WorldWideScience

Sample records for camera based positron

  1. 21 CFR 892.1110 - Positron camera.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Positron camera. 892.1110 Section 892.1110 Food... DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1110 Positron camera. (a) Identification. A positron camera is a device intended to image the distribution of positron-emitting radionuclides in the...

  2. Gamma camera based Positron Emission Tomography: a study of the viability on quantification

    International Nuclear Information System (INIS)

    Positron Emission Tomography (PET) is a Nuclear Medicine imaging modality for diagnostic purposes. Pharmaceuticals labeled with positron emitters are used and images which represent the in vivo biochemical process within tissues can be obtained. The positron/electron annihilation photons are detected in coincidence and this information is used for object reconstruction. Presently, there are two types of systems available for this imaging modality: the dedicated systems and those based on gamma camera technology. In this work, we utilized PET/SPECT systems, which also allows for the traditional Nuclear Medicine studies based on single photon emitters. There are inherent difficulties which affect quantification of activity and other indices. They are related to the Poisson nature of radioactivity, to radiation interactions with patient body and detector, noise due to statistical nature of these interactions and to all the detection processes, as well as the patient acquisition protocols. Corrections are described in the literature and not all of them are implemented by the manufacturers: scatter, attenuation, random, decay, dead time, spatial resolution, and others related to the properties of each equipment. The goal of this work was to assess these methods adopted by two manufacturers, as well as the influence of some technical characteristics of PET/SPECT systems on the estimation of SUV. Data from a set of phantoms were collected in 3D mode by one camera and 2D, by the other. We concluded that quantification is viable in PET/SPECT systems, including the estimation of SUVs. This is only possible if, apart from the above mentioned corrections, the camera is well tuned and coefficients for sensitivity normalization and partial volume corrections are applied. We also verified that the shapes of the sources used for obtaining these factors play a role on the final results and should be delt with carefully in clinical quantification. Finally, the choice of the region

  3. A positron camera for industrial application

    International Nuclear Information System (INIS)

    A positron camera for application to flow tracing and measurement in mechanical subjects is described. It is based on two 300 x 600 mm2 hybrid multiwire detectors; the cathodes are in the form of lead strips planted onto printed-circuit board, and delay lines are used to determine the location of photon interactions. Measurements of the positron detection efficiency (30 Hz μCi-1 for a centred unshielded source), the maximum data logging rate (3 kHz) and the spatial resolving power (point source response = 5.7 mm fwhm) are presented and discussed, and results from initial demonstration experiments are shown. (orig.)

  4. The positron camera in nuclear medicine

    International Nuclear Information System (INIS)

    Positron emission tomography is making headway in health care delivery. With improvements in instrumentation and physiologic tracers and with the development of hospital-based compact cyclotrons, 'physiopathologic tomography' is around the corner in nuclear medicine. This paper is a brief review of positron emission tomography: instrumentation and applications

  5. Gamma camera based Positron Emission Tomography: a study of the viability on quantification; Tomografia por emissao de positrons com sistemas PET/SPECT: um estudo da viabilidade de quantifizacao

    Energy Technology Data Exchange (ETDEWEB)

    Pozzo, Lorena

    2005-07-01

    Positron Emission Tomography (PET) is a Nuclear Medicine imaging modality for diagnostic purposes. Pharmaceuticals labeled with positron emitters are used and images which represent the in vivo biochemical process within tissues can be obtained. The positron/electron annihilation photons are detected in coincidence and this information is used for object reconstruction. Presently, there are two types of systems available for this imaging modality: the dedicated systems and those based on gamma camera technology. In this work, we utilized PET/SPECT systems, which also allows for the traditional Nuclear Medicine studies based on single photon emitters. There are inherent difficulties which affect quantification of activity and other indices. They are related to the Poisson nature of radioactivity, to radiation interactions with patient body and detector, noise due to statistical nature of these interactions and to all the detection processes, as well as the patient acquisition protocols. Corrections are described in the literature and not all of them are implemented by the manufacturers: scatter, attenuation, random, decay, dead time, spatial resolution, and others related to the properties of each equipment. The goal of this work was to assess these methods adopted by two manufacturers, as well as the influence of some technical characteristics of PET/SPECT systems on the estimation of SUV. Data from a set of phantoms were collected in 3D mode by one camera and 2D, by the other. We concluded that quantification is viable in PET/SPECT systems, including the estimation of SUVs. This is only possible if, apart from the above mentioned corrections, the camera is well tuned and coefficients for sensitivity normalization and partial volume corrections are applied. We also verified that the shapes of the sources used for obtaining these factors play a role on the final results and should be delt with carefully in clinical quantification. Finally, the choice of the region

  6. Users' guide to the positron camera DDP516 computer system

    International Nuclear Information System (INIS)

    This publication is a guide to the operation, use and software for a DDP516 computer system provided by the Data Handling Group primarily for the development of a Positron Camera. The various sections of the publication fall roughly into three parts. (1) Sections forming the Operators Guide cover the basic operation of the machine, system utilities and back-up procedures. Copies of these sections are kept in a 'Nyrex' folder with the computer. (2) Sections referring to the software written particularly for Positron Camera Data Collection describe the system in outline and lead to details of file formats and program source files. (3) The remainder of the guide, describes General-Purpose Software. Much of this has been written over some years by various members of the Data Handling Group, and is available for use in other applications besides the positron camera. (UK)

  7. Limited-angle imaging in positron cameras: theory and practice

    International Nuclear Information System (INIS)

    The principles of operation of planar positron camera systems made up of multiwire proportional chambers as detectors and electromagnetic delay lines for coordinate readout are discussed. Gamma converters are coupled to the wire chambers to increase detection efficiency and improve spatial resolution. The conversion efficiencies of these converters are calculated and the results compare favorably to the experimentally measured values

  8. Toward the design of a positron volume imaging camera

    International Nuclear Information System (INIS)

    Three different computing algorithms for performing positron emission image reconstruction have been compared using Monte Carlo phantom simulations. The work was motivated by the recent announcement of the commercial availability of a positron volume imaging camera, the Siemens-CTI 953 B/31 which has improved axial (slice) resolution and retractable interslice septa. The simulations demonstrate the importance of developing a complete three-dimensional reconstruction algorithm to deal with the increased scatter fraction that result when the interslice septa are removed from a ring tomograph. We are developing such a algorithm

  9. The electronics system for the LBNL positron emission mammography (PEM) camera

    CERN Document Server

    Moses, W W; Baker, K; Jones, W; Lenox, M; Ho, M H; Weng, M

    2001-01-01

    Describes the electronics for a high-performance positron emission mammography (PEM) camera. It is based on the electronics for a human brain positron emission tomography (PET) camera (the Siemens/CTI HRRT), modified to use a detector module that incorporates a photodiode (PD) array. An application-specified integrated circuit (ASIC) services the photodetector (PD) array, amplifying its signal and identifying the crystal of interaction. Another ASIC services the photomultiplier tube (PMT), measuring its output and providing a timing signal. Field-programmable gate arrays (FPGAs) and lookup RAMs are used to apply crystal-by-crystal correction factors and measure the energy deposit and the interaction depth (based on the PD/PMT ratio). Additional FPGAs provide event multiplexing, derandomization, coincidence detection, and real-time rebinning. Embedded PC/104 microprocessors provide communication, real-time control, and configure the system. Extensive use of FPGAs make the overall design extremely flexible, all...

  10. Performance characteristics of the novel PETRRA positron camera

    CERN Document Server

    Ott, R J; Erlandsson, K; Reader, A; Duxbury, D; Bateman, J; Stephenson, R; Spill, E

    2002-01-01

    The PETRRA positron camera consists of two 60 cmx40 cm annihilation photon detectors mounted on a rotating gantry. Each detector contains large BaF sub 2 scintillators interfaced to large area multiwire proportional chambers filled with a photo-sensitive vapour (tetrakis-(dimethylamino)-ethylene). The spatial resolution of the camera has been measured as 6.5+-1.0 mm FWHM throughout the sensitive field-of-view (FoV), the timing resolution is between 7 and 10 ns FWHM and the detection efficiency for annihilation photons is approx 30% per detector. The count-rates obtained, from a 20 cm diameter by 11 cm long water filled phantom containing 90 MBq of sup 1 sup 8 F, were approx 1.25x10 sup 6 singles and approx 1.1x10 sup 5 cps raw coincidences, limited only by the read-out system dead-time of approx 4 mu s. The count-rate performance, sensitivity and large FoV make the camera ideal for whole-body imaging in oncology.

  11. Development of the LBNL positron emission mammography camera

    International Nuclear Information System (INIS)

    We present the construction status of the LBNL Positron Emission Mammography (PEM) camera, which utilizes a PET detector module with depth of interaction measurement consisting of 64 LSO crystals (3x3x30 mm3) coupled on one end to a single photomultiplier tube (PMT) and on the opposite end to a 64 pixel array of silicon photodiodes (PDs). The PMT provides an accurate timing pulse, the PDs identify the crystal of interaction, the sum provides a total energy signal, and the PD/(PD+PMT) ratio determines the depth of interaction. We have completed construction of all 42 PEM detector modules. All data acquisition electronics have been completed, fully tested and loaded onto the gantry. We have demonstrated that all functions of the custom IC work using the production rigid-flex boards and data acquisition system. Preliminary detector module characterization and coincidence data have been taken using the production system, including initial images

  12. The Rutherford Appleton Laboratory's Mark I multiwire proportional counter positron camera

    International Nuclear Information System (INIS)

    A small (30 cmx30 cm) model of a proposed large aperture positron camera has been developed at Rutherford Appleton Laboratory. Based on multiwire proportional counter technology, it uses lead foil cathodes which function simultaneously as converters for the 511 keV gamma rays and readout electrodes for a delay line readout system. The detectors have been built up into a portable imaging system complete with a dedicated computer for data taking, processing and display. This has permitted evaluation of this type of positron imaging system in the clinical environment using both cyclotron generated isotopes (15O, 11C, 18F, 124I) and available isotopic generator systems (82Rb, 68Ga). AT RAL we provided a complete hardware system and sufficient software to permit our hospital based colleagues to generate useful images with the minimum of effort. A complete description of the system is given with performance figures and some of the images obtained in three hospital visits are presented. Some detailed studies of the imaging performance of the positron camera are reported which have bearing on the design of future, improved systems. (orig.)

  13. The Rutherford Appleton Laboratory's Mark I Multiwire Proportional Counter positron camera

    International Nuclear Information System (INIS)

    A small model of a proposed large aperture positron camera has been developed at Rutherford Appleton Laboratory. Based on Multiwire Proportional Counter technology it uses lead foil cathodes which function simultaneously as converters for the 511 keV gamma rays and readout electrodes for a delay line readout system. The detectors have been built up into a portable imaging system complete with a dedicated computer for data taking, processing and display. A complete hardware system and sufficient software was provided to permit hospital based colleagues to generate useful images easily. A complete description of the system is given with performance figures and some of the images obtained are presented. (author)

  14. The review of myocardial positron emission computed tomography and positron imaging by gamma camera

    Energy Technology Data Exchange (ETDEWEB)

    Ohtake, Tohru [Tokyo Univ. (Japan). Faculty of Medicine

    1998-04-01

    To measure myocardial blood flow, Nitrogen-13 ammonia, Oxygen-15 water, Rubidium-82 and et al. are used. Each has merit and demerit. By measuring myocardial coronary flow reserve, the decrease of flow reserve during dipyridamole in patients with hypercholesterolemia or diabetes mellitus without significant coronary stenosis was observed. The possibility of early detection of atherosclerosis was showed. As to myocardial metabolism, glucose metabolism is measured by Fluorine-18 fluorodeoxyglucose (FDG), and it is considered as useful for the evaluation of myocardial viability. We are using FDG to evaluate insulin resistance during insulin clamp in patients with diabetes mellitus by measuring glucose utilization rate of myocardium and skeletal muscle. FFA metabolism has been measured by {sup 11}C-palmitate, but absolute quantification has not been performed. Recently the method for absolute quantification was reported, and new radiopharmaceutical {sup 18}F-FTHA was reported. Oxygen metabolism has been estimated by {sup 11}C-acetate. Myocardial viability, cardiac efficiency was evaluated by oxygen metabolism. As to receptor or sympathetic nerve end, cardiac insufficiency or cardiac transplantation was evaluated. Imaging of positron emitting radiopharmaceutical by gamma camera has been performed. Collimator method is clinically useful for cardiac imaging of viability study. (author). 54 refs.

  15. In vivo imaging of the human thyroid with the Rutherford positron camera using 124I

    International Nuclear Information System (INIS)

    The Rutherford Multiwire Proportional Counter (MWPC) positron camera has been applied to the imaging of the human thyroid. 3.7 MBq of cyclotron produced 124I was given orally to seven patients presenting at a thyroid clinic. Positron emission tomography (PET) scans were produced between one and thirty-three hours after ingestion of isotope. All pictures correlated well with clinical findings, ultrasonic examinations and standard sup(99m)Tc-pertechnetate thyroid emission scans. The PET scans gave much better definition than the pertechnetate scans but did not provide information on ''inactive'' thyroid areas as revealed by ultrasonic examination. Spatial resolution was of the order of 7 mm (full width half maximum) in the best case, and satisfactory images were obtained with as little as 0.074 MBq of positron emission in the whole gland. These results show great promise for the further application of this positron camera for in vivo human imaging. (author)

  16. Positron camera with high-density avalanche chambers

    International Nuclear Information System (INIS)

    The results of an extensive investigation of the properties of high-density avalanche chambers (HIDAC) are presented. This study has been performed in order to optimize the layout of HIDAC detectors, since they are intended to be applied as position sensitive detectors for annihilation radiation in a positron emission tomograph being under construction. (author)

  17. The electronic readout system used on the Mk II R.A.L. positron camera

    International Nuclear Information System (INIS)

    The paper describes the operating principles of the electronic readout system as used on the Mk II R.A.L. positron camera. The individual modules are described in detail, and the specifications and the performance figures for the individual units, and of the complete system are given. Some early results obtained with the full system are presented. (author)

  18. The electronics system for the LBNL positron emission tomography (PEM) camera

    International Nuclear Information System (INIS)

    We describe the electronics for a high performance Positron Emission Mammography (PEM) camera. It is based on the electronics for a human brain PET camera (the Siemens/CTI HRRT), modified to use a detector module that incorporates a photodiode (PD) array. An ASIC services the PD array, amplifying its signal and identifying the crystal of interaction. Another ASIC services the photomultiplier tube (PMT), measuring its output and providing a timing signal. Field programmable gate arrays (FPGAs) and lookup RAMs are used to apply crystal by crystal correction factors and measure the energy deposit and the interaction depth (based on the PD/PMT ratio). Additional FPGAs provide event multiplexing, derandomization, coincidence detection, and real-time rebinning. Embedded PC/104 microprocessors provide communication, real-time control, and configure the system. Extensive use of FPGAs makes the overall design extremely flexible, allowing many different functions (or design modifications) to be realized without hardware changes. Incorporation of extensive onboard diagnostics, implemented in the FPGAs, is required by the very high level of integration and density achieved by this system

  19. Segment Based Camera Calibration

    Institute of Scientific and Technical Information of China (English)

    马颂德; 魏国庆; 等

    1993-01-01

    The basic idea of calibrating a camera system in previous approaches is to determine camera parmeters by using a set of known 3D points as calibration reference.In this paper,we present a method of camera calibration in whih camera parameters are determined by a set of 3D lines.A set of constraints is derived on camea parameters in terms of perspective line mapping.Form these constraints,the same perspective transformation matrix as that for point mapping can be computed linearly.The minimum number of calibration lines is 6.This result generalizes that of Liu,Huang and Faugeras[12] for camera location determination in which at least 8 line correspondences are required for linear computation of camera location.Since line segments in an image can be located easily and more accurately than points,the use of lines as calibration reference tends to ease the computation in inage preprocessing and to improve calibration accuracy.Experimental results on the calibration along with stereo reconstruction are reported.

  20. A new gamma camera for positron emission tomography

    International Nuclear Information System (INIS)

    This thesis describes the detection of annihiliation radiation employing a new principle: radiation is absorbed in a barium fluoride (BaF 2) crystal and the resulting scintillation light is detected in a multiwire proportional chamber filled with a photsensitive vapour. The application of such a detector for PET is new; the use of a high density fast scintillator in combination with a low pressure wire chamber offers a good detection efficiency and permits high count rates because of the small dead time. In this work, the physical background of the above detection mechanism is explored and the performance parameters of a gamma camera using this new principle, are determined. Furthermore, a comprehensive research on the scintillation mechanism and physical characteristics of the increasingly popular BaF 2 scintillator is presented. Also, a new class of ultraviolet (UV) scintillation materials, consisting of rare earth doped fluorides, is introduced. (author). 211 refs.; 30 figs.; 17 tabs

  1. Clinical Imaging Characteristics of the Positron Emission Mammography Camera: PEM Flex Solo II

    OpenAIRE

    MacDonald, Lawrence; Edwards, John; Lewellen, Thomas; Haseley, David; Rogers, James; Kinahan, Paul

    2009-01-01

    We evaluated a commercial positron emission mammography (PEM) camera, the PEM Flex Solo II. This system comprises two 6 × 16.4 cm detectors that scan together covering up to a 24 × 16.4 cm field of view (FOV). There are no specific standards for testing this detector configuration. We performed several tests important to breast imaging, and we propose tests that should be included in standardized testing of PEM systems.

  2. Gamma camera based FDG PET in oncology

    International Nuclear Information System (INIS)

    Positron Emission Tomography(PET) was introduced as a research tool in the 1970s and it took about 20 years before PET became an useful clinical imaging modality. In the USA, insurance coverage for PET procedures in the 1990s was the turning point, I believe, for this progress. Initially PET was used in neurology but recently more than 80% of PET procedures are in oncological applications. I firmly believe, in the 21st century, one can not manage cancer patients properly without PET and PET is very important medical imaging modality in basic and clinical sciences. PET is grouped into 2 categories; conventional (c) and gamma camera based (CB) PET. CBPET is more readily available utilizing dual-head gamma cameras and commercially available FDG to many medical centers at low cost to patients. In fact there are more CBPET in operation than cPET in the USA. CBPET is inferior to cPET in its performance but clinical studies in oncology is feasible without expensive infrastructures such as staffing, rooms and equipments. At Ajou university Hospital, CBPET was installed in late 1997 for the first time in Korea as well as in Asia and the system has been used successfully and effectively in oncological applications. Our was the fourth PET operation in Korea and I believe this may have been instrumental for other institutions got interested in clinical PET. The following is a brief description of our clinical experience of FDG CBPET in oncology

  3. Three-head positron coincidence detection (γ PET) by PRISM-IRIX gamma camera system

    International Nuclear Information System (INIS)

    The Shimadzu PRISM-IRIX is a three-headed variable-angle gamma camera system that also ensures the highest performances in single photon emission computed tomography (SPECT). It provides not only single photon imaging, but also positron coincidence imaging, by using two of the three heads. We have successfully improved the hardware and software of this system, so that the system fully utilizes all of the three heads in order to perform more reliable positron coincidence imaging. Also, we utilized the method of computer simulation to find out the head configuration that ensures the highest performances. Our investigations have shown that the triangular head configuration ensures the highest performances and stability of results in examinations of small organs where the rotation angle is set to 15 cm and that the C-mode head configuration gives the highest stability in examinations of larger organs where the rotation angle is set to 30 cm. We have further improved the electronic circuitry of the head to establish a system called AZTec (adaptive zone technology system). This system ensures even higher coincidence efficiency and higher performances in general. (author)

  4. A CF4 based positron trap

    Science.gov (United States)

    Marjanović, Srdjan; Banković, Ana; Cassidy, David; Cooper, Ben; Deller, Adam; Dujko, Saša; Petrović, Zoran Lj

    2016-11-01

    All buffer-gas positron traps in use today rely on N2 as the primary trapping gas due to its conveniently placed {{{a}}}1{{\\Pi }} electronic excitation cross-section. The energy loss per excitation in this process is 8.5 eV, which is sufficient to capture positrons from low-energy moderated beams into a Penning-trap configuration of electric and magnetic fields. However, the energy range over which this cross-section is accessible overlaps with that for positronium (Ps) formation, resulting in inevitable losses and setting an intrinsic upper limit on the overall trapping efficiency of ∼25%. In this paper we present a numerical simulation of a device that uses CF4 as the primary trapping gas, exploiting vibrational excitation as the main inelastic capture process. The threshold for such excitations is far below that for Ps formation and hence, in principle, a CF4 trap can be highly efficient; our simulations indicate that it may be possible to achieve trapping efficiencies as high as 90%. We also report the results of an attempt to re-purpose an existing two-stage N2-based buffer-gas positron trap. Operating the device using CF4 proved unsuccessful, which we attribute to back scattering and expansion of the positron beam following interactions with the CF4 gas, and an unfavourably broad longitudinal beam energy spread arising from the magnetic field differential between the source and trap regions. The observed performance was broadly consistent with subsequent simulations that included parameters specific to the test system, and we outline the modifications that would be required to realise efficient positron trapping with CF4. However, additional losses appear to be present which require further investigation through both simulation and experiment.

  5. Positron and positronium annihilation in silica-based thin films studied by a pulsed positron beam

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, R. E-mail: r-suzuki@aist.go.jp; Ohdaira, T.; Kobayashi, Y.; Ito, K.; Shioya, Y.; Ishimaru, T

    2003-11-01

    Positron and positronium annihilation in silica-based thin films has been investigated by means of measurement techniques with a monoenergetic pulsed positron beam. The age-momentum correlation study revealed that positron annihilation in thermally grown SiO{sub 2} is basically the same as that in bulk amorphous SiO{sub 2} while o-Ps in the PECVD grown SiCOH film predominantly annihilate with electrons of C and H at the microvoid surfaces. We also discuss time-dependent three-gamma annihilation in porous low-k films by two-dimensional positron annihilation lifetime spectroscopy.

  6. Movement-based Interaction in Camera Spaces

    DEFF Research Database (Denmark)

    Eriksson, Eva; Riisgaard Hansen, Thomas; Lykke-Olesen, Andreas

    2006-01-01

    In this paper we present three concepts that address movement-based interaction using camera tracking. Based on our work with several movement-based projects we present four selected applications, and use these applications to leverage our discussion, and to describe our three main concepts space......, relations, and feedback. We see these as central for describing and analysing movement-based systems using camera tracking and we show how these three concepts can be used to analyse other camera tracking applications....

  7. Research of Camera Calibration Based on DSP

    OpenAIRE

    Zheng Zhang; Yukun Wan; Lixin Cai

    2013-01-01

    To take advantage of the high-efficiency and stability of DSP in the data processing and the functions of OpenCV library, this study brought forward a scheme that camera calibration in DSP embedded system calibration. An arithmetic of camera calibration based on OpenCV is designed by analyzing the camera model and lens distortion. The transplantation of EMCV to DSP is completed and the arithmetic of camera calibration is migrated and optimized based on the CCS development environment and the ...

  8. Fast 3D-EM reconstruction using Planograms for stationary planar positron emission mammography camera.

    Science.gov (United States)

    Motta, A; Guerra, A Del; Belcari, N; Moehrs, S; Panetta, D; Righi, S; Valentini, D

    2005-12-01

    At the University of Pisa we are building a PEM prototype, the YAP-PEM camera, consisting of two opposite 6 x 6 x 3 cm3 detector heads of 30 x 30 YAP:Ce finger crystals, 2 x 2 x 30 mm3 each. The camera will be equipped with breast compressors. The acquisition will be stationary. Compared with a whole body PET scanner, a planar Positron Emission Mammography (PEM) camera allows a better, easier and more flexible positioning around the breast in the vicinity of the tumor: this increases the sensitivity and solid angle coverage, and reduces cost. To avoid software rejection of data during the reconstruction, resulting in a reduced sensitivity, we adopted a 3D-EM reconstruction which uses all of the collected Lines Of Response (LORs). This skips the PSF distortion given by data rebinning procedures and/or Fourier methods. The traditional 3D-EM reconstruction requires several times the computation of the LOR-voxel correlation matrix, or probability matrix {p(ij)}; therefore is highly time-consuming. We use the sparse and symmetry properties of the matrix {p(ij)} to perform fast 3D-EM reconstruction. Geometrically, a 3D grid of cubic voxels (FOV) is crossed by several divergent 3D line sets (LORs). The symmetries occur when tracing different LORs produces the same p(ij) value. Parallel LORs of different sets cross the FOV in the same way, and the repetition of p(ij) values depends on the ratio between the tube and voxel sizes. By optimizing this ratio, the occurrence of symmetries is increased. We identify a nucleus of symmetry of LORs: for each set of symmetrical LORs we choose just one LOR to be put in the nucleus, while the others lie outside. All of the possible p(ij) values are obtainable by tracking only the LORs of this nucleus. The coordinates of the voxels of all of the other LORs are given by means of simple translation rules. Before making the reconstruction, we trace the LORs of the nucleus to find the intersecting voxels, whose p(ij) values are computed and

  9. Research of Camera Calibration Based on DSP

    Directory of Open Access Journals (Sweden)

    Zheng Zhang

    2013-09-01

    Full Text Available To take advantage of the high-efficiency and stability of DSP in the data processing and the functions of OpenCV library, this study brought forward a scheme that camera calibration in DSP embedded system calibration. An arithmetic of camera calibration based on OpenCV is designed by analyzing the camera model and lens distortion. The transplantation of EMCV to DSP is completed and the arithmetic of camera calibration is migrated and optimized based on the CCS development environment and the DSP/BIOS system. On the premise of realizing calibration function, this arithmetic improves the efficiency of program execution and the precision of calibration and lays the foundation for further research of the visual location based on DSP embedded system.

  10. Undulator-based production of polarized positrons

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, G. [Tel-Aviv Univ. (Israel); Barley, J. [Cornell Univ., Ithaca, NY (United States); Batygin, Y. [SLAC, Menlo Park, CA (US)] (and others)

    2009-05-15

    Full exploitation of the physics potential of a future International Linear Collider will require the use of polarized electron and positron beams. Experiment E166 at the Stanford Linear Accelerator Center (SLAC) has demonstrated a scheme in which an electron beam passes through a helical undulator to generate photons (whose first-harmonic spectrum extended to 7.9 MeV) with circular polarization, which are then converted in a thin target to generate longitudinally polarized positrons and electrons. The experiment was carried out with a one-meter-long, 400-period, pulsed helical undulator in the Final Focus Test Beam (FFTB) operated at 46.6 GeV. Measurements of the positron polarization have been performed at five positron energies from 4.5 to 7.5 MeV. In addition, the electron polarization has been determined at 6.7MeV, and the effect of operating the undulator with a ferrofluid was also investigated. To compare the measurements with expectations, detailed simulations were made with an upgraded version of GEANT4 that includes the dominant polarization-dependent interactions of electrons, positrons, and photons with matter. The measurements agree with calculations, corresponding to 80% polarization for positrons near 6 MeV and 90% for electrons near 7 MeV. (orig.)

  11. Positron Energy Levels in Cd-Based Semiconductors

    Institute of Scientific and Technical Information of China (English)

    B.Abbar; S.Mé(c)abih; S.Amari; N.Benosman; B.Bouhafs

    2013-01-01

    Using the full potential linearized augmented plane wave FP-LAPW method within local density approximation LDA,we have studied positron diffusion and surface emission in Cd-based semiconductors.This requires the calculation of electron and positron band structures.In the absence of experimental and theoretical data for CdX (X=S,Se,Te) we have treated the Si,which has been studied by several authors,as a test case.Predictive results on positron effective masses,deformation potentials,positron work functions,diffusion constants and positron mobilities axe presented for CdX (X=S,Se,Te).Our calculated data for Si axe compared with experimental and recent theoretical results.

  12. First platinum moderated positron beam based on neutron capture

    CERN Document Server

    Hugenschmidt, C; Repper, R; Schreckenbach, K; Sperr, P; Triftshaeuser, W

    2002-01-01

    A positron beam based on absorption of high energy prompt gamma-rays from thermal neutron capture in sup 1 sup 1 sup 3 Cd was installed at a neutron guide of the high flux reactor at the ILL in Grenoble. Measurements were performed for various source geometries, dependent on converter mass, moderator surface and extraction voltages. The results lead to an optimised design of the in-pile positron source which will be implemented at the Munich research reactor FRM-II. The positron source consists of platinum foils acting as gamma-e sup + e sup - -converter and positron moderator. Due to the negative positron work function moderation in heated platinum leads to emission of monoenergetic positrons. The positron work function of polycrystalline platinum was determined to 1.95(5) eV. After acceleration to several keV by four electrical lenses the beam was magnetically guided in a solenoid field of 7.5 mT leading to a NaI-detector in order to detect the 511 keV gamma-radiation of the annihilating positrons. The posi...

  13. Van de Graaff based positron source production

    Science.gov (United States)

    Lund, Kasey Roy

    The anti-matter counterpart to the electron, the positron, can be used for a myriad of different scientific research projects to include materials research, energy storage, and deep space flight propulsion. Currently there is a demand for large numbers of positrons to aid in these mentioned research projects. There are different methods of producing and harvesting positrons but all require radioactive sources or large facilities. Positron beams produced by relatively small accelerators are attractive because they are easily shut down, and small accelerators are readily available. A 4MV Van de Graaff accelerator was used to induce the nuclear reaction 12C(d,n)13N in order to produce an intense beam of positrons. 13N is an isotope of nitrogen that decays with a 10 minute half life into 13C, a positron, and an electron neutrino. This radioactive gas is frozen onto a cryogenic freezer where it is then channeled to form an antimatter beam. The beam is then guided using axial magnetic fields into a superconducting magnet with a field strength up to 7 Tesla where it will be stored in a newly designed Micro-Penning-Malmberg trap. Several source geometries have been experimented on and found that a maximum antimatter beam with a positron flux of greater than 0.55x10 6 e+s-1 was achieved. This beam was produced using a solid rare gas moderator composed of krypton. Due to geometric restrictions on this set up, only 0.1-1.0% of the antimatter was being frozen to the desired locations. Simulations and preliminary experiments suggest that a new geometry, currently under testing, will produce a beam of 107 e+s-1 or more.

  14. Camera Based Navigation System with Augmented Reality

    Directory of Open Access Journals (Sweden)

    M. Marcu

    2012-06-01

    Full Text Available Nowadays smart mobile devices have enough processing power, memory, storage and always connected wireless communication bandwidth that makes them available for any type of application. Augmented reality (AR proposes a new type of applications that tries to enhance the real world by superimposing or combining virtual objects or computer generated information with it. In this paper we present a camera based navigation system with augmented reality integration. The proposed system aims to the following: the user points the camera of the smartphone towards a point of interest, like a building or any other place, and the application searches for relevant information about that specific place and superimposes the data over the video feed on the display. When the user moves the camera away, changing its orientation, the data changes as well, in real-time, with the proper information about the place that is now in the camera view.

  15. Methods and applications of positron-based medical imaging

    Science.gov (United States)

    Herzog, H.

    2007-02-01

    Positron emission tomography (PET) is a diagnostic imaging method to examine metabolic functions and their disorders. Dedicated ring systems of scintillation detectors measure the 511 keV γ-radiation produced in the course of the positron emission from radiolabelled metabolically active molecules. A great number of radiopharmaceuticals labelled with 11C, 13N, 15O, or 18F positron emitters have been applied both for research and clinical purposes in neurology, cardiology and oncology. The recent success of PET with rapidly increasing installations is mainly based on the use of [ 18F]fluorodeoxyglucose (FDG) in oncology where it is most useful to localize primary tumours and their metastases.

  16. Undulator-Based Production of Polarized Positrons

    CERN Document Server

    Alexander, Gideon; Batygin, Yuri; Berridge, Steven; Bharadwaj, Vinod; Bower, Gary; Bugg, William; Decker, Franz-Josef; Dollan, Ralph; Efremenko, Yuri; Floettmann, Klaus; Gharibyan, Vahagn; Hast, Carsten; Iverson, Richard; Kolanoski, Hermann; Kovermann, Jan W; Laihem, Karim; Lohse, Thomas; McDonald, Kirk T; Mikhailichenko, Alexander A; Moortgat-Pick, Gudrid; Pahl, Philipp; Pitthan, Rainer; Poeschl, Roman; Reinherz-Aronis, Erez; Riemann, Sabine; Schaelicke, Andreas; Schueler, Klaus-Peter; Schweizer, Thomas; Scott, Duncan; Sheppard, John C; Stahl, Achim; Szalata, Zenon; Walz, Dieter R; Weidemann, Achim

    2009-01-01

    Full exploitation of the physics potential of a future International Linear Collider will require the use of polarized electron and positron beams. Experiment E166 at the Stanford Linear Accelerator Center (SLAC) has demonstrated a scheme in which an electron beam passes through a helical undulator to generate photons (whose first-harmonic spectrum extended to 7.9MeV) with circular polarization, which are then converted in a thin target to generate longitudinally polarized positrons and electrons. The experiment was carried out with a one-meter-long, 400-period, pulsed helical undulator in the Final Focus Test Beam (FFTB) operated at 46.6GeV. Measurements of the positron polarization have been performed at five positron energies from 4.5 to 7.5MeV. In addition, the electron polarization has been determined at 6.7MeV, and the effect of operating the undulator with a ferrofluid was also investigated. To compare the measurements with expectations, detailed simulations were made with an upgraded version of Geant4...

  17. Status of the Linac based positron source at Saclay

    CERN Document Server

    Rey, J -M; Debu, P; Dzitko, H; Hardy, P; Liszkay, L; Lotrus, P; Muranaka, T; Noel, C; Perez, P; Pierret, O; Ruiz, N; Sacquin, Y

    2013-01-01

    Low energy positron beams are of major interest for fundamental science and materials science. IRFU has developed and built a slow positron source based on a compact, low energy (4.3 MeV) electron linac. The linac-based source will provide positrons for a magnetic storage trap and represents the first step of the GBAR experiment (Gravitational Behavior of Antimatter in Rest) recently approved by CERN for an installation in the Antiproton Decelerator hall. The installation built in Saclay will be described with its main characteristics. The ultimate target of the GBAR experiment will be briefly presented as well as the foreseen development of an industrial positron source dedicated for materials science laboratories.

  18. Positron annihilation spectroscopy applied to silicon-based materials

    CERN Document Server

    Taylor, J W

    2000-01-01

    deposition on silicon substrates has been examined. The systematic correlations observed between the nitrogen content of the films and both the fitted Doppler parameters and the positron diffusion lengths are discussed in detail. Profiling measurements of silicon nitride films deposited on silicon substrates and subsequently implanted with silicon ions at a range of fluences were also performed. For higher implantation doses, damage was seen to extend beyond the film layers and into the silicon substrates. Subsequent annealing of two of the samples was seen to have a significant influence on the nature of the films. Positron annihilation spectroscopy, in conjunction with a variable-energy positron beam, has been employed to probe non-destructively the surface and near-surface regions of a selection of technologically important silicon-based samples. By measuring the Doppler broadening of the 511 keV annihilation lineshape, information on the positrons' microenvironment prior to annihilation may be obtained. T...

  19. Contribution of the positron camera to studies of regional lung structure and function

    International Nuclear Information System (INIS)

    Positron emission tomography is a major technological advance in the characterisation of structure-function relationships within and between regions in normal and abnormal lungs (Hughes et al. 1985). The measurements are noninvasive and relatively exact since the geometric conditions are precisely defined. Regional expansion, flow (ventilation, perfusion), oxygen concentration (from dV/dtA/dQ/dt) and glucose metabolism can be measured in absolute terms per cubic centimetre of thorax or per gram of extravascular lung. Examples of structure-function relationships in normal subjects, emphysema, bronchitis and sarcoidosis are briefly presented. (orig.)

  20. Production And Characterization Of Tungsten-Based Positron Moderators

    International Nuclear Information System (INIS)

    Experiments of interest in Atomic Physics require production of well-defined low-energy positron beams through a moderation process of high-energy positrons, which can be produced by either the use of a radioactive source or by accelerator based pair production process. Tungsten is one of the most commonly used moderator materials because of its reasonable efficiency, high work function and relatively low cost. In this work we present different methods to produce tungsten-based candidate moderators in a variety of shapes. We also present results from characterizing these candidate moderators by ion beam analysis and microscopy techniques.

  1. Rank-based camera spectral sensitivity estimation.

    Science.gov (United States)

    Finlayson, Graham; Darrodi, Maryam Mohammadzadeh; Mackiewicz, Michal

    2016-04-01

    In order to accurately predict a digital camera response to spectral stimuli, the spectral sensitivity functions of its sensor need to be known. These functions can be determined by direct measurement in the lab-a difficult and lengthy procedure-or through simple statistical inference. Statistical inference methods are based on the observation that when a camera responds linearly to spectral stimuli, the device spectral sensitivities are linearly related to the camera rgb response values, and so can be found through regression. However, for rendered images, such as the JPEG images taken by a mobile phone, this assumption of linearity is violated. Even small departures from linearity can negatively impact the accuracy of the recovered spectral sensitivities, when a regression method is used. In our work, we develop a novel camera spectral sensitivity estimation technique that can recover the linear device spectral sensitivities from linear images and the effective linear sensitivities from rendered images. According to our method, the rank order of a pair of responses imposes a constraint on the shape of the underlying spectral sensitivity curve (of the sensor). Technically, each rank-pair splits the space where the underlying sensor might lie in two parts (a feasible region and an infeasible region). By intersecting the feasible regions from all the ranked-pairs, we can find a feasible region of sensor space. Experiments demonstrate that using rank orders delivers equal estimation to the prior art. However, the Rank-based method delivers a step-change in estimation performance when the data is not linear and, for the first time, allows for the estimation of the effective sensitivities of devices that may not even have "raw mode." Experiments validate our method. PMID:27140768

  2. Rank-based camera spectral sensitivity estimation.

    Science.gov (United States)

    Finlayson, Graham; Darrodi, Maryam Mohammadzadeh; Mackiewicz, Michal

    2016-04-01

    In order to accurately predict a digital camera response to spectral stimuli, the spectral sensitivity functions of its sensor need to be known. These functions can be determined by direct measurement in the lab-a difficult and lengthy procedure-or through simple statistical inference. Statistical inference methods are based on the observation that when a camera responds linearly to spectral stimuli, the device spectral sensitivities are linearly related to the camera rgb response values, and so can be found through regression. However, for rendered images, such as the JPEG images taken by a mobile phone, this assumption of linearity is violated. Even small departures from linearity can negatively impact the accuracy of the recovered spectral sensitivities, when a regression method is used. In our work, we develop a novel camera spectral sensitivity estimation technique that can recover the linear device spectral sensitivities from linear images and the effective linear sensitivities from rendered images. According to our method, the rank order of a pair of responses imposes a constraint on the shape of the underlying spectral sensitivity curve (of the sensor). Technically, each rank-pair splits the space where the underlying sensor might lie in two parts (a feasible region and an infeasible region). By intersecting the feasible regions from all the ranked-pairs, we can find a feasible region of sensor space. Experiments demonstrate that using rank orders delivers equal estimation to the prior art. However, the Rank-based method delivers a step-change in estimation performance when the data is not linear and, for the first time, allows for the estimation of the effective sensitivities of devices that may not even have "raw mode." Experiments validate our method.

  3. First Test Of A New High Resolution Positron Camera With Four Area Detectors

    Science.gov (United States)

    van Laethem, E.; Kuijk, M.; Deconinck, Frank; van Miert, M.; Defrise, Michel; Townsend, D.; Wensveen, M.

    1989-10-01

    A PET camera consisting of two pairs of parallel area detectors has been installed at the cyclotron unit of VUB. The detectors are High Density Avalanche Chambers (HIDAC) wire-chambers with a stack of 4 or 6 lead gamma-electron converters, the sensitive area being 30 by 30 cm. The detectors are mounted on a commercial gantry allowing a 180 degree rotation during acquisition, as needed for a fully 3D image reconstruction. The camera has been interfaced to a token-ring computer network consisting of 5 workstations among which the various tasks (acquisition, reconstruction, display) can be distributed. Each coincident event is coded in 48 bits and is transmitted to the computer bus via a 512 kbytes dual ported buffer memory allowing data rates of up to 50 kHz. Fully 3D image reconstruction software has been developed, and includes new reconstruction algorithms allowing a better utilization of the available projection data. Preliminary measurements and imaging of phantoms and small animals (with 18FDG) have been performed with two of the four detectors mounted on the gantry. They indicate the expected 3D isotropic spatial resolution of 3.5 mm (FWHM, line source in air) and a sensitivity of 4 cps/μCi for a centred point source in air, corresponding to typical data rates of a few kHz. This latter figure is expected to improve by a factor of 4 after coupling of the second detector pair, since the coincidence sensitivity of this second detector pair is a factor 3 higher than that of the first one.

  4. NEW VERSATILE CAMERA CALIBRATION TECHNIQUE BASED ON LINEAR RECTIFICATION

    Institute of Scientific and Technical Information of China (English)

    Pan Feng; Wang Xuanyin

    2004-01-01

    A new versatile camera calibration technique for machine vision using off-the-shelf cameras is described. Aimed at the large distortion of the off-the-shelf cameras, a new camera distortion rectification technology based on line-rectification is proposed. A full-camera-distortion model is introduced and a linear algorithm is provided to obtain the solution. After the camera rectification intrinsic and extrinsic parameters are obtained based on the relationship between the homograph and absolute conic. This technology needs neither a high-accuracy three-dimensional calibration block, nor a complicated translation or rotation platform. Both simulations and experiments show that this method is effective and robust.

  5. F-18-FDG positron imaging in oncological patients: gamma camera coincidence detection versus dedicated PET

    Energy Technology Data Exchange (ETDEWEB)

    Zimny, M.; Kaiser, H.J.; Cremerius, U.; Sabri, O.; Schreckenberger, M.; Reinartz, P.; Buell, U. [Technische Hochschule Aachen (Germany). Klinik fuer Nuklearmedizin

    1999-08-01

    Aim of the present study was to investigate the feasibility of 2-[fluorine-18]-fluoro-2-deoxy-D-glucose (FDG) imaging in oncological patients with a dual head gamma camera modified for coincidence detection (MCD). Methods: Phantom studies were done to determine lesion detection at various lesion-to-background ratios, system sensitivity and spatial resolution. Thirty-two patients with suspected or known malignant disease were first studied with a dedicated full-ring PET system (DPET) applying measured attenuation correction and subsequently with an MCD system without attenuation correction. MCD images were first interpreted without knowledge of the DPET findings. In a second reading, MCD and DPET were evaluated simultaneously. Results: The phantom studies revealed a comparable spatial resolution for DPET and MCD (5.9 x 6.3 x 4.2 mm vs. 5.9 x 6.5 x 6.0 mm). System sensitivity of MCD was less compared to DPET (91 cps/Bq/ml/cm{sub FOV} vs. 231 cps/Bq/ml/cm{sub FOV}). At a lesion-to-background ratio of 4:1, DPET depicted a minimal phantom lesion of 1.0 cm in diameter, MCD a minimal lesion of 1.6 cm. With DPET, a total of 91 lesions in 27 patients were classified as malignant. MCD without knowledge of DPET results revealed increased FDG uptake in all patients with positive DPET findings. MCD detected 72 out of 91 DPET lesions (79.1%). With knowledge of the DPET findings, 11 additional lesions were detected (+12%). MCD missed lesions in six patients with relevance for staging in two patients. All lesions with a diameter above 18 mm were detected. Conclusion: MCD FDG imaging yielded results comparable to dedicated PET in most patients. However, a considerable number of small lesions clearly detectable with DPET were not detected by MCD alone. Therefore, MCD cannot yet replace dedicated PET in all oncological FDG studies. Further technical refinement of this new method is needed to improve imaging quality (e.g. attenuation correction). (orig.) [Deutsch] Ziel dieser Studie

  6. Movement-based interaction in camera spaces: a conceptual framework

    DEFF Research Database (Denmark)

    Eriksson, Eva; Hansen, Thomas Riisgaard; Lykke-Olesen, Andreas

    2007-01-01

    In this paper we present three concepts that address movement-based interaction using camera tracking. Based on our work with several movementbased projects we present four selected applications, and use these applications to leverage our discussion, and to describe our three main concepts space......, relations, and feedback. We see these as central for describing and analysing movement-based systems using camera tracking and we show how these three concepts can be used to analyse other camera tracking applications....

  7. The CLIC positron source based on compton schemes

    CERN Document Server

    Rinolfi, L; Braun, H; Papaphilippou, Y; Schulte, D; Vivoli, A; Zimmermann, F; Dadoun, O; Lepercq, P; Roux, R; Variola, A; Zomer, F; Pogorelski, I; Yakimenko, V; Gai, W; Liu, W; Kamitani, T; Omori, T; Urakawa, J; Kuriki, M; Takahasi, TM; Bulyak, E; Gladkikh, P; Chehab, R; Clarke, J

    2010-01-01

    The CLIC polarized positron source is based on a positron production scheme in which polarized photons are produced by a Compton process. In one option, Compton backscattering takes place in a so-called “Compton ring”, where an electron beam of 1 GeV interacts with circularly-polarized photons in an optical resonator. The resulting circularly-polarized gamma photons are sent on to an amorphous target, producing pairs of longitudinally polarized electrons and positrons. The nominal CLIC bunch population is 4.2x109 particles per bunch at the exit of the Pre-Damping Ring (PDR). Since the photon flux coming out from a "Compton ring" is not sufficient to obtain the requested charge, a stacking process is required in the PDR. Another option is to use a Compton Energy Recovery Linac (ERL) where a quasicontinual stacking in the PDR could be achieved. A third option is to use a "Compton Linac" which would not require stacking. We describe the overall scheme as well as advantages and constraints of the three option...

  8. Experimental demonstration of RGB LED-based optical camera communications

    OpenAIRE

    Luo, Pengfei; Min ZHANG; Ghassemlooy, Zabih; Minh, Hoa Le; Tsai, Hsin-Mu; Tang, Xuan; Png, Lih Chieh; Han, Dahai

    2015-01-01

    Red, green, and blue (RGB) light-emitting diodes (LEDs) are widely used in everyday illumination, particularly where color-changing lighting is required. On the other hand, digital cameras with color filter arrays over image sensors have been also extensively integrated in smart devices. Therefore, optical camera communications (OCC) using RGB LEDs and color cameras is a promising candidate for cost-effective parallel visible light communications (VLC). In this paper, a single RGB LED-based O...

  9. Knowledge-based automated radiopharmaceutical manufacturing for Positron Emission Tomography

    International Nuclear Information System (INIS)

    This article describes the application of basic knowledge engineering principles to the design of automated synthesis equipment for radiopharmaceuticals used in Positron Emission Tomography (PET). Before discussing knowledge programming, an overview of the development of automated radiopharmaceutical synthesis systems for PET will be presented. Since knowledge systems will rely on information obtained from machine transducers, a discussion of the uses of sensory feedback in today's automated systems follows. Next, the operation of these automated systems is contrasted to radiotracer production carried out by chemists, and the rationale for and basic concepts of knowledge-based programming are explained. Finally, a prototype knowledge-based system supporting automated radiopharmaceutical manufacturing of 18FDG at Brookhaven National Laboratory (BNL) is described using 1stClass, a commercially available PC-based expert system shell

  10. Spectral Camera based on Ghost Imaging via Sparsity Constraints.

    Science.gov (United States)

    Liu, Zhentao; Tan, Shiyu; Wu, Jianrong; Li, Enrong; Shen, Xia; Han, Shensheng

    2016-05-16

    The image information acquisition ability of a conventional camera is usually much lower than the Shannon Limit since it does not make use of the correlation between pixels of image data. Applying a random phase modulator to code the spectral images and combining with compressive sensing (CS) theory, a spectral camera based on true thermal light ghost imaging via sparsity constraints (GISC spectral camera) is proposed and demonstrated experimentally. GISC spectral camera can acquire the information at a rate significantly below the Nyquist rate, and the resolution of the cells in the three-dimensional (3D) spectral images data-cube can be achieved with a two-dimensional (2D) detector in a single exposure. For the first time, GISC spectral camera opens the way of approaching the Shannon Limit determined by Information Theory in optical imaging instruments.

  11. Spectral Camera based on Ghost Imaging via Sparsity Constraints

    CERN Document Server

    Liu, Zhentao; Wu, Jianrong; Li, Enrong; Shen, Xia; Han, Shensheng

    2015-01-01

    The information acquisition ability of conventional camera is far lower than the Shannon Limit because of the correlation between pixels of image data. Applying sparse representation of images to reduce the abundance of image data and combined with compressive sensing theory, the spectral camera based on ghost imaging via sparsity constraints (GISC spectral camera) is proposed and demonstrated experimentally. GISC spectral camera can acquire the information at a rate significantly below Nyquist, and the resolution of the cells in the three-dimensional (3D) spectral image data-cube can be achieved with a two-dimensional (2D) detector in a single exposure. For the first time, GISC spectral camera opens the way of approaching the Shannon Limit determined by Information Theory in optical imaging instruments.

  12. Spectral Camera based on Ghost Imaging via Sparsity Constraints

    Science.gov (United States)

    Liu, Zhentao; Tan, Shiyu; Wu, Jianrong; Li, Enrong; Shen, Xia; Han, Shensheng

    2016-05-01

    The image information acquisition ability of a conventional camera is usually much lower than the Shannon Limit since it does not make use of the correlation between pixels of image data. Applying a random phase modulator to code the spectral images and combining with compressive sensing (CS) theory, a spectral camera based on true thermal light ghost imaging via sparsity constraints (GISC spectral camera) is proposed and demonstrated experimentally. GISC spectral camera can acquire the information at a rate significantly below the Nyquist rate, and the resolution of the cells in the three-dimensional (3D) spectral images data-cube can be achieved with a two-dimensional (2D) detector in a single exposure. For the first time, GISC spectral camera opens the way of approaching the Shannon Limit determined by Information Theory in optical imaging instruments.

  13. BUNDLE ADJUSTMENTS CCD CAMERA CALIBRATION BASED ON COLLINEARITY EQUATION

    Institute of Scientific and Technical Information of China (English)

    Liu Changying; Yu Zhijing; Che Rensheng; Ye Dong; Huang Qingcheng; Yang Dingning

    2004-01-01

    The solid template CCD camera calibration method of bundle adjustments based on collinearity equation is presented considering the characteristics of space large-dimension on-line measurement. In the method, a more comprehensive camera model is adopted which is based on the pinhole model extended with distortions corrections. In the process of calibration, calibration precision is improved by imaging at different locations in the whole measurement space, multi-imaging at the same location and bundle adjustments optimization. The calibration experiment proves that the calibration method is able to fulfill calibration requirement of CCD camera applied to vision measurement.

  14. Positron sources

    International Nuclear Information System (INIS)

    A tentative survey of positron sources is given. Physical processes on which positron generation is based are indicated and analyzed. Explanation of the general features of electromagnetic interactions and nuclear β+ decay makes it possible to predict the yield and emittance for a given optical matching system between the positron source and the accelerator. Some kinds of matching systems commonly used - mainly working with solenoidal fields - are studied and the acceptance volume calculated. Such knowledge is helpful in comparing different matching systems. Since for large machines, a significant distance exists between the positron source and the experimental facility, positron emittance has to be preserved during beam transfer over large distances and methods used for that purpose are indicated. Comparison of existing positron sources leads to extrapolation to sources for future linear colliders

  15. Positron sources

    International Nuclear Information System (INIS)

    A tentative survey of positron sources is given. Physical processes on which positron generation is based are indicated and analyzed. Explanation of the general features of electromagnetic interactions and nuclear β+ decay makes it possible to predict the yield and emittance for a given optical matching system between the positron source and the accelerator. Some kinds of matching systems commonly used - mainly working with solenoidal field - are studied and the acceptance volume calculated. Such knowledge is helpful in comparing different matching systems. Since for large machines, a significant distance exists between the positron source and the experimental facility, positron emittance has to be preserved during beam transfer over large distances and methods used for that purpose are indicated. Comparison of existing positron sources leads to extrapolation to sources for future linear colliders. Some new ideas associated with these sources are also presented. (orig.)

  16. CAMERA-BASED SOFTWARE IN REHABILITATION/THERAPY INTERVENTION

    DEFF Research Database (Denmark)

    Brooks, Anthony Lewis

    2014-01-01

    Use of an affordable, easily adaptable, ‘non-specific camera-based software’ that is rarely used in the field of rehabilitation is reported in a study with 91 participants over the duration of six workshop sessions. ‘Non-specific camera-based software’ refers to software that is not dependent......, and accessible software EyeCon is a potent and significant tool in the field of rehabilitation/therapy and warrants wider exploration....

  17. Global Calibration of Multiple Cameras Based on Sphere Targets

    Science.gov (United States)

    Sun, Junhua; He, Huabin; Zeng, Debing

    2016-01-01

    Global calibration methods for multi-camera system are critical to the accuracy of vision measurement. Proposed in this paper is such a method based on several groups of sphere targets and a precision auxiliary camera. Each camera to be calibrated observes a group of spheres (at least three), while the auxiliary camera observes all the spheres. The global calibration can be achieved after each camera reconstructs the sphere centers in its field of view. In the process of reconstructing a sphere center, a parameter equation is used to describe the sphere projection model. Theoretical analysis and computer simulation are carried out to analyze the factors that affect the calibration accuracy. Simulation results show that the parameter equation can largely improve the reconstruction accuracy. In the experiments, a two-camera system calibrated by our method is used to measure a distance about 578 mm, and the root mean squared error is within 0.14 mm. Furthermore, the experiments indicate that the method has simple operation and good flexibility, especially for the onsite multiple cameras without common field of view. PMID:26761007

  18. Global Calibration of Multiple Cameras Based on Sphere Targets

    Directory of Open Access Journals (Sweden)

    Junhua Sun

    2016-01-01

    Full Text Available Global calibration methods for multi-camera system are critical to the accuracy of vision measurement. Proposed in this paper is such a method based on several groups of sphere targets and a precision auxiliary camera. Each camera to be calibrated observes a group of spheres (at least three, while the auxiliary camera observes all the spheres. The global calibration can be achieved after each camera reconstructs the sphere centers in its field of view. In the process of reconstructing a sphere center, a parameter equation is used to describe the sphere projection model. Theoretical analysis and computer simulation are carried out to analyze the factors that affect the calibration accuracy. Simulation results show that the parameter equation can largely improve the reconstruction accuracy. In the experiments, a two-camera system calibrated by our method is used to measure a distance about 578 mm, and the root mean squared error is within 0.14 mm. Furthermore, the experiments indicate that the method has simple operation and good flexibility, especially for the onsite multiple cameras without common field of view.

  19. Mouse Control using a Web Camera based on Colour Detection

    OpenAIRE

    2014-01-01

    In this paper we present an approach for Human computer Interaction (HCI), where we have tried to control the mouse cursor movement and click events of the mouse using hand gestures. Hand gestures were acquired using a camera based on colour detection technique. This method mainly focuses on the use of a Web Camera to develop a virtual human computer interaction device in a cost effective manner.

  20. Positron-based attenuation correction for Positron Emission Tomography data using MCNP6 code

    Directory of Open Access Journals (Sweden)

    M. Saeed

    2016-01-01

    Full Text Available This paper presents the Monte Carlo simulation of the attenuation correction for Positron Emission Tomography (PET data using MCNP6 code. Two attenuation correction maps have been generated, one for correcting the attenuation effect in a homogeneous phantom, which is a cylindrical volume of water and the other for correcting the attenuation effect in a heterogeneous phantom, which is a cylindrical volume of water within which, there are two small cylinders of bone-equivalent materials. These maps are derived from the data acquired as a result of transmission scans using a positron-emitting rod source. The attenuation map generated using this method does not need to be scaled because it is directly built for an energy of 511 keV. For each phantom, three types of simulations are done, one to estimate the radiotracer distribution in the phantom (emission scan and two to estimate the distribution of attenuation coefficients in this phantom (transmission scans, the first with a blank field of view (FOV and the second when the phantom exists in the FOV. From the transmission scans data, the attenuation map for each phantom is derived and after that it has been applied to the corresponding emission scan data during PET image reconstruction process to obtain the attenuation-corrected image. The images of the radiotracer distribution in each phantom reached in this study illustrate the quantitative and qualitative improvements in the image quality after attenuation correction than that before the attenuation correction.

  1. A cooperative control algorithm for camera based observational systems.

    Energy Technology Data Exchange (ETDEWEB)

    Young, Joseph G.

    2012-01-01

    Over the last several years, there has been considerable growth in camera based observation systems for a variety of safety, scientific, and recreational applications. In order to improve the effectiveness of these systems, we frequently desire the ability to increase the number of observed objects, but solving this problem is not as simple as adding more cameras. Quite often, there are economic or physical restrictions that prevent us from adding additional cameras to the system. As a result, we require methods that coordinate the tracking of objects between multiple cameras in an optimal way. In order to accomplish this goal, we present a new cooperative control algorithm for a camera based observational system. Specifically, we present a receding horizon control where we model the underlying optimal control problem as a mixed integer linear program. The benefit of this design is that we can coordinate the actions between each camera while simultaneously respecting its kinematics. In addition, we further improve the quality of our solution by coupling our algorithm with a Kalman filter. Through this integration, we not only add a predictive component to our control, but we use the uncertainty estimates provided by the filter to encourage the system to periodically observe any outliers in the observed area. This combined approach allows us to intelligently observe the entire region of interest in an effective and thorough manner.

  2. A trajectory observer for camera-based underwater motion measurements

    DEFF Research Database (Denmark)

    Berg, Tor; Jouffroy, Jerome; Johansen, Vegar

    This work deals with the issue of estimating the trajectory of a vehicle or object moving underwater based on camera measurements. The proposed approach consists of a diffusion-based trajectory observer (Jouffroy and Opderbecke, 2004) processing whole segments of a trajectory at a time. Additiona......This work deals with the issue of estimating the trajectory of a vehicle or object moving underwater based on camera measurements. The proposed approach consists of a diffusion-based trajectory observer (Jouffroy and Opderbecke, 2004) processing whole segments of a trajectory at a time...

  3. A method for selecting training samples based on camera response

    Science.gov (United States)

    Zhang, Leihong; Li, Bei; Pan, Zilan; Liang, Dong; Kang, Yi; Zhang, Dawei; Ma, Xiuhua

    2016-09-01

    In the process of spectral reflectance reconstruction, sample selection plays an important role in the accuracy of the constructed model and in reconstruction effects. In this paper, a method for training sample selection based on camera response is proposed. It has been proved that the camera response value has a close correlation with the spectral reflectance. Consequently, in this paper we adopt the technique of drawing a sphere in camera response value space to select the training samples which have a higher correlation with the test samples. In addition, the Wiener estimation method is used to reconstruct the spectral reflectance. Finally, we find that the method of sample selection based on camera response value has the smallest color difference and root mean square error after reconstruction compared to the method using the full set of Munsell color charts, the Mohammadi training sample selection method, and the stratified sampling method. Moreover, the goodness of fit coefficient of this method is also the highest among the four sample selection methods. Taking all the factors mentioned above into consideration, the method of training sample selection based on camera response value enhances the reconstruction accuracy from both the colorimetric and spectral perspectives.

  4. Extrinsic Calibration of Camera Networks Based on Pedestrians

    Directory of Open Access Journals (Sweden)

    Junzhi Guan

    2016-05-01

    Full Text Available In this paper, we propose a novel extrinsic calibration method for camera networks by analyzing tracks of pedestrians. First of all, we extract the center lines of walking persons by detecting their heads and feet in the camera images. We propose an easy and accurate method to estimate the 3D positions of the head and feet w.r.t. a local camera coordinate system from these center lines. We also propose a RANSAC-based orthogonal Procrustes approach to compute relative extrinsic parameters connecting the coordinate systems of cameras in a pairwise fashion. Finally, we refine the extrinsic calibration matrices using a method that minimizes the reprojection error. While existing state-of-the-art calibration methods explore epipolar geometry and use image positions directly, the proposed method first computes 3D positions per camera and then fuses the data. This results in simpler computations and a more flexible and accurate calibration method. Another advantage of our method is that it can also handle the case of persons walking along straight lines, which cannot be handled by most of the existing state-of-the-art calibration methods since all head and feet positions are co-planar. This situation often happens in real life.

  5. Extrinsic Calibration of Camera Networks Based on Pedestrians.

    Science.gov (United States)

    Guan, Junzhi; Deboeverie, Francis; Slembrouck, Maarten; Van Haerenborgh, Dirk; Van Cauwelaert, Dimitri; Veelaert, Peter; Philips, Wilfried

    2016-05-09

    In this paper, we propose a novel extrinsic calibration method for camera networks by analyzing tracks of pedestrians. First of all, we extract the center lines of walking persons by detecting their heads and feet in the camera images. We propose an easy and accurate method to estimate the 3D positions of the head and feet w.r.t. a local camera coordinate system from these center lines. We also propose a RANSAC-based orthogonal Procrustes approach to compute relative extrinsic parameters connecting the coordinate systems of cameras in a pairwise fashion. Finally, we refine the extrinsic calibration matrices using a method that minimizes the reprojection error. While existing state-of-the-art calibration methods explore epipolar geometry and use image positions directly, the proposed method first computes 3D positions per camera and then fuses the data. This results in simpler computations and a more flexible and accurate calibration method. Another advantage of our method is that it can also handle the case of persons walking along straight lines, which cannot be handled by most of the existing state-of-the-art calibration methods since all head and feet positions are co-planar. This situation often happens in real life.

  6. Extrinsic Calibration of Camera Networks Based on Pedestrians.

    Science.gov (United States)

    Guan, Junzhi; Deboeverie, Francis; Slembrouck, Maarten; Van Haerenborgh, Dirk; Van Cauwelaert, Dimitri; Veelaert, Peter; Philips, Wilfried

    2016-01-01

    In this paper, we propose a novel extrinsic calibration method for camera networks by analyzing tracks of pedestrians. First of all, we extract the center lines of walking persons by detecting their heads and feet in the camera images. We propose an easy and accurate method to estimate the 3D positions of the head and feet w.r.t. a local camera coordinate system from these center lines. We also propose a RANSAC-based orthogonal Procrustes approach to compute relative extrinsic parameters connecting the coordinate systems of cameras in a pairwise fashion. Finally, we refine the extrinsic calibration matrices using a method that minimizes the reprojection error. While existing state-of-the-art calibration methods explore epipolar geometry and use image positions directly, the proposed method first computes 3D positions per camera and then fuses the data. This results in simpler computations and a more flexible and accurate calibration method. Another advantage of our method is that it can also handle the case of persons walking along straight lines, which cannot be handled by most of the existing state-of-the-art calibration methods since all head and feet positions are co-planar. This situation often happens in real life. PMID:27171080

  7. A Robust Camera-Based Interface for Mobile Entertainment.

    Science.gov (United States)

    Roig-Maimó, Maria Francesca; Manresa-Yee, Cristina; Varona, Javier

    2016-02-19

    Camera-based interfaces in mobile devices are starting to be used in games and apps, but few works have evaluated them in terms of usability or user perception. Due to the changing nature of mobile contexts, this evaluation requires extensive studies to consider the full spectrum of potential users and contexts. However, previous works usually evaluate these interfaces in controlled environments such as laboratory conditions, therefore, the findings cannot be generalized to real users and real contexts. In this work, we present a robust camera-based interface for mobile entertainment. The interface detects and tracks the user's head by processing the frames provided by the mobile device's front camera, and its position is then used to interact with the mobile apps. First, we evaluate the interface as a pointing device to study its accuracy, and different factors to configure such as the gain or the device's orientation, as well as the optimal target size for the interface. Second, we present an in the wild study to evaluate the usage and the user's perception when playing a game controlled by head motion. Finally, the game is published in an application store to make it available to a large number of potential users and contexts and we register usage data. Results show the feasibility of using this robust camera-based interface for mobile entertainment in different contexts and by different people.

  8. Automatic Camera Viewfinder Based on TI DaVinci

    Institute of Scientific and Technical Information of China (English)

    WANG Hai-gang; XIAO Zhi-tao; GENG Lei

    2009-01-01

    Presented is an automatic camera viewfinder based on TI DaVinci digital platform and discussed mainly is the scheme of software system based on linux. This system can give an alarm and save the picture when the set features appear in the view, and the saved pictures can be downloaded and zoomed out. All functions are operated in OSD menu. It is well established for its flexible operations, powerful functions, multitasking and stable performance.

  9. Mediastinal staging of lung cancer with 2-[fluorine-18]-fluoro-2-deoxy-D-glucose positron emission tomography and a dual-head coincidence gamma camera

    Energy Technology Data Exchange (ETDEWEB)

    Zimny, Michael; Reinartz, Patrick; Cremerius, Uwe; Buell, Udalrich [Department of Nuclear Medicine, University Hospital, Aachen University of Technology, Pauwelsstrasse 30, 52074 Aachen (Germany); Hochstenbag, Monique; Velde, Guul ten [Department of Pulmonology, University Hospital, 6229 HX Maastricht (Netherlands); Lamers, Rob [Department of Radiology, University Hospital, 6229 HX Maastricht (Netherlands)

    2003-04-01

    The aims of the present study were (a) to evaluate mediastinal staging in patients with lung cancer with 2-[fluorine-18]-fluoro-2-deoxy-D-glucose (FDG) using a coincidence gamma camera (hybrid PET) in comparison with dedicated positron emission tomography (PET) and computed tomography (CT), and (b) to assess the feasibility to determine standardized uptake values (SUV) with hybrid PET. Forty patients were included in the study. Hybrid PET was performed without and with attenuation correction. Data were rebinned with single-slice (SSRB) or Fourier rebinning (FORE). The SUVs of primary tumors were calculated with hybrid PET and compared with SUVs determined by dedicated PET. Diagnostic accuracy for hybrid with or without attenuation correction was 80 or 74% compared with 82% for dedicated PET, and 63% for CT. Attenuation-corrected hybrid PET revealed a higher specificity than CT (83 vs 52%; p<0.05). The SUVs of primary tumors were similar to those of hybrid PET and dedicated PET with a mean relative difference of 20.8{+-}16.4%. The FORE improved the agreement of SUVs with a mean relative difference of 13.8{+-}9.9 vs 36.0{+-}17.9% for SSRB (p<0.001). Hybrid PET with attenuation correction is more specific than CT for mediastinal staging in patients with lung cancer (p<0.05). It reveals similar results in comparison with dedicated PET. Calculation of SUVs with hybrid PET is feasible. (orig.)

  10. Bioimpedance-based respiratory gating method for oncologic positron emission tomography (PET) imaging with first clinical results

    Science.gov (United States)

    Koivumäki, T.; Vauhkonen, M.; Teuho, J.; Teräs, M.; Hakulinen, M. A.

    2013-04-01

    Respiratory motion may cause significant image artefacts in positron emission tomography/computed tomography (PET/CT) imaging. This study introduces a new bioimpedance-based gating method for minimizing respiratory artefacts. The method was studied in 12 oncologic patients by evaluating the following three parameters: maximum metabolic activity of radiopharmaceutical accumulations, the size of these targets as well as their target-to-background ratio. The bioimpedance-gated images were compared with non-gated images and images that were gated with a reference method, chest wall motion monitoring by infrared camera. The bioimpedance method showed clear improvement as increased metabolic activity and decreased target volume compared to non-gated images and produced consistent results with the reference method. Thus, the method may have great potential in the future of respiratory gating in nuclear medicine imaging.

  11. Bioimpedance-based respiratory gating method for oncologic positron emission tomography (PET) imaging with first clinical results

    International Nuclear Information System (INIS)

    Respiratory motion may cause significant image artefacts in positron emission tomography/computed tomography (PET/CT) imaging. This study introduces a new bioimpedance-based gating method for minimizing respiratory artefacts. The method was studied in 12 oncologic patients by evaluating the following three parameters: maximum metabolic activity of radiopharmaceutical accumulations, the size of these targets as well as their target-to-background ratio. The bioimpedance-gated images were compared with non-gated images and images that were gated with a reference method, chest wall motion monitoring by infrared camera. The bioimpedance method showed clear improvement as increased metabolic activity and decreased target volume compared to non-gated images and produced consistent results with the reference method. Thus, the method may have great potential in the future of respiratory gating in nuclear medicine imaging.

