WorldWideScience

Sample records for camera tubes

  1. Improvements in photomultiplier and TV camera tubes for nuclear medicine

    International Nuclear Information System (INIS)

    Electro-optic devices such as photomultiplier tubes or TV camera tubes are used in nuclear medicine applications directly or indirectly as sensors of scintillations resulting from excitation of phosphor or scintillators by x- or γ-rays. Ideally, a detector would provide 100 percent quantum efficiency, have a read-out mechanism whose noise does not obscure the response from a single photon, and have a response time sufficiently short so as not to degrade the scintillation pulse. Photomultiplier tubes have been improved in quantum efficienctly and in response time. Photomultiplier tubes have been improved in quantum efficiency and in response time. Photocathodes, however, do not run better than 20 to 30 percent quantum efficiency. Response times can be less than 1 ns so that for the detection of ordinary scintillations, this is more than adequate. Vidicon camera tubes utilize photoconductive type sensors which can have essentially 100 percent quantum efficiency in parts of the spectrum. Unfortunately the read out mechanism introduces lag and noise so that the inherent photoconductor quantum efficiency cannot be fully realized. Recently developed silicon intensifier target (SIT) camera tubes provide a read out mechanism which overcomes much of the amplifier limitation inherent in vidicons, but again, the primary sensor is a photocathode so that 100 percent quantum efficiency is not achieved. SIT tubes are capable, however, of detecting remarkably low level light images with a minimum of lag

  2. Framing-camera tube developed for sub-100-ps range

    International Nuclear Information System (INIS)

    A new framing-camera tube, developed by Electronics Engineering, is capable of recording two-dimensional image frames with high spatial resolution in the sub-100-ps range. Framing is performed by streaking a two-dimensional electron image across narrow slits; the resulting electron-line images from the slits are restored into a framed image by a restorer deflector operating synchronously with the dissector deflector. We have demonstrated its performance in a prototype tube by recording 125-ps-duration framed images of 2.5-mm patterns. The limitation in the framing speed is in the external electronic drivers for the deflectors and not in the tube design characteristics. Shorter frame durations (below 100 ps) can be obtained by use of faster deflection drivers

  3. X-ray topography with scintillators coupled to image intensifiers or camera tubes

    International Nuclear Information System (INIS)

    The possibility of imaging topographic figures in real time by using a thin scintillator coupled to either a high-gain image intensifier or a camera tube is investigated. The camera tube must have a high gain because of the low photon fluxes that are encountered in practice, and because of the relatively low quantum yield of thin phosphors. With conventional X-ray generators, the resolution is photon-noise limited. With more powerful generators like synchrotrons, real-time imaging appears possible, and the resolution is limited by the modulation transfer function of the image tube. Higher resolution can be reached by increasing the magnification between the screen and the image tube. When doing so, the input field is reduced and thinner phosphor screens must be used, resulting in a lower yield. Each time the magnification is doubled, the minimum required photon flux is multiplier by about 8, so that the advantages of increasing the magnification are rapidly limited, so far as real-time imaging is concerned. Because image tube resolution is mainly limited by the modulation transfer function of the phosphor for image intensifiers, and by that of the target for camera tubes, improvement of photocathode resolution can be obtained by magnifying electron optics. A zooming electron optic would permit the field and the resolution of the tube to be adapted to the observed subject. Unfortunately such tubes do not exist at present for this type of application, and in the required size

  4. Development of a compact tomography camera system using a multianode photomultiplier tube for compact torus experiments

    International Nuclear Information System (INIS)

    A compact tomography camera system consisting of a photomultiplier tube, a multislit optical system, and a band-pass interference filter has been developed. The viewing area and spatial resolution can be configured by the arrangement of the slit system. The camera system has been specially designed for self-organized compact torus experiments having strong magnetohydrodynamics events with a submicrosecond time-scale. The developed system has been tested on a field-reversed configuration formed by the field-reversed theta-pinch. Performance evaluation of the system has been performed by comparison to the former optical system.

  5. Nondestructive test of brazed cooling tubes of prototype bolometer camera housing using active infrared thermography.

    Science.gov (United States)

    Tahiliani, Kumudni; Pandya, Santosh P; Pandya, Shwetang; Jha, Ratneshwar; Govindarajan, J

    2011-01-01

    The active infrared thermography technique is used for assessing the brazing quality of an actively cooled bolometer camera housing developed for steady state superconducting tokamak. The housing is a circular pipe, which has circular tubes vacuum brazed on the periphery. A unique method was adopted to monitor the temperature distribution on the internal surface of the pipe. A stainless steel mirror was placed inside the pipe and the reflected IR radiations were viewed using an IR camera. The heat stimulus was given by passing hot water through the tubes and the temperature distribution was monitored during the transient phase. The thermographs showed a significant nonuniformity in the brazing with a contact area of around 51%. The thermography results were compared with the x-ray radiographs and a good match between the two was observed. Benefits of thermography over x-ray radiography testing are emphasized. PMID:21280850

  6. A rapid response 64-channel photomultiplier tube camera for high-speed flow velocimetry

    International Nuclear Information System (INIS)

    In this technical design note, the development of a rapid response photomultiplier tube camera, leveraging field-programmable gate arrays (FPGA) for high-speed flow velocimetry at up to 10 MHz is described. Technically relevant flows, for example, supersonic inlets and exhaust jets, have time scales on the order of microseconds, and their experimental study requires resolution of these timescales for fundamental insight. The inherent rapid response time attributes of a 64-channel photomultiplier array were coupled with two-stage amplifiers on each anode, and were acquired using a FPGA-based system. Application of FPGA allows high data acquisition rates with many channels as well as on-the-fly preprocessing techniques. Results are presented for optical velocimetry in supersonic free jet flows, demonstrating the value of the technique in the chosen application example for determining supersonic shear layer velocity correlation maps. (technical design note)

  7. A rapid response 64-channel photomultiplier tube camera for high-speed flow velocimetry

    Science.gov (United States)

    Ecker, Tobias; Lowe, K. Todd; Ng, Wing F.

    2015-02-01

    In this technical design note, the development of a rapid response photomultiplier tube camera, leveraging field-programmable gate arrays (FPGA) for high-speed flow velocimetry at up to 10 MHz is described. Technically relevant flows, for example, supersonic inlets and exhaust jets, have time scales on the order of microseconds, and their experimental study requires resolution of these timescales for fundamental insight. The inherent rapid response time attributes of a 64-channel photomultiplier array were coupled with two-stage amplifiers on each anode, and were acquired using a FPGA-based system. Application of FPGA allows high data acquisition rates with many channels as well as on-the-fly preprocessing techniques. Results are presented for optical velocimetry in supersonic free jet flows, demonstrating the value of the technique in the chosen application example for determining supersonic shear layer velocity correlation maps.

  8. A charged-particle manipulator utilizing a co-axial tube electrodynamic trap with an integrated camera

    International Nuclear Information System (INIS)

    A charged-particle manipulator was designed and fabricated with an integrated imaging camera allowing real-time in-situ monitoring of trapped particle motion even when the trap device is under motion or rotation. The trap device was made of two co-axial electrically conductive tubes with diameters of 5.5 mm and 7 mm for the inner tube and outer tube, respectively; the imaging camera with its optical fiber bundle was integrated within the tubular trap device to realize a single instrument functioning as a manipulator. Motion of suspended microparticles of 3 μm to 50 μm in diameter can be monitored using the integrated camera regardless of the trap device orientations. This manipulator provides capability of controlled manipulation of trapped particles by tuning the operating conditions while monitoring the feedback of real-time particle motion. Imaging of suspended particles was not interrupted while the manipulator was translated and/or rotated. This integrated manipulator can be used for charged particle transport and repositioning.

  9. A charged-particle manipulator utilizing a co-axial tube electrodynamic trap with an integrated camera

    Science.gov (United States)

    Jiang, L.; Whitten, W. B.; Pau, S.

    2011-10-01

    A charged-particle manipulator was designed and fabricated with an integrated imaging camera allowing real-time in-situ monitoring of trapped particle motion even when the trap device is under motion or rotation. The trap device was made of two co-axial electrically conductive tubes with diameters of 5.5 mm and 7 mm for the inner tube and outer tube, respectively; the imaging camera with its optical fiber bundle was integrated within the tubular trap device to realize a single instrument functioning as a manipulator. Motion of suspended microparticles of 3 μm to 50 μm in diameter can be monitored using the integrated camera regardless of the trap device orientations. This manipulator provides capability of controlled manipulation of trapped particles by tuning the operating conditions while monitoring the feedback of real-time particle motion. Imaging of suspended particles was not interrupted while the manipulator was translated and/or rotated. This integrated manipulator can be used for charged particle transport and repositioning.

  10. Gated photocathode design for the P510 electron tube used in the National Ignition Facility (NIF) optical streak cameras

    Science.gov (United States)

    Datte, P.; James, G.; Celliers, P.; Kalantar, D.; Vergel de Dios, G.

    2015-08-01

    The optical streak cameras currently used at the National Ignition Facility (NIF) implement the P510 electron tube from Photonis1. The existing high voltage electronics provide DC bias voltages to the cathode, slot, and focusing electrodes. The sweep deflection plates are driven by a ramp voltage. This configuration has been very successful for the majority of measurements required at NIF. New experiments require that the photocathode be gated or blanked to reduce the effects of undesirable scattered light competing with low light level experimental data. The required ~2500V gate voltage is applied between the photocathode and the slot electrode in response to an external trigger to allow the electrons to flow. Otherwise the slot electrode is held approximately 100 Volts more negative than the potential of the photocathode, preventing electron flow. This article reviews the implementation and performance of the gating circuit that applies an electronic gate to the photocathode with a nominal 50ns rise and fall time, and a pulse width between 50ns and 2000ns.

  11. Scintillation camera and positron camera

    International Nuclear Information System (INIS)

    A short description is given of earlier forms of the gamma-ray camera. The principle of operation of the scintillation camera is reviewed. Here the locations of scintillations occurring in a flat thallium-activated sodium iodide crystal are determined from the amount of light picked up by a number of phototubes simultaneously viewing the crystal. The signals from the phototubes are fed to a deflection computor circuit which reproduces the scintillations on a cathode-ray tube screen. There they are photographed by a conventional scope camera. Examples are shown of the resolution now obtained as shown by test phantoms. A discussion is presented of the camera's use in visualizing the thyroid in clinical practice. (author)

  12. Measurement of insulation integrity of IUE camera tube facsimiles by partial discharges method and diffusion of gases through various silicone rubbers

    Science.gov (United States)

    Bever, R. S.

    1977-01-01

    Several dummy tubes imitating the IUE Camera System design were encapsulated with Solithane 2, Conathane EN-11, Green and Black Hysols and SMRD 432. Various flaws were purposefully placed in some of these. Partial discharge testing in vacuum under direct voltage conditions was carried once a week for 12 weeks, 15 kv dc being applied during normal working hours for 40 hours duration per week. None of the units showed much damage during this time judging by the P.D. energy histograms. A more complete mathematical presentation is given on diffusion and permeation than previously. Measurements of diffusion constants for various silicone rubbers are carried out by the Time-Lag method and compared to other determinations in the literature. Calculations of the time required for diffusion through a thick wall are demonstrated in the long time approximation and for dimensions pertaining to void and wall sizes of a delamination problem in the LANDSAT-C vidicon tubes. An actual delaminated LANDSAT-C tube and some facsimiles are immersed in vacuum for long periods and tested for catastrophic breakdown due to diffusion of gas, by application of high voltage.

  13. Vacuum Camera Cooler

    Science.gov (United States)

    Laugen, Geoffrey A.

    2011-01-01

    Acquiring cheap, moving video was impossible in a vacuum environment, due to camera overheating. This overheating is brought on by the lack of cooling media in vacuum. A water-jacketed camera cooler enclosure machined and assembled from copper plate and tube has been developed. The camera cooler (see figure) is cup-shaped and cooled by circulating water or nitrogen gas through copper tubing. The camera, a store-bought "spy type," is not designed to work in a vacuum. With some modifications the unit can be thermally connected when mounted in the cup portion of the camera cooler. The thermal conductivity is provided by copper tape between parts of the camera and the cooled enclosure. During initial testing of the demonstration unit, the camera cooler kept the CPU (central processing unit) of this video camera at operating temperature. This development allowed video recording of an in-progress test, within a vacuum environment.

  14. Gastrostomy Tube (G-Tube)

    Science.gov (United States)

    ... endoscope (a thin, flexible tube with a tiny camera and light at the tip) inserted through the ... Nemours Foundation, iStock, Getty Images, Corbis, Veer, Science Photo Library, Science Source Images, Shutterstock, and Clipart.com

  15. Performance improvement of small gamma camera using NaI(Tl) plate and position sensitive photo-multiplier tubes

    International Nuclear Information System (INIS)

    The purpose of this study was to improve the performance of a small gamma camera, utilizing a NaI(Tl) plate and a 5'' position sensitive PMT. We attempted to build a NaI(Tl) plate crystal system which retained all its advantages, while at the same time integrating some of the advantages inherent in an array-type scintillation crystal system. Flood images were obtained with a lead hole mask, and position mapping was performed by detecting hole positions in the flood image. Energy calibration was performed using the energy spectra obtained from each hole position. Flood correction was performed using a uniformity correction table containing the relative efficiency of each image element. The spatial resolution was improved about 16% after correction at the centre field of view. Resolution deterioration at the outer field of view (OFOV) was considerably ameliorated, from 6.7 mm to 3.2 mm after correction. The sensitivity at the OFOV was also increased after correction, from 0.7 cps μCi-1 to 2.0 cps μCi-1. The correction also improved uniformity, from 5.2% to 2.1%, and linearity, from 0.5 mm to 0 mm. The results of this study indicate that the revised correction method can be employed to considerably improve the performance of a small gamma camera using a NaI(Tl) plate-type crystal. This method also provides high spatial resolution and linearity, like array-type crystals do, while retaining the specific advantages of plate-type crystals

  16. A fast position estimation method for a control rod guide tube inspection robot with a single camera

    International Nuclear Information System (INIS)

    One of the problems in the inspection of control rod guide tubes using a mobile robot is accurate estimation of the robot's position. The problem is usually explained by the question 'Where am I?'. We can solve this question by a method called dead reckoning using odometers. But it has some inherent drawbacks such that the position error grows without bound unless an independent reference is used periodically to reduce the errors. In this paper, we presented one method to overcome this drawback by using a vision sensor. Our method is based on the classical Lucas Kanade algorithm for on image tracking. In this algorithm, an optical flow must be calculated at every image frame, thus it has intensive computing load. In order to handle large motions, it is preferable to use a large integration window. But a small integration window is more preferable to keep the details contained in the images. We used the robot's movement information obtained from the dead reckoning as an input parameter for the feature tracking algorithm in order to restrict the position of an integration window. By means of this method, we could reduce the size of an integration window without any loss of its ability to handle large motions and could avoid the trade off in the accuracy. And we could estimate the position of our robot relatively fast without on intensive computing time and the inherent drawbacks mentioned above. We studied this algorithm for applying it to the control rod guide tubes inspection robot and tried an inspection without on operator's intervention

  17. Gamma ray camera

    International Nuclear Information System (INIS)

    An improved Anger-type gamma ray camera utilizes a proximity-type image intensifier tube. It has a greater capability for distinguishing between incident and scattered radiation, and greater spatial resolution capabilities

  18. Commercialization of radiation tolerant camera

    International Nuclear Information System (INIS)

    In this project, radiation tolerant camera which tolerates 106 - 108 rad total dose is developed. In order to develop radiation tolerant camera, radiation effect of camera components was examined and evaluated, and camera configuration was studied. By the result of evaluation, the components were decided and design was performed. Vidicon tube was selected to use by image sensor and non-browning optics and camera driving circuit were applied. The controller needed for CCTV camera system, lens, light, pan/tilt controller, was designed by the concept of remote control. And two type of radiation tolerant camera were fabricated consider to use in underwater environment or normal environment. (author)

  19. Gamma ray camera

    International Nuclear Information System (INIS)

    An Anger gamma ray camera is improved by the substitution of a gamma ray sensitive, proximity type image intensifier tube for the scintillator screen in the Anger camera. The image intensifier tube has a negatively charged flat scintillator screen, a flat photocathode layer, and a grounded, flat output phosphor display screen, all of which have the same dimension to maintain unit image magnification; all components are contained within a grounded metallic tube, with a metallic, inwardly curved input window between the scintillator screen and a collimator. The display screen can be viewed by an array of photomultipliers or solid state detectors. There are two photocathodes and two phosphor screens to give a two stage intensification, the two stages being optically coupled by a light guide. (author)

  20. Television camera for viewing spaces inside nuclear reactors

    International Nuclear Information System (INIS)

    The TV camera for repeat testing in pebble bed reactors is situated in a tube so that there is at least one mirror and at least one light source in front of the objective lens, which are connected to the tube. There is a gap containing coolant gas (He) between the tube and the camera. (HP)

  1. Camera calibration

    OpenAIRE

    Andrade-Cetto, J.

    2001-01-01

    This report is a tutorial on pattern based camera calibration for computer vision. The methods presented here allow for the computation of the intrinsic and extrinsic parameters of a camera. These methods are widely available in the literature, and they are only summarized here as an easy and comprehensive reference for researchers at the Institute and their collaborators.

  2. Gamma camera

    International Nuclear Information System (INIS)

    The design of a collimation system for a gamma camera for use in nuclear medicine is described. When used with a 2-dimensional position sensitive radiation detector, the novel system can produce superior images than conventional cameras. The optimal thickness and positions of the collimators are derived mathematically. (U.K.)

  3. CCD Camera

    Science.gov (United States)

    Roth, Roger R.

    1983-01-01

    A CCD camera capable of observing a moving object which has varying intensities of radiation eminating therefrom and which may move at varying speeds is shown wherein there is substantially no overlapping of successive images and wherein the exposure times and scan times may be varied independently of each other.

  4. Short on camera geometry and camera calibration

    OpenAIRE

    Magnusson, Maria

    2010-01-01

    We will present the basic theory for the camera geometry. Our goal is camera calibration and the tools necessary for this. We start with homogeneous matrices that can be used to describe geometric transformations in a simple manner. Then we consider the pinhole camera model, the simplified camera model that we will show how to calibrate. A camera matrix describes the mapping from the 3D world to a camera image. The camera matrix can be determined through a number of corresponding points measu...

  5. Preliminary field evaluation of solid state cameras for security applications

    International Nuclear Information System (INIS)

    Recent developments in solid state imager technology have resulted in a series of compact, lightweight, all-solid-state closed circuit television (CCTV) cameras. Although it is widely known that the various solid state cameras have less light sensitivity and lower resolution than their vacuum tube counterparts, the potential for having a much longer Mean Time Between Failure (MTBF) for the all-solid-state cameras is generating considerable interest within the security community. Questions have been raised as to whether the newest and best of the solid state cameras are a viable alternative to the high maintenance vacuum tube cameras in exterior security applications. To help answer these questions, a series of tests were performed by Sandia National Laboratories at various test sites and under several lighting conditions. In general, all-solid-state cameras need to be improved in four areas before they can be used as wholesale replacements for tube cameras in exterior security applications: resolution, sensitivity, contrast, and smear. However, with careful design some of the higher performance cameras can be used for perimeter security systems, and all of the cameras have applications where they are uniquely qualified. Many of the cameras are well suited for interior assessment and surveillance uses, and several of the cameras are well designed as robotics and machine vision devices

  6. New two-dimensional photon camera

    Science.gov (United States)

    Papaliolios, C.; Mertz, L.

    1982-01-01

    A photon-sensitive camera, applicable to speckle imaging of astronomical sources, high-resolution spectroscopy of faint galaxies in a crossed-dispersion spectrograph, or narrow-band direct imaging of galaxies, is presented. The camera is shown to supply 8-bit by 8-bit photon positions (256 x 256 pixels) for as many as 10 to the 6th photons/sec with a maximum linear resolution of approximately 10 microns. The sequence of photon positions is recorded digitally with a VHS-format video tape recorder or formed into an immediate image via a microcomputer. The four basic elements of the camera are described in detail: a high-gain image intensifier with fast-decay output phosphor, a glass-prism optical-beam splitter, a set of Gray-coded masks, and a photomultiplier tube for each mask. The characteristics of the camera are compared to those of other photon cameras.

  7. Proactive PTZ Camera Control

    Science.gov (United States)

    Qureshi, Faisal Z.; Terzopoulos, Demetri

    We present a visual sensor network—comprising wide field-of-view (FOV) passive cameras and pan/tilt/zoom (PTZ) active cameras—capable of automatically capturing closeup video of selected pedestrians in a designated area. The passive cameras can track multiple pedestrians simultaneously and any PTZ camera can observe a single pedestrian at a time. We propose a strategy for proactive PTZ camera control where cameras plan ahead to select optimal camera assignment and handoff with respect to predefined observational goals. The passive cameras supply tracking information that is used to control the PTZ cameras.

  8. Principle of some gamma cameras (efficiencies, limitations, development)

    International Nuclear Information System (INIS)

    The quality of scintigraphic images is shown to depend on the efficiency of both the input collimator and the detector. Methods are described by which the quality of these images may be improved by adaptations to either the collimator (Fresnel zone camera, Compton effect camera) or the detector (Anger camera, image amplification camera). The Anger camera and image amplification camera are at present the two main instruments whereby acceptable space and energy resolutions may be obtained. A theoretical comparative study of their efficiencies is carried out, independently of their technological differences, after which the instruments designed or under study at the LETI are presented: these include the image amplification camera, the electron amplifier tube camera using a semi-conductor target CdTe and HgI2 detector

  9. Electronographic cameras for space astronomy.

    Science.gov (United States)

    Carruthers, G. R.; Opal, C. B.

    1972-01-01

    Magnetically-focused electronographic cameras have been under development at the Naval Research Laboratory for use in far-ultraviolet imagery and spectrography, primarily in astronomical and optical-geophysical observations from sounding rockets and space vehicles. Most of this work has been with cameras incorporating internal optics of the Schmidt or wide-field all-reflecting types. More recently, we have begun development of electronographic spectrographs incorporating an internal concave grating, operating at normal or grazing incidence. We also are developing electronographic image tubes of the conventional end-window-photo-cathode type, for far-ultraviolet imagery at the focus of a large space telescope, with image formats up to 120 mm in diameter.

  10. Fine positioning manipulator, especially for repair PWR steam generator tubes

    International Nuclear Information System (INIS)

    The remote fine positioning manipulator has a tool support, displacement means at least in a plane parralel to the tube plate. The fine positioning means of the tool support has a camera directed to the tube plate with its axis parralel to the tubes, lighting means oriented to define by contrast the inside contour of the end of a given tube and processors for digitizing and determining the position of the center of the tube and control the movement of the tool support

  11. Bilamellar type streak tube design

    International Nuclear Information System (INIS)

    In ICF experiments, high dynamic range, high temporal and spatial resolution X-ray streak camera is a necessary diagnosis tool. To meet this requirement, a streak tube which uses bilamellar electrode lens and quadrupolar lens to focus electrons has been designed. This tube uses different ways to focus electrons in temporal axis and spatial axis. In temporal axis, it uses two effectively. The spatial resolution of this tube reaches 40 lp/mm even at the edge of photocathode, the temporal resolution is about 10 ps and the effective length of photocathode is 20 mm. Using different focusing ways in temporal and spatial directions, the tube will not focus electrons to a small spot, compared with conventional rotary and symmetric tubes, and thus its space charge effect is much weaker, and dynamic range is much larger. (authors)

  12. Portable mini gamma camera for medical applications

    CERN Document Server

    Porras, E; Benlloch, J M; El-Djalil-Kadi-Hanifi, M; López, S; Pavon, N; Ruiz, J A; Sánchez, F; Sebastiá, A

    2002-01-01

    A small, portable and low-cost gamma camera for medical applications has been developed and clinically tested. This camera, based on a scintillator crystal and a Position Sensitive Photo-Multiplier Tube, has a useful field of view of 4.6 cm diameter and provides 2.2 mm of intrinsic spatial resolution. Its mobility and light weight allow to reach the patient from any desired direction. This camera images small organs with high efficiency and so addresses the demand for devices of specific clinical applications. In this paper, we present the camera and briefly describe the procedures that have led us to choose its configuration and the image reconstruction method. The clinical tests and diagnostic capability are also presented and discussed.

  13. Portable mini gamma camera for medical applications

    International Nuclear Information System (INIS)

    A small, portable and low-cost gamma camera for medical applications has been developed and clinically tested. This camera, based on a scintillator crystal and a Position Sensitive Photo-Multiplier Tube, has a useful field of view of 4.6 cm diameter and provides 2.2 mm of intrinsic spatial resolution. Its mobility and light weight allow to reach the patient from any desired direction. This camera images small organs with high efficiency and so addresses the demand for devices of specific clinical applications. In this paper, we present the camera and briefly describe the procedures that have led us to choose its configuration and the image reconstruction method. The clinical tests and diagnostic capability are also presented and discussed

  14. Preliminary field evaluation of solid state cameras for security applications

    International Nuclear Information System (INIS)

    Recent developments in solid state imager technology have resulted in a series of compact, lightweight, all-solid-state closed circuit television (CCTV) cameras. Although it is widely known that the various solid state cameras have less light sensitivity and lower resolution than their vacuum tube counterparts, the potential for having a much longer Mean Time Between Failure (MTBF) for the all-solid-state cameras is generating considerable interest within the security community. Questions have been raised as to whether the newest and best of the solid state cameras are a viable alternative to the high maintenance vacuum tube cameras in exterior security applications. To help answer these questions, a series of tests were performed by Sandia National Laboratories at various test sites and under several lighting conditions. The results of these tests as well as a description of the test equipment, test sites, and procedures are presented in this report

  15. Harpicon camera for HDTV

    Science.gov (United States)

    Tanada, Jun

    1992-08-01

    Ikegami has been involved in broadcast equipment ever since it was established as a company. In conjunction with NHK it has brought forth countless television cameras, from black-and-white cameras to color cameras, HDTV cameras, and special-purpose cameras. In the early days of HDTV (high-definition television, also known as "High Vision") cameras the specifications were different from those for the cameras of the present-day system, and cameras using all kinds of components, having different arrangements of components, and having different appearances were developed into products, with time spent on experimentation, design, fabrication, adjustment, and inspection. But recently the knowhow built up thus far in components, , printed circuit boards, and wiring methods has been incorporated in camera fabrication, making it possible to make HDTV cameras by metbods similar to the present system. In addition, more-efficient production, lower costs, and better after-sales service are being achieved by using the same circuits, components, mechanism parts, and software for both HDTV cameras and cameras that operate by the present system.

  16. Digital Pinhole Camera

    Science.gov (United States)

    Lancor, Rachael; Lancor, Brian

    2014-01-01

    In this article we describe how the classic pinhole camera demonstration can be adapted for use with digital cameras. Students can easily explore the effects of the size of the pinhole and its distance from the sensor on exposure time, magnification, and image quality. Instructions for constructing a digital pinhole camera and our method for…

  17. Neutron camera employing row and column summations

    Science.gov (United States)

    Clonts, Lloyd G.; Diawara, Yacouba; Donahue, Jr, Cornelius; Montcalm, Christopher A.; Riedel, Richard A.; Visscher, Theodore

    2016-06-14

    For each photomultiplier tube in an Anger camera, an R.times.S array of preamplifiers is provided to detect electrons generated within the photomultiplier tube. The outputs of the preamplifiers are digitized to measure the magnitude of the signals from each preamplifier. For each photomultiplier tube, a corresponding summation circuitry including R row summation circuits and S column summation circuits numerically add the magnitudes of the signals from preamplifiers for each row and for each column to generate histograms. For a P.times.Q array of photomultiplier tubes, P.times.Q summation circuitries generate P.times.Q row histograms including R entries and P.times.Q column histograms including S entries. The total set of histograms include P.times.Q.times.(R+S) entries, which can be analyzed by a position calculation circuit to determine the locations of events (detection of a neutron).

  18. Scintillating track image camera-SCITIC

    CERN Document Server

    Sato, Akira; Ieiri, Masaharu; Iwata, Soma; Kadowaki, Tetsuhito; Kurosawa, Maki; Nagae, Tomohumi; Nakai, Kozi

    2004-01-01

    A new type of track detector, scintillating track image camera (SCITIC) has been developed. Scintillating track images of particles in a scintillator are focused by an optical lens system on a photocathode on image intesifier tube (IIT). The image signals are amplified by an IIT-cascade and stored by a CCD camera. The performance of the detector has been tested with cosmic-ray muons and with pion- and proton-beams from the KEK 12-GeV proton synchrotron. Data of the test experiments have shown promising features of SCITIC as a triggerable track detector with a variety of possibilities. 7 Refs.

  19. Scintillating track image camera-SCITIC

    International Nuclear Information System (INIS)

    A new type of track detector, scintillating track image camera (SCITIC) has been developed. Scintillating track images of particles in a scintillator are focused by an optical lens system on a photocathode on image intensifier tube (IIT). The image signals are amplified by an IIT-cascade and stored by a CCD camera. The performance of the detector has been tested with cosmic-ray muons and with pion- and proton-beams from the KEK 12-GeV proton synchrotron. Data of the test experiments have shown promising features of SCITIC as a triggerable track detector with a variety of possibilities. (author)

  20. Adapting Virtual Camera Behaviour

    DEFF Research Database (Denmark)

    Burelli, Paolo

    2013-01-01

    In a three-dimensional virtual environment aspects such as narrative and interaction completely depend on the camera since the camera defines the player’s point of view. Most research works in automatic camera control aim to take the control of this aspect from the player to automatically gen......- erate cinematographic game experiences reducing, however, the player’s feeling of agency. We propose a methodology to integrate the player in the camera control loop that allows to design and generate personalised cinematographic expe- riences. Furthermore, we present an evaluation of the afore......- mentioned methodology showing that the generated camera movements are positively perceived by novice asnd intermediate players....

  1. Automated Camera Calibration

    Science.gov (United States)

    Chen, Siqi; Cheng, Yang; Willson, Reg

    2006-01-01

    Automated Camera Calibration (ACAL) is a computer program that automates the generation of calibration data for camera models used in machine vision systems. Machine vision camera models describe the mapping between points in three-dimensional (3D) space in front of the camera and the corresponding points in two-dimensional (2D) space in the camera s image. Calibrating a camera model requires a set of calibration data containing known 3D-to-2D point correspondences for the given camera system. Generating calibration data typically involves taking images of a calibration target where the 3D locations of the target s fiducial marks are known, and then measuring the 2D locations of the fiducial marks in the images. ACAL automates the analysis of calibration target images and greatly speeds the overall calibration process.

  2. HPD camera development for the MAGIC project

    International Nuclear Information System (INIS)

    Today the Hybrid Photon Detector (HPD) is one of the few low light level sensors that can provide an excellent single and multiple photoelectron amplitude resolution. We developed HPDs with a GaAsP photocathode, namely the R9792U-40, together with Hamamatsu photonics. A peak quantum efficiency (QE) exceeds 50% and a pulse width is 2 nsec. In addition, the afterpulsing rate of these tubes is ∝300 times lower compared to that of conventional photomultiplier tubes (PMTs). Here we want to report on the recent progress of the HPD camera development. We also want to discuss the prospects of using it in the MAGIC telescope project

  3. Streak Camera Performance with Large-Format CCD Readout

    International Nuclear Information System (INIS)

    The ICF program at Livermore has a large inventory of optical streak cameras that were built in the 1970s and 1980s. The cameras include micro-channel plate image-intensifier tubes (IIT) that provide signal amplification and early lens-coupled CCD readouts. Today, these cameras are still very functional, but some replacement parts such as the original streak tube, CCD, and IIT are scarce and obsolete. This article describes recent efforts to improve the performance of these cameras using today's advanced CCD readout technologies. Very sensitive, large-format CCD arrays with efficient fiber-optic input faceplates are now available for direct coupling with the streak tube. Measurements of camera performance characteristics including linearity, spatial and temporal resolution, line-spread function, contrast transfer ratio (CTR), and dynamic range have been made for several different camera configurations: CCD coupled directly to the streak tube, CCD directly coupled to the IIT, and the original configuration with a smaller CCD lens coupled to the IIT output. Spatial resolution (limiting visual) with and without the IIT is 8 and 20 lp/mm, respectively, for photocathode current density up to 25% of the Child-Langmuir (C-L) space-charge limit. Temporal resolution (fwhm) deteriorates by about 20% when the cathode current density reaches 10% of the C-L space charge limit. Streak tube operation with large average tube current was observed by illuminating the entire slit region through a Ronchi ruling and measuring the CTR. Sensitivity (CCD electrons per streak tube photoelectron) for the various configurations ranged from 7.5 to 2,700 with read noise of 7.5 to 10.5 electrons. Optimum spatial resolution is achieved when the IIT is removed. Maximum dynamic range requires a configuration where a single photoelectron from the photocathode produces a signal that is 3 to 5 times the read noise

  4. Results of the prototype camera for FACT

    International Nuclear Information System (INIS)

    The maximization of the photon detection efficiency (PDE) is a key issue in the development of cameras for Imaging Atmospheric Cherenkov Telescopes. Geiger-mode Avalanche Photodiodes (G-APD) are a promising candidate to replace the commonly used photomultiplier tubes by offering a larger PDE and in addition a facilitated handling. The FACT (First G-APD Cherenkov Telescope) project evaluates the feasibility of this change by building a camera based on 1440 G-APDs for an existing small telescope. As a first step towards a full camera, a prototype module using 144 G-APDs was successfully built and tested. The strong temperature dependence of G-APDs is compensated using a feedback system, which allows to keep the gain of the G-APDs constant to 0.5%.

  5. GRACE star camera noise

    Science.gov (United States)

    Harvey, Nate

    2016-08-01

    Extending results from previous work by Bandikova et al. (2012) and Inacio et al. (2015), this paper analyzes Gravity Recovery and Climate Experiment (GRACE) star camera attitude measurement noise by processing inter-camera quaternions from 2003 to 2015. We describe a correction to star camera data, which will eliminate a several-arcsec twice-per-rev error with daily modulation, currently visible in the auto-covariance function of the inter-camera quaternion, from future GRACE Level-1B product releases. We also present evidence supporting the argument that thermal conditions/settings affect long-term inter-camera attitude biases by at least tens-of-arcsecs, and that several-to-tens-of-arcsecs per-rev star camera errors depend largely on field-of-view.

  6. Analytical multicollimator camera calibration

    Science.gov (United States)

    Tayman, W.P.

    1978-01-01

    Calibration with the U.S. Geological survey multicollimator determines the calibrated focal length, the point of symmetry, the radial distortion referred to the point of symmetry, and the asymmetric characteristiecs of the camera lens. For this project, two cameras were calibrated, a Zeiss RMK A 15/23 and a Wild RC 8. Four test exposures were made with each camera. Results are tabulated for each exposure and averaged for each set. Copies of the standard USGS calibration reports are included. ?? 1978.

  7. Solid state video cameras

    CERN Document Server

    Cristol, Y

    2013-01-01

    Solid State Video Cameras reviews the state of the art in the field of solid-state television cameras as compiled from patent literature. Organized into 10 chapters, the book begins with the basic array types of solid-state imagers and appropriate read-out circuits and methods. Documents relating to improvement of picture quality, such as spurious signal suppression, uniformity correction, or resolution enhancement, are also cited. The last part considerssolid-state color cameras.

  8. Polarization encoded color camera.

    Science.gov (United States)

    Schonbrun, Ethan; Möller, Guðfríður; Di Caprio, Giuseppe

    2014-03-15

    Digital cameras would be colorblind if they did not have pixelated color filters integrated into their image sensors. Integration of conventional fixed filters, however, comes at the expense of an inability to modify the camera's spectral properties. Instead, we demonstrate a micropolarizer-based camera that can reconfigure its spectral response. Color is encoded into a linear polarization state by a chiral dispersive element and then read out in a single exposure. The polarization encoded color camera is capable of capturing three-color images at wavelengths spanning the visible to the near infrared. PMID:24690806

  9. LSST Camera Optics Design

    Energy Technology Data Exchange (ETDEWEB)

    Riot, V J; Olivier, S; Bauman, B; Pratuch, S; Seppala, L; Gilmore, D; Ku, J; Nordby, M; Foss, M; Antilogus, P; Morgado, N

    2012-05-24

    The Large Synoptic Survey Telescope (LSST) uses a novel, three-mirror, telescope design feeding a camera system that includes a set of broad-band filters and three refractive corrector lenses to produce a flat field at the focal plane with a wide field of view. Optical design of the camera lenses and filters is integrated in with the optical design of telescope mirrors to optimize performance. We discuss the rationale for the LSST camera optics design, describe the methodology for fabricating, coating, mounting and testing the lenses and filters, and present the results of detailed analyses demonstrating that the camera optics will meet their performance goals.

  10. Microprocessor-controlled, wide-range streak camera

    International Nuclear Information System (INIS)

    Bechtel Nevada/NSTec recently announced deployment of their fifth generation streak camera. This camera incorporates many advanced features beyond those currently available for streak cameras. The arc-resistant driver includes a trigger lockout mechanism, actively monitors input trigger levels, and incorporates a high-voltage fault interrupter for user safety and tube protection. The camera is completely modular and may deflect over a variable full-sweep time of 15 nanoseconds to 500 microseconds. The camera design is compatible with both large- and small-format commercial tubes from several vendors. The embedded microprocessor offers Ethernet connectivity, and XML [extensible markup language]-based configuration management with non-volatile parameter storage using flash-based storage media. The camera's user interface is platform-independent (Microsoft Windows, Unix, Linux, Macintosh OSX) and is accessible using an AJAX [asynchronous Javascript and XML]-equipped modem browser, such as Internet Explorer 6, Firefox, or Safari. User interface operation requires no installation of client software or browser plug-in technology. Automation software can also access the camera configuration and control using HTTP [hypertext transfer protocol]. The software architecture supports multiple-simultaneous clients, multiple cameras, and multiple module access with a standard browser. The entire user interface can be customized

  11. Experiments with and results of inside tube test systems

    International Nuclear Information System (INIS)

    The most frequent test is visual inspection by means of camera systems, nowadays normally using high-resolution CCD cameras. Although they do not reach the resolution of tube cameras, they have the advantage of a more compact design which is of extreme importance for inside tube testing with regard to passableness. The camera systems are fastened to a working head at the front of the inside tube manipulator, and freely movable in all directions by remote control. The photos taken by it are recorded on a videotape, and sound as well as captions may be added at will for documentation purposes. Visual testing is particularly suited for detecting extensive corroded or eroded spots from inside the tube. This is not only true for the welding seam zone, but also for bends, basic material and socket edges. (orig./DG)

  12. Camera Operator and Videographer

    Science.gov (United States)

    Moore, Pam

    2007-01-01

    Television, video, and motion picture camera operators produce images that tell a story, inform or entertain an audience, or record an event. They use various cameras to shoot a wide range of material, including television series, news and sporting events, music videos, motion pictures, documentaries, and training sessions. Those who film or…

  13. The Circular Camera Movement

    DEFF Research Database (Denmark)

    Hansen, Lennard Højbjerg

    2014-01-01

    It has been an accepted precept in film theory that specific stylistic features do not express specific content. Nevertheless, it is possible to find many examples in the history of film in which stylistic features do express specific content: for instance, the circular camera movement is used...... circular camera movement. Keywords: embodied perception, embodied style, explicit narration, interpretation, style pattern, television style...

  14. CCD Luminescence Camera

    Science.gov (United States)

    Janesick, James R.; Elliott, Tom

    1987-01-01

    New diagnostic tool used to understand performance and failures of microelectronic devices. Microscope integrated to low-noise charge-coupled-device (CCD) camera to produce new instrument for analyzing performance and failures of microelectronics devices that emit infrared light during operation. CCD camera also used to indentify very clearly parts that have failed where luminescence typically found.

  15. Thermal Cameras and Applications

    DEFF Research Database (Denmark)

    Gade, Rikke; Moeslund, Thomas B.

    2014-01-01

    Thermal cameras are passive sensors that capture the infrared radiation emitted by all objects with a temperature above absolute zero. This type of camera was originally developed as a surveillance and night vision tool for the military, but recently the price has dropped, significantly opening up...... a broader field of applications. Deploying this type of sensor in vision systems eliminates the illumination problems of normal greyscale and RGB cameras. This survey provides an overview of the current applications of thermal cameras. Applications include animals, agriculture, buildings, gas...... detection, industrial, and military applications, as well as detection, tracking, and recognition of humans. Moreover, this survey describes the nature of thermal radiation and the technology of thermal cameras....

  16. Advanced system for Gamma Cameras modernization

    International Nuclear Information System (INIS)

    Analog and digital gamma cameras still largely used in developing countries. Many of them rely in old hardware electronics, which in many cases limits their use in actual nuclear medicine diagnostic studies. Consequently, there are different worldwide companies that produce medical equipment engaged into a partial or total Gamma Cameras modernization. Present work has demonstrated the possibility of substitution of almost entire signal processing electronics placed at inside a Gamma Camera detector head by a digitizer PCI card. this card includes four 12 Bits Analog-to-Digital-Converters of 50 MHz speed. It has been installed in a PC and controlled through software developed in Lab View. Besides, there were done some changes to the hardware inside the detector head including redesign of the Orientation Display Block (ODA card). Also a new electronic design was added to the Microprocessor Control Block (MPA card) which comprised a PIC micro controller acting as a tuning system for individual Photomultiplier Tubes. The images, obtained by measurement of 99mTc point radioactive source, using modernized camera head demonstrate its overall performance. The system was developed and tested in an old Gamma Camera ORBITER II SIEMENS GAMMASONIC at National Institute of Oncology and Radiobiology (INOR) under CAMELUD project supported by National Program PNOULU and IAEA . (Author)

  17. Ear tube insertion

    Science.gov (United States)

    Myringotomy; Tympanostomy; Ear tube surgery; Pressure equalization tubes; Ventilating tubes; Ear infection - tubes; Otitis - tubes ... trapped fluid can flow out of the middle ear. This prevents hearing loss and reduces the risk ...

  18. Coiled tubing

    International Nuclear Information System (INIS)

    Oil and gas wells that flow on initial completion eventually reach a condition of liquid loading that kills the wells. This results form declining reservoir pressure, decreased gas volume (velocity), increased water production and other factors that cause liquids to accumulate at the bottom of the well and exert back pressure on the formation. This restricts or in some cases prevents fluid entry into the wellbore form the formation. Flowing production can be restored or increased by reducing surface backpressure, well bore stimulation, pressure maintenance or by installing a string of smaller diameter tubing. This paper reports on installation (hanging off) of a concentric string of coiled tubing inside existing production tubing which is an economically viable, safe, convenient and effective alterative for returning some of these liquid loaded )logged-up) wells to flowing status

  19. Structured light camera calibration

    Science.gov (United States)

    Garbat, P.; Skarbek, W.; Tomaszewski, M.

    2013-03-01

    Structured light camera which is being designed with the joined effort of Institute of Radioelectronics and Institute of Optoelectronics (both being large units of the Warsaw University of Technology within the Faculty of Electronics and Information Technology) combines various hardware and software contemporary technologies. In hardware it is integration of a high speed stripe projector and a stripe camera together with a standard high definition video camera. In software it is supported by sophisticated calibration techniques which enable development of advanced application such as real time 3D viewer of moving objects with the free viewpoint or 3D modeller for still objects.

  20. Camera as Cultural Critique

    DEFF Research Database (Denmark)

    Suhr, Christian

    2015-01-01

    What does the use of cameras entail for the production of cultural critique in anthropology? Visual anthropological analysis and cultural critique starts at the very moment a camera is brought into the field or existing visual images are engaged. The framing, distances, and interactions between...... researchers, cameras, and filmed subjects already inherently comprise analytical decisions. It is these ethnographic qualities inherent in audiovisual and photographic imagery that make it of particular value to a participatory anthropological enterprise that seeks to resist analytic closure and seeks instead...

  1. Streak camera time calibration procedures

    Science.gov (United States)

    Long, J.; Jackson, I.

    1978-01-01

    Time calibration procedures for streak cameras utilizing a modulated laser beam are described. The time calibration determines a writing rate accuracy of 0.15% with a rotating mirror camera and 0.3% with an image converter camera.

  2. Microprocessor-controlled, wide-range streak camera

    Energy Technology Data Exchange (ETDEWEB)

    Amy E. Lewis, Craig Hollabaugh

    2006-09-01

    Bechtel Nevada/NSTec recently announced deployment of their fifth generation streak camera. This camera incorporates many advanced features beyond those currently available for streak cameras. The arc-resistant driver includes a trigger lockout mechanism, actively monitors input trigger levels, and incorporates a high-voltage fault interrupter for user safety and tube protection. The camera is completely modular and may deflect over a variable full-sweep time of 15 nanoseconds to 500 microseconds. The camera design is compatible with both large- and small-format commercial tubes from several vendors. The embedded microprocessor offers Ethernet connectivity, and XML [extensible markup language]-based configuration management with non-volatile parameter storage using flash-based storage media. The camera’s user interface is platform-independent (Microsoft Windows, Unix, Linux, Macintosh OSX) and is accessible using an AJAX [asynchronous Javascript and XML]-equipped modem browser, such as Internet Explorer 6, Firefox, or Safari. User interface operation requires no installation of client software or browser plug-in technology. Automation software can also access the camera configuration and control using HTTP [hypertext transfer protocol]. The software architecture supports multiple-simultaneous clients, multiple cameras, and multiple module access with a standard browser. The entire user interface can be customized.

  3. Design and tests of a portable mini gamma camera

    International Nuclear Information System (INIS)

    Design optimization, manufacturing, and tests, both laboratory and clinical, of a portable gamma camera for medical applications are presented. This camera, based on a continuous scintillation crystal and a position-sensitive photomultiplier tube, has an intrinsic spatial resolution of ≅2 mm, an energy resolution of 13% at 140 keV, and linearities of 0.28 mm (absolute) and 0.15 mm (differential), with a useful field of view of 4.6 cm diameter. Our camera can image small organs with high efficiency and so it can address the demand for devices of specific clinical applications like thyroid and sentinel node scintigraphy as well as scintimammography and radio-guided surgery. The main advantages of the gamma camera with respect to those previously reported in the literature are high portability, low cost, and weight (2 kg), with no significant loss of sensitivity and spatial resolution. All the electronic components are packed inside the minigamma camera, and no external electronic devices are required. The camera is only connected through the universal serial bus port to a portable personal computer (PC), where a specific software allows to control both the camera parameters and the measuring process, by displaying on the PC the acquired image on 'real time'. In this article, we present the camera and describe the procedures that have led us to choose its configuration. Laboratory and clinical tests are presented together with diagnostic capabilities of the gamma camera

  4. Advanced CCD camera developments

    Energy Technology Data Exchange (ETDEWEB)

    Condor, A. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    Two charge coupled device (CCD) camera systems are introduced and discussed, describing briefly the hardware involved, and the data obtained in their various applications. The Advanced Development Group Defense Sciences Engineering Division has been actively designing, manufacturing, fielding state-of-the-art CCD camera systems for over a decade. These systems were originally developed for the nuclear test program to record data from underground nuclear tests. Today, new and interesting application for these systems have surfaced and development is continuing in the area of advanced CCD camera systems, with the new CCD camera that will allow experimenters to replace film for x-ray imaging at the JANUS, USP, and NOVA laser facilities.

  5. The BCAM Camera

    CERN Document Server

    Hashemi, K S

    2000-01-01

    The BCAM, or Boston CCD Angle Monitor, is a camera looking at one or more light sources. We describe the application of the The BCAM, or Boston CCD Angle Monitor, is a camera looking at one or more light sources. We describe the application of the BCAM to the ATLAS forward muon detector alignment system. We show that the camera's performance is only weakly dependent upon the brightness, focus and diameter of the source image. Its resolution is dominated by turbulence along the external light path. The camera electronics is radiation-resistant. With a field of view of ± 10 mrad, it tracks the bearing of a light source 16 m away with better than 3 µrad accuracy, well within the ATLAS requirements.

  6. TARGETLESS CAMERA CALIBRATION

    Directory of Open Access Journals (Sweden)

    L. Barazzetti

    2012-09-01

    Full Text Available In photogrammetry a camera is considered calibrated if its interior orientation parameters are known. These encompass the principal distance, the principal point position and some Additional Parameters used to model possible systematic errors. The current state of the art for automated camera calibration relies on the use of coded targets to accurately determine the image correspondences. This paper presents a new methodology for the efficient and rigorous photogrammetric calibration of digital cameras which does not require any longer the use of targets. A set of images depicting a scene with a good texture are sufficient for the extraction of natural corresponding image points. These are automatically matched with feature-based approaches and robust estimation techniques. The successive photogrammetric bundle adjustment retrieves the unknown camera parameters and their theoretical accuracies. Examples, considerations and comparisons with real data and different case studies are illustrated to show the potentialities of the proposed methodology.

  7. Ear Tubes

    Science.gov (United States)

    ... of the ear drum or eustachian tube, Down Syndrome, cleft palate, and barotrauma (injury to the middle ear caused by a reduction of air pressure, ... specialist) may be warranted if you or your child has experienced repeated ... fluid in the middle ear, barotrauma, or have an anatomic abnormality that ...

  8. Imaging of gamma emitters using scintillation cameras

    Science.gov (United States)

    Ricard, Marcel

    2004-07-01

    Since their introduction by Hal Anger in the late 1950s, the gamma cameras have been widely used in the field of nuclear medicine. The original concept is based on the association of a large field of view scintillator optically coupled with an array of photomultiplier tubes (PMTs), in order to locate the position of interactions inside the crystal. Using a dedicated accessory, like a parallel hole collimator, to focus the field of view toward a predefined direction, it is possible to built up an image of the radioactive distribution. In terms of imaging performances, three main characteristics are commonly considered: uniformity, spatial resolution and energy resolution. Major improvements were mainly due to progress in terms of industrial process regarding analogical electronic, crystal growing or PMTs manufacturing. Today's gamma camera is highly digital, from the PMTs to the display. All the corrections are applied "on the fly" using up to date signal processing techniques. At the same time some significant progresses have been achieved in the field of collimators. Finally, two new technologies have been implemented, solid detectors like CdTe or CdZnTe, and pixellized scintillators plus photodiodes or position sensitive photomultiplier tubes. These solutions are particularly well adapted to build dedicated gamma camera for breast or intraoperative imaging.

