WorldWideScience

Sample records for cambridge electron accelerator

  1. Assessing the Impact of the Cambridge International Acceleration Program on U.S. University Determinants of Success: A Multi-Level Modeling Approach

    Science.gov (United States)

    Shaw, Stuart; Warren, Jayne; Gill, Tim

    2014-01-01

    This article focuses on the research being conducted by Cambridge International Examinations (Cambridge) to ensure that its international assessments prepare students as well as other acceleration programs for continued study in U.S. colleges and universities. The study, which builds on previous freshman GPA data modeling work using data supplied…

  2. Application of electron accelerator worldwide

    Energy Technology Data Exchange (ETDEWEB)

    Machi, Sueo [Japan Atomic Industrial Forum, Inc., Tokyo (Japan)

    2003-02-01

    Electron accelerator is an important radiation source for radiation technology, which covers broad fields such as industry, health care, food and environmental protection. There are about 1,000 electron accelerators for radiation processing worldwide. Electron accelerator has advantage over Co-60 irradiator in term of high dose rate and power, assurance of safety, and higher economic performance at larger volume of irradiation. Accelerator generating higher energy in the range of 10 MeV and high power electron beam is now commercially available. There is a trend to use high-energy electron accelerator replacing Co-60 in case of large through-put of medical products. Irradiated foods, in particular species, are on the commercial market in 35 countries. Electron accelerator is used efficiently and economically for production of new or modified polymeric materials through radiation-induced cross-linking, grafting and polymerization reaction. Another important application of electron beam is the curing of surface coatings in the manufacture of products. Electron accelerators of large capacity are used for cleaning exhaust gases in industrial scale. Economic feasibility studies of this electron beam process have shown that this technology is more cost effective than the conventional process. It should be noted that the conventional limestone process produce gypsum as a by-product, which cannot be used in some countries. By contrast, the by-product of the electron beam process is a valuable fertilizer. (Y. Tanaka)

  3. Collective accelerator for electron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, R.J.

    1985-05-13

    A recent concept for collective acceleration and focusing of a high energy electron bunch is discussed, in the context of its possible applicability to large linear colliders in the TeV range. The scheme can be considered to be a member of the general class of two-beam accelerators, where a high current, low voltage beam produces the acceleration fields for a trailing high energy bunch.

  4. Self accelerating electron Airy beams

    CERN Document Server

    Voloch-Bloch, Noa; Lilach, Yigal; Gover, Avraham; Arie, Ady

    2013-01-01

    We report the first experimental generation and observation of Airy beams of free electrons. The electron Airy beams are generated by diffraction of electrons through a nanoscale hologram, that imprints a cubic phase modulation on the beams' transverse plane. We observed the spatial evolution dynamics of an arc-shaped, self accelerating and shape preserving electron Airy beams. We directly observed the ability of electrons to self-heal, restoring their original shape after passing an obstacle. This electromagnetic method opens up new avenues for steering electrons, like their photonic counterparts, since their wave packets can be imprinted with arbitrary shapes or trajectories. Furthermore, these beams can be easily manipulated using magnetic or electric potentials. It is also possible to efficiently self mix narrow beams having opposite signs of acceleration, hence obtaining a new type of electron interferometer.

  5. Calorimetry at industrial electron accelerators

    DEFF Research Database (Denmark)

    Miller, Arne; Kovacs, A.

    1985-01-01

    Calorimetry is a convenient way to measure doses at industrial electron accelerators, where high absorbed doses (1-100 kGy) are delivered at dose rates of 102-105 Gy s-1 or even higher. Water calorimeters have been used for this purpose for several years, but recently other materials such as grap......Calorimetry is a convenient way to measure doses at industrial electron accelerators, where high absorbed doses (1-100 kGy) are delivered at dose rates of 102-105 Gy s-1 or even higher. Water calorimeters have been used for this purpose for several years, but recently other materials...

  6. Industrial Electron Accelerators Type ILU

    CERN Document Server

    Auslender, Vadim; Cheskidov, Vladimir; Faktorovich, Boris; Gorbunov, Vladimir; Gornakov, Igor; Nekhaev, V E; Panfilov, Alexander; Sidorov, Alexander; Tkachenko, Vadim; Tuvik, Alfred; Voronin, Leonid

    2005-01-01

    The report describes the electron accelerators of ILU series covering the energy range from 0.5 to 5 MeV with beam power up to 50 kW. The pulse linear accelerators type ILU are developed since 1970 in Budker institute of Nuclear Physics and are supplied to the industry. The ILU machines are purposed for wide application in various technological processes and designed for long continuous and round-the-clock work in industrial conditions. A principle of acceleration of electrons in the gap of HF resonator is used in the ILU machines. The HF resonator has toroidal form. The electron gun is placed in one of the protruding electrodes forming the accelerating gap of the resonator. The resonator is fed from HF autogenerator realized on the industrial triode, the feedback signal is given from the resonator. The absence of outer beam injection and usage of self-excited HF generator simplify the design of accelerator and ensure its reliable operation.

  7. Low voltage electron beam accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Ochi, Masafumi [Iwasaki Electric Co., Ltd., Tokyo (Japan)

    2003-02-01

    Widely used electron accelerators in industries are the electron beams with acceleration voltage at 300 kV or less. The typical examples are shown on manufactures in Japan, equipment configuration, operation, determination of process parameters, and basic maintenance requirement of the electron beam processors. New electron beam processors with acceleration voltage around 100 kV were introduced maintaining the relatively high dose speed capability of around 10,000 kGy x mpm at production by ESI (Energy Science Inc. USA, Iwasaki Electric Group). The application field like printing and coating for packaging requires treating thickness of 30 micron or less. It does not require high voltage over 110 kV. Also recently developed is a miniature bulb type electron beam tube with energy less than 60 kV. The new application area for this new electron beam tube is being searched. The drive force of this technology to spread in the industries would be further development of new application, process and market as well as the price reduction of the equipment, upon which further acknowledgement and acceptance of the technology to societies and industries would entirely depend. (Y. Tanaka)

  8. Industrial applications of electron accelerators

    CERN Document Server

    Cleland, M R

    2006-01-01

    This paper addresses the industrial applications of electron accelerators for modifying the physical, chemical or biological properties of materials and commercial products by treatment with ionizing radiation. Many beneficial effects can be obtained with these methods, which are known as radiation processing. The earliest practical applications occurred during the 1950s, and the business of radiation processing has been expanding since that time. The most prevalent applications are the modification of many different plastic and rubber products and the sterilization of single-use medical devices. Emerging applications are the pasteurization and preservation of foods and the treatment of toxic industrial wastes. Industrial accelerators can now provide electron energies greater than 10 MeV and average beam powers as high as 700 kW. The availability of high-energy, high-power electron beams is stimulating interest in the use of X-rays (bremsstrahlung) as an alternative to gamma rays from radioactive nuclides.

  9. Electron Cloud Effects in Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Furman, M.A.

    2012-11-30

    Abstract We present a brief summary of various aspects of the electron-cloud effect (ECE) in accelerators. For further details, the reader is encouraged to refer to the proceedings of many prior workshops, either dedicated to EC or with significant EC contents, including the entire ?ECLOUD? series [1?22]. In addition, the proceedings of the various flavors of Particle Accelerator Conferences [23] contain a large number of EC-related publications. The ICFA Beam Dynamics Newsletter series [24] contains one dedicated issue, and several occasional articles, on EC. An extensive reference database is the LHC website on EC [25].

  10. Electron Cloud Effects in Accelerators

    CERN Document Server

    Furman, M A

    2013-01-01

    We present a brief summary of various aspects of the electron-cloud effect (ECE) in accelerators. For further details, the reader is encouraged to refer to the proceedings of many prior workshops, either dedicated to EC or with significant EC contents, including the entire "ECLOUD" series [122]. In addition, the proceedings of the various flavors of Particle Accelerator Conferences [23] contain a large number of EC-related publications. The ICFA Beam Dynamics Newsletter series [24] contains one dedicated issue, and several occasional articles, on EC. An extensive reference database is the LHC website on EC [25].

  11. Terahertz-driven linear electron acceleration

    CERN Document Server

    Nanni, Emilio Alessandro; Ravi, Koustuban; Fallahi, Arya; Moriena, Gustavo; Miller, R J Dwayne; Kärtner, Franz X

    2014-01-01

    The cost, size and availability of electron accelerators is dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency (RF) accelerating structures operate with 30-50 MeV/m gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional RF structures. However, laser-driven electron accelerators require intense sources and suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here, we demonstrate the first linear acceleration of electrons with keV energy gain using optically-generated terahertz (THz) pulses. THz-driven accelerating structures enable high-gradient electron accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. Increasing the operational frequency of accelerators into the THz band allows for greatly increased accelerating ...

  12. Electron Acceleration by Transient Ion Foreshock Phenomena

    Science.gov (United States)

    Wilson, L. B., III; Turner, D. L.

    2015-12-01

    Particle acceleration is a topic of considerable interest in space, laboratory, and astrophysical plasmas as it is a fundamental physical process to all areas of physics. Recent THEMIS [e.g., Turner et al., 2014] and Wind [e.g., Wilson et al., 2013] observations have found evidence for strong particle acceleration at macro- and meso-scale structures and/or pulsations called transient ion foreshock phenomena (TIFP). Ion acceleration has been extensively studied, but electron acceleration has received less attention. Electron acceleration can arise from fundamentally different processes than those affecting ions due to differences in their gyroradii. Electron acceleration is ubiquitous, occurring in the solar corona (e.g., solar flares), magnetic reconnection, at shocks, astrophysical plasmas, etc. We present new results analyzing the dependencies of electron acceleration on the properties of TIFP observed by the THEMIS spacecraft.

  13. Laser wakefield acceleration of polarized electron beams

    Science.gov (United States)

    Pugacheva, D. V.; Andreev, N. E.; Cros, B.

    2016-11-01

    The acceleration of highly polarized electron beams are widely used in state-of-the-art high-energy physics experiments. In this work, a model for investigation of polarization dynamics of electron beams in the laser-plasma accelerator depending on the initial energy of electrons was developed and tested. To obtain the evolution of the trajectory and momentum of the electron for modeling its acceleration the wakefield structure was determined. The spin precession of the beam electron was described by Thomas-Bargman-Michel-Telegdi equations. The evolution of the electron beam polarization was investigated for zero-emittance beams with zero-energy spread.

  14. Electron Acceleration in Collisionless Magnetic Reconnection

    Institute of Scientific and Technical Information of China (English)

    GUO Jun; LU Quan-Ming; WANG Shui; FU Xiang-Rong

    2005-01-01

    @@ A 21/2-dimensional electromagnetic particle-in-cell (PIC) simulation code is used to investigate the electron acceleration in collisionless magnetic reconnection. The results show that the electrons are accelerated in the diffusion region near the X point, and the acceleration process can be roughly divided into two procedures: firstly the electrons are accelerated in the z direction due to the electric field in the negative z direction. Then the electrons gyrate surrounding the magnetic field with the action of the Lorentz force, through this procedure the electrons reach higher velocity in the x direction and then flow out of the diffusion region. After being accelerated away from the diffusion region, part of electrons is trapped near the O point, and the other part of electrons flows into plasma sheet boundary layer along the magnetic field.

  15. Acceleration of injected electrons by the plasma beat wave accelerator

    Science.gov (United States)

    Joshi, C.; Clayton, C. E.; Marsh, K. A.; Dyson, A.; Everett, M.; Lal, A.; Leemans, W. P.; Williams, R.; Katsouleas, T.; Mori, W. B.

    1992-07-01

    In this paper we describe the recent work at UCLA on the acceleration of externally injected electrons by a relativistic plasma wave. A two frequency laser was used to excite a plasma wave over a narrow range of static gas pressures close to resonance. Electrons with energies up to our detection limit of 9.1 MeV were observed when 2.1 MeV electrons were injected in the plasma wave. No accelerated electrons above the detection threshold were observed when the laser was operated on a single frequency or when no electrons were injected. Experimental results are compared with theoretical predictions, and future prospects for the plasma beat wave accelerator are discussed.

  16. Development of high quality electron beam accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kando, Masaki; Dewa, Hideki; Kotaki, Hideyuki; Kondo, Shuji; Hosokai, Tomonao; Kanazawa, Shuhei; Yokoyama, Takashi; Nakajima, Kazuhisa [Advanced Photon Research Center, Kansai Research Establishment, Japan Atomic Energy Research Institute, Kizu, Kyoto (Japan)

    2000-03-01

    A design study on a high quality electron beam accelerator is described. This accelerator will be used for second generation experiments of laser wakefield acceleration, short x-ray generation, and other experiments of interaction of high intensity laser with an electron beam at Advanced Photon Research Center, Kansai Research Establishment, Japan Atomic Energy Research Institute. The system consists of a photocathode rf gun and a race-track microtron (RTM). To combine these two components, injection and extraction beamlines are designed employing transfer matrix and compute codes. A present status of the accelerator system is also presented. (author)

  17. Electron accelerating unit for streak image tubes

    Indian Academy of Sciences (India)

    Fangke Zong; Qinlao Yang; Houzhi Cai; Li Gu; Xiang Li; Jingjin Zhang

    2015-12-01

    An electron accelerating unit is proposed for use in streak image tubes (SITs). An SIT with this new accelerating unit was simulated using the Monte Carlo method. The simulation results show that the accelerating unit improves both the spatial and temporal resolution. Compared to a traditional SIT, the transit time spread for electrons in the cathode-to-mesh region is reduced from 247 to 162 fs, the line width of the electron beam on the image surface is reduced from 42.7 to 26.1 m, and the temporal resolution is improved from 515 to 395 fs.

  18. Observation of Laser Wakefield Acceleration of Electrons

    CERN Document Server

    Amiranoff, F; Bernard, D; Cros, B; Descamps, D; Dorchies, F; Jacquet, F; Malka, V; Marqués, J R; Matthieussent, G; Miné, P; Modena, A; Mora, P; Morillo, J; Najmudin, Z

    1998-01-01

    The acceleration of electrons injected in a plasma wave generated by the laser wakefield mechanism has been observed. A maximum energy gain of 1.6~MeV has been measured and the maximum longitudinal electric field is estimated to 1.5~GV/m. The experimental data agree with theoretical predictions when 3D effects are taken into account. The duration of the plasma wave inferred from the number of accelerated electrons is of the order of 1~ps.

  19. Double Relativistic Electron Accelerating Mirror

    Directory of Open Access Journals (Sweden)

    Saltanat Sadykova

    2013-02-01

    Full Text Available In the present paper, the possibility of generation of thin dense relativistic electron layers is shown using the analytical and numerical modeling of laser pulse interaction with ultra-thin layers. It was shown that the maximum electron energy can be gained by optimal tuning between the target width, intensity and laser pulse duration. The optimal parameters were obtained from a self-consistent system of Maxwell equations and the equation of motion of electron layer. For thin relativistic electron layers, the gaining of maximum electron energies requires a second additional overdense plasma layer, thus cutting the laser radiation off the plasma screen at the instant of gaining the maximum energy (DREAM-schema.

  20. Parametric injection for monoenergetic electron acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Oguchi, A; Takano, K; Hotta, E; Nemoto, K [Department of Energy Sciences Tokyo Institute of Technology 4259 Nagatsuta-cho Midori-ku Yokohama 226-8502 Japan (Japan); Zhidkov, A [Central Research Instistute of Electric Power Industry 2-6-1 Nagasaka Yokosuka Kanagawa 240-0196 Japan (Japan); Nakajima, K [High Energy Accelerator Research Organization, KEK 1-1 Oho Tsukuba Ibaraki 305-0801 Japan (Japan)], E-mail: blue-ayu@plasma.es.titech.ac.jp

    2008-05-01

    Electrons are accelerated in the laser wakefield (LWFA). This mechanism has been studied by 2D or 3D Particle In Cell simulation. However, how the electrons are injected in the wakefield is not understood. In this paper, we consider about the process of self -injection and propose new scheme. When plasma electron density modulates, parametric resonance of electron momentum is induced. The parametric resonance depends on laser waist modulation. We carried out 2D PIC simulation with the initial condition decided from resonance condition. Moreover, we analyze experimental result that generated 200-250 MeV monoenergetic electron beam with 400TW intense laser in CAEP in China.

  1. Electron acceleration by magnetic collapse during decoupling

    Science.gov (United States)

    Bennet, Euan D.; Potts, Hugh E.; Teodoro, Luis F. A.; Diver, Declan A.

    2014-12-01

    This paper identifies the non-equilibrium evolution of magnetic field structures at the onset of large-scale recombination of an inhomogeneously ionized plasma. The context for this is the Universe during the epoch of recombination. The electromagnetic treatment of this phase transition can produce energetic electrons scattered throughout the Universe, localized near the edges of magnetic domains. This is confirmed by a numerical simulation in which a magnetic domain is modelled as a uniform field region produced by a thin surrounding current sheet. Conduction currents sustaining the magnetic structure are removed as the charges comprising them combine into neutrals. The induced electric field accompanying the magnetic collapse is able to accelerate ambient stationary electrons (that is, electrons not participating in the current sheet) to energies of up to order 10keV. This is consistent with theoretical predictions. The localized electron acceleration leads to local imbalances of charge which has implications for charge separation in the early Universe.

  2. Electron accelerator facilities for food processing

    Energy Technology Data Exchange (ETDEWEB)

    Boaler, V.J.

    1984-01-01

    The basic characteristics of electron and X-ray processing and the main types of accelerator used together with features of facilities for food processing are reviewed. Capital and operating costs are given, with throughput and unit cost calculations for typical examples.

  3. Philosophy at Cambridge

    OpenAIRE

    2011-01-01

    Newsletter of the Philosophy Faculty. Articles by: Simon Blackburn, 'From the Chair' ; Nick Treanor, 'Inaugural lecture: What is distinctive about human thought?' ; Clare Chambers, 'Political Philosophy at Cambridge' ; Alexis Papazoglou,'Aspects of philosophy at Cambridge' ; Peter Smith, 'Principia at 100' ; Nigel Crisp, 'Turning the World Upside Down' ; Cain Todd, 'Fiction, Emotion, Imagination'; Fraser MacBride, 'Philosophy, St John's, Cambridge, 1986.'

  4. Trial access to Cambridge University Press ebooks

    CERN Multimedia

    CERN Library

    2011-01-01

    From 1 August till 31 October, CERN users are invited to enjoy a trial access to all Cambridge University Press electronic books: http://ebooks.cambridge.org/. Please don't hesitate to send feedback to library.desk@cern.ch.

  5. Electron Beam Simulations on the SCSS Accelerator

    CERN Document Server

    Hara, Toru; Shintake, Tsumoru

    2004-01-01

    The SPring-8 Compact SASE Source (SCSS) is a SASE-FEL project aiming at soft X-ray radiation at its first stage using 1 GeV electron beams. One of the unique features of the SCSS is the use of a pulsed high-voltage electron gun with a thermionic cathode. Main reason for this choice is its high stability and the well developed technology relating to the gun. Meanwhile, the electron bunch should be compressed properly at the injector in order to obtain sufficient peak currents. In this presentation, the results of the electron beam simulations along the accelerator and the expected parameters of the electron beam will be given.

  6. Electron Acceleration at Pulsar Wind Termination Shocks

    Science.gov (United States)

    Giacchè, S.; Kirk, John G.

    2017-02-01

    We study the acceleration of electrons and positrons at an electromagnetically modified, ultrarelativistic shock in the context of pulsar wind nebulae. We simulate the outflow produced by an obliquely rotating pulsar in proximity of its termination shock with a two-fluid code that uses a magnetic shear wave to mimic the properties of the wind. We integrate electron trajectories in the test-particle limit in the resulting background electromagnetic fields to analyze the injection mechanism. We find that the shock-precursor structure energizes and reflects a sizable fraction of particles, which becomes available for further acceleration. We investigate the subsequent first-order Fermi process sustained by small-scale magnetic fluctuations with a Monte Carlo code. We find that the acceleration proceeds in two distinct regimes: when the gyroradius {r}{{g}} exceeds the wavelength of the shear λ, the process is remarkably similar to first-order Fermi acceleration at relativistic, parallel shocks. This regime corresponds to a low-density wind that allows the propagation of superluminal waves. When {r}{{g}}< λ , which corresponds to the scenario of driven reconnection, the spectrum is softer.

  7. Tesla-transformer-type electron beam accelerator

    CERN Document Server

    Liu Jin Liang; Tan Qi Mei; Li Chuan Lu; Zhang Jian

    2002-01-01

    An electron-beam Tesla-transformer accelerator is described. It consists of the primary storage energy system. Tesla transformer, oil Blumlein pulse form line, and the vacuum diode. The experiments of initial stage showed that diode voltage rises up to about 500 kV with an input of 20 kV and the maximum electron-beam current is about 9 kA, the pulse width is about 50 ns. This device can operate stably and be set up easily

  8. Electron clouds in high energy hadron accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, Fedor

    2013-08-29

    The formation of electron clouds in accelerators operating with positrons and positively charge ions is a well-known problem. Depending on the parameters of the beam the electron cloud manifests itself differently. In this thesis the electron cloud phenomenon is studied for the CERN Super Proton Synchrotron (SPS) and Large Hadron Collider (LHC) conditions, and for the heavy-ion synchrotron SIS-100 as a part of the FAIR complex in Darmstadt, Germany. Under the FAIR conditions the extensive use of slow extraction will be made. After the acceleration the beam will be debunched and continuously extracted to the experimental area. During this process, residual gas electrons can accumulate in the electric field of the beam. If this accumulation is not prevented, then at some point the beam can become unstable. Under the SPS and LHC conditions the beam is always bunched. The accumulation of electron cloud happens due to secondary electron emission. At the time when this thesis was being written the electron cloud was known to limit the maximum intensity of the two machines. During the operation with 25 ns bunch spacing, the electron cloud was causing significant beam quality deterioration. At moderate intensities below the instability threshold the electron cloud was responsible for the bunch energy loss. In the framework of this thesis it was found that the instability thresholds of the coasting beams with similar space charge tune shifts, emittances and energies are identical. First of their kind simulations of the effect of Coulomb collisions on electron cloud density in coasting beams were performed. It was found that for any hadron coasting beam one can choose vacuum conditions that will limit the accumulation of the electron cloud below the instability threshold. We call such conditions the ''good'' vacuum regime. In application to SIS-100 the design pressure 10{sup -12} mbar corresponds to the good vacuum regime. The transition to the bad vacuum

  9. Therapeutic dose from a pyroelectric electron accelerator.

    Science.gov (United States)

    Fullem, T Z; Fazel, K C; Geuther, J A; Danon, Y

    2009-11-01

    Simple heating of pyroelectric crystals has been used as the basis for compact sources of X rays, electrons, ions and neutrons. We report on the evaluation of the feasibility of using a portable pyroelectric electron accelerator to deliver a therapeutic dose to tissue. Such a device could be mass produced as a handheld, battery-powered instrument. Experiments were conducted with several crystal sizes in which the crystal was heated inside a vacuum chamber and the emitted electrons were allowed to penetrate a thin beryllium window into the surrounding air. A Faraday cup was used to count the number of electrons that exited the window. The energy of these electrons was determined by measuring the energy spectrum of the X rays that resulted from the electron interactions with the Faraday cup. Based on these measurements, the dose that this source could deliver to tissue was calculated using Monte Carlo calculations. It was found that 10(13) electrons with a peak energy of the order of 100 keV were emitted from the beryllium window and could deliver a dose of 1664 Gy to a 2-cm-diameter, 110-microm-deep region of tissue located 1.5 cm from the window with air between the window and the tissue. This dose level is high enough to consider this technology for medical applications in which shallow energy deposition is beneficial.

  10. Applications of electron accelerator in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Khairul Zaman Hj. Mohd Dahlan [Malaysian Institute for Nuclear Technology Research (MINT), Bangi, Selangor Darul Ehsan (Malaysia)

    2003-02-01

    Current status of radiation processing, as one of the core research programs of the Malaysian Institute for Nuclear Technology Research (MINT), is presented. Industrial applications of six electron accelerators from 150 kV up to 3 MV in Malaysia now in operation are mainly for curing of surface coatings, crosslinking of tubes, heat shrinkable tubes and packaging films, crosslinking of wire insulation. Their performances are listed. New technology now in R and D stage includes natural rubber, sago starch and chitosan for biomedical applications, and radiation curable materials from oil palm for pressure sensitive adhesive and printing ink. (S. Ohno)

  11. The University of Cambridge

    Institute of Scientific and Technical Information of China (English)

    郭大任

    2007-01-01

    The University of Cambridge was founded in 1209,just a few decades after Oxford University,making it the second oldest university in the English-speaking world.Like“the other place”, the university is made up of 31 colleges and more than 100 departments,catering for around 15,500 students.Cambridge has a worldwide reputation for outstanding

  12. Cambridge Scientific Abstracts

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    正Meteorological and Environmental Research has been included by Cambridge Scientific Abstracts (CSA) since 2011. CSA is a retrieval system published by Cambridge Information Group. CSA was founded in the late 1950's,and became part of the CIG family in 1971. CSA's original mission was publishing secondary source materials relating to the physical sciences. Completely

  13. Cambridge Scientific Abstracts

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Meteorological and Environmental Research has been included by Cambridge Scientific Abstracts (CSA) since 2011. CSA is a retrieval system published by Cambridge Information Group. CSA was founded in the late 1950’s,and became part of the CIG family in 1971. CSA’s original mission was publishing secondary source materials relating to the physical sciences. Completely

  14. Electron accelerators and applications in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Han, Bumsoo [Eb-tech Co., Daejeon (Korea, Republic of)

    2006-04-15

    Types of high-energy radiation were discovered more than one hundred years ago. Since then, properties of radiation providing ability to modify physico-chemical properties of materials have found many applications. Radiation technologies applying gamma sources as well as electron accelerators for treatment of materials are well-established processes. Worldwide, there are over 2000 industrial gamma irradiators and 1,300 industrial electron accelerators in operation that are being widely used for sterilization, food irradiation and polymer processing. Indeed, radiation processing is today a well established multi-billion dollar industry world over that is providing unique high value products for mankind in an environmentally friendly manner. Electron accelerators are introduced at late 70s in Korea, firstly for researches and later for insulated wire and cable production, and up to now, over 30 accelerators are used in industries. They are mainly for cable productions, thermo-shrinkable materials, foam sheets, coating and curing and others. While polymerization and polymer modification have proved to be the most widespread applications of radiation processing, many other applications, such as environmental protection is becoming an increasingly important concern in industrialized nations, and wide ranging investigations have identified several areas of waste control to which radiation processing may contribute. In recent years, large metropolitan cities including Seoul, Tokyo and other major cities have been facing the challenge of increasing environmental pollution resulting from ever increasing population and industrial activities. As a result, issues regarding environmental pollution, be it air, liquid or solid, are becoming significant matters of concern. The realization that such pollutants pose a serious threat to human health has necessitated the need for development of cost effective and environmentally friendly technologies to overcome the problem. Radiation

  15. Self-shielded electron linear accelerators designed for radiation technologies

    Science.gov (United States)

    Belugin, V. M.; Rozanov, N. E.; Pirozhenko, V. M.

    2009-09-01

    This paper describes self-shielded high-intensity electron linear accelerators designed for radiation technologies. The specific property of the accelerators is that they do not apply an external magnetic field; acceleration and focusing of electron beams are performed by radio-frequency fields in the accelerating structures. The main characteristics of the accelerators are high current and beam power, but also reliable operation and a long service life. To obtain these characteristics, a number of problems have been solved, including a particular optimization of the accelerator components and the application of a variety of specific means. The paper describes features of the electron beam dynamics, accelerating structure, and radio-frequency power supply. Several compact self-shielded accelerators for radiation sterilization and x-ray cargo inspection have been created. The introduced methods made it possible to obtain a high intensity of the electron beam and good performance of the accelerators.

  16. Electron surfing acceleration in a current sheet of flares

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A model of electron acceleration in a current sheet of flares is studied by the analytical approximation solution and the test particle simulation. The electron can be trapped in a potential of propagating electrostatic wave. The trapped electron moving with the phase velocity vp of wave may be effectively accelerated by evc p× Bz force along the outflow direction in the current sheet, if a criterion condition K > 0 for electron surfing acceleration is satisfied. The electron will be accelerated continuously until the electron detrap from the wave potential at the turning point S.

  17. Role of Direct Laser Acceleration of Electrons in a Laser Wakefield Accelerator with Ionization Injection

    Science.gov (United States)

    Shaw, J. L.; Lemos, N.; Amorim, L. D.; Vafaei-Najafabadi, N.; Marsh, K. A.; Tsung, F. S.; Mori, W. B.; Joshi, C.

    2017-02-01

    We show the first experimental demonstration that electrons being accelerated in a laser wakefield accelerator operating in the forced or blowout regimes gain significant energy from both the direct laser acceleration (DLA) and the laser wakefield acceleration mechanisms. Supporting full-scale 3D particle-in-cell simulations elucidate the role of the DLA of electrons in a laser wakefield accelerator when ionization injection of electrons is employed. An explanation is given for how electrons can maintain the DLA resonance condition in a laser wakefield accelerator despite the evolving properties of both the drive laser and the electrons. The produced electron beams exhibit characteristic features that are indicative of DLA as an additional acceleration mechanism.

  18. GPU-accelerated computation of electron transfer.

    Science.gov (United States)

    Höfinger, Siegfried; Acocella, Angela; Pop, Sergiu C; Narumi, Tetsu; Yasuoka, Kenji; Beu, Titus; Zerbetto, Francesco

    2012-11-05

    Electron transfer is a fundamental process that can be studied with the help of computer simulation. The underlying quantum mechanical description renders the problem a computationally intensive application. In this study, we probe the graphics processing unit (GPU) for suitability to this type of problem. Time-critical components are identified via profiling of an existing implementation and several different variants are tested involving the GPU at increasing levels of abstraction. A publicly available library supporting basic linear algebra operations on the GPU turns out to accelerate the computation approximately 50-fold with minor dependence on actual problem size. The performance gain does not compromise numerical accuracy and is of significant value for practical purposes.

  19. Utilization of electron accelerator in the Philippines

    Energy Technology Data Exchange (ETDEWEB)

    Cabalfin, Estelita G. [Philippine Nuclear Research Institute, Quezon (Philippines)

    2003-02-01

    Radiosterilization of medical and surgical supplies, radiation treatment of consumer products such as food, pharmaceuticals and cosmetics, and the modification of polymers, crosslinking or curing, using gamma irradiation facilities in Philippine industries are overviewed. Philippine Nuclear Research Institute(PNRI) conducts bioburden determination, dose setting and validation of compatibility with radiation of product and packaging with the technical assistance of IAEA. The products with yields treated at the irradiation facility from 1996-2001 are shown in table. An electron accelerator of 10 MeV and 28 kW, established by Terumo Corporation, is used since 2000 for in-house radiation sterilization of syringes. Current regulations and regulatory authority in Philippines are also briefly introduced. Future processes such as radiation vulcanized natural rubber latex (RVNRL), use of carrageenan as hydrogel for dressing wounds and others and fermented bagasse as animal feed are now in progress. (S. Ohno)

  20. Plasma production for electron acceleration by resonant plasma wave

    Science.gov (United States)

    Anania, M. P.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Croia, M.; Curcio, A.; Di Giovenale, D.; Di Pirro, G. P.; Filippi, F.; Ghigo, A.; Lollo, V.; Pella, S.; Pompili, R.; Romeo, S.; Ferrario, M.

    2016-09-01

    Plasma wakefield acceleration is the most promising acceleration technique known nowadays, able to provide very high accelerating fields (10-100 GV/m), enabling acceleration of electrons to GeV energy in few centimeter. However, the quality of the electron bunches accelerated with this technique is still not comparable with that of conventional accelerators (large energy spread, low repetition rate, and large emittance); radiofrequency-based accelerators, in fact, are limited in accelerating field (10-100 MV/m) requiring therefore hundred of meters of distances to reach the GeV energies, but can provide very bright electron bunches. To combine high brightness electron bunches from conventional accelerators and high accelerating fields reachable with plasmas could be a good compromise allowing to further accelerate high brightness electron bunches coming from LINAC while preserving electron beam quality. Following the idea of plasma wave resonant excitation driven by a train of short bunches, we have started to study the requirements in terms of plasma for SPARC_LAB (Ferrario et al., 2013 [1]). In particular here we focus on hydrogen plasma discharge, and in particular on the theoretical and numerical estimates of the ionization process which are very useful to design the discharge circuit and to evaluate the current needed to be supplied to the gas in order to have full ionization. Eventually, the current supplied to the gas simulated will be compared to that measured experimentally.

  1. Plasma production for electron acceleration by resonant plasma wave

    Energy Technology Data Exchange (ETDEWEB)

    Anania, M.P., E-mail: maria.pia.anania@lnf.infn.it [INFN - LNF, via Enrico Fermi, 40, 00044 Frascati (Italy); Biagioni, A.; Chiadroni, E. [INFN - LNF, via Enrico Fermi, 40, 00044 Frascati (Italy); Cianchi, A. [University of Rome Tor Vergata - INFN, via della Ricerca Scientifica, 1, 00133 Roma (Italy); INFN, Via della Ricerca Scientifica, 1, 00133 Roma (Italy); Croia, M.; Curcio, A. [INFN - LNF, via Enrico Fermi, 40, 00044 Frascati (Italy); University of Rome La Sapienza, Piazzale Aldo Moro, 2, 00185 Roma (Italy); Di Giovenale, D.; Di Pirro, G.P. [INFN - LNF, via Enrico Fermi, 40, 00044 Frascati (Italy); Filippi, F. [University of Rome La Sapienza, Piazzale Aldo Moro, 2, 00185 Roma (Italy); Ghigo, A.; Lollo, V.; Pella, S.; Pompili, R. [INFN - LNF, via Enrico Fermi, 40, 00044 Frascati (Italy); Romeo, S. [INFN - LNF, via Enrico Fermi, 40, 00044 Frascati (Italy); University of Rome La Sapienza, Piazzale Aldo Moro, 2, 00185 Roma (Italy); Ferrario, M. [INFN - LNF, via Enrico Fermi, 40, 00044 Frascati (Italy)

    2016-09-01

    Plasma wakefield acceleration is the most promising acceleration technique known nowadays, able to provide very high accelerating fields (10–100 GV/m), enabling acceleration of electrons to GeV energy in few centimeter. However, the quality of the electron bunches accelerated with this technique is still not comparable with that of conventional accelerators (large energy spread, low repetition rate, and large emittance); radiofrequency-based accelerators, in fact, are limited in accelerating field (10–100 MV/m) requiring therefore hundred of meters of distances to reach the GeV energies, but can provide very bright electron bunches. To combine high brightness electron bunches from conventional accelerators and high accelerating fields reachable with plasmas could be a good compromise allowing to further accelerate high brightness electron bunches coming from LINAC while preserving electron beam quality. Following the idea of plasma wave resonant excitation driven by a train of short bunches, we have started to study the requirements in terms of plasma for SPARC-LAB (Ferrario et al., 2013 [1]). In particular here we focus on hydrogen plasma discharge, and in particular on the theoretical and numerical estimates of the ionization process which are very useful to design the discharge circuit and to evaluate the current needed to be supplied to the gas in order to have full ionization. Eventually, the current supplied to the gas simulated will be compared to that measured experimentally.

  2. Control System for Multi-energy Electron Irradiation Accelerator

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Li-feng; LIU; Bao-jie

    2012-01-01

    <正>Multi-energy electron irradiation accelerator has a wide range of applications in areas such as industrial irradiation. Accelerator is operated under control system with accelerator subsystems, in which new technologies are involved, such as fiber-based network communication technology and PLC technology. The control system integrates pulse modulator systems,

  3. Weizmann ties with Cambridge in physics contest

    CERN Multimedia

    Siegel, J

    2004-01-01

    "Scientists and students from the Weizmann Institute of Science in Rehovot and Cambridge University in England have tied for first place in a physics competition aimed at simulating the future functioning of the particle accelerator being built at the European center CERN and due to open in 2007" (1/2 page)

  4. The electron accelerator for the AWAKE experiment at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Pepitone, K., E-mail: kevin.pepitone@cern.ch [CERN, Geneva (Switzerland); Doebert, S., E-mail: steffen.doebert@cern.ch [CERN, Geneva (Switzerland); Burt, G. [The University of Lancaster, Lancaster (United Kingdom); Chevallay, E.; Chritin, N.; Delory, C.; Fedosseev, V.; Hessler, Ch.; McMonagle, G. [CERN, Geneva (Switzerland); Mete, O. [The University of Manchester, Manchester (United Kingdom); Verzilov, V. [Triumf, Vancouver (Canada); Apsimon, R. [The University of Lancaster, Lancaster (United Kingdom)

    2016-09-01

    The AWAKE collaboration prepares a proton driven plasma wakefield acceleration experiment using the SPS beam at CERN. A long proton bunch extracted from the SPS interacts with a high power laser and a 10 m long rubidium vapour plasma cell to create strong wakefields allowing sustained electron acceleration. The electron bunch to probe these wakefields is supplied by a 20 MeV electron accelerator. The electron accelerator consists of an RF-gun and a short booster structure. This electron source should provide beams with intensities between 0.1 and 1 nC, bunch lengths between 0.3 and 3 ps and an emittance of the order of 2 mm mrad. The wide range of parameters should cope with the uncertainties and future prospects of the planned experiments. The layout of the electron accelerator, its instrumentation and beam dynamics simulations are presented.

  5. A microtron accelerator for a free electron laser

    NARCIS (Netherlands)

    Botman, J.I.M.; Delhez, J.L.; Webers, G.A.; Hagedoorn, H.L.; Kleeven, W.J.G.M.; Timmermans, J.C.M.; Ernst, G.J.; Verschuur, J.W.J.; Witteman, W.J.; Haselhoff, E.H.

    1991-01-01

    A racetrack microtron as a source for a free electron laser is being constructed. It will accelerate electrons up to 25 MeV to provide 10 ¿m radiation in a hybrid undulator with a periodicity distance of 25 mm. The aim is to accelerate 100 A bunches of 30 ps pulse length at 81.25 MHz. This frequency

  6. Utilization of low-energy electron accelerators in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Cheol [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2003-02-01

    There are more than 20 electron accelerators in Korea. Most of those are installed in factories for heat-resistant cables, heat-shrinkable cables, radial tires, foams, tube/ films, curing, etc. Four low-energy electron accelerators are in operation for research purposes such as polymer modification, purification of flue gas, waste water treatment, modification of semiconductor characteristics, etc. (author)

  7. Electron acceleration in a post-flare decimetric continuum source

    CERN Document Server

    Subramanian, P; Karlick'y, M; Sych, R; Sawant, H S; Ananthakrishnan, S; Subramanian, Prasad

    2007-01-01

    Aims: To calculate the power budget for electron acceleration and the efficiency of the plasma emission mechanism in a post-flare decimetric continuum source. Methods: We have imaged a high brightness temperature ($\\sim 10^{9}$K) post-flare source at 1060 MHz with the Giant Metrewave Radio Telescope (GMRT). We use information from these images and the dynamic spectrum from the Hiraiso spectrograph together with the theoretical method described in Subramanian & Becker (2006) to calculate the power input to the electron acceleration process. The method assumes that the electrons are accelerated via a second-order Fermi acceleration mechanism. Results: We find that the power input to the nonthermal electrons is in the range $3\\times 10^{25}$--$10^{26}$ erg/s. The efficiency of the overall plasma emission process starting from electron acceleration and culminating in the observed emission could range from $2.87\\times 10^{-9}$ to $2.38 \\times 10^{-8}$.

  8. Scanning transmission electron microscopy imaging dynamics at low accelerating voltages

    Energy Technology Data Exchange (ETDEWEB)

    Lugg, N.R. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Findlay, S.D. [Institute of Engineering Innovation, The University of Tokyo, Tokyo 116-0013 (Japan); Shibata, N. [Institute of Engineering Innovation, The University of Tokyo, Tokyo 116-0013 (Japan); PRESTO, Japan Science and Technology Agency, Saitama 332-0012 (Japan); Mizoguchi, T. [Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505 (Japan); D' Alfonso, A.J. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Allen, L.J., E-mail: lja@unimelb.edu.au [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Ikuhara, Y. [Institute of Engineering Innovation, The University of Tokyo, Tokyo 116-0013 (Japan); Nanostructures Research Laboratory, Japan Fine Ceramic Center, Nagoya 456-8587 (Japan); WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan)

    2011-07-15

    Motivated by the desire to minimize specimen damage in beam sensitive specimens, there has been a recent push toward using relatively low accelerating voltages (<100kV) in scanning transmission electron microscopy. To complement experimental efforts on this front, this paper seeks to explore the variations with accelerating voltage of the imaging dynamics, both of the channelling of the fast electron and of the inelastic interactions. High-angle annular-dark field, electron energy loss spectroscopic imaging and annular bright field imaging are all considered. -- Highlights: {yields} Both elastic and inelastic scattering in STEM are acceleration voltage dependent. {yields} HAADF, EELS and ABF imaging are assessed with a view to optimum imaging. {yields} Lower accelerating voltages improve STEM EELS contrast in very thin crystals. {yields} Higher accelerating voltages give better STEM EELS contrast in thicker crystals. {yields} At fixed resolution, higher accelerating voltage aids ABF imaging of light elements.

  9. Coupling of Laser-Generated Electrons with Conventional Accelerator Devices

    CERN Document Server

    Antici, P; Benedetti, C; Chiadroni, E; Ferrario, M; Lancia, L; Migliorati, M; Mostacci, A; Palumbo, L; Rossi, A R; Serafini, L

    2011-01-01

    Laser-based electron acceleration is attracting strong interest from the conventional accelerator community due to its outstanding characteristics in terms of high initial energy, low emittance and high beam current. Unfortunately, such beams are currently not comparable to those of conventional accelerators, limiting their use for the manifold applications that a traditional accelerator can have. Besides working on the plasma source itself, a promising approach to shape the laser-generated beams is coupling them with conventional accelerator elements in order to benefit from both, a versatile electron source and a controllable beam. In this paper we show that some parameters commonly used by the particle accelerator community must be reconsidered when dealing with laser-plasma beams. Starting from the parameters of laser-generated electrons which can be obtained nowadays by conventional multi hundred TW laser systems, we compare different conventional magnetic lattices able to capture and transport those GeV...

  10. The operational procedure of an electron beam accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Cheol; Choi, Hwa Lim; Yang, Ki Ho; Han, Young Hwan; Kim, Sung Chan

    2008-12-15

    The KAERI(Korea Atomic Energy of Research Institute) high-power electron beam irradiation facility, operating at the energies between 0.3 MeV and 10 MeV, has provided irradiation services to users in industries, universities, and institute in various fields. This manual is for the operation of an electron beam which is established in KAERI, and describes elementary operation procedures of electron beam between 0.3 Mev and 10 MeV. KAERI Electron Accelerator facility(Daejeon, Korea) consists of two irradiators: one is a low-energy electron beam irradiator operated by normal conducting RF accelerator, the other is medium-energy irradiator operated by superconducting RF accelerator. We explain the check points of prior to operation, operation procedure of this facility and the essential parts of electron beam accelerator.

  11. Probing electron acceleration and X-ray emission in laser-plasma accelerator

    CERN Document Server

    Thaury, C; Corde, S; Brijesh, P; Lambert, G; Mangles, S P D; Bloom, M S; Kneip, S; Malka, V

    2013-01-01

    While laser-plasma accelerators have demonstrated a strong potential in the acceleration of electrons up to giga-electronvolt energies, few experimental tools for studying the acceleration physics have been developed. In this paper, we demonstrate a method for probing the acceleration process. A second laser beam, propagating perpendicular to the main beam is focused in the gas jet few nanosecond before the main beam creates the accelerating plasma wave. This second beam is intense enough to ionize the gas and form a density depletion which will locally inhibit the acceleration. The position of the density depletion is scanned along the interaction length to probe the electron injection and acceleration, and the betatron X-ray emission. To illustrate the potential of the method, the variation of the injection position with the plasma density is studied.

  12. Staged electron laser accelerator (STELLA) experiment at brookhaven ATF

    Energy Technology Data Exchange (ETDEWEB)

    Pogorelsky, I.V.; Steenbergen, A. van; Gallardo, J.C. [Brookhaven National Lab., Upton, NY (United States)] [and others

    1998-03-01

    The STELLA experiment is being prepared at the BNL Accelerator Test Facility (STF). The goal of the experiment is to demonstrate quasi-monochromatic inverse Cherenkov acceleration (ICA) of electrons bunched to the laser wavelength period. Microbunches on the order of 2 {mu}m in length separated by 10.6 {mu}m will be produced using an inverse free electron laser (IFEL) accelerator driven by a CO{sub 2} laser. The design and simulations for two phases of this experiment including demonstration of 10 MeV and 100 MeV acceleration are presented. (author)

  13. The coming of the electronic age to the Cambridge Physiological Laboratory: E.D. Adrian's valve amplifier in 1921.

    Science.gov (United States)

    Bradley, J K; Tansey, E M

    1996-07-01

    E.D. Adrian, F.R.S. (1889-1975) was one of Britain's most distinguished neurophysiologists, who, during a long and productive lifetime, achieved most honours and distinctions available to a scientific man. These included the 1932 Nobel Prize for Physiology or Medicine, shared with Sir Charles Sherrington, F.R.S., the Order of Merit (1942), and Presidency of the Royal Society (1950-55). His interest in the nervous system started at the beginning of his undergraduate career, much influenced by his Director of Studies, Keith Lucas, F.R.S. (1879-1916). Lucas, a skilled and imaginative neurophysiologist, was particularly renowned for his technical ability to design and build new equipment. In turn, his pupil's work on recording and analysing the electrical impulses in nervous tissue was also facilitated by the development of appropriate, sensitive instrumentation. This paper will describe Adrian's first use of valve amplifiers to enlarge the extremely small electrical signals then obtainable in the physiological laboratory, a development that epitomized the beginning of the electronic revolution in life sciences' laboratories.

  14. Stray-electron accumulation and effects in HIF accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, R.H.; Friedman, A.; Furman, M.A.; Lund, S.M.; Molvik, A.W.; Stoltz, P.; Vay, J.-L.

    2003-05-07

    Stray electrons can be introduced in positive-charge accelerators for heavy ion fusion (or other applications) as a result of ionization of ambient gas or gas released from walls due to halo-ion impact, or as a result of secondary-electron emission. Electron accumulation is impacted by the ion beam potential, accelerating fields, multipole magnetic fields used for beam focus, and the pulse duration. We highlight the distinguishing features of heavy-ion accelerators as they relate to stray-electron issues, and present first results from a sequence of simulations to characterize the electron cloud that follows from realistic ion distributions. Also, we present ion simulations with prescribed random electron distributions, undertaken to begin to quantify the effects of electrons on ion beam quality.

  15. Electron Acceleration by a Focused Gaussian Laser Pulse in Vacuum

    Institute of Scientific and Technical Information of China (English)

    何峰; 余玮; 陆培祥; 徐涵

    2004-01-01

    By numerically solving the relativistic equations of motion of a single electron in laser fields modeled by a Gaussian laser beam, we get the trajectory and energy of the electron. When the drifting distance is comparable to or even longer than the corresponding Rayleigh length, the evolution of the beam waist cannot be neglected. The asymmetry of intensity in acceleration and deceleration leads to the conclusion that the electron can be accelerated effectively and extracted by the longitudinal ponderomotive force. For intensities above, an electron's energy gain about MeV can be realized, and the energetic electron is parallel with the propagation axis.