  12. A Bionic Camera-Based Polarization Navigation Sensor

    OpenAIRE

    Daobin Wang; Huawei Liang; Hui Zhu; Shuai Zhang

    2014-01-01

    Navigation and positioning technology is closely related to our routine life activities, from travel to aerospace. Recently it has been found that Cataglyphis (a kind of desert ant) is able to detect the polarization direction of skylight and navigate according to this information. This paper presents a real-time bionic camera-based polarization navigation sensor. This sensor has two work modes: one is a single-point measurement mode and the other is a multi-point measurement mode. An indoor ...

  13. Measurement of the positron polarization at an helical undulator based positron source for the international linear collider ILC. The E-166 experiment at SLAC

    Energy Technology Data Exchange (ETDEWEB)

    Karim, Laihem

    2008-06-05

    A helical undulator based polarized positron source is forseen at a future International Linear Collider (ILC). The E-166 experiment has tested this scheme using a one meter long, short-period, pulsed helical undulator installed in the Final Focus Test Beam (FFTB) at SLAC. A low-emittance 46.6 GeV electron beam passing through this undulator generated circularly polarized photons with energies up to about 8 MeV. The generated photons of several MeV with circular polarization are then converted in a relatively thin target to generate longitudinally polarized positrons. Measurements of the positron polarization have been performed at 5 different energies of the positrons. In addition electron polarization has been determined for one energy point. For a comparison of the measured asymmetries with the expectations detailed simulations were necessary. This required upgrading GEANT4 to include the dominant polarization dependent interactions of electrons, positrons and photons in matter. The measured polarization of the positrons agrees with the expectations and is for the energy point with the highest polarization at 6MeV about 80%. (orig.)

  14. Visual homing with a pan-tilt based stereo camera

    Science.gov (United States)

    Nirmal, Paramesh; Lyons, Damian M.

    2013-01-01

    Visual homing is a navigation method based on comparing a stored image of the goal location and the current image (current view) to determine how to navigate to the goal location. It is theorized that insects, such as ants and bees, employ visual homing methods to return to their nest. Visual homing has been applied to autonomous robot platforms using two main approaches: holistic and feature-based. Both methods aim at determining distance and direction to the goal location. Navigational algorithms using Scale Invariant Feature Transforms (SIFT) have gained great popularity in the recent years due to the robustness of the feature operator. Churchill and Vardy have developed a visual homing method using scale change information (Homing in Scale Space, HiSS) from SIFT. HiSS uses SIFT feature scale change information to determine distance between the robot and the goal location. Since the scale component is discrete with a small range of values, the result is a rough measurement with limited accuracy. We have developed a method that uses stereo data, resulting in better homing performance. Our approach utilizes a pan-tilt based stereo camera, which is used to build composite wide-field images. We use the wide-field images combined with stereo-data obtained from the stereo camera to extend the keypoint vector described in to include a new parameter, depth (z). Using this info, our algorithm determines the distance and orientation from the robot to the goal location. We compare our method with HiSS in a set of indoor trials using a Pioneer 3-AT robot equipped with a BumbleBee2 stereo camera. We evaluate the performance of both methods using a set of performance measures described in this paper.

  15. Development of mini linac-based positron source and an efficient positronium convertor for positively charged antihydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Muranaka, T; Debu, P; Dupre, P; Liszkay, L; Mansoulie, B; Perez, P; Rey, J M; Ruiz, N; Sacquin, Y [Irfu, CEA-Saclay, F-91191 Gif-sur-Yvette Cedex (France); Crivelli, P; Gendotti, U; Rubbia, A, E-mail: tomoko.muranaka@cea.f [Institut fuer TelichenPhysik, ETHZ, CH-8093 Zuerich (Switzerland)

    2010-04-01

    We have installed in Saclay a facility for an intense positron source in November 2008. It is based on a compact 5.5 MeV electron linac connected to a reaction chamber with a tungsten target inside to produce positrons via pair production. The expected production rate for fast positrons is 5{center_dot}10{sup 11} per second. The study of moderation of fast positrons and the construction of a slow positron trap are underway. In parallel, we have investigated an efficient positron-positronium convertor using porous silica materials. These studies are parts of a project to produce positively charged antihydrogen ions aiming to demonstrate the feasibility of a free fall antigravity measurement of neutral antihydrogen.

  16. Development of mini linac-based positron source and an efficient positronium convertor for positively charged antihydrogen production

    Science.gov (United States)

    Muranaka, T.; Debu, P.; Dupré, P.; Liszkay, L.; Mansoulie, B.; Pérez, P.; Rey, J. M.; Ruiz, N.; Sacquin, Y.; Crivelli, P.; Gendotti, U.; Rubbia, A.

    2010-04-01

    We have installed in Saclay a facility for an intense positron source in November 2008. It is based on a compact 5.5 MeV electron linac connected to a reaction chamber with a tungsten target inside to produce positrons via pair production. The expected production rate for fast positrons is 5·1011 per second. The study of moderation of fast positrons and the construction of a slow positron trap are underway. In parallel, we have investigated an efficient positron-positronium convertor using porous silica materials. These studies are parts of a project to produce positively charged antihydrogen ions aiming to demonstrate the feasibility of a free fall antigravity measurement of neutral antihydrogen.

  17. A trap-based pulsed positron beam optimised for positronium laser spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, B. S., E-mail: ben.cooper.13@ucl.ac.uk; Alonso, A. M.; Deller, A.; Wall, T. E.; Cassidy, D. B. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2015-10-15

    We describe a pulsed positron beam that is optimised for positronium (Ps) laser-spectroscopy experiments. The system is based on a two-stage Surko-type buffer gas trap that produces 4 ns wide pulses containing up to 5 × 10{sup 5} positrons at a rate of 0.5-10 Hz. By implanting positrons from the trap into a suitable target material, a dilute positronium gas with an initial density of the order of 10{sup 7} cm{sup −3} is created in vacuum. This is then probed with pulsed (ns) laser systems, where various Ps-laser interactions have been observed via changes in Ps annihilation rates using a fast gamma ray detector. We demonstrate the capabilities of the apparatus and detection methodology via the observation of Rydberg positronium atoms with principal quantum numbers ranging from 11 to 22 and the Stark broadening of the n = 2 → 11 transition in electric fields.

  18. Development of positron detector for {mu}SR based on multi-pixel photon counter

    Energy Technology Data Exchange (ETDEWEB)

    Takeshita, Soshi [High Energy Accelerator Research Organization, Oho 1-1, Tsukuba-shi, Ibaraki 305-0801 (Japan)], E-mail: soshi@post.kek.jp; Hiraishi, Masatoshi; Miyazaki, Masanori [The Graduate University for Advanced Studies, Shonan Village, Hayama-cho, Miura-gun, Kanagawa 240-0193 (Japan); Koda, Akihiro; Kadono, Ryosuke [High Energy Accelerator Research Organization, Oho 1-1, Tsukuba-shi, Ibaraki 305-0801 (Japan); The Graduate University for Advanced Studies, Shonan Village, Hayama-cho, Miura-gun, Kanagawa 240-0193 (Japan); Suzuki, Soh Y.; Yasu, Yoshiji [High Energy Accelerator Research Organization, Oho 1-1, Tsukuba-shi, Ibaraki 305-0801 (Japan); Tanaka, Manobu [High Energy Accelerator Research Organization, Oho 1-1, Tsukuba-shi, Ibaraki 305-0801 (Japan); The Graduate University for Advanced Studies, Shonan Village, Hayama-cho, Miura-gun, Kanagawa 240-0193 (Japan); Matsuda, Yasuyuki; Ishida, Katsuhiko; Matsuzaki, Teiichiro [RIKEN, Hirosawa 2-1, Wako-shi, Saitama 351-0198 (Japan)

    2009-02-21

    In the pulsed muon facility (MUSE) being built as a part of J-PARC, muon beams with unprecedented intensity ({approx}10{sup 6} {mu}{sup +}/pulse) will be delivered at its full operation. Because of the extreme instantaneous {mu}-e decay positron rates ({approx}10{sup 4}-10{sup 5} e{sup +}/pulse), development of a highly segmented positron detection system is crucial for practical application of {mu}SR. To this end, we have designed a new positron detector based on a multi-pixel photon counter (MPPC). The advantages of MPPC over conventional phototubes are its small size, low operation voltage, functionality under a high magnetic field, and low cost. The result of test experiment for the detector using a pulsed muon beam is reported.

  19. Dynamic Vision Sensor Camera Based Bare Hand Gesture Recognition

    OpenAIRE

    kashmera ashish khedkkar safaya; Rekha Lathi

    2012-01-01

    This Paper proposes a method to recognize bare hand gestures using dynamic vision sensor (DVS) camera. DVS camera only responds asynchronously to pixels that have temporal changes in intensity which different from conventional camera. This paper attempts to recognize three different hand gestures rock, paper and scissors and using those hand gestures design mouse free interface.   Keywords: Dynamic vision sensor camera, Hand gesture recognition

  20. Dynamic Vision Sensor Camera Based Bare Hand Gesture Recognition

    Directory of Open Access Journals (Sweden)

    kashmera ashish khedkkar safaya

    2012-05-01

    Full Text Available This Paper proposes a method to recognize bare hand gestures using dynamic vision sensor (DVS camera. DVS camera only responds asynchronously to pixels that have temporal changes in intensity which different from conventional camera. This paper attempts to recognize three different hand gestures rock, paper and scissors and using those hand gestures design mouse free interface.   Keywords: Dynamic vision sensor camera, Hand gesture recognition

  1. Noninvasive particle sizing using camera-based diffuse reflectance spectroscopy

    DEFF Research Database (Denmark)

    Abildgaard, Otto Højager Attermann; Frisvad, Jeppe Revall; Falster, Viggo;

    2016-01-01

    Diffuse reflectance measurements are useful for noninvasive inspection of optical properties such as reduced scattering and absorption coefficients. Spectroscopic analysis of these optical properties can be used for particle sizing. Systems based on optical fiber probes are commonly employed, but...... their low spatial resolution limits their validity ranges for the coefficients. To cover a wider range of coefficients, we use camera-based spectroscopic oblique incidence reflectometry. We develop a noninvasive technique for acquisition of apparent particle size distributions based on this approach....... Our technique is validated using stable oil-in-water emulsions with a wide range of known particle size distributions. We also measure the apparent particle size distributions of complex dairy products. These results show that our tool, in contrast to those based on fiber probes, can deal with a range...

  2. Activity-based costing evaluation of a [F-18]-fludeoxyglucose positron emission tomography study

    NARCIS (Netherlands)

    Krug, Bruno; Van Zanten, Annie; Pirson, Anne-Sophie; Crott, Ralph; Vander Borght, Thierry

    2009-01-01

    Objective: The aim of the study is to use the activity-based costing approach to give a better insight in the actual cost structure of a positron emission tomography procedure (FDG-PET) by defining the constituting components and by simulating the impact of possible resource or practice changes. Met

  3. Generation and application of slow positrons based on a electron LINAC

    CERN Document Server

    Kurihara, T

    2002-01-01

    History of slow positron in Institute of Materials Structure Science High Energy Accelerator Research Organization is explained. The principle of generation and application of intense positron beam is mentioned. Two sources of intense positron are radioactive decay of radioactive isotopes emitting positron and electron-positron pair creation. The radioactive decay method uses sup 5 sup 8 Co, sup 6 sup 4 Cu, sup 1 sup 1 C, sup 1 sup 3 N, sup 1 sup 5 O and sup 1 sup 8 F. The electron-positron pair creation method uses nuclear reactor or electron linear accelerator (LINAC). The positron experimental facility in this organization consists of electron LINAC, slow positron beam source, positron transport and experimental station. The outline of this facility is started. The intense slow positron beam is applied to research positronium work function, electron structure of surface. New method such as combination of positron lifetime measurement and slow positron beam or Auger electron spectroscopy by positron annihil...

  4. A Camera Nodes Correlation Model Based on 3D Sensing in Wireless Multimedia Sensor Networks

    OpenAIRE

    Chong Han; Lijuan Sun; Fu Xiao; Jian Guo; Ruchuan Wang

    2012-01-01

    In wireless multimedia sensor networks, multiple camera sensor nodes generally are used for gaining enhanced observations of a certain area of interest. This brings on the visual information retrieved from adjacent camera nodes usually exhibits high levels of correlation. In this paper, first, based on the analysis of 3D directional sensing model of camera sensor nodes, a correlation model is proposed by measuring the intersection area of multiple camera nodes’ field of views. In this model, ...

  5. Distributed Collaborative Camera Actuation Scheme Based on Sensing-Region Management for Wireless Multimedia Sensor Networks

    OpenAIRE

    Wusheng Luo; Qin Lu; Jingjing Xiao

    2012-01-01

    Considering the high energy consumption of image acquisition, computation, and transmission in wireless multimedia sensor networks (WMSNs), two-tier network structure is usually used to lighten the energy consumption burden on camera sensors. Thus, a camera sensor can only be actuated when an event is detected by scalar sensors within its field of view (FoV). In this paper, we study the event-driven camera actuation problem and propose a distributed collaborative camera actuation scheme based...

  6. An Airborne Multispectral Imaging System Based on Two Consumer-Grade Cameras for Agricultural Remote Sensing

    OpenAIRE

    Chenghai Yang; Westbrook, John K.; Charles P.-C. Suh; Martin, Daniel E.; W. Clint Hoffmann; Yubin Lan; Bradley K. Fritz; John A. Goolsby

    2014-01-01

    This paper describes the design and evaluation of an airborne multispectral imaging system based on two identical consumer-grade cameras for agricultural remote sensing. The cameras are equipped with a full-frame complementary metal oxide semiconductor (CMOS) sensor with 5616 × 3744 pixels. One camera captures normal color images, while the other is modified to obtain near-infrared (NIR) images. The color camera is also equipped with a GPS receiver to allow geotagged images. A remote control ...

  7. Goal-oriented rectification of camera-based document images.

    Science.gov (United States)

    Stamatopoulos, Nikolaos; Gatos, Basilis; Pratikakis, Ioannis; Perantonis, Stavros J

    2011-04-01

    Document digitization with either flatbed scanners or camera-based systems results in document images which often suffer from warping and perspective distortions that deteriorate the performance of current OCR approaches. In this paper, we present a goal-oriented rectification methodology to compensate for undesirable document image distortions aiming to improve the OCR result. Our approach relies upon a coarse-to-fine strategy. First, a coarse rectification is accomplished with the aid of a computationally low cost transformation which addresses the projection of a curved surface to a 2-D rectangular area. The projection of the curved surface on the plane is guided only by the textual content's appearance in the document image while incorporating a transformation which does not depend on specific model primitives or camera setup parameters. Second, pose normalization is applied on the word level aiming to restore all the local distortions of the document image. Experimental results on various document images with a variety of distortions demonstrate the robustness and effectiveness of the proposed rectification methodology using a consistent evaluation methodology that encounters OCR accuracy and a newly introduced measure using a semi-automatic procedure. PMID:20876019

  8. Whole blood glucose analysis based on smartphone camera module.

    Science.gov (United States)

    Devadhasan, Jasmine Pramila; Oh, Hyunhee; Choi, Cheol Soo; Kim, Sanghyo

    2015-11-01

    Complementary metal oxide semiconductor (CMOS) image sensors have received great attention for their high efficiency in biological applications. The present work describes a CMOS image sensor-based whole blood glucose monitoring system through a point-of-care (POC) approach. A simple poly-ethylene terephthalate (PET) chip was developed to carry out the enzyme kinetic reaction at various concentrations (110–586 mg∕dL) of mouse blood glucose. In this technique, assay reagent is immobilized onto amine functionalized silica (AFSiO2) nanoparticles as an electrostatic attraction in order to achieve glucose oxidation on the chip. The assay reagent immobilized AFSiO2 nanoparticles develop a semi-transparent reaction platform, which is technically a suitable chip to analyze by a camera module. The oxidized glucose then produces a green color according to the glucose concentration and is analyzed by the camera module as a photon detection technique; the photon number decreases when the glucose concentration increases. The combination of these components, the CMOS image sensor and enzyme immobilized PET film chip, constitute a compact, accurate, inexpensive, precise, digital, highly sensitive, specific, and optical glucose-sensing approach for POC diagnosis. PMID:26524683

  9. Parallel Computational Intelligence-Based Multi-Camera Surveillance System

    Directory of Open Access Journals (Sweden)

    Sergio Orts-Escolano

    2014-04-01

    Full Text Available In this work, we present a multi-camera surveillance system based on the use of self-organizing neural networks to represent events on video. The system processes several tasks in parallel using GPUs (graphic processor units. It addresses multiple vision tasks at various levels, such as segmentation, representation or characterization, analysis and monitoring of the movement. These features allow the construction of a robust representation of the environment and interpret the behavior of mobile agents in the scene. It is also necessary to integrate the vision module into a global system that operates in a complex environment by receiving images from multiple acquisition devices at video frequency. Offering relevant information to higher level systems, monitoring and making decisions in real time, it must accomplish a set of requirements, such as: time constraints, high availability, robustness, high processing speed and re-configurability. We have built a system able to represent and analyze the motion in video acquired by a multi-camera network and to process multi-source data in parallel on a multi-GPU architecture.

  10. Whole blood glucose analysis based on smartphone camera module

    Science.gov (United States)

    Devadhasan, Jasmine Pramila; Oh, Hyunhee; Choi, Cheol Soo; Kim, Sanghyo

    2015-11-01

    Complementary metal oxide semiconductor (CMOS) image sensors have received great attention for their high efficiency in biological applications. The present work describes a CMOS image sensor-based whole blood glucose monitoring system through a point-of-care (POC) approach. A simple poly-ethylene terephthalate (PET) chip was developed to carry out the enzyme kinetic reaction at various concentrations (110-586 mg/dL) of mouse blood glucose. In this technique, assay reagent is immobilized onto amine functionalized silica (AFSiO2) nanoparticles as an electrostatic attraction in order to achieve glucose oxidation on the chip. The assay reagent immobilized AFSiO2 nanoparticles develop a semi-transparent reaction platform, which is technically a suitable chip to analyze by a camera module. The oxidized glucose then produces a green color according to the glucose concentration and is analyzed by the camera module as a photon detection technique; the photon number decreases when the glucose concentration increases. The combination of these components, the CMOS image sensor and enzyme immobilized PET film chip, constitute a compact, accurate, inexpensive, precise, digital, highly sensitive, specific, and optical glucose-sensing approach for POC diagnosis.

  11. Positron source investigation by using CLIC drive beam for Linac-LHC based e+p collider

    Science.gov (United States)

    Arιkan, Ertan; Aksakal, Hüsnü

    2012-08-01

    Three different methods which are alternately conventional, Compton backscattering and Undulator based methods employed for the production of positrons. The positrons to be used for e+p collisions in a Linac-LHC (Large Hadron Collider) based collider have been studied. The number of produced positrons as a function of drive beam energy and optimum target thickness has been determined. Three different targets have been used as a source investigation which are W75-Ir25, W75-Ta25, and W75-Re25 for three methods. Estimated number of the positrons has been performed with FLUKA simulation code. Then, these produced positrons are used for following Adiabatic matching device (AMD) and capture efficiency is determined. Then e+p collider luminosity corresponding to the methods mentioned above have been calculated by CAIN code.

  12. Positron emission tomography displacement sensitivity: predicting binding potential change for positron emission tomography tracers based on their kinetic characteristics.

    Science.gov (United States)

    Morris, Evan D; Yoder, Karmen K

    2007-03-01

    There is great interest in positron emission tomography (PET) as a noninvasive assay of fluctuations in synaptic neurotransmitter levels, but questions remain regarding the optimal choice of tracer for such a task. A mathematical method is proposed for predicting the utility of any PET tracer as a detector of changes in the concentration of an endogenous competitor via displacement of the tracer (a.k.a., its 'vulnerability' to competition). The method is based on earlier theoretical work by Endres and Carson and by the authors. A tracer-specific predictor, the PET Displacement Sensitivity (PDS), is calculated from compartmental model simulations of the uptake and retention of dopaminergic radiotracers in the presence of transient elevations of dopamine (DA). The PDS predicts the change in binding potential (DeltaBP) for a given change in receptor occupancy because of binding by the endogenous competitor. Simulations were performed using estimates of tracer kinetic parameters derived from the literature. For D(2)/D(3) tracers, the calculated PDS indices suggest a rank order for sensitivity to displacement by DA as follows: raclopride (highest sensitivity), followed by fallypride, FESP, FLB, NMSP, and epidepride (lowest). Although the PDS takes into account the affinity constant for the tracer at the binding site, its predictive value cannot be matched by either a single equilibrium constant, or by any one rate constant of the model. Values for DeltaBP have been derived from published studies that employed comparable displacement paradigms with amphetamine and a D(2)/D(3) tracer. The values are in good agreement with the PDS-predicted rank order of sensitivity to displacement. PMID:16788713

  13. Camera calibration method of binocular stereo vision based on OpenCV

    Science.gov (United States)

    Zhong, Wanzhen; Dong, Xiaona

    2015-10-01

    Camera calibration, an important part of the binocular stereo vision research, is the essential foundation of 3D reconstruction of the spatial object. In this paper, the camera calibration method based on OpenCV (open source computer vision library) is submitted to make the process better as a result of obtaining higher precision and efficiency. First, the camera model in OpenCV and an algorithm of camera calibration are presented, especially considering the influence of camera lens radial distortion and decentering distortion. Then, camera calibration procedure is designed to compute those parameters of camera and calculate calibration errors. High-accurate profile extraction algorithm and a checkboard with 48 corners have also been used in this part. Finally, results of calibration program are presented, demonstrating the high efficiency and accuracy of the proposed approach. The results can reach the requirement of robot binocular stereo vision.

  14. Time resolution in scintillator based detectors for positron emission tomography

    International Nuclear Information System (INIS)

    In the domain of medical photon detectors L(Y)SO scintillators are used for positron emission tomography (PET). The interest for time of flight (TOF) in PET is increasing since measurements have shown that new crystals like L(Y)SO coupled to state of the art photodetectors, e.g. silicon photomultipliers (SiPM), can reach coincidence time resolutions (CTRs) of far below 500ps FWHM. To achieve these goals it is important to study the processe in the whole detection chain, i.e. the high energy particle or gamma interaction in the crystal, the scintillation process itself, the light propagation in the crystal with the light transfer to the photodetector, and the electronic readout. In this thesis time resolution measurements for a PET like system are performed in a coincidence setup utilizing the ultra fast amplifier discriminator NINO. We found that the time-over-threshold energy information provided by NINO shows a degradation in energy resolution for higher SiPM bias voltages. This is a consequence of the increasing dark count rate (DCR) of the SiPM with higher bias voltages together with the exponential decay of the signal. To overcome this problem and to operate the SiPM at its optimum voltage in terms of timing we developed a new electronic board that employs NINO only as a low noise leading edge discriminator together with an analog amplifier which delivers the energy information. With this new electronic board we indeed improved the measured CTR by about 15%. To study the limits of time resolution in more depth we measured the CTR with 2x2x3mm3 LSO:Ce codoped 0.4%Ca crystals coupled to commercially available SiPMs (Hamamatsu S10931-50P MPPC) and achieved a CTR of 108±5ps FWHM at an energy of 511keV. We determined the influence of the data acquisition system and the electronics on the CTR to be 27±2ps FWHM and thus negligible. To quantitatively understand the measured values, we developed a Monte Carlo simulation tool in MATLAB that incorporates the timing

  15. Prism-based single-camera system for stereo display

    Science.gov (United States)

    Zhao, Yue; Cui, Xiaoyu; Wang, Zhiguo; Chen, Hongsheng; Fan, Heyu; Wu, Teresa

    2016-06-01

    This paper combines the prism and single camera and puts forward a method of stereo imaging with low cost. First of all, according to the principle of geometrical optics, we can deduce the relationship between the prism single-camera system and dual-camera system, and according to the principle of binocular vision we can deduce the relationship between binoculars and dual camera. Thus we can establish the relationship between the prism single-camera system and binoculars and get the positional relation of prism, camera, and object with the best effect of stereo display. Finally, using the active shutter stereo glasses of NVIDIA Company, we can realize the three-dimensional (3-D) display of the object. The experimental results show that the proposed approach can make use of the prism single-camera system to simulate the various observation manners of eyes. The stereo imaging system, which is designed by the method proposed by this paper, can restore the 3-D shape of the object being photographed factually.

  16. NARROW FIELD-OF-VIEW VISUAL ODOMETRY BASED ON A FOCUSED PLENOPTIC CAMERA

    OpenAIRE

    Zeller, N.; Quint, F.; U. Stilla

    2015-01-01

    In this article we present a new method for visual odometry based on a focused plenoptic camera. This method fuses the depth data gained by a monocular Simultaneous Localization and Mapping (SLAM) algorithm and the one received from a focused plenoptic camera. Our algorithm uses the depth data and the totally focused images supplied by the plenoptic camera to run a real-time semi-dense direct SLAM algorithm. Based on this combined approach, the scale ambiguity of a monocular SLAM sys...

  17. Camera calibration based on the back projection process

    International Nuclear Information System (INIS)

    Camera calibration plays a crucial role in 3D measurement tasks of machine vision. In typical calibration processes, camera parameters are iteratively optimized in the forward imaging process (FIP). However, the results can only guarantee the minimum of 2D projection errors on the image plane, but not the minimum of 3D reconstruction errors. In this paper, we propose a universal method for camera calibration, which uses the back projection process (BPP). In our method, a forward projection model is used to obtain initial intrinsic and extrinsic parameters with a popular planar checkerboard pattern. Then, the extracted image points are projected back into 3D space and compared with the ideal point coordinates. Finally, the estimation of the camera parameters is refined by a non-linear function minimization process. The proposed method can obtain a more accurate calibration result, which is more physically useful. Simulation and practical data are given to demonstrate the accuracy of the proposed method. (paper)

  18. Brazilian experience in characterization of solitary pulmonary nodules using 18-fluorodeoxyglucose on camera-based PET

    International Nuclear Information System (INIS)

    Introduction: Positron emission tomography (PET) using 18-fluorodeoxyglucose (18F-FDG), showing increased 18F-FDG uptake and retention in malignant cells, has proved useful to differentiate malignant from benign pulmonary nodules. An accurate diagnosis of pulmonary cancer represents a clinical challenge. This could be even more significant in Latin America, where the incidence of infectious granulomas is high. However, the high cost of dedicated- PET studies has prevented widespread application of this technique. Hybrid PET is a new approach to tumor imaging using 18F-FDG. In our country, such a system was introduced in 1998. These systems offer the possibility to produce diagnostic quality images of 18F-FDG body distribution, making metabolic scans potentially available. Objective : The aim of this study was to determine the diagnostic value of F-18-FDG scan using a hybrid PET in characterizing pulmonary nodules as benign or malignant. Methods: We evaluated 62 patients (50 male, 38-79y) with indeterminate solitary pulmonary nodules after computed tomography (CT) screening. 18F-FDG scans were performed on a camera-based PET (MCD Vertex-plus Adac) after injection of 18-F-fluorodeoxyglucose intravenously. Image acquisition began after 1 hour. Qualitative analysis of the images was performed by visual identification of areas of increase (positive) or absence (negative)of FDG uptake. All results were assessed on basis of histology or clinical/radiological follow-up. Results : Twenty-one patients (33.9%) showed a marked increase in FDG uptake and underwent invasive intervention (biopsy or thoracotomy). Histopathological evaluation revealed malignant disease in eighteen of these patients and benign disease in three of them (positive predictive value = 85.7%). Forty-one patients (66.1%) showed absence of FDG uptake. Fourteen of them underwent surgical procedure. Malignancy was found in only one. Twenty-seven patients with negative FDG studies are being followed up with a

  19. Online self-camera orientation based on laser metrology and computer algorithms

    Science.gov (United States)

    Rodríguez, J. Apolinar Muñoz

    2011-12-01

    An online self-camera orientation for mobile vision is presented. In this technique, the camera orientation is determined during the vision task. This procedure is carried out by Bezier networks of a laser line. Here, the camera orientation is calibrated when the camera is turned during the vision task. Also, the networks perform the three-dimensional vision. The network structure is built based on the behavior of the line shifting, which is provided by the surface depth. From this structure, the initial calibration and the online self-camera orientation are deduced. The proposed technique avoids calibrated references and physical measurements, which are used in the traditional calibration of camera orientation. Thus, calibration limitations caused by camera orientation modifications are overcome to perform the three-dimensional vision. Therefore, the proposed self-camera orientation improves the accuracy and performance of the mobile vision. It is because online data of calibrated references are not passed to the vision system. This procedure represents a contribution in the field of the calibration of camera orientation. To elucidate this contribution, an evaluation is performed based on the reported methods of self-calibration of camera orientation. Also, the time processing is described.

  20. Wireless capsule endoscopy video reduction based on camera motion estimation.

    Science.gov (United States)

    Liu, Hong; Pan, Ning; Lu, Heng; Song, Enmin; Wang, Qian; Hung, Chih-Cheng

    2013-04-01

    Wireless capsule endoscopy (WCE) is a novel technology aiming for investigating the diseases and abnormalities in small intestine. The major drawback of WCE examination is that it takes a long time to examine the whole WCE video. In this paper, we present a new reduction scheme for WCE video to reduce the examination time. To achieve this task, a WCE video motion model is proposed. Under this motion model, the WCE imaging motion is estimated in two stages (the coarse level and the fine level). In the coarse level, the WCE camera motion is estimated with a combination of Bee Algorithm and Mutual Information. In the fine level, the local gastrointestinal tract motion is estimated with SIFT flow. Based on the result of WCE imaging motion estimation, the reduction scheme preserves key images in WCE video with scene changes. From experimental results, we notice that the proposed motion model is suitable for the motion estimation in successive WCE images. Through the comparison with APRS and FCM-NMF scheme, our scheme can produce an acceptable reduction sequence for browsing and examination. PMID:22868484

  1. A bionic camera-based polarization navigation sensor.

    Science.gov (United States)

    Wang, Daobin; Liang, Huawei; Zhu, Hui; Zhang, Shuai

    2014-07-21

    Navigation and positioning technology is closely related to our routine life activities, from travel to aerospace. Recently it has been found that Cataglyphis (a kind of desert ant) is able to detect the polarization direction of skylight and navigate according to this information. This paper presents a real-time bionic camera-based polarization navigation sensor. This sensor has two work modes: one is a single-point measurement mode and the other is a multi-point measurement mode. An indoor calibration experiment of the sensor has been done under a beam of standard polarized light. The experiment results show that after noise reduction the accuracy of the sensor can reach up to 0.3256°. It is also compared with GPS and INS (Inertial Navigation System) in the single-point measurement mode through an outdoor experiment. Through time compensation and location compensation, the sensor can be a useful alternative to GPS and INS. In addition, the sensor also can measure the polarization distribution pattern when it works in multi-point measurement mode.

  2. Only Image Based for the 3d Metric Survey of Gothic Structures by Using Frame Cameras and Panoramic Cameras

    Science.gov (United States)

    Pérez Ramos, A.; Robleda Prieto, G.

    2016-06-01

    Indoor Gothic apse provides a complex environment for virtualization using imaging techniques due to its light conditions and architecture. Light entering throw large windows in combination with the apse shape makes difficult to find proper conditions to photo capture for reconstruction purposes. Thus, documentation techniques based on images are usually replaced by scanning techniques inside churches. Nevertheless, the need to use Terrestrial Laser Scanning (TLS) for indoor virtualization means a significant increase in the final surveying cost. So, in most cases, scanning techniques are used to generate dense point clouds. However, many Terrestrial Laser Scanner (TLS) internal cameras are not able to provide colour images or cannot reach the image quality that can be obtained using an external camera. Therefore, external quality images are often used to build high resolution textures of these models. This paper aims to solve the problem posted by virtualizing indoor Gothic churches, making that task more affordable using exclusively techniques base on images. It reviews a previous proposed methodology using a DSRL camera with 18-135 lens commonly used for close range photogrammetry and add another one using a HDR 360° camera with four lenses that makes the task easier and faster in comparison with the previous one. Fieldwork and office-work are simplified. The proposed methodology provides photographs in such a good conditions for building point clouds and textured meshes. Furthermore, the same imaging resources can be used to generate more deliverables without extra time consuming in the field, for instance, immersive virtual tours. In order to verify the usefulness of the method, it has been decided to apply it to the apse since it is considered one of the most complex elements of Gothic churches and it could be extended to the whole building.

  3. A real-time camera calibration system based on OpenCV

    Science.gov (United States)

    Zhang, Hui; Wang, Hua; Guo, Huinan; Ren, Long; Zhou, Zuofeng

    2015-07-01

    Camera calibration is one of the essential steps in the computer vision research. This paper describes a real-time OpenCV based camera calibration system, and developed and implemented in the VS2008 environment. Experimental results prove that the system to achieve a simple and fast camera calibration, compared with MATLAB, higher precision and does not need manual intervention, and can be widely used in various computer vision system.

  4. Cooperative Moving Object Segmentation using Two Cameras based on Background Subtraction and Image Registration

    Directory of Open Access Journals (Sweden)

    Zhigao Cui

    2014-03-01

    Full Text Available Moving camera, such as PTZ (pan-tilt-zoom camera, has been widely applied in visual surveillance system. However, it’s difficult to extract moving objects because of the dynamic background caused by the camera motion. In this paper, a novel framework for moving object segmentation exploiting two cameras collaboration is presented by combining background subtraction and image registration method. The proposed method uses one static camera to capture large-view images at low resolution, and one moving camera (i.e. PTZ camera to capture local-view images at high resolution. Different with methods using a single moving camera, the moving objects can be effectively segmented in the static camera image by background subtraction method. Then image registration method can be applied to extract moving region in the moving camera image. To deal with the resolution and intensity discrepancy between two synchronized images, we design a practical three-step image registration method, which has higher registration accuracy than traditional feature based method. Experimental results on outdoor scene demonstrate the effectiveness and robustness of proposed approach.

  5. Modeling and analysis of all the positron emitters simulation steps generated during the treatment phase in proton-therapy - from the beam to the PET camera - for the follow-up of the irradiations

    International Nuclear Information System (INIS)

    The proton-therapy is an innovative technique for cancer treatment in critical areas, such as the eye or the head. Even though the interaction of protons with human tissues is a well-known physical phenomenon which gives rise to the proton-therapy, there are uncertainties on the proton trajectory due to heterogeneities in the irradiated tissue, the calculation of the beam parameters in the planning treatment affects the theoretical benefits of the protons and the chosen dose delivery process. Thus, methods for irradiation quality control have been suggested. Most of them rely on utilizing the mapping of the positron emitters generated during the irradiation. They are detectable and quantifiable thanks to the use of the PET (positron emitter tomography), a medical imaging technique mainly used for the cancer expansion assessment. PET acquisitions were proposed and then realized on phantoms and patients after proton-therapy. The quality control relies on comparing the measured radioactive distribution to the simulated β+ distribution. The modeling of the positron activity generated by protons in the irradiated area can be divided into three steps: the simulation of the proton beam, the modeling of the proton interactions in the irradiated object and the modeling of the PET acquisition. Different ways of simulating these steps are possible. This PhD work suggests different ways of modeling the three steps and evaluates theirs benefits for the irradiation quality control. We have restrained our evaluation to the verification of the proton range and to the uncertainties related to the proton range. This research work utilizes on irradiations in homogenous and inhomogeneous areas in a head model. We have compared the uncertainties on the proton range measured thanks to the following β+ distributions: 1) A β+ distribution obtained by modeling the irradiation with a proton beam simulated analytically and simulated using the complete Monte Carlo method; 2) A Monte Carlo

  6. Ultra Fast X-ray Streak Camera for TIM Based Platforms

    Energy Technology Data Exchange (ETDEWEB)

    Marley, E; Shepherd, R; Fulkerson, E S; James, L; Emig, J; Norman, D

    2012-05-02

    Ultra fast x-ray streak cameras are a staple for time resolved x-ray measurements. There is a need for a ten inch manipulator (TIM) based streak camera that can be fielded in a newer large scale laser facility. The LLNL ultra fast streak camera's drive electronics have been upgraded and redesigned to fit inside a TIM tube. The camera also has a new user interface that allows for remote control and data acquisition. The system has been outfitted with a new sensor package that gives the user more operational awareness and control.

  7. Thematic investigations in France based on metric camera imagery

    Science.gov (United States)

    Lecordix, P. Y.

    1985-04-01

    Spacelab metric camera images were used to study geological features, land use, and forestry, and were compared with other data sources used in cartography. For geological surveys, the metric camera is comparable to SPOT satellite, and better than LANDSAT. For land use, Spacelab images are unsatisfactory in urban areas; woodland and scrub is over-represented due to shadow effects and inclusion of water covered with aquatic plants; forest distribution is well reproduced; sandy features are well identified. For forest inventories, results are surprisingly good, e.g., only 4% error in distinguishing resinous and leafy trees.

  8. A luminescence imaging system based on a CCD camera

    DEFF Research Database (Denmark)

    Duller, G.A.T.; Bøtter-Jensen, L.; Markey, B.G.

    1997-01-01

    to photographic systems, in order to obtain spatially resolved data. However, the former option is extremely expensive and it is difficult to obtain quantitative data from the latter. This paper describes the use of a CCD camera for imaging both thermoluminescence and optically stimulated luminescence. The system...... described here has a maximum spatial resolution of 17 mu m; though this may be varied under software control to alter the signal-to-noise ratio. The camera has been mounted on a Riso automated TL/OSL reader, and both the reader and the CCD are under computer control. In the near u.v and blue part...

  9. A four-lens based plenoptic camera for depth measurements

    Science.gov (United States)

    Riou, Cécile; Deng, Zhiyuan; Colicchio, Bruno; Lauffenburger, Jean-Philippe; Kohler, Sophie; Haeberlé, Olivier; Cudel, Christophe

    2015-04-01

    In previous works, we have extended the principles of "variable homography", defined by Zhang and Greenspan, for measuring height of emergent fibers on glass and non-woven fabrics. This method has been defined for working with fabric samples progressing on a conveyor belt. Triggered acquisition of two successive images was needed to perform the 3D measurement. In this work, we have retained advantages of homography variable for measurements along Z axis, but we have reduced acquisitions number to a single one, by developing an acquisition device characterized by 4 lenses placed in front of a single image sensor. The idea is then to obtain four projected sub-images on a single CCD sensor. The device becomes a plenoptic or light field camera, capturing multiple views on the same image sensor. We have adapted the variable homography formulation for this device and we propose a new formulation to calculate a depth with plenoptic cameras. With these results, we have transformed our plenoptic camera in a depth camera and first results given are very promising.

  10. Multi-camera synchronization core implemented on USB3 based FPGA platform

    Science.gov (United States)

    Sousa, Ricardo M.; Wäny, Martin; Santos, Pedro; Dias, Morgado

    2015-03-01

    Centered on Awaiba's NanEye CMOS image sensor family and a FPGA platform with USB3 interface, the aim of this paper is to demonstrate a new technique to synchronize up to 8 individual self-timed cameras with minimal error. Small form factor self-timed camera modules of 1 mm x 1 mm or smaller do not normally allow external synchronization. However, for stereo vision or 3D reconstruction with multiple cameras as well as for applications requiring pulsed illumination it is required to synchronize multiple cameras. In this work, the challenge of synchronizing multiple selftimed cameras with only 4 wire interface has been solved by adaptively regulating the power supply for each of the cameras. To that effect, a control core was created to constantly monitor the operating frequency of each camera by measuring the line period in each frame based on a well-defined sampling signal. The frequency is adjusted by varying the voltage level applied to the sensor based on the error between the measured line period and the desired line period. To ensure phase synchronization between frames, a Master-Slave interface was implemented. A single camera is defined as the Master, with its operating frequency being controlled directly through a PC based interface. The remaining cameras are setup in Slave mode and are interfaced directly with the Master camera control module. This enables the remaining cameras to monitor its line and frame period and adjust their own to achieve phase and frequency synchronization. The result of this work will allow the implementation of smaller than 3mm diameter 3D stereo vision equipment in medical endoscopic context, such as endoscopic surgical robotic or micro invasive surgery.

  11. Handheld Longwave Infrared Camera Based on Highly-Sensitive Quantum Well Infrared Photodetectors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a compact handheld longwave infrared camera based on quantum well infrared photodetector (QWIP) focal plane array (FPA) technology. Based on...

  12. Principal axis-based correspondence between multiple cameras for people tracking.

    Science.gov (United States)

    Hu, Weiming; Hu, Min; Zhou, Xue; Tan, Tieniu; Lou, Jianguang; Maybank, Steve

    2006-04-01

    Visual surveillance using multiple cameras has attracted increasing interest in recent years. Correspondence between multiple cameras is one of the most important and basic problems which visual surveillance using multiple cameras brings. In this paper, we propose a simple and robust method, based on principal axes of people, to match people across multiple cameras. The correspondence likelihood reflecting the similarity of pairs of principal axes of people is constructed according to the relationship between "ground-points" of people detected in each camera view and the intersections of principal axes detected in different camera views and transformed to the same view. Our method has the following desirable properties: 1) Camera calibration is not needed. 2) Accurate motion detection and segmentation are less critical due to the robustness of the principal axis-based feature to noise. 3) Based on the fused data derived from correspondence results, positions of people in each camera view can be accurately located even when the people are partially occluded in all views. The experimental results on several real video sequences from outdoor environments have demonstrated the effectiveness, efficiency, and robustness of our method. PMID:16566515

  13. Dual-head gamma camera 2-[fluorine-18]-fluoro-2-deoxy-d-glucose positron emission tomography in oncological patients: effects of non-uniform attenuation correction on lesion detection

    Energy Technology Data Exchange (ETDEWEB)

    Zimny, M.; Kaiser, H.J.; Cremerius, U.; Reinartz, P.; Schreckenberger, M.; Sabri, O.; Buell, U. [Department of Nuclear Medicine, University Hospital, Aachen University of Technology (Germany)

    1999-08-01

    The purpose of this study was to evaluate a dual head coincidence gamma camera (DH-PET) equipped with single-photon transmission for 2-[fluorine-18]-fluoro-2-deoxy-d-glucose (FDG) imaging in oncological patients. Forty-five patients with known or suspected malignancies, scheduled for a positron emission tomography (PET) scan, were first studied with a dedicated ring PET and subsequently with DH-PET. All patients underwent measured attenuation correction using germanium-68 rod sources for ring PET and caesium-137 sources for DH-PET. Ring PET emission scan was started 64{+-}17 min after intravenous administration of 235{+-}42 MBq FDG. DH-PET emission followed 160{+-}32 min after i.v. FDG. Attenuation-corrected and non-attenuation-corrected images were reconstructed for ring PET and DH-PET. The image sets were evaluated independently by three observers blinded to clinical data and to results of conventional imaging. Attenuation-corrected ring PET as the standard of reference depicted 118 lesions, non-attenuation-corrected ring PET 113 (96%) lesions, and attenuation-corrected DH-PET and non-attenuation-corrected DH-PET, 101 (86%) and 84 (71%) lesions, respectively (P<0.05). The lesion detection rate of attenuation-corrected and non-attenuation-corrected DH-PET was almost similar for lesions >20 mm, whereas attenuation correction increased the detection rate from 60% to 80% for lesions {<=}20 mm (P<0.01). A patient-based analysis revealed concordant results relative to attenuation-corrected ring PET for non-attenuation-corrected ring PET, attenuation-corrected DH-PET and non-attenuation-corrected DH-PET in 42 (93%), 36 (80%) and 31 (69%) patients, respectively. Differences might have influenced patient management in two (4%), six (13%) and ten (22%) patients, respectively. In conclusion, measured attenuation correction markedly improves the lesion detection capability of DH-PET. With measured attenuation correction the diagnostic performance of DH-PET is closer to that

  14. A new depth measuring method for stereo camera based on converted relative extrinsic parameters

    Science.gov (United States)

    Song, Xiaowei; Yang, Lei; Wu, Yuanzhao; Liu, Zhong

    2013-08-01

    This paper presents a new depth measuring method for the dual-view stereo camera based on the converted relative extrinsic parameters. The relative extrinsic parameters between left and right cameras, which obtained by the stereo camera calibration, can indicate the geometric relationships among the left principle point, right principle point and convergent point. Furthermore, the geometry which consists of the corresponding points and the object can be obtained by making conversion between the corresponding points and principle points. Therefore, the depth of the object can be calculated based on the obtained geometry. The correctness of the proposed method has been proved in 3ds Max, and the validity of the method has been verified on the binocular stereo system of flea2 cameras. We compared our experimental results with the popular RGB-D camera (e.g. Kinect). The comparison results show that our method is reliable and efficient, without epipolar rectification.

  15. Simulation-based camera navigation training in laparoscopy-a randomized trial

    DEFF Research Database (Denmark)

    Nilsson, Cecilia; Sorensen, Jette Led; Konge, Lars;

    2016-01-01

    BACKGROUND: Inexperienced operating assistants are often tasked with the important role of handling camera navigation during laparoscopic surgery. Incorrect handling can lead to poor visualization, increased operating time, and frustration for the operating surgeon-all of which can compromise...... patient safety. The objectives of this trial were to examine how to train laparoscopic camera navigation and to explore the transfer of skills to the operating room. MATERIALS AND METHODS: A randomized, single-center superiority trial with three groups: The first group practiced simulation-based camera...... navigation tasks (camera group), the second group practiced performing a simulation-based cholecystectomy (procedure group), and the third group received no training (control group). Participants were surgical novices without prior laparoscopic experience. The primary outcome was assessment of camera...

  16. Unified Camera Tamper Detection Based on Edge and Object Information

    Directory of Open Access Journals (Sweden)

    Gil-beom Lee

    2015-05-01

    Full Text Available In this paper, a novel camera tamper detection algorithm is proposed to detect three types of tamper attacks: covered, moved and defocused. The edge disappearance rate is defined in order to measure the amount of edge pixels that disappear in the current frame from the background frame while excluding edges in the foreground. Tamper attacks are detected if the difference between the edge disappearance rate and its temporal average is larger than an adaptive threshold reflecting the environmental conditions of the cameras. The performance of the proposed algorithm is evaluated for short video sequences with three types of tamper attacks and for 24-h video sequences without tamper attacks; the algorithm is shown to achieve acceptable levels of detection and false alarm rates for all types of tamper attacks in real environments.

  17. On camera-based smoke and gas leakage detection

    Energy Technology Data Exchange (ETDEWEB)

    Nyboe, Hans Olav

    1999-07-01

    Gas detectors are found in almost every part of industry and in many homes as well. An offshore oil or gas platform may host several hundred gas detectors. The ability of the common point and open path gas detectors to detect leakages depends on their location relative to the location of a gas cloud. This thesis describes the development of a passive volume gas detector, that is, one than will detect a leakage anywhere in the area monitored. After the consideration of several detection techniques it was decided to use an ordinary monochrome camera as sensor. Because a gas leakage may perturb the index of refraction, parts of the background appear to be displaced from their true positions, and it is necessary to develop algorithms that can deal with small differences between images. The thesis develops two such algorithms. Many image regions can be defined and several feature values can be computed for each region. The value of the features depends on the pattern in the image regions. The classes studied in this work are: reference, gas, smoke and human activity. Test show that observation belonging to these classes can be classified fairly high accuracy. The features in the feature set were chosen and developed for this particular application. Basically, the features measure the magnitude of pixel differences, size of detected phenomena and image distortion. Interesting results from many experiments are presented. Most important, the experiments show that apparent motion caused by a gas leakage or heat convection can be detected by means of a monochrome camera. Small leakages of methane can be detected at a range of about four metres. Other gases, such as butane, where the densities differ more from the density of air than the density of methane does, can be detected further from the camera. Gas leakages large enough to cause condensation have been detected at a camera distance of 20 metres. 59 refs., 42 figs., 13 tabs.

  18. CAMERA-BASED SOFTWARE IN REHABILITATION/THERAPY INTERVENTION (extended)

    DEFF Research Database (Denmark)

    Brooks, Anthony Lewis

    2014-01-01

    on specific hardware. Adaptable means that human tracking and created artefact interaction in the camera field of view is relatively easily changed as one desires via a user-friendly GUI. The significance of having both available for contemporary intervention is argued. Conclusions are that the mature, robust......, and accessible software EyeCon is a potent and significant user-friendly tool in the field of rehabilitation/therapy and warrants wider exploration....

  19. Spectrally-Tunable Infrared Camera Based on Highly-Sensitive Quantum Well Infrared Photodetectors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a SPECTRALLY-TUNABLE INFRARED CAMERA based on quantum well infrared photodetector (QWIP) focal plane array (FPA) technology. This will build...

  20. FIR Detectors/Cameras Based on GaN and Si Field-Effect Devices Project

    Data.gov (United States)

    National Aeronautics and Space Administration — SETI proposes to develop GaN and Si based multicolor FIR/THz cameras with detector elements and readout, signal processing electronics integrated on a single chip....

  1. Study of CT-based positron range correction in high resolution 3D PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Cal-Gonzalez, J., E-mail: jacobo@nuclear.fis.ucm.es [Grupo de Fisica Nuclear, Dpto. Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Herraiz, J.L. [Grupo de Fisica Nuclear, Dpto. Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Espana, S. [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Vicente, E. [Grupo de Fisica Nuclear, Dpto. Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Instituto de Estructura de la Materia, Consejo Superior de Investigaciones Cientificas (CSIC), Madrid (Spain); Herranz, E. [Grupo de Fisica Nuclear, Dpto. Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Desco, M. [Unidad de Medicina y Cirugia Experimental, Hospital General Universitario Gregorio Maranon, Madrid (Spain); Vaquero, J.J. [Dpto. de Bioingenieria e Ingenieria Espacial, Universidad Carlos III, Madrid (Spain); Udias, J.M. [Grupo de Fisica Nuclear, Dpto. Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain)

    2011-08-21

    Positron range limits the spatial resolution of PET images and has a different effect for different isotopes and positron propagation materials. Therefore it is important to consider it during image reconstruction, in order to obtain optimal image quality. Positron range distributions for most common isotopes used in PET in different materials were computed using the Monte Carlo simulations with PeneloPET. The range profiles were introduced into the 3D OSEM image reconstruction software FIRST and employed to blur the image either in the forward projection or in the forward and backward projection. The blurring introduced takes into account the different materials in which the positron propagates. Information on these materials may be obtained, for instance, from a segmentation of a CT image. The results of introducing positron blurring in both forward and backward projection operations was compared to using it only during forward projection. Further, the effect of different shapes of positron range profile in the quality of the reconstructed images with positron range correction was studied. For high positron energy isotopes, the reconstructed images show significant improvement in spatial resolution when positron range is taken into account during reconstruction, compared to reconstructions without positron range modeling.

  2. Calibration of line structured light vision system based on camera's projective center

    Institute of Scientific and Technical Information of China (English)

    ZHU Ji-gui; LI Yan-jun; YE Sheng-hua

    2005-01-01

    Based on the characteristics of line structured light sensor, a speedy method for the calibration was established. With the coplanar reference target, the spacial pose between camera and optical plane can be calibrated by using of the camera's projective center and the light's information in the camera's image surface. Without striction to the movement of the coplanar reference target and assistant adjustment equipment, this calibration method can be implemented. This method has been used and decreased the cost of calibration equipment, simplified the calibration procedure, improved calibration efficiency. Using experiment, the sensor can attain relative accuracy about 0.5%, which indicates the rationality and effectivity of this method.

  3. A descriptive geometry based method for total and common cameras fields of view optimization

    Science.gov (United States)

    Salmane, H.; Ruichek, Y.; Khoudour, L.

    2011-07-01

    The presented work is conducted in the framework of the ANR-VTT PANsafer project (Towards a safer level crossing). One of the objectives of the project is to develop a video surveillance system that will be able to detect and recognize potential dangerous situation around level crossings. This paper addresses the problem of cameras positioning and orientation in order to view optimally monitored scenes. In general, adjusting cameras position and orientation is achieved experimentally and empirically by considering geometrical different configurations. This step requires a lot of time to adjust approximately the total and common fields of view of the cameras, especially when constrained environments, like level crossing environments, are considered. In order to simplify this task and to get more precise cameras positioning and orientation, we propose in this paper a method that optimizes automatically the total and common cameras fields with respect to the desired scene. Based on descriptive geometry, the method estimates the best cameras position and orientation by optimizing surfaces of 2D domains that are obtained by projecting/intersecting the field of view of each camera on/with horizontal and vertical planes. The proposed method is evaluated and tested to demonstrate its effectiveness.

  4. A novel method based on two cameras for accurate estimation of arterial oxygen saturation

    OpenAIRE

    Liu, He; Ivanov, Kamen; Wang, Yadong; Wang, Lei

    2015-01-01

    Background Photoplethysmographic imaging (PPGi) that is based on camera allows acquiring photoplethysmogram and measuring physiological parameters such as pulse rate, respiration rate and perfusion level. It has also shown potential for estimation of arterial oxygen saturation (SaO2). However, there are some technical limitations such as optical shunting, different camera sensitivity to different light spectra, different AC-to-DC ratios (the peak-to-peak amplitude to baseline ratio) of the PP...

  5. A Sparse Representation-Based Deployment Method for Optimizing the Observation Quality of Camera Networks

    OpenAIRE

    Guangming Shi; Xiaotian Wang; Fei Qi; Chang Wang

    2013-01-01

    Deployment is a critical issue affecting the quality of service of camera networks. The deployment aims at adopting the least number of cameras to cover the whole scene, which may have obstacles to occlude the line of sight, with expected observation quality. This is generally formulated as a non-convex optimization problem, which is hard to solve in polynomial time. In this paper, we propose an efficient convex solution for deployment optimizing the observation quality based on a novel aniso...

  6. Empirical Study on Designing of Gaze Tracking Camera Based on the Information of User's Head Movement.

    Science.gov (United States)

    Pan, Weiyuan; Jung, Dongwook; Yoon, Hyo Sik; Lee, Dong Eun; Naqvi, Rizwan Ali; Lee, Kwan Woo; Park, Kang Ryoung

    2016-01-01

    Gaze tracking is the technology that identifies a region in space that a user is looking at. Most previous non-wearable gaze tracking systems use a near-infrared (NIR) light camera with an NIR illuminator. Based on the kind of camera lens used, the viewing angle and depth-of-field (DOF) of a gaze tracking camera can be different, which affects the performance of the gaze tracking system. Nevertheless, to our best knowledge, most previous researches implemented gaze tracking cameras without ground truth information for determining the optimal viewing angle and DOF of the camera lens. Eye-tracker manufacturers might also use ground truth information, but they do not provide this in public. Therefore, researchers and developers of gaze tracking systems cannot refer to such information for implementing gaze tracking system. We address this problem providing an empirical study in which we design an optimal gaze tracking camera based on experimental measurements of the amount and velocity of user's head movements. Based on our results and analyses, researchers and developers might be able to more easily implement an optimal gaze tracking system. Experimental results show that our gaze tracking system shows high performance in terms of accuracy, user convenience and interest. PMID:27589768

  7. Empirical Study on Designing of Gaze Tracking Camera Based on the Information of User's Head Movement.

    Science.gov (United States)

    Pan, Weiyuan; Jung, Dongwook; Yoon, Hyo Sik; Lee, Dong Eun; Naqvi, Rizwan Ali; Lee, Kwan Woo; Park, Kang Ryoung

    2016-08-31

    Gaze tracking is the technology that identifies a region in space that a user is looking at. Most previous non-wearable gaze tracking systems use a near-infrared (NIR) light camera with an NIR illuminator. Based on the kind of camera lens used, the viewing angle and depth-of-field (DOF) of a gaze tracking camera can be different, which affects the performance of the gaze tracking system. Nevertheless, to our best knowledge, most previous researches implemented gaze tracking cameras without ground truth information for determining the optimal viewing angle and DOF of the camera lens. Eye-tracker manufacturers might also use ground truth information, but they do not provide this in public. Therefore, researchers and developers of gaze tracking systems cannot refer to such information for implementing gaze tracking system. We address this problem providing an empirical study in which we design an optimal gaze tracking camera based on experimental measurements of the amount and velocity of user's head movements. Based on our results and analyses, researchers and developers might be able to more easily implement an optimal gaze tracking system. Experimental results show that our gaze tracking system shows high performance in terms of accuracy, user convenience and interest.

  8. Laser-based terahertz-field-driven streak camera for the temporal characterization of ultrashort processes

    Energy Technology Data Exchange (ETDEWEB)

    Schuette, Bernd

    2011-09-15

    In this work, a novel laser-based terahertz-field-driven streak camera is presented. It allows for a pulse length characterization of femtosecond (fs) extreme ultraviolet (XUV) pulses by a cross-correlation with terahertz (THz) pulses generated with a Ti:sapphire laser. The XUV pulses are emitted by a source of high-order harmonic generation (HHG) in which an intense near-infrared (NIR) fs laser pulse is focused into a gaseous medium. The design and characterization of a high-intensity THz source needed for the streak camera is also part of this thesis. The source is based on optical rectification of the same NIR laser pulse in a lithium niobate crystal. For this purpose, the pulse front of the NIR beam is tilted via a diffraction grating to achieve velocity matching between NIR and THz beams within the crystal. For the temporal characterization of the XUV pulses, both HHG and THz beams are focused onto a gas target. The harmonic radiation creates photoelectron wavepackets which are then accelerated by the THz field depending on its phase at the time of ionization. This principle adopted from a conventional streak camera and now widely used in attosecond metrology. The streak camera presented here is an advancement of a terahertz-field-driven streak camera implemented at the Free Electron Laser in Hamburg (FLASH). The advantages of the laser-based streak camera lie in its compactness, cost efficiency and accessibility, while providing the same good quality of measurements as obtained at FLASH. In addition, its flexibility allows for a systematic investigation of streaked Auger spectra which is presented in this thesis. With its fs time resolution, the terahertz-field-driven streak camera thereby bridges the gap between attosecond and conventional cameras. (orig.)

  9. Laser-based terahertz-field-driven streak camera for the temporal characterization of ultrashort processes

    International Nuclear Information System (INIS)

    In this work, a novel laser-based terahertz-field-driven streak camera is presented. It allows for a pulse length characterization of femtosecond (fs) extreme ultraviolet (XUV) pulses by a cross-correlation with terahertz (THz) pulses generated with a Ti:sapphire laser. The XUV pulses are emitted by a source of high-order harmonic generation (HHG) in which an intense near-infrared (NIR) fs laser pulse is focused into a gaseous medium. The design and characterization of a high-intensity THz source needed for the streak camera is also part of this thesis. The source is based on optical rectification of the same NIR laser pulse in a lithium niobate crystal. For this purpose, the pulse front of the NIR beam is tilted via a diffraction grating to achieve velocity matching between NIR and THz beams within the crystal. For the temporal characterization of the XUV pulses, both HHG and THz beams are focused onto a gas target. The harmonic radiation creates photoelectron wavepackets which are then accelerated by the THz field depending on its phase at the time of ionization. This principle adopted from a conventional streak camera and now widely used in attosecond metrology. The streak camera presented here is an advancement of a terahertz-field-driven streak camera implemented at the Free Electron Laser in Hamburg (FLASH). The advantages of the laser-based streak camera lie in its compactness, cost efficiency and accessibility, while providing the same good quality of measurements as obtained at FLASH. In addition, its flexibility allows for a systematic investigation of streaked Auger spectra which is presented in this thesis. With its fs time resolution, the terahertz-field-driven streak camera thereby bridges the gap between attosecond and conventional cameras. (orig.)

  10. A Sensor-based SLAM Algorithm for Camera Tracking vin Virtual Studio

    Institute of Scientific and Technical Information of China (English)

    Po Yang; Wenyan Wu; Mansour Moniri; Claude C. Chibelushi

    2008-01-01

    This paper addresses a sensor-based simultaneous localization and mapping (SLAM) algorithm for camera tracking in a virtual studio environment. The traditional camera tracking methods in virtual studios are vision-based or sensor-based. However, the chroma keying process in virtual studios requires color cues, such as blue background, to segment foreground objects to be inserted into images and videos. Chroma keying limits the application of vision-based tracking methods in virtual studios since the background cannot provide enough feature information. Furthermore, the conventional sensor-based tracking approaches suffer from the jitter, drift or expensive computation due to the characteristics of individual sensor system. Therefore, the SLAM techniques from the mobile robot area are first investigated and adapted to the camera tracking area. Then, a sensor-based SLAM extension algorithm for two dimensional (2D) camera tracking in virtual studio is described. Also, a technique called map adjustment is proposed to increase the accuracy and efficiency of the algorithm. The feasibility and robustness of the algorithm is shown by experiments. The simulation results demonstrate that the sensor-based SLAM algorithm can satisfy the fundamental 2D camera tracking requirement in virtual studio environment.

  11. Inertial measurement unit-camera calibration based on incomplete inertial sensor information

    Institute of Scientific and Technical Information of China (English)

    Hong LIU; Yu-long ZHOU; Zhao-peng GU

    2014-01-01

    This paper is concerned with the problem of estimating the relative orientation between an inertial measurement unit (IMU) and a camera. Unlike most existing IMU-camera calibrations, the main challenge in this paper is that the information output from the IMU is incomplete. For example, only two tilt information can be read from the gravity sensor of a smart phone. Despite incomplete inertial information, there are strong restrictions between the IMU and camera coordinate systems. This paper addresses the incomplete information based IMU-camera calibration problem by exploiting the intrinsic restrictions among the coordinate transformations. First, the IMU transformation between two poses is formulated with the unknown IMU information. Then the defective IMU information is restored using the complementary visual information. Finally, the Levenberg-Marquardt (LM) algorithm is applied to estimate the optimal calibration result in noisy environments. Experiments on both synthetic and real data show the validity and robustness of our algorithm.

  12. Multi-camera calibration based on openCV and multi-view registration

    Science.gov (United States)

    Deng, Xiao-ming; Wan, Xiong; Zhang, Zhi-min; Leng, Bi-yan; Lou, Ning-ning; He, Shuai

    2010-10-01

    For multi-camera calibration systems, a method based on OpenCV and multi-view registration combining calibration algorithm is proposed. First of all, using a Zhang's calibration plate (8X8 chessboard diagram) and a number of cameras (with three industrial-grade CCD) to be 9 group images shooting from different angles, using OpenCV to calibrate the parameters fast in the camera. Secondly, based on the corresponding relationship between each camera view, the computation of the rotation matrix and translation matrix is formulated as a constrained optimization problem. According to the Kuhn-Tucker theorem and the properties on the derivative of the matrix-valued function, the formulae of rotation matrix and translation matrix are deduced by using singular value decomposition algorithm. Afterwards an iterative method is utilized to get the entire coordinate transformation of pair-wise views, thus the precise multi-view registration can be conveniently achieved and then can get the relative positions in them(the camera outside the parameters).Experimental results show that the method is practical in multi-camera calibration .

  13. Medium Format Camera Evaluation Based on the Latest Phase One Technology

    Science.gov (United States)

    Tölg, T.; Kemper, G.; Kalinski, D.

    2016-06-01

    In early 2016, Phase One Industrial launched a new high resolution camera with a 100 MP CMOS sensor. CCD sensors excel at ISOs up to 200, but in lower light conditions, exposure time must be increased and Forward Motion Compensation (FMC) has to be employed to avoid smearing the images. The CMOS sensor has an ISO range of up to 6400, which enables short exposures instead of using FMC. This paper aims to evaluate the strengths of each of the sensor types based on real missions over a test field in Speyer, Germany, used for airborne camera calibration. The test field area has about 30 Ground Control Points (GCPs), which enable a perfect scenario for a proper geometric evaluation of the cameras. The test field includes both a Siemen star and scale bars to show any blurring caused by forward motion. The result of the comparison showed that both cameras offer high accuracy photogrammetric results with post processing, including triangulation, calibration, orthophoto and DEM generation. The forward motion effect can be compensated by a fast shutter speed and a higher ISO range of the CMOS-based camera. The results showed no significant differences between cameras.

  14. A Compton camera application for the GAMOS GEANT4-based framework

    Science.gov (United States)

    Harkness, L. J.; Arce, P.; Judson, D. S.; Boston, A. J.; Boston, H. C.; Cresswell, J. R.; Dormand, J.; Jones, M.; Nolan, P. J.; Sampson, J. A.; Scraggs, D. P.; Sweeney, A.; Lazarus, I.; Simpson, J.

    2012-04-01

    Compton camera systems can be used to image sources of gamma radiation in a variety of applications such as nuclear medicine, homeland security and nuclear decommissioning. To locate gamma-ray sources, a Compton camera employs electronic collimation, utilising Compton kinematics to reconstruct the paths of gamma rays which interact within the detectors. The main benefit of this technique is the ability to accurately identify and locate sources of gamma radiation within a wide field of view, vastly improving the efficiency and specificity over existing devices. Potential advantages of this imaging technique, along with advances in detector technology, have brought about a rapidly expanding area of research into the optimisation of Compton camera systems, which relies on significant input from Monte-Carlo simulations. In this paper, the functionality of a Compton camera application that has been integrated into GAMOS, the GEANT4-based Architecture for Medicine-Oriented Simulations, is described. The application simplifies the use of GEANT4 for Monte-Carlo investigations by employing a script based language and plug-in technology. To demonstrate the use of the Compton camera application, simulated data have been generated using the GAMOS application and acquired through experiment for a preliminary validation, using a Compton camera configured with double sided high purity germanium strip detectors. Energy spectra and reconstructed images for the data sets are presented.

  15. Intra-operative nuclear imaging based on positron-emitting radiotracers

    International Nuclear Information System (INIS)

    Positron-emitting radiotracers are an important part of nuclear medical imaging processes. Besides the very famous glucose analog [18F]FDG, many not so well known ones exist, among them the particularly interesting amino acid-based tracers like [18F]FET. Although peri-operative imaging with positron-emitting radiotracers has become state-of- the-art in cases of many types of cancer, their capability is not fully exploited in the operating room yet. In this thesis we explore two intra-operative nuclear imaging modalities exploiting different aspects of positron radiation towards quality assurance in challenging surgical treatment scenarios. The first modality freehand PET provides a tomographic image of a volume of interest and aims at minimizing invasiveness by assisting the surgeon in pinpointing target structures marked with a radiotracer. The second imaging modality epiphanography generates an image of the radiotracer distribution on a surface of interest and aims at providing a means for improving the control of tumor resection margins. The word epiphanography is a compound of the Greek words επιφανεια (epiphaneia) for surface and ζωγραφια (ographia) for image, and hence means the image of the surface similar to the compound τομοζ (tomos) for slice/volume and ζωγραφια (ographia) for image, meaning the image of the volume, i.e. tomography. To our knowledge this is the first use of the word epiphanography in the context of nuclear medical imaging. In this thesis we present our approach to modeling, developing and calibrating these two novel imaging modalities. In addition, we present our work towards their clinical integration. In the case of freehand PET, we have already acquired the first intra-operative datasets of a patient. We present this first experience in the operating room together with our phantom studies. In the case of epiphanography, we present our phantom studies with neurosurgeons towards the integration of this

  16. Decision logic for retreatment of asymptomatic lung cancer recurrence based on positron emission tomography findings

    International Nuclear Information System (INIS)

    Purpose: The purpose of the study was to determine if Positron emission tomography (PET) 2-[F-18] fluoro-2-deoxy-D-glucose (FDG) imaging could detect subclinical local lung cancer recurrence and whether retreatment of such recurrence was feasible and beneficial. Methods and Materials: Twenty patients with biopsy proven lung cancer were studied with Positron emission tomography for the purpose of detecting subclinical lung cancer recurrence over a period of 4.25 years. All patients were treated with external radiation as part or all of their therapy. Twenty patients had baseline PET and computed tomography (CT) studies for comparison with later studies. Surviving patients had a total of 40 sequential PET scans and 35 CT scans. The follow-up interval ranged from 5 to 40 months posttreatment. The differential uptake ratio (DUR) was determined for regions of interest of increased FDG uptake. Results: The median DUR value of the 20 baseline PET studies was 5.59. The DUR value of greater than 3 was empirically selected as being positive for tumor detection. On baseline studies, PET had a 100% correlation with the CT findings in regard to detection of the site of primary tumor involvement. Four of 20 patients showed areas of discordance in the mediastinal and hilar areas on initial PET and CT studies. Seven of 17 patients showed discordant posttreatment PET-CT findings. Two false positive PET studies were due to radiation pneumonitis and one to macrophage glycolysis in tumor necrosis. For detection of asymptomatic tumor recurrence, analysis of sequential PET and CT studies, biopsy results, and the patient's clinical course suggested that PET had a sensitivity of 100%, specificity of 89.3%, and accuracy of 92.5%. Computerized Tomography was found to have a sensitivity of 67%, specificity of 85%, and accuracy of 82% for detection of such early-stage recurrence. Five patients went on to have retreatment with external irradiation based upon the PET evidence. Four retreated

  17. Fluorine 18 FDG coincidence positron emission tomography using dual-head gamma camera in the follow-up of patient with head and neck cancers

    Energy Technology Data Exchange (ETDEWEB)

    Pai, M. S.; Park, C. H.; Koh, J. H.; Suh, J. H.; Joh, C. W.; Yoon, S. N.; Kim, S.; Hwang, K. H. [College of Medicine, Ajou Univ., Suwon (Korea, Republic of)

    1999-07-01

    Metabolic imaging with F-18-FDG has diagnostic potential to detect residual malignancy as well as the involvement of lymph node after or during the treatment, but it is not widely available because of high cost of PET operation. The alternative method to use F-18-FDG has been developed the coincident PET (CoDe PET) using gamma camera. Purpose is to evaluate the clinical usefulness of the F-18-FDG CoDe PET using gamma camera in differentiating residual/recurrent disease from post-therapy changes in patients with head and neck cancer. 55 cases F-18-FDG CoDe PET studies in 32 patients (Age : 25-79, mean : 50 13, M/F : 23/9) after therapy with various head and neck cancers were performed (11 undifferentiated carcinoma, 10 squamous cell carcinoma, 9 malignant lymphoma, 1 adenoid cystic cancer, 1 Ewing sarcoma). All patients were in the fasting stage for 6-12 hours and injected 3-10mCi of F-18-FDG 1 hour before the imaging. Images were obtained for 30 min (3 min per one rotation) with 20% photopeak window and 20% compton scatter window and reconstructed after filtered with METS filter. Attenuation correction was not done. Any visually detectable FDG uptake in the head and neck except the physiologic uptake were considered positive. All findings were validated either by biopsy or by clinical follow-up and compared with corresponding CT/MRI findings. Ten of eleven cases with residual disease and 41 of 44 cases which remained relapse free were correctly identified by CoDe PET. CoDe PET assessed nine more relapse free cases, in which CT/MRI were specificity (93%). FDG CoDe PET was especially helpful in patients with residual abnormalities noted on radiological imaging. F-18-FDG CoDe PET is a useful method for follow-up after the initial therapy in patients with head and neck cancers.

