium Safe-Handling Course to national and international participants, the course is a mixture of classroom sessions and hands-on practical exercises. The expertise and facilities available at AECL is ready to address technological needs of nuclear fusion and next-generation nuclear fission reactors related to tritium handling and related issues.

  13. Safety upgrades to the NRU research reactor

    International Nuclear Information System (INIS)

    DeAbreu, B.; Mark, J.M.; Mutterback, E.J.

    1998-01-01

    The NRU (National Research Universal) Reactor is a 135 MW thermal research facility located at Chalk River Laboratories, and is owned and operated by Atomic Energy of Canada Limited. One of the largest and most versatile research reactors in the world, it serves as the R and D workhorse for Canada's CANDU business while at the same time filling the role as one of the world's major producers of medical radioisotopes. AECL plans to extend operation of the NRU reactor to approximately the year 2005 when a new replacement, the Irradiation Research Facility (IRF) will be available. To achieve this, AECL has undertaken a program of safety reassessment and upgrades to enhance the level of safety consistent with modem requirements. An engineering assessment/inspection of critical systems, equipment and components was completed and seven major safety upgrades are being designed and installed. These upgrades will significantly reduce the reactor's vulnerability to common mode failures and external hazards, with particular emphasis on seismic protection. The scheduled completion date for the project is 1999 December at a cost approximately twice the annual operating cost. All work on the NRU upgrade project is planned and integrated into the regular operating cycles of the reactor; no major outages are anticipated. This paper describes the safety upgrades and discusses the technical and managerial challenges involved in extending the operating life of the NRU reactor. (author)

  14. Analytical chemistry requirements for advanced reactors

    International Nuclear Information System (INIS)

    Jayashree, S.; Velmurugan, S.

    2015-01-01

    The nuclear power industry has been developing and improving reactor technology for more than five decades. Newer advanced reactors now being built have simpler designs which reduce capital cost. The greatest departure from most designs now in operation is that many incorporate passive or inherent safety features which require no active controls or operational intervention to avoid accidents in the event of malfunction, and may rely on gravity, natural convection or resistance to high temperatures. India is developing the Advanced Heavy Water Reactor (AHWR) in its plan to utilise thorium in nuclear power program

  15. Recent developments in the field of ANFO blasting agents in India

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, T.K. [Deepak Fertilisers and Petrochemicals Corp. Ltd., Pune (India)

    1995-08-01

    ANFO is known to be truly cost-effective and the safest blasting agent worldover, which has made its usage very extensive in countries like USA, Australia, Canada etc. Yet in India ANFO consumption is limited to hardly 10-13% of the total explosive market. An attempt has been made here for a techno-commercial analysis of the possible reasons for the neglect so far towards ANFO usage in India in spite of its high potential and the paper goes on to review the recent developments which can revolutionise the usage of ANFO systems in future.

  16. Review of fast reactor activities in India (1984)

    International Nuclear Information System (INIS)

    Paranjpe, S.R.

    1986-01-01

    During the year a number of reviews and construction activities have been practically completed as required for the 1st criticality of FBTR. The reactor is expected to become critical by the middle of 1985. The design studies for 500 MWe prototype fast breeder reactor (PFBR) have been continued. Due to preoccupation with the completion of construction of FBTR, the limited effort has been focussed on the design of key components like the sodium pumps, drivers for sodium pumps, control rod drive mechanism and steam generators. The main programs, which are a continuing activity in RRC, are discussed in this report. They are: reactor physics, radio-chemistry, metallurgy, reprocessing and safety research

  17. Production of medical short-lived radionuclides in Canada

    International Nuclear Information System (INIS)

    Wiebe, L.I.

    1985-01-01

    The production of radionuclides for medical and biomedical research in Canada has been reviewed with respect to the national geographic and demographic characteristics which influence their use. The types of facilities available for the production of short-lived radionuclides have been summarized, and a tabulation of the radionuclides that are produced has been presented. In broad terms production facilities can be classified as belonging to one of two groups, nuclear reactor or charged-particle accelerators. The charged-particle accelerators produce the more neutron-deficient and (because of the resultant decay properties) the more useful radionuclides for medical application. The nuclear reactor facilities for radionuclide production range in size and capacity from the high-flux research reactors of AECL to the six SLOWPOKE reactors, five of which are located on university campuses across the country. The McMaster University reactor is used to produce curie quantities of fluorine-18 weekly. Millicurie amounts of a large number of radionuclides, most of which have half-lives ranging from 2 to 50 hr, are produced in the low-flux reactors, in support of basic medical research

  18. International nuclear reactor hazard study. Design and operational features, and hazards of commercial nuclear power reactors in the world. Vol. 1

    International Nuclear Information System (INIS)

    Anderson, R.; Benecke, J.; Donderer, R.; Etemad, S.; Hirsch, H.; Kjellstroem, B.; Large, J.; Scheer, J.; Schneider, M.; Schumacher, H.; Schumacher, O.; Scott, M.; Takagi, J.; Thompson, G.; Torrie, R.; Ziggel, H.

    1986-09-01

    Project management and scientific coordination was performed by Gruppe Oekologie Hannover. The experts from Canada, the Federal Republic of Germany, France, Great Britain, Sweden, USA, and Japan represented an annulated experience of work on nuclear safety. The panel members analyzed the reactor types of their respective countries. The draft reports on the individual reactor types were discussed. Also included are brief descriptions of the different reactor types with simple drawing, evolution of reactor types and a brief report on nuclear power plants in the world. (DG)

  19. Atomic Energy of Canada Limited annual report 2000-2001

    International Nuclear Information System (INIS)

    2001-01-01

    This is the annual report of the Atomic Energy of Canada Limited for the year ending March 31, 2001 and summarizes the activities of AECL during the period 2000-2001. The activities covered in this report include the CANDU reactor business, with progress being reported in the construction of two CANDU 6 reactors for the Qinshan CANDU project in China, the anticipated completion of Cernavoda unit 2, the completion of spent fuel storage at Cernavoda unit 1 in Romania, as well as the service business with New Brunswick Power, Ontario Power Generation, Bruce Power and Hydro Quebec in the refurbishment of operating, CANDU reactors. In the R and D programs discussions continue on funding for the Canadian Neutron Facility for Materials Research (CNF) and progress on the Maple medical isotope reactor

  20. Atomic Energy of Canada Limited annual report 2000-2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This is the annual report of the Atomic Energy of Canada Limited for the year ending March 31, 2001 and summarizes the activities of AECL during the period 2000-2001. The activities covered in this report include the CANDU reactor business, with progress being reported in the construction of two CANDU 6 reactors for the Qinshan CANDU project in China, the anticipated completion of Cernavoda unit 2, the completion of spent fuel storage at Cernavoda unit 1 in Romania, as well as the service business with New Brunswick Power, Ontario Power Generation, Bruce Power and Hydro Quebec in the refurbishment of operating, CANDU reactors. In the R and D programs discussions continue on funding for the Canadian Neutron Facility for Materials Research (CNF) and progress on the Maple medical isotope reactor.

  1. India takes nuclear path to go green

    Science.gov (United States)

    Bagla, Pallava

    2009-11-01

    Manmohan Singh, the prime minister of India, last month announced a major new emphasis on nuclear power that could see the country generate as much as 470GW of power from nuclear reactors by 2050. Speaking at the opening of the International Conference on Peaceful Uses of Atomic Energy in New Dehli, Singh said that the programme would sharply reduce India's dependence on fossil fuels and be a "major contribution" to global efforts to combat climate change. "If we use the power of the atom wisely for the universal good, the possibilities are unbounded," he said. However, even with this capacity, nuclear power would still only account for 25% of India's energy mix, with the bulk of the rest coming from coal.

  2. Transnational surrogacy: Canada's contradictions.

    Science.gov (United States)

    Lozanski, Kristin

    2015-01-01

    Transnational commercial surrogacy represents a form of medical tourism undertaken by intended parents who seek to hire women in other countries, increasingly often in the global South, as surrogates. While much of the scholarly literature focuses on the conditions of surrogacy within host countries, such as India, there has been limited analysis of transnational surrogacy focused upon origin countries. In this article, I build upon the scholarship that explores the impact of host country structures on transnational surrogacy, with special attention to the significance of Canadian citizenship policy through analysis of legislation and policy vis-à-vis transnational commercial surrogacy. The Canadian case demonstrates clear contradictions between the legislation and policy that is enacted domestically to prohibit commercial surrogacy within Canada and legislation and policy that implicitly sanctions commercial surrogacy through the straightforward provision of citizenship for children born of such arrangements abroad. The ethical underpinnings of Canada's domestic prohibition of commercial surrogacy, which is presumed to exploit women and children and to impede gender equality, are violated in Canada's bureaucratic willingness to accept children born of transnational commercial surrogacy as citizens. Thus, the ethical discourses apply only to Canadian citizens within Canadian geography. The failure of the Canadian government to hold Canadian citizens who participate in transnational commercial surrogacy to the normative imperatives that prohibit the practice within the country, or to undertake a more nuanced, and necessarily controversial, discussion of commercial surrogacy reinforces transnational disparities in terms of whose bodies may be commodified as a measure of gendered inequality. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Recent emergency planning trends in Canada

    International Nuclear Information System (INIS)

    Howieson, J.Q.; Ali, F.B.

    1988-01-01

    Two significant reviews have recently been completed which have affected the approach to emergency planning in Canada. The two reviews have occurred in the province of Ontario where 21 of Canada's 23 reactors are located. Both reviews (one dealing with safety in general, and the other specifically with emergency planning) were performed for the Government of Ontario and were primarily motivated by the severe consequences of the accident at Chernobyl. It was determined that two tiers of emergency planning are needed: (i) the first tier (termed the Maximum Planning Accident or MPA) provides for detailed planning for accidents which can be quantitatively determined to be as low as once in 10 5 station-years. (about once in 10 6 reactor-years for Ontario Hydro's multi-unit sites). For this tier, planning assures public exposure to radioactive doses is kept less than the Protective Action Levels. (ii) the second tier (termed the Worst Credible Radiation Emission or WCRE) provides for planning for accidents which are lower in frequency or whose frequency cannot be quantified (e.g., gross human error or hostile action). For this tier, planning protects against the onset of early morbidity (sickness) and the onset of early mortality (death) in a member of the public

  4. Early years of nuclear energy research in Canada

    International Nuclear Information System (INIS)

    Laurence, G.C.

    1980-01-01

    The first experimental attempts in Canada to obtain energy from uranium fission were carried out by the author in the Ottawa laboratories of the National Research Council from 1940 to 42. This program grew into a joint British-Canadian laboratory in Montreal. Work done at this laboratory, which moved to Chalk River in 1946, led to the construction of ZEEP (the first nuclear reactor to operate outside of the United States) NRX, and ultimately to the development of the CANDU power reactors. People involved in the work and events along the way are covered in detail. (LL)

  5. Status of advanced technology and design for water cooled reactors: Heavy water reactors

    International Nuclear Information System (INIS)

    1989-07-01

    In 1987 the IAEA established the International Working Group on Advanced Technologies for Water-Cooled Reactors (IWGATWR). Within the framework of the IWGATWR the IAEA Technical Report on Status of Advanced Technology and Design for Water Cooled Reactors, Part I: Light Water Reactors and Part II: Heavy Water Reactors, has been undertaken to document the major current activities and trends of technological improvement and development for future water reactors. Part I of the report dealing with Light Water Reactors (LWRs) was published in 1988 (IAEA-TECDOC-479). Part II of the report covers Heavy Water Reactors (HWRs) and has now been prepared. This report is based largely upon submissions from Member States. It has been supplemented by material from the presentations at the IAEA Technical Committee and Workshop on Progress in Heavy Water Reactor Design and Technology held in Montreal, Canada, December 6-9, 1988. It is hoped that this part of the report, containing the status of advanced heavy water reactor technology up to 1988 and ongoing development programmes will aid in disseminating information to Member States and in stimulating international cooperation. Refs, figs and tabs

  6. Safety features of the MAPLE-X10 reactor design

    International Nuclear Information System (INIS)

    Lee, A.G.; Bishop, W.E.; Heeds, W.

    1990-09-01

    The MAPLE-X10 reactor is a D 2 0-reflected, H 2 0-cooled and -moderated pool-type reactor under construction at the Chalk River Nuclear Laboratories. This 10-MW reactor will produce key medical and industrial radio-isotopes such as 99 Mo, 125 I, and 192 Ir. As the prototype for the MAPLE research reactor concept, the reactor incorporates diverse safety features both inherent in the design and in the added engineered systems. The safety requirements are analogous to those of the Canadian CANDU power reactor since standards for the licensing of new research reactors have not been developed yet by the licensing authority in Canada

  7. Fast Reactor Knowledge Management at IGCAR, India

    International Nuclear Information System (INIS)

    Kuriakose, K.K.

    2013-01-01

    The Process Architecture: → Acquire: Solicitation; Voluntary submission; Mandatory requirements; Interview/Observation; → Quality Control: Review/Editing; Certification; Quality index; → Disseminate: Publish through the Technology architecture; Formal/Informal Meetings; COPs; → Utilize: Projects; Day-to-day activities; → Maintenance; → Retirement. Mission: To conduct a broad based multidisciplinary programme of scientific research and advanced engineering development, directed towards the establishment of the technology of Sodium Cooled Fast Breeder Reactors (FBR) and associated fuel cycle facilities in the Country. The mission includes the development and applications of new and improved materials, techniques, equipment and systems for FBRs, pursue basic research to achieve breakthroughs in Fast Reactor technology

  8. Canada's nuclear fuel industry: An overview. Background paper

    International Nuclear Information System (INIS)

    Nixon, A.

    1993-11-01

    Canada was among the first countries to mine and process uranium-bearing ores. Such ores contain trace amounts of radium, which was in great demand for medical treatment and for use by research laboratories in the early part of the century. For the last half century, the same basic processes have been used to extract uranium from its ores and convert it to a form suitable for use in nuclear reactors. The process described here is that currently in use in Canada. Mining can take a variety of forms, from open-pit to deep, hard-rock. Mining is typically the most costly step in the process, particularly for lower-grade ores. The ore is crushed and ground in the mill to the consistency of fine sand from which the uranium is extracted chemically to produce the impure concentrate known as yellowcake. In the next step, the impure uranium concentrate is chemically refined into highly purified, nuclear-grade, uranium trioxide (UO 3 ). Uranium trioxide is then converted, in two separate chemical processes, into uranium dioxide (UO 2 ) which is destined for domestic consumption and uranium hexafluoride (UF 6 ) which is exported. In Canada, fabrication is the final step of the fuel production process. Uranium dioxide powder is compressed and sintered into very dense ceramic pellets which are then sealed in zirconium tubes and assembled into fuel bundles for Candu reactors. This background paper will review the Canadian nuclear fuels industry. 1 fig

  9. Breeder reactors over the world

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    After a short recall on the development of research programs, this paper reviews the fast breeder reactor operating, in construction or in project over the world (USA, France, Italy, RFG, India, Japan and U.K.). Thermal and electrical power output, and operation data are given [fr

  10. Safety features of the MAPLE-X10 reactor design

    International Nuclear Information System (INIS)

    Lee, A.G.; Bishop, W.E.; Heeds, W.

    1990-01-01

    This paper reports on the MAPLE-X10 reactor D 2 O-reflected, H 2 O-cooled and -moderated pool- type reactor, under construction at the Chalk River Nuclear Laboratories. This 10-MW will produce key medical and industrial radioisotopes such as 99 Mo, 125 I, and 192 Ir. The prototype for the MAPLE research reactor concept, the reactor incorporates diverse safety features both inherent in the design and in the added engineered systems. The safety requirements are analogous to those of the Canadian CANDU power reactor as standards for the licensing of new research reactors have not been developed by the licensing authority in Canada

  11. Digital control for the Penn State Breazeale reactor

    International Nuclear Information System (INIS)

    Raiskums, G.A.

    1991-01-01

    Digital control has been an integral part of Canada deuterium uranium (CANDU) nuclear power reactor technology since the 1960s. Much of the high CANDU production reliability can be attributed to the fault-tolerant and flexible control algorithms achievable with digital control. Atomic Energy of Canada Limited (AECL) has now transported this technology to research reactors, using industrial-grade microcomputers to solve equipment aging and spares obsolescence problems so prevalent at older installations. The open architecture of the Intel 8086-based computers provides for wide availability and reasonably priced, quality hardware from numerous sources. AECL recently supplied the Pennsylvania State University Breazeale Reactor (PSBR) with a new console containing a digital control and monitoring system. The reactor safety system (RSS) was also replaced with hardwired relay logic and truly analog state-of-the-art wide range nuclear instrumentation supplied by AECL's subcontractor, Gamma-Metrics. Retaining analog hardware for the mandated RSS functions was key to minimizing licensing efforts and the extensive verification and validation that would be required for safety system software. This paper elaborates on the digital control and monitoring portion of the PSBR console replacement, with emphasis on the key system objectives

  12. Shifting strategies and precarious progress: Nuclear waste management in Canada

    International Nuclear Information System (INIS)

    Ramana, M.V.

    2013-01-01

    Canada has a lengthy history of trying to find a path for dealing with radioactive spent fuel and nuclear waste from its nuclear reactors. In the last decade, it has taken major strides towards this goal by evolving a process through which a site for a geological repository to sequester nuclear waste is to be selected. The Canadian Nuclear Waste Management Organization (NWMO) is in the early stages of the process of finding a community that is willing to host such a repository. Differences between the broad principles underlying siting and the processes for actually selecting the site have emerged as the NWMO proceeds with engaging local governments and specific communities. These differences and other conflicts, especially over new nuclear reactor construction, might pose hurdles in the path of successfully setting up a repository. - Highlights: • Canada has set up a process for siting a geological repository for nuclear waste. • The current challenge is to find a community willing to host such a repository. • Authorities are luring communities with the promise of jobs and local investment. • Potential new nuclear reactor construction might become a locus of conflict. • Success in actually setting up a repository is by no means guaranteed

  13. Irradiation effects on Zr-2.5Nb in power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Song, C., E-mail: Carol.Song@cnl.ca [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada)

    2016-06-15

    Zirconium alloys are widely used as structural materials in nuclear applications because of their attractive properties such as a low absorption cross-section for thermal neutrons, excellent corrosion resistance in water, and good mechanical properties at reactor operating temperatures. Zr-2.5Nb is one of the most commonly used zirconium alloys and has been used for pressure tube materials in CANDU (Canada Deuterium Uranium) and RBMK (Reaktor Bolshoy Moshchnosti Kanalnyy, 'High Power Channel-type Reactor') reactors for over 40 years. In a recent report from the Electric Power Research Institute, Zr-2.5Nb was identified as one of the candidate materials for use in normal structural applications in light-water reactors owing to its increased resistance to irradiation-induced degradation as compared with currently used materials. Historically, the largest program of in-reactor tests on zirconium alloys was performed by Atomic Energy of Canada Limited. Over many years of in-reactor testing and CANDU operating experience with Zr- 2.5Nb, extensive research has been conducted on the irradiation effects on its microstructures, mechanical properties, deformation behaviours, fracture toughness, delayed hydride cracking, and corrosion. Most of the results on Zr-2.5Nb obtained from CANDU experience could be used to predict the material performance under light water reactors. This paper reviews the irradiation effects on Zr-2.5Nb in power reactors (including heavy-water and light-water reactors) and summarizes the current state of knowledge. (author)

  14. Nuclear power reactor safety

    International Nuclear Information System (INIS)

    Pon, G.A.

    1976-10-01

    This report is based on the Atomic Energy of Canada Limited submission to the Royal Commission on Electric Power Planning on the safety of CANDU reactors. It discusses normal operating conditions, postulated accident conditions, and safety systems. The release of radioactivity under normal and accident conditions is compared to the limits set by the Atomic Energy Control Regulations. (author)

  15. Advanced reactor experimental facilities

    International Nuclear Information System (INIS)

    Amri, A.; Papin, J.; Uhle, J.; Vitanza, C.

    2010-01-01

    For many years, the NEA has been examining advanced reactor issues and disseminating information of use to regulators, designers and researchers on safety issues and research needed. Following the recommendation of participants at an NEA workshop, a Task Group on Advanced Reactor Experimental Facilities (TAREF) was initiated with the aim of providing an overview of facilities suitable for carrying out the safety research considered necessary for gas-cooled reactors (GCRs) and sodium fast reactors (SFRs), with other reactor systems possibly being considered in a subsequent phase. The TAREF was thus created in 2008 with the following participating countries: Canada, the Czech Republic, Finland, France, Germany, Hungary, Italy, Japan, Korea and the United States. In a second stage, India provided valuable information on its experimental facilities related to SFR safety research. The study method adopted entailed first identifying high-priority safety issues that require research and then categorizing the available facilities in terms of their ability to address the safety issues. For each of the technical areas, the task members agreed on a set of safety issues requiring research and established a ranking with regard to safety relevance (high, medium, low) and the status of knowledge based on the following scale relative to full knowledge: high (100%-75%), medium (75 - 25%) and low (25-0%). Only the issues identified as being of high safety relevance and for which the state of knowledge is low or medium were included in the discussion, as these issues would likely warrant further study. For each of the safety issues, the TAREF members identified appropriate facilities, providing relevant information such as operating conditions (in- or out-of reactor), operating range, description of the test section, type of testing, instrumentation, current status and availability, and uniqueness. Based on the information collected, the task members assessed prospects and priorities

  16. Reactor safety research and development in Chalk River Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Nitheanandan, T. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    Atomic Energy of Canada Limited's Chalk River Laboratories provides three different services to stakeholders and customers. The first service provided by the laboratory is the implementation of Research and Development (R&D) programs to provide the underlying technological basis of safe nuclear power reactor designs. A significant portion of the Canadian R&D capability in reactor safety resides at Atomic Energy of Canada Limited's Chalk River Laboratories, and this capability was instrumental in providing the science and technology required to aid in the safety design of CANDU power reactors. The second role of the laboratory has been in supporting nuclear facility licensees to ensure the continued safe operation of nuclear facilities, and to develop safety cases to justify continued operation. The licensing of plant life extension is a key industry objective, requiring extensive research on degradation mechanisms, such that safety cases are based on the original safety design data and valid and realistic assumptions regarding the effect of ageing and management of plant life. Recently, Chalk River Laboratories has been engaged in a third role in research to provide the technical basis and improved understanding for decision making by regulatory bodies. The state-of-the-art test facilities in Chalk River Laboratories have been contributing to the R&D needs of all three roles, not only in Canada but also in the international community, thorough Canada's participation in cooperative programs lead by International Atomic Energy Agency and the OECD's Nuclear Energy Agency. (author)

  17. Hybrid simulation of reactor kinetics in CANDU reactors using a modal approach

    International Nuclear Information System (INIS)

    Monaghan, B.M.; McDonnell, F.N.; Hinds, H.W.T.; m.

    1980-01-01

    A hybrid computer model for simulating the behaviour of large CANDU (Canada Deuterium Uranium) reactor cores is presented. The main dynamic variables are expressed in terms of weighted sums of a base set of spatial natural-mode functions with time-varying co-efficients. This technique, known as the modal or synthesis approach, permits good three-dimensional representation of reactor dynamics and is well suited to hybrid simulation. The hybrid model provides improved man-machine interaction and real-time capability. The model was used in two applications. The first studies the transient that follows a loss of primary coolant and reactor shutdown; the second is a simulation of the dynamics of xenon, a fission product which has a high absorption cross-section for neutrons and thus has an important effect on reactor behaviour. Comparison of the results of the hybrid computer simulation with those of an all-digital one is good, within 1% to 2%

  18. Canadian Neutron Source (CNS): a research reactor solution for medical isotopes and neutrons for science

    International Nuclear Information System (INIS)

    Chapman, D.

    2009-01-01

    This presentation describes a dual purpose research facility at the University of Saskatchewan for Canada for the production of medical isotopes and neutrons for scientific research. The proposed research reactor is intended to supply most of Canada's medical isotope requirements and provide a neutron source for Canada's research community. Scientific research would include materials research, biomedical research and imaging.

  19. Nuclear energy in Canada: the CANDU system

    International Nuclear Information System (INIS)

    Robertson, J.A.L.

    1979-10-01

    Nuclear electricity in Canada is generated by CANDU nuclear power stations. The CANDU reactor - a unique Canadian design - is fuelled by natural uranium and moderated by heavy water. The system has consistently outperformed other comparable nuclear power systems in the western world, and has an outstanding record of reliability, safety and economy. As a source of energy it provides the opportunity for decreasing our dependence on dwindling supplies of conventional fossil fuels. (auth)

  20. India: an emerging nuclear giant

    International Nuclear Information System (INIS)

    Le Ngoc, Boris

    2015-01-01

    After having recalled that India has always been interested in nuclear energy, this article outlines that this country is suffering from an increasing air pollution with noticeable impacts on health (thousands of deaths per year due to pollution), and, even though its CO 2 emissions have very much increased during the past decades, its governments want to rely on nuclear energy to face climatic challenges. The article also outlines that the country is facing increasing energy needs when about 300 millions of inhabitants do not have access to electricity. New sources of energy production must then be developed, preferably de-carbonated sources (hydraulic, wind, nuclear, solar, so on). Therefore, progress must be made to reduce the share of fossil energy. The author proposes a brief presentation of the Indian nuclear programme, with its 20 existing reactors and 6 reactors under construction. A strategy has been defined to exploit as many PWRs as possible, to introduce fourth generation reactors, and to use a thorium fuelled reactor. The framework of the French-Indian partnership is briefly presented, and the involvements of AREVA for the construction of six EPRs, and of the CEA for the development of fourth generation reactors are evoked

  1. Conceptual design of Indian molten salt breeder reactor

    Indian Academy of Sciences (India)

    A crucial part for achieving reasonable breeding in such reactors ... lization of India's nuclear resource profiles of modest uranium and abundant thorium. The ..... mass flow rate at different powers for various salts and compared with water,.

  2. Atomic Energy of Canada Limited, annual report, 1995-1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The 1996 Annual Report of Atomic Energy of Canada Ltd. (AECL) is published and submitted to the Honourable member of Parliament, Minister of Natural Resources. Included in this report are messages from Marketing and Commercial Operation, Product Development, i e.CANDU and Research Reactors, CANDU research, Waste Management, Environmental Management, Financial Review and also included are copies of the financial statements.

  3. Atomic Energy of Canada Limited, annual report, 1995-1996

    International Nuclear Information System (INIS)

    1996-01-01

    The 1996 Annual Report of Atomic Energy of Canada Ltd. (AECL) is published and submitted to the Honourable member of Parliament, Minister of Natural Resources. Included in this report are messages from Marketing and Commercial Operation, Product Development, i e.CANDU and Research Reactors, CANDU research, Waste Management, Environmental Management, Financial Review and also included are copies of the financial statements

  4. Conceptual design of Indian molten salt breeder reactor

    International Nuclear Information System (INIS)

    Vijayan, P.K.; Basak, A.; Dulera, I.V.; Vaze, K.K.; Basu, S.; Sinha, R.K.

    2014-01-01

    The fuel in a molten salt breeder reactor is in the form of a continuously circulating molten salt. Fluoride based salts have been almost universally proposed. A crucial part for achieving reasonable breeding in such reactors is the need to reprocess the salt continuously, either online or in batch mode. This constitutes a major technological challenge for this type of reactors. India has recently started carrying out fundamental studies so as to arrive at a conceptual design of Indian Molten Salt Breeder Reactor (IMSBR). Presently various design options and possibilities are being studied from the point of view of reactor physics and thermal hydraulic design. In parallel fundamental studies as regards various molten salts have also been initiated. This paper would discuss conceptual design of these reactors, as well as associated issues and technologies

  5. CANDU reactor - supporting the nuclear renaissance

    International Nuclear Information System (INIS)

    Oberth, R.

    2010-01-01

    'Full text:' The CANDU reactor has proven to be a strong performer in both the Canada, with 22 units constructed in Ontario, New Brunswick and Quebec, as well as in Argentina, Korea, Romania and China where a further nine units are operating and two in the planning stage. The average lifetime capacity factor of the CANDU reactor fleet is 89%. The last seven CANDU projects in Korea, China, and Romania have been completed on budget and on schedule. CANDU reactors have the highest uranium utilization efficiency measures as electricity output per ton of uranium mined. The CANDU fuel channel design using on-power fuelling and a heavy water moderator enables flexible fueling options - from the current natural uranium option to burning uranium recovered from used LWR reactor fuel and even a thorium-based fuel. AECL and the CANDU reactor are poised to participate in the worldwide construction at least 250 new reactors over the next 20 years. (author)

  6. Development, Fabrication and Characterization of Fuels for Indian Fast Reactor Programme

    International Nuclear Information System (INIS)

    Kumar, Arun

    2013-01-01

    Development of Fast Reactor fuels in India started in early Seventies. The successful development of Mixed Carbide fuels for FBTR and MOX fuel for PFBR have given confidence in manufacture of fuels for Fast Reactors. Effort is being put to develop high Breeding Ratio Metallic fuel (binary/ternary). Few fuel pins have been fabricated and is under test irradiation. However, this is only a beginning and complete fuel cycle activities are under development. Metal fuelled Fast Reactors will provide high growth rate in Indian Fast Reactor programme

  7. Nuclear development status in the world (4). Four new emerging countries (China, Russia, India, and South Korea) leading global nuclear development

    International Nuclear Information System (INIS)

    Kobayashi, Masaharu

    2017-01-01

    From the temporary stagnation immediately after the TEPCO Fukushima Daiichi Nuclear Power Station accident, many countries are restarting nuclear development. The emerging 4 countries of China, Russia, India, and South Korea account for the majority number of the world's nuclear power plants under construction. The common feature is that the project promoter is a state-owned enterprise, and these countries are promoting nuclear development under the state's solid nuclear policies. The policies of the completion of nuclear fuel cycle and development fast reactors are also common. China is committed to major nuclear power route, domestically targeting 58 million kW in 2020, also focusing on the export of nuclear energy to Pakistan, Romania, Argentina, and the UK as already scheduled. China also actively develops fast reactors, high-temperature gas reactors, and small reactors. Based on the nuclear export from Russia, plants are operating or under construction in Iran, China, India, Vietnam, Turkey, Belarus, etc. Furthermore, Russia is actively pursuing fast reactors and nuclear fuel cycle policy from the beginning. In India, in addition to imported nuclear reactors, it also develops domestic reactors to solve power shortage, targeting 63 million kW in 2032. South Korea is concentrating on nuclear development in order to depart from energy imports. In 2035, it plans 38.3 million kW of nuclear power generation. (A.O.)

  8. Utilization of thorium in thermal reactors

    International Nuclear Information System (INIS)

    Srinivasan, K.R.; Nakra, A.N.

    1978-01-01

    Large deposits of thorium are found in India. 233 U produced by neutron capture in 232 Th is a more valuable fuel for thermal reactors than the plutonium that results from capture in 238 U. These two facts are the main reasons for the interest in utilizing thorium in power reactors. But natural thorium does not contain any fissile material and its capture cross section is nearly two and a half times that of 238 U. These have made the fuelling cost high. However, in certain conditions and certain types of reactors the costs are comparable with those using uranium fuel. The relative cost effectiveness of different fuels is discussed. Apart from long term interest, the short term interest of using thorium fuel in RAPP type reactors is also briefly described. Finally the reactor physics experiments using thorium fuel and their comparison with calculations are presented. (author)

  9. Positron annihilation studies on structural materials for nuclear reactors

    International Nuclear Information System (INIS)

    Rajaraman, R.; Amarendra, G.; Sundar, C.S.

    2012-01-01

    Structural steels for nuclear reactors have renewed interest owing to the future advanced fission reactor design with increased burn-up goals as well as for fusion reactor applications. While modified austenitic steels continue to be the main cladding materials for fast breeder reactors, Ferritic/martensitic steels and oxide dispersion strengthened ferritic steels are the candidate materials for future reactors applications in India. Sensitivity and selectivity of positron annihilation spectroscopy to open volume type defects and nano clusters have been extensively utilized in studying reactor materials. We have recently reviewed the application of positron techniques to reactor structural steels. In this talk, we will present successful application of positron annihilation spectroscopy to probe various structural materials such as D9, ferritic/martensitic, oxide dispersion strengthened (ODS) steels and related model alloys, highlighting our recent studies. (author)

  10. An overview of activities of nuclear data physics centre of India (NDPCI)

    International Nuclear Information System (INIS)

    Saxena, Alok

    2015-01-01

    India has a three stage nuclear power programme which requires accurate inputs of nuclear data for design and safe operation of existing as well as for the design of new and innovative reactors. Apart from that nuclear data is required for accelerator shield design, personal dosimetry, radiation safety, production of radioisotopes, radiation damage studies, waste transmutation etc. To cater to various needs of department, the Nuclear Data Physics Centre of India (NDPCI) was formed in 2010-11 to provide a platform for coordinated efforts in all aspects of nuclear data, viz., measurements, analysis, compilation and evaluation involving national laboratories and universities in India. The NDPCI has projects / collaborations with universities and various units of department of atomic energy (DAE) across India involving physicist, radio-chemists, reactor physicists and computer engineers. A number of projects have been awarded under NDPCI to various universities to involve faculties and students in nuclear reactions, nuclear structure and EXFOR compilations. The NDPCI is presently a virtual centre under Board of Research in Nuclear Sciences of DAE and functions through two committees namely Program Implementation Committee and Program Review Committee involving scientists and faculties from various divisions of DAE units and universities. A brief account of NDPCI activities carried out by our researchers is described in this report

  11. The need and the role of nuclear energy in India

    International Nuclear Information System (INIS)

    Bhoje, S.B.; Govindarajan, S.

    2000-01-01

    The demand for energy in India is growing because of population growth and a developing economy. Commercial energy consumption has increased to about 60 per cent from about 25 per cent in 1950 and the electricity share in total energy consumption is about 25 per cent. The growth rate in electricity generation is expected to be ∼8 per cent in the coming two decades, which means that the installed capacity of 90 GW(e) will increase to about 300 GW(e) by 2020. Coal and nuclear energy are the major resources available; oil and gas potentials are very low and do not meet today's needs. Hydroelectric potential in the country has been estimated as 84 GW(e) at a 60 per cent load factor and of this, only about 25 percent has been realized so far. The nuclear resources of India comprise moderate Uranium and large quantities of Thorium. The first phase of a three stage nuclear program, deployment of pressurized hot water reactors (PHWR) has taken off and is poised to grow to its greatest potential by 2010. The second phase, deployment of fast breeder reactors (FBR) will take off from there and the third phase may begin by the middle of the next century. India has established a comprehensive capability in design, construction and operation of PHWR. There are 10 thermal reactors of 200/220 MW(e) capacity in operation and 4 x 220 MW(e) PHWR under construction. The country has expertise in prospecting, mining, extraction, fuel fabrication, reprocessing and radiation waste management. A beginning has been made in the development of FBR technology by construction of a 40 MWt/13 MW(e) fast breeder test reactor (FBTR) and research and development (R and D) facilities. (author)

  12. Search for other natural fission reactors

    International Nuclear Information System (INIS)

    Apt, K.E.; Balagna, J.P.; Bryant, E.A.; Cowan, G.A.; Daniels, W.R.; Vidale, R.J.

    1977-01-01

    Precambrian uranium ores have been surveyed for evidence of other natural fission reactors. The requirements for formation of a natural reactor direct investigations to uranium deposits with large, high-grade ore zones. Massive zones with volumes approximately greater than 1 m 3 and concentrations approximately greater than 20 percent uranium are likely places for a fossil reactor if they are approximately greater than 0.6 b.a. old and if they contained sufficient water but lacked neutron-absorbing impurities. While uranium deposits of northern Canada and northern Australia have received most attention, ore samples have been obtained from the following worldwide locations: the Shinkolobwe and Katanga regions of Zaire; Southwest Africa; Rio Grande do Norte, Brazil; the Jabiluka, Nabarlek, Koongarra, Ranger, and El Sharana ore bodies of the Northern Territory, Australia; the Beaverlodge, Maurice Bay, Key Lake, Cluff Lake, and Rabbit Lake ore bodies and the Great Bear Lake region, Canada. The ore samples were tested for isotopic variations in uranium, neodymium, samarium, and ruthenium which would indicate natural fission. Isotopic anomalies were not detected. Criticality was not achieved in these deposits because they did not have sufficient 235 U content (a function of age and total uranium content) and/or because they had significant impurities and insufficient moderation. A uranium mill monitoring technique has been considered where the ''yellowcake'' output from appropriate mills would be monitored for isotopic alterations indicative of the exhumation and processing of a natural reactor

  13. Status of advanced technologies for CANDU reactors

    International Nuclear Information System (INIS)

    Lipsett, J.J.

    1989-01-01

    The future development of the CANDU reactor is a continuation of a successful series of reactors, the most recent of which are nine CANDU 6 Mk 1* units and four Darlington units. There are three projects underway that continue the development of the CANDU reactor. These new design projects flow from the original reactor designs and are a natural progression of the CANDU 6 Mk 1, two units of which are operating successfully in Canada, one each in Argentina and Korea, with five more being built in Rumania. These new design projects are known as: CANDU 6 Mk 2, an improved version of CANDU 6 Mk 1; CANDU 3, a small, advanced version of the CANDU 6 Mk 1; CANDU 6 Mk 3, a series of advanced CANDU reactors. A short description of modified versions of CANDU reactors is given in this paper. 5 figs

  14. Environmental radioactivity in Canada - 1982

    International Nuclear Information System (INIS)

    Tracey, B.L.

    1984-01-01

    The radiological surveillance program of the Department of National Health and Welfare is conducted for the purpose of determining levels of environmental radioactivity in Canada and assessing the resulting population exposures. Special investigations were carried out during 1982 on metabolism of natural radionuclides and on the accumulation of radon in energy-efficient homes. The pre-operational phase of the monitoring program at the Point Lepreau Nuclear Generating Station was completed. Dose commitments have been estimated for the ongoing natural radioactivity, fallout and reactor studies. All measurements made during the year are below the limits recommended by the International Commission on Radiological Protection

  15. Department of Atomic Energy [India]: Annual report 1979-1980

    International Nuclear Information System (INIS)

    1980-01-01

    The work of the research establishments, projects undertaken and public sector undertakings of the Department of Atomic Energy during the financial year 1979-80 is surveyed. The research and development activities of the Bhabha Atomic Research Centre at Bombay, the Reactor Research Centre at Kalpakkam, the Tata Institute of Fundamental Research at Bombay, the Saha Institute of Nuclear Physics at Calcutta and the Tata Memorial Centre at Bombay are described. An account of the progress of heavy water production plant projects, the Madras and Narora Atomic Power Projects, the MHD project and the 100 MW thermal research reactor R-5 Project at Trombay is given. Performance of the Tarapur and Rajasthan Atomic Power Stations, Nuclear Fuel Complex at Hyderabad, Atomic Minerals Division, ISOMED (the radiation sterilisation plant for medical products) at Bombay, the Indian Rare Earths Ltd., the Uranium Corporation of India Ltd., and the Electronics Corporation of India Ltd., Hyderabad is reported. (M.G.B.)

  16. Experience in operation of heavy water reactors

    International Nuclear Information System (INIS)

    Rotaru, Ion; Bilegan, Iosif; Ghitescu, Petre

    1999-01-01

    The paper presents the main topics of the CANDU owners group (COG) meeting held in Mangalia, Romania on 7-10 September 1998. These meetings are part of the IAEA program for exchange of information related mainly to CANDU reactor operation safety. The first meeting for PHWR reactors took place in Vienna in 1989, followed by those in Argentina (1991), India (1994) and Korea (1996). The topics discussed at the meeting in Romania were: operation experience and recent major events, performances of CANDU reactors and safe operation, nuclear safety and operation procedures of PHWR, programs and strategies of lifetime management of installations and components of NPPs, developments and updates

  17. How power is generated in a nuclear reactor

    International Nuclear Information System (INIS)

    Swaminathan, V.

    1978-01-01

    Power generation by nuclear fission as a result of chain reaction caused by neutrons interacting with fissile material such as 235 U, 233 U and 239 Pu is explained. Electric power production by reactor is schematically illustrated. Materials used in thermal reactor and breeder reactor are compared. Fuel reprocessing and disposal of radioactive waste coming from reprocessing plant is briefly described. Nuclear activities in India are reviewed. Four heavy water plants and two power reactors are under construction and will be operative in the near future. Two power reactors are already in operation. Nuclear Fuel Complex at Hyderabad supplies fuel element to the reactors. Fuel reprocessing and waste management facility has been set up at Tarapur. Bhabha Atomic Research Centre at Bombay and Reactor Research Centre at Kalpakkam near Madras are engaged in applied and basic research in nuclear science and engineering. (B.G.W.)

  18. Consolidating indigenous capability for PHWR fuel manufacturing in India

    Energy Technology Data Exchange (ETDEWEB)

    Jayaraj, R.N., E-mail: cenfc@nfc.gov.in [Nuclear Fuel Complex, Dept. of Atomic Energy, Government of India, Hyderabad (India)

    2010-07-01

    Since inception of Nuclear Power Programme in India greater emphasis was laid on total self- reliance in Fuel manufacturing. For Pressurized Heavy Water Reactors (PHWRs), which forms a base for the first stage of the programme, an integrated approach was adopted encompassing different areas of expertise -Design, Construction and Operation of PHWRs; Heavy Water production and Fuel Design and Manufacturing technologies. For the first PHWR constructed about 35 years back with the Canadian collaboration, known as Rajasthan Atomic Power Station (RAPS), half the core requirement of fuel was met from the fuel manufactured for the first time in India. Since then the fuel production capabilities were enhanced by setting up an industrial scale fuel manufacturing facility - Nuclear Fuel Complex (NFC) at Hyderabad, India during early '70s. NFC has been continuously expanding its capacities to meet the fuel demand of all the PHWRs constructed and operated by Nuclear Power Corporation of India Limited (NPCIL). Presently, fifteen PHWR 220 MWe units and two PHWR 540 MWe units are in operation and one more PHWR 220 MWe unit is in advanced stage of commissioning in India. While continuously engaged in the manufacture of fuel for these reactors, NFC has been upgrading the production lines with new processes and quality assurance systems. In order to multiply the production capacities, NFC has embarked on developing indigenous capability for design and building of special purpose process equipment for Uranium dioxide powder production, pelletisation and final assembly operations. Some of the equipment having state-of-the-art features includes dryers/furnaces for UO{sub 2} powder, presses/ sintering furnaces for pelletisation and resistance welding equipment/ machining stations for assembly operations. In addition, several campaigns were taken over the years for manufacturing PHWR fuel bundles containing reprocessed Uranium, Thoria and slightly enriched Uranium. The paper

  19. Consolidating indigenous capability for PHWR fuel manufacturing in India

    International Nuclear Information System (INIS)

    Jayaraj, R.N.