  16. Dynamics of electron acceleration in laser-driven wakefields. Acceleration limits and asymmetric plasma waves

    Energy Technology Data Exchange (ETDEWEB)

    Popp, Antonia

    2011-12-16

    The experiments presented in this thesis study several aspects of electron acceleration in a laser-driven plasma wave. High-intensity lasers can efficiently drive a plasma wave that sustains electric fields on the order of 100 GV/m. Electrons that are trapped in this plasma wave can be accelerated to GeV-scale energies. As the accelerating fields in this scheme are 3-4 orders of magnitude higher than in conventional radio-frequency accelerators, the necessary acceleration distance can be reduced by the same factor, turning laser-wakefield acceleration (LWFA) into a promising compact, and potentially cheaper, alternative. However, laser-accelerated electron bunches have not yet reached the parameter standards of conventional accelerators. This work will help to gain better insight into the acceleration process and to optimize the electron bunch properties. The 25 fs, 1.8 J-pulses of the ATLAS laser at the Max-Planck-Institute of Quantum Optics were focused into a steady-state flow gas cell. This very reproducible and turbulence-free gas target allows for stable acceleration of electron bunches. Thus the sensitivity of electron parameters to subtle changes of the experimental setup could be determined with meaningful statistics. At optimized experimental parameters, electron bunches of {approx}50 pC total charge were accelerated to energies up to 450 MeV with a divergence of {approx}2 mrad FWHM. As, in a new design of the gas cell, its length can be varied from 2 to 14 mm, the electron bunch energy could be evaluated after different acceleration distances, at two different electron densities. From this evolution important acceleration parameters could be extracted. At an electron density of 6.43. 10{sup 18} cm{sup -3} the maximum electric field strength in the plasma wave was determined to be {approx}160 GV/m. The length after which the relativistic electrons outrun the accelerating phase of the electric field and are decelerated again, the so-called dephasing length

  17. Electrons re-acceleration at the footpoints of Solar Flares

    CERN Document Server

    Turkmani, Rim

    2010-01-01

    Hinode's observations revealed a very dynamic and complex chromosphere. This require revisiting the assumption that the chromospheric footpoints of solar flares are areas where accelerated particles only lose energy due to collisions. Traditionally electrons are thought to be accelerated in the coronal part of the loop, then travel to the footpoints where they lose their energy and radiate the observed Hard X-ray. Increasing observational evidence challenges this assumption. We review the evidence against this assumption and present the new Local Re-acceleration Thick Target Model (LRTTM) where at the footpoints electrons receive a boost of re-acceleration in addition to the usual collisional loses. Such model may offer an alternative to the 'standard' collisional thick target injection model (TTM) (Brown 1971) of solar HXR burst sources, requiring far fewer electrons and solving some recent problems with the TTM interpretation. We look at the different scenarios which could lead to such re-acceleration and p...

  18. Electron pulse shaping in the FELIX RF accelerator

    NARCIS (Netherlands)

    Weits, H. H.; van der Geer, C. A. J.; Oepts, D.; van der Meer, A. F. G.

    1999-01-01

    The FELIX free-electron laser uses short pulses of relativistic electrons produced by an RF accelerator. The design target for the duration of these electron bunches was around 3 ps. In experiments we observed that the bunches emit coherently enhanced spontaneous emission (CSE) when they travel thro

  19. 17 January 2011 - British (Cambridge) Trustee of the London Science Museum Chair of the Management Committee of the Newton Institute for Mathematical Sciences H. Covington in the LHCB underground experimental area with A. Schopper; signing the guest book with Director for Accelerators and Technology S. Myers; throughout accompanied by R. Veness.

    CERN Multimedia

    Maximilien Brice

    2011-01-01

    17 January 2011 - British (Cambridge) Trustee of the London Science Museum Chair of the Management Committee of the Newton Institute for Mathematical Sciences H. Covington in the LHCB underground experimental area with A. Schopper; signing the guest book with Director for Accelerators and Technology S. Myers; throughout accompanied by R. Veness.

  20. Design and performance criteria for medical electron accelerators

    Science.gov (United States)

    Nunan, Craig S.

    1985-05-01

    A brief comparison is made of the design and performance of early and modern isocentric microwave linear accelerators for radiotherapy. Generally accepted criteria for the design of current machines are presented, along with a rationale for their selection. The current development of international standards for safety and performance of medical electron accelerators is reviewed.

  1. Electron accelerators for radiosterilization; Akceleratory elektronow dla potrzeb sterylizacji radiacyjnej

    Energy Technology Data Exchange (ETDEWEB)

    Zimek, Z. [Institute of Nuclear Chemistry and Technology, Warsaw (Poland)

    1997-10-01

    The applications of electron accelerators in commercial plants for radiosterilization have been shown. Advantages of such irradiation source have been presented. The types and parameters of accelerators being installed in worldwide irradiation plants for radiosterilization have been listed as well. 2 tabs.

  2. Vacuum laser acceleration of relativistic electrons using plasma mirror injectors

    CERN Document Server

    Thévenet, M; Kahaly, S; Vincenti, H; Vernier, A; Quéré, F; Faure, J

    2015-01-01

    Accelerating particles to relativistic energies over very short distances using lasers has been a long standing goal in physics. Among the various schemes proposed for electrons, vacuum laser acceleration has attracted considerable interest and has been extensively studied theoretically because of its appealing simplicity: electrons interact with an intense laser field in vacuum and can be continuously accelerated, provided they remain at a given phase of the field until they escape the laser beam. But demonstrating this effect experimentally has proved extremely challenging, as it imposes stringent requirements on the conditions of injection of electrons in the laser field. Here, we solve this long-standing experimental problem for the first time by using a plasma mirror to inject electrons in an ultraintense laser field, and obtain clear evidence of vacuum laser acceleration. With the advent of PetaWatt class lasers, this scheme could provide a competitive source of very high charge (nC) and ultrashort rela...

  3. Cambridge IGCSE computer science

    CERN Document Server

    Watson, Dave; Konrad, Nina

    2015-01-01

    Endorsed by Cambridge International Examinations. Develop your students computational thinking and programming skills with complete coverage of the latest syllabus (0478) from experienced examiners and teachers. - Includes a Student CD-ROM with interactive tests, based on the short answer questions from both papers - Follows the order of the syllabus exactly, ensuring complete coverage - Introduces students to self-learning exercises, helping them learn how to use their knowledge in new scenarios This syllabus is for first examination from 2015.

  4. High-efficiency acceleration of an electron beam in a plasma wakefield accelerator.

    Science.gov (United States)

    Litos, M; Adli, E; An, W; Clarke, C I; Clayton, C E; Corde, S; Delahaye, J P; England, R J; Fisher, A S; Frederico, J; Gessner, S; Green, S Z; Hogan, M J; Joshi, C; Lu, W; Marsh, K A; Mori, W B; Muggli, P; Vafaei-Najafabadi, N; Walz, D; White, G; Wu, Z; Yakimenko, V; Yocky, G

    2014-11-06

    High-efficiency acceleration of charged particle beams at high gradients of energy gain per unit length is necessary to achieve an affordable and compact high-energy collider. The plasma wakefield accelerator is one concept being developed for this purpose. In plasma wakefield acceleration, a charge-density wake with high accelerating fields is driven by the passage of an ultra-relativistic bunch of charged particles (the drive bunch) through a plasma. If a second bunch of relativistic electrons (the trailing bunch) with sufficient charge follows in the wake of the drive bunch at an appropriate distance, it can be efficiently accelerated to high energy. Previous experiments using just a single 42-gigaelectronvolt drive bunch have accelerated electrons with a continuous energy spectrum and a maximum energy of up to 85 gigaelectronvolts from the tail of the same bunch in less than a metre of plasma. However, the total charge of these accelerated electrons was insufficient to extract a substantial amount of energy from the wake. Here we report high-efficiency acceleration of a discrete trailing bunch of electrons that contains sufficient charge to extract a substantial amount of energy from the high-gradient, nonlinear plasma wakefield accelerator. Specifically, we show the acceleration of about 74 picocoulombs of charge contained in the core of the trailing bunch in an accelerating gradient of about 4.4 gigavolts per metre. These core particles gain about 1.6 gigaelectronvolts of energy per particle, with a final energy spread as low as 0.7 per cent (2.0 per cent on average), and an energy-transfer efficiency from the wake to the bunch that can exceed 30 per cent (17.7 per cent on average). This acceleration of a distinct bunch of electrons containing a substantial charge and having a small energy spread with both a high accelerating gradient and a high energy-transfer efficiency represents a milestone in the development of plasma wakefield acceleration into a

  5. High-Power Electron Accelerators for Space (and other) Applications

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Dinh Cong [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lewellen, John W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-23

    This is a presentation on high-power electron accelerators for space and other applications. The main points covered are: electron beams for space applications, new designs of RF accelerators, high-power high-electron mobility transistors (HEMT) testing, and Li-ion battery design. In summary, the authors have considered a concept of 1-MeV electron accelerator that can operate up to several seconds. This concept can be extended to higher energy to produce higher beam power. Going to higher beam energy requires adding more cavities and solid-state HEMT RF power devices. The commercial HEMT have been tested for frequency response and RF output power (up to 420 W). Finally, the authors are testing these HEMT into a resonant load and planning for an electron beam test in FY17.

  6. High Energy Particle Accelerators

    CERN Multimedia

    Audio Productions, Inc, New York

    1960-01-01

    Film about the different particle accelerators in the US. Nuclear research in the US has developed into a broad and well-balanced program.Tour of accelerator installations, accelerator development work now in progress and a number of typical experiments with high energy particles. Brookhaven, Cosmotron. Univ. Calif. Berkeley, Bevatron. Anti-proton experiment. Negative k meson experiment. Bubble chambers. A section on an electron accelerator. Projection of new accelerators. Princeton/Penn. build proton synchrotron. Argonne National Lab. Brookhaven, PS construction. Cambridge Electron Accelerator; Harvard/MIT. SLAC studying a linear accelerator. Other research at Madison, Wisconsin, Fixed Field Alternate Gradient Focusing. (FFAG) Oakridge, Tenn., cyclotron. Two-beam machine. Comments : Interesting overview of high energy particle accelerators installations in the US in these early years. .

  7. Clinical implementation of electron energy changes of varian linear accelerators.

    Science.gov (United States)

    Zhang, Sean; Liengsawangwong, Praimakorn; Lindsay, Patricia; Prado, Karl; Sun, Tzouh-Liang; Steadham, Roy; Wang, Xiaochun; Salehpour, Mohammad; Gillin, Michael

    2009-10-27

    Modern dual photon energy linear accelerators often come with a few megavoltage electron beams. The megavoltage electron beam has limited range and relative sharp distal falloff in its depth dose curve compared to that of megavoltage photon beam. Its radiation dose is often delivered appositionally to cover the target volume to its distal 90% depth dose (d90), while avoiding the normal--sometimes critical--structure immediately distal to the target. Varian linear accelerators currently offer selected electron beams of 4, 6, 9, 12, 16 and 20 MeV electron beam energies. However, intermediate electron energy is often needed for optimal dose distribution. In this study we investigated electron beam characteristics and implemented two intermediate 7 and 11 MeV electron beams on Varian linear accelerators. Comprehensive tests and measurements indicated the new electron beams met all dosimetry parameter criteria and operational safety standards. Between the two new electron beams and the existing electron beams we were able to provide a choice of electron beams of 4, 6, 7, 9, 11, 12, 16 and 20 MeV electron energies, which had d90 depth between 1.5 cm and 6.0 cm (from 1.5 cm to 4.0 cm in 0.5 cm increments) to meet our clinical needs.

  8. Direct laser acceleration of electrons in free-space

    CERN Document Server

    Carbajo, Sergio; Wong, Liang Jie; Miller, R J Dwayne; Kärtner, Franz X

    2015-01-01

    Compact laser-driven accelerators are versatile and powerful tools of unarguable relevance on societal grounds for the diverse purposes of science, health, security, and technology because they bring enormous practicality to state-of-the-art achievements of conventional radio-frequency accelerators. Current benchmarking laser-based technologies rely on a medium to assist the light-matter interaction, which impose material limitations or strongly inhomogeneous fields. The advent of few cycle ultra-intense radially polarized lasers has materialized an extensively studied novel accelerator that adopts the simplest form of laser acceleration and is unique in requiring no medium to achieve strong longitudinal energy transfer directly from laser to particle. Here we present the first observation of direct longitudinal laser acceleration of non-relativistic electrons that undergo highly-directional multi-GeV/m accelerating gradients. This demonstration opens a new frontier for direct laser-driven particle accelerati...

  9. Intrinsic normalized emittance growth in laser-driven electron accelerators

    Science.gov (United States)

    Migliorati, M.; Bacci, A.; Benedetti, C.; Chiadroni, E.; Ferrario, M.; Mostacci, A.; Palumbo, L.; Rossi, A. R.; Serafini, L.; Antici, P.

    2013-01-01

    Laser-based electron sources are attracting strong interest from the conventional accelerator community due to their unique characteristics in terms of high initial energy, low emittance, and significant beam current. Extremely strong electric fields (up to hundreds of GV/m) generated in the plasma allow accelerating gradients much higher than in conventional accelerators and set the basis for achieving very high final energies in a compact space. Generating laser-driven high-energy electron beam lines therefore represents an attractive challenge for novel particle accelerators. In this paper we show that laser-driven electrons generated by the nowadays consolidated TW laser systems, when leaving the interaction region, are subject to a very strong, normalized emittance worsening which makes them quickly unusable for any beam transport. Furthermore, due to their intrinsic beam characteristics, controlling and capturing the full beam current can only be achieved improving the source parameters.

  10. Electron Acceleration In Impulsive Solar Flares : extract of a thesis

    CERN Document Server

    Lenters, G T

    1999-01-01

    Impulsive solar flares generate a wide range of photon and particle emissions and hence provide an excellent backyard laboratory for studying particle acceleration processes in astrophysical plasmas. The source of the acceleration remains unidentified, but the basic observations are clear: (1) Hard X-ray and gamma-ray line emission occur simultaneously, indicating that electron and ion acceleration must occur simultaneously; (2) the electron and ion precipitation rates at the foot-points of the flare must be extremely large to account for the photon emission (∼1037 electrons s −1 and ∼1035 protons s−1, respectively), which means that replenishment of the acceleration region (which contains ≈1037 fully ionized hydrogen atoms) is a crucial issue; and (3) there are enhancements of the heavy ion abundances relative to normal coronal values. The basic model proposed assumes the generation of extremely low levels of magnetohydrodynamic (MHD) turb...

  11. Novel Aspects of Direct Laser Acceleration of Relativistic Electrons

    CERN Document Server

    Arefiev, A V; Khudik, V N

    2015-01-01

    We examine the impact of several factors on electron acceleration by a laser pulse and the resulting electron energy gain. Specifically, we consider the role played by: 1) static longitudinal electric field; 2) static transverse electric field; 3) electron injection into the laser pulse; and 4) static longitudinal magnetic field. It is shown that all of these factors lead, under certain conditions, to a considerable electron energy gain from the laser pulse. In contrast with other mechanisms such as wakefield acceleration, the static electric fields in this case do not directly transfer substantial energy to the electron. Instead, they reduce the longitudinal dephasing between the electron and the laser beam, which then allows the electron to gain extra energy from the beam. The mechanisms discussed here are relevant to experiments with under-dense gas jets, as well as to experiments with solid-density targets involving an extended pre-plasma.

  12. MESSENGER observations of energetic electron acceleration in Mercury's magnetotail

    Science.gov (United States)

    Dewey, Ryan; Slavin, James A.; Baker, Daniel; Raines, Jim; Lawrence, David

    2016-10-01

    Energetic particle bursts within Mercury's magnetosphere have been a source of curiosity and controversy since Mariner 10's flybys. Unfortunately, instrumental effects prevent an unambiguous determination of species, flux, and energy spectrum for the Mariner 10 events. MESSENGER data taken by the Energetic Particle Spectrometer (EPS) have now shown that these energetic particle bursts are composed entirely of electrons. EPS made directional measurements of these electrons from ~30 to 300 keV at 3 s resolution, and while the energy of these electrons sometimes exceeded 200 keV, the energy distributions usually exhibited a cutoff near 100 keV. The Gamma Ray Spectrometer (GRS) has also provided measurements of these electron events, at higher time resolution (10 ms) and energetic threshold (> 50 keV) compared to EPS. We focus on GRS electron events near the plasma sheet in Mercury's magnetotail to identify reconnection-associated acceleration mechanisms. We present observations of acceleration associated with dipolarization events (betratron acceleration), flux ropes (Fermi acceleration), and tail loading/unloading (X-line acceleration). We find that the most common source of energetic electron events in Mercury's magnetosphere are dipolarization events similar to those first observed by Mariner 10. Further, a significant dawn-dusk asymmetry is found with dipolarization-associated energetic particle bursts being more common on the dawn side of the magnetotail.

  13. Economics of electron beam accelerator facilities: Concept vs actual

    Science.gov (United States)

    Minbiole, Paul R.

    1995-02-01

    Electron beam accelerator facilities continue to demonstrate their ability to "add value" to a wide range of industrial products. The power, energy, and reliability of commercially available accelerators have increased steadily over the past several decades. The high throughput potential of modern electron beam facilities, together with the broad spectrum of commercial applications, result in the concept that an electron beam facility is an effective tool for adding economic value to industrial products. However, the high capital costs of such a facility (including hidden costs), together with practical limitations to high throughput (including several layers of inefficiencies), result in profit-and-loss economics which are more tenuous than expected after first analysis.

  14. High-Power Electron Accelerators for Space (and other) Applications

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Dinh Cong [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lewellen, John W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-23

    This is a presentation on high-power electron accelerators for space and other applications. The main points covered are: electron beams for space applications, new designs of RF accelerators, high-power HEMT testing, and battery design. In summary, we have considered a concept of 1-MeV electron accelerator that can operate up to several seconds. This concept can be extended to higher energy to produce higher beam power. Going to higher beam energy requires adding more cavities and solid-state HEMT RF power devices. The commercial HEMT have been tested for frequency response and RF output power (up to 420 W). And finally, we are testing these HEMT into a resonant load and planning for an electron beam test in FY17.

  15. PIC simulation of electron acceleration in an underdense plasma

    Directory of Open Access Journals (Sweden)

    S Darvish Molla

    2011-06-01

    Full Text Available One of the interesting Laser-Plasma phenomena, when the laser power is high and ultra intense, is the generation of large amplitude plasma waves (Wakefield and electron acceleration. An intense electromagnetic laser pulse can create plasma oscillations through the action of the nonlinear pondermotive force. electrons trapped in the wake can be accelerated to high energies, more than 1 TW. Of the wide variety of methods for generating a regular electric field in plasmas with strong laser radiation, the most attractive one at the present time is the scheme of the Laser Wake Field Accelerator (LWFA. In this method, a strong Langmuir wave is excited in the plasma. In such a wave, electrons are trapped and can acquire relativistic energies, accelerated to high energies. In this paper the PIC simulation of wakefield generation and electron acceleration in an underdense plasma with a short ultra intense laser pulse is discussed. 2D electromagnetic PIC code is written by FORTRAN 90, are developed, and the propagation of different electromagnetic waves in vacuum and plasma is shown. Next, the accuracy of implementation of 2D electromagnetic code is verified, making it relativistic and simulating the generating of wakefield and electron acceleration in an underdense plasma. It is shown that when a symmetric electromagnetic pulse passes through the plasma, the longitudinal field generated in plasma, at the back of the pulse, is weaker than the one due to an asymmetric electromagnetic pulse, and thus the electrons acquire less energy. About the asymmetric pulse, when front part of the pulse has smaller time rise than the back part of the pulse, a stronger wakefield generates, in plasma, at the back of the pulse, and consequently the electrons acquire more energy. In an inverse case, when the rise time of the back part of the pulse is bigger in comparison with that of the back part, a weaker wakefield generates and this leads to the fact that the electrons

  16. Secondary electron emission from plasma processed accelerating cavity grade niobium

    Science.gov (United States)

    Basovic, Milos

    Advances in the particle accelerator technology have enabled numerous fundamental discoveries in 20th century physics. Extensive interdisciplinary research has always supported further development of accelerator technology in efforts of reaching each new energy frontier. Accelerating cavities, which are used to transfer energy to accelerated charged particles, have been one of the main focuses of research and development in the particle accelerator field. Over the last fifty years, in the race to break energy barriers, there has been constant improvement of the maximum stable accelerating field achieved in accelerating cavities. Every increase in the maximum attainable accelerating fields allowed for higher energy upgrades of existing accelerators and more compact designs of new accelerators. Each new and improved technology was faced with ever emerging limiting factors. With the standard high accelerating gradients of more than 25 MV/m, free electrons inside the cavities get accelerated by the field, gaining enough energy to produce more electrons in their interactions with the walls of the cavity. The electron production is exponential and the electron energy transfer to the walls of a cavity can trigger detrimental processes, limiting the performance of the cavity. The root cause of the free electron number gain is a phenomenon called Secondary Electron Emission (SEE). Even though the phenomenon has been known and studied over a century, there are still no effective means of controlling it. The ratio between the electrons emitted from the surface and the impacting electrons is defined as the Secondary Electron Yield (SEY). A SEY ratio larger than 1 designates an increase in the total number of electrons. In the design of accelerator cavities, the goal is to reduce the SEY to be as low as possible using any form of surface manipulation. In this dissertation, an experimental setup was developed and used to study the SEY of various sample surfaces that were treated

  17. Electron Acceleration in Contracting Magnetic Islands during Solar Flares

    Science.gov (United States)

    Borovikov, D.; Tenishev, V.; Gombosi, T. I.; Guidoni, S. E.; DeVore, C. R.; Karpen, J. T.; Antiochos, S. K.

    2017-01-01

    Electron acceleration in solar flares is well known to be efficient at generating energetic particles that produce the observed bremsstrahlung X-ray spectra. One mechanism proposed to explain the observations is electron acceleration within contracting magnetic islands formed by magnetic reconnection in the flare current sheet. In a previous study, a numerical magnetohydrodynamic simulation of an eruptive solar flare was analyzed to estimate the associated electron acceleration due to island contraction. That analysis used a simple analytical model for the island structure and assumed conservation of the adiabatic invariants of particle motion. In this paper, we perform the first-ever rigorous integration of the guiding-center orbits of electrons in a modeled flare. An initially isotropic distribution of particles is seeded in a contracting island from the simulated eruption, and the subsequent evolution of these particles is followed using guiding-center theory. We find that the distribution function becomes increasingly anisotropic over time as the electrons’ energy increases by up to a factor of five, in general agreement with the previous study. In addition, we show that the energized particles are concentrated on the Sunward side of the island, adjacent to the reconnection X-point in the flare current sheet. Furthermore, our analysis demonstrates that the electron energy gain is dominated by betatron acceleration in the compressed, strengthened magnetic field of the contracting island. Fermi acceleration by the shortened field lines of the island also contributes to the energy gain, but it is less effective than the betatron process.

  18. Proceedings of the FNCA workshop on application of electron accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Yoshii, Fumio; Kume, Tamikazu (eds.) [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2003-02-01

    'Forum for Nuclear Cooperation in Asia (FNCA) Workshop on Application of Electron Accelerator' was sponsored by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) and hosted by Japan Atomic Energy Research Institute (JAERI) and Japan Atomic Industry Forum (JAIF). It was held at the Takasaki Radiation Chemistry Research Establishment (TRCRE), JAERI, Takasaki, Japan from 28 January to 1 February, 2002. The Workshop was attended by experts on application of electron accelerator from each of the participating countries, i.e. China, Indonesia, Korea, Malaysia, The Philippines, Thailand and Vietnam and 16 participants from Japan. A total of 17 papers including invited papers on the current status of application of electron accelerator in the participating countries were presented. The characteristics of various kinds of electron accelerators were introduced. Current research and development on the utilization radiation processing for natural rubber latex, natural polymer solution, polymer films, sterilization of spices and seeds, radiation treatment of flue gases and dioxin in liquid, solid, and gases were reported. Based on the proposed needs from the participating countries, the work plan was discussed and agreed on application of electron accelerator for liquid and for solid (thin films and granules/powder). All manuscripts submitted by every speaker were included in the proceedings. The 16 of the presented papers are indexed individually. (J.P.N.)

  19. Electron Accelerator Shielding Design of KIPT Neutron Source Facility

    OpenAIRE

    Zhaopeng Zhong; Yousry Gohar

    2016-01-01

    The Argonne National Laboratory of the United States and the Kharkov Institute of Physics and Technology of the Ukraine have been collaborating on the design, development and construction of a neutron source facility at Kharkov Institute of Physics and Technology utilizing an electron-accelerator-driven subcritical assembly. The electron beam power is 100 kW using 100-MeV electrons. The facility was designed to perform basic and applied nuclear research, produce medical isotopes, and train nu...

  20. Chirped pulse inverse free-electron laser vacuum accelerator

    Science.gov (United States)

    Hartemann, Frederic V.; Baldis, Hector A.; Landahl, Eric C.

    2002-01-01

    A chirped pulse inverse free-electron laser (IFEL) vacuum accelerator for high gradient laser acceleration in vacuum. By the use of an ultrashort (femtosecond), ultrahigh intensity chirped laser pulse both the IFEL interaction bandwidth and accelerating gradient are increased, thus yielding large gains in a compact system. In addition, the IFEL resonance condition can be maintained throughout the interaction region by using a chirped drive laser wave. In addition, diffraction can be alleviated by taking advantage of the laser optical bandwidth with negative dispersion focusing optics to produce a chromatic line focus. The combination of these features results in a compact, efficient vacuum laser accelerator which finds many applications including high energy physics, compact table-top laser accelerator for medical imaging and therapy, material science, and basic physics.

  1. Down-ramp injection and independently controlled acceleration of electrons in a tailored laser wakefield accelerator

    CERN Document Server

    Hansson, M.; Davoine, X.; Ekerfelt, H.; Svensson, K.; Persson, A.; Wahlström, C.-G.; Lundh, O.; 10.1103/PhysRevSTAB.18.071303

    2015-01-01

    We report on a study on controlled injection of electrons into the accelerating phase of a plasma wakefield accelerator by tailoring the target density distribution using two independent sources of gas. The tailored density distribution is achieved experimentally by inserting a narrow nozzle, with an orifice diameter of only 400  μm , into a jet of gas supplied from a 2 mm diameter nozzle. The combination of these two nozzles is used to create two regions of different density connected by a density gradient. Using this setup we show independent control of the charge and energy distribution of the bunches of accelerated electron as well as decreased shot-to-shot fluctuations in these quantities compared to self-injection in a single gas jet. Although the energy spectra are broad after injection, simulations show that further acceleration acts to compress the energy distribution and to yield peaked energy spectra.

  2. Research and application of electron accelerator in China

    Energy Technology Data Exchange (ETDEWEB)

    Zhan Wenlong; Liu Zhenghao [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China)

    2003-02-01

    There are more than 30 product lines of irradiation cross-linking wire and cable and shrinkable tube by EB in Chinese industry. Total of 3,000 KW power of EB, in which 40% coming from home made accelerator. Recently, about 450 KW electron accelerator is being manufactured and used in protection of environment that is removal of SO{sub 2} and NO{sub x} from flue gas. (author)

  3. Properties of Trapped Electron Bunches in a Plasma Wakefield Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kirby, Neil; /SLAC

    2009-10-30

    Plasma-based accelerators use the propagation of a drive bunch through plasma to create large electric fields. Recent plasma wakefield accelerator (PWFA) experiments, carried out at the Stanford Linear Accelerator Center (SLAC), successfully doubled the energy for some of the 42 GeV drive bunch electrons in less than a meter; this feat would have required 3 km in the SLAC linac. This dissertation covers one phenomenon associated with the PWFA, electron trapping. Recently it was shown that PWFAs, operated in the nonlinear bubble regime, can trap electrons that are released by ionization inside the plasma wake and accelerate them to high energies. These trapped electrons occupy and can degrade the accelerating portion of the plasma wake, so it is important to understand their origins and how to remove them. Here, the onset of electron trapping is connected to the drive bunch properties. Additionally, the trapped electron bunches are observed with normalized transverse emittance divided by peak current, {epsilon}{sub N,x}/I{sub t}, below the level of 0.2 {micro}m/kA. A theoretical model of the trapped electron emittance, developed here, indicates that the emittance scales inversely with the square root of the plasma density in the non-linear 'bubble' regime of the PWFA. This model and simulations indicate that the observed values of {epsilon}{sub N,x}/I{sub t} result from multi-GeV trapped electron bunches with emittances of a few {micro}m and multi-kA peak currents. These properties make the trapped electrons a possible particle source for next generation light sources. This dissertation is organized as follows. The first chapter is an overview of the PWFA, which includes a review of the accelerating and focusing fields and a survey of the remaining issues for a plasma-based particle collider. Then, the second chapter examines the physics of electron trapping in the PWFA. The third chapter uses theory and simulations to analyze the properties of the trapped

  4. Cambridge technicals level 3 IT

    CERN Document Server

    Ellis, Victoria; Middleton, Saundra

    2016-01-01

    Support your teaching of the new Cambridge Technicals 2016 suite with Cambridge Technical Level 3 IT, developed in partnership between OCR and Hodder Education; this textbook covers each specialist pathway and ensures your ability to deliver a flexible course that is both vocationally focused and academically thorough. Cambridge Technical Level 3 IT is matched exactly to the new specification and follows specialist pathways in IT Infrastructure Technician, Emerging Digital Technology Practitioner, Application Developer, and Data Analyst. - Ensures effective teaching of each specialis

  5. Electron Accelerators for Radioactive Ion Beams

    Energy Technology Data Exchange (ETDEWEB)

    Lia Merminga

    2007-10-10

    The summary of this paper is that to optimize the design of an electron drive, one must: (a) specify carefully the user requirements--beam energy, beam power, duty factor, and longitudinal and transverse emittance; (b) evaluate different machine options including capital cost, 10-year operating cost and delivery time. The author is convinced elegant solutions are available with existing technology. There are several design options and technology choices. Decisions will depend on system optimization, in-house infrastructure and expertise (e.g. cryogenics, SRF, lasers), synergy with other programs.

  6. Electron acceleration in the reconnection diffusion region: Cluster observations

    Science.gov (United States)

    Huang, S. Y.; Vaivads, A.; Khotyaintsev, Y. V.; Zhou, M.; Fu, H. S.; Retinò, A.; Deng, X. H.; André, M.; Cully, C. M.; He, J. S.; Sahraoui, F.; Yuan, Z. G.; Pang, Y.

    2012-06-01

    We present one case study of magnetic islands and energetic electrons in the reconnection diffusion region observed by the Cluster spacecraft. The cores of the islands are characterized by strong core magnetic fields and density depletion. Intense currents, with the dominant component parallel to the ambient magnetic field, are detected inside the magnetic islands. A thin current sheet is observed in the close vicinity of one magnetic island. Energetic electron fluxes increase at the location of the thin current sheet, and further increase inside the magnetic island, with the highest fluxes located at the core region of the island. We suggest that these energetic electrons are firstly accelerated in the thin current sheet, and then trapped and further accelerated in the magnetic island by betatron and Fermi acceleration.

  7. Nonthermal radiation from relativistic electrons accelerated at spherically expanding shocks

    CERN Document Server

    Kang, Hyesung

    2014-01-01

    We study the evolution of the energy spectrum of cosmic-ray electrons accelerated at spherically expanding shocks with low Mach numbers and the ensuing spectral signatures imprinted in radio synchrotron emission. Time-dependent simulations of diffusive shock acceleration (DSA) of electrons in the test-particle limit have been performed for spherical shocks with the parameters relevant for typical shocks in the intracluster medium. The electron and radiation spectra at the shock location can be described properly by the test-particle DSA predictions with the instantaneous shock parameters. However, the volume integrated spectra of both electrons and radiation deviate significantly from the test-particle power-laws, because the shock compression ratio and the flux of injected electrons at the shock gradually decrease as the shock slows down in time. So one needs to be cautious about interpreting observed radio spectra of evolving shocks by simple DSA models in the test-particle regime.

  8. Beam by design: laser manipulation of electrons in modern accelerators

    CERN Document Server

    Hemsing, Erik; Xiang, Dao; Zholents, Alexander

    2014-01-01

    Accelerator-based light sources such as storage rings and free-electron lasers use relativistic electron beams to produce intense radiation over a wide spectral range for fundamental research in physics, chemistry, materials science, biology and medicine. More than a dozen such sources operate worldwide, and new sources are being built to deliver radiation that meets with the ever increasing sophistication and depth of new research. Even so, conventional accelerator techniques often cannot keep pace with new demands and, thus, new approaches continue to emerge. In this article, we review a variety of recently developed and promising techniques that rely on lasers to manipulate and rearrange the electron distribution in order to tailor the properties of the radiation. Basic theories of electron-laser interactions, techniques to create micro- and nano-structures in electron beams, and techniques to produce radiation with customizable waveforms are reviewed. We overview laser-based techniques for the generation ...

  9. Electron Acceleration by High Power Radio Waves in the Ionosphere

    Science.gov (United States)

    Bernhardt, Paul

    2012-10-01

    At the highest ERP of the High Altitude Auroral Research Program (HAARP) facility in Alaska, high frequency (HF) electromagnetic (EM) waves in the ionosphere produce artificial aurora and electron-ion plasma layers. Using HAARP, electrons are accelerated by high power electrostatic (ES) waves to energies >100 times the thermal temperature of the ambient plasma. These ES waves are driven by decay of the pump EM wave tuned to plasma resonances. The most efficient acceleration process occurs near the harmonics of the electron cyclotron frequency in earth's magnetic field. Mode conversion plays a role in transforming the ES waves into EM signals that are recorded with ground receivers. These diagnostic waves, called stimulated EM emissions (SEE), show unique resonant signatures of the strongest electron acceleration. This SEE also provides clues about the ES waves responsible for electron acceleration. The electron gas is accelerated by high frequency modes including Langmuir (electron plasma), upper hybrid, and electron Bernstein waves. All of these waves have been identified in the scattered EM spectra as downshifted sidebands of the EM pump frequency. Parametric decay is responsible low frequency companion modes such as ion acoustic, lower hybrid, and ion Bernstein waves. The temporal evolution of the scattered EM spectrum indicates development of field aligned irregularities that aid the mode conversion process. The onset of certain spectral features is strongly correlated with glow plasma discharge structures that are both visible with the unaided eye and detectable using radio backscatter techniques at HF and UHF frequencies. The primary goals are to understand natural plasma layers, to study basic plasma physics in a unique ``laboratory with walls,'' and to create artificial plasma structures that can aid radio communications.

  10. Scientists at Brookhaven contribute to the development of a better electron accelerator

    CERN Multimedia

    2004-01-01

    Scientists working at Brookhaven have developed a compact linear accelerator called STELLA (Staged Electron Laser Acceleration). Highly efficient, it may help electron accelerators become practical tools for applications in industry and medicine, such as radiation therapy (1 page)

  11. Controlled electron injection using nanoparticles in laser wakefield acceleration

    Science.gov (United States)

    Cho, Myung Hoon; Pathak, Vishwa Bandhu; Kim, Hyung Taek; Nakajima, Kazuhisa; Nam, Chang Hee; CenterRelativistic Laser Science Team

    2016-10-01

    Laser wakefield acceleration is one of compact electron acceleration schemes due to its high accelerating gradient. Despite of the great progress of several GeV electron beams with high power lasers, the electron injection to the wakefield is still a critical issue for a very low density plasma 1017 electrons/cc. In this talk a novel method to control the injection using nanoparticles is proposed. We investigate the electron injection by analyzing the interaction of electrons with the two potentials - one created by a nanoparticle and the other by the wakefield. The nanoparticle creates a localized electric potential and this nanoparticle potential just slips the present wake potential. To confirm the Hamiltonian description of the interaction, a test particle calculation is performed by controlling the bubble and the nanoparticle potentials. A multi-dimensional particle-in-cell simulations are also presented as a proof-of-principle. Comparing theoretical estimates and PIC simulation, we suggest nanoparticle parameters of size and electron density depending on the background plasma density. Our scheme can be applicable for low plasma density to break though the limitation of self-injection toward extremely high energy electron energy.

  12. Energy limitation of laser-plasma electron accelerators

    CERN Document Server

    Cardenas, D E; Xu, J; Hofmann, L; Buck, A; Schmid, K; Sears, C M S; Rivas, D E; Shen, B; Veisz, L

    2015-01-01

    We report on systematic and high-precision measurements of dephasing, an effect that fundamentally limits the performance of laser wakefield accelerators. Utilizing shock-front injection, a technique providing stable, tunable and high-quality electron bunches, acceleration and deceleration of few-MeV quasi-monoenergetic beams were measured with sub-5-fs and 8-fs laser pulses. Typical density dependent electron energy evolution with 65-300 micrometers dephasing length and 6-20 MeV peak energy was observed and is well described with a simple model.

  13. Electron acceleration by Landau resonance with whistler mode wave packets

    Science.gov (United States)

    Gurnett, D. A.; Reinleitner, L. A.

    1983-01-01

    Recent observations of electrostatic waves associated with whistler mode chorus emissions provide evidence that electrons are being trapped by Landau resonance interactions with the chorus. In this paper, the trapping, acceleration and escape of electrons in Landau resonance with a whistler mode wave packet are discussed. It is shown that acceleration can occur by both inhomogeneous and dispersive effects. The maximum energy gained is controlled by the points where trapping and escape occur. Large energy changes are possible if the frequency of the wave packet or the magnetic field strength increase between the trapping and escape points. Various trapping and escape mechanisms are discussed.

  14. Electron cloud in the CERN accelerator complex

    CERN Document Server

    AUTHOR|(CDS)2069325; Bartosik, Hannes; Belli, Eleonora; Iadarola, Giovanni; Li, Kevin Shing Bruce; Mether, Lotta Maria; Romano, Annalisa; Schenk, Michael

    2016-01-01

    Operation with closely spaced bunched beams causes the build-up of an Electron Cloud (EC) in both the LHC and the two last synchrotrons of its injector chain (PS and SPS). Pressure rise and beam instabilities are observed at the PS during the last stage of preparation of the LHC beams. The SPS was affected by coherent and incoherent emittance growth along the LHC bunch train over many years, before scrubbing has finally suppressed the EC in a large fraction of the machine. When the LHC started regular operation with 50 ns beams in 2011, EC phenomena appeared in the arcs during the early phases, and in the interaction regions with two beams all along the run. Operation with 25 ns beams (late 2012 and 2015), which is nominal for LHC, has been hampered by EC induced high heat load in the cold arcs, bunch dependent emittance growth and degraded beam lifetime. Dedicated and parasitic machine scrubbing is presently the weapon used at the LHC to combat EC in this mode of operation. This talk summarises the EC experi...

  15. ELECTRON CLOUD EFFECTS IN HIGH INTENSITY PROTON ACCELERATORS.

    Energy Technology Data Exchange (ETDEWEB)

    WEI,J.; MACEK,R.J.

    2002-04-14

    One of the primary concerns in the design and operation of high-intensity proton synchrotrons and accumulators is the electron cloud and associated beam loss and instabilities. Electron-cloud effects are observed at high-intensity proton machines like the Los Alamos National Laboratory's PSR and CERN's SPS, and investigated experimentally and theoretically. In the design of next-generation high-intensity proton accelerators like the Spallation Neutron Source ring, emphasis is made in minimizing electron production and in enhancing Landau damping. This paper reviews the present understanding of the electron-cloud effects and presents mitigation measures.

  16. Trends for Electron Beam Accelerator Applications in Industry

    Science.gov (United States)

    Machi, Sueo

    2011-02-01

    Electron beam (EB) accelerators are major pieces of industrial equipment used for many commercial radiation processing applications. The industrial use of EB accelerators has a history of more than 50 years and is still growing in terms of both its economic scale and new applications. Major applications involve the modification of polymeric materials to create value-added products, such as heat-resistant wires, heat-shrinkable sheets, automobile tires, foamed plastics, battery separators and hydrogel wound dressing. The surface curing of coatings and printing inks is a growing application for low energy electron accelerators, resulting in an environmentally friendly and an energy-saving process. Recently there has been the acceptance of the use of EB accelerators in lieu of the radioactive isotope cobalt-60 as a source for sterilizing disposable medical products. Environmental protection by the use of EB accelerators is a new and important field of application. A commercial plant for the cleaning flue gases from a coal-burning power plant is in operation in Poland, employing high power EB accelerators. In Korea, a commercial plant uses EB to clean waste water from a dye factory.

  17. Electrons Re-Acceleration at the Footpoints of Solar Flares

    Science.gov (United States)

    Turkmani, R.; Brown, J.

    2012-08-01

    Hinode's observations revealed a very dynamic and complex chromosphere. This require revisiting the assumption that the chromospheric footpoints of solar flares are areas where accelerated particles only lose energy due to collisions. Traditionally electrons are thought to be accelerated in the coronal part of the loop, then travel to the footpoints where they lose their energy and radiate the observed hard X-ray. Increasing observational evidence challenges this assumption. We review the evidence against this assumption and present the new Local Re-acceleration Thick Target Model (LRTTM) where at the footpoints electrons receive a boost of re-acceleration in addition to the usual collisional loses. Such model may offer an alternative to the standard collisional thick target injection model (TTM) (Brown 1971) of solar HXR burst sources, requiring far fewer electrons and solving some recent problems with the TTM interpretation. We look at the different scenarios which could lead to such re-acceleration and present numerical results from one of them.

  18. Wave acceleration of electrons in the Van Allen radiation belts.

    Science.gov (United States)

    Horne, Richard B; Thorne, Richard M; Shprits, Yuri Y; Meredith, Nigel P; Glauert, Sarah A; Smith, Andy J; Kanekal, Shrikanth G; Baker, Daniel N; Engebretson, Mark J; Posch, Jennifer L; Spasojevic, Maria; Inan, Umran S; Pickett, Jolene S; Decreau, Pierrette M E

    2005-09-08

    The Van Allen radiation belts are two regions encircling the Earth in which energetic charged particles are trapped inside the Earth's magnetic field. Their properties vary according to solar activity and they represent a hazard to satellites and humans in space. An important challenge has been to explain how the charged particles within these belts are accelerated to very high energies of several million electron volts. Here we show, on the basis of the analysis of a rare event where the outer radiation belt was depleted and then re-formed closer to the Earth, that the long established theory of acceleration by radial diffusion is inadequate; the electrons are accelerated more effectively by electromagnetic waves at frequencies of a few kilohertz. Wave acceleration can increase the electron flux by more than three orders of magnitude over the observed timescale of one to two days, more than sufficient to explain the new radiation belt. Wave acceleration could also be important for Jupiter, Saturn and other astrophysical objects with magnetic fields.

  19. Electron Rephasing in a Laser-Wakefield Accelerator.

    Science.gov (United States)

    Guillaume, E; Döpp, A; Thaury, C; Ta Phuoc, K; Lifschitz, A; Grittani, G; Goddet, J-P; Tafzi, A; Chou, S W; Veisz, L; Malka, V

    2015-10-09

    An important limit for energy gain in laser-plasma wakefield accelerators is the dephasing length, after which the electron beam reaches the decelerating region of the wakefield and starts to decelerate. Here, we propose to manipulate the phase of the electron beam in the wakefield, in order to bring the beam back into the accelerating region, hence increasing the final beam energy. This rephasing is operated by placing an upward density step in the beam path. In a first experiment, we demonstrate the principle of this technique using a large energy spread electron beam. Then, we show that it can be used to increase the energy of monoenergetic electron beams by more than 50%.

  20. International Commercial Contracts, by Giuditta Cordero Moss. (Cambridge: Cambridge University Press, 2014)

    DEFF Research Database (Denmark)

    Lando, Ole

    2015-01-01

    Review of: Giuditta Cordero Moss, International Commercial Contracts. Cambridge: Cambridge University Press, 2014. XV + 329 pages. ISBN: 9781107684713......Review of: Giuditta Cordero Moss, International Commercial Contracts. Cambridge: Cambridge University Press, 2014. XV + 329 pages. ISBN: 9781107684713...

  1. Non-thermal Electron Acceleration in Low Mach Number Collisionless Shocks. I. Particle Energy Spectra and Acceleration Mechanism

    Science.gov (United States)

    Guo, Xinyi; Sironi, Lorenzo; Narayan, Ramesh

    2014-10-01

    Electron acceleration to non-thermal energies in low Mach number (Ms Diffusive shock acceleration, also known as first-order Fermi acceleration, cannot be directly invoked to explain the acceleration of electrons. Rather, an additional mechanism is required to pre-accelerate the electrons from thermal to supra-thermal energies, so they can then participate in the Fermi process. In this work, we use two- and three-dimensional particle-in-cell plasma simulations to study electron acceleration in low Mach number shocks. We focus on the particle energy spectra and the acceleration mechanism in a reference run with Ms = 3 and a quasi-perpendicular pre-shock magnetic field. We find that about 15% of the electrons can be efficiently accelerated, forming a non-thermal power-law tail in the energy spectrum with a slope of p ~= 2.4. Initially, thermal electrons are energized at the shock front via shock drift acceleration (SDA). The accelerated electrons are then reflected back upstream where their interaction with the incoming flow generates magnetic waves. In turn, the waves scatter the electrons propagating upstream back toward the shock for further energization via SDA. In summary, the self-generated waves allow for repeated cycles of SDA, similarly to a sustained Fermi-like process. This mechanism offers a natural solution to the conflict between the bright radio synchrotron emission observed from the outskirts of galaxy clusters and the low electron acceleration efficiency usually expected in low Mach number shocks.

  2. Simulation on Buildup of Electron Cloud in Proton Circular Accelerator

    CERN Document Server

    Liu, Yu-Dong

    2014-01-01

    Electron cloud interaction with high energy positive beam are believed responsible for various undesirable effects such as vacuum degradation, collective beam instability and even beam loss in high power proton circular accelerator. An important uncertainty in predicting electron cloud instability lies in the detail processes on the generation and accumulation of the electron cloud. The simulation on the build-up of electron cloud is necessary to further studies on beam instability caused by electron cloud. China Spallation Neutron Source (CSNS) is the largest scientific project in building, whose accelerator complex includes two main parts: an H- linac and a rapid cycling synchrotron (RCS). The RCS accumulates the 80Mev proton beam and accelerates it to 1.6GeV with a repetition rate 25Hz. During the beam injection with lower energy, the emerging electron cloud may cause a serious instability and beam loss on the vacuum pipe. A simulation code has been developed to simulate the build-up, distribution and dens...

  3. Electron Accelerator Shielding Design of KIPT Neutron Source Facility

    Directory of Open Access Journals (Sweden)

    Zhaopeng Zhong

    2016-06-01

    Full Text Available The Argonne National Laboratory of the United States and the Kharkov Institute of Physics and Technology of the Ukraine have been collaborating on the design, development and construction of a neutron source facility at Kharkov Institute of Physics and Technology utilizing an electron-accelerator-driven subcritical assembly. The electron beam power is 100 kW using 100-MeV electrons. The facility was designed to perform basic and applied nuclear research, produce medical isotopes, and train nuclear specialists. The biological shield of the accelerator building was designed to reduce the biological dose to less than 5.0e-03 mSv/h during operation. The main source of the biological dose for the accelerator building is the photons and neutrons generated from different interactions of leaked electrons from the electron gun and the accelerator sections with the surrounding components and materials. The Monte Carlo N-particle extended code (MCNPX was used for the shielding calculations because of its capability to perform electron-, photon-, and neutron-coupled transport simulations. The photon dose was tallied using the MCNPX calculation, starting with the leaked electrons. However, it is difficult to accurately tally the neutron dose directly from the leaked electrons. The neutron yield per electron from the interactions with the surrounding components is very small, ∼0.01 neutron for 100-MeV electron and even smaller for lower-energy electrons. This causes difficulties for the Monte Carlo analyses and consumes tremendous computation resources for tallying the neutron dose outside the shield boundary with an acceptable accuracy. To avoid these difficulties, the SOURCE and TALLYX user subroutines of MCNPX were utilized for this study. The generated neutrons were banked, together with all related parameters, for a subsequent MCNPX calculation to obtain the neutron dose. The weight windows variance reduction technique was also utilized for both

  4. Electron accelerator shielding design of KIPT neutron source facility

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Zhao Peng; Gohar, Yousry [Argonne National Laboratory, Argonne (United States)

    2016-06-15

    The Argonne National Laboratory of the United States and the Kharkov Institute of Physics and Technology of the Ukraine have been collaborating on the design, development and construction of a neutron source facility at Kharkov Institute of Physics and Technology utilizing an electron-accelerator-driven subcritical assembly. The electron beam power is 100 kW using 100-MeV electrons. The facility was designed to perform basic and applied nuclear research, produce medical isotopes, and train nuclear specialists. The biological shield of the accelerator building was designed to reduce the biological dose to less than 5.0e-03 mSv/h during operation. The main source of the biological dose for the accelerator building is the photons and neutrons generated from different interactions of leaked electrons from the electron gun and the accelerator sections with the surrounding components and materials. The Monte Carlo N-particle extended code (MCNPX) was used for the shielding calculations because of its capability to perform electron-, photon-, and neutron-coupled transport simulations. The photon dose was tallied using the MCNPX calculation, starting with the leaked electrons. However, it is difficult to accurately tally the neutron dose directly from the leaked electrons. The neutron yield per electron from the interactions with the surrounding components is very small, ∼0.01 neutron for 100-MeV electron and even smaller for lower-energy electrons. This causes difficulties for the Monte Carlo analyses and consumes tremendous computation resources for tallying the neutron dose outside the shield boundary with an acceptable accuracy. To avoid these difficulties, the SOURCE and TALLYX user subroutines of MCNPX were utilized for this study. The generated neutrons were banked, together with all related parameters, for a subsequent MCNPX calculation to obtain the neutron dose. The weight windows variance reduction technique was also utilized for both neutron and photon dose

  5. Simulating Electron Clouds in Heavy-Ion Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, R.H.; Friedman, A.; Kireeff Covo, M.; Lund, S.M.; Molvik,A.W.; Bieniosek, F.M.; Seidl, P.A.; Vay, J-L.; Stoltz, P.; Veitzer, S.