  18. An Airborne Multispectral Imaging System Based on Two Consumer-Grade Cameras for Agricultural Remote Sensing

    Directory of Open Access Journals (Sweden)

    Chenghai Yang

    2014-06-01

    Full Text Available This paper describes the design and evaluation of an airborne multispectral imaging system based on two identical consumer-grade cameras for agricultural remote sensing. The cameras are equipped with a full-frame complementary metal oxide semiconductor (CMOS sensor with 5616 × 3744 pixels. One camera captures normal color images, while the other is modified to obtain near-infrared (NIR images. The color camera is also equipped with a GPS receiver to allow geotagged images. A remote control is used to trigger both cameras simultaneously. Images are stored in 14-bit RAW and 8-bit JPEG files in CompactFlash cards. The second-order transformation was used to align the color and NIR images to achieve subpixel alignment in four-band images. The imaging system was tested under various flight and land cover conditions and optimal camera settings were determined for airborne image acquisition. Images were captured at altitudes of 305–3050 m (1000–10,000 ft and pixel sizes of 0.1–1.0 m were achieved. Four practical application examples are presented to illustrate how the imaging system was used to estimate cotton canopy cover, detect cotton root rot, and map henbit and giant reed infestations. Preliminary analysis of example images has shown that this system has potential for crop condition assessment, pest detection, and other agricultural applications.

  19. Extrinsic calibration of a non-overlapping camera network based on close-range photogrammetry.

    Science.gov (United States)

    Dong, Shuai; Shao, Xinxing; Kang, Xin; Yang, Fujun; He, Xiaoyuan

    2016-08-10

    In this paper, an extrinsic calibration method for a non-overlapping camera network is presented based on close-range photogrammetry. The method does not require calibration targets or the cameras to be moved. The visual sensors are relatively motionless and do not see the same area at the same time. The proposed method combines the multiple cameras using some arbitrarily distributed encoded targets. The calibration procedure consists of three steps: reconstructing the three-dimensional (3D) coordinates of the encoded targets using a hand-held digital camera, performing the intrinsic calibration of the camera network, and calibrating the extrinsic parameters of each camera with only one image. A series of experiments, including 3D reconstruction, rotation, and translation, are employed to validate the proposed approach. The results show that the relative error for the 3D reconstruction is smaller than 0.003%, the relative errors of both rotation and translation are less than 0.066%, and the re-projection error is only 0.09 pixels.

  20. Extrinsic calibration of a non-overlapping camera network based on close-range photogrammetry.

    Science.gov (United States)

    Dong, Shuai; Shao, Xinxing; Kang, Xin; Yang, Fujun; He, Xiaoyuan

    2016-08-10

    In this paper, an extrinsic calibration method for a non-overlapping camera network is presented based on close-range photogrammetry. The method does not require calibration targets or the cameras to be moved. The visual sensors are relatively motionless and do not see the same area at the same time. The proposed method combines the multiple cameras using some arbitrarily distributed encoded targets. The calibration procedure consists of three steps: reconstructing the three-dimensional (3D) coordinates of the encoded targets using a hand-held digital camera, performing the intrinsic calibration of the camera network, and calibrating the extrinsic parameters of each camera with only one image. A series of experiments, including 3D reconstruction, rotation, and translation, are employed to validate the proposed approach. The results show that the relative error for the 3D reconstruction is smaller than 0.003%, the relative errors of both rotation and translation are less than 0.066%, and the re-projection error is only 0.09 pixels. PMID:27534480

  1. Adaptive Image-Based Leader-Follower Approach of Mobile Robot with Omnidirectional Camera

    OpenAIRE

    Dejun Guo; Hesheng Wang; Weidong Chen; Xinwu Liang

    2014-01-01

    This paper focuses on the problem of the adaptive image-based leader-follower formation control of mobile robot with on-board omnidirectional camera. A calibrated omnidirectional camera is fixed on the follower in any position, and a feature point representing the leader can be chosen in any position. An adaptive image-based controller without depending on the velocity of the leader is proposed based on a filter technology. In other words, only by relying on the projection of the feature on t...

  2. Evaluation of Compton gamma camera prototype based on pixelated CdTe detectors

    OpenAIRE

    Calderón, Y.; Chmeissani, M.; Kolstein, M.; De Lorenzo, G.

    2014-01-01

    A proposed Compton camera prototype based on pixelated CdTe is simulated and evaluated in order to establish its feasibility and expected performance in real laboratory tests. The system is based on module units containing a 2×4 array of square CdTe detectors of 10×10 mm2 area and 2 mm thickness. The detectors are pixelated and stacked forming a 3D detector with voxel sizes of 2 × 1 × 2 mm3. The camera performance is simulated with Geant4-based Architecture for Medicine-Oriented Simulations(G...

  3. Positron emission particle tracking-Application and labelling techniques

    Institute of Scientific and Technical Information of China (English)

    David J.Parker; Xianfeng Fan

    2008-01-01

    The positron emission particle tracking (PEPT) technique has been widely used in science and engineering to obtain detailed information on the motion and flow fields of fluids or granular materials in multiphase systems, for example, fluids in rock cracks, chemical reactors and food processors; dynamic behaviour of granular materials in chemical reactors, granulators, mixers, dryers, rotating kilns and ball mills. The information obtained by the PEPT technique can be used to optimise the design, operational conditions for a wide range of industrial process systems, and to evaluate modelling work. The technique is based on tracking radioactively labelled particles (up to three particles) by detecting the pairs of back-to-back 511 ke V -γ-rays arising from annihilation of emitted positrons. It therefore involves a positron camera, location algorithms for calculating the tracer location and speed, and tracer labelling techniques. This paper will review the particle tracking technique from tracking algorithm, tracer labelling to their application.

  4. Status of the photomultiplier-based FlashCam camera for the Cherenkov Telescope Array

    Science.gov (United States)

    Pühlhofer, G.; Bauer, C.; Eisenkolb, F.; Florin, D.; Föhr, C.; Gadola, A.; Garrecht, F.; Hermann, G.; Jung, I.; Kalekin, O.; Kalkuhl, C.; Kasperek, J.; Kihm, T.; Koziol, J.; Lahmann, R.; Manalaysay, A.; Marszalek, A.; Rajda, P. J.; Reimer, O.; Romaszkan, W.; Rupinski, M.; Schanz, T.; Schwab, T.; Steiner, S.; Straumann, U.; Tenzer, C.; Vollhardt, A.; Weitzel, Q.; Winiarski, K.; Zietara, K.

    2014-07-01

    The FlashCam project is preparing a camera prototype around a fully digital FADC-based readout system, for the medium sized telescopes (MST) of the Cherenkov Telescope Array (CTA). The FlashCam design is the first fully digital readout system for Cherenkov cameras, based on commercial FADCs and FPGAs as key components for digitization and triggering, and a high performance camera server as back end. It provides the option to easily implement different types of trigger algorithms as well as digitization and readout scenarios using identical hardware, by simply changing the firmware on the FPGAs. The readout of the front end modules into the camera server is Ethernet-based using standard Ethernet switches and a custom, raw Ethernet protocol. In the current implementation of the system, data transfer and back end processing rates of 3.8 GB/s and 2.4 GB/s have been achieved, respectively. Together with the dead-time-free front end event buffering on the FPGAs, this permits the cameras to operate at trigger rates of up to several ten kHz. In the horizontal architecture of FlashCam, the photon detector plane (PDP), consisting of photon detectors, preamplifiers, high voltage-, control-, and monitoring systems, is a self-contained unit, mechanically detached from the front end modules. It interfaces to the digital readout system via analogue signal transmission. The horizontal integration of FlashCam is expected not only to be more cost efficient, it also allows PDPs with different types of photon detectors to be adapted to the FlashCam readout system. By now, a 144-pixel mini-camera" setup, fully equipped with photomultipliers, PDP electronics, and digitization/ trigger electronics, has been realized and extensively tested. Preparations for a full-scale, 1764 pixel camera mechanics and a cooling system are ongoing. The paper describes the status of the project.

  5. A BINARIZATION TECHNIQUE FOR EXTRACTION OF DEVANAGARI TEXT FROM CAMERA BASED IMAGES

    Directory of Open Access Journals (Sweden)

    Rajesh K. Bawa

    2014-04-01

    Full Text Available This paper presents a binarization method for camera based natural scene (NS images based on edge analysis and morphological dilation. Image is converted to grey scale image and edge detection is carried out using canny edge detection. The edge image is dilated using morphological dilation and analyzed to remove edges corresponding to non-text regions. The image is binarized using mean and standard deviation of edge pixels. Post processing of resulting images is done to fill gaps and to smooth text strokes. The algorithm is tested on a variety of NS images captured using a digital camera under variable resolutions, lightening conditions having text of different fonts, styles and backgrounds. The results are compared with other standard techniques. The method is fast and works well for camera based natural scene images.

  6. Narrow Field-Of Visual Odometry Based on a Focused Plenoptic Camera

    Science.gov (United States)

    Zeller, N.; Quint, F.; Stilla, U.

    2015-03-01

    In this article we present a new method for visual odometry based on a focused plenoptic camera. This method fuses the depth data gained by a monocular Simultaneous Localization and Mapping (SLAM) algorithm and the one received from a focused plenoptic camera. Our algorithm uses the depth data and the totally focused images supplied by the plenoptic camera to run a real-time semi-dense direct SLAM algorithm. Based on this combined approach, the scale ambiguity of a monocular SLAM system can be overcome. Furthermore, the additional light-field information highly improves the tracking capabilities of the algorithm. Thus, visual odometry even for narrow field of view (FOV) cameras is possible. We show that not only tracking profits from the additional light-field information. By accumulating the depth information over multiple tracked images, also the depth accuracy of the focused plenoptic camera can be highly improved. This novel approach improves the depth error by one order of magnitude compared to the one received from a single light-field image.

  7. Submap joining smoothing and mapping for camera-based indoor localization and mapping

    Science.gov (United States)

    Bjärkefur, J.; Karlsson, A.; Grönwall, C.; Rydell, J.

    2011-06-01

    Personnel positioning is important for safety in e.g. emergency response operations. In GPS-denied environments, possible positioning solutions include systems based on radio frequency communication, inertial sensors, and cameras. Many camera-based systems create a map and localize themselves relative to that. The computational complexity of most such solutions grows rapidly with the size of the map. One way to reduce the complexity is to divide the visited region into submaps. This paper presents a novel method for merging conditionally independent submaps (generated using e.g. EKF-SLAM) by the use of smoothing. Using this approach it is possible to build large maps in close to linear time. The method is demonstrated in two indoor scenarios, where data was collected with a trolley-mounted stereo vision camera.

  8. Calibration of high resolution digital camera based on different photogrammetric methods

    International Nuclear Information System (INIS)

    This paper presents method of calibrating high-resolution digital camera based on different configuration which comprised of stereo and convergent. Both methods are performed in the laboratory and in the field calibration. Laboratory calibration is based on a 3D test field where a calibration plate of dimension 0.4 m × 0.4 m with grid of targets at different height is used. For field calibration, it uses the same concept of 3D test field which comprised of 81 target points located on a flat ground and the dimension is 9 m × 9 m. In this study, a non-metric high resolution digital camera called Canon Power Shot SX230 HS was calibrated in the laboratory and in the field using different configuration for data acquisition. The aim of the calibration is to investigate the behavior of the internal digital camera whether all the digital camera parameters such as focal length, principal point and other parameters remain the same or vice-versa. In the laboratory, a scale bar is placed in the test field for scaling the image and approximate coordinates were used for calibration process. Similar method is utilized in the field calibration. For both test fields, the digital images were acquired within short period using stereo and convergent configuration. For field calibration, aerial digital images were acquired using unmanned aerial vehicle (UAV) system. All the images were processed using photogrammetric calibration software. Different calibration results were obtained for both laboratory and field calibrations. The accuracy of the results is evaluated based on standard deviation. In general, for photogrammetric applications and other applications the digital camera must be calibrated for obtaining accurate measurement or results. The best method of calibration depends on the type of applications. Finally, for most applications the digital camera is calibrated on site, hence, field calibration is the best method of calibration and could be employed for obtaining accurate

  9. Iterative reconstruction using a Monte Carlo based system transfer matrix for dedicated breast positron emission tomography.

    Science.gov (United States)

    Saha, Krishnendu; Straus, Kenneth J; Chen, Yu; Glick, Stephen J

    2014-08-28

    To maximize sensitivity, it is desirable that ring Positron Emission Tomography (PET) systems dedicated for imaging the breast have a small bore. Unfortunately, due to parallax error this causes substantial degradation in spatial resolution for objects near the periphery of the breast. In this work, a framework for computing and incorporating an accurate system matrix into iterative reconstruction is presented in an effort to reduce spatial resolution degradation towards the periphery of the breast. The GATE Monte Carlo Simulation software was utilized to accurately model the system matrix for a breast PET system. A strategy for increasing the count statistics in the system matrix computation and for reducing the system element storage space was used by calculating only a subset of matrix elements and then estimating the rest of the elements by using the geometric symmetry of the cylindrical scanner. To implement this strategy, polar voxel basis functions were used to represent the object, resulting in a block-circulant system matrix. Simulation studies using a breast PET scanner model with ring geometry demonstrated improved contrast at 45% reduced noise level and 1.5 to 3 times resolution performance improvement when compared to MLEM reconstruction using a simple line-integral model. The GATE based system matrix reconstruction technique promises to improve resolution and noise performance and reduce image distortion at FOV periphery compared to line-integral based system matrix reconstruction.

  10. Design of an Optical Character Recognition System for Camera-based Handheld Devices

    CERN Document Server

    Mollah, Ayatullah Faruk; Basu, Subhadip; Nasipuri, Mita

    2011-01-01

    This paper presents a complete Optical Character Recognition (OCR) system for camera captured image/graphics embedded textual documents for handheld devices. At first, text regions are extracted and skew corrected. Then, these regions are binarized and segmented into lines and characters. Characters are passed into the recognition module. Experimenting with a set of 100 business card images, captured by cell phone camera, we have achieved a maximum recognition accuracy of 92.74%. Compared to Tesseract, an open source desktop-based powerful OCR engine, present recognition accuracy is worth contributing. Moreover, the developed technique is computationally efficient and consumes low memory so as to be applicable on handheld devices.

  11. Broadband Sub-terahertz Camera Based on Photothermal Conversion and IR Thermography

    Science.gov (United States)

    Romano, M.; Chulkov, A.; Sommier, A.; Balageas, D.; Vavilov, V.; Batsale, J. C.; Pradere, C.

    2016-05-01

    This paper describes a fast sub-terahertz (THz) camera that is based on the use of a quantum infrared camera coupled with a photothermal converter, called a THz-to-Thermal Converter (TTC), thus allowing fast image acquisition. The performance of the experimental setup is presented and discussed, with an emphasis on the advantages of the proposed method for decreasing noise in raw data and increasing the image acquisition rate. A detectivity of 160 pW Hz-0.5 per pixel has been achieved, and some examples of the practical implementation of sub-THz imaging are given.

  12. A G-APD based Camera for Imaging Atmospheric Cherenkov Telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Anderhub, H. [Eidgenoessische Technische Hochschule Zuerich, 8093 Zuerich (Switzerland); Backes, M. [Technische Universitaet Dortmund, 44221 Dortmund (Germany); Biland, A.; Boller, A.; Braun, I. [Eidgenoessische Technische Hochschule Zuerich, 8093 Zuerich (Switzerland); Bretz, T. [Ecole Polytechnique Federale de Lausanne, 1015 Lausanne (Switzerland); Commichau, S.; Commichau, V.; Dorner, D.; Gendotti, A. [Eidgenoessische Technische Hochschule Zuerich, 8093 Zuerich (Switzerland); Grimm, O., E-mail: oliver.grimm@phys.ethz.c [Eidgenoessische Technische Hochschule Zuerich, 8093 Zuerich (Switzerland); Gunten, H. von; Hildebrand, D.; Horisberger, U. [Eidgenoessische Technische Hochschule Zuerich, 8093 Zuerich (Switzerland); Koehne, J.-H. [Technische Universitaet Dortmund, 44221 Dortmund (Germany); Kraehenbuehl, T.; Kranich, D.; Lorenz, E.; Lustermann, W. [Eidgenoessische Technische Hochschule Zuerich, 8093 Zuerich (Switzerland); Mannheim, K. [Universitaet Wuerzburg, 97074 Wuerzburg (Germany)

    2011-02-01

    Imaging Atmospheric Cherenkov Telescopes (IACT) for Gamma-ray astronomy are presently using photomultiplier tubes as photo sensors. Geiger-mode avalanche photodiodes (G-APD) promise an improvement in sensitivity and, important for this application, ease of construction, operation and ruggedness. G-APDs have proven many of their features in the laboratory, but a qualified assessment of their performance in an IACT camera is best undertaken with a prototype. This paper describes the design and construction of a full-scale camera based on G-APDs realized within the FACT project (First G-APD Cherenkov Telescope).

  13. Experimental platform for moving double-camera system based on binocular vergence eye movements

    Institute of Scientific and Technical Information of China (English)

    LI Heng-yu; LUO Jun; XIE Shao-rong; LI Lei; LI Qing-mei

    2009-01-01

    A control model of binocular vergence eye movements is presented. The control model can reduce blind areas caused by the double cameras in motion platform. In order to validate the model performance, an experimental platform and its control system based on TMS320LF2407 are designed. The control system has its compacted configuration and high reliability. The simulation and experimental results show that the control system can realize binocular vergence movements. Compared with the conventional moving double cameras system, this new system can considerably reduce blind areas.

  14. Volumetric Diffuse Optical Tomography for Small Animals Using a CCD-Camera-Based Imaging System

    Directory of Open Access Journals (Sweden)

    Zi-Jing Lin

    2012-01-01

    Full Text Available We report the feasibility of three-dimensional (3D volumetric diffuse optical tomography for small animal imaging by using a CCD-camera-based imaging system with a newly developed depth compensation algorithm (DCA. Our computer simulations and laboratory phantom studies have demonstrated that the combination of a CCD camera and DCA can significantly improve the accuracy in depth localization and lead to reconstruction of 3D volumetric images. This approach may present great interests for noninvasive 3D localization of an anomaly hidden in tissue, such as a tumor or a stroke lesion, for preclinical small animal models.

  15. Shape Function-Based Estimation of Deformation with Moving Cameras Attached to the Deforming Body

    Science.gov (United States)

    Jokinen, O.; Ranta, I.; Haggrén, H.; Rönnholm, P.

    2016-06-01

    The paper presents a novel method to measure 3-D deformation of a large metallic frame structure of a crane under loading from one to several images, when the cameras need to be attached to the self deforming body, the structure sways during loading, and the imaging geometry is not optimal due to physical limitations. The solution is based on modeling the deformation with adequate shape functions and taking into account that the cameras move depending on the frame deformation. It is shown that the deformation can be estimated even from a single image of targeted points if the 3-D coordinates of the points are known or have been measured before loading using multiple cameras or some other measuring technique. The precision of the method is evaluated to be 1 mm at best, corresponding to 1:11400 of the average distance to the target.

  16. Omnidirectional stereo vision sensor based on single camera and catoptric system.

    Science.gov (United States)

    Zhou, Fuqiang; Chai, Xinghua; Chen, Xin; Song, Ya

    2016-09-01

    An omnidirectional stereo vision sensor based on one single camera and catoptric system is proposed. As crucial components, one camera and two pyramid mirrors are used for imaging. The omnidirectional measurement towards different directions in the horizontal field can be performed by four pairs of virtual cameras, with a consummate synchronism and an improved compactness. Moreover, the perspective projection invariance is ensured in the imaging process, which avoids the imaging distortion reflected by the curved mirrors. In this paper, the structure model of the sensor was established and a sensor prototype was designed. The influences of the structural parameters on the field of view and the measurement accuracy were also discussed. In addition, real experiments and analyses were performed to evaluate the performance of the proposed sensor in the measurement application. The results proved the feasibility of the sensor, and exhibited a considerable accuracy in 3D coordinate reconstruction. PMID:27607253

  17. A New 3D Model-Based Tracking Technique for Robust Camera Pose Estimation

    Directory of Open Access Journals (Sweden)

    Fakhreddine Ababsa

    2012-04-01

    Full Text Available In this paper we present a new robust camera pose estimation approach based on 3D lines features. The proposed method is well adapted for mobile augmented reality applications We used an Extended Kalman Filter (EKF to incrementally update the camera pose in real-time. The principal contributions of our method include first, the expansion of the RANSAC scheme in order to achieve a robust matching algorithm that associates 2D edges from the image with the 3D line segments from the input model. And second, a new powerful framework for camera pose estimation using only 2D-3D straight-lines within an EKF. Experimental results on real image sequences are presented to evaluate the performances and the feasibility of the proposed approach in indoor and outdoor environments.

  18. Mach-zehnder based optical marker/comb generator for streak camera calibration

    Science.gov (United States)

    Miller, Edward Kirk

    2015-03-03

    This disclosure is directed to a method and apparatus for generating marker and comb indicia in an optical environment using a Mach-Zehnder (M-Z) modulator. High speed recording devices are configured to record image or other data defining a high speed event. To calibrate and establish time reference, the markers or combs are indicia which serve as timing pulses (markers) or a constant-frequency train of optical pulses (comb) to be imaged on a streak camera for accurate time based calibration and time reference. The system includes a camera, an optic signal generator which provides an optic signal to an M-Z modulator and biasing and modulation signal generators configured to provide input to the M-Z modulator. An optical reference signal is provided to the M-Z modulator. The M-Z modulator modulates the reference signal to a higher frequency optical signal which is output through a fiber coupled link to the streak camera.

  19. A novel image reconstruction methodology based on inverse Monte Carlo analysis for positron emission tomography

    Science.gov (United States)

    Kudrolli, Haris A.

    2001-04-01

    A three dimensional (3D) reconstruction procedure for Positron Emission Tomography (PET) based on inverse Monte Carlo analysis is presented. PET is a medical imaging modality which employs a positron emitting radio-tracer to give functional images of an organ's metabolic activity. This makes PET an invaluable tool in the detection of cancer and for in-vivo biochemical measurements. There are a number of analytical and iterative algorithms for image reconstruction of PET data. Analytical algorithms are computationally fast, but the assumptions intrinsic in the line integral model limit their accuracy. Iterative algorithms can apply accurate models for reconstruction and give improvements in image quality, but at an increased computational cost. These algorithms require the explicit calculation of the system response matrix, which may not be easy to calculate. This matrix gives the probability that a photon emitted from a certain source element will be detected in a particular detector line of response. The ``Three Dimensional Stochastic Sampling'' (SS3D) procedure implements iterative algorithms in a manner that does not require the explicit calculation of the system response matrix. It uses Monte Carlo techniques to simulate the process of photon emission from a source distribution and interaction with the detector. This technique has the advantage of being able to model complex detector systems and also take into account the physics of gamma ray interaction within the source and detector systems, which leads to an accurate image estimate. A series of simulation studies was conducted to validate the method using the Maximum Likelihood - Expectation Maximization (ML-EM) algorithm. The accuracy of the reconstructed images was improved by using an algorithm that required a priori knowledge of the source distribution. Means to reduce the computational time for reconstruction were explored by using parallel processors and algorithms that had faster convergence rates

  20. Smart Camera Based on Embedded HW/SW Coprocessor

    Directory of Open Access Journals (Sweden)

    Dubois Julien

    2008-01-01

    Full Text Available Abstract This paper describes an image acquisition and a processing system based on a new coprocessor architecture designed for CMOS sensor imaging. The system exploits the full potential CMOS selective access imaging technology because the coprocessor unit is integrated into the image acquisition loop. The acquisition and coprocessing architecture are compatible with the majority of CMOS sensors. It enables the dynamic selection of a wide variety of acquisition modes as well as the reconfiguration and implementation of high-performance image preprocessing algorithms (calibration, filtering, denoising, binarization, pattern recognition. Furthermore, the processing and data transfer, from the CMOS sensor to the processor, can be operated simultaneously to increase achievable performances. The coprocessor architecture has been designed so as to obtain a unit that can be configured on the fly, in terms of type and number of chained processing stages (up to 8 successive predefined preprocessing stages, during the image acquisition process that can be defined by the user according to each specific application requirement. Examples of acquisition and processing performances are reported and compared to classical image acquisition systems based on standard modular PC platforms. The experimental results show a considerable increase of the achievable performances.

  1. PETALO, a new concept for a Positron Emission TOF Apparatus based on Liquid xenOn

    CERN Document Server

    Benlloch-Rodriguez, J M

    2016-01-01

    This master thesis presents a new type of Positron Emission TOF Apparatus using Liquid xenOn (PETALO). The detector is based in the Liquid Xenon Scintillating Cell (LXSC). The cell is a box filled with liquid xenon (LXe) whose transverse dimensions are chosen to optimize packing and with a thickness optimized to contain a large fraction of the incoming photons. The entry and exit faces of the box (relative to the incoming gammas direction) are instrumented with large silicon photomultipliers (SiPMs), coated with a wavelength shifter, tetraphenyl butadiene (TPB). The non-instrumented faces are covered by reflecting Teflon coated with TPB. In this thesis we show that the LXSC can display an energy resolution of 5% FWHM, much better than that of conventional solid scintillators such as LSO/LYSO. The LXSC can measure the interaction point of the incoming photon with a resolution in the three coordinates of 1 mm. The very fast scintillation time of LXe (2 ns) and the availability of suitable sensors and electronic...

  2. Low background high efficiency radiocesium detection system based on positron emission tomography technology

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Seiichi; Ogata, Yoshimune [Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya 461-8673 (Japan)

    2013-09-15

    After the 2011 nuclear power plant accident at Fukushima, radiocesium contamination in food became a serious concern in Japan. However, low background and high efficiency radiocesium detectors are expensive and huge, including semiconductor germanium detectors. To solve this problem, we developed a radiocesium detector by employing positron emission tomography (PET) technology. Because {sup 134}Cs emits two gamma photons (795 and 605 keV) within 5 ps, they can selectively be measured with coincidence. Such major environmental gamma photons as {sup 40}K (1.46 MeV) are single photon emitters and a coincidence measurement reduces the detection limit of radiocesium detectors. We arranged eight sets of Bi{sub 4}Ge{sub 3}O{sub 12} (BGO) scintillation detectors in double rings (four for each ring) and measured the coincidence between these detectors using PET data acquisition system. A 50 × 50 × 30 mm BGO was optically coupled to a 2 in. square photomultiplier tube (PMT). By measuring the coincidence, we eliminated most single gamma photons from the energy distribution and only detected those from {sup 134}Cs at an average efficiency of 12%. The minimum detectable concentration of the system for the 100 s acquisition time is less than half of the food monitor requirements in Japan (25 Bq/kg). These results show that the developed radiocesium detector based on PET technology is promising to detect low level radiocesium.

  3. Note: A manifold ranking based saliency detection method for camera

    Science.gov (United States)

    Zhang, Libo; Sun, Yihan; Luo, Tiejian; Rahman, Mohammad Muntasir

    2016-09-01

    Research focused on salient object region in natural scenes has attracted a lot in computer vision and has widely been used in many applications like object detection and segmentation. However, an accurate focusing on the salient region, while taking photographs of the real-world scenery, is still a challenging task. In order to deal with the problem, this paper presents a novel approach based on human visual system, which works better with the usage of both background prior and compactness prior. In the proposed method, we eliminate the unsuitable boundary with a fixed threshold to optimize the image boundary selection which can provide more precise estimations. Then, the object detection, which is optimized with compactness prior, is obtained by ranking with background queries. Salient objects are generally grouped together into connected areas that have compact spatial distributions. The experimental results on three public datasets demonstrate that the precision and robustness of the proposed algorithm have been improved obviously.

  4. A Kinect™ camera based navigation system for percutaneous abdominal puncture

    Science.gov (United States)

    Xiao, Deqiang; Luo, Huoling; Jia, Fucang; Zhang, Yanfang; Li, Yong; Guo, Xuejun; Cai, Wei; Fang, Chihua; Fan, Yingfang; Zheng, Huimin; Hu, Qingmao

    2016-08-01

    Percutaneous abdominal puncture is a popular interventional method for the management of abdominal tumors. Image-guided puncture can help interventional radiologists improve targeting accuracy. The second generation of Kinect™ was released recently, we developed an optical navigation system to investigate its feasibility for guiding percutaneous abdominal puncture, and compare its performance on needle insertion guidance with that of the first-generation Kinect™. For physical-to-image registration in this system, two surfaces extracted from preoperative CT and intraoperative Kinect™ depth images were matched using an iterative closest point (ICP) algorithm. A 2D shape image-based correspondence searching algorithm was proposed for generating a close initial position before ICP matching. Evaluation experiments were conducted on an abdominal phantom and six beagles in vivo. For phantom study, a two-factor experiment was designed to evaluate the effect of the operator’s skill and trajectory on target positioning error (TPE). A total of 36 needle punctures were tested on a Kinect™ for Windows version 2 (Kinect™ V2). The target registration error (TRE), user error, and TPE are 4.26  ±  1.94 mm, 2.92  ±  1.67 mm, and 5.23  ±  2.29 mm, respectively. No statistically significant differences in TPE regarding operator’s skill and trajectory are observed. Additionally, a Kinect™ for Windows version 1 (Kinect™ V1) was tested with 12 insertions, and the TRE evaluated with the Kinect™ V1 is statistically significantly larger than that with the Kinect™ V2. For the animal experiment, fifteen artificial liver tumors were inserted guided by the navigation system. The TPE was evaluated as 6.40  ±  2.72 mm, and its lateral and longitudinal component were 4.30  ±  2.51 mm and 3.80  ±  3.11 mm, respectively. This study demonstrates that the navigation accuracy of the proposed system is acceptable

  5. Positron tomographs

    International Nuclear Information System (INIS)

    Specifications of position emission tomographs used for examination of brain and internal organs of human beings are presented. The tomograph comprises a detecting system, devices for detector displacement, sighting, calibration, electronics units (discriminators-formers, coincidence circuits, coders, buffer memory), detectors for detecting system position, bed for patient. Spatial resolution of the tomograph is determined by sizes of the detectors and their dispositin relatively to the object of examination. Besides, it depends on positron path in the investigated medium, deflections of the angle of scatter of annihilation quanta from 180 deg, distribution of points of gamma-quantum interaction by depth of the detector, filter and algorithm of image reconstruction, motion of organs of a patient, motion of labelled pharm-preparation in the organism. Such factors as absorption of annihilation radiation by substance of an object, radiation scattering and registration of random coincidences essentially affect the quality of tomographic image. It is shown that use of asseblies of microchannel plates and a scintillator on the base of barium fluoride permits to produce a coordinate-sensitive detector for a tomograph complying with highest requirements

  6. Development of an angled Si-PM-based detector unit for positron emission mammography (PEM) system

    Science.gov (United States)

    Nakanishi, Kouhei; Yamamoto, Seiichi

    2016-11-01

    Positron emission mammography (PEM) systems have higher sensitivity than clinical whole body PET systems because they have a smaller ring diameter. However, the spatial resolution of PEM systems is not high enough to detect early stage breast cancer. To solve this problem, we developed a silicon photomultiplier (Si-PM) based detector unit for the development of a PEM system. Since a Si-PM's channel is small, Si-PM can resolve small scintillator pixels to improve the spatial resolution. Also Si-PM based detectors have inherently high timing resolution and are able to reduce the random coincidence events by reducing the time window. We used 1.5×1.9×15 mm LGSO scintillation pixels and arranged them in an 8×24 matrix to form scintillator blocks. Four scintillator blocks were optically coupled to Si-PM arrays with an angled light guide to form a detector unit. Since the light guide has angles of 5.625°, we can arrange 64 scintillator blocks in a nearly circular shape (a regular 64-sided polygon) using 16 detector units. We clearly resolved the pixels of the scintillator blocks in a 2-dimensional position histogram where the averages of the peak-to-valley ratios (P/Vs) were 3.7±0.3 and 5.7±0.8 in the transverse and axial directions, respectively. The average energy resolution was 14.2±2.1% full-width at half-maximum (FWHM). By including the temperature dependent gain control electronics, the photo-peak channel shifts were controlled within ±1.5% with the temperature from 23 °C to 28 °C. With these results, in addition to the potential high timing performance of Si-PM based detectors, our developed detector unit is promising for the development of a high-resolution PEM system.

  7. Camera-based noncontact metrology for static/dynamic testing of flexible multibody systems

    Science.gov (United States)

    Pai, P. Frank; Ramanathan, Suresh; Hu, Jiazhu; Chernova, DarYa K.; Qian, Xin; Wu, Genyong

    2010-08-01

    Presented here is a camera-based noncontact measurement theory for static/dynamic testing of flexible multibody systems that undergo large rigid, elastic and/or plastic deformations. The procedure and equations for accurate estimation of system parameters (i.e. the location and focal length of each camera and the transformation matrix relating its image and object coordinate systems) using an L-frame with four retroreflective markers are described in detail. Moreover, a method for refinement of estimated system parameters and establishment of a lens distortion model for correcting optical distortions using a T-wand with three markers is described. Dynamically deformed geometries of a multibody system are assumed to be obtained by tracing the three-dimensional instantaneous coordinates of markers adhered to the system's outside surfaces, and cameras and triangulation techniques are used for capturing marker images and identifying markers' coordinates. Furthermore, an EAGLE-500 motion analysis system is used to demonstrate measurements of static/dynamic deformations of six different flexible multibody systems. All numerical simulations and experimental results show that the use of camera-based motion analysis systems is feasible and accurate enough for static/dynamic experiments on flexible multibody systems, especially those that cannot be measured using conventional contact sensors.

  8. Calculation of positron observables using a finite-element-based approach

    Energy Technology Data Exchange (ETDEWEB)

    Klein, B. M.; Pask, J. E.; Sterne, P.

    1998-11-04

    We report the development of a new method for calculating positron observables using a finite-element approach for the solution of the Schrodinger equation. This method combines the advantages of both basis-set and real-space-grid approaches. The strict locality in real space of the finite element basis functions results in a method that is well suited for calculating large systems of a thousand or more atoms, as required for calculations of extended defects such as dislocations. In addition, the method is variational in nature and its convergence can be controlled systematically. The calculation of positron observables is straightforward due to the real-space nature of this method. We illustrate the power of this method with positron lifetime calculations on defects and defect-free materials, using overlapping atomic charge densities.

  9. A cryogenically cooled, ultra-high-energy-resolution, trap-based positron beam

    Energy Technology Data Exchange (ETDEWEB)

    Natisin, M. R., E-mail: mnatisin@physics.ucsd.edu; Danielson, J. R.; Surko, C. M. [Department of Physics, University of California, San Diego, La Jolla, California 92093 (United States)

    2016-01-11

    A technique is described to produce a pulsed, magnetically guided positron beam with significantly improved beam characteristics over those available previously. A pulsed, room-temperature positron beam from a buffer gas trap is used as input to a trap that captures the positrons, compresses them both radially and axially, and cools them to 50 K on a cryogenic CO buffer gas before ejecting them as a pulsed beam. The total energy spread of the beam formed using this technique is 6.9 ± 0.7 meV FWHM, which is a factor of ∼5 better than the previous state-of-the-art, while simultaneously having sub-microsecond temporal resolution and millimeter spatial resolution. Possible further improvements in beam quality are discussed.

  10. Mining the bulk positron lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Aourag, H.; Guittom, A. [Centre de Recherche Nucleaire d' Alger (CRNA), Alger Gare - Algiers (Algeria)

    2009-02-15

    We introduce a new approach to investigate the bulk positron lifetimes of new systems based on data-mining techniques. Through data mining of bulk positron lifetimes, we demonstrate the ability to predict the positron lifetimes of new semiconductors on the basis of available semiconductor data already studied. Informatics techniques have been applied to bulk positron lifetimes for different tetrahedrally bounded semiconductors in order to discover computational design rules. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Mining the bulk positron lifetime

    International Nuclear Information System (INIS)

    We introduce a new approach to investigate the bulk positron lifetimes of new systems based on data-mining techniques. Through data mining of bulk positron lifetimes, we demonstrate the ability to predict the positron lifetimes of new semiconductors on the basis of available semiconductor data already studied. Informatics techniques have been applied to bulk positron lifetimes for different tetrahedrally bounded semiconductors in order to discover computational design rules. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Development and calibration of the Moon-based EUV camera for Chang'e-3

    International Nuclear Information System (INIS)

    The process of development and calibration for the first Moon-based extreme ultraviolet (EUV) camera to observe Earth's plasmasphere is introduced and the design, test and calibration results are presented. The EUV camera is composed of a multilayer film mirror, a thin film filter, a photon-counting imaging detector, a mechanism that can adjust the direction in two dimensions, a protective cover, an electronic unit and a thermal control unit. The center wavelength of the EUV camera is 30.2 nm with a bandwidth of 4.6 nm. The field of view is 14.7° with an angular resolution of 0.08°, and the sensitivity of the camera is 0.11 count s−1 Rayleigh−1. The geometric calibration, the absolute photometric calibration and the relative photometric calibration are carried out under different temperatures before launch to obtain a matrix that can correct geometric distortion and a matrix for relative photometric correction, which are used for in-orbit correction of the images to ensure their accuracy

  13. Performance Analysis of a Low-Cost Triangulation-Based 3d Camera: Microsoft Kinect System

    Science.gov (United States)

    . K. Chow, J. C.; Ang, K. D.; Lichti, D. D.; Teskey, W. F.

    2012-07-01

    Recent technological advancements have made active imaging sensors popular for 3D modelling and motion tracking. The 3D coordinates of signalised targets are traditionally estimated by matching conjugate points in overlapping images. Current 3D cameras can acquire point clouds at video frame rates from a single exposure station. In the area of 3D cameras, Microsoft and PrimeSense have collaborated and developed an active 3D camera based on the triangulation principle, known as the Kinect system. This off-the-shelf system costs less than 150 USD and has drawn a lot of attention from the robotics, computer vision, and photogrammetry disciplines. In this paper, the prospect of using the Kinect system for precise engineering applications was evaluated. The geometric quality of the Kinect system as a function of the scene (i.e. variation of depth, ambient light conditions, incidence angle, and object reflectivity) and the sensor (i.e. warm-up time and distance averaging) were analysed quantitatively. This system's potential in human body measurements was tested against a laser scanner and 3D range camera. A new calibration model for simultaneously determining the exterior orientation parameters, interior orientation parameters, boresight angles, leverarm, and object space features parameters was developed and the effectiveness of this calibration approach was explored.

  14. Robust Range Estimation with a Monocular Camera for Vision-Based Forward Collision Warning System

    Directory of Open Access Journals (Sweden)

    Ki-Yeong Park

    2014-01-01

    Full Text Available We propose a range estimation method for vision-based forward collision warning systems with a monocular camera. To solve the problem of variation of camera pitch angle due to vehicle motion and road inclination, the proposed method estimates virtual horizon from size and position of vehicles in captured image at run-time. The proposed method provides robust results even when road inclination varies continuously on hilly roads or lane markings are not seen on crowded roads. For experiments, a vision-based forward collision warning system has been implemented and the proposed method is evaluated with video clips recorded in highway and urban traffic environments. Virtual horizons estimated by the proposed method are compared with horizons manually identified, and estimated ranges are compared with measured ranges. Experimental results confirm that the proposed method provides robust results both in highway and in urban traffic environments.

  15. Camera-Based Control for Industrial Robots Using OpenCV Libraries

    Science.gov (United States)

    Seidel, Patrick A.; Böhnke, Kay

    This paper describes a control system for industrial robots whose reactions base on the analysis of images provided by a camera mounted on top of the robot. We show that such control system can be designed and implemented with an open source image processing library and cheap hardware. Using one specific robot as an example, we demonstrate the structure of a possible control algorithm running on a PC and its interaction with the robot.

  16. On Plane-Based Camera Calibration: A General Algorithm, Singularities, Applications

    OpenAIRE

    Sturm, Peter; Maybank, Steve

    1999-01-01

    International audience We present a general algorithm for plane-based calibration that can deal with arbitrary numbers of views and calibration planes. The algorithm can simultaneously calibrate different views from a camera with variable intrinsic parameters and it is easy to incorporate known values of intrinsic parameters. For some minimal cases, we describe all singularities, naming the parameters that can not be estimated. Experimental results of our method are shown that exhibit the ...

  17. Single Camera 3-D Coordinate Measuring System Based on Optical Probe Imaging

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A new vision coordinate measuring system——single camera 3-D coordinate measuring system based on optical probe imaging is presented. A new idea in vision coordinate measurement is proposed. A linear model is deduced which can distinguish six freedom degrees of optical probe to realize coordinate measurement of the object surface. The effects of some factors on the resolution of the system are analyzed. The simulating experiments have shown that the system model is available.

  18. A Ground-Based Prototype of a CMOS Navigational Star Camera for Small Satellite Applications

    OpenAIRE

    Shucker, Brian

    2001-01-01

    Small satellites are now capable of performing missions that require accurate attitude determination and control. However, low size, power, and cost requirements limit the types of attitude sensors that can be used on a small craft, making attitude estimation difficult. In particular, star trackers—often the attitude sensors of choice for larger spacecraft—are not practical for small satellites. This paper describes a miniature navigational star camera based on CMOS sensor technology that is ...

  19. Clinical use of a positron camera system

    International Nuclear Information System (INIS)

    Our group is at the time trying to acquire the necessary resources for physiological investigations. A 4-dimensional instrument is being constructed and efficient methods of labeling carbon hydrates and polypeptides have been devised. (orig./VJ)

  20. Obstacle classification and 3D measurement in unstructured environments based on ToF cameras.

    Science.gov (United States)

    Yu, Hongshan; Zhu, Jiang; Wang, Yaonan; Jia, Wenyan; Sun, Mingui; Tang, Yandong

    2014-01-01

    Inspired by the human 3D visual perception system, we present an obstacle detection and classification method based on the use of Time-of-Flight (ToF) cameras for robotic navigation in unstructured environments. The ToF camera provides 3D sensing by capturing an image along with per-pixel 3D space information. Based on this valuable feature and human knowledge of navigation, the proposed method first removes irrelevant regions which do not affect robot's movement from the scene. In the second step, regions of interest are detected and clustered as possible obstacles using both 3D information and intensity image obtained by the ToF camera. Consequently, a multiple relevance vector machine (RVM) classifier is designed to classify obstacles into four possible classes based on the terrain traversability and geometrical features of the obstacles. Finally, experimental results in various unstructured environments are presented to verify the robustness and performance of the proposed approach. We have found that, compared with the existing obstacle recognition methods, the new approach is more accurate and efficient. PMID:24945679

  1. Line-based camera calibration with lens distortion correction from a single image

    Science.gov (United States)

    Zhou, Fuqiang; Cui, Yi; Gao, He; Wang, Yexin

    2013-12-01

    Camera calibration is a fundamental and important step in many machine vision applications. For some practical situations, computing camera parameters from merely a single image is becoming increasingly feasible and significant. However, the existing single view based calibration methods have various disadvantages such as ignoring lens distortion, requiring some prior knowledge or special calibration environment, and so on. To address these issues, we propose a line-based camera calibration method with lens distortion correction from a single image using three squares with unknown length. Initially, the radial distortion coefficients are obtained through a non-linear optimization process which is isolated from the pin-hole model calibration, and the detected distorted lines of all the squares are corrected simultaneously. Subsequently, the corresponding lines used for homography estimation are normalized to avoid the specific unstable case, and the intrinsic parameters are calculated from the sufficient restrictions provided by vectors of homography matrix. To evaluate the performance of the proposed method, both simulative and real experiments have been carried out and the results show that the proposed method is robust under general conditions and it achieves comparable measurement accuracy in contrast with the traditional multiple view based calibration method using 2D chessboard target.

  2. Obstacle classification and 3D measurement in unstructured environments based on ToF cameras.

    Science.gov (United States)

    Yu, Hongshan; Zhu, Jiang; Wang, Yaonan; Jia, Wenyan; Sun, Mingui; Tang, Yandong

    2014-06-18

    Inspired by the human 3D visual perception system, we present an obstacle detection and classification method based on the use of Time-of-Flight (ToF) cameras for robotic navigation in unstructured environments. The ToF camera provides 3D sensing by capturing an image along with per-pixel 3D space information. Based on this valuable feature and human knowledge of navigation, the proposed method first removes irrelevant regions which do not affect robot's movement from the scene. In the second step, regions of interest are detected and clustered as possible obstacles using both 3D information and intensity image obtained by the ToF camera. Consequently, a multiple relevance vector machine (RVM) classifier is designed to classify obstacles into four possible classes based on the terrain traversability and geometrical features of the obstacles. Finally, experimental results in various unstructured environments are presented to verify the robustness and performance of the proposed approach. We have found that, compared with the existing obstacle recognition methods, the new approach is more accurate and efficient.

  3. Obstacle Classification and 3D Measurement in Unstructured Environments Based on ToF Cameras

    Directory of Open Access Journals (Sweden)

    Hongshan Yu

    2014-06-01

    Full Text Available Inspired by the human 3D visual perception system, we present an obstacle detection and classification method based on the use of Time-of-Flight (ToF cameras for robotic navigation in unstructured environments. The ToF camera provides 3D sensing by capturing an image along with per-pixel 3D space information. Based on this valuable feature and human knowledge of navigation, the proposed method first removes irrelevant regions which do not affect robot’s movement from the scene. In the second step, regions of interest are detected and clustered as possible obstacles using both 3D information and intensity image obtained by the ToF camera. Consequently, a multiple relevance vector machine (RVM classifier is designed to classify obstacles into four possible classes based on the terrain traversability and geometrical features of the obstacles. Finally, experimental results in various unstructured environments are presented to verify the robustness and performance of the proposed approach. We have found that, compared with the existing obstacle recognition methods, the new approach is more accurate and efficient.

  4. Evaluation of Compton gamma camera prototype based on pixelated CdTe detectors.

    Science.gov (United States)

    Calderón, Y; Chmeissani, M; Kolstein, M; De Lorenzo, G

    2014-06-01

    A proposed Compton camera prototype based on pixelated CdTe is simulated and evaluated in order to establish its feasibility and expected performance in real laboratory tests. The system is based on module units containing a 2×4 array of square CdTe detectors of 10×10 mm(2) area and 2 mm thickness. The detectors are pixelated and stacked forming a 3D detector with voxel sizes of 2 × 1 × 2 mm(3). The camera performance is simulated with Geant4-based Architecture for Medicine-Oriented Simulations(GAMOS) and the Origin Ensemble(OE) algorithm is used for the image reconstruction. The simulation shows that the camera can operate with up to 10(4) Bq source activities with equal efficiency and is completely saturated at 10(9) Bq. The efficiency of the system is evaluated using a simulated (18) F point source phantom in the center of the Field-of-View (FOV) achieving an intrinsic efficiency of 0.4 counts per second per kilobecquerel. The spatial resolution measured from the point spread function (PSF) shows a FWHM of 1.5 mm along the direction perpendicular to the scatterer, making it possible to distinguish two points at 3 mm separation with a peak-to-valley ratio of 8. PMID:24932209

  5. An enhanced high-resolution EMCCD-based gamma camera using SiPM side detection.

    Science.gov (United States)

    Heemskerk, J W T; Korevaar, M A N; Huizenga, J; Kreuger, R; Schaart, D R; Goorden, M C; Beekman, F J

    2010-11-21

    Electron-multiplying charge-coupled devices (EMCCDs) coupled to scintillation crystals can be used for high-resolution imaging of gamma rays in scintillation counting mode. However, the detection of false events as a result of EMCCD noise deteriorates the spatial and energy resolution of these gamma cameras and creates a detrimental background in the reconstructed image. In order to improve the performance of an EMCCD-based gamma camera with a monolithic scintillation crystal, arrays of silicon photon-multipliers (SiPMs) can be mounted on the sides of the crystal to detect escaping scintillation photons, which are otherwise neglected. This will provide a priori knowledge about the correct number and energies of gamma interactions that are to be detected in each CCD frame. This information can be used as an additional detection criterion, e.g. for the rejection of otherwise falsely detected events. The method was tested using a gamma camera based on a back-illuminated EMCCD, coupled to a 3 mm thick continuous CsI:Tl crystal. Twelve SiPMs have been mounted on the sides of the CsI:Tl crystal. When the information of the SiPMs is used to select scintillation events in the EMCCD image, the background level for (99m)Tc is reduced by a factor of 2. Furthermore, the SiPMs enable detection of (125)I scintillations. A hybrid SiPM-/EMCCD-based gamma camera thus offers great potential for applications such as in vivo imaging of gamma emitters. PMID:21030743

  6. An enhanced high-resolution EMCCD-based gamma camera using SiPM side detection

    International Nuclear Information System (INIS)

    Electron-multiplying charge-coupled devices (EMCCDs) coupled to scintillation crystals can be used for high-resolution imaging of gamma rays in scintillation counting mode. However, the detection of false events as a result of EMCCD noise deteriorates the spatial and energy resolution of these gamma cameras and creates a detrimental background in the reconstructed image. In order to improve the performance of an EMCCD-based gamma camera with a monolithic scintillation crystal, arrays of silicon photon-multipliers (SiPMs) can be mounted on the sides of the crystal to detect escaping scintillation photons, which are otherwise neglected. This will provide a priori knowledge about the correct number and energies of gamma interactions that are to be detected in each CCD frame. This information can be used as an additional detection criterion, e.g. for the rejection of otherwise falsely detected events. The method was tested using a gamma camera based on a back-illuminated EMCCD, coupled to a 3 mm thick continuous CsI:Tl crystal. Twelve SiPMs have been mounted on the sides of the CsI:Tl crystal. When the information of the SiPMs is used to select scintillation events in the EMCCD image, the background level for 99mTc is reduced by a factor of 2. Furthermore, the SiPMs enable detection of 125I scintillations. A hybrid SiPM-/EMCCD-based gamma camera thus offers great potential for applications such as in vivo imaging of gamma emitters.

  7. A mobile phone-based retinal camera for portable wide field imaging.

    Science.gov (United States)

    Maamari, Robi N; Keenan, Jeremy D; Fletcher, Daniel A; Margolis, Todd P

    2014-04-01

    Digital fundus imaging is used extensively in the diagnosis, monitoring and management of many retinal diseases. Access to fundus photography is often limited by patient morbidity, high equipment cost and shortage of trained personnel. Advancements in telemedicine methods and the development of portable fundus cameras have increased the accessibility of retinal imaging, but most of these approaches rely on separate computers for viewing and transmission of fundus images. We describe a novel portable handheld smartphone-based retinal camera capable of capturing high-quality, wide field fundus images. The use of the mobile phone platform creates a fully embedded system capable of acquisition, storage and analysis of fundus images that can be directly transmitted from the phone via the wireless telecommunication system for remote evaluation. PMID:24344230

  8. Design of an Optical Character Recognition System for Camera-based Handheld Devices

    Directory of Open Access Journals (Sweden)

    Ayatullah Faruk Mollah

    2011-07-01

    Full Text Available This paper presents a complete Optical Character Recognition (OCR system for camera captured image/graphics embedded textual documents for handheld devices. At first, text regions are extracted and skew corrected. Then, these regions are binarized and segmented into lines and characters. Characters are passed into the recognition module. Experimenting with a set of 100 business card images, captured by cell phone camera, we have achieved a maximum recognition accuracy of 92.74%. Compared to Tesseract, an open source desktop-based powerful OCR engine, present recognition accuracy is worth contributing. Moreover, the developed technique is computationally efficient and consumes low memory so as to be applicable on handheld devices.

  9. Errors in Thermographic Camera Measurement Caused by Known Heat Sources and Depth Based Correction

    Directory of Open Access Journals (Sweden)

    Mark Christian E. Manuel

    2016-03-01

    Full Text Available Thermal imaging has shown to be a better tool for the quantitative measurement of temperature than single spot infrared thermometers. However, thermographic cameras can encounter errors in acquiring accurate temperature measurements in the presence of other environmental heat sources. Some of these errors arise due to the inability of the thermal camera to detect objects and features in the infrared domain. In this paper, the thermal image is registered as a stereo image from a Kinect system prior to depth-based correction. Experiments demonstrating the error are presented together with the determination of the measurement errors under prior knowledge of the thermographed scene. The proposed correction scheme improves the accuracy of the thermal image through augmentation using the Kinect system.

  10. Optical character recognition of camera-captured images based on phase features

    Science.gov (United States)

    Diaz-Escobar, Julia; Kober, Vitaly

    2015-09-01

    Nowadays most of digital information is obtained using mobile devices specially smartphones. In particular, it brings the opportunity for optical character recognition in camera-captured images. For this reason many recognition applications have been recently developed such as recognition of license plates, business cards, receipts and street signal; document classification, augmented reality, language translator and so on. Camera-captured images are usually affected by geometric distortions, nonuniform illumination, shadow, noise, which make difficult the recognition task with existing systems. It is well known that the Fourier phase contains a lot of important information regardless of the Fourier magnitude. So, in this work we propose a phase-based recognition system exploiting phase-congruency features for illumination/scale invariance. The performance of the proposed system is tested in terms of miss classifications and false alarms with the help of computer simulation.

  11. Medical Compton cameras based on semiconductor detectors design and experimental development

    CERN Document Server

    Scannavini, M G

    2001-01-01

    The work presented in this thesis is aimed at the study of Compton scatter as an alternative method of collimating gamma-rays in nuclear medicine applications. Conventional approaches to radioisotope medical imaging and their current limitations are examined. The theory of electronic collimation based on Compton scatter is introduced and it is shown that in principle its application could provide an advantageous imaging method, with both high spatial resolution and high sensitivity. The current status of research in the field, of Compton cameras is assessed and potential niches for applications of clinical interest are suggested. The criteria for the design of a Compton scatter camera are examined. A variety of semiconductors are considered for the construction of an electronic collimator and results from Monte Carlo computer simulations are presented for photon energies of clinical interest. It is concluded that the most viable approach is to design a silicon collimator for the imaging of high-energy (511 ke...

  12. Unsteady pressure-sensitive paint measurement based on the heterodyne method using low frame rate camera.

    Science.gov (United States)

    Matsuda, Yu; Yorita, Daisuke; Egami, Yasuhiro; Kameya, Tomohiro; Kakihara, Noriaki; Yamaguchi, Hiroki; Asai, Keisuke; Niimi, Tomohide

    2013-10-01

    The pressure-sensitive paint technique based on the heterodyne method was proposed for the precise pressure measurement of unsteady flow fields. This measurement is realized by detecting the beat signal that results from interference between a modulating illumination light source and a pressure fluctuation. The beat signal is captured by a camera with a considerably lower frame rate than the frequency of the pressure fluctuation. By carefully adjusting the frequency of the light and the camera frame rate, the signal at the frequency of interest is detected, while the noise signals at other frequencies are eliminated. To demonstrate the proposed method, we measured the pressure fluctuations in a resonance tube at the fundamental, second, and third harmonics. The pressure fluctuation distributions were successfully obtained and were consistent with measurements from a pressure transducer. The proposed method is a useful technique for measuring unsteady phenomena.

  13. Stereoscopic ground-based determination of the cloud base height: theory of camera position calibration with account for lens distortion

    Science.gov (United States)

    Chulichkov, Alexey I.; Postylyakov, Oleg V.

    2016-05-01

    For the reconstruction of some geometrical characteristics of clouds a method was developed based on taking pictures of the sky by a pair of digital photo cameras and subsequent processing of the obtained sequence of stereo frames to obtain the height of the cloud base. Since the directions of the optical axes of the stereo cameras are not exactly known, a procedure of adjusting of obtained frames was developed which use photographs of the night starry sky. In the second step, the method of the morphological analysis of images is used to determine the relative shift of the coordinates of some fragment of cloud. The shift is used to estimate the searched cloud base height. The proposed method can be used for automatic processing of stereo data and getting the cloud base height. The earlier paper described a mathematical model of stereophotography measurement, poses and solves the problem of adjusting of optical axes of the cameras in paraxial (first-order geometric optics) approximation and was applied for the central part of the sky frames. This paper describes the model of experiment which takes into account lens distortion in Seidel approximation (depending on the third order of the distance from optical axis). We developed procedure of simultaneous camera position calibration and estimation of parameters of lens distortion in Seidel approximation.

  14. AOTF-based NO2 camera, results from the AROMAT-2 campaign

    Science.gov (United States)

    Dekemper, Emmanuel; Fussen, Didier; Vanhamel, Jurgen; Van Opstal, Bert; Maes, Jeroen; Merlaud, Alexis; Stebel, Kerstin; Schuettemeyer, Dirk

    2016-04-01

    A hyperspectral imager based on an acousto-optical tunable filter (AOTF) has been developed in the frame of the ALTIUS mission (atmospheric limb tracker for the investigation of the upcoming stratosphere). ALTIUS is a three-channel (UV, VIS, NIR) space-borne limb sounder aiming at the retrieval of concentration profiles of important trace species (O3, NO2, aerosols and more) with a good vertical resolution. An optical breadboard was built from the VIS channel concept and is now serving as a ground-based remote sensing instrument. Its good spectral resolution (0.6nm) coupled to its natural imaging capabilities (6° square field of view sampled by a 512x512 pixels sensor) make it suitable for the measurement of 2D fields of NO2, similarly to what is nowadays achieved with SO2 cameras. Our NO2 camera was one of the instruments that took part to the second Airborne ROmanian Measurements of Aerosols and Trace gases (AROMAT-2) campaign in August 2015. It was pointed to the smokestacks of the coal and oil burning power plant of Turceni (Romania) in order to image the exhausted field of NO2 and derive slant columns and instantaneous emission fluxes. The ultimate goal of the AROMAT campaigns is to prepare the validation of TROPOMI onboard Sentinel-5P. We will briefly describe the instrumental concept of the NO2 camera, its heritage from the ALTIUS mission, and its advantages compared to previous attempts of reaching the same goal. Key results obtained with the camera during the AROMAT-2 campaign will be presented and further improvements will be discussed.

  15. Development of plenoptic infrared camera using low dimensional material based photodetectors

    Science.gov (United States)

    Chen, Liangliang

    Infrared (IR) sensor has extended imaging from submicron visible spectrum to tens of microns wavelength, which has been widely used for military and civilian application. The conventional bulk semiconductor materials based IR cameras suffer from low frame rate, low resolution, temperature dependent and highly cost, while the unusual Carbon Nanotube (CNT), low dimensional material based nanotechnology has been made much progress in research and industry. The unique properties of CNT lead to investigate CNT based IR photodetectors and imaging system, resolving the sensitivity, speed and cooling difficulties in state of the art IR imagings. The reliability and stability is critical to the transition from nano science to nano engineering especially for infrared sensing. It is not only for the fundamental understanding of CNT photoresponse induced processes, but also for the development of a novel infrared sensitive material with unique optical and electrical features. In the proposed research, the sandwich-structured sensor was fabricated within two polymer layers. The substrate polyimide provided sensor with isolation to background noise, and top parylene packing blocked humid environmental factors. At the same time, the fabrication process was optimized by real time electrical detection dielectrophoresis and multiple annealing to improve fabrication yield and sensor performance. The nanoscale infrared photodetector was characterized by digital microscopy and precise linear stage in order for fully understanding it. Besides, the low noise, high gain readout system was designed together with CNT photodetector to make the nano sensor IR camera available. To explore more of infrared light, we employ compressive sensing algorithm into light field sampling, 3-D camera and compressive video sensing. The redundant of whole light field, including angular images for light field, binocular images for 3-D camera and temporal information of video streams, are extracted and

  16. Motion measurement of SAR antenna based on high frame rate camera

    Science.gov (United States)

    Li, Q.; Cao, R.; Feng, H.; Xu, Z.

    2015-03-01

    Synthetic Aperture Radar (SAR) is currently in the marine, agriculture, geology and other fields are widely used, while the SAR antenna is one of the most important subsystems. Performance of antenna has a significant impact on the SAR sensitivity, azimuth resolution, image blur degree and other parameter. To improve SAR resolution, SAR antenna is designed and fabricated according to flexible expandable style. However, the movement of flexible antenna will have a greater impact on accuracy of SAR systems, so the motion measurement of the flexible antenna is an urgent problem. This paper studied motion measurements method based on high frame rate camera, designed and completed a flexible antenna motion measurement experiment. In the experiment the main IMU and the sub IMU were placed at both ends of the cantilever, which is simulation of flexible antenna, the high frame rate camera was placed above the main IMU, and the imaging target was set on side of the sub IMU. When the cantilever motion occurs, IMU acquired spatial coordinates of cantilever movement in real-time, and high frame rate camera captured a series of target images, and then the images was input into JTC to obtain the cantilever motion coordinates. Through the contrast and analysis of measurement results, the measurement accuracy of flexible antenna motion is verified.

  17. Vibration extraction based on fast NCC algorithm and high-speed camera.

    Science.gov (United States)

    Lei, Xiujun; Jin, Yi; Guo, Jie; Zhu, Chang'an

    2015-09-20

    In this study, a high-speed camera system is developed to complete the vibration measurement in real time and to overcome the mass introduced by conventional contact measurements. The proposed system consists of a notebook computer and a high-speed camera which can capture the images as many as 1000 frames per second. In order to process the captured images in the computer, the normalized cross-correlation (NCC) template tracking algorithm with subpixel accuracy is introduced. Additionally, a modified local search algorithm based on the NCC is proposed to reduce the computation time and to increase efficiency significantly. The modified algorithm can rapidly accomplish one displacement extraction 10 times faster than the traditional template matching without installing any target panel onto the structures. Two experiments were carried out under laboratory and outdoor conditions to validate the accuracy and efficiency of the system performance in practice. The results demonstrated the high accuracy and efficiency of the camera system in extracting vibrating signals. PMID:26406525

  18. Digital camera and smartphone as detectors in paper-based chemiluminometric genotyping of single nucleotide polymorphisms.

    Science.gov (United States)

    Spyrou, Elena M; Kalogianni, Despina P; Tragoulias, Sotirios S; Ioannou, Penelope C; Christopoulos, Theodore K

    2016-10-01

    Chemi(bio)luminometric assays have contributed greatly to various areas of nucleic acid analysis due to their simplicity and detectability. In this work, we present the development of chemiluminometric genotyping methods in which (a) detection is performed by using either a conventional digital camera (at ambient temperature) or a smartphone and (b) a lateral flow assay configuration is employed for even higher simplicity and suitability for point of care or field testing. The genotyping of the C677T single nucleotide polymorphism (SNP) of methylenetetrahydropholate reductase (MTHFR) gene is chosen as a model. The interrogated DNA sequence is amplified by polymerase chain reaction (PCR) followed by a primer extension reaction. The reaction products are captured through hybridization on the sensing areas (spots) of the strip. Streptavidin-horseradish peroxidase conjugate is used as a reporter along with a chemiluminogenic substrate. Detection of the emerging chemiluminescence from the sensing areas of the strip is achieved by digital camera or smartphone. For this purpose, we constructed a 3D-printed smartphone attachment that houses inexpensive lenses and converts the smartphone into a portable chemiluminescence imager. The device enables spatial discrimination of the two alleles of a SNP in a single shot by imaging of the strip, thus avoiding the need of dual labeling. The method was applied successfully to genotyping of real clinical samples. Graphical abstract Paper-based genotyping assays using digital camera and smartphone as detectors.

  19. Validity and repeatability of a depth camera-based surface imaging system for thigh volume measurement.

    Science.gov (United States)

    Bullas, Alice M; Choppin, Simon; Heller, Ben; Wheat, Jon

    2016-10-01

    Complex anthropometrics such as area and volume, can identify changes in body size and shape that are not detectable with traditional anthropometrics of lengths, breadths, skinfolds and girths. However, taking these complex with manual techniques (tape measurement and water displacement) is often unsuitable. Three-dimensional (3D) surface imaging systems are quick and accurate alternatives to manual techniques but their use is restricted by cost, complexity and limited access. We have developed a novel low-cost, accessible and portable 3D surface imaging system based on consumer depth cameras. The aim of this study was to determine the validity and repeatability of the system in the measurement of thigh volume. The thigh volumes of 36 participants were measured with the depth camera system and a high precision commercially available 3D surface imaging system (3dMD). The depth camera system used within this study is highly repeatable (technical error of measurement (TEM) of <1.0% intra-calibration and ~2.0% inter-calibration) but systematically overestimates (~6%) thigh volume when compared to the 3dMD system. This suggests poor agreement yet a close relationship, which once corrected can yield a usable thigh volume measurement.

  20. Range camera calibration based on image sequences and dense comprehensive error statistics

    Science.gov (United States)

    Karel, Wilfried; Pfeifer, Norbert

    2009-01-01

    This article concentrates on the integrated self-calibration of both the interior orientation and the distance measurement system of a time-of-flght range camera (photonic mixer device). Unlike other approaches that investigate individual distortion factors separately, in the presented approach all calculations are based on the same data set that is captured without auxiliary devices serving as high-order reference, but with the camera being guided by hand. Flat, circular targets stuck on a planar whiteboard and with known positions are automatically tracked throughout the amplitude layer of long image sequences. These image observations are introduced into a bundle block adjustment, which on the one hand results in the determination of the interior orientation. Capitalizing the known planarity of the imaged board, the reconstructed exterior orientations furthermore allow for the derivation of reference values of the actual distance observations. Eased by the automatic reconstruction of the cameras trajectory and attitude, comprehensive statistics are generated, which are accumulated into a 5-dimensional matrix in order to be manageable. The marginal distributions of this matrix are inspected for the purpose of system identification, whereupon its elements are introduced into another least-squares adjustment, finally leading to clear range correction models and parameters.