    2010-01-01

    Since inception of Nuclear Power Programme in India greater emphasis was laid on total self- reliance in Fuel manufacturing. For Pressurized Heavy Water Reactors (PHWRs), which forms a base for the first stage of the programme, an integrated approach was adopted encompassing different areas of expertise -Design, Construction and Operation of PHWRs; Heavy Water production and Fuel Design and Manufacturing technologies. For the first PHWR constructed about 35 years back with the Canadian collaboration, known as Rajasthan Atomic Power Station (RAPS), half the core requirement of fuel was met from the fuel manufactured for the first time in India. Since then the fuel production capabilities were enhanced by setting up an industrial scale fuel manufacturing facility - Nuclear Fuel Complex (NFC) at Hyderabad, India during early '70s. NFC has been continuously expanding its capacities to meet the fuel demand of all the PHWRs constructed and operated by Nuclear Power Corporation of India Limited (NPCIL). Presently, fifteen PHWR 220 MWe units and two PHWR 540 MWe units are in operation and one more PHWR 220 MWe unit is in advanced stage of commissioning in India. While continuously engaged in the manufacture of fuel for these reactors, NFC has been upgrading the production lines with new processes and quality assurance systems. In order to multiply the production capacities, NFC has embarked on developing indigenous capability for design and building of special purpose process equipment for Uranium dioxide powder production, pelletisation and final assembly operations. Some of the equipment having state-of-the-art features includes dryers/furnaces for UO 2 powder, presses/ sintering furnaces for pelletisation and resistance welding equipment/ machining stations for assembly operations. In addition, several campaigns were taken over the years for manufacturing PHWR fuel bundles containing reprocessed Uranium, Thoria and slightly enriched Uranium. The paper summarises

  20. Uranium in Canada: 1984 assessment of supply and requirements

    International Nuclear Information System (INIS)

    1985-09-01

    The success of uranium exploration efforts in Canada has continued, resulting in an overall increase in domestic uranium resource estimates for the principal resource categories. In 1984, Canada's five primary uranium producers employed some 5,800 people at their mining and milling operations, and produced concentrates containing some 11 170 tU. In 1984 the resource estimates were (in tonnes U recoverable): measured - 54 000; indicated - 233 000; inferred - 264 000. Canada's projected annual primary uranium production capability will stabilize at some 12 000 tU through the remainder of the 1980s. Should market conditions warrant, additional production centres could be developed to raise production capability to a level of 15 000 tU by the latter half of the 1990s. Prognosticated resources exploitable at uranium prices of $300/kg U or less are estimated to amount to 292 000 tU. Speculative resources of interest at prices of $300/kg U or less, in areas assessed during 1984, are thought to total approximately one million tU. Uranium exploration expenditures in Canada in 1983 and 1984 were an estimated $41 and $35 million, respectively. Exploration drilling and surface development drilling in 1983 and 1984 were reported to be 153 000 m and 197 000 m, respectively, some 85 per cent of which was in Saskatchewan. Canada's known uranium resources, recoverable at uranium prices of $150/kg U or less, are more than sufficient to meet the 30-year fuelling requirements of those reactors in Canada that are either in operation now or committed or expected to be in-service by 1995. Over the longer term, there is significant potential for discovering additional uranium resources in Canada

  1. Proceedings of workshop on reactor shutdown system

    International Nuclear Information System (INIS)

    1997-03-01

    India has gained considerable experience in design, development, construction and operation of research and power reactors during the last four decades. Reactor shutdown system (RSS) is the most important engineered safety system of any reactor. A lot of technological developments have taken place to improve the reactor shutdown systems, particularly with advancement in reliability analysis and instrumentation and control. If the reactor is not shutdown, the fuel may melt, releasing radioactivity and possibly reactivity addition as in the case of Fast Breeder Reactor (FBR). Apart from radiological safety consequences, large investment has to be written off. The function of the RSS is to stop fission chain reaction and prevent breach of fuel. The design of RSS is multidisciplinary. It requires reactor physics analysis, design of absorber rods, drive mechanisms, safety logic to order shutdown and instrumentation to detect unsafe conditions. High reliability is essential and this requires two independent shutdown systems. This book contains the proceedings of the workshop on reactor shutdown system and papers relevant to INIS are indexed separately

  2. Site remediation techniques in India: a review

    International Nuclear Information System (INIS)

    Anomitra Banerjee; Miller Jothi

    2013-01-01

    India is one of the developing countries operating site remediation techniques for the entire nuclear fuel cycle waste for the last three decades. In this paper we intend to provide an overview of remediation methods currently utilized at various hazardous waste sites in India, their advantages and disadvantages. Over the years the site remediation techniques have been well characterized and different processes for treatment, conditioning and disposal are being practiced. Remediation Methods categorized as biological, chemical or physical are summarized for contaminated soils and environmental waters. This paper covers the site remediation techniques implemented for treatment and conditioning of wastelands arising from the operation of nuclear power plant, research reactors and fuel reprocessing units. (authors)

  3. Radioisotope programme in India: past, present and future

    International Nuclear Information System (INIS)

    Kohli, A.K.

    2012-01-01

    One of the major discoveries of the 20th century is the discovery of artificial radioactivity. This distinctive discovery in human history transformed atoms of one element to another. Until then, chemical reactions used to be concerned only with changes occurring outside the nucleus. The field of nuclear science came into existence with discovery of X-rays by Wilhelm Roentgen in 1895, radioactivity emitted by Uranium salt by Henri Becquerel in 1896 and pioneering work carried out by Madame Curie and Pierre Curie. India's atomic energy programme was envisaged, founded and developed by the great visionary Dr. Homi Jehangir Bhabha. Since then Department of Atomic Energy (DAE) of Government of India has been engaged in developing technologies for use of radiation in all possible fields for the benefit of society. The most common sources of radiation are radioisotopes. Radioisotopes are produced by nuclear reactors either by utilizing available excess neutrons for activation of stable elements or by separating useful fission products from the spent fuel. In India, the production of radioisotopes started with the commissioning of APSARA reactor in 1956. Initially, APSARA was operated at low power, and radioisotopes could be produced only on a small scale. All these operations had to be called out with remote handling or in the safe glove boxes keeping in view the radiation levels associated with the samples. In due course, the reactor reached full power and remotely operated processing equipment required for handling the radioisotopes were set up. Isotopes such as Iodine-131, Phosphorous-32, Gold-198 and Sodium-24 were produced and extracted in purified form in small quantities. These were given to KEM Hospital and Bombay Hospital at Mumbai, Vallabhbhai Patel Chest Institute and Safdarjung Hospital in Delhi, mainly for exploratory experiments

  4. Assessment of Nuclear Energy Systems Based on a Closed Nuclear Fuel Cycle with Fast Reactors. A report of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO)

    International Nuclear Information System (INIS)

    2010-01-01

    A Joint Study was started in 2005 and completed in 2007 within the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO). Canada, China, France, India, Japan, the Republic of Korea, the Russian Federation, and Ukraine participated in this study. The objectives were to assess a nuclear energy system based on a closed fuel cycle (CNFC) with fast reactors (FR) regarding its sustainability, determine milestones for the nuclear energy system deployment, and establish frameworks for, and areas of, collaborative R and D work. The assessment was carried out in accordance with the requirements of INPRO methodology and guiding documents of the Joint Study developed and approved by the participating parties (Canada and Ukraine participated in the discussions during the Joint Study, but did not contribute to the assessments themselves). The Joint Study was implemented in steps. In its first step, nominated experts, during the course of extensive discussions, analyzed the country/region/world context data; discussed national and global scenarios of introduction of the CNFC-FR systems; identified technologies suitable for the INS; and arrived at a broad definition of a common CNFC-FR system. In the second step, the participants of the study examined characteristics of CNFC-FR systems for compliance with criteria of sustainability developed in the INPRO methodology in the area of economics, safety, environment, waste management, proliferation resistance, and infrastructure. The results of the study were submitted to and endorsed by the INPRO Steering Committee in meetings held in Vienna 2005 - 2007. The authors of the Joint Study report highly appreciate the valuable comments provided by delegates of the INPRO Steering Committee meetings as well as the advice and assistance of the other experts. Due to the length of the Joint Study report, a summary of the results was produced, which is the content of this publication. The full text of the Joint Study

  5. Assessment of Nuclear Energy Systems based on a Closed Nuclear Fuel Cycle with Fast Reactors. A Report of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO)

    International Nuclear Information System (INIS)

    2012-09-01

    A Joint Study was started in 2005 and completed in 2007 within the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO). Canada, China, France, India, Japan, the Republic of Korea, the Russian Federation, and Ukraine participated in this study. The objectives were to assess a nuclear energy system based on a closed fuel cycle (CNFC) with fast reactors (FR) regarding its sustainability, determine milestones for the nuclear energy system deployment, and establish frameworks for, and areas of, collaborative R and D work. The assessment was carried out in accordance with requirements of INPRO methodology and guiding documents of the Joint Study developed and approved by the participating parties (Canada and Ukraine participated in the discussions during the Joint Study but did not contribute to the assessments themselves). The Joint Study was implemented in steps. In its first step, nominated experts in course of extensive discussions analyzed the country/region/world context data, discussed national and global scenarios of introduction of the INS CNFC-FR, identified technologies suitable for the INS, and arrived at a broad definition of a common INS CNFC-FR. In the second step, the participants of the study examined characteristics of INS CNFC-FR for compliance with criteria of sustainability developed in the INPRO methodology in the domain of economics, safety, environment, waste management, proliferation resistance, physical protection and infrastructure. The results of the study were submitted to and endorsed by the INPRO Steering Committee meetings held in Vienna 2005-2007. The authors of the report highly appreciate the valuable comments provided by delegates of INPRO Steering Committee meetings as well as the advice and assistance of the other experts. Due to the length of the Joint Study report a summary of the results was produced, which was published as a hard copy. The full text of the Joint Study report is available on the CD

  6. Radiological safety of nuclear power plants in India

    International Nuclear Information System (INIS)

    Sathish, A.V.

    2015-01-01

    Safety in nuclear power plants (NPPs) is often less understood and more talked about, thus the author wanted to share the facts to clear the myths. Safety is accorded overriding priority in all the activities. All nuclear facilities are sited, designed, constructed, commissioned and operated in accordance with strict quality and safety standards. Principles of defence in depth, redundancy and diversity are followed in the design of all nuclear facilities and their systems/components. PPs in India are not only safe but are also well regulated, have proper radiological protection of workers and the public, regular surveillance, approved standard operating and maintenance procedures, a well-defined waste management methodology, periodically rehearsed emergency preparedness and disaster management plans. The regulatory framework in the country is robust, with the independent Atomic Energy Regulatory Board (AERB) having powers to frame the policies, laying down safety standards, monitoring and enforcing all the safety provisions. As a result, India's safety record has been excellent in over 400 reactor years of operation of power reactors

  7. Pressurized water reactor simulator. Workshop material

    International Nuclear Information System (INIS)

    2003-01-01

    The International Atomic Energy Agency (IAEA) has established an activity in nuclear reactor simulation computer programs to assist its Member States in education. The objective is to provide, for a variety of advanced reactor types, insight and practice in their operational characteristics and their response to perturbations and accident situations. To achieve this, the IAEA arranges for the development and distribution of simulation programs and educational material and sponsors courses and workshops. The workshops are in two parts: techniques and tools for reactor simulator development; and the use of reactor simulators in education. Workshop material for the first part is covered in the IAEA Training Course Series No. 12, 'Reactor Simulator Development' (2001). Course material for workshops using a WWER- 1000 reactor department simulator from the Moscow Engineering and Physics Institute, the Russian Federation is presented in the IAEA Training Course Series No. 21 'WWER-1000 Reactor Simulator' (2002). Course material for workshops using a boiling water reactor simulator developed for the IAEA by Cassiopeia Technologies Incorporated of Canada (CTI) is presented in the IAEA publication: Training Course Series No.23 'Boiling Water Reactor Simulator' (2003). This report consists of course material for workshops using a pressurized water reactor simulator

  8. Strontium-90 in Canada goose eggshells: Nonfatal monitoring for contamination in wildlife

    International Nuclear Information System (INIS)

    Rickard, W.H.; Eberhardt, L.E.

    1990-01-01

    90 Sr was measured in eggshells from Canada geese (Branta canadensis moffitti) that nested on Columbia River islands up- and downstream from deactivated plutonium production reactors on the U.S. Department of Energy's Hanford Site in southeastern Washington. We also measured 90 Sr in wing bones of goose carcasses. Background levels of 90 Sr were based on eggshells collected on an island upstream of the reactors. A few eggshells collected from nests on a single island downstream of the reactors had slightly higher than background levels of 90 Sr. This may have resulted from geese eating shoreline plants or crops irrigated with Columbia River water that contained 90 Sr released into the river through groundwater seepage

  9. Reactor core and passive safety systems descriptions of a next generation pressure tube reactor - mechanical aspects

    Energy Technology Data Exchange (ETDEWEB)

    Yetisir, M.; Gaudet, M.; Rhodes, D.; Hamilton, H.; Pencer, J. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    Canada has been developing a channel-type supercritical water-cooled nuclear reactor concept, often called the Canadian SCWR. The objective of this reactor concept is to meet the technology goals of the Generation IV International Forum (GIF) for the next generation nuclear reactor development, which include enhanced safety features (inherent safe operation and deploying passive safety features), improved resource utilization, sustainable fuel cycle, and greater proliferation resistance than Generation III nuclear reactors. The Canadian SCWR core concept consists of a high-pressure inlet plenum, a separate low-pressure heavy water moderator contained in a calandria vessel, and 336 pressure tubes surrounded by the moderator. The reactor uses supercritical water as a coolant, and a direct steam power cycle to generate electricity. The reactor concept incorporates advanced safety features such as passive core cooling, long-term decay heat rejection to the environment and fuel melt prevention via passive moderator cooling. These features significantly reduce core damage frequency relative to existing nuclear reactors. This paper presents a description of the design concepts for the Canadian SCWR core, reactor building layout and the plant layout. Passive safety concepts are also described that address containment and core cooling following a loss-of coolant accident, as well as long term reactor heat removal at station blackout conditions. (author)

  10. MAPLE-X10 reactor digital control system

    International Nuclear Information System (INIS)

    Deverno, M.T.; Hinds, H.W.

    1991-10-01

    The MAPLE-X10 reactor, currently under construction at the Chalk River Laboratories of Atomic Energy of Canada Limited, is a 10 MW t , pool-type, light-water reactor. It will be used for radioisotope production and silicon neutron transmutation doping. The reactor is controlled by a Digital Control System (DCS) and protected against abnormal process events by two independent safety systems. The DCS is an integrated control system used to regulate the reactor power and process systems. The safety philosophy for the control system is to minimize unsafe events arising from system failures and operational errors. this is achieved through redundancy, fail-safe design, automatic fault detection, and the selection of highly reliable components. The DCS provides both computer-controlled reactor regulation from the shutdown state to full power and automated reactor shutdown if safe limits are exceeded or critical sensors malfunction. The use of commercially available hardware with enhanced quality assurance makes the system cost effective while providing a high degree of reliability

  11. Balance of plant design issues for small reactors in Canada

    International Nuclear Information System (INIS)

    Harvel, G.; Meneley, D.

    2014-01-01

    Internationally, several companies are exploring design and development of Small Modular Reactors (SMR) ranging in power from 10 MWe to 300 MWe. While the designs are proceeding, the main issue at hand is finding a site for deployment of the first unit. Connection to existing well established grids is currently not competitive in part due to First of a Kind (FOAK) costs. As such, many vendors are exploring unique and remote applications where FOAK costs are not as significant a concern. One of the major assumptions in the design process usually followed is that the major effort needs to concentrate on reactor core development. While the reactor core is important, costs associated with the balance of plant and operations of the unit are likely to play an important role in the final decision of purchase. In this work, a series of conceptual designs is performed for the support systems of a small modular reactor by successive teams of undergraduate students working over semester long periods during a 3 year period. The goal of this process is to determine to what extent current technology for the balance of plant supports the development of a cost effective SMR. Each system is given to a team with an open set of criteria for design. At the completion of the design exercise, an open discussion with the teams is held regarding the staffing requirements for an SMR. The results are preliminary and reflect the open nature of the exercise. That said, the results indicate that for an SMR to be truly competitive, significant innovation is required in addressing the supporting systems of the plant. (author)

  12. Balance of plant design issues for small reactors in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Harvel, G.; Meneley, D., E-mail: Glenn.Harvel@uoit.ca, E-mail: dan.meneley@sympatico.ca [Univ. of Ontario Inst. of Tech.y, Oshawa, ON (Canada)

    2014-07-01

    Internationally, several companies are exploring design and development of Small Modular Reactors (SMR) ranging in power from 10 MWe to 300 MWe. While the designs are proceeding, the main issue at hand is finding a site for deployment of the first unit. Connection to existing well established grids is currently not competitive in part due to First of a Kind (FOAK) costs. As such, many vendors are exploring unique and remote applications where FOAK costs are not as significant a concern. One of the major assumptions in the design process usually followed is that the major effort needs to concentrate on reactor core development. While the reactor core is important, costs associated with the balance of plant and operations of the unit are likely to play an important role in the final decision of purchase. In this work, a series of conceptual designs is performed for the support systems of a small modular reactor by successive teams of undergraduate students working over semester long periods during a 3 year period. The goal of this process is to determine to what extent current technology for the balance of plant supports the development of a cost effective SMR. Each system is given to a team with an open set of criteria for design. At the completion of the design exercise, an open discussion with the teams is held regarding the staffing requirements for an SMR. The results are preliminary and reflect the open nature of the exercise. That said, the results indicate that for an SMR to be truly competitive, significant innovation is required in addressing the supporting systems of the plant. (author)

  13. Overview of the fast reactors fuels program

    International Nuclear Information System (INIS)

    Evans, E.A.; Cox, C.M.; Hayward, B.R.; Rice, L.H.; Yoshikawa, H.H.

    1980-04-01

    Each nation involved in LMFBR development has its unique energy strategies which consider energy growth projections, uranium resources, capital costs, and plant operational requirements. Common to all of these strategies is a history of fast reactor experience which dates back to the days of the Manhatten Project and includes the CLEMENTINE Reactor, which generated a few watts, LAMPRE, EBR-I, EBR-II, FERMI, SEFOR, FFTF, BR-1, -2, -5, -10, BOR-60, BN-350, BN-600, JOYO, RAPSODIE, Phenix, KNK-II, DFR, and PFR. Fast reactors under design or construction include PEC, CRBR, SuperPhenix, SNR-300, MONJU, and Madras (India). The parallel fuels and materials evolution has fully supported this reactor development. It has involved cermets, molten plutonium alloy, plutonium oxide, uranium metal or alloy, uranium oxide, and mixed uranium-plutonium oxides and carbides

  14. The keys to success in marketing small heating reactors

    International Nuclear Information System (INIS)

    McDougall, D.S.; Lynch, G.F.

    1988-01-01

    The success of the SLOWPOKE Energy System requires acceptance of the SLOWPOKE reactor within the community where the reactor's energy is to be used. Public acceptance will be obtained once the public is convinced that this nuclear heat source is needed, safe and of economic benefit to the community. The need for a new application of nuclear energy is described and the ability of small reactors used for district heating to play that role is shown. The safety of the reactor is being demonstrated with the establishment of the SLOWPOKE Demonstration Reactor by Atomic Energy of Canada Limited and with open, candid discussion with the involved community. Economic arguments are reviewed and include discussion of quantitative and qualitative issues. (orig.)

  15. Temperature distribution of the energy consumed as heat in Canada

    International Nuclear Information System (INIS)

    Puttagunta, V.R.

    1974-10-01

    The amount of energy consumed as heat (excluding thermal generation of electricity) in Canada is estimated from statistical data available on the total consumption of energy for the years 1958 to 2000. Based on some actual plant data and other statistical information this energy consumption is sub-divided into four temperature categories: high (>260 degrees C), intermediate (140-260 degrees C), low (100-140 degrees C), and space heating (<100 degrees C). The results of this analysis show that approximately half of all the energy consumed in Canada has an end use as heat. Less than 10 percent of the energy consumed as heat is in the high temperature category, 12 to 14 percent is in the intermediate temperature range, 21 to 27 percent is in the low temperature range, and 50 to 58 percent is used for space heating. Over 90 percent of the energy consumed as heat in Canada is within the temperature capability of the CANDU-PHW reactor. (author)

  16. Inevitability of atomic energy in India's power programme

    International Nuclear Information System (INIS)

    Ramanna, R.

    1977-01-01

    The case for atomic energy as the inevitable answer to the energy problem of India has been emphatically put up and supported with data. Hydroelectric power is costly to develop and moreover its potential is not enough to meet India's growing energy requirements. On the grounds of economics and safety, nuclear power has been shown to be superior to power from coal-based power plants. India's proved reserves of coal are 21 billion tonnes out of which 80% has ash content more than 20% and in order to reach only half of the present per capita energy consumption in Europe, the present output of 90 million tonnes/year of coal will have to be increased by a factor of 10, which in addition raises the problem of its transportation to the plant sites. Secondly, total energy from the available coal is estimated at 160 x 10 12 kwh, while that from known reserves of 52,000 tonnes of uranium is 7.2 x 10 12 kwh if used in thermal reactors and 208 x 10 12 kwh if used in fast reactors. Thorium with its known reserves of 320,000 tonnes would give another 1280 x 10 12 kwh. As for safety and ecology, it has been pointed out that : (1) in U.S., the number of coal miners dying of black cancer is 1000 per 10 12 kwh of electricity generated, whereas the fatality rate of uranium miners due to lung cancer is 20 per 10 12 kwh of electricity generated and (2) safety has been the primary concern in all aspects of nuclear technology - mining, fuel production, reactor operation and radioactive waste processing. It has also been explained how the fear of any terrorist getting possession of plutonium for spreading it into atmosphere or making a nuclear bomb is highly improbable, because at any point throughout the fuel cycle plutonium is under strict security surveillance and it is impossible to make a nuclear device without the back-up of powerful laboratory facilities. Finally, India's three stage atomic power programme is described in brief. (M.G.B.)

  17. The advanced MAPLE reactor concept

    International Nuclear Information System (INIS)

    Lidstone, R.F.; Lee, A.G.; Gillespie, G.E.; Smith, H.J.

    1989-01-01

    During the past several years, Atomic Energy of Canada Limited (AECL) has been developing the new MAPLE multipurpose reactor concept, which is capable of generating peak thermal neutron fluxes of up to 3 x 10 18 n/m 2 s in its heavy water reflector at a nominal thermal power level of 15MW. An assessment of the MAPLE-D 2 O reactor has shown that it could also be used as a high-flux neutron source. it could be developed to be used for several applications if a 12-site annular core is used. Thermal fluxes several times greater than in existing facilities would be available (author)

  18. WWER-1000 reactor simulator. Workshop material

    International Nuclear Information System (INIS)

    2003-01-01

    The International Atomic Energy Agency (IAEA) has established an activity in nuclear reactor simulation computer programs to assist its Member States in education. The objective is to provide, for a variety of advanced reactor types, insight and practice in their operational characteristics and their response to perturbations and accident situations. To achieve this, the IAEA arranges for the development and distribution of simulation programs and educational material and sponsors courses and workshops. The workshops are in two parts: techniques and tools for reactor simulator development; and the use of reactor simulators in education. Workshop material for the first part is covered in the IAEA publication: Training Course Series 12, 'Reactor Simulator Development' (2001). Course material for workshops using a pressurized water reactor (PWR) Simulator developed for the IAEA by Cassiopeia Technologies Inc. of Canada is presented in the IAEA publication: Training Course Series No. 22 'Pressurized Water Reactor Simulator' (2003) and Training Course Series No. 23 'Boiling Water Reactor Simulator' (2003). This report consists of course material for workshops using the WWER-1000 Reactor Department Simulator from the Moscow Engineering and Physics Institute, Russian Federation. N. V. Tikhonov and S. B. Vygovsky of the Moscow Engineering and Physics Institute prepared this report for the IAEA

  19. Boiling water reactor simulator. Workshop material

    International Nuclear Information System (INIS)

    2003-01-01

    The International Atomic Energy Agency (IAEA) has established an activity in nuclear reactor simulation computer programs to assist its Member States in education. The objective is to provide, for a variety of advanced reactor types, insight and practice in their operational characteristics and their response to perturbations and accident situations. To achieve this, the IAEA arranges for the development and distribution of simulation programs and workshop material and sponsors workshops. The workshops are in two parts: techniques and tools for reactor simulator development; and the use of reactor simulators in education. Workshop material for the first part is covered in the IAEA publication: Training Course Series No. 12, 'Reactor Simulator Development' (2001). Course material for workshops using a WWER- 1000 simulator from the Moscow Engineering and Physics Institute, Russian Federation is presented in the IAEA publication: Training Course Series No. 21 'WWER-1000 Reactor Simulator' (2002). Course material for workshops using a pressurized water reactor (PWR) simulator developed by Cassiopeia Technologies Incorporated, Canada, is presented in the IAEA publication: Training Course Series No. 22 'Pressurized Water Reactor Simulator' (2003). This report consists of course material for workshops using a boiling water reactor (BWR) simulator. Cassiopeia Technologies Incorporated, developed the simulator and prepared this report for the IAEA

  20. Nuclear. Exchange of letters between the Government of Canada and the Government of the United States of America. Treaty series 1993 no.5

    International Nuclear Information System (INIS)

    1994-01-01

    Discussions between officials of the Governments of the United States of America and Canada concerning cooperation between Canada and the United States of America on the application of non-proliferation assurances to Canadian uranium to be transferred from Canada to the United States of America for enrichment and fabrication into fuel and thereafter retransferred to Taiwan for use in nuclear reactors for the generation of electricity on Taiwan

  1. Nuclear desalination activities in India

    International Nuclear Information System (INIS)

    Bhattacharjee, B.

    1999-01-01

    The main emphasis of this article is on utilization of nuclear energy for desalination. Nuclear desalination is cheaper, eco-friendly and assists in sustainable growth of total energy generation programme in a country. PHWR type reactors are the main stay of nuclear energy programme in India. Nuclear waste heat for desalination is available in the moderator system of the 220 MW(e) and 500 MW(e) PHWRs. The low temperature evaporation technology (LET) for producing pure water from sea water is also discussed

  2. Is there a financial incentive to immigrate? Examining of the health worker salary gap between India and popular destination countries.

    Science.gov (United States)

    George, Gavin; Rhodes, Bruce

    2017-10-19

    International migration is one of the factors resulting in the shortage of Human Resources for Health (HRH) in India. Literature suggests that migration is fuelled by the prospect of higher salaries available abroad. The extent of these salary differentials are unknown, and this study seeks to examine the salaries of selected HRH in India and four popular destination countries (United States of America, United Kingdom, Canada and the United Arab Emirates), whilst accounting for the in-country cost of living. This study will therefore determine truer financial incentives for Indian HRH to migrate abroad. A purchasing power parity (PPP) ratio is employed to equalise the international price of buying a representative basket of commonly bought goods (including food, entertainment, fuel and utilities). Using the PPP index, real differences in salaries are directly compared for selected work categories and different levels of work experience in the four respective countries. Nurses in the USA can earn up to 82.7% more than their Indian counterparts. Nurses in Canada and the UAE reveal more modest salary differentials, yet still significant better off by up to 28 and 20% respectively. Only nurses in the UK are potentially materially worse off than nurses working in India. We observe significant potential PPP gains of up to 57.4, 99.1 and 94.4% for medical doctors in the USA, Canada and the UAE respectively. Medical specialists potentially experience the greatest income disparities with anaesthetists potentially earning up to 600% more than their counterparts in India. Radiologists operating in the UK and general surgeons working in the USA can potentially earn more than double that of their counterparts working in India. We observe more modest positive or negligible PPP gains in other selected countries for health specialists. Even when considering the differences in the cost of living, the financial incentive for selected cadres of Indian HRH to seek work abroad remains

  3. Reduce, reuse and recycle: A green solution to Canada's medical isotope shortage

    International Nuclear Information System (INIS)

    Galea, R.; Ross, C.; Wells, R.G.

    2014-01-01

    Due to the unforeseen maintenance issues at the National Research Universal (NRU) reactor at Chalk River and coincidental shutdowns of other international reactors, a global shortage of medical isotopes (in particular technetium-99m, Tc-99m) occurred in 2009. The operation of these research reactors is expensive, their age creates concerns about their continued maintenance and the process results in a large amount of long-lived nuclear waste, whose storage cost has been subsidized by governments. While the NRU has since revived its operations, it is scheduled to cease isotope production in 2016. The Canadian government created the Non-reactor based medical Isotope Supply Program (NISP) to promote research into alternative methods for producing medical isotopes. The NRC was a member of a collaboration looking into the use of electron linear accelerators (LINAC) to produce molybdenum-99 (Mo-99), the parent isotope of Tc-99m. This paper outlines NRC’s involvement in every step of this process, from the production, chemical processing, recycling and preliminary animal studies to demonstrate the equivalence of LINAC Tc-99m with the existing supply. This process stems from reusing an old idea, reduces the nuclear waste to virtually zero and recycles material to create a green solution to Canada's medical isotope shortage. - Highlights: • Commercial power electron accelerators are realistic option to produce 99 Mo. • Could cover national demand of Canada. • Demonstrate LINAC- 99 Mo as environmental and economical solution to isotope crisis. • Demonstrate LINAC- 99m Tc to be clinically equivalent to current fission- 99m Tc supply

  4. Intercomparison of techniques for inspection and diagnostics of heavy water reactor pressure tubes. Additional information

    International Nuclear Information System (INIS)

    2009-03-01

    The reports from Argentina, Canada, India, Korea and Romania are presented concerning the projects carried out under the Coordinated Research Program (CRP) I3.30.10 of the International Agency for Atomic Energy - Vienna related to 'Intercomparison of Techniques for Pressure Tube Inspection and Diagnostics'

  5. A review of the Indian fast reactor programme

    International Nuclear Information System (INIS)

    Chetal, S.C.

    1989-01-01

    Fast Breeder Test Reactor (FBTR) in India is ready for restart. Satisfactory progress has been made in the design of Prototype Fast Breeder Reactor (PFBR). Conceptual design work for the important systems and components has been completed. Cost estimation is in progress. Detailed project report for the financial sanction is under completion stage and is planned to be submitted to the Government this year. Draft Safety criteria prepared by a sub-committee on behalf of the Regulatory Board have been discussed and will be issued shortly. (author)

  6. Nuclear reactors to come

    International Nuclear Information System (INIS)

    Lung, M.

    2002-01-01

    The demand for nuclear energy will continue to grow at least till 2050 because of mainly 6 reasons: 1) the steady increase of the world population, 2) China, India and Indonesia will reach higher social standard and their energy consumption will consequently grow, 3) fossil energy resources are dwindling, 4) coal will be little by little banned because of its major contribution to the emission of green house effect gas, 5) renewable energies need important technological jumps to be really efficient and to take the lead, and 6) fusion energy is not yet ready to take over. All these reasons draw a promising future for nuclear energy. Today 450 nuclear reactors are operating throughout the world producing 17% of the total electrical power demand. In order to benefit fully of this future, nuclear industry has to improve some characteristics of reactors: 1) a more efficient use of uranium (it means higher burnups), 2) a simplification and automation of reprocessing-recycling chain of processes, 3) efficient measures against proliferation and against any misuse for terrorist purposes, and 4) an enhancement of safety for the next generation of reactors. The characteristics of fast reactors and of high-temperature reactors will likely make these kinds of reactors the best tools for energy production in the second half of this century. (A.C.)

  7. Refurbishment and safety upgradation of research reactor Cirus

    International Nuclear Information System (INIS)

    Marik, S.K.; Rao, D.V.H.; Bhatnagar, A.; Pant, R.C.; Tikku, A.C.; Sankar, S.

    2006-01-01

    Cirus, a 40 MW t, vertical tank type research reactor, having wide range of research facilities, was commissioned in the year 1960. This research reactor, situated at Mumbai, India has been operated and utilized extensively for isotope production, material testing and neutron beam research for nearly four decades. With a view to assess the residual life of the reactor, detailed ageing studies were carried out during the early 1990s. Based on these studies, refurbishment of Cirus for its life extension was taken up. During refurbishment, additional safety features were incorporated in various systems to qualify them for the current safety standards. This paper gives the details of the operating experiences, utilization of the reactor along with methodologies followed for carrying out detailed ageing studies, refurbishment and safety upgradation for its life extension

  8. Overview of the fast reactors fuels program. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Evans, E.A.; Cox, C.M.; Hayward, B.R.; Rice, L.H.; Yoshikawa, H.H.

    1980-04-01

    Each nation involved in LMFBR development has its unique energy strategies which consider energy growth projections, uranium resources, capital costs, and plant operational requirements. Common to all of these strategies is a history of fast reactor experience which dates back to the days of the Manhatten Project and includes the CLEMENTINE Reactor, which generated a few watts, LAMPRE, EBR-I, EBR-II, FERMI, SEFOR, FFTF, BR-1, -2, -5, -10, BOR-60, BN-350, BN-600, JOYO, RAPSODIE, Phenix, KNK-II, DFR, and PFR. Fast reactors under design or construction include PEC, CRBR, SuperPhenix, SNR-300, MONJU, and Madras (India). The parallel fuels and materials evolution has fully supported this reactor development. It has involved cermets, molten plutonium alloy, plutonium oxide, uranium metal or alloy, uranium oxide, and mixed uranium-plutonium oxides and carbides.

  9. Analysis of a homogenous and heterogeneous stylized half core of a CANDU reactor

    Energy Technology Data Exchange (ETDEWEB)

    EL-Khawlani, Afrah [Physics Department, Sana' a (Yemen); Aziz, Moustafa [Nuclear and radiological regulatory authority, Cairo (Egypt); Ismail, Mahmud Yehia; Ellithi, Ali Yehia [Cairo Univ. (Egypt). Faculty of Science

    2015-03-15

    The MCNPX (Monte Carlo N-Particle Transport Code System) code has been used for modeling and simulation of a half core of CANDU (CANada Deuterium-Uranium) reactor, both homogenous and heterogeneous model for the reactor core are designed. The fuel is burnt in normal operation conditions of CANDU reactors. Natural uranium fuel is used in the model. The multiplication factor for homogeneous and heterogeneous reactor core is calculated and compared during fuel burnup. The concentration of both uranium and plutonium isotopes are analysed in the model. The flux and power distributions through channels are calculated.

  10. Bioethics and transnational medical travel: India,"medical tourism," and the globalisation of healthcare.

    Science.gov (United States)

    Runnels, Vivien; Turner, Leigh

    2011-01-01

    Health-related travel, also referred to as "medical tourism" is historically well-known. Its emerging contemporary form suggests the development of a form of globalised for-profit healthcare. Medical tourism to India, the focus of a recent conference in Canada, provides an example of the globalisation of healthcare. By positioning itself as a low-cost, high-tech, fast-access and high-quality healthcare destination country, India offers healthcare to medical travellers who are frustrated with waiting lists and the limited availability of some procedures in Canada. Although patients have the right to travel and seek care at international medical facilities, there are a number of dimensions of medical tourism that are disturbing. The diversion of public investments in healthcare to the private sector, in order to serve medical travellers, perversely transfers public resources to international patients at a time when the Indian public healthcare system fails to provide primary healthcare to its own citizens. Further, little is known about patient safety and quality care in transnational medical travel. Countries that are departure points as well as destination countries need to carefully explore the ethical, social, cultural, and economic consequences of the growing phenomenon of for-profit international medical travel.

  11. Licensing and regulatory control of nuclear power plants in Canada

    International Nuclear Information System (INIS)

    Atchison, R.J.

    1975-01-01

    The paper discusses the safety philosophy adopted in Canada, the safety criteria and regulatory requirements necessary for the application of this philosophy to reactor design and operation, and finally the means by which compliance with Board requirements is effected. It is emphasized that the effectiveness of regulatory control depends not only on the underlying philosophy but also on the detailed way in which it is applied. (orig./HP) [de

  12. Advances in zirconium technology for nuclear reactor application

    International Nuclear Information System (INIS)

    Ganguly, C.

    2002-01-01

    Zirconium alloys are extensively used as a material for cladding nuclear fuels and for making core structurals of water-cooled nuclear power reactors all over the world for generation of nearly 16 percent of the worlds electricity. Only four countries in the world, namely France, USA, Russia and India, have large zirconium industry and capability to manufacture reactor grade zirconium sponge, a number of zirconium alloys and a wide variety of structural components for water cooled nuclear reactor. The present paper summarises the status of zirconium technology and highlights the achievement of Nuclear Fuel Complex during the last ten years in developing a wide variety of zirconium alloys and components for water-cooled nuclear power programme

  13. The evolution of Canadian research reactors, 1942 to 1992

    International Nuclear Information System (INIS)

    Lidstone, R.F.

    1993-01-01

    This report reviews the evolution of Canadian research reactor design over the past fifty years. Canadian research reactors have played a central role in the development of CANDU power reactors and the creation of an international business based on the production of medical and industrial radioisotopes. A focus on neutronic efficiency, which stemmed from the incentive for direct use of Canada's abundant uranium resources, has resulted in several generations of multipurpose reactors with a common heritage of neutronic efficiency. Each successive nuclear design has been engineered with the best available resources to extrapolate slightly from the current technology base to meet specific program requirements and to incorporate the flexibility needed to accommodate evolving priorities. (Author) 19 refs., 2 tabs., 2 figs

  14. Advanced Reactors Around the World

    International Nuclear Information System (INIS)

    Majumdar, Debu

    2003-01-01

    At the end of 2002, 441 nuclear power plants were operating around the globe and providing 17% of the world's electricity. Although the rate of population growth has slowed, recent United Nations data suggest that two billion more people will be added to the world by 2050. A special report commissioned by the Intergovernmental Panel on Climate Change estimated that electricity demand would grow almost eight-fold from 2000 to 2050 in a high economic grown scenario and more than double in a low-growth scenario. There is also a global aspiration to keep the environment pristine. Because of these reasons, it is expected that a large number of new nuclear reactors may be operating by 2050. Realization of this has created an impetus for the development of a new generation of reactors in several countries. The goal is to make nuclear power cost-competitive with other resources and to enhance safety to a level that no evacuation outside a plant site would be necessary. It should also generate less waste, prevent materials diversion for weapons production, and be sustainable. This article discusses the status of next-generation reactors under development around the world. Specifically highlighted are efforts related to the Generation IV International Forum (GIF) and its six reactor concepts for research and development: Very High Temperature Reactor (VHTR); Gas-Cooled Fast Reactor (GFR); Supercritical Water-Cooled Reactor (SCWR); Sodium-Cooled Fast Reactor (SFR); Lead-Cooled Fast Reactor (LFR); and Molten Salt Reactor (MSR). Also highlighted are nuclear activities specific to Russia and India

  15. Fuel reprocessing experience in India: Technological and economic considerations

    International Nuclear Information System (INIS)

    Prasad, A.N.; Kumar, S.V.

    1983-01-01

    The approach to the reprocessing of irradiated fuel from power reactors in India is conditioned by the non-availability of highly enriched uranium with the consequent need for plutonium for the fast-reactor programme. With this in view, the fuel reprocessing programme in India is developing in stages matching the nuclear power programme. The first plant was set up in Trombay to reprocess the metallic uranium fuel from the research reactor CIRUS. The experience gained in the construction and operation of this plant, and in its subsequent decommissioning and reconstruction, has not only provided the know-how for the design of subsequent plants but has indicated the fruitful areas of research and development for efficient utilization of limited resources. The Trombay plant also handled successfully, on a pilot scale, the reprocessing of irradiated thorium fuel to separate uranium-233. The second plant at Tarapur has been built for reprocessing spent fuels from the power reactors at Tarapur (BWR) and Rajasthan (PHWR). The third plant, at present under design, will reprocess the spent fuels from the power reactors (PHWR) and the Fast Breeder Test Reactor (FBTR) located at Kalpakkam. Through the above approach experience has been acquired which will be useful in the design and construction of even larger plants which will become necessary in the future as the nuclear power programme grows. The strategies considered for the sizing and siting of reprocessing plants extend from the idea of small plants, located at nuclear power station sites, to a large-size central plant, located at an independent site, serving many stations. The paper discusses briefly the experience in reprocessing uranium and thorium fuels and also in decommissioning. An attempt is made to outline the technological and economic aspects which are relevant under different circumstances and which influence the size and siting of the fuel reprocessing plants and the expected lead times for construction

  16. Cobalt-60 production in CANDU power reactors

    International Nuclear Information System (INIS)

    Malkoske, G.R.; Norton, J.L.; Slack, J.