    2005-04-07

    Contaminating clouds of electrons are a concern for most accelerators of positive-charged particles, but there are some unique aspects of heavy-ion accelerators for fusion and high-energy density physics which make modeling such clouds especially challenging. In particular, self-consistent electron and ion simulation is required, including a particle advance scheme which can follow electrons in regions where electrons are strongly-, weakly-, and un-magnetized. They describe their approach to such self-consistency, and in particular a scheme for interpolating between full-orbit (Boris) and drift-kinetic particle pushes that enables electron time steps long compared to the typical gyro period in the magnets. They present tests and applications: simulation of electron clouds produced by three different kinds of sources indicates the sensitivity of the cloud shape to the nature of the source; first-of-a-kind self-consistent simulation of electron-cloud experiments on the High-Current Experiment (HCX) at Lawrence Berkeley National Laboratory, in which the machine can be flooded with electrons released by impact of the ion beam and an end plate, demonstrate the ability to reproduce key features of the ion-beam phase space; and simulation of a two-stream instability of thin beams in a magnetic field demonstrates the ability of the large-timestep mover to accurately calculate the instability.

  6. Acceleration of Electrons in a Diffraction Dominated IFEL

    CERN Document Server

    Musumeci, Pietro; Pellegrini, Claudio; Ralph, J; Rosenzweig, J B; Sung, C; Tochitsky, Sergei Ya; Travish, Gil

    2004-01-01

    We report on the observation of energy gain in excess of 20 MeV at the Inverse Free Electron Laser Accelerator experiment at the Neptune Laboratory at UCLA. A 14.5 MeV electron beam is injected ina 50 cm long undulator strongly tapered both in period and field amplitude. A CO2 10 μ m laser with power >300 GW is used as the IFEL driver. The Rayleigh range of the laser (1.8cm) is shorter than the undulator length so that the interaction is diffraction dominated. Few per cent of the injected particles are trapped in stable accelerating buckets and electrons with energies up to 35 MeV are detected on the magnetic spectrometers. Experimental results on the scaling of the accelerator characteristics versus input parameters like injection energy, laser focus position and laser power are discussed. Three dimensional simulations are in good agreement with the electron energy spectrums observed in the experiment and indicate that substantial energy exchange between laser and electron beam only occurs in the firs...

  7. Development of superconducting acceleration cavity technology for free electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Min; Lee, Byung Cheol; Kim, Sun Kook; Jeong, Young Uk; Cho, Sung Oh

    2000-10-01

    As a result of the cooperative research between the KAERI and Peking University, the key technologies of superconducting acceleration cavity and photoelectron gun have been developed for the application to high power free electron lasers. A 1.5-GHz, 1-cell superconducting RF cavity has been designed and fabricated by using pure Nb sheets. The unloaded Q values of the fabricated superconducting cavity has been measured to be 2x10{sup 9} at 2.5K, and 8x10{sup 9} at 1.8K. The maximum acceleration gradient achieved was 12 MeV/m at 2.5K, and 20MV/m at 1.8 K. A cryostat for the 1-cell superconducting cavity has been designed. As a source of electron beam, a DC photocathode electron gun has been designed and fabricated, which is composed of a photocathode evaporation chamber and a 100-keV acceleration chamber. The efficiency of the Cs2Te photocathode is 3% nominally at room temperature, 10% at 290 deg C. The superconducting photoelectron gun system developed has been estimated to be a good source of high-brightness electron beam for high-power free electron lasers.

  8. Electron beam accelerator facilities at IPEN-CNEN/SP

    Energy Technology Data Exchange (ETDEWEB)

    Somessari, Samir L.; Silveira, Carlos G. da; Paes, Helio; Somessari, Elizabeth S.R. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)], E-mail: somessar@ipen.br

    2007-07-01

    Electron beam processing is a manufacturing technique, which applies a focused beam of high-energy electrons produced by an electron accelerator to promote chemical changes within a product. At IPEN-CNEN/SP there are two electron beam accelerators Type Dynamitron{sup R} (manufactured by RDI- Radiation Dynamics Inc.) Job 188 and Job 307 models. The technical specifications for the Job 188 energy 1.5 MeV, beam current 25 mA, scan 1.20 m, beam power 37.5 kW and for the Job 307 energy 1.5 MeV, beam current 65 mA, Scan 1.20 m, beam power 97.5 kW. Some applications of the electron beam accelerator for radiation processing are wire and cable insulation crosslinking, rubber vulcanization, sterilization and disinfection of medical products, food preservation, heat shrinkable products, polymer degradation, aseptic packaging, semiconductors and pollution control. For irradiating these materials at IPEN-CNEN/SP, there are some equipment such as, underbeam capstan with speed control from 10 to 700 m/min; a track; a system to roll up and unroll wires and electric cables, polyethylene blankets and other systems to improve the quality of the products. (author)

  9. The Mechanisms of Electron Heating and Acceleration during Magnetic Reconnection

    CERN Document Server

    Dahlin, J T; Swisdak, M

    2014-01-01

    The heating of electrons in collisionless magnetic reconnection is explored in particle-in-cell (PIC) simulations with non-zero guide fields so that electrons remain magnetized. In this regime electric fields parallel to B accelerate particles directly while those perpendicular to B do so through gradient-B and curvature drifts. The curvature drift drives parallel heating through Fermi reflection while the gradient B drift changes the perpendicular energy through betatron acceleration. We present simulations in which we evaluate each of these mechanisms in space and time in order to quantify their role in electron heating. For a case with a small guide field (20 % of the magnitude of the reconnecting component) the curvature drift is the dominant source of electron heating. However, for a larger guide field (equal to the magnitude of the reconnecting component) electron acceleration by the curvature drift is comparable to that of the parallel electric field. In both cases the heating by the gradient B drift i...

  10. Rotational total skin electron irradiation with a linear accelerator.

    Science.gov (United States)

    Reynard, Eric P; Evans, Michael D C; Devic, Slobodan; Parker, William; Freeman, Carolyn R; Roberge, David; Podgorsak, Ervin B

    2008-11-03

    The rotational total skin electron irradiation (RTSEI) technique at our institution has undergone several developments over the past few years. Replacement of the formerly used linear accelerator has prompted many modifications to the previous technique. With the current technique, the patient is treated with a single large field while standing on a rotating platform, at a source-to-surface distance of 380 cm. The electron field is produced by a Varian 21EX linear accelerator using the commercially available 6 MeV high dose rate total skin electron mode, along with a custom-built flattening filter. Ionization chambers, radiochromic film, and MOSFET (metal oxide semiconductor field effect transistor) detectors have been used to determine the dosimetric properties of this technique. Measurements investigating the stationary beam properties, the effects of full rotation, and the dose distributions to a humanoid phantom are reported. The current treatment technique and dose regimen are also described.

  11. Electron acceleration in the ionosphere by obliquely propagating electromagnetic waves

    Science.gov (United States)

    Burke, William J.; Ginet, Gregory P.; Heinemann, Michael A.; Villalon, Elena

    The paper presents an analysis of the relativistic equations of motion for electrons in magnetized plasma and externally imposed electromagnetic fields that propagate at arbitrary angles to the background magnetic field. The relativistic Lorentz equation for a test electron moving under the influence of an electromagnetic wave in a cold magnetized plasma and wave propagation through the ionospheric 'radio window' are examined. It is found that at wave energy fluxes greater than 10 to the 8th mW/sq m, initially cold electrons can be accelerated to energies of several MeV in less than a millisecond. Plans to test the theoretical results with rocket flights are discussed.

  12. Electron orbits in the microwave inverse FEL accelerator (MIFELA)

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, T.B.; Marshall, T.C. [Columbia Univ., New York, NY (United States)

    1995-12-31

    The MIFELA is a new device based on stimulated absorption of microwaves by electrons moving along an undulator. An intense microwave field is used (a{sub s} = eE{sub s}/k{sub s} m c{sup 2} = 0.2) as well as a large undulator field (a{sub w}/{gamma} = eB{sub {perpendicular}}/{gamma}k{sub w} mc{sup 2} = 1/2) to accelerate electrons emitted at 6MeV from a rf gun to 20MeV in 1.5m. The spiral radius of the electrons in the undulator is 8mm, in a waveguide of diameter 34mm, with undulator period about 10cm. There is a small guiding field, and the electrons move in type I orbits. We describe three problems connected with the orbital motion of the electrons in this structure: (i) injecting the electrons in an increasing undulator field prior to entering the MIFELA; (ii) orbital motion and stability inside the MIFELA; (iii) extraction of electrons from the spiral orbit in the accelerator into an axially-propagating beam, obtaining {Beta}{sub {perpendicular}} < 0.02. These studies have application to a MIFELA which is under construction at Yale University by Omega-P.

  13. The Cambridge Structural Database.

    Science.gov (United States)

    Groom, Colin R; Bruno, Ian J; Lightfoot, Matthew P; Ward, Suzanna C

    2016-04-01

    The Cambridge Structural Database (CSD) contains a complete record of all published organic and metal-organic small-molecule crystal structures. The database has been in operation for over 50 years and continues to be the primary means of sharing structural chemistry data and knowledge across disciplines. As well as structures that are made public to support scientific articles, it includes many structures published directly as CSD Communications. All structures are processed both computationally and by expert structural chemistry editors prior to entering the database. A key component of this processing is the reliable association of the chemical identity of the structure studied with the experimental data. This important step helps ensure that data is widely discoverable and readily reusable. Content is further enriched through selective inclusion of additional experimental data. Entries are available to anyone through free CSD community web services. Linking services developed and maintained by the CCDC, combined with the use of standard identifiers, facilitate discovery from other resources. Data can also be accessed through CCDC and third party software applications and through an application programming interface.

  14. Particle Acceleration in Relativistic Magnetized Collisionless Electron-Ion Shocks

    CERN Document Server

    Sironi, Lorenzo

    2010-01-01

    We investigate shock structure and particle acceleration in relativistic magnetized collisionless electron-ion shocks by means of 2.5D particle-in-cell simulations with ion-to-electron mass ratios (m_i/m_e) ranging from 16 to 1000. We explore a range of inclination angles between the pre-shock magnetic field and the shock normal. In "subluminal" shocks, where relativistic particles can escape ahead of the shock along the magnetic field lines, ions are efficiently accelerated via a Fermi-like mechanism. The downstream ion spectrum consists of a relativistic Maxwellian and a high-energy power-law tail, which contains ~5% of ions and ~30% of ion energy. Its slope is -2.1. Upstream electrons enter the shock with lower energy than ions, so they are more strongly tied to the field. As a result, only ~1% of the incoming electrons are Fermi-accelerated at the shock before being advected downstream, where they populate a steep power-law tail (with slope -3.5). For "superluminal" shocks, where relativistic particles ca...

  15. High quality electron beams from a laser wakefield accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Wiggins, S M; Issac, R C; Welsh, G H; Brunetti, E; Shanks, R P; Anania, M P; Cipiccia, S; Manahan, G G; Aniculaesei, C; Ersfeld, B; Islam, M R; Burgess, R T L; Vieux, G; Jaroszynski, D A [SUPA, Department of Physics, University of Strathclyde, Glasgow (United Kingdom); Gillespie, W A [SUPA, Division of Electronic Engineering and Physics, University of Dundee, Dundee (United Kingdom); MacLeod, A M [School of Computing and Creative Technologies, University of Abertay Dundee, Dundee (United Kingdom); Van der Geer, S B; De Loos, M J, E-mail: m.wiggins@phys.strath.ac.u [Pulsar Physics, Burghstraat 47, 5614 BC Eindhoven (Netherlands)

    2010-12-15

    High quality electron beams have been produced in a laser-plasma accelerator driven by femtosecond laser pulses with a peak power of 26 TW. Electrons are produced with an energy up to 150 MeV from the 2 mm gas jet accelerator and the measured rms relative energy spread is less than 1%. Shot-to-shot stability in the central energy is 3%. Pepper-pot measurements have shown that the normalized transverse emittance is {approx}1{pi} mm mrad while the beam charge is in the range 2-10 pC. The generation of high quality electron beams is understood from simulations accounting for beam loading of the wakefield accelerating structure. Experiments and self-consistent simulations indicate that the beam peak current is several kiloamperes. Efficient transportation of the beam through an undulator is simulated and progress is being made towards the realization of a compact, high peak brilliance free-electron laser operating in the vacuum ultraviolet and soft x-ray wavelength ranges.

  16. Particle Acceleration in Relativistic Electron-Ion Outlfows

    CERN Document Server

    Lloyd-Ronning, Nicole M

    2016-01-01

    We use the Los Alamos VPIC code to investigate particle acceleration in relativistic, unmagnetized, collisionless electron-ion plasmas. We run our simulations both with a realistic proton-to-electron mass ratio m_p/m_e = 1836, as well as commonly employed mass ratios of m_p/m_e =100 and 25, and show that results differ among the different cases. In particular, for the physically accurate mass ratio, electron acceleration occurs efficiently in a narrow region of a few hundred inertial lengths near the flow front, producing a power law dN/dgamma ~ gamma^(-p) with p ~ -2 developing over a few decades in energy, while acceleration is weak in the region far downstream. We find 20%, 10%, and 0.2% of the total energy given to the electrons for mass ratios of 25, 100, and 1836 respectively at a time of 2500 (w_p)^-1. Our simulations also show significant magnetic field generation just ahead of and behind the the flow front, with about 1% of the total energy going into the magnetic field for a mass ratio of 25 and 100...

  17. Universal scalings for laser acceleration of electrons in ion channels

    Science.gov (United States)

    Khudik, Vladimir; Arefiev, Alexey; Zhang, Xi; Shvets, Gennady

    2016-10-01

    We analytically investigate the acceleration of electrons undergoing betatron oscillations in an ion channel, driven by a laser beam propagating with superluminal (or luminal) phase velocity. The universal scalings for the maximum attainable electron energy are found for arbitrary laser and plasma parameters by deriving a set of dimensionless equations for paraxial ultra-relativistic electron motion. One of our analytic predictions is the emergence of forbidden zones in the electrons' phase space. For an individual electron, these give rise to a threshold-type dependence of the final energy gain on the laser intensity. The universal scalings are also generalized to the resonant laser interaction with the third harmonic of betatron motion and to the case when the laser beam is circularly polarized.

  18. Current and future industrial application of electron accelerators in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Siri-Upathum, Chyagrit [Chulalongkorn Univ., Faculty of Engineering, Bangkok (Thailand)

    2003-02-01

    Industrial applications of electron accelerators in Thailand, first introduced in 1997 for radiation sterilized products such as doctor gown, pampas, feminine napkin etc followed by installation of accelerators, one with energies at 20 MV and the other at 5 MV to produce new value added products like gem stones, topaz, tourmaline and zircon. The machines operate in pulse mode and is also used for irradiation services for food and sterilized products treatment. The need for low and medium energy accelerators in radiation technology is stressed. They are to be used for crosslinking of electrical wire and cable, heat shrinkable materials, low protein concentrated rubber latex, rubber wood furniture and parts, and silk protein degradation. The role of governmental organizations like Nuclear Research Institute (OAEP) and universities in stimulating the utilization of radiation processing in Thailand is strengthened. (S. Ohno)

  19. Nonthermal Radiation and Acceleration of Electrons in Clusters of Galaxies

    CERN Document Server

    Petrosyan, V

    2002-01-01

    Recent observations of excess radiation at extreme ultraviolet and hard X-ray energies straddling the well known thermal soft X-ray emission have provided new tools and puzzles for investigation of the acceleration of nonthermal particles in the intercluster medium of clusters of galaxies. It is shown that these radiations can be produced by the inverse Compton upscattering of the cosmic microwave background photons by the same population of relativistic electrons that produce the well known diffuse radio radiation via the synchrotron mechanism. It is shown that the commonly discussed discrepancy between the value of the magnetic field required for the production of these radiation with that obtained from Faraday rotation measures could be resolved by more realistic models and by considerations of observational selection effects. In a brief discussion of the acceleration process it is argued that the most likely scenario is reacceleration of injected relativistic electrons involving shocks and turbulence. The...

  20. Accelerator physics in ERL based polarized electron ion collider

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Yue [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2015-05-03

    This talk will present the current accelerator physics challenges and solutions in designing ERL-based polarized electron-hadron colliders, and illustrate them with examples from eRHIC and LHeC designs. These challenges include multi-pass ERL design, highly HOM-damped SRF linacs, cost effective FFAG arcs, suppression of kink instability due to beam-beam effect, and control of ion accumulation and fast ion instabilities.

  1. Ultrafast Diagnostics for Electron Beams from Laser Plasma Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Matlis, N. H.; Bakeman, M.; Geddes, C. G. R.; Gonsalves, T.; Lin, C.; Nakamura, K.; Osterhoff, J.; Plateau, G. R.; Schroeder, C. B.; Shiraishi, S.; Sokollik, T.; van Tilborg, J.; Toth, Cs.; Leemans, W. P.

    2010-06-01

    We present an overview of diagnostic techniques for measuring key parameters of electron bunches from Laser Plasma Accelerators (LPAs). The diagnostics presented here were chosen because they highlight the unique advantages (e.g., diverse forms of electromagnetic emission) and difficulties (e.g., shot-to-shot variability) associated with LPAs. Non destructiveness and high resolution (in space and time and energy) are key attributes that enable the formation of a comprehensive suite of simultaneous diagnostics which are necessary for the full characterization of the ultrashort, but highly-variable electron bunches from LPAs.

  2. Application of permanent magnets in accelerators and electron storage rings

    Science.gov (United States)

    Halbach, K.

    1985-04-01

    The use of permanent-magnet systems in high-energy accelerators and as sources of synchrotron radiation in electron-storage rings is discussed in a review of recent experimental investigations. Consideration is given to the generic advantages of permanent magnets over electromagnets (higher field strength per magnet size) in small-scale configurations; the magnetic properties of some charge-sheet-equivalent-permanent-magnet materials (CSEMs); and the design of pure-CSEM and CSEM-Fe-hybrid multipole magnetic lenses, dipoles, and undulator/wiggler systems for use in free-electron lasers and the production of elliptically polarized synchrotron light. Drawings and diagrams are provided.

  3. A "slingshot" laser-driven acceleration mechanism of plasma electrons

    CERN Document Server

    Fiore, Gaetano; Fedele, Renato

    2016-01-01

    We briefly report on the recently proposed [G. Fiore, R. Fedele, U. de Angelis, Phys. Plasmas 21 (2014), 113105], [G. Fiore, S. De Nicola, arXiv:1509.04656] electron acceleration mechanism named "slingshot effect": under suitable conditions the impact of an ultra-short and ultra-intense laser pulse against the surface of a low-density plasma is expected to cause the expulsion of a bunch of superficial electrons with high energy in the direction opposite to that of the pulse propagation; this is due to the interplay of the huge ponderomotive force, huge longitudinal field arising from charge separation, and the finite size of the laser spot.

  4. Laser-ion acceleration via anomalous electron heating

    CERN Document Server

    Yogo, A; Iwata, N; Tosaki, S; Morace, A; Arikawa, Y; Fujioka, S; Nishimura, H; Sagisaka, A; Johzaki, T; Matsuo, K; Kamitsukasa, N; Kojima, S; Nagatomo, H; Nakai, M; Shiraga, H; Murakami, M; Tokita, S; Kawanaka, J; Miyanaga, N; Yamanoi, K; Norimatsu, T; Sakagami, H; Bulanov, S V; Kondo, K; Azechi, H

    2016-01-01

    Using a kilojoule class laser, we demonstrate for the first time that high-contrast picosecond pulses are advantageous for ion acceleration. We show that a laser pulse with optimum duration and a large focal spot accelerates electrons beyond the ponderomotive energy. This anomalous electron heating enables efficient ion acceleration reaching 52 MeV at an intensity of 1.2X10^19 Wcm^-2. The proton energy observed agrees quantitatively with a one-dimensional plasma expansion model newly developed by taking the anomalous heating effect into account. The heating process is confirmed by both measurements with an electron spectrometer and a one-dimensional particle-in-cell simulation. By extending the pulse duration to 6 ps, 5% energy conversion efficiency to protons (50 J out of 1 kJ laser energy) is achieved with an intensity of 10^18-Wcm^-2. The present results are quite encouraging for realizing ion-driven fast ignition and novel ion beamlines.

  5. Electron acceleration and high harmonic generation by relativistic surface plasmons

    Science.gov (United States)

    Cantono, Giada; Luca Fedeli Team; Andrea Sgattoni Team; Andrea Macchi Team; Tiberio Ceccotti Team

    2016-10-01

    Intense, short laser pulses with ultra-high contrast allow resonant surface plasmons (SPs) excitation on solid wavelength-scale grating targets, opening the way to the extension of Plasmonics in the relativistic regime and the manipulation of intense electromagnetic fields to develop new short, energetic, laser-synchronized radiation sources. Recent theoretical and experimental studies have explored the role of SP excitation in increasing the laser-target coupling and enhancing ion acceleration, high-order harmonic generation and surface electron acceleration. Here we present our results on SP driven electron acceleration from grating targets at ultra-high laser intensities (I = 5 ×1019 W/cm2, τ = 25 fs). When the resonant condition for SP excitation is fulfilled, electrons are emitted in a narrow cone along the target surface, with a total charge of about 100 pC and energy spectra peaked around 5 MeV. Distinguishing features of the resonant process were investigated by varying the incidence angle, grating type and with the support of 3D PIC simulations, which closely reproduced the experimental data. Open challenges and further measurements on high-order harmonic generation in presence of a relativistic SP will also be discussed.

  6. The use and potential application of electron accelerator in Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Danu, Sugiarto [National Nuclear Energy Agency, Center for Research and Development of Isotopes and Radiation Technology, Jakarta (Indonesia)

    2003-02-01

    The use of electron accelerator in Indonesia for research and development, radiation services, commercial purposes and potential application in the future is described. A pilot plant for radiation curing technology particularly for wood surface coating using low energy electron accelerator (300 keV, 50 mA; installed in 1984) and a EBM GJ 2 (2 MeV, 10 mA, installed in 1994) for R and D of crosslinking process such as wire and cable and heat shrinkable tube and sheets in Center for Research and Development of Isotopes and Radiation Technology, Jakarta, and also a low energy electron accelerator (installed in 1998) in a private company, PT Gajah Tunggai, are being mainly used. Their performances are presented with activities achieved in the fields of wood surface coating, vulcanization of natural rubber latex, grafting of polyethylene terephthalate (PET), radiation sterilization, degradation of cellulose and, as promising applications, radiation curing for composite production and uses for environmental preservation are introduced. (S. Ohno)

  7. Millisecond newly born pulsars as efficient accelerators of electrons

    CERN Document Server

    Osmanov, Z; Machabeli, G; Chkheidze, N

    2015-01-01

    The newly born millisecond pulsars are investigated as possible energy sources for creating ultra-high energy electrons. The transfer of energy from the star rotation to high energy electrons takes place through the Landau damping of centrifugally driven (via a two stream instability) electrostatic Langmuir waves. Generated in the bulk magnetosphere plasma, such waves grow to high amplitudes, and then damp, very effectively, on relativistic electrons driving them to even higher energies. We show that the rate of transfer of energy is so efficient that no energy losses might affect the mechanism of particle acceleration; the electrons might achieve energies of the order of 10^{18}eV for parameters characteristic of a young star.

  8. Non-Thermal Electron Acceleration in Low Mach Number Collisionless Shocks. I. Particle Energy Spectra and Acceleration Mechanism

    CERN Document Server

    Guo, Xinyi; Narayan, Ramesh

    2014-01-01

    Electron acceleration to non-thermal energies in low Mach number (M<5) shocks is revealed by radio and X-ray observations of galaxy clusters and solar flares, but the electron acceleration mechanism remains poorly understood. Diffusive shock acceleration, also known as first-order Fermi acceleration, cannot be directly invoked to explain the acceleration of electrons. Rather, an additional mechanism is required to pre-accelerate the electrons from thermal to supra-thermal energies, so they can then participate in the Fermi process. In this work, we use two- and three-dimensional particle-in-cell plasma simulations to study electron acceleration in low Mach number shocks. We focus on the particle energy spectra and the acceleration mechanism in a reference run with M=3. We find that about 15 percent of the electrons can be efficiently accelerated, forming a non-thermal power-law tail in the energy spectrum with a slope of p~2.4. Initially, thermal electrons are energized at the shock front via shock drift a...

  9. Electron Beam Charge Diagnostics for Laser Plasma Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Kei; Gonsalves, Anthony; Lin, Chen; Smith, Alan; Rodgers, David; Donahue, Rich; Byrne, Warren; Leemans, Wim

    2011-06-27

    A comprehensive study of charge diagnostics is conducted to verify their validity for measuring electron beams produced by laser plasma accelerators (LPAs). First, a scintillating screen (Lanex) was extensively studied using subnanosecond electron beams from the Advanced Light Source booster synchrotron, at the Lawrence Berkeley National Laboratory. The Lanex was cross calibrated with an integrating current transformer (ICT) for up to the electron energy of 1.5 GeV, and the linear response of the screen was confirmed for charge density and intensity up to 160 pC/mm{sup 2} and 0.4 pC/(ps mm{sup 2}), respectively. After the radio-frequency accelerator based cross calibration, a series of measurements was conducted using electron beams from an LPA. Cross calibrations were carried out using an activation-based measurement that is immune to electromagnetic pulse noise, ICT, and Lanex. The diagnostics agreed within {+-}8%, showing that they all can provide accurate charge measurements for LPAs.

  10. Electron acceleration in the ionosphere by obliquely propagating electromagnetic waves

    Energy Technology Data Exchange (ETDEWEB)

    Burke, W.J.; Ginet, G.P.; Heinemann, M.A.; Villalon, E.

    1988-01-01

    The relativistic equations of motion have been analyzed for electrons in magnetized plasmas and externally imposed electromagnetic fields that propagate at arbitrary angles to the background magnetic field. The electron energy is obtained from a set of non-linear differential equations as functions of time, initial conditions and cyclotron harmonic numbers. For a given cyclotron resonance the energy oscillates in time within the limits of a potential well. Stochastic acceleration occurs if the widths of hamiltonian potentials overlap. Numerical analyses suggest that, at wave energy fluxes in excess of 10/sup 8/ mW/m/sup 2/, initially cold electrons can be accelerated to energies of several MeV in less than a millisecond. Practical attempts to validate the theory with a series of planned rocket flights over the HIPAS facility in Alaska are discussed. The HIPAS antennas will be used to irradiate the magnetic mirror points of 10 - 40 keV electrons emitted from the ECHO 7 rocket in the early winter of 1988. Follow-on rocket experiments to exploit the wave amplification properties of the ionospheric 'radio window' are described.

  11. Accelerating VASP electronic structure calculations using graphic processing units

    KAUST Repository

    Hacene, Mohamed

    2012-08-20

    We present a way to improve the performance of the electronic structure Vienna Ab initio Simulation Package (VASP) program. We show that high-performance computers equipped with graphics processing units (GPUs) as accelerators may reduce drastically the computation time when offloading these sections to the graphic chips. The procedure consists of (i) profiling the performance of the code to isolate the time-consuming parts, (ii) rewriting these so that the algorithms become better-suited for the chosen graphic accelerator, and (iii) optimizing memory traffic between the host computer and the GPU accelerator. We chose to accelerate VASP with NVIDIA GPU using CUDA. We compare the GPU and original versions of VASP by evaluating the Davidson and RMM-DIIS algorithms on chemical systems of up to 1100 atoms. In these tests, the total time is reduced by a factor between 3 and 8 when running on n (CPU core + GPU) compared to n CPU cores only, without any accuracy loss. © 2012 Wiley Periodicals, Inc.

  12. Acceleration of injected electron beam by ultra-intense laser pulses with phase disturbances

    CERN Document Server

    Nakamura, T; Kato, S; Tanimoto, M; Koyama, K; Koga, J

    2003-01-01

    Acceleration of an injected electron beam by ultra-intense laser pulses with phase disturbances is investigated. The energy gain of the beam electrons depends on the initial energy of the injected electrons in the stochastic acceleration process. The effect is larger for electrons with some injection energy as opposed to electrons with no initial energy. The corresponding accelerating field for electrons having certain amounts of initial energy becomes larger than that of the standard wakefield. (author)

  13. Positron annihilation lifetime spectroscopy at a superconducting electron accelerator

    Science.gov (United States)

    Wagner, A.; Anwand, W.; Attallah, A. G.; Dornberg, G.; Elsayed, M.; Enke, D.; Hussein, A. E. M.; Krause-Rehberg, R.; Liedke, M. O.; Potzger, K.; Trinh, T. T.

    2017-01-01

    The Helmholtz-Zentrum Dresden-Rossendorf operates a superconducting linear accelerator for electrons with energies up to 35 MeV and average beam currents up to 1.6 mA. The electron beam is employed for production of several secondary beams including X-rays from bremsstrahlung production, neutrons, and positrons. The secondary positron beam after moderation feeds the Monoenergetic Positron Source (MePS) where positron annihilation lifetime (PALS) and positron annihilation Doppler-broadening experiments in materials science are performed in parallel. The adjustable repetition rate of the continuous-wave electron beams allows matching of the pulse separation to the positron lifetime in the sample under study. The energy of the positron beam can be set between 0.5 keV and 20 keV to perform depth resolved defect spectroscopy and porosity studies especially for thin films.

  14. An energy recovery electron accelerator for DIS at the LHC

    CERN Document Server

    Schulte, Daniel; Jensen, Erk; Valloni, Alessandra; Zimmermann, Frank; Klein, Max

    2014-01-01

    The Large Hadron Electron Collider (LHeC) is a proposed faci lity which will exploit the LHC beams for electron–proton/nucleus scattering, using a new 60 GeV electron accelerator. Following the release of its detailed conceptual design report last ye ar, the configuration of a linac with racetrack shape has been chosen for its default design. Furt her work has been pursued in order to adapt the electron and high luminosity beam optics, to desig n an LHeC Test Facility at CERN and to maximise the ep luminosity to achieve values close to 10 34 cm − 2 s − 1 as is desirable for precision Higgs physics with the LHeC. The talk presents an overview on the design, recent activities and an outlook for further developments

  15. Photodetector performance enhancement using an electron accelerator controlled by light.

    Science.gov (United States)

    Srithanachai, Itsara; Dilla Zainol, Farrah; Ueamanapong, Surada; Niemcharoen, Surasak; Ali, Jalil; Yupapin, Preecha P

    2012-07-20

    A new method of photodetector performance enhancement using an embedded optical accelerator circuit within the photodetector is proposed. The principle of optical tweezer generation using a light pulse within a PANDA ring is also reviewed. By using a modified add-drop optical filter known as a PANDA microring resonator, which is embedded within the photodetector circuit, the device performance can be improved by using an electron injection technique, in which electrons can be trapped by optical tweezers generated by a PANDA ring resonator. Finally, electrons can move faster within the device via the optical waveguide without trapping center in the silicon bulk to the contact, in which the increase in photodetector current is seen. Simulation results obtained have shown that the device's light currents are increased by the order of four, and the switching time is increased by the order of five. This technique can be used for better photodetector performance and other semiconductor applications in the future.

  16. Terahertz radiation source using an industrial electron linear accelerator

    CERN Document Server

    Kalkal, Yashvir

    2015-01-01

    High power ($\\sim 100$ kW) industrial electron linear accelerators (linacs) are used for irradiation applications e.g., for pasteurization of food products, disinfection of medical waste, etc. We propose that high power electron beam from such an industrial linac can be first passed through an undulator to generate powerful terahertz (THz) radiation, and the spent electron beam coming out of the undulator can still be used for industrial applications. This will enhance the utilisation of a high power industrial linac. We have performed calculation of spontaneous emission in the undulator to show that for typical parameters, continuous terahertz radiation having power of the order of $\\mu$W can be produced, which may be useful for many scientific applications.

  17. Conceptual design of industrial free electron laser using superconducting accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Saldin, E.L.; Schneidmiller, E.A.; Ulyanov, Yu.N. [Automatic Systems Corporation, Samara (Russian Federation)] [and others

    1995-12-31

    Paper presents conceptual design of free electron laser (FEL) complex for industrial applications. The FEL complex consists of three. FEL oscillators with the optical output spanning the infrared (IR) and ultraviolet (UV) wave-lengths ({lambda} = 0.3...20 {mu}m) and with the average output power 10 - 20 kW. The driving beam for the FELs is produced by a superconducting accelerator. The electron beam is transported to the FELs via three beam lines (125 MeV and 2 x 250 MeV). Peculiar feature of the proposed complex is a high efficiency of the. FEL oscillators, up to 20 %. This becomes possible due to the use of quasi-continuous electron beam and the use of the time-dependent undulator tapering.

  18. Electron beam manipulation, injection and acceleration in plasma wakefield accelerators by optically generated plasma density spikes

    Science.gov (United States)

    Wittig, Georg; Karger, Oliver S.; Knetsch, Alexander; Xi, Yunfeng; Deng, Aihua; Rosenzweig, James B.; Bruhwiler, David L.; Smith, Jonathan; Sheng, Zheng-Ming; Jaroszynski, Dino A.; Manahan, Grace G.; Hidding, Bernhard

    2016-09-01

    We discuss considerations regarding a novel and robust scheme for optically triggered electron bunch generation in plasma wakefield accelerators [1]. In this technique, a transversely propagating focused laser pulse ignites a quasi-stationary plasma column before the arrival of the plasma wake. This localized plasma density enhancement or optical "plasma torch" distorts the blowout during the arrival of the electron drive bunch and modifies the electron trajectories, resulting in controlled injection. By changing the gas density, and the laser pulse parameters such as beam waist and intensity, and by moving the focal point of the laser pulse, the shape of the plasma torch, and therefore the generated trailing beam, can be tuned easily. The proposed method is much more flexible and faster in generating gas density transitions when compared to hydrodynamics-based methods, and it accommodates experimentalists needs as it is a purely optical process and straightforward to implement.

  19. Electron beam manipulation, injection and acceleration in plasma wakefield accelerators by optically generated plasma density spikes

    Energy Technology Data Exchange (ETDEWEB)

    Wittig, Georg; Karger, Oliver S.; Knetsch, Alexander [Institute of Experimental Physics, University of Hamburg, 22761 Hamburg (Germany); Xi, Yunfeng; Deng, Aihua; Rosenzweig, James B. [Particle Beam Physics Laboratory, UCLA, Los Angeles, CA 90095 (United States); Bruhwiler, David L. [RadiaSoft LLC, Boulder, CO 80304 (United States); RadiaBeam Technologies LLC (United States); Smith, Jonathan [Tech-X UK Ltd, Daresbury, Cheshire WA4 4FS (United Kingdom); Sheng, Zheng-Ming; Jaroszynski, Dino A.; Manahan, Grace G. [Physics Department, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Hidding, Bernhard [Institute of Experimental Physics, University of Hamburg, 22761 Hamburg (Germany); Physics Department, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom)

    2016-09-01

    We discuss considerations regarding a novel and robust scheme for optically triggered electron bunch generation in plasma wakefield accelerators [1]. In this technique, a transversely propagating focused laser pulse ignites a quasi-stationary plasma column before the arrival of the plasma wake. This localized plasma density enhancement or optical “plasma torch” distorts the blowout during the arrival of the electron drive bunch and modifies the electron trajectories, resulting in controlled injection. By changing the gas density, and the laser pulse parameters such as beam waist and intensity, and by moving the focal point of the laser pulse, the shape of the plasma torch, and therefore the generated trailing beam, can be tuned easily. The proposed method is much more flexible and faster in generating gas density transitions when compared to hydrodynamics-based methods, and it accommodates experimentalists needs as it is a purely optical process and straightforward to implement.

  20. Clark and Prehistory at Cambridge

    Directory of Open Access Journals (Sweden)

    Pamela Jane Smith

    1996-05-01

    Full Text Available If honours and titles give measure of a man, then Professor Sir Grahame Clark was indeed important. Faculty Assistant Lecturer in the Faculty of Archaeology and Anthropology at Cambridge University from 1935-46, University Lecturer 1946-52, Disney Professor of Archaeology 1952-74, Head of the Department of Archaeol­ogy and Anthropology 1956-61 and 1968-71, Fellow of Peterhouse, Cambridge 1950-73, Master of Peterhouse 1973-80, he was a visiting lecturer at diverse universities; appointed CBE in 1971, he received many awards includ­ing the prestigious Erasmus Prize for 1990, presented by Prince Bernhard of the Netherlands, for his "long and inspiring devotion to prehistory" (Scarre 1991:10; and in June 1992, he was knighted. Yet well before fame and position were rewards, Clark made major contributions to the establishment of prehis­tory as an academic subject at Cambridge University. Cambridge was the first and, for many years, only British university granting an undergraduate degree which offered prehistory as a specialization. "The development of postgraduate research in prehistoric archaeology at Cambridge had to wait on the provision of undergraduate teaching;' Clark (1989b: 6 recently observed. The "faculty was the only one in Britain producing a flow of graduates in prehistoric archaeology" (Clark 1989a: 53.

  1. Laser-driven acceleration of subrelativistic electrons near a nanostructured dielectric grating: From acceleration via higher spatial harmonics to necessary elements of a dielectric accelerator

    Energy Technology Data Exchange (ETDEWEB)

    McNeur, Josh, E-mail: Joshua.McNeur@FAU.de [Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Staudtstrasse 1, 91058 Erlangen (Germany); Kozak, Martin; Schönenberger, Norbert; Li, Ang; Tafel, Alexander [Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Staudtstrasse 1, 91058 Erlangen (Germany); Hommelhoff, Peter [Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Staudtstrasse 1, 91058 Erlangen (Germany); Max Planck Institute for the Science of Light, Günther-Scharowsky-Straße 1, 91058 Erlangen (Germany)

    2016-09-01

    The experimental setup that allows for the observation of energy gain of electrons interacting with Dielectric Laser Accelerators (DLAs) is reviewed. Moreover, recent results, including acceleration due to electron interaction with third, fourth and fifth spatial harmonics of a nanostructured grating are discussed and an extended outlook is given.

  2. Developing an Accelerator Driven System (ADS) based on electron accelerators and heavy water

    Science.gov (United States)

    Feizi, H.; Ranjbar, A. H.

    2016-02-01

    An ADS based on electron accelerators has been developed specifically for energy generation and medical applications. Monte Carlo simulations have been performed using FLUKA code to design a hybrid electron target and the core components. The composition, geometry of conversion targets and the coolant system have been optimized for electron beam energies of 20 to 100 MeV . Furthermore, the photon and photoneutron energy spectra, distribution and energy deposition for various incoming electron beam powers have been studied. Light-heavy water of various mixtures have been used as heat removal for the targets, as γ-n converters and as neutron moderators. We have shown that an electron LINAC, as a neutron production driver for ADSs, is capable of producing a neutron output of > 3.5 × 1014 (n/s/mA). Accordingly, the feasibility of an electron-based ADS employing the designed features is promising for energy generation and high intense neutron production which have various applications such as medical therapies.

  3. Cambridge IGCSE English first language

    CERN Document Server

    Reynolds, John

    2013-01-01

    Revised edition for the 2015 syllabus to help your students prepare for their examination and enhance their enjoyment of English. This title has been written for the revised Cambridge IGCSE First Language English (0500 and 0522) syllabuses, for first teaching from 2013. ? Develops the skills necessary to become a better reader and writer. ? Offers detailed advice and preparation for the examination. ? Teaches skills for successful writing of essays and coursework assignment. We are working with Cambridge International Examinations to gain endorsement for this title.

  4. Cambridge checkpoint English workbook 1

    CERN Document Server

    Reynolds, John

    2013-01-01

    This Workbook supports our bestselling Checkpoint English series, with exercises specifically matched to the Cambridge Progression tests and the Checkpoint English tests. - Offers plenty of additional questions for use in class or as homework. - Includes clearly identified questions on grammar and punctuation, comprehension, use of language and essay planning. - Follows the structure of the relevant textbook to ensure a thorough understanding of all aspects of the course. - Provides a space for Students to write their answers. This Workbook is matched to the Cambridge Secondary 1 Curriculum Fr

  5. A high current, short pulse electron source for wakefield accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Ching-Hung

    1992-12-31

    Design studies for the generation of a high current, short pulse electron source for the Argonne Wakefield Accelerator are presented. An L-band laser photocathode rf gun cavity is designed using the computer code URMEL to maximize the electric field on the cathode surface for fixed frequency and rf input power. A new technique using a curved incoming laser wavefront to minimize the space charge effect near the photocathode is studied. A preaccelerator with large iris to minimize wakefield effects is used to boost the drive beam to a useful energy of around 20 MeV for wakefield acceleration experiments. Focusing in the photocathode gun and the preaccelerator is accomplished with solenoids. Beam dynamics simulations throughout the preaccelerator are performed using particle simulation codes TBCI-SF and PARMELA. An example providing a useful set of operation parameters for the Argonne Wakefield Accelerator is given. The effects of the sagitta of the curved beam and laser amplitude and timing jitter effects are discussed. Measurement results of low rf power level bench tests and a high power test for the gun cavity are presented and discussed.

  6. A high current, short pulse electron source for wakefield accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Ching-Hung.

    1992-01-01

    Design studies for the generation of a high current, short pulse electron source for the Argonne Wakefield Accelerator are presented. An L-band laser photocathode rf gun cavity is designed using the computer code URMEL to maximize the electric field on the cathode surface for fixed frequency and rf input power. A new technique using a curved incoming laser wavefront to minimize the space charge effect near the photocathode is studied. A preaccelerator with large iris to minimize wakefield effects is used to boost the drive beam to a useful energy of around 20 MeV for wakefield acceleration experiments. Focusing in the photocathode gun and the preaccelerator is accomplished with solenoids. Beam dynamics simulations throughout the preaccelerator are performed using particle simulation codes TBCI-SF and PARMELA. An example providing a useful set of operation parameters for the Argonne Wakefield Accelerator is given. The effects of the sagitta of the curved beam and laser amplitude and timing jitter effects are discussed. Measurement results of low rf power level bench tests and a high power test for the gun cavity are presented and discussed.

  7. Longitudinal jitter analysis of linear accelerator electron gun

    CERN Document Server

    Mingshan, Liu; Iqbal, Munawar

    2015-01-01

    We present measurement and analyses of longitudinal timing jitter of Beijing Electron Positron Collider (BEPCII) linear accelerator electron gun. We simulated longitudinal jitter effect of the gun using PARMELA about beam performance including beam profile, average energy, energy spread, longitudinal phase of reference particle and XY emittance. The maximum percentage difference of the beam parameters are calculated to be; 100%, 13.27%, 42.24%, 7.79% and 65.01%, 86.81%, respectively due to which the bunching efficiency is reduced to 54%. The simulation results are in agreement with test and are helpful to optimize the beam parameters by tuning the trigger timing of the gun during the bunching process.

  8. Uranium target for electron accelerator based neutron source for BNCT

    Science.gov (United States)

    Tonchev, A. P.; Harmon, F.; Collens, T. J.; Kennedy, K.; Sabourov, A.; Harker, Y. D.; Nigg, D. W.; Jones, J. L.

    2001-07-01

    Calculations of the epithermal-neutron yield of photoneutrons from a uranium-beryllium converter using a 27 MeV electron linear accelerator have been investigated. In this concept, relativistic electron beams from a 30 MeV LINAC impinge upon a small uranium sphere surrounded by a cylindrical tank of circulating heavy water (D2O) nested in a beryllium cube. The photo-fission neutron spectrum from the uranium sphere is thermalized in deuterium and beryllium, filtered and moderated in special material (AlF3/Al/LiF), and directed to the patient. The results of these calculations demonstrate that photoneutron devices could offer a promising alternative to nuclear reactors for the production of epithermal neutrons for Neutron Capture Therapy. The predicted parameter for the epithermal flux is more than 108n.cm-2.mA-1.

  9. Laser-Induced Linear Electron Acceleration in Free Space

    CERN Document Server

    Wong, Liang Jie; Carbajo, Sergio; Fallahi, Arya; Soljačić, Marin; Joannopoulos, John D; Kärtner, Franz X; Kaminer, Ido

    2016-01-01

    Linear acceleration in free space is a topic that has been studied for over 20 years, and its ability to eventually produce high-quality, high energy multi-particle bunches has remained a subject of great interest. Arguments can certainly be made that such an ability is very doubtful. Nevertheless, we chose to develop an accurate and truly predictive theoretical formalism to explore this remote possibility in a computational experiment. The formalism includes exact treatment of Maxwell's equations, exact relativistic treatment of the interaction among the multiple individual particles, and exact treatment of the interaction at near and far field. Several surprising results emerged. For example, we find that 30 keV electrons (2.5% energy spread) can be accelerated to 7.7 MeV (2.5% spread) and to 205 MeV (0.25% spread) using 25 mJ and 2.5 J lasers respectively. These findings should hopefully guide and help develop compact, high-quality, ultra-relativistic electron sources, avoiding conventional limits imposed ...

  10. Shaping the electron beams with submicrosecond pulse duration in sources and electron accelerators with plasma emitters

    CERN Document Server

    Gushenets, V I

    2001-01-01

    One studies the techniques in use to shape submicrosecond electron beams and the physical processes associated with extraction of electrons from plasma in plasma emitters. Plasma emitter base sources and accelerators enable to generate pulse beams with currents varying from tens of amperes up to 10 sup 3 A, with current densities up to several amperes per a square centimeter, with pulse duration constituting hundreds of nanoseconds and with high frequencies of repetition

  11. Externally Controlled Injection of Electrons by a Laser Pulse in a Laser Wakefield Electron Accelerator

    CERN Document Server

    Chen Szu Yuan; Chen Wei Ting; Chien, Ting-Yei; Lee, Chau-Hwang; Lin, Jiunn-Yuan; Wang, Jyhpyng

    2005-01-01

    Spatially and temporally localized injection of electrons is a key element for development of plasma-wave electron accelerator. Here we report the demonstration of two different schemes for electron injection in a self-modulated laser wakefield accelerator (SM-LWFA) by using a laser pulse. In the first scheme, by implementing a copropagating laser prepulse with proper timing, we are able to control the growth of Raman forward scattering and the production of accelerated electrons. We found that the stimulated Raman backward scattering of the prepulse plays the essential role of injecting hot electrons into the fast plasma wave driven by the pump pulse. In the second scheme, by using a transient density ramp we achieve self-injection of electrons in a SM-LWFA with spatial localization. The transient density ramp is produced by a prepulse propagating transversely to drill a density depression channel via ionization and expansion. The same mechanism of injection with comparable efficiency is also demonstrated wi...

  12. Development of Grid Control Electron Gun for Multi-energy Irradiation Accelerator

    Institute of Scientific and Technical Information of China (English)

    HAN; Guang-wen; ZHU; Zhi-bin; WANG; Shu-xian

    2012-01-01

    <正>In the project of multi-energy electron irradiation accelerator, It is necessary to adjust the electron beam pulse inject to the accelerating tube. Under the same conditions of the injection energy, the grid controlled electron gun was used in the accelerator. Using cathode-grid assembly, after the simulation of electron optics program design, we manufactured focus electrode, the anode, and built an experiment

  13. Electron-transfer acceleration investigated by time resolved infrared spectroscopy.

    Science.gov (United States)

    Vlček, Antonín; Kvapilová, Hana; Towrie, Michael; Záliš, Stanislav

    2015-03-17

    Ultrafast electron transfer (ET) processes are important primary steps in natural and artificial photosynthesis, as well as in molecular electronic/photonic devices. In biological systems, ET often occurs surprisingly fast over long distances of several tens of angströms. Laser-pulse irradiation is conveniently used to generate strongly oxidizing (or reducing) excited states whose reactions are then studied by time-resolved spectroscopic techniques. While photoluminescence decay and UV-vis absorption supply precise kinetics data, time-resolved infrared absorption (TRIR) and Raman-based spectroscopies have the advantage of providing additional structural information and monitoring vibrational energy flows and dissipation, as well as medium relaxation, that accompany ultrafast ET. We will discuss three cases of photoinduced ET involving the Re(I)(CO)3(N,N) moiety (N,N = polypyridine) that occur much faster than would be expected from ET theories. [Re(4-N-methylpyridinium-pyridine)(CO)3(N,N)](2+) represents a case of excited-state picosecond ET between two different ligands that remains ultrafast even in slow-relaxing solvents, beating the adiabatic limit. This is caused by vibrational/solvational excitation of the precursor state and participation of high-frequency quantum modes in barrier crossing. The case of Re-tryptophan assemblies demonstrates that excited-state Trp → *Re(II) ET is accelerated from nanoseconds to picoseconds when the Re(I)(CO)3(N,N) chromophore is appended to a protein, close to a tryptophan residue. TRIR in combination with DFT calculations and structural studies reveals an interaction between the N,N ligand and the tryptophan indole. It results in partial electronic delocalization in the precursor excited state and likely contributes to the ultrafast ET rate. Long-lived vibrational/solvational excitation of the protein Re(I)(CO)3(N,N)···Trp moiety, documented by dynamic IR band shifts, could be another accelerating factor. The last

  14. Mega-electron-volt ultrafast electron diffraction at SLAC National Accelerator Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Weathersby, S. P. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA; Brown, G. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA; Centurion, M. [University of Nebraska-Lincoln, 855 N 16th Street, Lincoln, Nebraska 68588, USA; Chase, T. F. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA; Coffee, R. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA; Corbett, J. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA; Eichner, J. P. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA; Frisch, J. C. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA; Fry, A. R. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA; Gühr, M. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA; Hartmann, N. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA; Hast, C. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA; Hettel, R. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA; Jobe, R. K. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA; Jongewaard, E. N. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA; Lewandowski, J. R. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA; Li, R. K. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA; Lindenberg, A. M. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA; Makasyuk, I. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA; May, J. E. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA; McCormick, D. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA; Nguyen, M. N. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA; Reid, A. H. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA; Shen, X. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA; Sokolowski-Tinten, K. [University of Duisburg-Essen, Lotharstrasse 1, 47048 Duisburg, Germany; Vecchione, T. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA; Vetter, S. L. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA; Wu, J. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA; Yang, J. [University of Nebraska-Lincoln, 855 N 16th Street, Lincoln, Nebraska 68588, USA; Dürr, H. A. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA; Wang, X. J. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA

    2015-07-01

    Ultrafast electron probes are powerful tools, complementary to x-ray free-electron lasers, used to study structural dynamics in material, chemical, and biological sciences. High brightness, relativistic electron beams with femtosecond pulse duration can resolve details of the dynamic processes on atomic time and length scales. SLAC National Accelerator Laboratory recently launched the Ultrafast Electron Diffraction (UED) and microscopy Initiative aiming at developing the next generation ultrafast electron scattering instruments. As the first stage of the Initiative, a mega-electron-volt (MeV) UED system has been constructed and commissioned to serve ultrafast science experiments and instrumentation development. The system operates at 120-Hz repetition rate with outstanding performance. In this paper, we report on the SLAC MeV UED system and its performance, including the reciprocal space resolution, temporal resolution, and machine stability.