  1. Validity and repeatability of a depth camera-based surface imaging system for thigh volume measurement.

    Science.gov (United States)

    Bullas, Alice M; Choppin, Simon; Heller, Ben; Wheat, Jon

    2016-10-01

    Complex anthropometrics such as area and volume, can identify changes in body size and shape that are not detectable with traditional anthropometrics of lengths, breadths, skinfolds and girths. However, taking these complex with manual techniques (tape measurement and water displacement) is often unsuitable. Three-dimensional (3D) surface imaging systems are quick and accurate alternatives to manual techniques but their use is restricted by cost, complexity and limited access. We have developed a novel low-cost, accessible and portable 3D surface imaging system based on consumer depth cameras. The aim of this study was to determine the validity and repeatability of the system in the measurement of thigh volume. The thigh volumes of 36 participants were measured with the depth camera system and a high precision commercially available 3D surface imaging system (3dMD). The depth camera system used within this study is highly repeatable (technical error of measurement (TEM) of <1.0% intra-calibration and ~2.0% inter-calibration) but systematically overestimates (~6%) thigh volume when compared to the 3dMD system. This suggests poor agreement yet a close relationship, which once corrected can yield a usable thigh volume measurement. PMID:26928458

  2. New Geo-location Approach Based on Camera Coordinates and Common Points on Multiple Images

    Directory of Open Access Journals (Sweden)

    Yu Jiaxiang

    2009-01-01

    Full Text Available The accuracy of traditional unmanned aerial vehicle (UAV geo-location based on single image is too low to meet the needs of precise strike. In this paper, a new UAV geo-location method is presented. The mathematical models are constructed by linearization of the collinearity equations to iteratively compute the pose angles and focal length of the camera. At least three images of the target, along with at least three identifiable common points among the images, are needed for reckoning camera pose angles and focal length. The three dimensional (3D coordinates of ground target are calculated using forward intersection. The new method can get the target coordinates with no dependence on digital elevation model (DEM and the measured values of camera pose angles, therefore two of the three primary error sources in the traditional UAV target location approach are eliminated. Simulation and real image experiment results show that the accuracy of the estimated target location is close to that of the UAV position, and that target location error is within 5m circular error probable (CEP on condition that the UAV is navigated by differential global positioning systems (DGPS.Defence Science Journal, 2009, 59(1, pp.43-48, DOI:http://dx.doi.org/10.14429/dsj.59.1483

  3. Physical Activity Recognition Based on Motion in Images Acquired by a Wearable Camera.

    Science.gov (United States)

    Zhang, Hong; Li, Lu; Jia, Wenyan; Fernstrom, John D; Sclabassi, Robert J; Mao, Zhi-Hong; Sun, Mingui

    2011-06-01

    A new technique to extract and evaluate physical activity patterns from image sequences captured by a wearable camera is presented in this paper. Unlike standard activity recognition schemes, the video data captured by our device do not include the wearer him/herself. The physical activity of the wearer, such as walking or exercising, is analyzed indirectly through the camera motion extracted from the acquired video frames. Two key tasks, pixel correspondence identification and motion feature extraction, are studied to recognize activity patterns. We utilize a multiscale approach to identify pixel correspondences. When compared with the existing methods such as the Good Features detector and the Speed-up Robust Feature (SURF) detector, our technique is more accurate and computationally efficient. Once the pixel correspondences are determined which define representative motion vectors, we build a set of activity pattern features based on motion statistics in each frame. Finally, the physical activity of the person wearing a camera is determined according to the global motion distribution in the video. Our algorithms are tested using different machine learning techniques such as the K-Nearest Neighbor (KNN), Naive Bayesian and Support Vector Machine (SVM). The results show that many types of physical activities can be recognized from field acquired real-world video. Our results also indicate that, with a design of specific motion features in the input vectors, different classifiers can be used successfully with similar performances.

  4. Camera characterization using back-propagation artificial neutral network based on Munsell system

    Science.gov (United States)

    Liu, Ye; Yu, Hongfei; Shi, Junsheng

    2008-02-01

    The camera output RGB signals do not directly corresponded to the tristimulus values based on the CIE standard colorimetric observer, i.e., it is a device-independent color space. For achieving accurate color information, we need to do color characterization, which can be used to derive a transformation between camera RGB values and CIE XYZ values. In this paper we set up a Back-Propagation (BP) artificial neutral network to realize the mapping from camera RGB to CIE XYZ. We used the Munsell Book of Color with total number 1267 as color samples. Each patch of the Munsell Book of Color was recorded by camera, and the RGB values could be obtained. The Munsell Book of Color were taken in a light booth and the surround was kept dark. The viewing/illuminating geometry was 0/45 using D 65 illuminate. The lighting illuminating the reference target needs to be as uniform as possible. The BP network was a 5-layer one and (3-10-10-10-3), which was selected through our experiments. 1000 training samples were selected randomly from the 1267 samples, and the rest 267 samples were as the testing samples. Experimental results show that the mean color difference between the reproduced colors and target colors is 0.5 CIELAB color-difference unit, which was smaller than the biggest acceptable color difference 2 CIELAB color-difference unit. The results satisfy some applications for the more accurate color measurements, such as medical diagnostics, cosmetics production, the color reappearance of different media, etc.

  5. Camera on Vessel: A Camera-Based System to Measure Change in Water Volume in a Drinking Glass

    Directory of Open Access Journals (Sweden)

    Idowu Ayoola

    2015-09-01

    Full Text Available A major problem related to chronic health is patients’ “compliance” with new lifestyle changes, medical prescriptions, recommendations, or restrictions. Heart-failure and hemodialysis patients are usually placed on fluid restrictions due to their hemodynamic status. A holistic approach to managing fluid imbalance will incorporate the monitoring of salt-water intake, body-fluid retention, and fluid excretion in order to provide effective intervention at an early stage. Such an approach creates a need to develop a smart device that can monitor the drinking activities of the patient. This paper employs an empirical approach to infer the real water level in a conically shapped glass and the volume difference due to changes in water level. The method uses a low-resolution miniaturized camera to obtain images using an Arduino microcontroller. The images are processed in MATLAB. Conventional segmentation techniques (such as a Sobel filter to obtain a binary image are applied to extract the level gradient, and an ellipsoidal fitting helps to estimate the size of the cup. The fitting (using least-squares criterion between derived measurements in pixel and the real measurements shows a low covariance between the estimated measurement and the mean. The correlation between the estimated results to ground truth produced a variation of 3% from the mean.

  6. Optimum design of the carbon fiber thin-walled baffle for the space-based camera

    Science.gov (United States)

    Yan, Yong; Song, Gu; Yuan, An; Jin, Guang

    2011-08-01

    The thin-walled baffle design of the space-based camera is an important job in the lightweight space camera research task for its stringent quality requirement and harsh mechanical environment especially for the thin-walled baffle of the carbon fiber design. In the paper, an especially thin-walled baffle of the carbon fiber design process was described and it is sound significant during the other thin-walled baffle design of the space camera. The designer obtained the design margin of the thin-walled baffle that structural stiffness and strength can tolerated belong to its development requirements through the appropriate use of the finite element analysis of the walled parameters influence sensitivity to its structural stiffness and strength. And the designer can determine the better optimization criterion of thin-walled baffle during the geometric parameter optimization process in such guiding principle. It sounds significant during the optimum design of the thin-walled baffle of the space camera. For structural stiffness and strength of the carbon fibers structure which can been designed, the effect of the optimization will be more remarkable though the optional design of the parameters chose. Combination of manufacture process and design requirements the paper completed the thin-walled baffle structure scheme selection and optimized the specific carbon fiber fabrication technology though the FEM optimization, and the processing cost and process cycle are retrenchment/saved effectively in the method. Meanwhile, the weight of the thin-walled baffle reduced significantly in meet the design requirements under the premise of the structure. The engineering prediction had been adopted, and the related result shows that the thin-walled baffle satisfied the space-based camera engineering practical needs very well, its quality reduced about 20%, the final assessment index of the thin-walled baffle were superior to the overall design requirements significantly. The design

  7. A clinical gamma camera-based pinhole collimated system for high resolution small animal SPECT imaging

    International Nuclear Information System (INIS)

    The main objective of the present study was to upgrade a clinical gamma camera to obtain high resolution tomographic images of small animal organs. The system is based on a clinical gamma camera to which we have adapted a special-purpose pinhole collimator and a device for positioning and rotating the target based on a computer-controlled step motor. We developed a software tool to reconstruct the target's three-dimensional distribution of emission from a set of planar projections, based on the maximum likelihood algorithm. We present details on the hardware and software implementation. We imaged phantoms and heart and kidneys of rats. When using pinhole collimators, the spatial resolution and sensitivity of the imaging system depend on parameters such as the detector-to-collimator and detector-to-target distances and pinhole diameter. In this study, we reached an object voxel size of 0.6 mm and spatial resolution better than 2.4 and 1.7 mm full width at half maximum when 1.5- and 1.0-mm diameter pinholes were used, respectively. Appropriate sensitivity to study the target of interest was attained in both cases. Additionally, we show that as few as 12 projections are sufficient to attain good quality reconstructions, a result that implies a significant reduction of acquisition time and opens the possibility for radiotracer dynamic studies. In conclusion, a high resolution single photon emission computed tomography (SPECT) system was developed using a commercial clinical gamma camera, allowing the acquisition of detailed volumetric images of small animal organs. This type of system has important implications for research areas such as Cardiology, Neurology or Oncology. (author)

  8. A clinical gamma camera-based pinhole collimated system for high resolution small animal SPECT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Mejia, J.; Galvis-Alonso, O.Y., E-mail: mejia_famerp@yahoo.com.b [Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), SP (Brazil). Dept. de Biologia Molecular; Castro, A.A. de; Simoes, M.V. [Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), SP (Brazil). Dept. de Clinica Medica; Leite, J.P. [Universidade de Sao Paulo (FMRP/USP), Ribeirao Preto, SP (Brazil). Fac. de Medicina. Dept. de Neurociencias e Ciencias do Comportamento; Braga, J. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Div. de Astrofisica

    2010-11-15

    The main objective of the present study was to upgrade a clinical gamma camera to obtain high resolution tomographic images of small animal organs. The system is based on a clinical gamma camera to which we have adapted a special-purpose pinhole collimator and a device for positioning and rotating the target based on a computer-controlled step motor. We developed a software tool to reconstruct the target's three-dimensional distribution of emission from a set of planar projections, based on the maximum likelihood algorithm. We present details on the hardware and software implementation. We imaged phantoms and heart and kidneys of rats. When using pinhole collimators, the spatial resolution and sensitivity of the imaging system depend on parameters such as the detector-to-collimator and detector-to-target distances and pinhole diameter. In this study, we reached an object voxel size of 0.6 mm and spatial resolution better than 2.4 and 1.7 mm full width at half maximum when 1.5- and 1.0-mm diameter pinholes were used, respectively. Appropriate sensitivity to study the target of interest was attained in both cases. Additionally, we show that as few as 12 projections are sufficient to attain good quality reconstructions, a result that implies a significant reduction of acquisition time and opens the possibility for radiotracer dynamic studies. In conclusion, a high resolution single photon emission computed tomography (SPECT) system was developed using a commercial clinical gamma camera, allowing the acquisition of detailed volumetric images of small animal organs. This type of system has important implications for research areas such as Cardiology, Neurology or Oncology. (author)

  9. A Probabilistic Feature Map-Based Localization System Using a Monocular Camera.

    Science.gov (United States)

    Kim, Hyungjin; Lee, Donghwa; Oh, Taekjun; Choi, Hyun-Taek; Myung, Hyun

    2015-01-01

    Image-based localization is one of the most widely researched localization techniques in the robotics and computer vision communities. As enormous image data sets are provided through the Internet, many studies on estimating a location with a pre-built image-based 3D map have been conducted. Most research groups use numerous image data sets that contain sufficient features. In contrast, this paper focuses on image-based localization in the case of insufficient images and features. A more accurate localization method is proposed based on a probabilistic map using 3D-to-2D matching correspondences between a map and a query image. The probabilistic feature map is generated in advance by probabilistic modeling of the sensor system as well as the uncertainties of camera poses. Using the conventional PnP algorithm, an initial camera pose is estimated on the probabilistic feature map. The proposed algorithm is optimized from the initial pose by minimizing Mahalanobis distance errors between features from the query image and the map to improve accuracy. To verify that the localization accuracy is improved, the proposed algorithm is compared with the conventional algorithm in a simulation and realenvironments. PMID:26404284

  10. A Probabilistic Feature Map-Based Localization System Using a Monocular Camera

    Directory of Open Access Journals (Sweden)

    Hyungjin Kim

    2015-08-01

    Full Text Available Image-based localization is one of the most widely researched localization techniques in the robotics and computer vision communities. As enormous image data sets are provided through the Internet, many studies on estimating a location with a pre-built image-based 3D map have been conducted. Most research groups use numerous image data sets that contain sufficient features. In contrast, this paper focuses on image-based localization in the case of insufficient images and features. A more accurate localization method is proposed based on a probabilistic map using 3D-to-2D matching correspondences between a map and a query image. The probabilistic feature map is generated in advance by probabilistic modeling of the sensor system as well as the uncertainties of camera poses. Using the conventional PnP algorithm, an initial camera pose is estimated on the probabilistic feature map. The proposed algorithm is optimized from the initial pose by minimizing Mahalanobis distance errors between features from the query image and the map to improve accuracy. To verify that the localization accuracy is improved, the proposed algorithm is compared with the conventional algorithm in a simulation and realenvironments

  11. New Stereo Vision Digital Camera System for Simultaneous Measurement of Cloud Base Height and Atmospheric Visibility

    Science.gov (United States)

    Janeiro, F. M.; Carretas, F.; Palma, N.; Ramos, P. M.; Wagner, F.

    2013-12-01

    Clouds play an important role in many aspects of everyday life. They affect both the local weather as well as the global climate and are an important parameter on climate change studies. Cloud parameters are also important for weather prediction models which make use of actual measurements. It is thus important to have low-cost instrumentation that can be deployed in the field to measure those parameters. This kind of instruments should also be automated and robust since they may be deployed in remote places and be subject to adverse weather conditions. Although clouds are very important in environmental systems, they are also an essential component of airplane safety when visual flight rules (VFR) are enforced, such as in most small aerodromes where it is not economically viable to install instruments for assisted flying. Under VFR there are strict limits on the height of the cloud base, cloud cover and atmospheric visibility that ensure the safety of the pilots and planes. Although there are instruments, available in the market, to measure those parameters, their relatively high cost makes them unavailable in many local aerodromes. In this work we present a new prototype which has been recently developed and deployed in a local aerodrome as proof of concept. It is composed by two digital cameras that capture photographs of the sky and allow the measurement of the cloud height from the parallax effect. The new developments consist on having a new geometry which allows the simultaneous measurement of cloud base height, wind speed at cloud base height and atmospheric visibility, which was not previously possible with only two cameras. The new orientation of the cameras comes at the cost of a more complex geometry to measure the cloud base height. The atmospheric visibility is calculated from the Lambert-Beer law after the measurement of the contrast between a set of dark objects and the background sky. The prototype includes the latest hardware developments that

  12. Camera Based Closed Loop Control for Partial Penetration Welding of Overlap Joints

    Science.gov (United States)

    Abt, F.; Heider, A.; Weber, R.; Graf, T.; Blug, A.; Carl, D.; Höfler, H.; Nicolosi, L.; Tetzlaff, R.

    Welding of overlap joints with partial penetration in automotive applications is a challenging process, since the laser power must be set very precisely to achieve a proper connection between the two joining partners without damaging the backside of the sheet stack. Even minor changes in welding conditions can lead to bad results. To overcome this problem a camera based closed loop control for partial penetration welding of overlap joints was developed. With this closed loop control it is possible to weld such configurations with a stable process result even under changing welding conditions.

  13. View synthesis based on the serial images from camera lengthways motion

    Institute of Scientific and Technical Information of China (English)

    Zhang Jing; Wang Changshun; Liao Wuling; Ou Zongying; Hua Shungang

    2006-01-01

    For the pre-acquired serial images from camera lengthways motion, a view synthesis algorithm based on epipolar geometry constraint is proposed in this paper. It uses the whole matching and maintaining order characters of the epipolar line, Fourier transform and dynamic programming matching theories, thus truly synthesizing the destination image of current viewpoint. Through the combination of Fourier transform, epipolar geometry constraint and dynamic programming matching, the circumference distortion problem resulting from conventional view synthesis approaches is effectively avoided. The detailed implementation steps of this algorithm are given, and some running instances are presented to illustrate the results.

  14. Positron Emission Mammography imaging

    Energy Technology Data Exchange (ETDEWEB)

    Moses, W.W. E-mail: wwmoses@lbl.gov

    2004-06-01

    This paper examines current trends in Positron Emission Mammography (PEM) instrumentation and the performance tradeoffs inherent in them. The most common geometry is a pair of parallel planes of detector modules. They subtend a larger solid angle around the breast than conventional PET cameras, and so have both higher efficiency and lower cost. Extensions to this geometry include encircling the breast, measuring the depth of interaction (DOI), and dual-modality imaging (PEM and X-ray mammography, as well as PEM and X-ray guided biopsy). The ultimate utility of PEM may not be decided by instrument performance, but by biological and medical factors, such as the patient to patient variation in radiotracer uptake or the as yet undetermined role of PEM in breast cancer diagnosis and treatment.

  15. Positron emission mammography imaging

    Energy Technology Data Exchange (ETDEWEB)

    Moses, William W.

    2003-10-02

    This paper examines current trends in Positron Emission Mammography (PEM) instrumentation and the performance tradeoffs inherent in them. The most common geometry is a pair of parallel planes of detector modules. They subtend a larger solid angle around the breast than conventional PET cameras, and so have both higher efficiency and lower cost. Extensions to this geometry include encircling the breast, measuring the depth of interaction (DOI), and dual-modality imaging (PEM and x-ray mammography, as well as PEM and x-ray guided biopsy). The ultimate utility of PEM may not be decided by instrument performance, but by biological and medical factors, such as the patient to patient variation in radiotracer uptake or the as yet undetermined role of PEM in breast cancer diagnosis and treatment.

  16. Hyperspectral Longwave Infrared Focal Plane Array and Camera Based on Quantum Well Infrared Photodetectors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a hyperspectral focal plane array and camera imaging in a large number of sharp hyperspectral bands in the thermal infrared. The camera is...

  17. Hyperspectral Longwave Infrared Focal Plane Array and Camera Based on Quantum Well Infrared Photodetectors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a hyperspectral camera imaging in a large number of sharp hyperspectral bands in the thermal infrared. The camera is particularly suitable for...

  18. A novel approach to accurate portal dosimetry using CCD-camera based EPIDs

    International Nuclear Information System (INIS)

    A new method for portal dosimetry using CCD camera-based electronic portal imaging devices (CEPIDs) is demonstrated. Unlike previous approaches, it is not based on a priori assumptions concerning CEPID cross-talk characteristics. In this method, the nonsymmetrical and position-dependent cross-talk is determined by directly imaging a set of cross-talk kernels generated by small fields ('pencil beams') exploiting the high signal-to-noise ratio of a cooled CCD camera. Signal calibration is achieved by imaging two reference fields. Next, portal dose images (PDIs) can be derived from electronic portal dose images (EPIs), in a fast forward-calculating iterative deconvolution. To test the accuracy of these EPI-based PDIs, a comparison is made to PDIs obtained by scanning diode measurements. The method proved accurate to within 0.2±0.7% (1 SD), for on-axis symmetrical and asymmetrical fields with different field widths and homogeneous phantom thicknesses, off-axis Alderson thorax fields and a strongly modulated IMRT field. Hence, the proposed method allows for fast, accurate portal dosimetry. In addition, it is demonstrated that the CEPID cross-talk signal is not only induced by optical photon reflection and scatter within the CEPID structure, but also by high-energy back-scattered radiation from CEPID elements (mirror and housing) towards the fluorescent screen

  19. CA19-9 as a Potential Target for Radiolabeled Antibody-Based Positron Emission Tomography of Pancreas Cancer

    Directory of Open Access Journals (Sweden)

    Mark D. Girgis

    2011-01-01

    Full Text Available Introduction. Sensitive and specific imaging of pancreas cancer are necessary for accurate diagnosis, staging, and treatment. The vast majority of pancreas cancers express the carbohydrate tumor antigen CA19-9. The goal of this study was to determine the potential to target CA19-9 with a radiolabeled anti-CA19-9 antibody for imaging pancreas cancer. Methods. CA19-9 was quantified using flow cytometry on human pancreas cancer cell lines. An intact murine anti-CA19-9 monoclonal antibody was labeled with a positron emitting radionuclide (Iodine-124 and injected into mice harboring antigen positive and negative xenografts. MicroPET/CT were performed at successive time intervals (72 hours, 96 hours, 120 hours after injection. Radioactivity was measured in blood and tumor to provide objective confirmation of the images. Results. Antigen expression by flow cytometry revealed approximately 1.3×106 CA19-9 antigens for the positive cell line and no expression in the negative cell line. Pancreas xenograft imaging with Iodine-124-labeled anti-CA19-9 mAb demonstrated an average tumor to blood ratio of 5 and positive to negative tumor ratio of 20. Conclusion. We show in vivo targeting of our antigen positive xenograft with a radiolabeled anti-CA19-9 antibody. These data demonstrate the potential to achieve anti-CA19-9 antibody based positron emission tomography of pancreas cancer.

  20. A real time visual SLAM for RGB-D cameras based on chamfer distance and occupancy grid

    OpenAIRE

    Dib, Abdallah; Beaufort, Nicolas; Charpillet, François

    2014-01-01

    International audience We present a feature based visual SLAM method that uses chamfer distance to estimate the camera motion from RGB-D images. The proposed method does not require any matching which is an expensive operation and always generates false matching that affects the estimated camera motion. Our approach registers the input image iteratively by minimizing the distance between the feature points and the occupancy grid using a distance map. We demonstrate with real experiments th...

  1. Real-time implementation of camera positioning algorithm based on FPGA & SOPC

    Science.gov (United States)

    Yang, Mingcao; Qiu, Yuehong

    2014-09-01

    In recent years, with the development of positioning algorithm and FPGA, to achieve the camera positioning based on real-time implementation, rapidity, accuracy of FPGA has become a possibility by way of in-depth study of embedded hardware and dual camera positioning system, this thesis set up an infrared optical positioning system based on FPGA and SOPC system, which enables real-time positioning to mark points in space. Thesis completion include: (1) uses a CMOS sensor to extract the pixel of three objects with total feet, implemented through FPGA hardware driver, visible-light LED, used here as the target point of the instrument. (2) prior to extraction of the feature point coordinates, the image needs to be filtered to avoid affecting the physical properties of the system to bring the platform, where the median filtering. (3) Coordinate signs point to FPGA hardware circuit extraction, a new iterative threshold selection method for segmentation of images. Binary image is then segmented image tags, which calculates the coordinates of the feature points of the needle through the center of gravity method. (4) direct linear transformation (DLT) and extreme constraints method is applied to three-dimensional reconstruction of the plane array CMOS system space coordinates. using SOPC system on a chip here, taking advantage of dual-core computing systems, which let match and coordinate operations separately, thus increase processing speed.

  2. Performance evaluation of a hand-held, semiconductor (CdZnTe)-based gamma camera

    CERN Document Server

    Abe, A; Lee, J; Oka, T; Shizukuishi, K; Kikuchi, T; Inoue, T; Jimbo, M; Ryuo, H; Bickel, C

    2003-01-01

    We have designed and developed a small field of view gamma camera, the eZ SCOPE, based on use of a CdZnTe semiconductor. This device utilises proprietary signal processing technology and an interface to a computer-based imaging system. The purpose of this study was to evaluate the performance of the eZ scope in comparison with currently employed gamma camera technology. The detector is a single wafer of 5-mm-thick CdZnTe that is divided into a 16 x 16 array (256 pixels). The sensitive area of the detector is a square of dimension 3.2 cm. Two parallel-hole collimators are provided with the system and have a matching (256 hole) pattern to the CdZnTe detector array: a low-energy, high-resolution parallel-hole (LEHR) collimator fabricated of lead and a low-energy, high-sensitivity parallel-hole (LEHS) collimator fabricated of tungsten. Performance measurements and the data analysis were done according to the procedures of the NEMA standard. We also studied the long-term stability of the system with continuous use...

  3. A new track inspection car based on a laser camera system

    Institute of Scientific and Technical Information of China (English)

    Shengwei Ren; Shiping Gu; Guiyang Xu; Zhan Gao; Qibo Feng

    2011-01-01

    @@ We develop and build a new type of inspection car.A beam that is not rigidly connected to the train axle boxes and can absorb the vibration and impact caused by the high speed train is used, and a laser-camera measurement system based on the machine vision method is adopted.This method projects structural light onto the track and measures gauge and longitudinal irregularity.The measurement principle and model are discussed.Through numerous practical experiments, the rebuilt car is found to considerably eliminate the measurement errors caused by vibration and impact, thereby increasing measurement stability under high speeds.This new kind of inspection cars have been used in several Chinese administration bureaus.%We develop and build a new type of inspection car. A beam that is not rigidly connected to the train axle boxes and can absorb the vibration and impact caused by the high speed train is used, and a laser-camera measurement system based on the machine vision method is adopted. This method projects structural light onto the track and measures gauge and longitudinal irregularity. The measurement principle and model are discussed. Through numerous practical experiments, the rebuilt car is found to considerably eliminate the measurement errors caused by vibration and impact, thereby increasing measurement stability under high speeds. This new kind of inspection cars have been used in several Chinese administration bureaus.

  4. SIMULATION and ANALYSIS of PARALLEL MANIPULATOR for MANOEUVRING LAPAROSCOPIC CAMERA - CAD BASED APPROACH

    Directory of Open Access Journals (Sweden)

    K. Kishore Kumar

    2015-02-01

    Full Text Available The inconvenience of laparoscopic operations lies mainly in the difficulties in mutual understanding between the surgeon and the camera assistant that manoeuvres the laparoscope camera according to the surgeon’s instructions .Another problem arises when the operation had to be performed for many hours.[1] In these cases the camera image tends to become unsteady due to fatigue of the camera assistant. The self-camera control, give more stability of the laparoscopic image, A robotic camera Assistant(parallel manipulator directly under surgeon’s control can help the surgeon control the view better.In this paper a parallel robot is simulated for the manipulation of laparoscopic camera and Two dimentional workspace generated is indicated and velocity ,acceleration ,displacement graphs are shown and analysis is done using ANSYS.

  5. A Ground-Based Near Infrared Camera Array System for UAV Auto-Landing in GPS-Denied Environment.

    Science.gov (United States)

    Yang, Tao; Li, Guangpo; Li, Jing; Zhang, Yanning; Zhang, Xiaoqiang; Zhang, Zhuoyue; Li, Zhi

    2016-01-01

    This paper proposes a novel infrared camera array guidance system with capability to track and provide real time position and speed of a fixed-wing Unmanned air vehicle (UAV) during a landing process. The system mainly include three novel parts: (1) Infrared camera array and near infrared laser lamp based cooperative long range optical imaging module; (2) Large scale outdoor camera array calibration module; and (3) Laser marker detection and 3D tracking module. Extensive automatic landing experiments with fixed-wing flight demonstrate that our infrared camera array system has the unique ability to guide the UAV landing safely and accurately in real time. Moreover, the measurement and control distance of our system is more than 1000 m. The experimental results also demonstrate that our system can be used for UAV automatic accurate landing in Global Position System (GPS)-denied environments. PMID:27589755

  6. A Ground-Based Near Infrared Camera Array System for UAV Auto-Landing in GPS-Denied Environment.

    Science.gov (United States)

    Yang, Tao; Li, Guangpo; Li, Jing; Zhang, Yanning; Zhang, Xiaoqiang; Zhang, Zhuoyue; Li, Zhi

    2016-08-30

    This paper proposes a novel infrared camera array guidance system with capability to track and provide real time position and speed of a fixed-wing Unmanned air vehicle (UAV) during a landing process. The system mainly include three novel parts: (1) Infrared camera array and near infrared laser lamp based cooperative long range optical imaging module; (2) Large scale outdoor camera array calibration module; and (3) Laser marker detection and 3D tracking module. Extensive automatic landing experiments with fixed-wing flight demonstrate that our infrared camera array system has the unique ability to guide the UAV landing safely and accurately in real time. Moreover, the measurement and control distance of our system is more than 1000 m. The experimental results also demonstrate that our system can be used for UAV automatic accurate landing in Global Position System (GPS)-denied environments.

  7. A Ground-Based Near Infrared Camera Array System for UAV Auto-Landing in GPS-Denied Environment

    Science.gov (United States)

    Yang, Tao; Li, Guangpo; Li, Jing; Zhang, Yanning; Zhang, Xiaoqiang; Zhang, Zhuoyue; Li, Zhi

    2016-01-01

    This paper proposes a novel infrared camera array guidance system with capability to track and provide real time position and speed of a fixed-wing Unmanned air vehicle (UAV) during a landing process. The system mainly include three novel parts: (1) Infrared camera array and near infrared laser lamp based cooperative long range optical imaging module; (2) Large scale outdoor camera array calibration module; and (3) Laser marker detection and 3D tracking module. Extensive automatic landing experiments with fixed-wing flight demonstrate that our infrared camera array system has the unique ability to guide the UAV landing safely and accurately in real time. Moreover, the measurement and control distance of our system is more than 1000 m. The experimental results also demonstrate that our system can be used for UAV automatic accurate landing in Global Position System (GPS)-denied environments. PMID:27589755

  8. Early sinkhole detection using a drone-based thermal camera and image processing

    Science.gov (United States)

    Lee, Eun Ju; Shin, Sang Young; Ko, Byoung Chul; Chang, Chunho

    2016-09-01

    Accurate advance detection of the sinkholes that are occurring more frequently now is an important way of preventing human fatalities and property damage. Unlike naturally occurring sinkholes, human-induced ones in urban areas are typically due to groundwater disturbances and leaks of water and sewage caused by large-scale construction. Although many sinkhole detection methods have been developed, it is still difficult to predict sinkholes that occur in depth areas. In addition, conventional methods are inappropriate for scanning a large area because of their high cost. Therefore, this paper uses a drone combined with a thermal far-infrared (FIR) camera to detect potential sinkholes over a large area based on computer vision and pattern classification techniques. To make a standard dataset, we dug eight holes of depths 0.5-2 m in increments of 0.5 m and with a maximum width of 1 m. We filmed these using the drone-based FIR camera at a height of 50 m. We first detect candidate regions by analysing cold spots in the thermal images based on the fact that a sinkhole typically has a lower thermal energy than its background. Then, these regions are classified into sinkhole and non-sinkhole classes using a pattern classifier. In this study, we ensemble the classification results based on a light convolutional neural network (CNN) and those based on a Boosted Random Forest (BRF) with handcrafted features. We apply the proposed ensemble method successfully to sinkhole data for various sizes and depths in different environments, and prove that the CNN ensemble and the BRF one with handcrafted features are better at detecting sinkholes than other classifiers or standalone CNN.

  9. A pixellated gamma-camera based on CdTe detectors clinical interests and performances

    CERN Document Server

    Chambron, J; Eclancher, B; Scheiber, C; Siffert, P; Hage-Ali, M; Regal, R; Kazandjian, A; Prat, V; Thomas, S; Warren, S; Matz, R; Jahnke, A; Karman, M; Pszota, A; Németh, L

    2000-01-01

    A mobile gamma camera dedicated to nuclear cardiology, based on a 15 cmx15 cm detection matrix of 2304 CdTe detector elements, 2.83 mmx2.83 mmx2 mm, has been developed with a European Community support to academic and industrial research centres. The intrinsic properties of the semiconductor crystals - low-ionisation energy, high-energy resolution, high attenuation coefficient - are potentially attractive to improve the gamma-camera performances. But their use as gamma detectors for medical imaging at high resolution requires production of high-grade materials and large quantities of sophisticated read-out electronics. The decision was taken to use CdTe rather than CdZnTe, because the manufacturer (Eurorad, France) has a large experience for producing high-grade materials, with a good homogeneity and stability and whose transport properties, characterised by the mobility-lifetime product, are at least 5 times greater than that of CdZnTe. The detector matrix is divided in 9 square units, each unit is composed ...

  10. Indirect Correspondence-Based Robust Extrinsic Calibration of LiDAR and Camera.

    Science.gov (United States)

    Sim, Sungdae; Sock, Juil; Kwak, Kiho

    2016-01-01

    LiDAR and cameras have been broadly utilized in computer vision and autonomous vehicle applications. However, in order to convert data between the local coordinate systems, we must estimate the rigid body transformation between the sensors. In this paper, we propose a robust extrinsic calibration algorithm that can be implemented easily and has small calibration error. The extrinsic calibration parameters are estimated by minimizing the distance between corresponding features projected onto the image plane. The features are edge and centerline features on a v-shaped calibration target. The proposed algorithm contributes two ways to improve the calibration accuracy. First, we use different weights to distance between a point and a line feature according to the correspondence accuracy of the features. Second, we apply a penalizing function to exclude the influence of outliers in the calibration datasets. Additionally, based on our robust calibration approach for a single LiDAR-camera pair, we introduce a joint calibration that estimates the extrinsic parameters of multiple sensors at once by minimizing one objective function with loop closing constraints. We conduct several experiments to evaluate the performance of our extrinsic calibration algorithm. The experimental results show that our calibration method has better performance than the other approaches. PMID:27338416

  11. Indirect Correspondence-Based Robust Extrinsic Calibration of LiDAR and Camera

    Directory of Open Access Journals (Sweden)

    Sungdae Sim

    2016-06-01

    Full Text Available LiDAR and cameras have been broadly utilized in computer vision and autonomous vehicle applications. However, in order to convert data between the local coordinate systems, we must estimate the rigid body transformation between the sensors. In this paper, we propose a robust extrinsic calibration algorithm that can be implemented easily and has small calibration error. The extrinsic calibration parameters are estimated by minimizing the distance between corresponding features projected onto the image plane. The features are edge and centerline features on a v-shaped calibration target. The proposed algorithm contributes two ways to improve the calibration accuracy. First, we use different weights to distance between a point and a line feature according to the correspondence accuracy of the features. Second, we apply a penalizing function to exclude the influence of outliers in the calibration datasets. Additionally, based on our robust calibration approach for a single LiDAR-camera pair, we introduce a joint calibration that estimates the extrinsic parameters of multiple sensors at once by minimizing one objective function with loop closing constraints. We conduct several experiments to evaluate the performance of our extrinsic calibration algorithm. The experimental results show that our calibration method has better performance than the other approaches.

  12. Indirect Correspondence-Based Robust Extrinsic Calibration of LiDAR and Camera

    Science.gov (United States)

    Sim, Sungdae; Sock, Juil; Kwak, Kiho

    2016-01-01

    LiDAR and cameras have been broadly utilized in computer vision and autonomous vehicle applications. However, in order to convert data between the local coordinate systems, we must estimate the rigid body transformation between the sensors. In this paper, we propose a robust extrinsic calibration algorithm that can be implemented easily and has small calibration error. The extrinsic calibration parameters are estimated by minimizing the distance between corresponding features projected onto the image plane. The features are edge and centerline features on a v-shaped calibration target. The proposed algorithm contributes two ways to improve the calibration accuracy. First, we use different weights to distance between a point and a line feature according to the correspondence accuracy of the features. Second, we apply a penalizing function to exclude the influence of outliers in the calibration datasets. Additionally, based on our robust calibration approach for a single LiDAR-camera pair, we introduce a joint calibration that estimates the extrinsic parameters of multiple sensors at once by minimizing one objective function with loop closing constraints. We conduct several experiments to evaluate the performance of our extrinsic calibration algorithm. The experimental results show that our calibration method has better performance than the other approaches. PMID:27338416

  13. Geolocating thermal binoculars based on a software defined camera core incorporating HOT MCT grown by MOVPE

    Science.gov (United States)

    Pillans, Luke; Harmer, Jack; Edwards, Tim; Richardson, Lee

    2016-05-01

    Geolocation is the process of calculating a target position based on bearing and range relative to the known location of the observer. A high performance thermal imager with integrated geolocation functions is a powerful long range targeting device. Firefly is a software defined camera core incorporating a system-on-a-chip processor running the AndroidTM operating system. The processor has a range of industry standard serial interfaces which were used to interface to peripheral devices including a laser rangefinder and a digital magnetic compass. The core has built in Global Positioning System (GPS) which provides the third variable required for geolocation. The graphical capability of Firefly allowed flexibility in the design of the man-machine interface (MMI), so the finished system can give access to extensive functionality without appearing cumbersome or over-complicated to the user. This paper covers both the hardware and software design of the system, including how the camera core influenced the selection of peripheral hardware, and the MMI design process which incorporated user feedback at various stages.

  14. Parkinson's disease assessment based on gait analysis using an innovative RGB-D camera system.

    Science.gov (United States)

    Rocha, Ana Patrícia; Choupina, Hugo; Fernandes, José Maria; Rosas, Maria José; Vaz, Rui; Silva Cunha, João Paulo

    2014-01-01

    Movement-related diseases, such as Parkinson's disease (PD), progressively affect the motor function, many times leading to severe motor impairment and dramatic loss of the patients' quality of life. Human motion analysis techniques can be very useful to support clinical assessment of this type of diseases. In this contribution, we present a RGB-D camera (Microsoft Kinect) system and its evaluation for PD assessment. Based on skeleton data extracted from the gait of three PD patients treated with deep brain stimulation and three control subjects, several gait parameters were computed and analyzed, with the aim of discriminating between non-PD and PD subjects, as well as between two PD states (stimulator ON and OFF). We verified that among the several quantitative gait parameters, the variance of the center shoulder velocity presented the highest discriminative power to distinguish between non-PD, PD ON and PD OFF states (p = 0.004). Furthermore, we have shown that our low-cost portable system can be easily mounted in any hospital environment for evaluating patients' gait. These results demonstrate the potential of using a RGB-D camera as a PD assessment tool. PMID:25570653

  15. Calibration and disparity maps for a depth camera based on a four-lens device

    Science.gov (United States)

    Riou, Cécile; Colicchio, Bruno; Lauffenburger, Jean Philippe; Haeberlé, Olivier; Cudel, Christophe

    2015-11-01

    We propose a model of depth camera based on a four-lens device. This device is used for validating alternate approaches for calibrating multiview cameras and also for computing disparity or depth images. The calibration method arises from previous works, where principles of variable homography were extended for three-dimensional (3-D) measurement. Here, calibration is performed between two contiguous views obtained on the same image sensor. This approach leads us to propose a new approach for simplifying calibration by using the properties of the variable homography. Here, the second part addresses new principles for obtaining disparity images without any matching. A fast algorithm using a contour propagation algorithm is proposed without requiring structured or random pattern projection. These principles are proposed in a framework of quality control by vision, for inspection in natural illumination. By preserving scene photometry, some other standard controls, as for example calipers, shape recognition, or barcode reading, can be done conjointly with 3-D measurements. Approaches presented here are evaluated. First, we show that rapid calibration is relevant for devices mounted with multiple lenses. Second, synthetic and real experimentations validate our method for computing depth images.

  16. A positioning system for forest diseases and pests based on GIS and PTZ camera

    International Nuclear Information System (INIS)

    Forest diseases and pests cause enormous economic losses and ecological damage every year in China. To prevent and control forest diseases and pests, the key is to get accurate information timely. In order to improve monitoring coverage rate and economize on manpower, a cooperative investigation model for forest diseases and pests is put forward. It is composed of video positioning system and manual labor reconnaissance with mobile GIS embedded in PDA. Video system is used to scan the disaster area, and is particularly effective on where trees are withered. Forest diseases prevention and control workers can check disaster area with PDA system. To support this investigation model, we developed a positioning algorithm and a positioning system. The positioning algorithm is based on DEM and PTZ camera. Moreover, the algorithm accuracy is validated. The software consists of 3D GIS subsystem, 2D GIS subsystem, video control subsystem and disaster positioning subsystem. 3D GIS subsystem makes positioning visual, and practically easy to operate. 2D GIS subsystem can output disaster thematic map. Video control subsystem can change Pan/Tilt/Zoom of a digital camera remotely, to focus on the suspected area. Disaster positioning subsystem implements the positioning algorithm. It is proved that the positioning system can observe forest diseases and pests in practical application for forest departments

  17. Ground-based analysis of volcanic ash plumes using a new multispectral thermal infrared camera approach

    Science.gov (United States)

    Williams, D.; Ramsey, M. S.

    2015-12-01

    Volcanic plumes are complex mixtures of mineral, lithic and glass fragments of varying size, together with multiple gas species. These plumes vary in size dependent on a number of factors, including vent diameter, magma composition and the quantity of volatiles within a melt. However, determining the chemical and mineralogical properties of a volcanic plume immediately after an eruption is a great challenge. Thermal infrared (TIR) satellite remote sensing of these plumes is routinely used to calculate the volcanic ash particle size variations and sulfur dioxide concentration. These analyses are commonly performed using high temporal, low spatial resolution satellites, which can only reveal large scale trends. What is lacking is a high spatial resolution study specifically of the properties of the proximal plumes. Using the emissive properties of volcanic ash, a new method has been developed to determine the plume's particle size and petrology in spaceborne and ground-based TIR data. A multispectral adaptation of a FLIR TIR camera has been developed that simulates the TIR channels found on several current orbital instruments. Using this instrument, data of volcanic plumes from Fuego and Santiaguito volcanoes in Guatemala were recently obtained Preliminary results indicate that the camera is capable of detecting silicate absorption features in the emissivity spectra over the TIR wavelength range, which can be linked to both mineral chemistry and particle size. It is hoped that this technique can be expanded to isolate different volcanic species within a plume, validate the orbital data, and ultimately to use the results to better inform eruption dynamics modelling.

  18. Parkinson's disease assessment based on gait analysis using an innovative RGB-D camera system.

    Science.gov (United States)

    Rocha, Ana Patrícia; Choupina, Hugo; Fernandes, José Maria; Rosas, Maria José; Vaz, Rui; Silva Cunha, João Paulo

    2014-01-01

    Movement-related diseases, such as Parkinson's disease (PD), progressively affect the motor function, many times leading to severe motor impairment and dramatic loss of the patients' quality of life. Human motion analysis techniques can be very useful to support clinical assessment of this type of diseases. In this contribution, we present a RGB-D camera (Microsoft Kinect) system and its evaluation for PD assessment. Based on skeleton data extracted from the gait of three PD patients treated with deep brain stimulation and three control subjects, several gait parameters were computed and analyzed, with the aim of discriminating between non-PD and PD subjects, as well as between two PD states (stimulator ON and OFF). We verified that among the several quantitative gait parameters, the variance of the center shoulder velocity presented the highest discriminative power to distinguish between non-PD, PD ON and PD OFF states (p = 0.004). Furthermore, we have shown that our low-cost portable system can be easily mounted in any hospital environment for evaluating patients' gait. These results demonstrate the potential of using a RGB-D camera as a PD assessment tool.

  19. Compressive Video Recovery Using Block Match Multi-Frame Motion Estimation Based on Single Pixel Cameras

    Directory of Open Access Journals (Sweden)

    Sheng Bi

    2016-03-01

    Full Text Available Compressive sensing (CS theory has opened up new paths for the development of signal processing applications. Based on this theory, a novel single pixel camera architecture has been introduced to overcome the current limitations and challenges of traditional focal plane arrays. However, video quality based on this method is limited by existing acquisition and recovery methods, and the method also suffers from being time-consuming. In this paper, a multi-frame motion estimation algorithm is proposed in CS video to enhance the video quality. The proposed algorithm uses multiple frames to implement motion estimation. Experimental results show that using multi-frame motion estimation can improve the quality of recovered videos. To further reduce the motion estimation time, a block match algorithm is used to process motion estimation. Experiments demonstrate that using the block match algorithm can reduce motion estimation time by 30%.

  20. Approach to Hand Tracking and Gesture Recognition Based on Depth-Sensing Cameras and EMG Monitoring

    Directory of Open Access Journals (Sweden)

    Ondrej

    2014-06-01

    Full Text Available In this paper, a new approach for hand tracking and gesture recognition based on the Leap Motion device and surface electromyography (SEMG is presented. The system is about to process the depth image information and the electrical activity produced by skeletal muscles on forearm. The purpose of such combination is enhancement in the gesture recognition rate. As a first we analyse the conventional approaches toward hand tracking and gesture recognition and present the results of various researches. Successive topic gives brief overview of depth-sensing cameras with focus on Leap motion device where we test its accuracy of fingers recognition. The vision-SEMG-based system is to be potentially applicable to many areas of human computer interaction.

  1. Estimation of Fractional Vegetation Cover Based on Digital Camera Survey Data and a Remote Sensing Model

    Institute of Scientific and Technical Information of China (English)

    HU Zhen-qi; HE Fen-qin; YIN Jian-zhong; LU Xia; TANG Shi-lu; WANG Lin-lin; LI Xiao-jing

    2007-01-01

    The objective of this paper is to improve the monitoring speed and precision of fractional vegetation cover (fc). It mainly focuses onfc estimation when fcmax andfcmin are not approximately equal to 100% and 0%, respectively due to using remote sensing image with medium or low spatial resolution. Meanwhile, we present a new method offc estimation based on a random set offc maximum and minimum values from digital camera (DC) survey data and a dimidiate pixel model. The results show that this is a convenient, efficient and accurate method forfc monitoring, with the maximum error -0.172 and correlation coefficient of 0.974 between DC survey data and the estimated value of the remote sensing model. The remaining DC survey data can be used as verification data for the precision of thefc estimation. In general, the estimation offc based on DC survey data and a remote sensing model is a brand-new development trend and deserves further extensive utilization.

  2. Improved photo response non-uniformity (PRNU) based source camera identification.

    Science.gov (United States)

    Cooper, Alan J

    2013-03-10

    The concept of using Photo Response Non-Uniformity (PRNU) as a reliable forensic tool to match an image to a source camera is now well established. Traditionally, the PRNU estimation methodologies have centred on a wavelet based de-noising approach. Resultant filtering artefacts in combination with image and JPEG contamination act to reduce the quality of PRNU estimation. In this paper, it is argued that the application calls for a simplified filtering strategy which at its base level may be realised using a combination of adaptive and median filtering applied in the spatial domain. The proposed filtering method is interlinked with a further two stage enhancement strategy where only pixels in the image having high probabilities of significant PRNU bias are retained. This methodology significantly improves the discrimination between matching and non-matching image data sets over that of the common wavelet filtering approach. PMID:23312587

  3. Probing Positron Gravitation at HERA

    CERN Document Server

    Gharibyan, Vahagn

    2015-01-01

    An equality of particle and antiparticle gravitational interactions holds in general relativity and is supported by indirect observations. Here I develop a method based on high energy Compton scattering to measure the gravitational interaction of accelerated charged particles. Within that formalism the Compton spectra measured at HERA rule out the positron's anti-gravity and hint for a positron's 1.3(0.2)\\% weaker coupling to the gravitational field relative to an electron.

  4. Enhancing spatial resolution of 18F positron imaging with the Timepix detector by classification of primary fired pixels using support vector machine

    Science.gov (United States)

    Wang, Qian; Liu, Zhen; Ziegler, Sibylle I.; Shi, Kuangyu

    2015-07-01

    Position-sensitive positron cameras using silicon pixel detectors have been applied for some preclinical and intraoperative clinical applications. However, the spatial resolution of a positron camera is limited by positron multiple scattering in the detector. An incident positron may fire a number of successive pixels on the imaging plane. It is still impossible to capture the primary fired pixel along a particle trajectory by hardware or to perceive the pixel firing sequence by direct observation. Here, we propose a novel data-driven method to improve the spatial resolution by classifying the primary pixels within the detector using support vector machine. A classification model is constructed by learning the features of positron trajectories based on Monte-Carlo simulations using Geant4. Topological and energy features of pixels fired by 18F positrons were considered for the training and classification. After applying the classification model on measurements, the primary fired pixels of the positron tracks in the silicon detector were estimated. The method was tested and assessed for [18F]FDG imaging of an absorbing edge protocol and a leaf sample. The proposed method improved the spatial resolution from 154.6   ±   4.2 µm (energy weighted centroid approximation) to 132.3   ±   3.5 µm in the absorbing edge measurements. For the positron imaging of a leaf sample, the proposed method achieved lower root mean square error relative to phosphor plate imaging, and higher similarity with the reference optical image. The improvements of the preliminary results support further investigation of the proposed algorithm for the enhancement of positron imaging in clinical and preclinical applications.

  5. Portable profilometer based on low-coherence interferometry and smart pixel camera

    Science.gov (United States)

    Salbut, Leszek; Pakuła, Anna; Tomczewski, Sławomir; Styk, Adam

    2010-09-01

    Although low coherence interferometers are commercially available (e.g., white light interferometers), they are generally quite bulky, expensive, and offer limited flexibility. In the paper the new portable profilometer based on low coherence interferometry is presented. In the device the white light diode with controlled spectrum shape is used in order to increase the zero order fringe contrast, what allows for its better and quicker localization. For image analysis the special type of CMOS matrix (called smart pixel camera), synchronized with reference mirror transducer, is applied. Due to hardware realization of the fringe contrast analysis, independently in each pixel, the time of measurement decreases significantly. High speed processing together with compact design allows that profilometer to be used as the portable device for both in and out door measurements. The capabilities of the designed profilometer are well illustrated by a few application examples.

  6. A Bevel Gear Quality Inspection System Based on Multi-Camera Vision Technology

    Science.gov (United States)

    Liu, Ruiling; Zhong, Dexing; Lyu, Hongqiang; Han, Jiuqiang

    2016-01-01

    Surface defect detection and dimension measurement of automotive bevel gears by manual inspection are costly, inefficient, low speed and low accuracy. In order to solve these problems, a synthetic bevel gear quality inspection system based on multi-camera vision technology is developed. The system can detect surface defects and measure gear dimensions simultaneously. Three efficient algorithms named Neighborhood Average Difference (NAD), Circle Approximation Method (CAM) and Fast Rotation-Position (FRP) are proposed. The system can detect knock damage, cracks, scratches, dents, gibbosity or repeated cutting of the spline, etc. The smallest detectable defect is 0.4 mm × 0.4 mm and the precision of dimension measurement is about 40–50 μm. One inspection process takes no more than 1.3 s. Both precision and speed meet the requirements of real-time online inspection in bevel gear production. PMID:27571078

  7. Handbook of camera monitor systems the automotive mirror-replacement technology based on ISO 16505

    CERN Document Server

    2016-01-01

    This handbook offers a comprehensive overview of Camera Monitor Systems (CMS), ranging from the ISO 16505-based development aspects to practical realization concepts. It offers readers a wide-ranging discussion of the science and technology of CMS as well as the human-interface factors of such systems. In addition, it serves as a single reference source with contributions from leading international CMS professionals and academic researchers. In combination with the latest version of UN Regulation No. 46, the normative framework of ISO 16505 permits CMS to replace mandatory rearview mirrors in series production vehicles. The handbook includes scientific and technical background information to further readers’ understanding of both of these regulatory and normative texts. It is a key reference in the field of automotive CMS for system designers, members of standardization and regulation committees, engineers, students and researchers.

  8. A Bevel Gear Quality Inspection System Based on Multi-Camera Vision Technology.

    Science.gov (United States)

    Liu, Ruiling; Zhong, Dexing; Lyu, Hongqiang; Han, Jiuqiang

    2016-01-01

    Surface defect detection and dimension measurement of automotive bevel gears by manual inspection are costly, inefficient, low speed and low accuracy. In order to solve these problems, a synthetic bevel gear quality inspection system based on multi-camera vision technology is developed. The system can detect surface defects and measure gear dimensions simultaneously. Three efficient algorithms named Neighborhood Average Difference (NAD), Circle Approximation Method (CAM) and Fast Rotation-Position (FRP) are proposed. The system can detect knock damage, cracks, scratches, dents, gibbosity or repeated cutting of the spline, etc. The smallest detectable defect is 0.4 mm × 0.4 mm and the precision of dimension measurement is about 40-50 μm. One inspection process takes no more than 1.3 s. Both precision and speed meet the requirements of real-time online inspection in bevel gear production. PMID:27571078

  9. IMRT verification with a camera-based electronic portal imaging system

    International Nuclear Information System (INIS)

    An evaluation of the capabilities of a commercially available camera-based electronic portal imaging system for intensity-modulated radiotherapy verification is presented. Two modifications to the system are demonstrated which use a novel method to tag each image acquired with the delivered dose measured by the linac monitor chamber and reduce optical cross-talk in the imager. A detailed performance assessment is presented, including measurements of the optical decay characteristics of the system. The overall geometric accuracy of the system is determined to be ±2.0 mm, with a dosimetric accuracy of ±1.25 MU. Finally a clinical breast IMRT treatment, delivered by dynamic multileaf collimation, is successfully verified both by tracking the position of each leaf during beam delivery and recording the integrated intensity observed over the entire beam. (author)

  10. The E166 experiment: Development of an undulator-based polarized positron source for the international linear collider

    Indian Academy of Sciences (India)

    J Kovermann; A Stahl; A A Mikhailichenko; D Scott; G A Moortgat-Pick; V Gharibyan; P Pahl; R Pöschl; K P Schüler; K Laihem; S Riemann; A Schälicke; R Dollan; H Kolanoski; T Lohse; T Schweizer; K T McDonald; Y Batygin; V Bharadwaj; G Bower; F-J Decker; C Hast; R Iverson; J C Sheppard; Z Szalata; D Walz; A Weidemann; G Alexander; E Reinherz-Aronis; S Berridge; W Bugg; Y Efrimenko

    2007-12-01

    A longitudinal polarized positron beam is foreseen for the international linear collider (ILC). A proof-of-principle experiment has been performed in the final focus test beam at SLAC to demonstrate the production of polarized positrons for implementation at the ILC. The E166 experiment uses a 1 m long helical undulator in a 46.6 GeV electron beam to produce a few MeV photons with a high degree of circular polarization. These photons are then converted in a thin target to generate longitudinally polarized + and -. The positron polarization is measured using a Compton transmission polarimeter. The data analysis has shown asymmetries in the expected vicinity of 3.4% and ∼ 1% for photons and positrons respectively and the expected positron longitudinal polarization is covering a range from 50% to 90%.

  11. Ontological Representation of Light Wave Camera Data to Support Vision-Based AmI

    Directory of Open Access Journals (Sweden)

    José Manuel Molina

    2012-09-01

    Full Text Available Recent advances in technologies for capturing video data have opened a vast amount of new application areas in visual sensor networks. Among them, the incorporation of light wave cameras on Ambient Intelligence (AmI environments provides more accurate tracking capabilities for activity recognition. Although the performance of tracking algorithms has quickly improved, symbolic models used to represent the resulting knowledge have not yet been adapted to smart environments. This lack of representation does not allow to take advantage of the semantic quality of the information provided by new sensors. This paper advocates for the introduction of a part-based representational level in cognitive-based systems in order to accurately represent the novel sensors’ knowledge. The paper also reviews the theoretical and practical issues in part-whole relationships proposing a specific taxonomy for computer vision approaches. General part-based patterns for human body and transitive part-based representation and inference are incorporated to an ontology-based previous framework to enhance scene interpretation in the area of video-based AmI. The advantages and new features of the model are demonstrated in a Social Signal Processing (SSP application for the elaboration of live market researches.

  12. HybVOR: A Voronoi-Based 3D GIS Approach for Camera Surveillance Network Placement

    Directory of Open Access Journals (Sweden)

    Reda Yaagoubi

    2015-05-01

    Full Text Available As a consequence of increasing safety concerns, camera surveillance has been widely adopted as a way to monitor public spaces. One of the major challenges of camera surveillance is to design an optimal method for camera network placement in order to ensure the greater possible coverage. In addition, this method must consider the landscape of the monitored environment to take into account the existing objects that may influence the deployment of such a network. In this paper, a new Voronoi-based 3D GIS oriented approach named “HybVOR” is proposed for surveillance camera network placement. The “HybVOR” approach aims to achieve a coverage near 100% through three main phases. First, a Voronoi Diagram from buildings’ footprints is generated and cameras are placed on the Voronoi Edges. Second, the level of coverage is assessed by calculating a viewshed based on a raster Digital Surface Model of the region of interest. Finally, the visibility of the main buildings’ entrances is evaluated based on a 3D vector model that contains these features. The effectiveness of the “HybVOR” approach is demonstrated through a case study that corresponds to an area of interest in Jeddah Seaport in the Kingdom of Saudi Arabia.

  13. Realization and prospect of γ camera digital picture processing system based on microcomputer

    International Nuclear Information System (INIS)

    The γ-camera picture processing system, picture display system, picture memory and digital processing system are described. The quantitative analysis of cerebrum and heart diagnostic and qualitative analysis of liver, kidney, lungs and gallbladder diagnostic are given in the diagnostic software. Finally, the development of γ-camera digital picture processing system is discussed from the point of view of progress in technique

  14. Observation of Passive and Explosive Emissions at Stromboli with a Ground-based Hyperspectral TIR Camera

    Science.gov (United States)

    Smekens, J. F.; Mathieu, G.

    2015-12-01

    Scientific imaging techniques have progressed at a fast pace in the recent years, thanks in part to great improvements in detector technology, and through our ability to process large amounts of complex data using sophisticated software. Broadband thermal cameras are ubiquitously used for permanent monitoring of volcanic activity, and have been used in a multitude of scientific applications, from tracking ballistics to studying the thermal evolution lava flow fields and volcanic plumes. In parallel, UV cameras are now used at several volcano observatories to quantify daytime sulfur dioxide (SO2) emissions at very high frequency. In this work we present the results the first deployment of a ground-based Thermal Infrared (TIR) Hyperspectral Imaging System (Telops Hyper-Cam LW) for the study of passive and explosive volcanic activity at Stromboli volcano, Italy. The instrument uses a Michelson spectrometer and Fourier Transform Infrared Spectrometry to produce hyperspectral datacubes of a scene (320x256 pixels) in the range 7.7-11.8 μm, with a spectral resolution of up to 0.25 cm-1 and at frequencies of ~10 Hz. The activity at Stromboli is characterized by explosions of small magnitude, often containing significant amounts of gas and ash, separated by periods of quiescent degassing of 10-60 minutes. With our dataset, spanning about 5 days of monitoring, we are able to detect and track temporal variations of SO2 and ash emissions during both daytime and nighttime. It ultimately allows for the quantification of the mass of gas and ash ejected during and between explosive events. Although the high price and power consumption of the instrument are obstacles to its deployment as a monitoring tool, this type of data sets offers unprecedented insight into the dynamic processes taking place at Stromboli, and could lead to a better understanding of the eruptive mechanisms at persistently active systems in general.

  15. An energy-optimized collimator design for a CZT-based SPECT camera

    Science.gov (United States)

    Weng, Fenghua; Bagchi, Srijeeta; Zan, Yunlong; Huang, Qiu; Seo, Youngho

    2016-01-01

    In single photon emission computed tomography, it is a challenging task to maintain reasonable performance using only one specific collimator for radiotracers over a broad spectrum of diagnostic photon energies, since photon scatter and penetration in a collimator differ with the photon energy. Frequent collimator exchanges are inevitable in daily clinical SPECT imaging, which hinders throughput while subjecting the camera to operational errors and damage. Our objective is to design a collimator, which is independent of the photon energy, performs reasonably well for commonly used radiotracers with low- to medium-energy levels of gamma emissions. Using the Geant4 simulation toolkit, we simulated and evaluated a parallel-hole collimator mounted to a CZT detector. With the pixel-geometry-matching collimation, the pitch of the collimator hole was fixed to match the pixel size of the CZT detector throughout this work. Four variables, hole shape, hole length, hole radius/width and the source-to-collimator distance were carefully studied. Scatter and penetration of the collimator, sensitivity and spatial resolution of the system were assessed for four radionuclides including 57Co, 99mTc, 123I and 111In, with respect to the aforementioned four variables. An optimal collimator was then decided upon such that it maximized the total relative sensitivity (TRS) for the four considered radionuclides while other performance parameters, such as scatter, penetration and spatial resolution, were benchmarked to prevalent commercial scanners and collimators. Digital phantom studies were also performed to validate the system with the optimal square-hole collimator (23 mm hole length, 1.28 mm hole width, and 0.32 mm septal thickness) in terms of contrast, contrast-to-noise ratio and recovery ratio. This study demonstrates promise of our proposed energy-optimized collimator to be used in a CZT-based gamma camera, with comparable or even better imaging performance versus commercial

  16. Maximum-likelihood scintillation detection for EM-CCD based gamma cameras

    International Nuclear Information System (INIS)

    Gamma cameras based on charge-coupled devices (CCDs) coupled to continuous scintillation crystals can combine a good detection efficiency with high spatial resolutions with the aid of advanced scintillation detection algorithms. A previously developed analytical multi-scale algorithm (MSA) models the depth-dependent light distribution but does not take statistics into account. Here we present and validate a novel statistical maximum-likelihood algorithm (MLA) that combines a realistic light distribution model with an experimentally validated statistical model. The MLA was tested for an electron multiplying CCD optically coupled to CsI(Tl) scintillators of different thicknesses. For 99mTc imaging, the spatial resolution (for perpendicular and oblique incidence), energy resolution and signal-to-background counts ratio (SBR) obtained with the MLA were compared with those of the MSA. Compared to the MSA, the MLA improves the energy resolution by more than a factor of 1.6 and the SBR is enhanced by more than a factor of 1.3. For oblique incidence (approximately 450), the depth-of-interaction corrected spatial resolution is improved by a factor of at least 1.1, while for perpendicular incidence the MLA resolution does not consistently differ significantly from the MSA result for all tested scintillator thicknesses. For the thickest scintillator (3 mm, interaction probability 66% at 141 keV) a spatial resolution (perpendicular incidence) of 147 μm full width at half maximum (FWHM) was obtained with an energy resolution of 35.2% FWHM. These results of the MLA were achieved without prior calibration of scintillations as is needed for many statistical scintillation detection algorithms. We conclude that the MLA significantly improves the gamma camera performance compared to the MSA.

  17. A pnCCD-based, fast direct single electron imaging camera for TEM and STEM

    Science.gov (United States)

    Ryll, H.; Simson, M.; Hartmann, R.; Holl, P.; Huth, M.; Ihle, S.; Kondo, Y.; Kotula, P.; Liebel, A.; Müller-Caspary, K.; Rosenauer, A.; Sagawa, R.; Schmidt, J.; Soltau, H.; Strüder, L.

    2016-04-01

    We report on a new camera that is based on a pnCCD sensor for applications in scanning transmission electron microscopy. Emerging new microscopy techniques demand improved detectors with regards to readout rate, sensitivity and radiation hardness, especially in scanning mode. The pnCCD is a 2D imaging sensor that meets these requirements. Its intrinsic radiation hardness permits direct detection of electrons. The pnCCD is read out at a rate of 1,150 frames per second with an image area of 264 x 264 pixel. In binning or windowing modes, the readout rate is increased almost linearly, for example to 4000 frames per second at 4× binning (264 x 66 pixel). Single electrons with energies from 300 keV down to 5 keV can be distinguished due to the high sensitivity of the detector. Three applications in scanning transmission electron microscopy are highlighted to demonstrate that the pnCCD satisfies experimental requirements, especially fast recording of 2D images. In the first application, 65536 2D diffraction patterns were recorded in 70 s. STEM images corresponding to intensities of various diffraction peaks were reconstructed. For the second application, the microscope was operated in a Lorentz-like mode. Magnetic domains were imaged in an area of 256 x 256 sample points in less than 37 seconds for a total of 65536 images each with 264 x 132 pixels. Due to information provided by the two-dimensional images, not only the amplitude but also the direction of the magnetic field could be determined. In the third application, millisecond images of a semiconductor nanostructure were recorded to determine the lattice strain in the sample. A speed-up in measurement time by a factor of 200 could be achieved compared to a previously used camera system.

  18. Multi-Kinect v2 Camera Based Monitoring System for Radiotherapy Patient Safety.

    Science.gov (United States)

    Santhanam, Anand P; Min, Yugang; Kupelian, Patrick; Low, Daniel

    2016-01-01

    3D kinect camera systems are essential for real-time imaging of 3D treatment space that consists of both the patient anatomy as well as the treatment equipment setup. In this paper, we present the technical details of a 3D treatment room monitoring system that employs a scalable number of calibrated and coregistered Kinect v2 cameras. The monitoring system tracks radiation gantry and treatment couch positions, and tracks the patient and immobilization accessories. The number and positions of the cameras were selected to avoid line-of-sight issues and to adequately cover the treatment setup. The cameras were calibrated with a calibration error of 0.1 mm. Our tracking system evaluation show that both gantry and patient motion could be acquired at a rate of 30 frames per second. The transformations between the cameras yielded a 3D treatment space accuracy of < 2 mm error in a radiotherapy setup within 500mm around the isocenter. PMID:27046604

  19. Camera-based platform and sensor motion tracking for data fusion in a landmine detection system

    Science.gov (United States)

    van der Mark, Wannes; van den Heuvel, Johan C.; den Breejen, Eric; Groen, Frans C. A.

    2003-09-01

    Vehicles that serve in the role as landmine detection robots could be an important tool for demining former conflict areas. On the LOTUS platform for humanitarian demining, different sensors are used to detect a wide range of landmine types. Reliable and accurate detection depends on correctly combining the observations from the different sensors on the moving platform. Currently a method based on odometry is used to merge the readings from the sensors. In this paper a vision based approach is presented which can estimate the relative sensor pose and position together with the vehicle motion. To estimate the relative position and orientation of sensors, techniques from camera calibration are used. The platform motion is estimated from tracked features on the ground. A new approach is presented which can reduce the influence of tracking errors or other outliers on the accuracy of the ego-motion estimate. Overall, the new vision based approach for sensor localization leads to better estimates then the current odometry based method.

  20. SU-C-18A-02: Image-Based Camera Tracking: Towards Registration of Endoscopic Video to CT

    International Nuclear Information System (INIS)

    Purpose: Endoscopic examinations are routinely performed on head and neck and esophageal cancer patients. However, these images are underutilized for radiation therapy because there is currently no way to register them to a CT of the patient. The purpose of this work is to develop a method to track the motion of an endoscope within a structure using images from standard clinical equipment. This method will be incorporated into a broader endoscopy/CT registration framework. Methods: We developed a software algorithm to track the motion of an endoscope within an arbitrary structure. We computed frame-to-frame rotation and translation of the camera by tracking surface points across the video sequence and utilizing two-camera epipolar geometry. The resulting 3D camera path was used to recover the surrounding structure via triangulation methods. We tested this algorithm on a rigid cylindrical phantom with a pattern spray-painted on the inside. We did not constrain the motion of the endoscope while recording, and we did not constrain our measurements using the known structure of the phantom. Results: Our software algorithm can successfully track the general motion of the endoscope as it moves through the phantom. However, our preliminary data do not show a high degree of accuracy in the triangulation of 3D point locations. More rigorous data will be presented at the annual meeting. Conclusion: Image-based camera tracking is a promising method for endoscopy/CT image registration, and it requires only standard clinical equipment. It is one of two major components needed to achieve endoscopy/CT registration, the second of which is tying the camera path to absolute patient geometry. In addition to this second component, future work will focus on validating our camera tracking algorithm in the presence of clinical imaging features such as patient motion, erratic camera motion, and dynamic scene illumination

  1. UAS BASED TREE SPECIES IDENTIFICATION USING THE NOVEL FPI BASED HYPERSPECTRAL CAMERAS IN VISIBLE, NIR AND SWIR SPECTRAL RANGES

    Directory of Open Access Journals (Sweden)

    R. Näsi

    2016-06-01

    Full Text Available Unmanned airborne systems (UAS based remote sensing offers flexible tool for environmental monitoring. Novel lightweight Fabry-Perot interferometer (FPI based, frame format, hyperspectral imaging in the spectral range from 400 to 1600 nm was used for identifying different species of trees in a forest area. To the best of the authors’ knowledge, this was the first research where stereoscopic, hyperspectral VIS, NIR, SWIR data is collected for tree species identification using UAS. The first results of the analysis based on fusion of two FPI-based hyperspectral imagers and RGB camera showed that the novel FPI hyperspectral technology provided accurate geometric, radiometric and spectral information in a forested scene and is operational for environmental remote sensing applications.

  2. Uas Based Tree Species Identification Using the Novel FPI Based Hyperspectral Cameras in Visible, NIR and SWIR Spectral Ranges

    Science.gov (United States)

    Näsi, R.; Honkavaara, E.; Tuominen, S.; Saari, H.; Pölönen, I.; Hakala, T.; Viljanen, N.; Soukkamäki, J.; Näkki, I.; Ojanen, H.; Reinikainen, J.

    2016-06-01

    Unmanned airborne systems (UAS) based remote sensing offers flexible tool for environmental monitoring. Novel lightweight Fabry-Perot interferometer (FPI) based, frame format, hyperspectral imaging in the spectral range from 400 to 1600 nm was used for identifying different species of trees in a forest area. To the best of the authors' knowledge, this was the first research where stereoscopic, hyperspectral VIS, NIR, SWIR data is collected for tree species identification using UAS. The first results of the analysis based on fusion of two FPI-based hyperspectral imagers and RGB camera showed that the novel FPI hyperspectral technology provided accurate geometric, radiometric and spectral information in a forested scene and is operational for environmental remote sensing applications.