    2002-01-01

    MDS Nordion has been supplying cobalt-60 sources to industry for industrial and medical purposes since 1946. These cobalt-60 sources are used in many market and product segments, but are primarily used to sterilize single-use medical products including; surgical kits, gloves, gowns, drapes, and cotton swabs. Other applications include sanitization of cosmetics, microbial reduction of pharmaceutical raw materials, and food irradiation. The technology for producing the cobalt-60 isotope was developed by MDS Nordion and Atomic Energy of Canada Limited (AECL) almost 55 years ago using research reactors at the AECL Chalk River Laboratories in Ontario, Canada. The first cobalt-60 source produced for medical applications was manufactured by MDS Nordion and used in cancer therapy. The benefits of cobalt-60 as applied to medical product manufacturing, were quickly realized and the demand for this radioisotope quickly grew. The same technology for producing cobalt-60 in research reactors was then designed and packaged such that it could be conveniently transferred to a utility/power reactor. In the early 1970's, in co-operation with Ontario Power Generation (formerly Ontario Hydro), bulk cobalt-60 production for industrial irradiation applications was initiated in the four Pickering A CANDU reactors. As the demand and acceptance of sterilization of medical products grew, MDS Nordion expanded its bulk supply by installing the proprietary Canadian technology for producing cobalt-60 in additional CANDU reactors. CANDU is unique among the power reactors of the world, being heavy water moderated and fuelled with natural uranium. They are also designed and supplied with stainless steel adjusters, the primary function of which is to shape the neutron flux to optimize reactor power and fuel bum-up, and to provide excess reactivity needed to overcome xenon-135 poisoning following a reduction of power. The reactor is designed to develop full power output with all of the adjuster

  17. US-India agreement for peaceful nuclear cooperation

    International Nuclear Information System (INIS)

    2008-01-01

    The United States and India acheived a historic agreement for strategic partnership after the completion of negotiations on the bilateral agreement for peaceful nuclear cooperation, also known as the agreement of 123. This agreement regulates the civilian nuclear trade between the two countries and opens the door wide to U.S. and Indian companies for a partnership in every other country in the civil nuclear industry. This agreement has opened the door to complete the remaining steps for the the widest American Indian cooperation in the field of civil uses of atomic energy. Critics to the agreement within the United States say that the agreement reflected serious consequences on the ability of the United States to force other countries to comply with the prevention of nuclear proliferation. The global criticism focused on that the agreement strikes at the heart of the Treaty on the Non-Proliferation of Nuclear Weapons, and is considered a dangerous precedent to break the laws of the International Tribunal, and especially the laws and rules of the International Group of Suppliers, which includes 45 countries. The International Atomic Energy Agency (IAEA) says that the agreement is an important step towards meeting India's growing energy needs, especially nuclear technology which is the engine of development. Immediately after the completion of the United States and India for their bilateral agreement for nuclear cooperation, Israel announced that it was seeking U.S. help in the establishment of a power reactor while pressing the direction of tightening control over Iran's nuclear program while some Arab countries announced their desire to have nuclear reactors for electricity generation purposes.

  18. Fueling the dragon : China's quest for energy security and Canada's opportunities

    International Nuclear Information System (INIS)

    Jiang, W.

    2005-04-01

    Potential opportunities for Canada were discussed in relation to China's growing economy. China's current dependency on foreign oil is approximately 40 per cent, and is expected to be over 60 per cent in less than 2 decades. With less than 4 per cent of global Gross Domestic Product (GDP), China consumes 31 per cent of the world's coal, 30 per cent of its iron, 27 per cent of steel and 40 per cent of cement. China is also currently building one of the most extensive highway infrastructures on earth so it can replace its 1 billion bicycles with cars. As a developing country, China is not subject to the emission reduction standards of the Kyoto Protocol. China has signed billions of dollars in agreements to buy energy and build pipelines, as well as opened doors for multinational corporations to enter China's domestic energy market. Canada is now competing for the pending award of contracts to build 4 nuclear reactors in China. Chinese interest in Canada is largely due to its huge oil reserves, particularly now that Alberta's oil sands have been classified as economically recoverable. A background of Chinese and Canadian relations was presented. In 2003, The Common Paper of the Canada-China Strategic Working Group was developed, in which both countries agreed to strengthen their bilateral dialogue on energy, research and development and sustainable development. Official endorsements have been followed by real business movement, with Chinese interest in buying stakes in the oil sands industry. However, unlike other resource rich countries, Canada has yet to strike a major deal with China, and any major energy cooperation between China and Canada will be closely watched by the United States. Canada is the largest source of imported oil for the United States. It was concluded that the broader strategic implications of Canada's relationship with China must be carefully considered. 5 figs

  19. Atoms: for war or peace

    Energy Technology Data Exchange (ETDEWEB)

    Subrahmanyam, K V

    1981-08-01

    History of nuclear power generation starting from the experimental split of uranium atom in 1938 to the establishment of the International Atomic Energy Agency is traced. In India, the Atomic Energy Commission was established with the major objective of developing nuclear power to make up India's deficiencies in energy sources. It is noted that from the very beginning the commission's activities were covered under a blanket of secrecy. According to the author, India's atomic energy programme stagnated after Dr. Bhabha's death. The Department of Atomic Energy diverted its attention to the nuclear explosion which was carried out in 1974. This event caused a great setback to the collaboration with Canada and USA in the nuclear power programme. The resulting problems are still not fully solved. The author maintains that the Department of Atomic Energy should have confined its efforts to the reactor development with special reference to the fast breeder reactor so that thorium can be utilised to the maximum advantage.

  20. Cobalt-60 production in CANDU power reactors

    International Nuclear Information System (INIS)

    Slack, J.; Norton, J.L.; Malkoske, G.R.

    2003-01-01

    MDS Nordion has been supplying cobalt-60 sources to industry for industrial and medical purposes since 1946. These cobalt-60 sources are used in many market and product segments. The major application is in the health care industry where irradiators are used to sterilize single use medical products. These irradiators are designed and built by MDS Nordion and are used by manufacturers of surgical kits, gloves, gowns, drapes and other medical products. The irradiator is a large shielded room with a storage pool for the cobalt-60 sources. The medical products are circulated through the shielded room and exposed to the cobalt-60 sources. This treatment sterilizes the medical products which can then be shipped to hospitals for immediate use. Other applications for this irradiation technology include sanitisation of cosmetics, microbial reduction of pharmaceutical raw materials and food irradiation. The cobalt-60 sources are manufactured by MDS Nordion in their Cobalt Operations Facility in Kanata. More than 75,000 cobalt-60 sources for use in irradiators have been manufactured by MDS Nordion. The cobalt-60 sources are double encapsulated in stainless steel capsules, seal welded and helium leak tested. Each source may contain up to 14,000 curies. These sources are shipped to over 170 industrial irradiators around the world. This paper will focus on the MDS Nordion proprietary technology used to produce the cobalt-60 isotope in CANDU reactors. Almost 55 years ago MDS Nordion and Atomic Energy of Canada developed the process for manufacturing cobalt-60 at the Chalk River Labs, in Ontario, Canada. A cobalt-59 target was introduced into a research reactor where the cobalt-59 atom absorbed one neutron to become cobalt-60. Once the cobalt-60 material was removed from the research reactor it was encapsulated in stainless steel and seal welded using a Tungsten Inert Gas weld. The first cobalt-60 sources manufactured using material from the Chalk River Labs were used in cancer

  1. Study of seismic responses of Candu-3 reactor building using isolator bearings

    International Nuclear Information System (INIS)

    Biswas, J.K.

    1992-01-01

    Seismic isolator bearings are known to increase reliability, reduce cost and increase the potential sitings for nuclear power plants located in regions of high seismicity. High seismic activities in Canada occur mainly in the western coast, the Grand Banks and regions of Quebec along the St. Lawrence river. In Canada, nuclear power plants are located in Ontario, Quebec and New Brunswick where the seismicity levels are low to moderate. Consequently, seismic isolator bearings have not been used in the existing nuclear power plants in Canada. The present paper examines the effect of using seismic isolator bearings in the design for the new CANDU3 which would be suitable for regions having high seismicity. The CANDU3 Nuclear Power Plant is rated at 450 MW of net output power and is a smaller version of its predecessor CANDU6 successfully operating in Canada and abroad. The design of CANDU3 is being developed by AECL CANDU. Advanced technologies for design, construction and plant operation have been utilized. During the conceptual development of the CANDU3 design, various design options including the use of isolator bearings were considered. The present paper presents an overview of seismic isolation technology and summarizes the analytical work for predicting the seismic behavior of the CANDU3 reactor building. A lumped-parameter dynamic model for the reactor building is used for the analysis. The characteristics of the bearings are utilized in the analysis work. The time-history modal analysis has been used to compute the seismic responses. Seismic responses of the reactor building with and without isolator bearings are compared. The isolator bearings are found to reduce the accelerations of the reactor building. As a result, a lower level of seismic qualification for components and systems would be required. The use of these bearings however increases rigid body seismic displacements of the structure requiring special considerations in the layout and interfaces for

  2. Advancing the CANDU reactor: From generation to generation

    International Nuclear Information System (INIS)

    Hopwood, Jerry; Duffey, Romney B.; Yu, Steven; Torgerson, Dave F.

    2006-01-01

    Emphasizing safety, reliability and economics, the CANDU reactor development strategy is one of continuous improvement, offering value and assured support to customers worldwide. The Advanced CANDU Reactor (ACR-1000) generation, designed by Atomic Energy of Canada Limited (AECL), meets the new economic expectation for low-cost power generation with high capacity factors. The ACR is designed to meet customer needs for reduced capital cost, shorter construction schedule, high plant capacity factor, low operating cost, increased operating life, simple component replacement, enhanced safety features, and low environmental impact. The ACR-1000 design evolved from the internationally successful medium-sized pressure tube reactor (PTR) CANDU 6 and incorporates operational feedback from eight utilities that operate 31 CANDU units. This technical paper provides a brief description of the main features of the ACR-1000, and its major role in the development path of the generations of the pressure tube reactor concept. The motivation, philosophy and design approach being taken for future generation of CANDU pressure tube reactors are described

  3. Pressurized water reactor simulator. Workshop material. 2. ed

    International Nuclear Information System (INIS)

    2005-01-01

    The International Atomic Energy Agency (IAEA) has established an activity in nuclear reactor simulation computer programs to assist its Member States in education. The objective is to provide, for a variety of advanced reactor types, insight and practice in their operational characteristics and their response to perturbations and accident situations. To achieve this, the IAEA arranges for the development and distribution of simulation programs and educational material and sponsors courses and workshops. The workshops are in two parts: techniques and tools for reactor simulator development. And the use of reactor simulators in education. Workshop material for the first part is covered in the IAEA Training Course Series No. 12, 'Reactor Simulator Development' (2001). Course material for workshops using a WWER- 1000 reactor department simulator from the Moscow Engineering and Physics Institute, the Russian Federation is presented in the IAEA Training Course Series No. 21, 2nd edition, 'WWER-1000 Reactor Simulator' (2005). Course material for workshops using a boiling water reactor simulator developed for the IAEA by Cassiopeia Technologies Incorporated of Canada (CTI) is presented in the IAEA publication: Training Course Series No.23, 2nd edition, 'Boiling Water Reactor Simulator' (2005). This report consists of course material for workshops using a pressurized water reactor simulator

  4. Flux distribution measurements in the Bruce B Unit 6 reactor using a transportable traveling flux detector system

    International Nuclear Information System (INIS)

    Leung, T.C.; Drewell, N.H.; Hall, D.S.; Lopez, A.M.

    1987-01-01

    A transportable traveling flux detector (TFD) system for use in power reactors has been developed and tested at Chalk River Nuclear Labs. in Canada. It consists of a miniature fission chamber, a motor drive mechanism, a computerized control unit, and a data acquisition subsystem. The TFD system was initially designed for the in situ calibration of fixed self-powered detectors in operating power reactors and for flux measurements to verify reactor physics calculations. However, this system can also be used as a general diagnostic tool for the investigation of apparent detector failures and flux anomalies and to determine the movement of reactor internal components. This paper describes the first successful use of the computerized TFD system in an operating Canada deuterium uranium (CANDU) power reactor and the results obtained from the flux distribution measurements. An attempt is made to correlate minima in the flux profile with the locations of fuel channels so that future measurements can be used to determine the sag of the channels. Twenty-seven in-core flux detector assemblies in the 855-MW (electric) Unit 6 reactor of the Ontario Hydro Bruce B Generating Station were scanned

  5. Canada's deadly secret : Saskatchewan uranium and the global nuclear system

    Energy Technology Data Exchange (ETDEWEB)

    Harding, J.

    2007-07-01

    Although Canada has a reputation for its support of multilateralism and international peacekeeping, it has provided fuel for American and British nuclear weapons, and continues to provide uranium fuel for nuclear reactors and power plants throughout the world. This book provided a detailed outline of Canada's involvement in uranium mining in Saskatchewan, the largest uranium-producing region in the world. The ways in which Canada has been complicit in the expansion of the global nuclear system were examined. A history of the province's role in the first nuclear arms race between the Soviet Union and the United States was provided, and details of provincial public inquiries conducted to legitimize the expansion of uranium mining were revealed. Issues related to the exploitation of ancestral lands belonging to Aboriginal peoples were discussed along with the impact of uranium mining on communities in the province. It was concluded that the province is now being targeted as a storage site for nuclear waste. refs.

  6. Construction management of Indian pressurized heavy water reactors

    International Nuclear Information System (INIS)

    Bohra, S.A.; Sharma, P.D.

    2006-01-01

    Pandit Jawaharlal Nehru and Dr. Homi J. Bhabha, the visionary architects of Science and Technology of modern India foresaw the imperative need to establish a firm base for indigenous research and development in the field of nuclear electricity generation. The initial phase has primarily focused on the technology development in a systematic and structured manner, which has resulted in establishment of strong engineering, manufacturing and construction base. The nuclear power program started with the setting up of two units of boiling light water type reactors in 1969 for speedy establishment of nuclear technology, safety culture, and development of operation and maintenance manpower. The main aim at that stage was to demonstrate (to ourselves, and indeed to the rest of the world) that India, inspite of being a developing country, with limited industrial infrastructure and low capacity power grids, could successfully assimilate the high technology involved in the safe and economical operation of nuclear power reactors. The selection of a BWR was in contrast to the pressurized heavy water reactors (PHWR), which was identified as the flagship for the first stage of India's nuclear power program. The long-term program in three stages utilizes large reserves of thorium in the monazite sands of Kerala beaches in the third stage with first stage comprising of series of PHWR type plants with a base of 10,000 MW. India has at present 14 reactors in operation 12 of these being of PHWR type. The performance of operating units of 2720 MW has improved significantly with an overall capacity factor of about 90% in recent times. The construction work on eight reactor units with installed capacity of 3960 MW (two PHWRs of 540 MW each, four PHWRs of 220 MW each and two VVERs of 1000 MW each) is proceeding on a rapid pace with project schedules of less than 5 years from first pour of concrete. This is being achieved through advanced construction technology and management. Present

  7. Progress of the DUPIC fuel compatibility analysis (I) - reactor physics

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hang Bok; Jeong, Chang Joon; Roh, Gyu Hong; Rhee, Bo Wook; Park, Jee Won

    2003-12-01

    Since 1992, the direct use of spent pressurized water reactor fuel in CANada Deuterium Uranium (CANDU) reactors (DUPIC) has been studied as an alternative to the once-through fuel cycle. The DUPIC fuel cycle study is focused on the technical feasibility analysis, the fabrication of DUPIC fuels for irradiation tests and the demonstration of the DUPIC fuel performance. The feasibility analysis was conducted for the compatibility of the DUPIC fuel with existing CANDU-6 reactors from the viewpoints of reactor physics, reactor safety, fuel cycle economics, etc. This study has summarized the intermediate results of the DUPIC fuel compatibility analysis, which includes the CANDU reactor physics design requirements, DUPIC fuel core physics design method, performance of the DUPIC fuel core, regional overpower trip setpoint, and the CANDU primary shielding. The physics analysis showed that the CANDU-6 reactor can accommodate the DUPIC fuel without deteriorating the physics design requirements by adjusting the fuel management scheme if the fissile content of the DUPIC fuel is tightly controlled.

  8. A licence renewal approach for the NRU research reactor

    International Nuclear Information System (INIS)

    Natalizio, A.; Gumley, P.

    1991-01-01

    Licence Renewal is not only a subject that is being addressed for power reactors, but it is one of immediate interest for a number of research facilities, world-wide. In Canada, research reactors and power reactors are issued an operating licence for a limited term (typically two years), hence, licence renewal is done on a regular basis. Therefore, licence renewal in the Canadian context is different than in the context of this topical meeting. The NRU research reactor facility is being assessed for a licence renewal beyond its original design life. This paper describes the licence renewal approach, the assessments being performed to establish the condition of the facility, and the Safety Assessment Basis which defines the requirements for licence renewal. The current status of the assessments is also described. (author)

  9. Alternative co-digestion scenarios for efficient fixed-dome reactor biomethanation processes

    DEFF Research Database (Denmark)

    Fotidis, Ioannis; Laranjeiro, Tiago; Angelidaki, Irini

    2016-01-01

    where low-tech reactors have been abandoned. Thus, the aims of this study were: a) to identify and evaluate alternative biomasses as anaerobic digestion substrates at a remote rural area site in India; b) to propose an efficient continuous biomethanation scenario for low-tech reactors; c) to assess......-digestion scenario with 45% and 13% higher energy recovery from biomasses' utilization and 69% and 25% less greenhouse gas (GHG) emissions, compared to R30 and R45, respectively. These results indicate that it is possible to operate efficiently low-tech biogas reactors with utilized biomasses as anaerobic digestion...

  10. Physics study of Canada deuterium uranium lattice with coolant void reactivity analysis

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Su; Lee, Hyun Suk; Tak, Tae Woo; Lee, Deok Jung [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of); Shin, Ho Cheol [Korea Hydro and Nuclear Power Central Research Institute (KHNP-CRI), Daejeon (Korea, Republic of)

    2017-02-15

    This study presents a coolant void reactivity analysis of Canada Deuterium Uranium (CANDU)-6 and Advanced Canada Deuterium Uranium Reactor-700 (ACR-700) fuel lattices using a Monte Carlo code. The reactivity changes when the coolant was voided were assessed in terms of the contributions of four factors and spectrum shifts. In the case of single bundle coolant voiding, the contribution of each of the four factors in the ACR-700 lattice is large in magnitude with opposite signs, and their summation becomes a negative reactivity effect in contrast to that of the CANDU-6 lattice. Unlike the coolant voiding in a single fuel bundle, the 2 x 2 checkerboard coolant voiding in the ACR-700 lattice shows a positive reactivity effect. The neutron current between the no-void and voided bundles, and the four factors of each bundle were analyzed to figure out the mechanism of the positive coolant void reactivity of the checkerboard voiding case. Through a sensitivity study of fuel enrichment, type of burnable absorber, and moderator to fuel volume ratio, a design strategy for the CANDU reactor was suggested in order to achieve a negative coolant void reactivity even for the checkerboard voiding case.

  11. Fourteenth annual meeting of the International Working Group on Fast Reactors. Summary report. Part II

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-05-01

    This report includes description of the state-of-the art in the field of fast reactor technology, research and development, in France, Belgium, India, Italy, USSR, USA, UK, Switzerland, and European Union. The emphasis in the majority of the reports is on the FBR safety issues, sodium cooling system, fuel elements development, reactor materials testing, risk assessment.

  12. Fourteenth annual meeting of the International Working Group on Fast Reactors. Summary report. Part II

    International Nuclear Information System (INIS)

    1981-05-01

    This report includes description of the state-of-the art in the field of fast reactor technology, research and development, in France, Belgium, India, Italy, USSR, USA, UK, Switzerland, and European Union. The emphasis in the majority of the reports is on the FBR safety issues, sodium cooling system, fuel elements development, reactor materials testing, risk assessment

  13. Luncheon address: Development of the CANDU reactor

    International Nuclear Information System (INIS)

    Bain, A.S.

    1997-01-01

    The paper is a highlight of the some of the achievements in the development of the CANDU Reactor, taken from the book C anada Enters the Nuclear Age . The CANDU reactor is one of Canada's greatest scientific/engineering achievements, that started in the 1940's and bore fruit with the reactors of the 60's, 70's, and 80's. The Government decided in the 1950's to proceed with a demonstration nuclear power reactor (NPD), AECL invited 7 Canadian corporations to bid on a contract to design and construct the NPD plant. General Electric was selected. A utility was also essential for participation and Ontario Hydro was chosen. In May 1957 it was concluded that the minimum commercial size would be about 200MWe and it should use horizontal pressure tubes to contain the fuel and pressurized heavy water coolant. The book also talks of standard out-reactor components such as pumps, valves, steam generators and piping. A major in-reactor component of interest was the fuel, fuel channels and pressure tubes. A very high level of cooperation was required for the success of the CANDU program

  14. Small reactors and the 'second nuclear era'

    International Nuclear Information System (INIS)

    Egan, J.R.

    1984-01-01

    Predictions of the nuclear industry's demise are premature and distort both history and politics. The industry is reemerging in a form commensurate with the priorities of those people and nations controlling the global forces of production. The current lull in plant orders is due primarily to the world recession and to factors related specifically to reactor size. Traditional economies of scale for nuclear plants have been greatly exaggerated. Reactor vendors and governments in Great Britain, France, West Germany, Japan, the United States, Sweden, Canada, and the Soviet Union are developing small reactors for both domestic applications and export to the Third World. The prefabricated, factory-assembled plants under 500 MWe may alleviate many of the existing socioeconomic constraints on nuclear manufacturing, construction, and operation. In the industrialized world, small reactors could furnish a qualitatively new energy option for utilities. But developing nations hold the largest potential market for small reactors due to the modest size of their electrical systems. These units could double or triple the market potential for nuclear power in this century. Small reactors will both qualitatively and quantitatively change the nature of nuclear technology transfers, offering unique advantages and problems vis-a-vis conventional arrangements. (author)

  15. Response to the Federal Finance Minister's 'A new direction for Canada'

    International Nuclear Information System (INIS)

    1985-03-01

    This brief was presented by the Canadian Nuclear Association in response to the Canadian Federal Finance Minister's request for consultation with the business community particularly in view of his document, 'A New Direction for Canada'. The Canadian Nuclear Association feels that the nuclear industry can make a substantial contribution to the economic renewal of Canada by exploiting Canada's proven technologies, natural resources, human resources and marketing skills. The brief identifies strategic opportunities facing the nuclear industry at home and abroad and makes recommendations as to how they can be achieved. The main recommendations are that public support of nuclear research and development be maintained, that federal initiatives be used to facilitate nuclear exports of all types and to encourage foreign investment, that policies promoting increased use of electricity-based technology in industry be adopted, that the construction of a second nuclear reactor in New Brunswick be supported, that the CANDU option be maintained, and that the federal government continue to press other nuclear supplier nations to establish a common set of rules for international trade in nuclear materials and technology

  16. MPR multi-purpose reactor to be built in Egypt. MPR reactor de usos multiples a construir en Egipto

    Energy Technology Data Exchange (ETDEWEB)

    Anon,

    1992-01-01

    Competing with two enterprises from the US and Canada and with a French-German consortium, INVAP won a bid for the supply of a research reactor to Egypt. This is the most important contract ever made by Argentina involving the supply, on a turnkey operation, of a complex facility that incorporates advanced technologies developed in our country and for a sum of approximately 80 million US dollars.

  17. Thermal hydraulic simulation of the CANDU nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Athos M.S.S. de; Ramos, Mario C.; Costa, Antonella L.; Fernandes, Gustavo H.N., E-mail: athos1495@yahoo.com.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Instituto Nacional de Ciência e Tecnologia de Reatores Nucleares Inovadores (INCT/CNPq), Rio de janeiro, RJ (Brazil)

    2017-07-01

    The CANDU (Canada Deuterium Uranium) is a Canadian-designed power reactor of PHWR type (Pressurized Heavy Water Reactor) that uses heavy water (deuterium oxide) for moderator and coolant, and natural uranium for fuel. There are about 47 reactors of this type in operation around the world generating more than 23 GWe, highlighting the importance of this kind of device. In this way, the main purpose of this study is to develop a thermal hydraulic model for a CANDU reactor to aggregate knowledge in this line of research. In this way, a core modeling was performed using RELAP5-3D code. Results were compared with reference data to verify the model behavior in steady state operation. Thermal hydraulic parameters as temperature, pressure and mass flow rate were verified and the results are in good agreement with reference data, as it is being presented in this work. (author)

  18. An Overview of Uranium Exploration Strategy in India

    Energy Technology Data Exchange (ETDEWEB)

    Chaki, A., E-mail: director.amd@gov.in [Atomic Minerals Directorate for Exploration and Research, Hyderabad (India)

    2014-05-15

    Uranium exploration in India dates back from 1949 and the first mineralized area was located in the early 1950s in Singhbhum Shear Zone (SSZ), eastern India. Since then, a number of potential and promising uranium provinces have been established in India. The potential uranium provinces include SSZ, Dongargarh, Aravalli, Siwalik belt, Mahadek basin, south-western and northern parts of Cuddapah basin, North Delhi Fold Belt, Bhima and Kaladgi basins. The promising uranium provinces are Proterozoic Chhattisgarh, Indravati, Gwalior, Vindhyan, Shillong basins, Gondwana basins of Central India and semi-arid regions of western Rajasthan. With the establishment of large tonnage-high grade Lower-middle Proterozoic unconformity deposits in Canada and Australia, there was a paradigm shift in the exploration strategy towards the Proterozoic basins of India. The discovery of unconformity related uranium mineralisation in the northern part of Proterozoic Cuddapah basin in southern India in 1991 and discovery of few deposits in the province has opened the avenues for finding of similar deposits in Cuddapah and other 13 Proterozoic basins in India. As a sequel, Proterozoic Bhima basin in southern India has been recognized as a potential target for uranium mineralization, where a low tonnage medium grade deposit has been established and mine development works are in progress. Sustained exploration efforts in other Proterozoic basins have yielded success in a few basins such as Deshnur area in Kaladgi Basin of southern India. Considerable uranium resources have been established in Proterozoic Cuddapah and Bhima basins. Apart from northern parts of Cuddapah and Bhima basins, areas in the southwestern part of Cuddapah basin for stratabound type, where a mine is under construction; Proterozoic Kaladgi basin for vein type; Cretaceous Mahadek basin for sandstone type and the North Delhi Fold belt for vein type of mineralization have been prioritized as potential areas for exploration

  19. Contributions of fast breeder test reactor to the advanced technology in India

    International Nuclear Information System (INIS)

    Kapoor, R.P.

    2001-01-01

    Fast Breeder Test Reactor (FBTR) is a 40 MWt/13.2 MWe loop type, sodium cooled, plutonium rich mixed carbide fuelled reactor. Its operation at Indira Gandhi Centre for Atomic Research, since first criticality in 1985, has contributed immensely to the advancement of this multidisciplinary and complex fast breeder technology in the country. It has also given a valuable operational feedback for the design of 500 MWe Prototype Fast Breeder Reactor. This paper highlights FBTR's significant contributions to this important technology which has a potential to provide energy security to the country in future. (author)

  20. Good practices in heavy water reactor operation

    International Nuclear Information System (INIS)

    2010-06-01

    The value and importance of organizations in the nuclear industry engaged in the collection and analysis of operating experience and best practices has been clearly identified in various IAEA publications and exercises. Both facility safety and operational efficiency can benefit from such information sharing. Such sharing also benefits organizations engaged in the development of new nuclear power plants, as it provides information to assist in optimizing designs to deliver improved safety and power generation performance. In cooperation with Atomic Energy of Canada, Ltd, the IAEA organized the workshop on best practices in Heavy Water Reactor Operation in Toronto, Canada from 16 to 19 September 2008, to assist interested Member States in sharing best practices and to provide a forum for the exchange of information among participating nuclear professionals. This workshop was organized under Technical Cooperation Project INT/4/141, on Status and Prospects of Development for and Applications of Innovative Reactor Concepts for Developing Countries. The workshop participants were experts actively engaged in various aspects of heavy water reactor operation. Participants presented information on activities and practices deemed by them to be best practices in a particular area for consideration by the workshop participants. Presentations by the participants covered a broad range of operational practices, including regulatory aspects, the reduction of occupational dose, performance improvements, and reducing operating and maintenance costs. This publication summarizes the material presented at the workshop, and includes session summaries prepared by the chair of each session and papers submitted by the presenters

  1. India: 'brain drain' or the migration of talent?

    Science.gov (United States)

    Oommen, T K

    1989-09-01

    2 views on "brain drain" exist: 1) LDCs lose their enormous investments on higher education when skilled people migrate to other countries and 2) LDCs are exaggerating the problem and only a few skilled people migrate at 1 time. India does not completely lose its investment in education when professionals migrate, since the migrants still contribute to knowledge and also send remittances to relatives in India. Unemployed educated people would cause a greater drain on India's resources than educated migrants. The author prefers the phrase migration of talent to brain drain, since the former indicates a 2-way movement. Most migrants from LDCs are students. About 11,000 university graduates leave India every year for advanced study and/or work. A conservative estimate is that 2500 will remain abroad permanently. Most professionals who migrate go to the US and Canada. Factors promoting migration include 1) unemployment, 2) immigration rules, 3) colonial links, 4) financial incentives and material benefits, 5) pursuit of higher education, 6) improvement of working conditions and facilities, 7) avoidance of excessive bureaucratic procedures, and 8) compensation for the mismatch between Indian education and employment. Reasons for returning to India include 1) deference to wives who were unable to adjust to a foreign way of life, 2) contributing to Indian development, and 3) racial discrimination. It will probably not be possible to lure back migrants who left for material reasons. Attractive job offers could entice back those who left for advanced training. To encourage the return of those who left to pursue high quality research, India must 1) increase expenditure on research and development, possibly through the private industrial sector, 2) promote travel to other countries for professional enrichment, and 3) improve conditions of research work. The article concludes with an analysis of migration of talent from 3 perspectives: 1) the individual, 2) the nation

  2. Overview of TBM R and D activities in India

    Energy Technology Data Exchange (ETDEWEB)

    Rajendra Kumar, E., E-mail: rajendrakumare@gmail.com [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India); Jayakumar, T. [Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Suri, A.K. [Materials Group, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2012-08-15

    In India, development of Lead-Lithium Ceramic Breeder (LLCB) blanket is being performed as the primary candidate of Test Blanket Module (TBM) towards DEMO reactor. The LLCB TBM will be tested from the first phase of ITER operation (H-H phase) in one-half of an ITER port no. 2. The Indian TBM R and D program is focused on the development of blanket materials and critical technologies: structural material (IN-RAFMS), breeding materials (Pb-Li, Li{sub 2}TiO{sub 3}), development of technologies for Lead-Lithium cooling system (LLCS), helium cooling system (HCS), tritium extraction system (TES) and TBM related fabrication technologies. This paper will provide an overview of LLCB TBM R and D activities under progress in India.

  3. Implementation of ASSET concept in India

    International Nuclear Information System (INIS)

    Koley, J.

    1997-01-01

    The paper presents a retrospective assessment of the use of ASSET methodology in India since the first ASSET seminary organized by IAEA in collaboration with the Atomic Energy Regulatory Board, India (AERB) in May, 1994. The first ASSET seminar was organized to initiate the spread of idea among operating and research organizations and regulatory body personnel. The participants were carefully chosen from various fields and with different levels of experiences to generate teams with sufficiently wide spectrum of knowledge base. AERB took initiative in leading by example and formed ASSET teams to carry out the first ASSET reviews in India. These teams at the instance of AERB carried out ASSET review of three Safety Related Events, two at Nuclear Power Plants and one at Research Reactor. This paper describes the outcome of these ASSET studies and subsequent implementation of the recommendations. The initiative taken by the regulatory body has led to formation of ASSET teams by the utilities to carry out ASSET study on their own. The results of these studies are yet to be assessed by the regulatory body. The result of the ASSET experience reveals the fact that it has further potential in improving the safety performance and safety culture and brining in fresh enthusiasm among safety professionals of Indian Nuclear Utilities

  4. Implementation of ASSET concept in India

    Energy Technology Data Exchange (ETDEWEB)

    Koley, J [Operating Plants Safety Div., AERB, Mumbai (India)

    1997-10-01

    The paper presents a retrospective assessment of the use of ASSET methodology in India since the first ASSET seminary organized by IAEA in collaboration with the Atomic Energy Regulatory Board, India (AERB) in May, 1994. The first ASSET seminar was organized to initiate the spread of idea among operating and research organizations and regulatory body personnel. The participants were carefully chosen from various fields and with different levels of experiences to generate teams with sufficiently wide spectrum of knowledge base. AERB took initiative in leading by example and formed ASSET teams to carry out the first ASSET reviews in India. These teams at the instance of AERB carried out ASSET review of three Safety Related Events, two at Nuclear Power Plants and one at Research Reactor. This paper describes the outcome of these ASSET studies and subsequent implementation of the recommendations. The initiative taken by the regulatory body has led to formation of ASSET teams by the utilities to carry out ASSET study on their own. The results of these studies are yet to be assessed by the regulatory body. The result of the ASSET experience reveals the fact that it has further potential in improving the safety performance and safety culture and brining in fresh enthusiasm among safety professionals of Indian Nuclear Utilities.

  5. Opportunities for TRIGA reactors in neutron radiography

    International Nuclear Information System (INIS)

    Barton, John P.

    1978-01-01

    In this country the two most recent installations of TRIGA reactors have both been for neutron radiography, one at HEDL and the other at ANL. Meanwhile, a major portion of the commercial neutron radiography is performed on a TRIGA fueled reactor at Aerotest. Each of these installations has different primary objectives and some comparative observations can be drawn. Another interesting comparison is between the TRIGA reactors for neutron radiography and other small reactors that are being installed for this purpose such as the MIRENE slow pulse reactors in France, a U-233 fueled reactor for neutron radiography in India and the L88 solution reactor in Denmark. At Monsanto Laboratory, in Ohio, a subcritical reactor based on MTR-type fuel has recently been purchased for neutron radiography. Such systems, when driven by a Van de Graaff neutron source, will be compared with the standard TRIGA reactor. Future demands on TRIGA or competitive systems for neutron radiography are likely to include the pulsing capability of the reactor, and also the extraction of cold neutron beams and resonance energy beams. Experiments recently performed on the Oregon State TRIGA Reactor provide information in each of these categories. A point of particular current concern is a comparison made between the resonance energy beam intensity extracted from the edge of the TRIGA core and from a slot which penetrated to the center of the TREAT reactor. These results indicate that by using such slots on a TRIGA, resonance energy intensities could be extracted that are much higher than previously predicted. (author)

  6. To question of NPP power reactor choice for Kazakhstan

    International Nuclear Information System (INIS)

    Batyrbekov, G.A.; Makhanov, Y.M.; Reznikova, R.A.; Sidorenco, A.V.

    2004-01-01

    in the regions of Republic of Kazakhstan occurs. Southern and western regions import electric power and capacity because of undeveloped circuit of networks. Moreover, power intensity of an industrial-agrarian complex of the country is limited transmission capacity of lines is insufficient; plenty of small consumers are removed from power supply lines. Thus, nuclear stations of medium and low power are the most acceptable for construction in Kazakhstan. Recommendations for the choice of maximum safe, reliable and economically competitive reactors for Kazakhstan have been made in result of the carried out projects' comparison of the power reactors according to 15 criteria of safety and economic competitiveness, with respect to condition and perspectives of Kazakhstan power complex development: Recommended power reactors of medium capacity: - P-600 - passive PWR, developed of the Westinghouse company, USA; - CANDU-6, developed by Atomic Energy of Canada, Limited (AECL), Canada. - MS-600 - Mitsubishi Company, Japan. Recommended reactors of low power: - IRIS - reactor of IV generation developed by the international corporation of 13 organizations from 7 countries; - NPP 'UNITERM' - development NIKIET, Moscow, Russia; - MRX - the Project of sea reactor MRX for civil applications, is developed by the Japanese Research Institute of Atomic Energy (JAERI). The most important advantages of recommended medium and low power reactors are given

  7. To question of NPP power reactor choice for Kazakhstan

    International Nuclear Information System (INIS)

    Batyrbekov, G.A.; Makhanov, Y.M.; Reznikova, R.A.; Sidorenco, A.V.

    2004-01-01

    regions of Republic of Kazakhstan occurs. Southern and western regions import electric power and capacity because of undeveloped circuit of networks. Moreover, power intensity of an industrial-agrarian complex of the country is limited transmission capacity of lines is insufficient; plenty of small consumers are removed from power supply lines. Thus, nuclear stations of medium and low power are the most acceptable for construction in Kazakhstan. Recommendations for the choice of maximum safe, reliable and economically competitive reactors for Kazakhstan have been made in result of the carried out projects' comparison of the power reactors according to 15 criteria of safety and economic competitiveness, with respect to condition and perspectives of Kazakhstan power complex development: Recommended power reactors of medium capacity: - P-600 - passive PWR, developed of the Westinghouse company, USA; - CANDU-6, developed by Atomic Energy of Canada, Limited (AECL), Canada. - MS-600 - Mitsubishi Company, Japan. Recommended reactors of low power: - IRIS - reactor of IV generation developed by the international corporation of 13 organizations from 7 countries; - NPP 'UNITERM' - development NIKIET, Moscow, Russia; - MRX - the Project of sea reactor MRX for civil applications, is developed by the Japanese Research Institute of Atomic Energy (JAERI). The most important advantages of recommended medium and low power reactors are given

  8. SCWR Concept in Canada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-08-15

    AECL is designing the Canadian SCWR concept, which has evolved from the well-established pressuretube type CANDU® reactor. The Canadian SCWR is designed to produce electrical energy as the main product, plus process heat, hydrogen, industrial isotopes, and drinking water (through the desalination process) as supplementary products, all within a more compact reactor building. Another potential application of the available co-generated process heat is the extraction and refining of oil sands, which is presently achieved using co-generation with natural gas turbines and process heat. The extraction and upgrading process requires: thermal power to lower the viscosity and extract the oil; electric power for separation and refining equipment; and hydrogen gas for upgrading the oil product prior to transport. A National Program has been established in Canada to support R&D studies for the Canadian SCWR design. It covers key areas of interest (such as thermal hydraulics, safety, materials, and chemistry) to participants in the Generation-IV International Forum (GIF) SCWR designs. Results generated from the program are contributed to the GIF SCWR project management boards (PMBs). For example, heat transfer correlations have been derived using experimental data primarily obtained from fossil-plant related studies (which were started as early as 1930s. Materials and chemistry studies have evolved from operating experience of fossil-fired power plants to a) develop, and perform targeted testing of, materials for key components, in particular in-core reactor components that will be exposed to conditions not encountered in a fossil-fired boiler (such as irradiation and water radiolysis), and b) develop a suitable water chemistry to minimize corrosion and corrosion product transport.

  9. Advanced reactors and future energy market needs

    International Nuclear Information System (INIS)

    Paillere, Henri; )

    2017-01-01

    Based on the results of a very well-attended international workshop on 'Advanced Reactor Systems and Future Energy Market Needs' that took place in April 2017, the NEA has embarked on a two-year study with the objective of analysing evolving energy market needs and requirements, as well as examining how well reactor technologies under development today will fit into tomorrow's low-carbon world. The NEA Expert Group on Advanced Reactor Systems and Future Energy Market Needs (ARFEM) held its first meeting on 5-6 July 2017 with experts from Canada, France, Italy, Japan, Korea, Poland, Romania, Russia and the United Kingdom. The outcome of the study will provide much needed insight into how well nuclear can fulfil its role as a key low-carbon technology, and help identify challenges related to new operational, regulatory or market requirements

  10. Status of nuclear power in India

    International Nuclear Information System (INIS)

    Srinivasan, M.R.

    1976-01-01

    The article traces the history of Indian atomic energy programme and deals with the various nuclear power reactors operating commercially and under construction. Development of atomic energy in India is firmly committed to the installation of PHWR's as the mainstay of the country's immediate nuclear power programme. Indian nuclear power programme upto 1982 and major efforts at indigenisation, as reflected by the diminishing foreign exchange component in capital cost of different projects are discussed. Operational highlights of Tarapur atomic power station and Rajasthan atomic power station are reported. (S.K.K.)

  11. Standard irradiation facilities for use in TRIGA reactors

    International Nuclear Information System (INIS)

    Kolbasov, B.N.; Luse, R.A.

    1972-01-01

    The standard neutron irradiation facility (SNIP) was developed under IAEA and FAO co-ordinated research program for the standardization of neutron irradiation facilities for radiobiological research, resulting in the possibility to use fast neutrons from pool-type reactors for radiobiological studies. The studies include irradiation of seeds for crop improvement, of Drosophila for genetic studies, and of microorganisms for developing industrially useful mutants, as well as fundamental studies in radiation biology. The facilities, located in the six pool-type reactors (in Austria, Bulgaria, India, Philippines, Thailand and Taiwan), have been calibrated and utilized to compare the response to fast neutrons of barley seeds (variety Himalaya CI 000620) which were selected as a standard biological monitor by which to estimate neutron fluxes in different reactors. These comparative irradiation studies showed excellent agreement and reproducibility

  12. Experiment operations plan for the MT-4 experiment in the NRU reactor

    International Nuclear Information System (INIS)

    Russcher, G.E.; Wilson, C.L.; Parchen, L.J.; Marshall, R.K.; Hesson, G.M.; Webb, B.J.; Freshley, M.D.