  15. Mega-electron-volt ultrafast electron diffraction at SLAC National Accelerator Laboratory.

    Science.gov (United States)

    Weathersby, S P; Brown, G; Centurion, M; Chase, T F; Coffee, R; Corbett, J; Eichner, J P; Frisch, J C; Fry, A R; Gühr, M; Hartmann, N; Hast, C; Hettel, R; Jobe, R K; Jongewaard, E N; Lewandowski, J R; Li, R K; Lindenberg, A M; Makasyuk, I; May, J E; McCormick, D; Nguyen, M N; Reid, A H; Shen, X; Sokolowski-Tinten, K; Vecchione, T; Vetter, S L; Wu, J; Yang, J; Dürr, H A; Wang, X J

    2015-07-01

    Ultrafast electron probes are powerful tools, complementary to x-ray free-electron lasers, used to study structural dynamics in material, chemical, and biological sciences. High brightness, relativistic electron beams with femtosecond pulse duration can resolve details of the dynamic processes on atomic time and length scales. SLAC National Accelerator Laboratory recently launched the Ultrafast Electron Diffraction (UED) and microscopy Initiative aiming at developing the next generation ultrafast electron scattering instruments. As the first stage of the Initiative, a mega-electron-volt (MeV) UED system has been constructed and commissioned to serve ultrafast science experiments and instrumentation development. The system operates at 120-Hz repetition rate with outstanding performance. In this paper, we report on the SLAC MeV UED system and its performance, including the reciprocal space resolution, temporal resolution, and machine stability.

  16. Laser acceleration of electrons to giga-electron-volt energies using highly charged ions.

    Science.gov (United States)

    Hu, S X; Starace, Anthony F

    2006-06-01

    The recent proposal to use highly charged ions as sources of electrons for laser acceleration [S. X. Hu and A. F. Starace, Phys. Rev. Lett. 88, 245003 (2002)] is investigated here in detail by means of three-dimensional, relativistic Monte Carlo simulations for a variety of system parameters, such as laser pulse duration, ionic charge state, and laser focusing spot size. Realistic laser focusing effects--e.g., the existence of longitudinal laser field components-are taken into account. Results of spatial averaging over the laser focus are also presented. These numerical simulations show that the proposed scheme for laser acceleration of electrons from highly charged ions is feasible with current or near-future experimental conditions and that electrons with GeV energies can be obtained in such experiments.

  17. Electron cloud in the CERN accelerators (PS, SPS, LHC)

    CERN Document Server

    Iadarola, G

    2013-01-01

    Several indicators have pointed to the presence of an Electron Cloud (EC) in some of the CERN accelerators, when operating with closely spaced bunched beams. In particular, spurious signals on the pick ups used for beam detection, pressure rise and beam instabilities were observed at the Proton Synchrotron (PS) during the last stage of preparation of the beams for the Large Hadron Collider (LHC), as well as at the Super Proton Synchrotron (SPS). Since the LHC has started operation in 2009, typical electron cloud phenomena have appeared also in this machine, when running with trains of closely packed bunches (i.e. with spacings below 150ns). Beside the above mentioned indicators, other typical signatures were seen in this machine (due to its operation mode and/or more refined detection possibilities), like heat load in the cold dipoles, bunch dependent emittance growth and degraded lifetime in store and bunch-by-bunch stable phase shift to compensate for the energy loss due to the electron cloud. An overview o...

  18. Accelerated electron populations formed by Langmuir wave-caviton interactions

    CERN Document Server

    Sircombe, N J; Dendy, R O

    2004-01-01

    Direct numerical simulations of electron dynamics in externally driven electrostatic waves have been carried out using a relativistic two-fluid one-dimensional Vlasov-Poisson code. When the driver wave has sufficiently large amplitude, ion density holes (cavitons) form. The interaction between these cavitons and other incoming Langmuir waves gives rise to substantial local acceleration of groups of electrons, and fine jet-like structures arise in electron phase space. We show that these jets are caused by wave-breaking when finite amplitude Langmuir waves experience the ion density gradient at the leading edge of the holes, and are not caused by caviton burn-out. An analytical two-fluid model gives the critical density gradient and caviton depth for which this process can occur. In particular, the density gradient critically affects the rate at which a Langmuir wave, moving into the caviton, undergoes Landau damping. This treatment also enables us to derive analytical estimates for the maximum energy of accel...

  19. Electron acceleration in the heart of the Van Allen radiation belts.

    Science.gov (United States)

    Reeves, G D; Spence, H E; Henderson, M G; Morley, S K; Friedel, R H W; Funsten, H O; Baker, D N; Kanekal, S G; Blake, J B; Fennell, J F; Claudepierre, S G; Thorne, R M; Turner, D L; Kletzing, C A; Kurth, W S; Larsen, B A; Niehof, J T

    2013-08-30

    The Van Allen radiation belts contain ultrarelativistic electrons trapped in Earth's magnetic field. Since their discovery in 1958, a fundamental unanswered question has been how electrons can be accelerated to such high energies. Two classes of processes have been proposed: transport and acceleration of electrons from a source population located outside the radiation belts (radial acceleration) or acceleration of lower-energy electrons to relativistic energies in situ in the heart of the radiation belts (local acceleration). We report measurements from NASA's Van Allen Radiation Belt Storm Probes that clearly distinguish between the two types of acceleration. The observed radial profiles of phase space density are characteristic of local acceleration in the heart of the radiation belts and are inconsistent with a predominantly radial acceleration process.

  20. Latest Diagnostic Electronics Development for the PROSCAN Proton Accelerator

    Science.gov (United States)

    Duperrex, P. A.; Frei, U.; Gamma, G.; Müller, U.; Rezzonico, L.

    2004-11-01

    New VME-based diagnostic electronics are being developed for PROSCAN, a proton accelerator for medical application presently under construction at PSI. One new development is a VME-based multi-channel logarithmic amplifier for converting current to voltage (LogIV). The LogIV boards are used for measuring current from the multiple wire (harp) profile monitors. The LogIV calibration method, current dependant bandwidth and temperature stability are presented. Another development is a BPM front end, based on the newest digital receiver techniques. Features of this new system are the remote control of the preamplifier stage and the continuous monitoring of each individual signal overall gain. Characteristics of the developed prototype are given.

  1. Radiation processing of liquid with low energy electron accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Makuuchi, Keizo [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2003-02-01

    Radiation induced emulsion polymerization, radiation vulcanization of NR latex (RVNRL) and radiation degradation of natural polymers were selected and reviewed as the radiation processing of liquid. The characteristic of high dose rate emulsion polymerization is the occurrence of cationic polymerization. Thus, it can be used for the production of new materials that cannot be obtained by radical polymerization. A potential application will be production of polymer emulsion that can be used as water-borne UV/EB curing resins. The technology of RVNRL by {gamma}-ray has been commercialized. RVNRL with low energy electron accelerator is under development for further vulcanization cost reduction. Vessel type irradiator will be favorable for industrial application. Radiation degradation of polysaccharides is an emerging and promising area of radiation processing. However, strict cost comparison between liquid irradiation with low energy EB and state irradiation with {gamma}-ray should be carried out. (author)

  2. Influence of spatiotemporal coupling on the capture-and-acceleration-scenario vacuum electron acceleration by ultrashort pulsed laser beam

    Institute of Scientific and Technical Information of China (English)

    Lu Da-Quan; Qian Lie-Jia; Li Yong-Zhong; Fan Dian-Yuan

    2007-01-01

    This paper investigates the properties of the ultrashort pulsed beam aimed to the capture-and-acceleration-scenario(CAS) vacuum electron acceleration. The result shows that the spatiotemporal distribution of the phase velocity, the longitudinal component of the electric field and the acceleration quality factor are qualitatively similar to that of the continuous-wave Gaussian beam, and are slightly influenced by the spatiotemporal coupling of the ultrashort pulsed beam. When the pulse is compressed to an ultrashort one in which the pulse duration TFWHM < 5T0, the variation of the maximum net energy gain due to the carrier-envelope phase is a crucial disadvantage in the CAS acceleration process.

  3. 33 CFR 117.549 - Cambridge Harbor.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Cambridge Harbor. 117.549 Section... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.549 Cambridge Harbor. The draw of the S342 bridge, mile 0.1 at Cambridge, shall open on signal from 6 a.m. to 8 p.m.; except that, from...

  4. Design and construction of the first Iranian powerful industrial electron accelerator

    Directory of Open Access Journals (Sweden)

    AM Poursaleh

    2015-09-01

    Full Text Available In This paper we will introduce the process of design and manufacturing an electron accelerator with 10MeV energy and 100kW power as the first Iranian powerful industrial electron accelerator. This accelerator designed based on modeling of one of the most powerful industrial accelerator called Rhodotron. But the design of the accelerator in a way that can be localize by relying on domestic industries. So although it looks like a Rhodotron accelerator structure but has some different in design and manufacture of components, the results are satisfactory

  5. Few femtosecond level electron bunch diagnostic at quasi-cw electron accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Green, Bertram; Kuntzsch, Michael; Kovalev, Sergei; Hauser, Jens; Findeisen, Stefan; Schneider, Christian; Kaya, Caglar; Michel, Peter; Gensch, Michael [Helmholtz-Zentrum Dresden-Rossendorf (Germany); Al-Shemmary, Alaa; Stojanovic, Nikola [Deutsches Elektronen-Synchrotron (Germany)

    2013-07-01

    At the SRF based prototype cw accelerator ELBE a new electron beamline, providing for femtosecond electron bunches with nC bunch charges and repetition rates in the 1-200 KHz regime and with pC bunch charge and repetition rates of 13 MHz, is currently being constructed. The 40 MeV electrons will be used in photon-electron interaction experiments with TW and PW class lasers and the generation of broad and narrow bandwidth coherent THz pulses. Discussed here are ideas for novel online diagnostics of the electron bunch properties (e.g. arrival time and bunch form) based on the time and frequency domain analysis of the emitted coherent THz radiation, but also based on direct measurements by e.g. electro-optic sampling. The suitability of ELBE as a testbed for diagnostic of future cw X-ray photon sources (e.g. energy recovery linacs) will be discussed.

  6. Cambridge checkpoint English workbook 2

    CERN Document Server

    Reynolds, John

    2014-01-01

    Build confidence and understanding throughout the year with hundreds of additional practice questions. This Workbook supports our bestselling Checkpoint series, with exercises specifically matched to the Cambridge Progression tests and the Checkpoint tests. - Develops understanding and builds confidence ahead of assessment with exercises matched to the tests - Ensures a thorough understanding of all aspects of the course by following the structure of the relevant textbook - Saves planning time with exercises that are suitable for use in class or as homework This Workbook is

  7. Cambridge checkpoint English workbook 3

    CERN Document Server

    Reynolds, John

    2014-01-01

    Build confidence and understanding throughout the year with hundreds of additional practice questions. This Workbook supports our bestselling Checkpoint series, with exercises specifically matched to the Cambridge Progression tests and the Checkpoint tests. - Develops understanding and builds confidence ahead of assessment with exercises matched to the tests - Ensures a thorough understanding of all aspects of the course by following the structure of the relevant textbook - Saves planning time with exercises that are suitable for use in class or as homework This Workbook is

  8. Portable X-Band Linear Electron Accelerators for Radiographic Applications

    CERN Document Server

    Saverskiy, Aleksandr J; Hernandez, Michael; Mishin, Andrey V; Skowbo, Dave

    2005-01-01

    The MINAC series portable linear electron accelerator systems designed and manufactured at American Science and Engineering, Inc. High Energy Systems Division (AS&E HESD) are discussed in this paper. Each system can be configured as either an X-ray or electron beam source. The powerful 4 MeV and 6 MeV linacs powered by a 1,5 MW magnetron permit operation in a dose rate range from 100 R/min at 80 cm to 600 R/min at 80 cm. Each MINAC is a self-contained source with radiation leakage outside of the X-ray head less than 0,1% of the maximum dose. Along with these systems a 1 MeV ultra compact MINAC has been successfully tested. The unit is available with radiation leakage less then 0.01% and permits producing X-ray beam in an energy range (1…2) MeV at a high output dose rate. Design and experimental parameters are presented. The common and system specific features are also discussed.

  9. Electron string ion sources for carbon ion cancer therapy accelerators

    CERN Document Server

    Boytsov, A Yu; Donets, E D; Donets, E E; Katagiri, K; Noda, K; Ponkin, D O; Ramzdorf, A Yu; Salnikov, V V; Shutov, V B

    2015-01-01

    The Electron String type of Ion Sources (ESIS) was developed, constructed and tested first in the Joint Institute for Nuclear Research. These ion sources can be the appropriate sources for production of pulsed C4+ and C6+ ion beams which can be used for cancer therapy accelerators. In fact the test ESIS Krion-6T already now at the solenoid magnetic field only 4.6 T provides more than 10^10 C4+ ions per pulse and about 5*10^9 C6+ ions per pulse. Such ion sources could be suitable for application at synchrotrons. It was also found, that Krion-6T can provide more than 10^11 C6+ ions per second at 100 Hz repetition rate, and the repetition rate can be increased at the same or larger ion output per second. This makes ESIS applicable at cyclotrons as well. As for production of 11C radioactive ion beams ESIS can be the most economic kind of ion source. To proof that the special cryogenic cell for pulse injection of gaseous species into electron string was successfully tested using the ESIS Krion-2M.

  10. Radiation doses inside industrial irradiation installation with linear electron accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Alexandre R., E-mail: alexandre.lima@cnen.gov.br [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil); Pelegrineli, Samuel Q.; Alo, Gabriel F., E-mail: samuelfisica@yahoo.com.br, E-mail: gabriel.alo@aceletron.com.br [Aceletron Irradiacao Industrial, Aceletrica Comercio e Representacoes Ltda, Rio de Janeiro, RJ (Brazil); Silva, Francisco C.A. Da, E-mail: dasilva@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    Aceletron Industrial Irradiation Company is the unique installation in South America to provide industrial irradiation service using two linear electron accelerators of 18 kW and 10 MeV energy. The electron beam technology allows using electrons to irradiate many goods and materials, such as hospital and medical equipment, cosmetics, herbal products, polymers, peat, gemstones and food. Aceletron Company uses a concrete bunker with 3.66 m of thickness to provide the necessary occupational and environmental radiation protection of X-rays produced. The bunker is divided in main four areas: irradiation room, maze, tower and pit. Inside the irradiation room the x-rays radiation rates are measured in two ways: direct beam and 90 deg C. The rates produced in the conveyor system using 10 MeV energy are 500 Gy/min/mA and 15 Gy/min/mA, respectively. For a 1.8 mA current, the rates produced are 900 Gy/min and 27 Gy/min, respectively. Outside the bunker the radiation rate is at background level, but in the tower door and modulation room the radiation rate is 10 μSv/h. In 2014, during a routine operation, an effective dose of 30.90 mSv was recorded in a monthly individual dosimeter. After the investigation, it was concluded that the dose was only in the dosimeter because it felt inside the irradiation room. As Aceletron Company follows the principles of safety culture, it was decided to perform the radiation isodose curves, inside the four areas of the installation, to know exactly the hotspots positions, exposure times and radiation doses. Five hotspots were chosen taking into account worker's routes and possible operational places. The first experiment was done using a package with three TLD and OSLD dosimeters to obtain better statistical results. The first results for the five hotspots near the accelerator machine showed that the radiation dose rates were between 26 Gy/h and 31 Gy/h. The final measurements were performed using a package with one TLD and one OSLD

  11. Final Report for "Modeling Electron Cloud Diagnostics for High-Intensity Proton Accelerators"

    Energy Technology Data Exchange (ETDEWEB)

    Seth A Veitzer

    2009-09-25

    Electron clouds in accelerators such as the ILC degrade beam quality and limit operating efficiency. The need to mitigate electron clouds has a direct impact on the design and operation of these accelerators, translating into increased cost and reduced performance. Diagnostic techniques for measuring electron clouds in accelerating cavities are needed to provide an assessment of electron cloud evolution and mitigation. Accurate numerical modeling of these diagnostics is needed to validate the experimental techniques. In this Phase I, we developed detailed numerical models of microwave propagation through electron clouds in accelerating cavities with geometries relevant to existing and future high-intensity proton accelerators such as Project X and the ILC. Our numerical techniques and simulation results from the Phase I showed that there was a high probability of success in measuring both the evolution of electron clouds and the effects of non-uniform electron density distributions in Phase II.

  12. Characterisation of electron beams from laser-driven particle accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Brunetti, E.; Manahan, G. G.; Shanks, R. P.; Islam, M. R.; Ersfeld, B.; Anania, M. P.; Cipiccia, S.; Issac, R. C.; Vieux, G.; Welsh, G. H.; Wiggins, S. M.; Jaroszynski, D. A. [Physics Department, University of Strathclyde, Glasgow G4 0NG (United Kingdom)

    2012-12-21

    The development, understanding and application of laser-driven particle accelerators require accurate measurements of the beam properties, in particular emittance, energy spread and bunch length. Here we report measurements and simulations showing that laser wakefield accelerators can produce beams of quality comparable to conventional linear accelerators.

  13. Relativistic Electron Shock Drift Acceleration in Low Mach Number Galaxy Cluster Shocks

    CERN Document Server

    Matsukiyo, Shuichi; Yamazaki, Ryo; Umeda, Takayuki

    2011-01-01

    An extreme case of electron shock drift acceleration in low Mach number collisionless shocks is investigated as a plausible mechanism of initial acceleration of relativistic electrons in large-scale shocks in galaxy clusters where upstream plasma temperature is of the order of 10 keV and a degree of magnetization is not too small. One-dimensional electromagnetic full particle simulations reveal that, even though a shock is rather moderate, a part of thermal incoming electrons are accelerated and reflected through relativistic shock drift acceleration and form a local nonthermal population just upstream of the shock. The accelerated electrons can self-generate local coherent waves and further be back-scattered toward the shock by those waves. This may be a scenario for the first stage of the electron shock acceleration occurring at the large-scale shocks in galaxy clusters such as CIZA J2242.8+5301 which has well defined radio relics.

  14. Electron Acceleration by Cascading Reconnection in the Solar Corona. II. Resistive Electric Field Effects

    Science.gov (United States)

    Zhou, X.; Büchner, J.; Bárta, M.; Gan, W.; Liu, S.

    2016-08-01

    We investigate electron acceleration by electric fields induced by cascading reconnections in current sheets trailing coronal mass ejections via a test particle approach in the framework of the guiding-center approximation. Although the resistive electric field is much weaker than the inductive electric field, the electron acceleration is still dominated by the former. Anomalous resistivity η is switched on only in regions where the current carrier’s drift velocity is large enough. As a consequence, electron acceleration is very sensitive to the spatial distribution of the resistive electric fields, and electrons accelerated in different segments of the current sheet have different characteristics. Due to the geometry of the 2.5-dimensional electromagnetic fields and strong resistive electric field accelerations, accelerated high-energy electrons can be trapped in the corona, precipitating into the chromosphere or escaping into interplanetary space. The trapped and precipitating electrons can reach a few MeV within 1 s and have a very hard energy distribution. Spatial structure of the acceleration sites may also introduce breaks in the electron energy distribution. Most of the interplanetary electrons reach hundreds of keV with a softer distribution. To compare with observations of solar flares and electrons in solar energetic particle events, we derive hard X-ray spectra produced by the trapped and precipitating electrons, fluxes of the precipitating and interplanetary electrons, and electron spatial distributions.

  15. Acceleration of positrons by a relativistic electron beam in the presence of quantum effects

    Energy Technology Data Exchange (ETDEWEB)

    Niknam, A. R. [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Tehran (Iran, Islamic Republic of); Aki, H.; Khorashadizadeh, S. M. [Physics Department, Birjand University, Birjand (Iran, Islamic Republic of)

    2013-09-15

    Using the quantum magnetohydrodynamic model and obtaining the dispersion relation of the Cherenkov and cyclotron waves, the acceleration of positrons by a relativistic electron beam is investigated. The Cherenkov and cyclotron acceleration mechanisms of positrons are compared together. It is shown that growth rate and, therefore, the acceleration of positrons can be increased in the presence of quantum effects.

  16. STEREO measurements of electron acceleration beyond fast Fermi at the bow shock

    CERN Document Server

    Pulupa, Marc; Opitz, Andrea; Fedorov, Andrei; Lin, Robert P; Sauvaud, Jean-Andre

    2012-01-01

    Solar wind electrons are accelerated and reflected upstream by the terrestrial bow shock into a region known as the electron foreshock. Previously observed electron spectra at low energies are consistent with a fast Fermi mechanism, based on the adiabatic conservation of the magnetic moment ({\\mu}) of the accelerated electrons. At higher energies, suprathermal power law tails are observed beyond the level predicted by fast Fermi. The SWEA and STE electron detectors on STEREO enable measurements of foreshock electrons with good energy resolution and sensitivity over the entire foreshock beam. We investigate the electron acceleration mechanism by comparing observed STEREO electron spectra with predictions based on a Liouville mapping of upstream electrons through a shock encounter. The foreshock electron beam extends up to several tens of keV, energies for which the Larmor radii of electrons is tens of km or greater. These radii are comparable to the scale sizes of the shock, and {\\mu} conservation no longer ap...

  17. Generation of low-emittance electron beams in electrostatic accelerators for FEL applications

    Science.gov (United States)

    Teng, Chen; Elias, Luis R.

    1995-02-01

    This paper reports results of transverse emittance studies and beam propagation in electrostatic accelerators for free electron laser applications. In particular, we discuss emittance growth analysis of a low current electron beam system consisting of a miniature thermoionic electron gun and a National Electrostatics Accelerator (NEC) tube. The emittance growth phenomenon is discussed in terms of thermal effects in the electron gun cathode and aberrations produced by field gradient changes occurring inside the electron gun and throughout the accelerator tube. A method of reducing aberrations using a magnetic solenoidal field is described. Analysis of electron beam emittance was done with the EGUN code. Beam propagation along the accelerator tube was studied using a cylindrically symmetric beam envelope equation that included beam self-fields and the external accelerator fields which were derived from POISSON simulations.

  18. The Mechanisms of Electron Acceleration During Multiple X Line Magnetic Reconnection with a Guide Field

    CERN Document Server

    Wang, Huanyu; Huang, Can; Wang, Shui

    2016-01-01

    The interactions between magnetic islands are considered to play an important role in electron acceleration during magnetic reconnection. In this paper, two-dimensional (2-D) particle-in-cell (PIC) simulations are performed to study electron acceleration during multiple X line reconnection with a guide field. The electrons remain almost magnetized, and we can then analyze the contributions of the parallel electric field, Fermi and betatron mechanisms to electron acceleration during the evolution of magnetic reconnection by comparing with a guide-center theory. The results show that with the proceeding of magnetic reconnection, two magnetic islands are formed in the simulation domain. The electrons are accelerated by both the parallel electric field in the vicinity of the X lines and Fermi mechanism due to the contraction of the two magnetic islands. Then the two magnetic islands begin to merge into one, and in such a process electrons can be accelerated by the parallel electric field and betatron mechanisms. ...

  19. The Effect of Large Scale Magnetic Turbulence on the Acceleration of Electrons by Perpendicular Collisionless Shocks

    CERN Document Server

    Guo, Fan

    2010-01-01

    We study the physics of electron acceleration at collisionless shocks that move through a plasma containing large-scale magnetic fluctuations. We numerically integrate the trajectories of a large number of electrons, which are treated as test particles moving in the time dependent electric and magnetic fields determined from 2-D hybrid simulations (kinetic ions, fluid electron). The large-scale magnetic fluctuations effect the electrons in a number of ways and lead to efficient and rapid energization at the shock front. Since the electrons mainly follow along magnetic lines of force, the large-scale braiding of field lines in space allows the fast-moving electrons to cross the shock front several times, leading to efficient acceleration. Ripples in the shock front occuring at various scales will also contribute to the acceleration by mirroring the electrons. Our calculation shows that this process favors electron acceleration at perpendicular shocks. The current study is also helpful in understanding the inje...

  20. Electron cloud studies for CERN particle accelerators and simulation code development

    OpenAIRE

    Iadarola, Giovanni

    2014-01-01

    In a particle accelerator free electrons in the beam chambers can be generated by different mechanisms like the ionization of the residual gas or the photoemission from the chamber’s wall due to the synchrotron radiation emitted by the beam. The electromagnetic field of the beam can accelerate these electrons and project them onto the chamber’s wall. According to their impact energy and to the Secondary Electron Yield (SEY) of the surface, secondary electrons can be generated. Especially...

  1. Petawatt laser-driven wakefield accelerator: All-optical electron injection via collision of laser pulses and radiation cooling of accelerated electron bunches.

    Science.gov (United States)

    Kalmykov, Serguei; Avitzour, Yoav; Yi, S. Austin; Shvets, Gennady

    2007-11-01

    We explore an electron injection into the laser wakefield accelerator (LWFA) using nearly head-on collision of the petawatt ultrashort (˜30 fs) laser pulse (driver) with a low- amplitude laser (seed) beam of the same duration and polarization. To eliminate the threat to the main laser amplifier we consider two options: (i) a frequency-shifted seed and (ii) a seed pulse propagating at a small angle to the axis. We show that the emission of synchrotron radiation due to betatron oscillations of trapped and accelerated electrons results in significant transverse cooling of quasi- monoenergetic accelerated electrons (with energies above 1 GeV). At the same time, the energy losses due to the synchrotron emission preserve the final energy spread of the electron beam. The ``dark current'' due to the electron trapping in multiple wake buckets and the effect of beam loading (wake destruction at the instant of beams collision) are discussed.

  2. Self-Injection and Acceleration of Monoenergetic Electron Beams from Laser Wakefield Accelerators in a Highly Relativistic Regime

    Institute of Scientific and Technical Information of China (English)

    H. Yoshitama; WEN Xian-Lun; WEN Tian-Shu; WU Yu-Chi; ZHANG Bao-San; ZHU Qi-Hua; HUANG Xiao-Jun; AN Wei-Min; HUNG Wen-Hui; TANG Chuan-Xiang; LIN Yu-Zheng; T. Kameshima; WANG Xiao-Dong; CHEN Li-Ming; H. Kotaki; M. Kando; K. Nakajima; GU Yu-Qiu; GUO Yi; JIAO Chun-Ye; LIU Hong-Jie; PENG Han-Sheng; TANG Chuan-Ming; WANG Xiao-Dong

    2008-01-01

    @@ Self-injection and acceleration of monoenergetic electron beams from laser wakefield accelerators are first in-vestigated in the highly relativistic regime, using 100 TW class, 27 fs laser pulses. Quasi-monoenergetic multi-bunched beams with energies as high as multi-hundredMeV are observed with simultaneous measurements of side-scattering emissions that indicate the formation of self-channelling and self-injection of electrons into a plasma wake, referred to as a 'bubble'. The three-dimensional particle-in-cell simulations confirmed multiple self-injection of electron bunches into the bubble and their beam acceleration with gradient of 1.5 GeV/cm.

  3. Design, simulation and construction of quadrupole magnets for focusing electron beam in powerful industrial electron accelerator

    Directory of Open Access Journals (Sweden)

    S KH Mousavi

    2015-09-01

    Full Text Available In this paper the design and simulation of quadrupole magnets and electron beam optical of that by CST Studio code has been studied. Based on simulation result the magnetic quadrupole has been done for using in beam line of first Iranian powerful electron accelerator. For making the suitable magnetic field the effects of material and core geometry and coils current variation on quadrupole magnetic field have been studied. For test of quadrupole magnet the 10 MeV beam energy and 0.5 pi mm mrad emittance of input beam has been considered. We see the electron beam through the quadrupole magnet focus in one side and defocus in other side. The optimum of distance between two quadrupole magnets for low emittance have been achieved. The simulation results have good agreement with experimental results

  4. Constraints on Stochastic Electron Acceleration Process from RHESSI Solar Flare Observations

    Science.gov (United States)

    Chen, Q.; Petrosian, V.

    2011-12-01

    Bremsstrahlung hard X-ray (HXR) emission provides the most direct information for diagnosing the electron acceleration and transport processes in solar flares. HXR observations have indicated that the majority of nonthermal electrons are accelerated near the top of the flaring loop, as evidenced by the distinct coronal loop top (LT) source, and move downward along the loop to the footpoints (FPs). This can be naturally accounted for by the model of stochastic acceleration, in which electrons are scattered and accelerated near the LT region by plasma waves or turbulence. In this work, we aim to better understand the role of turbulence in scattering and accelerating electrons in solar flares based on imaging spectroscopic observations from the RHESSI satellite and theoretical modeling of the process of stochastic acceleration by turbulence. We show how the RHESSI observations can constrain some important characteristics of turbulence. In particular, we obtain the accelerated electron spectra from the LT source in the regularized electron maps, which is determined by the turbulence acceleration rate, and also obtain the escape time from the LT and FP spectral difference, which is related to the pitch angle scattering rate of electrons by turbulence. Furthermore, comparison of the electron spectra obtained from solution of the Fokker-Planck equation describing the acceleration process with the directly observed LT electron spectra in principle allows us to determine whether the required acceleration rate by turbulence is consistent with the scattering rate. We will present results from several RHESSI flares with different LT spectral hardness relative to the FPs and discuss the physical implication for the electron acceleration and transport processes.

  5. Honorary Degree Congregation in Cambridge

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    One day in mid-June 2006 when I was on a visit to the Countryside Restoration Trust at Barton near Cambridge, Mr. Christopher Stevenson, the director of Program of Events for Newcomers & Academic Visitors, gave me a letter enclosing a notice and a ticket I booked nearly two months earlier. He told me that I was very lucky because a strictly limited number of tickets had been allocated to academic visitors. It was a ticket to admit me to the Honorary Degree Congregation and to the reception afterwards on Tuesday 27 June.

  6. PESC '82; Annual Power Electronics Specialists Conference, 13th, Massachusetts Institute of Technology, Cambridge, MA, June 14-17, 1982, Record

    Science.gov (United States)

    Aspects of power electronics are addressed. The general topics discussed include: inverters and converters, modelling and analysis, motor drives, power conditioning appliances, power semiconductor devices, and power components and protection. Individual subjects considered include: dual-mode forward/flyback converter; a solar cell power supply system using a boost-type bidirectional DC-DC converter; complete DC analysis of the series resonant converter; variable structure control with sliding mode for DC drive speed regulation; a low-cost single-phase induction generator. Also covered are: small-signal modelling of a push-pull current-fed converter; programmable power processor for high-power space applications; high efficiency 3kW switch mode battery charger; comparison of BIMOS device types; power MOSFET temperature measurements; protection of power transistors in electric vehicle drives; general purpose variable frequency inverter using integrated power modules and LSI. For individual items see A84-18377 to A84-18408

  7. Radiation Shielding at High-Energy Electron and Proton Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Rokni, Sayed H.; /SLAC; Cossairt, J.Donald; /Fermilab; Liu, James C.; /SLAC

    2007-12-10

    The goal of accelerator shielding design is to protect the workers, general public, and the environment against unnecessary prompt radiation from accelerator operations. Additionally, shielding at accelerators may also be used to reduce the unwanted background in experimental detectors, to protect equipment against radiation damage, and to protect workers from potential exposure to the induced radioactivity in the machine components. The shielding design for prompt radiation hazards is the main subject of this chapter.

  8. Design of Cavity for 10 MeV Electron Irradiation Accelerator

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    This article describes the 10 MeV high-power electron irradiation accelerator. This accelerator can output varied energy electron beam which the highest energy is 10 MeV or shooting target produce X-rays for industrial radiation processing.

  9. Downramp-assisted underdense photocathode electron bunch generation in plasma wakefield accelerators

    CERN Document Server

    Knetsch, Alexander; Wittig, Georg; Groth, Henning; Xi, Yunfeng; Deng, Aihua; Rosenzweig, James Benjamin; Bruhwiler, David Leslie; Smith, Johnathan; Jaroszynski, Dino Anthony; Sheng, Zheng-Ming; Manahan, Grace Gloria; Xia, Guoxing; Jamison, Steven; Hidding, Bernhard

    2014-01-01

    It is shown that the requirements for high quality electron bunch generation and trapping from an underdense photocathode in plasma wakefield accelerators can be substantially relaxed through localizing it on a plasma density downramp. This depresses the phase velocity of the accelerating electric field until the generated electrons are in phase, allowing for trapping in shallow trapping potentials. As a consequence the underdense photocathode technique is applicable by a much larger number of accelerator facilities. Furthermore, dark current generation is effectively suppressed.

  10. Transmission electron microscope interfaced with ion accelerators and its application to materials science

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Hiroaki; Naramoto, Hiroshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Hojou, Kiichi; Furuno, Shigemi; Tsukamoto, Tetsuo

    1997-03-01

    We have developed the transmission/analytical electron microscope interfaced with two sets of ion accelerators (TEM-Accelerators Facility) at JAERI-Takasaki. The facility is expected to provide quantitative insights into radiation effects, such as damage evolution, irradiation-induced phase transformation and their stability, through in-situ observation and analysis under ion and/or electron irradiation. The TEM-Accelerators Facility and its application to materials research are reviewed. (author)

  11. Electron Acceleration in Wakefield and Supra-Bubble Regimes by Ultraintense Laser with Asvmmetric Pulse*

    Institute of Scientific and Technical Information of China (English)

    BAKE Maimaitiaili; XIE Bai-Song; DULAT Sayipjamal; AIMIDULA Aimierding

    2011-01-01

    Electron acceleration in plasma driven by circular polarized ultraintense laser with asymmetric pulse are investigated analytically and numerically in terms of oscillation-center Hamiltonian formalism.Studies include wakefield acceleration, which dominates in blow-out or bubble regime and snow-plow acceleration which dominates in supra-bubble regime.By a comparison with each other it is found that snow-plow acceleration has lower acceleration capability.In wakefield acceleration, there exists an obvious optimum pulse asymmetry or/and pulse lengths that leads to the high net energy gain while in snow-plow acceleration it is insensitive to the pulse lengths.Power and linear scaling laws for wakefield and snow-plow acceleration respetively are observed from the net energy gain depending on laser field amplitude.Moreover, there exists also an upper and lower limit on plasma density for an effective acceleration in both of regimes.

  12. Low Secondary Electron Yield Carbon Coatings for Electron Cloud Mitigation in Modern Particle Accelerators

    CERN Document Server

    Yin Vallgren, Christina; Taborelli, Mauro

    2011-01-01

    In order to upgrade the Large Hadron Collider (LHC) performance to be oriented towards higher energies and higher intensities in the future, a series of improvements of the existing LHC injectors is planned to take place over the next few years. Electron cloud effects are expected to be enhanced and play a central role in limiting the performance of the machines of the CERN complex. Electron cloud phenomena in beam pipes are based on electron multiplication and can be sufficiently suppressed if the Secondary Electron Yield (SEY) of the surface of the beam pipes is lower than unity. The goal of this work is to find and study a thin film coating with reliably low initial Secondary Electron Yield (SEY), which does not require bake-out or conditioning in situ with photons, is robust again air exposure and can easily be applied in the beam pipes of accelerators. In this work, amorphous carbon (a-C) thin films have been prepared by DC magnetron sputtering for electron cloud mitigation and antimultipactor applicatio...

  13. The acceleration of electrons at a spherical coronal shock in a streamer-like coronal field

    Science.gov (United States)

    Kong, Xiangliang; Chen, Yao; Guo, Fan

    2016-03-01

    We study the effect of large-scale coronal magnetic field on the electron acceleration at a spherical coronal shock using a test-particle method. The coronal field is approximated by an analytical solution with a streamer-like magnetic field featured by partially open magnetic field and a current sheet at the equator atop the closed region. It shows that the closed field plays the role of a trapping agency of shock-accelerated electrons, allowing for repetitive reflection and acceleration, therefore can greatly enhance the shock-electron acceleration efficiency. It is found that, with an ad hoc pitch-angle scattering, electron injected in the open field at the shock flank can be accelerated to high energies as well. In addition, if the shock is faster or stronger, a relatively harder electron energy spectrum and a larger maximum energy can be achieved.

  14. Nonthermally Dominated Electron Acceleration during Magnetic Reconnection in a Low-beta Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaocan [Los Alamos National Laboratory

    2015-07-21

    This work was motivated by electron acceleration during solar flares. After some introductory remarks on proposed particle acceleration mechanisms and questions needing answers, dynamic simulations and simulation results are presented including energy spectra and the formation of the power law distribution. In summary, magnetic reconnection is highly efficient at converting the free magnetic energy stored in a magnetic shear and accelerating electrons to nonthermal energies in low-β regime. The nonthermal electrons have a dominant fraction and form power-law energy spectra with spectral index p ~ 1 in low-β regime. Electrons are preferentially accelerated along the curvature drift direction along the electric field induced by the reconnection outflow. The results can be applied to explain the observations of electron acceleration during solar flares.

  15. Enhanced surface acceleration of fast electrons by using sub-wavelength grating targets

    CERN Document Server

    Hu, Guang-yue; Wang, Wen-tao; Wang, Jing-wei; Huang, Lin-gen; Wang, Xin; Xu, Yi; Liu, Jian-sheng; Shen, Bai-fei; Yu, Wei; Li, Ru-xin; Xu, Zhi-zhan

    2010-01-01

    Surface acceleration of fast electrons in intense laser-plasma interaction is improved by using sub-wavelength grating targets. The fast electron beam emitted along the target surface was enhanced by more than three times relative to that by using planar target. The total number of the fast electrons ejected from the front side of target was also increased by about one time. The method to enhance the surface acceleration of fast electron is effective for various targets with sub-wavelength structured surface, and can be applied widely in the cone-guided fast ignition, energetic ion acceleration, plasma device, and other high energy density physics experiments.

  16. Accelerator Layout and Physics of X-Ray Free-Electron Lasers

    CERN Document Server

    Decking, W

    2005-01-01

    X-ray Free-Electron Lasers facilities are planned or already under construction around the world. This talk covers the X-Ray Free-Electron Lasers LCLS (SLAC), European XFEL (DESY) and SCSS (Spring8). All aim for self-amplified spontaneous emission (SASE) FEL radiation of approximately 0.1 nm wavelengths. The required excellent electron beam qualities pose challenges to the accelerator physicists. Space charge forces, coherent synchrotron radiation and wakefields can deteriorate the beam quality. The accelerator physics and technological challenges behind each of the projects will be reviewed, covering the critical components low-emittance electron gun, bunch-compressors, accelerating structures and undulator systems.

  17. Positron acceleration by plasma wake fields driven by a hollow electron beam

    CERN Document Server

    Jain, Neeraj; Palastro, J P

    2014-01-01

    A scheme of wake field generation for positron acceleration using hollow or donut shaped electron driver beams is studied. An annular shaped, electron free region forms around a hollow driver beam creating a favorable region (longitudinal field is accelerating and transverse field is focusing and radially linear) for positron acceleration. Accelerating gradients of the order of 10 GV/m are produced by a hollow electron beam driver with FACET like parameters. The peak accelerating field increases linearly with the total charge in the beam driver while the axial size of the favorable region ($\\sim$ one plasma wavelength) remains approximately fixed. The radial size drops with the total charge but remains large enough for the placement of a witness positron beam. We simulate an efficient acceleration of a 23 GeV positron beam to 35.4 GeV with a maximum energy spread of 0.4\\% and very small emittance over a plasma length of 140 cm.

  18. Dielectric laser acceleration of non-relativistic electrons at a photonic structure

    Energy Technology Data Exchange (ETDEWEB)

    Breuer, John

    2013-08-29

    This thesis reports on the observation of dielectric laser acceleration of non-relativistic electrons via the inverse Smith-Purcell effect in the optical regime. Evanescent modes in the vicinity of a periodic grating structure can travel at the same velocity as the electrons along the grating surface. A longitudinal electric field component is used to continuously impart momentum onto the electrons. This is only possible in the near-field of a suitable photonic structure, which means that the electron beam has to pass the structure within about one wavelength. In our experiment we exploit the third spatial harmonic of a single fused silica grating excited by laser pulses derived from a Titanium:sapphire oscillator and accelerate non-relativistic 28 keV electrons. We measure a maximum energy gain of 280 eV, corresponding to an acceleration gradient of 25 MeV/m, already comparable with state-of-the-art radio-frequency linear accelerators. To experience this acceleration gradient the electrons approach the grating closer than 100 nm. We present the theory behind grating-based particle acceleration and discuss simulation results of dielectric laser acceleration in the near-field of photonic grating structures, which is excited by near-infrared laser light. Our measurements show excellent agreement with our simulation results and therefore confirm the direct acceleration with the light field. We further discuss the acceleration inside double grating structures, dephasing effects of non-relativistic electrons as well as the space charge effect, which can limit the attainable peak currents of these novel accelerator structures. The photonic structures described in this work can be readily concatenated and therefore represent a scalable realization of dielectric laser acceleration. Furthermore, our structures are directly compatible with the microstructures used for the acceleration of relativistic electrons demonstrated in parallel to this work by our collaborators in

  19. Stochastic Gyroresonant Acceleration for Hard Electron Spectra of Blazars: Effect of Damping of Cascading Turbulence

    CERN Document Server

    Kakuwa, Jun

    2015-01-01

    Stochastic acceleration of nonthermal electrons is investigated in the context of hard photon spectra of blazars. It is well known that this acceleration mechanism can produce a hard electron spectrum of $m \\equiv \\partial \\ln n_{\\rm e}(\\gamma)/\\partial \\ln \\gamma = 2$ with the high-energy cutoff, called an ultrarelativistic Maxwellian-like distribution, where $n_{\\rm e}(\\gamma)$ is an electron energy spectrum. We revisit the formation of this characteristic spectrum, considering a particular situation where the electrons are accelerated through gyroresonant interaction with magnetohydrodynamic wave turbulence driven by the turbulent cascade. By solving kinetic equations of the turbulent fields, electrons, and photons emitted via the synchrotron self-Compton (SSC) process, we demonstrate that in the non-test-particle treatment, the formation of a Maxwellian-like distribution is prevented by the damping effect on the turbulent fields due to the electron acceleration, at least unless an extreme parameter value ...

  20. A HIGH REPETITION PLASMA MIRROR FOR STAGED ELECTRON ACCELERATION

    Energy Technology Data Exchange (ETDEWEB)

    Sokollik, Thomas; Shiraishi, Satomi; Osterhoff, Jens; Evans, Eugene; Gonsalves, Anthony; Nakamura, Kei; vanTilborg, Jeroen; Lin, Chen; Toth, Csaba; Leemans, Wim

    2011-07-22

    In order to build a compact, staged laser plasma accelerator the in-coupling of the laser beam to the different stages represents one of the key issues. To limit the spatial foot print and thus to realize a high overall acceleration gradient, a concept has to be found which realizes this in-coupling within a few centimeters. We present experiments on a tape-drive based plasma mirror which could be used to reflect the focused laser beam into the acceleration stage.

  1. Michael Byers, International Law and the Arctic (Cambridge: Cambridge Studies in International and Comparative law, Cambridge University Press, 2013

    Directory of Open Access Journals (Sweden)

    Rachael L. Johnstone

    2014-03-01

    Full Text Available A review of: Michael Byers, International Law and the Arctic, Cambridge Studies in International and Comparative law, Cambridge University Press, 2013. pp. 314 + xviii, 65.00 GBP (hardcover; 16.56GBP (kindle edition ISBN: 9781107042759 ISBN: 9781107042759

  2. Experimental considerations on the determination of radiation fields in an electron accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Mondragon C, L.; Ramirez J, F. J.; Garcia H, J. M.; Torres B, M. A. [ININ, Departamento de Sistemas Electronicos, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Lopez C, R.; Pena E, R. [Instituto Tecnologico de Toluca, Av. Tecnologico s/n, Ex-Rancho La Virgen, 52140 Metepec, Estado de Mexico (Mexico)

    2013-10-01

    The determination of the different radiation fields in an electron accelerator requires the use of selected radiation detectors, in this work we describe the experimental considerations on the determination of the intensity of electrons and X-rays generated by Bremsstrahlung in an experimental electron accelerator covering the energy range from 80 keV to 485 keV. A lithium- drifted silicon detector, a high-purity germanium detector, a scintillation detector and a Pin diode were used in the experiments. Spectroscopic measurements allowed us to verify the terminal voltage of the accelerator. The Pin photodiode can measure the intensity of X-rays produced, with this information, we could determine its relationship with both the electron beam current and the accelerating voltage of the accelerator. (Author)

  3. Energy spectrum of the electrons accelerated by reconnection electric field: exponential or power-law?

    CERN Document Server

    Liu, W J; Ding, M D; Fang, C

    2008-01-01

    The direct current (DC) electric field near the reconnection region has been proposed as an effective mechanism to accelerate protons and electrons in solar flares. A power-law energy spectrum was generally claimed in the simulations of electron acceleration by the reconnection electric field. However, in most of the literature, the electric and magnetic fields were chosen independently. In this paper, we perform test particle simulations of electron acceleration in reconnecting magnetic field, where both the electric and magnetic fields are adopted from numerical simulations of the MHD equations. It is found that the accelerated electrons present a truncated power-law energy spectrum with an exponential tail at high energies, which is analogous to the case of diffusive shock acceleration. The influences of the reconnection parameters on the spectral feature are also investigated, such as the longitudinal and transverse components of the magnetic field and the size of the current sheet. It is suggested that t...

  4. Phase speed of electrostatic waves: The critical parameter for efficient electron surfing acceleration

    CERN Document Server

    Dieckmann, M E; Parviainen, M; Shukla, P K; Sircombe, N J

    2006-01-01

    Particle acceleration by means of non-linear plasma wave interactions is of great topical interest. Accordingly, in this paper we focus on the electron surfing process. Self-consistent kinetic simulations, using both relativistic Vlasov and PIC (Particle In Cell) approaches, show here that electrons can be accelerated to highly relativistic energies (up to 100 m_e c^2) if the phase speed of the electrostatic wave is mildly relativistic (0.6c to 0.9c for the magnetic field strengths considered). The acceleration is strong because of relativistic stabilisation of the nonlinearly saturated electrostatic wave, seen in both relativistic Vlasov and PIC simulations. An inverse power law momentum distribution can arise for the most strongly accelerated electrons. These results are of relevance to observed rapid changes in the radio synchrotron emission intensities from microquasars, gamma ray bursts and other astrophysical objects that require rapid acceleration mechanisms for electrons.