  3. Transmission positron microscopes

    Energy Technology Data Exchange (ETDEWEB)

    Doyama, Masao [Teikyo University of Science and Technology, Uenohara, Yamanashi 409-0193 (Japan)]. E-mail: doyama@ntu.ac.jp; Kogure, Yoshiaki [Teikyo University of Science and Technology, Uenohara, Yamanashi 409-0193 (Japan); Inoue, Miyoshi [Teikyo University of Science and Technology, Uenohara, Yamanashi 409-0193 (Japan); Kurihara, Toshikazu [Institute of Materials Structure Science (IMSS), High Energy Accelerator, Research Organization (KEK), Ohno 1-1, Tsukuba, Ibaraki 305-0801 (Japan); Yoshiie, Toshimasa [Reactor Research Institute, Kyoto University, Noda, Kumatori, Osaka 590-0451 (Japan); Oshima, Ryuichiro [Research Institute for Advanced Science and Technology, Osaka Prefecture University (Japan); Matsuya, Miyuki [Electron Optics Laboratory (JEOL) Ltd., Musashino 3-1-2, Akishima 196-0021 (Japan)

    2006-02-28

    Immediate and near-future plans for transmission positron microscopes being built at KEK, Tsukuba, Japan, are described. The characteristic feature of this project is remolding a commercial electron microscope to a positron microscope. A point source of electrons kept at a negative high voltage is changed to a point source of positrons kept at a high positive voltage. Positional resolution of transmission microscopes should be theoretically the same as electron microscopes. Positron microscopes utilizing trapping of positrons have always positional ambiguity due to the diffusion of positrons.

  4. Polarization encoded color camera.

    Science.gov (United States)

    Schonbrun, Ethan; Möller, Guðfríður; Di Caprio, Giuseppe

    2014-03-15

    Digital cameras would be colorblind if they did not have pixelated color filters integrated into their image sensors. Integration of conventional fixed filters, however, comes at the expense of an inability to modify the camera's spectral properties. Instead, we demonstrate a micropolarizer-based camera that can reconfigure its spectral response. Color is encoded into a linear polarization state by a chiral dispersive element and then read out in a single exposure. The polarization encoded color camera is capable of capturing three-color images at wavelengths spanning the visible to the near infrared. PMID:24690806

  5. A semi-automatic image-based close range 3D modeling pipeline using a multi-camera configuration.

    Science.gov (United States)

    Rau, Jiann-Yeou; Yeh, Po-Chia

    2012-01-01

    The generation of photo-realistic 3D models is an important task for digital recording of cultural heritage objects. This study proposes an image-based 3D modeling pipeline which takes advantage of a multi-camera configuration and multi-image matching technique that does not require any markers on or around the object. Multiple digital single lens reflex (DSLR) cameras are adopted and fixed with invariant relative orientations. Instead of photo-triangulation after image acquisition, calibration is performed to estimate the exterior orientation parameters of the multi-camera configuration which can be processed fully automatically using coded targets. The calibrated orientation parameters of all cameras are applied to images taken using the same camera configuration. This means that when performing multi-image matching for surface point cloud generation, the orientation parameters will remain the same as the calibrated results, even when the target has changed. Base on this invariant character, the whole 3D modeling pipeline can be performed completely automatically, once the whole system has been calibrated and the software was seamlessly integrated. Several experiments were conducted to prove the feasibility of the proposed system. Images observed include that of a human being, eight Buddhist statues, and a stone sculpture. The results for the stone sculpture, obtained with several multi-camera configurations were compared with a reference model acquired by an ATOS-I 2M active scanner. The best result has an absolute accuracy of 0.26 mm and a relative accuracy of 1:17,333. It demonstrates the feasibility of the proposed low-cost image-based 3D modeling pipeline and its applicability to a large quantity of antiques stored in a museum.

  6. A Semi-Automatic Image-Based Close Range 3D Modeling Pipeline Using a Multi-Camera Configuration

    Directory of Open Access Journals (Sweden)

    Po-Chia Yeh

    2012-08-01

    Full Text Available The generation of photo-realistic 3D models is an important task for digital recording of cultural heritage objects. This study proposes an image-based 3D modeling pipeline which takes advantage of a multi-camera configuration and multi-image matching technique that does not require any markers on or around the object. Multiple digital single lens reflex (DSLR cameras are adopted and fixed with invariant relative orientations. Instead of photo-triangulation after image acquisition, calibration is performed to estimate the exterior orientation parameters of the multi-camera configuration which can be processed fully automatically using coded targets. The calibrated orientation parameters of all cameras are applied to images taken using the same camera configuration. This means that when performing multi-image matching for surface point cloud generation, the orientation parameters will remain the same as the calibrated results, even when the target has changed. Base on this invariant character, the whole 3D modeling pipeline can be performed completely automatically, once the whole system has been calibrated and the software was seamlessly integrated. Several experiments were conducted to prove the feasibility of the proposed system. Images observed include that of a human being, eight Buddhist statues, and a stone sculpture. The results for the stone sculpture, obtained with several multi-camera configurations were compared with a reference model acquired by an ATOS-I 2M active scanner. The best result has an absolute accuracy of 0.26 mm and a relative accuracy of 1:17,333. It demonstrates the feasibility of the proposed low-cost image-based 3D modeling pipeline and its applicability to a large quantity of antiques stored in a museum.

  7. A positron accumulator for antihydrogen synthesis

    CERN Document Server

    Jørgensen, L V; Fine, K S; Watson, T L; Van der Werf, D P; Charlton, M

    2001-01-01

    A positron accumulator based on the modified Penning-Malmberg design of Surko and co-workers at UCSD has been constructed and undergone testing in preparation for the ATHENA experiment now under way at CERN. This experiment aims to produce and characterize atomic anti- hydrogen. The positron accumulator utilises nitrogen buffer gas to cool and trap a continuous beam of positrons emanating from a /sup 22 /Na radioactive source. A solid neon moderator slows the positrons from the source down to epithermal energies of a few eV before being injected into the trap. It is estimated that around 10/sup 7/ positrons can be trapped and cooled to ambient temperature within a couple of minutes in this scheme using a 6 mCi source. Preliminary tests have so far demonstrated trapping of approximately 3*10/sup 6/ positrons and an efficiency of the Ne moderator of nearly 1%. (8 refs).

  8. Appropriate Tealeaf Harvest Timing Determination Referring Fiber Content in Tealeaf Derived from Ground based Nir Camera Images

    Directory of Open Access Journals (Sweden)

    Kohei Arai

    2015-08-01

    Full Text Available Method for most appropriate tealeaves harvest timing with the reference to the fiber content in tealeaves which can be estimated with ground based Near Infrared (NIR camera images is proposed. In the proposed method, NIR camera images of tealeaves are used for estimation of nitrogen content and fiber content in tealeaves. The nitrogen content is highly correlated to Theanine (amid acid content in tealeaves. Theanine rich tealeaves taste good. Meanwhile, the age of tealeaves depend on fiber content. When tealeaves are getting old, then fiber content is increased. Tealeaf shape volume also is increased with increasing of fiber content. Fiber rich tealeaves taste not so good, in general. There is negative correlation between fiber content and NIR reflectance of tealeaves. Therefore, tealeaves quality of nitrogen and fiber contents can be estimated with NIR camera images. Also, the shape volume of tealeaves is highly correlated to NIR reflectance of tealeaf surface. Therefore, not only tealeaf quality but also harvest amount can be estimated with NIR camera images. Experimental results show the proposed method works well for estimation of appropriate tealeaves harvest timing with fiber content in the tealeaves in concern estimated with NIR camera images.

  9. A double focusing SAXS camera with µm focal spot based on a circular bragg-fresnel lens

    OpenAIRE

    Snigirev, A.; Snigireva, I.; Riekel, C.; Miller, A.; Wess, L.; Wess, T.

    1993-01-01

    A 2D focusing SAXS camera has been build based on a circular Bragg-Fresnel lens. The camera has been tested at the Microfocus beamline at the European Synchrotron Radiation Facility. An undulator was used as radiation source. The focused beam size at the sample position of about 1,5*2µm2 and intensity of about 109 photons/s was obtained at a wavelength of 1.24A (10keV). A Molecular Dynamics image plate was used to detect the low-angle diffraction pattern. For native turkey leg tendon collagen...

  10. A novel camera type for very high energy gamma-ray astronomy based on Geiger-mode avalanche photodiodes

    CERN Document Server

    Anderhub, H; Biland, A; Boller, A; Braun, I; Bretz, T; Commichau, S; Commichau, V; Dorner, D; Gendotti, A; Grimm, O; von Gunten, H; Hildebrand, D; Horisberger, U; Krähenbühl, T; Kranich, D; Lorenz, E; Lustermann, W; Mannheim, K; Neise, D; Pauss, F; Renker, D; Rhode, W; Rissi, M; Röser, U; Rollke, S; Stark, L S; Stucki, J -P; Viertel, G; Vogler, P; Weitzel, Q

    2009-01-01

    Geiger-mode avalanche photodiodes (G-APD) are promising new sensors for light detection in atmospheric Cherenkov telescopes. In this paper, the design and commissioning of a 36-pixel G-APD prototype camera is presented. The data acquisition is based on the Domino Ring Sampling (DRS2) chip. A sub-nanosecond time resolution has been achieved. Cosmic-ray induced air showers have been recorded using an imaging mirror setup, in a self-triggered mode. This is the first time that such measurements have been carried out with a complete G-APD camera.

  11. A novel camera type for very high energy gamma-ray astronomy based on Geiger-mode avalanche photodiodes

    Energy Technology Data Exchange (ETDEWEB)

    Anderhub, H; Biland, A; Boller, A; Braun, I; Commichau, S; Commichau, V; Dorner, D; Gendotti, A; Grimm, O; Gunten, H von; Hildebrand, D; Horisberger, U; Kraehenbuehl, T; Kranich, D; Lorenz, E; Lustermann, W [Institute for Particle Physics, ETH Zurich, Schafmattstr. 20, 8093 Zurich (Switzerland); Backes, M; Neise, D [TU Dortmund University, Otto-Hahn-Str. 4, 44227 Dortmund (Germany); Bretz, T; Mannheim, K [University of Wuerzburg Am Hubland, 97074 Wuerzburg (Germany)], E-mail: qweitzel@phys.ethz.ch (and others)

    2009-10-15

    Geiger-mode avalanche photodiodes (G-APD) are promising new sensors for light detection in atmospheric Cherenkov telescopes. In this paper, the design and commissioning of a 36-pixel G-APD prototype camera is presented. The data acquisition is based on the Domino Ring Sampling (DRS2) chip. A sub-nanosecond time resolution has been achieved. Cosmic-ray induced air showers have been recorded using an imaging mirror setup, in a self-triggered mode. This is the first time that such measurements have been carried out with a complete G-APD camera.

  12. Ventilation/Perfusion Positron Emission Tomography—Based Assessment of Radiation Injury to Lung

    International Nuclear Information System (INIS)

    Purpose: To investigate 68Ga-ventilation/perfusion (V/Q) positron emission tomography (PET)/computed tomography (CT) as a novel imaging modality for assessment of perfusion, ventilation, and lung density changes in the context of radiation therapy (RT). Methods and Materials: In a prospective clinical trial, 20 patients underwent 4-dimensional (4D)-V/Q PET/CT before, midway through, and 3 months after definitive lung RT. Eligible patients were prescribed 60 Gy in 30 fractions with or without concurrent chemotherapy. Functional images were registered to the RT planning 4D-CT, and isodose volumes were averaged into 10-Gy bins. Within each dose bin, relative loss in standardized uptake value (SUV) was recorded for ventilation and perfusion, and loss in air-filled fraction was recorded to assess RT-induced lung fibrosis. A dose-effect relationship was described using both linear and 2-parameter logistic fit models, and goodness of fit was assessed with Akaike Information Criterion (AIC). Results: A total of 179 imaging datasets were available for analysis (1 scan was unrecoverable). An almost perfectly linear negative dose-response relationship was observed for perfusion and air-filled fraction (r2=0.99, P<.01), with ventilation strongly negatively linear (r2=0.95, P<.01). Logistic models did not provide a better fit as evaluated by AIC. Perfusion, ventilation, and the air-filled fraction decreased 0.75 ± 0.03%, 0.71 ± 0.06%, and 0.49 ± 0.02%/Gy, respectively. Within high-dose regions, higher baseline perfusion SUV was associated with greater rate of loss. At 50 Gy and 60 Gy, the rate of loss was 1.35% (P=.07) and 1.73% (P=.05) per SUV, respectively. Of 8/20 patients with peritumoral reperfusion/reventilation during treatment, 7/8 did not sustain this effect after treatment. Conclusions: Radiation-induced regional lung functional deficits occur in a dose-dependent manner and can be estimated by simple linear models with 4D-V/Q PET/CT imaging. These

  13. Ventilation/Perfusion Positron Emission Tomography—Based Assessment of Radiation Injury to Lung

    Energy Technology Data Exchange (ETDEWEB)

    Siva, Shankar, E-mail: shankar.siva@petermac.org [Department of Radiation Oncology, Peter MacCallum Cancer Centre, East Melbourne (Australia); Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville (Australia); Hardcastle, Nicholas [Department of Physical Sciences, Peter MacCallum Cancer Centre, East Melbourne (Australia); Centre for Medical Radiation Physics, University of Wollongong, Wollongong (Australia); Kron, Tomas [Department of Physical Sciences, Peter MacCallum Cancer Centre, East Melbourne (Australia); Bressel, Mathias [Department of Biostatistics and Clinical Trials, Peter MacCallum Cancer Centre, East Melbourne (Australia); Callahan, Jason [Centre for Molecular Imaging, Cancer Imaging, Peter MacCallum Cancer Centre, East Melbourne (Australia); MacManus, Michael P.; Shaw, Mark; Plumridge, Nikki [Department of Radiation Oncology, Peter MacCallum Cancer Centre, East Melbourne (Australia); Hicks, Rodney J. [Centre for Molecular Imaging, Cancer Imaging, Peter MacCallum Cancer Centre, East Melbourne (Australia); Department of Medicine, University of Melbourne, Parkville (Australia); Steinfort, Daniel [Department of Medicine, University of Melbourne, Parkville (Australia); Department of Cancer Medicine, Peter MacCallum Cancer Centre, East Melbourne (Australia); Ball, David L. [Department of Radiation Oncology, Peter MacCallum Cancer Centre, East Melbourne (Australia); Hofman, Michael S. [Centre for Molecular Imaging, Cancer Imaging, Peter MacCallum Cancer Centre, East Melbourne (Australia); Department of Medicine, University of Melbourne, Parkville (Australia)

    2015-10-01

    Purpose: To investigate {sup 68}Ga-ventilation/perfusion (V/Q) positron emission tomography (PET)/computed tomography (CT) as a novel imaging modality for assessment of perfusion, ventilation, and lung density changes in the context of radiation therapy (RT). Methods and Materials: In a prospective clinical trial, 20 patients underwent 4-dimensional (4D)-V/Q PET/CT before, midway through, and 3 months after definitive lung RT. Eligible patients were prescribed 60 Gy in 30 fractions with or without concurrent chemotherapy. Functional images were registered to the RT planning 4D-CT, and isodose volumes were averaged into 10-Gy bins. Within each dose bin, relative loss in standardized uptake value (SUV) was recorded for ventilation and perfusion, and loss in air-filled fraction was recorded to assess RT-induced lung fibrosis. A dose-effect relationship was described using both linear and 2-parameter logistic fit models, and goodness of fit was assessed with Akaike Information Criterion (AIC). Results: A total of 179 imaging datasets were available for analysis (1 scan was unrecoverable). An almost perfectly linear negative dose-response relationship was observed for perfusion and air-filled fraction (r{sup 2}=0.99, P<.01), with ventilation strongly negatively linear (r{sup 2}=0.95, P<.01). Logistic models did not provide a better fit as evaluated by AIC. Perfusion, ventilation, and the air-filled fraction decreased 0.75 ± 0.03%, 0.71 ± 0.06%, and 0.49 ± 0.02%/Gy, respectively. Within high-dose regions, higher baseline perfusion SUV was associated with greater rate of loss. At 50 Gy and 60 Gy, the rate of loss was 1.35% (P=.07) and 1.73% (P=.05) per SUV, respectively. Of 8/20 patients with peritumoral reperfusion/reventilation during treatment, 7/8 did not sustain this effect after treatment. Conclusions: Radiation-induced regional lung functional deficits occur in a dose-dependent manner and can be estimated by simple linear models with 4D-V/Q PET

  14. A large surface X-ray camera based on XPAD3/CdTe single chip hybrids

    Science.gov (United States)

    Cassol, F.; Blanc, N.; Bompard, F.; Boudet, N.; Boursier, Y.; Buton, C.; Clémens, J.-C.; Dawiec, A.; Debarbieux, F.; Delpierre, P.; Dupont, M.; Graber-Bolis, J.; Hustache, S.; Morel, C.; Perez-Ponce, H.; Portal, L.; Vigeolas, E.

    2015-11-01

    The XPAD3 chip bump-bonded to a Si sensor has been widely used in preclinical micro-computed tomography and in synchrotron experiments. Although the XPAD3 chip is linear up to 60 keV, the performance of the XPAD3/Si hybrid detector is limited to energies below 30 keV, for which detection efficiencies remain above 20%. To overcome this limitation on detection efficiency in order to access imaging at higher energies, we decided to develop a camera based on XPAD3 single chips bump-bonded to high-Z CdTe sensors. We will first present the construction of this new camera, from the first tests of the single chip hybrids to the actual mechanical assembly. Then, we will show first images and stability tests performed on the D2AM beam line at ESRF synchrotron facility with the fully assembled camera.

  15. Ultraviolet Imaging with Low Cost Smartphone Sensors: Development and Application of a Raspberry Pi-Based UV Camera

    Directory of Open Access Journals (Sweden)

    Thomas C. Wilkes

    2016-10-01

    Full Text Available Here, we report, for what we believe to be the first time, on the modification of a low cost sensor, designed for the smartphone camera market, to develop an ultraviolet (UV camera system. This was achieved via adaptation of Raspberry Pi cameras, which are based on back-illuminated complementary metal-oxide semiconductor (CMOS sensors, and we demonstrated the utility of these devices for applications at wavelengths as low as 310 nm, by remotely sensing power station smokestack emissions in this spectral region. Given the very low cost of these units, ≈ USD 25, they are suitable for widespread proliferation in a variety of UV imaging applications, e.g., in atmospheric science, volcanology, forensics and surface smoothness measurements.

  16. Two Persons with Multiple Disabilities Use Camera-Based Microswitch Technology to Control Stimulation with Small Mouth and Eyelid Responses

    Science.gov (United States)

    Lancioni, Giulio E.; Bellini, Domenico; Oliva, Doretta; Singh, Nirbhay N.; O'Reilly, Mark F.; Sigafoos, Jeff; Lang, Russell

    2012-01-01

    Background: A camera-based microswitch technology was recently developed to monitor small facial responses of persons with multiple disabilities and allow those responses to control environmental stimulation. This study assessed such a technology with 2 new participants using slight variations of previous responses. Method: The technology involved…

  17. Camera-Based Microswitch Technology for Eyelid and Mouth Responses of Persons with Profound Multiple Disabilities: Two Case Studies

    Science.gov (United States)

    Lancioni, Giulio E.; Bellini, Domenico; Oliva, Doretta; Singh, Nirbhay N.; O'Reilly, Mark F.; Sigafoos, Jeff

    2010-01-01

    These two studies assessed camera-based microswitch technology for eyelid and mouth responses of two persons with profound multiple disabilities and minimal motor behavior. This technology, in contrast with the traditional optic microswitches used for those responses, did not require support frames on the participants' face but only small color…

  18. Fluorodeoxyglucose-positron emission tomography in carcinoma nasopharynx: Can we predict outcomes and tailor therapy based on postradiotherapy fluorodeoxyglucose-positron emission tomography?

    Directory of Open Access Journals (Sweden)

    Sarbani Ghosh Laskar

    2016-01-01

    Full Text Available Background: Positron emission tomography-computed tomography (PET-CT is an emerging modality for staging and response evaluation in carcinoma nasopharynx. This study was conducted to evaluate the impact of PET-CT in assessing response and outcomes in carcinoma nasopharynx. Materials and Methods: Forty-five patients of nonmetastatic carcinoma nasopharynx who underwent PET-CT for response evaluation at 10-12 weeks posttherapy between 2004 and 2009 were evaluated. Patients were classified as responders (Group A if there was a complete response on PET-CT or as nonresponders (Group B if there was any uptake above the background activity. Data regarding demographics, treatment, and outcomes were collected from their records and compared across the Groups A and B. Results: The median age was 41 years. 42 out of 45 (93.3% patients had WHO Grade 2B disease (undifferentiated squamous carcinoma. 24.4%, 31.1%, 15.6, and 28.8% patients were in American Joint Committee on Cancer Stage IIb, III, Iva, and IVb. All patients were treated with neoadjuvant chemotherapy followed by concomitant chemoradiotherapy. Forty-five patients, 28 (62.2% were classified as responders, whereas 17 (37.8% were classified as nonresponders. There was no significant difference in the age, sex, WHO grade, and stage distribution between the groups. Compliance to treatment was comparable across both groups. The median follow-up was 25.3 months (759 days. The disease-free survival (DFS of the group was 57.3% at 3 years. The DFS at 3 years was 87.3% and 19.7% for Group A and B, respectively (log-rank test, P < 0.001. Univariate and multivariate analysis revealed Groups to be the only significant factor predicting DFS (P value 0.002 and < 0.001, respectively. In Group B, the most common site of disease failure was distant (9, 53%. Conclusion: PET-CT can be used to evaluate response and as a tool to identify patients at higher risk of distant failure. Further, this could be exploited to

  19. Product quality-based eco-efficiency applied to digital cameras.

    Science.gov (United States)

    Park, Pil-Ju; Tahara, Kiyotaka; Inaba, Atsushi

    2007-04-01

    When calculating eco-efficiency, there are considerable confusion and controversy about what the product value is and how it should be quantified. We have proposed here a quantification method for eco-efficiency that derives the ratio of the multiplication value of the product quality and the life span of a product to its whole environmental impact based on Life Cycle Assessment (LCA). In this study, product quality was used as the product value and quantified by the following three steps: (1) normalization based on a value function, (2) determination of the subjective weighting factors of the attributes, and (3) calculation of product quality of the chosen products. The applicability of the proposed method to an actual product was evaluated using digital cameras. The results show that the eco-efficiency values of products equipped with rechargeable batteries were higher than those products that use alkaline batteries, because of higher quality values and lower environmental impacts. The sensitivity analysis shows that the proposed method was superior to the existing methods, because it enables to identify the quality level of the chosen products by considering all products that have the same functions in the market and because, when adding a new product, the calculated quality values in the proposed method do not have to be changed.

  20. Secondary caries detection with a novel fluorescence-based camera system in vitro

    Science.gov (United States)

    Brede, Olivier; Wilde, Claudia; Krause, Felix; Frentzen, Matthias; Braun, Andreas

    2010-02-01

    The aim of the study was to assess the ability of a fluorescence based optical system to detect secondary caries. The optical detecting system (VistaProof) illuminates the tooth surfaces with blue light emitted by high power GaN-LEDs at 405 nm. Employing this almost monochromatic excitation, fluorescence is analyzed using a RGB camera chip and encoded in color graduations (blue - red - orange - yellow) by a software (DBSWIN), indicating the degree of caries destruction. 31 freshly extracted teeth with existing fillings and secondary caries were cleaned, excavated and refilled with the same kind of restorative material. 19 of them were refilled with amalgam, 12 were refilled with a composite resin. Each step was analyzed with the respective software and analyzed statistically. Differences were considered as statistically significant at p0.05). There was a significant difference between baseline measurements of the teeth primarily filled with composite resins and the refilled situation (p=0.014). There was also a significant difference between the non-excavated and the excavated group (Composite p=0.006, Amalgam p=0.018). The in vitro study showed, that the fluorescence based system allows detecting secondary caries next to composite resin fillings but not next to amalgam restorations. Cleaning of the teeth is not necessary, if there is no visible plaque. Further studies have to show, whether the system shows the same promising results in vivo.

  1. Disparity Map Generation Based on Trapezoidal Camera Architecture for Multi-View Video

    Directory of Open Access Journals (Sweden)

    Abdulkadir Iyyaka Audu

    2014-12-01

    Full Text Available Visual content acquisition is a strategic functional block of any visual system. Despite its wide possibilities, the arrangement of cameras for the acquisition of good quality visual content for use in multi-view video remains a huge challenge. This paper presents the mathematical description of trapezoidal camera architecture and relationships which facilitate the determination of camera position for visual content acquisition in multi-view video, and depth map generation. The strong point of Trapezoidal Camera Architecture is that it allows for adaptive camera topology by which points within the scene, especially the occluded ones can be optically and geometrically viewed from several different viewpoints either on the edge of the trapezoid or inside it. The concept of maximum independent set, trapezoid characteristics, and the fact that the positions of cameras (with the exception of few differ in their vertical coordinate description could very well be used to address the issue of occlusion which continues to be a major problem in computer vision with regards to the generation of depth map

  2. KEK-IMSS Slow Positron Facility

    Science.gov (United States)

    Hyodo, T.; Wada, K.; Yagishita, A.; Kosuge, T.; Saito, Y.; Kurihara, T.; Kikuchi, T.; Shirakawa, A.; Sanami, T.; Ikeda, M.; Ohsawa, S.; Kakihara, K.; Shidara, T.

    2011-12-01

    The Slow Positron Facility at the Institute of Material Structure Science (IMSS) of High Energy Accelerator Research Organization (KEK) is a user dedicated facility with an energy tunable (0.1 - 35 keV) slow positron beam produced by a dedicated 55MeV linac. The present beam line branches have been used for the positronium time-of-flight (Ps-TOF) measurements, the transmission positron microscope (TPM) and the photo-detachment of Ps negative ions (Ps-). During the year 2010, a reflection high-energy positron diffraction (RHEPD) measurement station is going to be installed. The slow positron generator (converter/ moderator) system will be modified to get a higher slow positron intensity, and a new user-friendly beam line power-supply control and vacuum monitoring system is being developed. Another plan for this year is the transfer of a 22Na-based slow positron beam from RIKEN. This machine will be used for the continuous slow positron beam applications and for the orientation training of those who are interested in beginning researches with a slow positron beam.

  3. KEK-IMSS Slow Positron Facility

    International Nuclear Information System (INIS)

    The Slow Positron Facility at the Institute of Material Structure Science (IMSS) of High Energy Accelerator Research Organization (KEK) is a user dedicated facility with an energy tunable (0.1 - 35 keV) slow positron beam produced by a dedicated 55MeV linac. The present beam line branches have been used for the positronium time-of-flight (Ps-TOF) measurements, the transmission positron microscope (TPM) and the photo-detachment of Ps negative ions (Ps-). During the year 2010, a reflection high-energy positron diffraction (RHEPD) measurement station is going to be installed. The slow positron generator (converter/ moderator) system will be modified to get a higher slow positron intensity, and a new user-friendly beam line power-supply control and vacuum monitoring system is being developed. Another plan for this year is the transfer of a 22Na-based slow positron beam from RIKEN. This machine will be used for the continuous slow positron beam applications and for the orientation training of those who are interested in beginning researches with a slow positron beam.

  4. KEK-IMSS Slow Positron Facility

    Energy Technology Data Exchange (ETDEWEB)

    Hyodo, T; Wada, K; Yagishita, A; Kosuge, T; Saito, Y; Kurihara, T; Kikuchi, T; Shirakawa, A; Sanami, T; Ikeda, M; Ohsawa, S; Kakihara, K; Shidara, T, E-mail: toshio.hyodo@kek.jp [High Energy Accelerator Research Organization (KEK) 1-1 Oho, Tsukuba, Ibaraki, 305-0801 (Japan)

    2011-12-01

    The Slow Positron Facility at the Institute of Material Structure Science (IMSS) of High Energy Accelerator Research Organization (KEK) is a user dedicated facility with an energy tunable (0.1 - 35 keV) slow positron beam produced by a dedicated 55MeV linac. The present beam line branches have been used for the positronium time-of-flight (Ps-TOF) measurements, the transmission positron microscope (TPM) and the photo-detachment of Ps negative ions (Ps{sup -}). During the year 2010, a reflection high-energy positron diffraction (RHEPD) measurement station is going to be installed. The slow positron generator (converter/ moderator) system will be modified to get a higher slow positron intensity, and a new user-friendly beam line power-supply control and vacuum monitoring system is being developed. Another plan for this year is the transfer of a {sup 22}Na-based slow positron beam from RIKEN. This machine will be used for the continuous slow positron beam applications and for the orientation training of those who are interested in beginning researches with a slow positron beam.

  5. Carded Tow Real-Time Color Assessment: A Spectral Camera-Based System.

    Science.gov (United States)

    Furferi, Rocco; Governi, Lapo; Volpe, Yary; Carfagni, Monica

    2016-08-31

    One of the most important parameters to be controlled during the production of textile yarns obtained by mixing pre-colored fibers, is the color correspondence between the manufactured yarn and a given reference, usually provided by a designer or a customer. Obtaining yarns from raw pre-colored fibers is a complex manufacturing process entailing a number of steps such as laboratory sampling, color recipe corrections, blowing, carding and spinning. Carding process is the one devoted to transform a "fuzzy mass" of tufted fibers into a regular mass of untwisted fibers, named "tow". During this process, unfortunately, the correspondence between the color of the tow and the target one cannot be assured, thus leading to yarns whose color differs from the one used for reference. To solve this issue, the main aim of this work is to provide a system able to perform a spectral camera-based real-time measurement of a carded tow, to assess its color correspondence with a reference carded fabric and, at the same time, to monitor the overall quality of the tow during the carding process. Tested against a number of differently colored carded fabrics, the proposed system proved its effectiveness in reliably assessing color correspondence in real-time.

  6. Carded Tow Real-Time Color Assessment: A Spectral Camera-Based System

    Directory of Open Access Journals (Sweden)

    Rocco Furferi

    2016-08-01

    Full Text Available One of the most important parameters to be controlled during the production of textile yarns obtained by mixing pre-colored fibers, is the color correspondence between the manufactured yarn and a given reference, usually provided by a designer or a customer. Obtaining yarns from raw pre-colored fibers is a complex manufacturing process entailing a number of steps such as laboratory sampling, color recipe corrections, blowing, carding and spinning. Carding process is the one devoted to transform a “fuzzy mass” of tufted fibers into a regular mass of untwisted fibers, named “tow”. During this process, unfortunately, the correspondence between the color of the tow and the target one cannot be assured, thus leading to yarns whose color differs from the one used for reference. To solve this issue, the main aim of this work is to provide a system able to perform a spectral camera-based real-time measurement of a carded tow, to assess its color correspondence with a reference carded fabric and, at the same time, to monitor the overall quality of the tow during the carding process. Tested against a number of differently colored carded fabrics, the proposed system proved its effectiveness in reliably assessing color correspondence in real-time.

  7. A regional density distribution based wide dynamic range algorithm for infrared camera systems

    Science.gov (United States)

    Park, Gyuhee; Kim, Yongsung; Joung, Shichang; Shin, Sanghoon

    2014-10-01

    Forward Looking InfraRed (FLIR) imaging system has been widely used for both military and civilian purposes. Military applications include target acquisition and tracking, night vision system. Civilian applications include thermal efficiency analysis, short-ranged wireless communication, weather forecasting and other various applications. The dynamic range of FLIR imaging system is larger than one of commercial display. Generally, auto gain controlling and contrast enhancement algorithm are applied to FLIR imaging system. In IR imaging system, histogram equalization and plateau equalization is generally used for contrast enhancement. However, they have no solution about the excessive enhancing when luminance histogram has been distributed in specific narrow region. In this paper, we proposed a Regional Density Distribution based Wide Dynamic Range algorithm for Infrared Camera Systems. Depending on the way of implementation, the result of WDR is quite different. Our approach is single frame type WDR algorithm for enhancing the contrast of both dark and white detail without loss of bins of histogram with real-time processing. The significant change in luminance caused by conventional contrast enhancement methods may introduce luminance saturation and failure in object tracking. Proposed method guarantees both the effective enhancing in contrast and successive object tracking. Moreover, since proposed method does not using multiple images on WDR, computation complexity might be significantly reduced in software / hardware implementation. The experimental results show that proposed method has better performance compared with conventional Contrast enhancement methods.

  8. Colorimetric analyzer based on mobile phone camera for determination of available phosphorus in soil.

    Science.gov (United States)

    Moonrungsee, Nuntaporn; Pencharee, Somkid; Jakmunee, Jaroon

    2015-05-01

    A field deployable colorimetric analyzer based on an "Android mobile phone" was developed for the determination of available phosphorus content in soil. An inexpensive mobile phone embedded with digital camera was used for taking photograph of the chemical solution under test. The method involved a reaction of the phosphorus (orthophosphate form), ammonium molybdate and potassium antimonyl tartrate to form phosphomolybdic acid which was reduced by ascorbic acid to produce the intense colored molybdenum blue. The software program was developed to use with the phone for recording and analyzing RGB color of the picture. A light tight box with LED light to control illumination was fabricated to improve precision and accuracy of the measurement. Under the optimum conditions, the calibration graph was created by measuring blue color intensity of a series of standard phosphorus solution (0.0-1.0mgPL(-1)), then, the calibration equation obtained was retained by the program for the analysis of sample solution. The results obtained from the proposed method agreed well with the spectrophotometric method, with a detection limit of 0.01mgPL(-1) and a sample throughput about 40h(-1) was achieved. The developed system provided good accuracy (RE<5%) and precision (RSD<2%, intra- and inter-day), fast and cheap analysis, and especially convenient to use in crop field for soil analysis of phosphorus nutrient.

  9. Potential of Uav-Based Laser Scanner and Multispectral Camera Data in Building Inspection

    Science.gov (United States)

    Mader, D.; Blaskow, R.; Westfeld, P.; Weller, C.

    2016-06-01

    Conventional building inspection of bridges, dams or large constructions in general is rather time consuming and often cost expensive due to traffic closures and the need of special heavy vehicles such as under-bridge inspection units or other large lifting platforms. In consideration that, an unmanned aerial vehicle (UAV) will be more reliable and efficient as well as less expensive and simpler to operate. The utilisation of UAVs as an assisting tool in building inspections is obviously. Furthermore, light-weight special sensors such as infrared and thermal cameras as well as laser scanner are available and predestined for usage on unmanned aircraft systems. Such a flexible low-cost system is realized in the ADFEX project with the goal of time-efficient object exploration, monitoring and damage detection. For this purpose, a fleet of UAVs, equipped with several sensors for navigation, obstacle avoidance and 3D object-data acquisition, has been developed and constructed. This contribution deals with the potential of UAV-based data in building inspection. Therefore, an overview of the ADFEX project, sensor specifications and requirements of building inspections in general are given. On the basis of results achieved in practical studies, the applicability and potential of the UAV system in building inspection will be presented and discussed.

  10. Carded Tow Real-Time Color Assessment: A Spectral Camera-Based System.

    Science.gov (United States)

    Furferi, Rocco; Governi, Lapo; Volpe, Yary; Carfagni, Monica

    2016-01-01

    One of the most important parameters to be controlled during the production of textile yarns obtained by mixing pre-colored fibers, is the color correspondence between the manufactured yarn and a given reference, usually provided by a designer or a customer. Obtaining yarns from raw pre-colored fibers is a complex manufacturing process entailing a number of steps such as laboratory sampling, color recipe corrections, blowing, carding and spinning. Carding process is the one devoted to transform a "fuzzy mass" of tufted fibers into a regular mass of untwisted fibers, named "tow". During this process, unfortunately, the correspondence between the color of the tow and the target one cannot be assured, thus leading to yarns whose color differs from the one used for reference. To solve this issue, the main aim of this work is to provide a system able to perform a spectral camera-based real-time measurement of a carded tow, to assess its color correspondence with a reference carded fabric and, at the same time, to monitor the overall quality of the tow during the carding process. Tested against a number of differently colored carded fabrics, the proposed system proved its effectiveness in reliably assessing color correspondence in real-time. PMID:27589765

  11. Realization of the FPGA based TDI algorithm in digital domain for CMOS cameras

    Science.gov (United States)

    Tao, Shuping; Jin, Guang; Zhang, Xuyan; Qu, Hongsong

    2012-10-01

    In order to make the CMOS image sensors suitable for space high resolution imaging applications, a new method realizing TDI in digital domain by FPGA is proposed in this paper, which improves the imaging mode for area array CMOS sensors. The TDI algorithm accumulates the corresponding pixels of adjoining frames in digital domain, so the gray values increase by M times, where M is for the integration number, and the image's quality in signal-to-noise ratio can be improved. In addition, the TDI optimization algorithm is discussed. Firstly, the signal storage is optimized by 2 slices of external RAM, where memory depth expanding and the table tennis operation mechanism are used. Secondly, the FIFO operation mechanism reduces the reading and writing operation on memory by M×(M-1) times, It saves so much signal transfer time as is proportional to the square of integration number M2, that the frame frequency is able to increase greatly. At last, the CMOS camera based on TDI in digital domain is developed, and the algorithm is validated by experiments on it.

  12. PCA-based 3D Shape Reconstruction of Human Foot Using Multiple Viewpoint Cameras

    Institute of Scientific and Technical Information of China (English)

    Edmée Amstutz; Tomoaki Teshima; Makoto Kimura; Masaaki Mochimaru; Hideo Saito

    2008-01-01

    This paper describes a multiple camera-based method to reconstruct the 3D shape of a human foot. From a foot database,an initial 3D model of the foot represented by a cloud of points is built. The shape parameters, which can characterize more than 92% of a foot, are defined by using the principal component analysis method. Then, using "active shape models", the initial 3D model is adapted to the real foot captured in multiple images by applying some constraints (edge points' distance and color variance). We insist here on the experiment part where we demonstrate the efficiency of the proposed method on a plastic foot model, and also on real human feet with various shapes. We propose and compare different ways of texturing the foot which is needed for reconstruction. We present an experiment performed on the plastic foot model and on human feet and propose two different ways to improve the final 3D shape's accuracy according to the previous experiments' results. The first improvement proposed is the densification of the cloud of points used to represent the initial model and the foot database. The second improvement concerns the projected patterns used to texture the foot. We conclude by showing the obtained results for a human foot with the average computed shape error being only 1.06mm.

  13. The beam-based calibration of an X-ray pinhole camera at SSRF

    Institute of Scientific and Technical Information of China (English)

    LENG Yong-Bin; HUANG Guo-Qing; ZHANG Man-Zhou; CHEN Zhi-Chu; CHEN Jie; YE Kai-Rong

    2012-01-01

    A pinhole camera for imaging X-ray synchrotron radiation from a dipole magnet is now in operation at the Shanghai Synchrotron Radiation Facility (SSRF) storage ring.The electron beam size is derived by unfolding the radiation image and the point spread function (PSF) with deconvolution techniques.The performance of the pinhole is determined by the accuracy of the PSF measurement.This article will focus on a beam-based calibration scheme to measure the PSF system by varying the beam images with different quadrupole settings and fitting them with the corresponding theoretical beam sizes.Applying this method at SSRF,the PSF value of the pinhole is revised from 37 to 44 μm.The deviation in beam size between the theoretical value and the measured value is minimized to 4% after calibration.This optimization allows us to observe the horizontal disturbance due to injection down to as small as 0.5 μm.

  14. Image-based correction of the light dilution effect for SO2 camera measurements

    Science.gov (United States)

    Campion, Robin; Delgado-Granados, Hugo; Mori, Toshiya

    2015-07-01

    Ultraviolet SO2 cameras are increasingly used in volcanology because of their ability to remotely measure the 2D distribution of SO2 in volcanic plumes, at a high frequency. However, light dilution, i.e., the scattering of ambient photons within the instrument's field of view (FoV) on air parcels located between the plume and the instrument, induces a systematic underestimation of the measurements, whose magnitude increases with distance, SO2 content, atmospheric pressure and turbidity. Here we describe a robust and straightforward method to quantify and correct this effect. We retrieve atmospheric scattering coefficients based on the contrast attenuation between the sky and the increasingly distant slope of the volcanic edifice. We illustrate our method with a case study at Etna volcano, where difference between corrected and uncorrected emission rates amounts to 40% to 80%, and investigate the temporal variations of the scattering coefficient during 1 h of measurements on Etna. We validate the correction method at Popocatépetl volcano by performing measurements of the same plume at different distances from the volcano. Finally, we reported the atmospheric scattering coefficients for several volcanoes at different latitudes and altitudes.

  15. Carded Tow Real-Time Color Assessment: A Spectral Camera-Based System

    Science.gov (United States)

    Furferi, Rocco; Governi, Lapo; Volpe, Yary; Carfagni, Monica

    2016-01-01

    One of the most important parameters to be controlled during the production of textile yarns obtained by mixing pre-colored fibers, is the color correspondence between the manufactured yarn and a given reference, usually provided by a designer or a customer. Obtaining yarns from raw pre-colored fibers is a complex manufacturing process entailing a number of steps such as laboratory sampling, color recipe corrections, blowing, carding and spinning. Carding process is the one devoted to transform a “fuzzy mass” of tufted fibers into a regular mass of untwisted fibers, named “tow”. During this process, unfortunately, the correspondence between the color of the tow and the target one cannot be assured, thus leading to yarns whose color differs from the one used for reference. To solve this issue, the main aim of this work is to provide a system able to perform a spectral camera-based real-time measurement of a carded tow, to assess its color correspondence with a reference carded fabric and, at the same time, to monitor the overall quality of the tow during the carding process. Tested against a number of differently colored carded fabrics, the proposed system proved its effectiveness in reliably assessing color correspondence in real-time. PMID:27589765

  16. Single camera absolute motion based digital elevation mapping for a next generation planetary lander

    Science.gov (United States)

    Feetham, Luke M.; Aouf, Nabil; Bourdarias, Clement; Voirin, Thomas

    2014-05-01

    Robotic planetary surface exploration missions are becoming much more ambitious in their science goals as they attempt to answer the bigger questions relating to the possibility of life elsewhere in our solar system. Answering these questions will require scientifically rich landing sites. Such sites are unlikely to be located in relatively flat regions that are free from hazards, therefore there is a growing need for next generation entry descent and landing systems to possess highly sophisticated navigation capabilities coupled with active hazard avoidance that can enable a pin-point landing. As a first step towards achieving these goals, a multi-source, multi-rate data fusion algorithm is presented that combines single camera recursive feature-based structure from motion (SfM) estimates with measurements from an inertial measurement unit in order to overcome the scale ambiguity problem by directly estimating the unknown scale factor. This paper focuses on accurate estimation of absolute motion parameters, as well as the estimation of sparse landing site structure to provide a starting point for hazard detection. We assume no prior knowledge of the landing site terrain structure or of the landing craft motion in order to fully assess the capabilities of the proposed algorithm to allow a pin-point landing on distant solar system bodies where accurate knowledge of the desired landing site may be limited. We present results using representative synthetic images of deliberately challenging landing scenarios, which demonstrates that the proposed method has great potential.

  17. Gamma camera

    International Nuclear Information System (INIS)

    The design of a collimation system for a gamma camera for use in nuclear medicine is described. When used with a 2-dimensional position sensitive radiation detector, the novel system can produce superior images than conventional cameras. The optimal thickness and positions of the collimators are derived mathematically. (U.K.)

  18. High Performance Imaging Through Occlusion via Energy Minimization-Based Optimal Camera Selection

    Directory of Open Access Journals (Sweden)

    Tao Yang

    2013-11-01

    Full Text Available Seeing an object in a cluttered scene with severe occlusion is a significantly challenging task for many computer vision applications. Although camera array synthetic aperture imaging has proven to be an effective way for occluded object imaging, its imaging quality is often significantly decreased by the shadows of the foreground occluder. To overcome this problem, some recent research has been presented to label the foreground occluder via object segmentation or 3D reconstruction. However, these methods usually fail in the case of complicated occluder or severe occlusion. In this paper, we present a novel optimal camera selection algorithm to handle the problem above. Firstly, in contrast to the traditional synthetic aperture photography methods, we formulate the occluded object imaging as a problem of visible light ray selection from the optimal camera view. To the best of our knowledge, this is the first time to "mosaic" a high quality occluded object image via selecting multi-view optimal visible light rays from a camera array or a single moving camera. Secondly, a greedy optimization framework is presented to propagate the visibility information among various depth focus planes. Thirdly, a multiple label energy minimization formulation is designed in each plane to select the optimal camera view. The energy is estimated in the 3D synthetic aperture image volume and integrates the multiple view intensity consistency, previous visibility property and camera view smoothness, which is minimized via graph cuts. Finally, we compare this approach with the traditional synthetic aperture imaging algorithms on UCSD light field datasets and our own datasets captured in indoor and outdoor environment, and extensive experimental results demonstrate the effectiveness and superiority of our approach.

  19. Image Sensors Enhance Camera Technologies

    Science.gov (United States)

    2010-01-01

    In the 1990s, a Jet Propulsion Laboratory team led by Eric Fossum researched ways of improving complementary metal-oxide semiconductor (CMOS) image sensors in order to miniaturize cameras on spacecraft while maintaining scientific image quality. Fossum s team founded a company to commercialize the resulting CMOS active pixel sensor. Now called the Aptina Imaging Corporation, based in San Jose, California, the company has shipped over 1 billion sensors for use in applications such as digital cameras, camera phones, Web cameras, and automotive cameras. Today, one of every three cell phone cameras on the planet feature Aptina s sensor technology.

  20. Evaluation of gamma camera-based measurement of individual kidney function using iodine-123 orthoiodohippurate

    International Nuclear Information System (INIS)

    To evaluate the accuracy of these techniques, we measured RUR by an optimized procedure and compared it with standard ERPF. Iodine-123 orthoiodohippurate (OIH) scintigraphy and simultaneous para-aminohippurate clearance study for measuring standard ERPF were performed in three hospitals in 24 patients with normal or mildly impaired renal function. 123I-OIH was injected intravenously and 10-s consecutive imaging of the kidneys was started when the abdominal aorta was seen. The attenuation coefficient for 123I was measured in each hospital using the same water-equivalent absorption materials and used for the attenuation correction. After subtracting background radioactivity, RURs were defined as the count ratios of fractional renal uptakes based on the integral from 1 to 2, 2 to 3, 1.5 to 2.5 and 1 to 3 min after the injection of 123I-OIH in relation to injected doses using the following three procedures in respect of attenuation correction: (1) RUR without attenuation correction, (2) RUR with fractional renal uptake corrected by the measured attenuation coefficient, (3) RUR with the total injected dose corrected by the absorption material. To decide upon the appropriate correction method and time interval, RURs were compared with standard ERPF. Among the three correction methods, procedure 2 showed the highest correlation between RUR and standard ERPF, but the correlation coefficient was low (r=0.75). No significant difference was observed among the RURs of each time interval. Individual kidney function measured from early renal uptake may be inaccurate even when appropriate correction is made for attenuation, background activity or time lag between injection and data acquisition. Gamma camera-based measurement of renal function using 123I-OIH is limited with regard to accuracy and reproducibility, though it is convenient and non-invasive. (orig.). With 2 figs., 2 tabs

  1. Human Visual System-Based Fundus Image Quality Assessment of Portable Fundus Camera Photographs.

    Science.gov (United States)

    Wang, Shaoze; Jin, Kai; Lu, Haitong; Cheng, Chuming; Ye, Juan; Qian, Dahong

    2016-04-01

    Telemedicine and the medical "big data" era in ophthalmology highlight the use of non-mydriatic ocular fundus photography, which has given rise to indispensable applications of portable fundus cameras. However, in the case of portable fundus photography, non-mydriatic image quality is more vulnerable to distortions, such as uneven illumination, color distortion, blur, and low contrast. Such distortions are called generic quality distortions. This paper proposes an algorithm capable of selecting images of fair generic quality that would be especially useful to assist inexperienced individuals in collecting meaningful and interpretable data with consistency. The algorithm is based on three characteristics of the human visual system-multi-channel sensation, just noticeable blur, and the contrast sensitivity function to detect illumination and color distortion, blur, and low contrast distortion, respectively. A total of 536 retinal images, 280 from proprietary databases and 256 from public databases, were graded independently by one senior and two junior ophthalmologists, such that three partial measures of quality and generic overall quality were classified into two categories. Binary classification was implemented by the support vector machine and the decision tree, and receiver operating characteristic (ROC) curves were obtained and plotted to analyze the performance of the proposed algorithm. The experimental results revealed that the generic overall quality classification achieved a sensitivity of 87.45% at a specificity of 91.66%, with an area under the ROC curve of 0.9452, indicating the value of applying the algorithm, which is based on the human vision system, to assess the image quality of non-mydriatic photography, especially for low-cost ophthalmological telemedicine applications. PMID:26672033

  2. Underwater camera with depth measurement

    Science.gov (United States)

    Wang, Wei-Chih; Lin, Keng-Ren; Tsui, Chi L.; Schipf, David; Leang, Jonathan

    2016-04-01

    The objective of this study is to develop an RGB-D (video + depth) camera that provides three-dimensional image data for use in the haptic feedback of a robotic underwater ordnance recovery system. Two camera systems were developed and studied. The first depth camera relies on structured light (as used by the Microsoft Kinect), where the displacement of an object is determined by variations of the geometry of a projected pattern. The other camera system is based on a Time of Flight (ToF) depth camera. The results of the structural light camera system shows that the camera system requires a stronger light source with a similar operating wavelength and bandwidth to achieve a desirable working distance in water. This approach might not be robust enough for our proposed underwater RGB-D camera system, as it will require a complete re-design of the light source component. The ToF camera system instead, allows an arbitrary placement of light source and camera. The intensity output of the broadband LED light source in the ToF camera system can be increased by putting them into an array configuration and the LEDs can be modulated comfortably with any waveform and frequencies required by the ToF camera. In this paper, both camera were evaluated and experiments were conducted to demonstrate the versatility of the ToF camera.

  3. Instrumentation optimization for positron emission mammography

    Energy Technology Data Exchange (ETDEWEB)

    Moses, William W.; Qi, Jinyi

    2003-06-05

    The past several years have seen designs for PET cameras optimized to image the breast, commonly known as Positron Emission Mammography or PEM cameras. The guiding principal behind PEM instrumentation is that a camera whose field of view is restricted to a single breast has higher performance and lower cost than a conventional PET camera. The most common geometry is a pair of parallel planes of detector modules, although geometries that encircle the breast have also been proposed. The ability of the detector modules to measure the depth of interaction (DOI) is also a relevant feature. This paper finds that while both the additional solid angle coverage afforded by encircling the breast and the decreased blurring afforded by the DOI measurement improve performance, the ability to measure DOI is more important than the ability to encircle the breast.

  4. A New Approach for Combining Time-of-Flight and RGB Cameras Based on Depth-Dependent Planar Projective Transformations

    Directory of Open Access Journals (Sweden)

    Carlota Salinas

    2015-09-01

    Full Text Available Image registration for sensor fusion is a valuable technique to acquire 3D and colour information for a scene. Nevertheless, this process normally relies on feature-matching techniques, which is a drawback for combining sensors that are not able to deliver common features. The combination of ToF and RGB cameras is an instance that problem. Typically, the fusion of these sensors is based on the extrinsic parameter computation of the coordinate transformation between the two cameras. This leads to a loss of colour information because of the low resolution of the ToF camera, and sophisticated algorithms are required to minimize this issue. This work proposes a method for sensor registration with non-common features and that avoids the loss of colour information. The depth information is used as a virtual feature for estimating a depth-dependent homography lookup table (Hlut. The homographies are computed within sets of ground control points of 104 images. Since the distance from the control points to the ToF camera are known, the working distance of each element on the Hlut is estimated. Finally, two series of experimental tests have been carried out in order to validate the capabilities of the proposed method.

  5. Dual cameras acquisition and display system of retina-like sensor camera and rectangular sensor camera

    Science.gov (United States)

    Cao, Nan; Cao, Fengmei; Lin, Yabin; Bai, Tingzhu; Song, Shengyu

    2015-04-01

    For a new kind of retina-like senor camera and a traditional rectangular sensor camera, dual cameras acquisition and display system need to be built. We introduce the principle and the development of retina-like senor. Image coordinates transformation and interpolation based on sub-pixel interpolation need to be realized for our retina-like sensor's special pixels distribution. The hardware platform is composed of retina-like senor camera, rectangular sensor camera, image grabber and PC. Combined the MIL and OpenCV library, the software program is composed in VC++ on VS 2010. Experience results show that the system can realizes two cameras' acquisition and display.

  6. Microcontroller-based intelligent low-cost-linear-sensor-camera for general edge detection

    Science.gov (United States)

    Hussmann, Stephan; Justen, Detlef

    1997-09-01

    With this paper we would like to present an intelligent low- cost-camera. Intelligent means that a microcontroller does all the controlling and provides several in- and outputs. The camera is a stand-alone system. The basic element of the camera is a linear sensor that consists of a photodiode array (PDA). In comparison with standard CCD-chips this type of sensor is a low cost component and its operation is very simple. Furthermore this paper shows the mechanical, electrical and electro-optical differences between CCD- and PDA-sensors. So the reader will be able to choose the right sensor for a particular task. Two cases of industrial applications are listed at the end of this paper.

  7. Dry imaging cameras

    Directory of Open Access Journals (Sweden)

    I K Indrajit

    2011-01-01

    Full Text Available Dry imaging cameras are important hard copy devices in radiology. Using dry imaging camera, multiformat images of digital modalities in radiology are created from a sealed unit of unexposed films. The functioning of a modern dry camera, involves a blend of concurrent processes, in areas of diverse sciences like computers, mechanics, thermal, optics, electricity and radiography. Broadly, hard copy devices are classified as laser and non laser based technology. When compared with the working knowledge and technical awareness of different modalities in radiology, the understanding of a dry imaging camera is often superficial and neglected. To fill this void, this article outlines the key features of a modern dry camera and its important issues that impact radiology workflow.

  8. ATLAAS: an automatic decision tree-based learning algorithm for advanced image segmentation in positron emission tomography

    Science.gov (United States)

    Berthon, Beatrice; Marshall, Christopher; Evans, Mererid; Spezi, Emiliano

    2016-07-01

    Accurate and reliable tumour delineation on positron emission tomography (PET) is crucial for radiotherapy treatment planning. PET automatic segmentation (PET-AS) eliminates intra- and interobserver variability, but there is currently no consensus on the optimal method to use, as different algorithms appear to perform better for different types of tumours. This work aimed to develop a predictive segmentation model, trained to automatically select and apply the best PET-AS method, according to the tumour characteristics. ATLAAS, the automatic decision tree-based learning algorithm for advanced segmentation is based on supervised machine learning using decision trees. The model includes nine PET-AS methods and was trained on a 100 PET scans with known true contour. A decision tree was built for each PET-AS algorithm to predict its accuracy, quantified using the Dice similarity coefficient (DSC), according to the tumour volume, tumour peak to background SUV ratio and a regional texture metric. The performance of ATLAAS was evaluated for 85 PET scans obtained from fillable and printed subresolution sandwich phantoms. ATLAAS showed excellent accuracy across a wide range of phantom data and predicted the best or near-best segmentation algorithm in 93% of cases. ATLAAS outperformed all single PET-AS methods on fillable phantom data with a DSC of 0.881, while the DSC for H&N phantom data was 0.819. DSCs higher than 0.650 were achieved in all cases. ATLAAS is an advanced automatic image segmentation algorithm based on decision tree predictive modelling, which can be trained on images with known true contour, to predict the best PET-AS method when the true contour is unknown. ATLAAS provides robust and accurate image segmentation with potential applications to radiation oncology.

  9. Instrumentation in positron emission tomography

    International Nuclear Information System (INIS)

    Positron emission tomography (PET) is a three-dimensional medical imaging technique that noninvasively measures the concentration of radiopharmaceuticals in the body that are labeled with positron emitters. With the proper compounds, PET can be used to measure metabolism, blood flow, or other physiological values in vivo. The technique is based on the physics of positron annihilation and detection and the mathematical formulations developed for x-ray computed tomography. Modern PET systems can provide three-dimensional images of the brain, the heart, and other internal organs with resolutions on the order of 4 to 6 mm. With the selectivity provided by a choice of injected compounds, PET has the power to provide unique diagnostic information that is not available with any other imaging modality. This is the first five reports on the nature and uses of PET that have been prepared for the American Medical Association's Council on Scientific Affairs by an authoritative panel

  10. Positioning of Screw Holes Group Based on Digital Camera and Digital Control Drilling

    Institute of Scientific and Technical Information of China (English)

    FENG Wenhao; LI Jiansong; YAN Li; SU Guozhong; YUAN Xiuxiao; ZHONG Shengzhang; JI Huiming

    2004-01-01

    Positioning of screw holes is an important production procedure for steel construction connecting with bolts. In this paper, a new production method is presented, in which the digital camera is used for taking pictures of screw holes and other techniques are advanced. This paper also indicates that the pixels of CCD chip in photogrammetry should be chosen as all geometric units in an image, such as interior elements and all kinds of distortions. The measure can also simplify the camera calibration for determining the size of non-square pixel.

  11. Retrieval of sulphur dioxide from a ground-based thermal infrared imaging camera

    Directory of Open Access Journals (Sweden)

    A. J. Prata

    2014-02-01

    Full Text Available Recent advances in uncooled detector technology now offer the possibility of using relatively inexpensive thermal (7 to 14 μm imaging devices as tools for studying and quantifying the behaviour of hazardous gases and particulates in atmospheric plumes. An experimental fast-sampling (60 Hz ground-based uncooled thermal imager (Cyclops, operating with four spectral channels at central wavelengths of 8.6, 10, 11, and 12 μm and one broadband channel (7–14 μm, has been tested at several volcanoes and at two industrial sites, where SO2 was a major constituent of the plumes. This paper presents new algorithms, which include atmospheric corrections to the data and better calibrations to show that SO2 slant column density can be reliably detected and quantified. Our results indicate that it is relatively easy to identify and discriminate SO2 in plumes, but more challenging to quantify the column densities. A full description of the retrieval algorithms, illustrative results and a detailed error analysis are provided. The Noise-Equivalent Temperature Difference (NEΔT of the spectral channels, a fundamental measure of the quality of the measurements, lies between 0.4–0.8 K, resulting in slant column density errors of 20%. Frame averaging and improved NEΔT's can reduce this error to less than 10%, making a stand-off, day or night operation of an instrument of this type very practical for both monitoring industrial SO2 emissions and for SO2 column densities and emission measurements at active volcanoes. The imaging camera system may also be used to study thermal radiation from meteorological clouds and from the atmosphere.

  12. An upgraded camera-based imaging system for mapping venous blood oxygenation in human skin tissue

    Science.gov (United States)

    Li, Jun; Zhang, Xiao; Qiu, Lina; Leotta, Daniel F.

    2016-07-01

    A camera-based imaging system was previously developed for mapping venous blood oxygenation in human skin. However, several limitations were realized in later applications, which could lead to either significant bias in the estimated oxygen saturation value or poor spatial resolution in the map of the oxygen saturation. To overcome these issues, an upgraded system was developed using improved modeling and image processing algorithms. In the modeling, Monte Carlo (MC) simulation was used to verify the effectiveness of the ratio-to-ratio method for semi-infinite and two-layer skin models, and then the relationship between the venous oxygen saturation and the ratio-to-ratio was determined. The improved image processing algorithms included surface curvature correction and motion compensation. The curvature correction is necessary when the imaged skin surface is uneven. The motion compensation is critical for the imaging system because surface motion is inevitable when the venous volume alteration is induced by cuff inflation. In addition to the modeling and image processing algorithms in the upgraded system, a ring light guide was used to achieve perpendicular and uniform incidence of light. Cross-polarization detection was also adopted to suppress surface specular reflection. The upgraded system was applied to mapping of venous oxygen saturation in the palm, opisthenar and forearm of human subjects. The spatial resolution of the oxygenation map achieved is much better than that of the original system. In addition, the mean values of the venous oxygen saturation for the three locations were verified with a commercial near-infrared spectroscopy system and were consistent with previously published data.

  13. Undulator-Based Production of Polarized Positrons, A Proposal for the 50-GeV Beam in the FFTB

    Energy Technology Data Exchange (ETDEWEB)

    G. Alexander; P. Anthony; V. Bharadwaj; Yu.K. Batygin; T. Behnke; S. Berridge; G.R. Bower; W. Bugg; R. Carr; E. Chudakov; J.E. Clendenin; F.J. Decker; Yu. Efremenko; T. Fieguth; K. Flottmann; M. Fukuda; V. Gharibyan; T. Handler; T. Hirose; R.H. Iverson; Yu. Kamyshkov; H. Kolanoski; T. Lohse; Chang-guo Lu; K.T. McDonald; N. Meyners; R. Michaels; A.A. Mikhailichenko; K. Monig; G. Moortgat-Pick; M. Olson; T. Omori; D. Onoprienko; N. Pavel; R. Pitthan; M. Purohit; L. Rinolfi; K.P. Schuler; J.C. Sheppard; S. Spanier; A. Stahl; Z.M. Szalata; J. Turner; D. Walz; A. Weidemann; J. Weisend

    2003-06-01

    The full exploitation of the physics potential of future linear colliders such as the JLC, NLC, and TESLA will require the development of polarized positron beams. In the proposed scheme of Balakin and Mikhailichenko [1] a helical undulator is employed to generate photons of several MeV with circular polarization which are then converted in a relatively thin target to generate longitudinally polarized positrons. This experiment, E-166, proposes to test this scheme to determine whether such a technique can produce polarized positron beams of sufficient quality for use in future linear colliders. The experiment will install a meter-long, short-period, pulsed helical undulator in the Final Focus Test Beam (FFTB) at SLAC. A low-emittance 50-GeV electron beam passing through this undulator will generate circularly polarized photons with energies up to 10 MeV. These polarized photons are then converted to polarized positrons via pair production in thin targets. Titanium and tungsten targets, which are both candidates for use in linear colliders, will be tested. The experiment will measure the flux and polarization of the undulator photons, and the spectrum and polarization of the positrons produced in the conversion target, and compare the measurement results to simulations. Thus the proposed experiment directly tests for the first time the validity of the simulation programs used for the physics of polarized pair production in finite matter, in particular the effects of multiple scattering on polarization. Successful comparison of the experimental results to the simulations will lead to greater confidence in the proposed designs of polarized positrons sources for the next generation of linear colliders. This experiment requests six-weeks of time in the FFTB beam line: three weeks for installation and setup and three weeks of beam for data taking. A 50-GeV beam with about twice the SLC emittance at a repetition rate of 30 Hz is required.

  14. 基于极坐标的摄像机标定%Camera calibration based on polar coordinate

    Institute of Scientific and Technical Information of China (English)

    方旭; 达飞鹏; 郭涛

    2012-01-01

    In order to improve the flexibility of multi-camera calibration and the diversity of calibration boards, the polar coordinate system is used to design the calibration board, and the camera calibration is based on the board. The feature points in the world coordinate are assigned by the designed board, and the positions of the feature points in the image coordinate are identified accordingly. The camera are calibrated after mapping the positions of the feature points in the image coordinate and the world coordinate. The calibration method only requires small sets of correspondences ( about 20 pairs) , and, meanwhile, it can ensure the accuracy and robustness. Small sets of correspondences and the diversity of images can avoid the blocking and inadequate public spaces for multi-camera calibration, which is helpful for the multi-camera calibration. It is more flexible than the traditional multi-camera calibration on the distribution of cameras and boards. Compared with the traditional method with accurate board, the calibration board design and the calibration system are simpler to achieve and they can also ensure the accuracy.%为了改进多摄像机标定实现的方便性和参考标定板的多样性,用极坐标设计标定板并以此来进行摄像机参数的标定.根据设计好的标定板确定世界坐标下的特征点,识别相应的特征点在图像坐标的位置,匹配特征点在图像坐标和世界坐标的位置关系后完成摄像机的标定.该标定方法只需大约20点对左右数据,同时保证标定的结果和鲁棒性;较少的点对和图像的多样性避免了遮挡和公共部分不足的问题,有利于完成多摄像机标定,较传统多摄像机标定方法在分配摄像机和标定板之间的位置关系上更加灵活.与传统的精确标定板的结果比较,在保证精度情况下,标定板设计和整个标定系统的实现则更加简单易行.

  15. Depolarization in the ILC Linac-to-Ring Positron Beamline

    CERN Document Server

    Riemann, Sabine

    2012-01-01

    To achieve the physics goals of future Linear Colliders, it is important that electron and positron beams are polarized. The positron source planned for the International Linear Collider (ILC) is based on a helical undulator system and can deliver a polarised beam with positron polarization of 60%. To ensure that no significant polarization is lost during the transport of the electron and positron beams from the source to the interaction region, spin tracking has to be included in all transport elements which can contribute to a loss of polarization. These are the positron source, the damping ring, the spin rotators, the main linac and the beam delivery system. In particular, the dynamics of the polarized positron beam is required to be investigated. The results of positron spin tracking and depolarization study at the Positron-Linac-To-Ring (PLTR) beamline are presented.

  16. Design and fabrication of a vacuum ultraviolet pinhole camera based on thin phosphor screens (abstract)

    Science.gov (United States)

    Baciero, A.; Zurro, B.; McCarthy, K. J.; De la Fuente, M. C.; Burgos, C.

    2001-01-01

    A compact and highly sensitive pinhole camera has been developed for acquiring broadband vacuum ultraviolet (VUV) emission profiles of plasmas in the TJ-II. Its principal purpose is to obtain profiles with sufficiently high resolution so as to aid in the search for topological structures in stellarator plasmas. It can also be used to support experiments such as impurity injection by laser ablation. The original and purpose-designed camera reported here provides optimum sensitivity over a broad spectral range. In the camera vacuum chamber, plasma radiation passes through a pinhole and a filter before impinging on a 5×30 mm area of a P-46 phosphor screen. Thin screens of this material were extensively characterized using calibrated monochromatic VUV sources and it was found that their response is maximized when operated in reflection mode.1 Luminescent light emitted from the vacuum side of the screen is then focused by a toroidal mirror (the pinhole is cut in its center) onto the outside of a quartz window which is mounted on the side of camera. Finally, this intermediate image is relayed onto the surface of a gated and intensified linear photodiode array (25 μm by 25 mm) having 700 active pixels. This system is capable of obtaining radial VUV profiles every 12 ms and of recording them in ⩾100 ns.

  17. Video-based realtime IMU-camera calibration for robot navigation

    Science.gov (United States)

    Petersen, Arne; Koch, Reinhard

    2012-06-01

    This paper introduces a new method for fast calibration of inertial measurement units (IMU) with cameras being rigidly coupled. That is, the relative rotation and translation between the IMU and the camera is estimated, allowing for the transfer of IMU data to the cameras coordinate frame. Moreover, the IMUs nuisance parameters (biases and scales) and the horizontal alignment of the initial camera frame are determined. Since an iterated Kalman Filter is used for estimation, information on the estimations precision is also available. Such calibrations are crucial for IMU-aided visual robot navigation, i.e. SLAM, since wrong calibrations cause biases and drifts in the estimated position and orientation. As the estimation is performed in realtime, the calibration can be done using a freehand movement and the estimated parameters can be validated just in time. This provides the opportunity of optimizing the used trajectory online, increasing the quality and minimizing the time effort for calibration. Except for a marker pattern, used for visual tracking, no additional hardware is required. As will be shown, the system is capable of estimating the calibration within a short period of time. Depending on the requested precision trajectories of 30 seconds to a few minutes are sufficient. This allows for calibrating the system at startup. By this, deviations in the calibration due to transport and storage can be compensated. The estimation quality and consistency are evaluated in dependency of the traveled trajectories and the amount of IMU-camera displacement and rotation misalignment. It is analyzed, how different types of visual markers, i.e. 2- and 3-dimensional patterns, effect the estimation. Moreover, the method is applied to mono and stereo vision systems, providing information on the applicability to robot systems. The algorithm is implemented using a modular software framework, such that it can be adopted to altered conditions easily.