    1983-06-01

    A series of thermal-hydraulic and cladding materials deformation experiments were conducted using light-water reactor fuel bundles as part of the Pacific Northwest Laboratory Loss-of-Coolant Accident (LOCA) Simulation Program. This report is the formal operations plan for MT-4 - the fourth materials deformation experiment conducted in the National Research Universal (NRU) reactor, Chalk River, Ontario, Canada. A major objective of MT-4 was to simulate a pressurized water reactor LOCA that could induce fuel rod cladding deformation and rupture due to a short-term adiabatic transient and a peak fuel cladding temperature of 1200K (1700 0 F)

  13. A brief status report on the activities of Nuclear Data Physics Centre of India (NDPCI)

    International Nuclear Information System (INIS)

    Saxena, Alok

    2012-01-01

    The NDPCI has been successful in pursuing all aspects of nuclear data viz, measurements, analysis, compilation and evaluation involving national laboratories and universities in India. This NDPCI is evolving a streamlined and coherent activities of all nuclear data activities in India. The NDPCI has been very successful to bring people in various fields (e.g., Nuclear Physics, Reactor and Radiochemistry Divisions of Bhabha Atomic Research Centre, Mumbai, Indira Gandhi Centre of Atomic Research, Kalapakkam, Variable Energy Cyclotron, Calcutta, etc.) and students and staff from various Universities across India covering both experimentalists and theoreticians. A brief account of NDPCI activities carried out by our researchers during 2010-2012 are highlighted in this report. (author)

  14. Behaviour of power and research reactor fuel in wet and dry storage

    Energy Technology Data Exchange (ETDEWEB)

    Freire-Canosa, J [Nuclear Waste Management Organization (Canada)

    2012-07-01

    Canada has developed extensive experience in both wet and dry storage of CANDU fuel. Fuel has been stored in water pools at CANDU reactor sites for approximately 45 years, and in dry storage facilities for a large part of the past decade. Currently, Canada has 38 450 t U of spent fuel in storage, of which 8850 t U are in dry storage. In June 2007, the Government of Canada selected the Adaptive Phased Management (APM) approach, recommended by the Nuclear Waste Management Organization (NWMO), for the long-term management of Canada's nuclear-fuel waste. The Canadian utilities and AECL are conducting development work in extended storage systems as well as research on fuel behaviour under storage conditions. Both activities have as ultimate objective to establish a technical basis for assuring the safety of long-term fuel storage.

  15. Fast reactor fuel reprocessing. An Indian perspective

    International Nuclear Information System (INIS)

    Natarajan, R.; Raj, Baldev

    2005-01-01

    The Department of Atomic Energy (DAE) envisioned the introduction of Plutonium fuelled fast reactors as the intermediate stage, between Pressurized Heavy Water Reactors and Thorium-Uranium-233 based reactors for the Indian Nuclear Power Programme. This necessitated the closing of the fast reactor fuel cycle with Plutonium rich fuel. Aiming to develop a Fast Reactor Fuel Reprocessing (FRFR) technology with low out of pile inventory, the DAE, with over four decades of operating experience in Thermal Reactor Fuel Reprocessing (TRFR), had set up at the India Gandhi Center for Atomic Research (IGCAR), Kalpakkam, R and D facilities for fast reactor fuel reprocessing. After two decades of R and D in all the facets, a Pilot Plant for demonstrating FRFR had been set up for reprocessing the FBTR (Fast Breeder Test Reactor) spent mixed carbide fuel. Recently in this plant, mixed carbide fuel with 100 GWd/t burnup fuel with short cooling period had been successfully reprocessed for the first time in the world. All the challenging problems encountered had been successfully overcome. This experience helped in fine tuning the designs of various equipments and processes for the future plants which are under construction and design, namely, the DFRP (Demonstration Fast reactor fuel Reprocessing Plant) and the FRP (Fast reactor fuel Reprocessing Plant). In this paper, a comprehensive review of the experiences in reprocessing the fast reactor fuel of different burnup is presented. Also a brief account of the various developmental activities and strategies for the DFRP and FRP are given. (author)

  16. Intercomparison of techniques for inspection and diagnostics of heavy water reactor pressure tubes. Determination of hydrogen concentration and blister characterization

    International Nuclear Information System (INIS)

    2009-03-01

    Heavy water reactors (HWRs) comprise significant numbers of today's operating nuclear power plants, and more are under construction. Efficient and accurate inspection and diagnostic techniques for various reactor components and systems, especially pressure tubes, are an important factor in ensuring reliable and safe plant operation. To foster international collaboration in the efficient and safe use of nuclear power, the IAEA conducted a Coordinated Research Project (CRP) on Intercomparison of Techniques for HWR Pressure Tube Inspection and Diagnostics. This CRP was carried out within the framework of the IAEA's Technical Working Group on Advanced Technologies for HWRs (the TWG-HWR). The TWG-HWR is a group of experts nominated by their governments and designated by the IAEA to provide advice and to support implementation of IAEA's project on advanced technologies for HWRs. The objective of the CRP was to compare non-destructive inspection and diagnostic techniques, in use and being developed, for structural integrity assessment of HWR pressure tubes. During the first phase of this CRP participants investigated the capability of different techniques to detect and characterize flaws. During the second phase participants collaborated to detect and characterize hydride blisters and to determine the hydrogen concentration in zirconium alloys. The intention was to identify the most effective pressure tube inspection and diagnostic methods and to identify further development needs. The organizations which participated in phase 2 of this CRP are: - Comision Nacional de Energia Atomica (CNEA), Argentina; - Atomic Energy of Canada Ltd. (AECL), Chalk River Laboratories (CRL), Canada; - Bhabha Atomic Research Centre (BARC), India; - Korea Atomic Energy Research Institute (KAERI), Republic of Korea; - National Institute for Research and Development for Technical Physics (NIRDTP), Romania; - Nuclear Non-Destructive Testing Research and Services (NNDT), Romania. IAEA-TECDOC-1499

  17. 50 years of uranium metal production in Uranium Metal Plant, BARC, Trombay

    International Nuclear Information System (INIS)

    2009-01-01

    The Atomic Energy Programme in India, from the very beginning, has laid emphasis on indigenous capabilities in all aspects of nuclear technology. This meant keeping pace with developments abroad and recognizing the potentials of indigenous technologies. With the development of nuclear programme in India, the importance of uranium was growing at a rapid pace. The production of reactor grade uranium in India started in January 1959 when the first ingot of nuclear pure uranium was discharged using CTR process at Trombay. The decision to set up a uranium refinery to purify the crude uranium fluoride, obtained as a by-product of the DAE's Thorium Plant at Trombay, and to produce nuclear grade pure uranium metal was taken at the end of 1956. The task was assigned to the 'Project Fire Wood Group'. The main objective of the plant was to produce pure uranium metal for use in the Canada India Reactor and Zerlina. Besides this, it was to function as a pilot plant to collect operational data and to train personnel for larger plants to be set up in future. The plant designing and erection work was entrusted to Messrs. Indian Rare Earths Ltd.

  18. Annual report 1982-83 [of the Department of Atomic Energy, India

    International Nuclear Information System (INIS)

    1983-01-01

    The annual report of the Department of Atomic Energy (DAE) of the Government of India for the financial year 1982-83 surveys the work of its various establishments. The major thrust of the DAE's programme is directed towards peaceful uses of atomic ener%y - primarily for electric power generation and applications of radiation and radioisotopes in medicine, agriculture and industry. The Bhabha Atomic Research Centre at Bombay is the major R and D establishment of the DAE and its activities in the fields of nuclear physics, chemistry and materials science, radiochemistry, nuclear fuels, reactor engineering, radiation protection, radioactive waste management and applications of radiation and radioactive isotopes are described in detail. The R and D activities of the Reactor Research Centre at Kanpakkam, the Tata Institute of Fundamental Research and the Tata A1emorial Centre, both at Bombay, and the Saha Institute of Nuclear Physics at Calcutta are described in brief. The performance of the Tarapur Atomic Power Station, the Rajasthan Atomic Power Station, the Nuclear Fuel Complex at Hyderabad, the Atomic Minerals Division, Uranium Corporation of India Ltd at Jaduguda, various heavy water plants and other industrial units of DAE is reported. Progress of nuclear power projects at Narora and Kakrapar, R-5 Project at Bombay and FBTR Project at Kalpakkam is described. India's participation in the activities of the International Atomic Energy Agency is also mentioned. (M.G.B.)

  19. Prototype fast breeder reactor main options

    International Nuclear Information System (INIS)

    Bhoje, S.B.; Chellapandi, P.

    1996-01-01

    Fast reactor programme gets importance in the Indian energy market because of continuous growing demand of electricity and resources limited to only coal and FBR. India started its fast reactor programme with the construction of 40 MWt Fast Breeder Test Reactor (FBTR). The reactor attained its first criticality in October 1985. The reactor power will be raised to 40 MWt in near future. As a logical follow-up of FBTR, it was decided to build a prototype fast breeder reactor, PFBR. Considering significant effects of capital cost and construction period on economy, systematic efforts are made to reduce the same. The number of primary and secondary sodium loops and components have been reduced. Sodium coolant, pool type concept, oxide fuel, 20% CW D9, SS 316 LN and modified 9Cr-1Mo steel (T91) materials have been selected for PFBR. Based on the operating experience, the integrity of the high temperature components including fuel and cost optimization aspects, the plant temperatures are recommended. Steam temperature of 763 K at 16.6 MPa and a single TG of 500 MWe gross output have been decided. PFBR will be located at Kalpakkam site on the coast of Bay of Bengal. The plant life is designed for 30 y and 75% load factor. In this paper the justifications for the main options chosen are given in brief. (author). 2 figs, 2 tabs

  20. Nuclear power in Canada : an examination of risks, impacts and sustainability

    International Nuclear Information System (INIS)

    Winfield, M.; Jamison, A.; Wong, R.; Czajkowski, P.

    2006-12-01

    This study examines the environmental impacts of the use of nuclear energy for electricity generation in Canada through each of the four major stages of nuclear energy production: uranium mining and milling; uranium refining, conversion and fuel fabrication; nuclear power plant operation; and waste fuel management. It is intended to inform public debate over the future role of nuclear energy in Canada, and to facilitate comparisons of nuclear energy with other potential energy sources. The study examines waste generation, atmospheric releases, impacts on water quality and water use, and landscape and ecosystem impacts of nuclear energy production. It also examines the occupational and community health impacts of nuclear power and key long-term challenges to its sustainability, including security and weapons proliferation risks. Specific environmental impacts are examined in the context of CANDU nuclear technology, the only reactor type currently in use in Canada. The study findings likely underestimate the overall impacts of the use of nuclear energy for electricity production in Canada. This is a result of significant gaps in the publicly available information on releases of pollutants and contaminants, as well as on the fate of certain waste streams related to the nuclear industry. In addition, the study relies on what are likely conservative estimates in a number of key areas, particularly with respect to the generation of greenhouse gas (GHG) emissions.

  1. Nuclear power in Canada : an examination of risks, impacts and sustainability

    Energy Technology Data Exchange (ETDEWEB)

    Winfield, M.; Jamison, A.; Wong, R.; Czajkowski, P.

    2006-12-15

    This study examines the environmental impacts of the use of nuclear energy for electricity generation in Canada through each of the four major stages of nuclear energy production: uranium mining and milling; uranium refining, conversion and fuel fabrication; nuclear power plant operation; and waste fuel management. It is intended to inform public debate over the future role of nuclear energy in Canada, and to facilitate comparisons of nuclear energy with other potential energy sources. The study examines waste generation, atmospheric releases, impacts on water quality and water use, and landscape and ecosystem impacts of nuclear energy production. It also examines the occupational and community health impacts of nuclear power and key long-term challenges to its sustainability, including security and weapons proliferation risks. Specific environmental impacts are examined in the context of CANDU nuclear technology, the only reactor type currently in use in Canada. The study findings likely underestimate the overall impacts of the use of nuclear energy for electricity production in Canada. This is a result of significant gaps in the publicly available information on releases of pollutants and contaminants, as well as on the fate of certain waste streams related to the nuclear industry. In addition, the study relies on what are likely conservative estimates in a number of key areas, particularly with respect to the generation of greenhouse gas (GHG) emissions.

  2. The heavy water accountancy for research reactors in JAERI

    International Nuclear Information System (INIS)

    Yoshijima, Tetsuo; Tanaka, Sumitoshi; Nemoto, Denjirou

    1998-11-01

    The three research reactors have been operated by the Department of Research Reactor and used about 41 tons heavy water as coolant, moderator and reflector of research reactors. The JRR-2 is a tank type research reactor of 10MW in thermal power and its is used as moderator, coolant and reflector about 16 tons heavy water. The JRR-3M is a light water cooled and moderated pool type research reactor with a thermal power of 20MW and its is used as reflector about 7.3 tons heavy water. In the JRR-4, which is a light water cooled swimming pool type research reactor with the maximum thermal power of 3.5MW, about 1 ton heavy water is used to supply fully thermalized neutrons with a neutron beam experiment of facility. The heavy water was imported from U.S.A., CANADA and Norway. Parts of heavy water is internationally controlled materials, therefore management of heavy water is necessary for materials accountancy. This report described the change of heavy water inventories in each research reactors, law and regulations for accounting of heavy water in JAERI. (author)

  3. Design of a multipurpose research reactor

    International Nuclear Information System (INIS)

    Sanchez Rios, A.A.

    1990-01-01

    The availability of a research reactor is essential in any endeavor to improve the execution of a nuclear programme, since it is a very versatile tool which can make a decisive contribution to a country's scientific and technological development. Because of their design, however, many existing research reactors are poorly adapted to certain uses. In some nuclear research centres, especially in the advanced countries, changes have been made in the original designs or new research prototypes have been designed for specific purposes. These modifications have proven very costly and therefore beyond the reach of developing countries. For this reason, what the research institutes in such countries need is a single sufficiently versatile nuclear plant capable of meeting the requirements of a nuclear research programme at a reasonable cost. This is precisely what a multipurpose reactor does. The Mexican National Nuclear Research Institute (ININ) plans to design and build a multipurpose research reactor capable at the same time of being used for the development of reactor design skills and for testing nuclear materials and fuels, for radioisotopes production, for nuclear power studies and basic scientific research, for specialized training, and so on. For this design work on the ININ Multipurpose Research Reactor, collaborative relations have been established with various international organizations possessing experience in nuclear reactor design: Atomehnergoeksport of the USSR: Atomic Energy of Canada Limited (AECL); General Atomics (GA) of the USA; and Japan Atomic Energy Research Institute

  4. Occurrence of pockmarks and gas seepages along the central western continental margin of India

    Digital Repository Service at National Institute of Oceanography (India)

    Karisiddaiah, S.M.; Veerayya, M.

    Izatnagar 243 122 The 39th IUPAC Congress and 86th Conference of The C a nadian Society for Chemistry Date: 10 ? 15 Aug ust 2003 Place: Ottawa, Canada Contact: Secretariat 39th IUPAC Congress and 86th Conference....ca International Conference on Discotic Liquid Crystals Date: 25 ? 26 November 2002 Place: Bangalore, India Topics include: Chemistry, physics and applications of dis - cotics, including discotic olig omers, polymers and networks. Contact: Prof. S...

  5. Small reactors with simplified design. Proceedings of a technical committee meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    There is a potential future need for small reactors for applications such as district heating, electricity production at remote locations and desalination. Nuclear energy can provide an environmentally benign alternative to meet these needs. For successful deployment, small reactors must satisfy the requirements of users, regulators and the general public. The IAEA has been following the developments in the field of small reactors as a part of the sub-programme on advanced reactor technology. In accordance with the interests of Member States, a Technical Committee meeting (TCM) was organized in Mississauga, Ontario, Canada, 15-19 May 1995 to discuss the status of designs and design requirements related to small reactors for diverse applications. The papers presented at the TCM and a summary of the discussions are contained in this TECDOC which, it is hoped, will serve the Member States as a useful source of technical information on the development of small reactors with simplified design. Refs, figs, tabs.

  6. Small reactors with simplified design. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    1997-11-01

    There is a potential future need for small reactors for applications such as district heating, electricity production at remote locations and desalination. Nuclear energy can provide an environmentally benign alternative to meet these needs. For successful deployment, small reactors must satisfy the requirements of users, regulators and the general public. The IAEA has been following the developments in the field of small reactors as a part of the sub-programme on advanced reactor technology. In accordance with the interests of Member States, a Technical Committee meeting (TCM) was organized in Mississauga, Ontario, Canada, 15-19 May 1995 to discuss the status of designs and design requirements related to small reactors for diverse applications. The papers presented at the TCM and a summary of the discussions are contained in this TECDOC which, it is hoped, will serve the Member States as a useful source of technical information on the development of small reactors with simplified design

  7. Safety requirements in the design of research reactors: A Canadian perspective

    International Nuclear Information System (INIS)

    Lee, A.G.; Langman, V.J.

    2000-01-01

    In Canada, the formal development of safety requirements for the design of research reactors in general began under an inter-organizational Small Reactor Criteria Committee. This committee developed safety and licensing criteria for use by several small reactor projects in their licensing discussions with the Atomic Energy Control Board. The small reactor projects or facilities represented included the MAPLE-X10 reactor, the proposed SES-10 heating reactor and its prototype, the SDR reactor at the Whiteshell Laboratories, the Korea Multipurpose Research Reactor (a.k.a., HANARO) in Korea, the SCORE project, and the McMaster University Nuclear Reactor. The top level set of criteria which form a safety philosophy and serve as a framework for more detailed developments was presented at an IAEA Conference in 1989. AECL continued this work to develop safety principles and design criteria for new small reactors. The first major application of this work has been to the design, safety analysis and licensing of the MAPLE 1 and 2 reactors for the MDS Nordion Medical Isotope Reactor Project. This paper provides an overview of the safety principles and design criteria. Examples of an implementation of these safety principles and design criteria are drawn from the work to design the MAPLE 1 and 2 reactors. (author)

  8. Enhanced CANDU 6 (EC6): a proven mid-sized reactor with fuel cycle capability

    International Nuclear Information System (INIS)

    Hopwood, J.; Soulard, M.; Hastings, I.J.

    2011-01-01

    Atomic Energy of Canada (AECL) is finalizing development of the Enhanced CANDU 6 (EC6), which incorporates the CANDU 6's well-proven features, and adds enhancements that make the reactor even more safe and easier to operate. The EC6 is the only mid-sized reactor (700 MWe class) with a proven pedigree that meets modern reactor expectations and regulatory standards. It is sized for smaller grids and also has outstanding fuel-cycle capability. Changes are incremental and consistent with the CANDU 6 project approach. The EC6 utilizes modern computers and a distributed control system housed in an advanced control room which, along with automated testing and on-line diagnostics, make the plant easier and safer to operate, with minimal operator intervention. Containment and seismic capability are upgraded to meet modern standards. The first deployment of the EC6 is anticipated in Canada; international markets are also being pursued. AECL is performing a comprehensive review of the EC6 design in the wake of the Fukushima accident, will review lessons learned, and incorporate any necessary improvements into new build design. (author)

  9. Enhanced CANDU 6 (EC6): a proven mid-sized reactor with fuel cycle capability

    International Nuclear Information System (INIS)

    Hopwood, J.; Soulard, M.; Hastings, I.J.

    2011-01-01

    Atomic Energy of Canada (AECL) is finalizing development of the Enhanced CANDU 6 (EC6), which incorporates the CANDU 6's well-proven features, and enhancements that make the reactor even more safe and easier to operate. The EC6 is the only mid-sized reactor (700 MWe class) with a proven pedigree that meets modern reactor expectations and regulatory standards. It is sized for smaller grids and also has outstanding fuel-cycle capability. Changes are incremental and consistent with the CANDU 6 project approach. The EC6 utilizes modern computers and a distributed control system housed in an advanced control room which, along with automated testing and on-line diagnostics, make the plant easier and safer to operate, with minimal operator intervention. Containment and seismic capability are upgraded to meet modern standards. The first deployment of the EC6 is anticipated in Canada; international markets are also being pursued. AECL is performing a comprehensive review of the EC6 design in the wake of the Fukushima accident, will review lessons learned, and incorporate any necessary improvements into new build design. (author)

  10. An Overview of Ageing Management and Refurbishment of Research Reactors at Trombay

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, R. C.; Raina, V. K. [Bhabha Atomic Research Centre, Mumbai (India)

    2014-08-15

    Three nuclear research reactors have been in operation at Bhabha Atomic Research Centre, Mumbai, India. India has a rich experience of about 120 research reactor operating years including ageing management. A well structured programme is in force for plant life management, refurbishment and upgrading reactors in operation. Apsara, commissioned in August 1956, was the first research reactor. Apsara is a 1 MW{sub th} swimming pool type of reactor with a movable core loaded with enriched uranium fuel and immersed in demineralized light water pool, which serves as coolant, moderator and reflector besides providing radiation shielding. Apsara was shut down during May 2009 for partial decommissioning and upgrading to a 2 MW reactor with several safety upgrades, e.g. a LEU based reactor core with higher neutron flux, a new reactor building meeting seismic qualification criteria and two independent shutdown devices. Cirus, a 40 MW{sub th} tank type reactor utilizing heavy water as moderator, graphite as reflector, demineralized light water as primary coolant and natural uranium metal as fuel; has been in operation since 1960. After about three decade of operation, the availability factor started declining mainly due to outage of equipment exhibiting signs of ageing. After ageing studies and performance review, refurbishment requirements were identified. A programme for refurbishment was drawn that included safety upgrades like civil repairs to the emergency storage reservoir to meet seismic qualification criteria and a new iodine removal system for better efficiency. The reactor was shut down during 1997 for execution of this refurbishment programme. After completion of refurbishment, the reactor was brought back into operation during 2003. It has completed about seven years of safe operation after refurbishment with a significant increase in availability factor from 70% to about 90%. The reactor was permanently shut down during December 2010. The reactor core was unloaded

  11. U-233 fuelled low critical mass solution reactor experiment PURNIMA II

    International Nuclear Information System (INIS)

    Srinivasan, M.; Chandramoleshwar, K.; Pasupathy, C.S.; Rasheed, K.K.; Subba Rao, K.

    1987-01-01

    A homogeneous U-233 uranyl nitrate solution fuelled BeO reflected, low critical mass reactor has been built at the Bhabha Atomic Research Centre, India. Christened PURNIMA II, the reactor was used for the study of the variation of critical mass as a function of fuel solution concentration to determine the minimum critical mass achievable for this geometry. Other experiments performed include the determination of temperature coefficient of reactivity, study of time behaviour of photoneutrons produced due to interaction between decaying U-233 fission product gammas and the beryllium reflector and reactor noise measurements. Besides being the only operational U-233 fuelled reactor at present, PURNIMA II also has the distinction of having attained the lowest critical mass of 397 g of fissile fuel for any operating reactor at the current time. The paper briefly describes the facility and gives an account of the experiments performed and results achieved. (author)

  12. Introducing advanced nuclear fuel cycles in Canada

    International Nuclear Information System (INIS)

    Duret, M.F.

    1978-05-01

    The ability of several different advanced fuel cycles to provide energy for a range of energy growth scenarios has been examined for a few special situations of interest in Canada. Plutonium generated from the CANDU-PHW operating on natural uranium is used to initiate advanced fuel cycles in the year 2000. The four fuel cycles compared are: 1) natural uranium in the CANDU-PHW; 2) high burnup thorium cycle in the CANDU-PHW; 3) self-sufficient thorium cycle in the CANDU-PHW; 4) plutonium-uranium cycle in a fast breeder reactor. The general features of the results are quite clear. While any plutonium generated prior to the introduction of the advanced fuel cycle remains, system requirements for natural uranium for each of the advanced fuel cycles are the same and are governed by the rate at which plants operating on natural uranium can be retired. When the accumulated plutonium inventory has been entirely used, natural uranium is again required to provide inventory for the advanced fuel cycle reactors. The time interval during which no uranium is required varies only from about 25 to 40 years for both thorium cycles, depending primarily on the energy growth rate. The breeder does not require the entire plutonium inventory produced and so would call for less processing of fuel from the PHW reactors. (author)

  13. The oil and gas equipment and services market in India

    International Nuclear Information System (INIS)

    2002-01-01

    In terms of purchasing power, India represents the fourth largest economy in the world. In the year April 1, 2001-Mar 31, 2002, it was estimated that India had a 5.4 per cent growth in gross domestic product (GDP). Canada experienced a 19.9 per cent increase in exports to India in 2001, reaching 656 million dollars. With the world's six-largest energy consumption, oil demand in India is expected to grow to 179 million tonnes in 2006-2007, while the demand for natural gas is expected to reach 231 million cubic metres per day in the same period. To meet this growing demand, India will require investments in the order of 150 billion dollars over the next 10 to 12 years. The oil and gas industry is being opened to the private sector and foreign direct investment, due to new government policies on exploration, production, distribution, and sales. Foreign involvement in exploration, previously restricted to Indian state-owned firms, is now allowed through the New Exploration Licensing Policy. In exploration and production (E and P) activities, as well as the refinery sector, foreign ownership of up to 100 per cent is now allowed. Two Indian companies which dominate the Indian E and P sector, namely Oil and Natural Gas Corporation (ONGC) and Oil India Limited (OIL), will be upgrading their ageing infrastructure, purchasing new equipment and redeveloping existing oil and gas fields, thereby creating opportunities for the supply of equipment and services. Canadian companies possessing the latest technologies and services in exploration, drilling machinery and equipment, directional drilling services, production machinery and equipment, enhanced recovery services, deep-water drilling equipment and services, and equipment for coal methane E and P should benefit from these opportunities. Over 12,000 kilometres of pipelines are being planned across India, as well as private opportunities in the refinery sector which was opened to the private sector in April 2002. Occasional

  14. India.

    Science.gov (United States)

    1985-05-01

    In this discussion of India attention is directed to the following: the people; geography; history; government; political conditions; the economy; foreign relations (Pakistan and Bangladesh, China, and the Soviet Union); defense; and the relations between the US and India. In 1983 India's population was estimated at 746 million with an annual growth rate of 2.24%. The infant mortality rate was estimated at 116/1000 in 1984 with a life expectancy of 54.9 years. Although India occupies only 2.4% of the world's land area, it supports nearly 15% of the world's population. 2 major ethnic strains predominate in India: the Aryan in the north and the Dravidian in the south, although the lines between them are blurred. India dominates the South Asian subcontinent geographically. The people of India have had a continuous civilization since about 2500 B.C., when the inhabitants of the Indus River Valley developed an urban culture based on commerce, trade, and, to a lesser degree, agriculture. This civilization declined about 1500 B.C. and Aryan tribes originating in central Asia absorbed parts of its culture as they spread out over the South Asian subcontinent. During the next few centuries, India flourished under several successive empires. The 1st British outpost in South Asia was established in 1619 at Surat on the northwestern coast of India. The British gradually expanded their influence until, by the 1850s, they controlled almost the entire area of present-day India. Independence was attained on August 15, 1947, and India became a dominion within the Commonwealth of Nations with Jawaharlal Nehru as prime minister. According to its constitution, India is a "sovereign socialist secular democratic republic." Like the US, India has a federal form of government, but the central government in India has greater power in relation to its states, and government is patterned after the British parliamentary system. The Congress Party has ruled India since independence with the

  15. Instrumentation and control of future sodium cooled fast reactors - Design improvements

    International Nuclear Information System (INIS)

    Madhusoodanan, K.; Sakthivel, M.; Chellapandi, P.

    2013-06-01

    India's fast reactor program started with the 40 MWt Fast Breeder Test Reactor. 500 MWe Prototype Fast Breeder Reactor (PFBR) is currently under construction at Kalpakkam. Safety of PFBR is enhanced by improved design features of I and C system. Since the design of Instrumentation and control (I and C) of PFBR, considerable improvements in terms of advancement in technology and indigenization has taken place. Further improvements in I and C is proposed for solving many of the difficulties faced during the design and construction phases of PFBR. Design improvements proposed are covered in this paper which will make the implementation and maintenance of I and C of future SFRs easier. (authors)

  16. The nuclear situation in India; La situation nucleaire en Inde

    Energy Technology Data Exchange (ETDEWEB)

    Macias, R.M

    2006-07-01

    This report first recalls that India lacks of energy natural resources, faces a high demographic growth and high electricity demand, and launched a civil nuclear program in the 1960's which comprises three stages: a first one with natural uranium fuelled PHWR type reactors, a second one with fast neutron reactors (which is now at its beginning), and a third one which will use the thorium-uranium 233 cycle both in fast neutron and AHWR (advanced heavy water reactor)type reactors. After the indication of some data on the present and foreseen nuclear capacity, this report presents the authorities and actors of the nuclear sector, the national laws related to nuclear activities, the Indian position with respect to international treaties and conventions, indicates the location of the numerous nuclear installations, gives some characteristics of the existing and projected nuclear power stations and research reactors. It presents the fuel manufacturing and reprocessing activities, the sites of heavy water production and their capacities. It gives an overview of the waste management activity (origin, classification, processing and packaging for the different types of wastes, warehousing and storage with different technologies and technical options depending on the waste type)

  17. Dosimetry aspects of the new Canadian MAPLE-X10 reactor

    International Nuclear Information System (INIS)

    Lidstone, R.F.; Wilkin, G.B.

    1994-01-01

    Atomic Energy of Canada Limited is building the 10-MW t MAPLE-X10 reactor facility as a dedicated producer of medical and industrial radioisotopes. Dosimetry aspects of the MAPLE-X10 nuclear design include the calculated thermal and fast neutron flux distributions throughout the reactor assembly and the rate of heat generation in reactor materials and components. Examples of the resolution of design issues are also presented, such as the use of fission counters and ion chambers to provide diverse methods of detecting neutron flux levels and the use of the difference between photon and neutron signals to guard against the effects of downgrading of the heavy-water reflector. Computer codes employed in the calculations include MCNP, ONEDANT, WIMS-AECL, and 3DDT

  18. Policy initiatives by the Government of India to accelerate growth of nuclear installed capacity in the coming years

    International Nuclear Information System (INIS)

    Grover, R.B.

    2010-01-01

    When examined from the point of view of the size of its population and economy, India is not well endowed with energy resources. Studies done by the Department of Atomic Energy indicate that even after exploiting full potential of every available source of energy including nuclear energy, India needs to continue to import energy resources. In this backdrop, an initiative was launched by Government of India to open up international civil nuclear commerce so as to enable India to access natural uranium from international market and to set up nuclear reactors in technical cooperation with other countries. International civil nuclear trade is governed by guidelines of Nuclear Suppliers Group (NSG) and its guidelines, as they were, required all nuclear materials and facilities in the recipient country, other than those identified as Nuclear Weapon States in the Treaty for Non-Proliferation of Nuclear Weapons, to be under Comprehensive Safeguards of the International Atomic Energy Agency (IAEA). The civil nuclear initiative of the Government of India involved having a dialogue with several NSG members; negotiating agreements of cooperation in peaceful uses of nuclear energy with France, Russia and USA; formulating a plan separating certain nuclear facilities and a timetable for offering them, in a phased manner, to IAEA for implementation of safeguards; and negotiating an India-specific safeguards agreement with IAEA. As a result of all these steps, the guidelines for civil nuclear cooperation were modified by the NSG on 6th September 2008 to facilitate nuclear trade with India without the condition of Comprehensive Safeguards. India has since been able to import uranium and dialogue is ongoing with France, Russia and the USA to set up, with their technical cooperation, light water reactors at selected sites. To facilitate international civil nuclear trade, a policy resolution has also been issued and The Civil Nuclear Liability for Nuclear Damage Bill 2010 is under

  19. Status of control assembly materials in Indian water reactors

    International Nuclear Information System (INIS)

    Date, V.G.; Kulkarni, P.G.

    2000-01-01

    India's present operating water cooled power reactors comprise boiling water reactors of Tarapur Atomic Power Station (TAPS) and pressurized heavy water reactors (PHWRs) at Kota (RAPS), Kalpakkam (MAPS), Narora (NAPS) and Kakrapara (KAPS). Boiling water reactors of TAPS use boron carbide control blades for control of power as well as for shut down (scram). PHWRs use boron steel and cobalt absorber rods for power control and Cd sandwiched shut off rods (primary shut down system) and liquid poison rods (secondary shut down system) for shut down. In TAPS, Gadolinium rods (burnable poison rods) are also incorporated in fuel assembly for flux flattening. Boron carbide control blades and Gadolinium rods for TAPS, cobalt absorber rods and shut down assemblies for PHWRs are fabricated indigenously. Considerable development work was carried out for evolving material specifications, component and assembly drawings, and fabrication processes. Details of various control and shut off assemblies being fabricated currently are highlighted in the paper. (author)

  20. Status of Fast Reactor Development in India: April 2011 – March 2012

    International Nuclear Information System (INIS)

    Puthiyavinayagam, Pillai

    2012-01-01

    FBR program in India: • Indigenous Design & Construction; • Comprehensiveness in development - Design, R&D and Construction; • Synthesis of Operating Experiences; • Synthesis of Emerging Concepts; • Focus on National & International Collaborations; • Emphasis on high quality human resources; • Creation of environment for enabling innovations to ehance safety of SFRs

  1. Fourth Generation Reactor Concepts

    International Nuclear Information System (INIS)

    Furtek, A.

    2008-01-01

    Concerns over energy resources availability, climate changes and energy supply security suggest an important role for nuclear energy in future energy supplies. So far nuclear energy evolved through three generations and is still evolving into new generation that is now being extensively studied. Nuclear Power Plants are producing 16% of the world's electricity. Today the world is moving towards hydrogen economy. Nuclear technologies can provide energy to dissociate water into oxygen and hydrogen and to production of synthetic fuel from coal gasification. The introduction of breeder reactors would turn nuclear energy from depletable energy supply into an unlimited supply. From the early beginnings of nuclear energy in the 1940s to the present, three generations of nuclear power reactors have been developed: First generation reactors: introduced during the period 1950-1970. Second generation: includes commercial power reactors built during 1970-1990 (PWR, BWR, Candu, Russian RBMK and VVER). Third generation: started being deployed in the 1990s and is composed of Advanced LWR (ALWR), Advanced BWR (ABWR) and Passive AP600 to be deployed in 2010-2030. Future advances of the nuclear technology designs can broaden opportunities for use of nuclear energy. The fourth generation reactors are expected to be deployed by 2030 in time to replace ageing reactors built in the 1970s and 1980s. The new reactors are to be designed with a view of the following objectives: economic competitiveness, enhanced safety, minimal radioactive waste production, proliferation resistance. The Generation IV International Forum (GIF) was established in January 2000 to investigate innovative nuclear energy system concepts. GIF members include Argentina, Brazil, Canada, Euratom, France Japan, South Africa, South Korea, Switzerland, United Kingdom and United States with the IAEA and OECD's NEA as permanent observers. China and Russia are expected to join the GIF initiative. The following six systems

  2. Indian heavy water programme - challenges and opportunities

    International Nuclear Information System (INIS)

    Aruldoss Kanthiah, W.S.

    2010-01-01

    Discovery of fission of uranium in 1939 opened up hitherto unknown possibilities for utilising the fission energy for use of mankind, mainly for the production of and electrical energy. It was realised that this nuclear energy could be an ideal substitute for the fast depleting fossil fuels which would one day get exhausted. Two main concepts of nuclear power reactor got evolved, one enriched uranium fuelled, ordinary water moderated reactor and another natural uranium fuelled heavy water moderated reactor. The concentration of uranium 235 U needed for ordinary water moderated reactors is 3% but the naturally occurring uranium in India contains only 0.7% of 235 U. The reactors utilising natural uranium as fuel require Heavy Water as moderator. The processing of uranium ore to achieve from 0.7% to 3% is highly complex. Recognising the fact that India has limited uranium resources but rich thorium resources, Dr. Bhabha formulated a three stage nuclear power generation programme for our country. The first generation reactors can use natural uranium as fuel with heavy water as moderator. Since the technology to generate such large scale heavy water to match the urgent need for nuclear power generation was not indigenously available, the technology available with Canada and France was utilised for installation of first generation heavy water plants in India. However, the peaceful nuclear experiment conducted by India in 1974 caused resentment among the countries that supplied Heavy Water technology to India and they stopped all technological help and assistance in nuclear field. Thereafter, it was the story of India going alone in heavy water production. That made India meets successfully all challenges on the way to installation, commissioning and sustained operation of all plants. Today we have six operating Heavy Water plants, spread all over the country. We have reached a stage, a change from a situation of crunch to a level of not only self sufficiency but to a

  3. Mechanical structure and problem of thorium molten salt reactor

    International Nuclear Information System (INIS)

    Kamei, Takashi

    2011-01-01

    After Fukushima Daiichi accident, there became great interest in Thorium Molten Salt Reactor (MSR) for the safety as station blackout leading to auto drainage of molten salts with freeze valve. This article described mechanical structure of MSR and problems of materials and pipes. Material corrosion problem by molten salts would be solved using modified Hastelloy N with Ti and Nb added, which should be confirmed by operation of an experimental reactor. Trends in international activities of MSR were also referred including China declaring MSR development in January 2011 to solve thorium contamination issues at rare earth production and India rich in thorium resources. (T. Tanaka)

  4. Large-scale hydrogen production using nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ryland, D.; Stolberg, L.; Kettner, A.; Gnanapragasam, N.; Suppiah, S. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    For many years, Atomic Energy of Canada Limited (AECL) has been studying the feasibility of using nuclear reactors, such as the Supercritical Water-cooled Reactor, as an energy source for large scale hydrogen production processes such as High Temperature Steam Electrolysis and the Copper-Chlorine thermochemical cycle. Recent progress includes the augmentation of AECL's experimental capabilities by the construction of experimental systems to test high temperature steam electrolysis button cells at ambient pressure and temperatures up to 850{sup o}C and CuCl/HCl electrolysis cells at pressures up to 7 bar and temperatures up to 100{sup o}C. In parallel, detailed models of solid oxide electrolysis cells and the CuCl/HCl electrolysis cell are being refined and validated using experimental data. Process models are also under development to assess options for economic integration of these hydrogen production processes with nuclear reactors. Options for large-scale energy storage, including hydrogen storage, are also under study. (author)

  5. Brief history of the reactor physics activities at ICN Pitesti

    International Nuclear Information System (INIS)

    Dumitrache, I.

    2004-01-01

    The Institute was established 33 years ago, in April 1971. Several specialists from the Institute for Atomic Physics - Bucharest came at the new research entity and the reactor physics activities had a successful start. One can identify three distinct periods: 1971-1980, the Bucharest years, 1980-1996, solving critical problems years and 1977-present (2004), technical support years. The first period is usually seen as a training one. This is only partially true. Most of the physicists came from University in 1971 and 1972 years. A significant number of them were trained abroad, in France, Germany, Italy, USA, Canada etc., usually under IAEA Vienna fellowships. The work was really pleasant and the progress was exciting. Unfortunately, the main task (to design a thermal reactor and a fast reactor, both for research activities) was, probably, much too difficult from the technical point of view and, in addition, required an unrealistic economic effort. In the Fall of the 1976 year, most of the reactor physicists were removed from Bucharest to Pitesti. One year later, all the remaining specialists were concentrated in Pitesti. The dual core TRIGA reactors were commissioned in the last months of the 1979 year. The CYBER 720 mainframe computer was available in December 1980. Between 1980 and 1992 years, practically all the Romanian activities related to reactor physics were performed in Pitesti, Mioveni compound. The details related to critical problems will be presented in the paper. We mention here four of the problems that have a significant impact even today, namely: -Final dimensioning of the adjuster rods for the Cernavoda NPP, Unit 2. The rods were manufactured in USA and Canada, using the AECL design and the final dimensions have been specified by ICN Pitesti; -Use of the LEU fuel in TRIGA-SSR Reactor, instead of the original HEU fuel; -Design of the irradiation experiments in TRIGA cores, in order to provide the required conditions during the test, according to

  6. Siting Practices and Site Licensing Process for New Reactors in Canada

    International Nuclear Information System (INIS)

    Vos, Marcel de

    2011-01-01

    'Siting' in Canada is composed of Site Evaluation and Site Selection. As outlined in CNSC Regulatory Document RD-346 Site Evaluation for New Nuclear Power Plants (based on IAEA NS-R-3), prior to the triggering of the Environmental Assessment (EA) and licensing processes, the proponent is expected to use a robust process to characterize proposed sites over the full life cycle of the facility, and then develop a fully documented defense of the site selection case. This case forms the backbone for submissions in support of the EA and the application for a License to Prepare Site which will be reviewed by the CNSC and other applicable federal authorities. The Environmental Assessment process and License to Prepare Site in Canada do not require a proponent to select a specific design; however, CNSC does not accept a 'black box' approach to siting. CNSC balances the level of design information required with the extent of safety assurance desired for any designs being contemplated for the proposed site. Nevertheless, the design information submitted must be sufficient to justify the site as suitable for all future licensing stages. The depth of plant design information contributes significantly to the credibility of the applicant's case for both the EA and application for License to Prepare Site. The review process utilizes an assessment plan with defined review stages and timelines. The outcome of these reviews is a series of recommendations to a federal government appointed Joint Review Panel (which also serves as a panel of the 'Commission') which, following public hearings, renders a decision regarding the EA, and subsequently, the application for a License to Prepare Site. (author)

  7. The EC6 - an enhanced mid-sized reactor with fuel cycle applications

    International Nuclear Information System (INIS)

    Soulard, M.; Yu, S.; Hopwood, J.; Hastings, I.J.