  5. Phase speed of electrostatic waves: the critical parameter for efficient electron surfing acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Dieckmann, M E [Institut fuer Theoretische Physik IV, Fakultaet fuer Physik und Astronomie, Ruhr-Universitaet Bochum, 44780 Bochum (Germany); Sircombe, N J [Institut fuer Theoretische Physik IV, Fakultaet fuer Physik und Astronomie, Ruhr-Universitaet Bochum, 44780 Bochum (Germany); Parviainen, M [Institut fuer Theoretische Physik IV, Fakultaet fuer Physik und Astronomie, Ruhr-Universitaet Bochum, 44780 Bochum (Germany); Shukla, P K [Institut fuer Theoretische Physik IV, Fakultaet fuer Physik und Astronomie, Ruhr-Universitaet Bochum, 44780 Bochum (Germany); Dendy, R O [UKAEA Culham Division, Culham Science Centre, Abingdon, Oxfordshire, OX14 3DB (United Kingdom); Physics Department, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2006-04-15

    Particle acceleration by means of nonlinear plasma wave interactions is of great topical interest. Accordingly, in this paper we focus on the electron surfing process. Self-consistent kinetic simulations, using both relativistic Vlasov and particle-in-cell (PIC) approaches, show here that electrons can be accelerated to highly relativistic energies (up to 100m{sub e}c{sup 2}) if the phase speed of the electrostatic wave is mildly relativistic (0.6c to 0.9c for the magnetic field strengths considered). The acceleration is strong because of relativistic stabilization of the nonlinearly saturated electrostatic wave, seen in both relativistic Vlasov and PIC simulations. An inverse power law momentum distribution can arise for the most strongly accelerated electrons. These results are of relevance to observed rapid changes in the radio synchrotron emission intensities from microquasars, gamma ray bursts and other astrophysical objects that require rapid acceleration mechanisms for electrons.

  6. Observation of 690 MV m-1 Electron Accelerating Gradient with a Laser-Driven Dielectric Microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Wootton, K.P.; Wu, Z.; /SLAC; Cowan, B.M.; /Tech-X, Boulder; Hanuka, A.; /SLAC /Technion; Makasyuk, I.V.; /SLAC; Peralta, E.A.; Soong, K.; Byer, R.L.; /Stanford U.; England, R.J.; /SLAC

    2016-06-27

    Acceleration of electrons using laser-driven dielectric microstructures is a promising technology for the miniaturization of particle accelerators. In this work, experimental results are presented of relativistic electron acceleration with 690±100 MVm-1 gradient. This is a record-high accelerating gradient for a dielectric microstructure accelerator, nearly doubling the previous record gradient. To reach higher acceleration gradients the present experiment employs 90 fs duration laser pulses.

  7. Energy Doubling of 42 GeV Electrons in a Meter-scale Plasma Wakefield Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Blumenfeld, Ian; Clayton, Christopher E.; Decker, Franz-Josef; Hogan, Mark J.; Huang, Chengkun; Ischebeck, Rasmus; Iverson, Richard; Joshi, Chandrashekhar; Katsouleas,; Kirby, Neil; Lu, Wei; Marsh, Kenneth A.; Mori, Warren B.; Muggli, Patric; Oz, Erdem; Siemann, Robert H.; Walz, Dieter; Zhou, Miaomiao; /SLAC /UCLA /Southern California U.

    2007-03-14

    The energy frontier of particle physics is several trillion electron volts, but colliders capable of reaching this regime (such as the Large Hadron Collider and the International Linear Collider) are costly and time-consuming to build; it is therefore important to explore new methods of accelerating particles to high energies. Plasma-based accelerators are particularly attractive because they are capable of producing accelerating fields that are orders of magnitude larger than those used in conventional colliders. In these accelerators, a drive beam (either laser or particle) produces a plasma wave (wakefield) that accelerates charged particles. The ultimate utility of plasma accelerators will depend on sustaining ultrahigh accelerating fields over a substantial length to achieve a significant energy gain. Here we show that an energy gain of more than 42 GeV is achieved in a plasma wakefield accelerator of 85 cm length, driven by a 42 GeV electron beam at the Stanford Linear Accelerator Center (SLAC). The results are in excellent agreement with the predictions of three-dimensional particle-in-cell simulations. Most of the beam electrons lose energy to the plasma wave, but some electrons in the back of the same beam pulse are accelerated with a field of {approx} 52GV m{sup -1}. This effectively doubles their energy, producing the energy gain of the 3-km-long SLAC accelerator in less than a meter for a small fraction of the electrons in the injected bunch. This is an important step towards demonstrating the viability of plasma accelerators for high-energy physics applications.

  8. THE MECHANISMS OF ELECTRON ACCELERATION DURING MULTIPLE X LINE MAGNETIC RECONNECTION WITH A GUIDE FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huanyu; Lu, Quanming; Huang, Can; Wang, Shui, E-mail: qmlu@ustc.edu.cn [CAS Key Lab of Geospace Environment, Department of Geophysics and Planetary Science, University of Science and Technology of China, Hefei 230026 (China)

    2016-04-20

    The interactions between magnetic islands are considered to play an important role in electron acceleration during magnetic reconnection. In this paper, two-dimensional particle-in-cell simulations are performed to study electron acceleration during multiple X line reconnection with a guide field. Because the electrons remain almost magnetized, we can analyze the contributions of the parallel electric field, Fermi, and betatron mechanisms to electron acceleration during the evolution of magnetic reconnection through comparison with a guide-center theory. The results show that with the magnetic reconnection proceeding, two magnetic islands are formed in the simulation domain. Next, the electrons are accelerated by both the parallel electric field in the vicinity of the X lines and the Fermi mechanism due to the contraction of the two magnetic islands. Then, the two magnetic islands begin to merge into one, and, in such a process, the electrons can be accelerated by both the parallel electric field and betatron mechanisms. During the betatron acceleration, the electrons are locally accelerated in the regions where the magnetic field is piled up by the high-speed flow from the X line. At last, when the coalescence of the two islands into one big island finishes, the electrons can be further accelerated by the Fermi mechanism because of the contraction of the big island. With the increase of the guide field, the contributions of the Fermi and betatron mechanisms to electron acceleration become less and less important. When the guide field is sufficiently large, the contributions of the Fermi and betatron mechanisms are almost negligible.

  9. Electron acceleration to relativistic energies at a strong quasi-parallel shock wave

    CERN Document Server

    Masters, A; Fujimoto, M; Schwartz, S J; Sergis, N; Thomsen, M F; Retinò, A; Hasegawa, H; Lewis, G R; Coates, A J; Canu, P; Dougherty, M K

    2013-01-01

    Electrons can be accelerated to ultrarelativistic energies at strong (high-Mach number) collisionless shock waves that form when stellar debris rapidly expands after a supernova. Collisionless shock waves also form in the flow of particles from the Sun (the solar wind), and extensive spacecraft observations have established that electron acceleration at these shocks is effectively absent whenever the upstream magnetic field is roughly parallel to the shock surface normal (quasi-parallel conditions). However, it is unclear whether this magnetic dependence of electron acceleration also applies to the far stronger shocks around young supernova remnants, where local magnetic conditions are poorly understood. Here we present Cassini spacecraft observations of an unusually strong solar system shock wave (Saturn's bow shock) where significant local electron acceleration has been confirmed under quasi-parallel magnetic conditions for the first time, contradicting the established magnetic dependence of electron accele...

  10. Vacuum electron acceleration and bunch compression by a flat-top laser beam.

    Science.gov (United States)

    Wang, W; Wang, P X; Ho, Y K; Kong, Q; Gu, Y; Wang, S J

    2007-09-01

    The field intensity distribution and phase velocity characteristics of a flat-top laser beam are analyzed and discussed. The dynamics of electron acceleration in this kind of beam are investigated using three-dimensional test particle simulations. Compared with the standard (i.e., TEM(00) mode) Gaussian beam, a flat-top laser beam has a stronger longitudinal electric field and a larger diffraction angle. These characteristics make it easier for electrons to be trapped and accelerated by the beam. With a flat-top shape, the laser beam is also applicable to the acceleration of low energy electron and bunch compression.

  11. Proposed Physics Experiments for Laser-Driven Electron Linear Acceleration in a Dielectric Loaded Vacuum, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Byer, Robert L. [Stanford Univ., CA (United States). Dept. of Applied Physics. Edward L. Ginzton Lab.

    2016-07-08

    This final report summarizes the last three years of research on the development of advanced linear electron accelerators that utilize dielectric wave-guide vacuum channels pumped by high energy laser fields to accelerate beams of electrons.

  12. Electron acceleration in an ion channel by a magnetized plasma wave

    Directory of Open Access Journals (Sweden)

    A. Kargarian

    2014-04-01

    Full Text Available In this paper, the acceleration of an electron in the interaction with a plasma wave and a magnetized ion-channel is analyzed. The electron dynamics is studied treated employing complete three-dimensional Lorentz force equations. A relativistic three dimensional single particle code is used to obtain the electron-trajectories. The results of numerical calculation show that the electrons can be accelerated in the magnetized channel. Furthermore, the electron energy gain with axial magnetic field is compared to that without axial magnetic field.

  13. Progress Towards a Laboratory Test of Alfvénic Electron Acceleration

    Science.gov (United States)

    Schroeder, J. W. R.; Skiff, F.; Howes, G. G.; Kletzing, C. A.; Carter, T. A.; Vincena, S.; Dorfman, S.

    2016-10-01

    Alfvén waves are thought to be a key mechanism for accelerating auroral electrons. Due to inherent limitations of single point measurements, in situ data has been unable to demonstrate a causal relationship between Alfvén waves and accelerated electrons. Electron acceleration occurs in the inner magnetosphere where the Alfvén speed is greater than the electron thermal speed. In these conditions, Alfvén waves can have an electric field aligned with the background magnetic field B0 if the scale of wave structure across B0 is comparable to the electron skin depth. In the Large Plasma Device (LaPD), Alfvén waves are launched in conditions relevant to the inner magnetosphere. The reduced parallel electron distribution function is measured using a whistler-mode wave absorption diagnostic. The linear electron response has been measured as oscillations of the electron distribution function at the Alfvén wave frequency. These measurements agree with linear theory. Current efforts focus on measuring the nonlinear acceleration of electrons that is relevant to auroral generation. We report on recent progress including experiments with a new higher-power Alfvén wave antenna with the goal of measuring nonlinear electron acceleration. This work was supported by the NSF GRFP and by Grants from NSF, DOE, and NASA. Experiments were performed at the Basic Plasma Science Facility which is funded by DOE and NSF.

  14. Nicotiana Occidentalis Chloroplast Ultrastructure imaged with Transmission Electron Microscopes Working at Different Accelerating Voltages

    OpenAIRE

    SVIDENSKÁ, Silvie

    2010-01-01

    The main goal of this thesis is to study and compare electron microscopy images of Nicotiana Occidentalis chloroplasts, obtained from two types of transmission electron microscopes,which work with different accelerating voltage of 80kV and 5kV. The two instruments, TEM JEOL 1010 and low voltage electron microscope LVEM5 are employed for experiments. In the first theoretical part, principle of electron microscopy and chloroplast morphology is described. In experimental part, electron microscop...

  15. DZ-12/4 Multi-energy Electron Linear Accelerator Acceptance Test

    Institute of Scientific and Technical Information of China (English)

    XIA; Wen; YE; Hong-sheng; ZHANG; Wei-dong; CHEN; Yi-zhen; LIN; Min; XU; Li-jun; CHEN; Ke-sheng; LI; Ming

    2015-01-01

    DZ-12/4multi-energy electron linear accelerator device established by China Institute of Atomic Energy can provide 6 MeV,8 MeV,10MeV,12MeV electron energy beam,mainly used to establish electron beam reference radiation fields of radiation processing dose level,and

  16. A Low-Energy-Spread Rf Accelerator for a Far-Infrared Free-Electron Laser

    NARCIS (Netherlands)

    van der Geer, C. A. J.; Bakker, R. J.; van der Meer, A. F. G.; van Amersfoort, P. W.; Gillespie, W. A.; Saxon, G.; Poole, M. W.

    1993-01-01

    A high electron current and a small energy spread are essential for the operation of a free electron laser (FEL). In this paper we discuss the design and performance of the accelerator for FELIX, the free electron laser for infrared experiments. The system consists of a thermionic gun, a prebuncher,

  17. Proceedings of the Oak Ridge Electron Linear Accelerator (ORELA) Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, M.E.

    2006-02-27

    The Oak Ridge National Laboratory (ORNL) organized a workshop at ORNL July 14-15, 2005, to highlight the unique measurement capabilities of the Oak Ridge Electron Linear Accelerator (ORELA) facility and to emphasize the important role of ORELA for performing differential cross-section measurements in the low-energy resonance region that is important for nuclear applications such as nuclear criticality safety, nuclear reactor and fuel cycle analysis, stockpile stewardship, weapons research, medical diagnosis, and nuclear astrophysics. The ORELA workshop (hereafter referred to as the Workshop) provided the opportunity to exchange ideas and information pertaining to nuclear cross-section measurements and their importance for nuclear applications from a variety of perspectives throughout the U.S. Department of Energy (DOE). Approximately 50 people, representing DOE, universities, and seven U.S. national laboratories, attended the Workshop. The objective of the Workshop was to emphasize the technical community endorsement for ORELA in meeting nuclear data challenges in the years to come. The Workshop further emphasized the need for a better understanding of the gaps in basic differential nuclear measurements and identified the efforts needed to return ORELA to a reliable functional measurement facility. To accomplish the Workshop objective, nuclear data experts from national laboratories and universities were invited to provide talks emphasizing the unique and vital role of the ORELA facility for addressing nuclear data needs. ORELA is operated on a full cost-recovery basis with no single sponsor providing complete base funding for the facility. Consequently, different programmatic sponsors benefit by receiving accurate cross-section data measurements at a reduced cost to their respective programs; however, leveraging support for a complex facility such as ORELA has a distinct disadvantage in that the programmatic funds are only used to support program

  18. Proceedings of the Oak Ridge Electron Linear Accelerator (ORELA) Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, M.E.

    2006-02-27

    The Oak Ridge National Laboratory (ORNL) organized a workshop at ORNL July 14-15, 2005, to highlight the unique measurement capabilities of the Oak Ridge Electron Linear Accelerator (ORELA) facility and to emphasize the important role of ORELA for performing differential cross-section measurements in the low-energy resonance region that is important for nuclear applications such as nuclear criticality safety, nuclear reactor and fuel cycle analysis, stockpile stewardship, weapons research, medical diagnosis, and nuclear astrophysics. The ORELA workshop (hereafter referred to as the Workshop) provided the opportunity to exchange ideas and information pertaining to nuclear cross-section measurements and their importance for nuclear applications from a variety of perspectives throughout the U.S. Department of Energy (DOE). Approximately 50 people, representing DOE, universities, and seven U.S. national laboratories, attended the Workshop. The objective of the Workshop was to emphasize the technical community endorsement for ORELA in meeting nuclear data challenges in the years to come. The Workshop further emphasized the need for a better understanding of the gaps in basic differential nuclear measurements and identified the efforts needed to return ORELA to a reliable functional measurement facility. To accomplish the Workshop objective, nuclear data experts from national laboratories and universities were invited to provide talks emphasizing the unique and vital role of the ORELA facility for addressing nuclear data needs. ORELA is operated on a full cost-recovery basis with no single sponsor providing complete base funding for the facility. Consequently, different programmatic sponsors benefit by receiving accurate cross-section data measurements at a reduced cost to their respective programs; however, leveraging support for a complex facility such as ORELA has a distinct disadvantage in that the programmatic funds are only used to support program

  19. High quality electron bunch generation with CO2-laser plasma accelerator

    CERN Document Server

    Zhang, L G; Xu, J C; Ji, L L; Zhang, X M; Wang, W P; Zhao, X Y; Yi, L Q; Yu, Y H; Shi, Y; Xu, T J; Xu, Z Z

    2014-01-01

    CO2 laser-driven electron acceleration is demonstrated with particle-in-cell simulation in low-density plasma. An intense CO2 laser pulse with long wavelength excites wakefield. The bubble behind it has a broad space to sustain a large amount of electrons before reaching its charge saturation limit. A transversely propagating inject pulse is used to induce and control the ambient electron injection. The accelerated electron bunch with total charge up to 10 nC and the average charge per energy interval of more than 0.6 nC/MeV are obtained. Plasma-based electron acceleration driven by intense CO2 laser provides a new potential way to generate high-charge electron bunch with low energy spread, which has broad applications, especially for X-ray generation by table-top FEL and bremsstrahlung.

  20. Dynamics of electron injection and acceleration driven by laser wakefield in tailored density profiles

    Science.gov (United States)

    Lee, P.; Maynard, G.; Audet, T. L.; Cros, B.; Lehe, R.; Vay, J.-L.

    2016-11-01

    The dynamics of electron acceleration driven by laser wakefield is studied in detail using the particle-in-cell code WARP with the objective to generate high-quality electron bunches with narrow energy spread and small emittance, relevant for the electron injector of a multistage accelerator. Simulation results, using experimentally achievable parameters, show that electron bunches with an energy spread of ˜11 % can be obtained by using an ionization-induced injection mechanism in a mm-scale length plasma. By controlling the focusing of a moderate laser power and tailoring the longitudinal plasma density profile, the electron injection beginning and end positions can be adjusted, while the electron energy can be finely tuned in the last acceleration section.

  1. On the production of flat electron bunches for laser wake field acceleration

    CERN Document Server

    Kando, M; Kotaki, H; Koga, J; Bulanov, S V; Tajima, T; Chao, A; Pitthan, R; Schüler, K P; Zhidkov, A G; Nemoto, K

    2006-01-01

    We suggest a novel method for injection of electrons into the acceleration phase of particle accelerators, producing low emittance beams appropriate even for the demanding high energy Linear Collider specifications. In this paper we work out the injection into the acceleration phase of the wake field in a plasma behind a high intensity laser pulse, taking advantage of the laser polarization and focusing. With the aid of catastrophe theory we categorize the injection dynamics. The scheme uses the structurally stable regime of transverse wake wave breaking, when electron trajectory self-intersection leads to the formation of a flat electron bunch. As shown in three-dimensional particle-in-cell simulations of the interaction of a laser pulse in a line-focus with an underdense plasma, the electrons, injected via the transverse wake wave breaking and accelerated by the wake wave, perform betatron oscillations with different amplitudes and frequencies along the two transverse coordinates. The polarization and focus...

  2. Resonant Acceleration of Magnetospheric Electrons Driven by the R-X Mode

    Institute of Scientific and Technical Information of China (English)

    XIAO Fu-Liang; ZHENG Hui-Nan; WANG Shui

    2005-01-01

    @@ An extended relativistic model is developed to evaluate the superluminous R-X-mode resonance especially the second-order and third-order resonances with electrons in the Earth's magnetosphere. The potential for stochastic electron acceleration driven by the R-X mode is determined by the dispersive properties of the R-X mode and specifically the resonant harmonic N. In contrast to the limited acceleration at the first harmonic (N = 1)resonance, for the higher harmonic (N > 1) resonances, the R-X mode is capable of accelerating electrons from ~10keV to ~ MeV energies, over a wide range of wave normal angles, in spatial regions extending from the auroral cavity to the latitude (>30°) outer radiation belt. This indicates that higher-order resonance is essentially important for the electron acceleration for the oblique wave propagation.

  3. Beam Spot Measurement on a 400 keV Electron Accelerator

    DEFF Research Database (Denmark)

    Miller, Arne

    1979-01-01

    A line probe is used to measure the beam spot radius and beam divergence at a 400 keV ICT electron accelerator, and a method is shown for reducing the line probe data in order to get the radial function.......A line probe is used to measure the beam spot radius and beam divergence at a 400 keV ICT electron accelerator, and a method is shown for reducing the line probe data in order to get the radial function....

  4. Optimal injection scheme for electron acceleration by a tightly focused laser beam

    Institute of Scientific and Technical Information of China (English)

    Chen Min; Sheng Zheng-Ming; Zhang Jie

    2005-01-01

    Electron dynamics and energy gain in a tightly focused laser beam in vacuum are investigated by numerical simulations. There exist two acceleration mechanisms, i.e. acceleration by the longitudinal field or by the transverse field, which corresponds to two different trajectories. The relationship between the energy gain and the injection parameters of electrons, including the injection angle and momentum, is shown. For given laser parameters, the optimum injection parameters can be obtained.

  5. Present status of radiation processing and its future development by using electron accelerator in Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    Tran Khac An; Tran Tich Canh; Doan Binh [Research and Development Center for Radiation Technology (VINAGAMMA), Ho Chi Minh (Viet Nam); Nguyen Quoc Hien [Nuclear Research Institute (NRI), Dalat (Viet Nam)

    2003-02-01

    In Vietnam, studies on Radiation Processing have been carried out since 1983. Some results are applicable in the field of agriculture, health and foodstuff, some researches were developed to commercial scale and others have high potential for development by using electron accelerator. The paper offers the present status of radiation processing and also give out the growing tendency of using electron accelerator in the future. (author)

  6. Direct acceleration of electrons by a CO2 laser in a curved plasma waveguide

    CERN Document Server

    Yi, Longqing; Shen, Baifei

    2016-01-01

    2 laser, laser-waveguide interaction, as well as micro-engineered plasma structure to accelerate electrons to peak energy greater than 1 GeV with narrow slice energy spread (~1%) and high overall efficiency. The acceleration gradient is 26 GV/m for a 1.3 TW CO2 laser system. The micro-bunching of a long electron beam leads to the generation of a chain of ultrashort electron bunches with the duration roughly equal to half-laser-cycle. These results open a way for developing a compact and economic electron source for diverse applications.

  7. Reformed Solitary Kinetic Alfvén Waves due to Dissipations and Auroral Electron Acceleration

    Institute of Scientific and Technical Information of China (English)

    WU De-Jin; CHAO Jih-Kwin; LEE Luo-Chuan; FENG Xue-Shang

    2001-01-01

    The physical nature of the auroral electron acceleration has been an outstanding problem in space physics for decades.Some recent observations from the auroral orbit satellites,FREJA and FAST,showed that large amplitude solitary kinetic Alfvén waves (SKAWs) are a common electromagnetic active phenomenon in the auroral magnetosphere. In a Iow-ββ/2 (i.e.,β/2 < me/mi < 1) plasma,the drift velocity of electrons relative to ions within SKAWs is much larger than thermal velocities of both electrons and ions.This leads to instabilities and causes dissipations of SKAWs.In the present work,based on the analogy of classical particle motion in a potential well,it is shown that a shock-like structure can be formed from SKAWs if dissipation effects are included.The reformed SKAWs with a shock-like structure have a local density jump and a net field-aligned electric potential drop of order of mev2A/e over a characteristic width of several )e.As a consequence,the reformed SKAWs can efficiently accelerate electrons field-aligned to the order of the local Alfvén velocity.In particular,we argue that this electron acceleration mechanism by reformed SKAWs can play an important role in the auroral electron acceleration problem.The result shows that not only the location of acceleration regions predicted by this model is well consistent with the observed auroral electron acceleration region of I 2 RE above the auroral ionosphere,but also the accelerated electrons from this region can obtain an energy of several keV and carry a field-aligned current of several/A/m2 which are comparable to the observations of auroral electrons.

  8. High-gradient two-beam electron accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Hirshfield, Jay L. [Omega-P, Inc., New Haven, CT (United States)

    2014-11-04

    The main goal for this project was to design, build, and evaluate a detuned-cavity, collinear, two-beam accelerator structure. Testing was to be at the Yale University Beam Physics Laboratory, under terms of a sub-grant from Omega-P to Yale. Facilities available at Yale for this project include a 6-MeV S-band RF gun and associated beam line for forming and transporting a ~1 A drive beam , a 300 kV beam source for use as a test beam, and a full panoply of laboratory infrastructure and test equipment. During the first year of this project, availability and functionality of the 6-MeV drive beam and 300 kV test beam were confirmed, and the beam line was restored to a layout to be used with the two-beam accelerator project. Major efforts during the first year were also focused on computational design and simulation of the accelerator structure itself, on beam dynamics, and on beam transport. Effort during the second year was focussed on building and preparing to test the structure, including extensive cold testing. Detailed results from work under this project have been published in twelve archival journal articles, listed in Section IV of the technical report.

  9. Role of direct laser acceleration in energy gained by electrons in a laser wakefield accelerator with ionization injection

    CERN Document Server

    Shaw, J L; Vafaei-Najafabadi, N; Marsh, K A; Lemos, N; Mori, W B; Joshi, C

    2014-01-01

    We have investigated the role that the transverse electric field of the laser plays in the acceleration of electrons in a laser wakefield accelerator (LWFA) operating in the quasi-blowout regime through particle-in-cell code simulations. In order to ensure that longitudinal compression and/or transverse focusing of the laser pulse is not needed before the wake can self-trap the plasma electrons, we have employed the ionization injection technique. Furthermore, the plasma density is varied such that at the lowest densities, the laser pulse occupies only a fraction of the first wavelength of the wake oscillation (the accelerating bucket), whereas at the highest density, the same duration laser pulse fills the entire first bucket. Although the trapped electrons execute betatron oscillations due to the ion column in all cases, at the lowest plasma density they do not interact with the laser field and the energy gain is all due to the longitudinal wakefield. However, as the density is increased, there can be a sig...

  10. Application of PIN photodiodes on the detection of X-rays generated in an electron accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Mondragon-Contreras, L. [Instituto Nacional de Investigaciones Nucleares, ININ, Carretera Mexico-Toluca S/N, La Marquesa, Ocoyoacac, 52750 Estado de Mexico (Mexico); Instituto Tecnologico de Toluca, Departamento de Estudios de Posgrado e Investigacion, Av. Tecnologico S/N, ExRancho La Virgen, 52140 Metepec (Mexico); Ramirez-Jimenez, F.J. [Instituto Nacional de Investigaciones Nucleares, ININ, Carretera Mexico-Toluca S/N, La Marquesa, Ocoyoacac, 52750 Estado de Mexico (Mexico); Instituto Tecnologico de Toluca, Departamento de Estudios de Posgrado e Investigacion, Av. Tecnologico S/N, ExRancho La Virgen, 52140 Metepec (Mexico)], E-mail: francisco.ramirez@inin.gob.mx; Garcia-Hernandez, J.M.; Torres-Bribiesca, M.A.; Lopez-Callejas, R. [Instituto Nacional de Investigaciones Nucleares, ININ, Carretera Mexico-Toluca S/N, La Marquesa, Ocoyoacac, 52750 Estado de Mexico (Mexico); Instituto Tecnologico de Toluca, Departamento de Estudios de Posgrado e Investigacion, Av. Tecnologico S/N, ExRancho La Virgen, 52140 Metepec (Mexico); Aguilera-Reyes, E.F.; Pena-Eguiluz, R.; Lopez-Valdivia, H.; Carrasco-Abrego, H. [Instituto Nacional de Investigaciones Nucleares, ININ, Carretera Mexico-Toluca S/N, La Marquesa, Ocoyoacac, 52750 Estado de Mexico (Mexico)

    2009-10-11

    PIN photodiodes are used in a novel application for the determination, within the energy range from 90 to 485 keV, of the intensity of X-rays generated by an experimental electron accelerator. An easily assembled X-ray monitor has been built with a low-cost PIN photodiode and operational amplifiers. The output voltage signal obtained from this device can be related to the electron beam current and the accelerating voltage of the accelerator in order to estimate the dose rate delivered by bremsstrahlung.

  11. First collision at renovated electron-positron accelerator

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ On late afternoon July 19,2008,researchers at the CAS Institute of High Energy Physics (IHEP)in Beijing produced the first collisions in the upgraded Beijing Electron-Positron Collider (BEPCII).The feat was observed in the brand-new associated detector,Beijing Electron Spectrometer,III(BESIII).

  12. Electron acceleration in preformed plasma channels with terawatt CO{sub 2} laser

    Energy Technology Data Exchange (ETDEWEB)

    Pogorelsky, I.V.

    1995-02-01

    Extended cylindrical plasma channels produced under gas breakdown by axicon-focused laser beams may be used as optical waveguides in laser-driven electron accelerators. Plasma channeling of the laser beams will help to maintain a high acceleration gradient over many Rayleigh lengths. In addition, the rarefied gas density channel produced after the optical gas breakdown, and followed by a plasma column expansion, reduces multiple scattering of the electron beam. A high-power picosecond C0{sub 2}laser operational at the ATF and being further upgraded to the 1 TW level is considered as the source for a plasma channel formation and as the laser accelerator driver. We show how various laser accelerator schemes including beat wave, wake field, and Inverse Cherenkov accelerator benefit from using a channeled short-pulse C0{sub 2}laser as a driver.

  13. Laser plasma acceleration of electrons with multi-PW laser beams in the frame of CILEX

    Energy Technology Data Exchange (ETDEWEB)

    Cros, B., E-mail: brigitte.cros@u-psud.fr [LPGP, CNRS and Université Paris Sud, Orsay (France); Paradkar, B.S. [LPGP, CNRS and Université Paris Sud, Orsay (France); Davoine, X. [CEA DAM DIF, Arpajon F-91297 (France); Chancé, A. [CEA IRFU-SACM, Gif-Sur-Yvette (France); Desforges, F.G. [LPGP, CNRS and Université Paris Sud, Orsay (France); Dobosz-Dufrénoy, S. [CEA DSM-IRAMIS-SPAM, Gif-sur-Yvette (France); Delerue, N. [LAL, CNRS and Universit Paris Sud, Orsay (France); Ju, J.; Audet, T.L.; Maynard, G. [LPGP, CNRS and Université Paris Sud, Orsay (France); Lobet, M.; Gremillet, L. [CEA DAM DIF, Arpajon F-91297 (France); Mora, P. [CPhT, CNRS and Ecole Polytechnique, Palaiseau (France); Schwindling, J.; Delferrière, O. [CEA IRFU-SACM, Gif-Sur-Yvette (France); Bruni, C.; Rimbault, C.; Vinatier, T. [LAL, CNRS and Universit Paris Sud, Orsay (France); Di Piazza, A. [Max-Planck-Institut für Kernphysik, Heidelberg (Germany); Grech, M. [LULI, Ecole Polytechnique, CNRS, CEA, UPMC, Palaiseau (France); and others

    2014-03-11

    Laser plasma acceleration of electrons has progressed along with advances in laser technology. It is thus expected that the development in the near-future of multi-PW-class laser and facilities will enable a vast range of scientific opportunities for laser plasma acceleration research. On one hand, high peak powers can be used to explore the extremely high intensity regime of laser wakefield acceleration, producing for example large amounts of electrons in the GeV range or generating high energy photons. On the other hand, the available laser energy can be used in the quasi-linear regime to create accelerating fields in large volumes of plasma and study controlled acceleration in a plasma stage of externally injected relativistic particles, either electrons or positrons. In the frame of the Centre Interdisciplinaire de la Lumière EXtrême (CILEX), the Apollon-10P laser will deliver two beams at the 1 PW and 10 PW levels, in ultra-short (>15fs) pulses, to a target area dedicated to electron acceleration studies, such as the exploration of the non-linear regimes predicted theoretically, or multi-stage laser plasma acceleration.

  14. Laser plasma acceleration of electrons with multi-PW laser beams in the frame of CILEX

    Science.gov (United States)

    Cros, B.; Paradkar, B. S.; Davoine, X.; Chancé, A.; Desforges, F. G.; Dobosz-Dufrénoy, S.; Delerue, N.; Ju, J.; Audet, T. L.; Maynard, G.; Lobet, M.; Gremillet, L.; Mora, P.; Schwindling, J.; Delferrière, O.; Bruni, C.; Rimbault, C.; Vinatier, T.; Di Piazza, A.; Grech, M.; Riconda, C.; Marquès, J. R.; Beck, A.; Specka, A.; Martin, Ph.; Monot, P.; Normand, D.; Mathieu, F.; Audebert, P.; Amiranoff, F.

    2014-03-01

    Laser plasma acceleration of electrons has progressed along with advances in laser technology. It is thus expected that the development in the near-future of multi-PW-class laser and facilities will enable a vast range of scientific opportunities for laser plasma acceleration research. On one hand, high peak powers can be used to explore the extremely high intensity regime of laser wakefield acceleration, producing for example large amounts of electrons in the GeV range or generating high energy photons. On the other hand, the available laser energy can be used in the quasi-linear regime to create accelerating fields in large volumes of plasma and study controlled acceleration in a plasma stage of externally injected relativistic particles, either electrons or positrons. In the frame of the Centre Interdisciplinaire de la Lumière EXtrême (CILEX), the Apollon-10P laser will deliver two beams at the 1 PW and 10 PW levels, in ultra-short (> 15 fs) pulses, to a target area dedicated to electron acceleration studies, such as the exploration of the non-linear regimes predicted theoretically, or multi-stage laser plasma acceleration.

  15. Capturing Structural Dynamics in Crystalline Silicon Using Chirped Electrons from a Laser Wakefield Accelerator

    CERN Document Server

    He, Z -H; Nees, J A; Gallé, G; Scott, S A; Pérez, J R Sanchez; Lagally, M G; Krushelnick, K; Thomas, A G R; Faure, J

    2016-01-01

    Recent progress in laser wakefield acceleration has led to the emergence of a new generation of electron and X-ray sources that may have enormous benefits for ultrafast science. These novel sources promise to become indispensable tools for the investigation of structural dynamics on the femtosecond time scale, with spatial resolution on the atomic scale. Here, we demonstrate the use of laser-wakefield-accelerated electron bunches for time-resolved electron diffraction measurements of the structural dynamics of single-crystal silicon nano-membranes pumped by an ultrafast laser pulse. In our proof-of-concept study, we resolve the silicon lattice dynamics on a picosecond time scale by deflecting the momentum-time correlated electrons in the diffraction peaks with a static magnetic field to obtain the time-dependent diffraction efficiency. Further improvements may lead to femtosecond temporal resolution, with negligible pump-probe jitter being possible with future laser-wakefield-accelerator ultrafast-electron-di...

  16. Capturing Structural Dynamics in Crystalline Silicon Using Chirped Electrons from a Laser Wakefield Accelerator

    Science.gov (United States)

    He, Z.-H.; Beaurepaire, B.; Nees, J. A.; Gallé, G.; Scott, S. A.; Pérez, J. R. Sánchez; Lagally, M. G.; Krushelnick, K.; Thomas, A. G. R.; Faure, J.

    2016-11-01

    Recent progress in laser wakefield acceleration has led to the emergence of a new generation of electron and X-ray sources that may have enormous benefits for ultrafast science. These novel sources promise to become indispensable tools for the investigation of structural dynamics on the femtosecond time scale, with spatial resolution on the atomic scale. Here, we demonstrate the use of laser-wakefield-accelerated electron bunches for time-resolved electron diffraction measurements of the structural dynamics of single-crystal silicon nano-membranes pumped by an ultrafast laser pulse. In our proof-of-concept study, we resolve the silicon lattice dynamics on a picosecond time scale by deflecting the momentum-time correlated electrons in the diffraction peaks with a static magnetic field to obtain the time-dependent diffraction efficiency. Further improvements may lead to femtosecond temporal resolution, with negligible pump-probe jitter being possible with future laser-wakefield-accelerator ultrafast-electron-diffraction schemes.

  17. Solar Impulsive Hard X-Ray Emission and Two-Stage Electron Acceleration

    Institute of Scientific and Technical Information of China (English)

    Tian-Xi Zhang; Arjun Tan; Shi Tsan Wu

    2006-01-01

    Heating and acceleration of electrons in solar impulsive hard X-ray (HXR) flares are studied according to the two-stage acceleration model developed by Zhang for solar 3Herich events. It is shown that electrostatic H-cyclotron waves can be excited at a parallel phase velocity less than about the electron thermal velocity and thus can significantly heat the electrons (up to 40 MK) through Landau resonance. The preheated electrons with velocities above a threshold are further accelerated to high energies in the flare-acceleration process. The flareproduced electron spectrum is obtained and shown to be thermal at low energies and power law at high energies. In the non-thermal energy range, the spectrum can be double power law if the spectral power index is energy dependent or related. The electron energy spectrum obtained by this study agrees quantitatively with the result derived from the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) HXR observations in the flare of 2002 July 23. The total flux and energy flux of electrons accelerated in the solar flare also agree with the measurements.

  18. Parametric study of transport beam lines for electron beams accelerated by laser-plasma interaction

    Science.gov (United States)

    Scisciò, M.; Lancia, L.; Migliorati, M.; Mostacci, A.; Palumbo, L.; Papaphilippou, Y.; Antici, P.

    2016-03-01

    In the last decade, laser-plasma acceleration of high-energy electrons has attracted strong attention in different fields. Electrons with maximum energies in the GeV range can be laser-accelerated within a few cm using multi-hundreds terawatt (TW) lasers, yielding to very high beam currents at the source (electron bunches with up to tens-hundreds of pC in a few fs). While initially the challenge was to increase the maximum achievable electron energy, today strong effort is put in the control and usability of these laser-generated beams that still lack of some features in order to be used for applications where currently conventional, radio-frequency (RF) based, electron beam lines represent the most common and efficient solution. Several improvements have been suggested for this purpose, some of them acting directly on the plasma source, some using beam shaping tools located downstream. Concerning the latter, several studies have suggested the use of conventional accelerator magnetic devices (such as quadrupoles and solenoids) as an easy implementable solution when the laser-plasma accelerated beam requires optimization. In this paper, we report on a parametric study related to the transport of electron beams accelerated by laser-plasma interaction, using conventional accelerator elements and tools. We focus on both, high energy electron beams in the GeV range, as produced on petawatt (PW) class laser systems, and on lower energy electron beams in the hundreds of MeV range, as nowadays routinely obtained on commercially available multi-hundred TW laser systems. For both scenarios, our study allows understanding what are the crucial parameters that enable laser-plasma accelerators to compete with conventional ones and allow for a beam transport. We show that suitable working points require a tradeoff-combination between low beam divergence and narrow energy spread.

  19. ELECTRON ACCELERATION FOR E-RHIC WITH THE NON-SCALING FFAG.

    Energy Technology Data Exchange (ETDEWEB)

    TRBOJEVIC,D.BALSKIEWICZ,M.COURANT,E.D.ET AL.

    2004-07-05

    A non-scaling FFAG lattice design to accelerate electrons from 3.2 to 10 GeV is described. This is one of possible solutions for the future electron-ion collider (eRHIC) at Relativistic Heavy Ion Collier (RHIC) at Brookhaven National Laboratory (BNL). The e-RHIC proposal requires acceleration of the low emittance electrons up to energy of 10 GeV. To reduce a high cost of the full energy super-conducting linear accelerator an alternative approach with the FFAG is considered. The report describes the 1277 meters circumference non-scaling FFAG ring. The Courant-Snyder functions, orbit offsets, momentum compaction, and path length dependences on momentum during acceleration are presented.

  20. Energetic electron acceleration observed by MMS in the vicinity of an X-line crossing

    Science.gov (United States)

    Jaynes, A. N.; Turner, D. L.; Wilder, F. D.; Osmane, A.; Baker, D. N.; Blake, J. B.; Fennell, J. F.; Cohen, I. J.; Mauk, B. H.; Reeves, G. D.; Ergun, R. E.; Giles, B. L.; Gershman, D. J.; Torbert, R. B.; Burch, J. L.

    2016-07-01

    During the first months of observations, the Magnetospheric Multiscale Fly's Eye Energetic Particle Spectrometer instrument has observed several instances of electron acceleration up to >100 keV while in the vicinity of the dayside reconnection region. While particle acceleration associated with magnetic reconnection has been seen to occur up to these energies in the tail region, it had not yet been reported at the magnetopause. This study reports on observations of electron acceleration up to hundreds of keV that were recorded on 19 September 2015 around 1000 UT, in the midst of an X-line crossing. In the region surrounding the X-line, whistler-mode and broadband electrostatic waves were observed simultaneously with the appearance of highly energetic electrons which exhibited significant energization in the perpendicular direction. The mechanisms by which particles may be accelerated via reconnection-related processes are intrinsic to understanding particle dynamics among a wide range of spatial scales and plasma environments.

  1. The role of electron donors generated from UV photolysis for accelerating pyridine biodegradation.

    Science.gov (United States)

    Tang, Yingxia; Zhang, Yongming; Yan, Ning; Liu, Rui; Rittmann, Bruce E

    2015-09-01

    Employing an internal circulation baffled biofilm reactor (ICBBR), we evaluated the mechanisms by which photolysis accelerated the biodegradation and mineralization of pyridine (C5 H5 N), a nitrogen-containing heterocyclic compound. We tested the hypothesis that pyridine oxidation is accelerated because a key photolysis intermediate, succinate, is as electron donor that promotes the initial mono-oxygenation of pyridine. Experimentally, longer photolysis time generated more electron-donor products (succinate), which stimulated faster pyridine biodegradation. This pattern was confirmed by directly adding succinate, and the stimulation effect occurred similarly with addition of the same equivalents of acetate and formate. Succinate, whether generated by UV photolysis or added directly, also accelerated mono-oxygenation of the first biodegradation intermediate, 2-hydroxyl pyridine (2HP). 2HP and pyridine were mutually inhibitory in that their mono-oxygenations competed for internal electron donor; thus, the addition of any readily biodegradable donor accelerated both mono-oxygenation steps, as well as mineralization.

  2. Tunable Electron Multibunch Production in Plasma Wakefield Accelerators

    CERN Document Server

    Hidding, B; Wittig, G; Aniculaesei, C; Jaroszynski, D; McNeil, B W J; Campbell, L T; Islam, M R; Ersfeld, B; Sheng, Z -M; Xi, Y; Deng, A; Rosenzweig, J B; Andonian, G; Murokh, A; Hogan, M J; Bruhwiler, D L; Cormier, E

    2014-01-01

    Synchronized, independently tunable and focused $\\mu$J-class laser pulses are used to release multiple electron populations via photo-ionization inside an electron-beam driven plasma wave. By varying the laser foci in the laboratory frame and the position of the underdense photocathodes in the co-moving frame, the delays between the produced bunches and their energies are adjusted. The resulting multibunches have ultra-high quality and brightness, allowing for hitherto impossible bunch configurations such as spatially overlapping bunch populations with strictly separated energies, which opens up a new regime for light sources such as free-electron-lasers.

  3. Study on the radiation problem caused by electron beam loss in accelerator tubes

    Institute of Scientific and Technical Information of China (English)

    LI Quan-Feng; GUO Bing-Qi; ZHANG Jie-Xi; CHEN Huai-Bi

    2008-01-01

    The beam dynamic code PARMELA was used to simulate the transportation process of accelerating electrons in S-band SW linacs with different energies of 2.5, 6 and 20 MeV. The results indicated that in the ideal condition, the percentage of electron beam loss was 50% in accelerator tubes. Also we calculated the spectrum, the location and angular distribution of the lost electrons. Calculation performed by Monte Carlo code MCNP demonstrated that the radiation distribution of lost electrons was nearly uniform along the tube axis, the angular distributions of the radiation dose rates of the three tubes were similar, and the highest leaking dose was at the angle of 160° with respect to the axis. The lower the energy of the accelerator, the higher the radiation relative leakage. For the 2.5 MeV accelerator, the maximum dose rate reached 5% of the main dose and the one on the head of the electron gun was 1%, both of which did not meet the eligible protection requirement for accelerators. We adopted different shielding designs for different accelerators. The simulated result showed that the shielded radiation leaking dose rates fulfilled the requirement.

  4. Focusing of a megavoltage electron beam in a medical accelerator

    Science.gov (United States)

    Friedrichs, P. B.; Konrad, G. T.

    1991-05-01

    Due to packaging constraints in the radiotherapy machine gantry of Siemens Mevatrons, the electron linac used in the lower energy models has a long drift tube between the end of the linae and the 270° achromatic bend assembly. Space charge effects cause the electron beam to grow so that it frequently impinges upon the entrance hole to the bend assembly. A compact solenoid has been designed that is effective in increasing the transmitted beam through the bend assembly by over 40%. A permanent magnet design proved to be unsuccessful because of high transverse fields within the magnet. Trajectory calculations obtained through the electron linac design code PARMELA (Public domain code supplied to Siemens Medical Laboratories, Inc. by L.M. Young, Los Alamos National Laboratories, Los Alamos, NM) support the experimentally observed results. Data is presented for several electron energies over the normal operating range of 4-6 MV photons from these Mevatrons.

  5. Accelerated Aging Platform for Prognostics of Power Electronics

    Data.gov (United States)

    National Aeronautics and Space Administration — To advance the field of electronics prognostics, the study of transistor fault modes and their precursors is essential. This paper reports on a platform for the...

  6. Electron distribution function behavior during localized transverse ion acceleration events in the topside auroral zone

    Energy Technology Data Exchange (ETDEWEB)

    Lynch, K.A.; Arnoldy, R.L. [Univ. of New Hampshire, Durham, NH (United States); Kintner, P.M. [Cornell Univ., Ithaca, NY (United States); Vago, J.L. [European Space Agency, Noordwijk (Netherlands)

    1994-02-01

    The Topaz3 auroral sounding rocket made the following observations concerning the transfer of precipitating auroral electron energy to transverse ion acceleration in the topside auroral zone. During the course of the flight, the precipitating electron beam was modified to varying degrees by interaction with VLF hiss, at times changing the beam into a field-aligned plateau. The electron distribution functions throughout the flight are classified according to the extent of this modification, and correspondences with ion acceleration events are sought. The hiss power during most of this rocket flight apparently exceeded the threshold for collapse into solitary structures. At the times of plateaued electron distributions, the collapse of these structures was limited by Landau damping through the ambient ions, resulting in a velocity-dependent acceleration of both protons and oxygen. This initial acceleration is sufficient to supply the number flux of upflowing ions observed at satellite altitudes. The bursty ion acceleration was anticorrelated, on 1-s or smaller timescales, with dispersive bursts of precipitating field-aligned electrons, although on longer timescales the bursty ions and the bursty electrons are correlated. 45 refs., 9 figs.

  7. Vacuum system of the 3MeV industrial electron beam accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Jayaprakash, D; Mishra, R L; Ghodke, S R; Kumar, M; Kumar, M; Nanu, K; Mittal, Dr K C [Accelerator and Pulse Power Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085 (India)], E-mail: jaypee@barc.gov.in

    2008-05-01

    One DC Accelerator, for electron beam of 3 MeV energy and 10 mA beam current, to derive 30 KW beam power for Industrial applications is nearing completion at Electron Beam Centre, Kharghar, Navi Mumbai. Beam-line of the accelerator is six meters long, consists of electron gun at top, followed by the accelerating column and finally the scan horn. Electron gun and the accelerating column is exposed to SF{sub 6} gas at six atmospheres. Area exposed to the vacuum is 65,000 sq: cm, and includes a volume of 200 litres. Vacuum of the order of 1x10{sup -7}mbar is desired. To ensure a good vacuum gradient, distributive pumping is implemented. Electron beam is scanned to a size of 5cm x 120cm, to get a useful beam coverage, for industrial radiation applications. The beam is extracted through a window of Titanium foil of 50{mu}m thickness. A safety interlock, to protect the electron gun, accelerating column and sputter ion pumps, in case of a foil rupture, is incorporated. Foil change can be done without disturbing the vacuum in the other zones. System will be integrated to a master control system to take care of the various safety aspects, and to make it operator friendly.

  8. Vacuum system of the 3MeV industrial electron beam accelerator

    Science.gov (United States)

    Jayaprakash, D.; Mishra, R. L.; Ghodke, S. R.; kumar, M.; kumar, M.; Nanu, K.; Mittal, K. C., Dr

    2008-05-01

    One DC Accelerator, for electron beam of 3 MeV energy and 10 mA beam current, to derive 30 KW beam power for Industrial applications is nearing completion at Electron Beam Centre, Kharghar, Navi Mumbai. Beam-line of the accelerator is six meters long, consists of electron gun at top, followed by the accelerating column and finally the scan horn. Electron gun and the accelerating column is exposed to SF6 gas at six atmospheres. Area exposed to the vacuum is 65,000 sq: cm, and includes a volume of 200 litres. Vacuum of the order of 1×10-7mbar is desired. To ensure a good vacuum gradient, distributive pumping is implemented. Electron beam is scanned to a size of 5cm × 120cm, to get a useful beam coverage, for industrial radiation applications. The beam is extracted through a window of Titanium foil of 50μm thickness. A safety interlock, to protect the electron gun, accelerating column and sputter ion pumps, in case of a foil rupture, is incorporated. Foil change can be done without disturbing the vacuum in the other zones. System will be integrated to a master control system to take care of the various safety aspects, and to make it operator friendly.

  9. Cambridge checkpoint maths revision guide for the Cambridge secondary 1 test

    CERN Document Server

    Smith, Alan

    2013-01-01

    With Checkpoint Maths Revision Guide for the Cambridge Secondary 1 test you can aim for the best grade with the help of relevant and accessible notes, examiner advice plus questions and answers on each key topic. - Clear explanations of every topic covered in the Cambridge Secondary 1 Checkpoint Maths syllabus. - Builds revision skills you need for success in the test. - Exam tips wirtten by test setters and examiners giving you their expert advice. This text has not been through the Cambridge endorsement process.