  9. Imaging of gamma emitters using scintillation cameras

    Energy Technology Data Exchange (ETDEWEB)

    Ricard, Marcel E-mail: ricard@igr.fr

    2004-07-11

    Since their introduction by Hal Anger in the late 1950s, the gamma cameras have been widely used in the field of nuclear medicine. The original concept is based on the association of a large field of view scintillator optically coupled with an array of photomultiplier tubes (PMTs), in order to locate the position of interactions inside the crystal. Using a dedicated accessory, like a parallel hole collimator, to focus the field of view toward a predefined direction, it is possible to built up an image of the radioactive distribution. In terms of imaging performances, three main characteristics are commonly considered: uniformity, spatial resolution and energy resolution. Major improvements were mainly due to progress in terms of industrial process regarding analogical electronic, crystal growing or PMTs manufacturing. Today's gamma camera is highly digital, from the PMTs to the display. All the corrections are applied 'on the fly' using up to date signal processing techniques. At the same time some significant progresses have been achieved in the field of collimators. Finally, two new technologies have been implemented, solid detectors like CdTe or CdZnTe, and pixellized scintillators plus photodiodes or position sensitive photomultiplier tubes. These solutions are particularly well adapted to build dedicated gamma camera for breast or intraoperative imaging.

  10. Imaging of gamma emitters using scintillation cameras

    International Nuclear Information System (INIS)

    Since their introduction by Hal Anger in the late 1950s, the gamma cameras have been widely used in the field of nuclear medicine. The original concept is based on the association of a large field of view scintillator optically coupled with an array of photomultiplier tubes (PMTs), in order to locate the position of interactions inside the crystal. Using a dedicated accessory, like a parallel hole collimator, to focus the field of view toward a predefined direction, it is possible to built up an image of the radioactive distribution. In terms of imaging performances, three main characteristics are commonly considered: uniformity, spatial resolution and energy resolution. Major improvements were mainly due to progress in terms of industrial process regarding analogical electronic, crystal growing or PMTs manufacturing. Today's gamma camera is highly digital, from the PMTs to the display. All the corrections are applied 'on the fly' using up to date signal processing techniques. At the same time some significant progresses have been achieved in the field of collimators. Finally, two new technologies have been implemented, solid detectors like CdTe or CdZnTe, and pixellized scintillators plus photodiodes or position sensitive photomultiplier tubes. These solutions are particularly well adapted to build dedicated gamma camera for breast or intraoperative imaging

  11. Camera Calibration Using Silhouettes

    OpenAIRE

    Boyer, Edmond

    2005-01-01

    This report addresses the problem of estimating camera parameters from images where object silhouettes only are known. Several modeling applications make use of silhouettes, and while calibration methods are well known when considering points or lines matched along image sequences, the problem appears to be more difficult when considering silhouettes. However, such primitives encode also information on camera parameters by the fact that their associated viewing cones should present a common i...

  12. TOUCHSCREEN USING WEB CAMERA

    Directory of Open Access Journals (Sweden)

    Kuntal B. Adak

    2015-10-01

    Full Text Available In this paper we present a web camera based touchscreen system which uses a simple technique to detect and locate finger. We have used a camera and regular screen to achieve our goal. By capturing the video and calculating position of finger on the screen, we can determine the touch position and do some function on that location. Our method is very easy and simple to implement. Even our system requirement is less expensive compare to other techniques.

  13. Gamma camera system

    International Nuclear Information System (INIS)

    A detailed description is given of a novel gamma camera which is designed to produce superior images than conventional cameras used in nuclear medicine. The detector consists of a solid state detector (e.g. germanium) which is formed to have a plurality of discrete components to enable 2-dimensional position identification. Details of the electronic processing circuits are given and the problems and limitations introduced by noise are discussed in full. (U.K.)

  14. Spacecraft camera image registration

    Science.gov (United States)

    Kamel, Ahmed A. (Inventor); Graul, Donald W. (Inventor); Chan, Fred N. T. (Inventor); Gamble, Donald W. (Inventor)

    1987-01-01

    A system for achieving spacecraft camera (1, 2) image registration comprises a portion external to the spacecraft and an image motion compensation system (IMCS) portion onboard the spacecraft. Within the IMCS, a computer (38) calculates an image registration compensation signal (60) which is sent to the scan control loops (84, 88, 94, 98) of the onboard cameras (1, 2). At the location external to the spacecraft, the long-term orbital and attitude perturbations on the spacecraft are modeled. Coefficients (K, A) from this model are periodically sent to the onboard computer (38) by means of a command unit (39). The coefficients (K, A) take into account observations of stars and landmarks made by the spacecraft cameras (1, 2) themselves. The computer (38) takes as inputs the updated coefficients (K, A) plus synchronization information indicating the mirror position (AZ, EL) of each of the spacecraft cameras (1, 2), operating mode, and starting and stopping status of the scan lines generated by these cameras (1, 2), and generates in response thereto the image registration compensation signal (60). The sources of periodic thermal errors on the spacecraft are discussed. The system is checked by calculating measurement residuals, the difference between the landmark and star locations predicted at the external location and the landmark and star locations as measured by the spacecraft cameras (1, 2).

  15. The power of YouTube

    Science.gov (United States)

    Moriarty, Philip

    2014-03-01

    As one of the presenters of the hugely successful Sixty Symbols series of YouTube science videos, Philip Moriarty describes his experiences in front of the camera and how they have transformed his ideas about bringing physics to wider audiences.

  16. Electron tube

    Energy Technology Data Exchange (ETDEWEB)

    Suyama, Motohiro (Hamamatsu, JP); Fukasawa, Atsuhito (Hamamatsu, JP); Arisaka, Katsushi (Los Angeles, CA); Wang, Hanguo (North Hills, CA)

    2011-12-20

    An electron tube of the present invention includes: a vacuum vessel including a face plate portion made of synthetic silica and having a surface on which a photoelectric surface is provided, a stem portion arranged facing the photoelectric surface and made of synthetic silica, and a side tube portion having one end connected to the face plate portion and the other end connected to the stem portion and made of synthetic silica; a projection portion arranged in the vacuum vessel, extending from the stem portion toward the photoelectric surface, and made of synthetic silica; and an electron detector arranged on the projection portion, for detecting electrons from the photoelectric surface, and made of silicon.

  17. Neutron tubes

    Science.gov (United States)

    Leung, Ka-Ngo; Lou, Tak Pui; Reijonen, Jani

    2008-03-11

    A neutron tube or generator is based on a RF driven plasma ion source having a quartz or other chamber surrounded by an external RF antenna. A deuterium or mixed deuterium/tritium (or even just a tritium) plasma is generated in the chamber and D or D/T (or T) ions are extracted from the plasma. A neutron generating target is positioned so that the ion beam is incident thereon and loads the target. Incident ions cause D-D or D-T (or T-T) reactions which generate neutrons. Various embodiments differ primarily in size of the chamber and position and shape of the neutron generating target. Some neutron generators are small enough for implantation in the body. The target may be at the end of a catheter-like drift tube. The target may have a tapered or conical surface to increase target surface area.

  18. Straightening tubes

    International Nuclear Information System (INIS)

    Hexagonal wrapper tubes, especially for nuclear reactor core sub-assemblies, may suffer from unacceptable bow as a result of welding wear pads to the wrapper and heat treatment. Straightening of the bow is effected by a method wherein at each of a series of axially spaced locations the faces or vertices of the tube are measured relative to a reference to determine the direction of bow at the locations. From these measurements, the appropriate axial locations for the application of corrective loading can be determined, whereby by application of the loading at a selected face or vertex for such measurements the bow is reduced. Such loading, by an actuator, can be repeated at the locations until the bow is reduced to within tolerances. (author)

  19. CAOS-CMOS camera.

    Science.gov (United States)

    Riza, Nabeel A; La Torre, Juan Pablo; Amin, M Junaid

    2016-06-13

    Proposed and experimentally demonstrated is the CAOS-CMOS camera design that combines the coded access optical sensor (CAOS) imager platform with the CMOS multi-pixel optical sensor. The unique CAOS-CMOS camera engages the classic CMOS sensor light staring mode with the time-frequency-space agile pixel CAOS imager mode within one programmable optical unit to realize a high dynamic range imager for extreme light contrast conditions. The experimentally demonstrated CAOS-CMOS camera is built using a digital micromirror device, a silicon point-photo-detector with a variable gain amplifier, and a silicon CMOS sensor with a maximum rated 51.3 dB dynamic range. White light imaging of three different brightness simultaneously viewed targets, that is not possible by the CMOS sensor, is achieved by the CAOS-CMOS camera demonstrating an 82.06 dB dynamic range. Applications for the camera include industrial machine vision, welding, laser analysis, automotive, night vision, surveillance and multispectral military systems. PMID:27410361

  20. The Dark Energy Camera

    Energy Technology Data Exchange (ETDEWEB)

    Flaugher, B. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States). et al.

    2015-04-11

    The Dark Energy Camera is a new imager with a 2.2-degree diameter field of view mounted at the prime focus of the Victor M. Blanco 4-meter telescope on Cerro Tololo near La Serena, Chile. The camera was designed and constructed by the Dark Energy Survey Collaboration, and meets or exceeds the stringent requirements designed for the wide-field and supernova surveys for which the collaboration uses it. The camera consists of a five element optical corrector, seven filters, a shutter with a 60 cm aperture, and a CCD focal plane of 250-μm thick fully depleted CCDs cooled inside a vacuum Dewar. The 570 Mpixel focal plane comprises 62 2k x 4k CCDs for imaging and 12 2k x 2k CCDs for guiding and focus. The CCDs have 15μm x 15μm pixels with a plate scale of 0.263" per pixel. A hexapod system provides state-of-the-art focus and alignment capability. The camera is read out in 20 seconds with 6-9 electrons readout noise. This paper provides a technical description of the camera's engineering, construction, installation, and current status.

  1. The Dark Energy Camera

    CERN Document Server

    Flaugher, B; Honscheid, K; Abbott, T M C; Alvarez, O; Angstadt, R; Annis, J T; Antonik, M; Ballester, O; Beaufore, L; Bernstein, G M; Bernstein, R A; Bigelow, B; Bonati, M; Boprie, D; Brooks, D; Buckley-Geer, E J; Campa, J; Cardiel-Sas, L; Castander, F J; Castilla, J; Cease, H; Cela-Ruiz, J M; Chappa, S; Chi, E; Cooper, C; da Costa, L N; Dede, E; Derylo, G; DePoy, D L; de Vicente, J; Doel, P; Drlica-Wagner, A; Eiting, J; Elliott, A E; Emes, J; Estrada, J; Neto, A Fausti; Finley, D A; Flores, R; Frieman, J; Gerdes, D; Gladders, M D; Gregory, B; Gutierrez, G R; Hao, J; Holland, S E; Holm, S; Huffman, D; Jackson, C; James, D J; Jonas, M; Karcher, A; Karliner, I; Kent, S; Kessler, R; Kozlovsky, M; Kron, R G; Kubik, D; Kuehn, K; Kuhlmann, S; Kuk, K; Lahav, O; Lathrop, A; Lee, J; Levi, M E; Lewis, P; Li, T S; Mandrichenko, I; Marshall, J L; Martinez, G; Merritt, K W; Miquel, R; Munoz, F; Neilsen, E H; Nichol, R C; Nord, B; Ogando, R; Olsen, J; Palio, N; Patton, K; Peoples, J; Plazas, A A; Rauch, J; Reil, K; Rheault, J -P; Roe, N A; Rogers, H; Roodman, A; Sanchez, E; Scarpine, V; Schindler, R H; Schmidt, R; Schmitt, R; Schubnell, M; Schultz, K; Schurter, P; Scott, L; Serrano, S; Shaw, T M; Smith, R C; Soares-Santos, M; Stefanik, A; Stuermer, W; Suchyta, E; Sypniewski, A; Tarle, G; Thaler, J; Tighe, R; Tran, C; Tucker, D; Walker, A R; Wang, G; Watson, M; Weaverdyck, C; Wester, W; Woods, R; Yanny, B

    2015-01-01

    The Dark Energy Camera is a new imager with a 2.2-degree diameter field of view mounted at the prime focus of the Victor M. Blanco 4-meter telescope on Cerro Tololo near La Serena, Chile. The camera was designed and constructed by the Dark Energy Survey Collaboration, and meets or exceeds the stringent requirements designed for the wide-field and supernova surveys for which the collaboration uses it. The camera consists of a five element optical corrector, seven filters, a shutter with a 60 cm aperture, and a CCD focal plane of 250 micron thick fully-depleted CCDs cooled inside a vacuum Dewar. The 570 Mpixel focal plane comprises 62 2kx4k CCDs for imaging and 12 2kx2k CCDs for guiding and focus. The CCDs have 15 microns x15 microns pixels with a plate scale of 0.263 arc sec per pixel. A hexapod system provides state-of-the-art focus and alignment capability. The camera is read out in 20 seconds with 6-9 electrons readout noise. This paper provides a technical description of the camera's engineering, construct...

  2. Camera Calibration: a USU Implementation

    OpenAIRE

    Ma, Lili; Chen, YangQuan; Moore, Kevin L.

    2003-01-01

    The task of camera calibration is to estimate the intrinsic and extrinsic parameters of a camera model. Though there are some restricted techniques to infer the 3-D information about the scene from uncalibrated cameras, effective camera calibration procedures will open up the possibility of using a wide range of existing algorithms for 3-D reconstruction and recognition. The applications of camera calibration include vision-based metrology, robust visual platooning and visual docking of mobil...

  3. Extrinsic recalibration in camera networks

    OpenAIRE

    Hermans, Chris; Dumont, Maarten; Bekaert, Philippe

    2007-01-01

    This work addresses the practical problem of keeping a camera network calibrated during a recording session. When dealing with real-time applications, a robust calibration of the camera network needs to be assured, without the burden of a full system recalibration at every (un)intended camera displacement. In this paper we present an efficient algorithm to detect when the extrinsic parameters of a camera are no longer valid, and reintegrate the displaced camera into the previously calibrated ...

  4. Selective-imaging camera

    Science.gov (United States)

    Szu, Harold; Hsu, Charles; Landa, Joseph; Cha, Jae H.; Krapels, Keith A.

    2015-05-01

    How can we design cameras that image selectively in Full Electro-Magnetic (FEM) spectra? Without selective imaging, we cannot use, for example, ordinary tourist cameras to see through fire, smoke, or other obscurants contributing to creating a Visually Degraded Environment (VDE). This paper addresses a possible new design of selective-imaging cameras at firmware level. The design is consistent with physics of the irreversible thermodynamics of Boltzmann's molecular entropy. It enables imaging in appropriate FEM spectra for sensing through the VDE, and displaying in color spectra for Human Visual System (HVS). We sense within the spectra the largest entropy value of obscurants such as fire, smoke, etc. Then we apply a smart firmware implementation of Blind Sources Separation (BSS) to separate all entropy sources associated with specific Kelvin temperatures. Finally, we recompose the scene using specific RGB colors constrained by the HVS, by up/down shifting Planck spectra at each pixel and time.

  5. Automatic Camera Control

    DEFF Research Database (Denmark)

    Burelli, Paolo; Preuss, Mike

    2014-01-01

    Automatically generating computer animations is a challenging and complex problem with applications in games and film production. In this paper, we investigate howto translate a shot list for a virtual scene into a series of virtual camera configurations — i.e automatically controlling the virtual...... camera. We approach this problem by modelling it as a dynamic multi-objective optimisation problem and show how this metaphor allows a much richer expressiveness than a classical single objective approach. Finally, we showcase the application of a multi-objective evolutionary algorithm to generate a shot...

  6. Artificial human vision camera

    Science.gov (United States)

    Goudou, J.-F.; Maggio, S.; Fagno, M.

    2014-10-01

    In this paper we present a real-time vision system modeling the human vision system. Our purpose is to inspire from human vision bio-mechanics to improve robotic capabilities for tasks such as objects detection and tracking. This work describes first the bio-mechanical discrepancies between human vision and classic cameras and the retinal processing stage that takes place in the eye, before the optic nerve. The second part describes our implementation of these principles on a 3-camera optical, mechanical and software model of the human eyes and associated bio-inspired attention model.

  7. The Star Formation Camera

    OpenAIRE

    Scowen, Paul A.; Jansen, Rolf; Beasley, Matthew; Calzetti, Daniela; Desch, Steven; Fullerton, Alex; Gallagher, John; Lisman, Doug; Macenka, Steve; Malhotra, Sangeeta; McCaughrean, Mark; Nikzad, Shouleh; O'Connell, Robert; Oey, Sally; Padgett, Deborah

    2009-01-01

    The Star Formation Camera (SFC) is a wide-field (~15'x19, >280 arcmin^2), high-resolution (18x18 mas pixels) UV/optical dichroic camera designed for the Theia 4-m space-borne space telescope concept. SFC will deliver diffraction-limited images at lambda > 300 nm in both a blue (190-517nm) and a red (517-1075nm) channel simultaneously. Our aim is to conduct a comprehensive and systematic study of the astrophysical processes and environments relevant for the births and life cycles of stars and ...

  8. photomultiplier tubes

    CERN Multimedia

    photomultiplier tubes. A device to convert light into an electric signal (the name is often abbreviated to PM). Photomultipliers are used in all detectors based on scintillating material (i.e. based on large numbers of fibres which produce scintillation light at the passage of a charged particle). A photomultiplier consists of 3 main parts: firstly, a photocathode where photons are converted into electrons by the photoelectric effect; secondly, a multiplier chain consisting of a serie of dynodes which multiply the number of electron; finally, an anode, which collects the resulting current.

  9. photomultiplier tube

    CERN Multimedia

    photomultiplier tubes. A device to convert light into an electric signal (the name is often abbreviated to PM). Photomultipliers are used in all detectors based on scintillating material (i.e. based on large numbers of fibres which produce scintillation light at the passage of a charged particle). A photomultiplier consists of 3 main parts: firstly, a photocathode where photons are converted into electrons by the photoelectric effect; secondly, a multiplier chain consisting of a serie of dynodes which multiply the number of electron; finally, an anode, which collects the resulting current.

  10. Advanced Virgo phase cameras

    Science.gov (United States)

    van der Schaaf, L.; Agatsuma, K.; van Beuzekom, M.; Gebyehu, M.; van den Brand, J.

    2016-05-01

    A century after the prediction of gravitational waves, detectors have reached the sensitivity needed to proof their existence. One of them, the Virgo interferometer in Pisa, is presently being upgraded to Advanced Virgo (AdV) and will come into operation in 2016. The power stored in the interferometer arms raises from 20 to 700 kW. This increase is expected to introduce higher order modes in the beam, which could reduce the circulating power in the interferometer, limiting the sensitivity of the instrument. To suppress these higher-order modes, the core optics of Advanced Virgo is equipped with a thermal compensation system. Phase cameras, monitoring the real-time status of the beam constitute a critical component of this compensation system. These cameras measure the phases and amplitudes of the laser-light fields at the frequencies selected to control the interferometer. The measurement combines heterodyne detection with a scan of the wave front over a photodetector with pin-hole aperture. Three cameras observe the phase front of these laser sidebands. Two of them monitor the in-and output of the interferometer arms and the third one is used in the control of the aberrations introduced by the power recycling cavity. In this paper the working principle of the phase cameras is explained and some characteristic parameters are described.

  11. Make a Pinhole Camera

    Science.gov (United States)

    Fisher, Diane K.; Novati, Alexander

    2009-01-01

    On Earth, using ordinary visible light, one can create a single image of light recorded over time. Of course a movie or video is light recorded over time, but it is a series of instantaneous snapshots, rather than light and time both recorded on the same medium. A pinhole camera, which is simple to make out of ordinary materials and using ordinary…

  12. Photogrammetric camera calibration

    Science.gov (United States)

    Tayman, W.P.; Ziemann, H.

    1984-01-01

    Section 2 (Calibration) of the document "Recommended Procedures for Calibrating Photogrammetric Cameras and Related Optical Tests" from the International Archives of Photogrammetry, Vol. XIII, Part 4, is reviewed in the light of recent practical work, and suggestions for changes are made. These suggestions are intended as a basis for a further discussion. ?? 1984.

  13. Communities, Cameras, and Conservation

    Science.gov (United States)

    Patterson, Barbara

    2012-01-01

    Communities, Cameras, and Conservation (CCC) is the most exciting and valuable program the author has seen in her 30 years of teaching field science courses. In this citizen science project, students and community volunteers collect data on mountain lions ("Puma concolor") at four natural areas and public parks along the Front Range of Colorado.…

  14. The LSST Camera Overview

    Energy Technology Data Exchange (ETDEWEB)

    Gilmore, Kirk; Kahn, Steven A.; Nordby, Martin; Burke, David; O' Connor, Paul; Oliver, John; Radeka, Veljko; Schalk, Terry; Schindler, Rafe; /SLAC

    2007-01-10

    The LSST camera is a wide-field optical (0.35-1um) imager designed to provide a 3.5 degree FOV with better than 0.2 arcsecond sampling. The detector format will be a circular mosaic providing approximately 3.2 Gigapixels per image. The camera includes a filter mechanism and, shuttering capability. It is positioned in the middle of the telescope where cross-sectional area is constrained by optical vignetting and heat dissipation must be controlled to limit thermal gradients in the optical beam. The fast, f/1.2 beam will require tight tolerances on the focal plane mechanical assembly. The focal plane array operates at a temperature of approximately -100 C to achieve desired detector performance. The focal plane array is contained within an evacuated cryostat, which incorporates detector front-end electronics and thermal control. The cryostat lens serves as an entrance window and vacuum seal for the cryostat. Similarly, the camera body lens serves as an entrance window and gas seal for the camera housing, which is filled with a suitable gas to provide the operating environment for the shutter and filter change mechanisms. The filter carousel can accommodate 5 filters, each 75 cm in diameter, for rapid exchange without external intervention.

  15. The world's fastest camera

    CERN Multimedia

    Piquepaille, Roland

    2006-01-01

    This image processor is not your typical digital camera. It took 6 years to 20 people and $6 million to build the "Regional Calorimeter Trigger"(RCT) which will be a component of the Compact Muon Solenoid (CMS) experiment, one of the detectors on the Large Hadron Collider (LHC) in Geneva, Switzerland (1 page)

  16. The method of radiographic testing of tube-to-tube-plate welds for nuclear power plants

    International Nuclear Information System (INIS)

    Non-destructive testing of tube-to-tube-plate welds is a complicated procedure because of small dimensions and inconvenient for control shape of the weld. Especially difficult is testing the joints without nozzle or circular groove in tube plate. The method of examination of these welds, based on the application of the isotopic source and of the compensator of the thickness of absorber is described. The specially developed cameras and equipment are also described. The attained sensitivity of testing enabled meeting the requirements obligatory for nuclear power installations. (author)

  17. Image Sensors Enhance Camera Technologies

    Science.gov (United States)

    2010-01-01

    In the 1990s, a Jet Propulsion Laboratory team led by Eric Fossum researched ways of improving complementary metal-oxide semiconductor (CMOS) image sensors in order to miniaturize cameras on spacecraft while maintaining scientific image quality. Fossum s team founded a company to commercialize the resulting CMOS active pixel sensor. Now called the Aptina Imaging Corporation, based in San Jose, California, the company has shipped over 1 billion sensors for use in applications such as digital cameras, camera phones, Web cameras, and automotive cameras. Today, one of every three cell phone cameras on the planet feature Aptina s sensor technology.

  18. MISR radiometric camera-by-camera Cloud Mask V004

    Data.gov (United States)

    National Aeronautics and Space Administration — This file contains the Radiometric camera-by-camera Cloud Mask dataset. It is used to determine whether a scene is classified as clear or cloudy. A new parameter...

  19. Dual cameras acquisition and display system of retina-like sensor camera and rectangular sensor camera

    Science.gov (United States)

    Cao, Nan; Cao, Fengmei; Lin, Yabin; Bai, Tingzhu; Song, Shengyu

    2015-04-01

    For a new kind of retina-like senor camera and a traditional rectangular sensor camera, dual cameras acquisition and display system need to be built. We introduce the principle and the development of retina-like senor. Image coordinates transformation and interpolation based on sub-pixel interpolation need to be realized for our retina-like sensor's special pixels distribution. The hardware platform is composed of retina-like senor camera, rectangular sensor camera, image grabber and PC. Combined the MIL and OpenCV library, the software program is composed in VC++ on VS 2010. Experience results show that the system can realizes two cameras' acquisition and display.

  20. Influence of optical and geometrical parameters on scintillation detection in gamma camera heads

    International Nuclear Information System (INIS)

    By using a computer simulation program developed for the study of the light collection by photomultiplier tubes in scintillation cameras, the influence of various optical and geometrical parameters of the camera head on the scintillation detection process is examined. In particular, the effect of useful parameters for camera head design such as light guide thickness, photocathode diameter and scintillating crystal, on the PMT response as a function of the distance 'scintillation point - PMT axis' are given. Some parameters inaccessible to experimentation are computed such as the relative contribution of direct light to the total amount collected by PM tubes, the distribution of incidence angles of photon tracks reaching the photocathodes as well as the photon irradiance over the output plane of the camera optical block. In addition, the computed statistical results delivered by this simulation program allow appraisal of the practical limits of the intrinsic spatial resolution of scintillation cameras

  1. Automated Camera Array Fine Calibration

    Science.gov (United States)

    Clouse, Daniel; Padgett, Curtis; Ansar, Adnan; Cheng, Yang

    2008-01-01

    Using aerial imagery, the JPL FineCalibration (JPL FineCal) software automatically tunes a set of existing CAHVOR camera models for an array of cameras. The software finds matching features in the overlap region between images from adjacent cameras, and uses these features to refine the camera models. It is not necessary to take special imagery of a known target and no surveying is required. JPL FineCal was developed for use with an aerial, persistent surveillance platform.

  2. SPECT detectors: the Anger Camera and beyond.

    Science.gov (United States)

    Peterson, Todd E; Furenlid, Lars R

    2011-09-01

    The development of radiation detectors capable of delivering spatial information about gamma-ray interactions was one of the key enabling technologies for nuclear medicine imaging and, eventually, single-photon emission computed tomography (SPECT). The continuous sodium iodide scintillator crystal coupled to an array of photomultiplier tubes, almost universally referred to as the Anger Camera after its inventor, has long been the dominant SPECT detector system. Nevertheless, many alternative materials and configurations have been investigated over the years. Technological advances as well as the emerging importance of specialized applications, such as cardiac and preclinical imaging, have spurred innovation such that alternatives to the Anger Camera are now part of commercial imaging systems. Increased computing power has made it practical to apply advanced signal processing and estimation schemes to make better use of the information contained in the detector signals. In this review we discuss the key performance properties of SPECT detectors and survey developments in both scintillator and semiconductor detectors and their readouts with an eye toward some of the practical issues at least in part responsible for the continuing prevalence of the Anger Camera in the clinic. PMID:21828904

  3. SPECT detectors: the Anger Camera and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Todd E [Institute of Imaging Science, Department of Radiology and Radiological Sciences, Department of Physics, and Program in Chemical and Physical Biology, Vanderbilt University, Nashville, TN (United States); Furenlid, Lars R, E-mail: todd.e.peterson@vanderbilt.edu [Center for Gamma-Ray Imaging, Department of Radiology, and College of Optical Sciences, University of Arizona, Tucson, AZ (United States)

    2011-09-07

    The development of radiation detectors capable of delivering spatial information about gamma-ray interactions was one of the key enabling technologies for nuclear medicine imaging and, eventually, single-photon emission computed tomography (SPECT). The continuous sodium iodide scintillator crystal coupled to an array of photomultiplier tubes, almost universally referred to as the Anger Camera after its inventor, has long been the dominant SPECT detector system. Nevertheless, many alternative materials and configurations have been investigated over the years. Technological advances as well as the emerging importance of specialized applications, such as cardiac and preclinical imaging, have spurred innovation such that alternatives to the Anger Camera are now part of commercial imaging systems. Increased computing power has made it practical to apply advanced signal processing and estimation schemes to make better use of the information contained in the detector signals. In this review we discuss the key performance properties of SPECT detectors and survey developments in both scintillator and semiconductor detectors and their readouts with an eye toward some of the practical issues at least in part responsible for the continuing prevalence of the Anger Camera in the clinic. (topical review)

  4. Scintillating array gamma camera for clinical use

    International Nuclear Information System (INIS)

    Dedicated gamma cameras for specific clinical application are representing a new trend in nuclear medicine. They are based on position sensitive photo multiplier tubes (PSPMT). The main intrinsic limitation of large area PSPMT (5'' diameter) is the photocathode glass window. Coupling to a planar scintillation crystal strongly affects the useful active area and the intrinsic spatial resolution. To overcome this limitation at University of Rome ''La Sapienza'' was developed the first 5'' diameter gamma camera consisting of a Hamamatsu R3292 PSPMT coupled to 50 x 50 YAP:Ce scintillating array. The array pixel size is 2 x 2 mm2 and the overall dimension of multi-crystal is 10 x 10 x 1 cm3. Resistive chains were used to calculate the centroid. The scintillating array produces a focused light spot minimising the spread introduced by PSPMT glass window. The intrinsic spatial resolution varied between 2 and 2.7 mm. The position linearity and useful active area resulted in good agreement with intrinsic one obtained by light spot irradiation. The real limitation was the poor energy resolution of an individual crystal (40%) and the poor uniformity response of PSPMT (within ±15%). A correction matrix was then carried out by which a 57% of total energy resolution was obtained for the whole matrix. The camera is currently operating as single photon emission mammography (SPEM) and it is producing breast functional images for malignant tumour detection using the same geometry as standard X-ray mammography. (orig.)

  5. Camera Surveillance Quadrotor

    OpenAIRE

    Hjelm, Emil; Yousif, Robert

    2015-01-01

    A quadrotor is a helicopter with four rotors placed at equal distance from the crafts centre of gravity, controlled by letting the different rotors generate different amount of thrust. It uses various sensors to stay stable in the air, correct readings from these sensors are therefore critical. By reducing vibrations, electromagnetic interference and external disturbances the quadrotor’s stability can increase. The purpose of this project is to analyse the feasibility of a quadrotor camera su...

  6. The DRAGO gamma camera

    International Nuclear Information System (INIS)

    In this work, we present the results of the experimental characterization of the DRAGO (DRift detector Array-based Gamma camera for Oncology), a detection system developed for high-spatial resolution gamma-ray imaging. This camera is based on a monolithic array of 77 silicon drift detectors (SDDs), with a total active area of 6.7 cm2, coupled to a single 5-mm-thick CsI(Tl) scintillator crystal. The use of an array of SDDs provides a high quantum efficiency for the detection of the scintillation light together with a very low electronics noise. A very compact detection module based on the use of integrated readout circuits was developed. The performances achieved in gamma-ray imaging using this camera are reported here. When imaging a 0.2 mm collimated 57Co source (122 keV) over different points of the active area, a spatial resolution ranging from 0.25 to 0.5 mm was measured. The depth-of-interaction capability of the detector, thanks to the use of a Maximum Likelihood reconstruction algorithm, was also investigated by imaging a collimated beam tilted to an angle of 45 deg. with respect to the scintillator surface. Finally, the imager was characterized with in vivo measurements on mice, in a real preclinical environment.

  7. The Star Formation Camera

    CERN Document Server

    Scowen, Paul A; Beasley, Matthew; Calzetti, Daniela; Desch, Steven; Fullerton, Alex; Gallagher, John; Lisman, Doug; Macenka, Steve; Malhotra, Sangeeta; McCaughrean, Mark; Nikzad, Shouleh; O'Connell, Robert; Oey, Sally; Padgett, Deborah; Rhoads, James; Roberge, Aki; Siegmund, Oswald; Shaklan, Stuart; Smith, Nathan; Stern, Daniel; Tumlinson, Jason; Windhorst, Rogier; Woodruff, Robert

    2009-01-01

    The Star Formation Camera (SFC) is a wide-field (~15'x19, >280 arcmin^2), high-resolution (18x18 mas pixels) UV/optical dichroic camera designed for the Theia 4-m space-borne space telescope concept. SFC will deliver diffraction-limited images at lambda > 300 nm in both a blue (190-517nm) and a red (517-1075nm) channel simultaneously. Our aim is to conduct a comprehensive and systematic study of the astrophysical processes and environments relevant for the births and life cycles of stars and their planetary systems, and to investigate and understand the range of environments, feedback mechanisms, and other factors that most affect the outcome of the star and planet formation process. This program addresses the origins and evolution of stars, galaxies, and cosmic structure and has direct relevance for the formation and survival of planetary systems like our Solar System and planets like Earth. We present the design and performance specifications resulting from the implementation study of the camera, conducted ...

  8. The DRAGO gamma camera

    Science.gov (United States)

    Fiorini, C.; Gola, A.; Peloso, R.; Longoni, A.; Lechner, P.; Soltau, H.; Strüder, L.; Ottobrini, L.; Martelli, C.; Lui, R.; Madaschi, L.; Belloli, S.

    2010-04-01

    In this work, we present the results of the experimental characterization of the DRAGO (DRift detector Array-based Gamma camera for Oncology), a detection system developed for high-spatial resolution gamma-ray imaging. This camera is based on a monolithic array of 77 silicon drift detectors (SDDs), with a total active area of 6.7 cm2, coupled to a single 5-mm-thick CsI(Tl) scintillator crystal. The use of an array of SDDs provides a high quantum efficiency for the detection of the scintillation light together with a very low electronics noise. A very compact detection module based on the use of integrated readout circuits was developed. The performances achieved in gamma-ray imaging using this camera are reported here. When imaging a 0.2 mm collimated C57o source (122 keV) over different points of the active area, a spatial resolution ranging from 0.25 to 0.5 mm was measured. The depth-of-interaction capability of the detector, thanks to the use of a Maximum Likelihood reconstruction algorithm, was also investigated by imaging a collimated beam tilted to an angle of 45° with respect to the scintillator surface. Finally, the imager was characterized with in vivo measurements on mice, in a real preclinical environment.

  9. Readout and processing devices for picosecond streak cameras

    International Nuclear Information System (INIS)

    The use of streak cameras in laboratories working on Laser Fusion is still too often limited by the long procedure required for film processing before delivering an useful diagnostic. Here we present different ways (vacuum low level TV tube, linear solid state array of photodiodes) developed in our laboratory to readout the images of streak cameras. They provide time resolution in the 10 ps range, with one to 32 spatial channels and may be interfaced with the computer data acquisition system now used in Limeil

  10. Iterative reconstruction of detector response of an Anger gamma camera.

    Science.gov (United States)

    Morozov, A; Solovov, V; Alves, F; Domingos, V; Martins, R; Neves, F; Chepel, V

    2015-05-21

    Statistical event reconstruction techniques can give better results for gamma cameras than the traditional centroid method. However, implementation of such techniques requires detailed knowledge of the photomultiplier tube light-response functions. Here we describe an iterative method which allows one to obtain the response functions from flood irradiation data without imposing strict requirements on the spatial uniformity of the event distribution. A successful application of the method for medical gamma cameras is demonstrated using both simulated and experimental data. An implementation of the iterative reconstruction technique capable of operating in real time is presented. We show that this technique can also be used for monitoring photomultiplier gain variations. PMID:25951792

  11. The TrICE Prototype MAMPT Imaging Camera

    OpenAIRE

    Byrum, K.; Cunningham, J.; Drake, G.; Hays, E.; Kieda, D.; Kovacs, E.; Magill, S.(Argonne National Laboratory, Argonne, Illinois, 60439-4815, USA); Nodulmann, L.; Norhtrop, R.; Swordy, S.; Wagner, R. G.; Wakely, S. P.; Wissel, S. A.

    2007-01-01

    The Track Imaging Cerenov Experiment (TrICE) is an air Cerenkov prototype telescope designed to use multi-anode photomultiplier to acheive a high angular resolution for measuring cosmic-ray composition at TeV-PeV energies. The TrICE camera, composed of 16 Hamamatsu R8900 16-channel multi-anode photomultiplier tubes, achieves 0.086 degree angular width per pixel over 1.5 degree wide field of view. We present a description of the TrICE camera design, calibration and performance.

  12. Iterative reconstruction of detector response of an Anger gamma camera

    Science.gov (United States)

    Morozov, A.; Solovov, V.; Alves, F.; Domingos, V.; Martins, R.; Neves, F.; Chepel, V.

    2015-05-01

    Statistical event reconstruction techniques can give better results for gamma cameras than the traditional centroid method. However, implementation of such techniques requires detailed knowledge of the photomultiplier tube light-response functions. Here we describe an iterative method which allows one to obtain the response functions from flood irradiation data without imposing strict requirements on the spatial uniformity of the event distribution. A successful application of the method for medical gamma cameras is demonstrated using both simulated and experimental data. An implementation of the iterative reconstruction technique capable of operating in real time is presented. We show that this technique can also be used for monitoring photomultiplier gain variations.

  13. Los Alamos Pinhole Camera (LAPC): A new flexible x-ray pinhole camera

    International Nuclear Information System (INIS)

    We have recently designed, built and fielded a versatile, multi-channel x-ray pinhole camera. The LAPC was designed to fit into any six inch manipulator (SIM) which is a standardized target chamber diagnostic tube. There are currently compatible SIMs available at the Trident, Omega, and NOVA laser systems. The camera uses 9 pinholes in a 3x3 array to produce images at the film plane. The film housing is designed to hold multiple sheets of stacked x-ray film which also uses a dark-slide to protect the film before exposure. Magnifications of 12, 8, 4 and 2X are selected by slip-on nosecones, which support pinholes, collimators, and blast shields. Individual channel filtering is provided by a 3x3 filterpack containing 9 separate filter sub-packs. Spatial resolution is limited by the pinhole diffraction limit and field of view is dependent on magnification and filterpack diameter

  14. Tracheostomy tube - eating

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000464.htm Tracheostomy tube - eating To use the sharing features on ... when you swallow foods or liquids. Eating and Tracheostomy Tubes When you get your tracheostomy tube, or ...

  15. Development and application of a small gamma camera

    Science.gov (United States)

    Matthews, Kenneth Lee, II

    This work investigates the design, construction, and application of a portable gamma camera based on a single position-sensitive photomultiplier tube (PSPMT) rather than an array of conventional photomultiplier tubes as used in the majority of gamma cameras. The PSPMT is an innovation in phototube design which allows two-dimensional (2-D) position information to be obtained from a single phototube. PSPMT-based portable gamma cameras can have several distinct advantages over portable systems using conventional technology: lower weight, reduced electronics, and smaller size. These advantages imply that PSPMT imagers can be more portable and possibly less expensive than their conventional counterparts. Additionally, this design can be incorporated as modules in conjugate imaging, orthogonal view, or ring detector systems, or even in conventional large-area planar imagers. The PSPMT design is applicable for diagnostic clinical procedures and for basic biomedical research. Clinically, this system could be used for intraoperative imaging; bedside imaging of non-transportable patients, e.g., in an intensive care unit, nursing home, or burn unit; and imaging in outpatient settings. In research settings such as radiopharmaceutical development laboratories, the PSPMT camera is suitable for imaging of small animals. The University of Chicago Small Gamma Camera (SGC) is a PSPMT-based gamma camera. Two SGC systems have been designed and constructed. Computer simulations and physical measurements have been applied to the performance characterization of the SGC. A maximum-likelihood position estimation scheme has been implemented in the system in place of the Anger position estimation scheme used in the majority of conventional gamma cameras. The SGC has been evaluated for several nuclear medicine imaging applications as well as laboratory research imaging. The clinical applications include planar and tomographic imaging. Radiotracer imaging with the SGC has been applied to the

  16. An ISPA-camera for gamma rays

    CERN Document Server

    Puertolas, D; Pani, R; Leutz, H; Gys, Thierry; De Notaristefani, F; D'Ambrosio, C

    1995-01-01

    With the recently developed ISPA (Imaging Silicon Pixel Array)-tube attached either to a planar YAlO3(Ce) (YAP) disc (1mm thick) or to a matrix of optically-separated YAP-crystals (5mm high, 0.6 x 0.6 mm2 cross-section) we achieved high spatial resolution of 57Co-122 keV photons. The vacuum-sealed ISPA-tube is only 4 cm long with 3.5 cm diameter and consists of a photocathode viewed at 3 cm distance by a silicon pixel chip, directly detecting the photoelectrons. The chip-anode consists of 1024 rectangular pixels with 75 µm x 500 µm edges, each bump-bonded to their individual front-end electronics. The total pixel array read-out time is 10 µs. The measured intrinsic spatial resolutions (FWHM) of this ISPA-camera are 700 µm (planar YAP) and 310 µm (YAP-matrix). Apart from its already demonstrated application for particle tracking with scintillating fibres, the ISPA-tube provides also an excellent tool in medicine, biology and chemistry.

  17. Titanium condenser tubes

    International Nuclear Information System (INIS)

    The corrosion resistance of titanium in sea water is extremely excellent, but titanium tubes are expensive, and the copper alloy tubes resistant in polluted sea water were developed, therefore they were not used practically. In 1970, ammonia attack was found on the copper alloy tubes in the air-cooled portion of condensers, and titanium tubes have been used as the countermeasure. As the result of the use, the galvanic attack an copper alloy tube plates with titanium tubes as cathode and the hydrogen absorption at titanium tube ends owing to excess electrolytic protection were observed, but the corrosion resistance of titanium tubes was perfect. These problems can be controlled by the application of proper electrolytic protection. The condensers with all titanium tubes adopted recently in USA are intended to realize perfectly no-leak condensers as the countermeasure to the corrosion in steam generators of PWR plants. Regarding large condensers of nowadays, three problems are pointed out, namely the vibration of condenser tubes, the method of joining tubes and tube plates, and the tubes of no coolant leak. These three problems in case of titanium tubes were studied, and the problem of the fouling of tubes was also examined. The intervals of supporting plates for titanium tubes should be narrowed. The joining of titanium tubes and titanium tube plates by welding is feasible and promising. The cleaning with sponge balls is effective to control fouling. (Kako, I.)

  18. PAU camera: detectors characterization

    Science.gov (United States)

    Casas, Ricard; Ballester, Otger; Cardiel-Sas, Laia; Castilla, Javier; Jiménez, Jorge; Maiorino, Marino; Pío, Cristóbal; Sevilla, Ignacio; de Vicente, Juan

    2012-07-01

    The PAU Camera (PAUCam) [1,2] is a wide field camera that will be mounted at the corrected prime focus of the William Herschel Telescope (Observatorio del Roque de los Muchachos, Canary Islands, Spain) in the next months. The focal plane of PAUCam is composed by a mosaic of 18 CCD detectors of 2,048 x 4,176 pixels each one with a pixel size of 15 microns, manufactured by Hamamatsu Photonics K. K. This mosaic covers a field of view (FoV) of 60 arcmin (minutes of arc), 40 of them are unvignetted. The behaviour of these 18 devices, plus four spares, and their electronic response should be characterized and optimized for the use in PAUCam. This job is being carried out in the laboratories of the ICE/IFAE and the CIEMAT. The electronic optimization of the CCD detectors is being carried out by means of an OG (Output Gate) scan and maximizing it CTE (Charge Transfer Efficiency) while the read-out noise is minimized. The device characterization itself is obtained with different tests. The photon transfer curve (PTC) that allows to obtain the electronic gain, the linearity vs. light stimulus, the full-well capacity and the cosmetic defects. The read-out noise, the dark current, the stability vs. temperature and the light remanence.

  19. Stereoscopic camera design

    Science.gov (United States)

    Montgomery, David J.; Jones, Christopher K.; Stewart, James N.; Smith, Alan

    2002-05-01

    It is clear from the literature that the majority of work in stereoscopic imaging is directed towards the development of modern stereoscopic displays. As costs come down, wider public interest in this technology is expected to increase. This new technology would require new methods of image formation. Advances in stereo computer graphics will of course lead to the creation of new stereo computer games, graphics in films etc. However, the consumer would also like to see real-world stereoscopic images, pictures of family, holiday snaps etc. Such scenery would have wide ranges of depth to accommodate and would need also to cope with moving objects, such as cars, and in particular other people. Thus, the consumer acceptance of auto/stereoscopic displays and 3D in general would be greatly enhanced by the existence of a quality stereoscopic camera. This paper will cover an analysis of existing stereoscopic camera designs and show that they can be categorized into four different types, with inherent advantages and disadvantages. A recommendation is then made with regard to 3D consumer still and video photography. The paper will go on to discuss this recommendation and describe its advantages and how it can be realized in practice.

  20. Development and evaluation of a Gamma Camera tuning system

    International Nuclear Information System (INIS)

    Correct operation of conventional analogue Gamma Cameras implies a good conformation of the position signals that correspond to a specific photo-peak of the radionuclide of interest. In order to achieve this goal the energy spectrum from each photo multiplier tube (PMT) has to be set within the same energy window. For this reason a reliable tuning system is an important part of all gamma cameras processing systems. In this work is being tested and evaluated a new prototype of tuning card that was developed and setting up for this purpose. The hardware and software of the circuit allow the regulation if each PMT high voltage. By this means a proper gain control for each of them is accomplished. The Tuning Card prototype was simulated in a virtual model and its satisfactory operation was proven in a Siemens Orbiter Gamma Camera. (Author)

  1. Inflation of Stressed Cylindrical Tubes: An Experimental Study

    OpenAIRE

    Guo, Zhiming; Wang, Shibin; Li, Linan; Ji, Hongwei; Wang, Zhiyong; Cai, Songbao

    2013-01-01

    The inflation of an initially stressed cylindrical shell provides a good illustration of the phenomenon of the initiation and propagation of an instability, which shares the same mathematical and mechanical features with a variety of other strain localization phenomena in engineering structures and materials. The high speed CCD camera and digital image processing system were used to measure the 3D shape of the inflated cylindrical tube. The localized bulge of a cylindrical tube with closed en...

  2. Novel gamma cameras

    International Nuclear Information System (INIS)

    The gamma-ray cameras described are based on radiation imaging devices which permit the direct recording of the distribution of radioactive material from a radiative source, such as a human organ. They consist in principle of a collimator, a converter matrix converting gamma photons to electrons, and an electron image multiplier producing a multiplied electron output, and means for reading out the information. The electron image multiplier is a device which produces a multiplied electron image. It can be in principle, either gas avalanche electron multiplier or a multi-channel plate. The multi-channel plate employed is a novel device, described elsewhere. The three described embodiments, in which the converter matrix can be either of metal type or of scintillation crystal type, were designed and are being developed

  3. Neutron Imaging Camera

    Science.gov (United States)

    Hunter, Stanley D.; DeNolfo, Georgia; Floyd, Sam; Krizmanic, John; Link, Jason; Son, Seunghee; Guardala, Noel; Skopec, Marlene; Stark, Robert

    2008-01-01

    We describe the Neutron Imaging Camera (NIC) being developed for DTRA applications by NASA/GSFC and NSWC/Carderock. The NIC is based on the Three-dimensional Track Imager (3-DTI) technology developed at GSFC for gamma-ray astrophysics applications. The 3-DTI, a large volume time-projection chamber, provides accurate, approximately 0.4 mm resolution. 3-D tracking of charged particles. The incident direction of fast neutrons, E(sub N) > 0.5 MeV. arc reconstructed from the momenta and energies of the proton and triton fragments resulting from 3He(n,p)3H interactions in the 3-DTI volume. We present angular and energy resolution performance of the NIC derived from accelerator tests.

  4. Focussed radiographic camera

    International Nuclear Information System (INIS)

    A radiographic camera of the form employing a scintillator for producing optical photons in response to incident gamma and x-radiation is described. A collimator is positioned between a subject emitting such radiation and the scintillator for guiding the radiation to the scintillator and a detector of optical photons for signaling the positions of points of impingement of quanta of the incident radiation upon the scintillator to produce an image of the subject. A Fresnel focussing means is located alongside the scintillator for directing the optical photons to the detector. The Fresnel focussing means takes the form of a segmented mirror at the front surface of the scintillator and a Fresnel lens at the back surface of the scintillator

  5. Electron tubes and image intensifiers; Proceedings of the Meeting, San Jose, CA, Feb. 10, 11, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, C.B.; Laprade, B.N. (Litton Electron Devices, Tempe, AZ (United States) Galileo Electro-Optics Corp., Sturbridge, MA (United States))

    1992-01-01

    Various papers on electron tubes and image intensifiers are presented. Individual topics addressed include: high-performance LLTV CCD camera for nighttime pilotage, characterization and modelling of microchannel-plate intensified-CCD SNR variations with image size, high-resolution vidicon-based readout system for photon-counting streak camera applications, advancement in microchannel-plate technology, and fractal multifiber microchannel plates.

  6. Electron tubes and image intensifiers; Proceedings of the Meeting, San Jose, CA, Feb. 10, 11, 1992

    Science.gov (United States)

    Johnson, C. B.; Laprade, Bruce N.

    Various papers on electron tubes and image intensifiers are presented. Individual topics addressed include: high-performance LLTV CCD camera for nighttime pilotage, characterization and modelling of microchannel-plate intensified-CCD SNR variations with image size, high-resolution vidicon-based readout system for photon-counting streak camera applications, advancement in microchannel-plate technology, and fractal multifiber microchannel plates.

  7. The electronics system for the LBNL positron emission tomography (PEM) camera

    OpenAIRE

    Moses, W. W.; Young, J.W.; Baker, K.; Jones, W; Lenox, M.; Ho, M. H.; Weng, M.

    2000-01-01

    We describe the electronics for a high performance Positron Emission Mammography (PEM) camera. It is based on the electronics for a human brain PET camera (the Siemens/CTI HRRT), modified to use a detector module that incorporates a photodiode (PD) array. An ASIC services the PD array, amplifying its signal and identifying the crystal of interaction. Another ASIC services the photomultiplier tube (PMT), measuring its output and providing a timing signal. Field programmable gate arrays (...