    2011-01-01

    Atomic Energy of Canada Limited (AECL) has two CANDU reactor products matched to markets: the Enhanced CANDU 6 (EC6), a modern 700 MWe-class design, and the Advanced CANDU Reactor (ACR-1000), a 1200 MWe-class Gen III+ design. Both reactor types are designed to meet both market-, and customer-driven needs; the ACR-1000 design is 90% complete and market-ready. The EC6 incorporates the CANDU 6's well-proven features, and adds enhancements that make the reactor even safer and easier to operate. The EC6 is the only mid-sized reactor with a proven pedigree that meets modern reactor expectations and regulatory standards. It is sized for smaller grids and also has outstanding fuel-cycle capability. The EC6 has domestic and offshore market pull and is the current focus of AECL's development program; market interest in the ACR-1000 is anticipated in the longer term. Some of the key features incorporated into the EC6 include upgrading containment and seismic capability to meet modern standards, shortening the overall project schedule, addressing obsolescence issues, optimizing maintenance outages and incorporating lessons learnt through feedback obtained from the operating plants. The EC6 utilizes modern computers and a distributed control system housed in an advanced control room which, along with automated testing and on-line diagnostics, make the plant easier and safer to operate, with minimal operator intervention. The first deployment of the EC6 is anticipated in Canada; off-shore markets are also being pursued. The EC6 burns natural uranium as standard. But, high neutron economy, on-power refuelling, a simple fuel bundle, and the fundamental CANDU fuel channel design provide the EC6 with the flexibility to accommodate a range of advanced fuels. (author)

  8. WWER-1000 reactor simulator. Material for training courses and workshops. 2. ed

    International Nuclear Information System (INIS)

    2005-01-01

    The International Atomic Energy Agency (IAEA) has established an activity in nuclear reactor simulation computer programs to assist its Member States in education. The objective is to provide, for a variety of advanced reactor types, insight and practice in their operational characteristics and their response to perturbations and accident situations. To achieve this, the IAEA arranges for the development and distribution of simulation programs and educational material and sponsors courses and workshops. The workshops are in two parts: techniques and tools for reactor simulator development; and the use of reactor simulators in education. Workshop material for the first part is covered in the IAEA publication: Training Course Series No.12, Reactor Simulator Development (2001). Course material for workshops using a pressurized water reactor (PWR) simulator developed for the IAEA by Cassiopeia Technologies Inc. of Canada is presented in the IAEA publication, Training Course Series No. 22, 2nd edition, Pressurized Water Reactor Simulator (2005) and Training Course Series No.23, 2nd edition, Boiling Water Reactor Simulator (2005). This report consists of course material for workshops using the WWER-1000 Reactor Department Simulator from the Moscow Engineering and Physics Institute, Russian Federation

  9. User`s manual for the CC3 computer models of the concept for disposal of Canada`s nuclear fuel waste

    Energy Technology Data Exchange (ETDEWEB)

    Dougan, K D; Wojciechowski, L C

    1995-06-01

    Atomic Energy of Canada Limited (AECL) is assessing a concept for disposing of CANDU reactor fuel waste in a vault deep in plutonic rock of the Canadian Shield. A computer program called the Systems Variability Analysis Code (SYVAC) has been developed as an analytical tool for the postclosure (long-term) assessment of the concept, and for environmental assessments of other systems. SYVAC3, the third generation of the code, is an executive program that directs repeated simulation of the disposal system, which is represented by the CC3 (Canadian Concept, generation 3) models comprising a design-specific vault, a site-specific geosphere and a biosphere typical of the Canadian Shield. (author). 23 refs., 7 tabs., 21 figs.

  10. MPR multi-purpose reactor to be built in Egypt

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Competing with two enterprises from the US and Canada and with a French-German consortium, INVAP won a bid for the supply of a research reactor to Egypt. This is the most important contract ever made by Argentina involving the supply, on a turnkey operation, of a complex facility that incorporates advanced technologies developed in our country and for a sum of approximately 80 million US dollars

  11. Australia's nuclear reactor: how safe is the old lady of Lucas Heights?

    International Nuclear Information System (INIS)

    Darroch, R.

    1990-01-01

    Safety procedures at the Lucas Heights reactor are discussed based on concerns voiced by a group of senior engineers working at the site. An account is also given of the responses to this claims of the authorities, the courts as well as some of the safety considerations outlined in a recent review of HIFAR management, recently completed by a team of nuclear experts from the Atomic Energy of Canada. It is argued that sufficient doubts have been raised to warrant an independent inquiry on the safety and future of the aging reactor. ills

  12. Canada`s green plan - The second year. Summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    Canada`s Green Plan is the national strategy and action plan for sustainable development launched by the federal government. The Green Plan`s goal is `to secure for current and future generations a safe and healthy environment and a sound and prosperous economy.` It represents a fundamental shift in the way the federal government views economic development and environmental protection: they are inextricably linked; both are critical to the health and well-being of Canadians. Substantial development has been made in Canada, with advances being made on the Green Plan`s short-term objectives and on our longer term priorities.

  13. The structure of Canada's uranium industry and its future market prospects

    International Nuclear Information System (INIS)

    1981-01-01

    Production of uranium in Canada began in the 1940s to supply the needs of US weapons development. After 1966 a growing demand for uranium for nuclear power production stimulated exploration, and since then the health of the Canadian uranium industry has been tied to the state of the nuclear power industry. Uranium exploration in Canada is carried out mainly by private enterprise, although the federal and two provincial governments compete through crown corporations. Seven companies produce ore, and six have processing plants. Expansion is underway at several existing operations, and some new projects are underway. The industry is strongly dependent on export markets; only about 15 percent of Canadian production is used in the country. There is one uranium refinery which produces UO 2 powder for CANDU reactor fuel and UF 6 for export. The uranium hexafluoride facility is being expanded. Federal government policy affects the uranium industry in the fields of regulation, ownership, safeguards, protection of the domestic industry, and international marketing. The short-term outlook for the industry is deteriorating, with declining uranium prices, but prospects seem considerably brighter in the longer term. Canada has about 12 percent of the world's uranium reserves, and is the second-largest producer. Discovery potential is believed to be excellent

  14. India plans to land near moon's south pole

    Science.gov (United States)

    Bagla, Pallava

    2018-02-01

    Sometime this summer, an Indian spacecraft orbiting over the moon's far side will release a lander. The craft will ease to a soft landing just after lunar sunrise on an ancient, table-flat plain about 600 kilometers from the south pole. There, it will unleash a rover into territory never before explored at the surface. That's the ambitious vision for India's second voyage to the moon in a decade, due to launch in the coming weeks. If Chandrayaan-2 is successful, it will pave the way for even more ambitious Indian missions, such as landings on Mars and an asteroid, as well as a Venus probe. Lunar scientists have much at stake, too. Chandrayaan-2 will collect data on the moon's thin envelope of plasma, as well as isotopes such as helium-3, a potential fuel for future fusion energy reactors. And it will follow up on a stunning discovery by India's first lunar foray, which found water molecules on the moon in 2009.

  15. Status of sodium boiling noise detection programme at reactor research centre, India

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakar, R; Elumalai, G [Reactor Engineering Laboratory, Reactor Research Centre, Chingleput, Tamil Nadu (India)

    1982-01-01

    Acoustic detection of sodium boiling is a promising technique to monitor subassembly fault in a last reactor. This paper summarises the programme for developing this detection system and describes the design of a high temperature transducer for boiling detection. It is appreciated that the background noise from primary pumps can interfere with this detection. Noise measurements were therefore carried out during water testing of the primary pump of the Fast Breeder Test Reactor. Some preliminary results of these measurements are presented.

  16. Status of sodium boiling noise detection programme at reactor research centre, India

    International Nuclear Information System (INIS)

    Prabhakar, R.; Elumalai, G.

    1982-01-01

    Acoustic detection of sodium boiling is a promising technique to monitor subassembly fault in a last reactor. This paper summarises the programme for developing this detection system and describes the design of a high temperature transducer for boiling detection. It is appreciated that the background noise from primary pumps can interfere with this detection. Noise measurements were therefore carried out during water testing of the primary pump of the Fast Breeder Test Reactor. Some preliminary results of these measurements are presented

  17. A description of the Canadian irradiation-research facility proposed to replace the NRU reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, A G; Lidstone, R F; Bishop, W E; Talbot, E F; McIlwain, H [Atomic Energy of Canada Ltd., Pinawa, MB (Canada). Whiteshell Labs.

    1996-12-31

    To replace the aging NRU reactor, AECL has developed the concept for a dual-purpose national Irradiation Research Facility (IRF) that tests fuel and materials for CANDU (CANada Deuterium Uranium) reactors and performs materials research using extracted neutron beams. The IRF includes a MAPLE reactor in a containment building, experimental facilities, and support facilities. At a nominal reactor power of 40 MW{sub t}, the IRF will generate powers up to 1 MW in natural-uranium CANDU bundles, fast-neutron fluxes up to 1.4 x 10{sup 18} n{center_dot}m{sup -2}{center_dot}s{sup -1} in Zr-alloy specimens, and thermal-neutron fluxes matching those available to the NRU beam tubes. (author). 9 refs., 5 tabs., 2 figs.

  18. Canada's uranium future, based on forty years of development

    International Nuclear Information System (INIS)

    Aspin, N.; Dakers, R.G.

    1982-09-01

    Canada's role as a major supplier of uranium has matured through the cyclical markets of the past forty years. Present resource estimates would support a potential production capability by the late 1980s 50 per cent greater than the peak production of 12 200 tonnes uranium in 1959. New and improved exploration techniques are being developed as uranium deposits become more difficult to discover. Radiometric prospecting of glacial boulder fields and the use of improved airborne and ground geophysical methods have contributed significantly to recent discoveries in Saskatchewan. Advances have also been made in the use of airborne radiometric reconnaissance, borehole logging, emanometry (radon and helium gas) and multi-element regional geochemistry techniques. Higher productivity in uranium mining has been achieved through automation and mechanization, while improved ventilation systems in conjunction with underground environmental monitoring have contributed to worker health and safety. Improved efficiency is being achieved in all phases of ore processing. Factors contributing to the increased time required to develop uranium mines and mills from a minimum of three years in the 1950s to the ten years typical of today, are discussed. The ability of Canada's uranium refinery to manufacture ceramic grade UO 2 powder to consistent standards has been a major factor in the successful development of high density natural uranium fuel for the CANDU (CANada Deuterium Uranium) reactor. Over 400 000 fuel assemblies have been manufactured by three companies. The refinery is undertaking a major expansion of its capacity

  19. Performance of small reactors at universities for teaching, research, training and service (TRTS): thirty five years' experience with the Dalhousie University SLOWPOKE-2 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chatt, A., E-mail: a.chatt@dal.ca [Dalhousie Univ., Trace Analysis Research Centre, Dept. of Chemistry, Halifax, Nova Scotia (Canada)

    2013-07-01

    The Dalhousie University SLOWPOKE-2 Reactor (DUSR) facility, operated during 1976-2011, was the only research reactor in Atlantic Canada as well as the only one associated with a chemistry department in a Canadian university. The most outstanding features of the facility included: a rapid (100 ms) cyclic pneumatic sample transfer system, a permanently installed Cd-site, and a Compton-suppression gamma-ray spectrometer. The usage encompassed fundamental as well as applied studies in various fields using neutron activation analysis (NAA). The facility was used for training undergraduate/graduate students, postdoctoral fellows, technicians, and visiting scientists, and for cooperative projects with other universities, research organizations and industries. (author)

  20. Fusion Canada

    International Nuclear Information System (INIS)

    1987-07-01

    This first issue of a quarterly newsletter announces the startup of the Tokamak de Varennes, describes Canada's national fusion program, and outlines the Canadian Fusion Fuels Technology Program. A map gives the location of the eleven principal fusion centres in Canada. (L.L.)

  1. Technical specification: Mixed-oxide pellets for the light-water reactor irradiation demonstration test

    International Nuclear Information System (INIS)

    Cowell, B.S.

    1997-06-01

    This technical specification is a Level 2 Document as defined in the Fissile Materials Disposition Program Light-Water Reactor Mixed-oxide Fuel Irradiation Test Project Plan. It is patterned after the pellet specification that was prepared by Atomic Energy of Canada, Limited, for use by Los Alamos National Laboratory in fabrication of the test fuel for the Parallex Project, adjusted as necessary to reflect the differences between the Canadian uranium-deuterium reactor and light-water reactor fuels. This specification and the associated engineering drawing are to be utilized only for preparation of test fuel as outlined in the accompanying Request for Quotation and for additional testing as directed by Oak Ridge National Laboratory or the Department of Energy

  2. Canada

    International Nuclear Information System (INIS)

    Barrett, J.

    1991-01-01

    Canada, while professing a non-nuclear policy for its own armed forces, is, none the less, a member of a nuclear alliance. The security gained through participation in such arrangements does not come cost-free, despite the common view that countries such as Canada enjoy a free ride. Being under the nuclear umbrella, as this paper seeks to illustrate, does generate its own problems and costs. For example, does influence stem from the actual possession of nuclear weapons (albeit under US control), from support of the concept of nuclear deterrence and its infrastructure, or from possessing territory that is of strategic importance to a more powerful ally? Does the Canadian experience serve as a model for countries that are in close proximity to an existing or threshold nuclear power? Much depends on the willingness of a country to participate in the nuclear infrastructure associated with the acquisition of nuclear weapons for security purposes. It must accept the underlying rationale or logic of nuclear deterrence and the constraints on alternative security options that this imposes and it must also recognize that reliance on nuclear deterrence for military security seven if one seeks to emulate Canada and become a non-nuclear weapon state in a nuclear alliance can produce strains in its own right. The case of Canada shows that a country seeking security through such means should be aware of, and reflect upon, the fact that what appears to be a free ride does not come free of charge. However, a country may have other options in it, military security that have neither historically or geostrategically been available to Canada

  3. Ageing management practice in Fast Breeder Test Reactor

    International Nuclear Information System (INIS)

    Srinivasan, G.; Ramanathan, V.; Swaminathan, P.R.; Babu, A.; Rajasekarappa, E.; Rajendran, B.; Ramalingam, P.V.

    2006-01-01

    Fast Breeder Test Reactor is a 40 MWt, sodium cooled, PuC-UC fuelled fast reactor, located at Kalpakkam, India. The reactor went critical in October 85 with Mark I core rated for 10.5 MWt at a peak LHR of 320 W/cm. The reactor core was progressively enlarged and TG was synchronized to the grid in July 97. The present core has 41 fuel subassemblies rated for 15.7 MWt at a peak LHR of 320 W/cm. The reactor has so far been operated for 33000 h and has seen 660 EFPD of operation corresponding to peak LHR of 320 W/cm. The peak burnup reached by the carbide fuel is 127 GWd/t, without any fuel clad failure. The four sodium pumps have been operating satisfactorily for a cumulative time of more than 5,00,000 h. Creep, fatigue and fluence govern the life of the nuclear systems. Because of the reduced power and temperature at which the reactor has so far been operated, there is little ageing of the nuclear systems. The life of the nuclear components is being monitored by periodic surveillance. Periodic assessment of the fluence seen by reactor components is being made. The conventional systems have been in service for the past 19 years. Civil structures are 25 years old. These have been maintained by periodic preventive maintenance and replacement / repair wherever required. This paper details the various ageing management practices in FBTR. (author)

  4. Fuel cycle options for light water reactors and heavy water reactors. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    1999-11-01

    In the second half of the 20th century nuclear power has evolved from the research and development environment to an industry that supplies 16% of the world's electricity. By the end of 1997, over 8500 reactor-years of operating experience had been accumulated. Global environmental change, and the continuing increase in global energy supply required to provide increasing populations with an improving standard of living, make the contribution from nuclear energy even more important for the next century. For nuclear power to achieve its full potential and make its needed contribution, it must be safe, economical, reliable and sustainable. All of these factors can be enhanced by judicious choice and development of advanced fuel cycle options. The Technical Committee Meeting (TCM) on Fuel Cycle Options for Light Water Reactors and Heavy Water Reactors was hosted by Atomic Energy of Canada Limited (AECL) on behalf of the Canadian Government and was jointly conducted within the frame of activities of the IAEA International Working Group on Advanced Technologies for Light Water Reactors (IWG-LWR) and the IAEA International Working Group on Advanced Technologies for Heavy Water Reactors (IWG-HWR). The TCM provided the opportunity to have in-depth discussions on important technical topics which were highlighted in the International Symposium on Nuclear Fuel Cycle and Reactor Strategies: Adjusting to New Realities, held in Vienna, 3-6 June 1997. The main results and conclusions of the TCM were presented as input for discussion at the first meeting of the IAEA newly formed International Working Group on Fuel Cycle Options

  5. Safety re-assessment of AECL test and research reactors

    International Nuclear Information System (INIS)

    Winfield, D.J.

    1990-01-01

    Atomic Energy of Canada Limited currently has four operating engineering test/research reactors of various sizes and ages; a new isotope-production reactor Maple-X10, under construction at Chalk River Nuclear Laboratories (CRNL), and a heating demonstration reactor, SDR, undergoing high-power commissioning at Whiteshell Nuclear Research Establishment (WNRE). The company is also performing design studies of small reactors for hot water and electricity production. The older reactors are ZED-2, PTR, NRX, and NRU; these range in age from 42 years (NRX) to 29 years (ZED-2). Since 1984, limited-scope safety re-assessments have been underway on three of these reactors (ZED-2, NRX AND NRU). ZED-2 and PTR are operated by the Reactor Physics Branch; all other reactors are operated by the respective site Reactor Operations Branches. For the older reactors the original safety reports produced were entirely deterministic in nature and based on the design-basis accident concept. The limited scope safety re-assessments for these older reactors, carried out over the past 5 years, have comprised both quantitative probabilistic safety-assessment techniques, such as event tree and fault analysis, and/or qualitative techniques, such as failure mode and effect analysis. The technique used for an individual assessment was dependent upon the specific scope required. This paper discusses the types of analyses carried out, specific insights/recommendations resulting from the analysis, and the plan for future analysis. In addition, during the last four years safety assessments have been carried out on the new isotope-, heat-, and electricity-producing reactors, as part of the safety design review, commissioning and licensing activities

  6. Safeguarding on-power fuelled reactors - instrumentation and techniques

    International Nuclear Information System (INIS)

    Waligura, A.; Konnov, Y.; Smith, R.M.; Head, D.A.

    1977-01-01

    Instrumentation and techniques applicable to safeguarding reactors that are fuelled on-power, particularly the CANDU type, have been developed. A demonstration is being carried out at the Douglas Point Nuclear Generating Station in Canada. Irradiated nuclear materials in certain areas - the reactor and spent fuel storage bays - are monitored using photographic and television cameras, and seals. Item accounting is applied by counting spent-fuel bundles during transfer from the reactor to the storage bay and by placing these spent-fuel bundles in a sealed enclosure. Provision is made for inspection and verification of the bundles before sealing. The reactor's power history is recorded by a track-etch power monitor. Redundancy is provided so that the failure of any single piece of equipment does not invalidate the entire safeguards system. Several safeguards instruments and devices have beeen developed and evaluated. These include a super-8 mm surveillance camera system, a television surveillance system, a spent-fuel bundle counter, a device to detect dummy fuel bundles, a cover for enclosing a stack of spent-fuel bundles, and a seal suitable for underwater installation and ultrasonic interrogation. The information provided by these different instruments should increase the effectiveness of Agency safeguards and, when used in combination with other measures, will facilitate inspection at reactor sites

  7. Fusion Canada issue 29

    International Nuclear Information System (INIS)

    1995-10-01

    A short bulletin from the National Fusion Program highlighting in this issue Canada-Europe Accords: 5 year R and D collaboration for the International Thermonuclear Experimental Reactor (ITER) AECL is designated to arrange and implement the Memorandum of Understanding (MOU) and the ITER Engineering Design Activities (EDA) while EUROTAM is responsible for operating Europe's Fusion R and D programs plus MOU and EDA. The MOU includes tokamaks, plasma physics, fusion technology, fusion fuels and other approaches to fusion energy (as alternatives to tokamaks). STOR-M Tokamak was restarted at the University of Saskatchewan following upgrades to the plasma chamber to accommodate the Compact Toroid (CT) injector. The CT injector has a flexible attachment thus allowing for injection angle adjustments. Real-time video images of a single plasma discharge on TdeV showing that as the plasma density increases, in a linear ramp divertor, the plasma contact with the horizontal plate decreases while contact increases with the oblique plate. Damage-resistant diffractive optical elements (DOE) have been developed for Inertial Confinement Fusion (ICF) research by Gentac Inc. and the National Optics Institute, laser beam homogeniser and laser harmonic separator DOE can also be made using the same technology. Studies using TdeV indicate that a divertor will be able to pump helium from the tokamak with a detached-plasma divertor but helium extraction performance must first be improved, presently the deuterium:helium retention radio-indicates that in order to pump enough helium through a fusion reactor, too much deuterium-tritium fuel would be pumped out. 2 fig

  8. Reduce, reuse and recycle: a green solution to Canada's medical isotope shortage.

    Science.gov (United States)

    Galea, R; Ross, C; Wells, R G

    2014-05-01

    Due to the unforeseen maintenance issues at the National Research Universal (NRU) reactor at Chalk River and coincidental shutdowns of other international reactors, a global shortage of medical isotopes (in particular technetium-99m, Tc-99m) occurred in 2009. The operation of these research reactors is expensive, their age creates concerns about their continued maintenance and the process results in a large amount of long-lived nuclear waste, whose storage cost has been subsidized by governments. While the NRU has since revived its operations, it is scheduled to cease isotope production in 2016. The Canadian government created the Non-reactor based medical Isotope Supply Program (NISP) to promote research into alternative methods for producing medical isotopes. The NRC was a member of a collaboration looking into the use of electron linear accelerators (LINAC) to produce molybdenum-99 (Mo-99), the parent isotope of Tc-99m. This paper outlines NRC's involvement in every step of this process, from the production, chemical processing, recycling and preliminary animal studies to demonstrate the equivalence of LINAC Tc-99m with the existing supply. This process stems from reusing an old idea, reduces the nuclear waste to virtually zero and recycles material to create a green solution to Canada's medical isotope shortage. © 2013 Published by Elsevier Ltd.

  9. Terrorism in Canada.

    Science.gov (United States)

    Kollek, Daniel

    2003-01-01

    This paper reviews terrorism in Canada, assessing the incidence and nature of terrorist activity, the potential targets of terrorist attacks, risk factors to Canadian nationals and institutions, and the responses of the Canadian government in dealing with the threat and the effectiveness of those responses. Despite the fact that there have been no recent high-profile terrorist events in Canada, this country has a serious terrorism problem, the key manifestation of which is the multitude of terrorist organizations that have designated Canada as a base of operations. In addition, Canadians have been attacked overseas and Canadian organizations, both local and abroad, are potential targets of terrorist activity. Canadian attempts to deal with terrorism through foreign and domestic policy have been ineffective, primarily because the policies have been poorly enforced. Until recently, terrorist organizations legally could raise funds in Canada, in direct contravention of international treaties signed by Canada. It is possible that the ineffectiveness in enforcing the anti-terrorism legislation stems from hope that placating terrorist organizations, and the countries that support them, will prevent Canada from becoming a target. Unfortunately evidence from other countries has shown this strategy to be ineffective.

  10. Energy in Canada

    International Nuclear Information System (INIS)

    1987-11-01

    This discussion paper was prepared by the Department of Energy, Mines and Resources Canada to provide information about Canada's resource potential, the contribution of energy to the Canadian economy, Canada's place in the world energy market, and the outlook for the development of Canadian energy resources. In addition, it provides background information on issues such as: energy and the environment, energy security, Canadian ownership of energy resources, energy R and D, and energy conservation. Finally, it concludes with an indication of some of the key challenges facing the energy sector. The paper is intended to inform the public and to serve as a reference document for those participating in the review of Canada's energy options. The paper was prepared before Canada and the U.S. agreed in principle on a free trade agreement (FTA) and does not include a discussion of the FTA or its potential impacts on the energy sector

  11. Identification and assay of radionuclides in the environmental samples following Chernobyl reactor accident

    International Nuclear Information System (INIS)

    Prakash, S.

    1987-01-01

    In India radioactivity was detected from 2 May 1986 onwards. A variety of samples were assayed for radionuclides in the environmental samples originating from the Chernobyl reactor accident. These are: Cotton swipe samples from aircrafts, air filters, milk, goat thyroids, grass, vegetables and tap waters. The results are presented in the paper

  12. RCC-MRx: Design and construction rules for mechanical components in high-temperature structures, experimental reactors and fusion reactors

    International Nuclear Information System (INIS)

    2015-01-01

    The RCC-MRx code was developed for sodium-cooled fast reactors (SFR), research reactors (RR) and fusion reactors (FR-ITER). It provides the rules for designing and building mechanical components involved in areas subject to significant creep and/or significant irradiation. In particular, it incorporates an extensive range of materials (aluminum and zirconium alloys in response to the need for transparency to neutrons), sizing rules for thin shells and box structures, and new modern welding processes: electron beam, laser beam, diffusion and brazing. The RCC-MR code was used to design and build the prototype Fast Breeder Reactor (PFBR) developed by IGCAR in India and the ITER Vacuum Vessel. The RCC-Mx code is being used in the current construction of the RJH experimental reactor (Jules Horowitz reactor). The RCC-MRx code is serving as a reference for the design of the ASTRID project (Advanced Sodium Technological Reactor for Industrial Demonstration), for the design of the primary circuit in MYRRHA (Multi-purpose hybrid Research Reactor for High-tech Applications) and the design of the target station of the ESS project (European Spallation Source). Contents of the 2015 edition of the RCC-MRx code: Section I General provisions; Section II Additional requirements and special provisions; Section III Rules for nuclear installation mechanical components: Volume I: Design and construction rules: Volume A (RA): General provisions and entrance keys, Volume B (RB): Class 1 components and supports, Volume C (RC): Class 2 components and supports, Volume D (RD): Class 3 components and supports, Volume K (RK): Examination, handling or drive mechanisms, Volume L (RL): Irradiation devices, Volume Z (Ai): Technical appendices; Volume II: Materials; Volume III: Examinations methods; Volume IV: Welding; Volume V: Manufacturing operations; Volume VI: Probationary phase rules

  13. Transmutation of Americium in Light and Heavy Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hyland, B.; Dyck, G.R.; Edwards, G.W.R. [Chalk River Laboratories, Atomic Energy of Canada Limited (Canada); Ellis, R.J.; Gehin, J.C. [Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee (United States); Maldonado, G.I. [University of Tennessee (Knoxville)/ORNL, Tennessee (United States)

    2009-06-15

    There is interest worldwide in reducing the burden on geological nuclear fuel disposal sites. In most disposal scenarios the decay heat loading of the surrounding rock limits the capacity of these sites. On the long term, this decay heat is generated primarily by actinides, and a major contributor 100 to 1000 years after discharge from the reactor is {sup 241}Am. One possible approach to reducing the decay-heat burden is to reprocess spent reactor fuel and use thermal spectrum reactors to 'burn' the Am nuclides. The viability of this approach is dependent upon the detailed changes in chemical and isotopic composition of actinide-bearing fuels after irradiation in thermal reactor spectra. The currently available thermal spectrum reactor options include light water-reactors (LWRs) and heavy-water reactors (HWRs) such as the CANDU{sup R} designs. In addition, as a result of the recycle of spent LWR fuel, there would be a considerable amount of potential recycled uranium (RU). One proposed solution for the recycled uranium is to use it as fuel in Candu reactors. This paper investigates the possibilities of transmuting americium in 'spiked' bundles in pressurized water reactors (PWRs) and in boiling water reactors (BWRs). Transmutation of Am in Candu reactors is also examined. One scenario studies a full core fuelled with homogeneous bundles of Am mixed with recycled uranium, while a second scenario places Am in an inert matrix in target channels in a Candu reactor, with the rest of the reactor fuelled with RU. A comparison of the transmutation in LWRs and HWRs is made, in terms of the fraction of Am that is transmuted and the impact on the decay heat of the spent nuclear fuel. CANDU{sup R} is a registered trademark of Atomic Energy of Canada Limited (AECL). (authors)

  14. Safeguarding on-power fuelled reactors - instrumentation and techniques

    International Nuclear Information System (INIS)

    Waligura, A.; Konnov, Y.; Smith, R.M.; Head, D.A.

    1977-05-01

    Instrumentation and techniques applicable to safeguarding reactors that are fuelled on-power, particularly the CANDU type, have been developed. A demonstration is being carried out at the Douglas Point Nuclear Generating Station in Canada. Irradiated nuclear materials in certain areas - the reactor and spent fuel storage bays - are monitored using photographic and television cameras, and seals. Item accounting is applied by counting spent-fuel bundles during transfer from the reactor to the storage bay and by placing these spent-fuel bundles in a sealed enclosure. Provision is made for inspection and verification of the bundles before sealing. The reactor's power history is recorded by a Track-Etch power monitor. Redundancy is provided so that the failure of any single piece of equipment does not invalidate the entire safeguards system. Several safeguards instruments and devices have been developed and evaluated. These include a super-8-mm surveillance camera system, a television surveillance system, a spent-fuel bundle counter, a device to detect dummy fuel bundles, a cover for enclosing a stack of spent-fuel bundles, and a seal suitable for underwater installation and ultrasonic interrogation. (author)

  15. Nuclear waste management in Canada : critical issues, critical perspectives

    International Nuclear Information System (INIS)

    Durant, D.; Fuji Johnson, G.

    2009-01-01

    As oil reserves decline and the environment takes centre stage in public policy discussions, the merits and dangers of nuclear power and nuclear waste management continue to be debated. Canada is intent on building more reactors to increase energy production without destroying the planet, but it and other nuclear energy-producing countries face not only technical problems but also social and ethical issues. This book provides a critical antidote to the favourable position of government and industry. The contributors build their case by exploring key issues and developments. What do frequently used terms such as safety, risk, and acceptability really mean? How and why did the public consultation process in Canada fail to address ethical and social issues? What is the significance and potential of a public consultation process that involves diverse interests, epistemologies, and actors, including Aboriginal peoples? And how do we ensure that our frameworks for discussion are inclusive and ethical? This timely collection defuses the uncertainty, ambiguity, and ignorance that surrounds nuclear energy. It will appeal to academics, students, and stakeholders in public policy or environmental studies who want to think critically and more broadly about how we approach energy generation and waste management.

  16. Report on the specialists' meeting on passive and active safety features of liquid-metal fast breeder reactors organized by the international atomic energy agency at Oarai Engineering Centre of power reactor and nuclear development corporation, Japan, November 5-7, 1991

    International Nuclear Information System (INIS)

    Paranjpe, S.R.

    1992-01-01

    As recommended by the International Working Group on Fast Reactors (IWGFR), the International Atomic Energy Agency organized a specialists' meeting on passive and active safety features of liquid-metal fast breeder reactors. Specialists from all member countries of IWGFR-China, France, Germany, India, Italy, Japan, Russia, the United Kingdom, and the United States-participated in the meeting and made presentations as listed in Table 1. The Commission of European Communities also sent representatives to the meeting. Table 2 contains a list of participants. The meeting consisted of five sessions: (1) an overview, (2) safety characteristics of decay heal removal systems, (3) safely characteristics of reactor protection systems and reactor shutdown systems, (4) safely characteristics of reactor cores, and (5) general discussions antiformulation of recommendations

  17. Canada's deep geological repository for used nuclear fuel - the geoscientific site evaluation process

    Energy Technology Data Exchange (ETDEWEB)

    Belfadhel, M.B.; Blyth, A.; Desroches, A.; Hirschorn, S.; Mckelvie, J.; Sanchez-Rico Castejon, M.; Parmenter, A.; Urrutia-Bustos, A.; Vorauer, A., E-mail: mbenbelfadhel@nwmo.ca [Nuclear Waste Management Organization, Toronto, ON (Canada)

    2014-07-01

    The Nuclear Waste Management Organization (NWMO) is responsible for implementing Adaptive Phased Management (APM), the approach selected by the Government of Canada for the long-term management of used nuclear fuel generated by Canadian nuclear reactors. The ultimate objective of APM is the centralized containment and isolation of Canada's used nuclear fuel in a Deep Geological Repository in a suitable crystalline or sedimentary rock formation. In May 2010, the NWMO initiated a nine-step site selection process to find an informed and willing community to host the project. This paper describes the approach, methods and criteria being used to assess the geoscientific suitability of communities currently involved in the site selection process. The social, cultural and economic aspects of the assessment are discussed in a companion paper. (author)

  18. Canada Among Nations 2014. Crisis and Reform: Canada and the ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    28 mai 2014 ... This 28th edition of the Canada Among Nations series examines the 2008 global financial crisis, its impact on Canada, and the country's historic and current role in the international financial system.

  19. Candu reactors with thorium fuel cycles

    International Nuclear Information System (INIS)

    Hopwood, J.M.; Fehrenbach, P.; Duffey, R.; Kuran, S.; Ivanco, M.; Dyck, G.R.; Chan, P.S.W.; Tyagi, A.K.; Mancuso, C.

    2006-01-01

    Over the last decade and a half AECL has established a strong record of delivering CANDU 6 nuclear power plants on time and at budget. Inherently flexible features of the CANDU type reactors, such as on-power fuelling, high neutron economy, fuel channel based heat transport system, simple fuel bundle configuration, two independent shut down systems, a cool moderator and a defence-in-depth based safety philosophy provides an evolutionary path to further improvements in design. The immediate milestone on this path is the Advanced CANDU ReactorTM** (ACRTM**), in the form of the ACR-1000TM**. This effort is being followed by the Super Critical Water Reactor (SCWR) design that will allow water-cooled reactors to attain high efficiencies by increasing the coolant temperature above 550 0 C. Adaptability of the CANDU design to different fuel cycles is another technology advantage that offers an additional avenue for design evolution. Thorium is one of the potential fuels for future reactors due to relative abundance, neutronics advantage as a fertile material in thermal reactors and proliferation resistance. The Thorium fuel cycle is also of interest to China, India, and Turkey due to local abundance that can ensure sustainable energy independence over the long term. AECL has performed an assessment of both CANDU 6 and ACR-1000 designs to identify systems, components, safety features and operational processes that may need to be modified to replace the NU or SEU fuel cycles with one based on Thorium. The paper reviews some of these requirements and the associated practical design solutions. These modifications can either be incorporated into the design prior to construction or, for currently operational reactors, during a refurbishment outage. In parallel with reactor modifications, various Thorium fuel cycles, either based on mixed bundles (homogeneous) or mixed channels (heterogeneous) have been assessed for technical and economic viability. Potential applications of a

  20. Rationalization and future planning for AECL's research reactor capability

    International Nuclear Information System (INIS)

    Slater, J.B.

    1990-01-01

    AECL's research reactor capability has played a crucial role in the development of Canada's nuclear program. All essential concepts for the CANDU reactors were developed and tested in the NRX and NRU reactors, and in parallel, important contributions to basic physics were made. The technical feasibility of advanced fuel cycles and of the organic-cooled option for CANDU reactors were also demonstrated in the two reactors and the WR-1 reactor. In addition, an important and growing radio-isotope production industry was established and marketed on a world-wide basis. In 1984, however, it was recognized that a review and rationalization of the research reactor capability was required. The commercial success of the CANDU reactor system had reduced the scope and size of the required development program. Limited research and development funding and competition from other research facilities and programs, required that the scope be reduced to a support basis essential to maintain strategic capability. Currently, AECL, is part-way through this rationalization program and completion should be attained during 1992/93 when the MAPLE reactor is operational and decisions on NRX decommissioning will be made. A companion paper describes some of the unique operational and maintenance problems which have resulted from this program and the solutions which have been developed. Future planning must recognize the age of the NRU reactor (currently 32 years) and the need to plan for eventual replacement. Strategy is being developed and supporting studies include a full technical assessment of the NRU reactor and the required age-related upgrading program, evaluation of the performance characteristics and costs of potential future replacement reactors, particularly the advanced MAPLE concept, and opportunities for international co-operation in developing mutually supportive research programs

  1. Homogeneous Thorium Fuel Cycles in Candu Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hyland, B.; Dyck, G.R.; Edwards, G.W.R.; Magill, M. [Chalk River Laboratories, Atomic Energy of Canada Limited (Canada)

    2009-06-15

    The CANDU{sup R} reactor has an unsurpassed degree of fuel-cycle flexibility, as a consequence of its fuel-channel design, excellent neutron economy, on-power refueling, and simple fuel bundle [1]. These features facilitate the introduction and full exploitation of thorium fuel cycles in Candu reactors in an evolutionary fashion. Because thorium itself does not contain a fissile isotope, neutrons must be provided by adding a fissile material, either within or outside of the thorium-based fuel. Those same Candu features that provide fuel-cycle flexibility also make possible many thorium fuel-cycle options. Various thorium fuel cycles can be categorized by the type and geometry of the added fissile material. The simplest of these fuel cycles are based on homogeneous thorium fuel designs, where the fissile material is mixed uniformly with the fertile thorium. These fuel cycles can be competitive in resource utilization with the best uranium-based fuel cycles, while building up a 'mine' of U-233 in the spent fuel, for possible recycle in thermal reactors. When U-233 is recycled from the spent fuel, thorium-based fuel cycles in Candu reactors can provide substantial improvements in the efficiency of energy production from existing fissile resources. The fissile component driving the initial fuel could be enriched uranium, plutonium, or uranium-233. Many different thorium fuel cycle options have been studied at AECL [2,3]. This paper presents the results of recent homogeneous thorium fuel cycle calculations using plutonium and enriched uranium as driver fuels, with and without U-233 recycle. High and low burnup cases have been investigated for both the once-through and U-233 recycle cases. CANDU{sup R} is a registered trademark of Atomic Energy of Canada Limited (AECL). 1. Boczar, P.G. 'Candu Fuel-Cycle Vision', Presented at IAEA Technical Committee Meeting on 'Fuel Cycle Options for LWRs and HWRs', 1998 April 28 - May 01, also Atomic Energy

  2. Reactor safety

    International Nuclear Information System (INIS)

    Meneley, D.A.

    The people of Ontario have begun to receive the benefits of a low cost, assured supply of electrical energy from CANDU nuclear stations. This indigenous energy source also has excellent safety characteristics. Safety has been one of the central themes of the CANDU development program from its very beginning. A great deal of work has been done to establish that public risks are small. However, safety design criteria are now undergoing extensive review, with a real prospect of more stringent requirements being applied in the future. Considering the newness of the technology it is not surprising that a consensus does not yet exist; this makes it imperative to discuss the issues. It is time to examine the policies and practice of reactor safety management in Canada to decide whether or not further restrictions are justified in the light of current knowledge

  3. A Study on Introduction of Nuclear Power Plants in India and the Nuclear Non- Proliferation Conditions

    International Nuclear Information System (INIS)

    Yang, Seung Hyo; Lim, Dong Hyuk

    2011-01-01

    Nuclear Suppliers Group (NSG) which was formed to build nuclear export control has been accepting the nuclear cooperation for the member nation of the international nuclear non-proliferation regime. Korea exported nuclear power plants to United Arab Emirates in 2009 and research and training reactor to Jordan in 2010 based on the forcible non-proliferation regime as a member nation of NSG, so it is strengthening its position in the atomic energy industry. In addition, Korea concluded an agreement with India which is planning the construction of 25.based or more nuclear power plants for the next 20 years in last July, 25, so it will enter the atomic energy market in India. But India has been accepted the exceptionally civilian nuclear cooperation as a de facto Nuclear Weapon State (NWS) and non-member state of NPT, so concerns about nuclear proliferation has been raised. This study aims to introduce the allowance of exceptions background in India, to analyze its effect on the non-proliferation regime and to find nuclear non-proliferation conditions

  4. Canada's uranium policies

    International Nuclear Information System (INIS)

    Smith, K.L.; Williams, R.M.

    1991-01-01

    The purpose of this paper is to provide an update on the Canadian Government policies which affect the uranium industry and, where appropriate, to provide some background on the development of these policies. This review is timely because of two recent announcements by the Minister of Energy, Mines and Resources - one concerning the Canadian Government's renewed commitment to maintain the nuclear power option for Canada, and the other concerning some adjustments to Canada's uranium export policy. The future of Canada's nuclear industry was subject to a thorough review by the Canadian Government during 1989. This review occurred at a time when environmental issues were attracting increasing attention around the world, and the environmental advantages of nuclear power were becoming increasingly recognised. The strong support for the nuclear industry in Canada is consistent with the government's long-standing efforts to maintain Canada's position as a reliable and competitive supplier of uranium. This paper is particularly devoted to an outline of the results of the uranium export policy review. (author)

  5. If Canada is serious about reducing greenhouse gases, we need nuclear energy

    International Nuclear Information System (INIS)

    Lemieux, C.