  10. Cambridge checkpoint English revision guide for the Cambridge secondary 1 test

    CERN Document Server

    Reynolds, John

    2013-01-01

    With Checkpoint English Revision Guide for the Cambridge Secondary 1 test you can aim for the best grade with the help of relevant and accessible notes, examiner advice plus questions and answers on each key topic. - Clear explanations of every topic covered in the Cambridge Secondary 1 Checkpoint English syllabus. - Builds revision skills you need for success in the test. - Exam tips wirtten by test setters and examiners giving you their expert advice. This text has not been through the Cambridge endorsement process.

  11. Radiation belt electron acceleration during the 17 March 2015 geomagnetic storm: Observations and simulations

    Science.gov (United States)

    Li, W.; Ma, Q.; Thorne, R. M.; Bortnik, J.; Zhang, X.-J.; Li, J.; Baker, D. N.; Reeves, G. D.; Spence, H. E.; Kletzing, C. A.; Kurth, W. S.; Hospodarsky, G. B.; Blake, J. B.; Fennell, J. F.; Kanekal, S. G.; Angelopoulos, V.; Green, J. C.; Goldstein, J.

    2016-06-01

    Various physical processes are known to cause acceleration, loss, and transport of energetic electrons in the Earth's radiation belts, but their quantitative roles in different time and space need further investigation. During the largest storm over the past decade (17 March 2015), relativistic electrons experienced fairly rapid acceleration up to ~7 MeV within 2 days after an initial substantial dropout, as observed by Van Allen Probes. In the present paper, we evaluate the relative roles of various physical processes during the recovery phase of this large storm using a 3-D diffusion simulation. By quantitatively comparing the observed and simulated electron evolution, we found that chorus plays a critical role in accelerating electrons up to several MeV near the developing peak location and produces characteristic flat-top pitch angle distributions. By only including radial diffusion, the simulation underestimates the observed electron acceleration, while radial diffusion plays an important role in redistributing electrons and potentially accelerates them to even higher energies. Moreover, plasmaspheric hiss is found to provide efficient pitch angle scattering losses for hundreds of keV electrons, while its scattering effect on > 1 MeV electrons is relatively slow. Although an additional loss process is required to fully explain the overestimated electron fluxes at multi-MeV, the combined physical processes of radial diffusion and pitch angle and energy diffusion by chorus and hiss reproduce the observed electron dynamics remarkably well, suggesting that quasi-linear diffusion theory is reasonable to evaluate radiation belt electron dynamics during this big storm.

  12. Generation of stable ultra-relativistic attosecond electron bunches via the laser wakefield acceleration mechanism

    NARCIS (Netherlands)

    Luttikhof, M.J.H.; Khachatryan, A.G.; Goor, van F.A.; Boller, K.-J.

    2009-01-01

    In recent experiments ultra-relativistic femtosecond electron bunches were generated by a Laser Wakefield Accelerator (LWFA) in different regimes. Here we predict that even attosecond bunches can be generated by an LWFA due to the fast betatron phase mixing within a femtosecond electron bunch. The a

  13. Ionospheric electron acceleration by electromagnetic waves near regions of plasma resonances

    Science.gov (United States)

    Villalon, Elena

    1989-03-01

    Electron acceleration by electromagnetic fields propagating in the inhomogeneous ionospheric plasma is investigated. It is found that high-amplitude short wavelength electrostatic waves are generated by the incident electromagnetic fields that penetrate the radio window. These waves can very efficiently transfer their energy to the electrons if the incident frequency is near the second harmonic of the cyclotron frequency.

  14. Electron studies of acceleration processes in the corona. [solar probe mission planning

    Science.gov (United States)

    Lin, R. P.

    1978-01-01

    The solar probe mission can obtain unique and crucially important measurements of electron acceleration, storage, and propagation processes in the corona and can probe the magnetic field structure of the corona below the spacecraft. The various energetic electron phenomena which will be sampled by the Solar Probe are described and some new techniques to probe coronal structures are suggested.

  15. Electron acceleration during the decay of nonlinear Whistler waves in low-beta electron-ion plasma

    Energy Technology Data Exchange (ETDEWEB)

    Umeda, Takayuki; Saito, Shinji [Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya City, Aichi 464-8601 (Japan); Nariyuki, Yasuhiro, E-mail: umeda@stelab.nagoya-u.ac.jp, E-mail: saito@stelab.nagoya-u.ac.jp, E-mail: nariyuki@edu.u-toyama.ac.jp [Faculty of Human Development, University of Toyama, Toyama City, Toyama 930-8555 (Japan)

    2014-10-10

    Relativistic electron acceleration through dissipation of a nonlinear, short-wavelength, and monochromatic electromagnetic whistler wave in low-beta plasma is investigated by utilizing a one-dimensional fully relativistic electromagnetic particle-in-cell code. The nonlinear (large-amplitude) parent whistler wave decays through the parametric instability which enhances electrostatic ion acoustic waves and electromagnetic whistler waves. These waves satisfy the condition of three-wave coupling. Through the decay instability, the energy of electron bulk velocity supporting the parent wave is converted to the thermal energy perpendicular to the background magnetic field. Increase of the perpendicular temperature triggers the electron temperature anisotropy instability which generates broadband whistler waves and heats electrons in the parallel direction. The broadband whistler waves are inverse-cascaded during the relaxation of the electron temperature anisotropy. In lower-beta conditions, electrons with a pitch angle of about 90° are successively accelerated by inverse-cascaded whistler waves, and selected electrons are accelerated to over a Lorentz factor of 10. The result implies that the nonlinear dissipation of a finite-amplitude and short-wavelength whistler wave plays an important role in producing relativistic nonthermal electrons over a few MeV especially at lower beta plasmas.

  16. Design study of electron cyclotron resonance-ion plasma accelerator for heavy ion cancer therapy

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, T., E-mail: ttinoue@juntendo.ac.jp; Sugimoto, S.; Sasai, K. [Graduate School of Medicine, Juntendo University, Tokyo 113–8421 (Japan); Hattori, T. [National Institute of Radiological Sciences, Chiba 263–0024 (Japan)

    2014-02-15

    Electron Cyclotron Resonance-Ion Plasma Accelerator (ECR-IPAC) device, which theoretically can accelerate multiple charged ions to several hundred MeV with short acceleration length, has been proposed. The acceleration mechanism is based on the combination of two physical principles, plasma electron ion adiabatic ejection (PLEIADE) and Gyromagnetic Autoresonance (GYRAC). In this study, we have designed the proof of principle machine ECR-IPAC device and simulated the electromagnetic field distribution generating in the resonance cavity. ECR-IPAC device consisted of three parts, ECR ion source section, GYRAC section, and PLEIADE section. ECR ion source section and PLEIADE section were designed using several multi-turn solenoid coils and sextupole magnets, and GYRAC section was designed using 10 turns coil. The structure of ECR-IPAC device was the cylindrical shape, and the total length was 1024 mm and the maximum diameter was 580 mm. The magnetic field distribution, which maintains the stable acceleration of plasma, was generated on the acceleration center axis throughout three sections. In addition, the electric field for efficient acceleration of electrons was generated in the resonance cavity by supplying microwave of 2.45 GHz.

  17. Generation of electron beams from a laser-based advanced accelerator at Shanghai Jiao Tong University

    CERN Document Server

    Elsied, Ahmed M M; Li, Song; Mirzaie, Mohammad; Sokollik, Thomas; Zhang, Jie

    2014-01-01

    At Shanghai Jiao Tong University, we have established a research laboratory for advanced acceleration research based on high-power lasers and plasma technologies. In a primary experiment based on the laser wakefield acceleration (LWFA) scheme, multi-hundred MeV electron beams having a reasonable quality are generated using 20-40 TW, 30 femtosecond laser pulses interacting independently with helium, neon, nitrogen and argon gas jet targets. The laser-plasma interaction conditions are optimized for stabilizing the electron beam generation from each type of gas. The electron beam pointing angle stability and divergence angle as well as the energy spectra from each gas jet are measured and compared.

  18. Far-field constant-gradient laser accelerator of electrons in an ion channel

    CERN Document Server

    Khudik, Vladimir; Shvets, Gennady

    2016-01-01

    We predict that electrons in an ion channel can gain ultra-relativistic energies by simultaneously interacting with a laser pulse and, counter-intuitively, with a decelerating electric field. The crucial role of the decelerating field is to maintain high-amplitude betatron oscillations, thereby enabling constant rate energy flow to the electrons via the direct laser acceleration mechanism. Multiple harmonics of the betatron motion can be employed. Injecting electrons into a decelerating phase of a laser wakefield accelerator is one practical implementation of the scheme.

  19. Effect of Cluster Coulomb Fields on Electron Acceleration in Laser-Cluster Interaction

    Institute of Scientific and Technical Information of China (English)

    CANG Yu; DONG Quan-Li; WU Hui-Chun; SHENG Zheng-Ming; YU Wei; ZHANG Jie

    2004-01-01

    @@ Single particle simulations are used to investigate electron acceleration in the laser-clusterinteraction, taking into account the Coulomb fields around individual clusters. These Coulomb fields are induced from the cluster cores with positive charge when electrons escape from the cluster cores through ponderomotive push from the laser field. These Coulomb fields enable some stripped electrons to be stochastically in phases with the laser fields so that they can gain net energy from the laser efficiently. In this heating mechanism, circularly polarized lasers, larger cluster size and higher cluster densities make the acceleration more efficient.

  20. Bounce-Averaged Acceleration of Energetic Electrons by Whistler Mode Chorus in the Magnetosphere

    Institute of Scientific and Technical Information of China (English)

    XIAO Fu-Liang; CHEN Liang-Xu; ZHOU Qing-Hua; HE Hui-Yong; WEN Yong-Jun

    2007-01-01

    @@ We construct the bounce-averaged diffusion coefficients and study the bounce-averaged acceleration for energetic electrons in gyroresonance with whistler mode chorus. Numerical calculations have been performed for a band of chorus frequency distributed over a standard Gaussian spectrum specifically in the region near L = 4.5, where peaks of the electron phase space density occur. It is found that whistler mode chorus can efficiently accelerate electrons and can increase the phase space density at energies of about 1 MeV by more than one order of magnitude about one day, in agreement with the satellite observations during the recovery phase of magnetic storms.

  1. High quality electron beam generation in a proton-driven hollow plasma wakefield accelerator

    CERN Document Server

    Li, Yangmei; Lotov, Konstantin V; Sosedkin, Alexander P; Hanahoe, Kieran; Mete-Apsimon, Oznur

    2016-01-01

    Proton-driven plasma wakefield accelerators have numerically demonstrated substantially higher accelerating gradients compared to conventional accelerators and the viability of accelerating electrons to energy frontier in a single plasma stage. However, due to the intrinsic strong and radially varying transverse fields, the beam quality is still far from suitable for practical application in future colliders. Here we propose a new accelerating region which is free from both plasma electrons and ions in the proton-driven hollow plasma channel. The high quality electron beam is therefore generated with this scheme without transverse plasma fields. The results show that a 1 TeV proton driver can propagate and accelerate an electron beam to 0.62 TeV with correlated energy spread of 4.6% and well-preserved normalized emittance below 2.4 mm mrad in a single hollow plasma channel of 700 m. More importantly, the beam loading tolerance is significantly improved compared to the uniform plasma case. This high quality an...

  2. Accomplishments of the heavy electron particle accelerator program

    Energy Technology Data Exchange (ETDEWEB)

    Neuffer, D. [Fermilab; Stratakis, D. [Fermilab; Palmer, M. [Brookhaven; Delahaye, J-P [SLAC; Summers, D. [Mississippi U.; Ryne, R. [LBNL, Berkeley; Cummings, M. A. [MUONS Inc.

    2016-10-18

    The Muon Accelerator Program (MAP) has completed a four-year study on the feasibility of muon colliders and on using stored muon beams for neutrinos. That study was broadly successful in its goals, establishing the feasibility of heavy lepton colliders (HLCs) from the 125 GeV Higgs Factory to more than 10 TeV, as well as exploring using a μ storage ring (MSR) for neutrinos, and establishing that MSRs could provide factory-level intensities of νe ($\\bar{ve}$) and $\\bar{vμ}$ (νμ) beams. The key components of the collider and neutrino factory systems were identified. Feasible designs and detailed simulations of all of these components have been obtained, including some initial hardware component tests, setting the stage for future implementation where resources are available and the precise physics goals become apparent.

  3. ACCOMPLISHMENTS OF THE HEAVY ELECTRON PARTICLE ACCELERATOR PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Neuffer, D. [Fermilab; Stratakis, D. [Fermilab; Palmer, M. [Brookhaven; Delahaye, J-P [SLAC; Summers, D. [Mississippi U.; Ryne, R. [LBNL, Berkeley; Cummings, M. A. [MUONS Inc.

    2016-10-18

    The Muon Accelerator Program (MAP) has completed a four-year study on the feasibility of muon colliders and on using stored muon beams for neutrinos. That study was broadly successful in its goals, establishing the feasibility of heavy lepton colliders (HLCs) from the 125 GeV Higgs Factory to more than 10 TeV, as well as exploring using a μ storage ring (MSR) for neutrinos, and establishing that MSRs could provide factory-level intensities of νe (ν̅e) and ν̅μ (νμ) beams. The key components of the collider and neutrino factory systems were identified. Feasible designs and detailed simulations of all of these components have been obtained, including some initial hardware component tests, setting the stage for future implementation where resources are available and the precise physics goals become apparent.

  4. Laser-driven electron acceleration in a plasma channel with an additional electric field

    Science.gov (United States)

    Cheng, Li-Hong; Xue, Ju-Kui; Liu, Jie

    2016-05-01

    We examine the electron acceleration in a two-dimensional plasma channel under the action of a laser field and an additional static electric field. We propose to design an appropriate additional electric field (its direction and location), in order to launch the electron onto an energetic trajectory. We find that the electron acceleration strongly depends on the coupled effects of the laser polarization, the direction, and location of the additional electric field. The additional electric field affects the electron dynamics by changing the dephasing rate. Particularly, a suitably designed additional electric field leads to a considerable energy gain from the laser pulse after the interaction with the additional electric field. The electron energy gain from the laser with the additional electric field can be much higher than that without the additional electric field. This engineering provides a possible means for producing high energetic electrons.

  5. Stochastic heating and acceleration of electrons in colliding laser fields in plasma.

    Science.gov (United States)

    Sheng, Z-M; Mima, K; Sentoku, Y; Jovanović, M S; Taguchi, T; Zhang, J; Meyer-Ter-Vehn, J

    2002-02-01

    We propose a mechanism that leads to efficient acceleration of electrons in plasma by two counterpropagating laser pulses. It is triggered by stochastic motion of electrons when the laser fields exceed some threshold amplitudes, as found in single-electron dynamics. It is further confirmed in particle-in-cell simulations. In vacuum or tenuous plasma, electron acceleration in the case with two colliding laser pulses can be much more efficient than with one laser pulse only. In plasma at moderate densities, such as a few percent of the critical density, the amplitude of the Raman-backscattered wave is high enough to serve as the second counterpropagating pulse to trigger the electron stochastic motion. As a result, even with one intense laser pulse only, electrons can be heated up to a temperature much higher than the corresponding laser ponderomotive potential.

  6. Beam loading by distributed injection of electrons in a plasma wakefield accelerator.

    Science.gov (United States)

    Vafaei-Najafabadi, N; Marsh, K A; Clayton, C E; An, W; Mori, W B; Joshi, C; Lu, W; Adli, E; Corde, S; Litos, M; Li, S; Gessner, S; Frederico, J; Fisher, A S; Wu, Z; Walz, D; England, R J; Delahaye, J P; Clarke, C I; Hogan, M J; Muggli, P

    2014-01-17

    We show through experiments and supporting simulations that propagation of a highly relativistic and dense electron bunch through a plasma can lead to distributed injection of electrons, which depletes the accelerating field, i.e., beam loads the wake. The source of the injected electrons is ionization of the second electron of rubidium (Rb II) within the wake. This injection of excess charge is large enough to severely beam load the wake, and thereby reduce the transformer ratio T. The reduction of the average T with increasing beam loading is quantified for the first time by measuring the ratio of peak energy gain and loss of electrons while changing the beam emittance. Simulations show that beam loading by Rb II electrons contributes to the reduction of the peak accelerating field from its weakly loaded value of 43  GV/m to a strongly loaded value of 26  GV/m.

  7. Simulation on buildup of electron cloud in a proton circular accelerator

    Science.gov (United States)

    Li, Kai-Wei; Liu, Yu-Dong

    2015-10-01

    Electron cloud interaction with high energy positive beams are believed responsible for various undesirable effects such as vacuum degradation, collective beam instability and even beam loss in high power proton circular accelerators. An important uncertainty in predicting electron cloud instability lies in the detailed processes of the generation and accumulation of the electron cloud. The simulation on the build-up of electron cloud is necessary to further studies on beam instability caused by electron clouds. The China Spallation Neutron Source (CSNS) is an intense proton accelerator facility now being built, whose accelerator complex includes two main parts: an H-linac and a rapid cycling synchrotron (RCS). The RCS accumulates the 80 MeV proton beam and accelerates it to 1.6 GeV with a repetition rate of 25 Hz. During beam injection with lower energy, the emerging electron cloud may cause serious instability and beam loss on the vacuum pipe. A simulation code has been developed to simulate the build-up, distribution and density of electron cloud in CSNS/RCS. Supported by National Natural Science Foundation of China (11275221, 11175193)

  8. Generation of attosecond electron bunches in a laser-plasma accelerator using a plasma density upramp

    Energy Technology Data Exchange (ETDEWEB)

    Weikum, M.K., E-mail: maria.weikum@desy.de [Deutsches Elektronensynchrotron (DESY), Bdg. 30b, Notkestr. 85, 22607 Hamburg (Germany); Department of Physics, University of Strathclyde, G4 0NG Glasgow (United Kingdom); Li, F.Y. [Department of Physics, University of Strathclyde, G4 0NG Glasgow (United Kingdom); Assmann, R.W. [Deutsches Elektronensynchrotron (DESY), Bdg. 30b, Notkestr. 85, 22607 Hamburg (Germany); Sheng, Z.M. [Department of Physics, University of Strathclyde, G4 0NG Glasgow (United Kingdom); Laboratory for Laser Plasmas and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Jaroszynski, D. [Department of Physics, University of Strathclyde, G4 0NG Glasgow (United Kingdom)

    2016-09-01

    Attosecond electron bunches and attosecond radiation pulses enable the study of ultrafast dynamics of matter in an unprecedented regime. In this paper, the suitability for the experimental realization of a novel scheme producing sub-femtosecond duration electron bunches from laser-wakefield acceleration in plasma with self-injection in a plasma upramp profile has been investigated. While it has previously been predicted that this requires laser power above a few hundred terawatts typically, here we show that the scheme can be extended with reduced driving laser powers down to tens of terawatts, generating accelerated electron pulses with minimum length of around 166 attoseconds and picocoulombs charge. Using particle-in-cell simulations and theoretical models, the evolution of the accelerated electron bunch within the plasma as well as simple scalings of the bunch properties with initial laser and plasma parameters are presented. - Highlights: • LWFA with an upramp density profile can trap and accelerate sub-fs electron beams. • A reduction of the necessary threshold laser intensity by a factor 4 is presented. • Electron properties are tuned by varying initial laser and plasma parameters. • Simulations predict electron bunch lengths below 200 attoseconds with pC charge. • Strong bunch evolution effects and a large energy spread still need to be improved.

  9. Injection of electrons by colliding laser pulses in a laser wakefield accelerator

    Science.gov (United States)

    Hansson, M.; Aurand, B.; Ekerfelt, H.; Persson, A.; Lundh, O.

    2016-09-01

    To improve the stability and reproducibility of laser wakefield accelerators and to allow for future applications, controlling the injection of electrons is of great importance. This allows us to control the amount of charge in the beams of accelerated electrons and final energy of the electrons. Results are presented from a recent experiment on controlled injection using the scheme of colliding pulses and performed using the Lund multi-terawatt laser. Each laser pulse is split into two parts close to the interaction point. The main pulse is focused on a 2 mm diameter gas jet to drive a nonlinear plasma wave below threshold for self-trapping. The second pulse, containing only a fraction of the total laser energy, is focused to collide with the main pulse in the gas jet under an angle of 150°. Beams of accelerated electrons with low divergence and small energy spread are produced using this set-up. Control over the amount of accelerated charge is achieved by rotating the plane of polarization of the second pulse in relation to the main pulse. Furthermore, the peak energy of the electrons in the beams is controlled by moving the collision point along the optical axis of the main pulse, and thereby changing the acceleration length in the plasma.

  10. On the Production of Flat Electron Bunches for Laser Wake Field Acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Kando, M.; Fukuda, Y.; Kotaki, H.; Koga, J.; Bulanov, S.V.; Tajima, T.; /JAERI, Kyoto; Chao, A.; Pitthan, R.; /SLAC; Schuler, K.-P.; /DESY; Zhidkov, A.G.; /CRIEPI, Tokyo; Nemoto, K.; /CRIEPI, Tokyo

    2006-06-27

    We suggest a novel method for injection of electrons into the acceleration phase of particle accelerators, producing low emittance beams appropriate even for the demanding high energy Linear Collider specifications. In this paper we work out the injection into the acceleration phase of the wake field in a plasma behind a high intensity laser pulse, taking advantage of the laser polarization and focusing. With the aid of catastrophe theory we categorize the injection dynamics. The scheme uses the structurally stable regime of transverse wake wave breaking, when electron trajectory self-intersection leads to the formation of a flat electron bunch. As shown in three-dimensional particle-in-cell simulations of the interaction of a laser pulse in a line-focus with an underdense plasma, the electrons, injected via the transverse wake wave breaking and accelerated by the wake wave, perform betatron oscillations with different amplitudes and frequencies along the two transverse coordinates. The polarization and focusing geometry lead to a way to produce relativistic electron bunches with asymmetric emittance (flat beam). An approach for generating flat laser accelerated ion beams is briefly discussed.

  11. An Economic Analysis of Electron Accelerators and Cobalt-60 for Irradiating Food

    OpenAIRE

    Morrison, Rosanna Mentzer

    1989-01-01

    Average costs per pound of irradiating food are similar for the electron accelerator and cobalt-60 irradiators analyzed in this study, but initial investment costs can vary by $1 million. Irradiation costs range from 0.5 to 7 cents per pound and decrease as annual volumes treated increase. Cobalt-60 is less expensive than electron beams for annual volumes below 50 million pounds. For radiation source requirements above the equivalent of 1 million curies of cobalt-60, electron beams are more e...

  12. Experimental Studies of Temporal Electron Beam Shaping at the DUV-FEL Accelerator

    CERN Document Server

    Loos, H; Doweel, D; Ferario, M; Petrarca, M; Serafini, L; Sheehy, B; Shen, Y; Tsang, Thomas; Vicario, C; Wang, X

    2005-01-01

    The photoinjectors for future short wavelength high brightness accelerator driven light sources need to produce an electron beam with ultra-low emittance. At the DUV-FEL facility at BNL, we studied the effect of longitudinally shaping the photocathode laser pulses on the electron beam dynamics. We report on measurements of transverse and longitudinal electron beam emittance and comparisons of the experimental results with simulations.

  13. 50 MeV Run of the IOTA / FAST Electron Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Edstrom Jr., D.; et al.

    2017-02-02

    The low-energy section of the photoinjector-based electron linear accelerator at the Fermilab Accelerator Science & Technology (FAST) facility was recently commissioned to an energy of 50 MeV. This linear accelerator relies primarily upon pulsed SRF acceleration and an optional bunch compressor to produce a stable beam within a large operational regime in terms of bunch charge, total average charge, bunch length, and beam energy. Various instrumentation was used to characterize fundamental properties of the electron beam including the intensity, stability, emittance, and bunch length. While much of this instrumentation was commissioned in a 20 MeV running period prior, some (including a new Martin- Puplett interferometer) was in development or pending installation at that time. All instrumentation has since been recommissioned over the wide operational range of beam energies up to 50 MeV, intensities up to 4 nC/pulse, and bunch structures from ~1 ps to more than 50 ps in length.

  14. ILU industrial electron accelerators for medical-product sterilization and food treatment

    Science.gov (United States)

    Bezuglov, V. V.; Bryazgin, A. A.; Vlasov, A. Yu.; Voronin, L. A.; Panfilov, A. D.; Radchenko, V. M.; Tkachenko, V. O.; Shtarklev, E. A.

    2016-12-01

    Pulse linear electron accelerators of the ILU type have been developed and produced by the Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences, for more than 30 years. Their distinctive features are simplicity of design, convenience in operation, and reliability during long work under conditions of industrial production. ILU accelerators have a range of energy of 0.7-10 MeV at a power of accelerated beam of up to 100 kW and they are optimally suitable for use as universal sterilizing complexes. The scientific novelty of these accelerators consists of their capability to work both in the electron-treatment mode of production and in the bremsstrahlung generation mode, which has high penetrating power.

  15. Electron diffraction using ultrafast electron bunches from a laser-wakefield accelerator at kHz repetition rate

    Science.gov (United States)

    He, Z.-H.; Thomas, A. G. R.; Beaurepaire, B.; Nees, J. A.; Hou, B.; Malka, V.; Krushelnick, K.; Faure, J.

    2013-02-01

    We show that electron bunches in the 50-100 keV range can be produced from a laser wakefield accelerator using 10 mJ, 35 fs laser pulses operating at 0.5 kHz. It is shown that using a solenoid magnetic lens, the electron bunch distribution can be shaped. The resulting transverse and longitudinal coherence is suitable for producing diffraction images from a polycrystalline 10 nm aluminum foil. The high repetition rate, the stability of the electron source, and the fact that its uncorrelated bunch duration is below 100 fs make this approach promising for the development of sub-100 fs ultrafast electron diffraction experiments.

  16. ELECTRON ACCELERATION BY CASCADING RECONNECTION IN THE SOLAR CORONA. I. MAGNETIC GRADIENT AND CURVATURE DRIFT EFFECTS

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, X.; Büchner, J.; Bárta, M. [Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany); Gan, W.; Liu, S. [Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing, 210008 (China)

    2015-12-10

    We investigate the electron acceleration by magnetic gradient and curvature drift effects in cascading magnetic reconnection of a coronal current sheet via a test particle method in the framework of the guiding center approximation. After several Alfvén transit times, most of the electrons injected at the current sheet are still trapped in the magnetic islands. A small fraction of the injected electrons precipitate into the chromosphere. The acceleration of trapped electrons is dominated by the magnetic curvature drifts, which change the parallel momentum of the electron, and appears to be more efficient than the acceleration of precipitating electrons, which is dominated by the perpendicular momentum change caused by the magnetic gradient drifts. With the resulting trapped energetic electron distribution, the corresponding hard X-ray (HXR) radiation spectra are calculated using an optically thin Bremsstrahlung model. Trapped electrons may explain flare loop top HXR emission as well as the observed bright spots along current sheets trailing coronal mass ejections. The asymmetry of precipitating electrons with respect to the polarity inversion line may contribute to the observed asymmetry of footpoint emission.

  17. Development of an Automatic Frequency Control (AFC) System for RF Electron Linear Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Sungsu; Kim, Yujong; Lee, Byeong-No; Joo, Youngwoo; Lee, Soo Min; Lee, Byung Cheol; Cha, Hyungki [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Hyung Dal [Radiation Technology eXcellence, Daejeon (Korea, Republic of); Lee, Seung Hyun [Sungkyunkwan University, Suwon (Korea, Republic of)

    2015-10-15

    In this paper, the design, fabrication, and RF power test of the AFC system for the X-band linac are presented. The main function of the AFC system is automatically matching of the resonance frequency of the accelerating structure and the RF frequency of the magnetron. For the frequency tuning, a fine tuning of 10 kHz is possible by rotating the tuning shaft with a rotation of 0.72 degree per pulse. Therefore, the frequency deviation is about 0.01%, and almost full RF power (2.1 MW) transmission was obtained because the reflected power is minimized. The Radiation Equipment Research Division of the Korea Atomic Energy Research Institute has been developing and upgrading a medical/industrial X-band RF electron linear accelerators. The medical compact RF electron linear accelerator consists of an electron gun, an acceleration tube (accelerating structure), two solenoid magnets, two steering magnets, a magnetron, modulator, an automatic frequency control (AFC) system, and an X-ray generating target. The accelerating structure of the component is composed of oxygen-free high-conductivity copper (OFHC). Therefore, the volume of the structure, hence, its resonance frequency can easily be changeable if the ambient temperature and pressure are changed. If the RF frequency of the 9300 MHz magnetron and the resonance frequency of accelerating structure are not matched, performance of the structure can be degraded. An AFC system is automatically matched with the RF frequency of the magnetron and resonance frequency of the accelerating structure, which obtained a high output power and reliable accelerator operation.

  18. Simulations of the Acceleration of Externally Injected Electrons in a Plasma Excited in the Linear Regime

    CERN Document Server

    Delerue, Nicolas; Jenzer, Stéphane; Kazamias, Sophie; Lucas, Bruno; Maynard, Gilles; Pittman, Moana

    2016-01-01

    We have investigated numerically the coupling between a 10 \\si{MeV} electron bunch of high charge (\\SI{> 100}{pc}) with a laser generated accelerating plasma wave. Our results show that a high efficiency coupling can be achieved using a \\SI{50}{TW}, \\SI{100}{\\micro \\meter} wide laser beam, yielding accelerating field above \\SI{1}{ GV/m}. We propose an experiment where these predictions could be tested.

  19. [Dosimetric characteristics of the bremsstrahlung beam from the LUE-15M medical linear electron accelerator].

    Science.gov (United States)

    Vatnitskiĭ, S M; Ermakov, I A; Puzanov, V P; Sinitsyn, R V; Cherviakov, A M

    1983-10-01

    The paper presents methods and results of a study of radiation-physical characteristics of inhibitory radiation beam with the Grenz energy of 15MeV generated by an electron linear accelerator LUE-15M. Special emphasis is laid on primary dosimetric information used for the planning of radiotherapy: depth doses, beam profiles, dose functions of a collimated beam. It has been shown that in general the accelerator meets the requirements of the International Electrotechnical Commission. General error in the focal absorbed dose at the expense of variable parameters of the accelerator was evaluated. It does not exceed +/- 3.5%.

  20. Influence of acceleration voltage on scanning electron microscopy of human blood platelets.

    Science.gov (United States)

    Pretorius, E

    2010-03-01

    Scanning electron microscopy (SEM) is used to view a variety of surface structures, molecules, or nanoparticles of different materials, ranging from metals, dental and medical instruments, and chemistry (e.g. polymer analysis) to biological material. Traditionally, the operating conditions of the SEM are very important in the material sciences, particularly the acceleration voltage. However, in biological sciences, it is not typically seen as an important parameter. Acceleration voltage allows electrons to penetrate the sample; thus, the higher the acceleration voltage the more penetration into the sample will occur. As a result, ultrastructural information from deeper layers will interfere with the actual surface morphology that is seen. Therefore, ultimately, if acceleration voltage is lower, a better quality of the surface molecules and structures will be produced. However, in biological sciences, this is an area that is not well-documented. Typically, acceleration voltages of between 5 and 20 kV are used. This manuscript investigates the influence of acceleration voltages ranging from 5 kV to as low as 300 V, by studying surface ultrastructure of a human platelet aggregate. It is concluded that, especially at higher magnifications, much more surface detail is visible in biological samples when using an acceleration voltage between 2 kV and 300 V.

  1. ELFE at CERN A 25 GeV C.W. Electron Accelerator

    CERN Document Server

    Keil, Eberhard

    2000-01-01

    ELFE at CERN is the study of a quasi continuous electron accelerator that accelerates an average current of about 0.1 mA to 25 GeV. A polarized electron beam is injected into either a racetrack microtron or into a first recirculating linear accelerator and accelerated to 800 MeV. The acceleration from there to 25 GeV is achieved in a second recirculating linear accelerator. The beam passes seven times through super-conducting RF cavities that were previously used in LEP2, and gains about 3.5 GeV on each pass. The hadronic physics and machine aspects have been studied by a joint NuPECC-CERN Study Group. This paper reports on the findings of the machine study. Several of the following topics will be covered: Beam dynamics in a recirculating linear accelerator with a super-conducting RF system, vacuum, construction in the North Area of the SPS, experimental areas, manpower, cost and construction schedule.

  2. Scaling and design of high-energy laser plasma electron acceleration

    Institute of Scientific and Technical Information of China (English)

    Kazuhisa Nakajima; Hyung Taek Kim; Tae Moon Jeong; Chang Hee Nam

    2015-01-01

    Recently there has been great progress in laser-driven plasma-based accelerators by exploiting high-power lasers,where electron beams can be accelerated to multi-GeV energy in a centimeter-scale plasma due to the laser wakefield acceleration mechanism. While, to date, worldwide research on laser plasma accelerators has been focused on the creation of compact particle and radiation sources for basic sciences, medical and industrial applications, there is great interest in applications for high-energy physics and astrophysics, exploring unprecedented high-energy frontier phenomena. In this context, we present an overview of experimental achievements in laser plasma acceleration from the perspective of the production of GeV-level electron beams, and deduce the scaling formulas capable of predicting experimental results self-consistently, taking into account the propagation of a relativistic laser pulse through plasma and the accelerating field reduction due to beam loading. Finally, we present design examples for 10-GeV-level laser plasma acceleration, which is expected in near-term experiments by means of petawatt-class lasers.

  3. An accelerator scenario for hard X-ray free electron laser joint with high energy electron radiography

    CERN Document Server

    Wei, Tao; Yang, Guojun; Pang, Jian; Li, Yuhui; Li, Peng; Pflueger, Joachim; He, Xiaozhong; Lu, Yaxing; Wang, Ke; Long, Jidong; Zhang, Linwen; Wu, Qiang

    2016-01-01

    In order to study the dynamic response of the material and the physical mechanism of the fluid dynamics, an accelerator scenario which can be applied to hard X-ray free electron laser and high energy electron radiography was proposed. This accelerator is mainly composed of a 12GeV linac, an undulator branch and an eRad beamline. In order to characterize sample's dynamic behavior in situ and real-time with XFEL and eRad simultaneously, the linac should be capable of accelerating the two kinds of beam within the same operation mode. Combining with in-vacuum and tapering techniques, the undulator branch can produce more than 1E11 photons per pulse in 0.1 precent bandwidth at 42keV. Finally, the eRad amplifying beamline with 1:10 ratio was proposed as an important complementary tool for the wider view field and density identification ability.

  4. The Scaling of Electron Acceleration in Magnetic Reconnection with a Guide Field

    CERN Document Server

    Dahlin, J T; Swisdak, M

    2016-01-01

    Kinetic simulations of two-dimensional collisionless magnetic reconnection with a guide field reveal disparate behavior in the weak and strong guide field regimes. In systems where the guide field is smaller than the reconnecting component, the dominant electron accelerator is a Fermi-type mechanism that preferentially energizes the most energetic particles. In the strong guide field regime, however, the field-line contraction that drives Fermi reflection becomes weak. Instead, parallel electric fields ($E_\\parallel$) are primarily responsible for driving electron heating but are ineffective in driving the energetic component of the spectrum. This is due to the the weaker energy scaling of acceleration by $E_\\parallel$ compared with Fermi reflection. These results have important implications for understanding electron acceleration in solar flares and reconnection-driven dissipation in astrophysical turbulence.

  5. Turbulence and Particle Acceleration in Giant Radio Haloes: the Origin of Seed Electrons

    CERN Document Server

    Pinzke, Anders; Pfrommer, Christoph

    2016-01-01

    About 1/3 of X-ray-luminous clusters show smooth, Mpc-scale radio emission, known as giant radio haloes. One promising model for radio haloes is Fermi-II acceleration of seed relativistic electrons by compressible turbulence. The origin of these seed electrons has never been fully explored. Here, we integrate the Fokker-Planck equation of the cosmic ray (CR) electron and proton distributions when post-processing cosmological simulations of cluster formation, and confront them with radio surface brightness and spectral data of Coma. For standard assumptions, structure formation shocks lead to a seed electron population which produces too centrally concentrated radio emission. Matching observations requires modifying properties of the CR population (rapid streaming; enhanced CR electron acceleration at shocks) or turbulence (increasing turbulent-to-thermal energy density with radius), but at the expense of fine-tuning. In a parameter study, we find that radio properties are exponentially sensitive to the amplit...

  6. 77 FR 3118 - Security Zone; Choptank River and Cambridge Channel, Cambridge, MD

    Science.gov (United States)

    2012-01-23

    ... 3118-3121] [FR Doc No: 2012-1172] DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 165 [Docket No. USCG-2011-1164] RIN 1625-AA87 Security Zone; Choptank River and Cambridge Channel, Cambridge, MD..., U.S. Coast Guard, Captain of the Port Baltimore. [FR Doc. 2012-1172 Filed 1-20-12; 8:45 am]...

  7. Trapped electron acceleration by a laser-driven relativistic plasma wave

    Science.gov (United States)

    Everett, M.; Lal, A.; Gordon, D.; Clayton, C. E.; Marsh, K. A.; Joshi, C.

    1994-04-01

    THE aim of new approaches for high-energy particle acceleration1 is to push the acceleration rate beyond the limit (~100 MeV m-1) imposed by radio-frequency breakdown in conventional accelerators. Relativistic plasma waves, having phase velocities very close to the speed of light, have been proposed2-6 as a means of accelerating charged particles, and this has recently been demonstrated7,8. Here we show that the charged particles can be trapped by relativistic plasma waves-a necessary condition for obtaining the maximum amount of energy theoretically possible for such schemes. In our experiments, plasma waves are excited in a hydrogen plasma by beats induced by two collinear laser beams, the difference in whose frequencies matches the plasma frequency. Electrons with an energy of 2 MeV are injected into the excited plasma, and the energy spectrum of the exiting electrons is analysed. We detect electrons with velocities exceeding that of the plasma wave, demonstrating that some electrons are 'trapped' by the wave potential and therefore move synchronously with the plasma wave. We observe a maximum energy gain of 28 MeV, corresponding to an acceleration rate of about 2.8 GeV m-1.

  8. Electron acceleration by whistler-mode waves around the magnetic null during 3D reconnection

    Energy Technology Data Exchange (ETDEWEB)

    Xiao Fuliang [School of Physics and Electronic Sciences, Changsha University of Science and Technology, Changsha, 410004 (China); Zong Qiugang; Pu Zuyin; He Jiansen; Wang Yongfu [School of Earth and Space Sciences, Peking University, Beijing 100871 (China); Su Zhenpeng; Zheng Huinan [CAS Key Laboratory for Basic Plasma Physics, School of Earth and Space Sciences, University of Science and Technology of China, Hefei (China); Cao Jinbin, E-mail: qgzong@pku.edu.c [State Key Laboratory of Space Weather, PO Box 8701, Beijing 100080 (China)

    2010-05-15

    The magnetic field configuration around a magnetic null pair and its associated electron behavior during 3D magnetic reconnection have recently been reported from in situ observations. Electrons are suggested to be temporarily trapped in the central reconnection region as indicated by an electron density peak observed near the magnetic null (He J-S et al 2008 Geophys. Res. Lett. 35 L14104). It is highly interesting that energetic electron beams of a few kiloelectronvolts are found to be related to the magnetic null structure. However, the acceleration mechanism is still not fully understood. In this paper, we show that strong whistler-mode electromagnetic waves are indeed found around the magnetic null. Further we propose a new electron acceleration scenario of trapped electrons near the magnetic null points driven by the whistler-mode waves, which is confirmed by numerical results. It is demonstrated that whistler waves can enhance the phase space density (PSD) of electrons for energies of approx2 keV by a factor of 100 at lower pitch angles very rapidly, typically within 2 s. The accelerated electrons may escape from the loss cone of the magnetic cusp mirrors around the magnetic null, leading to the observed energetic beams. (brief communication)

  9. Plasma Density Tapering for Laser Wakefield Acceleration of Electrons and Protons

    Science.gov (United States)

    Ting, A.; Gordon, D.; Helle, M.; Kaganovich, D.; Sprangle, P.; Hafizi, B.

    2010-11-01

    Extended acceleration in a Laser Wakefield Accelerator can be achieved by tailoring the phase velocity of the accelerating plasma wave, either through profiling of the density of the plasma or direct manipulation of the phase velocity. Laser wakefield acceleration has also reached a maturity that proton acceleration by wakefield could be entertained provided we begin with protons that are substantially relativistic, ˜1 GeV. Several plasma density tapering schemes are discussed. The first scheme is called "bucket jumping" where the plasma density is abruptly returned to the original density after a conventional tapering to move the accelerating particles to a neighboring wakefield period (bucket). The second scheme is designed to specifically accelerate low energy protons by generating a nonlinear wakefield in a plasma region with close to critical density. The third scheme creates a periodic variation in the phase velocity by beating two intense laser beams with laser frequency difference equal to the plasma frequency. Discussions and case examples with simulations are presented where substantial acceleration of electrons or protons could be obtained.

  10. Brief history of the Cambridge STEM aberration correction project and its progeny

    Energy Technology Data Exchange (ETDEWEB)

    Brown, L. Michael [Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Batson, Philip E. [Institute for Advanced Materials, Devices and Nanotechnology, Rutgers University, Piscataway, NJ 08854 (United States); Department of Physics, Rutgers University, Piscataway, NJ 08854 (United States); Department of Materials Science, Rutgers University, Piscataway, NJ 08854 (United States); Dellby, Niklas [Nion Company, 11515 NE 118th Street, Kirkland, WA 98034 (United States); Krivanek, Ondrej L. [Nion Company, 11515 NE 118th Street, Kirkland, WA 98034 (United States); Department of Physics, Arizona State University, Tempe, AZ 85287 (United States)

    2015-10-15

    We provide a brief history of the project to correct the spherical aberration of the scanning transmission electron microscope (STEM) that started in Cambridge (UK) and continued in Kirkland (WA, USA), Yorktown Heights (NY, USA), and other places. We describe the project in the full context of other aberration correction research and related work, partly in response to the incomplete context presented in the paper “In quest of perfection in electron optics: A biographical sketch of Harald Rose on the occasion of his 80th birthday”, recently published in Ultramicroscopy. - Highlights: • We provide a brief history of the Cambridge project to correct the spherical aberration of the scanning transmission electron microscope (STEM). • We describe the project in the full context of other aberration correction work and related research. • We summarize our corrector development work that followed the Cambridge project, and which was the first to reach higher spatial resolution than any non-corrected electron microscope.

  11. High-gradient plasma-wakefield acceleration with two subpicosecond electron bunches.

    Science.gov (United States)

    Kallos, Efthymios; Katsouleas, Tom; Kimura, Wayne D; Kusche, Karl; Muggli, Patric; Pavlishin, Igor; Pogorelsky, Igor; Stolyarov, Daniil; Yakimenko, Vitaly

    2008-02-22

    A plasma-wakefield experiment is presented where two 60 MeV subpicosecond electron bunches are sent into a plasma produced by a capillary discharge. Both bunches are shorter than the plasma wavelength, and the phase of the second bunch relative to the plasma wave is adjusted by tuning the plasma density. It is shown that the second bunch experiences a 150 MeV/m loaded accelerating gradient in the wakefield driven by the first bunch. This is the first experiment to directly demonstrate high-gradient, controlled acceleration of a short-pulse trailing electron bunch in a high-density plasma.

  12. Wavefront-sensor-based electron density measurements for laser-plasma accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Plateau, Guillaume; Matlis, Nicholas; Geddes, Cameron; Gonsalves, Anthony; Shiraishi, Satomi; Lin, Chen; van Mourik, Reinier; Leemans, Wim

    2010-02-20

    Characterization of the electron density in laser produced plasmas is presented using direct wavefront analysis of a probe laser beam. The performance of a laser-driven plasma-wakefield accelerator depends on the plasma wavelength, hence on the electron density. Density measurements using a conventional folded-wave interferometer and using a commercial wavefront sensor are compared for different regimes of the laser-plasma accelerator. It is shown that direct wavefront measurements agree with interferometric measurements and, because of the robustness of the compact commercial device, have greater phase sensitivity, straightforward analysis, improving shot-to-shot plasma-density diagnostics.

  13. Dosimetry measurements during the commissioning of the GJ-2 electron accelerator

    DEFF Research Database (Denmark)

    Chosdu, R.; Hilmy, N.; Tobing, R.;

    1995-01-01

    The GJ-2 electron accelerator (made in China, Sanghai) was put into operation at the Centre for Application of Isotopes and Radiation in Jakarta, Indonesia. In the course of the commissioning of the machine its main technical parameters were measured under different operating conditions. The elec......The GJ-2 electron accelerator (made in China, Sanghai) was put into operation at the Centre for Application of Isotopes and Radiation in Jakarta, Indonesia. In the course of the commissioning of the machine its main technical parameters were measured under different operating conditions...

  14. Simulation of the relativistic electron dynamics and acceleration in a linearly-chirped laser pulse

    CERN Document Server

    Jisrawi, Najeh M; Salamin, Yousef I

    2014-01-01

    Theoretical investigations are presented, and their results are discussed, of the laser acceleration of a single electron by a chirped pulse. Fields of the pulse are modeled by simple plane-wave oscillations and a $\\cos^2$ envelope. The dynamics emerge from analytic and numerical solutions to the relativistic Lorentz-Newton equations of motion of the electron in the fields of the pulse. All simulations have been carried out by independent Mathematica and Python codes, with identical results. Configurations of acceleration from a position of rest as well as from injection, axially and sideways, at initial relativistic speeds are studied.

  15. 'Cabinet-safe' study of 1-8 MeV electron accelerators

    CERN Document Server

    Wells, D P; Yoon, W Y; Harmon, F

    2001-01-01

    The development of 'cabinet-safe' accelerator technology for approx 1-8 MeV electron LINACs would remove the only major barrier to large-scale 'field' applications of these accelerators. These applications range from non-destructive evaluation and assay to radiolytic degradation of hazardous waste. All field applications require large forward dose and very little lateral dose. We investigated the origin, energy, and angular distribution of unwanted lateral radiation dose from two different electron LINACS at three energies. We report on the contributions of various beam parameters to unwanted radiation dose and propose methods to control key beam parameters that significantly contribute to these doses.

  16. Wakefield evolution and electron acceleration in interaction of frequency-chirped laser pulse with inhomogeneous plasma

    Science.gov (United States)

    Rezaei-Pandari, M.; Niknam, A. R.; Massudi, R.; Jahangiri, F.; Hassaninejad, H.; Khorashadizadeh, S. M.

    2017-02-01

    The nonlinear interaction of an ultra-short intense frequency-chirped laser pulse with an underdense plasma is studied. The effects of plasma inhomogeneity and laser parameters such as chirp, pulse duration, and intensity on plasma density and wakefield evolutions, and electron acceleration are examined. It is found that a properly chirped laser pulse could induce a stronger laser wakefield in an inhomogeneous plasma and result in higher electron acceleration energy. It is also shown that the wakefield amplitude is enhanced by increasing the slope of density in the inhomogeneous plasma.

  17. Femi-type acceleration of electron in γ-ray burst fireball model

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    We calculate numerically the hydrodynamic evolution of a γ-ray burst fireball. The results show that refluence will emerge during fireball expansion due to negative-pressure effect. The refluence will collide with outward fluid, then shock wave will form. Electrons moving between the inward and outward fluid shells can be accelerated to 104—105 MeV by one order Femi-type acceleration with high efficiency after several collisions. Radiation of electrons with such high energy may be the observed γ-ray bursts.

  18. Electronic cam motion generation with special reference to constrained velocity, acceleration, and jerk.

    Science.gov (United States)

    Liao, Chung-Shu; Jeng, Shyr-Long; Chieng, Wei-Hua

    2004-07-01

    Electronic cam motion involves velocity tracking control of the master motor and trajectory generation of the slave motor. Special concerns such as the limits of the velocity, acceleration, and jerk are beyond the considerations in the conventional electronic cam motion control. This study proposes the curve-fitting of a Lagrange polynomial to the cam profile, based on trajectory optimization by cubic B-spline interpolation. The proposed algorithms may yield a higher tracking precision than the conventional master-slaves control method does, providing an optimization problem is concerned. The optimization problem contains three dynamic constraints including velocity, acceleration, and jerk of the motor system.