  8. LISS-4 camera for Resourcesat

    Science.gov (United States)

    Paul, Sandip; Dave, Himanshu; Dewan, Chirag; Kumar, Pradeep; Sansowa, Satwinder Singh; Dave, Amit; Sharma, B. N.; Verma, Anurag

    2006-12-01

    The Indian Remote Sensing Satellites use indigenously developed high resolution cameras for generating data related to vegetation, landform /geomorphic and geological boundaries. This data from this camera is used for working out maps at 1:12500 scale for national level policy development for town planning, vegetation etc. The LISS-4 Camera was launched onboard Resourcesat-1 satellite by ISRO in 2003. LISS-4 is a high-resolution multi-spectral camera with three spectral bands and having a resolution of 5.8m and swath of 23Km from 817 Km altitude. The panchromatic mode provides a swath of 70Km and 5-day revisit. This paper briefly discusses the configuration of LISS-4 Camera of Resourcesat-1, its onboard performance and also the changes in the Camera being developed for Resourcesat-2. LISS-4 camera images the earth in push-broom mode. It is designed around a three mirror un-obscured telescope, three linear 12-K CCDs and associated electronics for each band. Three spectral bands are realized by splitting the focal plane in along track direction using an isosceles prism. High-speed Camera Electronics is designed for each detector with 12- bit digitization and digital double sampling of video. Seven bit data selected from 10 MSBs data by Telecommand is transmitted. The total dynamic range of the sensor covers up to 100% albedo. The camera structure has heritage of IRS- 1C/D. The optical elements are precisely glued to specially designed flexure mounts. The camera is assembled onto a rotating deck on spacecraft to facilitate +/- 26° steering in Pitch-Yaw plane. The camera is held on spacecraft in a stowed condition before deployment. The excellent imageries from LISS-4 Camera onboard Resourcesat-1 are routinely used worldwide. Such second Camera is being developed for Resourcesat-2 launch in 2007 with similar performance. The Camera electronics is optimized and miniaturized. The size and weight are reduced to one third and the power to half of the values in Resourcesat

  9. Computer simulation of the light collection process in scintillation gamma-ray cameras

    International Nuclear Information System (INIS)

    A computer simulation program based on the Monte Carlo method is presented. The physical model takes into account the main phenomena which occur from the interaction of a gamma quantum with the scintillating crystal to the primary electron emission by the photocathode of photomultiplier tubes closely coupled to the large scintillator plate of the camera head. Computed and experimental results of the mean values as well as the statistical characteristics of signals delivered by the photomultiplier tubes are found to be in good agreement for various camera head configurations. The usefulness of this computer program is shown

  10. Design of microcontroller based system for automation of streak camera

    International Nuclear Information System (INIS)

    A microcontroller based system has been developed for automation of the S-20 optical streak camera, which is used as a diagnostic tool to measure ultrafast light phenomenon. An 8 bit MCS family microcontroller is employed to generate all control signals for the streak camera. All biasing voltages required for various electrodes of the tubes are generated using dc-to-dc converters. A high voltage ramp signal is generated through a step generator unit followed by an integrator circuit and is applied to the camera's deflecting plates. The slope of the ramp can be changed by varying values of the capacitor and inductor. A programmable digital delay generator has been developed for synchronization of ramp signal with the optical signal. An independent hardwired interlock circuit has been developed for machine safety. A LABVIEW based graphical user interface has been developed which enables the user to program the settings of the camera and capture the image. The image is displayed with intensity profiles along horizontal and vertical axes. The streak camera was calibrated using nanosecond and femtosecond lasers.

  11. Design of microcontroller based system for automation of streak camera

    Science.gov (United States)

    Joshi, M. J.; Upadhyay, J.; Deshpande, P. P.; Sharma, M. L.; Navathe, C. P.

    2010-08-01

    A microcontroller based system has been developed for automation of the S-20 optical streak camera, which is used as a diagnostic tool to measure ultrafast light phenomenon. An 8 bit MCS family microcontroller is employed to generate all control signals for the streak camera. All biasing voltages required for various electrodes of the tubes are generated using dc-to-dc converters. A high voltage ramp signal is generated through a step generator unit followed by an integrator circuit and is applied to the camera's deflecting plates. The slope of the ramp can be changed by varying values of the capacitor and inductor. A programmable digital delay generator has been developed for synchronization of ramp signal with the optical signal. An independent hardwired interlock circuit has been developed for machine safety. A LABVIEW based graphical user interface has been developed which enables the user to program the settings of the camera and capture the image. The image is displayed with intensity profiles along horizontal and vertical axes. The streak camera was calibrated using nanosecond and femtosecond lasers.

  12. Effect of scatter media on small gamma camera imaging characteristics

    International Nuclear Information System (INIS)

    Effect of scatter media materials and thickness, located between radioactivity and small gamma camera, on imaging characteristics was evaluated. The small gamma camera developed for breast imaging was consisted of collimator, NaI(TI) crystal (60x60x6 mm3). PSPMT (position sensitive photomultiplier tube), NIMs and personal computer. Monte Carlo simulation was performed to evaluate the system sensitivity with different scatter media thickness (0∼8 cm) and materials (air and acrylie) with parallel hole collimator and diverging collimator. The sensitivity and spatial resolution was measured using the small gamma camera with the same condition applied to the simulation. Counts was decreased by 10% (air) and 54% (acrylic) with the parallel hole collimator and by 35% (air) and 63% (acrylic) with the diverging collimator. Spatial resolution was decreased as increasing the thickness of scatter media. This study substantiate the importance of a gamma camera positioning and the minimization of the distance between detector and target lesion in the clinical application of a gamma camera

  13. Coincidence ion imaging with a fast frame camera

    International Nuclear Information System (INIS)

    A new time- and position-sensitive particle detection system based on a fast frame CMOS (complementary metal-oxide semiconductors) camera is developed for coincidence ion imaging. The system is composed of four major components: a conventional microchannel plate/phosphor screen ion imager, a fast frame CMOS camera, a single anode photomultiplier tube (PMT), and a high-speed digitizer. The system collects the positional information of ions from a fast frame camera through real-time centroiding while the arrival times are obtained from the timing signal of a PMT processed by a high-speed digitizer. Multi-hit capability is achieved by correlating the intensity of ion spots on each camera frame with the peak heights on the corresponding time-of-flight spectrum of a PMT. Efficient computer algorithms are developed to process camera frames and digitizer traces in real-time at 1 kHz laser repetition rate. We demonstrate the capability of this system by detecting a momentum-matched co-fragments pair (methyl and iodine cations) produced from strong field dissociative double ionization of methyl iodide

  14. Gamma camera system

    International Nuclear Information System (INIS)

    The invention provides a composite solid state detector for use in deriving a display, by spatial coordinate information, of the distribution or radiation emanating from a source within a region of interest, comprising several solid state detector components, each having a given surface arranged for exposure to impinging radiation and exhibiting discrete interactions therewith at given spatially definable locations. The surface of each component and the surface disposed opposite and substantially parallel thereto are associated with impedence means configured to provide for each opposed surface outputs for signals relating the given location of the interactions with one spatial coordinate parameter of one select directional sense. The detector components are arranged to provide groupings of adjacently disposed surfaces mutually linearly oriented to exhibit a common directional sense of the spatial coordinate parameter. Means interconnect at least two of the outputs associated with each of the surfaces within a given grouping for collecting the signals deriving therefrom. The invention also provides a camera system for imaging the distribution of a source of gamma radiation situated within a region of interest

  15. Design Considerations for the Next-Generation MAPMT-Based Monolithic Scintillation Camera

    OpenAIRE

    Salçın, Esen; Barber, H. Bradford; Furenlid, Lars R.

    2011-01-01

    Multi-anode photomultiplier tubes (MAPMTs) offer high spatial resolution with their small size anodes that may range from 64 to 1024 in number per tube. In order to increase detector size, MAPMT modules can be arranged in arrays and combined in a single modular scintillation camera. However, then the large number of channels that require amplification and digitization become practically not feasible unless signals are combined or reduced in some manner. Conventional approaches use resistive c...

  16. Neural Tube Defects

    Science.gov (United States)

    Neural tube defects are birth defects of the brain, spine, or spinal cord. They happen in the first month ... that she is pregnant. The two most common neural tube defects are spina bifida and anencephaly. In spina bifida, ...

  17. Tracheostomy tube - speaking

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000465.htm Tracheostomy tube - speaking To use the sharing features on ... are even speaking devices that can help you. Tracheostomy Tubes and Speaking Air passing through vocal cords ( ...

  18. Development of underwater camera using high-definition camera

    International Nuclear Information System (INIS)

    In order to reduce the time for core verification or visual inspection of BWR fuels, the underwater camera using a High-Definition camera has been developed. As a result of this development, the underwater camera has 2 lights and 370 x 400 x 328mm dimensions and 20.5kg weight. Using the camera, 6 or so spent-fuel IDs are identified at 1 or 1.5m distance at a time, and 0.3mmφ pin-hole is recognized at 1.5m distance and 20 times zoom-up. Noises caused by radiation less than 15 Gy/h are not affected the images. (author)

  19. Evaluation of the Effect of Tube Pitch and Surface Alterations on Temperature Field at Sprinkled Tube Bundle

    Directory of Open Access Journals (Sweden)

    Kracík Petr

    2015-01-01

    Full Text Available Water flowing on a sprinkled tube bundle forms three basic modes: It is the Droplet mode (liquid drips from one tube to another, the Jet mode (with an increasing flow rate droplets merge into a column and the Membrane (Sheet mode (with further increasing of falling film liquid flow rate columns merge and create sheets between the tubes. With sufficient flow rate sheets merge at this state and the tube bundle is completely covered by a thin liquid film. There are several factors influencing the individual mode types as well as heat transfer. Beside the above mentioned falling film liquid flow rate they are for instance tube diameters, tube pitches in a tube bundle or a physical condition of a falling film liquid. This paper presents a summary of data measured at atmospheric pressure at a tube bundle consisting of copper tubes of 12 milimeters diameter and of the studied tube length one meter. The tubes are positioned horizontally one above another with the tested pitches of 15, 20, 25 and 30 mm and there is a distribution tube placed above them with water flowing out. The thermal gradient of 15–40 has been tested with all pitches where the falling film liquid’s temperature at the inlet of the distribution tube was 15 °C. The liquid was heated during the flow through the exchanger and the temperature of the sprinkled (heater liquid at the inlet of the exchanger with a constant flow rate about 7.2 litres per minute was 40 °C. The tested flow of the falling film liquid ranged from 1.0 to 13.0 litres per minute. Sequences of 180 exposures have been recorded in partial flow rate stages by thermographic camera with record frequency of 30 Hz which were consequently assessed using the Matlab programme. This paper presents results achieved at the above mentioned pitches and at three types of tube bundle surfaces.

  20. Gastrostomy feeding tube - bolus

    Science.gov (United States)

    ... a gastrostomy tube. Delmar’s Fundamental and Advanced Nursing Skills . 2nd Ed. Albany, NY: Delmar Thomson Learning; 2003: 742-749. Simmons, Remmington R.The percutaneous endoscopic gastrostomy tube: a nurse's guide to PEG tubes. Medsurg Nurs . 2013 Mar- ...

  1. KER-2 tube history

    Energy Technology Data Exchange (ETDEWEB)

    Banister, W.C.

    1963-08-16

    Zirconium process tube No. 1986 was installed in KE Reactor tube channel No. 2864 on April 16, 1959. This report describes the history and the conditions to which it was exposed during its residence in the reactor. The tube was removed on May 31, 1963.

  2. A liquid xenon radioisotope camera.

    Science.gov (United States)

    Zaklad, H.; Derenzo, S. E.; Muller, R. A.; Smadja, G.; Smits, R. G.; Alvarez, L. W.

    1972-01-01

    A new type of gamma-ray camera is discussed that makes use of electron avalanches in liquid xenon and is currently under development. It is shown that such a radioisotope camera promises many advantages over any other existing gamma-ray cameras. Spatial resolution better than 1 mm and counting rates higher than one million C/sec are possible. An energy resolution of 11% FWHM has recently been achieved with a collimated Hg-203 source using a parallel-plate ionization chamber containing a Frisch grid.

  3. Exposure interlock for oscilloscope cameras

    Science.gov (United States)

    Spitzer, C. R.; Stainback, J. D. (Inventor)

    1973-01-01

    An exposure interlock has been developed for oscilloscope cameras which cuts off ambient light from the oscilloscope screen before the shutter of the camera is tripped. A flap is provided which may be selectively positioned to an open position which enables viewing of the oscilloscope screen and a closed position which cuts off the oscilloscope screen from view and simultaneously cuts off ambient light from the oscilloscope screen. A mechanical interlock is provided between the flap to be activated to its closed position before the camera shutter is tripped, thereby preventing overexposure of the film.

  4. Citizen Camera-Witnessing: A Case Study of the Umbrella Movement

    Directory of Open Access Journals (Sweden)

    Wai Han Lo

    2016-08-01

    Full Text Available Citizen camera-witness is a new concept by which to describe using mobile camera phone to engage in civic expression. I argue that the meaning of this concept should not be limited to painful testimony; instead, it is a mode of civic camera-mediated mass self-testimony to brutality. The use of mobile phone recordings in Hong Kong’s Umbrella Movement is examined to understand how mobile cameras are employed as personal witnessing devices to provide recordings to indict unjust events and engage others in the civic movement. This study has examined the Facebook posts and You Tube videos of the Umbrella Movement between September 22, 2014 and December 22, 2014. The results suggest that the camera phone not only contributes to witnessing the brutal repression of the state, but also witnesses the beauty of the movement, and provides a testimony that allows for rituals to develop and semi-codes to be transformed.

  5. Standard design for National Ignition Facility x-ray streak and framing cameras

    International Nuclear Information System (INIS)

    The x-ray streak camera and x-ray framing camera for the National Ignition Facility were redesigned to improve electromagnetic pulse hardening, protect high voltage circuits from pressure transients, and maximize the use of common parts and operational software. Both instruments use the same PC104 based controller, interface, power supply, charge coupled device camera, protective hermetically sealed housing, and mechanical interfaces. Communication is over fiber optics with identical facility hardware for both instruments. Each has three triggers that can be either fiber optic or coax. High voltage protection consists of a vacuum sensor to enable the high voltage and pulsed microchannel plate phosphor voltage. In the streak camera, the high voltage is removed after the sweep. Both rely on the hardened aluminum box and a custom power supply to reduce electromagnetic pulse/electromagnetic interference (EMP/EMI) getting into the electronics. In addition, the streak camera has an EMP/EMI shield enclosing the front of the streak tube.

  6. Flat-field response and geometric distortion measurements of optical streak cameras

    International Nuclear Information System (INIS)

    To accurately measure pulse amplitude, shape, and relative time histories of optical signals with an optical streak camera, it is necessary to correct each recorded image for spatially-dependent gain nonuniformity and geometric distortion. Gain nonuniformities arise from sensitivity variations in the streak-tube photocathode, phosphor screen, image-intensifier tube, and image recording system. These nonuniformities may be severe, and have been observed to be on the order of 100% for some LLNL optical streak cameras. Geometric distortion due to optical couplings, electron-optics, and sweep nonlinearity not only affects pulse position and timing measurements, but affects pulse amplitude and shape measurements as well. By using a 1.053-μm, long-pulse, high-power laser to generate a spatially and temporally uniform source as input to the streak camera, the combined effects of flat-field response and geometric distortion can be measured under the normal dynamic operation of cameras with S-1 photocathodes. Additionally, by using the same laser system to generate a train of short pulses that can be spatially modulated at the input of the streak camera, we can effectively create a two-dimensional grid of equally-spaced pulses. This allows a dynamic measurement of the geometric distortion of the streak camera. We will discuss the techniques involved in performing these calibrations, will present some of the measured results for LLNL optical streak cameras, and will discuss software methods to correct for these effects. 6 refs., 6 figs

  7. FlashCam: a fully-digital camera for the medium-sized telescopes of the Cherenkov Telescope Array

    OpenAIRE

    Pühlhofer, G.; Bauer, C.; Bernhard, S.; Capasso, M.; Diebold, S; Eisenkolb, F.; Florin, D.; Föhr, C.; S Funk; Gadola, A.; Garrecht, F.; Hermann, G.; Jung, I.; Kalekin, O.(Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany); Kalkuhl, C.

    2015-01-01

    The FlashCam group is currently preparing photomultiplier-tube based cameras proposed for the medium-sized telescopes (MST) of the Cherenkov Telescope Array (CTA). The cameras are designed around the FlashCam readout concept which is the first fully-digital readout system for Cherenkov cameras, based on commercial FADCs and FPGAs as key components for the front-end electronics modules and a high performance camera server as back-end. This contribution describes the progress of the full-scale ...

  8. On Single-scanline Camera Calibration

    OpenAIRE

    Horaud, Radu; Mohr, Roger; Lorecki, Boguslaw

    1993-01-01

    A method for calibrating single scanline CCD cameras is described. It is shown that the more classical 2D camera calibration techniques are necessary but not sufficient for solving the 1D camera calibration problem. A model for single scanline cameras is proposed, and a two-step procedure for estimating its parameters is provided. It is also shown how the extrinsic camera parameters can be determined geometrically without making explicit the intrinsic camera parameters. The accuracy of the ca...

  9. 21 CFR 868.5800 - Tracheostomy tube and tube cuff.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Tracheostomy tube and tube cuff. 868.5800 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5800 Tracheostomy tube and tube cuff. (a) Identification. A tracheostomy tube and tube cuff is a device intended to be placed into...

  10. An Inexpensive Digital Infrared Camera

    Science.gov (United States)

    Mills, Allan

    2012-01-01

    Details are given for the conversion of an inexpensive webcam to a camera specifically sensitive to the near infrared (700-1000 nm). Some experiments and practical applications are suggested and illustrated. (Contains 9 figures.)

  11. Heat exchanger tube tool

    International Nuclear Information System (INIS)

    Certain types of heat-exchangers have tubes opening through a tube sheet to a manifold having an access opening offset from alignment with the tube ends. A tool for inserting a device, such as for inspection or repair, is provided for use in such instances. The tool is formed by a flexible guide tube insertable through the access opening and having an inner end provided with a connector for connection with the opening of the tube in which the device is to be inserted, and an outer end which remains outside of the chamber, the guide tube having adequate length for this arrangement. A flexible transport hose for internally transporting the device slides inside of the guide tube. This hose is long enough to slide through the guide tube, into the heat-exchanger tube, and through the latter to the extent required for the use of the device. The guide tube must be bent to reach the end of the heat-exchanger tube and the latter may be constructed with a bend, the hose carrying anit-friction elements at interspaced locations along its length to make it possible for the hose to negotiate such bends while sliding to the location where the use of the device is required

  12. Wide Dynamic Range CCD Camera

    Science.gov (United States)

    Younse, J. M.; Gove, R. J.; Penz, P. A.; Russell, D. E.

    1984-11-01

    A liquid crystal attenuator (LCA) operated as a variable neutral density filter has been attached to a charge-coupled device (CCD) imager to extend the dynamic range of a solid-state TV camera by an order of magnitude. Many applications are best served by a camera with a dynamic range of several thousand. For example, outside security systems must operate unattended with "dawn-to-dusk" lighting conditions. Although this can be achieved with available auto-iris lens assemblies, more elegant solutions which provide the small size, low power, high reliability advantages of solid state technology are now available. This paper will describe one such unique way of achieving these dynamic ranges using standard optics by making the CCD imager's glass cover a controllable neutral density filter. The liquid crystal attenuator's structure and theoretical properties for this application will be described along with measured transmittance. A small integrated TV camera which utilizes a "virtual-phase" CCD sensor coupled to a LCA will be described and test results for a number of the camera's optical and electrical parameters will be given. These include the following camera parameters: dynamic range, Modulation Transfer Function (MTF), spectral response, and uniformity. Also described will be circuitry which senses the ambient scene illuminance and automatically provides feedback signals to appropriately adjust the transmittance of the LCA. Finally, image photographs using this camera, under various scene illuminations, will be shown.

  13. NEI You Tube Videos: Amblyopia

    Medline Plus

    Full Text Available ... NEI YouTube Videos > NEI YouTube Videos: Amblyopia NEI YouTube Videos YouTube Videos Home Age-Related Macular Degeneration ... Retinopathy of Prematurity Science Spanish Videos Webinars NEI YouTube Videos: Amblyopia NEI on Twitter NEI on YouTube ...

  14. NEI You Tube Videos: Amblyopia

    Medline Plus

    Full Text Available ... YouTube Videos > NEI YouTube Videos: Amblyopia NEI YouTube Videos YouTube Videos Home Age-Related Macular Degeneration Amblyopia ... of Prematurity Science Spanish Videos Webinars NEI YouTube Videos: Amblyopia NEI on Twitter NEI on YouTube NEI ...

  15. Pediatric cuffed endotracheal tubes

    Directory of Open Access Journals (Sweden)

    Neerja Bhardwaj

    2013-01-01

    Full Text Available Endotracheal intubation in children is usually performed utilizing uncuffed endotracheal tubes for conduct of anesthesia as well as for prolonged ventilation in critical care units. However, uncuffed tubes may require multiple changes to avoid excessive air leak, with subsequent environmental pollution making the technique uneconomical. In addition, monitoring of ventilatory parameters, exhaled volumes, and end-expiratory gases may be unreliable. All these problems can be avoided by use of cuffed endotracheal tubes. Besides, cuffed endotracheal tubes may be of advantage in special situations like laparoscopic surgery and in surgical conditions at risk of aspiration. Magnetic resonance imaging (MRI scans in children have found the narrowest portion of larynx at rima glottides. Cuffed endotracheal tubes, therefore, will form a complete seal with low cuff pressure of <15 cm H 2 O without any increase in airway complications. Till recently, the use of cuffed endotracheal tubes was limited by variations in the tube design marketed by different manufacturers. The introduction of a new cuffed endotracheal tube in the market with improved tracheal sealing characteristics may encourage increased safe use of these tubes in clinical practice. A literature search using search words "cuffed endotracheal tube" and "children" from 1980 to January 2012 in PUBMED was conducted. Based on the search, the advantages and potential benefits of cuffed ETT are reviewed in this article.

  16. Progress on the development of a single line of sight x-ray framing camera

    International Nuclear Information System (INIS)

    High-speed microstrip microchannel plate (MCP) x-ray framing cameras are a well established diagnostic for laser plasma experiments. Each frame acquired with these devices requires a separate image, and with most reasonable x-ray optics, a separate line of sight, causing potential parallax problems. Gated image tubes have a single line of sight capability, but the conventional designs have not been effectively extended to the short gating times of the microstrip-line MCP camera. A hybrid camera combining image tube and microstrip-line MCP technology has been under development at Lawrence Livermore National Lab in collaboration with University of Rochester Lab for Laser energetics, and KENTECH Instruments. The key feature of this single line of sight hybrid image tube is a deflection assembly that continuously divides the electrons from a single photocathode x-ray image into a set of four electron images. Temporal gating of these images is carried out using a microstrip-line microchannel plate framing camera module positioned at the image plane of the electron tube. Characterization measurements performed using both x rays from a Manson source and from laser generated plasmas, will be presented. Some implementation improvements will be discussed

  17. Scintillation camera brightness calibration apparatus

    International Nuclear Information System (INIS)

    Circuitry is described for calibrating the brightness of a cathode ray tube display and recording apparatus comprising: 1) intensity control means for adjusting the intensity of the cathode ray tube beam; 2) light sensitive means disposed to receive light emitted from the cathode ray tube and generating a first electrical signal having a magnitude dependent upon the intensity of the emitted light; 3) reference signal generating means for generating a second electrical signal of predetermined magnitude; and 4) electrical signal comparison means coupled to the light sensitive means and the reference signal generating means for comparing the magnitude of the first and second electrical signals. (author)

  18. Multichannel spectrum analysis for a gamma-ray imaging camera

    International Nuclear Information System (INIS)

    The US Department of Energy's robotics for nuclear reactors programs include the development of a gamma-ray imaging camera to locate and identify radiation fields typical of commercial reactor environments. The raster scanning camera is a lead-shielded bismuth germanate scintillator coupled to a photomultiplier tube operated in pulse mode. The camera is mounted on a rotating, tilting platform to allow two-dimensional scanning and requires a movable shutter to subtract background radiation. While previous work produced monochromatic images, this paper discusses colored images now available through a multichannel spectrum analysis at each pixel location, and typical images are shown. Scanning operation is controlled by a personal computer-based system with an independent multichannel analyzer (MCA) board that allows for near-real-time spectrum analysis of a pixel position while the following position is being measured. The controlling routine operates the camera tilt, rotation, and shutter movement; acquires data from the MCA; and calls the peak search analysis routine

  19. Portable gamma camera for clinical use in nuclear medicine

    International Nuclear Information System (INIS)

    Up today Hamamatsu R3292 is the Position Sensitive Photo Multiplier Tube (PSPMT) with the largest sensitive area (10 cm of diameter). At the same time it has the minimum size for clinical application in Nuclear Medicine. A portable gamma camera was realized, based on 5 inches PSPMT coupled to a scintillating array. The head has a light weight (15 Kg.) spatial resolution resulted better than that of Anger Camera with good linearity response, good energy resolution and FOV coincident with intrinsic one of PSPMT. To optimize gamma camera response two different scintillating arrays were tested: YAP:Ce and CsI (Tl). Their overall size cover all photochatode active area, and crystal pixel size was 2 mm x 2 mm. The detection efficiency resulted comparable to that of Anger Camera. The best result was obtained by CsI (Tl) scintillating: an intrinsic spatial resolution of 1.6 mm FWHM and a relative energy resolution of 17% FWHM. With a standard general purpose collimator a spatial resolution of about 2 mm resulted. Some preliminary results were also obtained in breast scintigraphy

  20. Sub-Camera Calibration of a Penta-Camera

    Science.gov (United States)

    Jacobsen, K.; Gerke, M.

    2016-03-01

    Penta cameras consisting of a nadir and four inclined cameras are becoming more and more popular, having the advantage of imaging also facades in built up areas from four directions. Such system cameras require a boresight calibration of the geometric relation of the cameras to each other, but also a calibration of the sub-cameras. Based on data sets of the ISPRS/EuroSDR benchmark for multi platform photogrammetry the inner orientation of the used IGI Penta DigiCAM has been analyzed. The required image coordinates of the blocks Dortmund and Zeche Zollern have been determined by Pix4Dmapper and have been independently adjusted and analyzed by program system BLUH. With 4.1 million image points in 314 images respectively 3.9 million image points in 248 images a dense matching was provided by Pix4Dmapper. With up to 19 respectively 29 images per object point the images are well connected, nevertheless the high number of images per object point are concentrated to the block centres while the inclined images outside the block centre are satisfying but not very strongly connected. This leads to very high values for the Student test (T-test) of the finally used additional parameters or in other words, additional parameters are highly significant. The estimated radial symmetric distortion of the nadir sub-camera corresponds to the laboratory calibration of IGI, but there are still radial symmetric distortions also for the inclined cameras with a size exceeding 5μm even if mentioned as negligible based on the laboratory calibration. Radial and tangential effects of the image corners are limited but still available. Remarkable angular affine systematic image errors can be seen especially in the block Zeche Zollern. Such deformations are unusual for digital matrix cameras, but it can be caused by the correlation between inner and exterior orientation if only parallel flight lines are used. With exception of the angular affinity the systematic image errors for corresponding

  1. Further developments on an ISPA-camera for gamma-rays in nuclear medicine

    CERN Document Server

    D'Ambrosio, C; Gys, Thierry; Leutz, H; Piedigrossi, D; Puertolas, D; Rosso, E

    1999-01-01

    The ISPA (imaging silicon pixel array)-tube is a position-sensitive hybrid photon detector. Originally developed for high energy physics purposes, it has also been used for biomedical applications. Two kinds of ISPA-tube prototypes have been tested successfully in the field of gamma ray imaging. The current developments aim at obtaining a detector dedicated to single photon emission imaging. In this paper, we shall present the very first use in a gamma-camera of a new ISPA-tube prototype having an increased active input surface of 40 mm diameter and a de-magnifying electron optics. The expected advantages of an ISPA-tube equipped with an input window made out of YAP-crystal will also be pointed out by presenting results obtained with a hybrid photomultiplier tube equipped with such a YAP window. (12 refs).

  2. Conduction cooled tube supports

    Science.gov (United States)

    Worley, Arthur C.; Becht, IV, Charles

    1984-01-01

    In boilers, process tubes are suspended by means of support studs that are in thermal contact with and attached to the metal roof casing of the boiler and the upper bend portions of the process tubes. The support studs are sufficiently short that when the boiler is in use, the support studs are cooled by conduction of heat to the process tubes and the roof casing thereby maintaining the temperature of the stud so that it does not exceed 1400.degree. F.

  3. Tubing weld cracking test

    International Nuclear Information System (INIS)

    A tubing weld cracking (TWC) test was developed for applications involving advanced austenitic alloys (such as modified 800H and 310HCbN). Compared to the Finger hot cracking test, the TWC test shows an enhanced ability to evaluate the crack sensitivity of tubing materials. The TWC test can evaluate the cracking tendency of base as well as filter materials. Thus, it is a useful tool for tubing suppliers, filler metal producers and fabricators

  4. Categorising YouTube

    OpenAIRE

    Thomas Mosebo Simonsen

    2011-01-01

    This article provides a genre analytical approach to creating a typology of the User Generated Content (UGC) of YouTube. The article investigates the construction of navigation processes on the YouTube website. It suggests a pragmatic genre approach that is expanded through a focus on YouTube’s technological affordances. Through an analysis of the different pragmatic contexts of YouTube, it is argued that a taxonomic understanding of YouTube must be analysed in regards to the vacillation of a...

  5. Calibrations of photomultiplier tubes

    International Nuclear Information System (INIS)

    The experimental methods for calibration photomultiplier tubes used in the multichannel fast-pulse-detection system of Thomson scattering measurements for nuclear fusion devices is reported. The most important parameters of the photomultiplier tubes to be calibrated include: linearity of output electric signals to input light signals, response time of pulsed light, spectral response, absolute responsibility, and sensitivity as a function of the chain voltage. The calibrations of all these parameters are carried out by using EMI 9558 B and RCA 7265 photomultiplier tubes respectively. The experimental methods presented in the paper are common to those quantitative measurements that require phomultiplier tubes as detectors

  6. Composite Pulse Tube

    Science.gov (United States)

    Martin, Jerry L.; Cloyd, Jason H.

    2007-01-01

    A modification of the design of the pulse tube in a pulse-tube cryocooler reduces axial thermal conductance while preserving radial thermal conductance. It is desirable to minimize axial thermal conductance in the pulse-tube wall to minimize leakage of heat between the warm and cold ends of the pulse tube. At the same time, it is desirable to maximize radial thermal conductance at the cold end of the pulse tube to ensure adequate thermal contact between (1) a heat exchanger in the form of a stack of copper screens inside the pulse tube at the cold end and (2) the remainder of the cold tip, which is the object to which the heat load is applied and from which heat must be removed. The modified design yields a low-heat-leak pulse tube that can be easily integrated with a cold tip. A typical pulse tube of prior design is either a thin-walled metal tube or a metal tube with a nonmetallic lining. It is desirable that the outer surface of a pulse tube be cylindrical (in contradistinction to tapered) to simplify the design of a regenerator that is also part of the cryocooler. Under some conditions, it is desirable to taper the inner surface of the pulse tube to reduce acoustic streaming. The combination of a cylindrical outer surface and a tapered inner surface can lead to unacceptably large axial conduction if the pulse tube is made entirely of metal. Making the pulse-tube wall of a nonmetallic, lowthermal- conductivity material would not solve the problem because the wall would not afford the needed thermal contact for the stack of screens in the cold end. The modified design calls for fabricating the pulse tube in two parts: a longer, nonmetallic part that is tapered on the inside and cylindrical on the outside and a shorter, metallic part that is cylindrical on both the inside and the outside. The nonmetallic part can be made from G-10 fiberglass-reinforced epoxy or other low-thermal-conductivity, cryogenically compatible material. The metallic part must have high

  7. Manual tube welding torch

    International Nuclear Information System (INIS)

    In a welding torch which fits over a tube intermediate the ends thereof for welding the juncture between the tube and a boss on the back side of a tube plate, a split housing encloses a tungsten electrode, a filler wire duct and a fiber optic bundle arranged to observe the welding process. A shielding gas duct is provided in the housing. A screw is provided for setting electrode/work distance. Difficult remote tube welding operations can be performed with the apparatus. (author)

  8. Steam generator tube performance

    International Nuclear Information System (INIS)

    A survey of steam generator operating experience for 1986 has been carried out for 184 pressurized water and pressurized heavy-water reactors, and 1 water-cooled, graphite-moderated reactor. Tubes were plugged at 75 of the reactors (40.5%). In 1986, 3737 tubes were plugged (0.14% of those in service) and 3148 tubes were repaired by sleeving. A small number of reactors accounted for the bulk of the plugged tubes, a phenomenon consistent with previous years. For 1986, the available tubesheet sludge data for 38 reactors has been compiled into tabular form, and sludge/deposit data will be incorporated into all future surveys

  9. The GISMO-2 Bolometer Camera

    Science.gov (United States)

    Staguhn, Johannes G.; Benford, Dominic J.; Fixsen, Dale J.; Hilton, Gene; Irwin, Kent D.; Jhabvala, Christine A.; Kovacs, Attila; Leclercq, Samuel; Maher, Stephen F.; Miller, Timothy M.; Moseley, Samuel H.; Sharp, Elemer H.; Wollack, Edward J.

    2012-01-01

    We present the concept for the GISMO-2 bolometer camera) which we build for background-limited operation at the IRAM 30 m telescope on Pico Veleta, Spain. GISM0-2 will operate Simultaneously in the 1 mm and 2 mm atmospherical windows. The 1 mm channel uses a 32 x 40 TES-based Backshort Under Grid (BUG) bolometer array, the 2 mm channel operates with a 16 x 16 BUG array. The camera utilizes almost the entire full field of view provided by the telescope. The optical design of GISM0-2 was strongly influenced by our experience with the GISMO 2 mm bolometer camera which is successfully operating at the 30m telescope. GISMO is accessible to the astronomical community through the regular IRAM call for proposals.

  10. Cameras for semiconductor process control

    Science.gov (United States)

    Porter, W. A.; Parker, D. L.

    1977-01-01

    The application of X-ray topography to semiconductor process control is described, considering the novel features of the high speed camera and the difficulties associated with this technique. The most significant results on the effects of material defects on device performance are presented, including results obtained using wafers processed entirely within this institute. Defects were identified using the X-ray camera and correlations made with probe data. Also included are temperature dependent effects of material defects. Recent applications and improvements of X-ray topographs of silicon-on-sapphire and gallium arsenide are presented with a description of a real time TV system prototype and of the most recent vacuum chuck design. Discussion is included of our promotion of the use of the camera by various semiconductor manufacturers.

  11. Dark Energy Camera for Blanco

    Energy Technology Data Exchange (ETDEWEB)

    Binder, Gary A.; /Caltech /SLAC

    2010-08-25

    In order to make accurate measurements of dark energy, a system is needed to monitor the focus and alignment of the Dark Energy Camera (DECam) to be located on the Blanco 4m Telescope for the upcoming Dark Energy Survey. One new approach under development is to fit out-of-focus star images to a point spread function from which information about the focus and tilt of the camera can be obtained. As a first test of a new algorithm using this idea, simulated star images produced from a model of DECam in the optics software Zemax were fitted. Then, real images from the Mosaic II imager currently installed on the Blanco telescope were used to investigate the algorithm's capabilities. A number of problems with the algorithm were found, and more work is needed to understand its limitations and improve its capabilities so it can reliably predict camera alignment and focus.

  12. Aerial camera auto focusing system

    Science.gov (United States)

    Wang, Xuan; Lan, Gongpu; Gao, Xiaodong; Liang, Wei

    2012-10-01

    Before the aerial photographic task, the cameras focusing work should be performed at first to compensate the defocus caused by the changes of the temperature, pressure etc. A new method of aerial camera auto focusing is proposed through traditional photoelectric self-collimation combined with image processing method. Firstly, the basic principles of optical self-collimation and image processing are introduced. Secondly, the limitations of the two are illustrated and the benefits of the new method are detailed. Then the basic principle, the system composition and the implementation of this new method are presented. Finally, the data collection platform is set up reasonably and the focus evaluation function curve is draw. The results showed that: the method can be used in the Aerial camera focusing field, adapt to the aviation equipment trends of miniaturization and lightweight .This paper is helpful to the further work of accurate and automatic focusing.

  13. A camera for a narrow and deep welding groove

    Science.gov (United States)

    Vehmanen, Miika S.; Korhonen, Mika; Mäkynen, Anssi J.

    2008-06-01

    In this paper welding seam imaging in a very narrow and deep groove is presented. Standard camera optics can not be used as it does not reach the bottom of the groove. Therefore, selecting suitable imaging optics and components was the main challenge of the study. The implementation is based on image transmission via a borescope. The borescope has a long and narrow tube with graded index relay optics inside. To avoid excessive heating, the borescope tube is enclosed in a cooling pipe. The performance of the imaging system was tested by measuring its modulation transfer function (MTF) and visually evaluated its distortion. The results show that a borescope providing VGA resolution is adequate for the application. The spectrum of the welding processes was studied to determine optimum window to observe the welding seam and electrode. Optimal bandwidth was found in region of 700nm-1000nm.

  14. EDICAM (Event Detection Intelligent Camera)

    International Nuclear Information System (INIS)

    Highlights: ► We present EDICAM's hardware modules. ► We present EDICAM's main design concepts. ► This paper will describe EDICAM firmware architecture. ► Operation principles description. ► Further developments. -- Abstract: A new type of fast framing camera has been developed for fusion applications by the Wigner Research Centre for Physics during the last few years. A new concept was designed for intelligent event driven imaging which is capable of focusing image readout to Regions of Interests (ROIs) where and when predefined events occur. At present these events mean intensity changes and external triggers but in the future more sophisticated methods might also be defined. The camera provides 444 Hz frame rate at full resolution of 1280 × 1024 pixels, but monitoring of smaller ROIs can be done in the 1–116 kHz range even during exposure of the full image. Keeping space limitations and the harsh environment in mind the camera is divided into a small Sensor Module and a processing card interconnected by a fast 10 Gbit optical link. This camera hardware has been used for passive monitoring of the plasma in different devices for example at ASDEX Upgrade and COMPASS with the first version of its firmware. The new firmware and software package is now available and ready for testing the new event processing features. This paper will present the operation principle and features of the Event Detection Intelligent Camera (EDICAM). The device is intended to be the central element in the 10-camera monitoring system of the Wendelstein 7-X stellarator

  15. Image Intensifier Modules For Use With Commercially Available Solid State Cameras

    Science.gov (United States)

    Murphy, Howard; Tyler, Al; Lake, Donald W.

    1989-04-01

    configured as required by a specific camera application. Modular line and matrix scan cameras incorporating sensors with fiber optic faceplates (Fig 4) are also available. These units retain the advantages of interchangeability, simple construction, ruggedness, and optical precision offered by the more common lens input units. Fiber optic faceplate cameras are used for a wide variety of applications. A common usage involves mating of the Reticon-supplied camera to a customer-supplied intensifier tube for low light level and/or short exposure time situations.

  16. Steam generator tube failures

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, P.E.; Shah, V.N.; Ward, L.W.; Ellison, P.G.

    1996-04-01

    A review and summary of the available information on steam generator tubing failures and the impact of these failures on plant safety is presented. The following topics are covered: pressurized water reactor (PWR), Canadian deuterium uranium (CANDU) reactor, and Russian water moderated, water cooled energy reactor (VVER) steam generator degradation, PWR steam generator tube ruptures, the thermal-hydraulic response of a PWR plant with a faulted steam generator, the risk significance of steam generator tube rupture accidents, tubing inspection requirements and fitness-for-service criteria in various countries, and defect detection reliability and sizing accuracy. A significant number of steam generator tubes are defective and are removed from service or repaired each year. This wide spread damage has been caused by many diverse degradation mechanisms, some of which are difficult to detect and predict. In addition, spontaneous tube ruptures have occurred at the rate of about one every 2 years over the last 20 years, and incipient tube ruptures (tube failures usually identified with leak detection monitors just before rupture) have been occurring at the rate of about one per year. These ruptures have caused complex plant transients which have not always been easy for the reactor operators to control. Our analysis shows that if more than 15 tubes rupture during a main steam line break, the system response could lead to core melting. Although spontaneous and induced steam generator tube ruptures are small contributors to the total core damage frequency calculated in probabilistic risk assessments, they are risk significant because the radionuclides are likely to bypass the reactor containment building. The frequency of steam generator tube ruptures can be significantly reduced through appropriate and timely inspections and repairs or removal from service.

  17. Steam generator tube failures

    International Nuclear Information System (INIS)

    A review and summary of the available information on steam generator tubing failures and the impact of these failures on plant safety is presented. The following topics are covered: pressurized water reactor (PWR), Canadian deuterium uranium (CANDU) reactor, and Russian water moderated, water cooled energy reactor (VVER) steam generator degradation, PWR steam generator tube ruptures, the thermal-hydraulic response of a PWR plant with a faulted steam generator, the risk significance of steam generator tube rupture accidents, tubing inspection requirements and fitness-for-service criteria in various countries, and defect detection reliability and sizing accuracy. A significant number of steam generator tubes are defective and are removed from service or repaired each year. This wide spread damage has been caused by many diverse degradation mechanisms, some of which are difficult to detect and predict. In addition, spontaneous tube ruptures have occurred at the rate of about one every 2 years over the last 20 years, and incipient tube ruptures (tube failures usually identified with leak detection monitors just before rupture) have been occurring at the rate of about one per year. These ruptures have caused complex plant transients which have not always been easy for the reactor operators to control. Our analysis shows that if more than 15 tubes rupture during a main steam line break, the system response could lead to core melting. Although spontaneous and induced steam generator tube ruptures are small contributors to the total core damage frequency calculated in probabilistic risk assessments, they are risk significant because the radionuclides are likely to bypass the reactor containment building. The frequency of steam generator tube ruptures can be significantly reduced through appropriate and timely inspections and repairs or removal from service

  18. Pyrotechnic Tubing Connector

    Science.gov (United States)

    Graves, Thomas J.; Yang, Robert A.

    1988-01-01

    Tool forms mechanical seal at joint without levers or hydraulic apparatus. Proposed tool intended for use in outer space used on Earth by heavily garbed workers to join tubing in difficult environments. Called Pyrotool, used with Lokring (or equivalent) fittings. Piston slides in cylinder when pushed by gas from detonating pyrotechnic charge. Impulse of piston compresses fittings, sealing around butting ends of tubes.

  19. Welding Tubes In Place

    Science.gov (United States)

    Meredith, R.

    1984-01-01

    Special welding equipment joins metal tubes that carry pressurized cyrogenic fluids. Equipment small enough to be used in confined spaces in which such tubes often mounted. Welded joints lighter in weight and more leak-proof than joints made with mechanical fittings.

  20. Scinticor: A new digital gamma camera

    International Nuclear Information System (INIS)

    A new mobile gamma camera, Scinticor, has been developed with major improvements in design and performance. The instrument has a new scintillation detector which is a block of NaI (T1), (8x8x1'') optically divided into (20x20) elements with 115 photomuliplier tubes (PMT's) coupled to the scintillation exit glass of the crystal. Integrated hybrid circuits on each PMT transform the signal to a digital pulse which is the input to the digital positioning logic and dual window pulse height analyzer. Detector reliability is enhanced by automatic electronic tuning of each PMT. A new high sensitivity collimator provides 70% greater sensitivity than the present multi crystal collimator with same FWHM. The detector's special purpose array processor performs in real time (up to 100 frames/sec): ECG digitization, creation of first pass cardiac functional images and corrections for field uniformity, deadtime, radioactive decay, and environmental background. Data transmission to the mobile data processing console is via a 10Mb/s fiber optic link. Initial results indicate a major advance in collimated detector sensitivity and count rate with saturation over 1,000,000 cps. Energy resolution is 25% FWHM at 122 keV, Dynamic Edge Resolution is 3mm, Static Resoltion is 10mm. Initial clinical studies indicate this instrument is suitable for a wide range of dynamic studies

  1. Simulation of imaging with sodium iodide crystals and position-sensitive photomultiplier tubes

    International Nuclear Information System (INIS)

    There has recently been a growing interest in small gamma cameras for medical imaging applications in which full-sized conventional cameras are unsuitable. A prototype miniature gamma camera has been proposed and built at the University of Chicago (UC), and its imaging characteristics are currently being evaluated. The imaging characteristics of miniature gamma cameras that consist of a single sodium iodide (NaI(Tl)) crystal coupled to a position-sensitive photomultiplier tube (PSPMT) have been studied via Monte Carlo simulations. Images obtained with such cameras with the use of conventional position calculations exhibit considerable distortions, particularly compression. This study demonstrates that the distortions result primarily from non-uniform sensitivities of PSPMTs and secondarily from non-linear responses of PSPMTs, light-reflection properties resulting from the treatments of crystals, and light-refractive properties of glass interfaces between crystals and photocathodes. Simulation results are compared to images obtained with a prototype miniature gamma camera

  2. Categorising YouTube

    DEFF Research Database (Denmark)

    Simonsen, Thomas Mosebo

    2011-01-01

    This article provides a genre analytical approach to creating a typology of the User Generated Content (UGC) of YouTube. The article investigates the construction of navigation processes on the YouTube website. It suggests a pragmatic genre approach that is expanded through a focus on YouTube’s...... technological affordances. Through an analysis of the different pragmatic contexts of YouTube, it is argued that a taxonomic understanding of YouTube must be analysed in regards to the vacillation of a user-driven bottom-up folksonomy and a hierarchical browsing system that emphasises a culture of competition...... and which favours the already popular content of YouTube. With this taxonomic approach, the UGC videos are registered and analysed in terms of empirically based observations. The article identifies various UGC categories and their principal characteristics. Furthermore, general tendencies of the UGC...

  3. Full Stokes polarization imaging camera

    Science.gov (United States)

    Vedel, M.; Breugnot, S.; Lechocinski, N.

    2011-10-01

    Objective and background: We present a new version of Bossa Nova Technologies' passive polarization imaging camera. The previous version was performing live measurement of the Linear Stokes parameters (S0, S1, S2), and its derivatives. This new version presented in this paper performs live measurement of Full Stokes parameters, i.e. including the fourth parameter S3 related to the amount of circular polarization. Dedicated software was developed to provide live images of any Stokes related parameters such as the Degree Of Linear Polarization (DOLP), the Degree Of Circular Polarization (DOCP), the Angle Of Polarization (AOP). Results: We first we give a brief description of the camera and its technology. It is a Division Of Time Polarimeter using a custom ferroelectric liquid crystal cell. A description of the method used to calculate Data Reduction Matrix (DRM)5,9 linking intensity measurements and the Stokes parameters is given. The calibration was developed in order to maximize the condition number of the DRM. It also allows very efficient post processing of the images acquired. Complete evaluation of the precision of standard polarization parameters is described. We further present the standard features of the dedicated software that was developed to operate the camera. It provides live images of the Stokes vector components and the usual associated parameters. Finally some tests already conducted are presented. It includes indoor laboratory and outdoor measurements. This new camera will be a useful tool for many applications such as biomedical, remote sensing, metrology, material studies, and others.

  4. Camera assisted multimodal user interaction

    Science.gov (United States)

    Hannuksela, Jari; Silvén, Olli; Ronkainen, Sami; Alenius, Sakari; Vehviläinen, Markku

    2010-01-01

    Since more processing power, new sensing and display technologies are already available in mobile devices, there has been increased interest in building systems to communicate via different modalities such as speech, gesture, expression, and touch. In context identification based user interfaces, these independent modalities are combined to create new ways how the users interact with hand-helds. While these are unlikely to completely replace traditional interfaces, they will considerably enrich and improve the user experience and task performance. We demonstrate a set of novel user interface concepts that rely on built-in multiple sensors of modern mobile devices for recognizing the context and sequences of actions. In particular, we use the camera to detect whether the user is watching the device, for instance, to make the decision to turn on the display backlight. In our approach the motion sensors are first employed for detecting the handling of the device. Then, based on ambient illumination information provided by a light sensor, the cameras are turned on. The frontal camera is used for face detection, while the back camera provides for supplemental contextual information. The subsequent applications triggered by the context can be, for example, image capturing, or bar code reading.

  5. Gamma camera with reflectivity mask

    International Nuclear Information System (INIS)

    A gamma camera is described with a plurality of photodetectors arranged for locating flashes of light produced by a scintillator in response to incident radiation. Masking material is arranged in a radially symmetric pattern on the front face of the scintillator about the axis of each photodetector to reduce the amount of internal reflection of optical photons induced by gamma ray photons

  6. Gamma camera with reflectivity mask

    International Nuclear Information System (INIS)

    In accordance with the present invention there is provided a radiographic camera comprising: a scintillator; a plurality of photodectors positioned to face said scintillator; a plurality of masked regions formed upon a face of said scintillator opposite said photdetectors and positioned coaxially with respective ones of said photodetectors for decreasing the amount of internal reflection of optical photons generated within said scintillator. (auth)

  7. Camera Movement in Narrative Cinema

    DEFF Research Database (Denmark)

    Nielsen, Jakob Isak

    2007-01-01

    Just like art historians have focused on e.g. composition or lighting, this dissertation takes a single stylistic parameter as its object of study: camera movement. Within film studies this localized avenue of middle-level research has become increasingly viable under the aegis of a perspective k...

  8. Replacing 16-mm film cameras with high-definition digital cameras

    Science.gov (United States)

    Balch, Kris S.

    1995-09-01

    For many years 16 mm film cameras have been used in severe environments. These film cameras are used on Hy-G automotive sleds, airborne gun cameras, range tracking and other hazardous environments. The companies and government agencies using these cameras are in need of replacing them with a more cost effective solution. Film-based cameras still produce the best resolving capability, however, film development time, chemical disposal, recurring media cost, and faster digital analysis are factors influencing the desire for a 16 mm film camera replacement. This paper will describe a new camera from Kodak that has been designed to replace 16 mm high speed film cameras.

  9. Pressure tube type reactor

    International Nuclear Information System (INIS)

    Heretofore, a pressure tube type reactor has a problem in that the evaluation for the reactor core performance is complicate and no sufficient consideration is made for the economical property, to increase the size of a calandria tank and make the cost expensive. Then, in the present invention, the inner diameter of a pressure tube is set to greater than 50% of the lattice gap in a square lattice like arrangement, and the difference between the inner and the outer diameters of the calandria tube is set smaller than 20% of the lattice gap. Further, the inner diameter of the pressure tube is set to greater than 40% and the difference between the inner and the outer diameters of the calandria tube is set smaller than 30% of the lattice gap in a triangle lattice arrangement. Then, heavy water-to-fuel volume ratio can be determined appropriately and the value for the coolant void coefficient is made more negative side, to improve the self controllability inherent to the reactor. In particular, when 72 to 90 fuel rods are arranged per one pressure tube, the power density per one fuel rod is can be increased by about twice. Accordingly, the number of the pressure tubes can be reduced about to one-half, thereby enabling to remarkably decrease the diameter of the reactor core and to reduce the size of the calandria, which is economical. (N.H.)