  18. COMPARISON OF TARGET- AND MUTUAL INFORMATON BASED CALIBRATION OF TERRESTRIAL LASER SCANNER AND DIGITAL CAMERA FOR DEFORMATION MONITORING

    Directory of Open Access Journals (Sweden)

    M. Omidalizarandi

    2015-12-01

    Full Text Available In the current state-of-the-art, geodetic deformation analysis of natural and artificial objects (e.g. dams, bridges,... is an ongoing research in both static and kinematic mode and has received considerable interest by researchers and geodetic engineers. In this work, due to increasing the accuracy of geodetic deformation analysis, a terrestrial laser scanner (TLS; here the Zoller+Fröhlich IMAGER 5006 and a high resolution digital camera (Nikon D750 are integrated to complementarily benefit from each other. In order to optimally combine the acquired data of the hybrid sensor system, a highly accurate estimation of the extrinsic calibration parameters between TLS and digital camera is a vital preliminary step. Thus, the calibration of the aforementioned hybrid sensor system can be separated into three single calibrations: calibration of the camera, calibration of the TLS and extrinsic calibration between TLS and digital camera. In this research, we focus on highly accurate estimating extrinsic parameters between fused sensors and target- and targetless (mutual information based methods are applied. In target-based calibration, different types of observations (image coordinates, TLS measurements and laser tracker measurements for validation are utilized and variance component estimation is applied to optimally assign adequate weights to the observations. Space resection bundle adjustment based on the collinearity equations is solved using Gauss-Markov and Gauss-Helmert model. Statistical tests are performed to discard outliers and large residuals in the adjustment procedure. At the end, the two aforementioned approaches are compared and advantages and disadvantages of them are investigated and numerical results are presented and discussed.

  19. Comparison of - and Mutual Informaton Based Calibration of Terrestrial Laser Scanner and Digital Camera for Deformation Monitoring

    Science.gov (United States)

    Omidalizarandi, M.; Neumann, I.

    2015-12-01

    In the current state-of-the-art, geodetic deformation analysis of natural and artificial objects (e.g. dams, bridges,...) is an ongoing research in both static and kinematic mode and has received considerable interest by researchers and geodetic engineers. In this work, due to increasing the accuracy of geodetic deformation analysis, a terrestrial laser scanner (TLS; here the Zoller+Fröhlich IMAGER 5006) and a high resolution digital camera (Nikon D750) are integrated to complementarily benefit from each other. In order to optimally combine the acquired data of the hybrid sensor system, a highly accurate estimation of the extrinsic calibration parameters between TLS and digital camera is a vital preliminary step. Thus, the calibration of the aforementioned hybrid sensor system can be separated into three single calibrations: calibration of the camera, calibration of the TLS and extrinsic calibration between TLS and digital camera. In this research, we focus on highly accurate estimating extrinsic parameters between fused sensors and target- and targetless (mutual information) based methods are applied. In target-based calibration, different types of observations (image coordinates, TLS measurements and laser tracker measurements for validation) are utilized and variance component estimation is applied to optimally assign adequate weights to the observations. Space resection bundle adjustment based on the collinearity equations is solved using Gauss-Markov and Gauss-Helmert model. Statistical tests are performed to discard outliers and large residuals in the adjustment procedure. At the end, the two aforementioned approaches are compared and advantages and disadvantages of them are investigated and numerical results are presented and discussed.

  20. Use of a smart phone based thermo camera for skin prick allergy testing: a feasibility study (Conference Presentation)

    Science.gov (United States)

    Barla, Lindi; Verdaasdonk, Rudolf M.; Rustemeyer, Thomas; Klaessens, John; van der Veen, Albert

    2016-02-01

    Allergy testing is usually performed by exposing the skin to small quantities of potential allergens on the inner forearm and scratching the protective epidermis to increase exposure. After 15 minutes the dermatologist performs a visual check for swelling and erythema which is subjective and difficult for e.g. dark skin types. A small smart phone based thermo camera (FLIR One) was used to obtain quantitative images in a feasibility study of 17 patients Directly after allergen exposure on the forearm, thermal images were captured at 30 seconds interval and processed to a time lapse movie over 15 minutes. Considering the 'subjective' reading of the dermatologist as golden standard, in 11/17 pts (65%) the evaluation of dermatologist was confirmed by the thermo camera including 5 of 6 patients without allergic response. In 7 patients thermo showed additional spots. Of the 342 sites tested, the dermatologist detected 47 allergies of which 28 (60%) were confirmed by thermo imaging while thermo imaging showed 12 additional spots. The method can be improved with user dedicated acquisition software and better registration between normal and thermal images. The lymphatic reaction seems to shift from the original puncture site. The interpretation of the thermal images is still subjective since collecting quantitative data is difficult due to motion patient during 15 minutes. Although not yet conclusive, thermal imaging shows to be promising to improve the sensitivity and selectivity of allergy testing using a smart phone based camera.

  1. A reaction-diffusion-based coding rate control mechanism for camera sensor networks.

    Science.gov (United States)

    Yamamoto, Hiroshi; Hyodo, Katsuya; Wakamiya, Naoki; Murata, Masayuki

    2010-01-01

    A wireless camera sensor network is useful for surveillance and monitoring for its visibility and easy deployment. However, it suffers from the limited capacity of wireless communication and a network is easily overflown with a considerable amount of video traffic. In this paper, we propose an autonomous video coding rate control mechanism where each camera sensor node can autonomously determine its coding rate in accordance with the location and velocity of target objects. For this purpose, we adopted a biological model, i.e., reaction-diffusion model, inspired by the similarity of biological spatial patterns and the spatial distribution of video coding rate. Through simulation and practical experiments, we verify the effectiveness of our proposal. PMID:22163620

  2. A Reaction-Diffusion-Based Coding Rate Control Mechanism for Camera Sensor Networks

    Directory of Open Access Journals (Sweden)

    Naoki Wakamiya

    2010-08-01

    Full Text Available A wireless camera sensor network is useful for surveillance and monitoring for its visibility and easy deployment. However, it suffers from the limited capacity of wireless communication and a network is easily overflown with a considerable amount of video traffic. In this paper, we propose an autonomous video coding rate control mechanism where each camera sensor node can autonomously determine its coding rate in accordance with the location and velocity of target objects. For this purpose, we adopted a biological model, i.e., reaction-diffusion model, inspired by the similarity of biological spatial patterns and the spatial distribution of video coding rate. Through simulation and practical experiments, we verify the effectiveness of our proposal.

  3. A passive terahertz video camera based on lumped element kinetic inductance detectors.

    Science.gov (United States)

    Rowe, Sam; Pascale, Enzo; Doyle, Simon; Dunscombe, Chris; Hargrave, Peter; Papageorgio, Andreas; Wood, Ken; Ade, Peter A R; Barry, Peter; Bideaud, Aurélien; Brien, Tom; Dodd, Chris; Grainger, William; House, Julian; Mauskopf, Philip; Moseley, Paul; Spencer, Locke; Sudiwala, Rashmi; Tucker, Carole; Walker, Ian

    2016-03-01

    We have developed a passive 350 GHz (850 μm) video-camera to demonstrate lumped element kinetic inductance detectors (LEKIDs)--designed originally for far-infrared astronomy--as an option for general purpose terrestrial terahertz imaging applications. The camera currently operates at a quasi-video frame rate of 2 Hz with a noise equivalent temperature difference per frame of ∼0.1 K, which is close to the background limit. The 152 element superconducting LEKID array is fabricated from a simple 40 nm aluminum film on a silicon dielectric substrate and is read out through a single microwave feedline with a cryogenic low noise amplifier and room temperature frequency domain multiplexing electronics.

  4. Design of Belief Propagation Based on FPGA for the Multistereo CAFADIS Camera

    Directory of Open Access Journals (Sweden)

    José Manuel Rodríguez-Ramos

    2010-10-01

    Full Text Available In this paper we describe a fast, specialized hardware implementation of the belief propagation algorithm for the CAFADIS camera, a new plenoptic sensor patented by the University of La Laguna. This camera captures the lightfield of the scene and can be used to find out at which depth each pixel is in focus. The algorithm has been designed for FPGA devices using VHDL. We propose a parallel and pipeline architecture to implement the algorithm without external memory. Although the BRAM resources of the device increase considerably, we can maintain real-time restrictions by using extremely high-performance signal processing capability through parallelism and by accessing several memories simultaneously. The quantifying results with 16 bit precision have shown that performances are really close to the original Matlab programmed algorithm.

  5. A passive THz video camera based on lumped element kinetic inductance detectors

    CERN Document Server

    Rowe, Sam; Doyle, Simon; Dunscombe, Chris; Hargrave, Peter; Papageorgio, Andreas; Wood, Ken; Ade, Peter A R; Barry, Peter; Bideaud, Aurélien; Brien, Tom; Dodd, Chris; Grainger, William; House, Julian; Mauskopf, Philip; Moseley, Paul; Spencer, Locke; Sudiwala, Rashmi; Tucker, Carole; Walker, Ian

    2015-01-01

    We have developed a passive 350 GHz (850 {\\mu}m) video-camera to demonstrate lumped element kinetic inductance detectors (LEKIDs) -- designed originally for far-infrared astronomy -- as an option for general purpose terrestrial terahertz imaging applications. The camera currently operates at a quasi-video frame rate of 2 Hz with a noise equivalent temperature difference per frame of $\\sim$0.1 K, which is close to the background limit. The 152 element superconducting LEKID array is fabricated from a simple 40 nm aluminum film on a silicon dielectric substrate and is read out through a single microwave feedline with a cryogenic low noise amplifier and room temperature frequency domain multiplexing electronics.

  6. A Fabry–Perot interferometer based camera for two-dimensional mapping of SO2 distributions

    Directory of Open Access Journals (Sweden)

    J. Kuhn

    2014-05-01

    Full Text Available We examine a new imaging method for the remote sensing of volcanic gases, which relies on the regularly spaced narrow-band absorption structures in the UV-VIS of many molecules. A Fabry–Perot interferometer (FPI is used to compare the scattered sunlight radiance at wavelengths corresponding to absorption bands with the radiance at wavelengths in between the bands, thereby identifying and quantifying the gas. In this first theoretical study, we present sample calculations for the detection of sulfur dioxide (SO2. Optimum values for the FPI set-up parameters are proposed. Further, the performance of the FPI method is compared to SO2 cameras. We show that camera systems using a FPI are far less influenced by changes in atmospheric radiative transfer (e.g. due to aerosol and have a great potential as a future technique to examine emissions of SO2 (or other gases from volcanic sources and other point sources.

  7. Calibration of robot tool centre point using camera-based system

    Directory of Open Access Journals (Sweden)

    Gordić Zaviša

    2016-01-01

    Full Text Available Robot Tool Centre Point (TCP calibration problem is of great importance for a number of industrial applications, and it is well known both in theory and in practice. Although various techniques have been proposed for solving this problem, they mostly require tool jogging or long processing time, both of which affect process performance by extending cycle time. This paper presents an innovative way of TCP calibration using a set of two cameras. The robot tool is placed in an area where images in two orthogonal planes are acquired using cameras. Using robust pattern recognition, even deformed tool can be identified on images, and information about its current position and orientation forwarded to control unit for calibration. Compared to other techniques, test results show significant reduction in procedure complexity and calibration time. These improvements enable more frequent TCP checking and recalibration during production, thus improving the product quality.

  8. Scent Lure Effect on Camera-Trap Based Leopard Density Estimates.

    Directory of Open Access Journals (Sweden)

    Alexander Richard Braczkowski

    Full Text Available Density estimates for large carnivores derived from camera surveys often have wide confidence intervals due to low detection rates. Such estimates are of limited value to authorities, which require precise population estimates to inform conservation strategies. Using lures can potentially increase detection, improving the precision of estimates. However, by altering the spatio-temporal patterning of individuals across the camera array, lures may violate closure, a fundamental assumption of capture-recapture. Here, we test the effect of scent lures on the precision and veracity of density estimates derived from camera-trap surveys of a protected African leopard population. We undertook two surveys (a 'control' and 'treatment' survey on Phinda Game Reserve, South Africa. Survey design remained consistent except a scent lure was applied at camera-trap stations during the treatment survey. Lures did not affect the maximum movement distances (p = 0.96 or temporal activity of female (p = 0.12 or male leopards (p = 0.79, and the assumption of geographic closure was met for both surveys (p >0.05. The numbers of photographic captures were also similar for control and treatment surveys (p = 0.90. Accordingly, density estimates were comparable between surveys (although estimates derived using non-spatial methods (7.28-9.28 leopards/100km2 were considerably higher than estimates from spatially-explicit methods (3.40-3.65 leopards/100km2. The precision of estimates from the control and treatment surveys, were also comparable and this applied to both non-spatial and spatial methods of estimation. Our findings suggest that at least in the context of leopard research in productive habitats, the use of lures is not warranted.

  9. A Low-Cost Natural User Interaction Based on a Camera Hand-Gestures Recognizer

    OpenAIRE

    Boulabiar, Mohamed-Ikbel; Burger, Thomas; Poirier, Franck; COPPIN, Gilles

    2011-01-01

    The search for new simplified interaction techniques is mainly motivated by the improvements of the communication with interactive devices. In this paper, we present an interactive TVs module capable of recognizing human gestures through the PS3Eye low-cost camera. We recognize gestures by the tracking of human skin blobs and analyzing the corresponding movements. It provides means to control a TV in an ubiquitous computing environment. We also present a new free gestures icons library create...

  10. Camera-based stereo laser-tracking system for robot-positioning applications

    Science.gov (United States)

    Allen, Charles R.; Mistry, Nilesh

    1993-08-01

    This paper describes the theory behind laser tracking measurement systems (LTMS) and the development of a prototype LTMS system at Newcastle. An assessment is made of the accuracy of positioning achieved by the system in the control of the end-effector position of a Puma 560 robot manipulator using a CCD camera positioning sensor and a hollow cube retro- reflector placed on the robot wrist.

  11. Auto-measurement system of aerial camera lens' resolution based on orthogonal linear CCD

    Science.gov (United States)

    Zhao, Yu-liang; Zhang, Yu-ye; Ding, Hong-yi

    2010-10-01

    The resolution of aerial camera lens is one of the most important camera's performance indexes. The measurement and calibration of resolution are important test items in in maintenance of camera. The traditional method that is observing resolution panel of collimator rely on human's eyes using microscope and doing some computing. The method is of low efficiency and susceptible to artificial factors. The measurement results are unstable, too. An auto-measurement system of aerial camera lens' resolution, which uses orthogonal linear CCD sensor as the detector to replace reading microscope, is introduced. The system can measure automatically and show result real-timely. In order to measure the smallest diameter of resolution panel which could be identified, two orthogonal linear CCD is laid on the imaging plane of measured lens and four intersection points are formed on the orthogonal linear CCD. A coordinate system is determined by origin point of the linear CCD. And a circle is determined by four intersection points. In order to obtain the circle's radius, firstly, the image of resolution panel is transformed to pulse width of electric signal which is send to computer through amplifying circuit and threshold comparator and counter. Secondly, the smallest circle would be extracted to do measurement. The circle extraction made using of wavelet transform which has character of localization in the domain of time and frequency and has capability of multi-scale analysis. Lastly, according to the solution formula of lens' resolution, we could obtain the resolution of measured lens. The measuring precision on practical measurement is analyzed, and the result indicated that the precision will be improved when using linear CCD instead of reading microscope. Moreover, the improvement of system error is determined by the pixel's size of CCD. With the technique of CCD developed, the pixel's size will smaller, the system error will be reduced greatly too. So the auto

  12. Flaw evaluation of Nd:YAG laser welding based plume shape by infrared thermal camera

    International Nuclear Information System (INIS)

    In Nd:YAG laser welding evaluation methods of welding flaw are various. But, the method due to plume shape is difficult to classification od welding flaw. The Nd:YAG laser process is known to have high speed and deep penetration capability to become one of the most advanced welding technologies. At the present time, some methods are studied for measurement of plume shape by using high-speed camera and photo diode. This paper describes the machining characteristics of SM45C carbon steel welding by use of an Nd:YAG laser. In spite of its good mechanical characteristics, SM45C carbon steel has a high carbon contents and suffers a limitation in the industrial application due to the poor welding properties. In this study, plume shape was measured by infrared thermal camera that is non-contact/non-destructive thermal measurement equipment through change of laser generating power, speed, focus. Weld was performed on bead-on method. Measurement results are compared as two equipment. Here, two results are composed of measurement results of plume quantities due to plume shape by infrared thermal camera and inspection results of weld bead include weld flaws by ultrasonic inspector.

  13. Position Estimation of Small Robotic Fish Based on Camera Information and Gyro Sensors

    Directory of Open Access Journals (Sweden)

    Yogo Takada

    2014-04-01

    Full Text Available Robotic fish are ideal for surveying fish resources and performing underwater structural inspections. If a robot is sufficiently fishlike in appearance and does not use a screw propeller, real fish will not be easily surprised by it. However, it is comparatively difficult for such a robot to determine its own position in water. Radio signals, such as those used by GPS, cannot be easily received. Moreover, sound ranging is impractical because of the presence of rocks and waterweed in places where fish spend a lot of time. For practical applications such as photographing fish, a robotic fish needs to follow the target fish without losing awareness of its own position, in order to be able to swim autonomously. We have developed a robotic fish named FOCUS (FPGA Offline Control Underwater Searcher which is equipped with two CMOS cameras and a field-programmable gate array (FPGA circuit board for data processing. The forward-facing camera is used to track red objects, since this is the color of the fish of interest. In addition, using visual information obtained with the bottom-facing camera, the robot can estimate its present position. This is achieved by performing real-time digital image correlation using the FPGA. However, until now, the position estimation accuracy has been poor due to the influence of yaw and roll. In the present study, the position estimation method has been greatly improved by taking into account the yaw and roll values measured using gyro sensors.

  14. Stereoscopic determination of all-sky altitude map of aurora using two ground-based Nikon DSLR cameras

    Directory of Open Access Journals (Sweden)

    R. Kataoka

    2013-09-01

    Full Text Available A new stereoscopic measurement technique is developed to obtain an all-sky altitude map of aurora using two ground-based digital single-lens reflex (DSLR cameras. Two identical full-color all-sky cameras were set with an 8 km separation across the Chatanika area in Alaska (Poker Flat Research Range and Aurora Borealis Lodge to find localized emission height with the maximum correlation of the apparent patterns in the localized pixels applying a method of the geographical coordinate transform. It is found that a typical ray structure of discrete aurora shows the broad altitude distribution above 100 km, while a typical patchy structure of pulsating aurora shows the narrow altitude distribution of less than 100 km. Because of its portability and low cost of the DSLR camera systems, the new technique may open a unique opportunity not only for scientists but also for night-sky photographers to complementarily attend the aurora science to potentially form a dense observation network.

  15. Iterative image reconstruction for positron emission tomography based on a detector response function estimated from point source measurements

    Energy Technology Data Exchange (ETDEWEB)

    Tohme, Michel S; Qi Jinyi [Department of Biomedical Engineering, University of California, Davis, CA 95616 (United States)], E-mail: qi@ucdavis.edu

    2009-06-21

    The accuracy of the system model in an iterative reconstruction algorithm greatly affects the quality of reconstructed positron emission tomography (PET) images. For efficient computation in reconstruction, the system model in PET can be factored into a product of a geometric projection matrix and sinogram blurring matrix, where the former is often computed based on analytical calculation, and the latter is estimated using Monte Carlo simulations. Direct measurement of a sinogram blurring matrix is difficult in practice because of the requirement of a collimated source. In this work, we propose a method to estimate the 2D blurring kernels from uncollimated point source measurements. Since the resulting sinogram blurring matrix stems from actual measurements, it can take into account the physical effects in the photon detection process that are difficult or impossible to model in a Monte Carlo (MC) simulation, and hence provide a more accurate system model. Another advantage of the proposed method over MC simulation is that it can easily be applied to data that have undergone a transformation to reduce the data size (e.g., Fourier rebinning). Point source measurements were acquired with high count statistics in a relatively fine grid inside the microPET II scanner using a high-precision 2D motion stage. A monotonically convergent iterative algorithm has been derived to estimate the detector blurring matrix from the point source measurements. The algorithm takes advantage of the rotational symmetry of the PET scanner and explicitly models the detector block structure. The resulting sinogram blurring matrix is incorporated into a maximum a posteriori (MAP) image reconstruction algorithm. The proposed method has been validated using a 3 x 3 line phantom, an ultra-micro resolution phantom and a {sup 22}Na point source superimposed on a warm background. The results of the proposed method show improvements in both resolution and contrast ratio when compared with the MAP

  16. Iterative Image Reconstruction for Positron Emission Tomography Based on Detector Response Function Estimated from Point Source Measurements

    Science.gov (United States)

    Tohme, Michel S.; Qi, Jinyi

    2009-01-01

    The accuracy of the system model in an iterative reconstruction algorithm greatly affects the quality of reconstructed positron emission tomography (PET) images. For efficient computation in reconstruction, the system model in PET can be factored into a product of a geometric projection matrix and sinogram blurring matrix, where the former is often computed based on analytical calculation, and the latter is estimated using Monte Carlo simulations. Direct measurement of sinogram blurring matrix is difficult in practice because of the requirement of a collimated source. In this work, we propose a method to estimate the 2D blurring kernels from uncollimated point source measurements. Since the resulting sinogram blurring matrix stems from actual measurements, it can take into account the physical effects in the photon detection process that are difficult or impossible to model in a Monte Carlo (MC) simulation, and hence provide a more accurate system model. Another advantage of the proposed method over MC simulation is that it can be easily applied to data that have undergone a transformation to reduce the data size (e.g., Fourier rebinning). Point source measurements were acquired with high count statistics in a relatively fine grid inside the microPET II scanner using a high-precision 2-D motion stage. A monotonically convergent iterative algorithm has been derived to estimate the detector blurring matrix from the point source measurements. The algorithm takes advantage of the rotational symmetry of the PET scanner and explicitly models the detector block structure. The resulting sinogram blurring matrix is incorporated into a maximum a posteriori (MAP) image reconstruction algorithm. The proposed method has been validated using a 3-by-3 line phantom, an ultra-micro resolution phantom, and a 22Na point source superimposed on a warm background. The results of the proposed method show improvements in both resolution and contrast ratio when compared with the MAP

  17. Iterative image reconstruction for positron emission tomography based on a detector response function estimated from point source measurements

    Science.gov (United States)

    Tohme, Michel S.; Qi, Jinyi

    2009-06-01

    The accuracy of the system model in an iterative reconstruction algorithm greatly affects the quality of reconstructed positron emission tomography (PET) images. For efficient computation in reconstruction, the system model in PET can be factored into a product of a geometric projection matrix and sinogram blurring matrix, where the former is often computed based on analytical calculation, and the latter is estimated using Monte Carlo simulations. Direct measurement of a sinogram blurring matrix is difficult in practice because of the requirement of a collimated source. In this work, we propose a method to estimate the 2D blurring kernels from uncollimated point source measurements. Since the resulting sinogram blurring matrix stems from actual measurements, it can take into account the physical effects in the photon detection process that are difficult or impossible to model in a Monte Carlo (MC) simulation, and hence provide a more accurate system model. Another advantage of the proposed method over MC simulation is that it can easily be applied to data that have undergone a transformation to reduce the data size (e.g., Fourier rebinning). Point source measurements were acquired with high count statistics in a relatively fine grid inside the microPET II scanner using a high-precision 2D motion stage. A monotonically convergent iterative algorithm has been derived to estimate the detector blurring matrix from the point source measurements. The algorithm takes advantage of the rotational symmetry of the PET scanner and explicitly models the detector block structure. The resulting sinogram blurring matrix is incorporated into a maximum a posteriori (MAP) image reconstruction algorithm. The proposed method has been validated using a 3 × 3 line phantom, an ultra-micro resolution phantom and a 22Na point source superimposed on a warm background. The results of the proposed method show improvements in both resolution and contrast ratio when compared with the MAP

  18. Vision-Based Cooperative Pose Estimation for Localization in Multi-Robot Systems Equipped with RGB-D Cameras

    OpenAIRE

    Xiaoqin Wang; Y. Ahmet Şekercioğlu; Tom Drummond

    2014-01-01

    We present a new vision based cooperative pose estimation scheme for systems of mobile robots equipped with RGB-D cameras. We first model a multi-robot system as an edge-weighted graph. Then, based on this model, and by using the real-time color and depth data, the robots with shared field-of-views estimate their relative poses in pairwise. The system does not need the existence of a single common view shared by all robots, and it works in 3D scenes without any specific calibration pattern or...

  19. Study of a new architecture of gamma cameras with Cd/ZnTe/CdTe semiconductors; Etude d'une nouvelle architecture de gamma camera a base de semi-conducteurs CdZnTe /CdTe

    Energy Technology Data Exchange (ETDEWEB)

    Guerin, L

    2007-11-15

    This thesis studies new semi conductors for gammas cameras in order to improve the quality of image in nuclear medicine. The chapter 1 reminds the general principle of the imaging gamma, by describing the radiotracers, the channel of detection and the types of Anger gamma cameras acquisition. The physiological, physical and technological limits of the camera are then highlighted, to better identify the needs of future gamma cameras. The chapter 2 is dedicated to a bibliographical study. At first, semi-conductors used in imaging gamma are presented, and more particularly semi-conductors CDTE and CdZnTe, by distinguishing planar detectors and monolithic pixelated detectors. Secondly, the classic collimators of the gamma cameras, used in clinical routine for the most part of between them, are described. Their geometry is presented, as well as their characteristics, their advantages and their inconveniences. The chapter 3 is dedicated to a state of art of the simulation codes dedicated to the medical imaging and the methods of reconstruction in imaging gamma. These states of art allow to introduce the software of simulation and the methods of reconstruction used within the framework of this thesis. The chapter 4 presents the new architecture of gamma camera proposed during this work of thesis. It is structured in three parts. The first part justifies the use of semiconducting detectors CdZnTe, in particular the monolithic pixelated detectors, by bringing to light their advantages with regard to the detection modules based on scintillator. The second part presents gamma cameras to base of detectors CdZnTe (prototypes or commercial products) and their associated collimators, as well as the interest of an association of detectors CdZnTe in the classic collimators. Finally, the third part presents in detail the HiSens architecture. The chapter 5 describes both software of simulation used within the framework of this thesis to estimate the performances of the Hi

  20. TARGETLESS CAMERA CALIBRATION

    Directory of Open Access Journals (Sweden)

    L. Barazzetti

    2012-09-01

    Full Text Available In photogrammetry a camera is considered calibrated if its interior orientation parameters are known. These encompass the principal distance, the principal point position and some Additional Parameters used to model possible systematic errors. The current state of the art for automated camera calibration relies on the use of coded targets to accurately determine the image correspondences. This paper presents a new methodology for the efficient and rigorous photogrammetric calibration of digital cameras which does not require any longer the use of targets. A set of images depicting a scene with a good texture are sufficient for the extraction of natural corresponding image points. These are automatically matched with feature-based approaches and robust estimation techniques. The successive photogrammetric bundle adjustment retrieves the unknown camera parameters and their theoretical accuracies. Examples, considerations and comparisons with real data and different case studies are illustrated to show the potentialities of the proposed methodology.

  1. CCD Camera

    Science.gov (United States)

    Roth, Roger R.

    1983-01-01

    A CCD camera capable of observing a moving object which has varying intensities of radiation eminating therefrom and which may move at varying speeds is shown wherein there is substantially no overlapping of successive images and wherein the exposure times and scan times may be varied independently of each other.

  2. Solvated Positron Chemistry. II

    DEFF Research Database (Denmark)

    Mogensen, O. E.

    1979-01-01

    The reaction of the hydrated positron, eaq+ with Cl−, Br−, and I− ions in aqueous solutions was studied by means of positron The measured angular correlation curves for [Cl−, e+], [Br−, e+, and [I−, e+] bound states were in good agreement with th Because of this agreement and the fact that the ca...

  3. Positron annihilation microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Canter, K.F. [Brandeis Univ., Waltham, MA (United States)

    1997-03-01

    Advances in positron annihilation microprobe development are reviewed. The present resolution achievable is 3 {mu}m. The ultimate resolution is expected to be 0.1 {mu}m which will enable the positron microprobe to be a valuable tool in the development of 0.1 {mu}m scale electronic devices in the future. (author)

  4. Evaluation of a dual-panel PET camera design to breast cancer imaging.

    Science.gov (United States)

    Zhang, Jin; Chinn, Gary; Foudray, Angela M K; Habte, Frezghi; Olcott, Peter; Levin, Craig S

    2006-01-01

    We are developing a novel, portable dual-panel positron emission tomography (PET) camera dedicated to breast cancer imaging. With a sensitive area of approximately 150 cm(2), this camera is based on arrays of lutetium oxyorthosilicate (LSO) crystals (1x1x3 mm(3)) coupled to 11x11-mm(2) position-sensitive avalanche photodiodes (PSAPD). GATE open source software was used to perform Monte Carlo simulations to optimize the parameters for the camera design. The noise equivalent counting (NEC) rate, together with the true, scatter, and random counting rates were simulated at different time and energy windows. Focal plane tomography (FPT) was used for visualizing the tumors at different depths between the two detector panels. Attenuation and uniformity corrections were applied to images. PMID:17646005

  5. Compact CdZnTe-based gamma camera for prostate cancer imaging

    Science.gov (United States)

    Cui, Yonggang; Lall, Terry; Tsui, Benjamin; Yu, Jianhua; Mahler, George; Bolotnikov, Aleksey; Vaska, Paul; De Geronimo, Gianluigi; O'Connor, Paul; Meinken, George; Joyal, John; Barrett, John; Camarda, Giuseppe; Hossain, Anwar; Kim, Ki Hyun; Yang, Ge; Pomper, Marty; Cho, Steve; Weisman, Ken; Seo, Youngho; Babich, John; LaFrance, Norman; James, Ralph B.

    2011-06-01

    In this paper, we discuss the design of a compact gamma camera for high-resolution prostate cancer imaging using Cadmium Zinc Telluride (CdZnTe or CZT) radiation detectors. Prostate cancer is a common disease in men. Nowadays, a blood test measuring the level of prostate specific antigen (PSA) is widely used for screening for the disease in males over 50, followed by (ultrasound) imaging-guided biopsy. However, PSA tests have a high falsepositive rate and ultrasound-guided biopsy has a high likelihood of missing small cancerous tissues. Commercial methods of nuclear medical imaging, e.g. PET and SPECT, can functionally image the organs, and potentially find cancer tissues at early stages, but their applications in diagnosing prostate cancer has been limited by the smallness of the prostate gland and the long working distance between the organ and the detectors comprising these imaging systems. CZT is a semiconductor material with wide band-gap and relatively high electron mobility, and thus can operate at room temperature without additional cooling. CZT detectors are photon-electron direct-conversion devices, thus offering high energy-resolution in detecting gamma rays, enabling energy-resolved imaging, and reducing the background of Compton-scattering events. In addition, CZT material has high stopping power for gamma rays; for medical imaging, a few-mm-thick CZT material provides adequate detection efficiency for many SPECT radiotracers. Because of these advantages, CZT detectors are becoming popular for several SPECT medical-imaging applications. Most recently, we designed a compact gamma camera using CZT detectors coupled to an application-specific-integratedcircuit (ASIC). This camera functions as a trans-rectal probe to image the prostate gland from a distance of only 1-5 cm, thus offering higher detection efficiency and higher spatial resolution. Hence, it potentially can detect prostate cancers at their early stages. The performance tests of this camera

  6. Development of a Compton camera for medical applications based on silicon strip and scintillation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Krimmer, J., E-mail: j.krimmer@ipnl.in2p3.fr [Institut de Physique Nucléaire de Lyon, Université de Lyon, Université Lyon 1, CNRS/IN2P3 UMR 5822, 69622 Villeurbanne cedex (France); Ley, J.-L. [Institut de Physique Nucléaire de Lyon, Université de Lyon, Université Lyon 1, CNRS/IN2P3 UMR 5822, 69622 Villeurbanne cedex (France); Abellan, C.; Cachemiche, J.-P. [Aix-Marseille Université, CNRS/IN2P3, CPPM UMR 7346, 13288 Marseille (France); Caponetto, L.; Chen, X.; Dahoumane, M.; Dauvergne, D. [Institut de Physique Nucléaire de Lyon, Université de Lyon, Université Lyon 1, CNRS/IN2P3 UMR 5822, 69622 Villeurbanne cedex (France); Freud, N. [Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA - Lyon, Université Lyon 1, Centre Léon Bérard (France); Joly, B.; Lambert, D.; Lestand, L. [Clermont Université, Université Blaise Pascal, CNRS/IN2P3, Laboratoire de Physique Corpusculaire, BP 10448, F-63000 Clermont-Ferrand (France); Létang, J.M. [Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA - Lyon, Université Lyon 1, Centre Léon Bérard (France); Magne, M. [Clermont Université, Université Blaise Pascal, CNRS/IN2P3, Laboratoire de Physique Corpusculaire, BP 10448, F-63000 Clermont-Ferrand (France); and others

    2015-07-01

    A Compton camera is being developed for the purpose of ion-range monitoring during hadrontherapy via the detection of prompt-gamma rays. The system consists of a scintillating fiber beam tagging hodoscope, a stack of double sided silicon strip detectors (90×90×2 mm{sup 3}, 2×64 strips) as scatter detectors, as well as bismuth germanate (BGO) scintillation detectors (38×35×30 mm{sup 3}, 100 blocks) as absorbers. The individual components will be described, together with the status of their characterization.

  7. COMPACT CdZnTe-BASED GAMMA CAMERA FOR PROSTATE CANCER IMAGING

    Energy Technology Data Exchange (ETDEWEB)

    CUI, Y.; LALL, T.; TSUI, B.; YU, J.; MAHLER, G.; BOLOTNIKOV, A.; VASKA, P.; DeGERONIMO, G.; O' CONNOR, P.; MEINKEN, G.; JOYAL, J.; BARRETT, J.; CAMARDA, G.; HOSSAIN, A.; KIM, K.H.; YANG, G.; POMPER, M.; CHO, S.; WEISMAN, K.; SEO, Y.; BABICH, J.; LaFRANCE, N.; AND JAMES, R.B.

    2011-10-23

    In this paper, we discuss the design of a compact gamma camera for high-resolution prostate cancer imaging using Cadmium Zinc Telluride (CdZnTe or CZT) radiation detectors. Prostate cancer is a common disease in men. Nowadays, a blood test measuring the level of prostate specific antigen (PSA) is widely used for screening for the disease in males over 50, followed by (ultrasound) imaging-guided biopsy. However, PSA tests have a high false-positive rate and ultrasound-guided biopsy has a high likelihood of missing small cancerous tissues. Commercial methods of nuclear medical imaging, e.g. PET and SPECT, can functionally image the organs, and potentially find cancer tissues at early stages, but their applications in diagnosing prostate cancer has been limited by the smallness of the prostate gland and the long working distance between the organ and the detectors comprising these imaging systems. CZT is a semiconductor material with wide band-gap and relatively high electron mobility, and thus can operate at room temperature without additional cooling. CZT detectors are photon-electron direct-conversion devices, thus offering high energy-resolution in detecting gamma rays, enabling energy-resolved imaging, and reducing the background of Compton-scattering events. In addition, CZT material has high stopping power for gamma rays; for medical imaging, a few-mm-thick CZT material provides adequate detection efficiency for many SPECT radiotracers. Because of these advantages, CZT detectors are becoming popular for several SPECT medical-imaging applications. Most recently, we designed a compact gamma camera using CZT detectors coupled to an application-specific-integrated-circuit (ASIC). This camera functions as a trans-rectal probe to image the prostate gland from a distance of only 1-5 cm, thus offering higher detection efficiency and higher spatial resolution. Hence, it potentially can detect prostate cancers at their early stages. The performance tests of this camera

  8. Microlens assembly error analysis for light field camera based on Monte Carlo method

    Science.gov (United States)

    Li, Sai; Yuan, Yuan; Zhang, Hao-Wei; Liu, Bin; Tan, He-Ping

    2016-08-01

    This paper describes numerical analysis of microlens assembly errors in light field cameras using the Monte Carlo method. Assuming that there were no manufacturing errors, home-built program was used to simulate images of coupling distance error, movement error and rotation error that could appear during microlens installation. By researching these images, sub-aperture images and refocus images, we found that the images present different degrees of fuzziness and deformation for different microlens assembly errors, while the subaperture image presents aliasing, obscured images and other distortions that result in unclear refocus images.

  9. A possible role for silicon microstrip detectors in nuclear medicine Compton imaging of positron emitters

    CERN Document Server

    Scannavini, M G; Royle, G J; Cullum, I; Raymond, M; Hall, G; Iles, G

    2002-01-01

    Collimation of gamma-rays based on Compton scatter could provide in principle high resolution and high sensitivity, thus becoming an advantageous method for the imaging of radioisotopes of clinical interest. A small laboratory prototype of a Compton camera is being constructed in order to initiate studies aimed at assessing the feasibility of Compton imaging of positron emitters. The design of the camera is based on the use of a silicon collimator consisting of a stack of double-sided, AC-coupled microstrip detectors (area 6x6 cm sup 2 , 500 mu m thickness, 128 channels/side). Two APV6 chips are employed for signal readout on opposite planes of each detector. This work presents the first results on the noise performance of the silicon strip detectors. Measurements of the electrical characteristics of the detector are also reported. On the basis of the measured noise, an angular resolution of approximately 5 deg. is predicted for the Compton collimator.

  10. Texas Intense Positron Source (TIPS)

    Science.gov (United States)

    O'Kelly, D.

    2003-03-01

    The Texas Intense Positron Source (TIPS) is a state of the art variable energy positron beam under construction at the Nuclear Engineering Teaching Laboratory (NETL). Projected intensities on the order of the order of 10^7 e+/second using ^64Cu as the positron source are expected. Owing to is short half-life (t1/2 12.8 hrs), plans are to produce the ^64Cu isotope on-site using beam port 1 of NETL TRIGA Mark II reactor. Following tungsten moderation, the positrons will be electrostatically focused and accelerated from few 10's of eV up to 30 keV. This intensity and energy range should allow routine performance of several analytical techniques of interest to surface scientists (PALS, PADB and perhaps PAES and LEPD.) The TIPS project is being developed in parallel phases. Phase I of the project entails construction of the vacuum system, source chamber, main beam line, electrostatic/magnetic focusing and transport system as well as moderator design. Initial construction, testing and characterization of moderator and beam transport elements are underway and will use a commercially available 10 mCi ^22Na radioisotope as a source of positrons. Phase II of the project is concerned primarily with the Cu source geometry and thermal properties as well as production and physical handling of the radioisotope. Additional instrument optimizing based upon experience gained during Phase I will be incorporated in the final design. Current progress of both phases will be presented along with motivations and future directions.

  11. Camera-based speckle noise reduction for 3-D absolute shape measurements.

    Science.gov (United States)

    Zhang, Hao; Kuschmierz, Robert; Czarske, Jürgen; Fischer, Andreas

    2016-05-30

    Simultaneous position and velocity measurements enable absolute 3-D shape measurements of fast rotating objects for instance for monitoring the cutting process in a lathe. Laser Doppler distance sensors enable simultaneous position and velocity measurements with a single sensor head by evaluating the scattered light signals. The superposition of several speckles with equal Doppler frequency but random phase on the photo detector results in an increased velocity and shape uncertainty, however. In this paper, we present a novel image evaluation method that overcomes the uncertainty limitations due to the speckle effect. For this purpose, the scattered light is detected with a camera instead of single photo detectors. Thus, the Doppler frequency from each speckle can be evaluated separately and the velocity uncertainty decreases with the square root of the number of camera lines. A reduction of the velocity uncertainty by the order of one magnitude is verified by the numerical simulations and experimental results, respectively. As a result, the measurement uncertainty of the absolute shape is not limited by the speckle effect anymore. PMID:27410133

  12. Visual Odometry Based on Structural Matching of Local Invariant Features Using Stereo Camera Sensor

    Directory of Open Access Journals (Sweden)

    Antonio Bandera

    2011-07-01

    Full Text Available This paper describes a novel sensor system to estimate the motion of a stereo camera. Local invariant image features are matched between pairs of frames and linked into image trajectories at video rate, providing the so-called visual odometry, i.e., motion estimates from visual input alone. Our proposal conducts two matching sessions: the first one between sets of features associated to the images of the stereo pairs and the second one between sets of features associated to consecutive frames. With respect to previously proposed approaches, the main novelty of this proposal is that both matching algorithms are conducted by means of a fast matching algorithm which combines absolute and relative feature constraints. Finding the largest-valued set of mutually consistent matches is equivalent to finding the maximum-weighted clique on a graph. The stereo matching allows to represent the scene view as a graph which emerge from the features of the accepted clique. On the other hand, the frame-to-frame matching defines a graph whose vertices are features in 3D space. The efficiency of the approach is increased by minimizing the geometric and algebraic errors to estimate the final displacement of the stereo camera between consecutive acquired frames. The proposed approach has been tested for mobile robotics navigation purposes in real environments and using different features. Experimental results demonstrate the performance of the proposal, which could be applied in both industrial and service robot fields.

  13. Polarized positron source with a Compton multiple interaction point line

    CERN Document Server

    Chaikovska, I; Dadoun, O; Lepercq, P; Variola, A

    2014-01-01

    Positron sources are critical components of the future linear collider projects. This is essentially due to the high luminosity required, orders of magnitude higher than existing ones. In addition, polarization of the positron beam rather expands the physics research potential of the machine. In this framework, the Compton sources for polarized positron production are taken into account where the high energy gamma rays are produced by the Compton scattering and subsequently converted into the polarized electron-positron pairs in a target-converter. The Compton multiple Interaction Point (IP) line is proposed as one of the solutions to increase the number of the positrons produced. The gamma ray production with the Compton multiple IP line is simulated and used for polarized positron generation. Later, a capture section based on an adiabatic matching device (AMD) followed by a pre-injector linac is simulated to capture and accelerate the positron beam.

  14. Positron lifetime technique with applications in materials science

    International Nuclear Information System (INIS)

    This thesis deals with the positron lifetime technique as a method to measure extremely low concentrations of extremely small cavities in materials. The method is based upon the fact that the positron lieftime decreases as the electron density increases and upon the fact that a positron preferably annihilates in cavity-like defects in lattices. The theory of positron behaviour in materials and technical aspects of measuring positron liefetimes are described in ch.'s 2 and 3 respectively. Three methods for increasing the time resolution are discussed and some positron sources are described (ch.4). Some applications of the positron lifetime technique and experimental results are shown in chapter 5. 125 refs.; 61 figs.; 18 tabs

  15. Depolarization in the ILC Linac-To-Ring Positron beamline

    Energy Technology Data Exchange (ETDEWEB)

    Kovalenko, Valentyn; Ushakov, Andriy [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Moortgat-Pick, Gudrid [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Riemann, Sabine [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2012-02-15

    To achieve the physics goals of future Linear Colliders, it is important that electron and positron beams are polarized. The positron source planned for the International Linear Collider (ILC) is based on a helical undulator system and can deliver a polarised beam with vertical stroke Pe{sup +} vertical stroke {>=} 60%. To ensure that no significant polarization is lost during the transport of the electron and positron beams from the source to the interaction region, spin tracking has to be included in all transport elements which can contribute to a loss of polarization. These are the positron source, the damping ring, the spin rotators, the main linac and the beam delivery system. In particular, the dynamics of the polarized positron beam is required to be investigated. The results of positron spin tracking and depolarization study at the Positron-Linac-To-Ring (PLTR) beamline are presented. (orig.)

  16. A device used in pulsed slow positron beam's stretching

    International Nuclear Information System (INIS)

    A slow positron beam's stretching device has been designed and constructed on Beijing Slow Positron Beam, which based on a 1.3 GeV linac. Positron was storage and stretching use Penning-Trap technique. Measurements show that the positron storage time strongly depends on the vacuum level in Penning Trap tube. Two modes was used to release the positrons from storage part, lowering VC while VB kept constant and rising VB while VC kept constant. This technique makes the pulsed positron beam to a quasi-continuous beam. The energy spread of positrons depend on in release mode. In the latter mode, the authors observe that the energy spread was reduced to a value less than 1.0 eV. The time profile in user-defined waveform is more uniform. It is beneficial to reduce the probability of amplifier pileup especially in the case of measurement with high counting rate. (authors)

  17. Setup of precise camera based solar tracker systems and greenhouse gas measurements using a modified portable spectrometer

    OpenAIRE

    Gisi, Michael

    2012-01-01

    Methods for correcting errors in solar absorption FTIR spectroscopy using the Sun as the light source were developed. A novel camera-based solar tracker is presented, providing robust tracking accuracies better than 30 arc sec. A method for correcting mis-sampling artifacts in the interferograms is shown. A portable and robust low-resolution FTIR spectrometer was developed for measuring total column CO2 values. An agreement of 0.1% was reached compared to a co-located TCCON reference instrument.

  18. Ubiquitous WLAN/Camera Positioning using Inverse Intensity Chromaticity Space-based Feature Detection and Matching: A Preliminary Result

    CERN Document Server

    Bejuri, Wan Mohd Yaakob Wan; Sapri, Maimunah; Rosly, Mohd Adly

    2012-01-01

    This paper present our new intensity chromaticity space-based feature detection and matching algorithm. This approach utilizes hybridization of wireless local area network and camera internal sensor which to receive signal strength from a access point and the same time retrieve interest point information from hallways. This information is combined by model fitting approach in order to find the absolute of user target position. No conventional searching algorithm is required, thus it is expected reducing the computational complexity. Finally we present pre-experimental results to illustrate the performance of the localization system for an indoor environment set-up.

  19. Low-power 20-meter 3D ranging SPAD camera based on continuous-wave indirect time-of-flight

    Science.gov (United States)

    Bellisai, S.; Ferretti, L.; Villa, F.; Ruggeri, A.; Tisa, S.; Tosi, A.; Zappa, F.

    2012-06-01

    Three dimensional (3D) image acquisitions is the enabling technology of a great number of applications; culture heritage morphology study, industrial robotics, automotive active safety and security access control are example of applications. The most important feature is the high frame-rate, to detect very fast events within the acquired scenes. In order to reduce the computational complexity, Time-of-Flight algorithms for single sensor cameras are used. To achieve high-frame rate and high distance measurement accuracy it is important to collect the most part of the reflected light using sensor with very high sensitivity, allowing the implementation of a low-power light source. We designed and developed a single-photon detection based 3D ranging camera, capable to acquire distance image up to 22.5 m, with a resolution down to one centimeter. The light source used in this prototype employs 8 laser diodes sinusoidally modulated. The imager used in the application is based on Single-Photon Avalanche Diodes (SPADs) fabricated in a standard CMOS 0.35 μm technology. The sensor has 1024 pixels arranged in a 32x32 squared layout, with overall dimensions of 3.5mm x 3.5mm. The camera acquires 3D images through the continuous-wave indirect Time of Flight (cw-iTOF) technique. The typical frame-rate is 20 fps while the theoretical maximum frame-rate is 5 kfps. The precision is better than 5 cm within 22.5 m range, and can be effectively used in indoor applications, e.g. in industrial environment.

  20. Time-to-digital converter based on analog time expansion for 3D time-of-flight cameras

    Science.gov (United States)

    Tanveer, Muhammad; Nissinen, Ilkka; Nissinen, Jan; Kostamovaara, Juha; Borg, Johan; Johansson, Jonny

    2014-03-01

    This paper presents an architecture and achievable performance for a time-to-digital converter, for 3D time-of-flight cameras. This design is partitioned in two levels. In the first level, an analog time expansion, where the time interval to be measured is stretched by a factor k, is achieved by charging a capacitor with current I, followed by discharging the capacitor with a current I/k. In the second level, the final time to digital conversion is performed by a global gated ring oscillator based time-to-digital converter. The performance can be increased by exploiting its properties of intrinsic scrambling of quantization noise and mismatch error, and first order noise shaping. The stretched time interval is measured by counting full clock cycles and storing the states of nine phases of the gated ring oscillator. The frequency of the gated ring oscillator is approximately 131 MHz, and an appropriate stretch factor k, can give a resolution of ≍ 57 ps. The combined low nonlinearity of the time stretcher and the gated ring oscillator-based time-to-digital converter can achieve a distance resolution of a few centimeters with low power consumption and small area occupation. The carefully optimized circuit configuration achieved by using an edge aligner, the time amplification property and the gated ring oscillator-based time-to-digital converter may lead to a compact, low power single photon configuration for 3D time-of-flight cameras, aimed for a measurement range of 10 meters.

  1. Camera-based measurement for transverse vibrations of moving catenaries in mine hoists using digital image processing techniques

    International Nuclear Information System (INIS)

    This paper proposes a novel, non-contact, sensing method to measure the transverse vibrations of hoisting catenaries in mine hoists. Hoisting catenaries are typically moving cables and it is not feasible to use traditional methods to measure their transverse vibrations. In order to obtain the transverse displacements of an arbitrary point in a moving catenary, by superposing a mask image having the predefined reference line perpendicular to the hoisting catenaries on each frame of the processed image sequence, the dynamic intersecting points with a grey value of 0 in the image sequence could be identified. Subsequently, by traversing the coordinates of the pixel with a grey value of 0 and calculating the distance between the identified dynamic points from the reference, the transverse displacements of the selected arbitrary point in the hoisting catenary can be obtained. Furthermore, based on a theoretical model, the reasonability and applicability of the proposed camera-based method were confirmed. Additionally, a laboratory experiment was also carried out, which then validated the accuracy of the proposed method. The research results indicate that the proposed camera-based method is suitable for the measurement of the transverse vibrations of moving cables. (paper)

  2. MEMS-based thermally-actuated image stabilizer for cellular phone camera

    International Nuclear Information System (INIS)

    This work develops an image stabilizer (IS) that is fabricated using micro-electro-mechanical system (MEMS) technology and is designed to counteract the vibrations when human using cellular phone cameras. The proposed IS has dimensions of 8.8 × 8.8 × 0.3 mm3 and is strong enough to suspend an image sensor. The processes that is utilized to fabricate the IS includes inductive coupled plasma (ICP) processes, reactive ion etching (RIE) processes and the flip-chip bonding method. The IS is designed to enable the electrical signals from the suspended image sensor to be successfully emitted out using signal output beams, and the maximum actuating distance of the stage exceeds 24.835 µm when the driving current is 155 mA. Depending on integration of MEMS device and designed controller, the proposed IS can decrease the hand tremor by 72.5%. (paper)

  3. Design of a smartphone-camera-based fluorescence imaging system for the detection of oral cancer

    Science.gov (United States)

    Uthoff, Ross

    Shown is the design of the Smartphone Oral Cancer Detection System (SOCeeDS). The SOCeeDS attaches to a smartphone and utilizes its embedded imaging optics and sensors to capture images of the oral cavity to detect oral cancer. Violet illumination sources excite the oral tissues to induce fluorescence. Images are captured with the smartphone's onboard camera. Areas where the tissues of the oral cavity are darkened signify an absence of fluorescence signal, indicating breakdown in tissue structure brought by precancerous or cancerous conditions. With this data the patient can seek further testing and diagnosis as needed. Proliferation of this device will allow communities with limited access to healthcare professionals a tool to detect cancer in its early stages, increasing the likelihood of cancer reversal.

  4. MEMS-based thermally-actuated image stabilizer for cellular phone camera

    Science.gov (United States)

    Lin, Chun-Ying; Chiou, Jin-Chern

    2012-11-01

    This work develops an image stabilizer (IS) that is fabricated using micro-electro-mechanical system (MEMS) technology and is designed to counteract the vibrations when human using cellular phone cameras. The proposed IS has dimensions of 8.8 × 8.8 × 0.3 mm3 and is strong enough to suspend an image sensor. The processes that is utilized to fabricate the IS includes inductive coupled plasma (ICP) processes, reactive ion etching (RIE) processes and the flip-chip bonding method. The IS is designed to enable the electrical signals from the suspended image sensor to be successfully emitted out using signal output beams, and the maximum actuating distance of the stage exceeds 24.835 µm when the driving current is 155 mA. Depending on integration of MEMS device and designed controller, the proposed IS can decrease the hand tremor by 72.5%.

  5. The findings of F-18 FDG camera-based coincidence PET in acute leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, S. N.; Joh, C. W.; Lee, M. H. [Ajou University School of Medicine, Suwon (Korea, Republic of)

    2002-07-01

    We evaluated the usefulness of F-18 FDG coincidence PET (CoDe-PET) using a dual-head gamma camera in the assessment of patients with acute leukemia. F-18 FDG CoDE-PET studies were performed in 5 patients with acute leukemia (6 ALL and 2 AML) before or after treatment. CoDe-PET was performed utilizing a dual-head gamma camera equipped with 5/8 inch NaI(Tl) crystal. Image acquisition began 60 minutes after the injection of F-18 FDG in the fasting state. A whole trunk from cervical to inguinal regions or selected region were scanned. No attenuation correction was made and image reconstruction was done using filtered back-projection. CoDe-PET studies were evaluated visually. F-18 FDG image performed in 5 patients with ALL before therapy depicted multiple lymph node involvement and diffuse increased uptake involving axial skeleton, pelvis and femurs. F-18 FDG image done in 2 AML after chemotherapy showed only diffuse increased uptake in sternum, ribs, spine, pelvis and proximal femur and these may be due to G-CSF stimulation effect in view of drug history. But bone marrow histology showed scattered blast cell suggesting incomplete remission in one and completer remission in another. F-18 image done in 1 ALL after therapy showed no abnormal uptake. CoDe-PET with F-18 FDG in acute lymphoblastic lymphoma showed multiple lymphnode and bone marrow involvement in whole body. Therefore we conclude that CoDe-PET with F-18 FDG usefulness for evaluation of extent in acute lymphoblastic leukemia. But there was a limitation to assess therapy effectiveness during therapy due to reactive bone marrow.

  6. Comparison of positron tomography and scintigraphy with 201Tl for delineation of the myocardium

    International Nuclear Information System (INIS)

    Recent advances in nuclear medicine instrumentation have led to the development of improved positron-imaging systems which exceed in performance the earlier systems which were limited mainly by low count rate capability. This has led to renewed interest in positron imaging in general, primarily because such devices offer better resolution and higher sensitivity than conventional, mechanically collimated gamma cameras, as well as tomographic capability which may provide additional and more accurate information for the clinician. Furthermore, the unique capabilities of positrons for use in reconstructive imaging are beginning to be exploited. In the present report, results are presented from a preliminary study in which longitudinal tomographic myocardial images, produced with 81Rb as the positron-emitting label using the double camera coincidence system are compared with conventional myocardial images obtained with 201Tl and a gamma camera

  7. Spin Tracking at the ILC Positron Source

    CERN Document Server

    Hartin, A; Staufenbiel, F

    2012-01-01

    In order to achieve the physics goals of future Linear Colliders, it is important that electron and positron beams are polarized. The baseline design at the International Linear Collider (ILC) foresees an e+ source based on helical undulator. Such a source provides high luminosity and polarizations. The positron source planned for ILC is based on a helical undulator system and can deliver a positron polarization of 60%. To ensure that no significant polarization is lost during the transport of the e- and e+ beams from the source to the interaction region, precise spin tracking has to be included in all transport elements which can contribute to a loss of polarization, i.e. the initial accelerating structures, the damping rings, the spin rotators, the main linac and the beam delivery system. In particular, the dynamics of the polarized positron beam is required to be investigated. In the talk recent results of positron spin tracking simulation at the source are presented. The positron yield and polarization ar...

  8. Individualized Positron Emission Tomography–Based Isotoxic Accelerated Radiation Therapy Is Cost-Effective Compared With Conventional Radiation Therapy: A Model-Based Evaluation

    International Nuclear Information System (INIS)

    Purpose: To evaluate long-term health effects, costs, and cost-effectiveness of positron emission tomography (PET)-based isotoxic accelerated radiation therapy treatment (PET-ART) compared with conventional fixed-dose CT-based radiation therapy treatment (CRT) in non-small cell lung cancer (NSCLC). Methods and Materials: Our analysis uses a validated decision model, based on data of 200 NSCLC patients with inoperable stage I-IIIB. Clinical outcomes, resource use, costs, and utilities were obtained from the Maastro Clinic and the literature. Primary model outcomes were the difference in life-years (LYs), quality-adjusted life-years (QALYs), costs, and the incremental cost-effectiveness and cost/utility ratio (ICER and ICUR) of PET-ART versus CRT. Model outcomes were obtained from averaging the predictions for 50,000 simulated patients. A probabilistic sensitivity analysis and scenario analyses were carried out. Results: The average incremental costs per patient of PET-ART were €569 (95% confidence interval [CI] €−5327-€6936) for 0.42 incremental LYs (95% CI 0.19-0.61) and 0.33 QALYs gained (95% CI 0.13-0.49). The base-case scenario resulted in an ICER of €1360 per LY gained and an ICUR of €1744 per QALY gained. The probabilistic analysis gave a 36% probability that PET-ART improves health outcomes at reduced costs and a 64% probability that PET-ART is more effective at slightly higher costs. Conclusion: On the basis of the available data, individualized PET-ART for NSCLC seems to be cost-effective compared with CRT

  9. Positron-emission tomography

    International Nuclear Information System (INIS)

    Positron-emission tomography (PET) combines early biochemical assessment of pathology achieved by nuclear medicine with the precise localization achieved by computerized image reconstruction. In this technique a chemical compound with the desired biological activity is labeled with a radioactive isotope that decays by emitting a positron, or positive electron. With suitable interpretation PET images can provide a noninvasive, regional assessment of many biochemical processes that are essential to the functioning of the organ that is being visualized

  10. Design, Synthesis, and Evaluation of an (18)F-Labeled Radiotracer Based on Celecoxib-NBD for Positron Emission Tomography (PET) Imaging of Cyclooxygenase-2 (COX-2).

    Science.gov (United States)

    Kaur, Jatinder; Tietz, Ole; Bhardwaj, Atul; Marshall, Alison; Way, Jenilee; Wuest, Melinda; Wuest, Frank

    2015-10-01

    A series of novel fluorine-containing cyclooxygenase-2 (COX-2) inhibitors was designed and synthesized based on the previously reported fluorescent COX-2 imaging agent celecoxib-NBD (3; NBD=7-nitrobenzofurazan). In vitro COX-1/COX-2 inhibitory data show that N-(4-fluorobenzyl)-4-(5-p-tolyl-3-trifluoromethylpyrazol-1-yl)benzenesulfonamide (5; IC50 =0.36 μM, SI>277) and N-fluoromethyl-4-(5-p-tolyl-3-trifluoromethylpyrazol-1-yl)benzenesulfonamide (6; IC50 =0.24 μM, SI>416) are potent and selective COX-2 inhibitors. Compound 5 was selected for radiolabeling with the short-lived positron emitter fluorine-18 ((18) F) and evaluated as a positron emission tomography (PET) imaging agent. Radiotracer [(18) F]5 was analyzed in vitro and in vivo using human colorectal cancer model HCA-7. Although radiotracer uptake into COX-2-expressing HCA-7 cells was high, no evidence for COX-2-specific binding was found. Radiotracer uptake into HCA-7 tumors in vivo was low and similar to that of muscle, used as reference tissue. PMID:26287271

  11. Advanced positron sources

    Energy Technology Data Exchange (ETDEWEB)

    Variola, A., E-mail: variola@lal.in2p3.fr

    2014-03-11

    Positron sources are a critical system for the future lepton colliders projects. Due to the large beam emittance at the production and the limitation given by the target heating and mechanical stress, the main collider parameters fixing the luminosity are constrained by the e{sup +} sources. In this context also the damping ring design boundary conditions and the final performance are given by the injected positron beam. At present different schemes are being taken into account in order to increase the production and the capture yield of the positron sources, to reduce the impact of the deposited energy in the converter target and to increase the injection efficiency in the damping ring. The final results have a strong impact not only on the collider performance but also on its cost optimization. After a short introduction illustrating their fundamental role, the basic positron source scheme and the performance of the existing sources will be illustrated. The main innovative designs for the future colliders advanced sources will be reviewed and the different developed technologies presented. Finally the positrons-plasma R and D experiments and the futuristic proposals for positron sources will reviewed.

  12. Research on Deep Joints and Lode Extension Based on Digital Borehole Camera Technology

    Directory of Open Access Journals (Sweden)

    Han Zengqiang

    2015-09-01

    Full Text Available Structure characteristics of rock and orebody in deep borehole are obtained by borehole camera technology. By investigating on the joints and fissures in Shapinggou molybdenum mine, the dominant orientation of joint fissure in surrounding rock and orebody were statistically analyzed. Applying the theory of metallogeny and geostatistics, the relationship between joint fissure and lode’s extension direction is explored. The results indicate that joints in the orebody of ZK61borehole have only one dominant orientation SE126° ∠68°, however, the dominant orientations of joints in surrounding rock were SE118° ∠73°, SW225° ∠70° and SE122° ∠65°, NE79° ∠63°. Then a preliminary conclusion showed that the lode’s extension direction is specific and it is influenced by joints of surrounding rock. Results of other boreholes are generally agree well with the ZK61, suggesting the analysis reliably reflects the lode’s extension properties and the conclusion presents important references for deep ore prospecting.

  13. Stereo Camera Based Virtual Cane System with Identifiable Distance Tactile Feedback for the Blind

    Directory of Open Access Journals (Sweden)

    Donghun Kim

    2014-06-01

    Full Text Available In this paper, we propose a new haptic-assisted virtual cane system operated by a simple finger pointing gesture. The system is developed by two stages: development of visual information delivery assistant (VIDA with a stereo camera and adding a tactile feedback interface with dual actuators for guidance and distance feedbacks. In the first stage, user’s pointing finger is automatically detected using color and disparity data from stereo images and then a 3D pointing direction of the finger is estimated with its geometric and textural features. Finally, any object within the estimated pointing trajectory in 3D space is detected and the distance is then estimated in real time. For the second stage, identifiable tactile signals are designed through a series of identification experiments, and an identifiable tactile feedback interface is developed and integrated into the VIDA system. Our approach differs in that navigation guidance is provided by a simple finger pointing gesture and tactile distance feedbacks are perfectly identifiable to the blind.

  14. A smart camera based traffic enforcement system: experiences from the field

    Science.gov (United States)

    Sidla, Oliver; Loibner, Gernot

    2013-03-01

    The observation and monitoring of traffic with smart vision systems for the purpose of improving traffic safety has a big potential. Embedded vision systems can count vehicles and estimate the state of traffic along the road, they can supplement or replace loop sensors with their limited local scope, radar which measures the speed, presence and number of vehicles. This work presents a vision system which has been built to detect and report traffic rule violations at unsecured railway crossings which pose a threat to drivers day and night. Our system is designed to detect and record vehicles passing over the railway crossing after the red light has been activated. Sparse optical flow in conjunction with motion clustering is used for real-time motion detection in order to capture these safety critical events. The cameras are activated by an electrical signal from the railway when the red light turns on. If they detect a vehicle moving over the stopping line, and it is well over this limit, an image sequence will be recorded and stored onboard for later evaluation. The system has been designed to be operational in all weather conditions, delivering human-readable license plate images even under the worst illumination conditions like direct incident sunlight direct view into or vehicle headlights. After several months of operation in the field we can report on the performance of the system, its hardware implementation as well as the implementation of algorithms which have proven to be usable in this real-world application.

  15. Research on detecting heterogeneous fibre from cotton based on linear CCD camera

    Science.gov (United States)

    Zhang, Xian-bin; Cao, Bing; Zhang, Xin-peng; Shi, Wei

    2009-07-01

    The heterogeneous fibre in cotton make a great impact on production of cotton textile, it will have a bad effect on the quality of product, thereby affect economic benefits and market competitive ability of corporation. So the detecting and eliminating of heterogeneous fibre is particular important to improve machining technics of cotton, advance the quality of cotton textile and reduce production cost. There are favorable market value and future development for this technology. An optical detecting system obtains the widespread application. In this system, we use a linear CCD camera to scan the running cotton, then the video signals are put into computer and processed according to the difference of grayscale, if there is heterogeneous fibre in cotton, the computer will send an order to drive the gas nozzle to eliminate the heterogeneous fibre. In the paper, we adopt monochrome LED array as the new detecting light source, it's lamp flicker, stability of luminous intensity, lumens depreciation and useful life are all superior to fluorescence light. We analyse the reflection spectrum of cotton and various heterogeneous fibre first, then select appropriate frequency of the light source, we finally adopt violet LED array as the new detecting light source. The whole hardware structure and software design are introduced in this paper.

  16. Target Capturing Control for Space Robots with Unknown Mass Properties: A Self-Tuning Method Based on Gyros and Cameras.

    Science.gov (United States)

    Li, Zhenyu; Wang, Bin; Liu, Hong

    2016-01-01

    Satellite capturing with free-floating space robots is still a challenging task due to the non-fixed base and unknown mass property issues. In this paper gyro and eye-in-hand camera data are adopted as an alternative choice for solving this problem. For this improved system, a new modeling approach that reduces the complexity of system control and identification is proposed. With the newly developed model, the space robot is equivalent to a ground-fixed manipulator system. Accordingly, a self-tuning control scheme is applied to handle such a control problem including unknown parameters. To determine the controller parameters, an estimator is designed based on the least-squares technique for identifying the unknown mass properties in real time. The proposed method is tested with a credible 3-dimensional ground verification experimental system, and the experimental results confirm the effectiveness of the proposed control scheme.

  17. Target Capturing Control for Space Robots with Unknown Mass Properties: A Self-Tuning Method Based on Gyros and Cameras.

    Science.gov (United States)

    Li, Zhenyu; Wang, Bin; Liu, Hong

    2016-08-30

    Satellite capturing with free-floating space robots is still a challenging task due to the non-fixed base and unknown mass property issues. In this paper gyro and eye-in-hand camera data are adopted as an alternative choice for solving this problem. For this improved system, a new modeling approach that reduces the complexity of system control and identification is proposed. With the newly developed model, the space robot is equivalent to a ground-fixed manipulator system. Accordingly, a self-tuning control scheme is applied to handle such a control problem including unknown parameters. To determine the controller parameters, an estimator is designed based on the least-squares technique for identifying the unknown mass properties in real time. The proposed method is tested with a credible 3-dimensional ground verification experimental system, and the experimental results confirm the effectiveness of the proposed control scheme.

  18. Vision-Based Cooperative Pose Estimation for Localization in Multi-Robot Systems Equipped with RGB-D Cameras

    Directory of Open Access Journals (Sweden)

    Xiaoqin Wang

    2014-12-01

    Full Text Available We present a new vision based cooperative pose estimation scheme for systems of mobile robots equipped with RGB-D cameras. We first model a multi-robot system as an edge-weighted graph. Then, based on this model, and by using the real-time color and depth data, the robots with shared field-of-views estimate their relative poses in pairwise. The system does not need the existence of a single common view shared by all robots, and it works in 3D scenes without any specific calibration pattern or landmark. The proposed scheme distributes working loads evenly in the system, hence it is scalable and the computing power of the participating robots is efficiently used. The performance and robustness were analyzed both on synthetic and experimental data in different environments over a range of system configurations with varying number of robots and poses.