    2003-01-01

    Canada's energy options are reviewed in light of the need to find practical solutions to supply the nation's growing demand for power, coupled with equally pressing need to reduce greenhouse gas emissions to meet Kyoto commitments, and to do so without costing Canadians jobs and economic disaster. Among the options available - renewable, hydro, fossil fuels, nuclear -- nuclear power is identified as the only one that promises to meet the growing demand for power without the practical, economic and environmental disadvantages associated with the alternatives. Based on Canadian experience with nuclear power in the past, it is pointed out that between 1971 and 2000 Canada , by using nuclear fuel , has averted the production of 32 million tonnes of acid gases, millions of tonnes of other pollutants and well over a billion tonnes of carbon dioxide, while producing only 14 per cent of its energy requirements from nuclear fuel The principal argument made is that given our position as the world's leading supplier of uranium to electric utilities, the safety record of our CANDU reactors , and the fact that nuclear power is one of the cleanest large-scale energy source, nuclear power has the potential to make significant contribution to Canada's ability to meet its future energy requirements, and achieve the GHG emission reduction targets imposed by the Kyoto Agreement, without causing serious harm to the economy. The author goes as far as to say that without serious consideration being given to nuclear power, Canada has no chance even to come close to its Kyoto greenhouse emission targets without disastrous consequences to the economy. (author)

  6. Overview of Indian activities on fusion reactor materials

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Srikumar, E-mail: sbanerjee@barc.gov.in

    2014-12-15

    This paper on overview of Indian activities on fusion reactor materials describes in brief the efforts India has made to develop materials for the first wall of a tokamak, its blanket and superconducting magnet coils. Through a systematic and scientific approach, India has developed and commercially produced reduced activation ferritic/martensitic (RAFM) steel that is comparable to Eurofer 97. Powder of low activation ferritic/martensitic oxide dispersion strengthened steel with characteristics desired for its application in the first wall of a tokamak has been produced on the laboratory scale. V–4Cr–4Ti alloy was also prepared in the laboratory, and kinetics of hydrogen absorption in this was investigated. Cu–1 wt%Cr–0.1 wt%Zr – an alloy meant for use as heat transfer elements for hypervapotrons and heat sink for the first wall – was developed and characterized in detail for its aging behavior. The role of addition of a small quantity of Zr in its improved fatigue performance was delineated, and its diffusion bonding with both W and stainless steel was achieved using Ni as an interlayer. The alloy was produced in large quantities and used for manufacturing both the heat transfer elements and components for the International Thermonuclear Experimental Reactor (ITER). India has proposed to install and test a lead–lithium cooled ceramic breeder test blanket module (LLCB-TBM) at ITER. To meet this objective, efforts have been made to produce and characterize Li{sub 2}TiO{sub 3} pebbles, and also improve the thermal conductivity of packed beds of these pebbles. Liquid metal loops have been set up and corrosion behavior of RAFM steel in flowing Pb–Li eutectic has been studied in the presence as well as absence of magnetic fields. To prevent permeation of tritium and reduce the magneto-hydro-dynamic drag, processes have been developed for coating alumina on RAFM steel. Apart from these activities, different approaches being attempted to make the U

  7. Embracing the future: Canada's nuclear renewal and growth. 28th annual conference of the Canadian Nuclear Society and 31st CNS/CNA student conference

    International Nuclear Information System (INIS)

    2007-01-01

    The 28th Annual Conference of the Canadian Nuclear Society and 31st CNS/CNA Student Conference was held on June 3-6, 2007 in Saint John, New Brunswick. The central objective of this conference was to provide a forum for exchange of views on how this technical enterprise can best serve the needs of humanity, now and in the future. 'Embracing the Future: Canada's Nuclear Renewal and Growth' was the theme for this year's gathering of nuclear industry experts from across Canada and around the world. This theme reflects the global renaissance of interest in nuclear technology, strongly evident here in Canada through plant refurbishments (underway and planned), new-build planning, renewal and expansion of the nuclear workforce, and growth in public support for environmentally sustainable technology. Topics for discussion at this conference include: the nuclear renaissance in Canada and around the world, recent developments at Canadian utilities, status of plant refurbishment and new build plans, and uranium supply issues. For business, energy, and science reporters this conference offers an insight into major nuclear projects and an opportunity to meet leaders in the nuclear sector. Over 100 technical papers were presented, as well as over 20 student papers, in the following sessions: control room operation; safety analyses; environment and waste management; plant life management and refurbishment; reactor physics; advanced reactor design; instrumentation control; general nuclear topics and standards; chemistry and materials; probabilistic safety assessment; and, performance improvement

  8. What nuclear energy means to Canada

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The Canadian nuclear industry employs more than 30,000 people directly, and indirectly supports nearly 100,000 jobs. It contributed more than C$4 billion to the economy in 1989. In 1989, Ontario had already saved C$15.9 billion in foreign exchange by using uranium rather than coal. Canada is the world's leading exporter of uranium. Canadian nuclear research was the most effective in the western world in terms of electricity produced per research dollar spent to the end of 1988 (twelve times as effective as Italy's, which had spent 1.5 times as much). One half of Ontario's electricity now comes from CANDUs, and this helps to keep Ontario's rates among the cheapest in the world. Nuclear energy has helped to prevent environmental damage from acid gases and ash. CANDUs currently hold 5% of the world reactor market, a proportion which is expected to grow

  9. Quasielastic neutron scattering facility at Dhruva reactor

    International Nuclear Information System (INIS)

    Mukhopadhyay, R.; Mitra, S.; Paranjpe, S.K.; Dasannacharya, B.A.

    2001-01-01

    Quasi-elastic neutron scattering is a powerful experimental tool for studying the various dynamical motions in solids and liquids. In this paper, we have described the salient features of the quasi-elastic neutron spectrometer in operation at Dhruva reactor at Trombay, India. The design criteria have been such as to maximise the throughput by various means like closer approach to the source, focusing a larger beam on to a sample, and Multi-Angle Reflecting X-tal mode of energy analysis. Some results of molecular motions from recently studied systems using this spectrometer are also reported

  10. Intercomparison of techniques for inspection and diagnostics of heavy water reactor pressure tubes: Flaw detection and characterization [Phase 1

    International Nuclear Information System (INIS)

    2006-05-01

    Nuclear power plants with heavy water reactors (HWRs) comprise nine percent of today's operating nuclear units, and more are under construction. Efficient and accurate inspection and diagnostic techniques for various reactor components and systems are an important factor in assuring reliable and safe plant operation. To foster international collaboration in the efficient and safe use of nuclear power, the IAEA conducted a Coordinated Research Programme (CRP) on Inter-comparison of Techniques for HWR Pressure Tube Inspection and Diagnostics. This CRP was carried out within the frame of the IAEA Department of Nuclear Energy's Technical Working Group on Advanced Technologies for HWRs (the TWG-HWR). The TWG-HWR is a group of experts nominated by their governments and designated by the IAEA to provide advice and to support implementation of the IAEA's project on advanced technologies for HWRs. The objective of the CRP was to inter-compare non-destructive inspection and diagnostic techniques, in use and being developed, for structural integrity assessment of HWR pressure tubes. During the first phase of this CRP, participants have investigated the capability of different techniques to detect and characterize flaws. During the second phase of this CRP, participants collaborated to detect and characterize hydride blisters and to determine the hydrogen concentration in Zirconium alloys. The intent was to identify the most effective pressure tube inspection and diagnostic methods, and to identify further development needs. The organizations that have participated in this CRP are: - The Comision Nacional de Energia Atomica (CNEA), Argentina; - Atomic Energy of Canada Ltd. (AECL); Chalk River Laboratories (CRL), Canada; - The Research Institute of Nuclear Power Operations (RINPO), China National Nuclear Corporation (CNNC), China; - Bhabha Atomic Research Centre (BARC), India; - The Korea Electric Power Research Institute (KEPRI), Republic of Korea; - The Korea Atomic Energy

  11. SCW Pressure-Channel Nuclear Reactor Some Design Features

    Science.gov (United States)

    Pioro, Igor L.; Khan, Mosin; Hopps, Victory; Jacobs, Chris; Patkunam, Ruban; Gopaul, Sandeep; Bakan, Kurtulus

    Concepts of nuclear reactors cooled with water at supercritical pressures were studied as early as the 1950s and 1960s in the USA and Russia. After a 30-year break, the idea of developing nuclear reactors cooled with SuperCritical Water (SCW) became attractive again as the ultimate development path for water cooling. The main objectives of using SCW in nuclear reactors are: 1) to increase the thermal efficiency of modern Nuclear Power Plants (NPPs) from 30-35% to about 45-48%, and 2) to decrease capital and operational costs and hence decrease electrical energy costs (˜1000 US/kW or even less). SCW NPPs will have much higher operating parameters compared to modern NPPs (pressure about 25 MPa and outlet temperature up to 625°C), and a simplified flow circuit, in which steam generators, steam dryers, steam separators, etc., can be eliminated. Also, higher SCW temperatures allow direct thermo-chemical production of hydrogen at low cost, due to increased reaction rates. Pressure-tube or pressure-channel SCW nuclear reactor concepts are being developed in Canada and Russia for some time. Some design features of the Canadian concept related to fuel channels are discussed in this paper. The main conclusion is that the development of SCW pressure-tube nuclear reactors is feasible and significant benefits can be expected over other thermal-energy systems.

  12. ASA24-Canada

    Science.gov (United States)

    A Canadian adaptation of the Automated Self-Administered 24-hour Dietary Assessment Tool (ASA24-Canada), developed by the Food Directorate at Health Canada in collaboration with NCI, has been freely available since April 2014.

  13. Cadmium-emitter self-powered thermal neutron detector performance characterization & reactor power tracking capability experiments performed in ZED-2

    Energy Technology Data Exchange (ETDEWEB)

    LaFontaine, M.W., E-mail: physics@execulink.com [LaFontaine Consulting, Kitchener, Ontario (Canada); Zeller, M.B. [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada); Nielsen, K. [Royal Military College of Canada, SLOWPOKE-2 Reactor, Kingston, Ontario (Canada)

    2014-07-01

    Cadmium-emitter self-powered thermal neutron flux detectors (SPDs), are typically used for flux monitoring and control applications in low temperature, test reactors such as the SLOWPOKE-2. A collaborative program between Atomic Energy of Canada, academia (Royal Military College of Canada (RMCC)) and industry (LaFontaine Consulting) was initiated to characterize the incore performance of a typical Cd-emitter SPD; and to obtain a definitive measure of the capability of the detector to track changes in reactor power in real time. Prior to starting the experiment proper, Chalk River Laboratories' ZED-2 was operated at low power (5 watts nominal) to verify the predicted moderator critical height. Test measurements were then performed with the vertical center of the SPD emitter positioned at the vertical mid-plane of the ZED-2 reactor core. Measurements were taken with the SPD located at lattice position L0 (near center), and repeated at lattice position P0 (in D{sub 2}O reflector). An ionization chamber (part of the ZED-2 control instrumentation) monitored reactor power at a position located on the south side of the outside wall of the reactor's calandria. These experiments facilitated measurement of the absolute thermal neutron sensitivity of the subject Cd-emitter SPD, and validated the power tracking capability of said SPD. Procedural details of the experiments, data, calculations and associated graphs, are presented and discussed. (author)

  14. Fusion Canada issue 21

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-08-01

    A short bulletin from the National Fusion Program highlighting in this issue Europe proposes Canada`s participation in ITER, tritium for JET, CCFM/TdeV-Tokamak helium pumping and TdeV update, ITER-related R and D at CFFTP, ITER Deputy Director visits Canada, NFP Director to Chair IFRC, Award for Akira Hirose. 3 figs.

  15. Canada's deep geological repository for used nuclear fuel - update on the site evaluation process and interweaving of aboriginal traditional knowledge

    International Nuclear Information System (INIS)

    Watts, B.; Belfadhel, M.B.; Facella, J.

    2015-01-01

    The Nuclear Waste Management Organization (NWMO) is responsible for implementing Adaptive Phased Management (APM), the approach selected by the Government of Canada for the long-term management of used nuclear fuel generated by Canadian nuclear reactors. The ultimate objective of APM is the centralized containment and isolation of Canada's used nuclear fuel in a Deep Geological Repository (DGR) in a suitable crystalline or sedimentary rock formation. In May 2010, the NWMO initiated a nine-step site selection process to seek an informed and willing community to host Canada's deep geological repository. As of April 2015, twenty-two communities expressed interest in learning more about the project. This paper provides an update on the site evaluation process and describes the approach, methods and criteria used in the assessments, focusing on geological and community well-being studies. Engagement and field activities to interweave Aboriginal Traditional Knowledge with western science are also discussed. (author)

  16. Canada No. 1 in business

    International Nuclear Information System (INIS)

    Poulsen, Henning

    2004-01-01

    Canada has for the fifth time in a row been chosen the best industrialized country in the world in which to initiate and run a business. The Norwegian interest in Canada has grown strongly the last years and Norwegian companies have invested over 20 billion NOK there. Canada is the perfect gateway to the large markets in the USA. Norway is currently Canada's 15th largest trading partner. In addition to low costs and strategic location, Canada has the most highly educated workforce in the world. A company on the Canadian side of the US border has the same access to the American market as a US-based company. There is even a Norwegian company in Canada that exports 100 per cent of its products across the border to the USA. The trade between the USA and Canada is more extensive than between the USA and all the EU countries together. Furthermore, Canadian companies concentrating on research and education are given a generous tax credit

  17. Canada's hydrocarbon processing evolution

    International Nuclear Information System (INIS)

    Wise, T.H.; Horton, R.

    2000-01-01

    The development of petroleum refining, petrochemicals and natural gas industries in Canada are discussed together with future issues and prospects. Figures give data on (a) refined products trade 1998; (b) refining capacity; (c) product demand 1980-1999; (d) refinery crude runs and capacity; (e) refining and marketing, historical returns 1993-1999; (f) processing power index for Canada and USA; (g) ethylene capacity; (eye) Montreal petrochemical capacities; (j) Sarnia petrochemical capacities in 2000; (k) Alberta petrochemicals capacities 2001; (l) ethylene net equivalent trade; (m) ethylene costs 1999 for W. Canada and other countries. It was concluded that the hydrocarbon processing business continues to expand in Canada and natural gas processing is likely to increase. Petrochemicals may expand in W. Canada, possibly using feed stock from the Far North. Offshore developments may stimulate new processing on the E. Coast

  18. Magnetic Fusion Energy Program of India

    International Nuclear Information System (INIS)

    Sen, Abhijit

    2013-01-01

    The magnetic fusion energy program of India started in the early eighties with the construction of an indigenous tokamak device ADITYA at the Institute for Plasma Research in Gandhinagar. The initial thrust was on fundamental studies related to plasma instabilities and turbulence phenomena but there was also a significant emphasis on technology development in the areas of magnetics, high vacuum, radio-frequency heating and neutral beam technology. The program took a major leap forward in the late nineties with the decision to build a state-of-the-art superconducting tokamak (SST-1) that catapulted India into the mainstream of the international tokamak research effort. The SST experience and the associated technological and human resource development has now earned the country a place in the ITER collaboration as an equal partner with other major nations. Keeping in mind the rapidly growing and enormous energy needs of the future the program has also identified and launched key development projects that can lead us to a DEMO reactor and eventually a Fusion Power Plant in a systematic manner. I will give a brief overview of the early origins, the present status and some of the highlights of the future road map of the Indian Fusion Program. (author)

  19. Reactor construction programme in Japan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1959-04-15

    In September last year, the Japanese Government requested the International Atomic Energy Agency to supply three tons of natural uranium for a research reactor, and the Agency has now arranged for its sale to Japan. The metal will be supplied in ingot form and after fabrication it will be used as fuel in a reactor of the natural uranium, heavy water type. The uranium will be obtained from Canada and sold to Japan by IAEA. The Agency had invited tenders for its supply, and after considering the tenders received, the Agency's Board of Governors decided that the Canadian offer to the Agency of three tons of natural uranium free of charge should be accepted and that the selling price to Japan should be US $35. 50 per kilogramme. The price takes into account Article XIV/E of the Agency's Statute which says that the Agency shall establish a scale of charges (including those for storage and handling) for materials furnished to Member States, and that the scale shall be designed to produce revenues to meet expenses in connexion with materials acquired by the Agency and costs of materials and services provided by it under agreements with one or more members. This is the first operation of its kind to be undertaken by the Agency, and the reactor for which the supply is being made will be the first in Japan to be constructed by Japanese scientists and technicians. IAEA's Board of Governors has given the necessary approval to the reactor project for which the Agency is providing assistance

  20. Vitamin D Deficiency in India: Prevalence, Causalities and Interventions

    Directory of Open Access Journals (Sweden)

    Ritu G

    2014-02-01

    Full Text Available Vitamin D deficiency prevails in epidemic proportions all over the Indian subcontinent, with a prevalence of 70%–100% in the general population. In India, widely consumed food items such as dairy products are rarely fortified with vitamin D. Indian socioreligious and cultural practices do not facilitate adequate sun exposure, thereby negating potential benefits of plentiful sunshine. Consequently, subclinical vitamin D deficiency is highly prevalent in both urban and rural settings, and across all socioeconomic and geographic strata. Vitamin D deficiency is likely to play an important role in the very high prevalence of rickets, osteoporosis, cardiovascular diseases, diabetes, cancer and infections such as tuberculosis in India. Fortification of staple foods with vitamin D is the most viable population based strategy to achieve vitamin D sufficiency. Unfortunately, even in advanced countries like USA and Canada, food fortification strategies with vitamin D have been only partially effective and have largely failed to attain vitamin D sufficiency. This article reviews the status of vitamin D nutrition in the Indian subcontinent and also the underlying causes for this epidemic. Implementation of population based educational and interventional strategies to combat this scourge require recognition of vitamin D deficiency as a public health problem by the governing bodies so that healthcare funds can be allocated appropriately.

  1. CEA celebrates the jubilee of ZOE reactor

    International Nuclear Information System (INIS)

    Loverini, M.J.

    1998-01-01

    This article reviews the saga of the first French nuclear reactor ZOE. As soon as 1939 Frederic Joliot had an intuition of the possibility of using fissioning nuclei to produce energy. 3 patents describing the concept of a nuclear reactor highlighting the role of natural uranium as fuel, heavy water as moderator, were registered. The only producer in the world of heavy water was a Norwegian firm, a fierce competition with Germany for the control of deuterium broke out. Eventually 185 Kg of heavy water were secretly convoyed in Great-britain. Because of the development of the war, the small scientist team in charge of the project has had to move from France to Great-britain then to Canada. At the end of the war, the 'Commissariat a l'energie atomique' (CEA) was created, its first aim was to design a nuclear reactor as soon as possible. In 1948 the first criticality of ZOE is reached, 6 years later than the team led by Enrico Fermi did in Chicago. In 1976 ZOE was decommissioned and is now a small museum dedicated to nuclear energy. (A.C.)

  2. Proceedings of the US Nuclear Regulatory Commission nineteenth water reactor safety information meeting

    International Nuclear Information System (INIS)

    Weiss, A.J.

    1992-04-01

    This three-volume report contains 83 papers out of the 108 that were presented at the Nineteenth Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 28--30, 1991. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included 14 different papers presented by researchers from Canada, Germany, France, Japan, Sweden, Taiwan, and USSR. This document, Volume 3, presents papers on: Structural engineering; Advanced reactor research; Advanced passive reactors; Human factors research; Human factors issues related to advanced passive light water researchers; Thermal Hydraulics; and Earth sciences. The individual papers have been cataloged separately

  3. Development of Surveillance and In-Service Inspection Programme for Indian Research Reactors Cirus and Dhruva

    International Nuclear Information System (INIS)

    Shukla, D.K.

    2006-01-01

    Many safety requirements for research reactors are quite similar to those of power reactors. For research reactors with a higher hazard potential, the use of safety codes and guides for power reactors is more appropriate. However, there are many important differences between power reactors and research reactors that must be taken into account to ensure that adequate safety margins are available in design and operation of the research reactor. Most research reactors may have small potential for hazard to the public compared to power reactors but may pose a greater potential hazard to the plant operators. The need for greater flexibility in use of research reactors for individual experiments requires a different safety approach. Safety rules for power reactors are required to be substantially modified for application to specific research reactor. Following the intent of the available safety guides for surveillance and In-Service Inspection of Nuclear Power Plants, guidelines were formulated to develop surveillance and In-Service Inspection programme for research reactors Cirus and Dhruva. Based on the specific design of these research reactors, regulatory requirements, the degree of sophistication and experience of the technical organization involved in operating the research reactor, guidelines were evolved for developing and implementing the surveillance and In-Service Inspection programme for research reactors Cirus (40 MWt) and Dhruva (100 MWt) located at Bhabha Atomic Research Centre, Trombay, Mumbai, India. Paper describes the approach adopted for formulation of surveillance and In-service Inspection programme for Dhruva reactor in detail. (author)

  4. AREVA in India

    International Nuclear Information System (INIS)

    2008-01-01

    India is the sixth largest energy consumer in the world and its demand is rising rapidly. To support its economic growth, estimated to be 8% on average over the last three years and to ensure access to electricity for all, the country foresees massive investments in its power sector over the next five years. India is therefore an essential market for the AREVA Group, where its Transmission and Distribution division plays a leading role on the strategic grid modernization market. This document presents: 1 - the economic situation in India: Key figures, Growth, India's growing need for electricity, India's energy sources and policy: current mix, driving role of the State, the financial reorganization of the SEBs, the 'Mega-Power' projects, the electricity act, the rural electrification program, the Investments. 2 - Civil nuclear energy: a strong potential for development; 3 - India's transmission and distribution network: the power challenge of the transmission network, the efficiency challenge of the distribution network. 4 - AREVA T and D in India: AREVA T and D profile, Areva's presence in India, market share, T and D customers and flagship projects

  5. ATLAS-Canada Network

    Energy Technology Data Exchange (ETDEWEB)

    Gable, I; Sobie, R J [HEPnet/Canada, Victoria, BC (Canada); Bedinelli, M; Butterworth, S; Groer, L; Kupchinsky, V [University of Toronto, Toronto, ON (Canada); Caron, B; McDonald, S; Payne, C [TRIUMF Laboratory, Vancouver, BC (Canada); Chambers, R [University of Alberta, Edmonton, AB (Canada); Fitzgerald, B [University of Victoria, Victoria, BC (Canada); Hatem, R; Marshall, P; Pobric, D [CANARIE Inc., Ottawa, ON (Canada); Maddalena, P; Mercure, P; Robertson, S; Rochefort, M [McGill University, Montreal, QC (Canada); McWilliam, D [BCNet, Vancouver, BC (Canada); Siegert, M [Simon Fraser University, Burnaby, BC (Canada)], E-mail: igable@uvic.ca (and others)

    2008-12-15

    The ATLAS-Canada computing model consists of a WLCG Tier-1 computing centre located at the TRIUMF Laboratory in Vancouver, Canada, and two distributed Tier-2 computing centres in eastern and western Canadian universities. The TRIUMF Tier-1 is connected to the CERN Tier-0 via a 10G dedicated circuit provided by CANARIE. The Canadian institutions hosting Tier-2 facilities are connected to TRIUMF via 1G lightpaths, and routing between Tier-2s occurs through TRIUMF. This paper discusses the architecture of the ATLAS-Canada network, the challenges of building the network, and the future plans.

  6. If Canada is serious about reducing greenhouse gases, we need nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Lemieux, C.

    2003-07-01

    Canada's energy options are reviewed in light of the need to find practical solutions to supply the nation's growing demand for power, coupled with equally pressing need to reduce greenhouse gas emissions to meet Kyoto commitments, and to do so without costing Canadians jobs and economic disaster. Among the options available -- renewable, hydro, fossil fuels, nuclear -- nuclear power is identified as the only one that promises to meet the growing demand for power without the practical, economic and environmental disadvantages associated with the alternatives. Based on Canadian experience with nuclear power in the past, it is pointed out that between 1971 and 2000 Canada, by using nuclear fuel, has averted the production of 32 million tonnes of acid gases, millions of tonnes of other pollutants and well over a billion tonnes of carbon dioxide, while producing only 14 per cent of its energy requirements from nuclear fuel. The principal argument made is that given our position as the world's leading supplier of uranium to electric utilities, the safety record of our CANDU reactors, and the fact that nuclear power is one of the cleanest large-scale energy source, nuclear power has the potential to make significant contribution to Canada's ability to meet its future energy requirements, and achieve the GHG emission reduction targets imposed by the Kyoto Agreement, without causing serious harm to the economy. The author goes as far as to say that without serious consideration being given to nuclear power, Canada has no chance even to come close to its Kyoto greenhouse emission targets without disastrous consequences to the economy.

  7. The accident at Chernobyl and its implications for the safety of CANDU reactors

    International Nuclear Information System (INIS)

    1987-05-01

    In August 1986, a delegation of Canadians, including two members of the staff of the AECB (Atomic Energy Control Board), attended a post-accident review meeting in Vienna, at which Soviet representatives described the accident and its causes and consequences. On the basis of the information presented at that meeting, AECB staff conducted a study of the accident to ascertain its implications for the safety of CANDU nuclear reactors and for the regulatory process in Canada. The conclusion of this review is that the accident at Chernobyl has not revealed any important new information which would have an effect on the safety requirements for CANDU reactors as presently applied by the AECB. All important aspects of the accident and its causes have been considered by the AECB in the licensing process for currently licensed reactors. However a number of recommendations are made with respect to aspects of reactor safety which should be re-examined in order to reinforce this conclusion

  8. 2015 Tax-Competitiveness Report: Canada is Losing its Attractiveness

    Directory of Open Access Journals (Sweden)

    Philip Bazel

    2016-11-01

    Full Text Available It can be easy for Canadians who appreciate the qualities of their country to overestimate the power that it also has to lure investment in a world where so many other destinations are competing for capital. Canadians can take pride in our political stability and our highly educated workforce, and we do have good communication and transportation infrastructure, but a great number of other countries offer those things, too, at roughly the same level. Meanwhile, Canada suffers in the eyes of investors for being a relatively small market, distant from large export destinations, with a cold climate and geographic vastness that only raise the cost of doing business here. Canada has been able to overcome its disadvantages in recent years largely by being highly competitive on business taxes. Unfortunately, the tendency of Canadian provincial and federal governments lately to raise taxes on business has been rapidly erasing that slight advantage. Dangerously, Canada is beginning to lose its competitive edge. It is difficult enough in a world of slower global growth to attract investment, but some major economies with whom Canada directly competes for investment have recognized the need in this challenging environment to make themselves even more attractive to investors. It is true that some countries, such as Belgium, Chile, Brazil, Greece and India have, like Canada, enacted certain policies — primarily higher business taxes — that have increased their marginal effective tax rate (METR. Still, other important peer countries have been working to lower theirs; notably Denmark, Japan, France, Portugal, Switzerland and the U.K. As a result of their cuts, and because of changes to policies in Canada that have increased METRs here, Canada has sunk from having the 16th-highest burden on capital in the OECD (which was at least in the middle of the pack to having the 13th highest. We now have the sixth-highest rather than lowest METR in the G7. In a

  9. Problems and prospects of small and medium power reactors

    International Nuclear Information System (INIS)

    Matin, A.

    1977-01-01

    Prior to 1973 it was generally believed that small and medium power reactors (SMPRs) had a potentially large market and only their high capital costs prevented their large-scale commercial application. The increase in the price of crude oil in December 1973 changed the economic position of SMPRs so much that even 100-200MW(e) nuclear reactors were considered economic compared with oil-fired plants. The IAEA 1974 market survey showed a potential for 154 units from 150-500MW(e) during 1980-1989 with a total installed capacity of 45000MW(e). This did not generate the desired interest among reactor manufacturers. So far only three European-based manufacturers have shown interest in SMPRs and at present small reactors are being built commercially mostly in India. The reported capital costs of a 215MW(e) Indian CANDU reactor compare favourably with those for European-built reactors. Bangladesh, Jamaica and Kuwait are seriously looking for reactors of 50-150MW(e). The paper analyses the historical background of SMPRs and their commercial application and suggests the following action: (1) A realistic reappraisal of the changed market potential for SMPRs and a critical analysis of the Indian and European figures, possibly carried out by the IAEA; (2) a Special Nuclear Fund be created by contributions from Member States to provide financial support to selected reactor manufacturers willing to make SMPRs commercially available; (3) the proposed Special Nuclear Fund may also provide credit on soft terms to developing countries interested in building SMPRs; (4) the IAEA should expand the scope of its activities and take up the responsibility of collecting and administering such a Special Nuclear Fund. (author)

  10. Training courses run by the Department of Atomic Energy, India

    International Nuclear Information System (INIS)

    1981-01-01

    The Department of Atomic Energy (DAE), India, conducts a large number of courses covering a variety of fields, mainly concerned with nuclear energy and its applications. These courses are : (1) a comprehensive multidisciplinary course in nuclear sciences and engineering, (2) courses in safety aspects of: (a) the medical uses of radioisotopes, (b) research applications of ionising radiations, (c) the industrial applications of radiation sources, and (d) industrial radiography; (3) industrial radiographer's certification course, (4) course in hospital physics and radiological physics, (5) diploma course in radiation medicine, (6) courses in operation and maintenance of: (a) research reactors and facilities, (b) nuclear power reactors, and (7) course in exploration of atomic minerals. Detailed information on these courses, covering institutions of DAE conducting them, duration, academic requirements for admission to them, method of adimission, detailed syllabus, and general information such as fees, accommodation, stipend if any, etc. is given. (M.G.B.)

  11. Electric power in Canada 1992

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    Electric power in Canada is given a comprehensive review by the Electricity Branch of the Department of Natural Resources Canada. The Electric Power Industry is scrutinized for electricity consumption, generation, trade and pricing across all of Canada. 98 tabs. 26 figs.

  12. Electric power in Canada 1992

    International Nuclear Information System (INIS)

    1993-01-01

    Electric power in Canada is given a comprehensive review by the Electricity Branch of the Department of Natural Resources Canada. The Electric Power Industry is scrutinized for electricity consumption, generation, trade and pricing across all of Canada. 98 tabs. 26 figs

  13. Addressing Household Food Insecurity in Canada - Position Statement and Recommendations - Dietitians of Canada.

    Science.gov (United States)

    2016-09-01

    POSITION STATEMENT It is the position of Dietitians of Canada that household food insecurity is a serious public health issue with profound effects on physical and mental health and social well-being. All households in Canada must have sufficient income for secure access to nutritious food after paying for other basic necessities. Given the alarming prevalence, severity and impact of household food insecurity in Canada, Dietitians of Canada calls for a pan-Canadian, government-led strategy to specifically reduce food insecurity at the household level, including policies that address the unique challenges of household food insecurity among Indigenous Peoples. Regular monitoring of the prevalence and severity of household food insecurity across all of Canada is required. Research must continue to address gaps in knowledge about household vulnerability to food insecurity and to evaluate the impact of policies developed to eliminate household food insecurity in Canada. Dietitians of Canada recommends: Development and implementation of a pan-Canadian government-led strategy that includes coordinated policies and programs, to ensure all households have consistent and sufficient income to be able to pay for basic needs, including food. Implementation of a federally-supported strategy to comprehensively address the additional and unique challenges related to household food insecurity among Indigenous Peoples, including assurance of food sovereignty, with access to lands and resources, for acquiring traditional/country foods, as well as improved access to more affordable and healthy store-bought/market foods in First Nation reserves and northern and remote communities. Commitment to mandatory, annual monitoring and reporting of the prevalence of marginal, moderate and severe household food insecurity in each province and territory across Canada, including among vulnerable populations, as well as regular evaluation of the impact of poverty reduction and protocols for

  14. CANDU technology for generation III + AND IV reactors

    International Nuclear Information System (INIS)

    Torgerson, D.F.

    2005-01-01

    Atomic Energy of Canada Limited (AECL) is the original developer of the CANDU?reactor, one of the three major commercial power reactor designs now used throughout the world. For over 60 years, AECL has continued to evolve the CANDU design from the CANDU prototypes in the 1950s and 1960s through to the second generation reactors now in operation, including the Generation II+ CANDU 6. The next phase of this evolution, the Generation III+ Advanced CANDU ReactorTM (ACRTM), continues the strategy of basing next generation technology on existing CANDU reactors. Beyond the ACR, AECL is developing the Generation IV CANDU Super Critical Water Reactor. Owing to the evolutionary nature of these advanced reactors, advanced technology from the development programs is also being applied to operating CANDU plants, for both refurbishments and upgrading of existing systems and components. In addition, AECL is developing advanced technology that covers the entire life cycle of the CANDU plant, including waste management and decommissioning. Thus, AECL maintains state-of-the-art expertise and technology to support both operating and future CANDU plants. This paper outlines the scale of the current core knowledge base that is the foundation for advancement and support of CANDU technology. The knowledge base includes advancements in materials, fuel, safety, plant operations, components and systems, environmental technology, waste management, and construction. Our approach in each of these areas is to develop the underlying science, carry out integrated engineering scale tests, and perform large-scale demonstration testing. AECL has comprehensive R and D and engineering development programs to cover all of these elements. The paper will show how the ongoing expansion of the CANDU knowledge base has led to the development of the Advanced CANDU Reactor. The ACR is a Generation III+ reactor with substantially reduced costs, faster construction, and enhanced passive safety and operating

  15. Nuclear regulatory developments in Canada

    International Nuclear Information System (INIS)

    Binder, M.

    2012-01-01

    This paper from CNSC discusses nuclear regulatory developments in Canada. It starts with the Fukushima accident and the effect on the nuclear sector. It summarises what CNSC has done, what it has learned and their plans going forward. It has made recommendations to IAEA for international enhancements to regulatory procedures. It outline the activities of Canada's nuclear power plants, Canada's uranium projects, deep geological repository and waste management as well as nuclear research in Canada.

  16. Proceedings of the international symposium on research reactor safety operations and modifications

    International Nuclear Information System (INIS)

    1990-03-01

    The International Symposium on Research Reactor Safety, Operations and Modifications was organized by the International Atomic Energy Agency in cooperation with Atomic Energy of Canada Limited-Research Company. The main objectives of this Symposium were: (1) to exchange information and to discuss current perspectives and concerns relating to all aspects to research reactor safety, operations, and modifications; and, (2) to present views and to discuss future initiatives and directions for research reactor design, operations, utilization, and safety. The symposium topics included: research reactor programmes and experience; research reactor design safety and analysis; research reactor modifications and decommissioning; research reactor licensing; and new research reactors. These topics were covered during eight oral sessions and three poster sessions. These Proceedings include the full text of the 93 papers presented. The subject of Symposium was quite wide-ranging in that it covered essentially all aspects of research reactor safety, operations, and modifications. This was considered to be appropriate and timely given the 326 research reactors currently in operation in some 56 countries; given the degree of their utilization which ranges from pure and applied research to radioisotopes production to basic training and manpower development; and given that many of these reactors are undergoing extensive modifications, core conversions, power upratings, and are becoming the subject of safety reassessment and regulatory reviews. Although the Symposium covered many topics, the majority of papers and discussions tended to focus mainly on research reactor safety. This was seen as a clear sign of the continuing recognition of the fundamental importance of identifying and addressing, particularly through international cooperation, issues and concerns associated with research reactor safety

  17. Immediate relation of ING to fast breeder reactor programs

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, W B

    1969-07-01

    The future large-scale use of nuclear energy is linked in the United States and other major countries to their fast breeder reactor development. Very serious basic problems have been discovered within the last two years, limiting the life in the high fast neutron flux at appropriate temperatures of materials, in particular of metals suitable for fuel cladding in sodium coolant. There is therefore a most urgent need for materials testing facilities under controlled conditions of temperature and neutron flux at sufficiently high ratings to match or surpass those required in commercially competitive fast breeder reactors. None of the test facilities yet planned for 1976 or sooner in the western world appears to match these conditions. The problem is mainly the difficulty of providing the high neutron flux effectively continuously. The spallation reaction in heavy elements was chosen as the basis of ING - the intense neutron generator, because it is the only known reaction that promises a fast neutron source density that is higher than can be controlled from the fission process. It is suggested that several countries will wish to consider urgently whether they should also explore the spallation reaction for the purpose of a fast neutron irradiation test facility. In view of the discontinuance of the ING project in Canada a favourable opportunity will exist over the next few months 10 obtain from Canada by direct personal contact details of the significant study that has been carried on for ING over the last five years. In the event that satisfactory materials are established within the lifetime of the spallation facilities they may continue to be used for the production of selected isotopes more profitably produced in high neutron fluxes. The facilities may be also used for the desirable preirradiation of thorium reactor fuel. The other research purposes planned for ING could also be served. (author)

  18. Immediate relation of ING to fast breeder reactor programs

    International Nuclear Information System (INIS)

    Lewis, W.B.

    1969-01-01

    The future large-scale use of nuclear energy is linked in the United States and other major countries to their fast breeder reactor development. Very serious basic problems have been discovered within the last two years, limiting the life in the high fast neutron flux at appropriate temperatures of materials, in particular of metals suitable for fuel cladding in sodium coolant. There is therefore a most urgent need for materials testing facilities under controlled conditions of temperature and neutron flux at sufficiently high ratings to match or surpass those required in commercially competitive fast breeder reactors. None of the test facilities yet planned for 1976 or sooner in the western world appears to match these conditions. The problem is mainly the difficulty of providing the high neutron flux effectively continuously. The spallation reaction in heavy elements was chosen as the basis of ING - the intense neutron generator, because it is the only known reaction that promises a fast neutron source density that is higher than can be controlled from the fission process. It is suggested that several countries will wish to consider urgently whether they should also explore the spallation reaction for the purpose of a fast neutron irradiation test facility. In view of the discontinuance of the ING project in Canada a favourable opportunity will exist over the next few months 10 obtain from Canada by direct personal contact details of the significant study that has been carried on for ING over the last five years. In the event that satisfactory materials are established within the lifetime of the spallation facilities they may continue to be used for the production of selected isotopes more profitably produced in high neutron fluxes. The facilities may be also used for the desirable preirradiation of thorium reactor fuel. The other research purposes planned for ING could also be served. (author)

  19. SACS gene-related autosomal recessive spastic ataxia of Charlevoix-Saguenay from South India

    Directory of Open Access Journals (Sweden)

    M Suraj Menon

    2016-01-01

    Full Text Available Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS is a neurodegenerative disorder characterized by late infantile onset spastic ataxia and other neurological features. Initially described in the Charlevoix-Saguenay region of Quebec, Canada, it is being increasingly reported from many other countries. Here, we present the case of a 20-year-old male from South India, who presented with progressive ataxia, spasticity, and peripheral neuropathy with imaging features and genetic testing suggestive of SACS gene-related ARSACS. The phenotypic variability from other cases and occurrence in a geographically distinct region is stressed upon to alert the clinicians to consider ARSACS in progressive ataxias.

  20. National legislative and regulatory activities: Armenia, Brazil, Canada, France, Georgia, Greece, India, Ireland, Japan, Lithuania, Switzerland, Ukraine, United Arab Emirates, United States

    International Nuclear Information System (INIS)

    Anon.

    2012-01-01

    Armenia: Nuclear safety and radiological protection (Initiation of process relating to the life extension of nuclear power plant unit 2). Brazil: General legislation (Authorisation for the construction of nuclear submarines). Canada: Environmental protection (Changes to the federal environmental assessment law). France: Radioactive waste management (Changes to the National Plan for Management of Radioactive Materials and Waste). Georgia: Nuclear safety and radiological protection (New law on nuclear and radiation safety). Greece: Nuclear safety (Presidential decree on nuclear safety transposing European Council directive into national legislation); Emergency preparedness and response (Establishment of national plan for nuclear, radiological, biological and chemical threats). India: Licensing and regulatory infrastructure (Pending invitation for the IAEA's Integrated Regulatory Review Services to conduct a peer review); Liability and compensation (Committee on Subordinate Legislation Report on the Civil Liability for Nuclear Damage Rules, 2011). Ireland: Nuclear safety and radiological protection (Adoption of revised regulations regarding radiological protection). Japan: Nuclear Regulation Authority Act (Structure, Functions, New Nuclear Emergency Preparedness System). Lithuania: General legislation (New laws affecting Visaginas nuclear power plant project implementation); Licensing and regulatory infrastructure (Revised rules for issuing licenses and permits); Nuclear security (Revised physical protection requirements, New rules for the preparation of security plans); Radioactive waste management (Revised Rules of Procedure of Submission of Data on Activities Involving Radioactive Waste Disposal to the European Commission). Switzerland: General legislation (Draft energy strategy open for public comment until January 2013). Ukraine: Radioactive waste management (New law on development of a central repository); General legislation (Law providing for the location

  1. Creep-fatigue damage rules for advanced fast reactor design. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    1997-03-01

    The IAEA, following the recommendations of the International Working Group on Fast Reactors, convened a Technical Committee Meeting on Creep-Fatigue Damage Rules to be used in Fast Reactor Design. The objective of the meeting was to review developments in design rules for creep-fatigue conditions and to identify any areas in which further work would be desirable. The meeting was hosted by AEA Technology, Risley, and held in Manchester, United Kingdom, 11-13 June 1996. It was attended by experts from the European Commission, France, India, Japan, the Republic of Korea, the Russian Federation and the United Kingdom. Refs, figs, tabs

  2. Economic Analysis on Direct Use of Spent Pressurized Water Reactor Fuel in CANDU Reactors - I: DUPIC Fuel Fabrication Cost

    International Nuclear Information System (INIS)

    Choi, Hangbok; Ko, Won Il; Yang, Myung Seung

    2001-01-01

    A preliminary conceptual design of a Direct Use of spent Pressurized water reactor (PWR) fuel In Canada deuterium uranium (CANDU) reactors (DUPIC) fuel fabrication plant was studied, which annually converts spent PWR fuel of 400 tonnes heavy element (HE) into CANDU fuel. The capital and operating costs were estimated from the viewpoint of conceptual design. Assuming that the annual discount rate is 5% during the construction (5 yr) and operation period (40 yr) and contingency is 25% of the capital cost, the levelized unit cost (LUC) of DUPIC fuel fabrication was estimated to be 616 $/kg HE, which is mostly governed by annual operation and maintenance costs that correspond to 63% of LUC. Among the operation and maintenance cost components being considered, the waste disposal cost has the dominant effect on LUC (∼49%). From sensitivity analyses of production capacity, discount rate, and contingency, it was found that the production capacity of the plant is the major parameter that affects the LUC

  3. The development of a small inherently safe homogeneous reactor for the production of medical isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Carlin, G.E.; Bonin, H.W., E-mail: george.carlin@rmc.ca [Royal Military College of Canada, Kingston, Ontario (Canada)

    2013-07-01

    The use of radioisotopes for various procedures in the health care industry has become one of the most important practices in medicine. New interest has been found in the use of liquid fueled nuclear reactors to produce these isotopes due to the ease of fuel processing and ability to efficiently use LEU as the fuel source. A version of this reactor is being developed at the Royal Military College of Canada to act as a successor to the SLOWPOKE-2 platform. The thermal hydraulic and transient characteristics of a 20 kWt version are being studied to verify inherent safety abilities. (author)

  4. Radiopharmaceuticals - pattern and development and utilisation in India

    International Nuclear Information System (INIS)

    Iya, V.K.; Mani, R.S.

    1990-01-01

    The availability of research reactors at an early stage of India's Atomic Energy Programme led to developemental efforts in the field of radiopharmaceuticals. The use of several 125 I-labelled compounds like Rose-Bengal, hippuran, etc. for imaging has been replaced over the years by 99m Tc compounds; the final formulations are prepared at the hospital using generators and cold kits supplied by the Board of Radioisotope Technology. Parallel with the development of short-lived generators in radiopharmaceuticals came advances in imaging and instrumentation techniques, the scanners being replaced by sophisticated gamma cameras, with capabilities for tomography and computerisation. About 40 centres in India have the modern instrumentation and equipment needed for carrying out nuclear medicine procedures. Further growth of nuclear medicine centres in the country has, however, been limited by the need to import such advanced high cost instumentation not currently available from indigeneous sources. Regarding in-vitro radiopharmaceuticals, some RIA and IRMA kits and procedures have been developed. These include assay of T 3 , T 4 and TSH in the thyroid group of hormones. There are over a hundred and fifty medical laboratories carrying out RIA procedures. (author)

  5. A comparative analysis of the domestic and foreign licensing processes for power and non-power reactors

    International Nuclear Information System (INIS)

    Joe, J. C.; Youn, Y. K.; Kim, W. S.; Kim, H. J.