  10. First Avalanche-photodiode camera test (FACT): A novel camera using G-APDs for the observation of very high-energy γ-rays with Cherenkov telescopes

    International Nuclear Information System (INIS)

    We present a project for a novel camera using Geiger-mode Avalanche Photodiodes (G-APDs), to be installed in a small telescope (former HEGRA CT3) on the MAGIC site in La Palma (Canary Island, Spain). This novel type of semiconductor photon detector provides several superior features compared to conventional photomultiplier tubes (PMTs). The most promising one is a much higher Photon Detection Efficiency.

  11. Architectural Design Document for Camera Models

    DEFF Research Database (Denmark)

    Thuesen, Gøsta

    1998-01-01

    Architecture of camera simulator models and data interface for the Maneuvering of Inspection/Servicing Vehicle (MIV) study.......Architecture of camera simulator models and data interface for the Maneuvering of Inspection/Servicing Vehicle (MIV) study....

  12. Lytro camera technology: theory, algorithms, performance analysis

    Science.gov (United States)

    Georgiev, Todor; Yu, Zhan; Lumsdaine, Andrew; Goma, Sergio

    2013-03-01

    The Lytro camera is the first implementation of a plenoptic camera for the consumer market. We consider it a successful example of the miniaturization aided by the increase in computational power characterizing mobile computational photography. The plenoptic camera approach to radiance capture uses a microlens array as an imaging system focused on the focal plane of the main camera lens. This paper analyzes the performance of Lytro camera from a system level perspective, considering the Lytro camera as a black box, and uses our interpretation of Lytro image data saved by the camera. We present our findings based on our interpretation of Lytro camera file structure, image calibration and image rendering; in this context, artifacts and final image resolution are discussed.

  13. An optical metasurface planar camera

    CERN Document Server

    Arbabi, Amir; Kamali, Seyedeh Mahsa; Horie, Yu; Han, Seunghoon; Faraon, Andrei

    2016-01-01

    Optical metasurfaces are 2D arrays of nano-scatterers that modify optical wavefronts at subwavelength spatial resolution. They are poised to revolutionize optical design by enabling complex low cost systems where multiple metasurfaces are lithographically stacked on top of each other and are integrated with electronics. For imaging applications, metasurface stacks can perform sophisticated image corrections and can be directly integrated with image sensors. Here, we demonstrate this concept with a miniature flat camera integrating a monolithic metasurface lens doublet corrected for monochromatic aberrations, and an image sensor. The doublet lens, which acts as a fisheye photographic objective, has an f-number of 0.9, an angle-of-view larger than 60$^\\circ$$\\times$60$^\\circ$, and operates at 850 nm wavelength with large transmission. The camera exhibits high image quality, which indicates the potential of this technology to produce a paradigm shift in future designs of imaging systems for microscopy, photograp...

  14. The Dark Energy Survey Camera

    Science.gov (United States)

    Flaugher, Brenna

    2012-03-01

    The Dark Energy Survey Collaboration has built the Dark Energy Camera (DECam), a 3 square degree, 520 Megapixel CCD camera which is being mounted on the Blanco 4-meter telescope at CTIO. DECam will be used to carry out the 5000 sq. deg. Dark Energy Survey, using 30% of the telescope time over a 5 year period. During the remainder of the time, and after the survey, DECam will be available as a community instrument. Construction of DECam is complete. The final components were shipped to Chile in Dec. 2011 and post-shipping checkout is in progress in Dec-Jan. Installation and commissioning on the telescope are taking place in 2012. A summary of lessons learned and an update of the performance of DECam and the status of the DECam installation and commissioning will be presented.

  15. Sky camera geometric calibration using solar observations

    OpenAIRE

    Urquhart, B.; Kurtz, B; J. Kleissl

    2016-01-01

    A camera model and associated automated calibration procedure for stationary daytime sky imaging cameras is presented. The specific modeling and calibration needs are motivated by remotely deployed cameras used to forecast solar power production where cameras point skyward and use 180° fisheye lenses. Sun position in the sky and on the image plane provides a simple and automated approach to calibration; special equipment or calibration patterns are not required. Sun positio...

  16. Securing Embedded Smart Cameras with Trusted Computing

    OpenAIRE

    Thomas Winkler; Bernhard Rinner

    2011-01-01

    Camera systems are used in many applications including video surveillance for crime prevention and investigation, traffic monitoring on highways or building monitoring and automation. With the shift from analog towards digital systems, the capabilities of cameras are constantly increasing. Today's smart camera systems come with considerable computing power, large memory, and wired or wireless communication interfaces. With onboard image processing and analysis capabilities, cameras not only ...

  17. Filter characterization in digital cameras

    OpenAIRE

    Solli, Martin

    2004-01-01

    The use of spectrophotometers for color measurements on printed substrates is widely spread among paper producers as well as within the printing industry. Spectrophotometer measurements are precise, but time-consuming procedures and faster methods are desirable. Previously presented work on color calibration of flatbed scanners has shown that they can be used for fast color measurements with acceptable results. Furthermore, the rapid development of digital cameras has made it possible to tran...

  18. Graphic design of pinhole cameras

    Science.gov (United States)

    Edwards, H. B.; Chu, W. P.

    1979-01-01

    The paper describes a graphic technique for the analysis and optimization of pinhole size and focal length. The technique is based on the use of the transfer function of optical elements described by Scott (1959) to construct the transfer function of a circular pinhole camera. This transfer function is the response of a component or system to a pattern of lines having a sinusoidally varying radiance at varying spatial frequencies. Some specific examples of graphic design are presented.

  19. Magnetic flux tube tunneling

    International Nuclear Information System (INIS)

    We present numerical simulations of the collision and subsequent interaction of orthogonal magnetic flux tubes. The simulations were carried out using a parallelized spectral algorithm for compressible magnetohydrodynamics. It is found that, under a wide range of conditions, the flux tubes can open-quotes tunnelclose quotes through each other, a behavior not previously seen in studies of either vortex tube or magnetic flux tube interactions. Two conditions must be satisfied for tunneling to occur: the magnetic field must be highly twisted with a field line pitch >1, and the Lundquist number must be somewhat large, ≥2880. An examination of magnetic field lines suggests that tunneling is due to a double-reconnection mechanism. Initially orthogonal field lines reconnect at two specific locations, exchange interacting sections, and open-quotes passclose quotes through each other. The implications of these results for solar and space plasmas are discussed. copyright 1997 The American Physical Society

  20. Integrated structure vacuum tube

    Science.gov (United States)

    Dimeff, J.; Kerwin, W. J. (Inventor)

    1976-01-01

    High efficiency, multi-dimensional thin film vacuum tubes suitable for use in high temperature, high radiation environments are described. The tubes are fabricated by placing thin film electrode members in selected arrays on facing interior wall surfaces of an alumina substrate envelope. Cathode members are formed using thin films of triple carbonate. The photoresist used in photolithography aids in activation of the cathodes by carbonizing and reacting with the reduced carbonates when heated in vacuum during forming. The finely powdered triple carbonate is mixed with the photoresist used to delineate the cathode locations in the conventional solid state photolithographic manner. Anode and grid members are formed using thin films of refractory metal. Electron flow in the tubes is between grid elements from cathode to anode as in a conventional three-dimensional tube.

  1. Solid-state array cameras.

    Science.gov (United States)

    Strull, G; List, W F; Irwin, E L; Farnsworth, D L

    1972-05-01

    Over the past few years there has been growing interest shown in the rapidly maturing technology of totally solid-state imaging. This paper presents a synopsis of developments made in this field at the Westinghouse ATL facilities with emphasis on row-column organized monolithic arrays of diffused junction phototransistors. The complete processing sequence applicable to the fabrication of modern highdensity arrays is described from wafer ingot preparation to final sensor testing. Special steps found necessary for high yield processing, such as surface etching prior to both sawing and lapping, are discussed along with the rationale behind their adoption. Camera systems built around matrix array photosensors are presented in a historical time-wise progression beginning with the first 50 x 50 element converter developed in 1965 and running through the most recent 400 x 500 element system delivered in 1972. The freedom of mechanical architecture made available to system designers by solid-state array cameras is noted from the description of a bare-chip packaged cubic inch camera. Hybrid scan systems employing one-dimensional line arrays are cited, and the basic tradeoffs to their use are listed. PMID:20119094

  2. Unassisted 3D camera calibration

    Science.gov (United States)

    Atanassov, Kalin; Ramachandra, Vikas; Nash, James; Goma, Sergio R.

    2012-03-01

    With the rapid growth of 3D technology, 3D image capture has become a critical part of the 3D feature set on mobile phones. 3D image quality is affected by the scene geometry as well as on-the-device processing. An automatic 3D system usually assumes known camera poses accomplished by factory calibration using a special chart. In real life settings, pose parameters estimated by factory calibration can be negatively impacted by movements of the lens barrel due to shaking, focusing, or camera drop. If any of these factors displaces the optical axes of either or both cameras, vertical disparity might exceed the maximum tolerable margin and the 3D user may experience eye strain or headaches. To make 3D capture more practical, one needs to consider unassisted (on arbitrary scenes) calibration. In this paper, we propose an algorithm that relies on detection and matching of keypoints between left and right images. Frames containing erroneous matches, along with frames with insufficiently rich keypoint constellations, are detected and discarded. Roll, pitch yaw , and scale differences between left and right frames are then estimated. The algorithm performance is evaluated in terms of the remaining vertical disparity as compared to the maximum tolerable vertical disparity.

  3. Neural Tube Defects

    OpenAIRE

    Greene, Nicholas D. E.; Copp, Andrew J.

    2014-01-01

    Neural tube defects (NTDs), including spina bifida and anencephaly, are severe birth defects of the central nervous system that originate during embryonic development when the neural tube fails to close completely. Human NTDs are multifactorial, with contributions from both genetic and environmental factors. The genetic basis is not yet well understood, but several nongenetic risk factors have been identified as have possibilities for prevention by maternal folic acid supplementation. Mechani...

  4. Power vacuum tubes handbook

    CERN Document Server

    Whitaker, Jerry

    2012-01-01

    Providing examples of applications, Power Vacuum Tubes Handbook, Third Edition examines the underlying technology of each type of power vacuum tube device in common use today. The author presents basic principles, reports on new development efforts, and discusses implementation and maintenance considerations. Supporting mathematical equations and extensive technical illustrations and schematic diagrams help readers understand the material. Translate Principles into Specific Applications This one-stop reference is a hands-on guide for engineering personnel involved in the design, specification,

  5. 16 CFR 501.1 - Camera film.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Camera film. 501.1 Section 501.1 Commercial Practices FEDERAL TRADE COMMISSION RULES, REGULATIONS, STATEMENT OF GENERAL POLICY OR INTERPRETATION AND... 500 § 501.1 Camera film. Camera film packaged and labeled for retail sale is exempt from the...

  6. 21 CFR 892.1110 - Positron camera.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Positron camera. 892.1110 Section 892.1110 Food... DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1110 Positron camera. (a) Identification. A positron camera is a device intended to image the distribution of positron-emitting radionuclides in the...

  7. 21 CFR 886.1120 - Opthalmic camera.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Opthalmic camera. 886.1120 Section 886.1120 Food... DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1120 Opthalmic camera. (a) Identification. An ophthalmic camera is an AC-powered device intended to take photographs of the eye and the surrounding...

  8. FlashCam: a fully-digital camera for the medium-sized telescopes of the Cherenkov Telescope Array

    CERN Document Server

    Pühlhofer, G; Bernhard, S; Capasso, M; Diebold, S; Eisenkolb, F; Florin, D; Föhr, C; Funk, S; Gadola, A; Garrecht, F; Hermann, G; Jung, I; Kalekin, O; Kalkuhl, C; Kasperek, J; Kihm, T; Lahmann, R; Manalaysay, A; Marszalek, A; Pfeifer, M; Rajda, P J; Reimer, O; Santangelo, A; Schanz, T; Schwab, T; Steiner, S; Straumann, U; Tenzer, C; Vollhardt, A; Weitzel, Q; Werner, F; Wolf, D; Zietara, K

    2015-01-01

    The FlashCam group is currently preparing photomultiplier-tube based cameras proposed for the medium-sized telescopes (MST) of the Cherenkov Telescope Array (CTA). The cameras are designed around the FlashCam readout concept which is the first fully-digital readout system for Cherenkov cameras, based on commercial FADCs and FPGAs as key components for the front-end electronics modules and a high performance camera server as back-end. This contribution describes the progress of the full-scale FlashCam camera prototype currently under construction, as well as performance results also obtained with earlier demonstrator setups. Plans towards the production and implementation of FlashCams on site are also briefly presented.

  9. Aeronautical tubes and pipes

    Science.gov (United States)

    Beauclair, N.

    1984-12-01

    The main and subcomponent French suppliers of aircraft tubes and pipes are discussed, and the state of the industry is analyzed. Quality control is essential for tubes with regard to their i.d. and metallurgical compositions. French regulations do not allow welded seam tubes in hydraulic circuits unless no other form is available, and then rustproofed steel must be installed. The actual low level of orders for any run of tubes dictates that the product is only one of several among the manufacturers' line. Automation, both in NDT and quality control, assures that the tubes meet specifications. A total of 10 French companies participate in the industry, serving both civil and military needs, with some companies specializing only in titanium, steel, or aluminum materials. Concerns wishing to enter the market must upgrade their equipment to meet the higher aeronautical specifications and be prepared to furnish tubes and pipes that serve both functional and structural purposes simultaneously. Additionally, pipe-bending machines must also perform to tight specifications. Pipes can range from 0.2 mm exterior diameter to 40 mm, with wall thicknesses from 0.02 mm to 3 mm. A chart containing a list of manufacturers and their respective specifications and characteristics is presented, and a downtrend in production with reduction of personnel is noted.

  10. Single Camera Calibration in 3D Vision

    OpenAIRE

    Caius SULIMAN; Puiu, Dan; Moldoveanu, Florin

    2009-01-01

    Camera calibration is a necessary step in 3D vision in order to extract metric information from 2D images. A camera is considered to be calibrated when the parameters of the camera are known (i.e. principal distance, lens distorsion, focal length etc.). In this paper we deal with a single camera calibration method and with the help of this method we try to find the intrinsic and extrinsic camera parameters. The method was implemented with succes in the programming and simulation environment M...

  11. HHEBBES! All sky camera system: status update

    Science.gov (United States)

    Bettonvil, F.

    2015-01-01

    A status update is given of the HHEBBES! All sky camera system. HHEBBES!, an automatic camera for capturing bright meteor trails, is based on a DSLR camera and a Liquid Crystal chopper for measuring the angular velocity. Purpose of the system is to a) recover meteorites; b) identify origin/parental bodies. In 2015, two new cameras were rolled out: BINGO! -alike HHEBBES! also in The Netherlands-, and POgLED, in Serbia. BINGO! is a first camera equipped with a longer focal length fisheye lens, to further increase the accuracy. Several minor improvements have been done and the data reduction pipeline was used for processing two prominent Dutch fireballs.

  12. Modelling Virtual Camera Behaviour Through Player Gaze

    DEFF Research Database (Denmark)

    Picardi, Andrea; Burelli, Paolo; Yannakakis, Georgios N.

    2012-01-01

    In a three-dimensional virtual environment, aspects such as narrative and interaction largely depend on the placement and animation of the virtual camera. Therefore, virtual camera control plays a critical role in player experience and, thereby, in the overall quality of a computer game. Both game...... on the relationship between virtual camera, game-play and player behaviour. We run a game user experiment to shed some light on this relationship and identify relevant dif- ferences between camera behaviours through different game sessions, playing behaviours and player gaze patterns. Re- sults show that users can...... be efficiently profiled in dissimilar clusters according to camera control as part of their game- play behaviour....

  13. Experimental study of the water jet induced by underwater electrical discharge in a narrow rectangular tube

    Science.gov (United States)

    Koita, T.; Zhu, Y.; Sun, M.

    2016-05-01

    This paper reports an experimental investigation on the effects of explosion depth and tube width on the water jet induced by an underwater electrical discharge in a narrow rectangular tube. The water jet formation and bubble structure were evaluated from the images recorded by a high-speed video camera. Two typical patterns of jet formation and four general patterns of bubble implosion were observed, depending on the explosion depth and tube width. The velocity of the water jet was calculated from the recorded images. The jet velocity was observed to depend on not only the explosion depth and energy, but also on the tube width. We proposed an empirical formula defining the water jet velocity in the tube as a function of the tube width and explosion depth and energy.

  14. Acceptance tests of a new gamma camera

    International Nuclear Information System (INIS)

    For best patient service, a QA programme is needed to produce quantitative/qualitative data and keep records of the results and equipment faults. Gamma cameras must be checked against the manufacturer's specifications.The service manual is usually useful to achieve this goal. Acceptance tests are very important not only to accept a new gamma camera system for routine clinical use but also to have a role in a reference for future measurements. In this study, acceptance tests were performed for a new gamma camera in our department. It is a General Electric MG system with two detectors, two collimators. They are low energy general purpose (LEGP) and medium energy general purpose (MEGP). All intrinsic calibrations and corrections were done by the service engineer at installation (PM tune, dynamic correction, energy calibration, geometric calibration, energy correction, linearity correction and second order corrections).After installation, calibrations and corrections, a close physical inspection of the mechanical and electrical safety aspects of the cameras were done by the responsible physicist of the department. The planar system is based on measurement of system uniformity, resolution/linearity and multiple window spatial registration. All test procedures were performed according to NEMA procedures developed by the manufacturer. Intrinsic uniformity: NEMA uniformity was done first by using service manual and then other isotope uniformities were acquired with 99mTc, 131I, 201Tl and 67Ga. They were evaluated qualitatively and quantitatively, but non-uniformities were observed, especially for detector II, The service engineers repeated all tests and made necessary corrections. We repeated all the intrinsic uniformity tests. 99mTc intrinsic images were also performed at 'no correction', 'no energy correction', 'no linearity correction', 'all correction' and '±10% off peak', and compared. Extrinsic uniformity: At the beginning, collimators were checked for defects

  15. 3D camera tracking from disparity images

    Science.gov (United States)

    Kim, Kiyoung; Woo, Woontack

    2005-07-01

    In this paper, we propose a robust camera tracking method that uses disparity images computed from known parameters of 3D camera and multiple epipolar constraints. We assume that baselines between lenses in 3D camera and intrinsic parameters are known. The proposed method reduces camera motion uncertainty encountered during camera tracking. Specifically, we first obtain corresponding feature points between initial lenses using normalized correlation method. In conjunction with matching features, we get disparity images. When the camera moves, the corresponding feature points, obtained from each lens of 3D camera, are robustly tracked via Kanade-Lukas-Tomasi (KLT) tracking algorithm. Secondly, relative pose parameters of each lens are calculated via Essential matrices. Essential matrices are computed from Fundamental matrix calculated using normalized 8-point algorithm with RANSAC scheme. Then, we determine scale factor of translation matrix by d-motion. This is required because the camera motion obtained from Essential matrix is up to scale. Finally, we optimize camera motion using multiple epipolar constraints between lenses and d-motion constraints computed from disparity images. The proposed method can be widely adopted in Augmented Reality (AR) applications, 3D reconstruction using 3D camera, and fine surveillance systems which not only need depth information, but also camera motion parameters in real-time.

  16. Characterization of the Series 1000 Camera System

    Energy Technology Data Exchange (ETDEWEB)

    Kimbrough, J; Moody, J; Bell, P; Landen, O

    2004-04-07

    The National Ignition Facility requires a compact network addressable scientific grade CCD camera for use in diagnostics ranging from streak cameras to gated x-ray imaging cameras. Due to the limited space inside the diagnostic, an analog and digital input/output option in the camera controller permits control of both the camera and the diagnostic by a single Ethernet link. The system consists of a Spectral Instruments Series 1000 camera, a PC104+ controller, and power supply. The 4k by 4k CCD camera has a dynamic range of 70 dB with less than 14 electron read noise at a 1MHz readout rate. The PC104+ controller includes 16 analog inputs, 4 analog outputs and 16 digital input/output lines for interfacing to diagnostic instrumentation. A description of the system and performance characterization is reported.

  17. Oblique detonation waves stabilized in rectangular-cross-section bent tubes

    OpenAIRE

    Kudo, Yusuke; Nagura, Yuuto; Kasahara, Jiro; Sasamoto, Yuya; Matsuo, Akiko

    2011-01-01

    Oblique detonation waves, which are generated by a fundamental detonation phenomenon occurring in bent tubes, may be applied to fuel combustion in high-efficiency engines such as a pulse detonation engine (PDE) and a rotating detonation engine (RDE). The present study has experimentally demonstrated that steady-state oblique detonation waves propagated stably through rectangular-cross-section bent tubes by visualizing these waves using a high-speed camera and the shadowgraph method. The obliq...

  18. Geiger-Muller tubes

    International Nuclear Information System (INIS)

    A Geiger-Muller tube designed for use in an environment (for example, mounted on a rock drill) where subjected to mechanical shock and vibration has a tensioned anode wire secured by welding to securement members between first and second mounts at opposite ends of the tube envelope. The wire tension is adjusted to a high value with a screwable-adjustment means which is locked eg. by a spot-weld or by a locking nut, in the adjusted position, so that the natural frequency of the vibration of the tensioned wire does not resonate with (and may be much higher than) the frequencies to which the tube is subjected in use. The wire frequency is typically in excess of 400Hz and even 500Hz. The adjustment means may be included in the mount via which the envelope is evacuated and back-filled with the ionizible gas, and a gas-tight seal can be provided around this part of the mount, for example by sealing off the gas pump tube. However the adjustment means may be designed into another part of the tube, for example using telescopic parts of the envelope whose sliding junction is made gas tight with a flexible seal. (author)

  19. Categorising YouTube

    Directory of Open Access Journals (Sweden)

    Thomas Mosebo Simonsen

    2011-09-01

    Full Text Available This article provides a genre analytical approach to creating a typology of the User Generated Content (UGC of YouTube. The article investigates the construction of navigationprocesses on the YouTube website. It suggests a pragmatic genre approach that is expanded through a focus on YouTube’s technological affordances. Through an analysis of the different pragmatic contexts of YouTube, it is argued that a taxonomic understanding of YouTube must be analysed in regards to the vacillation of a user-driven bottom-up folksonomy and a hierarchical browsing system that emphasises a culture of competition and which favours the already popular content of YouTube. With this taxonomic approach, the UGC videos are registered and analysed in terms of empirically based observations. The article identifies various UGC categories and their principal characteristics. Furthermore, general tendencies of the UGC within the interacting relationship of new and old genres are discussed. It is argued that the utility of a conventional categorical system is primarily of analytical and theoretical interest rather than as a practical instrument.

  20. Video clustering using camera motion

    OpenAIRE

    Tort Alsina, Laura

    2012-01-01

    Com el moviment de càmera en un clip de vídeo pot ser útil per a la seva classificació en termes semàntics. [ANGLÈS] This document contains the work done in INP Grenoble during the second semester of the academic year 2011-2012, completed in Barcelona during the first months of the 2012-2013. The work presented consists in a camera motion study in different types of video in order to group fragments that have some similarity in the content. In the document it is explained how the data extr...

  1. Jacques : Your underwater camera companion

    OpenAIRE

    Edlund, Martin

    2014-01-01

    300 million pictures are uploaded everyday on Facebook alone. We live in a society where photography, filming and self-documentation are a natural part of our lives. But how does it inflict on our experiences when we always are considering camera angles, filters and compositions? We might very well ruin the experiences we so badly want to save. Scuba diving is a special experience. We enter a world with another space of movement, surroundings and animal life. An experience that can only be ex...

  2. Effect of tube size on electromagnetic tube bulging

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The commercial finite code ANSYS was employed for the simulation of the electromagnetic tube bulging process. The finite element model and boundary conditions were thoroughly discussed. ANSYS/EMAG was used to model the time varying electromagnetic field in order to obtain the radial and axial magnetic pressure acting on the tube. The magnetic pressure was then used as boundary conditions to model the high velocity deformation of various length tube with ANSYS/LSDYNA. The time space distribution of magnetic pressure on various length tubes was presented. Effect of tube size on the distribution of radial magnetic pressure and axial magnetic pressure and high velocity deformation were discussed. According to the radial magnetic pressure ratio of tube end to tube center and corresponding dimensionless length ratio of tube to coil, the free electromagnetic tube bulging was studied in classification. The calculated results show good agreements with practice.

  3. Kajian Efektifitas Sistem Struktur Tube Dengan Sistem Struktur Tube In Tube Di Bawah Beban Gempa

    OpenAIRE

    Sihotang, Dian Frisca

    2010-01-01

    Berkembangnya teknologi telah melahirkan berbagai sistem struktur bangunan tahan gempa, seperti penggunaan sistem tube.Tube adalah merupakan frame penahan gaya yang menahan gaya gaya lateral dengan struktur kantilever kotak yang memiliki jarak kolom yang berdekatan yang dipasang pada sekeliling gedung, sehingga penampilan wajah depan gedung seperti lubang jendela jendela yang terbuka. Rancangan tube ini kemudian dimodifikasi lagi dengan menambah pengaku pada bagian dalam ( konsep tube in tube...

  4. Lens assemblies for multispectral camera

    Science.gov (United States)

    Lepretre, Francois

    1994-09-01

    In the framework of a contract with the Indian Space Research Organization (ISRO), MATRA DEFENSE - DOD/UAO have developed, produced and tested 36 types LISS 1 - LISS 2 lenses and 12 LISS 3 lenses equipped with their interferential filters. These lenses are intended to form the optical systems of multispectral imaging sensors aboard Indian earth observation satellites IRS 1A, 1B, 1C, and 1D. It should be noted that the multispectrum cameras of the IRS 1A - 1B satellite have been in operation for two years and have given very satisfactory results according to ISRO. Each of these multispectrum LISS 3 cameras consists of lenses, each working in a different spectral bandwidth (B2: 520 - 590 nm; B3: 620 - 680 nm; B4: 770 - 860 nm; B5: 1550 - 1700 nm). In order to superimpose the images of each spectral band without digital processing, the image formats (60 mm) of the lenses are registered better that 2 micrometers and remain as such throughout all the environmental tests. Similarly, due to the absence of precise thermal control aboard the satellite, the lenses are as athermal as possible.

  5. The Dark Energy Camera (DECam)

    CERN Document Server

    Honscheid, K; Abbott, T; Annis, J; Antonik, M; Barcel, M; Bernstein, R; Bigelow, B; Brooks, D; Buckley-Geer, E; Campa, J; Cardiel, L; Castander, F; Castilla, J; Cease, H; Chappa, S; Dede, E; Derylo, G; Diehl, T; Doel, P; De Vicente, J; Eiting, J; Estrada, J; Finley, D; Flaugher, B; Gaztañaga, E; Gerdes, D; Gladders, M; Guarino, V; Gutíerrez, G; Hamilton, J; Haney, M; Holland, S; Huffman, D; Karliner, I; Kau, D; Kent, S; Kozlovsky, M; Kubik, D; Kühn, K; Kuhlmann, S; Kuk, K; Leger, F; Lin, H; Martínez, G; Martínez, M; Merritt, W; Mohr, J; Moore, P; Moore, T; Nord, B; Ogando, R; Olsen, J; Onal, B; Peoples, J; Qian, T; Roe, N; Sánchez, E; Scarpine, V; Schmidt, R; Schmitt, R; Schubnell, M; Schultz, K; Selen, M; Shaw, T; Simaitis, V; Slaughter, J; Smith, C; Spinka, H; Stefanik, A; Stuermer, W; Talaga, R; Tarle, G; Thaler, J; Tucker, D; Walker, A; Worswick, S; Zhao, A

    2008-01-01

    In this paper we describe the Dark Energy Camera (DECam), which will be the primary instrument used in the Dark Energy Survey. DECam will be a 3 sq. deg. mosaic camera mounted at the prime focus of the Blanco 4m telescope at the Cerro-Tololo International Observatory (CTIO). It consists of a large mosaic CCD focal plane, a five element optical corrector, five filters (g,r,i,z,Y), a modern data acquisition and control system and the associated infrastructure for operation in the prime focus cage. The focal plane includes of 62 2K x 4K CCD modules (0.27"/pixel) arranged in a hexagon inscribed within the roughly 2.2 degree diameter field of view and 12 smaller 2K x 2K CCDs for guiding, focus and alignment. The CCDs will be 250 micron thick fully-depleted CCDs that have been developed at the Lawrence Berkeley National Laboratory (LBNL). Production of the CCDs and fabrication of the optics, mechanical structure, mechanisms, and control system for DECam are underway; delivery of the instrument to CTIO is scheduled ...

  6. Neural tube defects

    OpenAIRE

    M.E. Marshall

    1981-01-01

    Neural tube defects refer to any defect in the morphogenesis of the neural tube, the most common types being spina bifida and anencephaly. Spina bifida has been recognised in skeletons found in north-eastern Morocco and estimated to have an age of almost 12 000 years. It was also known to the ancient Greek and Arabian physicians who thought that the bony defect was due to the tumour. The term spina bifida was first used by Professor Nicolai Tulp of Amsterdam in 1652. Many other terms have bee...

  7. Laboratory calibration and characterization of video cameras

    Science.gov (United States)

    Burner, A. W.; Snow, W. L.; Shortis, M. R.; Goad, W. K.

    1990-01-01

    Some techniques for laboratory calibration and characterization of video cameras used with frame grabber boards are presented. A laser-illuminated displaced reticle technique (with camera lens removed) is used to determine the camera/grabber effective horizontal and vertical pixel spacing as well as the angle of nonperpendicularity of the axes. The principal point of autocollimation and point of symmetry are found by illuminating the camera with an unexpanded laser beam, either aligned with the sensor or lens. Lens distortion and the principal distance are determined from images of a calibration plate suitably aligned with the camera. Calibration and characterization results for several video cameras are presented. Differences between these laboratory techniques and test range and plumb line calibration are noted.

  8. MAGIC-II Camera Slow Control Software

    CERN Document Server

    Steinke, B; Tridon, D Borla

    2009-01-01

    The Imaging Atmospheric Cherenkov Telescope MAGIC I has recently been extended to a stereoscopic system by adding a second 17 m telescope, MAGIC-II. One of the major improvements of the second telescope is an improved camera. The Camera Control Program is embedded in the telescope control software as an independent subsystem. The Camera Control Program is an effective software to monitor and control the camera values and their settings and is written in the visual programming language LabVIEW. The two main parts, the Central Variables File, which stores all information of the pixel and other camera parameters, and the Comm Control Routine, which controls changes in possible settings, provide a reliable operation. A safety routine protects the camera from misuse by accidental commands, from bad weather conditions and from hardware errors by automatic reactions.

  9. Local Heat Transfer for Finned-Tube Heat Exchangers using Oval Tubes

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, James Edward; Sohal, Manohar Singh

    2000-08-01

    This paper presents the results of an experimental study of forced convection heat transfer in a narrow rectangular duct fitted with either a circular tube or an elliptical tube in crossflow. The duct was designed to simulate a single passage in a fin-tube heat exchanger. Heat transfer measurements were obtained using a transient technique in which a heated airflow is suddenly introduced to the test section. High-resolution local fin-surface temperature distributions were obtained at several times after initiation of the transient using an imaging infrared camera. Corresponding local fin-surface heat transfer coefficient distributions were then calculated from a locally applied one-dimensional semi-infinite inverse heat conduction model. Heat transfer results were obtained over an airflow rate ranging from 1.56 x 10-3 to 15.6 x 10-3 kg/s. These flow rates correspond to a duct-height Reynolds number range of 630 – 6300 with a duct height of 1.106 cm and a duct width-toheight ratio, W/H, of 11.25. The test cylinder was sized such that the diameter-to-duct height ratio, D/H is 5. The elliptical tube had an aspect ratio of 3:1 and a/H equal to 4.33. Results presented in this paper reveal visual and quantitative details of local fin-surface heat transfer distributions in the vicinity of circular and oval tubes and their relationship to the complex horseshoe vortex system that forms in the flow stagnation region. Fin surface stagnation-region Nusselt numbers are shown to be proportional to the square-root of Reynolds number.

  10. Prawns in Bamboo Tube

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    Ingredients: 400 grams Jiwei prawns, 25 grams pork shreds, 5 grams sliced garlic. Condiments: 5 grams cooking oil, minced ginger root and scallions, cooking wine, salt, pepper and MSG (optional) Method: 1. Place the Shelled prawns into a bowl and mix with all the condiments. 2. Stuff the prawns into a fresh bamboo tube,

  11. Thoughts of accelerator tubes

    International Nuclear Information System (INIS)

    A brief, subjective review is given of mechanisms that may be limiting electrostatic accelerator tubes to present levels of performance. Suggestions are made for attacking these limitations with the purpose of stimulating the thinking of designers and users of electrostatic accelerators

  12. Action selection for single-camera SLAM

    OpenAIRE

    Vidal-Calleja, Teresa A.; Sanfeliu, Alberto; Andrade-Cetto, J

    2010-01-01

    A method for evaluating, at video rate, the quality of actions for a single camera while mapping unknown indoor environments is presented. The strategy maximizes mutual information between measurements and states to help the camera avoid making ill-conditioned measurements that are appropriate to lack of depth in monocular vision systems. Our system prompts a user with the appropriate motion commands during 6-DOF visual simultaneous localization and mapping with a handheld camera. Additionall...

  13. Movement-based Interaction in Camera Spaces

    DEFF Research Database (Denmark)

    Eriksson, Eva; Riisgaard Hansen, Thomas; Lykke-Olesen, Andreas

    2006-01-01

    In this paper we present three concepts that address movement-based interaction using camera tracking. Based on our work with several movement-based projects we present four selected applications, and use these applications to leverage our discussion, and to describe our three main concepts space......, relations, and feedback. We see these as central for describing and analysing movement-based systems using camera tracking and we show how these three concepts can be used to analyse other camera tracking applications....

  14. Omnidirectional Underwater Camera Design and Calibration

    OpenAIRE

    Josep Bosch; Nuno Gracias; Pere Ridao; David Ribas

    2015-01-01

    This paper presents the development of an underwater omnidirectional multi-camera system (OMS) based on a commercially available six-camera system, originally designed for land applications. A full calibration method is presented for the estimation of both the intrinsic and extrinsic parameters, which is able to cope with wide-angle lenses and non-overlapping cameras simultaneously. This method is valid for any OMS in both land or water applications. For underwater use, a customized housing i...

  15. Camera calibration from road lane markings

    OpenAIRE

    Fung, GSK; Yung, NHC; Pang, GKH

    2003-01-01

    Three-dimensional computer vision techniques have been actively studied for the purpose of visual traffic surveillance. To determine the 3-D environment, camera calibration is a crucial step to resolve the relationship between the 3-D world coordinates and their corresponding image coordinates. A novel camera calibration using the geometry properties of road lane markings is proposed. A set of equations that computes the camera parameters from the image coordinates of the road lane markings a...

  16. Camera calibration from surfaces of revolution

    OpenAIRE

    Wong, KYK; Mendonça, PRS; Cipolla, R.

    2003-01-01

    This paper addresses the problem of calibrating a pinhole camera from images of a surface of revolution. Camera calibration is the process of determining the intrinsic or internal parameters (i.e., aspect ratio, focal length, and principal point) of a camera, and it is important for both motion estimation and metric reconstruction of 3D models. In this paper, a novel and simple calibration technique is introduced, which is based on exploiting the symmetry of images of surfaces of revolution. ...

  17. Increased Automation in Stereo Camera Calibration Techniques

    OpenAIRE

    Brandi House; Kevin Nickels

    2006-01-01

    Robotic vision has become a very popular field in recent years due to the numerous promising applications it may enhance. However, errors within the cameras and in their perception of their environment can cause applications in robotics to fail. To help correct these internal and external imperfections, stereo camera calibrations are performed. There are currently many accurate methods of camera calibration available; however, most or all of them are time consuming and labor intensive. This r...

  18. Investigation the causes of steam generator tube leakage at Mihama-1

    International Nuclear Information System (INIS)

    Mihama-1 was manually shut down due to a primary to secondary leakage in steam generator No. A on February 18th, 1994. Helium gas leak test determined that the defect was located in the horizontal straight portion of the upper U-tube bundle close to the edge of the scalloped bar. The leaking tube was inspected with eddy current tests by using 8x1 probe and rotating pancake probe, and the OD-initiated circumferential crack was identified near the edge of the scalloped bar and the vertical strap. In order to investigate the causes of tube leakage, visual inspection of the defect area of tube OD, upper support structure and its lug was performed by using thin fiberscopes and CCD camera. Visual inspection results suggested that the straight portion of leaking tube was bent due to sticking of upper support structure, etc. An extensive examination was performed to examine the tube straightness in detail by using very unique method. Stress evaluation was performed based upon the tube straightness examination and it was shown that axial stress was larger than hoop stress. On the other hand, the current water chemistry data and previous pulled tube examination results were reviewed and they suggested that some possibility of corrosive environment existed. Based upon the above data, the causes of Mihama unit 1 tube leakage was considered to be OD-initiated circumferential SCC in slight corrosive environment. The present paper describes how the causes of tube leakage have been investigated by using various NDE techniques

  19. Decision about buying a gamma camera

    International Nuclear Information System (INIS)

    A large part of the referral to a nuclear medicine department is usually for imaging studies. Sooner or later, the nuclear medicine specialist will be called upon to make a decision about when and what type of gamma camera to buy. There is no longer an option of choosing between a rectilinear scanner and a gamma camera as the former is virtually out of the market. The decision that one has to make is when to invest in a gamma camera, and then on what basis to select the gamma camera

  20. Advanced High-Definition Video Cameras

    Science.gov (United States)

    Glenn, William

    2007-01-01

    A product line of high-definition color video cameras, now under development, offers a superior combination of desirable characteristics, including high frame rates, high resolutions, low power consumption, and compactness. Several of the cameras feature a 3,840 2,160-pixel format with progressive scanning at 30 frames per second. The power consumption of one of these cameras is about 25 W. The size of the camera, excluding the lens assembly, is 2 by 5 by 7 in. (about 5.1 by 12.7 by 17.8 cm). The aforementioned desirable characteristics are attained at relatively low cost, largely by utilizing digital processing in advanced field-programmable gate arrays (FPGAs) to perform all of the many functions (for example, color balance and contrast adjustments) of a professional color video camera. The processing is programmed in VHDL so that application-specific integrated circuits (ASICs) can be fabricated directly from the program. ["VHDL" signifies VHSIC Hardware Description Language C, a computing language used by the United States Department of Defense for describing, designing, and simulating very-high-speed integrated circuits (VHSICs).] The image-sensor and FPGA clock frequencies in these cameras have generally been much higher than those used in video cameras designed and manufactured elsewhere. Frequently, the outputs of these cameras are converted to other video-camera formats by use of pre- and post-filters.

  1. High-speed cameras at Los Alamos

    Science.gov (United States)

    Brixner, Berlyn

    1997-05-01

    In 1943, there was no camera with the microsecond resolution needed for research in Atomic Bomb development. We had the Mitchell camera (100 fps), the Fastax (10 000), the Marley (100 000), the drum streak (moving slit image) 10-5 s resolution, and electro-optical shutters for 10-6 s. Julian Mack invented a rotating-mirror camera for 10-7 s, which was in use by 1944. Small rotating mirror changes secured a resolution of 10-8 s. Photography of oscilloscope traces soon recorded 10-6 resolution, which was later improved to 10-8 s. Mack also invented two time resolving spectrographs for studying the radiation of the first atomic explosion. Much later, he made a large aperture spectrograph for shock wave spectra. An image dissecting drum camera running at 107 frames per second (fps) was used for studying high velocity jets. Brixner invented a simple streak camera which gave 10-8 s resolution. Using a moving film camera, an interferometer pressure gauge was developed for measuring shock-front pressures up to 100 000 psi. An existing Bowen 76-lens frame camera was speeded up by our turbine driven mirror to make 1 500 000 fps. Several streak cameras were made with writing arms from 4 1/2 to 40 in. and apertures from f/2.5 to f/20. We made framing cameras with top speeds of 50 000, 1 000 000, 3 500 000, and 14 000 000 fps.

  2. Omnidirectional Underwater Camera Design and Calibration

    Directory of Open Access Journals (Sweden)

    Josep Bosch

    2015-03-01

    Full Text Available This paper presents the development of an underwater omnidirectional multi-camera system (OMS based on a commercially available six-camera system, originally designed for land applications. A full calibration method is presented for the estimation of both the intrinsic and extrinsic parameters, which is able to cope with wide-angle lenses and non-overlapping cameras simultaneously. This method is valid for any OMS in both land or water applications. For underwater use, a customized housing is required, which often leads to strong image distortion due to refraction among the different media. This phenomena makes the basic pinhole camera model invalid for underwater cameras, especially when using wide-angle lenses, and requires the explicit modeling of the individual optical rays. To address this problem, a ray tracing approach has been adopted to create a field-of-view (FOV simulator for underwater cameras. The simulator allows for the testing of different housing geometries and optics for the cameras to ensure a complete hemisphere coverage in underwater operation. This paper describes the design and testing of a compact custom housing for a commercial off-the-shelf OMS camera (Ladybug 3 and presents the first results of its use. A proposed three-stage calibration process allows for the estimation of all of the relevant camera parameters. Experimental results are presented, which illustrate the performance of the calibration method and validate the approach.

  3. Research of Camera Calibration Based on DSP

    OpenAIRE

    Zheng Zhang; Yukun Wan; Lixin Cai

    2013-01-01

    To take advantage of the high-efficiency and stability of DSP in the data processing and the functions of OpenCV library, this study brought forward a scheme that camera calibration in DSP embedded system calibration. An arithmetic of camera calibration based on OpenCV is designed by analyzing the camera model and lens distortion. The transplantation of EMCV to DSP is completed and the arithmetic of camera calibration is migrated and optimized based on the CCS development environment and the ...

  4. Explosive Transient Camera (ETC) Program

    Science.gov (United States)

    Ricker, George

    1991-01-01

    Since the inception of the ETC program, a wide range of new technologies was developed to support this astronomical instrument. The prototype unit was installed at ETC Site 1. The first partially automated observations were made and some major renovations were later added to the ETC hardware. The ETC was outfitted with new thermoelectrically-cooled CCD cameras and a sophisticated vacuum manifold, which, together, made the ETC a much more reliable unit than the prototype. The ETC instrumentation and building were placed under full computer control, allowing the ETC to operate as an automated, autonomous instrument with virtually no human intervention necessary. The first fully-automated operation of the ETC was performed, during which the ETC monitored the error region of the repeating soft gamma-ray burster SGR 1806-21.

  5. Framework for Evaluating Camera Opinions

    Directory of Open Access Journals (Sweden)

    K.M. Subramanian

    2015-03-01

    Full Text Available Opinion mining plays a most important role in text mining applications in brand and product positioning, customer relationship management, consumer attitude detection and market research. The applications lead to new generation of companies/products meant for online market perception, online content monitoring and reputation management. Expansion of the web inspires users to contribute/express opinions via blogs, videos and social networking sites. Such platforms provide valuable information for analysis of sentiment pertaining a product or service. This study investigates the performance of various feature extraction methods and classification algorithm for opinion mining. Opinions expressed in Amazon website for cameras are collected and used for evaluation. Features are extracted from the opinions using Term Document Frequency and Inverse Document Frequency (TDFIDF. Feature transformation is achieved through Principal Component Analysis (PCA and kernel PCA. Naïve Bayes, K Nearest Neighbor and Classification and Regression Trees (CART classification algorithms classify the features extracted.

  6. Development of the LBNL positron emission mammography camera

    International Nuclear Information System (INIS)

    We present the construction status of the LBNL Positron Emission Mammography (PEM) camera, which utilizes a PET detector module with depth of interaction measurement consisting of 64 LSO crystals (3x3x30 mm3) coupled on one end to a single photomultiplier tube (PMT) and on the opposite end to a 64 pixel array of silicon photodiodes (PDs). The PMT provides an accurate timing pulse, the PDs identify the crystal of interaction, the sum provides a total energy signal, and the PD/(PD+PMT) ratio determines the depth of interaction. We have completed construction of all 42 PEM detector modules. All data acquisition electronics have been completed, fully tested and loaded onto the gantry. We have demonstrated that all functions of the custom IC work using the production rigid-flex boards and data acquisition system. Preliminary detector module characterization and coincidence data have been taken using the production system, including initial images

  7. HRSC: High resolution stereo camera

    Science.gov (United States)

    Neukum, G.; Jaumann, R.; Basilevsky, A.T.; Dumke, A.; Van Gasselt, S.; Giese, B.; Hauber, E.; Head, J. W., III; Heipke, C.; Hoekzema, N.; Hoffmann, H.; Greeley, R.; Gwinner, K.; Kirk, R.; Markiewicz, W.; McCord, T.B.; Michael, G.; Muller, Jan-Peter; Murray, J.B.; Oberst, J.; Pinet, P.; Pischel, R.; Roatsch, T.; Scholten, F.; Willner, K.

    2009-01-01

    The High Resolution Stereo Camera (HRSC) on Mars Express has delivered a wealth of image data, amounting to over 2.5 TB from the start of the mapping phase in January 2004 to September 2008. In that time, more than a third of Mars was covered at a resolution of 10-20 m/pixel in stereo and colour. After five years in orbit, HRSC is still in excellent shape, and it could continue to operate for many more years. HRSC has proven its ability to close the gap between the low-resolution Viking image data and the high-resolution Mars Orbiter Camera images, leading to a global picture of the geological evolution of Mars that is now much clearer than ever before. Derived highest-resolution terrain model data have closed major gaps and provided an unprecedented insight into the shape of the surface, which is paramount not only for surface analysis and geological interpretation, but also for combination with and analysis of data from other instruments, as well as in planning for future missions. This chapter presents the scientific output from data analysis and highlevel data processing, complemented by a summary of how the experiment is conducted by the HRSC team members working in geoscience, atmospheric science, photogrammetry and spectrophotometry. Many of these contributions have been or will be published in peer-reviewed journals and special issues. They form a cross-section of the scientific output, either by summarising the new geoscientific picture of Mars provided by HRSC or by detailing some of the topics of data analysis concerning photogrammetry, cartography and spectral data analysis.

  8. Quarter-wave pulse tube

    Science.gov (United States)

    Swift, G. W.; Gardner, D. L.; Backhaus, S. N.

    2011-10-01

    In high-power pulse-tube refrigerators, the pulse tube itself can be very long without too much dissipation of acoustic power on its walls. The pressure amplitude, the volume-flow-rate amplitude, and the time phase between them evolve significantly along a pulse tube that is about a quarter-wavelength long. Proper choice of length and area makes the oscillations at the ambient end of the long pulse tube optimal for driving a second, smaller pulse-tube refrigerator, thereby utilizing the acoustic power that would typically have been dissipated in the first pulse-tube refrigerator's orifice. Experiments show that little heat is carried from the ambient heat exchanger to the cold heat exchanger in such a long pulse tube, even though the oscillations are turbulent and even when the tube is compactly coiled.

  9. Drift tubes of Linac 2

    CERN Multimedia

    Photographic Service

    1977-01-01

    Being redied for installation, those at the right are for tank 1, those on the left for tank 2. Contrary to Linac 1, which had drift-tubes supported on stems, here the tubes are suspended, for better mechanical stability.

  10. Laser welding of a tube

    International Nuclear Information System (INIS)

    For sleeving PWR steam generator tubes, the welding laser work is made under protection of a primary gas going out by the crossing window of the laser and under a secondary gas flowing axially through the head and the tube

  11. Tubing For Sampling Hydrazine Vapor

    Science.gov (United States)

    Travis, Josh; Taffe, Patricia S.; Rose-Pehrsson, Susan L.; Wyatt, Jeffrey R.

    1993-01-01

    Report evaluates flexible tubing used for transporting such hypergolic vapors as those of hydrazines for quantitative analysis. Describes experiments in which variety of tubing materials, chosen for their known compatibility with hydrazine, flexibility, and resistance to heat.

  12. MISR FIRSTLOOK radiometric camera-by-camera Cloud Mask V001

    Data.gov (United States)

    National Aeronautics and Space Administration — This file contains the FIRSTLOOK Radiometric camera-by-camera Cloud Mask (RCCM) dataset produced using ancillary inputs (RCCT) from the previous time period. It is...

  13. Ultrasonic nondestructive tubing inspection system

    International Nuclear Information System (INIS)

    A system for measuring the extent of tube wall erosion in an inspection region of a heat exchanger tube of a nuclear steam generator, uses an ultrasonic means driven helically inside the eroded tube which may be filled with a fluid (e.g., water) to minimize ultrasonic wave attenuation. A control means cooperates with the ultrasonic means to produce a map of the tube wall thickness in an inspection region

  14. Sleeve puller salvages welded tubes

    Science.gov (United States)

    Weaver, J. F.

    1980-01-01

    Tool removes sleeve remnants without distorting or damaging tubes, unlike pliers and other conventional handtools. Tubes can be reused, saving time, labor, and material in many applications. Sleeve-removal fixture consists of pressure screw, swing arm, locking screws, and base. It removes sleeve remnant from tubing after welded joint has been sawed through.

  15. Automatic inference of geometric camera parameters and intercamera topology in uncalibrated disjoint surveillance cameras

    NARCIS (Netherlands)

    Hollander, R.J.M. den; Bouma, H.; Baan, J.; Eendebak, P.T.; Rest, J.H.C. van

    2015-01-01

    Person tracking across non-overlapping cameras and other types of video analytics benefit from spatial calibration information that allows an estimation of the distance between cameras and a relation between pixel coordinates and world coordinates within a camera. In a large environment with many ca

  16. Improving Situational Awareness in camera surveillance by combining top-view maps with camera images

    NARCIS (Netherlands)

    Kooi, F.L.; Zeeders, R.