  19. Quasi-phasematched acceleration of electrons in a density modulated plasma waveguide

    Science.gov (United States)

    Yoon, Sung Jun

    Two quasi-phasematching schemes are proposed for efficient acceleration of electrons to relativistic energies using moderate intensity laser pulses. In the first scheme, Direct Laser Acceleration (DLA) in a corrugated plasma waveguide is proposed for acceleration of relativistic electrons with sub-terawatt laser systems, using the laser field directly as the accelerating field. The second scheme uses the fact that a plasma wakefield generated by an intense guided pulse in a corrugated plasma waveguide can accelerate relativistic electrons significantly beyond the well-known dephasing limit. In each case, particle-in-cell (PIC) simulations are used to validate the acceleration concept, demonstrating linear acceleration by either the phase matched laser field or phase-matched wakefield. In the phase matched wakefield case, theory and PIC simulations demonstrate a significant increase in energy gain compared to the standard laser wakefield acceleration (LWFA) scheme. Corrugated plasma waveguides can be generated by the interaction between an ionizing laser pulse and an atomic cluster flow interrupted by an array of thin wires,. When the collisional mean free path of the clusters is greater than the wire diameter, shadows of the periodically located wires are imparted on the cluster flow, leading to the production of axially modulated plasma waveguides after laser heating of the flow. This occurs when the population ratio of clusters to monomers in the gas is high. At other limit, dominated by gas monomer flow, shock waves generated off the wires by the supersonic gas flow disrupts modulated waveguide generation. Lastly, we experimentally demonstrate LWFA with ionization injection in a N5+ plasma waveguide. It is first shown that the plasma waveguide is almost completely composed of He-like nitrogen (N5+). It is then shown that intense pulse channeling in the plasma waveguide drives stronger wakefields, while the ionization injection process is critical to lowering the

  20. Electron acceleration in the inverse free electron laser with a helical wiggler by axial magnetic field and ion-channel guiding

    Institute of Scientific and Technical Information of China (English)

    Reza Khazaeinezhad; Mahdi Esmaeilzadeh

    2012-01-01

    Electron acceleration in the inverse free electron laser (IFEL) with a helical wiggler in the presence of ion-channel guiding and axial magnetic field is investigated in this article.The effects of tapering wiggler amplitude and axial magnetic field are calculated for the electron acceleration.In free electron lasers,electron beams lose energy through radiation while in IFEL electron beams gain energy from the laser.The equation of electron motion and the equation of energy exchange between a single electron and electromagnetic waves are derived and then solved numerically using the fourth order Runge-Kutta method.The tapering effects of a wiggler magnetic field on electron acceleration are investigated and the results show that the electron acceleration increases in the case of a tapered wiggler magnetic field with a proper taper constant.

  1. rf breakdown measurements in electron beam driven 200 GHz copper and copper-silver accelerating structures

    Science.gov (United States)

    Dal Forno, Massimo; Dolgashev, Valery; Bowden, Gordon; Clarke, Christine; Hogan, Mark; McCormick, Doug; Novokhatski, Alexander; O'Shea, Brendan; Spataro, Bruno; Weathersby, Stephen; Tantawi, Sami G.

    2016-11-01

    This paper explores the physics of vacuum rf breakdowns in subterahertz high-gradient traveling-wave accelerating structures. We present the experimental results of rf tests of 200 GHz metallic accelerating structures, made of copper and copper-silver. These experiments were carried out at the Facility for Advanced Accelerator Experimental Tests (FACET) at the SLAC National Accelerator Laboratory. The rf fields were excited by the FACET ultrarelativistic electron beam. The traveling-wave structure is an open geometry, 10 cm long, composed of two halves separated by a gap. The rf frequency of the fundamental accelerating mode depends on the gap size and can be changed from 160 to 235 GHz. When the beam travels off axis, a deflecting field is induced in addition to the longitudinal field. We measure the deflecting forces by observing the displacement of the electron bunch and use this measurement to verify the expected accelerating gradient. Furthermore, we present the first quantitative measurement of rf breakdown rates in 200 GHz metallic accelerating structures. The breakdown rate of the copper structure is 10-2 per pulse, with a peak surface electric field of 500 MV /m and a rf pulse length of 0.3 ns, which at a relatively large gap of 1.5 mm, or one wavelength, corresponds to an accelerating gradient of 56 MV /m . For the same breakdown rate, the copper-silver structure has a peak electric field of 320 MV /m at a pulse length of 0.5 ns. For a gap of 1.1 mm, or 0.74 wavelengths, this corresponds to an accelerating gradient of 50 MV /m .

  2. Collisionless Weibel Shocks and Electron Acceleration in Gamma-Ray Bursts

    Science.gov (United States)

    Ardaneh, Kazem; Cai, Dongsheng; Nishikawa, Ken-Ichi; Lembége, Bertrand

    2015-09-01

    A study of collisionless external shocks in gamma-ray bursts is presented. The shock structure, electromagnetic field, and process of electron acceleration are assessed by performing a self-consistent 3D particle-in-cell simulation. In accordance with hydrodynamic shock systems, the shock consists of a reverse shock (RS) and forward shock separated by a contact discontinuity. The development and structure are controlled by the ion Weibel instability. The ion filaments are sources of strong transverse electromagnetic fields at both sides of the double shock structure over a length of 30-100 ion skin depths. Electrons are heated up to a maximum energy {ɛ }{ele}≈ \\sqrt{{ɛ }{{b}}}, where ɛ is the energy normalized to the total incoming energy. Jet electrons are trapped in the RS transition region due to the presence of an ambipolar electric field and reflection by the strong transverse magnetic fields in the shocked region. In a process similar to shock surfing acceleration for ions, electrons experience drift motion and acceleration by ion filament transverse electric fields in the plane perpendicular to the shock propagation direction. Ultimately, accelerated jet electrons are convected back into the upstream.

  3. Controlled Electron Injection into Plasma Accelerators and SpaceCharge Estimates

    Energy Technology Data Exchange (ETDEWEB)

    Fubiani, Gwenael G.J. [Univ. of California, Berkeley, CA (United States)

    2005-09-01

    Plasma based accelerators are capable of producing electron sources which are ultra-compact (a few microns) and high energies (up to hundreds of MeVs) in much shorter distances than conventional accelerators. This is due to the large longitudinal electric field that can be excited without the limitation of breakdown as in RF structures.The characteristic scale length of the accelerating field is the plasma wavelength and for typical densities ranging from 1018 - 1019 cm-3, the accelerating fields and scale length can hence be on the order of 10-100GV/m and 10-40 μm, respectively. The production of quasimonoenergetic beams was recently obtained in a regime relying on self-trapping of background plasma electrons, using a single laser pulse for wakefield generation. In this dissertation, we study the controlled injection via the beating of two lasers (the pump laser pulse creating the plasma wave and a second beam being propagated in opposite direction) which induce a localized injection of background plasma electrons. The aim of this dissertation is to describe in detail the physics of optical injection using two lasers, the characteristics of the electron beams produced (the micrometer scale plasma wavelength can result in femtosecond and even attosecond bunches) as well as a concise estimate of the effects of space charge on the dynamics of an ultra-dense electron bunch with a large energy spread.

  4. Commercialization of an S-band standing-wave electron accelerator for industrial applications

    Science.gov (United States)

    Moon, Jin-Hyeok; Kwak, Gyeong-Il; Han, Jae-Ik; Lee, Gyu-Baek; Jeon, Seong-Hwan; Kim, Jae-Young; Hwang, Cheol-Bin; Lee, Gi-Yong; Kim, Young-Man; Park, Sung-Ju

    2016-09-01

    An electron accelerator system has been developed for use in industrial, as well as possible medical, applications. Based on our experiences achieved during prototype system development and various electron beam acceleration tests, we have built a stable and compact system for sales purposes. We have integrated a self-developed accelerating cavity, an E-gun pulse driver, a radio-frequency (RF) power system, a vacuum system, a cooling system, etc. into a frame with a size of 1800 × 1000 × 1500 mm3. The accelerating structure is a side-coupled standing-wave type operating in the π/2 mode (tuned to~3 GHz). The RF power is provided by using a magnetron driven by a solid-state modulator. The electron gun is a triode type with a dispenser cathode (diameter of 11 mm). The system is capable of delivering a maximum 900-W average electron beam power with tight focusing at the target. Until now, we have performed various electron beam tests and X-ray beam tests after having built the system, have completed the beam assessment for commercializations, and have been preparing full-fledged sales activity. This article reports on our system development processes and on some of our early test results for commercializations.

  5. In-Situ Measurements of the Secondary Electron Yield in an Accelerator Environment: Instrumentation and Methods

    CERN Document Server

    Hartung, W H; Conway, J V; Dennett, C A; Greenwald, S; Kim, J -S; Li, Y; Moore, T P; Omanovic, V; Palmer, M A; Strohman, C R

    2014-01-01

    The performance of a particle accelerator can be limited by the build-up of an electron cloud (EC) in the vacuum chamber. Secondary electron emission from the chamber walls can contribute to EC growth. An apparatus for in-situ measurements of the secondary electron yield (SEY) in the Cornell Electron Storage Ring (CESR) was developed in connection with EC studies for the CESR Test Accelerator program. The CESR in-situ system, in operation since 2010, allows for SEY measurements as a function of incident electron energy and angle on samples that are exposed to the accelerator environment, typically 5.3 GeV counter-rotating beams of electrons and positrons. The system was designed for periodic measurements to observe beam conditioning of the SEY with discrimination between exposure to direct photons from synchrotron radiation versus scattered photons and cloud electrons. The samples can be exchanged without venting the CESR vacuum chamber. Measurements have been done on metal surfaces and EC-mitigation coatings...

  6. Relativistic electron acceleration and decay time scales in the inner and outer radiation belts: SAMPEX

    Science.gov (United States)

    Baker, D. N.; Blake, J. B.; Callis, L. B.; Cummings, J. R.; Hovestadt, D.; Kanekal, S.; Klecker, B.; Mewaldt, R. A.; Zwickl, R. D.

    1994-01-01

    High-energy electrons have been measured systematically in a low-altitude (520 x 675 km), nearly polar (inclination = 82 deg) orbit by sensitive instruments onboard the Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX). Count rate channels with electron energy thresholds ranging from 0.4 MeV to 3.5 MeV in three different instruments have been used to examine relativistic electron variations as a function of L-shell parameter and time. A long run of essentially continuous data (July 1992 - July 1993) shows substantial acceleration of energetic electrons throughout much of the magnetosphere on rapid time scales. This acceleration appears to be due to solar wind velocity enhancements and is surprisingly large in that the radiation belt 'slot' region often is filled temporarily and electron fluxes are strongly enhanced even at very low L-values (L aprroximately 2). A superposed epoch analysis shows that electron fluxes rise rapidly for 2.5 is approximately less than L is approximately less than 5. These increases occur on a time scale of order 1-2 days and are most abrupt for L-values near 3. The temporal decay rate of the fluxes is dependent on energy and L-value and may be described by J = Ke-t/to with t(sub o) approximately equals 5-10 days. Thus, these results suggest that the Earth's magnetosphere is a cosmic electron accelerator of substantial strength and efficiency.

  7. Injection of electrons by colliding laser pulses in a laser wakefield accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Hansson, M., E-mail: martin.hansson@fysik.lth.se; Aurand, B.; Ekerfelt, H.; Persson, A.; Lundh, O.

    2016-09-01

    To improve the stability and reproducibility of laser wakefield accelerators and to allow for future applications, controlling the injection of electrons is of great importance. This allows us to control the amount of charge in the beams of accelerated electrons and final energy of the electrons. Results are presented from a recent experiment on controlled injection using the scheme of colliding pulses and performed using the Lund multi-terawatt laser. Each laser pulse is split into two parts close to the interaction point. The main pulse is focused on a 2 mm diameter gas jet to drive a nonlinear plasma wave below threshold for self-trapping. The second pulse, containing only a fraction of the total laser energy, is focused to collide with the main pulse in the gas jet under an angle of 150°. Beams of accelerated electrons with low divergence and small energy spread are produced using this set-up. Control over the amount of accelerated charge is achieved by rotating the plane of polarization of the second pulse in relation to the main pulse. Furthermore, the peak energy of the electrons in the beams is controlled by moving the collision point along the optical axis of the main pulse, and thereby changing the acceleration length in the plasma. - Highlights: • Compact colliding pulse injection set-up used to produce low energy spread e-beams. • Beam charge controlled by rotating the polarization of injection pulse. • Peak energy controlled by point of collision to vary the acceleration length.

  8. Enabling More than Moore: Accelerated Reliability Testing and Risk Analysis for Advanced Electronics Packaging

    Science.gov (United States)

    Ghaffarian, Reza; Evans, John W.

    2014-01-01

    For five decades, the semiconductor industry has distinguished itself by the rapid pace of improvement in miniaturization of electronics products-Moore's Law. Now, scaling hits a brick wall, a paradigm shift. The industry roadmaps recognized the scaling limitation and project that packaging technologies will meet further miniaturization needs or ak.a "More than Moore". This paper presents packaging technology trends and accelerated reliability testing methods currently being practiced. Then, it presents industry status on key advanced electronic packages, factors affecting accelerated solder joint reliability of area array packages, and IPC/JEDEC/Mil specifications for characterizations of assemblies under accelerated thermal and mechanical loading. Finally, it presents an examples demonstrating how Accelerated Testing and Analysis have been effectively employed in the development of complex spacecraft thereby reducing risk. Quantitative assessments necessarily involve the mathematics of probability and statistics. In addition, accelerated tests need to be designed which consider the desired risk posture and schedule for particular project. Such assessments relieve risks without imposing additional costs. and constraints that are not value added for a particular mission. Furthermore, in the course of development of complex systems, variances and defects will inevitably present themselves and require a decision concerning their disposition, necessitating quantitative assessments. In summary, this paper presents a comprehensive view point, from technology to systems, including the benefits and impact of accelerated testing in offsetting risk.

  9. Transition from coherent to incoherent acceleration of nonthermal relativistic electron induced by an intense light pulse

    Science.gov (United States)

    Liu, Y. L.; Kuramitsu, Y.; Moritaka, T.; Chen, S. H.

    2017-03-01

    Nonthermal acceleration of relativistic electrons due to the wakefield induced by an intense light pulse is investigated. The spectra of the cosmic rays are well represented by power-law. Wakefield acceleration has been considered as a candidate for the origins of cosmic rays. The wakefield can be excited by an intense laser pulse as large-amplitude precursor waves in collisionless shocks in the universe. National Central University (NCU) 100-TW laser facility in Taiwan is able to provide high-repetition rate and short intense laser. To experimentally study the wakefield acceleration for the spectrum of the cosmic rays, particle-in-cell simulations are performed to calculate the energy distribution functions of electrons in fixed laser conditions with various plasma densities. The transitions of wakefields from coherent to inherent are observed as the plasma density increases. The distribution functions indicate that the smooth nonthermal power-law spectra with an index of -2 appear when the incoherent wakefields are excited. In contrast, the mono-peak appear in the spectra when the coherent wakefields are excited. The incoherent wakefields yielding the power-law spectra imply the stochastic accelerating of electrons. To explain the universal nonthermal power-law spectra with an index of -2, we described and extended the stochastic acceleration model based on Fokker-Planck equation by assuming the transition rate as an exponential function.

  10. Electron acceleration in collisionless shocks and magnetic reconnection by laser-produced plasma ablation

    Science.gov (United States)

    Park, Jaehong; Spitkovksy, Anatoly; Fox, Will; Bhattacharjee, Amitava

    2016-10-01

    We perform particle-in-cell simulations of collisionless shocks and magnetic reconnection generated by ablated plasma expanding into a magnetized background plasma. We find: (1) The simulated proton radiography produces different morphology of the shock structure depending on the orientation of the magnetic field and can be used to identify a shock in the experiment. Electrons are accelerated by the whistler waves generated at oblique sites of the shock. (2) Forced collisionless magnetic reconnection is induced when the expanding plumes carry opposite magnetic polarities and interact with a background plasma. Electrons are accelerated at the reconnection X line and reveal a power-law distribution as the plasma beta is lowered, β = 0.08 . As the plasma beta is increased, β = 0.32 , the 1st order Fermi mechanism against the two plasma plumes contributes to the electron acceleration as well as the X line acceleration. Using 3-D simulations, we also explore the effect of 3-D instabilities (Weibel instability or drift-kink) on particle acceleration and magnetic field annihilation between the colliding magnetized plumes

  11. Radiative damping and electron beam dynamics in plasma-based accelerators.

    Science.gov (United States)

    Michel, P; Schroeder, C B; Shadwick, B A; Esarey, E; Leemans, W P

    2006-08-01

    The effects of radiation reaction on electron beam dynamics are studied in the context of plasma-based accelerators. Electrons accelerated in a plasma channel undergo transverse betatron oscillations due to strong focusing forces. These oscillations lead to emission by the electrons of synchrotron radiation, with a corresponding energy loss that affects the beam properties. An analytical model for the single particle orbits and beam moments including the classical radiation reaction force is derived and compared to the results of a particle transport code. Since the betatron amplitude depends on the initial transverse position of the electron, the resulting radiation can increase the relative energy spread of the beam to significant levels (e.g., several percent). This effect can be diminished by matching the beam into the channel, which could require micron sized beam radii for typical values of the beam emittance and plasma density.

  12. Radiative damping and electron beam dynamics in plasma-based accelerators

    Science.gov (United States)

    Michel, P.; Schroeder, C. B.; Shadwick, B. A.; Esarey, E.; Leemans, W. P.

    2006-08-01

    The effects of radiation reaction on electron beam dynamics are studied in the context of plasma-based accelerators. Electrons accelerated in a plasma channel undergo transverse betatron oscillations due to strong focusing forces. These oscillations lead to emission by the electrons of synchrotron radiation, with a corresponding energy loss that affects the beam properties. An analytical model for the single particle orbits and beam moments including the classical radiation reaction force is derived and compared to the results of a particle transport code. Since the betatron amplitude depends on the initial transverse position of the electron, the resulting radiation can increase the relative energy spread of the beam to significant levels (e.g., several percent). This effect can be diminished by matching the beam into the channel, which could require micron sized beam radii for typical values of the beam emittance and plasma density.

  13. Resonant Acceleration of Electrons in Combined Self-Consistent Quasistatic Electromagnetic Fields and Intense Laser Fields

    Institute of Scientific and Technical Information of China (English)

    CHEN Fen-Ce; HE Xian-Tu; SHENG Zheng-Mao; QIAO Bin; ZHANG Hong

    2006-01-01

    @@ Using the single electron model, the acceleration of electrons in combined circularly polarized intense laser fields and the spontaneous quasistatic fields (including axial and azimuthal magnetic fields, the axial and transverse electric fields) produced in intense laser plasma interaction is investigated analytically and numerically by fitting the proper parameters of the quasistatic fields based on the data from the experiment and numerical calculation.A new resonant condition is given. It is found that the resonance acceleration of electron depends not only on laser field, but also on the bounce frequency oscillating in the quasistatic magnetic field and electric field. The net energy gained by electron does not increase monotonously with axial electric field, but there are some optimal axial electric fields.

  14. Brilliant GeV electron beam with narrow energy spread generated by a laser plasma accelerator

    Science.gov (United States)

    Hu, Ronghao; Lu, Haiyang; Shou, Yinren; Lin, Chen; Zhuo, Hongbin; Chen, Chia-erh; Yan, Xueqing

    2016-09-01

    The production of GeV electron beam with narrow energy spread and high brightness is investigated using particle-in-cell simulations. A controlled electron injection scheme and a method for phase-space manipulation in a laser plasma accelerator are found to be essential. The injection is triggered by the evolution of two copropagating laser pulses near a sharp vacuum-plasma transition. The collection volume is well confined and the injected bunch is isolated in phase space. By tuning the parameters of the laser pulses, the parameters of the injected electron bunch, such as the bunch length, energy spread, emittance and charge, can be adjusted. Manipulating the phase-space rotation with the rephasing technique, the injected electron bunch can be accelerated to GeV level while keeping relative energy spread below 0.5% and transverse emittance below 1.0 μ m . The results present a very promising way to drive coherent x-ray sources.

  15. Electron Lens Construction for the Integrable Optics Test Accelerator at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    McGee, Mike [Fermilab; Carlson, Kermit [Fermilab; Nobrega, Lucy [Fermilab; Stancari, Giulio [Fermilab; Valishev, Alexander [Fermilab

    2016-06-01

    The Integrable Optics Test Accelerator (IOTA) is proposed for operation at Fermilab. The goal of IOTA is to create practical nonlinear accelerator focusing systems with a large frequency spread and stable particle motion. The IOTA is a 40 m circumference, 150 MeV (e-), 2.5 MeV (p⁺) diagnostic test ring. Construction of an electron lens for IOTA is necessary for both electron and proton operation. Components required for the Electron Lens design include; a 0.8 T conventional water-cooled main solenoid, and magnetic bending and focusing elements. The foundation of the design relies on repurposing the Fermilab Tevatron Electron Lens II (TELII) gun and collector under ultra-high vacuum (UHV) conditions.

  16. Direct acceleration of electrons by a CO$_{2}$ laser in a curved plasma waveguide

    CERN Document Server

    Yi, Longqing; Shen, Baifei

    2016-01-01

    Laser plasma interaction with micro-engineered targets at relativistic intensities has been greatly promoted by recent progress in the high contrast lasers and the manufacture of advanced micro- and nano-structures. This opens new possibilities for the physics of laser-matter interaction. Here we propose a novel approach that leverages the advantages of high-pressure CO$_{2}$ laser, laser-waveguide interaction, as well as micro-engineered plasma structure to accelerate electrons to peak energy greater than 1 GeV with narrow slice energy spread ($\\sim1\\%$) and high overall efficiency. The acceleration gradient is 26 GV/m for a 1.3 TW CO$_{2}$ laser system. The micro-bunching of a long electron beam leads to the generation of a chain of ultrashort electron bunches with the duration roughly equal to half-laser-cycle. These results open a way for developing a compact and economic electron source for diverse applications.

  17. Electron lenses and cooling for the Fermilab Integrable Optics Test Accelerator

    CERN Document Server

    Stancari, G; Lebedev, V; Nagaitsev, S; Prebys, E; Valishev, A

    2015-01-01

    Recently, the study of integrable Hamiltonian systems has led to nonlinear accelerator lattices with one or two transverse invariants and wide stable tune spreads. These lattices may drastically improve the performance of high-intensity machines, providing Landau damping to protect the beam from instabilities, while preserving dynamic aperture. The Integrable Optics Test Accelerator (IOTA) is being built at Fermilab to study these concepts with 150-MeV pencil electron beams (single-particle dynamics) and 2.5-MeV protons (dynamics with self fields). One way to obtain a nonlinear integrable lattice is by using the fields generated by a magnetically confined electron beam (electron lens) overlapping with the circulating beam. The required parameters are similar to the ones of existing devices. In addition, the electron lens will be used in cooling mode to control the brightness of the proton beam and to measure transverse profiles through recombination. More generally, it is of great interest to investigate whet...

  18. Terahertz-induced acceleration of massive Dirac electrons in semimetal bismuth.

    Science.gov (United States)

    Minami, Yasuo; Araki, Kotaro; Dao, Thang Duy; Nagao, Tadaaki; Kitajima, Masahiro; Takeda, Jun; Katayama, Ikufumi

    2015-11-02

    Dirac-like electrons in solid state have been of great interest since they exhibit many peculiar physical behaviors analogous to relativistic mechanics. Among them, carriers in graphene and surface states of topological insulators are known to behave as massless Dirac fermions with a conical band structure in the two-dimensional momentum space, whereas electrons in semimetal bismuth (Bi) are expected to behave as massive Dirac-like fermions in the three-dimensional momentum space, whose dynamics is of particular interest in comparison with that of the massless Dirac fermions. Here, we demonstrate that an intense terahertz electric field transient accelerates the massive Dirac-like fermions in Bi from classical Newtonian to the relativistic regime; the electrons are accelerated approaching the effective "speed of light" with the "relativistic" beta β = 0.89 along the asymptotic linear band structure. As a result, the effective electron mass is enhanced by a factor of 2.4.

  19. Turbulence and Particle Acceleration in Giant Radio Halos: the Origin of Seed Electrons

    CERN Document Server

    Pinzke, Anders; Pfrommer, Christoph

    2015-01-01

    About 1/3 of X-ray-luminous clusters show smooth, unpolarized radio emission on ~Mpc scales, known as giant radio halos. One promising model for radio halos is Fermi-II acceleration of seed relativistic electrons by turbulence of the intracluster medium (ICM); Coulomb losses prohibit acceleration from the thermal pool. However, the origin of seed electrons has never been fully explored. Here, we integrate the Fokker-Planck equation of the cosmic ray (CR) electron and proton distributions in a cosmological simulations of cluster formation. For standard assumptions, structure formation shocks lead to a seed electron population which produces too centrally concentrated radio emission. Instead, we present three realistic scenarios that each can reproduce the spatially flat radio emission observed in the Coma cluster: (1) the ratio of injected turbulent energy density to thermal energy density increase significantly with radius, as seen in cosmological simulations. This generates a flat radio profile even if the s...

  20. Study on the parameters of the scanning system for the 300 keV electron accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Leo, K. W.; Chulan, R. M., E-mail: leo@nm.gov.my; Hashim, S. A.; Baijan, A. H.; Sabri, R. M.; Mohtar, M.; Glam, H.; Lojius, L.; Zahidee, M.; Azman, A.; Zaid, M. [Malaysian Nuclear Agency, Bangi, 43000 Kajang. Selangor (Malaysia)

    2016-01-22

    This paper describes the method to identify the magnetic coil parameters of the scanning system. This locally designed low energy electron accelerator with the present energy of 140 keV will be upgraded to 300 keV. In this accelerator, scanning system is required to deflect the energetic electron beam across a titanium foil in vertical and horizontal direction. The excitation current of the magnetic coil is determined by the energy of the electron beam. Therefore, the magnetic coil parameters must be identified to ensure the matching of the beam energy and excitation coil current. As the result, the essential parameters of the effective lengths for X-axis and Y-axis have been found as 0.1198 m and 0.1134 m and the required excitation coil currents which is dependenton the electron beam energies have be identified.

  1. Cambridge IGCSE mathematics core and extended

    CERN Document Server

    Pimentel, Ric

    2013-01-01

    The most cost effective and straightforward way to teach the revised syllabus, with all the core and extended content covered by a single book and accompanying free digital resources.  . This title has been written for the revised Cambridge IGCSE Mathematics (0580) syllabus, for first teaching from 2013.  . ·         Gives students the practice they require to deepen their understanding through plenty of questions. ·         Consolidates learning with unique digital resources on the CD, included free with every Student's Book.  . We are working with Cambridge International Examinations to gain

  2. OCR Cambridge nationals in ICT student book

    CERN Document Server

    Stuart, Sonia; Cushing, Steve

    2012-01-01

    Written by experts and in partnership with OCR, the brand-new OCR Cambridge Nationals in ICT Student's Book provides invaluable guidance for your teaching of the OCR Cambridge Nationals in ICT Level 1/2 . This textbook covers the mandatory Units 1 and 2 in detail, offering your students the knowledge and practice they require. Unit 1 - Understanding Computer Systems.; Coverage of use of applications and systems.; Case studies of how they are used for different purposes.; Exam style questions and guidance. Unit 2 - Using ICT to Create Business Solutions.; Coverage of the principles of use of re

  3. Particle Accelerator Applications: Ion and Electron Irradiation in Materials Science, Biology and Medicine

    Science.gov (United States)

    Rodríguez-Fernández, Luis

    2010-09-01

    Although the developments of particle accelerators are devoted to basic study of matter constituents, since the beginning these machines have been applied with different purposes in many areas also. Today particle accelerators are essential instruments for science and technology. This work presents an overview of the main application for direct particle irradiation with accelerator in material science, biology and medicine. They are used for material synthesis by ion implantation and charged particle irradiation; to make coatings and micromachining; to characterize broad kind of samples by ion beam analysis techniques; as mass spectrometers for atomic isotopes determination. In biomedicine the accelerators are applied for the study of effects by charged particles on cells. In medicine the radiotherapy by electron irradiation is widely used, while hadrontherapy is still under development. Also, they are necessary for short life radioisotopes production required in radiodiagnostic.

  4. Tailored electron bunches with smooth current profiles for enhanced transformer ratios in beam-driven acceleration

    CERN Document Server

    Lemery, Francois

    2015-01-01

    Collinear high-gradient ${\\cal O} (GV/m)$ beam-driven wakefield methods for charged-particle acceleration could be critical to the realization of compact, cost-efficient, accelerators, e.g., in support of TeV-scale lepton colliders or multiple-user free-electron laser facilities. To make these options viable, the high accelerating fields need to be complemented with large transformer ratios $>2$, a parameter characterizing the efficiency of the energy transfer between a wakefield-exciting "drive" bunch to an accelerated "witness" bunch. While several potential current distributions have been discussed, their practical realization appears challenging due to their often discontinuous nature. In this paper we propose several alternative current profiles which are smooth which also lead to enhanced transformer ratios. We especially explore a laser-shaping method capable of generating one the suggested distributions directly out of a photoinjector and discuss a linac concept that could possible drive a dielectric ...

  5. Emitting Electron Spectra and Acceleration Processes in the Jet of PKS 0447-439

    CERN Document Server

    Zhou, Yao; Dai, Benzhong; Zhang, Li

    2013-01-01

    We investigate the electron energy distributions (EEDs) and the corresponding acceleration processes in the jet of PKS 0447$-$439 and estimate its redshift through modeling its observed spectral energy distribution (SED) in the frame of a one-zone synchrotron-self Compton (SSC) model. Three EEDs formed in different acceleration scenarios are assumed: the power-law with exponential cut-off (PLC) EED (shock-acceleration scenario or the case of the EED approaching equilibrium in the stochastic-acceleration scenario), the log-parabolic (LP) EED (stochastic-acceleration scenario and the acceleration dominating) and the broken power law (BPL) EED (no acceleration scenario), and then the corresponding fluxes of both synchrotron and SSC are calculated. The model is applied to PKS 0447-439 and modeling SEDs are compared to the observed SED of this object by using the Markov Chain Monte Carlo (MCMC) method. Calculating results show that PLC model fails to fit the observed SED well, while the LP and BPL models give comp...

  6. Experimental Studies of Temporal Electron Beam Shaping at the DUV-FEL Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Loos, H.; Doweel, D.; /SLAC; Sheehy, B.; Shen, Y.; Tsang, T.; Wang, X.; /Brookhaven; Serafini, L.; /INFN, Milan; Boscolo, M.; Ferrario, M.; Petrarca, M.; Vicario, C.; /Frascati

    2005-09-28

    The photoinjectors for future short wavelength high brightness accelerator driven light sources need to produce an electron beam with ultra-low emittance. At the DUVFEL facility at BNL, we studied the effect of longitudinally shaping the photocathode laser pulses on the electron beam dynamics. We report on measurements of the longitudinal phase space distributions and the time-resolved transverse beam parameters for both a Gaussian and a flat-top temporal laser pulse profile.

  7. Field-reversed bubble in deep plasma channels for high quality electron acceleration

    CERN Document Server

    Pukhov, A; Tueckmantel, T; Thomas, J; Kostyukov, I Yu

    2014-01-01

    We study hollow plasma channels with smooth boundaries for laser-driven electron acceleration in the bubble regime. Contrary to the uniform plasma case, the laser forms no optical shock and no etching at the front. This increases the effective bubble phase velocity and energy gain. The longitudinal field has a plateau that allows for mono-energetic acceleration. We observe as low as 10^{-3} r.m.s. relative witness beam energy uncertainty in each cross-section and 0.3% total energy spread. By varying plasma density profile inside a deep channel, the bubble fields can be adjusted to balance the laser depletion and dephasing lengths. Bubble scaling laws for the deep channel are derived. Ultra-short pancake-like laser pulses lead to the highest energies of accelerated electrons per Joule of laser pulse energy.

  8. Enhancement of wave and acceleration of electron in plasma in the external field

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    This paper investigates the enhancement of Langmuir and ion-acoustic wave and the acceleration of the electron in collisionless plasma.in the presence of an external transverse field.Based on hydrodynamic equations,an equation formulizing the parametric instability was derived.Furthermore,the formula for ponderomotive force and the expression that describes the electron acceleration were obtained.The results show that Langmuir and ion-acoustic wave are enhanced and the charged particles can be accelerated by the coupling of wave-wave.In addition,it can be concluded that ponderomotive force,due to the coupling of the external field(pump)to the Langmuir wave(ion-acoustic wave),is the driving force to excite the parametric instability and comprises the high- and low-frequency components.

  9. Laser-plasma electron accelerator for all-optical inverse Compton X-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Koyama, K. [University of Tokyo, 2-22 Shirakata shirane, Tokai-mura, Naka-gun, Ibaraki 319-1188 (Japan)], E-mail: koyama@nuclear.jp; Yamazaki, A.; Maekawa, A.; Uesaka, M. [University of Tokyo, 2-22 Shirakata shirane, Tokai-mura, Naka-gun, Ibaraki 319-1188 (Japan); Hosokai, T. [Tokyo Institute of Technology, 4259 Nagatsuda-cho, Midori-ku, Yokohama 226-8503 (Japan); Miyashita, M. [Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510 (Japan); Masuda, S.; Miura, E. [AIST, Tsukuba-central-2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan)

    2009-09-01

    Inverse Compton scattering has been gaining attention as a process for the generation of X/{gamma}-ray, since it produces tunable X/{gamma}-ray pulses with a small cone angle of radiation. A table-top tunable Compton X/{gamma}-ray source would be realized by replacing a radio frequency (rf) linac with a laser wakefield accelerator (LWFA), which is one of the advanced accelerators. An empirical scaling law for the LWFA in the self-injection mode showed that the energy gain was inversely proportional to the plasma density. In order to effectively employ the LWFA as a Compton X/{gamma}-ray source, its stability must be improved. For this purpose, we are developing techniques for the injection of initial electrons by a localized wavebreaking at the density ramp of a plasma. The pointing stability and acceleration efficiency of the electron beam were significantly improved by applying an axial magnetic field to the plasma channel.

  10. ARIEL e-linac. Electron linear accelerator for photo-fission

    Science.gov (United States)

    Koscielniak, Shane

    2014-01-01

    The design and implementation of a 1/2 MW beam power electron linear accelerator (e-linac) for the production of rare isotope beams (RIB) via photo-fission in the context of the Advanced Rare IsotopE Laboratory, ARIEL (Koscielniak et al. 2008; Merminga et al. 2011; Dilling et al., Hyperfine Interact, 2013), is described. The 100 % duty factor e-linac is based on super-conducting radiofrequency (SRF) technology at 1.3 GHz and has a nominal energy of 50 MeV. This paper provides an overview of the accelerator major components including the gun, cryomodules and cryoplant, high power RF sources, and machine layout including beam lines. Design features to facilitate operation of the linac as a Recirculating Linear Accelerator (RLA) for various applications, including Free Electron Lasers, are also noted.

  11. Acceleration of electrons under the action of petawatt-class laser pulses onto foam targets

    Science.gov (United States)

    Pugachev, L. P.; Andreev, N. E.; Levashov, P. R.; Rosmej, O. N.

    2016-09-01

    Optimization study for future experiments on interaction of petawatt laser pulses with foam targets was done by 3D PIC simulations. Densities in the range 0.5nc-nc and thicknesses in the range 100 - 500 μm of the targets were considered corresponding to those which are currently available. It is shown that heating of electrons mainly occurs under the action of the ponderomotive force of a laser pulse in which amplitude increases up to three times because of self-focusing effect in underdense plasma. Accelerated electrons gain additional energy directly from the high-frequency laser field at the betatron resonance in the emerging plasma density channels. For thicker targets a higher number of electrons with higher energies are obtained. The narrowing of the angular distribution of electrons for thicker targets is explained by acceleration in multiple narrow filaments. Obtained energies of accelerated electrons can be approximated by Maxwell distribution with the temperature 8.5 MeV. The charge carried by electrons with energies higher than 30 MeV is about 30 nC, that is 3-4 order of magnitude higher than the charge predicted by the ponderomotive scaling for the incident laser amplitude.

  12. STUDIES OF A FREE ELECTRON LASER DRIVEN BY A LASER-PLASMA ACCELERATOR

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery, A.; Schroeder, C.; Fawley, W.

    2008-01-01

    A free electron laser (FEL) uses an undulator, a set of alternating magnets producing a periodic magnetic fi eld, to stimulate emission of coherent radiation from a relativistic electron beam. The Lasers, Optical Accelerator Systems Integrated Studies (LOASIS) group at Lawrence Berkeley National Laboratory (LBNL) will use an innovative laserplasma wakefi eld accelerator to produce an electron beam to drive a proposed FEL. In order to optimize the FEL performance, the dependence on electron beam and undulator parameters must be understood. Numerical modeling of the FEL using the simulation code GINGER predicts the experimental results for given input parameters. Among the parameters studied were electron beam energy spread, emittance, and mismatch with the undulator focusing. Vacuum-chamber wakefi elds were also simulated to study their effect on FEL performance. Energy spread was found to be the most infl uential factor, with output FEL radiation power sharply decreasing for relative energy spreads greater than 0.33%. Vacuum chamber wakefi elds and beam mismatch had little effect on the simulated LOASIS FEL at the currents considered. This study concludes that continued improvement of the laser-plasma wakefi eld accelerator electron beam will allow the LOASIS FEL to operate in an optimal regime, producing high-quality XUV and x-ray pulses.

  13. High-energy electron acceleration in the gas-puff Z-pinch plasma

    Energy Technology Data Exchange (ETDEWEB)

    Takasugi, Keiichi, E-mail: takasugi@phys.cst.nihon-u.ac.jp [Institute of Quantum Science, Nihon University, 1-8 Kanda-Surugadai, Chiyoda, Tokyo 101-8308 (Japan); Miyazaki, Takanori [Institute of Quantum Science, Nihon University, 1-8 Kanda-Surugadai, Chiyoda, Tokyo 101-8308, Japan and Dept. Innovation Systems Eng., Utsunomiya University, 7-1-2 Yoto, Utsunomiya, Tochigi 321-8585 (Japan); Nishio, Mineyuki [Anan National College of Technology, 265 Aoki, Minobayashi, Anan, Tokushima 774-0017 (Japan)

    2014-12-15

    The characteristics of hard x-ray generation were examined in the gas-puff z-pinch experiment. The experiment on reversing the voltage was conducted. In both of the positive and negative discharges, the x-ray was generated only from the anode surface, so it was considered that the electrons were accelerated by the induced electromagnetic force at the pinch time.

  14. Impact of accelerated electrons on activating process and foaming potential of sludge

    Energy Technology Data Exchange (ETDEWEB)

    Cuba, V.; Pospisil, M. E-mail: mpospisil@br.fjfi.cvut.cz; Mucka, V.; Jenicek, P.; Silber, R.; Dohanyos, M.; Zabranska, J

    2003-06-01

    The process of activation is an important part of wastewater treatment technology. It can be affected in many ways, not least by using radiation. The paper describes effects of pre-irradiation of small part of biomass on activated sludge process. It has been shown, that relatively low dose of accelerated electrons can positively affect many parameters of the system.

  15. Supersonic micro-jets and their application to few-cycle laser-driven electron acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, Karl

    2009-07-23

    This thesis covers the few-cycle laser-driven acceleration of electrons in a laser-generated plasma. The laser system employed in this work is a new development based on optical parametric chirped pulse amplification and is the only multi-TW few-cycle laser in the world. In the experiment, the laser beam is focused onto a supersonic helium gas jet which leads to the formation of a plasma channel. The laser pulse, having an intensity of 10{sup 19} W/cm{sup 2} propagates through the plasma with an electron density of 2 x 10{sup 19} cm{sup -3} and forms via a highly nonlinear interaction a strongly anharmonic plasma wave. The amplitude of the wave is so large that the wave breaks, thereby injecting electrons from the background plasma into the accelerating phase. The energy transfer from the laser pulse to the plasma is so strong that the maximum propagation distance is limited to the 100 m range. Therefore, gas jets specifically tuned to these requirements have to be employed. The properties of microscopic supersonic gas jets are thoroughly analyzed in this work. Based on numeric flow simulation, this study encompasses several extensive parameter studies that illuminate all relevant features of supersonic flows in microscopic gas nozzles. This allowed the optimized design of de Laval nozzles with exit diameters ranging from 150 {mu}m to 3 mm. The employment of these nozzles in the experiment greatly improved the electron beam quality. After these optimizations, the laser-driven electron accelerator now yields monoenergetic electron pulses with energies up to 50 MeV and charges between one and ten pC. The electron beam has a typical divergence of 5 mrad and comprises an energy spectrum that is virtually free from low energetic background. The electron pulse duration could not yet be determined experimentally but simulations point towards values in the range of 1 fs. The acceleration gradient is estimated from simulation and experiment to be approximately 0.5 TV/m. The

  16. Comparison of measured Varian Clinac 21EX and TrueBeam accelerator electron field characteristics.

    Science.gov (United States)

    Lloyd, Samantha A M; Zavgorodni, Sergei; Gagne, Isabelle M

    2015-07-08

    Dosimetric comparisons of radiation fields produced by Varian's newest linear accelerator, the TrueBeam, with those produced by older Varian accelerators are of interest from both practical and research standpoints. While photon fields have been compared in the literature, similar comparisons of electron fields have not yet been reported. In this work, electron fields produced by the TrueBeam are compared with those produced by Varian's Clinac 21EX accelerator. Diode measurements were taken of fields shaped with electron applicators and delivered at 100 cm SSD, as well as those shaped with photon MLCs without applicators and delivered at 70 cm SSD for field sizes ranging from 5 × 5 to 25 × 25 cm² at energies between 6 and 20 MeV. Additionally, EBT2 and EBT3 radio-chromic film measurements were taken of an MLC-shaped aperture with closed leaf pairs delivered at 70 cm SSD using 6 and 20 MeV electrons. The 6 MeV fields produced by the TrueBeam and Clinac 21EX were found to be almost indistinguishable. At higher energies, TrueBeam fields shaped by electron applicators were generally flatter and had less photon contamination compared to the Clinac 21EX. Differences in PDDs and profiles fell within 3% and 3 mm for the majority of measurements. The most notable differences for open fields occurred in the profile shoulders for the largest applicator field sizes. In these cases, the TrueBeam and Clinac 21EX data differed by as much as 8%. Our data indicate that an accurate electron beam model of the Clinac 21EX could be used as a starting point to simulate electron fields that are dosimetrically equivalent to those produced by the TrueBeam. Given that the Clinac 21EX shares head geometry with Varian's iX, Trilogy, and Novalis TX accelerators, our findings should also be applicable to these machines.

  17. Electron acceleration at Jupiter: input from cyclotron-resonant interaction with whistler-mode chorus waves

    Directory of Open Access Journals (Sweden)

    E. E. Woodfield

    2013-10-01

    Full Text Available Jupiter has the most intense radiation belts of all the outer planets. It is not yet known how electrons can be accelerated to energies of 10 MeV or more. It has been suggested that cyclotron-resonant wave-particle interactions by chorus waves could accelerate electrons to a few MeV near the orbit of Io. Here we use the chorus wave intensities observed by the Galileo spacecraft to calculate the changes in electron flux as a result of pitch angle and energy diffusion. We show that, when the bandwidth of the waves and its variation with L are taken into account, pitch angle and energy diffusion due to chorus waves is a factor of 8 larger at L-shells greater than 10 than previously shown. We have used the latitudinal wave intensity profile from Galileo data to model the time evolution of the electron flux using the British Antarctic Survey Radiation Belt (BAS model. This profile confines intense chorus waves near the magnetic equator with a peak intensity at ∼5° latitude. Electron fluxes in the BAS model increase by an order of magnitude for energies around 3 MeV. Extending our results to L = 14 shows that cyclotron-resonant interactions with chorus waves are equally important for electron acceleration beyond L = 10. These results suggest that there is significant electron acceleration by cyclotron-resonant interactions at Jupiter contributing to the creation of Jupiter's radiation belts and also increasing the range of L-shells over which this mechanism should be considered.

  18. Demonstration of electron acceleration in a laser-driven dielectric microstructure.

    Science.gov (United States)

    Peralta, E A; Soong, K; England, R J; Colby, E R; Wu, Z; Montazeri, B; McGuinness, C; McNeur, J; Leedle, K J; Walz, D; Sozer, E B; Cowan, B; Schwartz, B; Travish, G; Byer, R L

    2013-11-07

    The enormous size and cost of current state-of-the-art accelerators based on conventional radio-frequency technology has spawned great interest in the development of new acceleration concepts that are more compact and economical. Micro-fabricated dielectric laser accelerators (DLAs) are an attractive approach, because such dielectric microstructures can support accelerating fields one to two orders of magnitude higher than can radio-frequency cavity-based accelerators. DLAs use commercial lasers as a power source, which are smaller and less expensive than the radio-frequency klystrons that power today's accelerators. In addition, DLAs are fabricated via low-cost, lithographic techniques that can be used for mass production. However, despite several DLA structures having been proposed recently, no successful demonstration of acceleration in these structures has so far been shown. Here we report high-gradient (beyond 250 MeV m(-1)) acceleration of electrons in a DLA. Relativistic (60-MeV) electrons are energy-modulated over 563 ± 104 optical periods of a fused silica grating structure, powered by a 800-nm-wavelength mode-locked Ti:sapphire laser. The observed results are in agreement with analytical models and electrodynamic simulations. By comparison, conventional modern linear accelerators operate at gradients of 10-30 MeV m(-1), and the first linear radio-frequency cavity accelerator was ten radio-frequency periods (one metre) long with a gradient of approximately 1.6 MeV m(-1) (ref. 5). Our results set the stage for the development of future multi-staged DLA devices composed of integrated on-chip systems. This would enable compact table-top accelerators on the MeV-GeV (10(6)-10(9) eV) scale for security scanners and medical therapy, university-scale X-ray light sources for biological and materials research, and portable medical imaging devices, and would substantially reduce the size and cost of a future collider on the multi-TeV (10(12)

  19. Demonstration of electron acceleration in a laser-driven dielectric microstructure

    Science.gov (United States)

    Peralta, E. A.; Soong, K.; England, R. J.; Colby, E. R.; Wu, Z.; Montazeri, B.; McGuinness, C.; McNeur, J.; Leedle, K. J.; Walz, D.; Sozer, E. B.; Cowan, B.; Schwartz, B.; Travish, G.; Byer, R. L.

    2013-11-01

    The enormous size and cost of current state-of-the-art accelerators based on conventional radio-frequency technology has spawned great interest in the development of new acceleration concepts that are more compact and economical. Micro-fabricated dielectric laser accelerators (DLAs) are an attractive approach, because such dielectric microstructures can support accelerating fields one to two orders of magnitude higher than can radio-frequency cavity-based accelerators. DLAs use commercial lasers as a power source, which are smaller and less expensive than the radio-frequency klystrons that power today's accelerators. In addition, DLAs are fabricated via low-cost, lithographic techniques that can be used for mass production. However, despite several DLA structures having been proposed recently, no successful demonstration of acceleration in these structures has so far been shown. Here we report high-gradient (beyond 250MeVm-1) acceleration of electrons in a DLA. Relativistic (60-MeV) electrons are energy-modulated over 563+/-104 optical periods of a fused silica grating structure, powered by a 800-nm-wavelength mode-locked Ti:sapphire laser. The observed results are in agreement with analytical models and electrodynamic simulations. By comparison, conventional modern linear accelerators operate at gradients of 10-30MeVm-1, and the first linear radio-frequency cavity accelerator was ten radio-frequency periods (one metre) long with a gradient of approximately 1.6MeVm-1 (ref. 5). Our results set the stage for the development of future multi-staged DLA devices composed of integrated on-chip systems. This would enable compact table-top accelerators on the MeV-GeV (106-109eV) scale for security scanners and medical therapy, university-scale X-ray light sources for biological and materials research, and portable medical imaging devices, and would substantially reduce the size and cost of a future collider on the multi-TeV (1012eV) scale.

  20. Ionization-injected electron acceleration with sub-terawatt laser pulses

    Science.gov (United States)

    Feder, Linus; Goers, Andy; Hine, George; Miao, Bo; Salehi, Fatholah; Woodbury, Daniel; Milchberg, Howard

    2016-10-01

    The vast majority of laser wakefield acceleration (LWFA) experiments use drive lasers with peak powers >10 TW and repetition rates from 10 Hz to less than once an hour. However, it was recently demonstrated that by using a thin, high density gas target, LWFA can be driven by laser pulses well below a TW and with high repetition rates. We present experiments and particle-in-cell (PIC) simulations of the effect of doping the high density gas jet with higher Z molecules (here nitrogen). Our earlier experiments with low-Z gas relied on self-injection of electrons into the accelerating wake through wave-breaking. In ionization injection, the relativistically self-focused laser pulse ionizes the inner shell of the dopant inside the plasma wake. High energy electrons are then trapped by the wakefield in the earliest potential buckets, which overlap with the laser pulse. PIC simulations show acceleration of these electrons by LWFA and directly by the laser pulse, with the direct contribution significantly increasing the electron energy beyond the LWFA contribution alone. Additionally, ionization injection can be controlled to prevent dephasing of the electron beam, resulting in a narrower energy spectrum and lower spatial divergence. This research is supported by the Department of Energy and the National Science Foundation.

  1. Nanosecond pulse-width electron diode based on dielectric wall accelerator technology

    Science.gov (United States)

    Zhao, Quantang; Zhang, Z. M.; Yuan, P.; Cao, S. C.; Shen, X. K.; Jing, Y.; Yu, C. S.; Li, Z. P.; Liu, M.; Xiao, R. Q.; Zong, Y.; Wang, Y. R.; Zhao, H. W.