    2003-01-01

    The System-integrated Modular Advanced Reactor (SMART), a small to medium sized integral type Pressurized Water Reactor (PWR) has been developed in Korea. Now, SMART-P, a 1/5 scaled-down of the SMART, is being developed for the purpose of demonstrating the safety and performance of SMART design. The SMART-P is a first-of-a-kind reactor which is utilized for the research and development of a power reactor. Since the licensing process of such a reactor is not clearly specified in the current Atomic Energy Act, a comparative survey and analysis of domestic and foreign licensing processes for power and non-power reactors has been carried out to develop the rationale and technical basis for establishing the licensing process of such a reactor. The domestic and foreign licensing processes of power and non-power reactors have been surveyed and compared, including those of the U.S.A., Japan, France, U.K., Canada, and IAEA. The general trends in nuclear reactor classification, licensing procedures, regulatory technical requirements, and other licensing requirements and regulations have been investigated. The results of this study will be used as the rationale and technical basis for establishing the licensing process of reactors at development stage such as SMART-P

  6. TransCanada PipeLines Limited 1998 annual report : TransCanada energy solutions

    International Nuclear Information System (INIS)

    1999-01-01

    Financial information from TransCanada PipeLines Limited and a review of the company's 1998 operations was made available for the benefit of shareholders. TransCanada's pipeline system transports natural gas and crude oil from Western Canada Sedimentary Basin to North America's major energy markets. Net earnings from continuing operations for 1998, before unusual charges, were $575 million ($ 355 million after unusual charges) compared to $522 million for 1997. Solid performances from the energy transmission and international business, when compared to 1997, were more than offset by a decreased contribution from energy processing. TransCanada recorded integration costs of $166 million, after tax, related to the merger with NOVA in 1998, which was the major operational accomplishment during the year, creating a seamless economic energy delivery, processing and marketing system from the wellhead to the market. tabs., figs

  7. Fusion Canada issue 13

    International Nuclear Information System (INIS)

    1991-01-01

    A short bulletin from the National Fusion Program. Included in this issue is a report on Canada's plans to participate in the Engineering Design Activities (EDA), bilateral meetings with Canada and the U.S., committee meeting with Canada-Europe, an update at Tokamak de Varennes on Plasma Biasing experiments and boronized graphite tests, fusion materials research at the University of Toronto using a dual beam accelerator and a review of the CFFTP and the CCFM. 2 figs

  8. Indigenous technology development : seismic switch for nuclear reactors

    International Nuclear Information System (INIS)

    Varghese, Shiju; Shah, Jay; Limaye, P.K.; Soni, N.L; Patel, R.J.

    2016-01-01

    After Fukushima incident it has become a regulatory requirement to have automatic reactor trip on detection of earthquake beyond OBE level. Seismic Switches that meets the technical specifications required for nuclear reactor use were not available in the market. Hence, on Nuclear Power Corporation of India Ltd (NPCIL's) request, Refuelling Technology Division, BARC has developed Seismic Switches (electronic earthquake detectors) required for this application. Functionality of the system was successfully tested using a Shake Table. Two different designs of seismic switches have been developed. One is a microcontroller based system (digital) and the other is fully analogue electronics (analog) based. These switches are designed to meet the technical requirements of Class IA systems of nuclear reactors. It is also designed to meet other qualification tests such as EMI/EMC, climatic, vibration, and reliability requirements. In addition to nuclear industry seismic switches are having potential use in oil and gas, power plants, buildings and other industrial installations. These technologies are currently available for technology transfer and details are published in BARC website. This paper describes the requirements, principle of operation, and features and testing of the developed systems. (author)

  9. Development of advanced nuclear reactors in Russia

    International Nuclear Information System (INIS)

    Sotoudeh, M.; Silakhori, K.; Sepanloo, K.; Jahanfarnia, G.; Moattar, F.

    2008-01-01

    Several advanced reactor designs have been so far developed in Russia. The AES-91 and AES-92 plants with the VVER-1000 reactors have been developed at the beginning of 1990. However, the former design has been built in China and the latest which is certified meeting European Utility Requirements is being built in India. Moreover, the model VVER-1500 reactor with 50-60 MWd/t burn-up and an enhanced safety was being developed by Gidropress about 2005, excepting to be completed in 2007. But, this schedule has slipped in favor of development of the AES-2006 power plant incorporating a third-generation standardized VVER-1200 reactor of 1170 MWe. This is an evolutionary development of the well-proven VVER-1000 reactor in the AES-92 plant, with longer life, greater power and efficiency and its lead units are being built at Novovoronezh II, to start operation in 2012-13. Based on Atomenergoproekt declaration, the AES-2006 conforms to both Russian standards and European Utility Requirements. The most important features of the AES-2006 design are mentioned as: a design based on the passive safety systems, double containment, longer plant service life of 50 years with a capacity factor of 92%, longer irreplaceable components service life of 60 years, a 28.6% lower amount of concrete and metal, shorter construction time of 54 months, a Core Damage Frequency of 1x10 -7 / year and lower liquid and solid wastes by 70% and 80% respectively. The presented paper includes a comparative analysis of technological and safety features, economic parameters and environmental impact of the AES-2006 design versus the other western advanced reactors. Since the Bushehr phase II NPP and several other NPPs are planning in Iran, such analysis would be of a great importance

  10. Regional habitat needs of a nationally listed species, Canada Warbler (Cardellina canadensis, in Alberta, Canada

    Directory of Open Access Journals (Sweden)

    Jeffrey R. Ball

    2016-12-01

    Full Text Available Understanding factors that affect the distribution and abundance of species is critical to developing effective management plans for conservation. Our goal was to quantify the distribution and abundance of Canada Warbler (Cardellina canadensis, a threatened old-forest associate in Alberta, Canada. The Canada Warbler has declined across its range, including in Alberta where habitat loss and alteration from urban expansion, forestry, and energy development are changing the forest landscape. We used 110,427 point count survey visits from 32,287 unique survey stations to model local-level (150-m radius circular buffers and stand-level (564-m radius circular buffers habitat associations of the Canada Warbler. We found that habitat supporting higher densities of Canada Warblers was locally concentrated yet broadly distributed across Alberta's boreal forest region. Canada Warblers were most commonly associated with older deciduous forest at the local scale, particularly near small, incised streams, and greater amounts of deciduous forest at the stand scale. Predicted density was lower in other forest types and younger age classes measured at the local scale. There was little evidence that local-scale fragmentation (i.e., edges created by linear features influenced Canada Warbler abundance. However, current forestry practices in the province likely will reduce the availability of Canada Warbler habitat over time by cutting old deciduous forest stands. Our results suggest that conservation efforts aimed at Canada Warbler focus on retaining large stands of old deciduous forest, specifically stands adjacent to streams, by increasing the width of deciduous retention buffers along streams during harvest and increasing the size and number of old forest residual patches in harvested stands.

  11. The option study of air shipment of DUPIC fuel elements to Canada

    International Nuclear Information System (INIS)

    Lee, H. H.; Park, J. J.; Shin, J. M.; Kim, J. H.; Yang, M. S.; Koo, J. H.

    2003-01-01

    KAERI developed a DUPIC nuclear fuel with the refabrication of spent PWR fuel discharged from domestic nuclear power plant by a dry process at M6 hot-cell in IMEF. To verify the performance of DUPIC nuclear fuel, irradiation test at operating conditions of commercially operating power plant is essential. Since the HANARO research reactor of KAERI does not have Fuel Test Loop(FTL) for irradiating nuclear fuel under high temperature and high pressure conditions, DUPIC fuel cannot be irradiated in the FTL of HANARO until about 2008. In the 13-th PRM among Korea, Canada, USA and IAEA, AECL proposed that KAERI fabricated DUPIC fuel can be irradiated in the FTL of the NRU research reactor without charge of neutrons. The transportation quantity of DUPIC fuel to Canada is 10 elements(about 6 kg). This transportation package is classified as the 7-th class according to 'recommendation on the transport of dangerous goods' made by the United Nations. Air shipment was investigated as a promising option because it is generally understood that air shipment is more appropriate than ship shipment for transportation of small quantity of nuclear materials from the perspectives of cost and transportation period. In case of air shipment, the IATA regulations have been more intensified since the July of 2001. To make matters worse, it becomes more difficult to get the ratification of corresponding authorities due to 9.11 terror. It was found that at present there is no proper air transportation cask for DUPIC fuel. So, air transportation is considered to be impossible. An alternative of using the exemption limit of fissile material was reviewed. Its results showed that in case of going via USA territory, approvals from US DOT should be needed. The approvals include shipping and cask approvals on technical cask testing. Furthermore, since passes through territories of Japan and Russia have to be done in case of using a regular air cargo from Korea to Canada, approvals from Russia and

  12. Evolution of design of steam generator for sodium cooled reactors

    International Nuclear Information System (INIS)

    Chetal, S.C.; Vaidyanathan

    1997-01-01

    The first sodium cooled reactor was the experimental breeder reactor (EBR-I) in usa which was commissioned in 1951 and was incidentally the first nuclear reactor to generate electrical energy. This was followed by fast breeder reactors in USSR, UK, france, USA, japan, germany and India. The use of sodium as a coolant is due to its low moderation which helps in breeding fissile fuel from fertile materials and also its high heat transfer coefficient at comparatively low velocities. The good heat transfer properties introduce thermal stresses when there are rapid changes in the sodium temperatures. Also sodium has a chemical affinity with air and water. The steam generators for sodium cooled reactors have to allow for these novel conditions and in addition, unlike other components. Choices have to be made whether it is a recirculation type as in most fossil plants or an once through unit, the power rating, shape of the tube (straight, helical, U-tube), materials (Ferritic or austenitic), with free level of sodium or not, sodium on tube side or shell side and so on. With higher pressures and steam temperatures reheating steam after partial expansion in the turbine becomes essential as in conventional turbines. For this purpose the choice of reheating fluid viz sodium or live main steam has to be made. This paper traces the evolution of steam generator designs in the different sodium cooled reactors (chronologically) and the operation experience. 16 figs., 1 tab

  13. Technical, hygiene, economic, and life cycle assessment of full-scale moving bed biofilm reactors for wastewater treatment in India.

    Science.gov (United States)

    Singh, Anju; Kamble, Sheetal Jaisingh; Sawant, Megha; Chakravarthy, Yogita; Kazmi, Absar; Aymerich, Enrique; Starkl, Markus; Ghangrekar, Makarand; Philip, Ligy

    2018-01-01

    Moving bed biofilm reactor (MBBR) is a highly effective biological treatment process applied to treat both urban and industrial wastewaters in developing countries. The present study investigated the technical performance of ten full-scale MBBR systems located across India. The biochemical oxygen demand, chemical oxygen demand, total suspended solid, pathogens, and nutrient removal efficiencies were low as compared to the values claimed in literature. Plant 1 was considered for evaluation of environmental impacts using life cycle assessment approach. CML 2 baseline 2000 methodology was adopted, in which 11 impact categories were considered. The life cycle impact assessment results revealed that the main environmental hot spot of this system was energy consumption. Additionally, two scenarios were compared: scenario 1 (direct discharge of treated effluent, i.e., no reuse) and scenario 2 (effluent reuse and tap water replacement). The results showed that scenario 2 significantly reduce the environmental impact in all the categories ultimately decreasing the environmental burden. Moreover, significant economic and environmental benefits can be obtained in scenario 2 by replacing the freshwater demand for non-potable uses. To enhance the performance of wastewater treatment plant (WWTP), there is a need to optimize energy consumption and increase wastewater collection efficiency to maximize the operating capacity of plant and minimize overall environmental footprint. It was concluded that MBBR can be a good alternative for upgrading and optimizing existing municipal wastewater treatment plants with appropriate tertiary treatment. Graphical abstract ᅟ.

  14. Plutonium Consumption Program, CANDU Reactor Project final report

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-31

    DOE is investigating methods for long term dispositioning of weapons grade plutonium. One such method would be to utilize the plutonium in Mixed OXide (MOX) fuel assemblies in existing CANDU reactors. CANDU (Canadian Deuterium Uranium) reactors are designed, licensed, built, and supported by Atomic Energy of Canada Limited (AECL), and currently use natural uranium oxide as fuel. The MOX spent fuel assemblies removed from the reactor would be similar to the spent fuel currently produced using natural uranium fuel, thus rendering the plutonium as unattractive as that in the stockpiles of commercial spent fuel. This report presents the results of a study sponsored by the DOE for dispositioning the plutonium using CANDU technology. Ontario Hydro`s Bruce A was used as reference. The fuel design study defined the optimum parameters to disposition 50 tons of Pu in 25 years (or 100 tons). Two alternate fuel designs were studied. Safeguards, security, environment, safety, health, economics, etc. were considered. Options for complete destruction of the Pu were also studied briefly; CANDU has a superior ability for this. Alternative deployment options were explored and the potential impact on Pu dispositioning in the former Soviet Union was studied. An integrated system can be ready to begin Pu consumption in 4 years, with no changes required to the reactors other than for safe, secure storage of new fuel.

  15. Plutonium Consumption Program, CANDU Reactor Project final report

    International Nuclear Information System (INIS)

    1994-01-01

    DOE is investigating methods for long term dispositioning of weapons grade plutonium. One such method would be to utilize the plutonium in Mixed OXide (MOX) fuel assemblies in existing CANDU reactors. CANDU (Canadian Deuterium Uranium) reactors are designed, licensed, built, and supported by Atomic Energy of Canada Limited (AECL), and currently use natural uranium oxide as fuel. The MOX spent fuel assemblies removed from the reactor would be similar to the spent fuel currently produced using natural uranium fuel, thus rendering the plutonium as unattractive as that in the stockpiles of commercial spent fuel. This report presents the results of a study sponsored by the DOE for dispositioning the plutonium using CANDU technology. Ontario Hydro's Bruce A was used as reference. The fuel design study defined the optimum parameters to disposition 50 tons of Pu in 25 years (or 100 tons). Two alternate fuel designs were studied. Safeguards, security, environment, safety, health, economics, etc. were considered. Options for complete destruction of the Pu were also studied briefly; CANDU has a superior ability for this. Alternative deployment options were explored and the potential impact on Pu dispositioning in the former Soviet Union was studied. An integrated system can be ready to begin Pu consumption in 4 years, with no changes required to the reactors other than for safe, secure storage of new fuel

  16. Leak-before-break experience in CANDU reactors

    International Nuclear Information System (INIS)

    Price, E.G.; Moan, G.D.; Coleman, C.E.

    1988-01-01

    In the Canada deuterium uranium (CANDU) reactor, each of the ∼ 400 hot pressure tubes containing the fuel bundles and the pressurized heat transport water is surrounded and insulated from the cold moderator by a calandria tube. The pressure tubes are made from cold-worked Zr-2.5 Nb with a minimum wall thickness of 4.19 mm, and the calandria tubes are made from annealed Zircaloy-2 with a minimum wall thickness of 1.37 mm. The annulus between these two tubes contains an inert gas. Leak-before-break has developed into an operational tool in CANDU reactors to prevent unstable failure of pressure tubes. A procedure for leak detection and reactor response has been developed from the use of the annulus gas, whose dew point is measured to ascertain if leaks have crept into the annulus. The characteristics of the crack are used to establish the response time for leak detection. The reactor is required to be shut down before the length of the slowly growing crack has reached the critical stage. This critical crack length, determined using slit burst tests on tubes, is the crack length at which the crack growth becomes unstable. The most likely crack growth mechanism is delayed hydride cracking. This mechanism requires three conditions to occur simultaneously: the material must be sensitive to delayed hydride cracking; zirconium hydrides must be present in the material; and the tensile stress must be sufficiently great

  17. Fast reactor database. 2006 update

    International Nuclear Information System (INIS)

    2006-12-01

    plants. The recurring themes are the selection and summary of the data associated with the choice of coolant, fuel and structural materials, reduction of the steel weight, simplification of the plant design/layout, other important fast reactor design issues, and how to solve these problems. In the field of fast reactor design and operational data, the last reference document published by the IAEA was the 1996 Fast Reactor Database (IAEA-TECDOC-866). Since its publication, quite a lot has happened: the construction of two new reactors has been launched, and conceptual/design studies were initiated for various fast reactors, e.g. the Japanese JSFR-1500 and the Russian BN-1800 (both cooled by sodium), as well as for a wholly new line of LMFR concepts - modular reactors cooled by sodium and by lead-bismuth alloy, and prototype and demonstration commercial size fast reactors cooled by lead. The data were produced by the IAEA's Technical Working Group on Fast Reactors (TWG-FR). For many of the TWG-FR Member States there is a significant history of fast reactor development, often extending over a period of 40+ years. The new and updated information on LMFR, which are in operation, under construction or development, has been prepared with contributions from China, India, Japan, Republic of Korea and the Russian Federation. The information contained in IAEA-TECDOC-866, produced by France, Germany, Italy, the UK and the USA, was included in the present report with some modification taking into account last events

  18. Present status of irradiation tests on tritium breeding blanket for fusion reactor

    International Nuclear Information System (INIS)

    Futamura, Yoshiaki; Sagawa, Hisashi; Shimakawa, Satoshi; Tsuchiya, Kunihiko; Kuroda, Toshimasa; Kawamura, Hiroshi.

    1994-01-01

    To develop a tritium breeding blanket for a fusion reactor, irradiation tests in fission reactors are indispensable for obtaining data on irradiation effects on materials, and neutronics/thermal characteristics and tritium production/recovery performance of the blanket. Various irradiation tests have been conducted in the world, especially to investigate tritium release characteristics from tritium breeding and neutron multiplier materials, and materials integrity under irradiation. In Japan, VOM experiments at JRR-2 for ceramic breeders and experiments at JMTR for ceramic breeders and beryllium as a neutron multiplier have been performed. Several universities have also investigated ceramic breeders. In the EC, the EXOTIC experiments at HFR in the Netherlands and the SIBELIUS, the LILA, the LISA and the MOZART experiments for ceramic breeders have carried out. In Canada, NRU has been used for the CRITIC experiments. The TRIO experiments at ORR(ORNL), experiments at RTNS-II, FUBR and ATR have been conducted in the USA. The last two are experiments with high neutron fluence aiming at investigating materials integrity under irradiation. The BEATRIX-I and -II experiments have proceeded under international collaboration of Japan, Canada, the EC and the USA. This report shows the present status of these irradiation tests following a review of the blanket design in the ITER CDA(Conceptual Design Activity). (author)

  19. Reactors licensing: proposal of an integrated quality and environment regulatory structure for nuclear research reactors in Brazil

    International Nuclear Information System (INIS)

    Serra, Reynaldo Cavalcanti

    2014-01-01

    A new integrated regulatory structure based on quality and integrated issues has been proposed to be implemented on the licensing process of nuclear research reactors in Brazil. The study starts with a literature review about the licensing process in several countries, all of them members of the International Atomic Energy Agency. After this phase it is performed a comparative study with the Brazilian licensing process to identify good practices (positive aspects), the gaps on it and to propose an approach of an integrated quality and environmental management system, in order to contribute with a new licensing process scheme in Brazil. The literature review considered the following research nuclear reactors: Jules-Horowitz and OSIRIS (France), Hanaro (Korea), Maples 1 and 2 (Canada), OPAL (Australia), Pallas (Holand), ETRR-2 (Egypt) and IEA-R1 (Brazil). The current nuclear research reactors licensing process in Brazil is conducted by two regulatory bodies: the Brazilian National Nuclear Energy Commission (CNEN) and the Brazilian Institute of Environment and Renewable Natural Resources (IBAMA). CNEN is responsible by nuclear issues, while IBAMA by environmental one. To support the study it was applied a questionnaire and interviews based on the current regulatory structure to four nuclear research reactors in Brazil. Nowadays, the nuclear research reactor’s licensing process, in Brazil, has six phases and the environmental licensing process has three phases. A correlation study among these phases leads to a proposal of a new quality and environmental integrated licensing structure with four harmonized phases, hence reducing potential delays in this process. (author)

  20. Human resource development strategies adopted by the Department of Atomic Energy, India

    International Nuclear Information System (INIS)

    Grover, R.B.

    2007-01-01

    In view of the knowledge intensive nature of the nuclear technology and the state of hi-tech industrial infrastructure in India, Bhabha Atomic Research Centre (BARC) has been designed to have a composite character. It is a large institution and has been pursuing activities starting from basic research to technology development. At BARC, we have also put in place a very effective human resource development programme and this programme is run by faculty drawn from within the organization. As a result, BARC has attributes of an institute, a research laboratory and also an industrial organization. The composite character is confined not only to BARC but also extends to the Department of Atomic Energy (DAE) as a whole. Simultaneous with research centres, we have been setting up industrial units. The fountainhead of success of the atomic energy programme in India is the fact that both the research centres, which generate knowledge and the industrial units, which generate wealth from the knowledge, are under one umbrella and that is the DAE working under the policy framework laid by the Atomic Energy Commission. The two sets of institutions maintain an organic linkage permitting seamless interaction and facilitating technology transfer without any cumbersome formalities. The common policy framework followed by all the institutions enables the department to follow an integrated approach towards human resource development and this further strengthens the linkages between the institutions. This has enabled the country to be self-reliant in all aspects of nuclear fuel cycle, starting with prospecting and mining of uranium and ending with the back-end of the fuel cycle, which involves reprocessing of the spent fuel and nuclear waste management. Most of the R and D work, which led to realization of this capability, was done or initiated at BARC at Trombay. Some of the activities have now been taken over by other research centers: IGCAR at Kalpakkam for fast reactors, Centre for

  1. Chances dim for Sask. reactor

    International Nuclear Information System (INIS)

    1992-01-01

    It now appears quite unlikely that a new-generation CANDU 3 reactor will be build in Saskatchewan, as the minister responsible for such matters in the province backed away from Sask. Power's participation in a $50 million joint venture with Atomic Energy of Canada Ltd. Dwain Lingenfelter, Saskatchewan's economic diversification minister and the minister responsible for Sask. Power, said last week his government has a number of reservations about going ahead with the joint venture agreement, which flowed from a 1991 memorandum of understanding between then premier Grant Devine and federal Energy Ministry Jake Epp which would see Ottawa and Regina each spend $25 million to research various energy alternatives for the province. But, Lingenfelter said last week, the deal apparently hinged on Saskatchewan agreeing to provide a site for AECL CANDU's new CANDU 3 reactor and developing storage facilities for nuclear waste. 'It looks like we are putting $25 million into an agreement on nuclear well in advance of a decision by the government that this is the right way to be going.,' he said. 'We are spending the money on nuclear, and then saying we are going to study the options.'

  2. SCW Pressure-Channel Nuclear Reactors: Some Design Features and Concepts

    International Nuclear Information System (INIS)

    Duffey, R.B.; Pioro, I.L.; Gabaraev, B.A.; Kuznetsov, Yu. N.

    2006-01-01

    Concepts of nuclear reactors cooled with water at supercritical pressures were studied as early as the 1950's and 1960's in the USA and Russia. After a 30-year break, the idea of developing nuclear reactors cooled with supercritical water (SCW) became attractive again as the ultimate development path for water-cooling. The main objectives of using SCW in nuclear reactors are 1) to increase the thermal efficiency of modern nuclear power plants (NPPs) from 33 -- 35% to about 40 -- 45%, and 2) to decrease capital and operational costs and hence decrease electrical energy costs (∼$ 1000 US/kW). SCW NPPs will have much higher operating parameters compared to modern NPPs (pressure about 25 MPa and outlet temperature up to 625 deg. C), and a simplified flow circuit, in which steam generators, steam dryers, steam separators, etc., can be eliminated. Also, higher SCW temperatures allow direct thermo-chemical production of hydrogen at low cost, due to increased reaction rates. Pressure-channel SCW nuclear reactor concepts are being developed in Canada and Russia. Design features related to both channels and fuel bundles are discussed in this paper. Also, Russian experience with operating supercritical steam heaters at NPP is presented. The main conclusion is that development of SCW pressure-channel nuclear reactors is feasible and significant benefits can be expected over other thermal energy systems. (authors)

  3. FDI Climate in India

    OpenAIRE

    Khandelwal, Varun

    2007-01-01

    ABSTRACT Since 1991, after the external payment crisis in India, there has been liberalization of various policies by the Government of India. Due to this there has been rapid surge of FDI inflows in India. The current investment climate has attracted many foreign investors to India in various sectors. India is considered as one of the favorable destination of FDI. However the country also suffers from few weaknesses and constraints in terms of policy and regulatory framework, which rest...

  4. Efficiency assessment and benchmarking of thermal power plants in India

    International Nuclear Information System (INIS)

    Shrivastava, Naveen; Sharma, Seema; Chauhan, Kavita

    2012-01-01

    Per capita consumption of electricity in India is many folds lesser than Canada, USA, Australia, Japan, Chaina and world average. Even though, total energy shortage and peaking shortage were recorded as 11.2% and 11.85%, respectively, in 2008–09 reflecting non-availability of sufficient supply of electricity. Performance improvement of very small amount can lead to large contribution in financial terms, which can be utilized for capacity addition to reduce demand supply gap. Coal fired thermal power plants are main sources of electricity in India. In this paper, relative technical efficiency of 60 coal fired power plants has been evaluated and compared using CCR and BCC models of data envelopment analysis. Target benchmark of input variables has also been evaluated. Performance comparison includes small versus medium versus large power plants and also state owned versus central owned versus private owned. Result indicates poor performance of few power plants due to over use of input resources. Finding reveals that efficiency of small power plants is lower in comparison to medium and large category and also performance of state owned power plants is comparatively lower than central and privately owned. Study also suggests different measures to improve technical efficiency of the plants. - Highlights: ► This study evaluates relative technical efficiency of 60 coal fired thermal power plants of India. ► Input oriented CCR and BCC models of data envelopment analysis have been used. ► Small, medium and large power plants have been compared. ► Study will help investor while setting up new power projects. ► Power plants of different ownerships have also been compared.

  5. Petro-Canada 1997 annual report

    International Nuclear Information System (INIS)

    1998-01-01

    Petro-Canada is a dominant player in the petroleum industry in Western Canada as well as on the Grand Banks offshore Newfoundland. This report presents a review of operations, provides detailed statements of the corporation's finances, and a wealth of information of interest to shareholders. The report states that in 1997 Petro-Canada achieved record financial results, following a dramatic turnaround over the past five years. Net earnings for 1997 were $306 million, a $59 million increase over 1996. The company's share price appreciated 34 per cent in 1997 and was one of the most heavily traded stocks in Canada. The company plans to maximize shareholder value by reducing its interests in conventional oil from mature fields in western Canada and by re-investing the proceeds in natural gas development. Petro-Canada is also committed to an expansion that will double production at the Syncrude oil sands plant over the next decade and has tested large in-situ oil sands resources for potential development in northeastern Alberta. On the Atlantic coast too, Petro-Canada is delivering leadership with increasing production from Hibernia, and final approvals in place to proceed with development of the Terra Nova field. International operations are also contributing to the Corporation's profitability by delivering new production from oil fields offshore Norway and from the Sahara Desert in North Africa. tabs., figs

  6. Power Reactor Fuel Reprocessing Plant-2, Tarapur: a benchmark in Indian PHWR spent fuel reprocessing

    International Nuclear Information System (INIS)

    Pradhan, Sanjay; Dubey, K.; Qureshi, F.T.; Lokeswar, S.P.

    2017-01-01

    Power Reactor Fuel Reprocessing Plant-2 (PREFRE-2) is latest operating spent nuclear fuel reprocessing plant in India. This plant has improved design based on latest technology and feedback provided by the earlier plants. The design of PREFRE-2 plant is in five cycles of solvent extraction using TBP as extractant. The plant is commissioned in year 2011 after regulatory clearances

  7. Active Canada 20/20: A physical activity plan for Canada.

    Science.gov (United States)

    Spence, John C; Faulkner, Guy; Costas Bradstreet, Christa; Duggan, Mary; Tremblay, Mark S

    2016-03-16

    Physical inactivity is a pressing public health concern. In this commentary we argue that Canada's approach to increasing physical activity (PA) has been fragmented and has lacked coordination, funding and a strategic approach. We then describe a potential solution in Active Canada 20/20 (AC 20/20), which provides both a national plan and a commitment to action from non-government and public sectors with a view to engaging corporate Canada and the general public. It outlines a road map for initiating, coordinating and implementing proactive initiatives to address this prominent health risk factor. The identified actions are based on the best available evidence and have been endorsed by the majority of representatives in the relevant sectors. The next crucial steps are to engage all those involved in public health promotion, service provision and advocacy at the municipal, provincial and national levels in order to incorporate AC 20/20 principles into practice and planning and thus increase the PA level of every person in Canada. Further, governments, as well as the private, not-for-profit and philanthropic sectors, should demonstrate leadership and continue their efforts toward providing the substantial and sustained resources needed to recalibrate Canadians' habitual PA patterns; this will ultimately improve the overall health of our citizens.

  8. Planning and exercise experiences related to an off-site nuclear emergency in Canada: the federal component

    International Nuclear Information System (INIS)

    Eaton, R.S.

    1986-01-01

    The Canadian Government's Federal Nuclear Emergency Response Plan (off-site) (FNERP) was issued in 1984. In this plan, a nuclear emergency is defined as an emergency involving the release of radionuclides but does not include the use of nuclear weapons against North America. Because of the federal nature of Canada and its large area, special considerations are required for the plan to cover both the response to nuclear emergencies where the national government has primary responsibility and to provincial requests for assistance where the federal response becomes secondary to the provincial. The nuclear emergencies requiring the implementation of this plan are: (a) an accident in the nuclear energy cycle in Canada with off-site implications; (b) an accident in the nuclear energy cycle in another country which may affect Canada; (c) nuclear weapons testing with off-site implications which may affect Canada; and (d) nuclear-powered devices impacting on Canadian territory. Each emergency requires a separate sub-plan and usually requires different organizations to respond. Some scenarios are described. The Department of National Health and Welfare has established a Federal Nuclear Emergency Control Centre (FNECC). The FNECC participated in September 1985 in an exercise involving a nuclear reactor facility in the Province of Ontario and the experience gained from this activity is presented. The FNECC co-operates with its counterparts in the United States of America through a nuclear emergency information system and this network is also described. (author)

  9. Canada's hydrogen energy sector

    International Nuclear Information System (INIS)

    Kimmel, T.B.

    2009-01-01

    Canada produces the most hydrogen per capita of any Organization of Economic Cooperation and Development (OECD) country. The majority of this hydrogen is produced by steam methane reforming for industrial use (predominantly oil upgrading and fertilizer production). Canada also has a world leading hydrogen and fuel cell sector. This sector is seeking new methods for making hydrogen for its future energy needs. The paper will discuss Canada's hydrogen and fuel cell sector in the context of its capabilities, its demonstration and commercialization activities and its stature on the world stage. (author)

  10. Some Numbers behind Canada's Decision to Adopt an Orphan Drug Policy: US Orphan Drug Approvals in Canada, 1997-2012.

    Science.gov (United States)

    Herder, Matthew; Krahn, Timothy Mark

    2016-05-01

    We examined whether access to US-approved orphan drugs in Canada has changed between 1997 (when Canada chose not to adopt an orphan drug policy) and 2012 (when Canada reversed its policy decision). Specifically, we looked at two dimensions of access to US-approved orphan drugs in Canada: (1) regulatory access; and (2) temporal access. Whereas only 63% of US-approved orphan drugs were granted regulatory approval in 1997, we found that regulatory access to US-approved orphan drugs in Canada increased to 74% between 1997 and 2012. However, temporal access to orphan drugs is slower in Canada: in a head-on comparison of 40 matched drugs, only two were submitted and four were approved first in Canada; moreover, the mean review time in Canada (423 days) was longer than that in the US (mean = 341 days), a statistically significant difference (t[39] = 2.04, p = 0.048). These results raise questions about what motivated Canada's apparent shift in orphan drug policy. Copyright © 2016 Longwoods Publishing.

  11. Participation of INR to the research project initiated by the CANDU Owners Group - Canada

    International Nuclear Information System (INIS)

    Roth, Maria; Ciocanescu, Marin; Gheorghiu, C-tin; Ohai, Dumitru; Visinescu, Doru; Ionescu, Silviu; Man, Ion; Pitigoi, Vasile; Anghel, Dumitru; Uta, Octavian

    2004-01-01

    Having in view the participation of the INR's Nuclear Materials and Corrosion Departments together with Chalk River Laboratories, AECL, and other nine well known institutes, to the Research Project coordinated by the International Atomic Energy Agency - Vienna and the results obtained as well, the CANDU Owners Group (COG) - Canada has proposed an economical contract to INR - Pitesti, called the DHC Project. The goal of this project was the investigation of the slow cracking in the hydration state (Delayed Hydride Cracking phenomenon) of the pressure tubes in CANDU reactors. There were determined, in specific conditions, the DHC rate, V DHC , and threshold factor of triggering the phenomenon K HI (the factor of stress intensity in the crack) occurring in un-irradiated Zr-2.5%Nb alloy. Further extensions of the project to irradiated alloys of the pressure tubes used in CANDU reactors, provided by the Canadian partner, are planned. This paper gives an overview covering the contributions of the INR's departments to the contract provisions for the current year as concluded with COG - Canada. It is described the design and execution activity of a device for processing the samples subject to testing, the mounting of the measuring chain, developing of a system for monitoring the testing parameters, the acquisition and automated processing of experimental data up to constituting the final report. The testing report was appreciated by the COG and recognized as demonstrating the INR's capability to fulfil the tasks of the DHC Project and so opened the way to further cooperation

  12. The LEU target development and conversion program for the MAPLE reactors and new processing facility

    International Nuclear Information System (INIS)

    Malkoske, G.R.

    2002-01-01

    Historically, the production of molybdenum-99 in the NRU research reactors at Chalk River, Canada has been extracted from reactor targets employing highly enriched uranium (HEU). A reliable supply of HEU metal from the United States used in the manufacture of targets for the NRU research reactor has been a key factor to enable MDS Nordion to develop a secure supply of medical isotopes for the international nuclear medicine community. The molybdenum extraction process from HEU targets provides predictable, consistent yields for our high-volume molybdenum production process. Each link of the isotope supply chain, from isotope production to ultimate use by the physician, has been established using this proven and established method of HEU target irradiation and processing to extract molybdenum-99. To ensure a continued reliable and timely supply of medical isotopes, MDS Nordion is completing the construction of two MAPLE reactors and a New Processing Facility. The design of the MAPLE facilities was based on an established process developed by Atomic Energy of Canada Ltd. (AECL) - extraction of isotopes from HEU target material. However, in concert with the global trend to utilize low enriched uranium (LEU) in research reactors, MDS Nordion has launched a three phase LEU Target Development and Conversion Program for the MAPLE facilities. Phase 1, the Initial Feasibility Study, which identified the technical issues to convert the MAPLE reactor targets from HEU to LEU for large scale commercial production was reported on at the RERTR- 2000 conference. The second phase of the LEU Target Development and Conversion Program was developed with extensive consultation and involvement of experts knowledgeable in target development, process system design, enriched uranium conversion chemistry and commercial scale reactor operations and molybdenum production. This paper will provide an overview of the Phase 2 Conversion Development Program, report on progress to date, and further

  13. Canada's deep geological repository for used nuclear fuel - update on the site evaluation process and interweaving of aboriginal traditional knowledge

    Energy Technology Data Exchange (ETDEWEB)

    Watts, B.; Belfadhel, M.B.; Facella, J., E-mail: bwatt@nwmo.ca, E-mail: mbenbelfadhel@nwmo.ca, E-mail: jfacella@nwmo.ca [Nuclear Waste Management Organization, Toronto, ON (Canada)

    2015-07-01

    The Nuclear Waste Management Organization (NWMO) is responsible for implementing Adaptive Phased Management (APM), the approach selected by the Government of Canada for the long-term management of used nuclear fuel generated by Canadian nuclear reactors. The ultimate objective of APM is the centralized containment and isolation of Canada's used nuclear fuel in a Deep Geological Repository (DGR) in a suitable crystalline or sedimentary rock formation. In May 2010, the NWMO initiated a nine-step site selection process to seek an informed and willing community to host Canada's deep geological repository. As of April 2015, twenty-two communities expressed interest in learning more about the project. This paper provides an update on the site evaluation process and describes the approach, methods and criteria used in the assessments, focusing on geological and community well-being studies. Engagement and field activities to interweave Aboriginal Traditional Knowledge with western science are also discussed. (author)

  14. India Emerging

    International Development Research Centre (IDRC) Digital Library (Canada)

    Traditionally, India has had an extremely poor collection of direct taxes, not least due to ...... Economic Impact of Mobile in Bangladesh, Malaysia, Pakistan, Serbia, ...... in India owes its origin to Gandhian principles, philosophy and practices.

  15. Radioisotope research, production, and processing at the University of Missouri Research Reactor

    International Nuclear Information System (INIS)

    Ehrhardt, G.J.; Ketring, A.R.; Ja, Wei; Ma, D.; Zinn, K.; Lanigan, J.

    1995-01-01

    The University of Missouri Research Reactor (MURR) is a 10 MW, light-water-cooled and moderated research reactor which first achieved criticality in 1996 and is currently the highest powered university-owned research reactor in the U.S. For many years a major supplier of reactor-produced isotopes for research and commercial purposes, in the last 15 years MURR has concentrated on development of reactor-produced beta-particle emitters for experimental use in nuclear medicine therapy of cancer and rheumatoid arthritis. MURR has played a major role in the development of bone cancer pain palliation with the agents 153 Sm EDTMP and 186 Re/ 188 Re HEDP, as well as in the use of 186 Re, 177 Lu, 166 Ho, and 105 Rh for radioimmunotherapy and receptor-agent-guided radiotherapy. MURR is also responsible for the development of therapeutic, 90 Y-labeled glass microspheres for the treatment of liver tumors, a product ( 90 Y Therasphere trademark) which is currently an approved drug in Canada. MURR has also pioneered the development of 188 W/ 188 Re and 99 Mo/ 99m Tc gel generators, which make the use of low specific activity 188 W and 99 Mo practical for such isotope generators

  16. An update on the LEU target development and conversion program for the MAPLE reactors and new processing facility

    International Nuclear Information System (INIS)

    Malkoske, G.R.; Eng, B.Sc; Eng, P.

    2002-01-01

    Historically, the production of molybdenum-99 in the NRU research reactors at Chalk River, Canada, has been extracted from reactor targets employing highly enriched uranium (HEU). A reliable supply of HEU metal from the United States used in the manufacture of targets for the NRU research reactor has been a key factor to enable MDS Nordion to develop a secure supply of medical isotopes for the international nuclear medicine community. The molybdenum extraction process from HEU targets provides predictable, consistent yields for our high-volume molybdenum production process. Each link of the isotope supply chain, from isotope production to ultimate use by the physician, has been established using this proven and established method of HEU target irradiation and processing to extract molybdenum-99. To ensure a continued reliable and timely supply of medical isotopes, MDS Nordion is completing the construction of two MAPLE reactors and a New Processing Facility. The design of the MAPLE facilities was based on an established process developed by Atomic Energy of Canada Ltd. (AECL)-extraction of isotopes from HEU target material. However, in concert with the global trend to utilize low enriched uranium (LEU) in research reactors, MDS Nordion has launched a three phase LEU Target Development and Conversion Program for the MAPLE facilities. Phase 1, the Initial Feasibility Study, which identified the technical issues to convert the MAPLE reactor targets from HEU to LEU for large scale commercial production was reported on at the RERTR-2000 conference. The second phase of the LEU Target Development and Conversion Program was developed with extensive consultation and involvement of experts knowledgeable in target development, process system design, enriched uranium conversion chemistry and commercial scale reactor operations and molybdenum production. This paper will provide an overview of the Phase 2 Conversion Development Program, report on progress to date, and further

  17. Canada's nuclear export policy

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, R W; Wonder, E F [Carleton Univ., Ottawa, Ontario (Canada)

    1978-01-01

    The factors influencing the evolution of Canada's nuclear export policy are examined. Initially, nuclear technology was exported to establish an industry in Canada and to share the technology with other countries. After 1974 an increasingly broad range of political and social factors were taken into account and safeguards became the dominant factor. The indirect impacts of the new policy fall into two groups. One consists of the effects of Canada's leadership in taking a tough stand on safeguards. The second group of effects involve the concern of other countries about access to secure energy supplies and advanced technology.

  18. Radiation oncology in Canada.

    Science.gov (United States)

    Giuliani, Meredith; Gospodarowicz, Mary

    2018-01-01

    In this article we provide an overview of the Canadian healthcare system and the cancer care system in Canada as it pertains to the governance, funding and delivery of radiotherapy programmes. We also review the training and practice for radiation oncologists, medical physicists and radiation therapists in Canada. We describe the clinical practice of radiation medicine from patients' referral, assessment, case conferences and the radiotherapy process. Finally, we provide an overview of the practice culture for Radiation Oncology in Canada. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Canada's nuclear export policy

    International Nuclear Information System (INIS)

    Morrison, R.W.; Wonder, E.F.

    1978-01-01

    The factors influencing the evolution of Canada's nuclear export policy are examined. Initially, nuclear technology was exported to establish an industry in Canada and to share the technology with other countries. After 1974 an increasingly broad range of political and social factors were taken into account and safeguards became the dominant factor. The indirect impacts of the new policy fall into two groups. One consists of the effects of Canada's leadership in taking a tough stand on safeguards. The second group of effects involve the concern of other countries about access to secure energy supplies and advanced technology. (O.T.)

  20. Geological and geotechnical aspects of the foundation pit of Kaiga atomic power plant reactor building 2, Kaiga, Uttara Kannada district, Karnataka

    International Nuclear Information System (INIS)

    Katti, Vinod J.; Shah, V.L.; Pande, A.K.