    2009-01-01

    The goal of the experiment described is to improve today's camera surveillance in public spaces. Three designs with the camera images combined on a top-view map were compared to each other and to the current situation in camera surveillance. The goal was to test which design makes spatial relationsh

  17. Camera self-calibration from translation by referring to a known camera.

    Science.gov (United States)

    Zhao, Bin; Hu, Zhaozheng

    2015-09-01

    This paper presents a novel linear method for camera self-calibration by referring to a known (or calibrated) camera. The method requires at least three images, with two images generated by the uncalibrated camera from pure translation and one image generated by the known reference camera. We first propose a method to compute the infinite homography from scene depths. Based on this, we use two images generated by translating the uncalibrated camera to recover scene depths, which are further utilized to linearly compute the infinite homography between an arbitrary uncalibrated image, and the image from the known camera. With the known camera as reference, the computed infinite homography is readily decomposed for camera calibration. The proposed self-calibration method has been tested with simulation and real image data. Experimental results demonstrate that the method is practical and accurate. This paper proposes using a "known reference camera" for camera calibration. The pure translation, as required in the method, is much more maneuverable, compared with some strict motions in the literature, such as pure rotation. The proposed self-calibration method has good potential for solving online camera calibration problems, which has important applications, especially for multicamera and zooming camera systems. PMID:26368906

  18. Metrology Camera System of Prime Focus Spectrograph for Subaru Telescope

    CERN Document Server

    Wang, Shiang-Yu; Huang, Pin-Jie; Ling, Hung-Hsu; Karr, Jennifer; Chang, Yin-Chang; Hu, Yen-Shan; Hsu, Shu-Fu; Chen, Hsin-Yo; Gunn, James E; Reiley, Dan J; Tamura, Naoyuki; Takato, Naruhisa; Shimono, Atsushi

    2016-01-01

    The Prime Focus Spectrograph (PFS) is a new optical/near-infrared multi-fiber spectrograph designed for the prime focus of the 8.2m Subaru telescope. PFS will cover a 1.3 degree diameter field with 2394 fibers to complement the imaging capabilities of Hyper SuprimeCam. To retain high throughput, the final positioning accuracy between the fibers and observing targets of PFS is required to be less than 10um. The metrology camera system (MCS) serves as the optical encoder of the fiber motors for the configuring of fibers. MCS provides the fiber positions within a 5um error over the 45 cm focal plane. The information from MCS will be fed into the fiber positioner control system for the closed loop control. MCS will be located at the Cassegrain focus of Subaru telescope in order to to cover the whole focal plane with one 50M pixel Canon CMOS camera. It is a 380mm Schmidt type telescope which generates a uniform spot size with a 10 micron FWHM across the field for reasonable sampling of PSF. Carbon fiber tubes are ...

  19. Mars surface context cameras past, present, and future

    Science.gov (United States)

    Gunn, M. D.; Cousins, C. R.

    2016-04-01

    Mars has been the focus of robotic space exploration since the 1960s, in which time there have been over 40 missions, some successful, some not. Camera systems have been a core component of all instrument payloads sent to the Martian surface, harnessing some combination of monochrome, color, multispectral, and stereo imagery. Together, these data sets provide the geological context to a mission, which over the decades has included the characterization and spatial mapping of geological units and associated stratigraphy, charting active surface processes such as dust devils and water ice sublimation, and imaging the robotic manipulation of samples via scoops (Viking), drills (Mars Science Laboratory (MSL) Curiosity), and grinders (Mars Exploration Rovers). Through the decades, science context imaging has remained an integral part of increasingly advanced analytical payloads, with continual advances in spatial and spectral resolution, radiometric and geometric calibration, and image analysis techniques. Mars context camera design has encompassed major technological shifts, from single photomultiplier tube detectors to megapixel charged-couple devices, and from multichannel to Bayer filter color imaging. Here we review the technological capability and evolution of science context imaging instrumentation resulting from successful surface missions to Mars, and those currently in development for planned future missions.

  20. Measurement of the performance of the gamma camera oscilloscope display

    International Nuclear Information System (INIS)

    In one common type of gamma camera display system, the positions at which the gamma photons are detected in the scintillation crystal are correlated with flashes on the face of a cathode-ray tube. A permanent record is obtained by integrating these flashes on a photographic film. There are problems in assessing the performance of the display system, since the photographic film is a non-linear recording medium, and the gamma camera itself does not always give the correct spatial position of each detected gamma photon. A computer simulation of the display has therefore been used to assess the best possible performance of the display system. The simulated test pattern represented a uniform background distribution of radioisotope on which was superimposed a circular disc of increased radioactivity. The target was imaged so as to have a rectangular count-density profile. Studies of the interaction between the display and different observers showed that an increase in the total number of background counts decreased the detection contrast. The results are compared with predictions from statistical theories. (U.K.)

  1. Pulsed versus direct current calibration of a proximity focused x-ray streak camera

    International Nuclear Information System (INIS)

    The absolute sensitivity of a proximity focused x-ray streak tube was measured with dc Henke tube x-ray line sources. Calibration covered the photon energy range from 0.930 to 8.05 keV at five points. These data were compared to a model of sensitivity based on photocathode response and matched the model well on a relative scale. A pulsed comparison was performed using a laser-plasma x-ray source. The calculated camera sensitivity was folded with the measured spectrum and compared to measured film exposures. The predicted exposures were 6.5 times less than the measured exposures, verifying concerns that the proximity focused tube response is nonlinear with flux at low, dc flux levels. Results of dc recalibrations that varied flux levels determined the extent of this phenomenon

  2. Inflation of stressed cylindrical tubes: an experimental study

    Science.gov (United States)

    Guo, Zhiming; Wang, Shibin; Li, Linan; Ji, Hongwei; Wang, Zhiyong; Cai, Songbao

    2014-06-01

    The inflation of an initially stressed cylindrical shell provides a good illustration of the phenomenon of the initiation and propagation of an instability, which shares the same mathematical and mechanical features with a variety of other strain localization phenomena in engineering structures and materials. The high speed CCD camera and digital image processing system were used to measure the 3D shape of the inflated cylindrical tube. The localized bulge of a cylindrical tube with closed ends forms when the internal pressure reaches a critical value Pcr. As more air is filled into the tube, the pressure drops but the radius at the centre of the bulge will increase until it reaches a maximum value rmax. With continued inflation, the pressure stays at a constant value Pp. The purpose of this study is to investigate the critical and propagation pressures in the tubes and the profile outside when the shells under axial tension and internal pressure were inflating. We focus on the influence of the axial tension on the critical pressure. In this paper the problem is explored through experimental efforts. A series of experiments were conducted on commercially available natural rubber latex tubes involving different geometries and initial axial tensions, which were regarded as isotropic, homogeneous, incompressible and hyper-elastic materials.

  3. Neural tube defects

    Directory of Open Access Journals (Sweden)

    M.E. Marshall

    1981-09-01

    Full Text Available Neural tube defects refer to any defect in the morphogenesis of the neural tube, the most common types being spina bifida and anencephaly. Spina bifida has been recognised in skeletons found in north-eastern Morocco and estimated to have an age of almost 12 000 years. It was also known to the ancient Greek and Arabian physicians who thought that the bony defect was due to the tumour. The term spina bifida was first used by Professor Nicolai Tulp of Amsterdam in 1652. Many other terms have been used to describe this defect, but spina bifida remains the most useful general term, as it describes the separation of the vertebral elements in the midline.

  4. Centering mount for a gamma camera

    International Nuclear Information System (INIS)

    A device for centering a γ-camera detector in case of radionuclide diagnosis is described. It permits the use of available medical coaches instead of a table with a transparent top. The device can be used for centering a detector (when it is fixed at the low end of a γ-camera) on a required area of the patient's body

  5. Case Camera obscura 1995–2014

    OpenAIRE

    Inkinen, Ari

    2015-01-01

    Sininauhaliitossa kehitettiin vuonna 1995 elämyksellinen arvo- ja päihdekasvatusohjelma Camera obscura. Toimintamallin toimintakonsepti ja sen sisältö ovat ainutlaatuisia. Sosiaaliseen vahvistamiseen perustuva toimintamalli integroitiin osaksi koulun opetusohjelmaa ja toteutettiin yhteistyössä paikallisten nuorisoalan toimijoiden kanssa. Vuorovaikutukseen, kokemusoppimiseen ja nuoren kohtaamiseen perustuvaa toimintamallia on toteutettu ja kehitetty erilaisten hankkeiden avulla. Camera obscura...

  6. Creating and Using a Camera Obscura

    Science.gov (United States)

    Quinnell, Justin

    2012-01-01

    The camera obscura (Latin for "darkened room") is the earliest optical device and goes back over 2500 years. The small pinhole or lens at the front of the room allows light to enter and this is then "projected" onto a screen inside the room. This differs from a camera, which projects its image onto light-sensitive material. Originally images were…

  7. Rosetta Star Tracker and Navigation Camera

    DEFF Research Database (Denmark)

    Thuesen, Gøsta

    1998-01-01

    Proposal in response to the Invitation to Tender (ITT) issued by Matra Marconi Space (MSS) for the procurement of the ROSETTA Star Tracker and Navigation Camera.......Proposal in response to the Invitation to Tender (ITT) issued by Matra Marconi Space (MSS) for the procurement of the ROSETTA Star Tracker and Navigation Camera....

  8. Matching image color from different cameras

    Science.gov (United States)

    Fairchild, Mark D.; Wyble, David R.; Johnson, Garrett M.

    2008-01-01

    Can images from professional digital SLR cameras be made equivalent in color using simple colorimetric characterization? Two cameras were characterized, these characterizations were implemented on a variety of images, and the results were evaluated both colorimetrically and psychophysically. A Nikon D2x and a Canon 5D were used. The colorimetric analyses indicated that accurate reproductions were obtained. The median CIELAB color differences between the measured ColorChecker SG and the reproduced image were 4.0 and 6.1 for the Canon (chart and spectral respectively) and 5.9 and 6.9 for the Nikon. The median differences between cameras were 2.8 and 3.4 for the chart and spectral characterizations, near the expected threshold for reliable image difference perception. Eight scenes were evaluated psychophysically in three forced-choice experiments in which a reference image from one of the cameras was shown to observers in comparison with a pair of images, one from each camera. The three experiments were (1) a comparison of the two cameras with the chart-based characterizations, (2) a comparison with the spectral characterizations, and (3) a comparison of chart vs. spectral characterization within and across cameras. The results for the three experiments are 64%, 64%, and 55% correct respectively. Careful and simple colorimetric characterization of digital SLR cameras can result in visually equivalent color reproduction.

  9. Fazendo 3d com uma camera so

    CERN Document Server

    Lunazzi, J J

    2010-01-01

    A simple system to make stereo photography or videos based in just two mirrors was made in 1989 and recently adapted to a digital camera setup. Um sistema simples para fazer fotografia ou videos em estereo baseado em dois espelhos que dividem o campo da imagem foi criado no ano 1989, e recentemente adaptado para camera digital.

  10. Thermal Cameras in School Laboratory Activities

    Science.gov (United States)

    Haglund, Jesper; Jeppsson, Fredrik; Hedberg, David; Schönborn, Konrad J.

    2015-01-01

    Thermal cameras offer real-time visual access to otherwise invisible thermal phenomena, which are conceptually demanding for learners during traditional teaching. We present three studies of students' conduction of laboratory activities that employ thermal cameras to teach challenging thermal concepts in grades 4, 7 and 10-12. Visualization of…

  11. CCD Color Camera Characterization for Image Measurements

    NARCIS (Netherlands)

    Withagen, P.J.; Groen, F.C.A.; Schutte, K.

    2007-01-01

    In this article, we will analyze a range of different types of cameras for its use in measurements. We verify a general model of a charged coupled device camera using experiments. This model includes gain and offset, additive and multiplicative noise, and gamma correction. It is shown that for sever

  12. AIM: Ames Imaging Module Spacecraft Camera

    Science.gov (United States)

    Thompson, Sarah

    2015-01-01

    The AIM camera is a small, lightweight, low power, low cost imaging system developed at NASA Ames. Though it has imaging capabilities similar to those of $1M plus spacecraft cameras, it does so on a fraction of the mass, power and cost budget.

  13. Cameras Monitor Spacecraft Integrity to Prevent Failures

    Science.gov (United States)

    2014-01-01

    The Jet Propulsion Laboratory contracted Malin Space Science Systems Inc. to outfit Curiosity with four of its cameras using the latest commercial imaging technology. The company parlayed the knowledge gained under working with NASA to develop an off-the-shelf line of cameras, along with a digital video recorder, designed to help troubleshoot problems that may arise on satellites in space.

  14. Securing Embedded Smart Cameras with Trusted Computing

    Directory of Open Access Journals (Sweden)

    Winkler Thomas

    2011-01-01

    Full Text Available Camera systems are used in many applications including video surveillance for crime prevention and investigation, traffic monitoring on highways or building monitoring and automation. With the shift from analog towards digital systems, the capabilities of cameras are constantly increasing. Today's smart camera systems come with considerable computing power, large memory, and wired or wireless communication interfaces. With onboard image processing and analysis capabilities, cameras not only open new possibilities but also raise new challenges. Often overlooked are potential security issues of the camera system. The increasing amount of software running on the cameras turns them into attractive targets for attackers. Therefore, the protection of camera devices and delivered data is of critical importance. In this work we present an embedded camera prototype that uses Trusted Computing to provide security guarantees for streamed videos. With a hardware-based security solution, we ensure integrity, authenticity, and confidentiality of videos. Furthermore, we incorporate image timestamping, detection of platform reboots, and reporting of the system status. This work is not limited to theoretical considerations but also describes the implementation of a prototype system. Extensive evaluation results illustrate the practical feasibility of the approach.

  15. Adapting virtual camera behaviour through player modelling

    DEFF Research Database (Denmark)

    Burelli, Paolo; Yannakakis, Georgios N.

    2015-01-01

    Research in virtual camera control has focused primarily on finding methods to allow designers to place cameras effectively and efficiently in dynamic and unpredictable environments, and to generate complex and dynamic plans for cinematography in virtual environments. In this article, we propose a...

  16. X-ray tubes

    International Nuclear Information System (INIS)

    An improved form of x-ray tube is described which consists of a rotatable anode disc and an electron beam source enclosed in an envelope. The beam of electrons strikes the edge of the anode disc at an acute angle, producing x-rays which are transmitted through a window in the envelope. To improve performance and life of the anode disc it is additionally reciprocated back and forth along its axis of rotation. Dimensions are specified. (U.K.)

  17. Primary fallopian tube carcinoma

    Directory of Open Access Journals (Sweden)

    Mladenović-Segedi Ljiljana

    2009-01-01

    Full Text Available Introduction. Primary fallopian tube carcinoma is extremely rare, making 0.3-1.6% of all female genital tract malignancies. Although the etymology of this tumor is unknown, it is suggested to be associated with chronic tubal inflammation, infertility, tuberculous salpingitis and tubal endometriosis. High parity is considered to be protective. Cytogenetic studies show the disease to be associated with over expression of p53, HER2/neu and c-myb. There is also some evidence that BRCA1 and BRCA2 mutations have a role in umorogeneis. Clinical features. The most prevailing symptoms with fallopian tube carcinoma are abdominal pain, abnormal vaginal discharge/bleeding and the most common finding is an adnexal mass. In many patients, fallopian tube carcinoma is asymptomatic. Diagnosis. Due to its rarity, preoperative diagnosis of primary fallopian tube carcinoma is rarely made. It is usually misdiagnosed as ovarian carcinoma, tuboovarian abscess or ectopic pregnancy. Sonographic features of the tumor are non-specific and include the presence of a fluid-filled adnexal structure with a significant solid component, a sausage-shaped mass, a cystic mass with papillary projections within, a cystic mass with cog wheel appearance and an ovoid-shaped structure containing an incomplete separation and a highly vascular solid nodule. More than 80% of patients have elevated pretreatment serum CA-125 levels, which is useful in follow-up after the definite treatment. Treatment. The treatment approach is similar to that of ovarian carcinoma, and includes total abdominal hysterectomy and bilateral salpingo-oophorectomy. Staging is followed with chemotherapy.

  18. Fabrication of seamless calandria tubes

    International Nuclear Information System (INIS)

    Full text: Calandria tube is a large diameter, thin walled zircaloy-4 tube and is an important structural component of PHWR type of reactors. These tubes are lifetime components and remain during the full life of the reactor. Calandria tubes are classified as extremely thin walled tubes with a diameter to wall thickness ratio of around 96. Such thin walled tubes are conventionally produced by seam welded route comprising of extrusion of slabs followed by a series of hot and rolling passes, shaping into O-shape and eventual welding. An alternative and superior method of fabricating the calandria tubes, the seamless route, has been developed, which involves hot extrusion of mother blanks followed by three successive cold pilger reductions. Eccentricity correction of the extruded blanks is carried out on a special purpose grinding equipment to bring the wall thickness variation within permissible limits. Predominant wall thickness reductions are given during cold pilgering to ensure high Q-factor values. The texture in the finished tubes could be closely, controlled with an average fr value of 0.65. Pilgering parameters and tube guiding system have been specially designed to facilities rolling of thin walled tubes. Seamless calandria tubes have distinct advantages over welded tubes. In addition to the absence of weld, they are dimensionally more stable, lighter in weight and possess uniform grains with superior grain size. The cycle time from billet to finished product is substantially reduced and the product is amenable to high level of quality assurance. The most significant feature of the seamless route is its material recovery over welded route. Residual stresses measured in the tubes indicate that these are negligible and uniform along the length of the tube. In view of their superior quality, the first charge of seamless calandria tubes will be rolled into the first 500 MWe Pressurised Heavy Water Reactor at Tarapur

  19. Clogging of feeding tubes.

    Science.gov (United States)

    Marcuard, S P; Perkins, A M

    1988-01-01

    This is a report of an in vitro study evaluating clotting ability of some formulas with intact protein and hydrolyzed protein sources in a series of buffers ranging from a pH of 1 thru 10. The following 10 products were tested: Ensure Plus, Ensure, Enrich, Osmolite, Pulmocare, Citrotein, Resource, Vivonex TEN, Vital, and Hepatic Acid II. Protein (10 and 20 g/liter) was added to Citrotein and Ensure Plus. All formulas were tested at full and some at half strength. Clotting occurred only in premixed intact protein formulas (Pulmocare, Ensure Plus, Osmolite, Enrich, Ensure) and in Resource. No clotting was observed for Citrotein (intact protein formula in powder form), Vital, Vivonex TEN, and Hepatic Aid II. Adding protein did not cause or increase clotting. In summary, clotting of some liquid formula diet appears to be an important factor causing possible gastric feeding tube occlusion. The following measures may help in preventing this problem: flushing before and after aspirating for gastric residuals to eliminate acid precipitation of formula in the feeding tube, advance the nasogastric feeding tube into the duodenum if possible, and avoid mixing these products with liquid medications having a pH value of 5.0 or less. PMID:3138452

  20. Traveling-Wave Tubes

    Science.gov (United States)

    Kory, Carol L.

    1998-01-01

    The traveling-wave tube (TWT) is a vacuum device invented in the early 1940's used for amplification at microwave frequencies. Amplification is attained by surrendering kinetic energy from an electron beam to a radio frequency (RF) electromagnetic wave. The demand for vacuum devices has been decreased largely by the advent of solid-state devices. However, although solid state devices have replaced vacuum devices in many areas, there are still many applications such as radar, electronic countermeasures and satellite communications, that require operating characteristics such as high power (Watts to Megawatts), high frequency (below 1 GHz to over 100 GHz) and large bandwidth that only vacuum devices can provide. Vacuum devices are also deemed irreplaceable in the music industry where musicians treasure their tube-based amplifiers claiming that the solid-state and digital counterparts could never provide the same "warmth" (3). The term traveling-wave tube includes both fast-wave and slow-wave devices. This article will concentrate on slow-wave devices as the vast majority of TWTs in operation fall into this category.

  1. Flow visualization by mobile phone cameras

    Science.gov (United States)

    Cierpka, Christian; Hain, Rainer; Buchmann, Nicolas A.

    2016-06-01

    Mobile smart phones were completely changing people's communication within the last ten years. However, these devices do not only offer communication through different channels but also devices and applications for fun and recreation. In this respect, mobile phone cameras include now relatively fast (up to 240 Hz) cameras to capture high-speed videos of sport events or other fast processes. The article therefore explores the possibility to make use of this development and the wide spread availability of these cameras in the terms of velocity measurements for industrial or technical applications and fluid dynamics education in high schools and at universities. The requirements for a simplistic PIV (particle image velocimetry) system are discussed. A model experiment of a free water jet was used to prove the concept and shed some light on the achievable quality and determine bottle necks by comparing the results obtained with a mobile phone camera with data taken by a high-speed camera suited for scientific experiments.

  2. CRL X-RAY TUBE

    OpenAIRE

    Kolchevsky, N. N.; Petrov, P. V.

    2015-01-01

    A novel types of X-ray tubes with refractive lenses are proposed. CRL-R X-ray tube consists of Compound Refractive Lens- CRL and Reflection X-ray tube. CRL acts as X-ray window. CRL-T X-ray consists of CRL and Transmission X-ray tube. CRL acts as target for electron beam. CRL refractive lens acts as filter, collimator, waveguide and focusing lens. Properties and construction of the CRL X-ray tube are discussed.

  3. Spectrometer beam tube dimensional optimization

    International Nuclear Information System (INIS)

    This project examined the optimization of the design of a beam tube. An ANSYS model was used to find the minimum tube thickness and the best camber in a beam tube under vacuum and preloaded by a pair of magnet poles. After the tube was modeled one version of it was built for use in the accelerator. This beam tube was put under a vacuum and the dimensional changes were recorded and compared to the ANSYS predictions. These deflection results were quite close to the predicted numbers and would suggest that the stresses are similar to the predictions as well

  4. Development of a high resolution gamma camera system using finely grooved GAGG scintillator

    Science.gov (United States)

    Yamamoto, Seiichi; Kataoka, Jun; Oshima, Tsubasa; Ogata, Yoshimune; Watabe, Tadashi; Ikeda, Hayato; Kanai, Yasukazu; Hatazawa, Jun

    2016-06-01

    High resolution gamma cameras require small pixel scintillator blocks with high light output. However, manufacturing a small pixel scintillator block is difficult when the pixel size becomes small. To solve this limitation, we developed a high resolution gamma camera system using a finely grooved Ce-doped Gd3Al2Ga3O12 (GAGG) plate. Our gamma camera's detector consists of a 1-mm-thick finely grooved GAGG plate that is optically coupled to a 1-in. position sensitive photomultiplier tube (PSPMT). The grooved GAGG plate has 0.2×0.2 mm pixels with 0.05-mm wide slits (between the pixels) that were manufactured using a dicing saw. We used a Hamamatsu PSPMT with a 1-in. square high quantum efficiency (HQE) PSPMT (R8900-100-C12). The energy resolution for the Co-57 gamma photons (122 keV) was 18.5% FWHM. The intrinsic spatial resolution was estimated to be 0.7-mm FWHM. With a 0.5-mm diameter pinhole collimator mounted to its front, we achieved a high resolution, small field-of-view gamma camera. The system spatial resolution for the Co-57 gamma photons was 1.0-mm FWHM, and the sensitivity was 0.0025%, 10 mm from the collimator surface. The Tc-99m HMDP administered mouse images showed the fine structures of the mouse body's parts. Our developed high resolution small pixel GAGG gamma camera is promising for such small animal imaging.

  5. Real-time registration compensator for 1-inch Harpicon Hi-Vision camera

    Science.gov (United States)

    Mimura, Itaru; Tomura, Naoto; Murata, Nobuo; Ohoka, Masaharu

    1992-08-01

    We have developed a real-time registration compensator for 1" Harpicon the Hi-Vision camera. Harpicon has the advantages of higher sensitivity and higher resolution than Saticon or Hi-Vision CCD imagers. However a camera with image pick-up tubes such as Harpicon produces registration errors which causes lower resolution and false color on objective edges. To solve this problem we developed a new method of detecting registration errors which is suitable for digital Hi-Vision cameras. The detector finds registration errors in the picture during the camera operation. This frees the operator from initial registration tuning and enables real-time compensation. Recently we developed a detection large scale integrated (LSI) circuit with a 1. 3tm complemental metal-oxide semi-conductor (CMOS) gate array and implemented the system in hardware. The detection hardware consists of two gate arrays twenty-four 256k x 4-bit FIFO memories and a small amount of control logic. The experimental hardware detects registration errors at 30 points (5 points vertically and 6 horizontally) in both R-G and B-G channels within 700 msec. The camera has a high resolution (40

  6. An ISPA-camera for $\\beta$-radiography

    CERN Document Server

    Puertolas, D; Leutz, H; Gys, Thierry; D'Ambrosio, C

    1996-01-01

    We have developed a new type of beta-camera based on an Imaging Silicon Pixel Array (ISPA)-tube combined with planar plastic scintillators or with SiY2O5(Ce)-scintillating powder. The ISPA-tube consists of a photocathode viewed at 3 cm distance by a silicon anode divided into 1024 rectangular (75 microm x 500 microm) detector pixels, each bump-bonded to its equally-sized electronic pixel. Depending on the beta-detector thickness we achieved spatial resolutions (FWHM) between 105 microm (63Ni source and 30 microm thick plastic scintillator) and 240 microm (90Sr-90Y source and 120 microm thick plastic scintillator) by covering the detectors with brass templates. With their four 60 microm wide slits oriented parallel to the long pixel edges we simulated small sized beta-strips. The impact of detector thickness is explained by multiple scattering, angular aperture of the template slits and scintillating light distribution at the ISPA-photocathode. Beta detection sensitivities were measured with calibrated...

  7. Airborne Digital Camera. A digital view from above; Airborne Digital Camera. Der digitale Blick von oben

    Energy Technology Data Exchange (ETDEWEB)

    Roeser, H.P. [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Berlin (Germany). Inst. fuer Weltraumsensorik und Planetenerkundung

    1999-09-01

    The Airborne Digital Camera is based on the WAOSS camera of the MARS-96 mission. The camera will provide a new basis for airborne photogrammetry and remote exploration. The ADC project aims at the development of the first commercial digital airborne camera. [German] Die Wurzeln des Projektes Airborne Digital Camera (ADC) liegen in der Mission MARS-96. Die hierfuer konzipierte Marskamera WAOSS lieferte die Grundlage fuer das innovative Konzept einer digitalen Flugzeugkamera. Diese ist auf dem Weg, die flugzeuggestuetzte Photogrammetrie und Fernerkundung auf eine technologisch voellig neue Basis zu stellen. Ziel des Projektes ADC ist die Entwicklung der ersten kommerziellen digitalen Luftbildkamera. (orig.)

  8. Reliability of steam generator tubing

    Energy Technology Data Exchange (ETDEWEB)

    Kadokami, E. [Mitsubishi Heavy Industries Ltd., Hyogo-ku (Japan)

    1997-02-01

    The author presents results on studies made of the reliability of steam generator (SG) tubing. The basis for this work is that in Japan the issue of defects in SG tubing is addressed by the approach that any detected defect should be repaired, either by plugging the tube or sleeving it. However, this leaves open the issue that there is a detection limit in practice, and what is the effect of nondetectable cracks on the performance of tubing. These studies were commissioned to look at the safety issues involved in degraded SG tubing. The program has looked at a number of different issues. First was an assessment of the penetration and opening behavior of tube flaws due to internal pressure in the tubing. They have studied: penetration behavior of the tube flaws; primary water leakage from through-wall flaws; opening behavior of through-wall flaws. In addition they have looked at the question of the reliability of tubing with flaws during normal plant operation. Also there have been studies done on the consequences of tube rupture accidents on the integrity of neighboring tubes.

  9. Microdischarges in DC accelerator tubes

    International Nuclear Information System (INIS)

    Voltage tests on the Daresbury ceramic/titanium accelerator tube have shown that microdischarges play an important role in the conditioning process. It has been found that the voltage onset for microdischarges in a tube is dependent on the surface contamination of the electrodes and the tube geometry (in particular the tube length). This geometrical effect can be related to the trajectories of secondary ions emitted from the electrode surfaces. Sensitive diagnostic techniques have been developed to study the mass and energy distribution of ions emitted along the axis of the tube during these predischarges. The energy distribution of protons (and H- ions) can be related to the origins of the discharges in the tube. Detailed results are presented for a particular tube geometry. (author)

  10. True three-dimensional camera

    Science.gov (United States)

    Kornreich, Philipp; Farell, Bart

    2013-01-01

    An imager that can measure the distance from each pixel to the point on the object that is in focus at the pixel is described. This is accomplished by short photo-conducting lightguides at each pixel. In the eye the rods and cones are the fiber-like lightguides. The device uses ambient light that is only coherent in spherical shell-shaped light packets of thickness of one coherence length. Modern semiconductor technology permits the construction of lightguides shorter than a coherence length of ambient light. Each of the frequency components of the broad band light arriving at a pixel has a phase proportional to the distance from an object point to its image pixel. Light frequency components in the packet arriving at a pixel through a convex lens add constructively only if the light comes from the object point in focus at this pixel. The light in packets from all other object points cancels. Thus the pixel receives light from one object point only. The lightguide has contacts along its length. The lightguide charge carriers are generated by the light patterns. These light patterns, and thus the photocurrent, shift in response to the phase of the input signal. Thus, the photocurrent is a function of the distance from the pixel to its object point. Applications include autonomous vehicle navigation and robotic vision. Another application is a crude teleportation system consisting of a camera and a three-dimensional printer at a remote location.

  11. Cloud Computing with Context Cameras

    Science.gov (United States)

    Pickles, A. J.; Rosing, W. E.

    2016-05-01

    We summarize methods and plans to monitor and calibrate photometric observations with our autonomous, robotic network of 2m, 1m and 40cm telescopes. These are sited globally to optimize our ability to observe time-variable sources. Wide field "context" cameras are aligned with our network telescopes and cycle every ˜2 minutes through BVr'i'z' filters, spanning our optical range. We measure instantaneous zero-point offsets and transparency (throughput) against calibrators in the 5-12m range from the all-sky Tycho2 catalog, and periodically against primary standards. Similar measurements are made for all our science images, with typical fields of view of ˜0.5 degrees. These are matched against Landolt, Stetson and Sloan standards, and against calibrators in the 10-17m range from the all-sky APASS catalog. Such measurements provide pretty good instantaneous flux calibration, often to better than 5%, even in cloudy conditions. Zero-point and transparency measurements can be used to characterize, monitor and inter-compare sites and equipment. When accurate calibrations of Target against Standard fields are required, monitoring measurements can be used to select truly photometric periods when accurate calibrations can be automatically scheduled and performed.

  12. Ultrasonic inspection of tube to tube plate welds

    International Nuclear Information System (INIS)

    To monitor the deterioration of a weld between a tube and tube plate which has been repaired by a repair sleeve inside the tube and brazed at one end to the tube, ultrasound from a crystal at the end of a rod is launched, in the form of Lamb-type waves, into the tube through the braze and allowed to travel along the tube to the weld and be reflected back along the tube. The technique may also be used for the type of heat exchanger in which, during construction, the tubes are welded to the tube plate via external sleeves in which case the ultrasound is used in a similar manner to inspect the sleeve/tube plate weld. an electromagnetic transducer may be used to generate the ultrasound. The ultrasonic head comprising the crystal and an acoustic baffle is mounted on a Perspex (RTM) rod which may be rotated by a stepping motor. Echo signals from the region of deterioration may be isolated by use of a time gate in the receiver. The device primarily detects circumferentially orientated cracks, and may be used in heat exchangers in nuclear power plants. (author)

  13. New camera systems for fuel services

    International Nuclear Information System (INIS)

    AREVA NP Fuel Services have many years of experience in visual examination and measurements on fuel assemblies and associated core components by using state of the art cameras and measuring technologies. The used techniques allow the surface and dimensional characterization of materials and shapes by visual examination. New enhanced and sophisticated technologies for fuel services f. e. are two shielded color camera systems for use under water and close inspection of a fuel assembly. Nowadays the market requirements for detecting and characterization of small defects (lower than the 10th of one mm) or cracks and analyzing surface appearances on an irradiated fuel rod cladding or fuel assembly structure parts have increased. Therefore it is common practice to use movie cameras with higher resolution. The radiation resistance of high resolution CCD cameras is in general very low and it is not possible to use them unshielded close to a fuel assembly. By extending the camera with a mirror system and shielding around the sensitive parts, the movie camera can be utilized for fuel assembly inspection. AREVA NP Fuel Services is now equipped with such kind of movie cameras. (orig.)

  14. Automatic camera tracking for remote manipulators

    International Nuclear Information System (INIS)

    The problem of automatic camera tracking of mobile objects is addressed with specific reference to remote manipulators and using either fixed or mobile cameras. The technique uses a kinematic approach employing 4 x 4 coordinate transformation matrices to solve for the needed camera PAN and TILT angles. No vision feedback systems are used, as the required input data are obtained entirely from position sensors from the manipulator and the camera-positioning system. All hardware requirements are generally satisfied by currently available remote manipulator systems with a supervisory computer. The system discussed here implements linear plus on/off (bang-bang) closed-loop control with a +-2-deg deadband. The deadband area is desirable to avoid operator seasickness caused by continuous camera movement. Programming considerations for camera control, including operator interface options, are discussed. The example problem presented is based on an actual implementation using a PDP 11/34 computer, a TeleOperator Systems SM-229 manipulator, and an Oak Ridge National Laboratory (ORNL) camera-positioning system. 3 references, 6 figures, 2 tables

  15. Automatic camera tracking for remote manipulators

    International Nuclear Information System (INIS)

    The problem of automatic camera tracking of mobile objects is addressed with specific reference to remote manipulators and using either fixed or mobile cameras. The technique uses a kinematic approach employing 4 x 4 coordinate transformation matrices to solve for the needed camera PAN and TILT angles. No vision feedback systems are used, as the required input data are obtained entirely from position sensors from the manipulator and the camera-positioning system. All hardware requirements are generally satisfied by currently available remote manipulator systems with a supervisory computer. The system discussed here implements linear plus on/off (''bang-bang'') closed-loop control with a +-2-deg deadband. The deadband area is desirable to avoid operator ''seasickness'' caused by continuous camera movement. Programming considerations for camera control, including operator interface options, are discussed. The example problem presented is based on an actual implementation using a PDP 11/34 computer, a TeleOperator System SM-229 manipulator, and an Oak Ridge National Laboratory (ORNL) camera-positioning system

  16. Automatic camera tracking for remote manipulators

    International Nuclear Information System (INIS)

    The problem of automatic camera tracking of mobile objects is addressed with specific reference to remote manipulators and using either fixed or mobile cameras. The technique uses a kinematic approach employing 4 x 4 coordinate transformation matrices to solve for the needed camera PAN and TILT angles. No vision feedback systems are used, as the required input data are obtained entirely from position sensors from the manipulator and the camera-positioning system. All hardware requirements are generally satisfied by currently available remote manipulator systems with a supervisory computer. The system discussed here implements linear plus on/off (bang-bang) closed-loop control with a +-20 deadband. The deadband area is desirable to avoid operator seasickness caused by continuous camera movement. Programming considerations for camera control, including operator interface options, are discussed. The example problem presented is based on an actual implementation using a PDP 11/34 computer, a TeleOperator Systems SM-229 manipulator, and an Oak Ridge National Laboratory (ORNL) camera-positioning system. 3 references, 6 figures, 2 tables

  17. A High Dose-Rate Gamma Irradiation Test of Passive Elements of Radiation- Tolerant Camera System

    International Nuclear Information System (INIS)

    In this paper, a high dose-rate gamma-ray irradiation test of passive elements, which are components of radiation-tolerant camera system, is described. In the overhaul period of the nuclear power plant, integrity of the neutron-irradiated fuel assembly is evaluated. Among the evaluation methods for the integrity of the neutron-irradiated fuel assembly during the normal operation cycle of the nuclear power plant, VT(visual test) of the four face of nuclear fuel assembly is a major concern. As the neutron-irradiated fuel assembly is a high dose-rate gamma-ray source, approximately a few kGy, radiation-hardened camera composed of vidicon tube-type image sensors is used in the VT. The VT of the four face of nuclear fuel assembly, which is a high dose-rate gamma source, is performed in the canal. The width of canal, d.., is about 1,500mm. As the distance, d2, between the fuel assembly (d3 , 224mm) and the camera system, assumed that the width of camera system is about 200mm, is short below one tenth shielding thickness of gamma-ray of water, about 660mm, a COTS CCD device can not be used directly. As the image resolution of the COTS CCD device is higher than vidicon-tube type image sensor, the VT of the four face of the nuclear fuel assembly is clearly performed, if assumed that the radiation-weakened CCD device is properly shielded from the high dose rate gamma-ray source. In this paper, it is assumed that a radiation-tolerant camera system, which are composed of COTS CCD camera, zoom lens, anti-reflection mirror, and visible window, is used in the VT of the nuclear fuel assembly. And the COTS CCD camera and zoom lens module are shielded from a high dose-rate gamma-ray source using the high-density material, lead or tungsten. The passive elements, mirror and visible window, which are placed in the optical path of CCD camera, are exposed to a high dose-rate gamma-ray source directly. So, the gamma ray irradiation characteristics of passive elements, is needed to test

  18. A Benchmark for Virtual Camera Control

    DEFF Research Database (Denmark)

    Burelli, Paolo; Yannakakis, Georgios N.

    2015-01-01

    Automatically animating and placing the virtual camera in a dynamic environment is a challenging task. The camera is expected to maximise and maintain a set of properties — i.e. visual composition — while smoothly moving through the environment and avoiding obstacles. A large number of different...... this reason, in this paper, we propose a benchmark for the problem of virtual camera control and we analyse a number of different problems in different virtual environments. Each of these scenarios is described through a set of complexity measures and, as a result of this analysis, a subset of...

  19. Multi-Camera Calibration Using a Globe

    OpenAIRE

    Shen, Rui; Cheng, Irene; Basu, Anup

    2008-01-01

    The need for calibration of multiple cameras working together in a network, or for the acquisition of free viewpoint video for 3D TV, is becoming increasingly important in recent years. In this paper we present a novel approach for calibrating multiple cameras using an ordinary globe that is usually available in every household. This method makes it possible to reduce multi-camera calibration to a level that is attainable by non-technical users. Our technique requires only one view of the glo...

  20. Calibration of detector sensitivity in positron cameras

    International Nuclear Information System (INIS)

    An improved method for calibrating detector sensitivities in a positron camera has been developed. The calibration phantom is a cylinder of activity placed near the center of the camera and fully within the field of view. The calibration data is processed in such a manner that the following two important properties are achieved. The estimate of a detector sensitivity is unaffected by the sensitivities of the other detectors. The estimates are insensitive to displacements of the calibrating phantom from the camera center. Both of these properties produce a more accurate detector calibration

  1. Uncertainty of temperature measurement with thermal cameras

    Science.gov (United States)

    Chrzanowski, Krzysztof; Matyszkiel, Robert; Fischer, Joachim; Barela, Jaroslaw

    2001-06-01

    All main international metrological organizations are proposing a parameter called uncertainty as a measure of the accuracy of measurements. A mathematical model that enables the calculations of uncertainty of temperature measurement with thermal cameras is presented. The standard uncertainty or the expanded uncertainty of temperature measurement of the tested object can be calculated when the bounds within which the real object effective emissivity (epsilon) r, the real effective background temperature Tba(r), and the real effective atmospheric transmittance (tau) a(r) are located and can be estimated; and when the intrinsic uncertainty of the thermal camera and the relative spectral sensitivity of the thermal camera are known.

  2. Fuzzy logic control for camera tracking system

    Science.gov (United States)

    Lea, Robert N.; Fritz, R. H.; Giarratano, J.; Jani, Yashvant

    1992-01-01

    A concept utilizing fuzzy theory has been developed for a camera tracking system to provide support for proximity operations and traffic management around the Space Station Freedom. Fuzzy sets and fuzzy logic based reasoning are used in a control system which utilizes images from a camera and generates required pan and tilt commands to track and maintain a moving target in the camera's field of view. This control system can be implemented on a fuzzy chip to provide an intelligent sensor for autonomous operations. Capabilities of the control system can be expanded to include approach, handover to other sensors, caution and warning messages.

  3. Close-range photogrammetry with video cameras

    Science.gov (United States)

    Burner, A. W.; Snow, W. L.; Goad, W. K.

    1985-01-01

    Examples of photogrammetric measurements made with video cameras uncorrected for electronic and optical lens distortions are presented. The measurement and correction of electronic distortions of video cameras using both bilinear and polynomial interpolation are discussed. Examples showing the relative stability of electronic distortions over long periods of time are presented. Having corrected for electronic distortion, the data are further corrected for lens distortion using the plumb line method. Examples of close-range photogrammetric data taken with video cameras corrected for both electronic and optical lens distortion are presented.

  4. Neural network method for characterizing video cameras

    Science.gov (United States)

    Zhou, Shuangquan; Zhao, Dazun

    1998-08-01

    This paper presents a neural network method for characterizing color video camera. A multilayer feedforward network with the error back-propagation learning rule for training, is used as a nonlinear transformer to model a camera, which realizes a mapping from the CIELAB color space to RGB color space. With SONY video camera, D65 illuminant, Pritchard Spectroradiometer, 410 JIS color charts as training data and 36 charts as testing data, results show that the mean error of training data is 2.9 and that of testing data is 4.0 in a 2563 RGB space.

  5. Screen-Camera Calibration Using Gray Codes

    OpenAIRE

    FRANCKEN, Yannick; Hermans, Chris; Bekaert, Philippe

    2009-01-01

    In this paper we present a method for efficient calibration of a screen-camera setup, in which the camera is not directly facing the screen. A spherical mirror is used to make the screen visible to the camera. Using Gray code illumination patterns, we can uniquely identify the reflection of each screen pixel on the imaged spherical mirror. This allows us to compute a large set of 2D-3D correspondences, using only two sphere locations. Compared to previous work, this means we require less manu...

  6. Self-calibration of Large Scale Camera Networks

    OpenAIRE

    Goorts, Patrik; MAESEN, Steven; Liu, Yunjun; Dumont, Maarten; Bekaert, Philippe; Lafruit, Gauthier

    2014-01-01

    In this paper, we present a method to calibrate large scale camera networks for multi-camera computer vision applications in sport scenes. The calibration process determines precise camera parameters, both within each camera (focal length, principal point, etc) and inbetween the cameras (their relative position and orientation). To this end, we first extract candidate image correspondences over adjacent cameras, without using any calibration object, solely relying on existing feature matching...

  7. CALIBRATION AND EPIPOLAR GEOMETRY OF GENERIC HETEROGENOUS CAMERA SYSTEMS

    OpenAIRE

    Luber, A.; Rueß, D; Manthey, K.; Reulke, R.

    2012-01-01

    The application of perspective camera systems in photogrammetry and computer vision is state of the art. In recent years nonperspective and especially omnidirectional camera systems were increasingly used in close-range photogrammetry tasks. In general perspective camera model, i. e. pinhole model, cannot be applied when using non-perspective camera systems. However, several camera models for different omnidirectional camera systems are proposed in literature. Using different types o...

  8. Towards Adaptive Virtual Camera Control In Computer Games

    OpenAIRE

    Burelli, Paolo; Yannakakis, Georgios N.

    2011-01-01

    Automatic camera control aims to define a framework to control virtual camera movements in dynamic and unpredictable virtual environments while ensuring a set of desired visual properties. We inves- tigate the relationship between camera placement and playing behaviour in games and build a user model of the camera behaviour that can be used to control camera movements based on player preferences. For this purpose, we collect eye gaze, camera and game-play data from subjects playing a 3D platf...

  9. The photothermal camera - a new non destructive inspection tool; La camera photothermique - une nouvelle methode de controle non destructif

    Energy Technology Data Exchange (ETDEWEB)

    Piriou, M. [AREVA NP Centre Technique SFE - Zone Industrielle et Portuaire Sud - BP13 - 71380 Saint Marcel (France)

    2007-07-01

    The Photothermal Camera, developed by the Non-Destructive Inspection Department at AREVA NP's Technical Center, is a device created to replace penetrant testing, a method whose drawbacks include environmental pollutants, industrial complexity and potential operator exposure. We have already seen how the Photothermal Camera can work alongside or instead of conventional surface inspection techniques such as penetrant, magnetic particle or eddy currents. With it, users can detect without any surface contact ligament defects or openings measuring just a few microns on rough oxidized, machined or welded metal parts. It also enables them to work on geometrically varied surfaces, hot parts or insulating (dielectric) materials without interference from the magnetic properties of the inspected part. The Photothermal Camera method has already been used for in situ inspections of tube/plate welds on an intermediate heat exchanger of the Phenix fast reactor. It also replaced the penetrant method for weld inspections on the ITER vacuum chamber, for weld crack detection on vessel head adapter J-welds, and for detecting cracks brought on by heat crazing. What sets this innovative method apart from others is its ability to operate at distances of up to two meters from the inspected part, as well as its remote control functionality at distances of up to 15 meters (or more via Ethernet), and its emissions-free environmental cleanliness. These make it a true alternative to penetrant testing, to the benefit of operator and environmental protection. (author) [French] La Camera Photothermique, developpee par le departement des Examens Non Destructifs du Centre Technique de AREVA NP, est un equipement destine a remplacer le ressuage, source de pollution pour l'environnement, de complexite pour l'industrialisation et eventuellement de dosimetrie pour les operateurs. Il a ete demontre que la Camera Photothermique peut etre utilisee en complement ou en remplacement des

  10. Steam generator tube integrity program

    Energy Technology Data Exchange (ETDEWEB)

    Dierks, D.R.; Shack, W.J. [Argonne National Laboratory, IL (United States); Muscara, J.

    1996-03-01

    A new research program on steam generator tubing degradation is being sponsored by the U.S. Nuclear Regulatory Commission (NRC) at Argonne National Laboratory. This program is intended to support a performance-based steam generator tube integrity rule. Critical areas addressed by the program include evaluation of the processes used for the in-service inspection of steam generator tubes and recommendations for improving the reliability and accuracy of inspections; validation and improvement of correlations for evaluating integrity and leakage of degraded steam generator tubes, and validation and improvement of correlations and models for predicting degradation in steam generator tubes as aging occurs. The studies will focus on mill-annealed Alloy 600 tubing, however, tests will also be performed on replacement materials such as thermally-treated Alloy 600 or 690. An overview of the technical work planned for the program is given.

  11. Sealed ion accelerator tubes (survey)

    International Nuclear Information System (INIS)

    The first publications on developing commercial models of small-scale sealed accelerator tubes in which neutrons are generated appeared in the foreign press in 1954 to 1957; they were very brief and were advertising-oriented. The tubes were designed for neutron logging of oil wells instead of ampule neutron sources (Po + Be, Ra + Be). Later, instruments of this type began to be called neutron tubes from the resulting neutron radiation that they gave off. In Soviet Union a neutron tube was developed in 1958 in connection with the development of the pulsed neutron-neutron method of studying the geological profile of oil wells. At that time the tube developed was intended, in the view of its inventors, to replace standard isotope sources with constant neutron yield. A fairly detailed survey of neutron tubes was made in the studies. 8 refs., 8 figs

  12. Evaluation of the geometric stability and the accuracy potential of digital cameras — Comparing mechanical stabilisation versus parameterisation

    Science.gov (United States)

    Rieke-Zapp, D.; Tecklenburg, W.; Peipe, J.; Hastedt, H.; Haig, Claudia

    Recent tests on the geometric stability of several digital cameras that were not designed for photogrammetric applications have shown that the accomplished accuracies in object space are either limited or that the accuracy potential is not exploited to the fullest extent. A total of 72 calibrations were calculated with four different software products for eleven digital camera models with different hardware setups, some with mechanical fixation of one or more parts. The calibration procedure was chosen in accord to a German guideline for evaluation of optical 3D measuring systems [VDI/VDE, VDI/VDE 2634 Part 1, 2002. Optical 3D Measuring Systems-Imaging Systems with Point-by-point Probing. Beuth Verlag, Berlin]. All images were taken with ringflashes which was considered a standard method for close-range photogrammetry. In cases where the flash was mounted to the lens, the force exerted on the lens tube and the camera mount greatly reduced the accomplished accuracy. Mounting the ringflash to the camera instead resulted in a large improvement of accuracy in object space. For standard calibration best accuracies in object space were accomplished with a Canon EOS 5D and a 35 mm Canon lens where the focusing tube was fixed with epoxy (47 μm maximum absolute length measurement error in object space). The fixation of the Canon lens was fairly easy and inexpensive resulting in a sevenfold increase in accuracy compared with the same lens type without modification. A similar accuracy was accomplished with a Nikon D3 when mounting the ringflash to the camera instead of the lens (52 μm maximum absolute length measurement error in object space). Parameterisation of geometric instabilities by introduction of an image variant interior orientation in the calibration process improved results for most cameras. In this case, a modified Alpa 12 WA yielded the best results (29 μm maximum absolute length measurement error in object space). Extending the parameter model with Fi

  13. Action selection for single-camera SLAM.

    Science.gov (United States)

    Vidal-Calleja, Teresa A; Sanfeliu, Alberto; Andrade-Cetto, Juan

    2010-12-01

    A method for evaluating, at video rate, the quality of actions for a single camera while mapping unknown indoor environments is presented. The strategy maximizes mutual information between measurements and states to help the camera avoid making ill-conditioned measurements that are appropriate to lack of depth in monocular vision systems. Our system prompts a user with the appropriate motion commands during 6-DOF visual simultaneous localization and mapping with a handheld camera. Additionally, the system has been ported to a mobile robotic platform, thus closing the control-estimation loop. To show the viability of the approach, simulations and experiments are presented for the unconstrained motion of a handheld camera and for the motion of a mobile robot with nonholonomic constraints. When combined with a path planner, the technique safely drives to a marked goal while, at the same time, producing an optimal estimated map. PMID:20350845

  14. Traffic Cameras, MDTA Cameras, Camera locations at MDTA, Camera location inside the tunnel (SENSITIVE), Published in 2010, 1:1200 (1in=100ft) scale, Maryland Transportation Authority.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Traffic Cameras dataset, published at 1:1200 (1in=100ft) scale, was produced all or in part from Field Survey/GPS information as of 2010. It is described as...

  15. The twisted cubic and camera calibration

    OpenAIRE

    Buchanan, Thomas

    1988-01-01

    We state a uniqueness theorem for camera calibration in terms of the twisted cubic. The theorem assumes the general linear model and is essentially a reformulation of Seydewitz's star generation theorem.