  19. Digital image measurement of specimen deformation based on CCD cameras and Image J software: an application to human pelvic biomechanics

    Science.gov (United States)

    Jia, Yongwei; Cheng, Liming; Yu, Guangrong; Lou, Yongjian; Yu, Yan; Chen, Bo; Ding, Zuquan

    2008-03-01

    A method of digital image measurement of specimen deformation based on CCD cameras and Image J software was developed. This method was used to measure the biomechanics behavior of human pelvis. Six cadaveric specimens from the third lumbar vertebra to the proximal 1/3 part of femur were tested. The specimens without any structural abnormalities were dissected of all soft tissue, sparing the hip joint capsules and the ligaments of the pelvic ring and floor. Markers with black dot on white background were affixed to the key regions of the pelvis. Axial loading from the proximal lumbar was applied by MTS in the gradient of 0N to 500N, which simulated the double feet standing stance. The anterior and lateral images of the specimen were obtained through two CCD cameras. Based on Image J software, digital image processing software, which can be freely downloaded from the National Institutes of Health, digital 8-bit images were processed. The procedure includes the recognition of digital marker, image invert, sub-pixel reconstruction, image segmentation, center of mass algorithm based on weighted average of pixel gray values. Vertical displacements of S1 (the first sacral vertebrae) in front view and micro-angular rotation of sacroiliac joint in lateral view were calculated according to the marker movement. The results of digital image measurement showed as following: marker image correlation before and after deformation was excellent. The average correlation coefficient was about 0.983. According to the 768 × 576 pixels image (pixel size 0.68mm × 0.68mm), the precision of the displacement detected in our experiment was about 0.018 pixels and the comparatively error could achieve 1.11\\perthou. The average vertical displacement of S1 of the pelvis was 0.8356+/-0.2830mm under vertical load of 500 Newtons and the average micro-angular rotation of sacroiliac joint in lateral view was 0.584+/-0.221°. The load-displacement curves obtained from our optical measure system

  20. Minimal Camera Networks for 3D Image Based Modeling of Cultural Heritage Objects

    Directory of Open Access Journals (Sweden)

    Bashar Alsadik

    2014-03-01

    Full Text Available 3D modeling of cultural heritage objects like artifacts, statues and buildings is nowadays an important tool for virtual museums, preservation and restoration. In this paper, we introduce a method to automatically design a minimal imaging network for the 3D modeling of cultural heritage objects. This becomes important for reducing the image capture time and processing when documenting large and complex sites. Moreover, such a minimal camera network design is desirable for imaging non-digitally documented artifacts in museums and other archeological sites to avoid disturbing the visitors for a long time and/or moving delicate precious objects to complete the documentation task. The developed method is tested on the Iraqi famous statue “Lamassu”. Lamassu is a human-headed winged bull of over 4.25 m in height from the era of Ashurnasirpal II (883–859 BC. Close-range photogrammetry is used for the 3D modeling task where a dense ordered imaging network of 45 high resolution images were captured around Lamassu with an object sample distance of 1 mm. These images constitute a dense network and the aim of our study was to apply our method to reduce the number of images for the 3D modeling and at the same time preserve pre-defined point accuracy. Temporary control points were fixed evenly on the body of Lamassu and measured by using a total station for the external validation and scaling purpose. Two network filtering methods are implemented and three different software packages are used to investigate the efficiency of the image orientation and modeling of the statue in the filtered (reduced image networks. Internal and external validation results prove that minimal image networks can provide highly accurate records and efficiency in terms of visualization, completeness, processing time (>60% reduction and the final accuracy of 1 mm.

  1. Monitoring system for isolated limb perfusion based on a portable gamma camera

    Energy Technology Data Exchange (ETDEWEB)

    Orero, A.; Muxi, A.; Rubi, S.; Duch, J. [Servei de Medicina Nuclear, Hospital Clinic, Barcelona (Spain); Vidal-Sicart, S.; Pons, F. [Servei de Medicina Nuclear, Hospital Clinic, Barcelona (Spain); Inst. d' Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona (Spain); Red Tematica de Investigacion Cooperativa en Cancer (RTICC), Barcelona (Spain); Roe, N. [Servei de Medicina Nuclear, Hospital Clinic, Barcelona (Spain); CIBER de Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona (Spain); Rull, R. [Servei de Cirurgia, Hospital Clinic, Barcelona (Spain); Pavon, N. [Inst. de Fisica Corpuscular, CSIC - UV, Valencia (Spain); Pavia, J. [Servei de Medicina Nuclear, Hospital Clinic, Barcelona (Spain); Inst. d' Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona (Spain); CIBER de Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona (Spain)

    2009-07-01

    Background: The treatment of malignant melanoma or sarcomas on a limb using extremity perfusion with tumour necrosis factor (TNF-{alpha}) and melphalan can result in a high degree of systemic toxicity if there is any leakage from the isolated blood territory of the limb into the systemic vascular territory. Leakage is currently controlled by using radiotracers and heavy external probes in a procedure that requires continuous manual calculations. The aim of this work was to develop a light, easily transportable system to monitor limb perfusion leakage by controlling systemic blood pool radioactivity with a portable gamma camera adapted for intraoperative use as an external probe, and to initiate its application in the treatment of MM patients. Methods: A special collimator was built for maximal sensitivity. Software for acquisition and data processing in real time was developed. After testing the adequacy of the system, it was used to monitor limb perfusion leakage in 16 patients with malignant melanoma to be treated with perfusion of TNF-{alpha} and melphalan. Results: The field of view of the detector system was 13.8 cm, which is appropriate for the monitoring, since the area to be controlled was the precordial zone. The sensitivity of the system was 257 cps/MBq. When the percentage of leakage reaches 10% the associated absolute error is {+-}1%. After a mean follow-up period of 12 months, no patients have shown any significant or lasting side-effects. Partial or complete remission of lesions was seen in 9 out of 16 patients (56%) after HILP with TNF-{alpha} and melphalan. Conclusion: The detector system together with specially developed software provides a suitable automatic continuous monitoring system of any leakage that may occur during limb perfusion. This technique has been successfully implemented in patients for whom perfusion with TNF-{alpha} and melphalan has been indicated. (orig.)

  2. Minimal camera networks for 3D image based modeling of cultural heritage objects.

    Science.gov (United States)

    Alsadik, Bashar; Gerke, Markus; Vosselman, George; Daham, Afrah; Jasim, Luma

    2014-03-25

    3D modeling of cultural heritage objects like artifacts, statues and buildings is nowadays an important tool for virtual museums, preservation and restoration. In this paper, we introduce a method to automatically design a minimal imaging network for the 3D modeling of cultural heritage objects. This becomes important for reducing the image capture time and processing when documenting large and complex sites. Moreover, such a minimal camera network design is desirable for imaging non-digitally documented artifacts in museums and other archeological sites to avoid disturbing the visitors for a long time and/or moving delicate precious objects to complete the documentation task. The developed method is tested on the Iraqi famous statue "Lamassu". Lamassu is a human-headed winged bull of over 4.25 m in height from the era of Ashurnasirpal II (883-859 BC). Close-range photogrammetry is used for the 3D modeling task where a dense ordered imaging network of 45 high resolution images were captured around Lamassu with an object sample distance of 1 mm. These images constitute a dense network and the aim of our study was to apply our method to reduce the number of images for the 3D modeling and at the same time preserve pre-defined point accuracy. Temporary control points were fixed evenly on the body of Lamassu and measured by using a total station for the external validation and scaling purpose. Two network filtering methods are implemented and three different software packages are used to investigate the efficiency of the image orientation and modeling of the statue in the filtered (reduced) image networks. Internal and external validation results prove that minimal image networks can provide highly accurate records and efficiency in terms of visualization, completeness, processing time (>60% reduction) and the final accuracy of 1 mm.

  3. Motion Tracker: Camera-Based Monitoring of Bodily Movements Using Motion Silhouettes.

    Directory of Open Access Journals (Sweden)

    Jacqueline Kory Westlund

    Full Text Available Researchers in the cognitive and affective sciences investigate how thoughts and feelings are reflected in the bodily response systems including peripheral physiology, facial features, and body movements. One specific question along this line of research is how cognition and affect are manifested in the dynamics of general body movements. Progress in this area can be accelerated by inexpensive, non-intrusive, portable, scalable, and easy to calibrate movement tracking systems. Towards this end, this paper presents and validates Motion Tracker, a simple yet effective software program that uses established computer vision techniques to estimate the amount a person moves from a video of the person engaged in a task (available for download from http://jakory.com/motion-tracker/. The system works with any commercially available camera and with existing videos, thereby affording inexpensive, non-intrusive, and potentially portable and scalable estimation of body movement. Strong between-subject correlations were obtained between Motion Tracker's estimates of movement and body movements recorded from the seat (r =.720 and back (r = .695 for participants with higher back movement of a chair affixed with pressure-sensors while completing a 32-minute computerized task (Study 1. Within-subject cross-correlations were also strong for both the seat (r =.606 and back (r = .507. In Study 2, between-subject correlations between Motion Tracker's movement estimates and movements recorded from an accelerometer worn on the wrist were also strong (rs = .801, .679, and .681 while people performed three brief actions (e.g., waving. Finally, in Study 3 the within-subject cross-correlation was high (r = .855 when Motion Tracker's estimates were correlated with the movement of a person's head as tracked with a Kinect while the person was seated at a desk (Study 3. Best-practice recommendations, limitations, and planned extensions of the system are discussed.

  4. Motion Tracker: Camera-Based Monitoring of Bodily Movements Using Motion Silhouettes.

    Science.gov (United States)

    Kory Westlund, Jacqueline; Westlund, Jacqueline Kory; D'Mello, Sidney K; Olney, Andrew M

    2015-01-01

    Researchers in the cognitive and affective sciences investigate how thoughts and feelings are reflected in the bodily response systems including peripheral physiology, facial features, and body movements. One specific question along this line of research is how cognition and affect are manifested in the dynamics of general body movements. Progress in this area can be accelerated by inexpensive, non-intrusive, portable, scalable, and easy to calibrate movement tracking systems. Towards this end, this paper presents and validates Motion Tracker, a simple yet effective software program that uses established computer vision techniques to estimate the amount a person moves from a video of the person engaged in a task (available for download from http://jakory.com/motion-tracker/). The system works with any commercially available camera and with existing videos, thereby affording inexpensive, non-intrusive, and potentially portable and scalable estimation of body movement. Strong between-subject correlations were obtained between Motion Tracker's estimates of movement and body movements recorded from the seat (r =.720) and back (r = .695 for participants with higher back movement) of a chair affixed with pressure-sensors while completing a 32-minute computerized task (Study 1). Within-subject cross-correlations were also strong for both the seat (r =.606) and back (r = .507). In Study 2, between-subject correlations between Motion Tracker's movement estimates and movements recorded from an accelerometer worn on the wrist were also strong (rs = .801, .679, and .681) while people performed three brief actions (e.g., waving). Finally, in Study 3 the within-subject cross-correlation was high (r = .855) when Motion Tracker's estimates were correlated with the movement of a person's head as tracked with a Kinect while the person was seated at a desk (Study 3). Best-practice recommendations, limitations, and planned extensions of the system are discussed. PMID:26086771

  5. Applications of nucleoside-based molecular probes for the in vivo assessment of tumour biochemistry using positron emission tomography (PET

    Directory of Open Access Journals (Sweden)

    Leonard I. Wiebe

    2007-05-01

    Full Text Available Positron emission tomography (PET is a non-invasive nuclear imaging technique. In PET, radiolabelled molecules decay by positron emission. The gamma rays resulting from positron annihilation are detected in coincidence and mapped to produce three dimensional images of radiotracer distribution in the body. Molecular imaging with PET refers to the use of positron-emitting biomolecules that are highly specific substrates for target enzymes, transport proteins or receptor proteins. Molecular imaging with PET produces spatial and temporal maps of the target-related processes. Molecular imaging is an important analytical tool in diagnostic medical imaging, therapy monitoring and the development of new drugs. Molecular imaging has its roots in molecular biology. Originally, molecular biology meant the biology of gene expression, but now molecular biology broadly encompasses the macromolecular biology and biochemistry of proteins, complex carbohydrates and nucleic acids. To date, molecular imaging has focused primarily on proteins, with emphasis on monoclonal antibodies and their derivative forms, small-molecule enzyme substrates and components of cell membranes, including transporters and transmembrane signalling elements. This overview provides an introduction to nucleosides, nucleotides and nucleic acids in the context of molecular imaging.A tomografia por emissão de pósitrons (TEP é uma técnica de imagem não invasiva da medicina nuclear. A TEP utiliza moléculas marcadas com emissores de radiação beta positiva (pósitrons. As radiações gama medidas que resultam do aniquilamento dos pósitrons são detectadas por um sistema de coincidência e mapeadas para produzir uma imagem tridimensional da distribuição do radiotraçador no corpo. A imagem molecular com TEP refere-se ao uso de biomoléculas marcadas com emissor de pósitron que são substratos altamente específicos para alvos como enzimas, proteínas transportadoras ou receptores prot

  6. Are we ready for positron emission tomography/computed tomography-based target volume definition in lymphoma radiation therapy?

    Science.gov (United States)

    Yeoh, Kheng-Wei; Mikhaeel, N George

    2013-01-01

    Fluorine-18 fluorodeoxyglucose (FDG)-positron emission tomography (PET)/computed tomography (CT) has become indispensable for the clinical management of lymphomas. With consistent evidence that it is more accurate than anatomic imaging in the staging and response assessment of many lymphoma subtypes, its utility continues to increase. There have therefore been efforts to incorporate PET/CT data into radiation therapy decision making and in the planning process. Further, there have also been studies investigating target volume definition for radiation therapy using PET/CT data. This article will critically review the literature and ongoing studies on the above topics, examining the value and methods of adding PET/CT data to the radiation therapy treatment algorithm. We will also discuss the various challenges and the areas where more evidence is required.

  7. Radioactive labeling of defined HPMA-based polymeric structures using [18F]FETos for in vivo imaging by positron emission tomography

    DEFF Research Database (Denmark)

    Herth, Matthias Manfred; Barz, Matthias; Moderegger, Dorothea;

    2009-01-01

    During the last decades polymer-based nanomedicine has turned out to be a promising tool in modern pharmaceutics. The following article describes the synthesis of well-defined random and block copolymers by RAFT polymerization with potential medical application. The polymers have been labeled...... with the positron-emitting nuclide fluorine-18. The polymeric structures are based on the biocompatible N-(2-hydroxypropyl)-methacrylamide (HPMA). To achieve these structures, functional reactive ester polymers with a molecular weight within the range of 25,000-110,000 g/mol were aminolyzed by 2-hydroxypropylamine...... and tyramine (3%) to form (18)F-labelable HPMA-polymer precursors. The labeling procedure of the phenolic tyramine moieties via the secondary labeling synthon 2-[(18)F]fluoroethyl-1-tosylate ([(18)F]FETos) provided radiochemical fluoroalkylation yields of ∼80% for block copolymers and >50% for random polymer...

  8. Myocardial perfusion imaging with a cadmium zinc telluride-based gamma camera versus invasive fractional flow reserve

    Energy Technology Data Exchange (ETDEWEB)

    Mouden, Mohamed [Isala klinieken, Department of Cardiology, Zwolle (Netherlands); Isala klinieken, Department of Nuclear Medicine, Zwolle (Netherlands); Ottervanger, Jan Paul; Timmer, Jorik R. [Isala klinieken, Department of Cardiology, Zwolle (Netherlands); Knollema, Siert; Reiffers, Stoffer; Oostdijk, Ad H.J.; Jager, Pieter L. [Isala klinieken, Department of Nuclear Medicine, Zwolle (Netherlands); Boer, Menko-Jan de [University Medical Centre Nijmegen, Department of Cardiology, Nijmegen (Netherlands)

    2014-05-15

    Recently introduced ultrafast cardiac SPECT cameras with cadmium zinc telluride-based (CZT) detectors may provide superior image quality allowing faster acquisition with reduced radiation doses. Although the level of concordance between conventional SPECT and invasive fractional flow reserve (FFR) measurement has been studied, that between FFR and CZT-based SPECT is not yet known. Therefore, we aimed to assess the level of concordance between CZT SPECT and FFR in a large patient group with stable coronary artery disease. Both invasive FFR and myocardial perfusion imaging with a CZT-based SPECT camera, using Tc-tetrofosmin as tracer, were performed in 100 patients with stable angina and intermediate grade stenosis on invasive coronary angiography. A cut-off value of <0.75 was used to define abnormal FFR. The mean age of the patients was 64 ± 11 years, and 64 % were men. SPECT demonstrated ischaemia in 31 % of the patients, and 20 % had FFR <0.75. The concordance between CZT SPECT and FFR was 73 % on a per-patient basis and 79 % on a per-vessel basis. Discordant findings were more often seen in older patients and were mainly (19 %) the result of ischaemic SPECT findings in patients with FFR ≥0.75, whereas only 8 % had an abnormal FFR without ischaemia as demonstrated by CZT SPECT. Only 20 - 30 % of patients with intermediate coronary stenoses had significant ischaemia as assessed by CZT SPECT or invasive FFR. CZT SPECT showed a modest degree of concordance with FFR, which is comparable with previous results with conventional SPECT. Further investigations are particularly necessary in patients with normal SPECT and abnormal FFR, especially to determine whether these patients should undergo revascularization. (orig.)

  9. K-nearest neighborhood based integration of time-of-flight cameras and passive stereo for high-accuracy depth maps

    Institute of Scientific and Technical Information of China (English)

    Li-wei LIU; Yang LI; Ming ZHANG; Liang-hao WANG; Dong-xiao LI

    2014-01-01

    Both time-of-flight (ToF) cameras and passive stereo can provide the depth information for their corresponding captured real scenes, but they have innate limitations. ToF cameras and passive stereo are intrinsically complementary for certain tasks. It is desirable to appropriately leverage all the available information by ToF cameras and passive stereo. Although some fusion methods have been presented recently, they fail to consider ToF reliability detection and ToF based improvement of passive stereo. As a result, this study proposes an approach to integrating ToF cameras and passive stereo to obtain high-accuracy depth maps. The main contributions are: (1) An energy cost function is devised to use data from ToF cameras to boost the stereo matching of passive stereo;(2) A fusion method is used to combine the depth information from both ToF cameras and passive stereo to obtain high-accuracy depth maps. Experiments show that the proposed approach achieves improved results with high accuracy and robustness.

  10. Simulations of pulses in a buffer gas positron trap

    Energy Technology Data Exchange (ETDEWEB)

    Tattersall, W; Sullivan, J P; Buckman, S J [ARC Centre for Antimatter-Matter Studies, Research School of Physics and Engineering, Australian National University, Canberra, ACT (Australia); White, R D; Robson, R E, E-mail: wade.tattersall@anu.edu.au [ARC Centre for Antimatter-Matter Studies, School of Engineering and Physical Sciences, James Cook University, Townsville, QLD (Australia)

    2011-01-01

    In this study we simulate positron transport properties for various configurations of the gases and electric fields used in the Australian Positron Beamline Facility positron trap, which is based on the Surko buffer-gas trap. In an attempt to further improve the time and energy resolution of the trap and thus the associated scattering experiments, we apply a Monte-Carlo simulation procedure to a variety of possible configurations of the dumping stage of the trap.

  11. Self-Localization of a Multi-Fisheye Camera Based Augmented Reality System in Textureless 3d Building Models

    Science.gov (United States)

    Urban, S.; Leitloff, J.; Wursthorn, S.; Hinz, S.

    2013-10-01

    Georeferenced images help planners to compare and document the progress of underground construction sites. As underground positioning can not rely on GPS/GNSS, we introduce a solely vision based localization method, that makes use of a textureless 3D CAD model of the construction site. In our analysis-by-synthesis approach, depth and normal fisheye images are rendered from presampled positions and gradient orientations are extracted to build a high dimensional synthetic feature space. Acquired camera images are then matched to those features by using a robust distance metric and fast nearest neighbor search. In this manner, initial poses can be obtained on a laptop in real-time using concurrent processing and the graphics processing unit.

  12. Performance study of the Beijing intense slow positron beam

    International Nuclear Information System (INIS)

    A slow positron beam based on the Beijing Electron-Positron Collider (BEPC) has been constructed and tested. In this paper, transmission efficiency and other performance parameters of the system are measured by a series of experiments on the pulsed slow positron beam. Results show that the transmission efficiency of the transfer system is above 98% and the size of pulsed slow positron beam's image got by the IP is less than 15 mm. At the same time, the energy spread of the pulsed slow positron beam is about 10 eV (FWHM). The pulsed beam intensity is about 106 slow positrons/s when BEPC is running under the short-pulse mode. It is also shown that the intensity would be reduced to half of initial value after storing 40 ms at 3 x 10-7 Pa vacuum level. (authors)

  13. Online rate control in digital cameras for near-constant distortion based on minimum/maximum criterion

    Science.gov (United States)

    Lee, Sang-Yong; Ortega, Antonio

    2000-04-01

    We address the problem of online rate control in digital cameras, where the goal is to achieve near-constant distortion for each image. Digital cameras usually have a pre-determined number of images that can be stored for the given memory size and require limited time delay and constant quality for each image. Due to time delay restrictions, each image should be stored before the next image is received. Therefore, we need to define an online rate control that is based on the amount of memory used by previously stored images, the current image, and the estimated rate of future images. In this paper, we propose an algorithm for online rate control, in which an adaptive reference, a 'buffer-like' constraint, and a minimax criterion (as a distortion metric to achieve near-constant quality) are used. The adaptive reference is used to estimate future images and the 'buffer-like' constraint is required to keep enough memory for future images. We show that using our algorithm to select online bit allocation for each image in a randomly given set of images provides near constant quality. Also, we show that our result is near optimal when a minimax criterion is used, i.e., it achieves a performance close to that obtained by applying an off-line rate control that assumes exact knowledge of the images. Suboptimal behavior is only observed in situations where the distribution of images is not truly random (e.g., if most of the 'complex' images are captured at the end of the sequence.) Finally, we propose a T- step delay rate control algorithm and using the result of 1- step delay rate control algorithm, we show that this algorithm removes the suboptimal behavior.

  14. Apply Web-based Analytic Tool and Eye Tracking to Study The Consumer Preferences of DSLR Cameras

    Directory of Open Access Journals (Sweden)

    Jih-Syongh Lin

    2013-11-01

    Full Text Available Consumer’s preferences and purchase motivation of products often lie in the purchasing behaviors generated by the synthetic evaluation of form features, color, function, and price of products. If an enterprise can bring these criteria under control, they can grasp the opportunities in the market place. In this study, the product form, brand, and prices of five DSLR digital cameras of Nikon, Lumix, Pentax, Sony, and Olympus were investigated from the image evaluation and eye tracking. The web-based 2-dimensional analytical tool was used to present information on three layers. Layer A provided information of product form and brand name; Layer B for product form, brand name, and product price for the evaluation of purchase intention (X axis and product form attraction (Y axis. On Layer C, Nikon J1 image samples of five color series were presented for the evaluation of attraction and purchase intention. The study results revealed that, among five Japanese brands of digital cameras, LUMIX GF3 is most preferred and serves as the major competitive product, with a product price of US$630. Through the visual focus of eye-tracking, the lens, curvatured handle bar, the curve part and shuttle button above the lens as well as the flexible flash of LUMIX GF3 are the parts that attract the consumer’s eyes. From the verbal descriptions, it is found that consumers emphasize the functions of 3D support lens, continuous focusing in shooting video, iA intelligent scene mode, and all manual control support. In the color preference of Nikon J1, the red and white colors are most preferred while pink is least favored. These findings can serve as references for designers and marketing personnel in new product design and development.

  15. Positron emission tomography

    CERN Document Server

    Paans, A M J

    2006-01-01

    Positron Emission Tomography (PET) is a method for measuring biochemical and physiological processes in vivo in a quantitative way by using radiopharmaceuticals labelled with positron emitting radionuclides such as 11C, 13N, 15O and 18F and by measuring the annihilation radiation using a coincidence technique. This includes also the measurement of the pharmacokinetics of labelled drugs and the measurement of the effects of drugs on metabolism. Also deviations of normal metabolism can be measured and insight into biological processes responsible for diseases can be obtained. At present the combined PET/CT scanner is the most frequently used scanner for whole-body scanning in the field of oncology.

  16. 50 years of positrons

    International Nuclear Information System (INIS)

    This year marks the 50th anniversary of one of the major landmarks of modern physics - the discovery of the positron, the antimatter counterpart of the electron. This provided the first evidence for antimatter, and it was also unprecedented for the existence of a new particle to have been predicted by theory. The positron and the concepts behind it were to radically change our picture of Nature. It led to the rapid advancement or our understanding, culminating some fifteen years later with the formulation of quantum electrodynamics as we now know it. (orig./HSI).

  17. Defects and Electron Densities in TiAl-based Alloys Containing Mn and Cu Studied by Positron Annihilation

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The defects and electron densities in Ti50Al50, Ti50Al48Mn2 and Ti50Al48Cu2 alloys have been studied by positron lifetime measurements. The results show that the free electron density in the bulk of binary TiAl alloy is lower than that of pure Ti or Al metal. The open volume of defects on the grain boundaries of binary TiAl alloy is larger than that of a monovacancy of Al metal. The additions of Mn and Cu into Ti-rich TiAl alloy will increase the free electron densities in the bulk and the grain boundary simultaneously, since one Mn atom or Cu atom which occupies the Al atom site provides more free electrons participating metallic bonds than those provided by an Al atom. It is also found the free electron density in the grain boundary of Ti50Al48Cu2 is higher than that of Ti50Al48Mn2 alloy, while the free electron density in the bulk of Ti50Al48Cu2 is lower than that of Ti50Al48Mn2 alloy. The behaviors of Mn and Cu atoms in TiAl alloy have been discussed.

  18. SUB PIXEL IMAGE PROCESSING FOR DISTANCE MEASUREMENT ON THE BASE OF DIGITAL CAMERA

    Directory of Open Access Journals (Sweden)

    V. L. Kozlov

    2012-01-01

    Full Text Available The technique of sub pixel processing of the digital photographic images for precision distances and sizes measurements based on stereogram processing is offered. Experimental results of measuring equipment are presented.

  19. Mobile Robot Simultaneous Localization and Mapping Based on a Monocular Camera

    Directory of Open Access Journals (Sweden)

    Songmin Jia

    2016-01-01

    Full Text Available This paper proposes a novel monocular vision-based SLAM (Simultaneous Localization and Mapping algorithm for mobile robot. In this proposed method, the tracking and mapping procedures are split into two separate tasks and performed in parallel threads. In the tracking thread, a ground feature-based pose estimation method is employed to initialize the algorithm for the constraint moving of the mobile robot. And an initial map is built by triangulating the matched features for further tracking procedure. In the mapping thread, an epipolar searching procedure is utilized for finding the matching features. A homography-based outlier rejection method is adopted for rejecting the mismatched features. The indoor experimental results demonstrate that the proposed algorithm has a great performance on map building and verify the feasibility and effectiveness of the proposed algorithm.

  20. Positron excitation of neon

    Science.gov (United States)

    Parcell, L. A.; Mceachran, R. P.; Stauffer, A. D.

    1990-01-01

    The differential and total cross section for the excitation of the 3s1P10 and 3p1P1 states of neon by positron impact were calculated using a distorted-wave approximation. The results agree well with experimental conclusions.

  1. Positron clouds within thunderstorms

    CERN Document Server

    Dwyer, Joseph R; Hazelton, Bryna J; Grefenstette, Brian W; Kelley, Nicole A; Lowell, Alexander W; Schaal, Meagan M; Rassoul, Hamid K

    2015-01-01

    We report the observation of two isolated clouds of positrons inside an active thunderstorm. These observations were made by the Airborne Detector for Energetic Lightning Emissions (ADELE), an array of six gamma-ray detectors, which flew on a Gulfstream V jet aircraft through the top of an active thunderstorm in August 2009. ADELE recorded two 511 keV gamma-ray count rate enhancements, 35 seconds apart, each lasting approximately 0.2 seconds. The enhancements, which were about a factor of 12 above background, were both accompanied by electrical activity as measured by a flat-plate antenna on the underside of the aircraft. The energy spectra were consistent with a source mostly composed of positron annihilation gamma rays, with a prominent 511 keV line clearly visible in the data. Model fits to the data suggest that the aircraft was briefly immersed in clouds of positrons, more than a kilometer across. It is not clear how the positron clouds were created within the thunderstorm, but it is possible they were ca...

  2. Modelisation de photodetecteurs a base de matrices de diodes avalanche monophotoniques pour tomographie d'emission par positrons

    Science.gov (United States)

    Corbeil Therrien, Audrey

    La tomographie d'emission par positrons (TEP) est un outil precieux en recherche preclinique et pour le diagnostic medical. Cette technique permet d'obtenir une image quantitative de fonctions metaboliques specifiques par la detection de photons d'annihilation. La detection des ces photons se fait a l'aide de deux composantes. D'abord, un scintillateur convertit l'energie du photon 511 keV en photons du spectre visible. Ensuite, un photodetecteur convertit l'energie lumineuse en signal electrique. Recemment, les photodiodes avalanche monophotoniques (PAMP) disposees en matrice suscitent beaucoup d'interet pour la TEP. Ces matrices forment des detecteurs sensibles, robustes, compacts et avec une resolution en temps hors pair. Ces qualites en font un photodetecteur prometteur pour la TEP, mais il faut optimiser les parametres de la matrice et de l'electronique de lecture afin d'atteindre les performances optimales pour la TEP. L'optimisation de la matrice devient rapidement une operation difficile, car les differents parametres interagissent de maniere complexe avec les processus d'avalanche et de generation de bruit. Enfin, l'electronique de lecture pour les matrices de PAMP demeure encore rudimentaire et il serait profitable d'analyser differentes strategies de lecture. Pour repondre a cette question, la solution la plus economique est d'utiliser un simulateur pour converger vers la configuration donnant les meilleures performances. Les travaux de ce memoire presentent le developpement d'un tel simulateur. Celui-ci modelise le comportement d'une matrice de PAMP en se basant sur les equations de physique des semiconducteurs et des modeles probabilistes. Il inclut les trois principales sources de bruit, soit le bruit thermique, les declenchements intempestifs correles et la diaphonie optique. Le simulateur permet aussi de tester et de comparer de nouvelles approches pour l'electronique de lecture plus adaptees a ce type de detecteur. Au final, le simulateur vise a

  3. Twenty-one degrees of freedom model based hand pose tracking using a monocular RGB camera

    Science.gov (United States)

    Choi, Junyeong; Park, Jong-Il; Park, Hanhoon

    2016-01-01

    It is difficult to visually track a user's hand because of the many degrees of freedom (DOF) a hand has. For this reason, most model-based hand pose tracking methods have relied on the use of multiview images or RGB-D images. This paper proposes a model-based method that accurately tracks three-dimensional hand poses using monocular RGB images in real time. The main idea of the proposed method is to reduce hand tracking ambiguity by adopting a step-by-step estimation scheme consisting of three steps performed in consecutive order: palm pose estimation, finger yaw motion estimation, and finger pitch motion estimation. In addition, this paper proposes highly effective algorithms for each step. With the assumption that a human hand can be considered as an assemblage of articulated planes, the proposed method uses a piece-wise planar hand model which enables hand model regeneration. The hand model regeneration modifies the hand model to fit the current user's hand and improves the accuracy of the hand pose estimation results. Above all, the proposed method can operate in real time using only CPU-based processing. Consequently, it can be applied to various platforms, including egocentric vision devices such as wearable glasses. The results of several experiments conducted verify the efficiency and accuracy of the proposed method.

  4. TEQUILA: NIR camera/spectrograph based on a Rockwell 1024x1024 HgCdTe FPA

    Science.gov (United States)

    Ruiz, Elfego; Sohn, Erika; Cruz-Gonzales, Irene; Salas, Luis; Parraga, Antonio; Perez, Manuel; Torres, Roberto; Cobos Duenas, Francisco J.; Gonzalez, Gaston; Langarica, Rosalia; Tejada, Carlos; Sanchez, Beatriz; Iriarte, Arturo; Valdez, J.; Gutierrez, Leonel; Lazo, Francisco; Angeles, Fernando

    1998-08-01

    We describe the configuration and operation modes of the IR camera/spectrograph: TEQUILA based on a 1024 X 1024 HgCdTe FPA. The optical system will allow three possible modes of operation: direct imaging, low and medium resolution spectroscopy and polarimetry. The basic system is being designed to consist of the following: 1) A LN(subscript 2) dewar that allocates the FPA together with the preamplifiers and a 24 filter position cylinder. 2) Control and readout electronics based on DSP modules linked to a workstation through fiber optics. 3) An opto-mechanical assembly cooled to -30 degrees that provides an efficient operation of the instrument in its various modes. 4) A control module for the moving parts of the instrument. The opto-mechanical assembly will have the necessary provision to install a scanning Fabry-Perot interferometer and an adaptive optics correction system. The final image acquisition and control of the whole instrument is carried out in a workstation to provide the observer with a friendly environment. The system will operate at the 2.1 m telescope at the Observatorio Astronomico Nacional in San Pedro Martir, B.C. (Mexico), and is intended to be a first-light instrument for the new 7.8m Mexican IR-Optical Telescope.

  5. Fuzzy logic-based approach to wavelet denoising of 3D images produced by time-of-flight cameras.

    Science.gov (United States)

    Jovanov, Ljubomir; Pižurica, Aleksandra; Philips, Wilfried

    2010-10-25

    In this paper we present a new denoising method for the depth images of a 3D imaging sensor, based on the time-of-flight principle. We propose novel ways to use luminance-like information produced by a time-of flight camera along with depth images. Firstly, we propose a wavelet-based method for estimating the noise level in depth images, using luminance information. The underlying idea is that luminance carries information about the power of the optical signal reflected from the scene and is hence related to the signal-to-noise ratio for every pixel within the depth image. In this way, we can efficiently solve the difficult problem of estimating the non-stationary noise within the depth images. Secondly, we use luminance information to better restore object boundaries masked with noise in the depth images. Information from luminance images is introduced into the estimation formula through the use of fuzzy membership functions. In particular, we take the correlation between the measured depth and luminance into account, and the fact that edges (object boundaries) present in the depth image are likely to occur in the luminance image as well. The results on real 3D images show a significant improvement over the state-of-the-art in the field. PMID:21164605

  6. Paper-based three-dimensional microfluidic device for monitoring of heavy metals with a camera cell phone.

    Science.gov (United States)

    Wang, Hu; Li, Ya-jie; Wei, Jun-feng; Xu, Ji-run; Wang, Yun-hua; Zheng, Guo-xia

    2014-05-01

    A 3D paper-based microfluidic device has been developed for colorimetric determination of selected heavy metals in water samples by stacking layers of wax patterned paper and double-sided adhesive tape. It has the capability of wicking fluids and distributing microliter volumes of samples from single inlet into affrays of detection zones without external pumps, thus a range of metal assays can be simply and inexpensively performed. We demonstrate a prototype of four sample inlets for up to four heavy metal assays each, with detection limits as follows: Cu (II) = 0.29 ppm, Ni(II) = 0.33 ppm, Cd (II) = 0.19 ppm, and Cr (VI) = 0.35 ppm, which provided quantitative data that were in agreement with values gained from atomic absorption. It has the ability to identify these four metals in mixtures and is immune to interferences from either nontoxic metal ions such as Na(I) and K(I) or components found in reservoir or beach water. With the incorporation of a portable detector, a camera mobile phone, this 3D paper-based microfluidic device should be useful as a simple, rapid, and on-site screening approach of heavy metals in aquatic environments. PMID:24618990

  7. Proactive PTZ Camera Control

    Science.gov (United States)

    Qureshi, Faisal Z.; Terzopoulos, Demetri

    We present a visual sensor network—comprising wide field-of-view (FOV) passive cameras and pan/tilt/zoom (PTZ) active cameras—capable of automatically capturing closeup video of selected pedestrians in a designated area. The passive cameras can track multiple pedestrians simultaneously and any PTZ camera can observe a single pedestrian at a time. We propose a strategy for proactive PTZ camera control where cameras plan ahead to select optimal camera assignment and handoff with respect to predefined observational goals. The passive cameras supply tracking information that is used to control the PTZ cameras.

  8. Study on key techniques for camera-based hydrological record image digitization

    Science.gov (United States)

    Li, Shijin; Zhan, Di; Hu, Jinlong; Gao, Xiangtao; Bo, Ping

    2015-10-01

    With the development of information technology, the digitization of scientific or engineering drawings has received more and more attention. In hydrology, meteorology, medicine and mining industry, the grid drawing sheet is commonly used to record the observations from sensors. However, these paper drawings may be destroyed and contaminated due to improper preservation or overuse. Further, it will be a heavy workload and prone to error if these data are manually transcripted into the computer. Hence, in order to digitize these drawings, establishing the corresponding data base will ensure the integrity of data and provide invaluable information for further research. This paper presents an automatic system for hydrological record image digitization, which consists of three key techniques, i.e., image segmentation, intersection point localization and distortion rectification. First, a novel approach to the binarization of the curves and grids in the water level sheet image has been proposed, which is based on the fusion of gradient and color information adaptively. Second, a fast search strategy for cross point location is invented and point-by-point processing is thus avoided, with the help of grid distribution information. And finally, we put forward a local rectification method through analyzing the central portions of the image and utilizing the domain knowledge of hydrology. The processing speed is accelerated, while the accuracy is still satisfying. Experiments on several real water level records show that our proposed techniques are effective and capable of recovering the hydrological observations accurately.

  9. An on-line calibration algorithm for external parameters of visual system based on binocular stereo cameras

    Science.gov (United States)

    Wang, Liqiang; Liu, Zhen; Zhang, Zhonghua

    2014-11-01

    Stereo vision is the key in the visual measurement, robot vision, and autonomous navigation. Before performing the system of stereo vision, it needs to calibrate the intrinsic parameters for each camera and the external parameters of the system. In engineering, the intrinsic parameters remain unchanged after calibrating cameras, and the positional relationship between the cameras could be changed because of vibration, knocks and pressures in the vicinity of the railway or motor workshops. Especially for large baselines, even minute changes in translation or rotation can affect the epipolar geometry and scene triangulation to such a degree that visual system becomes disabled. A technology including both real-time examination and on-line recalibration for the external parameters of stereo system becomes particularly important. This paper presents an on-line method for checking and recalibrating the positional relationship between stereo cameras. In epipolar geometry, the external parameters of cameras can be obtained by factorization of the fundamental matrix. Thus, it offers a method to calculate the external camera parameters without any special targets. If the intrinsic camera parameters are known, the external parameters of system can be calculated via a number of random matched points. The process is: (i) estimating the fundamental matrix via the feature point correspondences; (ii) computing the essential matrix from the fundamental matrix; (iii) obtaining the external parameters by decomposition of the essential matrix. In the step of computing the fundamental matrix, the traditional methods are sensitive to noise and cannot ensure the estimation accuracy. We consider the feature distribution situation in the actual scene images and introduce a regional weighted normalization algorithm to improve accuracy of the fundamental matrix estimation. In contrast to traditional algorithms, experiments on simulated data prove that the method improves estimation

  10. TestDose: A nuclear medicine software based on Monte Carlo modeling for generating gamma camera acquisitions and dosimetry

    International Nuclear Information System (INIS)

    computation performed on the ICRP 110 model is also presented. Conclusions: The proposed platform offers a generic framework to implement any scintigraphic imaging protocols and voxel/organ-based dosimetry computation. Thanks to the modular nature of TestDose, other imaging modalities could be supported in the future such as positron emission tomography

  11. TestDose: A nuclear medicine software based on Monte Carlo modeling for generating gamma camera acquisitions and dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Marie-Paule, E-mail: marie-paule.garcia@univ-brest.fr; Villoing, Daphnée [UMR 1037 INSERM/UPS, CRCT, 133 Route de Narbonne, 31062 Toulouse (France); McKay, Erin [St George Hospital, Gray Street, Kogarah, New South Wales 2217 (Australia); Ferrer, Ludovic [ICO René Gauducheau, Boulevard Jacques Monod, St Herblain 44805 (France); Cremonesi, Marta; Botta, Francesca; Ferrari, Mahila [European Institute of Oncology, Via Ripamonti 435, Milano 20141 (Italy); Bardiès, Manuel [UMR 1037 INSERM/UPS, CRCT, 133 Route de Narbonne, Toulouse 31062 (France)

    2015-12-15

    computation performed on the ICRP 110 model is also presented. Conclusions: The proposed platform offers a generic framework to implement any scintigraphic imaging protocols and voxel/organ-based dosimetry computation. Thanks to the modular nature of TestDose, other imaging modalities could be supported in the future such as positron emission tomography.

  12. PSD Camera Based Position and Posture Control of Redundant Robot Considering Contact Motion

    Science.gov (United States)

    Oda, Naoki; Kotani, Kentaro

    The paper describes a position and posture controller design based on the absolute position by external PSD vision sensor for redundant robot manipulator. The redundancy enables a potential capability to avoid obstacle while continuing given end-effector jobs under contact with middle link of manipulator. Under contact motion, the deformation due to joint torsion obtained by comparing internal and external position sensor, is actively suppressed by internal/external position hybrid controller. The selection matrix of hybrid loop is given by the function of the deformation. And the detected deformation is also utilized in the compliant motion controller for passive obstacle avoidance. The validity of the proposed method is verified by several experimental results of 3link planar redundant manipulator.

  13. Deriving hydraulic roughness from camera-based high resolution topography in field and laboratory experiments

    Science.gov (United States)

    Kaiser, Andreas; Neugirg, Fabian; Ebert, Louisa; Haas, Florian; Schmidt, Jürgen; Becht, Michael; Schindewolf, Marcus

    2016-04-01

    The hydraulic roughness, represented by Manning's n, is an essential input parameter in physically based soil erosion modeling. In order to acquire the roughness values for certain areas, on-site flow experiments have to be carried out. These results are influenced by the selection of the location of the test plot and are thereby based on the subjectiveness of the researchers. The study aims on the methodological development to acquire Manning's n by creating very high-resolution surface models with structure-from-motion approaches. Data acquisition took place during several field experiments in the Lainbach valley, southern Germany, and on agricultural sites in Saxony, eastern Germany, and in central Brazil. Rill and interrill conditions were simulated by flow experiments. In order to validate our findings stream velocity as an input for the manning equation was measured with coloured dye. Grain and aggregate sizes were derived by measuring distances from a best fit line to the reconstructed soil surface. Several diameters from D50 to D90 were tested with D90 showing best correlation between tracer experiments and photogrammetrically acquired data. A variety of roughness parameters were tested (standard deviation, random roughness, Garbrecht's n and D90). Best agreement in between the particle size and the hydraulic roughness was achieved with a non-linear sigmoid function and D90 rather than with the Garbrecht equation or statistical parameters. To consolidate these findings a laboratory setup was created to reproduce field data under controlled conditions, excluding unknown influences like infiltration and changes in surface morphology by erosion.

  14. A Kinect(™) camera based navigation system for percutaneous abdominal puncture.

    Science.gov (United States)

    Xiao, Deqiang; Luo, Huoling; Jia, Fucang; Zhang, Yanfang; Li, Yong; Guo, Xuejun; Cai, Wei; Fang, Chihua; Fan, Yingfang; Zheng, Huimin; Hu, Qingmao

    2016-08-01

    Percutaneous abdominal puncture is a popular interventional method for the management of abdominal tumors. Image-guided puncture can help interventional radiologists improve targeting accuracy. The second generation of Kinect(™) was released recently, we developed an optical navigation system to investigate its feasibility for guiding percutaneous abdominal puncture, and compare its performance on needle insertion guidance with that of the first-generation Kinect(™). For physical-to-image registration in this system, two surfaces extracted from preoperative CT and intraoperative Kinect(™) depth images were matched using an iterative closest point (ICP) algorithm. A 2D shape image-based correspondence searching algorithm was proposed for generating a close initial position before ICP matching. Evaluation experiments were conducted on an abdominal phantom and six beagles in vivo. For phantom study, a two-factor experiment was designed to evaluate the effect of the operator's skill and trajectory on target positioning error (TPE). A total of 36 needle punctures were tested on a Kinect(™) for Windows version 2 (Kinect(™) V2). The target registration error (TRE), user error, and TPE are 4.26  ±  1.94 mm, 2.92  ±  1.67 mm, and 5.23  ±  2.29 mm, respectively. No statistically significant differences in TPE regarding operator's skill and trajectory are observed. Additionally, a Kinect(™) for Windows version 1 (Kinect(™) V1) was tested with 12 insertions, and the TRE evaluated with the Kinect(™) V1 is statistically significantly larger than that with the Kinect(™) V2. For the animal experiment, fifteen artificial liver tumors were inserted guided by the navigation system. The TPE was evaluated as 6.40  ±  2.72 mm, and its lateral and longitudinal component were 4.30  ±  2.51 mm and 3.80  ±  3.11 mm, respectively. This study demonstrates that the navigation accuracy of the proposed system is

  15. A Novel Camera Based Mobile Robot With Obstacle Avoidance And Fire Extinguish Control

    Directory of Open Access Journals (Sweden)

    S.Vivekanadan

    2016-04-01

    Full Text Available The project is based on mobile wireless robot technology that performs the dual operation as obstacle avoidance and fire extinguish. The sensors used here are ultrasonic sensor for obstacle avoidance and flame sensor to detect the fire. Here, the signals are received by an Arduino board for controlling the robot. The motor drives are used to drive the robot. A wireless monitoring system is used to display the present scenario.in detail It is a robot that autonomously detects and extinguish fire. It uses flame sensor for detection of fire, also ultrasonic sensor to detect obstacles and Arduino board for processing. The Fire extinguisher along with actuator is used to extinguishing the fire which is been detected. The robot continuously scans for fire. This scanning is performed by Flame sensors placed on the sides When a fire is detected, it moves in the direction of fire and stops in front of it and trigger the extinguisher to turn out the fire.In order to achieve the extinguish process a robot has arm with Electronic valve and a motor is used along with the body to change the angle of the arm. This arm and motor can be controlled by the Arduino. The power source for the robot comes from a battery.

  16. Two low-cost digital camera-based platforms for quantitative creatinine analysis in urine.

    Science.gov (United States)

    Debus, Bruno; Kirsanov, Dmitry; Yaroshenko, Irina; Sidorova, Alla; Piven, Alena; Legin, Andrey

    2015-10-01

    In clinical analysis creatinine is a routine biomarker for the assessment of renal and muscular dysfunctions. Although several techniques have been proposed for a fast and accurate quantification of creatinine in human serum or urine, most of them require expensive or complex apparatus, advanced sample preparation or skilled operators. To circumvent these issues, we propose two home-made platforms based on a CD Spectroscope (CDS) and Computer Screen Photo-assisted Technique (CSPT) for the rapid assessment of creatinine level in human urine. Both systems display a linear range (r(2) = 0.9967 and 0.9972, respectively) from 160 μmol L(-1) to 1.6 mmol L(-1) for standard creatinine solutions (n = 15) with respective detection limits of 89 μmol L(-1) and 111 μmol L(-1). Good repeatability was observed for intra-day (1.7-2.9%) and inter-day (3.6-6.5%) measurements evaluated on three consecutive days. The performance of CDS and CSPT was also validated in real human urine samples (n = 26) using capillary electrophoresis data as reference. Corresponding Partial Least-Squares (PLS) regression models provided for mean relative errors below 10% in creatinine quantification. PMID:26454461

  17. 基于全景视觉的监控系统设计%A Surveillance System Based on Omnidirectional Camera

    Institute of Scientific and Technical Information of China (English)

    刘栋栋

    2012-01-01

    A surveillance system based on omnidirectional camera is proposed in this article Omnidirectional camera has a wide field of view, can be used to detect, track targets in a large scale PTZ camera has flexible field of view, can be used to capture detailed image of targets In this paper, omnidirectional camera is used in conjunction with PTZ cameras, detection and tracking of multiple moving objects in large scale area as well as capturing detail images of target is realized by using the hierarchical tracking algorithm, multiple sensors data fusion and multiple cameras cooperation algorithm Experiment verified the performance of the surveillance network%设计了一个基于全景视觉的多摄像机监控网络.全景相机视野广,可以实现大范围的目标检测与跟踪.云台摄像机视角具有一定的自由度,可以捕捉目标的高分辨率图像.将全景相机与云台相机相互配合,通过多传感器的数据融合,分层次的跟踪算法及多相机调度算法,实现了大范围的多个运动目标的检测与跟踪,并能捕获目标的清晰图像.实验验证了该系统的有效性和合理性.

  18. Lytro camera technology: theory, algorithms, performance analysis

    Science.gov (United States)

    Georgiev, Todor; Yu, Zhan; Lumsdaine, Andrew; Goma, Sergio

    2013-03-01

    The Lytro camera is the first implementation of a plenoptic camera for the consumer market. We consider it a successful example of the miniaturization aided by the increase in computational power characterizing mobile computational photography. The plenoptic camera approach to radiance capture uses a microlens array as an imaging system focused on the focal plane of the main camera lens. This paper analyzes the performance of Lytro camera from a system level perspective, considering the Lytro camera as a black box, and uses our interpretation of Lytro image data saved by the camera. We present our findings based on our interpretation of Lytro camera file structure, image calibration and image rendering; in this context, artifacts and final image resolution are discussed.

  19. Assessments of occurrence and distribution of mammals in forests of the Garden Route National Park based on camera trapping

    Directory of Open Access Journals (Sweden)

    Nicholas Hanekom

    2015-03-01

    Full Text Available Eleven mammal census sites were selected in four different Afrotemperate Forest types in the Garden Route National Park, South Africa. At each site, an array of eight camera traps was deployed along trails for between 28 and 45 days. Based on accumulation curves, this was generally sufficient for recording most of the focal mammal species at each site. Only 12 mammal (≥ 1 kg species were recorded, two of which were primarily wetland species. The most widely captured taxa were bushbuck, Tragelaphus scriptus (all 11 sites; and caracal, Caracal caracal (10 sites. The most frequently photographed species were bushbuck (40% and chacma baboon, Papio ursinus (22%. The number of species and total capture rates did not differ (P > 0.10 between dry (scrub and high forests and moist (medium-moist to wet forests, or between small (< 41 km² forests and a large forest complex. However, at species level, the capture rates of caracal and vervet monkey, Chlorocebus pygerythus; were significantly lower (P ≤ 0.05 in the large forest complex than in small forests, whilst those of bushpig, Potamochoerus larvatus; were higher. Trapping cycles of between 28 and 45 days, which recorded the highest number of threatened and protected South African species, were from small forests.Conservation implications: The role of small forests in the conservation of mammals in the Garden Route National Park should be investigated further, because relatively high numbers of threatened and protected South African mammal species were recorded in these locations.

  20. Infrared camera based thermometry for quality assurance of superficial hyperthermia applicators

    Science.gov (United States)

    Müller, Johannes; Hartmann, Josefin; Bert, Christoph

    2016-04-01

    The purpose of this work was to provide a feasible and easy to apply phantom-based quality assurance (QA) procedure for superficial hyperthermia (SHT) applicators by means of infrared (IR) thermography. The VarioCAM hr head (InfraTec, Dresden, Germany) was used to investigate the SA-812, the SA-510 and the SA-308 applicators (all: Pyrexar Medical, Salt Lake City, UT, USA). Probe referencing and thermal equilibrium procedures were applied to determine the emissivity of the muscle-equivalent agar phantom. Firstly, the disturbing potential of thermal conduction on the temperature distribution inside the phantom was analyzed through measurements after various heating times (5-50 min). Next, the influence of the temperature of the water bolus between the SA-812 applicator and the phantom’s surface was evaluated by varying its temperature. The results are presented in terms of characteristic values (extremal temperatures, percentiles and effective field sizes (EFS)) and temperature-area-histograms (TAH). Lastly, spiral antenna applicators were compared by the introduced characteristics. The emissivity of the used phantom was found to be ɛ  =  0.91  ±  0.03, the results of both methods coincided. The influence of thermal conduction with regard to heating time was smaller than expected; the EFS of the SA-812 applicator had a size of (68.6  ±  6.7) cm2, averaged group variances were  ±3.0 cm2. The TAHs show that the influence of the water bolus is mostly limited to depths of  technical QA.

  1. Time-Based Readout of a Silicon Photomultiplier (SiPM) for Time of Flight Positron Emission Tomography (TOF-PET)

    CERN Document Server

    Powolny, F; Brunner, S E; Hillemanns, H; Meyer, T; Garutti, E; Williams, M C S; Auffray, E; Shen, W; Goettlich, M; Jarron, P; Schultz-Coulon, H C

    2011-01-01

    Time of flight (TOF) measurements in positron emission tomography (PET) are very challenging in terms of timing performance, and should ideally achieve less than 100 ps FWHM precision. We present a time-based differential technique to read out silicon photomultipliers (SiPMs) which has less than 20 ps FWHM electronic jitter. The novel readout is a fast front end circuit (NINO) based on a first stage differential current mode amplifier with 20 Omega input resistance. Therefore the amplifier inputs are connected differentially to the SiPM's anode and cathode ports. The leading edge of the output signal provides the time information, while the trailing edge provides the energy information. Based on a Monte Carlo photon-generation model, HSPICE simulations were run with a 3 x 3 mm(2) SiPM-model, read out with a differential current amplifier. The results of these simulations are presented here and compared with experimental data obtained with a 3 x 3 x 15 mm(3) LSO crystal coupled to a SiPM. The measured time coi...

  2. Matching the best viewing angle in depth cameras for biomass estimation based on poplar seedling geometry.

    Science.gov (United States)

    Andújar, Dionisio; Fernández-Quintanilla, César; Dorado, José

    2015-01-01

    In energy crops for biomass production a proper plant structure is important to optimize wood yields. A precise crop characterization in early stages may contribute to the choice of proper cropping techniques. This study assesses the potential of the Microsoft Kinect for Windows v.1 sensor to determine the best viewing angle of the sensor to estimate the plant biomass based on poplar seedling geometry. Kinect Fusion algorithms were used to generate a 3D point cloud from the depth video stream. The sensor was mounted in different positions facing the tree in order to obtain depth (RGB-D) images from different angles. Individuals of two different ages, e.g., one month and one year old, were scanned. Four different viewing angles were compared: top view (0°), 45° downwards view, front view (90°) and ground upwards view (-45°). The ground-truth used to validate the sensor readings consisted of a destructive sampling in which the height, leaf area and biomass (dry weight basis) were measured in each individual plant. The depth image models agreed well with 45°, 90° and -45° measurements in one-year poplar trees. Good correlations (0.88 to 0.92) between dry biomass and the area measured with the Kinect were found. In addition, plant height was accurately estimated with a few centimeters error. The comparison between different viewing angles revealed that top views showed poorer results due to the fact the top leaves occluded the rest of the tree. However, the other views led to good results. Conversely, small poplars showed better correlations with actual parameters from the top view (0°). Therefore, although the Microsoft Kinect for Windows v.1 sensor provides good opportunities for biomass estimation, the viewing angle must be chosen taking into account the developmental stage of the crop and the desired parameters. The results of this study indicate that Kinect is a promising tool for a rapid canopy characterization, i.e., for estimating crop biomass

  3. Matching the Best Viewing Angle in Depth Cameras for Biomass Estimation Based on Poplar Seedling Geometry

    Directory of Open Access Journals (Sweden)

    Dionisio Andújar

    2015-06-01

    Full Text Available In energy crops for biomass production a proper plant structure is important to optimize wood yields. A precise crop characterization in early stages may contribute to the choice of proper cropping techniques. This study assesses the potential of the Microsoft Kinect for Windows v.1 sensor to determine the best viewing angle of the sensor to estimate the plant biomass based on poplar seedling geometry. Kinect Fusion algorithms were used to generate a 3D point cloud from the depth video stream. The sensor was mounted in different positions facing the tree in order to obtain depth (RGB-D images from different angles. Individuals of two different ages, e.g., one month and one year old, were scanned. Four different viewing angles were compared: top view (0°, 45° downwards view, front view (90° and ground upwards view (−45°. The ground-truth used to validate the sensor readings consisted of a destructive sampling in which the height, leaf area and biomass (dry weight basis were measured in each individual plant. The depth image models agreed well with 45°, 90° and −45° measurements in one-year poplar trees. Good correlations (0.88 to 0.92 between dry biomass and the area measured with the Kinect were found. In addition, plant height was accurately estimated with a few centimeters error. The comparison between different viewing angles revealed that top views showed poorer results due to the fact the top leaves occluded the rest of the tree. However, the other views led to good results. Conversely, small poplars showed better correlations with actual parameters from the top view (0°. Therefore, although the Microsoft Kinect for Windows v.1 sensor provides good opportunities for biomass estimation, the viewing angle must be chosen taking into account the developmental stage of the crop and the desired parameters. The results of this study indicate that Kinect is a promising tool for a rapid canopy characterization, i.e., for estimating crop

  4. Polarized positron sources for the future linear colliders

    International Nuclear Information System (INIS)

    This thesis introduces the polarized positron source as one of the key element of the future Linear Collider (LC). In this context, the different schemes of the polarized positron source are described highlighting the main issues in this technology. In particular, the main focus is on the Compton based positron source adopted by the CLIC as a preferred option for the future positron source upgrade. In this case, the circularly polarized high energy gamma rays resulting from Compton scattering are directed to a production target where an electromagnetic cascade gives rise to the production of positrons by e+-e- pair conversion. To increase the efficiency of the gamma ray production stage, a multiple collision point line integrated in energy recovery linac is proposed. The simulations of the positron production, capture and primary acceleration allow to estimate the positron production efficiency and provide a simple parametrization of the Compton based polarized positron source in the view of the future LC requirements. The storage ring based Compton source option, so-called Compton ring, is also described. The main constraint of this scheme is given by the beam dynamics resulting in the large energy spread and increased bunch length affecting the gamma ray production rate. An original theoretical contribution is shown to calculate the energy spread induced by Compton scattering. Moreover, an experiment to test the gamma ray production by Compton scattering using a state-of-art laser system developed at LAL has been conducted in the framework of the 'Mighty Laser' project at the ATF, KEK. The experimental layout as well as the main results obtained are discussed in details. The studies carried out in this thesis show that the polarized positron source based on Compton scattering is a promising candidate for the future LC polarized positron source. (author)

  5. 基于 OpenCV 的双目摄像机标定技术研究%Binocular Camera Calibration Technique Based on OpenCV

    Institute of Scientific and Technical Information of China (English)

    王长元; 邢世蒙

    2014-01-01

    As a foundational research in the field of binocular stereo vision ,camera calibration technique has great theo‐retical value and practical value .This paper focuses on the binocular stereo vision camera calibration technique to analyze the binocular camera calibration method based on OpenCV .OpenCV camera calibration based on binocular is more flexible than traditional scaling techniques ,and has a good calibration accuracy .%摄像机标定技术作为双目立体视觉领域的一个基础性研究课题,具有很大的理论研究价值和实际应用价值。论文围绕双目立体视觉中的双目摄像机标定技术,分析基于OpenCV的双目摄像机标定的方法。基于OpenCV的双目摄像机标定比传统的定标技术更为灵活,并且具有不错的定标精度。

  6. 基于 OpenCV 的双目摄像机标定技术研究%Binocular Camera Calibration Technique Based on OpenCV

    Institute of Scientific and Technical Information of China (English)

    王长元; 邢世蒙

    2014-01-01

    摄像机标定技术作为双目立体视觉领域的一个基础性研究课题,具有很大的理论研究价值和实际应用价值。论文围绕双目立体视觉中的双目摄像机标定技术,分析基于OpenCV的双目摄像机标定的方法。基于OpenCV的双目摄像机标定比传统的定标技术更为灵活,并且具有不错的定标精度。%As a foundational research in the field of binocular stereo vision ,camera calibration technique has great theo‐retical value and practical value .This paper focuses on the binocular stereo vision camera calibration technique to analyze the binocular camera calibration method based on OpenCV .OpenCV camera calibration based on binocular is more flexible than traditional scaling techniques ,and has a good calibration accuracy .

  7. Comparison of Five Segmentation Tools for 18F-Fluoro-Deoxy-Glucose-Positron Emission Tomography-Based Target Volume Definition in Head and Neck Cancer

    International Nuclear Information System (INIS)

    Purpose: Target-volume delineation for radiation treatment to the head and neck area traditionally is based on physical examination, computed tomography (CT), and magnetic resonance imaging. Additional molecular imaging with 18F-fluoro-deoxy-glucose (FDG)-positron emission tomography (PET) may improve definition of the gross tumor volume (GTV). In this study, five methods for tumor delineation on FDG-PET are compared with CT-based delineation. Methods and Materials: Seventy-eight patients with Stages II-IV squamous cell carcinoma of the head and neck area underwent coregistered CT and FDG-PET. The primary tumor was delineated on CT, and five PET-based GTVs were obtained: visual interpretation, applying an isocontour of a standardized uptake value of 2.5, using a fixed threshold of 40% and 50% of the maximum signal intensity, and applying an adaptive threshold based on the signal-to-background ratio. Absolute GTV volumes were compared, and overlap analyses were performed. Results: The GTV method of applying an isocontour of a standardized uptake value of 2.5 failed to provide successful delineation in 45% of cases. For the other PET delineation methods, volume and shape of the GTV were influenced heavily by the choice of segmentation tool. On average, all threshold-based PET-GTVs were smaller than on CT. Nevertheless, PET frequently detected significant tumor extension outside the GTV delineated on CT (15-34% of PET volume). Conclusions: The choice of segmentation tool for target-volume definition of head and neck cancer based on FDG-PET images is not trivial because it influences both volume and shape of the resulting GTV. With adequate delineation, PET may add significantly to CT- and physical examination-based GTV definition

  8. 基于FPGA的数字认证相机设计%Design of digital authentication camera based on FPGA

    Institute of Scientific and Technical Information of China (English)

    潘晓中; 罗鹏; 刘方明; 雷雨

    2012-01-01

    A model of digital authentication camera based on semi-fragile watermarking was proposed, which is imple- mented on FPGA. Our watermarking algorithm was based on two invariant properties of DCT coefficients before and af- ter JPEG compressions, resisting JPEG compression under certain quality factor. At the same time, attacks were detec- ted and located. The hardware structure of the proposed model was designed and implemented upon the multimedia ex- ploitation platform of DE2 _ 70 + TRDB _ D5M + LTM. Watermarking is real-timely generated and then inserted con- comitantly with image capture, and thus authentication is guaranteed from beginning of image obtainment.%提出了一种基于图像半脆弱水印的数字认证相机模型,并在FPGA平台上予以实现。水印算法根据图像DCT系数在JPEG压缩过程中的两个不变特性进行设计,可以抵抗一定程度的JPEG压缩,同时检测恶意篡改并定位。模型的硬件结构在DE2_70+TRDB_D5M+LTM的FPGA多媒体开发平台上进行了设计实现,水印信息可伴随图像的采集过程实时生成和嵌入,从而在图像获取的源头保证了其可认证性。

  9. Quantum resonances in reflection of relativistic electrons and positrons

    Energy Technology Data Exchange (ETDEWEB)

    Eykhorn, Yu.L.; Korotchenko, K.B. [National Research Tomsk Polytechnic University, 30, Lenin Avenue, Tomsk 634050 (Russian Federation); Pivovarov, Yu.L. [National Research Tomsk Polytechnic University, 30, Lenin Avenue, Tomsk 634050 (Russian Federation); Tomsk State University, 36, Lenin Avenue, Tomsk 634050 (Russian Federation); Takabayashi, Y. [SAGA Light Source, 8-7 Yayoigaoka, Tosu, Saga 841-0005 (Japan)

    2015-07-15

    Calculations based on the use of realistic potential of the system of crystallographic planes confirm earlier results on existence of resonances in reflection of relativistic electrons and positrons by the crystal surface, if the crystallographic planes are parallel to the surface.The physical reason of predicted phenomena, similar to the band structure of transverse energy levels, is connected with the Bloch form of the wave functions of electrons (positrons) near the crystallographic planes, which appears both in the case of planar channeling of relativistic electrons (positrons) and in reflection by a crystal surface. Calculations show that positions of maxima in reflection of relativistic electrons and positrons by crystal surface specifically depend on the angle of incidence with respect to the crystal surface and relativistic factor of electrons/positrons. These maxima form the Darwin tables similar to that in ultra-cold neutron diffraction.

  10. Development of Texas intense positron source

    Science.gov (United States)

    Köymen, A. R.; Ünlü, K.; Jacobsen, F. M.; Göktepeli, S.; Wehring, B. W.

    1999-02-01

    The Texas Intense Positron Source (TIPS) is a reactor-based low-energy positron beam facility utilizing some novel techniques in positron beam production. This facility will be located at the University of Texas (UT) at Austin Nuclear Engineering Teaching Laboratory (NETL) and is being developed by UT Austin and UT Arlington researchers. TIPS will use a large area (total area of 900-1800 cm 2) 64Cu source to supply fast β + particles for subsequent moderation to form an intense monoenergetic positron beam in the energy range of 0-50 keV with an expected intensity of 10 8 e +/s. Natural copper will be neutron activated near the core of the NETL 1 MW TRIGA Mark II research reactor to produce the 64Cu isotope. The activated source will be transported to the moderator/remoderator assembly, outside the biological shield of the reactor. This assembly combines the primary moderation and posterior remoderation of the fast β + particles into one stage using solid Kr to produce a low-energy positron source of a few eV with a diameter of 8 mm. The low-energy positron beam is then extracted by an electrostatic modified SOA gun and after further acceleration to 5 keV, the beam is focused onto the object slit of a 90° bending magnet. After further focusing and another 90° bend, the beam enters the main accelerator/decelerator that transports the beam onto the target for experimentation. The components of TIPS have been manufactured and are currently being optimized. In this communication we present some of the details of the TIPS facility and furthermore briefly discuss its intended applications.

  11. Positron Emission Tomography with Three-Dimensional Reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Erlandsson, K.

    1996-10-01

    The development of two different low-cost scanners for positron emission tomography (PET) based on 3D acquisition are presented. The first scanner consists of two rotating scintillation cameras, and produces quantitative images, which have shown to be clinically useful. The second one is a system with two opposed sets of detectors, based on the limited angle tomography principle, dedicated for mammographic studies. The development of low-cost PET scanners can increase the clinical impact of PET, which is an expensive modality, only available at a few centres world-wide and mainly used as a research tool. A 3D reconstruction method was developed that utilizes all the available data. The size of the data-sets is considerably reduced, using the single-slice rebinning approximation. The 3D reconstruction is divided into 1D axial deconvolution and 2D transaxial reconstruction, which makes it relatively fast. This method was developed for the rotating scanner, but was also implemented for multi-ring scanners with and without inter plane septa. An iterative 3D reconstruction method was developed for the limited angle scanner, based on the new concept of `mobile pixels`, which reduces the finite pixel errors and leads to an improved signal to noise ratio. 100 refs.

  12. Simulation of the annihilation emission of galactic positrons

    International Nuclear Information System (INIS)

    Positrons annihilate in the central region of our Galaxy. This has been known since the detection of a strong emission line centered on an energy of 511 keV in the direction of the Galactic center. This gamma-ray line is emitted during the annihilation of positrons with electrons from the interstellar medium. The spectrometer SPI, onboard the INTEGRAL observatory, performed spatial and spectral analyses of the positron annihilation emission. This thesis presents a study of the Galactic positron annihilation emission based on models of the different interactions undergone by positrons in the interstellar medium. The models are relied on our present knowledge of the properties of the interstellar medium in the Galactic bulge, where most of the positrons annihilate, and of the physics of positrons (production, propagation and annihilation processes). In order to obtain constraints on the positrons sources and physical characteristics of the annihilation medium, we compared the results of the models to measurements provided by the SPI spectrometer. (author)

  13. Application of positrons to the study of thin technological films

    CERN Document Server

    Nathwani, M

    2001-01-01

    Positron Doppler broadening experiments using variable-energy positron beams with positron implantation energy range 0-25 keV and 0-30 keV, respectively, have been performed on a selection of thin technological films. By measuring the spectrum of the 511 keV annihilation gamma-rays photopeak the profile of the Doppler broadening of the photopeak, due to the motion of the annihilating positron-electron pair, can be analysed. Varying the incident positron energy enables the positron t$ probe a sample at different depths which makes it possible to study samples by analysing the Doppler broadening of the photopeak as a function of positron depth. The Doppler broadening experiments on gallium nitride films with different crystallographic orientations revealed distortions in the Doppler broadened profile at low energies. The distortions were identified to be a consequence of significant para-positronium annihilation taking place near the sample surface. A parameter based on the proportion of positrons trapped at an...

  14. Formation of a high intensity low energy positron string

    Science.gov (United States)

    Donets, E. D.; Donets, E. E.; Syresin, E. M.; Itahashi, T.; Dubinov, A. E.

    2004-05-01

    The possibility of a high intensity low energy positron beam production is discussed. The proposed Positron String Trap (PST) is based on the principles and technology of the Electron String Ion Source (ESIS) developed in JINR during the last decade. A linear version of ESIS has been used successfully for the production of intense highly charged ion beams of various elements. Now the Tubular Electron String Ion Source (TESIS) concept is under study and this opens really new promising possibilities in physics and technology. In this report, we discuss the application of the tubular-type trap for the storage of positrons cooled to the cryogenic temperatures of 0.05 meV. It is intended that the positron flux at the energy of 1-5 eV, produced by the external source, is injected into the Tubular Positron Trap which has a similar construction as the TESIS. Then the low energy positrons are captured in the PST Penning trap and are cooled down because of their synchrotron radiation in the strong (5-10 T) applied magnetic field. It is expected that the proposed PST should permit storing and cooling to cryogenic temperature of up to 5×109 positrons. The accumulated cooled positrons can be used further for various physics applications, for example, antihydrogen production.