    2014-01-01

    In India Nuclear Power Plants are constructed as per the guidelines laid by IAEA and AERB. Before concrete is poured into reactor building pits, they are systematically mapped and Iithostructural maps are prepared for pit base and side walls. The constraints noticed are carefully attended with geotechnical solutions and remedies to make foundation safe for the entire period of reactor life. Similarly, pit of Kaiga Reactor Building II was systematically mapped for circular base and side walls. Geo-engineering solutions like scrapping out loose, foliated schistose patches, scooping out soft altered zones, filling with grouting, rock-bolting rock segments with major joints and fractures for stopping seepage points were suggested. (author)

  1. Water chemistry features of advanced heavy water reactor

    International Nuclear Information System (INIS)

    Sriram, Jayasree; Vijayan, K.; Kain, Vivekanad; Velmurugan, S.

    2015-01-01

    Advanced Heavy Water Reactor (AHWR) being designed in India proposes to use Plutonium and Thorium as fuel. The objective is to extract energy from the uranium-233 formed from Thorium. It is a heavy water moderated and light water cooled tube type boiling water reactor. It is a heavy water moderated and light water cooled tube type boiling water reactor. It is a natural circulation reactor. Thus, it has got several advanced passive safety features built into the system. The various water coolant systems are listed below. i) Main Heat transport System ii) Feed water system iii) Condenser cooling system iv) Process water system and safety systems. As it is a tube type reactor, the radiolysis control differs from the normal boiling water reactor. The coolant enters the bottom of the coolant channel, boiling takes place and then the entire steam water mixture exits the core through the long tail pipes and reaches the moisture separator. Thus, there is a need to devise methods to protect the tail pipes from oxidizing water chemistry condition. Similarly, the moderator heavy water coolant chemistry differs from that of moderator system chemistry of PHWR. The reactivity worth per ppm of gadolinium and boron are low in comparison to PHWR. As a result, much higher concentration of neutron poison has to be added for planned shutdown, start up and for actuating SDS-2. The addition of higher concentration of neutron poison result in higher radiolytic production of deuterium and oxygen. Their recombination back to heavy water has to take into account the higher production of these gases. This paper also discusses the chemistry features of safety systems of AHWR. In addition, the presentation will cover the chemistry monitoring methodology to be implemented in AHWR. (author)

  2. Multiscale Aspects of the Storm Producing the June 2013 Flooding in Uttarakhand, India

    Energy Technology Data Exchange (ETDEWEB)

    Houze, R. A. [Department of Atmospheric Sciences, University of Washington, Seattle, and Pacific Northwest National Laboratory, Richland, Washington; McMurdie, L. A. [Department of Atmospheric Sciences, University of Washington, Seattle, Washington; Rasmussen, K. L. [Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado; Kumar, A. [NASA Goddard Space Flight Center, Greenbelt, and Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland; Chaplin, M. M. [Department of Atmospheric Sciences, University of Washington, Seattle, Washington

    2017-11-01

    Conditions producing disastrous flooding in Uttarakhand, India, in June 2013 differed from conditions that produced other notorious floods in the Himalayan region in recent years. During the week preceding the Uttarakhand flood, deep convection moistened the mountainsides, making them vulnerable to flooding. However, the precipitation producing the flood was not associated with a deep convective event. Rather, an eastward-propagating upper-level trough in the westerlies extended abnormally far southward, with the jet reaching the Himalayas. The south end of the trough merged with a monsoon low moving westward across India. The merged system produced persistent moist low-level flow oriented normal to the Himalayas that advected large amounts of water vapor into the Uttarakhand region. The flow was moist neutral when it passed over the Himalayan barrier, and orographic lifting produced heavy continuous rain over the region for 2–3 days. The precipitation was largely stratiform in nature although embedded convection of moderate depth occurred along the foothills, where some mild instability was being released. The Uttarakhand flood had characteristics in common with major 2013 floods in the Rocky Mountains in Colorado and Alberta, Canada.

  3. Realizing vision of Dr. Homi Bhabha - first stage of nuclear power programme

    International Nuclear Information System (INIS)

    Bhardwaj, S.A.

    2009-01-01

    Full text: Dr. Homi Bhabha had a vision to harness nuclear energy for peaceful uses of mankind. Considering typical nuclear resources in the country, Dr Bhabha conceptualized the three stage nuclear power programme and gave a road map for its implementation. The robustness of the vision is such that the programme has not undergone a change in last five decades. The first stage of the three-stage programme, based on natural uranium fuelled Pressurised Heavy Water Reactors (PHWRs) has been precursor to the nuclear power programme in India. This paper describes the developments in the last five decades. The establishment of research laboratories and reactors, training school for the manpower needs, industrial infrastructure and establishment of regulatory framework are briefly described. Setting up of first nuclear power reactor in the country as turnkey project and experience on operation of these reactors in India are discussed. The learning phase consisting of setting up of first PHWR in technical collaboration with Canada and design of 220 MWe PHWRs for MAPS is described. The safety features consistent with development of nuclear power globally were incorporated in Narora design and this became a standardized 220 MWe reactor of which many PHWRs of 220 MWe were set up. The experiences with operation of these small size reactors leading to internationally best operational experience in the year 2002 are discussed. The efforts of plant life extension, in-core maintenance jobs and other renovation and modernization jobs are discussed. The increase in unit size of 540 MWe, of which two reactors have been already set up, is explained in detail. The economies of scale demanded increase in the unit size and design of 700 MWe PHWR has been established and the salient features of this design are also discussed in detail. Eight reactors of 700 MWe each would complete the first stage of about 10,000 MWe PHWR programme and plans for setting up of these reactors are discussed

  4. 9 CFR 93.418 - Cattle from Canada.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Cattle from Canada. 93.418 Section 93... CONVEYANCE AND SHIPPING CONTAINERS Ruminants Canada 8 § 93.418 Cattle from Canada. (a) Health certificates. Cattle intended for importation from Canada must be accompanied by a certificate issued in accordance...

  5. Nuclear calculation of the thorium reactor

    International Nuclear Information System (INIS)

    Hirakawa, Naohiro

    1998-01-01

    Even if for a reactor using thorium (and 233-U), its nuclear design calculation procedure is similar to the case using conventional 235-U, 238-U and plutonium. As nuclear composition varies with time on operation of nuclear reactor, calculation of its mean cross section should be conducted in details. At that time, one-group cross section obtained by integration over a whole of energy range is used for small member group. And, as the nuclear data for a base of its calculation is already prepared by JENDL3.2 and nuclear data library derived from it, the nuclear calculation of a nuclear reactor using thorium has no problem. From such a veiwpoint, IAEA has organized a coordinated research program of 'Potential of Th-based Fuel Cycles to Constrain Pu and to reduce Long-term Waste Toxicities' since 1996. All nations entering this program were regulated so as to institute by selecting a nuclear fuel cycle thinking better by each nation and to examine what cycle is expected by comparing their results. For a promise to conduct such neutral comparison, a comparison of bench mark calculations aiming at PWR was conducted to protect that the obtained results became different because of different calculation method and cross section adopted by each nation. Therefore, it was promoted by entrance of China, Germany, India, Israel, Japan, Korea, Russia and USA. The SWAT system developed by Tohoku University is used for its calculation code, by using which calculated results on the bench mark calculation at the fist and second stages and the nuclear reactor were reported. (G.K.)

  6. Uranium in Canada: Billion-dollar industry

    International Nuclear Information System (INIS)

    Whillans, R.T.

    1989-01-01

    In 1988, Canada maintained its position as the world's leading producer and exporter of uranium; five primary uranium producers reported concentrate output containing 12,400 MT of uranium, or about one-third of Western production. Uranium shipments made by these producers in 1988 exceeded 13,200 MT, worth Canadian $1.1 billion. Because domestic requirements represent only 15% of current Canadian output, most of Canada's uranium production is available for export. Despite continued market uncertainty in 1988, Canada's uranium producers signed new sales contracts for some 14,000 MT, twice the 1987 level. About 90% of this new volume is with the US, now Canada's major uranium customer. The recent implementation of the Canada/US Free Trade agreement brings benefits to both countries; the uranium industries in each can now develop in an orderly, free market. Canada's uranium industry was restructured and consolidated in 1988 through merger and acquisition; three new uranium projects advanced significantly. Canada's new policy on nonresident ownership in the uranium mining sector, designed to encourage both Canadian and foreign investment, should greatly improve efforts to finance the development of recent Canadian uranium discoveries

  7. Cyber security for remote monitoring and control of small reactors

    Energy Technology Data Exchange (ETDEWEB)

    Trask, D., E-mail: dave.trask@cnl.ca [Atomic Energy of Canada Limited, Chalk River, ON (Canada); Jung, C. [Canadian Nuclear Safety Commission, Ottawa, ON (Canada); MacDonald, M., E-mail: marienna.macdonald@cnl.ca [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    There is growing international interest and activity in the development of small nuclear reactor technology with a number of vendors interested in building small reactors in Canada to serve remote locations. A common theme of small reactor designs proposed for remote Canadian locations is the concept of a centrally located main control centre operating several remotely located reactors via satellite communications. This theme was echoed at a recent IAEA conference where a recommendation was made to study I&C for remotely controlled small modular reactors, including satellite links and cyber security. This paper summarizes the results of an AECL-CNSC research project to analyze satellite communication technologies used for remote monitoring and control functions in order to provide cyber security regulatory considerations. The scope of this research included a basic survey of existing satellite communications technology and its use in industrial control applications, a brief history of satellite vulnerabilities and a broad review of over 50 standards, guidelines, and regulations from recognized institutions covering safety, cyber security, and industrial communication networks including wireless communications in general. This paper concludes that satellite communications should not be arbitrarily excluded by standards or regulation from use for the remote control and monitoring of small nuclear reactors. Instead, reliance should be placed on processes that are independent of any particular technology, such as reducing risks by applying control measures and demonstrating required reliability through good design practices and testing. Ultimately, it is compliance to well-developed standards that yields the evidence to conclude whether a particular application that uses satellite communications is safe and secure. (author)

  8. Cyber security for remote monitoring and control of small reactors

    International Nuclear Information System (INIS)

    Trask, D.; Jung, C.; MacDonald, M.

    2014-01-01

    There is growing international interest and activity in the development of small nuclear reactor technology with a number of vendors interested in building small reactors in Canada to serve remote locations. A common theme of small reactor designs proposed for remote Canadian locations is the concept of a centrally located main control centre operating several remotely located reactors via satellite communications. This theme was echoed at a recent IAEA conference where a recommendation was made to study I&C for remotely controlled small modular reactors, including satellite links and cyber security. This paper summarizes the results of an AECL-CNSC research project to analyze satellite communication technologies used for remote monitoring and control functions in order to provide cyber security regulatory considerations. The scope of this research included a basic survey of existing satellite communications technology and its use in industrial control applications, a brief history of satellite vulnerabilities and a broad review of over 50 standards, guidelines, and regulations from recognized institutions covering safety, cyber security, and industrial communication networks including wireless communications in general. This paper concludes that satellite communications should not be arbitrarily excluded by standards or regulation from use for the remote control and monitoring of small nuclear reactors. Instead, reliance should be placed on processes that are independent of any particular technology, such as reducing risks by applying control measures and demonstrating required reliability through good design practices and testing. Ultimately, it is compliance to well-developed standards that yields the evidence to conclude whether a particular application that uses satellite communications is safe and secure. (author)

  9. 9 CFR 93.517 - Swine from Canada.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Swine from Canada. 93.517 Section 93... CONVEYANCE AND SHIPPING CONTAINERS Swine Canada 7 § 93.517 Swine from Canada. (a) For purposes other than immediate slaughter. Swine offered for importation from Canada for purposes other than immediate slaughter...

  10. Shadow and substance. Securing the future of atoms for peace

    International Nuclear Information System (INIS)

    Scheinman, L.

    2003-01-01

    The 'Atoms for Peace' proposal in 1953, and the policy evolving from it, opened an era of accelerated spread of nuclear knowledge. It ushered in the dissemination of nuclear know-how and activity to a larger number of States than otherwise would have been the case. At the same time, it is clear that maintaining a policy of nuclear secrecy and denial would not have held back the inevitable growth in the number of countries that would acquire nuclear knowledge and gain access to nuclear technology. The difference is that 'Atoms for Peace' while quickening the pace of nuclear dissemination, also spearheaded the establishment of a normative framework that in its absence likely would not have emerged. The International Atomic Energy Agency (IAEA), with its mandate not only to facilitate access to the peaceful benefits of nuclear energy, but also to develop and implement an international nuclear safeguards system, very likely would not have come into being. Nor would a normative framework have been set down for developing a civil nuclear economy. Instead, States in a position to do so, and motivated for one reason or another to do so, would have transferred nuclear technology, possibly on restrictive terms and conditions, possibly not. History provides insights. In the mid-1950s, as staunch a proponent of non-proliferation as Canada transferred an un-safeguarded research reactor capable of producing plutonium to India - only to find nearly two decades later that the reactor produced the plutonium used by India in its 1974 so called peaceful nuclear explosion. This resulted in a deterioration of Indo-Canadian relations. Great Britain for its part provided India with reprocessing technology. France in 1956 agreed to sell Israel a comparable research reactor without safeguards, but unlike Canada in the case of India, apparently without any illusions regarding its end use. France also built Spain's first nuclear power plant, Vandellos, in the late 1960s also without any

  11. Canada and international financial institutions

    OpenAIRE

    Robert Lafrance; James Powell

    1996-01-01

    International financial institutions, such as the International Monetary Fund, the World Bank and the Bank for International Settlements, are important players in the global financial system. This article provides an overview of the major international financial institutions to which Canada belongs. The paper highlights their activities and the nature of Canada's involvement, including that of the Bank of Canada. Recent initiatives coming out of the Halifax and Lyon Summits to improve the eff...

  12. Progress report on nuclear data activities in India for the period from July 1981 to December 1982

    International Nuclear Information System (INIS)

    Anand, R.P.

    1982-01-01

    The progress of Indian nuclear data activities during the period from July 1981 to December 1982 is reported in the form of summaries. Bulk of the nuclear data related work in India is being carried out at the Bhabha Atomic Research Centre, Bombay and the Reactor Research Centre, Kalpakkam. The work is also carried in other institutions and universities and is included in the report. (M.G.B.)

  13. Fabrication of metallic fuel for fast breeder reactor

    International Nuclear Information System (INIS)

    Saify, M.T.; Jha, S.K.; Abdulla, K.K.; Kumar, Arbind; Mittal, R.K.; Prasad, R.S.; Mahule, N.; Kumar, Arun; Prasad, G.J.

    2012-01-01

    Natural uranium oxide fuelled PHWRs comprises of first stage of Indian nuclear power programme. Liquid metal fast breeder reactors fuelled by Pu (from PHWR's) form the second stage. A shorter reactor doubling time is essential in order to accelerate the nuclear power growth in India. Metallic fuels are known to provide shorter doubling times, necessitating to be used as driver fuel for fast breeder reactors. One of the fabrication routes for metallic fuels having random grain orientation, is injection casting technique. The technique finds its basis in an elementary physical concept - the possibility of supporting a liquid column within a tube, by the application of a pressure difference across the liquid interface inside and outside the tube. At AFD, BARC a facility has been set-up for injection casting of uranium rods in quartz tube moulds, demoulding of cast rods, end-shearing of rods and an automated inspection system for inspection of fuel rods with respect to mass, length, diameter and diameter variation along the length and internal and external porosities/voids. All the above facilities have been set-up in glove boxes and have successfully been used for fabrication of uranium bearing fuel rods. The facility has been designed for fabrication and inspection of Pu-bearing metallic fuels also, if required

  14. Overview of the science activities for the 2002 Mallik gas hydrate production research well program, Mackenzie Delta, N.W.T., Canada

    Science.gov (United States)

    Dallimore, S. R.; Collett, T. S.; Uchida, T.; Weber, M.

    2003-04-01

    With the completion of scientific studies undertaken as part of the 1998 Mallik 2L-38 gas hydrate research well, an international research site was established for the study of Arctic natural gas hydrates in the Mackenzie Delta of northwestern Canada. Quantitative well log analysis and core studies reveal multiple gas hydrate layers from 890 m to 1106 m depth, exceeding 110 m in total thickness. High gas hydrate saturation values, which in some cases exceed 80% of the pore volume, establish the Mallik gas hydrate field as one of the most concentrated gas hydrate reservoirs in the world. Beginning in December 2001 and continuing to the middle of March 2002, two 1188 m deep science observation wells were drilled and instrumented and a 1166 m deep production research well program was carried out. The program participants include 8 partners; The Geological Survey of Canada (GSC), The Japan National Oil Corporation (JNOC), GeoForschungsZentrum Potsdam (GFZ), United States Geological Survey (USGS), United States Department of the Energy (USDOE), India Ministry of Petroleum and Natural Gas (MOPNG)/Gas Authority of India (GAIL) and the Chevron-BP-Burlington joint venture group. In addition the project has been accepted as part of the International Scientific Continental Drilling Program. The Geological Survey of Canada is coordinating the science program for the project and JAPEX Canada Ltd. acted as the designated operator for the fieldwork. Primary objectives of the research program are to advance fundamental geological, geophysical and geochemical studies of the Mallik gas hydrate field and to undertake advanced production testing of a concentrated gas hydrate reservoir. Full-scale field experiments in the production well monitored the physical behavior of the hydrate deposits in response to depressurization and thermal stimulation. The observation wells facilitated cross-hole tomography and vertical seismic profile experiments (before and after production) as well as

  15. Canada's nuclear non-proliferation policy

    International Nuclear Information System (INIS)

    1985-01-01

    Canada's non-proliferation and safeguards policy has two objectives: 1) to promote the emergence of a more effective and comprehensive international non-proliferation regime; and 2) to assure the Canadian people and the international community that Canadian nuclear exports will not be used for any nuclear explosive purpose. By emphasizing the key role of the NPT, by promoting reliance upon and improvements in the IAEA safeguards system, by treating nuclear weapon and non-nuclear weapon states alike regarding Canadian nuclear exports, by working for new approaches covering the sensitive phases (e.g. reprocessing) of the nuclear fuel cycle, Canada's policy promotes attainment of the first objective. The latter objective is served through the network of bilateral nuclear agreements that Canada has put into place with its nuclear partners. Those agreements provide assurance that Canada's nuclear exports are used solely for legitimate, peaceful, nuclear energy production purposes. At the same time, Canada, having formulated its non-proliferation and safeguards policy during the period 1945 to 1980, has recognized that it has gone as far as it can on its own in this field and that from this point on any further changes should be made on the basis of international agreement. The Canadian objective in post-INFCE forums such as the Committee on Assurances of Supply is to exert Canada's best efforts to persuade the international community to devise a more effective and comprehensive international non-proliferation regime into which Canada and other suppliers might subsume their national requirements

  16. Canada's radiation scandal?

    International Nuclear Information System (INIS)

    1990-12-01

    In July 1990, Greenpeace distributed a 16-page treatise entitled 'Canada's Radiation Scandal' to a wide audience. The bottom line of the Greenpeace critique was that 'Canada's radiation limits are among the worst in the developed world'. This is a commentary on the Greenpeace pamphlet from the Atomic Energy Control Board (AECB), the body that sets and enforces radiation standards covering the use of nuclear energy in Canadian industry, science and medicine

  17. Fusion Canada issue 32. Final edition

    International Nuclear Information System (INIS)

    1997-07-01

    Fusion Canada is a bulletin of the National Fusion Program, this is the last edition. Included in this July edition are articles on Funding for Canada's fusion program, Research and Development on TdeV-96 , Divertor Maintenance Robotics and reference listing for Canada's Fusion research and development sites

  18. Translating India

    CERN Document Server

    Kothari, Rita

    2014-01-01

    The cultural universe of urban, English-speaking middle class in India shows signs of growing inclusiveness as far as English is concerned. This phenomenon manifests itself in increasing forms of bilingualism (combination of English and one Indian language) in everyday forms of speech - advertisement jingles, bilingual movies, signboards, and of course conversations. It is also evident in the startling prominence of Indian Writing in English and somewhat less visibly, but steadily rising, activity of English translation from Indian languages. Since the eighties this has led to a frenetic activity around English translation in India's academic and literary circles. Kothari makes this very current phenomenon her chief concern in Translating India.   The study covers aspects such as the production, reception and marketability of English translation. Through an unusually multi-disciplinary approach, this study situates English translation in India amidst local and global debates on translation, representation an...

  19. Status of fast reactor development in India. April 2000 - March 2001

    International Nuclear Information System (INIS)

    Lee, S.M.

    2001-01-01

    Electricity capacity growth rate in the country during 2000-01 was lower than in the previous year and the installed capacity reached 101.2 GWe as on 31.3.2001. The nuclear electric capacity growth rate was substantially higher than last year and the capacity reached 2.77 GWe. FBTR was operated at various power levels up to 12.5 MWt with an availability factor of 34%. A peak burnup of 71,170 MWd/t was achieved in the fuel. The detailed design, R and D, manufacturing technology development and safety review for 500 Mwe PFBR were continued. The design plant life was increased to 40 years. Prototype steam generator, absorber rod drive mechanisms and inner vessel sector were manufactured at Indian industries. Review of the PSAR by two level safety committees continued. The environmental clearance of the plant by State Pollution Control Board and by the Ministry of Environment and Forests was applied for and involves a public hearing. R and D in reactor physics, engineering development, safely engineering, structural mechanics, thermal-hydraulics, metallurgy, non-destructive evaluation, chemistry and reprocessing were continued. Important works included flux measurements for PFBR radial shield models using leakage neutrons from a thermal reactor, sodium pumps scale model testing, testing of prototype drive mechanisms, FBTR irradiated fuel examination, PFBR structural materials characterization and carbide fuel reprocessing. (author)

  20. 9 CFR 93.317 - Horses from Canada.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Horses from Canada. 93.317 Section 93... CONVEYANCE AND SHIPPING CONTAINERS Horses Canada 16 § 93.317 Horses from Canada. (a) Except as provided in paragraph (c) of this section, horses from Canada shall be inspected as provided in § 93.306; shall be...

  1. Building the vegetation drought response index for Canada (VegDRI-Canada) to monitor agricultural drought: first results

    Science.gov (United States)

    Tadesse, Tsegaye; Champagne, Catherine; Wardlow, Brian D.; Hadwen, Trevor A.; Brown, Jesslyn; Demisse, Getachew B.; Bayissa, Yared A.; Davidson, Andrew M.

    2017-01-01

    Drought is a natural climatic phenomenon that occurs throughout the world and impacts many sectors of society. To help decision-makers reduce the impacts of drought, it is important to improve monitoring tools that provide relevant and timely information in support of drought mitigation decisions. Given that drought is a complex natural hazard that manifests in different forms, monitoring can be improved by integrating various types of information (e.g., remote sensing and climate) that is timely and region specific to identify where and when droughts are occurring. The Vegetation Drought Response Index for Canada (VegDRI-Canada) is a recently developed drought monitoring tool for Canada. VegDRI-Canada extends the initial VegDRI concept developed for the conterminous United States to a broader transnational coverage across North America. VegDRI-Canada models are similar to those developed for the United States, integrating satellite observations of vegetation status, climate data, and biophysical information on land use and land cover, soil characteristics, and other environmental factors. Collectively, these different types of data are integrated into the hybrid VegDRI-Canada to isolate the effects of drought on vegetation. Twenty-three weekly VegDRI-Canada models were built for the growing season (April–September) through the weekly analysis of these data using a regression tree-based data mining approach. A 15-year time series of VegDRI-Canada results (s to 2014) was produced using these models and the output was validated by randomly selecting 20% of the historical data, as well as holdout year (15% unseen data) across the growing season that the Pearson’s correlation ranged from 0.6 to 0.77. A case study was also conducted to evaluate the VegDRI-Canada results over the prairie region of Canada for two drought years and one non-drought year for three weekly periods of the growing season (i.e., early-, mid-, and late season). The comparison of the VegDRI-Canada

  2. Canada Education Savings Program: Annual Statistical Review 2012

    Science.gov (United States)

    Human Resources and Skills Development Canada, 2012

    2012-01-01

    The Canada Education Savings Program (CESP) has been an initiative of the Government of Canada since 1998. As part of the Department of Human Resources and Skills Development Canada, the program administers the Canada Education Savings Grant (CESG) and the Canada Learning Bond (CLB). These two initiatives help Canadian families save for a child's…

  3. Building Canada: Phase One

    Energy Technology Data Exchange (ETDEWEB)

    Anon

    2004-04-15

    The 'Building Canada' program modelled after the 'Building America' program, aims at increasing energy efficiency and affordability, primarily for single family homes. The program takes a holistic and whole house view, employing a systems approach and is committed to continuous improvement through testing, evaluation, retesting and novel construction practices. The program's objective is to re-engineer house designs so that builders can take advantage of advanced products and achieve maximum efficiency. Building Canada aims to achieve its objectives through partnership with the housing industry, focusing on increasing energy efficiency while reducing construction time, using and wasting fewer materials, forestalling call backs, and reducing overall costs. The Building Canada procedures encompass marketing, research of builder's operations, re-engineering mechanical systems, framing components and techniques, moisture control and thermal performance, construction, resolution of problems in re-engineered homes, and discussion of results in demonstration homes. The program as a whole is built on the feasibility study of a Building Canada program carried out in Nova Scotia and Ontario. Some of the results of this pilot study summarized in this report indicate that the Building Canada is not suitable for use by small builders. Benefits are most likely to be realized by only by builders constructing more than 100 homes annually.

  4. Progress in Methodologies for the Assessment of Passive Safety System Reliability in Advanced Reactors. Results from the Coordinated Research Project on Development of Advanced Methodologies for the Assessment of Passive Safety Systems Performance in Advanced Reactors

    International Nuclear Information System (INIS)

    2014-09-01

    Strong reliance on inherent and passive design features has become a hallmark of many advanced reactor designs, including several evolutionary designs and nearly all advanced small and medium sized reactor (SMR) designs. Advanced nuclear reactor designs incorporate several passive systems in addition to active ones — not only to enhance the operational safety of the reactors but also to eliminate the possibility of serious accidents. Accordingly, the assessment of the reliability of passive safety systems is a crucial issue to be resolved before their extensive use in future nuclear power plants. Several physical parameters affect the performance of a passive safety system, and their values at the time of operation are unknown a priori. The functions of passive systems are based on basic physical laws and thermodynamic principals, and they may not experience the same kind of failures as active systems. Hence, consistent efforts are required to qualify the reliability of passive systems. To support the development of advanced nuclear reactor designs with passive systems, investigations into their reliability using various methodologies are being conducted in several Member States with advanced reactor development programmes. These efforts include reliability methods for passive systems by the French Atomic Energy and Alternative Energies Commission, reliability evaluation of passive safety system by the University of Pisa, Italy, and assessment of passive system reliability by the Bhabha Atomic Research Centre, India. These different approaches seem to demonstrate a consensus on some aspects. However, the developers of the approaches have been unable to agree on the definition of reliability in a passive system. Based on these developments and in order to foster collaboration, the IAEA initiated the Coordinated Research Project (CRP) on Development of Advanced Methodologies for the Assessment of Passive Safety Systems Performance in Advanced Reactors in 2008. The

  5. India: Past achievements and future promises

    International Nuclear Information System (INIS)

    Sethna, H.N.

    1972-01-01

    Generation of nuclear power has been one of the major objectives of the atomic energy programme in India. One of the early tasks was to establish a firm technological base for the various activities involved in the development of atomic energy. A national research centre then called the Atomic Energy Establishment Trombay and now renamed as Bhabha Atomic Research Centre (BARC) was created at Trombay near Bombay, and a wide range of R and D activities were initiated, ranging from basic studies in nuclear and solid state physics to investigations in metallurgy, engineering, health physics and nuclear medicine. Viewed especially against the Indian background, the Centre's contributions have been substantial. In addition to building up expertise to take up work in connection with the development, design, and construction of power reactors, it was essential to introduce the manufacturing know how-into industry for the fabrication of all the sophisticated components for these reactors. It was also necessary to establish processes for the fabrication and reprocessing of nuclear fuel and the production of fuel materials and other special materials such as zircaloy and heavy water. Endeavour to be self-sufficient in all aspects of nuclear technology is particularly important for a developing country, so that introduction of a fairly large nuclear power programme does not result in too unfavourable a balance of payment situation

  6. Design improvement and performance evaluation of solar photocatalytic reactor for industrial effluent treatment.

    Science.gov (United States)

    Nair, Ranjith G; Bharadwaj, P J; Samdarshi, S K

    2016-12-01

    This work reports the details of the design components and materials used in a linear compound parabolic trough reactor constructed with an aim to use the photocatalyst for solar photocatalytic applications. A compound parabolic trough reactor has been designed and engineered to exploit both UV and visible part of the solar irradiation. The developed compound parabolic trough reactor could receive almost 88% of UV radiation along with a major part of visible radiation. The performance of the reactor has been evaluated in terms of degradation of a probe pollutant using the parameters such as rate constant, residence time and photonic efficiency. An attempt has been made to assess the performance in different ranges of solar spectrum. Finally the developed reactor has been employed for the photocatalytic treatment of a paper mill effluent using Degussa P25 as the photocatalyst. The paper mill effluent collected from Nagaon paper mill, Assam, India has been treated under both batch mode and continuous mode using Degussa P25 photocatalyst under artificial and natural solar radiation, respectively. The photocatalytic degradation kinetics of the paper mill effluent has been determined using the reduction in total organic carbon (TOC) values of the effluent. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. The nuclear engineering programmes at the Royal Military College of Canada. Part I

    Energy Technology Data Exchange (ETDEWEB)

    Bonin, H.W. [Royal Military College of Canada, Dept. of Chemistry and Chemical Engineering, Kingston, Ontario (Canada)

    2002-05-01

    The last years have been eventful for the staff and students in the nuclear engineering programmes at the Royal Military College of Canada (RMC) in Kingston, Ontario. Among the several changes is the accessibility of the graduate programmes to civilian (Canadian citizens) students, a fact that is little known outside RMC since, in the past, these graduate programmes were intended only for military personnel. Another major event is the accreditation of the graduate programmes offered by the Department of Chemistry and Chemical Engineering(chemical, nuclear and environmental science and engineering) by the Ontario Council of Graduate Studies. The teaching and research staff share the following research areas: radiochemistry and neutron activation analysis, radiation effects on materials, radiation processing of polymers, neutron radiography, nuclear reactor simulation, analysis and design, CANDU fuel bundle optimal design, nuclear fuel cycles and management, nuclear fuel engineering and behaviour, including fission product release modelling, artificial intelligence applications to nuclear systems, nuclear accident response, nuclear radiation detection and measurement, health physics, dosimetry and radiation protection and nuclear reactor control.

  8. The nuclear engineering programmes at the Royal Military College of Canada. Part I

    International Nuclear Information System (INIS)

    Bonin, H.W.

    2002-01-01

    The last years have been eventful for the staff and students in the nuclear engineering programmes at the Royal Military College of Canada (RMC) in Kingston, Ontario. Among the several changes is the accessibility of the graduate programmes to civilian (Canadian citizens) students, a fact that is little known outside RMC since, in the past, these graduate programmes were intended only for military personnel. Another major event is the accreditation of the graduate programmes offered by the Department of Chemistry and Chemical Engineering(chemical, nuclear and environmental science and engineering) by the Ontario Council of Graduate Studies. The teaching and research staff share the following research areas: radiochemistry and neutron activation analysis, radiation effects on materials, radiation processing of polymers, neutron radiography, nuclear reactor simulation, analysis and design, CANDU fuel bundle optimal design, nuclear fuel cycles and management, nuclear fuel engineering and behaviour, including fission product release modelling, artificial intelligence applications to nuclear systems, nuclear accident response, nuclear radiation detection and measurement, health physics, dosimetry and radiation protection and nuclear reactor control

  9. Royal Military College of Canada SLOWPOKE-2 facility. Integrated regulating and instrumentation system (SIRCIS) upgrade project

    International Nuclear Information System (INIS)

    Corcoran, W.P.; Nielsen, K.S.; Kelly, D.G.; Weir, R.D.

    2013-01-01

    The SLOWPOKE-2 Facility at the Royal Military College of Canada has operated the only digitally controlled SLOWPOKE reactor since 2001 (Version 1.0). The present work describes ongoing project development to provide a robust digital reactor control system that is consistent with Aging Management as summarized in the Facility's Life Cycle Management and Maintenance Plan. The project has transitioned from a post-graduate research activity to a comprehensively managed project supported by a team of RMCC professional and technical staff who have delivered an update of the V1.1 system software and hardware implementation that is consistent with best Canadian nuclear industry practice. The challenges associated with the implementation of Version 2.0 in February 2012, the lessons learned from this implementation, and the applications of these lessons to a redesign and rewrite of the RMCC SLOWPOKE-2 digital instrumentation and regulating system (Version 3) are discussed. (author)

  10. IAEA Perspectives on Future of Nuclear Energy, 11 March 2013, Mumbai, India, Indian Nuclear Society

    International Nuclear Information System (INIS)

    Amano, Y.

    2013-01-01

    It is a great pleasure for me to address the Indian Nuclear Society once again. When I last spoke to you, in January 2011, the nuclear world looked somewhat different from today. There was still talk of a global nuclear renaissance. Dozens of countries were thinking about introducing nuclear power. Many of the 30 or so existing users planned to build additional plants. Then came the Fukushima Daiichi accident, two years ago today. It caused profound public anxiety and damaged confidence in nuclear power. Some people predicted that nuclear power would go into decline. However, the evidence suggests that this will not be the case. Some European countries announced plans to move away from nuclear power. But, globally, nuclear power looks set to continue to grow steadily, although more slowly than we expected before the Fukushima Daiichi accident. There are 437 operating nuclear power reactors in the world today. The latest IAEA projections, which are based on what Member States tell us, suggest that number could increase by 80 or 90 in the next 20 years. It could even double. At the moment, there are 66 new reactors under construction. Seven of them are in India. I understand your country plans continued expansion in the coming decades. Other major users of nuclear power such as China and Russia also have significant expansion plans. A number of countries have taken the decision to introduce nuclear power, including Bangladesh, Egypt, Jordan, Nigeria, Poland, Turkey and Vietnam. The United Arab Emirates has started building a nuclear power plant, the first new country to do so for 27 years. I visited the site in January and was impressed by the progress being made. Ladies and Gentlemen, This audience understands better than most the many benefits which nuclear power offers. Nuclear power can help to improve energy security. It can reduce the impact of volatile fossil fuel prices and mitigate the effects of climate change. For a rapidly developing economy such as India

  11. India

    International Nuclear Information System (INIS)

    Jones, R.W.

    1990-01-01

    Interest has grown recently in the issues of third tier or emerging nuclear suppliers. These are states that could export nuclear equipment, services, or technology but are outside the export control framework of the London Nuclear Supplier Group (NSG). The concern is that they may conduct nuclear trade without adequate safeguards, thus weakening the nonproliferation regime or even contributing to nuclear proliferation. The volume of nuclear sales by emerging suppliers is still minuscule, and it is unclear how far their export practices will diverge from the NSG framework. This case study of Indian nuclear supplier capability and practice is an effort to discern the type of path India is likely to adopt. This paper examines four aspects of India's nuclear activity for clues to India's potential role as an emerging nuclear supplier: foreign transactions; nuclear decision making; policy norms; and nuclear industrial capabilities

  12. India : the new China?

    Energy Technology Data Exchange (ETDEWEB)

    Nanavaty, K. [Reliance Industries Ltd., Mumbai (India). Cracker and Polymer Div.

    2006-07-01

    India is emerging as a strong force in the global economy. The population of China is 1.2 times that of India, and its gross domestic product is 2.5 times that of India. However, analyses of per capita gross domestic product (GDP) indicate that if India continues its rate of growth, its' consumption and production will reach China's current levels in less than 15 years. This represents a significant investment opportunity in basic industry, particularly since a growing middle class will ensure a boom in consumer products consumption. This presentation compared India and China, in terms of economic approaches and challenges for India. Implications for the petrochemical industry were also discussed with reference to Reliance Industries Ltd. and its full integration in the value chain with petroleum refining. Reliance Industries Ltd. claims that India's captive utilities and labour productivity provide the company with conversion costs that are among the lowest in the industry. In terms of agriculture, India is one of the largest producers of agricultural commodities in the world and is well supported by varying agro-climates and fertile land. This presentation also included an agro-commodities yield comparison for rice, wheat and cereal. The Indian manufacturing industry is also competitive, focusing on cutting cost, increasing productivity and innovation. It was noted that although China has the advantage of a well established infrastructure on a global and domestic scale as well as job opportunities and quick policy implementation, it has lax labour laws, poor pollution laws and a challenging banking system. In contrast, India has the entrepreneurial advantage as well as global scale information technology, a globally competitive manufacturing industry, an independent regulatory framework and world class capital markets and banking system. India's challenge lies in its lack of a world-class infrastructure, complicated tax structure and slow

  13. Fusion Canada issue 21

    International Nuclear Information System (INIS)

    1993-08-01

    A short bulletin from the National Fusion Program highlighting in this issue Europe proposes Canada's participation in ITER, tritium for JET, CCFM/TdeV-Tokamak helium pumping and TdeV update, ITER-related R and D at CFFTP, ITER Deputy Director visits Canada, NFP Director to Chair IFRC, Award for Akira Hirose. 3 figs

  14. Fusion Canada issue 14

    International Nuclear Information System (INIS)

    1991-05-01

    A short bulletin from the National Fusion Program. Included in this issue is a report on a fusion cooperation agreement between Japan and Canada, an update at Tokamak de Varennes on plasma biasing experiments and boronization tests and a collaboration between Canada and the U.S. on a compact toroid fuelling gun. 4 figs

  15. India's nuclear spin-off

    International Nuclear Information System (INIS)

    Kaul, Ravi.

    1974-01-01

    After examining world-wide reactions of the foreign governments and news media to the India's peaceful nuclear experiment (PNE) in the Rajasthan Desert on 18 May 1974, development of nuclear technology in India is assessed and its economic advantages are described. Implications of the Non-Proliferation Treaty are explained. Psychological impact of India's PNE on India's neighbours and superpowers and associated political problems in context of proliferation of nuclear weapons are discussed in detail. (M.G.B.)

  16. India's future: it's about jobs

    OpenAIRE

    Geoffrey N. Keim; Beth Anne Wilson

    2007-01-01

    Projections of sustained strong growth in India depend importantly on the utilization of the huge increase in India's working-age population projected over the next two decades. To date, however, India's economic growth has been concentrated in high-skill and capital-intensive sectors, and has not generated strong employment growth. In this paper, we highlight the tension between India's performance in output and employment, describe the characteristics of India's demographic dividend, and di...

  17. Canada's nuclear non-proliferation policy

    International Nuclear Information System (INIS)

    1982-05-01

    Canada's non-proliferation safeguards policy has two objectives: 1) to promote a more effective and comprehensive international non-proliferation regime; and 2) to ensure that Canadian nuclear exports will not be used for any nuclear explosive purpose. By emphasizing the key role of the Non-Proliferation Treaty, promoting reliance upon and improvements in the IAEA safeguards system, treating nuclear weapon and non-weapon states alike, and working for new approaches covering reprocessing, Canada promotes attainment of the first objective. The second is served through the network of bilateral nuclear agreements that Canada has put into place with its partners. The Canadian objective in post-INFCE forums is to persuade the international community to devise a more effective and comprehensive non-proliferation regime into which Canada and other suppliers may subsume their national requirements

  18. Design and development of indigenous seismic switch for nuclear reactors

    International Nuclear Information System (INIS)

    Varghese, Shiju; Shah, Jay; Limaye, P.K.; Soni, N.L; Patel, R.J.

    2016-01-01

    After Fukushima incident it has become a regulatory requirement to have automatic reactor trip on detection of earthquake beyond OBE level. Seismic Switches that meets the technical specifications required for nuclear reactor use were not available in the market. Hence, on Nuclear Power Corporation of India Ltd (NPCIL's) request, Refuelling Technology Division, BARC has developed Seismic Switches (electronic earthquake detectors) required for this application. Functionality of the system was successfully tested using a Shake Table. Two different designs of seismic switches have been developed. One is a microcontroller based system (digital) and the other is fully analogue electronics (analog) based. These switches are designed to meet the technical requirements of Class IA systems of nuclear reactors. It is also designed to meet other qualification tests such as EMI/EMC, climatic, vibration, and reliability requirements. In addition to nuclear industry seismic switches are having potential use in oil and gas, power plants, buildings and other industrial installations. These technologies are currently available for technology transfer and details are published in BARC website. This paper describes the requirements, principle of operation and features and testing of the developed systems. (author)

  19. CADDS [Computer-aided Drafting and Design System] brings quality and precision to the Canadian Maple [research reactor

    International Nuclear Information System (INIS)

    Goland, D.

    1989-01-01

    Atomic Energy of Canada Ltd (AECL) has found that using the ''intelligent'' Computer-Aided Drafting and Design System (CADDS) helped address design problems at an early stage and led to productivity gains of around 50 per cent. Other bonuses were the quality and precision of the designs and documents produced. Its application to the MAPLE research reactor project is described. (author)

  20. A case study for INPRO methodology based on Indian advanced heavy water reactor

    International Nuclear Information System (INIS)

    Anantharaman, K.; Saha, D.; Sinha, R.K.

    2004-01-01

    Under Phase 1A of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) a methodology (INPRO methodology) has been developed which can be used to evaluate a given energy system or a component of such a system on a national and/or global basis. The INPRO study can be used for assessing the potential of the innovative reactor in terms of economics, sustainability and environment, safety, waste management, proliferation resistance and cross cutting issues. India, a participant in INPRO program, is engaged in a case study applying INPRO methodology based on Advanced Heavy Water Reactor (AHWR). AHWR is a 300 MWe, boiling light water cooled, heavy water moderated and vertical pressure tube type reactor. Thorium utilization is very essential for Indian nuclear power program considering the indigenous resource availability. The AHWR is designed to produce most of its power from thorium, aided by a small input of plutonium-based fuel. The features of AHWR are described in the paper. The case study covers the fuel cycle, to be followed in the near future, for AHWR. The paper deals with initial observations of the case study with regard to fuel cycle issues. (authors)