  16. Camera Based Navigation System with Augmented Reality

    Directory of Open Access Journals (Sweden)

    M. Marcu

    2012-06-01

    Full Text Available Nowadays smart mobile devices have enough processing power, memory, storage and always connected wireless communication bandwidth that makes them available for any type of application. Augmented reality (AR proposes a new type of applications that tries to enhance the real world by superimposing or combining virtual objects or computer generated information with it. In this paper we present a camera based navigation system with augmented reality integration. The proposed system aims to the following: the user points the camera of the smartphone towards a point of interest, like a building or any other place, and the application searches for relevant information about that specific place and superimposes the data over the video feed on the display. When the user moves the camera away, changing its orientation, the data changes as well, in real-time, with the proper information about the place that is now in the camera view.

  17. Calibration Procedures on Oblique Camera Setups

    Science.gov (United States)

    Kemper, G.; Melykuti, B.; Yu, C.

    2016-06-01

    Beside the creation of virtual animated 3D City models, analysis for homeland security and city planning, the accurately determination of geometric features out of oblique imagery is an important task today. Due to the huge number of single images the reduction of control points force to make use of direct referencing devices. This causes a precise camera-calibration and additional adjustment procedures. This paper aims to show the workflow of the various calibration steps and will present examples of the calibration flight with the final 3D City model. In difference to most other software, the oblique cameras are used not as co-registered sensors in relation to the nadir one, all camera images enter the AT process as single pre-oriented data. This enables a better post calibration in order to detect variations in the single camera calibration and other mechanical effects. The shown sensor (Oblique Imager) is based o 5 Phase One cameras were the nadir one has 80 MPIX equipped with a 50 mm lens while the oblique ones capture images with 50 MPix using 80 mm lenses. The cameras are mounted robust inside a housing to protect this against physical and thermal deformations. The sensor head hosts also an IMU which is connected to a POS AV GNSS Receiver. The sensor is stabilized by a gyro-mount which creates floating Antenna -IMU lever arms. They had to be registered together with the Raw GNSS-IMU Data. The camera calibration procedure was performed based on a special calibration flight with 351 shoots of all 5 cameras and registered the GPS/IMU data. This specific mission was designed in two different altitudes with additional cross lines on each flying heights. The five images from each exposure positions have no overlaps but in the block there are many overlaps resulting in up to 200 measurements per points. On each photo there were in average 110 well distributed measured points which is a satisfying number for the camera calibration. In a first step with the help of

  18. Research of Camera Calibration Based on DSP

    Directory of Open Access Journals (Sweden)

    Zheng Zhang

    2013-09-01

    Full Text Available To take advantage of the high-efficiency and stability of DSP in the data processing and the functions of OpenCV library, this study brought forward a scheme that camera calibration in DSP embedded system calibration. An arithmetic of camera calibration based on OpenCV is designed by analyzing the camera model and lens distortion. The transplantation of EMCV to DSP is completed and the arithmetic of camera calibration is migrated and optimized based on the CCS development environment and the DSP/BIOS system. On the premise of realizing calibration function, this arithmetic improves the efficiency of program execution and the precision of calibration and lays the foundation for further research of the visual location based on DSP embedded system.

  19. Ge Quantum Dot Infrared Imaging Camera Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Luna Innovations Incorporated proposes to develop a high performance Ge quantum dots-based infrared (IR) imaging camera on Si substrate. The high sensitivity, large...

  20. Lunar Reconnaissance Orbiter Camera (LROC) instrument overview

    Science.gov (United States)

    Robinson, M.S.; Brylow, S.M.; Tschimmel, M.; Humm, D.; Lawrence, S.J.; Thomas, P.C.; Denevi, B.W.; Bowman-Cisneros, E.; Zerr, J.; Ravine, M.A.; Caplinger, M.A.; Ghaemi, F.T.; Schaffner, J.A.; Malin, M.C.; Mahanti, P.; Bartels, A.; Anderson, J.; Tran, T.N.; Eliason, E.M.; McEwen, A.S.; Turtle, E.; Jolliff, B.L.; Hiesinger, H.

    2010-01-01

    The Lunar Reconnaissance Orbiter Camera (LROC) Wide Angle Camera (WAC) and Narrow Angle Cameras (NACs) are on the NASA Lunar Reconnaissance Orbiter (LRO). The WAC is a 7-color push-frame camera (100 and 400 m/pixel visible and UV, respectively), while the two NACs are monochrome narrow-angle linescan imagers (0.5 m/pixel). The primary mission of LRO is to obtain measurements of the Moon that will enable future lunar human exploration. The overarching goals of the LROC investigation include landing site identification and certification, mapping of permanently polar shadowed and sunlit regions, meter-scale mapping of polar regions, global multispectral imaging, a global morphology base map, characterization of regolith properties, and determination of current impact hazards.

  1. A Survey of Catadioptric Omnidirectional Camera Calibration

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2013-02-01

    Full Text Available For dozen years, computer vision becomes more popular, in which omnidirectional camera has a larger field of view and widely been used in many fields, such as: robot navigation, visual surveillance, virtual reality, three-dimensional reconstruction, and so on. Camera calibration is an essential step to obtain three-dimensional geometric information from a two-dimensional image. Meanwhile, the omnidirectional camera image has catadioptric distortion, which need to be corrected in many applications, thus the study of such camera calibration method has important theoretical significance and practical applications. This paper firstly introduces the research status of catadioptric omnidirectional imaging system; then the image formation process of catadioptric omnidirectional imaging system has been given; finally a simple classification of omnidirectional imaging method is given, and we discussed the advantages and disadvantages of these methods.

  2. Contrail study with ground-based cameras

    Directory of Open Access Journals (Sweden)

    U. Schumann

    2013-08-01

    Full Text Available Photogrammetric methods and analysis results for contrails observed with wide-angle cameras are described. Four cameras of two different types (view angle −1. With this information, the aircraft causing the contrails are identified by comparison to traffic waypoint data. The observations are compared with synthetic camera pictures of contrails simulated with the contrail prediction model CoCiP, a Lagrangian model using air traffic movement data and numerical weather prediction (NWP data as input. The results provide tests for the NWP and contrail models. The cameras show spreading and thickening contrails suggesting ice-supersaturation in the ambient air. The ice-supersaturated layer is found thicker and more humid in this case than predicted by the NWP model used. The simulated and observed contrail positions agree up to differences caused by uncertain wind data. The contrail widths, which depend on wake vortex spreading, ambient shear and turbulence, were partly wider than simulated.

  3. Aviation spectral camera infinity target simulation system

    Science.gov (United States)

    Liu, Xinyue; Ming, Xing; Liu, Jiu; Guo, Wenji; Lv, Gunbo

    2014-11-01

    With the development of science and technology, the applications of aviation spectral camera becoming more widely. Developing a test system of dynamic target is more important. Aviation spectral camera infinity target simulation system can be used to test the resolution and the modulation transfer function of camera. The construction and work principle of infinity target simulation system were introduced in detail. Dynamic target generator based digital micromirror device (DMD) and required performance of collimation System were analyzed and reported. The dynamic target generator based on DMD had the advantages of replacing image convenient, size small and flexible. According to the requirement of tested camera, by rotating and moving mirror, has completed a full field infinity dynamic target test plan.

  4. Alternate tube plugging criteria for steam generator tubes

    Energy Technology Data Exchange (ETDEWEB)

    Cueto-Felgueroso, C.; Aparicio, C.B. [Tecnatom, S.A., Madrid (Spain)

    1997-02-01

    The tubing of the Steam Generators constitutes more than half of the reactor coolant pressure boundary. Specific requirements governing the maintenance of steam generator tubes integrity are set in Plant Technical Specifications and in Section XI of the ASME Boiler and Pressure Vessel Code. The operating experience of Steam Generator tubes of PWR plants has shown the existence of some types of degradatory processes. Every one of these has an specific cause and affects one or more zones of the tubes. In the case of Spanish Power Plants, and depending on the particular Plant considered, they should be mentioned the Primary Water Stress Corrosion Cracking (PWSCC) at the roll transition zone (RTZ), the Outside Diameter Stress Corrosion Cracking (ODSCC) at the Tube Support Plate (TSP) intersections and the fretting with the Anti-Vibration Bars (AVBs) or with the Support Plates in the preheater zone. The In-Service Inspections by Eddy Currents constitutes the standard method for assuring the SG tubes integrity and they permit the monitoring of the defects during the service life of the plant. When the degradation reaches a determined limit, called the plugging limit, the SG tube must be either repaired or retired from service by plugging. Customarily, the plugging limit is related to the depth of the defect. Such depth is typically 40% of the wall thickness of the tube and is applicable to any type of defect in the tube. In its origin, that limit was established for tubes thinned by wastage, which was the predominant degradation in the seventies. The application of this criterion for axial crack-like defects, as, for instance, those due to PWSCC in the roll transition zone, has lead to an excessive and unnecessary number of tubes being plugged. This has lead to the development of defect specific plugging criteria. Examples of the application of such criteria are discussed in the article.

  5. Color correction algorithms for digital cameras

    OpenAIRE

    Bianco,

    2010-01-01

    The image recorded by a digital camera mainly depends on three factors: the physical content of the scene, the illumination incident on the scene, and the characteristics of the camera. This leads to a problem for many applications where the main interest is in the color rendition accuracy of the scene acquired. It is known that the color reproduction accuracy of a digital imaging acquisition device is a key factor to the overall perceived image quality, and that there are mainly two modules ...

  6. Imaging camera with multiwire proportional chamber

    International Nuclear Information System (INIS)

    The camera for imaging radioisotope dislocations for use in nuclear medicine or for other applications, claimed in the patent, is provided by two multiwire lattices for the x-coordinate connected to a first coincidence circuit, and by two multiwire lattices for the y-coordinate connected to a second coincidence circuit. This arrangement eliminates the need of using a collimator and increases camera sensitivity while reducing production cost. (Ha)

  7. Adaptive visual servoing by simultaneous camera calibration

    OpenAIRE

    Pomares, J.; Chaumette, François; Torres, F.

    2007-01-01

    Calibration techniques allow the estimation of the intrinsic parameters of a camera. This paper describes an adaptive visual servoing scheme which employs the visual data measured during the task to determine the camera intrinsic parameters. This approach is based on the virtual visual servoing approach. However, in order to increase the robustness of the calibration several aspects have been introduced in this approach with respect to the previous developed virtual vi...

  8. Compact Optical Technique for Streak Camera Calibration

    International Nuclear Information System (INIS)

    The National Ignition Facility is under construction at the Lawrence Livermore National Laboratory for the U.S. Department of Energy Stockpile Stewardship Program. Optical streak cameras are an integral part of the experimental diagnostics instrumentation. To accurately reduce data from the streak cameras a temporal calibration is required. This article describes a technique for generating trains of precisely timed short-duration optical pulses that are suitable for temporal calibrations

  9. Calibration of multi-camera photogrammetric systems

    OpenAIRE

    I. Detchev; M. Mazaheri; Rondeel, S.; Habib, A

    2014-01-01

    Due to the low-cost and off-the-shelf availability of consumer grade cameras, multi-camera photogrammetric systems have become a popular means for 3D reconstruction. These systems can be used in a variety of applications such as infrastructure monitoring, cultural heritage documentation, biomedicine, mobile mapping, as-built architectural surveys, etc. In order to ensure that the required precision is met, a system calibration must be performed prior to the data collection campaign. ...

  10. Mercuric iodide X-ray camera

    Science.gov (United States)

    Patt, B. E.; del Duca, A.; Dolin, R.; Ortale, C.

    1986-02-01

    A prototype X-ray camera utilizing a 1.5- by 1.5-in., 1024-element, thin mercuric iodide detector array has been tested and evaluated. The microprocessor-based camera is portable and operates at room temperature. Events can be localized within 1-2 mm at energies below 60 keV and within 5-6 mm at energies on the order of 600 keV.

  11. Mercuric iodide x-ray camera

    International Nuclear Information System (INIS)

    A prototype x-ray camera utilizing a 1.5- by 1.5-in., 1024-element, thin mercuric iodide detector array has been tested and evaluated. The microprocessor-based camera is portable and operates at room temperature. Events can be localized within 1 to 2 mm at energies below 60 keV and within 5 to 6 mm at energies on the order of 600 keV. 5 refs., 7 figs

  12. Mercuric iodide X-ray camera

    Energy Technology Data Exchange (ETDEWEB)

    Patt, B.E.; Del Duca, A.; Dolin, R.; Ortale, C.

    1986-02-01

    A prototype x-ray camera utilizing a 1.5- by 1.5-inch, 1024-element, thin mercuric iodide detector array has been tested and evaluated. The microprocessor-based camera is portable and operates at room temperature. Events can be localized within 1-2 mm at energies below 60 keV and within 5-6 mm at energies on the order of 600 keV.

  13. Mercuric iodide x-ray camera

    Energy Technology Data Exchange (ETDEWEB)

    Patt, B.E.; Del Duca, A.; Dolin, R.; Ortale, C.

    1985-01-01

    A prototype x-ray camera utilizing a 1.5- by 1.5-in., 1024-element, thin mercuric iodide detector array has been tested and evaluated. The microprocessor-based camera is portable and operates at room temperature. Events can be localized within 1 to 2 mm at energies below 60 keV and within 5 to 6 mm at energies on the order of 600 keV. 5 refs., 7 figs.

  14. Mercuric iodide X-ray camera

    International Nuclear Information System (INIS)

    A prototype x-ray camera utilizing a 1.5- by 1.5-inch, 1024-element, thin mercuric iodide detector array has been tested and evaluated. The microprocessor-based camera is portable and operates at room temperature. Events can be localized within 1-2 mm at energies below 60 keV and within 5-6 mm at energies on the order of 600 keV

  15. CMOS Camera Array With Onboard Memory

    Science.gov (United States)

    Gat, Nahum

    2009-01-01

    A compact CMOS (complementary metal oxide semiconductor) camera system has been developed with high resolution (1.3 Megapixels), a USB (universal serial bus) 2.0 interface, and an onboard memory. Exposure times, and other operating parameters, are sent from a control PC via the USB port. Data from the camera can be received via the USB port and the interface allows for simple control and data capture through a laptop computer.

  16. AUTOMATIC THEFT SECURITY SYSTEM (SMART SURVEILLANCE CAMERA)

    OpenAIRE

    Veena G.S; Chandrika Prasad; Khaleel K

    2013-01-01

    The proposed work aims to create a smart application camera, with the intention of eliminating the need for a human presence to detect any unwanted sinister activities, such as theft in this case. Spread among the campus, are certain valuable biometric identification systems at arbitrary locations. The application monitosr these systems (hereafter referred to as “object”) using our smart camera system based on an OpenCV platform. By using OpenCV Haar Training, employing the Vio...

  17. Image noise induced errors in camera positioning

    OpenAIRE

    G. Chesi; Hung, YS

    2007-01-01

    The problem of evaluating worst-case camera positioning error induced by unknown-but-bounded (UBB) image noise for a given object-camera configuration is considered. Specifically, it is shown that upper bounds to the rotation and translation worst-case error for a certain image noise intensity can be obtained through convex optimizations. These upper bounds, contrary to lower bounds provided by standard optimization tools, allow one to design robust visual servo systems. © 2007 IEEE.

  18. Camera identification with deep convolutional networks

    OpenAIRE

    Baroffio, Luca; Bondi, Luca; Bestagini, Paolo; Tubaro, Stefano

    2016-01-01

    The possibility of detecting which camera has been used to shoot a specific picture is of paramount importance for many forensics tasks. This is extremely useful for copyright infringement cases, ownership attribution, as well as for detecting the authors of distributed illicit material (e.g., pedo-pornographic shots). Due to its importance, the forensics community has developed a series of robust detectors that exploit characteristic traces left by each camera on the acquired images during t...

  19. The TNG Near Infrared Camera Spectrometer

    OpenAIRE

    Baffa, C.; Comoretto, G.; Gennari, S.; F. Lisi; Oliva, E; Biliotti, V.; Checcucci, A.; Gavrioussev, V.; Giani, E; Ghinassi, F.; Hunt, L. K.; Maiolino, R.; Mannuci, F.; Marcucci, G.; Sozzi, M.

    2001-01-01

    NICS (acronym for Near Infrared Camera Spectrometer) is the near-infrared cooled camera-spectrometer that has been developed by the Arcetri Infrared Group at the Arcetri Astrophysical Observatory, in collaboration with the CAISMI-CNR for the TNG (the Italian National Telescope Galileo at La Palma, Canary Islands, Spain). As NICS is in its scientific commissioning phase, we report its observing capabilities in the near-infrared bands at the TNG, along with the measured performance and the limi...

  20. An imaging system for a gamma camera

    International Nuclear Information System (INIS)

    A detailed description is given of a novel gamma camera which is designed to produce superior images than conventional cameras used in nuclear medicine. The detector consists of a solid state detector (e.g. germanium) which is formed to have a plurality of discrete components to enable 2-dimensional position identification. Details of the electronic processing circuits are given and the problems and limitations introduced by noise are discussed in full. (U.K.)

  1. Localization and Optimization Problems for Camera Networks

    OpenAIRE

    Borra, Domenica

    2013-01-01

    In the framework of networked control systems, we focus on networks of autonomous PTZ cameras. A large set of cameras communicating each other through a network is a widely used architecture in application areas like video surveillance, tracking and motion. First, we consider relative localization in sensor networks, and we tackle the issue of investigating the error propagation, in terms of the mean error on each component of the optimal estimator of the position vector. The relative error i...

  2. The Large APEX Bolometer Camera LABOCA

    OpenAIRE

    Siringo, G.; Kreysa, E.; Kovacs, A.; Schuller, F.; Weiss, A; Esch, W.; Gemuend, H. P.; Jethava, N.; Lundershausen, G.; Colin, A.; Guesten, R.; Menten, K. M.; Beelen, A; Bertoldi, F.; Beeman, J.W.

    2009-01-01

    The Large APEX Bolometer Camera, LABOCA, has been commissioned for operation as a new facility instrument t the Atacama Pathfinder Experiment 12m submillimeter telescope. This new 295-bolometer total power camera, operating in the 870 micron atmospheric window, combined with the high efficiency of APEX and the excellent atmospheric transmission at the site, offers unprecedented capability in mapping submillimeter continuum emission for a wide range of astronomical purposes.

  3. A stereoscopic lens for digital cinema cameras

    Science.gov (United States)

    Lipton, Lenny; Rupkalvis, John

    2015-03-01

    Live-action stereoscopic feature films are, for the most part, produced using a costly post-production process to convert planar cinematography into stereo-pair images and are only occasionally shot stereoscopically using bulky dual-cameras that are adaptations of the Ramsdell rig. The stereoscopic lens design described here might very well encourage more live-action image capture because it uses standard digital cinema cameras and workflow to save time and money.

  4. Electron tubes for industrial applications

    Science.gov (United States)

    Gellert, Bernd

    1994-05-01

    This report reviews research and development efforts within the last years for vacuum electron tubes, in particular power grid tubes for industrial applications. Physical and chemical effects are discussed that determine the performance of todays devices. Due to the progress made in the fundamental understanding of materials and newly developed processes the reliability and reproducibility of power grid tubes could be improved considerably. Modern computer controlled manufacturing methods ensure a high reproducibility of production and continuous quality certification according to ISO 9001 guarantees future high quality standards. Some typical applications of these tubes are given as an example.

  5. Dermatology on YouTube

    OpenAIRE

    Boyers, Lindsay N.; Quest, Tyler; Karimkhani, Chante; Connett, Jessica; Dellavalle, Robert P.

    2014-01-01

    YouTube, reaches upwards of six billion users on a monthly basis and is a unique source of information distribution and communication. Although the influence of YouTube on personal health decision-making is well established, this study assessed the type of content and viewership on a broad scope of dermatology related content on YouTube. Select terms (i.e. dermatology, sun protection, skin cancer, skin cancer awareness, and skin conditions) were searched on YouTube. Overall, the results inclu...

  6. YouTube and 'psychiatry'.

    Science.gov (United States)

    Gordon, Robert; Miller, John; Collins, Noel

    2015-12-01

    YouTube is a video-sharing website that is increasingly used to share and disseminate health-related information, particularly among younger people. There are reports that social media sites, such as YouTube, are being used to communicate an anti-psychiatry message but this has never been confirmed in any published analysis of YouTube clip content. This descriptive study revealed that the representation of 'psychiatry' during summer 2012 was predominantly negative. A subsequent smaller re-analysis suggests that the negative portrayal of 'psychiatry' on YouTube is a stable phenomenon. The significance of this and how it could be addressed are discussed. PMID:26755987

  7. Performance comparison of streak camera recording systems

    International Nuclear Information System (INIS)

    Streak camera based diagnostics are vital to the inertial confinement fusion program at Sandia National Laboratories. Performance characteristics of various readout systems coupled to an EGG-AVO streak camera were analyzed and compared to scaling estimates. The purpose of the work was to determine the limits of the streak camera performance and the optimal fielding conditions for the Amador Valley Operations (AVO) streak camera systems. The authors measured streak camera limitations in spatial resolution and sensitivity. Streak camera limits on spatial resolution are greater than 18 lp/mm at 4% contrast. However, it will be difficult to make use of any resolution greater than this because of high spatial frequency variation in the photocathode sensitivity. They have measured a signal to noise of 3,000 with 0.3 mW/cm2 of 830 nm light at a 10 ns/mm sweep speed. They have compared lens coupling systems with and without micro-channel plate intensifiers and systems using film or charge coupled device (CCD) readout. There were no conditions where film was found to be an improvement over the CCD readout. Systems utilizing a CCD readout without an intensifier have comparable resolution, for these source sizes and at a nominal cost in signal to noise of 3, over those with an intensifier. Estimates of the signal-to-noise for different light coupling methods show how performance can be improved

  8. Learning from YouTube [Video Book

    Science.gov (United States)

    Juhasz, Alexandra

    2011-01-01

    YouTube is a mess. YouTube is for amateurs. YouTube dissolves the real. YouTube is host to inconceivable combos. YouTube is best for corporate-made community. YouTube is badly baked. These are a few of the things Media Studies professor Alexandra Juhasz (and her class) learned about YouTube when she set out to investigate what actually happens…

  9. Lag Camera: A Moving Multi-Camera Array for Scene-Acquisition

    Directory of Open Access Journals (Sweden)

    Yi Xu

    2007-04-01

    Full Text Available Many applications, such as telepresence, virtual reality, and interactive walkthroughs, require a three-dimensional (3Dmodel of real-world environments. Methods, such as lightfields, geometric reconstruction and computer vision use cameras to acquire visual samples of the environment and construct a model. Unfortunately, obtaining models of real-world locations is a challenging task. In particular, important environments are often actively in use, containing moving objects, such as people entering and leaving the scene. The methods previously listed have difficulty in capturing the color and structure of the environment while in the presence of moving and temporary occluders. We describe a class of cameras called lag cameras. The main concept is to generalize a camera to take samples over space and time. Such a camera, can easily and interactively detect moving objects while continuously moving through the environment. Moreover, since both the lag camera and occluder are moving, the scene behind the occluder is captured by the lag camera even from viewpoints where the occluder lies in between the lag camera and the hidden scene. We demonstrate an implementation of a lag camera, complete with analysis and captured environments.

  10. Nasogastric tube syndrome induced by an indwelling long intestinal tube.

    Science.gov (United States)

    Sano, Naoki; Yamamoto, Masayoshi; Nagai, Kentaro; Yamada, Keiichi; Ohkohchi, Nobuhiro

    2016-04-21

    The nasogastric tube (NGT) has become a frequently used device to alleviate gastrointestinal symptoms. Nasogastric tube syndrome (NTS) is an uncommon but potentially life-threatening complication of an indwelling NGT. NTS is characterized by acute upper airway obstruction due to bilateral vocal cord paralysis. We report a case of a 76-year-old man with NTS, induced by an indwelling long intestinal tube. He was admitted to our hospital for treatment of sigmoid colon cancer. He underwent sigmoidectomy to release a bowel obstruction, and had a long intestinal tube inserted to decompress the intestinal tract. He presented acute dyspnea following prolonged intestinal intubation, and bronchoscopy showed bilateral vocal cord paralysis. The NGT was removed immediately, and tracheotomy was performed. The patient was finally discharged in a fully recovered state. NTS be considered in patients complaining of acute upper airway obstruction, not only with a NGT inserted but also with a long intestinal tube. PMID:27099450

  11. Explosive welding of a tube into a tube sheet

    Science.gov (United States)

    Green, Sheryll C.; Linse, Vonne D.

    1978-10-03

    A cartridge containing an explosive charge is placed within a tube assembled within a tube sheet. The charge is detonated through use of a detonator cord containing a minimum but effective amount of explosive material. The cord is contained inside a tubular shield throughout most of its length within the cartridge. A small length of the cord extends beyond the tubular shield to contact and detonate the explosive charge in its rear portion near the cartridge base. The cartridge base is provided of substantial mass and thickness in respect to side and front walls of the cartridge to minimize bulging beyond the rear face of the tube sheet. For remote activation an electrically activated detonator of higher charge density than the cord is attached to the cord at a location spaced from the tube sheet, cartridge and tube.

  12. Jose Cabrera (Zorita) tube examination

    International Nuclear Information System (INIS)

    Jose Cabrera (Zorita) tube examination procedures are discussed. This plant continues to use phosphate water chemistry (sodium/phosphate ratio = 2.1). Three hot leg tube segments were pulled from the Jose Cabera (Zorita) plant in 1985. One tube had a field EC indication on the OD at the first tube support plate and the other two had field EC indications on their ID about 3 inches above the bottom of the tube sheet. All three tubes were initially sent to Battelle for preliminary NDE and decontamination. Segments of two tubes were sent to Westinghouse for destructive examination. The results of the laboratory eddy current and radiographic examinations are given. The results of the visual examinations are also given. The tube with OD indications was destructively examined and shallow intergranular pitting and intergranular attack, up to 2 mils deep, were found on the OD in the tube sheet region. Local areas of IGA, up to 5 mils deep, were found on the OD within the tube support plate region. A summary of this information together with supporting micrographs is given. It was hypothesized that a caustic crevice environment was the cause of this mild degradation. Shallow areas of thinning or wastage, up to 3 mils, were found just above the top of the tube sheet in the sludge pile region. Even more shallow wastage was found at the edges of support plate locations. This wastage is believed to be the remnant of early plant chemistry when a higher sodium/phosphate ratio and higher phosphate concentration were allowed

  13. Piezoelectric Rotary Tube Motor

    Science.gov (United States)

    Fisher, Charles D.; Badescu, Mircea; Braun, David F.; Culhane, Robert

    2011-01-01

    A custom rotary SQUIGGLE(Registered TradeMark) motor has been developed that sets new benchmarks for small motor size, high position resolution, and high torque without gear reduction. Its capabilities cannot be achieved with conventional electromagnetic motors. It consists of piezoelectric plates mounted on a square flexible tube. The plates are actuated via voltage waveforms 90 out of phase at the resonant frequency of the device to create rotary motion. The motors were incorporated into a two-axis postioner that was designed for fiber-fed spectroscopy for ground-based and space-based projects. The positioner enables large-scale celestial object surveys to take place in a practical amount of time.

  14. Chapter 11. Digestive tube

    International Nuclear Information System (INIS)

    Exploration of the digestive tube by radioactive tracers relates mainly to the functional study of certain digestion or absorption troubles. The tracer absorbed by the digestibe system was followed by counting of the stools, successive measurements of the plasma radioactivity, measurements of urinary elimination or uptake on a storage organ such as the liver in the case of vitamin B12, measurement of whole-body radioactivity for vitamin B12 and iron. The different isotopic techniques used to study intestinal absorption of lipids, proteins and aminoacids, vitamin B 12 and iron were described and their contribution to the detection of exudative enteropathies and digestive haemorrhage was shown. It was pointed out that the stomach is one of the organs most accessible to standard exploration techniques. The role of sup(99m)Tc in both the morphological exploration of stomach and the study of gastric secretion, of 51Cr and 129Cs in the study of gastric evacuation were demonstrated

  15. Realization of an optical multi and mono-channel analyzer, associated to a streak camera. Application to metrology of picosecond low intensity luminous pulses

    International Nuclear Information System (INIS)

    An electronic system including a low light level television tube (Nocticon) to digitize images from streak cameras is studied and realized. Performances (sensibility, signal-to-noise ratio) are studied and compared with a multi-channel analyzer using a linear network of photodiodes. It is applied to duration and amplitude measurement of short luminous pulses

  16. NEI You Tube Videos: Amblyopia

    Medline Plus

    Full Text Available ... Vision Research & Ophthalmology (DIVRO) Student Training Programs NEI Home About NEI Health Information News and Events Grants ... Research at NEI Education Programs Training and Jobs Home > NEI YouTube Videos > NEI YouTube Videos: Amblyopia NEI ...

  17. Gastrostomy feeding tube - pump - child

    Science.gov (United States)

    Feeding - gastrostomy tube - pump; G-tube - pump; Gastrostomy button - pump; Bard Button - pump; MIC-KEY - pump ... Gather supplies: Feeding pump (electronic or battery powered) Feeding set that matches the feeding pump (includes a feeding bag, drip chamber, roller clamp, ...

  18. Flaming on YouTube

    NARCIS (Netherlands)

    Moor, Peter J.; Heuvelman, Ard; Verleur, Ria

    2010-01-01

    In this explorative study, flaming on YouTube was studied using surveys of YouTube users. Flaming is defined as displaying hostility by insulting, swearing or using otherwise offensive language. Three general conclusions were drawn. First, although many users said that they themselves do not flame,

  19. Characterization of tube support alloys

    International Nuclear Information System (INIS)

    The involvement and relationship of carbon steel corrosion products in the tube denting phenomenon promoted an intensive research effort to: 1) understand, reproduce, and arrest the denting process, and 2) evaluate alternative tube support materials to provide additional corrosion resistance. The paper summarizes a corrosion testing program for the verification of type 405 stainless steel under acid or all volatile treatment conditions

  20. Traffic monitoring with distributed smart cameras

    Science.gov (United States)

    Sidla, Oliver; Rosner, Marcin; Ulm, Michael; Schwingshackl, Gert

    2012-01-01

    The observation and monitoring of traffic with smart visions systems for the purpose of improving traffic safety has a big potential. Today the automated analysis of traffic situations is still in its infancy--the patterns of vehicle motion and pedestrian flow in an urban environment are too complex to be fully captured and interpreted by a vision system. 3In this work we present steps towards a visual monitoring system which is designed to detect potentially dangerous traffic situations around a pedestrian crossing at a street intersection. The camera system is specifically designed to detect incidents in which the interaction of pedestrians and vehicles might develop into safety critical encounters. The proposed system has been field-tested at a real pedestrian crossing in the City of Vienna for the duration of one year. It consists of a cluster of 3 smart cameras, each of which is built from a very compact PC hardware system in a weatherproof housing. Two cameras run vehicle detection and tracking software, one camera runs a pedestrian detection and tracking module based on the HOG dectection principle. All 3 cameras use sparse optical flow computation in a low-resolution video stream in order to estimate the motion path and speed of objects. Geometric calibration of the cameras allows us to estimate the real-world co-ordinates of detected objects and to link the cameras together into one common reference system. This work describes the foundation for all the different object detection modalities (pedestrians, vehicles), and explains the system setup, tis design, and evaluation results which we have achieved so far.

  1. A directional fast neutron detector using scintillating fibers and an intensified CCD camera system

    International Nuclear Information System (INIS)

    We have been developing and testing a scintillating fiber detector (SFD) for use as a fast neutron sensor which can discriminate against neutrons entering at angles non-parallel to the fiber axis (''directionality''). The detector/convertor component is a fiber bundle constructed of plastic scintillating fibers each measuring 10 cm long and either 0.3 mm or 0.5 mm in diameter. Extensive Monte Carlo simulations were made to optimize the bundle response to a range of fast neutron energies and to intense fluxes of high energy gamma-rays. The bundle is coupled to a set of gamma-ray insenitive electro-optic intensifiers whose output is viewed by a CCD camera directly coupled to the intensifiers. Two types of CCD cameras were utilized: 1) a standard, interline RS-170 camera with electronic shuttering and 2) a high-speed (up to 850 frame/s) field-transfer camera. Measurements of the neutron detection efficiency and directionality were made using 14 MeV neutrons, and the response to gamma-rays was performed using intense fluxes from radioisotopic sources (up to 20 R/h). Recently, the detector was constructed and tested using a large 10 cm by 10 cm square fiber bundle coupled to a 10 cm diameter GEN I intensifier tube. We present a description of the various detector systems and report the results of experimental tests. ((orig.))

  2. PS-1/S1 picosecond streak camera application for multichannel laser system diagnostics

    International Nuclear Information System (INIS)

    A PS-1/S1 picosecond image-tube streak camera (ITSC) with slit scan (streak camera), developed and manufactured at the General Physics Institute RAS, has been used to measure the spatiotemporal characteristics of ultrashort laser pulses generated by a petawatt-power laser installation 'FEMTO' at the Institute of Laser Physics Research in Sarov. It is found that such a camera is suitable for measuring the spatial and temporal parameters of single laser pulses with an accuracy of about one picosecond. It is shown that the intensity time profile of a train of picosecond pulses may be precisely defined for the pulses separated in time by a few picoseconds. The camera allows the contrast of radiation to be determined with a high (no less than 103) accuracy; spatial distribution of the laser pulses can be measured with an accuracy of tens of microns, and the temporal separation of single laser pulses can be identified with an accuracy of 1 – 1.5 ps. (extreme light fields and their applications)

  3. Gamma-ray spectral imaging using a single-shutter radiation camera

    International Nuclear Information System (INIS)

    As part of a program to develop mobile robots for reactor environments, we are developing a radiation-imaging camera capable of operating in medium-intensity (<2R/h), medium-energy (<8 MeV) gamma-ray fields. A systematic study of available detectors indicated the advisiability of a high-Z scintillator. The raster-scanning camera uses a lead-shielded bismuth germanate (BGO) scintillator (1.25 cmx1.25 cm right-circular cylinder) coupled to a photomultiplier tube (PMT) operated in pulse mode. Measurements yielded an angular resolution of 2.5deg and energy resolution of 12.9% at 662 keV. The camera motion is totally automated and controlled by stepping motors connected to a remote computer. Several 2D images of radioactive sources have been acquired in fields of up to 400 mR/h and energies up to 2.75 MeV. Some of the images demonstrate the ability of the camera to image a polychromatic field. (orig.)

  4. A study on the optimization of optical guide of gamma camera detector

    International Nuclear Information System (INIS)

    An optical guide, which is a light guide located between NaI(Tl) scintillation-crystal and array of photo-multiplier tubes (PMTs) in the gamma camera detector system, is an essential component to deliver the spatial information recorded in scintillator to the PMTs. Without the optical guide, the spatial information within the range of a single PMT could not be obtained. For the design of the optimal optical guide, it is necessary to characterize its properties, especially sensitivity and spatial resolution of detector. In this study, the thickness and the refractive index of optical guide, which affect not only on the sensitivity but also on the spatial resolution of gamma-camera detector, were investigated by using Monte Carlo simulation. A 12'x12'x3/8' NaI(Tl) and 23 PMTs with each 5' diameter were considered as a gamma-camera detector components. Interactions of optical photons in the scintillator and the optical guide were simulated using a commercial code DETECT97, and the spatial resolution, mainly interfered by the intrinsic inward distortion within the PMT, was investigated using our own ANGER program, which was developed to calculate positions of incident photons in the gamma camera. From the simulation results, it was found that an optical guide with 1.6 of refractive index and 10 mm of thickness give maximum sensitivity and minimum spatial distortion, respectively

  5. Status of MUSIC, the MUltiwavelength Sub/millimeter Inductance Camera

    Science.gov (United States)

    Golwala, Sunil R.; Bockstiegel, Clint; Brugger, Spencer; Czakon, Nicole G.; Day, Peter K.; Downes, Thomas P.; Duan, Ran; Gao, Jiansong; Gill, Amandeep K.; Glenn, Jason; Hollister, Matthew I.; LeDuc, Henry G.; Maloney, Philip R.; Mazin, Benjamin A.; McHugh, Sean G.; Miller, David; Noroozian, Omid; Nguyen, Hien T.; Sayers, Jack; Schlaerth, James A.; Siegel, Seth; Vayonakis, Anastasios K.; Wilson, Philip R.; Zmuidzinas, Jonas

    2012-09-01

    We present the status of MUSIC, the MUltiwavelength Sub/millimeter Inductance Camera, a new instrument for the Caltech Submillimeter Observatory. MUSIC is designed to have a 14', diffraction-limited field-of-view instrumented with 2304 detectors in 576 spatial pixels and four spectral bands at 0.87, 1.04, 1.33, and 1.98 mm. MUSIC will be used to study dusty star-forming galaxies, galaxy clusters via the Sunyaev-Zeldovich effect, and star formation in our own and nearby galaxies. MUSIC uses broadband superconducting phased-array slot-dipole antennas to form beams, lumpedelement on-chip bandpass filters to define spectral bands, and microwave kinetic inductance detectors to sense incoming light. The focal plane is fabricated in 8 tiles consisting of 72 spatial pixels each. It is coupled to the telescope via an ambient-temperature ellipsoidal mirror and a cold reimaging lens. A cold Lyot stop sits at the image of the primary mirror formed by the ellipsoidal mirror. Dielectric and metal-mesh filters are used to block thermal infrared and out-ofband radiation. The instrument uses a pulse tube cooler and 3He/ 3He/4He closed-cycle cooler to cool the focal plane to below 250 mK. A multilayer shield attenuates Earth's magnetic field. Each focal plane tile is read out by a single pair of coaxes and a HEMT amplifier. The readout system consists of 16 copies of custom-designed ADC/DAC and IF boards coupled to the CASPER ROACH platform. We focus on recent updates on the instrument design and results from the commissioning of the full camera in 2012.

  6. The rotating tubing hanger system

    International Nuclear Information System (INIS)

    Beam pump systems are among the most cost efficient artificial lift systems in the industry, assuming a long run time between pulling jobs to repair tubing failures caused by rod wear. The tubing string represents the second largest investment in the well. The longer the period of time the well can be kept on-line and producing between pulling jobs, the more efficient and cost effective is the beam pump system. This paper describes in detail the conception, development and implementation of a new system that extends tubing life on rod pumped wells. The system uses a very simple concept; rotate the tubing string to extend the length of time between tubing failures and the resultant pulling jobs. The system is powered directly from the walking beam and requires no additional power source; nor does the system use any additional energy

  7. Impact of laser phase and amplitude noises on streak camera temporal resolution

    International Nuclear Information System (INIS)

    Streak cameras are now reaching sub-picosecond temporal resolution. In cumulative acquisition mode, this resolution does not entirely rely on the electronic or the vacuum tube performances but also on the light source characteristics. The light source, usually an actively mode-locked laser, is affected by phase and amplitude noises. In this paper, the theoretical effects of such noises on the synchronization of the streak system are studied in synchroscan and triggered modes. More precisely, the contribution of band-pass filters, delays, and time walk is ascertained. Methods to compute the resulting synchronization jitter are depicted. The results are verified by measurement with a streak camera combined with a Ti:Al2O3 solid state laser oscillator and also a fiber oscillator

  8. The electronics system for the LBNL positron emission mammography (PEM) camera

    CERN Document Server

    Moses, W W; Baker, K; Jones, W; Lenox, M; Ho, M H; Weng, M

    2001-01-01

    Describes the electronics for a high-performance positron emission mammography (PEM) camera. It is based on the electronics for a human brain positron emission tomography (PET) camera (the Siemens/CTI HRRT), modified to use a detector module that incorporates a photodiode (PD) array. An application-specified integrated circuit (ASIC) services the photodetector (PD) array, amplifying its signal and identifying the crystal of interaction. Another ASIC services the photomultiplier tube (PMT), measuring its output and providing a timing signal. Field-programmable gate arrays (FPGAs) and lookup RAMs are used to apply crystal-by-crystal correction factors and measure the energy deposit and the interaction depth (based on the PD/PMT ratio). Additional FPGAs provide event multiplexing, derandomization, coincidence detection, and real-time rebinning. Embedded PC/104 microprocessors provide communication, real-time control, and configure the system. Extensive use of FPGAs make the overall design extremely flexible, all...

  9. 16 CFR 1025.45 - In camera materials.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false In camera materials. 1025.45 Section 1025.45... PROCEEDINGS Hearings § 1025.45 In camera materials. (a) Definition. In camera materials are documents... excluded from the public record. (b) In camera treatment of documents and testimony. The Presiding...

  10. HF electronic tubes. Technologies, grid tubes and klystrons

    International Nuclear Information System (INIS)

    This article gives an overview of the basic technologies of electronic tubes: cathodes, electronic optics, vacuum and high voltage. Then the grid tubes, klystrons and inductive output tubes (IOT) are introduced. Content: 1 - context and classification; 2 - electronic tube technologies: cathodes, electronic optics, magnetic confinement (linear tubes), periodic permanent magnet (PPM) focussing, collectors, depressed collectors; 3 - vacuum technologies: vacuum quality, surface effects and interaction with electrostatic and RF fields, secondary emission, multipactor effect, thermo-electronic emission; 4 - grid tubes: operation of a triode, tetrodes, dynamic operation and classes of use, 'common grid' and 'common cathode' operation, ranges of utilisation and limitations, operation of a tetrode on unadjusted load, lifetime of a tetrode, uses of grid tubes; 5 - klystrons: operation, impact of space charge, multi-cavity klystrons, interaction efficiency, extended interaction klystrons, relation between interaction efficiency, perveance and efficiency, ranges of utilization and power limitations, multi-beam klystrons and sheet beam klystrons, operation on unadjusted load, klystron band pass and lifetime, uses; 6 - IOT: principle of operation, ranges of utilisation and limitations, interaction efficiency and depressed collector IOT, IOT lifetime and uses. (J.S.)

  11. Plenoptic processing methods for distributed camera arrays

    Science.gov (United States)

    Boyle, Frank A.; Yancey, Jerry W.; Maleh, Ray; Deignan, Paul

    2011-05-01

    Recent advances in digital photography have enabled the development and demonstration of plenoptic cameras with impressive capabilities. They function by recording sub-aperture images that can be combined to re-focus images or to generate stereoscopic pairs. Plenoptic methods are being explored for fusing images from distributed arrays of cameras, with a view toward applications in which hardware resources are limited (e.g. size, weight, power constraints). Through computer simulation and experimental studies, the influences of non-idealities such as camera position uncertainty are being considered. Component image rescaling and balancing methods are being explored to compensate. Of interest is the impact on precision passive ranging and super-resolution. In a preliminary experiment, a set of images from a camera array was recorded and merged to form a 3D representation of a scene. Conventional plenoptic refocusing was demonstrated and techniques were explored for balancing the images. Nonlinear methods were explored for combining the images limited the ghosting caused by sub-sampling. Plenoptic processing was explored as a means for determining 3D information from airborne video. Successive frames were processed as camera array elements to extract the heights of structures. Practical means were considered for rendering the 3D information in color.

  12. Phase camera experiment for Advanced Virgo

    Science.gov (United States)

    Agatsuma, Kazuhiro; van Beuzekom, Martin; van der Schaaf, Laura; van den Brand, Jo

    2016-07-01

    We report on a study of the phase camera, which is a frequency selective wave-front sensor of a laser beam. This sensor is utilized for monitoring sidebands produced by phase modulations in a gravitational wave (GW) detector. Regarding the operation of the GW detectors, the laser modulation/demodulation method is used to measure mirror displacements and used for the position controls. This plays a significant role because the quality of controls affect the noise level of the GW detector. The phase camera is able to monitor each sideband separately, which has a great benefit for the manipulation of the delicate controls. Also, overcoming mirror aberrations will be an essential part of Advanced Virgo (AdV), which is a GW detector close to Pisa. Especially low-frequency sidebands can be affected greatly by aberrations in one of the interferometer cavities. The phase cameras allow tracking such changes because the state of the sidebands gives information on mirror aberrations. A prototype of the phase camera has been developed and is currently tested. The performance checks are almost completed and the installation of the optics at the AdV site has started. After the installation and commissioning, the phase camera will be combined to a thermal compensation system that consists of CO2 lasers and compensation plates. In this paper, we focus on the prototype and show some limitations from the scanner performance.

  13. Testing of capsules used in radiography cameras

    International Nuclear Information System (INIS)

    The C-182 non-radioactive (dummy) radiography capsules manufactured by Atomic Energy of Canada Limited were mechanically tested by performing a prescribed number of cycles under preset conditions in a Model 100-3 Pneumat- A-Ray radiography camera. The capsules were observed throughout the cycling trials and tested for changes in dimension, weight, and leakage. After completion of the prescribed cycling trials each capsule was further tested for potential leakage by dye penetrant examination, sectioned at the equator and each half tested by dye penetrant examination, then sectioned again longitudinally and metallurgically examined. The results indicate that the capsules cycled under typical field conditions can become significantly deformed, and that deformation is generally related to the number of cycles that the capsules undergo. The deformation occurs almost exclusively on the end of the capsule entering the camera first. When the headhose cushion is removed the deformation occurs on both ends of the capsule. The deformation is related only to the pneumatic operating mode of the camera and there was no evidence for deformation when the camera was used under pipeline mode of operation. The only leak observed in this series of tests was not related to the deformed end of the capsule, but rather to the weld end of the capsule when the non weld end of the capsule was deformed from entering the camera. The leak was shown by dye penetrant examination and by photomicrographs of the cross section of the affected capsule

  14. Calibration of Action Cameras for Photogrammetric Purposes

    Directory of Open Access Journals (Sweden)

    Caterina Balletti

    2014-09-01

    Full Text Available The use of action cameras for photogrammetry purposes is not widespread due to the fact that until recently the images provided by the sensors, using either still or video capture mode, were not big enough to perform and provide the appropriate analysis with the necessary photogrammetric accuracy. However, several manufacturers have recently produced and released new lightweight devices which are: (a easy to handle, (b capable of performing under extreme conditions and more importantly (c able to provide both still images and video sequences of high resolution. In order to be able to use the sensor of action cameras we must apply a careful and reliable self-calibration prior to the use of any photogrammetric procedure, a relatively difficult scenario because of the short focal length of the camera and its wide angle lens that is used to obtain the maximum possible resolution of images. Special software, using functions of the OpenCV library, has been created to perform both the calibration and the production of undistorted scenes for each one of the still and video image capturing mode of a novel action camera, the GoPro Hero 3 camera that can provide still images up to 12 Mp and video up 8 Mp resolution.

  15. Calibration of action cameras for photogrammetric purposes.

    Science.gov (United States)

    Balletti, Caterina; Guerra, Francesco; Tsioukas, Vassilios; Vernier, Paolo

    2014-01-01

    The use of action cameras for photogrammetry purposes is not widespread due to the fact that until recently the images provided by the sensors, using either still or video capture mode, were not big enough to perform and provide the appropriate analysis with the necessary photogrammetric accuracy. However, several manufacturers have recently produced and released new lightweight devices which are: (a) easy to handle, (b) capable of performing under extreme conditions and more importantly (c) able to provide both still images and video sequences of high resolution. In order to be able to use the sensor of action cameras we must apply a careful and reliable self-calibration prior to the use of any photogrammetric procedure, a relatively difficult scenario because of the short focal length of the camera and its wide angle lens that is used to obtain the maximum possible resolution of images. Special software, using functions of the OpenCV library, has been created to perform both the calibration and the production of undistorted scenes for each one of the still and video image capturing mode of a novel action camera, the GoPro Hero 3 camera that can provide still images up to 12 Mp and video up 8 Mp resolution. PMID:25237898

  16. Designing Camera Networks by Convex Quadratic Programming

    KAUST Repository

    Ghanem, Bernard

    2015-05-04

    ​In this paper, we study the problem of automatic camera placement for computer graphics and computer vision applications. We extend the problem formulations of previous work by proposing a novel way to incorporate visibility constraints and camera-to-camera relationships. For example, the placement solution can be encouraged to have cameras that image the same important locations from different viewing directions, which can enable reconstruction and surveillance tasks to perform better. We show that the general camera placement problem can be formulated mathematically as a convex binary quadratic program (BQP) under linear constraints. Moreover, we propose an optimization strategy with a favorable trade-off between speed and solution quality. Our solution is almost as fast as a greedy treatment of the problem, but the quality is significantly higher, so much so that it is comparable to exact solutions that take orders of magnitude more computation time. Because it is computationally attractive, our method also allows users to explore the space of solutions for variations in input parameters. To evaluate its effectiveness, we show a range of 3D results on real-world floorplans (garage, hotel, mall, and airport). ​

  17. Modulated CMOS camera for fluorescence lifetime microscopy.

    Science.gov (United States)

    Chen, Hongtao; Holst, Gerhard; Gratton, Enrico

    2015-12-01

    Widefield frequency-domain fluorescence lifetime imaging microscopy (FD-FLIM) is a fast and accurate method to measure the fluorescence lifetime of entire images. However, the complexity and high costs involved in construction of such a system limit the extensive use of this technique. PCO AG recently released the first luminescence lifetime imaging camera based on a high frequency modulated CMOS image sensor, QMFLIM2. Here we tested and provide operational procedures to calibrate the camera and to improve the accuracy using corrections necessary for image analysis. With its flexible input/output options, we are able to use a modulated laser diode or a 20 MHz pulsed white supercontinuum laser as the light source. The output of the camera consists of a stack of modulated images that can be analyzed by the SimFCS software using the phasor approach. The nonuniform system response across the image sensor must be calibrated at the pixel level. This pixel calibration is crucial and needed for every camera settings, e.g. modulation frequency and exposure time. A significant dependency of the modulation signal on the intensity was also observed and hence an additional calibration is needed for each pixel depending on the pixel intensity level. These corrections are important not only for the fundamental frequency, but also for the higher harmonics when using the pulsed supercontinuum laser. With these post data acquisition corrections, the PCO CMOS-FLIM camera can be used for various biomedical applications requiring a large frame and high speed acquisition. PMID:26500051

  18. Gamma cameras - a method of evaluation

    International Nuclear Information System (INIS)

    Full text: With the sophistication and longevity of the modern gamma camera it is not often that the need arises to evaluate a gamma camera for purchase. We have recently been placed in the position of retiring our two single headed cameras of some vintage and replacing them with a state of the art dual head variable angle gamma camera. The process used for the evaluation consisted of five parts: (1) Evaluation of the technical specification as expressed in the tender document; (2) A questionnaire adapted from the British Society of Nuclear Medicine; (3) Site visits to assess gantry configuration, movement, patient access and occupational health, welfare and safety considerations; (4) Evaluation of the processing systems offered; (5) Whole of life costing based on equally configured systems. The results of each part of the evaluation were expressed using a weighted matrix analysis with each of the criteria assessed being weighted in accordance with their importance to the provision of an effective nuclear medicine service for our centre and the particular importance to paediatric nuclear medicine. This analysis provided an objective assessment of each gamma camera system from which a purchase recommendation was made. Copyright (2000) The Australian and New Zealand Society of Nuclear Medicine Inc

  19. Camera Calibration with Radial Variance Component Estimation

    Science.gov (United States)

    Mélykuti, B.; Kruck, E. J.