  15. 基于成像传感器特征的相机源识别%Source camera identification based on characteristics of imaging sensor

    Institute of Scientific and Technical Information of China (English)

    蒋英春

    2012-01-01

    Based on the principle of pattern recognition, a robust method for source camera identification is proposed by using imaging sensor. The characteristics of imaging process of the camera are analysed, and a robust classifier is constructed to determine the brand/model of the camera by extracting noise statistical features of imaging sensor. The proposed features include image denoising difference, statistical moment of wavelet sub-bands and color feature. Experimental results demonstrate that the design of classifier can effectively identify the correct camera brand/model with good robustness.%基于模式分类的方法,提出一种利用成像传感器特征进行相机源辨识的鲁棒性方法.分析数码相机成像的特点,提取传感器噪声信息的统计特征,设计一个鲁棒的分类器来确定相机的品牌/型号.所提取的图像特征包括图像去噪差值、小波域子带统计矩以及通道颜色特征.实验结果表明所设计的算法不仅可以有效地正确辨识相机品牌/型号,还具有良好的鲁棒性.

  16. Ground-based search for the brightest transiting planets with the Multi-site All-Sky CAmeRA - MASCARA

    CERN Document Server

    Snellen, Ignas; Navarro, Ramon; Bettonvil, Felix; Kenworthy, Matthew; de Mooij, Ernst; Otten, Gilles; ter Horst, Rik; Poole, Rudolf le

    2012-01-01

    The Multi-site All-sky CAmeRA MASCARA is an instrument concept consisting of several stations across the globe, with each station containing a battery of low-cost cameras to monitor the near-entire sky at each location. Once all stations have been installed, MASCARA will be able to provide a nearly 24-hr coverage of the complete dark sky, down to magnitude 8, at sub-minute cadence. Its purpose is to find the brightest transiting exoplanet systems, expected in the V=4-8 magnitude range - currently not probed by space- or ground-based surveys. The bright/nearby transiting planet systems, which MASCARA will discover, will be the key targets for detailed planet atmosphere observations. We present studies on the initial design of a MASCARA station, including the camera housing, domes, and computer equipment, and on the photometric stability of low-cost cameras showing that a precision of 0.3-1% per hour can be readily achieved. We plan to roll out the first MASCARA station before the end of 2013. A 5-station MASCA...

  17. Change detection and characterization of volcanic activity using ground based low-light and near infrared cameras to monitor incandescence and thermal signatures

    Science.gov (United States)

    Harrild, Martin; Webley, Peter; Dehn, Jonathan

    2015-04-01

    Knowledge and understanding of precursory events and thermal signatures are vital for monitoring volcanogenic processes, as activity can often range from low level lava effusion to large explosive eruptions, easily capable of ejecting ash up to aircraft cruise altitudes. Using ground based remote sensing techniques to monitor and detect this activity is essential, but often the required equipment and maintenance is expensive. Our investigation explores the use of low-light cameras to image volcanic activity in the visible to near infrared (NIR) portion of the electromagnetic spectrum. These cameras are ideal for monitoring as they are cheap, consume little power, are easily replaced and can provide near real-time data. We focus here on the early detection of volcanic activity, using automated scripts, that capture streaming online webcam imagery and evaluate image pixel brightness values to determine relative changes and flag increases in activity. The script is written in Python, an open source programming language, to reduce the overall cost to potential consumers and increase the application of these tools across the volcanological community. In addition, by performing laboratory tests to determine the spectral response of these cameras, a direct comparison of collocated low-light and thermal infrared cameras has allowed approximate eruption temperatures and effusion rates to be determined from pixel brightness. The results of a field campaign in June, 2013 to Stromboli volcano, Italy, are also presented here. Future field campaigns to Latin America will include collaborations with INSIVUMEH in Guatemala, to apply our techniques to Fuego and Santiaguito volcanoes.

  18. Design of motion camera control system based on DSP%基于DSP的运动相机控制系统设计

    Institute of Scientific and Technical Information of China (English)

    付文

    2012-01-01

    设计了一种基于DSP的运动相机控制系统,对相机做“重复启停”运动进行控制.使用TMS320LF2407控制ASM46AK-H100谐波减速步进电机,驱动相机很快到达指定位置进行拍照,实验数据表明可以重复拍摄周期且图像清晰.%The paper designs a control system based on DSP in motion camera, which is used to control the repeated start-stop of motion camera. TMS320LF24O7 is used to control ASM46AK-H1000 harmonic decelerate stepping motor, and then the motion camera driven by the control system reaches the designated location to take pictures. The experimental results show that the motion camera can repeat shooting cycle and take clear pictures.

  19. Measured performance of a low-cost thermal infrared pushbroom camera based on uncooled microbolometer FPA for space applications

    Science.gov (United States)

    Geoffray, Herve; Guerin, Francois

    2001-12-01

    The FUEGO system is a remote sensing satellite constellation aimed at providing early fire alarms throughout the forest fire risk area of Europe and other temperate areas. An excellent revisit time (<16 min.) can be achieved from a low earth orbit constellation of 12 mini-satellites. Each mini-satellite carries infrared sensors in MIR, TIR, and VIS/NIR bands operating in push-broom mode and a depointing mirror to cover a large swath. This can ensure early detection of fire outbreaks with a 2500 km swath. This paper presents the thermal infrared (TIR) camera characteristics. The main purposes of the TIR channels are the discrimination of clouds and detection of forest fire false alarms during low light or night operation. The main requirements for the TIR camera are: spectral range 8 - 12 micrometers ; FOV equals +/- 7.2 degree(s) (177 km on ground); ground resolution 369 m; NETD < 0.4 K 300 K (blackbody temperature); large dynamic range of radiance (equivalent blackbody temperature 240 K to 380 K). The TIR pushbroom camera is built around an off-the- shelf SOFRADIR microbolometer FPA of 320 X 240 elements with a pitch of 45 micrometers . The focal plane is uncooled and operates at T equals 303 K. The paper details the tests performed on the engineering model of the camera. More particularly, radiometric characterization and MTF measurement are described. The demonstrated camera performance together with the low cost and complexity of the camera offer a large field of opportunities for future space applications.

  20. HHEBBES! All sky camera system: status update

    Science.gov (United States)

    Bettonvil, F.

    2015-01-01

    A status update is given of the HHEBBES! All sky camera system. HHEBBES!, an automatic camera for capturing bright meteor trails, is based on a DSLR camera and a Liquid Crystal chopper for measuring the angular velocity. Purpose of the system is to a) recover meteorites; b) identify origin/parental bodies. In 2015, two new cameras were rolled out: BINGO! -alike HHEBBES! also in The Netherlands-, and POgLED, in Serbia. BINGO! is a first camera equipped with a longer focal length fisheye lens, to further increase the accuracy. Several minor improvements have been done and the data reduction pipeline was used for processing two prominent Dutch fireballs.

  1. The calibration of cellphone camera-based colorimetric sensor array and its application in the determination of glucose in urine.

    Science.gov (United States)

    Jia, Ming-Yan; Wu, Qiong-Shui; Li, Hui; Zhang, Yu; Guan, Ya-Feng; Feng, Liang

    2015-12-15

    In this work, a novel approach that can calibrate the colors obtained with a cellphone camera was proposed for the colorimetric sensor array. The variations of ambient light conditions, imaging positions and even cellphone brands could all be compensated via taking the black and white backgrounds of the sensor array as references, thereby yielding accurate measurements. The proposed calibration approach was successfully applied to the detection of glucose in urine by a colorimetric sensor array. Snapshots of the glucose sensor array by a cellphone camera were calibrated by the proposed compensation method and the urine samples at different glucose concentrations were well discriminated with no confusion after a hierarchical clustering analysis. PMID:26275712

  2. The NIKA instrument: results and perspectives towards a permanent KID based camera for the Pico Veleta observatory

    CERN Document Server

    D'Addabbo, A; Adane, A; Ade, P; André, P; Beelen, A; Belier, B; Benoit, A; Bideaud, A; Billot, N; Bourrion, O; Calvo, M; Catalano, A; Coiffard, G; Comis, B; Désert, F -X; Doyle, S; Goupy, J; Kramer, C; Leclercq, S; Macias-Perez, J; Martino, J; Mauskopf, P; Mayet, F; Monfardini, A; Pajot, F; Pascale, E; Ponthieu, N; Revéret, V; Rodriguez, L; Savini, G; Schuster, K F; Sievers, A; Tucker, C; Zylka, R

    2013-01-01

    The New IRAM KIDs Array (NIKA) is a pathfinder instrument devoted to millimetric astronomy. In 2009 it was the first multiplexed KID camera on the sky; currently it is installed at the focal plane of the IRAM 30-meters telescope at Pico Veleta (Spain). We present preliminary data from the last observational run and the ongoing developments devoted to the next NIKA-2 kilopixels camera, to be commissioned in 2015. We also report on the latest laboratory measurements, and recent improvements in detector cosmetics and read-out electronics. Furthermore, we describe a new acquisition strategy allowing us to improve the photometric accuracy, and the related automatic tuning procedure.

  3. Image-Based Navigation for the SnowEater Robot Using a Low-Resolution USB Camera

    OpenAIRE

    Ernesto Rivas; Koutarou Komagome; Kazuhisa Mitobe; Genci Capi

    2015-01-01

    This paper reports on a navigation method for the snow-removal robot called SnowEater. The robot is designed to work autonomously within small areas (around 30 m2 or less) following line segment paths. The line segment paths are laid out so as much snow as possible can be cleared from an area. Navigation is accomplished by using an onboard low-resolution USB camera and a small marker located in the area to be cleared. Low-resolution cameras allow only limited localization and present signific...

  4. The behavior of 3d electrons and defects in TiAl-based alloys containing V and Cu studied by positron annihilation

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Information of defects and 3d electrons in transition metals (Ti,V,Cu) and TiAl-based alloys (Ti50Al50,Ti50Al48V2,Ti50Al48Cu2) can be extracted from the positron lifetime and coincidence Doppler broadening spectra. The results show that the 3d electron signals for the transition metals Ti,V and Cu increase with the number of 3d electrons. The 3d electron signal and the electron density for binary TiAl alloy are relatively low due to the (Ti)3d-(Al)3p interactions. The addition of V and Cu atoms to TiAl alloy leads to the increase in the electron densities in bulk and the defects on grain boundaries simultaneously,as well as the enhancement of the 3d electron signal. The 3d electron signal in the spectrum of Ti50Al48Cu2 alloy is higher than that of Ti50Al48V2 alloy.

  5. Fine scale structures of pulsating auroras in the early recovery phase of substorm using ground-based EMCCD camera

    Science.gov (United States)

    Nishiyama, Takanori; Sakanoi, Takeshi; Miyoshi, Yoshizumi; Kataoka, Ryuho; Hampton, Donald; Katoh, Yuto; Asamura, Kazushi; Okano, Shoichi

    2012-10-01

    We have carried out ground-based observations, optimized to temporal and spatial characteristics of pulsating auroras (PAs) in the micro/meso scale, using an electron multiplying charge coupled device (EMCCD) camera with a wide field of view corresponding to 100 × 100 km at an altitude of 110 km and a high sampling rate up to 100 frames per second. We focus on transient PAs propagating southward around 1100 UT, in the early recovery phase of the substorm, on 4th March 2011. Three independent patches (PA1-3) each with different periods between 4 and 7 s were observed, which means that the periodicity was not explained by the electron bounce motion and strongly depended on local plasma conditions in the magnetosphere or in the ionosphere. One more insight is that only PA1 had also a sharp peak of modulations around 1.5 Hz, with a narrow frequency width of 0.30 Hz, and the strong modulations existed as a small spot in the center of PA1. We have also conducted cross spectrum analysis and have obtained coherence and phase distributions for auroral variations between 0.1 and 3.0 Hz. The results indicated that low frequency variations from 0.2 to 0.5 Hz inside PA1-3 propagated as a collective motion in well-defined directions. The estimated horizontal propagation velocities ranged from 50 to 120 km/s at the auroral altitude. The velocities are almost consistent with the Alfven speed at the magnetic equator, which suggests that compressional waves have an effect on PA via modulations of the ambient plasma environment.

  6. Applications of positron depth profiling

    Energy Technology Data Exchange (ETDEWEB)

    Hakvoort, R.A.

    1993-12-23

    In this thesis some contributions of the positron-depth profiling technique to materials science have been described. Following studies are carried out: Positron-annihilation measurements on neon-implanted steel; Void creation in silicon by helium implantation; Density of vacancy-type defects present in amorphous silicon prepared by ion implantation; Measurements of other types of amorphous silicon; Epitaxial cobalt disilicide prepared by cobalt outdiffusion. Positron-annihilation experiments on low-pressure CVD silicon-nitride films. (orig./MM).

  7. Positrons observed to originate from thunderstorms

    Science.gov (United States)

    Fishman, Gerald J.

    2011-05-01

    Thunderstorms are the result of warm, moist air moving rapidly upward, then cooling and condensing. Electrification occurs within thunderstorms (as noted by Benjamin Franklin), produced primarily by frictional processes among ice particles. This leads to lightning discharges; the types, intensities, and rates of these discharges vary greatly among thunderstorms. Even though scientists have been studying lightning since Franklin's time, new phenomena associated with thunderstorms are still being discovered. In particular, a recent finding by Briggs et al. [2011], based on observations by the Gamma-Ray Burst Monitor (GBM) instrument on NASA's satellite-based Fermi Gamma-ray Space Telescope (Fermi), shows that positrons are also generated by thunderstorms. Positrons are the antimatter form of electrons—they have the same mass and charge as an electron but are of positive rather than negative charge; hence the name positron. Observations of positrons from thunderstorms may lead to a new tool for understanding the electrification and high-energy processes occurring within thunderstorms. New theories, along with new observational techniques, are rapidly evolving in this field.

  8. The influence of electron multiplication and internal X-ray fluorescence on the performance of a scintillator-based gamma camera

    Energy Technology Data Exchange (ETDEWEB)

    Hall, David J., E-mail: d.j.hall@open.ac.uk [e2v centre for electronic imaging, The Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Holland, Andrew; Soman, Matthew [e2v centre for electronic imaging, The Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom)

    2012-06-21

    When considering the 'standard' gamma-camera, one might picture an array of photo-multiplier tubes or a similar array of small-area detectors. This array of imaging detectors would be attached to a corresponding array of scintillator modules (or a solid layer of scintillator) in order to give a high detection efficiency in the energy region of interest, usually 8-140 keV. Over recent years, developments of gamma-cameras capable of achieving much higher spatial resolutions have led to a new range of systems based on Charge-Coupled Devices with some form of signal multiplication between the scintillator and the CCD in order for one to distinguish the light output from the scintillator above the CCD noise. The use of an Electron-Multiplying Charge-Coupled Device (EM-CCD) incorporates the gain process within the CCD through a form of 'impact ionisation', however, the gain process introduces an 'excess noise factor' due to the probabilistic nature of impact ionisation and this additional noise consequently has an impact on the spatial and spectral resolution of the detector. Internal fluorescence in the scintillator, producing K-shell X-ray fluorescence photons that can be detected alongside the incident gamma-rays, also has a major impact on the imaging capabilities of gamma-cameras. This impact varies dramatically from the low spatial resolution to high spatial resolution camera system. Through a process of simulation and experimental testing focussed on the high spatial resolution (EM-CCD based) variant, the factors affecting the performance of gamma-camera systems are discussed and the results lead to important conclusions to be considered for the development of future systems. This paper presents a study into the influence of the EM-CCD gain process and the internal X-ray fluorescence in the scintillator on the performance of scintillator-based gamma cameras (CCD-based or otherwise), making use of Monte Carlo simulations to demonstrate

  9. Atomic collisions involving pulsed positrons

    DEFF Research Database (Denmark)

    Merrison, J. P.; Bluhme, H.; Field, D.;

    2000-01-01

    Conventional slow positron beams have been widely and profitably used to study atomic collisions and have been instrumental in understanding the dynamics of ionization. The next generation of positron atomic collision studies are possible with the use of charged particle traps. Not only can large...... instantaneous intensities be achieved with in-beam accumulation, but more importantly many orders of magnitude improvement in energy and spatial resolution can be achieved using positron cooling. Atomic collisions can be studied on a new energy scale with unprecedented precion and control. The use of...... accelerators for producing intense positron pulses will be discussed in the context of atomic physics experiments....

  10. Test bed for real-time image acquisition and processing systems based on FlexRIO, CameraLink, and EPICS

    Energy Technology Data Exchange (ETDEWEB)

    Barrera, E., E-mail: eduardo.barrera@upm.es [Grupo de Investigación en Instrumentación y Acústica Aplicada, Universidad Politécnica de Madrid (UPM) (Spain); Ruiz, M.; Sanz, D. [Grupo de Investigación en Instrumentación y Acústica Aplicada, Universidad Politécnica de Madrid (UPM) (Spain); Vega, J.; Castro, R. [Asociación EURATOM/CIEMAT para Fusión, Madrid (Spain); Juárez, E.; Salvador, R. [Centro de Investigación en Tecnologías Software y Sistemas Multimedia para la Sostenibilidad, Universidad Politécnica de Madrid (UPM) (Spain)

    2014-05-15

    Highlights: • The test bed allows for the validation of real-time image processing techniques. • Offers FPGA (FlexRIO) image processing that does not require CPU intervention. • Is fully compatible with the architecture of the ITER Fast Controllers. • Provides flexibility and easy integration in distributed experiments based on EPICS. - Abstract: Image diagnostics are becoming standard ones in nuclear fusion. At present, images are typically analyzed off-line. However, real-time processing is occasionally required (for instance, hot-spot detection or pattern recognition tasks), which will be the objective for the next generation of fusion devices. In this paper, a test bed for image generation, acquisition, and real-time processing is presented. The proposed solution is built using a Camera Link simulator, a Camera Link frame-grabber, a PXIe chassis, and offers software interface with EPICS. The Camera Link simulator (PCIe card PCIe8 DVa C-Link from Engineering Design Team) generates simulated image data (for example, from video-movies stored in fusion databases) using a Camera Link interface to mimic the frame sequences produced with diagnostic cameras. The Camera Link frame-grabber (FlexRIO Solution from National Instruments) includes a field programmable gate array (FPGA) for image acquisition using a Camera Link interface; the FPGA allows for the codification of ad-hoc image processing algorithms using LabVIEW/FPGA software. The frame grabber is integrated in a PXIe chassis with system architecture similar to that of the ITER Fast Controllers, and the frame grabber provides a software interface with EPICS to program all of its functionalities, capture the images, and perform the required image processing. The use of these four elements allows for the implementation of a test bed system that permits the development and validation of real-time image processing techniques in an architecture that is fully compatible with that of the ITER Fast Controllers

  11. Test bed for real-time image acquisition and processing systems based on FlexRIO, CameraLink, and EPICS

    International Nuclear Information System (INIS)

    Highlights: • The test bed allows for the validation of real-time image processing techniques. • Offers FPGA (FlexRIO) image processing that does not require CPU intervention. • Is fully compatible with the architecture of the ITER Fast Controllers. • Provides flexibility and easy integration in distributed experiments based on EPICS. - Abstract: Image diagnostics are becoming standard ones in nuclear fusion. At present, images are typically analyzed off-line. However, real-time processing is occasionally required (for instance, hot-spot detection or pattern recognition tasks), which will be the objective for the next generation of fusion devices. In this paper, a test bed for image generation, acquisition, and real-time processing is presented. The proposed solution is built using a Camera Link simulator, a Camera Link frame-grabber, a PXIe chassis, and offers software interface with EPICS. The Camera Link simulator (PCIe card PCIe8 DVa C-Link from Engineering Design Team) generates simulated image data (for example, from video-movies stored in fusion databases) using a Camera Link interface to mimic the frame sequences produced with diagnostic cameras. The Camera Link frame-grabber (FlexRIO Solution from National Instruments) includes a field programmable gate array (FPGA) for image acquisition using a Camera Link interface; the FPGA allows for the codification of ad-hoc image processing algorithms using LabVIEW/FPGA software. The frame grabber is integrated in a PXIe chassis with system architecture similar to that of the ITER Fast Controllers, and the frame grabber provides a software interface with EPICS to program all of its functionalities, capture the images, and perform the required image processing. The use of these four elements allows for the implementation of a test bed system that permits the development and validation of real-time image processing techniques in an architecture that is fully compatible with that of the ITER Fast Controllers

  12. LED characterization for development of on-board calibration unit of CCD-based advanced wide-field sensor camera of Resourcesat-2A

    Science.gov (United States)

    Chatterjee, Abhijit; Verma, Anurag

    2016-05-01

    The Advanced Wide Field Sensor (AWiFS) camera caters to high temporal resolution requirement of Resourcesat-2A mission with repeativity of 5 days. The AWiFS camera consists of four spectral bands, three in the visible and near IR and one in the short wave infrared. The imaging concept in VNIR bands is based on push broom scanning that uses linear array silicon charge coupled device (CCD) based Focal Plane Array (FPA). On-Board Calibration unit for these CCD based FPAs is used to monitor any degradation in FPA during entire mission life. Four LEDs are operated in constant current mode and 16 different light intensity levels are generated by electronically changing exposure of CCD throughout the calibration cycle. This paper describes experimental setup and characterization results of various flight model visible LEDs (λP=650nm) for development of On-Board Calibration unit of Advanced Wide Field Sensor (AWiFS) camera of RESOURCESAT-2A. Various LED configurations have been studied to meet dynamic range coverage of 6000 pixels silicon CCD based focal plane array from 20% to 60% of saturation during night pass of the satellite to identify degradation of detector elements. The paper also explains comparison of simulation and experimental results of CCD output profile at different LED combinations in constant current mode.

  13. Ground-based detection of nighttime clouds above Manila Observatory (14.64°N, 121.07°E) using a digital camera.

    Science.gov (United States)

    Gacal, Glenn Franco B; Antioquia, Carlo; Lagrosas, Nofel

    2016-08-01

    Ground-based cloud detection at nighttime is achieved by using cameras, lidars, and ceilometers. Despite these numerous instruments gathering cloud data, there is still an acknowledged scarcity of information on quantified local cloud cover, especially at nighttime. In this study, a digital camera is used to continuously collect images near the sky zenith at nighttime in an urban environment. An algorithm is developed to analyze pixel values of images of nighttime clouds. A minimum threshold pixel value of 17 is assigned to determine cloud occurrence. The algorithm uses temporal averaging to estimate the cloud fraction based on the results within the limited field of view. The analysis of the data from the months of January, February, and March 2015 shows that cloud occurrence is low during the months with relatively lower minimum temperature (January and February), while cloud occurrence during the warmer month (March) increases. PMID:27505386

  14. Development of Open source-based automatic shooting and processing UAV imagery for Orthoimage Using Smart Camera UAV

    Science.gov (United States)

    Park, J. W.; Jeong, H. H.; Kim, J. S.; Choi, C. U.

    2016-06-01

    Recently, aerial photography with unmanned aerial vehicle (UAV) system uses UAV and remote controls through connections of ground control system using bandwidth of about 430 MHz radio Frequency (RF) modem. However, as mentioned earlier, existing method of using RF modem has limitations in long distance communication. The Smart Camera equipments's LTE (long-term evolution), Bluetooth, and Wi-Fi to implement UAV that uses developed UAV communication module system carried out the close aerial photogrammetry with the automatic shooting. Automatic shooting system is an image capturing device for the drones in the area's that needs image capturing and software for loading a smart camera and managing it. This system is composed of automatic shooting using the sensor of smart camera and shooting catalog management which manages filmed images and information. Processing UAV imagery module used Open Drone Map. This study examined the feasibility of using the Smart Camera as the payload for a photogrammetric UAV system. The open soure tools used for generating Android, OpenCV (Open Computer Vision), RTKLIB, Open Drone Map.

  15. Development of Open source-based automatic shooting and processing UAV imagery for Orthoimage Using Smart Camera UAV

    Directory of Open Access Journals (Sweden)

    J. W. Park

    2016-06-01

    Full Text Available Recently, aerial photography with unmanned aerial vehicle (UAV system uses UAV and remote controls through connections of ground control system using bandwidth of about 430 MHz radio Frequency (RF modem. However, as mentioned earlier, existing method of using RF modem has limitations in long distance communication. The Smart Camera equipments’s LTE (long-term evolution, Bluetooth, and Wi-Fi to implement UAV that uses developed UAV communication module system carried out the close aerial photogrammetry with the automatic shooting. Automatic shooting system is an image capturing device for the drones in the area’s that needs image capturing and software for loading a smart camera and managing it. This system is composed of automatic shooting using the sensor of smart camera and shooting catalog management which manages filmed images and information. Processing UAV imagery module used Open Drone Map. This study examined the feasibility of using the Smart Camera as the payload for a photogrammetric UAV system. The open soure tools used for generating Android, OpenCV (Open Computer Vision, RTKLIB, Open Drone Map.

  16. Time-resolved imaging of prompt-gamma rays for proton range verification using a knife-edge slit camera based on digital photon counters

    OpenAIRE

    Cambraia Lopes, P; Clementel, E; Crespo, P; Henrotin, S; Huizenga, J.; G. Janssens; Parodi, K.; Prieels, D.; Roellinghoff, F; Smeets, J.; Stichelbaut, F.; Schaart, D. R.

    2015-01-01

    Proton range monitoring may facilitate online adaptive proton therapy and improve treatment outcomes. Imaging of proton-induced prompt gamma (PG) rays using a knife-edge slit collimator is currently under investigation as a potential tool for real-time proton range monitoring. A major challenge in collimated PG imaging is the suppression of neutron-induced background counts. In this work, we present an initial performance test of two knife-edge slit camera prototypes based on arrays of digita...

  17. Rice Crop Field Monitoring System with Radio Controlled Helicopter Based Near Infrared Cameras Through Nitrogen Content Estimation and Its Distribution Monitoring

    OpenAIRE

    Kohei Arai; Yuko Miura; Osamu Shigetomi; Hideaki Munemoto

    2013-01-01

    Rice crop field monitoring system with radio controlled helicopter based near infrared cameras is proposed together with nitrogen content estimation method for monitoring its distribution in the field in concern. Through experiments at the Saga Prefectural Agricultural Research Institute: SPARI, it is found that the proposed system works well for monitoring nitrogen content in the rice crop which indicates quality of the rice crop and its distribution in the field in concern. Therefore, it be...

  18. Modular strategy for the construction of radiometalated antibodies for positron emission tomography based on inverse electron demand Diels-Alder click chemistry.

    Science.gov (United States)

    Zeglis, Brian M; Mohindra, Priya; Weissmann, Gabriel I; Divilov, Vadim; Hilderbrand, Scott A; Weissleder, Ralph; Lewis, Jason S

    2011-10-19

    A modular system for the construction of radiometalated antibodies was developed based on the bioorthogonal cycloaddition reaction between 3-(4-benzylamino)-1,2,4,5-tetrazine and the strained dienophile norbornene. The well-characterized, HER2-specific antibody trastuzumab and the positron emitting radioisotopes (64)Cu and (89)Zr were employed as a model system. The antibody was first covalently coupled to norbornene, and this stock of norbornene-modified antibody was then reacted with tetrazines bearing the chelators 1,4,7,10-tetraazacyclo-dodecane-1,4,7,10-tetraacetic acid (DOTA) or desferrioxamine (DFO) and subsequently radiometalated with (64)Cu and (89)Zr, respectively. The modification strategy is simple and robust, and the resultant radiometalated constructs were obtained in high specific activity (2.7-5.3 mCi/mg). For a given initial stoichiometric ratio of norbornene to antibody, the (64)Cu-DOTA- and (89)Zr-DFO-based probes were shown to be nearly identical in terms of stability, the number of chelates per antibody, and immunoreactivity (>93% in all cases). In vivo PET imaging and acute biodistribution experiments revealed significant, specific uptake of the (64)Cu- and (89)Zr-trastuzumab bioconjugates in HER2-positive BT-474 xenografts, with little background uptake in HER2-negative MDA-MB-468 xenografts or other tissues. This modular system-one in which the divergent point is a single covalently modified antibody stock that can be reacted selectively with various chelators-will allow for both greater versatility and more facile cross-comparisons in the development of antibody-based radiopharmaceuticals.

  19. Image-Based Navigation for the SnowEater Robot Using a Low-Resolution USB Camera

    Directory of Open Access Journals (Sweden)

    Ernesto Rivas

    2015-04-01

    Full Text Available This paper reports on a navigation method for the snow-removal robot called SnowEater. The robot is designed to work autonomously within small areas (around 30 m2 or less following line segment paths. The line segment paths are laid out so as much snow as possible can be cleared from an area. Navigation is accomplished by using an onboard low-resolution USB camera and a small marker located in the area to be cleared. Low-resolution cameras allow only limited localization and present significant errors. However, these errors can be overcome by using an efficient navigation algorithm to exploit the merits of these cameras. For stable robust autonomous snow removal using this limited information, the most reliable data are selected and the travel paths are controlled. The navigation paths are a set of radially arranged line segments emanating from a marker placed in the environment area to be cleared, in a place where it is not covered by snow. With this method, by using a low-resolution camera (640 × 480 pixels and a small marker (100 × 100 mm, the robot covered the testing area following line segments. For a reference angle of 4.5° between line paths, the average results are: 4° for motion on hard floor and 4.8° for motion on compacted snow. The main contribution of this study is the design of a path-following control algorithm capable of absorbing the errors generated by a low-cost camera.

  20. Positron Emission Tomography of the Heart

    Science.gov (United States)

    Schelbert, H. R.; Phelps, M. E.; Kuhl, D. E.

    1979-01-01

    Positron emission computed tomography (PCT) represents an important new tool for the noninvasive evaluation and, more importantly, quantification of myocardial performance. Most currently available techniques permit assessment of only one aspect of cardiac function, i.e., myocardial perfusion by gamma scintillation camera imaging with Thallium-201 or left ventricular function by echocardiography or radionuclide angiocardiography. With PCT it may become possible to study all three major segments of myocardial performance, i.e., regional blood flow, mechanical function and, most importantly, myocardial metabolism. Each of these segments can either be evaluated separately or in combination. This report briefly describes the principles and technological advantages of the imaging device, reviews currently available radioactive tracers and how they can be employed for the assessment of flow, function and metabolism; and, lastly, discusses possible applications of PCT for the study of cardiac physiology or its potential role in the diagnosis of cardiac disease.

  1. Positron emission tomography of the heart

    International Nuclear Information System (INIS)

    Positron emission computed tomography (PCT) represents an important new tool for the noninvasive evaluation and, more importantly, quantification of myocardial performance. Most currently available techniques permit assessment of only one aspect of cardiac function, i.e., myocardial perfusion by gamma scintillation camera imaging with Thallium-201 or left ventricular function by echocardiography or radionuclide angiocardiography. With PCT it may become possible to study all three major segments of myocardial performance, i.e., regional blood flow, mechanical function and, most importantly, myocardial metabolism. Each of these segments can either be evaluated separately or in combination. This report briefly describes the principles and technological advantages of the imaging device, reviews currently available radioactive tracers and how they can be employed for the assessment of flow, function and metabolism; and, lastly, discusses possible applications of PCT for the study of cardiac physiology or its potential role in the diagnosis of cardiac disease

  2. Positronics of subnanometer atomistic imperfections in solids as a high-informative structure characterization tool.

    Science.gov (United States)

    Shpotyuk, Oleh; Filipecki, Jacek; Ingram, Adam; Golovchak, Roman; Vakiv, Mykola; Klym, Halyna; Balitska, Valentyna; Shpotyuk, Mykhaylo; Kozdras, Andrzej

    2015-01-01

    Methodological possibilities of positron annihilation lifetime (PAL) spectroscopy applied to characterize different types of nanomaterials treated within three-term fitting procedure are critically reconsidered. In contrast to conventional three-term analysis based on admixed positron- and positronium-trapping modes, the process of nanostructurization is considered as substitutional positron-positronium trapping within the same host matrix. Developed formalism allows estimate interfacial void volumes responsible for positron trapping and characteristic bulk positron lifetimes in nanoparticle-affected inhomogeneous media. This algorithm was well justified at the example of thermally induced nanostructurization occurring in 80GeSe2-20Ga2Se3 glass. PMID:25852373

  3. Positronics of subnanometer atomistic imperfections in solids as a high-informative structure characterization tool.

    Science.gov (United States)

    Shpotyuk, Oleh; Filipecki, Jacek; Ingram, Adam; Golovchak, Roman; Vakiv, Mykola; Klym, Halyna; Balitska, Valentyna; Shpotyuk, Mykhaylo; Kozdras, Andrzej

    2015-01-01

    Methodological possibilities of positron annihilation lifetime (PAL) spectroscopy applied to characterize different types of nanomaterials treated within three-term fitting procedure are critically reconsidered. In contrast to conventional three-term analysis based on admixed positron- and positronium-trapping modes, the process of nanostructurization is considered as substitutional positron-positronium trapping within the same host matrix. Developed formalism allows estimate interfacial void volumes responsible for positron trapping and characteristic bulk positron lifetimes in nanoparticle-affected inhomogeneous media. This algorithm was well justified at the example of thermally induced nanostructurization occurring in 80GeSe2-20Ga2Se3 glass.

  4. Positron Emission Tomography (PET)

    Science.gov (United States)

    Welch, M. J.

    1990-01-01

    Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET.

  5. Positron Emission Tomography (PET)

    Energy Technology Data Exchange (ETDEWEB)

    Welch, M.J.

    1990-01-01

    Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET. 22 figs.

  6. Positron Emission Tomography (PET)

    International Nuclear Information System (INIS)

    Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET. 22 figs

  7. Analytical Study of the Effect of the System Geometry on Photon Sensitivity and Depth of Interaction of Positron Emission Mammography

    Directory of Open Access Journals (Sweden)

    Pablo Aguiar

    2012-01-01

    Full Text Available Positron emission mammography (PEM cameras are novel-dedicated PET systems optimized to image the breast. For these cameras it is essential to achieve an optimum trade-off between sensitivity and spatial resolution and therefore the main challenge for the novel cameras is to improve the sensitivity without degrading the spatial resolution. We carry out an analytical study of the effect of the different detector geometries on the photon sensitivity and the angle of incidence of the detected photons which is related to the DOI effect and therefore to the intrinsic spatial resolution. To this end, dual head detectors were compared to box and different polygon-detector configurations. Our results showed that higher sensitivity and uniformity were found for box and polygon-detector configurations compared to dual-head cameras. Thus, the optimal configuration in terms of sensitivity is a PEM scanner based on a polygon of twelve (dodecagon or more detectors. We have shown that this configuration is clearly superior to dual-head detectors and slightly higher than box, octagon, and hexagon detectors. Nevertheless, DOI effects are increased for this configuration compared to dual head and box scanners and therefore an accurate compensation for this effect is required.

  8. Pulmonary studies using positron emission tomography

    International Nuclear Information System (INIS)

    The detailed investigation of regional differences in lung function at a local level began when suitable γ-ray emitting isotopes and focused external radiation detectors (especially the Anger γ-camera) became available. A major recent advance has been the development of positron emission tomography (PET), which provides a powerful combination of highly accurate tomographic reconstruction of radioisotope concentration with a potentially unlimited list of biological compounds to be labelled with the positron emitting isotopes of oxygen, carbon and fluorine. Early studies using PET focused on the inhalation of 11CO (or C15O) and 19Ne gases and the intravenous injection of 13N in saline and H215O for the measurement of relatively simple aspects of regional lung function, such as tissue, blood and gas volumes, blood flow, ventilation and ventilation/perfusion (V'A/Q'). More recent work has been directed towards the more challenging areas of regional endothelial permeability, carbohydrate utilization, enzyme and receptor binding assays, and in vivo pharmacokinetics. The short physical half-lives of the isotopes (17 s to 2 h) and the noninvasive nature of PET allows serial measurements to be made on patients (within the constraints of permitted radiation doses) to assess the effect of physiological and therapeutic interventions. (au) 80 refs

  9. The development of MWPC-based systems for imaging X-rays, gamma rays and charged particles in applications in medicine, materials science and biochemistry

    International Nuclear Information System (INIS)

    The development is described of several complete MWPC based imaging systems for applications in medicine (a positron camera), industry (a second positron camera), materials science (two 2-d X-ray diffraction systems) and biochemistry (an autoradiography system for 2-d immunoelectrophoresis using a tritium label). A moderately detailed description of two of the systems is given and some special developments in the areas of fast modular electronics for the delay line readout technique and fast imaging data taking are described in more detail. The state of rapid expansion of this area of application of MWPC technology and its relationship to the microprocessor revolution are discussed. (orig.)

  10. 基于OpenCV的摄像机标定方法实现%Camera calibration method based on OpenCV

    Institute of Scientific and Technical Information of China (English)

    王冬; 夏乙; 殷木一; 陈玉林; 郑程; 刘海林

    2013-01-01

    In order to realize the camera calibration in 3D reconstruction system,a calculation method based on an ideal camera model,in which the influences of lens radial distortion and tangential distortion were brought,was adopted,and a camera calibration algorithm based on OpenCV(open source computer vision library)was developed in Visual C++ environment. The calibration result was compared with that based on Matlab camera calibration tool kit. The experimental result shows that the pro⁃posed method has the advantages of high calibration precision and good robust,and can meet the needs of actual application and other computer vision systems.%  为了实现在三维重建系统中的对摄像机进行标定的目的,采用理想摄像机成像模型为基础,在模型中引入透镜径向畸变和切向畸变影响的计算方法。在VC++环境下开发了一种基于OpenCV算法库的摄像机标定算法,并同基于Mat⁃lab摄像机标定工具箱的标定结果进行了比较。实验结果表明,该方法具有标定精度高、鲁棒性好等优点,可以满足增强现实和其他计算机视觉系统的需要。

  11. Camera calibration method based on OpenCV%基于OpenCV的摄像机标定方法实现

    Institute of Scientific and Technical Information of China (English)

    王冬; 夏乙; 殷木一; 陈玉林; 郑程; 刘海林

    2013-01-01

    In order to realize the camera calibration in 3D reconstruction system,a calculation method based on an ideal camera model,in which the influences of lens radial distortion and tangential distortion were brought,was adopted,and a camera calibration algorithm based on OpenCV(open source computer vision library)was developed in Visual C++ environment. The calibration result was compared with that based on Matlab camera calibration tool kit. The experimental result shows that the pro⁃posed method has the advantages of high calibration precision and good robust,and can meet the needs of actual application and other computer vision systems.%  为了实现在三维重建系统中的对摄像机进行标定的目的,采用理想摄像机成像模型为基础,在模型中引入透镜径向畸变和切向畸变影响的计算方法。在VC++环境下开发了一种基于OpenCV算法库的摄像机标定算法,并同基于Mat⁃lab摄像机标定工具箱的标定结果进行了比较。实验结果表明,该方法具有标定精度高、鲁棒性好等优点,可以满足增强现实和其他计算机视觉系统的需要。

  12. Positron Emission Tomography/Computed Tomography Imaging of Residual Skull Base Chordoma Before Radiotherapy Using Fluoromisonidazole and Fluorodeoxyglucose: Potential Consequences for Dose Painting

    Energy Technology Data Exchange (ETDEWEB)

    Mammar, Hamid, E-mail: hamid.mammar@unice.fr [Radiation Oncology Department, Antoine Lacassagne Center, Nice (France); CNRS-UMR 6543, Institute of Developmental Biology and Cancer, University of Nice Sophia Antipolis, Nice (France); Kerrou, Khaldoun; Nataf, Valerie [Department of Nuclear Medicine and Radiopharmacy, Tenon Hospital, and University Pierre et Marie Curie, Paris (France); Pontvert, Dominique [Proton Therapy Center of Orsay, Curie Institute, Paris (France); Clemenceau, Stephane [Department of Neurosurgery, Pitie-Salpetriere Hospital, Paris (France); Lot, Guillaume [Department of Neurosurgery, Adolph De Rothschild Foundation, Paris (France); George, Bernard [Department of Neurosurgery, Lariboisiere Hospital, Paris (France); Polivka, Marc [Department of Pathology, Lariboisiere Hospital, Paris (France); Mokhtari, Karima [Department of Pathology, Pitie-Salpetriere Hospital, Paris (France); Ferrand, Regis; Feuvret, Loiec; Habrand, Jean-louis [Proton Therapy Center of Orsay, Curie Institute, Paris (France); Pouyssegur, Jacques; Mazure, Nathalie [CNRS-UMR 6543, Institute of Developmental Biology and Cancer, University of Nice Sophia Antipolis, Nice (France); Talbot, Jean-Noeel [Department of Nuclear Medicine and Radiopharmacy, Tenon Hospital, and University Pierre et Marie Curie, Paris (France)

    2012-11-01

    Purpose: To detect the presence of hypoxic tissue, which is known to increase the radioresistant phenotype, by its uptake of fluoromisonidazole (18F) (FMISO) using hybrid positron emission tomography/computed tomography (PET/CT) imaging, and to compare it with the glucose-avid tumor tissue imaged with fluorodeoxyglucose (18F) (FDG), in residual postsurgical skull base chordoma scheduled for radiotherapy. Patients and Methods: Seven patients with incompletely resected skull base chordomas were planned for high-dose radiotherapy (dose {>=}70 Gy). All 7 patients underwent FDG and FMISO PET/CT. Images were analyzed qualitatively by visual examination and semiquantitatively by computing the ratio of the maximal standardized uptake value (SUVmax) of the tumor and cerebellum (T/C R), with delineation of lesions on conventional imaging. Results: Of the eight lesion sites imaged with FDG PET/CT, only one was visible, whereas seven of nine lesions were visible on FMISO PET/CT. The median SUVmax in the tumor area was 2.8 g/mL (minimum 2.1; maximum 3.5) for FDG and 0.83 g/mL (minimum 0.3; maximum 1.2) for FMISO. The T/C R values ranged between 0.30 and 0.63 for FDG (median, 0.41) and between 0.75 and 2.20 for FMISO (median,1.59). FMISO T/C R >1 in six lesions suggested the presence of hypoxic tissue. There was no correlation between FMISO and FDG uptake in individual chordomas (r = 0.18, p = 0.7). Conclusion: FMISO PET/CT enables imaging of the hypoxic component in residual chordomas. In the future, it could help to better define boosted volumes for irradiation and to overcome the radioresistance of these lesions. No relationship was founded between hypoxia and glucose metabolism in these tumors after initial surgery.

  13. Vacuum Camera Cooler

    Science.gov (United States)

    Laugen, Geoffrey A.

    2011-01-01

    Acquiring cheap, moving video was impossible in a vacuum environment, due to camera overheating. This overheating is brought on by the lack of cooling media in vacuum. A water-jacketed camera cooler enclosure machined and assembled from copper plate and tube has been developed. The camera cooler (see figure) is cup-shaped and cooled by circulating water or nitrogen gas through copper tubing. The camera, a store-bought "spy type," is not designed to work in a vacuum. With some modifications the unit can be thermally connected when mounted in the cup portion of the camera cooler. The thermal conductivity is provided by copper tape between parts of the camera and the cooled enclosure. During initial testing of the demonstration unit, the camera cooler kept the CPU (central processing unit) of this video camera at operating temperature. This development allowed video recording of an in-progress test, within a vacuum environment.

  14. Making Ceramic Cameras

    Science.gov (United States)

    Squibb, Matt

    2009-01-01

    This article describes how to make a clay camera. This idea of creating functional cameras from clay allows students to experience ceramics, photography, and painting all in one unit. (Contains 1 resource and 3 online resources.)

  15. Constrained space camera assembly

    Science.gov (United States)

    Heckendorn, Frank M.; Anderson, Erin K.; Robinson, Casandra W.; Haynes, Harriet B.

    1999-01-01

    A constrained space camera assembly which is intended to be lowered through a hole into a tank, a borehole or another cavity. The assembly includes a generally cylindrical chamber comprising a head and a body and a wiring-carrying conduit extending from the chamber. Means are included in the chamber for rotating the body about the head without breaking an airtight seal formed therebetween. The assembly may be pressurized and accompanied with a pressure sensing means for sensing if a breach has occurred in the assembly. In one embodiment, two cameras, separated from their respective lenses, are installed on a mounting apparatus disposed in the chamber. The mounting apparatus includes means allowing both longitudinal and lateral movement of the cameras. Moving the cameras longitudinally focuses the cameras, and moving the cameras laterally away from one another effectively converges the cameras so that close objects can be viewed. The assembly further includes means for moving lenses of different magnification forward of the cameras.

  16. High resolution Cerenkov light imaging of induced positron distribution in proton therapy

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Seiichi, E-mail: s-yama@met.nagoya-u.ac.jp; Fujii, Kento; Morishita, Yuki; Okumura, Satoshi; Komori, Masataka [Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Aichi 461-8673 (Japan); Toshito, Toshiyuki [Department of Proton Therapy Physics, Nagoya Proton Therapy Center, Nagoya City West Medical Center, Aichi 462-8508 (Japan)

    2014-11-01

    Purpose: In proton therapy, imaging of the positron distribution produced by fragmentation during or soon after proton irradiation is a useful method to monitor the proton range. Although positron emission tomography (PET) is typically used for this imaging, its spatial resolution is limited. Cerenkov light imaging is a new molecular imaging technology that detects the visible photons that are produced from high-speed electrons using a high sensitivity optical camera. Because its inherent spatial resolution is much higher than PET, the authors can measure more precise information of the proton-induced positron distribution with Cerenkov light imaging technology. For this purpose, they conducted Cerenkov light imaging of induced positron distribution in proton therapy. Methods: First, the authors evaluated the spatial resolution of our Cerenkov light imaging system with a {sup 22}Na point source for the actual imaging setup. Then the transparent acrylic phantoms (100 × 100 × 100 mm{sup 3}) were irradiated with two different proton energies using a spot scanning proton therapy system. Cerenkov light imaging of each phantom was conducted using a high sensitivity electron multiplied charge coupled device (EM-CCD) camera. Results: The Cerenkov light’s spatial resolution for the setup was 0.76 ± 0.6 mm FWHM. They obtained high resolution Cerenkov light images of the positron distributions in the phantoms for two different proton energies and made fused images of the reference images and the Cerenkov light images. The depths of the positron distribution in the phantoms from the Cerenkov light images were almost identical to the simulation results. The decay curves derived from the region-of-interests (ROIs) set on the Cerenkov light images revealed that Cerenkov light images can be used for estimating the half-life of the radionuclide components of positrons. Conclusions: High resolution Cerenkov light imaging of proton-induced positron distribution was possible. The

  17. Cyclotrons and positron emitting radiopharmaceuticals

    International Nuclear Information System (INIS)

    The state of the art of Positron Emission Tomography (PET) technology as related to cyclotron use and radiopharmaceutical production is reviewed. The paper discusses available small cyclotrons, the positron emitters which can be produced and the yields possible, target design, and radiopharmaceutical development and application. 97 refs., 12 tabs

  18. Positron production within our atmosphere

    Science.gov (United States)

    Dwyer, Joseph

    2016-04-01

    Positrons are commonly produced within our atmosphere by cosmic rays and the decay radioactive isotopes. Energetic positrons are also produced by pair production from the gamma rays generated by relativistic runaway electrons. Indeed, such positrons have been detected in Terrestrial Electron Beams (TEBs) in the inner magnetosphere by Fermi/GBM. In addition, positrons play an important role in relativistic feedback discharges (also known as dark lightning). Relativistic feedback models suggest that these discharges may be responsible for Terrestrial Gamma-ray Flashes (TGFs) and some gamma-ray glows. When producing TGFs, relativistic feedback discharges may generate large, lightning-like currents with current moments reaching hundreds of kA-km. In addition, relativistic feedback discharges also may limit the electric field that is possible in our atmosphere, affecting other mechanisms for generating runaway electrons. It is interesting that positrons, often thought of as exotic particles, may play an important role in thunderstorm processes. In this presentation, the role of positrons in high-energy atmospheric physics will be discussed. The unusual observation of positron clouds inside a thunderstorm by the ADELE instrument on an NCAR/NSF Gulfstream V aircraft will also be described. These observations illustrate that we still have much to learn about positron production within our atmosphere.

  19. Cyclotrons and positron emitting radiopharmaceuticals

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, A.P.; Fowler, J.S.

    1984-01-01

    The state of the art of Positron Emission Tomography (PET) technology as related to cyclotron use and radiopharmaceutical production is reviewed. The paper discusses available small cyclotrons, the positron emitters which can be produced and the yields possible, target design, and radiopharmaceutical development and application. 97 refs., 12 tabs. (ACR)

  20. Positron Emission Tomography Based Elucidation of the Enhanced Permeability and Retention Effect in Dogs with Cancer Using Copper-64 Liposomes

    DEFF Research Database (Denmark)

    Hansen, Anders Elias; Petersen, Anncatrine Luisa; Henriksen, Jonas Rosager;

    2015-01-01

    -effect in large animals and humans with spontaneously developed cancer. In the present paper, we describe a novel loading method of copper-64 into PEGylated liposomes and use these liposomes to evaluate the EPR-effect in 11 canine cancer patients with spontaneous solid tumors by PET/CT imaging. We thereby provide......Since the first report of the enhanced permeability and retention (EPR) effect, the research in nanocarrier based antitumor drugs has been intense. The field has been devoted to treatment of cancer by exploiting EPR-based accumulation of nanocarriers in solid tumors, which for many years...... included carcinomas displayed high uptake levels of liposomes, whereas one of four sarcomas displayed signs of liposome retention. We conclude that nanocarrier-radiotracers could be important in identifying cancer patients that will benefit from nanocarrier-based therapeutics in clinical practice....

  1. A small-scale comparison of Iceland scallop size distributions obtained from a camera based autonomous underwater vehicle and dredge survey.

    Science.gov (United States)

    Singh, Warsha; Örnólfsdóttir, Erla B; Stefansson, Gunnar

    2014-01-01

    An approach is developed to estimate size of Iceland scallop shells from AUV photos. A small-scale camera based AUV survey of Iceland scallops was conducted at a defined site off West Iceland. Prior to height estimation of the identified shells, the distortions introduced by the vehicle orientation and the camera lens were corrected. The average AUV pitch and roll was 1.3 and 2.3 deg that resulted in AUV survey. Further investigations are necessary to evaluate any underlying bias and to validate how representative these surveys are of the true population. The low resolution images made identification of smaller scallops difficult. Overall, the observations of very few small scallops in both surveys could be attributed to low recruitment levels in the recent years due to the known scallop parasite outbreak in the region. PMID:25303243

  2. 基于OpenCV算法库的摄像机标定方法%Camera Calibration Method Based on OpenCV Algorithm Library

    Institute of Scientific and Technical Information of China (English)

    刘国平; 蔡建平

    2011-01-01

    通过分析摄像机的透视投影成像模型和四个笛卡尔坐标系之间的变换关系,从而明确摄像机标定的目的就是求解其内外参数。比较常用标定方法的优缺点,在VC++环境下开发了一种基于OpencV算法库的摄像机标定程序,实验结果表明,该程序能自动、快速、精确地标定摄像机。%Through analyzing the perspective imaging model and coordinate transformations between four different Cartesian coordinate systems, a camera calibration method based on OpenCV algorithm library is presented. The camera calibration aims to solve the intrin

  3. Camera Calibration Based on OpenCV in VS2010 Environment%OpenCV在摄像机标定上的应用

    Institute of Scientific and Technical Information of China (English)

    梅向辉; 杨洁

    2015-01-01

    In this paper, the accuracy of camera calibration in the scope of computer vision is improved by taking the lens distortion into consideration based on the analysis of camera model of OpenCV. In VS2010 environment, camera calibration algorithm based on the OpenCV is obtained owing to the full use of the OpenCv library functions. The algorithm enjoys high accuracy of calibration, simplicity of operation, great running efficiency and excellent scalability, thus meeting real-time requirements.%针对计算机视觉领域内的摄像机标定问题,在分析 OpenCV 中摄像机模型的基础上,考虑透镜畸变,提高标定精度.在VS2010开发环境下,充分利用OpenCv函数库的功能,给出了基于OpenCv的摄像机标定算法.该算法具有标定结果精确、操作简单、运行效率高、可扩展性好,可满足实时性要求.

  4. On the use of tapered bismuth germanate crystals in positron emission tomography

    International Nuclear Information System (INIS)

    An analytical model of gamma ray transport within the detectors of a positron camera, based on exponential absorption, has been developed and verified experimentally. The model has been used to study the intrinsic resolution obtained with scintillation detectors that have had their front corners removed. It is concluded that for crystals greater than 0.8 cm wide, tapering the face of the detector results in improved uniformity of resolution. Thus it is useful for medium and low resolution scanners. In these cases, it has been found that the loss in sensitivity resulting from the use of tapered crystals is less than that which occurs when septa are placed between crystals to achieve comparable uniformity of resolution. It has also been established that, in some instances, reducing the length of the detectors results in a more uniform resolution than that obtained with tapered crystals, although this leads to a loss in ring sensitivity and an increase in the detected scatter fraction. (orig.)

  5. Design of camera classifier based on imaging sensor features%基于成像传感器特征的相机分类器设计

    Institute of Scientific and Technical Information of China (English)

    李俊强; 孟雷

    2011-01-01

    在对现有成像设备源辨识算法分析研究的基础上,提出一种利用成像传感器特征进行相机源辨识的鲁棒性方法.基于模式分类的原理,首先分析数码相机成像的特点,提取传感器噪声信息的统计特征,设计一种鲁棒的分类器来确定相机的品牌/型号.所提取的图像特征包括图像去噪差值和小波域分析.结果表明:所设计的分类器可以有效地正确辨识相机品牌/型号,且具有良好的鲁棒性.%On the basis of analysis, investigation, and modification of existing imaging device identification algorithm,a robust method for source camera identification is proposed based on imaging sensor features. Based on the principle of pattern recognition,the characteristics of imaging process of the camera is analyzed,and a robust classifier is constructed to determine the brand/model of the camera by extracting noise' s statistical features of sensor. The proposed features include image denoising subtraction and wavelet analysis. Experimental results demonstrate that the design of classifier can effectively identify the correct camera brand/model with good robustness.

  6. Harpicon camera for HDTV

    Science.gov (United States)

    Tanada, Jun

    1992-08-01

    Ikegami has been involved in broadcast equipment ever since it was established as a company. In conjunction with NHK it has brought forth countless television cameras, from black-and-white cameras to color cameras, HDTV cameras, and special-purpose cameras. In the early days of HDTV (high-definition television, also known as "High Vision") cameras the specifications were different from those for the cameras of the present-day system, and cameras using all kinds of components, having different arrangements of components, and having different appearances were developed into products, with time spent on experimentation, design, fabrication, adjustment, and inspection. But recently the knowhow built up thus far in components, , printed circuit boards, and wiring methods has been incorporated in camera fabrication, making it possible to make HDTV cameras by metbods similar to the present system. In addition, more-efficient production, lower costs, and better after-sales service are being achieved by using the same circuits, components, mechanism parts, and software for both HDTV cameras and cameras that operate by the present system.

  7. Digital Pinhole Camera

    Science.gov (United States)

    Lancor, Rachael; Lancor, Brian

    2014-01-01

    In this article we describe how the classic pinhole camera demonstration can be adapted for use with digital cameras. Students can easily explore the effects of the size of the pinhole and its distance from the sensor on exposure time, magnification, and image quality. Instructions for constructing a digital pinhole camera and our method for…

  8. Positrons, Positronium, Positron and Positronium Complexes in Crystal. Features of Their Properties in Phonon Atmosphere

    Directory of Open Access Journals (Sweden)

    Eugene P. Prokopev

    2012-10-01

    Full Text Available The article, Basing on the example of ionic crystals shows that polarization of crystal framework by oppositely charged polarons (positronium atom (ps invokes the change of positronium binding energy and leads to the renormalization of electron and positron effective masses as well. Such interaction of electron and positronium atom of positron with optical phonons leads to additional repelling interaction, besides coulomb attractive. Furthermore, the existence of positronium atom with major and minor radius is possible in the atmosphere of crystal phonons.

  9. Apply Web-based Analytic Tool and Eye Tracking to Study The Consumer Preferences of DSLR Cameras

    OpenAIRE

    Jih-Syongh Lin; Shih-Yen Huang

    2013-01-01

    Consumer’s preferences and purchase motivation of products often lie in the purchasing behaviors generated by the synthetic evaluation of form features, color, function, and price of products. If an enterprise can bring these criteria under control, they can grasp the opportunities in the market place. In this study, the product form, brand, and prices of five DSLR digital cameras of Nikon, Lumix, Pentax, Sony, and Olympus were investigated from the image evaluation and eye tracking. The web-...

  10. Tests of a new CCD-camera based neutron radiography detector system at the reactor stations in Munich and Vienna

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, E.; Pleinert, H. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Schillinger, B. [Technische Univ. Muenchen (Germany); Koerner, S. [Atominstitut der Oesterreichischen Universitaeten, Vienna (Austria)

    1997-09-01

    The performance of the new neutron radiography detector designed at PSI with a cooled high sensitive CCD-camera was investigated under real neutronic conditions at three beam ports of two reactor stations. Different converter screens were applied for which the sensitivity and the modulation transfer function (MTF) could be obtained. The results are very encouraging concerning the utilization of this detector system as standard tool at the radiography stations at the spallation source SINQ. (author) 3 figs., 5 refs.

  11. Development of Open source-based automatic shooting and processing UAV imagery for Orthoimage Using Smart Camera UAV

    OpenAIRE

    Park, J W; Jeong, H. H.; Kim, J.S.; Choi, C U

    2016-01-01

    Recently, aerial photography with unmanned aerial vehicle (UAV) system uses UAV and remote controls through connections of ground control system using bandwidth of about 430 MHz radio Frequency (RF) modem. However, as mentioned earlier, existing method of using RF modem has limitations in long distance communication. The Smart Camera equipments’s LTE (long-term evolution), Bluetooth, and Wi-Fi to implement UAV that uses developed UAV communication module system carried out the close aerial ph...

  12. Imaging optimizations with non-pure and high-energy positron emitters in small animal positron computed tomography

    International Nuclear Information System (INIS)

    The contribution on imaging optimizations with non-pure and high-energy positron emitters in small animal positron emission tomography (PET) covers the following topics: physical fundamentals of PET, mathematical image reconstruction and data analyses, Monte-Carlo simulations and implemented correction scheme, quantification of cascade gamma coincidences based on simulations and measurements, sinogram based corrections, restoration of the spatial resolution, implementation of full corrections.

  13. Making Relativistic Positrons Using Ultra-Intense Short Pulse Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H; Wilks, S; Bonlie, J; Chen, C; Chen, S; Cone, K; Elberson, L; Gregori, G; Liang, E; Price, D; Van Maren, R; Meyerhofer, D D; Mithen, J; Murphy, C V; Myatt, J; Schneider, M; Shepherd, R; Stafford, D; Tommasini, R; Beiersdorfer, P

    2009-08-24

    This paper describes a new positron source produced using ultra-intense short pulse lasers. Although it has been studied in theory since as early as the 1970s, the use of lasers as a valuable new positron source was not demonstrated experimentally until recent years, when the petawatt-class short pulse lasers were developed. In 2008 and 2009, in a series of experiments performed at Lawrence Livermore National Laboratory, a large number of positrons were observed after shooting a millimeter thick solid gold target. Up to 2 x 10{sup 10} positrons per steradian ejected out the back of {approx}mm thick gold targets were detected. The targets were illuminated with short ({approx}1 ps) ultra-intense ({approx}1 x 10{sup 20} W/cm{sup 2}) laser pulses. These positrons are produced predominantly by the Bethe-Heitler process, and have an effective temperature of 2-4 MeV, with the distribution peaking at 4-7 MeV. The angular distribution of the positrons is anisotropic. For a wide range of applications, this new laser based positron source with its unique characteristics may complements the existing sources using radioactive isotopes and accelerators.

  14. Extracting the Size of the Cosmic Electron-Positron Anomaly

    Science.gov (United States)

    Auchettl, Katie; Balazs, C.

    2011-09-01

    Over the last few decades, numerous observations have hinted at an excess of high energy positrons in our locality. The most recent of these experiments has been the positron fraction measured by the PAMELA satellite and the electron plus positron spectrum as measured by the Fermi-LAT satellite. Since the release of these measurements, there have been a plethora of papers where authors invoke new physics ranging from, modification of the cosmic ray propagation, supernova remnants and dark matter annihilation. Using a Bayesian likelihood analysis, we isolate the anomalous contribution of the cosmic electron-positron flux. A significant tension was found between the electron positron related data and non-electron-positron cosmic ray fluxes. Using 219 recent cosmic ray datum, we extracted the preferred values of the selected cosmic ray propagation parameters from the non-electron-positron related measurements. Based on these parameter values we calculated background predictions with uncertainties for PAMELA and Fermi-LAT. We found a deviation between the PAMELA and Fermi-LAT data and the predicted background even when uncertainties, including systematics, were taken into account. Interpreting this as a hint of new physics, we subtracted the background from the data extracting the size, shape and uncertainty of the anomalous contribution in a model independent fashion. We briefly compared the extracted signal to some theoretical results predicting such an anomaly.

  15. Ratiometric fluorescence transduction by hybridization after isothermal amplification for determination of zeptomole quantities of oligonucleotide biomarkers with a paper-based platform and camera-based detection

    Energy Technology Data Exchange (ETDEWEB)

    Noor, M. Omair; Hrovat, David [Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6 (Canada); Moazami-Goudarzi, Maryam [Department of Cell and Systems Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6 (Canada); Espie, George S. [Department of Cell and Systems Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6 (Canada); Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6 (Canada); Krull, Ulrich J., E-mail: ulrich.krull@utoronto.ca [Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6 (Canada)

    2015-07-23

    Highlights: • Solid-phase QD-FRET transduction of isothermal tHDA amplicons on paper substrates. • Ratiometric QD-FRET transduction improves assay precision and lowers the detection limit. • Zeptomole detection limit by an iPad camera after isothermal amplification. • Tunable assay sensitivity by immobilizing different amounts of QD–probe bioconjugates. - Abstract: Paper is a promising platform for the development of decentralized diagnostic assays owing to the low cost and ease of use of paper-based analytical devices (PADs). It can be challenging to detect on PADs very low concentrations of nucleic acid biomarkers of lengths as used in clinical assays. Herein we report the use of thermophilic helicase-dependent amplification (tHDA) in combination with a paper-based platform for fluorescence detection of probe-target hybridization. Paper substrates were patterned using wax printing. The cellulosic fibers were chemically derivatized with imidazole groups for the assembly of the transduction interface that consisted of immobilized quantum dot (QD)–probe oligonucleotide conjugates. Green-emitting QDs (gQDs) served as donors with Cy3 as the acceptor dye in a fluorescence resonance energy transfer (FRET)-based transduction method. After probe-target hybridization, a further hybridization event with a reporter sequence brought the Cy3 acceptor dye in close proximity to the surface of immobilized gQDs, triggering a FRET sensitized emission that served as an analytical signal. Ratiometric detection was evaluated using both an epifluorescence microscope and a low-cost iPad camera as detectors. Addition of the tHDA method for target amplification to produce sequences of ∼100 base length allowed for the detection of zmol quantities of nucleic acid targets using the two detection platforms. The ratiometric QD-FRET transduction method not only offered improved assay precision, but also lowered the limit of detection of the assay when compared with the non

  16. Adaptive compressive sensing camera

    Science.gov (United States)

    Hsu, Charles; Hsu, Ming K.; Cha, Jae; Iwamura, Tomo; Landa, Joseph; Nguyen, Charles; Szu, Harold

    2013-05-01

    We have embedded Adaptive Compressive Sensing (ACS) algorithm on Charge-Coupled-Device (CCD) camera based on the simplest concept that each pixel is a charge bucket, and the charges comes from Einstein photoelectric conversion effect. Applying the manufactory design principle, we only allow altering each working component at a minimum one step. We then simulated what would be such a camera can do for real world persistent surveillance taking into account of diurnal, all weather, and seasonal variations. The data storage has saved immensely, and the order of magnitude of saving is inversely proportional to target angular speed. We did design two new components of CCD camera. Due to the matured CMOS (Complementary metal-oxide-semiconductor) technology, the on-chip Sample and Hold (SAH) circuitry can be designed for a dual Photon Detector (PD) analog circuitry for changedetection that predicts skipping or going forward at a sufficient sampling frame rate. For an admitted frame, there is a purely random sparse matrix [Φ] which is implemented at each bucket pixel level the charge transport bias voltage toward its neighborhood buckets or not, and if not, it goes to the ground drainage. Since the snapshot image is not a video, we could not apply the usual MPEG video compression and Hoffman entropy codec as well as powerful WaveNet Wrapper on sensor level. We shall compare (i) Pre-Processing FFT and a threshold of significant Fourier mode components and inverse FFT to check PSNR; (ii) Post-Processing image recovery will be selectively done by CDT&D adaptive version of linear programming at L1 minimization and L2 similarity. For (ii) we need to determine in new frames selection by SAH circuitry (i) the degree of information (d.o.i) K(t) dictates the purely random linear sparse combination of measurement data a la [Φ]M,N M(t) = K(t) Log N(t).

  17. High granularity tracker based on a Triple-GEM optically read by a CMOS-based camera

    Science.gov (United States)

    Marafini, M.; Patera, V.; Pinci, D.; Sarti, A.; Sciubba, A.; Spiriti, E.

    2015-12-01

    The detection of photons produced during the avalanche development in gas chambers has been the subject of detailed studies in the past. The great progresses achieved in last years in the performance of micro-pattern gas detectors on one side and of photo-sensors on the other provide the possibility of making high granularity and very sensitive particle trackers. In this paper, the results obtained with a triple-GEM structure read-out by a CMOS based sensor are described. The use of an He/CF4 (60/40) gas mixture and a detailed optimization of the electric fields made possible to obtain a very high GEM light yield. About 80 photons per primary electron were detected by the sensor resulting in a very good capability of tracking both muons from cosmic rays and electrons from natural radioactivity.

  18. High granularity tracker based on a Triple-GEM optically read by a CMOS-based camera

    CERN Document Server

    Marafini, Michela; Pinci, Davide; Sarti, Alessio; Sciubba, A; Spiriti, Eleuterio

    2015-01-01

    The detection of photons produced during the avalanche development in gas chambers has been well studied in the past. The great progresses achieved in last years in the performance of micro-pattern gas detectors on one side and of photo-sensors on the other provide the possibility of making high granularity and very sensitive particle trackers. In this paper, the results obtained with a triple-GEM structure read-out by a CMOS based sensor are described. The use of an He/CF$_4$ (60/40) gas mixture and a suitable study of the electric fields made possible to optimise GEM light yield. About 100 photons per primary electron were detected by the sensor resulting in a very good capability of tracking muons from cosmic rays.

  19. A Spartan3E-based low-cost system for gamma-ray detection in small single photon emission computed tomography or positron emission tomography systems

    Science.gov (United States)

    Fysikopoulos, E.; Georgiou, M.; Efthimiou, N.; David, S.; Loudos, G.; Matsopoulos, G.

    2011-11-01

    The development and assessment of a readout system based on field programmable gate arrays (FPGA) for dedicated nuclear medicine cameras is presented. We have used Xilinx Spartan3E starter kit, which is one of the simplest FPGA evaluation boards. The aim of this work is to offer a simple, open source, data acquisition tool, which provides accurate results for nuclear imaging applications. The system has been evaluated using three different experimental setups: pulses from two position-sensitive photo-multipliers (PSPMTs) and a silicon photo-multiplier (SiPM) were recorded, using 99mTc sources. Two dual channel, external, 12 bit analog to digital converters with a sampling rate of 1 Msps per channel were used. The tool was designed using Xilinx's embedded development kit and was based in Xilinx's Microblaze soft-core processor. A reference multiparameter-based data acquisition system using nuclear instrumentation modules was used for the evaluation of the proposed system. A number of tests were carried out to assess different algorithms for pulse maximum estimation and Gaussian fitting provided optimal results. The results have shown that the FPGA data acquisition system (i) provides accurate digitization of the PSPMT anode signals under various conditions and (ii) gives similar energy spectra when SiPMs are used.

  20. Adapting Virtual Camera Behaviour

    DEFF Research Database (Denmark)

    Burelli, Paolo

    2013-01-01

    In a three-dimensional virtual environment aspects such as narrative and interaction completely depend on the camera since the camera defines the player’s point of view. Most research works in automatic camera control aim to take the control of this aspect from the player to automatically gen......- erate cinematographic game experiences reducing, however, the player’s feeling of agency. We propose a methodology to integrate the player in the camera control loop that allows to design and generate personalised cinematographic expe- riences. Furthermore, we present an evaluation of the afore......- mentioned methodology showing that the generated camera movements are positively perceived by novice asnd intermediate players....