    2014-11-01

    Camera calibration plays a more and more important role in recent times. Beside real digital aerial survey cameras the photogrammetric market is dominated by a big number of non-metric digital cameras mounted on UAVs or other low-weight flying platforms. The in-flight calibration of those systems has a significant role to enhance the geometric accuracy of survey photos considerably. It is expected to have a better precision of photo measurements in the center of images then along the edges or in the corners. With statistical methods the accuracy of photo measurements in dependency of the distance of points from image center has been analyzed. This test provides a curve for the measurement precision as function of the photo radius. A high number of camera types have been tested with well penetrated point measurements in image space. The result of the tests led to a general consequence to show a functional connection between accuracy and radial distance and to give a method how to check and enhance the geometrical capability of the cameras in respect to these results.

  20. Design of Endoscopic Capsule With Multiple Cameras.

    Science.gov (United States)

    Gu, Yingke; Xie, Xiang; Li, Guolin; Sun, Tianjia; Wang, Dan; Yin, Zheng; Zhang, Pengfei; Wang, Zhihua

    2015-08-01

    In order to reduce the miss rate of the wireless capsule endoscopy, in this paper, we propose a new system of the endoscopic capsule with multiple cameras. A master-slave architecture, including an efficient bus architecture and a four level clock management architecture, is applied for the Multiple Cameras Endoscopic Capsule (MCEC). For covering more area of the gastrointestinal tract wall with low power, multiple cameras with a smart image capture strategy, including movement sensitive control and camera selection, are used in the MCEC. To reduce the data transfer bandwidth and power consumption to prolong the MCEC's working life, a low complexity image compressor with PSNR 40.7 dB and compression rate 86% is implemented. A chipset is designed and implemented for the MCEC and a six cameras endoscopic capsule prototype is implemented by using the chipset. With the smart image capture strategy, the coverage rate of the MCEC prototype can achieve 98% and its power consumption is only about 7.1 mW. PMID:25376042

  1. Hidden cameras everything you need to know about covert recording, undercover cameras and secret filming

    CERN Document Server

    Plomin, Joe

    2016-01-01

    Providing authoritative information on the practicalities of using hidden cameras to expose abuse or wrongdoing, this book is vital reading for anyone who may use or encounter secret filming. It gives specific advice on using phones or covert cameras and unravels the complex legal and ethical issues that need to be considered.

  2. Mobile phone camera benchmarking: combination of camera speed and image quality

    Science.gov (United States)

    Peltoketo, Veli-Tapani

    2014-01-01

    When a mobile phone camera is tested and benchmarked, the significance of quality metrics is widely acknowledged. There are also existing methods to evaluate the camera speed. For example, ISO 15781 defines several measurements to evaluate various camera system delays. However, the speed or rapidity metrics of the mobile phone's camera system have not been used with the quality metrics even if the camera speed has become more and more important camera performance feature. There are several tasks in this work. Firstly, the most important image quality metrics are collected from the standards and papers. Secondly, the speed related metrics of a mobile phone's camera system are collected from the standards and papers and also novel speed metrics are identified. Thirdly, combinations of the quality and speed metrics are validated using mobile phones in the market. The measurements are done towards application programming interface of different operating system. Finally, the results are evaluated and conclusions are made. The result of this work gives detailed benchmarking results of mobile phone camera systems in the market. The paper defines also a proposal of combined benchmarking metrics, which includes both quality and speed parameters.

  3. Development of broad-view camera unit for laparoscopic surgery.

    Science.gov (United States)

    Kawahara, Tomohiro; Takaki, Takeshi; Ishii, Idaku; Okajima, Masazumi

    2009-01-01

    A disadvantage of laparoscopic surgery is the narrow operative field provided by the endoscope camera. This paper describes a newly developed broad-view camera unit for use with the Broad-View Camera System, which is capable of providing a wider view of the internal organs during laparoscopic surgery. The developed camera unit is composed of a miniature color CMOS camera, an indwelling needle, and an extra-thin connector. The specific design of the camera unit and the method for positioning it are shown. The performance of the camera unit has been confirmed through basic and animal experiments. PMID:19963983

  4. SU-E-E-06: Teaching About the Gamma Camera and Ultrasound Imaging

    International Nuclear Information System (INIS)

    Purpose: Instructional modules on applications of physics in medicine are being developed. The target audience consists of students who have had an introductory undergraduate physics course. This presentation will concentrate on an active learning approach to teach the principles of the gamma camera. There will also be a description of an apparatus to teach ultrasound imaging. Methods: Since a real gamma camera is not feasible in the undergraduate classroom, we have developed two types of optical apparatus that teach the main principles. To understand the collimator, LEDS mimic gamma emitters in the body, and the photons pass through an array of tubes. The distance, spacing, diameter, and length of the tubes can be varied to understand the effect upon the resolution of the image. To determine the positions of the gamma emitters, a second apparatus uses a movable green laser, fluorescent plastic in lieu of the scintillation crystal, acrylic rods that mimic the PMTs, and a photodetector to measure the intensity. The position of the laser is calculated with a centroid algorithm.To teach the principles of ultrasound imaging, we are using the sound head and pulser box of an educational product, variable gain amplifier, rotation table, digital oscilloscope, Matlab software, and phantoms. Results: Gamma camera curriculum materials have been implemented in the classroom at Loyola in 2014 and 2015. Written work shows good knowledge retention and a more complete understanding of the material. Preliminary ultrasound imaging materials were run in 2015. Conclusion: Active learning methods add another dimension to descriptions in textbooks and are effective in keeping the students engaged during class time. The teaching apparatus for the gamma camera and ultrasound imaging can be expanded to include more cases, and could potentially improve students’ understanding of artifacts and distortions in the images

  5. SU-E-E-06: Teaching About the Gamma Camera and Ultrasound Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, M; Spiro, A [Loyola University Maryland, Baltimore, Maryland (United States); Vogel, R [Iowa Doppler Products, Iowa City, Iowa (United States); Donaldson, N; Gosselin, C [Rockhurst University, Kansas City, MO (United States)

    2015-06-15

    Purpose: Instructional modules on applications of physics in medicine are being developed. The target audience consists of students who have had an introductory undergraduate physics course. This presentation will concentrate on an active learning approach to teach the principles of the gamma camera. There will also be a description of an apparatus to teach ultrasound imaging. Methods: Since a real gamma camera is not feasible in the undergraduate classroom, we have developed two types of optical apparatus that teach the main principles. To understand the collimator, LEDS mimic gamma emitters in the body, and the photons pass through an array of tubes. The distance, spacing, diameter, and length of the tubes can be varied to understand the effect upon the resolution of the image. To determine the positions of the gamma emitters, a second apparatus uses a movable green laser, fluorescent plastic in lieu of the scintillation crystal, acrylic rods that mimic the PMTs, and a photodetector to measure the intensity. The position of the laser is calculated with a centroid algorithm.To teach the principles of ultrasound imaging, we are using the sound head and pulser box of an educational product, variable gain amplifier, rotation table, digital oscilloscope, Matlab software, and phantoms. Results: Gamma camera curriculum materials have been implemented in the classroom at Loyola in 2014 and 2015. Written work shows good knowledge retention and a more complete understanding of the material. Preliminary ultrasound imaging materials were run in 2015. Conclusion: Active learning methods add another dimension to descriptions in textbooks and are effective in keeping the students engaged during class time. The teaching apparatus for the gamma camera and ultrasound imaging can be expanded to include more cases, and could potentially improve students’ understanding of artifacts and distortions in the images.

  6. The development of large-aperture test system of infrared camera and visible CCD camera

    Science.gov (United States)

    Li, Yingwen; Geng, Anbing; Wang, Bo; Wang, Haitao; Wu, Yanying

    2015-10-01

    Infrared camera and CCD camera dual-band imaging system is used in many equipment and application widely. If it is tested using the traditional infrared camera test system and visible CCD test system, 2 times of installation and alignment are needed in the test procedure. The large-aperture test system of infrared camera and visible CCD camera uses the common large-aperture reflection collimator, target wheel, frame-grabber, computer which reduces the cost and the time of installation and alignment. Multiple-frame averaging algorithm is used to reduce the influence of random noise. Athermal optical design is adopted to reduce the change of focal length location change of collimator when the environmental temperature is changing, and the image quality of the collimator of large field of view and test accuracy are also improved. Its performance is the same as that of the exotic congener and is much cheaper. It will have a good market.

  7. Acceptance/Operational Test Report for Tank 241-AN-104 camera and camera purge control system

    International Nuclear Information System (INIS)

    This Acceptance/Operational Test Procedure (ATP/OTP) will document the satisfactory operation of the camera purge panel, purge control panel, color camera system and associated control components destined for installation. The final acceptance of the complete system will be performed in the field. The purge panel and purge control panel will be tested for its safety interlock which shuts down the camera and pan-and-tilt inside the tank vapor space during loss of purge pressure and that the correct purge volume exchanges are performed as required by NFPA 496. This procedure is separated into seven sections. This Acceptance/Operational Test Report documents the successful acceptance and operability testing of the 241-AN-104 camera system and camera purge control system

  8. High count rate gamma camera with independent modules

    Science.gov (United States)

    Massari, R.; Ucci, A.; Campisi, C.; Scopinaro, F.; Soluri, A.

    2015-11-01

    Advances in nuclear medical imaging are based on the improvements of the detector's performance. Generally the research is focussed on the spatial resolution improvement. However, another important parameter is the acquisition time that can significantly affect performance in some clinical investigation (e.g. first-pass cardiac studies). At present, there are several clinical imaging systems which are able to solve these diagnostic requirements, such as the D-SPECT Cardiac Imaging System (Spectrum Dynamics) or the Nucline Cardiodesk Medical Imaging System (Mediso). Actually, these solutions are organ-specific dedicated systems, while it would be preferable having general purpose planar detectors with high counting rate. Our group has recently introduced the use of scintillation matrices whose size is equal to the overall area of a position sensitive photomultiplier tube (PSPMT) in order to design a modular gamma camera. This study allowed optimising the overall pixel identification by improving and controlling the light collection efficiency of each PSPMT. Although we achieved a solution for the problems about the dead area at the junction of the PSPMTs when they are set side by side. In this paper, we propose a modular gamma camera design as the basis to build large area detectors. The modular detector design allows us to achieve better counting performance. In this approach, each module that is made of one or more PSPMTs, can actually acquire data independently and simultaneously, increasing the overall detection efficiency. To verify the improvement in count rate capability we have built two detectors with a field of view of ~ 5 × 5cm2, by using four R8900-C12 PSPMTs (Hamamatsu Photonics K.K.). Each PSPMT was coupled to a dedicated discrete scintillation structure designed to obtain a good homogeneity, high imaging performance and high efficiency. One of the detectors was designed as a standard gamma camera, while the other was composed by four independent

  9. Conditioning and breakdown phenomena in accelerator tubes

    International Nuclear Information System (INIS)

    Important breakdown mechanisms in accelerator tubes are reviewed, and discharge phenomena in NEC tubes are deduced from the surface appearance of the electrodes and insulators of a used tube. Microphotos of these surfaces are shown

  10. Eddy current signal comparison for tube identification

    Science.gov (United States)

    Glass, S. W.; Vojvodic, R.

    2015-03-01

    Inspection of nuclear power plant steam generator tubes is required to justify continued safe plant operation. The steam generators consist of thousands of tubes with nominal diameters of 15 to 22mm, approximately 1mm wall thickness, and 20 to 30m in length. The tubes are inspected by passing an eddy current probe through the tubes from tube end to tube end. It is critical to know exactly which tube identification (row and column) is associated with each tube's data. This is controlled by a precision manipulator that provides the tube ID to the eddy current system. Historically there have been some instances where the manipulator incorrectly reported the tube ID. This can have serious consequences including lack of inspection of a tube, or if a pluggable indication is detected, the tube is likely to be mis-plugged thereby risking a primary to secondary leak.

  11. Eddy current signal comparison for tube identification

    International Nuclear Information System (INIS)

    Inspection of nuclear power plant steam generator tubes is required to justify continued safe plant operation. The steam generators consist of thousands of tubes with nominal diameters of 15 to 22mm, approximately 1mm wall thickness, and 20 to 30m in length. The tubes are inspected by passing an eddy current probe through the tubes from tube end to tube end. It is critical to know exactly which tube identification (row and column) is associated with each tube's data. This is controlled by a precision manipulator that provides the tube ID to the eddy current system. Historically there have been some instances where the manipulator incorrectly reported the tube ID. This can have serious consequences including lack of inspection of a tube, or if a pluggable indication is detected, the tube is likely to be mis-plugged thereby risking a primary to secondary leak

  12. Vidicon storage tube electrical input/output

    Science.gov (United States)

    Lipoma, P.

    1972-01-01

    Electrical data storage tube is assembled from standard vidicon tube using conventional amplification and control circuits. Vidicon storage tube is simple, inexpensive and has an erase and preparation time of less than 5 microseconds.

  13. Vacuum distribution in the Vivitron accelerating tube

    International Nuclear Information System (INIS)

    Outgassing and conductance performances of HVEC type accelerating tube sections are calculated, measured and discussed. Based on the proposed Vivitron terminal stripping arrangement and tube pumping system, the vacuum pressure distribution along the accelerating tube has been determined

  14. A 3D high-resolution gamma camera for radiopharmaceutical studies with small animals

    CERN Document Server

    Loudos, G K; Giokaris, N D; Styliaris, E; Archimandritis, S C; Varvarigou, A D; Papanicolas, C N; Majewski, S; Weisenberger, D; Pani, R; Scopinaro, F; Uzunoglu, N K; Maintas, D; Stefanis, K

    2003-01-01

    The results of studies conducted with a small field of view tomographic gamma camera based on a Position Sensitive Photomultiplier Tube are reported. The system has been used for the evaluation of radiopharmaceuticals in small animals. Phantom studies have shown a spatial resolution of 2 mm in planar and 2-3 mm in tomographic imaging. Imaging studies in mice have been carried out both in 2D and 3D. Conventional radiopharmaceuticals have been used and the results have been compared with images from a clinically used system.

  15. High speed (<= 250 ps) high gain X-ray shutter camera

    International Nuclear Information System (INIS)

    A high speed X-ray shutter tube has been developed for laser induced plasma imaging. The limiting exposure time is in the 250 ps range and 5 images can be recorded on the same, laser shot, in order to provide a 5 spectral channel analysis of the plasma. A high light gain is obtained from a microchannel plate inserted in the 50Ω transmission line, which provide the adapted structure to reach such a time exposure. We present the main performances of this camera

  16. Contribution of the channel electron multiplier to the race of vacuum tubes towards picosecond resolution time

    International Nuclear Information System (INIS)

    The ability to tightly pack millions of microscopic secondary emitting channels into a two-dimensional, very thin, array known as a microchannel plate (MCP) provides excellent electrical charge or current amplification associated with an extremely short response time as well as very good spatial resolution. The ultimate performances in spatial and temporal resolutions achieved by MCP-based vacuum devices are discussed and illustrated by the description of a large range of experimental prototypes (photomultipliers, oscilloscope tubes, streak camera tubes, etc.) designed and produced at LEP, then tested in cooperation with Nuclear Research and Plasma Physics Centers in Europe and USA

  17. Contribution of the channel electron multiplier to the race of vacuum tubes towards picosecond resolution time

    Energy Technology Data Exchange (ETDEWEB)

    Pietri, G.

    1977-02-01

    The ability to tightly pack millions of microscopic secondary emitting channels into a two-dimensional, very thin, array known as a microchannel plate (MCP) provides excellent electrical charge or current amplification associated with an extremely short response time as well as very good spatial resolution. The ultimate performances in spatial and temporal resolutions achieved by MCP-based vacuum devices are discussed and illustrated by the description of a large range of experimental prototypes (photomultipliers, oscilloscope tubes, streak camera tubes, etc.) designed and produced at LEP, then tested in cooperation with Nuclear Research and Plasma Physics Centers in Europe and USA.

  18. Global Calibration of Multiple Cameras Based on Sphere Targets

    OpenAIRE

    Junhua Sun; Huabin He; Debing Zeng

    2016-01-01

    Global calibration methods for multi-camera system are critical to the accuracy of vision measurement. Proposed in this paper is such a method based on several groups of sphere targets and a precision auxiliary camera. Each camera to be calibrated observes a group of spheres (at least three), while the auxiliary camera observes all the spheres. The global calibration can be achieved after each camera reconstructs the sphere centers in its field of view. In the process of reconstructing a sphe...

  19. Mobile Camera Array Calibration for Light Field Acquisition

    OpenAIRE

    Xu, Yichao; Maeno, Kazuki; Nagahara, Hajime; Taniguchi, Rin-ichiro

    2014-01-01

    The light field camera is useful for computer graphics and vision applications. Calibration is an essential step for these applications. After calibration, we can rectify the captured image by using the calibrated camera parameters. However, the large camera array calibration method, which assumes that all cameras are on the same plane, ignores the orientation and intrinsic parameters. The multi-camera calibration technique usually assumes that the working volume and viewpoints are fixed. In ...

  20. The Calibration of the FACT Camera

    International Nuclear Information System (INIS)

    Full text: The First G-APD Cherenkov Telescope (FACT) collaboration builds a camera for an Imaging Atmospheric Cherenkov Telescope which is based on G-APDs and a readout using the Domino Ring Sampling (DRS4) chip. The amplitude calibration of the readout chain must account for a wide variety of effects specific to this design of the camera, eg. the strong temperature dependence of the G-APDs, the quality of the gluing between the optical components as well as the characteristics of the DRS4 chip. The basis for this calibration are an online feedback system to stabilize the gain of the G-APDs, laboratory measurements and special runs during data taking. In this talk, the calibration system for FACT is presented including the current experience with the camera in laboratory measurements. (author)

  1. PEOPLE REIDENTIFCATION IN A DISTRIBUTED CAMERA NETWORK

    Directory of Open Access Journals (Sweden)

    Icaro Oliveira de Oliveira

    2010-06-01

    Full Text Available This paper presents an approach to the object reidentification problem in a distributed camera network system. The reidentification or reacquisition problem consists essentially on the matching process of images acquired from different cameras. This work is applied in a monitored environment by cameras. This application is important to modern security systems, in which the targets presence identification in the environment expands the capacity of action by security agents in real time and provides important parameters like localization for each target. We used target’s interest points and target’s color with features for reidentification. The satisfactory results were obtained from real experiments in public video datasets and synthetic images with noise.

  2. Camera placement in integer lattices (extended abstract)

    Science.gov (United States)

    Pocchiola, Michel; Kranakis, Evangelos

    1990-09-01

    Techniques for studying an art gallery problem (the camera placement problem) in the infinite lattice (L sup d) of d tuples of integers are considered. A lattice point A is visible from a camera C positioned at a vertex of (L sup d) if A does not equal C and if the line segment joining A and C crosses no other lattice vertex. By using a combination of probabilistic, combinatorial optimization and algorithmic techniques the position they must occupy in the lattice (L sup d) in the order to maximize their visibility can be determined in polynomial time, for any given number s less than or equal to (5 sup d) of cameras. This improves previous results for s less than or equal to (3 sup d).

  3. Collimated trans-axial tomographic scintillation camera

    International Nuclear Information System (INIS)

    The objects of this invention are first to reduce the time required to obtain statistically significant data in trans-axial tomographic radioisotope scanning using a scintillation camera. Secondly, to provide a scintillation camera system to increase the rate of acceptance of radioactive events to contribute to the positional information obtainable from a known radiation source without sacrificing spatial resolution. Thirdly to reduce the scanning time without loss of image clarity. The system described comprises a scintillation camera detector, means for moving this in orbit about a cranial-caudal axis relative to a patient and a collimator having septa defining apertures such that gamma rays perpendicular to the axis are admitted with high spatial resolution, parallel to the axis with low resolution. The septa may be made of strips of lead. Detailed descriptions are given. (U.K.)

  4. Progress in gamma-camera quality control

    International Nuclear Information System (INIS)

    The latest developments in the art of quality control of gamma cameras are emphasized in a simple historical manner. The exhibit describes methods developed by the Bureau of Radiological Health (BRH) in comparison with previously accepted techniques for routine evaluation of gamma-camera performance. Gamma cameras require periodic testing of their performance parameters to ensure that their optimum imaging capability is maintained. Quality control parameters reviewed are field uniformity, spatial distortion, intrinsic and spatial resolution, and temporal resolution. The methods developed for the measurement of these parameters are simple, not requiring additional electronic equipment or computers. The data has been arranged in six panels as follows: schematic diagrams of the most important test patterns used in nuclear medicine; field uniformity; regional displacements in transmission pattern image; spatial resolution using the BRH line-source phantom; instrinsic resolution using the BRH Test Pattern; and Temporal resolution and count losses at high counting rates

  5. Plant iodine-131 uptake in relation to root concentration as measured in minirhizotron by video camera:

    International Nuclear Information System (INIS)

    Glass viewing tubes (minirhizotrons) were placed in the soil beneath native perennial bunchgrass (Agropyron spicatum). The tubes provided access for observing and quantifying plant roots with a miniature video camera and soil moisture estimates by neutron hydroprobe. The radiotracer I-131 was delivered to the root zone at three depths with differing root concentrations. The plant was subsequently sampled and analyzed for I-131. Plant uptake was greater when I-131 was applied at soil depths with higher root concentrations. When I-131 was applied at soil depths with lower root concentrations, plant uptake was less. However, the relationship between root concentration and plant uptake was not a direct one. When I-131 was delivered to deeper soil depths with low root concentrations, the quantity of roots there appeared to be less effective in uptake than the same quantity of roots at shallow soil depths with high root concentration. 29 refs., 6 figs., 11 tabs

  6. Small Orbital Stereo Tracking Camera Technology Development

    Science.gov (United States)

    Bryan, Tom; MacLeod, Todd; Gagliano, Larry

    2016-01-01

    On-Orbit Small Debris Tracking and Characterization is a technical gap in the current National Space Situational Awareness necessary to safeguard orbital assets and crew. This poses a major risk of MOD damage to ISS and Exploration vehicles. In 2015 this technology was added to NASA's Office of Chief Technologist roadmap. For missions flying in or assembled in or staging from LEO, the physical threat to vehicle and crew is needed in order to properly design the proper level of MOD impact shielding and proper mission design restrictions. Need to verify debris flux and size population versus ground RADAR tracking. Use of ISS for In-Situ Orbital Debris Tracking development provides attitude, power, data and orbital access without a dedicated spacecraft or restricted operations on-board a host vehicle as a secondary payload. Sensor Applicable to in-situ measuring orbital debris in flux and population in other orbits or on other vehicles. Could enhance safety on and around ISS. Some technologies extensible to monitoring of extraterrestrial debris as well To help accomplish this, new technologies must be developed quickly. The Small Orbital Stereo Tracking Camera is one such up and coming technology. It consists of flying a pair of intensified megapixel telephoto cameras to evaluate Orbital Debris (OD) monitoring in proximity of International Space Station. It will demonstrate on-orbit optical tracking (in situ) of various sized objects versus ground RADAR tracking and small OD models. The cameras are based on Flight Proven Advanced Video Guidance Sensor pixel to spot algorithms (Orbital Express) and military targeting cameras. And by using twin cameras we can provide Stereo images for ranging & mission redundancy. When pointed into the orbital velocity vector (RAM), objects approaching or near the stereo camera set can be differentiated from the stars moving upward in background.

  7. Lightweight, Compact, Long Range Camera Design

    Science.gov (United States)

    Shafer, Donald V.

    1983-08-01

    The model 700 camera is the latest in a 30-year series of LOROP cameras developed by McDonnell Douglas Astronautics Company (MDAC) and their predecessor companies. The design achieves minimum size and weight and is optimized for low-contrast performance. The optical system includes a 66-inch focal length, f/5.6, apochromatic lens and three folding mirrors imaging on a 4.5-inch square format. A three-axis active stabilization system provides the capability for long exposure time and, hence, fine grain films can be used. The optical path forms a figure "4" behind the lens. In front of the lens is a 45° pointing mirror. This folded configuration contributed greatly to the lightweight and compact design. This sequential autocycle frame camera has three modes of operation with one, two, and three step positions to provide a choice of swath widths within the range of lateral coverage. The magazine/shutter assembly rotates in relationship with the pointing mirror and aircraft drift angle to maintain film format alignment with the flight path. The entire camera is angular rate stabilized in roll, pitch, and yaw. It also employs a lightweight, electro-magnetically damped, low-natural-frequency spring suspension for passive isolation from aircraft vibration inputs. The combined film transport and forward motion compensation (FMC) mechanism, which is operated by a single motor, is contained in a magazine that can, depending on accessibility which is installation dependent, be changed in flight. The design also stresses thermal control, focus control, structural stiffness, and maintainability. The camera is operated from a remote control panel. This paper describes the leading particulars and features of the camera as related to weight and configuration.

  8. A multidetector scintillation camera with 254 channels

    DEFF Research Database (Denmark)

    Sveinsdottir, E; Larsen, B; Rommer, P;

    1977-01-01

    A computer-based scintillation camera has been designed for both dynamic and static radionuclide studies. The detecting head has 254 independent sodium iodide crystals, each with a photomultiplier and amplifier. In dynamic measurements simultaneous events can be recorded, and 1 million total counts...... per second can be accommodated with less than 0.5% loss in any one channel. This corresponds to a calculated deadtime of 5 nsec. The multidetector camera is being used for 133Xe dynamic studies of regional cerebral blood flow in man and for 99mTc and 197 Hg static imaging of the brain....

  9. Analysis of Brown camera distortion model

    Science.gov (United States)

    Nowakowski, Artur; Skarbek, Władysław

    2013-10-01

    Contemporary image acquisition devices introduce optical distortion into image. It results in pixel displacement and therefore needs to be compensated for many computer vision applications. The distortion is usually modeled by the Brown distortion model, which parameters can be included in camera calibration task. In this paper we describe original model, its dependencies and analyze orthogonality with regard to radius for its decentering distortion component. We also report experiments with camera calibration algorithm included in OpenCV library, especially a stability of distortion parameters estimation is evaluated.

  10. Performance assessment of gamma cameras. Part 1

    International Nuclear Information System (INIS)

    The Dept. of Health and Social Security and the Scottish Home and Health Dept. has sponsored a programme of measurements of the important performance characteristics of 15 leading types of gamma cameras providing a routine radionuclide imaging service in hospitals throughout the UK. Measurements have been made of intrinsic resolution, system resolution, non-uniformity, spatial distortion, count rate performance, sensitivity, energy resolution and shield leakage. The main aim of this performance assessment was to provide sound information to the NHS to ease the task of those responsible for the purchase of gamma cameras. (U.K.)

  11. Electronic components, tubes and transistors

    CERN Document Server

    Dummer, G W A

    1965-01-01

    Electronic Components, Tubes and Transistors aims to bridge the gap between the basic measurement theory of resistance, capacitance, and inductance and the practical application of electronic components in equipments. The more practical or usage aspect of electron tubes and semiconductors is given emphasis over theory. The essential characteristics of each main type of component, tube, and transistor are summarized. This book is comprised of six chapters and begins with a discussion on the essential characteristics in terms of the parameters usually required in choosing a resistor, including s

  12. PEG tubes: dealing with complications.

    Science.gov (United States)

    Malhi, Hardip; Thompson, Rosie

    A percutaneous endoscopic gastronomy tube can be used to deliver nutrition, hydration and medicines directly into the patient's stomach. Patients will require a tube if they are unable to swallow safely, putting them at risk of aspiration of food, drink and medicines into their lungs. It is vital that nurses are aware of the complications that may arise when caring for a patient with a PEG tube. It is equally important that nurses know how to deal with these complications or from where tc seek advice. This article provides a quick troubleshooting guide to help nurses deal with complications that can arise with PEG feeding. PMID:26016095

  13. Sausage Instabilities on top of Kinking Lengthening Current-Carrying Magnetic Flux Tubes

    Science.gov (United States)

    von der Linden, Jens; You, Setthivoine

    2015-11-01

    Observations indicate that the dynamics of magnetic flux tubes in our cosmos and terrestrial experiments involve fast topological change beyond MHD reconnection. Recent experiments suggest that hierarchies of instabilities coupling disparate plasma scales could be responsible for this fast topological change by accessing two-fluid and kinetic scales. This study will explore the possibility of sausage instabilities developing on top of a kink instability in lengthening current-carrying magnetic flux tubes. Current driven flux tubes evolve over a wide range of aspect ratios k and current to magnetic flux ratios λ . An analytical stability criterion and numerical investigations, based on applying Newcomb's variational approach to idealized magnetic flux tubes with core and skin currents, indicate a dependence of the stability boundaries on current profiles and overlapping kink and sausage unstable regions in the k - λ trajectory of the flux tubes. A triple electrode planar plasma gun (Mochi.LabJet) is designed to generate flux tubes with discrete core and skin currents. Measurements from a fast-framing camera and a high resolution magnetic probe are being assembled into stability maps of the k - λ space of flux tubes. This work was sponsored in part by the US DOE Grant DE-SC0010340.

  14. Flow separation in a straight draft tube, particle image velocimetry

    International Nuclear Information System (INIS)

    As part of the BulbT project, led by the Consortium on Hydraulic Machines and the LAMH (Hydraulic Machine Laboratory of Laval University), the efficiency and power break off in a bulb turbine has been investigated. Previous investigations correlated the break off to draft tube losses. Tuft visualizations confirmed the emergence of a flow separation zone at the wall of the diffuser. Opening the guide vanes tends to extend the recirculation zone. The flow separations were investigated with two-dimensional and two-component particle image velocimetry (PIV) measurements designed based on the information collected from tuft visualizations. Investigations were done for a high opening blade angle with a N11 of 170 rpm, at best efficiency point and at two points with a higher Q11. The second operating point is inside the efficiency curve break off and the last operating point corresponds to a lower efficiency and a larger recirculation region in the draft tube. The PIV measurements were made near the wall with two cameras in order to capture two measurement planes simultaneously. The instantaneous velocity fields were acquired at eight different planes. Two planes located near the bottom wall were parallel to the generatrix of the conical part of the diffuser, while two other bottom planes diverged more from the draft tube axis than the cone generatrix. The last four planes were located on the draft tube side and diverged more from the draft tube axis than the cone generatrix. By combining the results from the various planes, the separation zone is characterized using pseudo-streamlines of the mean velocity fields, maps of the Reynolds stresses and maps of the reverse-flow parameter. The analysis provides an estimation of the separation zone size, shape and unsteady character, and their evolution with the guide vanes opening

  15. Compact Optical Technique for Streak Camera Calibration

    International Nuclear Information System (INIS)

    The National Ignition Facility (NIF) is under construction at the Lawrence Livermore National Laboratory (LLNL) for the U.S. Department of Energy Stockpile Stewardship Program. Optical streak cameras are an integral part of the experimental diagnostics instrumentation. To accurately reduce data from the streak cameras a temporal calibration is required. This article describes a technique for generating trains of precisely timed short-duration optical pulses1 (optical comb generators) that are suitable for temporal calibrations. These optical comb generators (Figure 1) are used with the LLNL optical streak cameras. They are small, portable light sources that produce a series of temporally short, uniformly spaced, optical pulses. Comb generators have been produced with 0.1, 0.5, 1, 3, 6, and 10-GHz pulse trains of 780-nm wavelength light with individual pulse durations of ∼25-ps FWHM. Signal output is via a fiber-optic connector. Signal is transported from comb generator to streak camera through multi-mode, graded-index optical fibers. At the NIF, ultra-fast streak-cameras are used by the Laser Fusion Program experimentalists to record fast transient optical signals. Their temporal resolution is unmatched by any other transient recorder. Their ability to spatially discriminate an image along the input slit allows them to function as a one-dimensional image recorder, time-resolved spectrometer, or multichannel transient recorder. Depending on the choice of photocathode, they can be made sensitive to photon energies from 1.1 eV to 30 keV and beyond. Comb generators perform two important functions for LLNL streak-camera users. First, comb generators are used as a precision time-mark generator for calibrating streak camera sweep rates. Accuracy is achieved by averaging many streak camera images of comb generator signals. Time-base calibrations with portable comb generators are easily done in both the calibration laboratory and in situ. Second, comb signals are applied

  16. Camera Trajectory fromWide Baseline Images

    Science.gov (United States)

    Havlena, M.; Torii, A.; Pajdla, T.

    2008-09-01

    Camera trajectory estimation, which is closely related to the structure from motion computation, is one of the fundamental tasks in computer vision. Reliable camera trajectory estimation plays an important role in 3D reconstruction, self localization, and object recognition. There are essential issues for a reliable camera trajectory estimation, for instance, choice of the camera and its geometric projection model, camera calibration, image feature detection and description, and robust 3D structure computation. Most of approaches rely on classical perspective cameras because of the simplicity of their projection models and ease of their calibration. However, classical perspective cameras offer only a limited field of view, and thus occlusions and sharp camera turns may cause that consecutive frames look completely different when the baseline becomes longer. This makes the image feature matching very difficult (or impossible) and the camera trajectory estimation fails under such conditions. These problems can be avoided if omnidirectional cameras, e.g. a fish-eye lens convertor, are used. The hardware which we are using in practice is a combination of Nikon FC-E9 mounted via a mechanical adaptor onto a Kyocera Finecam M410R digital camera. Nikon FC-E9 is a megapixel omnidirectional addon convertor with 180° view angle which provides images of photographic quality. Kyocera Finecam M410R delivers 2272×1704 images at 3 frames per second. The resulting combination yields a circular view of diameter 1600 pixels in the image. Since consecutive frames of the omnidirectional camera often share a common region in 3D space, the image feature matching is often feasible. On the other hand, the calibration of these cameras is non-trivial and is crucial for the accuracy of the resulting 3D reconstruction. We calibrate omnidirectional cameras off-line using the state-of-the-art technique and Mičušík's two-parameter model, that links the radius of the image point r to the

  17. Evaluation of mobile phone camera benchmarking using objective camera speed and image quality metrics

    Science.gov (United States)

    Peltoketo, Veli-Tapani

    2014-11-01

    When a mobile phone camera is tested and benchmarked, the significance of image quality metrics is widely acknowledged. There are also existing methods to evaluate the camera speed. However, the speed or rapidity metrics of the mobile phone's camera system has not been used with the quality metrics even if the camera speed has become a more and more important camera performance feature. There are several tasks in this work. First, the most important image quality and speed-related metrics of a mobile phone's camera system are collected from the standards and papers and, also, novel speed metrics are identified. Second, combinations of the quality and speed metrics are validated using mobile phones on the market. The measurements are done toward application programming interface of different operating systems. Finally, the results are evaluated and conclusions are made. The paper defines a solution to combine different image quality and speed metrics to a single benchmarking score. A proposal of the combined benchmarking metric is evaluated using measurements of 25 mobile phone cameras on the market. The paper is a continuation of a previous benchmarking work expanded with visual noise measurement and updates of the latest mobile phone versions.

  18. Camera window for ultrasoft X-rays from celestial sources

    International Nuclear Information System (INIS)

    Interest in satellite observations in the very soft X-ray waveband (the XUV range) has greatly increased since the discovery that the visibility in this range is much greater than was first thought. For observing objects of same extent - supernova remnants, planetary nebulae and other hot plasma regions - the most suitable instrument has been found to be the proportional counter with spatial resolution, placed at the focal plane of an X-ray optical system. A focal-plane camera of this type has been developed by the Cosmic Ray Working Group at Leiden. The conventional entrance windows of proportional counters are not transparent in the XUV range. A special window has been developed in cooperation with the Philips X-ray Tubes Laboratory. It consists of a film of a polycarbonate, 'Lexan', 0.3 μm thick. It is produced by 'casting' a 70 nm film of this material on a water surface, and by laminating four or five such films. The film is supported in the window by a structure of meshes and a grid. One in four of the windows made from selected films and the meshes meet the specifications for strength and gas-diffusion leakage. The effectve area of the window is 35 cm2. (Auth.)

  19. Study of a Scintillation Camera: Description and Clinical Application

    International Nuclear Information System (INIS)

    The spatial distribution of radioactivity within an organ is at present studied routinely with the aid of mobile detectors capable of examining different points in the organ one after the other by means of scanning. In recent years efforts have been made to construct fixed detectors which are able to explore all the points within an organ simultaneously. A detector of this sort is now being used by the authors of the paper. The paper explains the functioning of the apparatus in which a single crystal is viewed by a number of photomultipliers. The main components of the apparatus are as follows: (a) A detector head consisting of a crystal and 7 photomultipliers, plus a conical chamber fitted with a diaphragm or a grid; (b) Devices for localizing scintillations in the crystal and for pulse selection, and (c) Recording equipment consisting of two cathode-ray oscilloscopes fitted with a camera; one of these is equipped with a remanence memory tube. The paper then describes the operating technique: approaching the organ; studying recording times; using the screen of the memory oscilloscope; producing the photograph. Finally, the authors discuss the results obtained in exploring various organs, give some general information on the technique and adumbrate a number of novel applications. (author)

  20. NEI You Tube Videos: Amblyopia

    Medline Plus

    Full Text Available ... Funding Division of Extramural Affairs Division of Extramural Science Programs Funding Opportunity Announcements Funding Mechanisms Supported by ... Amaurosis Low Vision Refractive Errors Retinopathy of Prematurity Science Spanish Videos Webinars NEI YouTube Videos: Amblyopia NEI ...

  1. drift tube for linear accelerator

    CERN Multimedia

    A drift tube from the Linac 1. This was the first tank of the linear accelerator Linac1, the injection system for the Proton Synchrotron, It ran for 34 years (1958 - 1992). Protons entered at the far end and were accelerated between the copper drift tubes by an oscillating electromagnetic field. The field flipped 200 million times a second (200 MHz) so the protons spent 5 nanoseconds crossing a drift tube and a gap. Moving down the tank, the tubes and gaps had to get longer as the protons gained speed. The tank accelerated protons from 500 KeV to 10 MeV. Linac1 was also used to accelerate deutrons and alpha particles for the Intersecting Storage Rings and oxygen and sulpher ions for the Super Proton Synchrotron heavy ion programme.

  2. NEI You Tube Videos: Amblyopia

    Medline Plus

    Full Text Available ... Funding Division of Extramural Activities Division of Extramural Science Programs Funding Opportunity Announcements Funding Mechanisms Supported by ... Amaurosis Low Vision Refractive Errors Retinopathy of Prematurity Science Spanish Videos Webinars NEI YouTube Videos: Amblyopia NEI ...

  3. Lunar Core Drive Tubes Summary

    Data.gov (United States)

    National Aeronautics and Space Administration — Contains a brief summary and high resolution imagery from various lunar rock and core drive tubes collected from the Apollo and Luna missions to the moon.

  4. NEI You Tube Videos: Amblyopia

    Medline Plus

    Full Text Available ... NEI All Research at NEI Office of the Scientific Director Office of the Clinical Director Education Programs ... Amaurosis Low Vision Refractive Errors Retinopathy of Prematurity Science Spanish Videos Webinars NEI YouTube Videos: Amblyopia NEI ...

  5. NEI You Tube Videos: Amblyopia

    Medline Plus

    Full Text Available ... Amaurosis Low Vision Refractive Errors Retinopathy of Prematurity Science Spanish Videos Webinars NEI YouTube Videos: Amblyopia NEI ... questions and comments to the NEI Office of Science Communications, Public Liaison, and Education. Technical questions about ...

  6. Lattice tube model of proteins

    OpenAIRE

    Banavar, Jayanth R.; Cieplak, Marek; Maritan, Amos

    2004-01-01

    We present a new lattice model for proteins that incorporates a tube-like anisotropy by introducing a preference for mutually parallel alignments in the conformations. The model is demonstrated to capture many aspects of real proteins.

  7. NEI You Tube Videos: Amblyopia

    Medline Plus

    Full Text Available ... Eye Disease Dilated Eye Exam Dry Eye For Kids Glaucoma Healthy Vision Tips Leber Congenital Amaurosis Low Vision Refractive Errors Retinopathy of Prematurity Science Spanish Videos Webinars NEI YouTube Videos: Amblyopia NEI ...

  8. A study of the new hemispherical 6-dynodes PMT from electron tubes

    CERN Document Server

    Ostankov, A P; Lorenz, E; Martínez, M; Mirzoyan, R

    2000-01-01

    The main electro-optical properties of the new fast and low-gain hemispherical PMT from Electron Tubes Ltd. have been studied. This PMT is considered as photosensor for the camera of the 17 m diameter air Cherenkov telescope MAGIC to be installed in two years at Canary Island La Palma. The dependence of the single-electron resolution and afterpulse rates as well as linearity on the interdynode voltages have been studied in detail.

  9. A study of the new hemispherical 6-dynodes PMT from electron tubes

    International Nuclear Information System (INIS)

    The main electro-optical properties of the new fast and low-gain hemispherical PMT from Electron Tubes Ltd. have been studied. This PMT is considered as photosensor for the camera of the 17 m diameter air Cherenkov telescope MAGIC to be installed in two years at Canary Island La Palma. The dependence of the single-electron resolution and afterpulse rates as well as linearity on the interdynode voltages have been studied in detail

  10. Photosensor Characterization for the Cherenkov Telescope Array: Silicon Photomultiplier versus Multi-Anode Photomultiplier Tube

    OpenAIRE

    Bouvier, Aurelien; Gebremedhin, Lloyd; Johnson, Caitlin; Kuznetsov, Andrey; Williams, David; Otte, Nepomuk; Strausbaugh, Robert; Hidaka, Naoya; Tajima, Hiroyasu; Hinton, Jim; White, Richard; Errando, Manel; Mukherjee, Reshmi

    2013-01-01

    Photomultiplier tube technology has been the photodetector of choice for the technique of imaging atmospheric Cherenkov telescopes since its birth more than 50 years ago. Recently, new types of photosensors are being contemplated for the next generation Cherenkov Telescope Array. It is envisioned that the array will be partly composed of telescopes using a Schwarzschild-Couder two mirror design never built before which has significantly improved optics. The camera of this novel optical design...

  11. A study of the new hemispherical 6-dynodes PMT from electron tubes

    Energy Technology Data Exchange (ETDEWEB)

    Ostankov, A. E-mail: ostankov@ifae.es; Paneque, D.; Lorenz, E.; Martinez, M.; Mirzoyan, R

    2000-03-11

    The main electro-optical properties of the new fast and low-gain hemispherical PMT from Electron Tubes Ltd. have been studied. This PMT is considered as photosensor for the camera of the 17 m diameter air Cherenkov telescope MAGIC to be installed in two years at Canary Island La Palma. The dependence of the single-electron resolution and afterpulse rates as well as linearity on the interdynode voltages have been studied in detail.

  12. A study of the new hemispherical 6-dynodes PMT from electron tubes

    Science.gov (United States)

    Ostankov, A.; Paneque, D.; Lorenz, E.; Martinez, M.; Mirzoyan, R.

    2000-03-01

    The main electro-optical properties of the new fast and low-gain hemispherical PMT from Electron Tubes Ltd. have been studied. This PMT is considered as photosensor for the camera of the 17 m diameter air Cherenkov telescope MAGIC to be installed in two years at Canary Island La Palma. The dependence of the single-electron resolution and afterpulse rates as well as linearity on the interdynode voltages have been studied in detail.

  13. Improved Continuous Tube Welding Due to Unique Process Sensor System and Process Control

    Science.gov (United States)

    Dorsch, F.; Pfitzner, D.; Braun, H.

    A unique camera-based triple sensor system increases productivity, yield and quality of continuous welding of tubes and profiles. It combines high-precision seam tracking and beam positioning with weld spot visualization and characterization, and seam geometry measurement. The higher overall precision allows operating the process closer to its limits, online quality monitoring detects faults immediately. The process setup time is greatly reduced, and also the waste during startup is reduced. Finally, full documentation sets the basis for data traceability.

  14. Towards Adaptive Virtual Camera Control In Computer Games

    DEFF Research Database (Denmark)

    Burelli, Paolo; Yannakakis, Georgios N.

    2011-01-01

    Automatic camera control aims to define a framework to control virtual camera movements in dynamic and unpredictable virtual environments while ensuring a set of desired visual properties. We inves- tigate the relationship between camera placement and playing behaviour in games and build a user...... model of the camera behaviour that can be used to control camera movements based on player preferences. For this purpose, we collect eye gaze, camera and game-play data from subjects playing a 3D platform game, we cluster gaze and camera information to identify camera behaviour profiles and we employ...... machine learning to build predictive models of the virtual camera behaviour. The perfor- mance of the models on unseen data reveals accuracies above 70% for all the player behaviour types identified. The characteristics of the gener- ated models, their limits and their use for creating adaptive automatic...

  15. The YouTube reader

    OpenAIRE

    2009-01-01

    YouTube has come to epitomize the possibilities of digital culture. With more than seventy million unique users a month and approximately eighty million videos online, this brand-name video distribution platform holds the richest repository of popular culture on the Internet. As the fastest growing site in the history of the Web, YouTube promises endless new opportunities for amateur video, political campaigning, entertainment formats, and viral marketing—a clip culture that has seemed to out...

  16. Duplication of the fallopian tube

    Directory of Open Access Journals (Sweden)

    R Narayanan

    2008-01-01

    Full Text Available Hysterosalpingography accurately delineates the uterine and tubal lumen, and hence is routinely performed for the evaluation of infertility.We observed a case of infertility where uterine cavity was normal but fallopian tubes were bifurcated at the ampullary region. Mullerian duct anomalies are reported in literature, but maldevelopment of fallopian tube in isolation is rare. This abnormality can present as infertility, ectopic pregnancy, in association with urinary tract anomalies or as failure of sterilisation method.

  17. Eddy current tube testing unit

    International Nuclear Information System (INIS)

    The unit described can check a wide variety of tubes in quick succession and its modular design gives it a high degree of versability. Suitably defined working conditions and specific fittings enable most of the faults encountered in the manufacture of a tube to be detected. By appropriate means of selection based on signal amplitude, phase and frequency analyses it is possible to adapt selection criteria to the seriousness of the different categories of defect

  18. Energy dissipation in circular tube

    OpenAIRE

    A.D. Girgidov

    2012-01-01

    Energy dissipation distribution along the circular tube radius is important in solving such problems as calculation of heat transfer by the air flow through building envelope; calculation of pressure loss in spiral flows; calculation of cyclones with axial and tangential supply of dust-containing gas.Two types of one-dimensional radially axisymmetric flows in circular tube were considered: axial flow and rotation about the axis (Rankine vortex). Relying on two- and four-layer description of a...

  19. Test-tube Baby Option

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    As China’s first test tube baby celebrates her 20th birthday,the country is moving to improve IVF procedures I feel just like a normal person,despite being a little bit hi-tech,"said China’s first test-tube baby Zheng Mengzhu at her birthday party in Beijing. Zheng,born on March 10,1988 in the No.3 Hospital affiliated to the Peking University of Medical Sciences,made a trip

  20. Digital Camera Project Fosters Communication Skills

    Science.gov (United States)

    Fisher, Ashley; Lazaros, Edward J.

    2009-01-01

    This article details the many benefits of educators' use of digital camera technology and provides an activity in which students practice taking portrait shots of classmates, manipulate the resulting images, and add language arts practice by interviewing their subjects to produce a photo-illustrated Word document. This activity gives…

  1. Teaching Camera Calibration by a Constructivist Methodology

    Science.gov (United States)

    Samper, D.; Santolaria, J.; Pastor, J. J.; Aguilar, J. J.

    2010-01-01

    This article describes the Metrovisionlab simulation software and practical sessions designed to teach the most important machine vision camera calibration aspects in courses for senior undergraduate students. By following a constructivist methodology, having received introductory theoretical classes, students use the Metrovisionlab application to…

  2. Camera Systems Rapidly Scan Large Structures

    Science.gov (United States)

    2013-01-01

    Needing a method to quickly scan large structures like an aircraft wing, Langley Research Center developed the line scanning thermography (LST) system. LST works in tandem with a moving infrared camera to capture how a material responds to changes in temperature. Princeton Junction, New Jersey-based MISTRAS Group Inc. now licenses the technology and uses it in power stations and industrial plants.

  3. Video Analysis with a Web Camera

    Science.gov (United States)

    Wyrembeck, Edward P.

    2009-01-01

    Recent advances in technology have made video capture and analysis in the introductory physics lab even more affordable and accessible. The purchase of a relatively inexpensive web camera is all you need if you already have a newer computer and Vernier's Logger Pro 3 software. In addition to Logger Pro 3, other video analysis tools such as…

  4. Solutions to the linear camera calibration problem

    Science.gov (United States)

    Grosky, William I.; Tamburino, Louis A.

    1987-01-01

    The general linear camera calibration problem is formulated and several classification schemes for various subcases of this problem are developed. For each subcase, simple solutions are found that satisfy all necessary constraints. The results improve those already in the literature with respect to simplicity, efficiency, and coverage. However, the classification scheme is not exhaustive.

  5. EOD Facilities Manual. Camera Calibration Laboratory Capabilities

    Science.gov (United States)

    1972-01-01

    The tests and equipment are described for measuring the exact performance characteristics of camera systems for earth resources, space, and other applications. The tests discussed include: modulation transfer function, field irradiance, veiling glare, T-number tests, shutter speed, spectral transmission, and focal length.

  6. Camera! Action! Collaborate with Digital Moviemaking

    Science.gov (United States)

    Swan, Kathleen Owings; Hofer, Mark; Levstik, Linda S.

    2007-01-01

    Broadly defined, digital moviemaking integrates a variety of media (images, sound, text, video, narration) to communicate with an audience. There is near-ubiquitous access to the necessary software (MovieMaker and iMovie are bundled free with their respective operating systems) and hardware (computers with Internet access, digital cameras, etc.).…

  7. A novel super-resolution camera model

    Science.gov (United States)

    Shao, Xiaopeng; Wang, Yi; Xu, Jie; Wang, Lin; Liu, Fei; Luo, Qiuhua; Chen, Xiaodong; Bi, Xiangli

    2015-05-01

    Aiming to realize super resolution(SR) to single image and video reconstruction, a super resolution camera model is proposed for the problem that the resolution of the images obtained by traditional cameras behave comparatively low. To achieve this function we put a certain driving device such as piezoelectric ceramics in the camera. By controlling the driving device, a set of continuous low resolution(LR) images can be obtained and stored instantaneity, which reflect the randomness of the displacements and the real-time performance of the storage very well. The low resolution image sequences have different redundant information and some particular priori information, thus it is possible to restore super resolution image factually and effectively. The sample method is used to derive the reconstruction principle of super resolution, which analyzes the possible improvement degree of the resolution in theory. The super resolution algorithm based on learning is used to reconstruct single image and the variational Bayesian algorithm is simulated to reconstruct the low resolution images with random displacements, which models the unknown high resolution image, motion parameters and unknown model parameters in one hierarchical Bayesian framework. Utilizing sub-pixel registration method, a super resolution image of the scene can be reconstructed. The results of 16 images reconstruction show that this camera model can increase the image resolution to 2 times, obtaining images with higher resolution in currently available hardware levels.

  8. Lights, Camera, Read! Arizona Reading Program Manual.

    Science.gov (United States)

    Arizona State Dept. of Library, Archives and Public Records, Phoenix.

    This document is the manual for the Arizona Reading Program (ARP) 2003 entitled "Lights, Camera, Read!" This theme spotlights books that were made into movies, and allows readers to appreciate favorite novels and stories that have progressed to the movie screen. The manual consists of eight sections. The Introduction includes welcome letters from…

  9. Face identification in videos from mobile cameras

    NARCIS (Netherlands)

    Mu, Meiru; Spreeuwers, Luuk; Veldhuis, Raymond

    2014-01-01

    It is still challenging to recognize faces reliably in videos from mobile camera, although mature automatic face recognition technology for still images has been available for quite some time. Suppose we want to be alerted when suspects appear in the recording of a police Body-Cam, even a good face

  10. GAMPIX: A new generation of gamma camera

    Science.gov (United States)

    Gmar, M.; Agelou, M.; Carrel, F.; Schoepff, V.

    2011-10-01

    Gamma imaging is a technique of great interest in several fields such as homeland security or decommissioning/dismantling of nuclear facilities in order to localize hot spots of radioactivity. In the nineties, previous works led by CEA LIST resulted in the development of a first generation of gamma camera called CARTOGAM, now commercialized by AREVA CANBERRA. Even if its performances can be adapted to many applications, its weight of 15 kg can be an issue. For several years, CEA LIST has been developing a new generation of gamma camera, called GAMPIX. This system is mainly based on the Medipix2 chip, hybridized to a 1 mm thick CdTe substrate. A coded mask replaces the pinhole collimator in order to increase the sensitivity of the gamma camera. Hence, we obtained a very compact device (global weight less than 1 kg without any shielding), which is easy to handle and to use. In this article, we present the main characteristics of GAMPIX and we expose the first experimental results illustrating the performances of this new generation of gamma camera.

  11. Case on Camera--An Audience Verdict.

    Science.gov (United States)

    Wober, J. M.

    In July 1984, British Channel 4 began televising Case on Camera, a series based on genuine arbitration of civil cases carried out by a retired judge, recorded as it happened, and edited into half hour programs. Because of the Independent Broadcasting Authority's concern for the rights to privacy, a systematic study of public reaction to the series…

  12. Development of a multispectral camera system

    Science.gov (United States)

    Sugiura, Hiroaki; Kuno, Tetsuya; Watanabe, Norihiro; Matoba, Narihiro; Hayashi, Junichiro; Miyake, Yoichi

    2000-05-01

    A highly accurate multispectral camera and the application software have been developed as a practical system to capture digital images of the artworks stored in galleries and museums. Instead of recording color data in the conventional three RGB primary colors, the newly developed camera and the software carry out a pixel-wise estimation of spectral reflectance, the color data specific to the object, to enable the practical multispectral imaging. In order to realize the accurate multispectral imaging, the dynamic range of the camera is set to 14 bits or over and the output bits to 14 bits so as to allow capturing even when the difference in light quantity between the each channel is large. Further, a small-size rotary color filter was simultaneously developed to keep the camera to a practical size. We have developed software capable of selecting the optimum combination of color filters available in the market. Using this software, n types of color filter can be selected from m types of color filter giving a minimum Euclidean distance or minimum color difference in CIELAB color space between actual and estimated spectral reflectance as to 147 types of oil paint samples.

  13. Lightweight Electronic Camera for Research on Clouds

    Science.gov (United States)

    Lawson, Paul

    2006-01-01

    "Micro-CPI" (wherein "CPI" signifies "cloud-particle imager") is the name of a small, lightweight electronic camera that has been proposed for use in research on clouds. It would acquire and digitize high-resolution (3- m-pixel) images of ice particles and water drops at a rate up to 1,000 particles (and/or drops) per second.

  14. Fog camera to visualize ionizing charged particles

    International Nuclear Information System (INIS)

    The human being can not perceive the different types of ionizing radiation, natural or artificial, present in the nature, for what appropriate detection systems have been developed according to the sensibility to certain radiation type and certain energy type. The objective of this work was to build a fog camera to visualize the traces, and to identify the trajectories, produced by charged particles with high energy, coming mainly of the cosmic rays. The origin of the cosmic rays comes from the solar radiation generated by solar eruptions where the protons compose most of this radiation. It also comes, of the galactic radiation which is composed mainly of charged particles and gamma rays that comes from outside of the solar system. These radiation types have energy time millions higher that those detected in the earth surface, being more important as the height on the sea level increases. These particles in their interaction produce secondary particles that are detectable by means of this cameras type. The camera operates by means of a saturated atmosphere of alcohol vapor. In the moment in that a charged particle crosses the cold area of the atmosphere, the medium is ionized and the particle acts like a condensation nucleus of the alcohol vapor, leaving a visible trace of its trajectory. The built camera was very stable, allowing the detection in continuous form and the observation of diverse events. (Author)

  15. FPS camera sync and reset chassis

    International Nuclear Information System (INIS)

    The sync and reset chassis provides all the circuitry required to synchronize an event to be studied, a remote free-running focus projection and scanning (FPS) data-acquisition TV camera, and a video signal recording system. The functions, design, and operation of this chassis are described in detail

  16. Increased Automation in Stereo Camera Calibration Techniques

    Directory of Open Access Journals (Sweden)

    Brandi House

    2006-08-01

    Full Text Available Robotic vision has become a very popular field in recent years due to the numerous promising applications it may enhance. However, errors within the cameras and in their perception of their environment can cause applications in robotics to fail. To help correct these internal and external imperfections, stereo camera calibrations are performed. There are currently many accurate methods of camera calibration available; however, most or all of them are time consuming and labor intensive. This research seeks to automate the most labor intensive aspects of a popular calibration technique developed by Jean-Yves Bouguet. His process requires manual selection of the extreme corners of a checkerboard pattern. The modified process uses embedded LEDs in the checkerboard pattern to act as active fiducials. Images are captured of the checkerboard with the LEDs on and off in rapid succession. The difference of the two images automatically highlights the location of the four extreme corners, and these corner locations take the place of the manual selections. With this modification to the calibration routine, upwards of eighty mouse clicks are eliminated per stereo calibration. Preliminary test results indicate that accuracy is not substantially affected by the modified procedure. Improved automation to camera calibration procedures may finally penetrate the barriers to the use of calibration in practice.

  17. Shadowgraph illumination techniques for framing cameras

    Energy Technology Data Exchange (ETDEWEB)

    Malone, R.M.; Flurer, R.L.; Frogget, B.C. [Bechtel Nevada, Los Alamos, NM (United States). Los Alamos Operations; Sorenson, D.S.; Holmes, V.H.; Obst, A.W. [Los Alamos National Lab., NM (United States)

    1997-06-01

    Many pulse power applications in use at the Pegasus facility at the Los Alamos National Laboratory require specialized imaging techniques. Due to the short event duration times, visible images are recorded by high speed electronic framing cameras. Framing cameras provide the advantages of high speed movies of back light experiments. These high speed framing cameras require bright illumination sources to record images with 10 ns integration times. High power lasers offer sufficient light for back illuminating the target assemblies; however, laser speckle noise lowers the contrast in the image. Laser speckle noise also limits the effective resolution. This discussion focuses on the use of telescopes to collect images 50 feet away. Both light field and dark field illumination techniques are compared. By adding relay lenses between the assembly target and the telescope, a high resolution magnified image can be recorded. For dark field illumination, these relay lenses can be used to separate the object field from the illumination laser. The illumination laser can be made to focus onto the opaque secondary of a Schmidt telescope. Thus, the telescope only collects scattered light from the target assembly. This dark field illumination eliminates the laser speckle noise and allows high resolution images to be recorded. Using the secondary of the telescope to block the illumination laser makes dark field illumination an ideal choice for the framing camera.

  18. Parametrizable cameras for 3D computational steering

    NARCIS (Netherlands)

    Mulder, J.D.; Wijk, J.J. van

    1997-01-01

    We present a method for the definition of multiple views in 3D interfaces for computational steering. The method uses the concept of a point-based parametrizable camera object. This concept enables a user to create and configure multiple views on his custom 3D interface in an intuitive graphical man

  19. New nuclear medicine gamma camera systems

    International Nuclear Information System (INIS)

    The acquisition of the Open E.CAM and DIACAM gamma cameras by Makati Medical Center is expected to enhance the capabilities of its nuclear medicine facilities. When used as an aid to diagnosis, nuclear medicine entails the introduction of a minute amount of radioactive material into the patient; thus, no reaction or side-effect is expected. When it reaches the particular target organ, depending on the radiopharmaceutical, a lesion will appear as a decrease (cold) area or increase (hot) area in the radioactive distribution as recorded byu the gamma cameras. Gamma camera images in slices or SPECT (Single Photon Emission Computer Tomography), increase the sensitivity and accuracy in detecting smaller and deeply seated lesions, which otherwise may not be detected in the regular single planar images. Due to the 'open' design of the equipment, claustrophobic patients will no longer feel enclosed during the procedure. These new gamma cameras yield improved resolution and superb image quality, and the higher photon sensitivity shortens imaging acquisition time. The E.CAM, which is the latest generation gamma camera, is featured by its variable angle dual-head system, the only one available in the Philipines, and the excellent choice for Myocardial Perfusion Imaging (MPI). From the usual 45 minutes, the acquisition time for gated SPECT imaging of the heart has now been remarkably reduced to 12 minutes. 'Gated' infers snap-shots of the heart in selected phases of its contraction and relaxation as triggered by ECG. The DIACAM is installed in a room with access outside the main entrance of the department, intended specially for bed-borne patients. Both systems are equipped with a network of high performance Macintosh ICOND acquisition and processing computers. Added to the hardware is the ICON processing software which allows total simultaneous acquisition and processing capabilities in the same operator's terminal. Video film and color printers are also provided. Together

  20. Tube-in-shell heat exchangers

    International Nuclear Information System (INIS)

    Tube-in-shell heat exchangers normally comprise a bundle of parallel tubes within a shell container, with a fluid arranged to flow through the tubes in heat exchange with a second fluid flowing through the shell. The tubes are usually end supported by the tube plates that separate the two fluids, and in use the tube attachments to the tube plates and the tube plates can be subject to severe stress by thermal shock and frequent inspection and servicing are required. Where the heat exchangers are immersed in a coolant such as liquid Na such inspection is difficult. In the arrangement described a longitudinally extending central tube is provided incorporating axially spaced cylindrical tube plates to which the opposite ends of the tubes are attached. Within this tube there is a tubular baffle that slidably seals against the wall of the tube between the cylindrical tube plates to define two co-axial flow ducts. These ducts are interconnected at the closed end of the tube by the heat exchange tubes and the baffle comprises inner and outer spaced walls with the interspace containing Ar. The baffle is easily removable and can be withdrawn to enable insertion of equipment for inspecting the wall of the tube and tube attachments and to facilitate plugging of defective tubes. Cylindrical tube plates are believed to be superior for carrying pressure loads and resisting the effects of thermal shock. Some protection against thermal shock can be effected by arranging that the secondary heat exchange fluid is on the tube side, and by providing a thermal baffle to prevent direct impingement of hot primary fluid on to the cylindrical tube plates. The inner wall of the tubular baffle may have flexible expansible region. Some nuclear reactor constructions incorporating such an arrangement are described, including liquid metal reactors. (U.K.)

  1. Graphics and control of the guide tube assembly reinforcement manipulators at Sizewell 'A'

    International Nuclear Information System (INIS)

    A method was devised to reinforce the lower lug welds of the Guide Tube Assemblies (GTA's) at Sizewell 'A'. A six degree of freedom manipulator was designed to place a clamp around the lugs and tighten it. The manipulator was fitted with the three fixed cameras but required another surveillance manipulator positioned in an adjacent standpipe to provide additional views. The need to prepare two standpipes limited the rate at which reinforcements could be made. Therefore an articulated two arm camera manipulator, which could be used on the existing manipulator mast was designed and built. The two manipulators were driven from separate desks and were controlled by the same supervisory computer linked to online graphics. The camera arm joints were driven on preplanned routes using a single joystick because of the complex moves and tight spaces involved. A large number of GTA sites have now been reinforced including a dropped GTA which had to be raised to carry out clamping. (Author)

  2. Graphics and control of the guide tube assembly reinforcement manipulators at Sizewll 'A'

    International Nuclear Information System (INIS)

    A method was devised to reinforce the lower lug welds of the Guide Tube Assemblies (GTAs) at Sizewell ''A''. A six degree of freedom manipulator was designed to place a clamp around the lugs and tighten it. The manipulator was fitted with three fixed cameras but required another surveillance manipulator positioned in an adjacent standpipe to provide additional views. The need to prepare two standpipes limited the rate at which reinforcements could be made. Therefore an articulated two arm camera manipulator, which could be used on the existing manipulator mast was designed and built. The two manipulators were driven from separate desks and were controlled by the same supervisory computer linked to on-line graphics. The camera arm joints were driven on preplanned routes using a single joystick because of the complex moves and tight spaces involved. A large number of GTA sites have now been reinforced including a dropped GTA which had to be raised to carry out clamping. (UK)

  3. Photogrammetric Applications of Immersive Video Cameras

    Science.gov (United States)

    Kwiatek, K.; Tokarczyk, R.

    2014-05-01

    The paper investigates immersive videography and its application in close-range photogrammetry. Immersive video involves the capture of a live-action scene that presents a 360° field of view. It is recorded simultaneously by multiple cameras or microlenses, where the principal point of each camera is offset from the rotating axis of the device. This issue causes problems when stitching together individual frames of video separated from particular cameras, however there are ways to overcome it and applying immersive cameras in photogrammetry provides a new potential. The paper presents two applications of immersive video in photogrammetry. At first, the creation of a low-cost mobile mapping system based on Ladybug®3 and GPS device is discussed. The amount of panoramas is much too high for photogrammetric purposes as the base line between spherical panoramas is around 1 metre. More than 92 000 panoramas were recorded in one Polish region of Czarny Dunajec and the measurements from panoramas enable the user to measure the area of outdoors (adverting structures) and billboards. A new law is being created in order to limit the number of illegal advertising structures in the Polish landscape and immersive video recorded in a short period of time is a candidate for economical and flexible measurements off-site. The second approach is a generation of 3d video-based reconstructions of heritage sites based on immersive video (structure from immersive video). A mobile camera mounted on a tripod dolly was used to record the interior scene and immersive video, separated into thousands of still panoramas, was converted from video into 3d objects using Agisoft Photoscan Professional. The findings from these experiments demonstrated that immersive photogrammetry seems to be a flexible and prompt method of 3d modelling and provides promising features for mobile mapping systems.

  4. X-ray imaging using digital cameras

    Science.gov (United States)

    Winch, Nicola M.; Edgar, Andrew

    2012-03-01

    The possibility of using the combination of a computed radiography (storage phosphor) cassette and a semiprofessional grade digital camera for medical or dental radiography is investigated. We compare the performance of (i) a Canon 5D Mk II single lens reflex camera with f1.4 lens and full-frame CMOS array sensor and (ii) a cooled CCD-based camera with a 1/3 frame sensor and the same lens system. Both systems are tested with 240 x 180 mm cassettes which are based on either powdered europium-doped barium fluoride bromide or needle structure europium-doped cesium bromide. The modulation transfer function for both systems has been determined and falls to a value of 0.2 at around 2 lp/mm, and is limited by light scattering of the emitted light from the storage phosphor rather than the optics or sensor pixelation. The modulation transfer function for the CsBr:Eu2+ plate is bimodal, with a high frequency wing which is attributed to the light-guiding behaviour of the needle structure. The detective quantum efficiency has been determined using a radioisotope source and is comparatively low at 0.017 for the CMOS camera and 0.006 for the CCD camera, attributed to the poor light harvesting by the lens. The primary advantages of the method are portability, robustness, digital imaging and low cost; the limitations are the low detective quantum efficiency and hence signal-to-noise ratio for medical doses, and restricted range of plate sizes. Representative images taken with medical doses are shown and illustrate the potential use for portable basic radiography.

  5. Measuring rainfall with low-cost cameras

    Science.gov (United States)

    Allamano, Paola; Cavagnero, Paolo; Croci, Alberto; Laio, Francesco

    2016-04-01

    In Allamano et al. (2015), we propose to retrieve quantitative measures of rainfall intensity by relying on the acquisition and analysis of images captured from professional cameras (SmartRAIN technique in the following). SmartRAIN is based on the fundamentals of camera optics and exploits the intensity changes due to drop passages in a picture. The main steps of the method include: i) drop detection, ii) blur effect removal, iii) estimation of drop velocities, iv) drop positioning in the control volume, and v) rain rate estimation. The method has been applied to real rain events with errors of the order of ±20%. This work aims to bridge the gap between the need of acquiring images via professional cameras and the possibility of exporting the technique to low-cost webcams. We apply the image processing algorithm to frames registered with low-cost cameras both in the lab (i.e., controlled rain intensity) and field conditions. The resulting images are characterized by lower resolutions and significant distortions with respect to professional camera pictures, and are acquired with fixed aperture and a rolling shutter. All these hardware limitations indeed exert relevant effects on the readability of the resulting images, and may affect the quality of the rainfall estimate. We demonstrate that a proper knowledge of the image acquisition hardware allows one to fully explain the artefacts and distortions due to the hardware. We demonstrate that, by correcting these effects before applying the image processing algorithm, quantitative rain intensity measures are obtainable with a good accuracy also with low-cost modules.

  6. Photo multiplier tubes candidates for the Cherenkov telescope array project

    International Nuclear Information System (INIS)

    Photo Multiplier Tubes (PMTs) are the most wide spread detectors for fast low-level light signals. They are commonly used as standard light sensors for camera systems in imaging atmospheric Cherenkov telescopes. Years ago, an improvement program for the PMT candidates for the Cherenkov Telescope Array (CTA) project was initialized with the companies Hamamatsu Photonics K.K. (Japan) and Electron Tubes Enterprises Ltd. (England). CTA is the next generation of imaging atmospheric Cherenkov telescopes for high energy gamma ray astrophysics. Therefore, we need PMTs with outstanding good parameters concerning quantum efficiency, pulse width, after-pulsing and transit time spread. The currently available ''super-bialkali'' PMTs show a peak Quantum Efficiency of 40% and have an enhanced collection efficiency of up to 95-98% for wavelengths≥400 nm. The pulse width averages around 3ns at a gain of 40000. Also, the after-pulsing for a set threshold level of ≥4 photo electrons is reduced down to 0,02%. We report on the measurement results of PMT R-12292-100 from Hamamatsu as the final version and the intermediate version PMT D569/3SA from Electron Tubes Enterprises as candidate PMTs for the CTA project.

  7. Analysis of RED ONE Digital Cinema Camera and RED Workflow

    OpenAIRE

    Foroughi Mobarakeh, Taraneh

    2009-01-01

    RED Digital Cinema is a rather new company that has developed a camera that has shaken the world of the film industry, the RED One camera. RED One is a digital cinema camera with the characteristics of a 35mm film camera. With a custom made 12 megapixel CMOS sensor it offers images with a filmic look that cannot be achieved with many other digital cinema cameras. With a new camera comes a new set of media files to work with, which brings new software applications supporting them. RED Digital ...

  8. Control of the movement of a ROV camera; Controle de posicionamento da camera de um ROV

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Alexandre S. de; Dutra, Max Suell [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE); Reis, Ney Robinson S. dos [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas; Santos, Auderi V. dos [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil)

    2004-07-01

    The ROV's (Remotely Operated Vehicles) are used for installation and maintenance of underwater exploration systems in the oil industry. These systems are operated in distant areas thus being of essential importance the use of a cameras for the visualization of the work area. The synchronization necessary in the accomplishment of the tasks when operating the manipulator and the movement of the camera for the operator is a complex task. For the accomplishment of this synchronization is presented in this work the analysis of the interconnection of the systems. The concatenation of the systems is made through the interconnection of the electric signals of the proportional valves of the actuators of the manipulator with the signals of the proportional valves of the actuators of the camera. With this interconnection the approach accompaniment of the movement of the manipulator for the camera, keeping the object of the visualization of the field of vision of the operator is obtained. (author)

  9. Osmotic regulation of seamless tube growth.

    Science.gov (United States)

    Schottenfeld-Roames, Jodi; Ghabrial, Amin S

    2013-02-01

    Most organs are composed of tubes of differing cellular architectures, including intracellular 'seamless' tubes. Two studies examining the morphogenesis of the seamless tubes formed by the excretory canal cell in Caenorhabditis elegans reveal a previously unappreciated role for osmoregulation of tubulogenesis: hyperosmotic shock recruits canalicular vesicles to the lumenal membrane to promote seamless tube growth. PMID:23377027

  10. Osmotic regulation of seamless tube growth

    OpenAIRE

    Schottenfeld-Roames, Jodi; Ghabrial, Amin S.

    2013-01-01

    Most organs are composed of tubes of differing cellular architectures, including intracellular, “seamless” tubes. Two studies examining the morphogenesis of the C. elegans excretory canal cell seamless tubes reveal a previously unappreciated role for osmoregulation of tubulogenesis: hyperosmotic shock recruits canalicular vesicles to the lumenal membrane to promote seamless tube growth.

  11. Combustion engineering: steam generator tube bending practices

    International Nuclear Information System (INIS)

    The tube bending practices and procedures employed by Combustion Engineering (CE), when bending inconel tubing is discussed. CE has two different type tube geometries in the steam generator. The innermost tubes are 1800 U-bends while the majority of the tubes have two (2) 900 bends with a straight leg between these 900 bends. The first 18 rows have U-bends (2 1/2'' to 11''R), while the remaining tubes have the double 900 geometry. All double 900 bends are bent to a 10'' radius. This presentation will address the following important parameters necessary to achieve a high quality bent tube: fabrication requirements at the tube mill; tube bending equipment; tube bending operation; inspection and final preparation; and packaging

  12. Current practices for ultrasonic and radiographic examination of tubes, tube plates and tube-plate welds of tube bundles in heat exchangers. Chapter 3

    International Nuclear Information System (INIS)

    The chapter describes the ultrasonic and radiographic inspection procedures that are applied to heat exchanger tube bundles. The inspection process starts with the ultrasonic examination of the tubes and tube plates during manufacture, followed by radiography of the tube-to-tube-plate welds during fabrication of the tube bundle. Ultrasonic methods are explained for welds which are amenable to this type of inspection. For the in-service inspection of tube bundles the chapter relates the authors' experiences on the ultrasonic inspection of tubes and tube plates in the Prototype Fast Breeder Reactor at Dounreay. At the end of the chapter some comments are made about future ultrasonic and radiographic developments for tube bundles. (author)

  13. National Guidelines for Digital Camera Systems Certification

    Science.gov (United States)

    Yaron, Yaron; Keinan, Eran; Benhamu, Moshe; Regev, Ronen; Zalmanzon, Garry

    2016-06-01

    Digital camera systems are a key component in the production of reliable, geometrically accurate, high-resolution geospatial products. These systems have replaced film imaging in photogrammetric data capturing. Today, we see a proliferation of imaging sensors collecting photographs in different ground resolutions, spectral bands, swath sizes, radiometric characteristics, accuracies and carried on different mobile platforms. In addition, these imaging sensors are combined with navigational tools (such as GPS and IMU), active sensors such as laser scanning and powerful processing tools to obtain high quality geospatial products. The quality (accuracy, completeness, consistency, etc.) of these geospatial products is based on the use of calibrated, high-quality digital camera systems. The new survey regulations of the state of Israel specify the quality requirements for each geospatial product including: maps at different scales and for different purposes, elevation models, orthophotographs, three-dimensional models at different levels of details (LOD) and more. In addition, the regulations require that digital camera systems used for mapping purposes should be certified using a rigorous mapping systems certification and validation process which is specified in the Director General Instructions. The Director General Instructions for digital camera systems certification specify a two-step process as follows: 1. Theoretical analysis of system components that includes: study of the accuracy of each component and an integrative error propagation evaluation, examination of the radiometric and spectral response curves for the imaging sensors, the calibration requirements, and the working procedures. 2. Empirical study of the digital mapping system that examines a typical project (product scale, flight height, number and configuration of ground control points and process). The study examine all the aspects of the final product including; its accuracy, the product pixels size

  14. World's fastest and most sensitive astronomical camera

    Science.gov (United States)

    2009-06-01

    The next generation of instruments for ground-based telescopes took a leap forward with the development of a new ultra-fast camera that can take 1500 finely exposed images per second even when observing extremely faint objects. The first 240x240 pixel images with the world's fastest high precision faint light camera were obtained through a collaborative effort between ESO and three French laboratories from the French Centre National de la Recherche Scientifique/Institut National des Sciences de l'Univers (CNRS/INSU). Cameras such as this are key components of the next generation of adaptive optics instruments of Europe's ground-based astronomy flagship facility, the ESO Very Large Telescope (VLT). ESO PR Photo 22a/09 The CCD220 detector ESO PR Photo 22b/09 The OCam camera ESO PR Video 22a/09 OCam images "The performance of this breakthrough camera is without an equivalent anywhere in the world. The camera will enable great leaps forward in many areas of the study of the Universe," says Norbert Hubin, head of the Adaptive Optics department at ESO. OCam will be part of the second-generation VLT instrument SPHERE. To be installed in 2011, SPHERE will take images of giant exoplanets orbiting nearby stars. A fast camera such as this is needed as an essential component for the modern adaptive optics instruments used on the largest ground-based telescopes. Telescopes on the ground suffer from the blurring effect induced by atmospheric turbulence. This turbulence causes the stars to twinkle in a way that delights poets, but frustrates astronomers, since it blurs the finest details of the images. Adaptive optics techniques overcome this major drawback, so that ground-based telescopes can produce images that are as sharp as if taken from space. Adaptive optics is based on real-time corrections computed from images obtained by a special camera working at very high speeds. Nowadays, this means many hundreds of times each second. The new generation instruments require these

  15. Tube feeding patients with dementia.

    Science.gov (United States)

    Chernoff, Ronni

    2006-04-01

    As the population ages, the incidence of dementia increases. All types of dementia, whether they are reversible or irreversible, lead to loss of intellectual function and judgment, memory impairment, and personality changes. The skills to feed oneself, use eating utensils, and consume items recognized as food, thereby maintaining nutrition status, may be lost as dementia progresses. Reports indicate that nutrition status may be maintained when patients are hand fed, but this is labor intensive and therefore expensive. Feeding via a percutaneous endoscopic gastrostomy tube is often chosen as an acceptable alternative. Research indicates that there is little benefit in this population when aggressive nutrition support is instituted. Providing tube feeding to patients with dementia does not necessarily extend life, increase weight, or reduce the incidence of pressure ulcers or aspiration. There are many legal and ethical issues involved in the decision to place a feeding tube in demented patients. The primary issue in patients with dementia may be autonomy and the right of an individual to decide whether or not a tube should be placed at all. Legally, there is clear precedent that the courts see the insertion of a feeding tube as extraordinary care that the patient has the right to refuse. However, much of case law is derived from cases of patients who were in a persistent vegetative state. Advance directives help to determine what the patient would want for himself. Considering all the options before the patient can no longer make decisions is the most desirable course. PMID:16556924

  16. Physics of magnetic flux tubes

    CERN Document Server

    Ryutova, Margarita

    2015-01-01

    This book is the first account of the physics of magnetic flux tubes from their fundamental properties to collective phenomena in an ensembles of flux tubes. The physics of magnetic flux tubes is absolutely vital for understanding fundamental physical processes in the solar atmosphere shaped and governed by magnetic fields. High-resolution and high cadence observations from recent space and  ground-based instruments taken simultaneously at different heights and temperatures not only show the ubiquity of filamentary structure formation but also allow to study how various events are interconnected by system of magnetic flux tubes. The book covers both theory and observations. Theoretical models presented in analytical and phenomenological forms are tailored for practical applications. These are welded with state-of-the-art observations from early decisive ones to the most recent data that open a new phase-space for exploring the Sun and sun-like stars. Concept of magnetic flux tubes is central to various magn...

  17. Analysis of autofrettaged metal tubes

    International Nuclear Information System (INIS)

    Thick-walled cylinders are widely used as compressor cylinders, pump cylinders, high pressure tubing, process reactors and vessels, nuclear reactors, isostatic vessels and gun barrels. In practice, cylinders are generally subjected to sudden and frequently drastic pressure fluctuations, such as the pressure generated in a gun barrel upon the firing of the weapon, pressure reversals in pump cylinders or in process reactors employing high-pressure piping, necessitating enhanced strength of such cylinders. A process for enhancing the strength of thick-walled cylinders has been in service, and is referred to as 'autofrettage'. It extends the service life of the cylinder. The autofrettage is achieved by increasing elastic strength of a cylinder with various methods such as hydraulic pressurization, mechanical swaging, or by utilizing the pressure of a powder gas. This research work deals with the hydraulic and mechanical autofrettage of metal tubes with the objective to attain enhanced strength. Five metal tubes are taken randomly for analysis purpose. The experimental data for five metal tubes is obtained to analyze the behavior of different parameters used during, before, and after autofrettage process. For this research, two-stage autofrettage is taken into consideration. The modeling of the metal tube is carried out in WildFire-ProEngineering, and for analysis purpose, finite element software ANSYS7 and COSMOS are used. The graphical analysis of swage autofrettage is carried out using MATLAB7. The results are validated using available experimental and numerical data. (author)

  18. Depth estimation and camera calibration of a focused plenoptic camera for visual odometry

    Science.gov (United States)

    Zeller, Niclas; Quint, Franz; Stilla, Uwe

    2016-08-01

    This paper presents new and improved methods of depth estimation and camera calibration for visual odometry with a focused plenoptic camera. For depth estimation we adapt an algorithm previously used in structure-from-motion approaches to work with images of a focused plenoptic camera. In the raw image of a plenoptic camera, scene patches are recorded in several micro-images under slightly different angles. This leads to a multi-view stereo-problem. To reduce the complexity, we divide this into multiple binocular stereo problems. For each pixel with sufficient gradient we estimate a virtual (uncalibrated) depth based on local intensity error minimization. The estimated depth is characterized by the variance of the estimate and is subsequently updated with the estimates from other micro-images. Updating is performed in a Kalman-like fashion. The result of depth estimation in a single image of the plenoptic camera is a probabilistic depth map, where each depth pixel consists of an estimated virtual depth and a corresponding variance. Since the resulting image of the plenoptic camera contains two plains: the optical image and the depth map, camera calibration is divided into two separate sub-problems. The optical path is calibrated based on a traditional calibration method. For calibrating the depth map we introduce two novel model based methods, which define the relation of the virtual depth, which has been estimated based on the light-field image, and the metric object distance. These two methods are compared to a well known curve fitting approach. Both model based methods show significant advantages compared to the curve fitting method. For visual odometry we fuse the probabilistic depth map gained from one shot of the plenoptic camera with the depth data gained by finding stereo correspondences between subsequent synthesized intensity images of the plenoptic camera. These images can be synthesized totally focused and thus finding stereo correspondences is enhanced

  19. Enhancement of document images from cameras

    Science.gov (United States)

    Taylor, Michael J.; Dance, Christopher R.

    1998-04-01

    As digital cameras become cheaper and more powerful, driven by the consumer digital photography market, we anticipate significant value in extending their utility as a general office peripheral by adding a paper scanning capability. The main technical challenges in realizing this new scanning interface are insufficient resolution, blur and lighting variations. We have developed an efficient technique for the recovery of text from digital camera images, which simultaneously treats these three problems, unlike other local thresholding algorithms which do not cope with blur and resolution enhancement. The technique first performs deblurring by deconvolution, and then resolution enhancement by linear interpolation. We compare the performance of a threshold derived from the local mean and variance of all pixel values within a neighborhood with a threshold derived from the local mean of just those pixels with high gradient. We assess performance using OCR error scores.

  20. Camera Raw解读(1)

    Institute of Scientific and Technical Information of China (English)

    张恣宽

    2010-01-01

    Camera Raw是Adobe公司研发的,它是Photoshop软件中的一个RAW格式文件的转换插件。虽然一些大的相机生产商,如尼康、佳能公司各自都有自主开发的RAW格式转换软件,性能也很好,但Adobe以其Photoshop软件开发的优势,将RAW格式转换融合在Photoshop软件中,使RAW格式转换优势更加突出,功能十分强大。特别是PhotoshopCS4中的Camera Raw5,功能更加强大。

  1. SLAM using camera and IMU sensors.

    Energy Technology Data Exchange (ETDEWEB)

    Rothganger, Fredrick H.; Muguira, Maritza M.

    2007-01-01

    Visual simultaneous localization and mapping (VSLAM) is the problem of using video input to reconstruct the 3D world and the path of the camera in an 'on-line' manner. Since the data is processed in real time, one does not have access to all of the data at once. (Contrast this with structure from motion (SFM), which is usually formulated as an 'off-line' process on all the data seen, and is not time dependent.) A VSLAM solution is useful for mobile robot navigation or as an assistant for humans exploring an unknown environment. This report documents the design and implementation of a VSLAM system that consists of a small inertial measurement unit (IMU) and camera. The approach is based on a modified Extended Kalman Filter. This research was performed under a Laboratory Directed Research and Development (LDRD) effort.

  2. First polarised light with the NIKA camera

    CERN Document Server

    Ritacco, A; Adane, A; Ade, P; André, P; Beelen, A; Belier, B; Benoît, A; Bideaud, A; Billot, N; Bourrion, O; Calvo, M; Catalano, A; Coiffard, G; Comis, B; D'Addabbo, A; Désert, F -X; Doyle, S; Goupy, J; Kramer, C; Leclercq, S; Macías-Pérez, J F; Martino, J; Mauskopf, P; Maury, A; Mayet, F; Monfardini, A; Pajot, F; Pascale, E; Perotto, L; Pisano, G; Ponthieu, N; Rebolo-Iglesias, M; Réveret, V; Rodriguez, L; Savini, G; Schuster, K; Sievers, A; Thum, C; Triqueneaux, S; Tucker, C; Zylka, R

    2015-01-01

    NIKA is a dual-band camera operating with 315 frequency multiplexed LEKIDs cooled at 100 mK. NIKA is designed to observe the sky in intensity and polarisation at 150 and 260 GHz from the IRAM 30-m telescope. It is a test-bench for the final NIKA2 camera. The incoming linear polarisation is modulated at four times the mechanical rotation frequency by a warm rotating multi-layer Half Wave Plate. Then, the signal is analysed by a wire grid and finally absorbed by the LEKIDs. The small time constant (< 1ms ) of the LEKID detectors combined with the modulation of the HWP enables the quasi-simultaneous measurement of the three Stokes parameters I, Q, U, representing linear polarisation. In this pa- per we present results of recent observational campaigns demonstrating the good performance of NIKA in detecting polarisation at mm wavelength.

  3. Cervical SPECT Camera for Parathyroid Imaging

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2012-08-31

    Primary hyperparathyroidism characterized by one or more enlarged parathyroid glands has become one of the most common endocrine diseases in the world affecting about 1 per 1000 in the United States. Standard treatment is highly invasive exploratory neck surgery called Parathyroidectomy. The surgery has a notable mortality rate because of the close proximity to vital structures. The move to minimally invasive parathyroidectomy is hampered by the lack of high resolution pre-surgical imaging techniques that can accurately localize the parathyroid with respect to surrounding structures. We propose to develop a dedicated ultra-high resolution (~ 1 mm) and high sensitivity (10x conventional camera) cervical scintigraphic imaging device. It will be based on a multiple pinhole-camera SPECT system comprising a novel solid state CZT detector that offers the required performance. The overall system will be configured to fit around the neck and comfortably image a patient.

  4. Non-iterative method for camera calibration.

    Science.gov (United States)

    Hong, Yuzhen; Ren, Guoqiang; Liu, Enhai

    2015-09-01

    This paper presents a new and effective technique to calibrate a camera without nonlinear iteration optimization. To this end, the centre-of-distortion is accurately estimated firstly. Based on the radial distortion division model, point correspondences between model plane and its image were used to compute the homography and distortion coefficients afterwards. Once the homographies of calibration images are obtained, the camera intrinsic parameters are solved analytically. All the solution techniques applied in this calibration process are non-iterative that do not need any initial guess, with no risk of local minima. Moreover, estimation of the distortion coefficients and intrinsic parameters could be successfully decoupled, yielding the more stable and reliable result. Both simulative and real experiments have been carried out to show that the proposed method is reliable and effective. Without nonlinear iteration optimization, the proposed method is computationally efficient and can be applied to real-time online calibration. PMID:26368490

  5. Advanced EVA Suit Camera System Development Project

    Science.gov (United States)

    Mock, Kyla

    2016-01-01

    The National Aeronautics and Space Administration (NASA) at the Johnson Space Center (JSC) is developing a new extra-vehicular activity (EVA) suit known as the Advanced EVA Z2 Suit. All of the improvements to the EVA Suit provide the opportunity to update the technology of the video imagery. My summer internship project involved improving the video streaming capabilities of the cameras that will be used on the Z2 Suit for data acquisition. To accomplish this, I familiarized myself with the architecture of the camera that is currently being tested to be able to make improvements on the design. Because there is a lot of benefit to saving space, power, and weight on the EVA suit, my job was to use Altium Design to start designing a much smaller and simplified interface board for the camera's microprocessor and external components. This involved checking datasheets of various components and checking signal connections to ensure that this architecture could be used for both the Z2 suit and potentially other future projects. The Orion spacecraft is a specific project that may benefit from this condensed camera interface design. The camera's physical placement on the suit also needed to be determined and tested so that image resolution can be maximized. Many of the options of the camera placement may be tested along with other future suit testing. There are multiple teams that work on different parts of the suit, so the camera's placement could directly affect their research or design. For this reason, a big part of my project was initiating contact with other branches and setting up multiple meetings to learn more about the pros and cons of the potential camera placements we are analyzing. Collaboration with the multiple teams working on the Advanced EVA Z2 Suit is absolutely necessary and these comparisons will be used as further progress is made for the overall suit design. This prototype will not be finished in time for the scheduled Z2 Suit testing, so my time was

  6. AUTOMATIC THEFT SECURITY SYSTEM (SMART SURVEILLANCE CAMERA

    Directory of Open Access Journals (Sweden)

    Veena G.S

    2013-12-01

    Full Text Available The proposed work aims to create a smart application camera, with the intention of eliminating the need for a human presence to detect any unwanted sinister activities, such as theft in this case. Spread among the campus, are certain valuable biometric identification systems at arbitrary locations. The application monitosr these systems (hereafter referred to as “object” using our smart camera system based on an OpenCV platform. By using OpenCV Haar Training, employing the Viola-Jones algorithm implementation in OpenCV, we teach the machine to identify the object in environmental conditions. An added feature of face recognition is based on Principal Component Analysis (PCA to generate Eigen Faces and the test images are verified by using distance based algorithm against the eigenfaces, like Euclidean distance algorithm or Mahalanobis Algorithm. If the object is misplaced, or an unauthorized user is in the extreme vicinity of the object, an alarm signal is raised.

  7. Blind identification of cellular phone cameras

    Science.gov (United States)

    Çeliktutan, Oya; Avcibas, Ismail; Sankur, Bülent

    2007-02-01

    In this paper, we focus on blind source cell-phone identification problem. It is known various artifacts in the image processing pipeline, such as pixel defects or unevenness of the responses in the CCD sensor, black current noise, proprietary interpolation algorithms involved in color filter array [CFA] leave telltale footprints. These artifacts, although often imperceptible, are statistically stable and can be considered as a signature of the camera type or even of the individual device. For this purpose, we explore a set of forensic features, such as binary similarity measures, image quality measures and higher order wavelet statistics in conjunction SVM classifier to identify the originating cell-phone type. We provide identification results among 9 different brand cell-phone cameras. In addition to our initial results, we applied a set of geometrical operations to original images in order to investigate how much our proposed method is robust under these manipulations.

  8. Toward the characterization of infrared cameras

    Science.gov (United States)

    Tzannes, Alexis P.; Mooney, Jonathan M.

    1993-11-01

    This work focuses on characterizing the performance of various staring PtSi infrared cameras, based on estimating their spatial frequency response. Applying a modified knife edge technique, we arrive at an estimate of the edge spread function (ESF), which is used to obtain a profile through the center of the two-dimensional Modulation Transfer Function (MTF). The MTF of various cameras in the horizontal and vertical direction is measured and compared to the ideal system MTF. The influence of charge transfer efficiency (CTE) on the knife edge measurement and resulting MTF is also modeled and discussed. An estimate of the CTE can actually be obtained from the shape of the ESF in the horizontal direction. The effect of pixel fill factor on the estimated MTF in the horizontal and vertical directions is compared and explained.

  9. A detector for submillimeter gamma cameras

    International Nuclear Information System (INIS)

    Anger cameras (SPECT etc.) presently used in nuclear medicine employ as active detector NaI crystals, obtaining intrinsic spatial resolutions ≥3 mm. Arrays made of optically isolated single crystal elements of YAP:Ce, having sub-millimeter aperture size, read out by position sensitive photomultipliers, allow to build active detectors to employ in SPECT systems, with intrinsic spatial resolution below the millimeter, and with time resolution of the order of tens of nanoseconds. In this paper preliminary results of measurements carried out on different kinds of YAP:Ce arrays are reported. The measurements have been performed aiming to optimize the geometrical and physical parameters of the crystals in order to accomplish a SPEM (single photon emission mammography) camera detector. (orig.)

  10. Declarative camera control for automatic cinematography

    Energy Technology Data Exchange (ETDEWEB)

    Christianson, D.B.; Anderson, S.E.; Li-wei He [Univ. of Washington, Seattle, WA (United States)] [and others

    1996-12-31

    Animations generated by interactive 3D computer graphics applications are typically portrayed either from a particular character`s point of view or from a small set of strategically-placed viewpoints. By ignoring camera placement, such applications fail to realize important storytelling capabilities that have been explored by cinematographers for many years. In this paper, we describe several of the principles of cinematography and show how they can be formalized into a declarative language, called the Declarative Camera Control Language (DCCL). We describe the application of DCCL within the context of a simple interactive video game and argue that DCCL represents cinematic knowledge at the same level of abstraction as expert directors by encoding 16 idioms from a film textbook. These idioms produce compelling animations, as demonstrated on the accompanying videotape.

  11. Calibrating a depth camera but ignoring it for SLAM

    OpenAIRE

    Castro, Daniel Herrera

    2014-01-01

    Recent improvements in resolution, accuracy, and cost have made depth cameras a very popular alternative for 3D reconstruction and navigation. Thus, accurate depth camera calibration a very relevant aspect of many 3D pipelines. We explore what are the limits of a practical depth camera calibration algorithm: how to accurately calibrate a noisy depth camera without a precise calibration object and without using brightness or depth discontinuities. We present an algorithm that uses an external ...

  12. Dynamic Vision Sensor Camera Based Bare Hand Gesture Recognition

    OpenAIRE

    kashmera ashish khedkkar safaya; Rekha Lathi

    2012-01-01

    This Paper proposes a method to recognize bare hand gestures using dynamic vision sensor (DVS) camera. DVS camera only responds asynchronously to pixels that have temporal changes in intensity which different from conventional camera. This paper attempts to recognize three different hand gestures rock, paper and scissors and using those hand gestures design mouse free interface.   Keywords: Dynamic vision sensor camera, Hand gesture recognition

  13. Dynamic Vision Sensor Camera Based Bare Hand Gesture Recognition

    Directory of Open Access Journals (Sweden)

    kashmera ashish khedkkar safaya

    2012-05-01

    Full Text Available This Paper proposes a method to recognize bare hand gestures using dynamic vision sensor (DVS camera. DVS camera only responds asynchronously to pixels that have temporal changes in intensity which different from conventional camera. This paper attempts to recognize three different hand gestures rock, paper and scissors and using those hand gestures design mouse free interface.   Keywords: Dynamic vision sensor camera, Hand gesture recognition

  14. Situational Awareness from a Low-Cost Camera System

    Science.gov (United States)

    Freudinger, Lawrence C.; Ward, David; Lesage, John

    2010-01-01

    A method gathers scene information from a low-cost camera system. Existing surveillance systems using sufficient cameras for continuous coverage of a large field necessarily generate enormous amounts of raw data. Digitizing and channeling that data to a central computer and processing it in real time is difficult when using low-cost, commercially available components. A newly developed system is located on a combined power and data wire to form a string-of-lights camera system. Each camera is accessible through this network interface using standard TCP/IP networking protocols. The cameras more closely resemble cell-phone cameras than traditional security camera systems. Processing capabilities are built directly onto the camera backplane, which helps maintain a low cost. The low power requirements of each camera allow the creation of a single imaging system comprising over 100 cameras. Each camera has built-in processing capabilities to detect events and cooperatively share this information with neighboring cameras. The location of the event is reported to the host computer in Cartesian coordinates computed from data correlation across multiple cameras. In this way, events in the field of view can present low-bandwidth information to the host rather than high-bandwidth bitmap data constantly being generated by the cameras. This approach offers greater flexibility than conventional systems, without compromising performance through using many small, low-cost cameras with overlapping fields of view. This means significant increased viewing without ignoring surveillance areas, which can occur when pan, tilt, and zoom cameras look away. Additionally, due to the sharing of a single cable for power and data, the installation costs are lower. The technology is targeted toward 3D scene extraction and automatic target tracking for military and commercial applications. Security systems and environmental/ vehicular monitoring systems are also potential applications.

  15. Accurate calibration of stereo cameras for machine vision

    OpenAIRE

    Li, Liangfu; Feng, Zuren; Feng, Yuanjing

    2004-01-01

    Camera calibration is an important task for machine vision, whose goal is to obtain the internal and external parameters of each camera. With these parameters, the 3D positions of a scene point, which is identified and matched in two stereo images, can be determined by the triangulation theory. This paper presents a new accurate estimation of CCD camera parameters for machine vision. We present a fast technique to estimate the camera center with special arrangement of calibration target and t...

  16. Euclidean Reconstruction and Affine Camera Calibration Using Controlled Robot Motions

    OpenAIRE

    Horaud, Radu; Christy, Stéphane; Mohr, Roger

    1997-01-01

    We are addressing the problem of Euclidean reconstruction with an uncalibrated affine camera and the calibration of this camera. We investigate constraints under which the Euclidean shape and motion problem becomes linear. The theoretical study described in this paper leads us to impose some practical constraints that the camera is mounted onto a robot arm and that the robot is executing controlled motions whose parameters are known. The affine camera model considered here is just an approxim...

  17. Indoor PTZ Camera Calibration with Concurrent PT Axes

    OpenAIRE

    Sanchez-Riera, Jordi; Salvador, Jordi; Casas, Josep R.

    2009-01-01

    The introduction of active (pan-tilt-zoom or PTZ) cameras in Smart Rooms in addition to fixed static cameras allows to improve resolution in volumetric reconstruction, adding the capability to track smaller objects with higher precision in actual 3D world coordinates. To accomplish this goal, precise camera calibration data should be available for any pan, tilt, and zoom settings of each PTZ camera. The PTZ calibration method proposed in this paper introduces a novel solution to the problem o...

  18. Sparse Camera Network for Visual Surveillance -- A Comprehensive Survey

    OpenAIRE

    Song, Mingli; Tao, Dachent; Maybank, Stephen J.

    2013-01-01

    Technological advances in sensor manufacture, communication, and computing are stimulating the development of new applications that are transforming traditional vision systems into pervasive intelligent camera networks. The analysis of visual cues in multi-camera networks enables a wide range of applications, from smart home and office automation to large area surveillance and traffic surveillance. While dense camera networks - in which most cameras have large overlapping fields of view - are...

  19. Super-Resolution in Plenoptic Cameras Using FPGAs

    OpenAIRE

    Joel Pérez; Eduardo Magdaleno; Fernando Pérez; Manuel Rodríguez; David Hernández; Jaime Corrales

    2014-01-01

    Plenoptic cameras are a new type of sensor that extend the possibilities of current commercial cameras allowing 3D refocusing or the capture of 3D depths. One of the limitations of plenoptic cameras is their limited spatial resolution. In this paper we describe a fast, specialized hardware implementation of a super-resolution algorithm for plenoptic cameras. The algorithm has been designed for field programmable graphic array (FPGA) devices using VHDL (very high speed integrated circuit (VHSI...

  20. A multi-camera framework for interactive video games

    OpenAIRE

    Cuypers, Tom; VANAKEN, Cedric; FRANCKEN, Yannick; Van Reeth, Frank; Bekaert, Philippe

    2008-01-01

    We present a framework that allows for a straightforward development of multi-camera controlled interactive video games. Compared to traditional gaming input devices, cameras provide players with many degrees of freedom and a natural kind of interaction. The use of cameras can even obsolete the need for special clothing or other tracking devices. This partly accounted for the success of the currently popular single-camera video games like the Sony Eyetoy. However, these games are fairly limit...