    2013-11-01

    An electron diode using a short section of dielectric wall accelerator (DWA) has been under development at the Institute of Modern Physics (IMP), Chinese Academy of Sciences. Tests have been carried out with spark gap switches triggered by lasers. The stack voltage efficiency of a four-layer of Blumleins reached about 60-70% with gas filled spark gap switching. The generated pulse voltage of peak amplitude of 23 kV and pulse width of 5 ns is used to extract and accelerate an electron beam of 320 mA, measured by a fast current transformer. A nanosecond pulse width electron diode was achieved successfully. Furthermore, the principle of a DWA is well proven and the development details and discussions are presented in this article.

  2. Target optimization for desired X-ray spectra produced by laser plasma accelerated electrons

    Science.gov (United States)

    Lobok, Maxim; Brantov, Andrey; Bychenkov, Valery

    2016-10-01

    Different regimes of electron acceleration from low-density targets are investigated using three-dimensional numerical simulations. Multiple spatial target density profiles were examined, including laser pre-pulse modified targets. The size of the plasma corona is shown to be one of the main parameters characterizing the temperature and number of hot electrons, which determine the yield of X-ray radiation and its hardness. The generation of X-ray radiation by laser accelerated electrons, which impact the converter target located behind the laser target, was studied. The X-ray spectra were computed using Monte-Carlo simulations. This work was partially supported by the Russian Foundation for Basic Research 16-02-00088-a.

  3. Forward acceleration and generation of femtosecond, megaelectronvolt electron beams by an ultrafast intense laser pulse

    Institute of Scientific and Technical Information of China (English)

    Xiaofang wang(王晓方); Quandong Wang(汪权东); Baifei Shen(沈百飞)

    2003-01-01

    We present a new mechanism of energy gain of electrons accelerated by a laser pulse. It is shown that when the intensity of an ultrafast intense laser pulse decreases rapidly along the direction of propagation, electrons leaving the pulse experience an action of ponderomotive deceleration at the descending part of a lower-intensity laser field than acceleration at the ascending part of a high-intensity field, thus gain net energy from the pulse and move directly forward. By means of such a mechanism, a megaelectronvolt electron beam with a bunch length shorter than 100 fs could be realized with an ultrafast (≤30 fs),intense (>1019 W/cm2) laser pulse.

  4. Plasma physics. Stochastic electron acceleration during spontaneous turbulent reconnection in a strong shock wave.

    Science.gov (United States)

    Matsumoto, Y; Amano, T; Kato, T N; Hoshino, M

    2015-02-27

    Explosive phenomena such as supernova remnant shocks and solar flares have demonstrated evidence for the production of relativistic particles. Interest has therefore been renewed in collisionless shock waves and magnetic reconnection as a means to achieve such energies. Although ions can be energized during such phenomena, the relativistic energy of the electrons remains a puzzle for theory. We present supercomputer simulations showing that efficient electron energization can occur during turbulent magnetic reconnection arising from a strong collisionless shock. Upstream electrons undergo first-order Fermi acceleration by colliding with reconnection jets and magnetic islands, giving rise to a nonthermal relativistic population downstream. These results shed new light on magnetic reconnection as an agent of energy dissipation and particle acceleration in strong shock waves.

  5. Interplay of Boltzmann equation and continuity equation for accelerated electrons in solar flares

    CERN Document Server

    Codispoti, Anna

    2015-01-01

    During solar flares a large amount of electrons are accelerated within the plasma present in the solar atmosphere. Accurate measurements of the motion of these electrons start becoming available from the analysis of hard X-ray imaging-spectroscopy observations. In this paper, we discuss the linearized perturbations of the Boltzmann kinetic equation describing an ensemble of electrons accelerated by the energy release occurring during solar flares. Either in the limit of high energy or at vanishing background temperature such an equation reduces to a continuity equation equipped with an extra force of stochastic nature. This stochastic force is actually described by the well known energy loss rate due to Coulomb collision with ambient particles, but, in order to match the collision kernel in the linearized Boltzmann equation it needs to be treated in a very specific manner. In the second part of the paper the derived continuity equation is solved with some hyperbolic techniques, and the obtained solution is wr...

  6. Compact beam transport system for free-electron lasers driven by a laser plasma accelerator

    Science.gov (United States)

    Liu, Tao; Zhang, Tong; Wang, Dong; Huang, Zhirong

    2017-02-01

    Utilizing laser-driven plasma accelerators (LPAs) as a high-quality electron beam source is a promising approach to significantly downsize the x-ray free-electron laser (XFEL) facility. A multi-GeV LPA beam can be generated in several-centimeter acceleration distance, with a high peak current and a low transverse emittance, which will considerably benefit a compact FEL design. However, the large initial angular divergence and energy spread make it challenging to transport the beam and realize FEL radiation. In this paper, a novel design of beam transport system is proposed to maintain the superior features of the LPA beam and a transverse gradient undulator (TGU) is also adopted as an effective energy spread compensator to generate high-brilliance FEL radiation. Theoretical analysis and numerical simulations are presented based on a demonstration experiment with an electron energy of 380 MeV and a radiation wavelength of 30 nm.

  7. GeV Electron Beams from a Capillary Discharge Guided Laser Plasma Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Kei; Gonsalves, Anthony; Panasenko, Dmitriy; Lin, Chen; Toth, Csaba; Geddes, Cameron; Schroeder, Carl; Esarey, Eric; Leemans, Wim

    2010-07-08

    Laser plasma acceleration (LPA) up to 1 GeV has been realized at Lawrence Berkeley National Laboratory by using a capillary discharge waveguide. In this paper, the capillary discharge guided LPA system including a broadband single-shot electron spectrometer is described. The spectrometer was designed specifically for LPA experiments and has amomentumacceptance of 0.01 - 1.1 GeV/c with a percent level resolution. Experiments using a 33 mm long, 300 mu m diameter capillary demonstrated the generation of high energy electron beams up to 1 GeV. By de-tuning discharge delay from optimum guiding performance, selftrapping and acceleration were found to be stabilized producing 460 MeV electron beams.

  8. Optical synchronization and electron bunch diagnostic at the quasi-cw accelerator ELBE

    Energy Technology Data Exchange (ETDEWEB)

    Kuntzsch, Michael [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Technische Univ. Dresden (Germany); Lehnert, Ulf; Roeser, Fabian [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Czwalinna, Marie Kristin; Schulz, Sebastian; Schlarb, Holger; Vilcins, Silke [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-07-01

    The continuous wave electron accelerator ELBE is upgraded to generate short and highly charged electron bunches (200 fs duration, up to 1 nC) with an energy of up to 40 MeV. In the last years a prototype of an optical synchronization system using a mode locked fiber laser has been build up which is now in commissioning phase. The stabilized pulse train can be used for new methods of electron bunch diagnostics like bunch arrival time measurement with the resolution down to a few femtoseconds. At ELBE a bunch arrival time monitor (BAM) has been designed and tested at the accelerator. The contribution shows the concept of the femtosecond synchronization system, the design of the BAM and first measurement results.

  9. Novel drift compensation for a femtosecond laser system at a quasi-cw electron accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Green, Bertram; Kuntzsch, Michael; Kovalev, Sergei; Gensch, Michael [Helmholtz-Zentrum Dresden-Rossendorf (Germany)

    2013-07-01

    A method for electron beam/THz to femtosecond (fs)-laser synchronization drift correction at the quasi-cw linear electron accelerator ELBE is presented, which is utilizing THz radiation generated by a CDR/CTR screen and an undulator respectively. Measurements of these pulses will allow for compensation of slow drifts in the arrival time on millisecond timescales between the THz and the fs-laser pulses. The method requires two electro-optic detection setups which allow for the sampling of a single THz pulse, at two different working points. Given a consistent pulse shape these two data points can provide information on the sign of the arrival time drift relative to the laser. This information can be used both for providing feedback on fs laser arrival time in a potential THz time domain experiment as well as the electron bunch arrival time in the accelerator.

  10. Ultrahigh-gradient acceleration of injected eletrons by laser-excited relativistic electron plasma waves

    Science.gov (United States)

    Clayton, C. E.; Marsh, K. A.; Dyson, A.; Everett, M.; Lal, A.; Leemans, W. P.; Williams, R.; Joshi, C.

    1993-01-01

    High-gradient acceleration of externally injected 2.1-MeV electrons by a laser beat wave driven relativistic plasma wave has been demonstrated for the first time. Electrons with energies up to the detection limit of 9.1 MeV were detected when such a plasma wave was resonantly excited using a two-frequency laser. This implies a gradient of 0.7 GeV/m, corresponding to a plasma-wave amplitude of more than 8%. The electron signal was below detection threshold without injection or when the laser was operated on a single frequency.

  11. Modeling laser-driven electron acceleration using WARP with Fourier decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Lee, P., E-mail: patrick.lee@u-psud.fr [LPGP, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay (France); Audet, T.L. [LPGP, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay (France); Lehe, R.; Vay, J.-L. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Maynard, G.; Cros, B. [LPGP, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay (France)

    2016-09-01

    WARP is used with the recent implementation of the Fourier decomposition algorithm to model laser-driven electron acceleration in plasmas. Simulations were carried out to analyze the experimental results obtained on ionization-induced injection in a gas cell. The simulated results are in good agreement with the experimental ones, confirming the ability of the code to take into account the physics of electron injection and reduce calculation time. We present a detailed analysis of the laser propagation, the plasma wave generation and the electron beam dynamics.

  12. Probing lattice dynamics in silicon with laser-wakefield accelerated electrons

    Science.gov (United States)

    Nees, John; He, Z.-H.; Thomas, A. G. R.; Krushelnick, Karl; Scott, S.; Legally, M.; Beaurepaire, B.; Gallé, G.; Faure, J.

    2016-10-01

    Laser wakefield acceleration is the key technology in a new breed of electron and photon beam sources that operate in the ultrafast domain. We show that the spatial and temporal properties of wakefield-generated electron beams can be manipulated to enable them interrogate ultrafast lattice dynamics in freestanding single-crystal silicon membranes, while maintaining spatial resolution on the atomic scale. In particular, picosecond resolution of Si lattice dynamics is obtained by recording streaked electron diffraction peaks using static magnetic fields. We will also discuss the role of wave front control in establishing optimal beam characteristics and the significance of single-shot measurements. Michigan support from NSF PHY-1535628.

  13. Electron Acceleration in Pulsar-Wind Termination Shocks: An Application to the Crab Nebula Gamma-Ray Flares

    CERN Document Server

    Kroon, John J; Finke, Justin; Dermer, Charles

    2016-01-01

    The {\\gamma}-ray flares from the Crab nebula observed by AGILE and Fermi-LAT reaching GeV energies and lasting several days challenge the standard models for particle acceleration in pulsar wind nebulae, because the radiating electrons have energies exceeding the classical radiation-reaction limit for synchrotron. Previous modeling has suggested that the synchrotron limit can be exceeded if the electrons experience electrostatic acceleration, but the resulting spectra do not agree very well with the data. As a result, there are still some important unanswered questions about the detailed particle acceleration and emission processes occurring during the flares. We revisit the problem using a new analytical approach based on an electron transport equation that includes terms describing electrostatic acceleration, stochastic wave-particle acceleration, shock acceleration, synchrotron losses, and particle escape. An exact solution is obtained for the electron distribution, which is used to compute the associated ...

  14. Intrinsic beam emittance of laser-accelerated electrons measured by x-ray spectroscopic imaging.

    Science.gov (United States)

    Golovin, G; Banerjee, S; Liu, C; Chen, S; Zhang, J; Zhao, B; Zhang, P; Veale, M; Wilson, M; Seller, P; Umstadter, D

    2016-04-19

    The recent combination of ultra-intense lasers and laser-accelerated electron beams is enabling the development of a new generation of compact x-ray light sources, the coherence of which depends directly on electron beam emittance. Although the emittance of accelerated electron beams can be low, it can grow due to the effects of space charge during free-space propagation. Direct experimental measurement of this important property is complicated by micron-scale beam sizes, and the presence of intense fields at the location where space charge acts. Reported here is a novel, non-destructive, single-shot method that overcame this problem. It employed an intense laser probe pulse, and spectroscopic imaging of the inverse-Compton scattered x-rays, allowing measurement of an ultra-low value for the normalized transverse emittance, 0.15 (±0.06) π mm mrad, as well as study of its subsequent growth upon exiting the accelerator. The technique and results are critical for designing multi-stage laser-wakefield accelerators, and generating high-brightness, spatially coherent x-rays.

  15. Particle-in-cell Simulation of Electron Acceleration in Solar Coronal Jets

    Science.gov (United States)

    Baumann, G.; Nordlund, Å.

    2012-11-01

    We investigate electron acceleration resulting from three-dimensional magnetic reconnection between an emerging, twisted magnetic flux rope and a pre-existing weak, open magnetic field. We first follow the rise of an unstable, twisted flux tube with a resistive MHD simulation where the numerical resolution is enhanced by using fixed mesh refinement. As in previous MHD investigations of similar situations, the rise of the flux tube into the pre-existing inclined coronal magnetic field results in the formation of a solar coronal jet. A snapshot of the MHD model is then used as an initial and boundary condition for a particle-in-cell simulation, using up to half a billion cells and over 20 billion charged particles. Particle acceleration occurs mainly in the reconnection current sheet, with accelerated electrons displaying a power law in the energy probability distribution with an index of around -1.5. The main acceleration mechanism is a systematic electric field, striving to maintaining the electric current in the current sheet against losses caused by electrons not being able to stay in the current sheet for more than a few seconds at a time.

  16. Design and operation of an inverse free-electron-laser accelerator in the microwave regime

    Science.gov (United States)

    Yoder, Rodney Bruce

    2000-09-01

    A novel electron accelerator demonstrating the inverse free-electron-laser (IFEL) principle has been designed, built, and operated using radio-frequency power at 2.856 GHz. Such an accelerator uses a stationary, periodic magnetic field to impart transverse motion to charged particles, which are then accelerated by guided electromagnetic waves. The experiment described here demonstrates for the first time the phase dependence of IFEL acceleration. This design uses up to 15 MW of RF power propagating in a smooth-walled circular waveguide surrounded by a pulsed bifilar helical undulator; an array of solenoids provides an axial guiding magnetic field undulator; pitch, which is initially 11.75 cm, is linearly increased to 12.3 cm. over the 1-meter length of the structure to maintain acceleration gradient. Numerical computations predict an energy gain of up to 0.7 MeV using a 6 MeV injected beam from a 2-1/2 cell RF gun, with small energy spread and strong phase trapping. The initial injection phase is the most important parameter, determining the rate of energy gain or loss. These simulations are compared with experimental measurements at low power in which electron beams at energies between 5 and 6 MeV gain up to 0.35 MeV with minimal energy spread, all exiting particles having been accelerated. The predicted phase sensitivity of the mechanism is verified, with beams injected into accelerating phases gaining energy cleanly while those injected into ``decelerating'' phases are shown to be degraded in quality and hardly changed in energy, demonstrating the asymmetry of a tapered-wiggler design. Agreement with simulation is very good for accelerating phases, though less exact otherwise. Scaling to higher power and frequency is investigated. The maximum attainable acceleration gradient for a MIFELA using 150 MW of RF power at 34 GHz is estimated to be at least 30 MV/m, and laser IFELs could conceivably reach gradients in the GeV/m range.

  17. Generation of annular, high-charge electron beams at the Argonne wakefield accelerator

    Science.gov (United States)

    Wisniewski, E. E.; Li, C.; Gai, W.; Power, J.

    2013-01-01

    We present and discuss the results from the experimental generation of high-charge annular(ring-shaped)electron beams at the Argonne Wakefield Accelerator (AWA). These beams were produced by using laser masks to project annular laser profiles of various inner and outer diameters onto the photocathode of an RF gun. The ring beam is accelerated to 15 MeV, then it is imaged by means of solenoid lenses. Transverse profiles are compared for different solenoid settings. Discussion includes a comparison with Parmela simulations, some applications of high-charge ring beams,and an outline of a planned extension of this study.

  18. The Gent University 15 MeV high-current linear electron accelerator facility

    Science.gov (United States)

    Mondelaers, W.; Van Laere, K.; Goedefroot, A.; Van den Bossche, K.

    1996-01-01

    The Gent University 15 MeV 20kW linear electron accelerator facility was initially designed for fundamental nuclear physics research. During the last years a large effort has been devoted to the expansion of the range of machine applications in view of a new extensive experimental programme in the fields of atomic and solid-state physics, biomaterials research, polymer chemistry, space research, food technology, high-dose dosimetry and radiation therapy. The accelerator facility in its present configuration, the peripheral equipment and the experimental programme are described with emphasis on the original features.

  19. Characterization of electron clouds in the Cornell Electron Storage Ring Test Accelerator using TE-wave transmission

    Energy Technology Data Exchange (ETDEWEB)

    De Santis, S.; Byrd, J. M.; Billing, M.; Palmer, M.; Sikora, J.; Carlson, B.

    2010-01-02

    A relatively new technique for measuring the electron cloud density in storage rings has been developed and successfully demonstrated [S. De Santis, J.M. Byrd, F. Caspers, A. Krasnykh, T. Kroyer, M.T.F. Pivi, and K.G. Sonnad, Phys. Rev. Lett. 100, 094801 (2008).]. We present the experimental results of a systematic application of this technique at the Cornell Electron Storage Ring Test Accelerator. The technique is based on the phase modulation of the TE mode transmitted in a synchrotron beam pipe caused by the periodic variation of the density of electron plasma. Because of the relatively simple hardware requirements, this method has become increasingly popular and has been since successfully implemented in several machines. While the principles of this technique are straightforward, quantitative derivation of the electron cloud density from the measurement requires consideration of several effects, which we address in detail.

  20. Enhanced electron yield from laser-driven wakefield acceleration in high-Z gas jets

    Energy Technology Data Exchange (ETDEWEB)

    Mirzaie, Mohammad; Hafz, Nasr A. M., E-mail: nasr@sjtu.edu.cn; Li, Song; Liu, Feng; Zhang, Jie [Key Laboratory for Laser Plasmas (MOE) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240 (China); He, Fei; Cheng, Ya [State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2015-10-15

    An investigation of the electron beam yield (charge) form helium, nitrogen, and neon gas jet plasmas in a typical laser-plasma wakefield acceleration experiment is carried out. The charge measurement is made by imaging the electron beam intensity profile on a fluorescent screen into a charge coupled device which was cross-calibrated with an integrated current transformer. The dependence of electron beam charge on the laser and plasma conditions for the aforementioned gases are studied. We found that laser-driven wakefield acceleration in low Z-gas jet targets usually generates high-quality and well-collimated electron beams with modest yields at the level of 10-100 pC. On the other hand, filamentary electron beams which are observed from high-Z gases at higher densities reached much higher yields. Evidences for cluster formation were clearly observed in the nitrogen gas jet target, where we received the highest electron beam charge of ∼1.7 nC. Those intense electron beams will be beneficial for the applications on the generation of bright X-rays, gamma rays radiations, and energetic positrons via the bremsstrahlung or inverse-scattering processes.

  1. High Energy Electron Acceleration from Underdense Plasma Channeling Using the OMEGA EP Laser

    Science.gov (United States)

    Batson, Thomas; Raymond, Anthony; Hussein, Amina; Krushelnick, Karl; Willingale, Louise; Nilson, Phil; Froula, Dustin; Harberberger, Dan; Davies, Andrew; Theobald, Wolfgang; Williams, Jackson; Chen, Hui; Arefiev, Alexey

    2016-10-01

    For intense, ps scale lasers, propagation through underdense plasmas results in forces which expel electrons from along the laser axis, resulting in the formation of channels. Electrons can then be injected from the channel walls into the laser path, which results in the direct laser acceleration (DLA) of these electrons and the occurrence of an electron beam of 100's of MeV. Experiments performed at the OMEGA EP laser studied the formation of a laser channel in an underdense CH plasma, as well as the spatial properties and energy of an electron beam created via DLA mechanisms. The 4 omega optical probe diagnostic was used to characterize the density of the plasma plume, while proton radiography was used to observe the electromagnetic fields of the channel formation. These electric fields as well as the spectra of the accelerated electrons have been studied across different plasma density profiles. The channel behavior and electron spectra are compared to 2D particle-in-cell simulations.

  2. Enhanced electron yield from laser-driven wakefield acceleration in high-Z gas jets.

    Science.gov (United States)

    Mirzaie, Mohammad; Hafz, Nasr A M; Li, Song; Liu, Feng; He, Fei; Cheng, Ya; Zhang, Jie

    2015-10-01

    An investigation of the electron beam yield (charge) form helium, nitrogen, and neon gas jet plasmas in a typical laser-plasma wakefield acceleration experiment is carried out. The charge measurement is made by imaging the electron beam intensity profile on a fluorescent screen into a charge coupled device which was cross-calibrated with an integrated current transformer. The dependence of electron beam charge on the laser and plasma conditions for the aforementioned gases are studied. We found that laser-driven wakefield acceleration in low Z-gas jet targets usually generates high-quality and well-collimated electron beams with modest yields at the level of 10-100 pC. On the other hand, filamentary electron beams which are observed from high-Z gases at higher densities reached much higher yields. Evidences for cluster formation were clearly observed in the nitrogen gas jet target, where we received the highest electron beam charge of ∼1.7 nC. Those intense electron beams will be beneficial for the applications on the generation of bright X-rays, gamma rays radiations, and energetic positrons via the bremsstrahlung or inverse-scattering processes.

  3. Electron acceleration at slow-mode shocks in the magnetic reconnection region in solar flares

    Science.gov (United States)

    Mann, Gottfried; Aurass, Henry; Önel, Hakan; Warmuth, Alexander

    2016-04-01

    A solar flare appears as an sudden enhancement of the emission of electromagnetic radiation of the Sun covering a broad range of the spectrum from the radio up to the gamma-ray range. That indicates the generation of energetic electrons during flares, which are considered as the manifestation of magnetic reconnection in the solar corona. Spacecraft observations in the Earth's magnetosphere, as for instance by NASA's MMS mission, have shown that electrons can efficiently accelerated at the slow-mode shocks occuring in the magnetic reconnection region. This mechanism is applied to solar flares. The electrons are accelerated by the cross-shock potential at slow-mode shocks resulting in magnetic field aligned beams of energetic electrons in the downstream region. The interaction of this electron beam with the plasma leads to the excitation of whistler waves and, subsequently, to a strong heating of the electrons in the downstream region. Considering this process under coronal circumstances, enough electrons with energies >30keV are generated in the magnetic reconnection region as required for the hard X-ray radiation during solar flares as observed by NASA's RHESSI mission.

  4. Observation of Electron Cloud Instabilities and Emittance Dilution at the Cornell Electron-Positron Storage Ring Test Accelerator

    Science.gov (United States)

    Holtzapple, R. L.; Billing, M. G.; Campbell, R. C.; Dugan, G. F.; Flanagan, J.; McArdle, K. E.; Miller, M. I.; Palmer, M. A.; Ramirez, G. A.; Sonnad, K. G.; Totten, M. M.; Tucker, S. L.; Williams, H. A.

    2016-04-01

    Electron cloud related emittance dilution and instabilities of bunch trains limit the performance of high intensity circular colliders. One of the key goals of the Cornell electron-positron storage ring Test Accelerator (CesrTA) research program is to improve our understanding of how the electron cloud alters the dynamics of bunches within the train. Single bunch beam diagnotics have been developed to measure the beam spectra, vertical beam size, two important dynamical effects of beams interacting with the electron cloud, for bunch trains on a turn-by-turn basis. Experiments have been performed at CesrTA to probe the interaction of the electron cloud with stored positron bunch trains. The purpose of these experiments was to characterize the dependence of beam-electron cloud interactions on the machine parameters such as bunch spacing, vertical chromaticity, and bunch current. The beam dynamics of the stored beam, in the presence of the electron cloud, was quantified using: 1) a gated beam position monitor (BPM) and spectrum analyzer to measure the bunch-by-bunch frequency spectrum of the bunch trains; 2) an x-ray beam size monitor to record the bunch-by-bunch, turn-by-turn vertical size of each bunch within the trains. In this paper we report on the observations from these experiments and analyze the effects of the electron cloud on the stability of bunches in a train under many different operational conditions.

  5. Non-linear Ion-Wake Excitation by Plasma Electron Wakefields of an Electron or Positron Beam for Positron Acceleration

    Science.gov (United States)

    Katsouleas, Thomas; Sahai, Aakash

    2015-11-01

    The excitation of a non-linear ion-wake by a train of non-linear electron wake of an electron and a positron beam is modeled and its use for positron acceleration is explored. The ion-wake is shown to be a driven non-linear ion-acoustic wave in the form of a cylindrical ion-soliton similar to the solution of the cKdV equation. The phases of the oscillating radial electric fields of the slowly-propagating electron wake are asymmetric in time and excite time-averaged inertial ion motion radially. The radial field of the electron compression region sucks-in the ions and the field of space-charge region of the wake expels them, driving a cylindrical ion-soliton structure with on-axis and bubble-edge density-spikes. Once formed, the channel-edge density-spike is driven radially outwards by the thermal pressure of the thermalized wake energy. Its channel-like structure due to the flat-residue left behind by the propagating ion-soliton, is independent of the energy-source driving the non-linear electron wake. We explore the use of the partially-filled channel formed by the cylindrical ion-soliton for a novel regime of positron acceleration. PIC simulations are used to study the ion-wake soliton structure, its driven propagation and its use for positron acceleration (arXiv:1504.03735). Work supported by the US Department of Energy under DE-SC0010012 and the National Science Foundation under NSF-PHY-0936278.

  6. Experimental validation of a radio frequency photogun as external electron injector for a laser wakefield accelerator

    Science.gov (United States)

    Stragier, X. F. D.; Luiten, O. J.; van der Geer, S. B.; van der Wiel, M. J.; Brussaard, G. J. H.

    2011-07-01

    A purpose-built RF-photogun as external electron injector for a laser wakefield accelerator has been thoroughly tested. Different properties of the RF-photogun have been measured such as energy, energy spread and transverse emittance. The focus of this study is the investigation of the smallest possible focus spot and focus stability at the entrance of the plasma channel. For an electron bunch with 10 pC charge and 3.7 MeV kinetic energy, the energy spread was 0.5% with a shot-to-shot stability of 0.05%. After focusing the bunch by a pulsed solenoid lens at 140 mm from the middle of the lens, the focal spot was 40 μm with a shot-to-shot stability of 5 μm. Higher charge leads to higher energy spread and to a larger spot size, due to space charge effects. All properties were found to be close to design values. Given the limited energy of 3.7 MeV, the properties are sufficient for this gun to serve as injector for one particular version of laser wakefield acceleration, i.e., injection ahead of the laser pulse. These measured electron bunch properties were then used as input parameters for simulations of electron bunch injection in a laser wakefield accelerator. The arrival time jitter was deduced from measurements of the energy fluctuation, in combination with earlier measurements using THz coherent transition radiation, and is around 150 fs in the present setup. The bunch length in the focus, simulated using particle tracking, depends on the accelerated charge and goes from 100 fs at 0.1 pC to 1 ps at 50 pC. When simulating the injection of the 3.7 MeV electron bunch of 10 pC in front of a 25 TW laser pulse with a waist of 30 μm in a plasma with a density of 0.7 × 1024 m-3, the maximum accelerated charge was found to be 1.2 pC with a kinetic energy of ˜900 MeV and an energy spread of ˜5%. The experiments combined with the simulations show the feasibility of external injection and give a prediction of the output parameters that can be expected from a laser

  7. Effects of the precursor electron bunch on quasi-phase matched direct laser acceleration

    Science.gov (United States)

    Lin, M.-W.; Hsieh, C.-Y.; Liu, Y.-L.; Chen, S.-H.; Jovanovic, I.

    2016-12-01

    Direct laser acceleration (DLA) of electrons can be achieved by utilizing the axial field of a well-guided, radially polarized laser pulse in a density-modulated plasma waveguide. When a laser pulse of a few terawatt (TW) peak power is applied, however, the laser ponderomotive force perturbs plasma electrons to concentrate in the center, such that the generated electrostatic fields can significantly defocus the externally injected electron witness bunch and considerably deteriorate the acceleration efficiency. To improve the performance of DLA, a leading electron bunch, which acts as a precursor, can be introduced in DLA to effectively confine the witness bunch. Three-dimensional particle-in-cell simulations have been conducted to demonstrate that the transverse properties of the witness bunch can be significantly improved when a precursor bunch is used. Selected bunch transverse sizes, bunch charges, and axial separation from the witness bunch have been assigned to the precursor in a series of DLA simulations. Since a favorable ion-focusing force is provided by the precursor, the transverse properties of witness bunch can be maintained when a relatively high-power (˜2 TW) laser pulse is used in DLA, and an improved overall acceleration efficiency can be achieved.

  8. Acceleration, magnetic fluctuations and cross-field transport of energetic electrons in a solar flare loop

    CERN Document Server

    Kontar, E P; Bian, N H

    2011-01-01

    Plasma turbulence is thought to be associated with various physical processes involved in solar flares, including magnetic reconnection, particle acceleration and transport. Using Ramaty High Energy Solar Spectroscopic Imager ({\\it RHESSI}) observations and the X-ray visibility analysis, we determine the spatial and spectral distributions of energetic electrons for a flare (GOES M3.7 class, April 14, 2002 23$:$55 UT), which was previously found to be consistent with a reconnection scenario. It is demonstrated that because of the high density plasma in the loop, electrons have to be continuously accelerated about the loop apex of length $\\sim 2\\times 10^9$cm and width $\\sim 7\\times 10^8$cm. Energy dependent transport of tens of keV electrons is observed to occur both along and across the guiding magnetic field of the loop. We show that the cross-field transport is consistent with the presence of magnetic turbulence in the loop, where electrons are accelerated, and estimate the magnitude of the field line diffu...

  9. Three electron beams from a laser-plasma wakefield accelerator and the energy apportioning question

    Science.gov (United States)

    Yang, X.; Brunetti, E.; Gil, D. Reboredo; Welsh, G. H.; Li, F. Y.; Cipiccia, S.; Ersfeld, B.; Grant, D. W.; Grant, P. A.; Islam, M. R.; Tooley, M. P.; Vieux, G.; Wiggins, S. M.; Sheng, Z. M.; Jaroszynski, D. A.

    2017-01-01

    Laser-wakefield accelerators are compact devices capable of delivering ultra-short electron bunches with pC-level charge and MeV-GeV energy by exploiting the ultra-high electric fields arising from the interaction of intense laser pulses with plasma. We show experimentally and through numerical simulations that a high-energy electron beam is produced simultaneously with two stable lower-energy beams that are ejected in oblique and counter-propagating directions, typically carrying off 5–10% of the initial laser energy. A MeV, 10s nC oblique beam is ejected in a 30°–60° hollow cone, which is filled with more energetic electrons determined by the injection dynamics. A nC-level, 100s keV backward-directed beam is mainly produced at the leading edge of the plasma column. We discuss the apportioning of absorbed laser energy amongst the three beams. Knowledge of the distribution of laser energy and electron beam charge, which determine the overall efficiency, is important for various applications of laser-wakefield accelerators, including the development of staged high-energy accelerators. PMID:28281679

  10. A low-energy-spread rf accelerator for a far-infrared free electron laser

    Science.gov (United States)

    van der Geer, C. A. J.; Bakker, R. J.; van der Meer, A. F. G.; van Amersfoort, P. W.; Gillespie, W. A.; Saxon, G.; Poole, M. W.

    1993-10-01

    A high electron current and a small energy spread are essential for the operation of a free electron laser (FEL). In this paper we discuss the design and performance of the accelerator for FELIX, the free electron laser for infrared experiments. The system consists of a thermionic gun, a prebuncher, a buncher and two standard commercial linac sections. The gun is operated with a pulse duration of 280 ps and a bunch charge of 200 pC. After compression to 35 ps by the prebuncher, the bunches are accelerated to 4 MeV in the buncher and simultaneously compressed to 6 ps. The principle of the method is that the order of the electrons is conserved in the buncher, so that the resulting more or less linear energy-phase relationship along each bunch can be compensated effectively against space charge forces and the accelerating field gradient in the linacs, via an appropriate choice of the phase of the rf wave. Behind the linacs an rms energy spread of 0.30% has been measured.

  11. Three electron beams from a laser-plasma wakefield accelerator and the energy apportioning question.

    Science.gov (United States)

    Yang, X; Brunetti, E; Gil, D Reboredo; Welsh, G H; Li, F Y; Cipiccia, S; Ersfeld, B; Grant, D W; Grant, P A; Islam, M R; Tooley, M P; Vieux, G; Wiggins, S M; Sheng, Z M; Jaroszynski, D A

    2017-03-10

    Laser-wakefield accelerators are compact devices capable of delivering ultra-short electron bunches with pC-level charge and MeV-GeV energy by exploiting the ultra-high electric fields arising from the interaction of intense laser pulses with plasma. We show experimentally and through numerical simulations that a high-energy electron beam is produced simultaneously with two stable lower-energy beams that are ejected in oblique and counter-propagating directions, typically carrying off 5-10% of the initial laser energy. A MeV, 10s nC oblique beam is ejected in a 30°-60° hollow cone, which is filled with more energetic electrons determined by the injection dynamics. A nC-level, 100s keV backward-directed beam is mainly produced at the leading edge of the plasma column. We discuss the apportioning of absorbed laser energy amongst the three beams. Knowledge of the distribution of laser energy and electron beam charge, which determine the overall efficiency, is important for various applications of laser-wakefield accelerators, including the development of staged high-energy accelerators.

  12. Experimental evidence of nonthermal acceleration of relativistic electrons by an intensive laser pulse.

    Science.gov (United States)

    Kuramitsu, Y; Nakanii, N; Kondo, K; Sakawa, Y; Mori, Y; Miura, E; Tsuji, K; Kimura, K; Fukumochi, S; Kashihara, M; Tanimoto, T; Nakamura, H; Ishikura, T; Takeda, K; Tampo, M; Kodama, R; Kitagawa, Y; Mima, K; Tanaka, K A; Hoshino, M; Takabe, H

    2011-02-01

    Nonthermal acceleration of relativistic electrons is investigated with an intensive laser pulse. An energy distribution function of energetic particles in the universe or cosmic rays is well represented by a power-law spectrum, therefore, nonthermal acceleration is essential to understand the origin of cosmic rays. A possible candidate for the origin of cosmic rays is wakefield acceleration at relativistic astrophysical perpendicular shocks. The wakefield is considered to be excited by large-amplitude precursor light waves in the upstream of the shocks. Substituting an intensive laser pulse for the large amplitude light waves, we performed a model experiment of the shock environments in a laboratory plasma. An intensive laser pulse was propagated in a plasma tube created by imploding a hollow polystyrene cylinder, as the large amplitude light waves propagated in the upstream plasma at an astrophysical shock. Nonthermal electrons were generated, and the energy distribution functions of the electrons have a power-law component with an index of ~2. We described the detailed procedures to obtain the nonthermal components from data obtained by an electron spectrometer.

  13. Enhanced electron yield from a laser-plasma accelerator using high-Z gas jet targets

    CERN Document Server

    Mirzaie, Mohammad; Li, Song; Sokollik, Thomas; He, Fei; Cheng, Ya; Sheng, Zhengming; Zhang, Jie

    2014-01-01

    An investigation of the multi-hundred MeV electron beam yield (charge) form helium, nitrogen, neon and argon gas jet plasmas in a laser-plasma wakefield acceleration experiment was carried out. The charge measurement has been made via imaging the electron beam intensity profile on a fluorescent screen into a 14-bit charge coupled device (CCD) which was cross-calibrated with nondestructive electronics-based method. Within given laser and plasma parameters, we found that laser-driven low Z- gas jet targets generate high-quality and well-collimated electron beams with reasonable yields at the level of 10-100 pC. On the other hand, filamentary electron beams which were observed from high-Z gas jets at higher densities reached much higher yield. Evidences for cluster formation were clearly observed in high-Z gases, especially in the argon gas jet target where we received the highest yield of ~ 3 nC

  14. New Statistical Multiparticle Approach to the Acceleration of Electrons by the Ion Field in Plasmas

    Directory of Open Access Journals (Sweden)

    Eugene Oks

    2010-01-01

    Full Text Available The phenomenon of the acceleration of the (perturbing electrons by the ion field (AEIF significantly reduces Stark widths and shifts in plasmas of relatively high densities and/or relatively low temperature. Our previous analytical calculations of the AEIF were based on the dynamical treatment: the starting point was the ion-microfield-caused changes of the trajectories and velocities of individual perturbing electrons. In the current paper, we employ a statistical approach: the starting point is the electron velocity distribution function modified by the ion microfield. The latter had been calculated by Romanovsky and Ebeling in the multiparticle description of the ion microfield. The result shows again the reduction of the electron Stark broadening. Thus two totally different analytical approaches (dynamical and statistical agree with each other and therefore disprove the corresponding recent fully-numerical simulations by Stambulchik et al. that claimed an increase of the electron Stark broadening.

  15. Multiple quasi-monoenergetic electron beams from laser-wakefield acceleration with spatially structured laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Y.; Li, M. H.; Li, Y. F.; Wang, J. G.; Tao, M. Z.; Han, Y. J.; Zhao, J. R.; Huang, K.; Yan, W. C.; Ma, J. L.; Li, Y. T. [Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, CAS, Beijing 100080 (China); Chen, L. M., E-mail: lmchen@iphy.ac.cn [Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, CAS, Beijing 100080 (China); Department of Physics and Astronomy and IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240 (China); Li, D. Z. [Institute of High Energy Physics, CAS, Beijing 100049 (China); Chen, Z. Y. [Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan 621999 (China); Sheng, Z. M. [Department of Physics and Astronomy and IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240 (China); Department of Physics, Scottish Universities Physics Alliance, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Zhang, J. [Department of Physics and Astronomy and IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2015-08-15

    By adjusting the focus geometry of a spatially structured laser pulse, single, double, and treble quasi-monoenergetic electron beams were generated, respectively, in laser-wakefield acceleration. Single electron beam was produced as focusing the laser pulse to a single spot. While focusing the laser pulse to two spots that are approximately equal in energy and size and intense enough to form their own filaments, two electron beams were produced. Moreover, with a proper distance between those two focal spots, three electron beams emerged with a certain probability owing to the superposition of the diffractions of those two spots. The energy spectra of the multiple electron beams are quasi-monoenergetic, which are different from that of the large energy spread beams produced due to the longitudinal multiple-injection in the single bubble.

  16. Electron Cloud Density Measurements in Accelerator Beam-pipe Using Resonant Microwave Excitation

    CERN Document Server

    Sikora, John P

    2013-01-01

    An accelerator beam can generate low energy electrons in the beam-pipe, generally called electron cloud, that can produce instabilities in a positively charged beam. One method of measuring the electron cloud density is by coupling microwaves into and out of the beam-pipe and observing the response of the microwaves to the presence of the electron cloud. This paper describes a technique in which the beam-pipe is resonantly excited with microwaves and the electron cloud density calculated from the change that it produces in the resonant frequency of the beam-pipe. The resonant technique has the advantage that measurements can be localized to sections of beam-pipe that are a meter or less in length, as well as greatly improving the signal to noise ratio.

  17. Turbulence and particle acceleration in giant radio haloes: the origin of seed electrons

    Science.gov (United States)

    Pinzke, Anders; Oh, S. Peng; Pfrommer, Christoph

    2017-03-01

    About one-third of X-ray-luminous clusters show smooth, Mpc-scale radio emission, known as giant radio haloes. One promising model for radio haloes is Fermi-II acceleration of seed relativistic electrons by compressible turbulence. The origin of these seed electrons has never been fully explored. Here, we integrate the Fokker-Planck equation of the cosmic ray (CR) electron and proton distributions when post-processing cosmological simulations of cluster formation and confront them with radio surface brightness and spectral data of Coma. For standard assumptions, structure formation shocks lead to a seed electron population that produces too centrally concentrated radio emission. Matching observations requires modifying properties of the CR population (rapid streaming; enhanced CR electron acceleration at shocks) or turbulence (increasing turbulent-to-thermal energy density with radius), but at the expense of fine-tuning. In a parameter study, we find that radio properties are exponentially sensitive to the amplitude of turbulence, which is inconsistent with small scatter in scaling relations. This sensitivity is removed if we relate the acceleration time to the turbulent dissipation time. In this case, turbulence above a threshold value provides a fixed amount of amplification; observations could thus potentially constrain the unknown CR seed population. To obtain sufficient acceleration, the turbulent magneto-hydrodynamics cascade has to terminate by transit time damping on CRs, i.e. thermal particles must be scattered by plasma instabilities. Understanding the small scatter in radio halo scaling relations may provide a rich source of insight on plasma processes in clusters.

  18. Multichannel computerized control system of current pulses in LIU-30 electron accelerator

    CERN Document Server

    Gerasimov, A I; Kulgavchuk, V V; Pluzhnikov, A V

    2002-01-01

    In LIU-30 power linear pulsed induction electron accelerator (40 MeV, 10 kA, 25 ns) 288 radial lines with water insulation serve as energy accumulators and shapers of accelerating voltage pulses. The lines are charged simultaneously up to 500 kV using a system comprising 72 Arkadiev-Marx screened generators. To control parameter of synchronous pulses of charging current with up to 60 kA amplitude and 0.85 mu s duration in every of 72 charging circuits one applies a computer-aided system. Current pulse is recorded at output of every generator using the Rogowski coil signal from which via a cable line is transmitted to an analog-digital converter, is processed with 50 ns sampling and is recorded to a memory unit. Upon actuation of accelerator the signals are sequentially or selectively displayed and are compared with pulse typical shape

  19. Corkscrew Motion of an Electron Beam due to Coherent Variations in Accelerating Potentials

    Energy Technology Data Exchange (ETDEWEB)

    Ekdahl, Carl August [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-13

    Corkscrew motion results from the interaction of fluctuations of beam electron energy with accidental magnetic dipoles caused by misalignment of the beam transport solenoids. Corkscrew is a serious concern for high-current linear induction accelerators (LIA). A simple scaling law for corkscrew amplitude derived from a theory based on a constant-energy beam coasting through a uniform magnetic field has often been used to assess LIA vulnerability to this effect. We use a beam dynamics code to verify that this scaling also holds for an accelerated beam in a non-uniform magnetic field, as in a real accelerator. Results of simulations with this code are strikingly similar to measurements on one of the LIAs at Los Alamos National Laboratory.

  20. Relativistic electron acceleration during HILDCAA events: are precursor CIR magnetic storms important?

    Science.gov (United States)

    Hajra, Rajkumar; Tsurutani, Bruce T.; Echer, Ezequiel; Gonzalez, Walter D.; Brum, Christiano Garnett Marques; Vieira, Luis Eduardo Antunes; Santolik, Ondrej

    2015-07-01

    We present a comparative study of high-intensity long-duration continuous AE activity (HILDCAA) events, both isolated and those occurring in the "recovery phase" of geomagnetic storms induced by corotating interaction regions (CIRs). The aim of this study is to determine the difference, if any, in relativistic electron acceleration and magnetospheric energy deposition. All HILDCAA events in solar cycle 23 (from 1995 through 2008) are used in this study. Isolated HILDCAA events are characterized by enhanced fluxes of relativistic electrons compared to the pre-event flux levels. CIR magnetic storms followed by HILDCAA events show almost the same relativistic electron signatures. Cluster 1 spacecraft showed the presence of intense whistler-mode chorus waves in the outer magnetosphere during all HILDCAA intervals (when Cluster data were available). The storm-related HILDCAA events are characterized by slightly lower solar wind input energy and larger magnetospheric/ionospheric dissipation energy compared with the isolated events. A quantitative assessment shows that the mean ring current dissipation is ~34 % higher for the storm-related events relative to the isolated events, whereas Joule heating and auroral precipitation display no (statistically) distinguishable differences. On the average, the isolated events are found to be comparatively weaker and shorter than the storm-related events, although the geomagnetic characteristics of both classes of events bear no statistically significant difference. It is concluded that the CIR storms preceding the HILDCAAs have little to do with the acceleration of relativistic electrons. Our hypothesis is that ~10-100-keV electrons are sporadically injected into the magnetosphere during HILDCAA events, the anisotropic electrons continuously generate electromagnetic chorus plasma waves, and the chorus then continuously accelerates the high-energy portion of this electron spectrum to MeV energies.

  1. Optical control of electron phase space in plasma accelerators with incoherently stacked laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Kalmykov, S. Y., E-mail: skalmykov2@unl.edu; Shadwick, B. A. [Department of Physics and Astronomy, University of Nebraska – Lincoln, Lincoln, Nebraska 68588-0299 (United States); Davoine, X. [CEA, DAM, DIF, Arpajon F-91297 (France); Lehe, R.; Lifschitz, A. F. [Laboratoire d' Optique Appliquée, ENSTA-CNRS-École Polytechnique UMR 7639, Palaiseau F-91761 (France)

    2015-05-15

    It is demonstrated that synthesizing an ultrahigh-bandwidth, negatively chirped laser pulse by incoherently stacking pulses of different wavelengths makes it possible to optimize the process of electron self-injection in a dense, highly dispersive plasma (n{sub 0}∼10{sup 19} cm{sup −3}). Avoiding transformation of the driving pulse into a relativistic optical shock maintains a quasi-monoenergetic electron spectrum through electron dephasing and boosts electron energy far beyond the limits suggested by existing scaling laws. In addition, evolution of the accelerating bucket in a plasma channel is shown to produce a background-free, tunable train of femtosecond-duration, 35–100 kA, time-synchronized quasi-monoenergetic electron bunches. The combination of the negative chirp and the channel permits acceleration of electrons beyond 1 GeV in a 3 mm plasma with 1.4 J of laser pulse energy, thus offering the opportunity of high-repetition-rate operation at manageable average laser power.

  2. 76 FR 12729 - Cambridge Environmental Inc; Transfer of Data

    Science.gov (United States)

    2011-03-08

    ... AGENCY Cambridge Environmental Inc; Transfer of Data AGENCY: Environmental Protection Agency (EPA... claimed as Confidential Business Information (CBI) by the submitter, will be transferred to Cambridge Environmental Inc. in accordance with 40 CFR 2.307(h)(3) and 2.308(i)(2). Cambridge Environmental Inc. has...

  3. Particle Acceleration Zones Above Pulsar Polar Caps Electron and Positron Pair Formation Fronts

    CERN Document Server

    Harding, A K; Harding, Alice K.; Muslimov, Alexander G.

    1998-01-01

    We investigate self-consistent particle acceleration near a pulsar polar cap (PC) by the electrostatic field due to the effect of inertial frame dragging. Test particles gain energy from the electric field parallel to the open magnetic field lines and lose energy by both curvature radiation (CR) and resonant and non-resonant inverse Compton scattering (ICS) with soft thermal X-rays from the neutron star (NS) surface. Gamma-rays radiated by electrons accelerated from the stellar surface produce pairs in the strong magnetic field, which screen the electric field beyond a pair formation front (PFF). Some of the created positrons can be accelerated back toward the surface and produce gamma-rays and pairs that create another PFF above the surface. We find that ICS photons control PFF formation near the surface, but due to the different angles at which the electron and positron scatter the soft photons, positron initiated cascades develop above the surface and screen the accelerating electric field. Stable accelera...

  4. Ion acceleration in non-equilibrium plasmas driven by fast drifting electron

    Energy Technology Data Exchange (ETDEWEB)

    Castro, G. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Università degli Studi di Catania, Dipartimento di Fisica e Astronomia, V. S.Sofia 64, 95123 Catania (Italy); Di Bartolo, F., E-mail: fdibartolo@unime.it [Università di Messina, V.le F. Stagno D’Alcontres 31, 98166, Messina (Italy); Gambino, N. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Università degli Studi di Catania, Dipartimento di Metodologie Fisiche e Chimiche per L’ingegneria, Viale A.Doria 6, 95125 Catania (Italy); Mascali, D. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); CSFNSM, Viale A. Doria 6, 95125 Catania (Italy); Romano, F.P. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); CNR-IBAM Via Biblioteca 4, 95124 Catania (Italy); Anzalone, A.; Celona, L.; Gammino, S. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Di Giugno, R. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Università degli Studi di Catania, Dipartimento di Fisica e Astronomia, V. S.Sofia 64, 95123 Catania (Italy); Lanaia, D. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Miracoli, R. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Università degli Studi di Catania, Dipartimento di Fisica e Astronomia, V. S.Sofia 64, 95123 Catania (Italy); Serafino, T. [CSFNSM, Viale A. Doria 6, 95125 Catania (Italy); Tudisco, S. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); CSFNSM, Viale A. Doria 6, 95125 Catania (Italy)

    2013-05-01

    We hereby present results on ion acceleration mechanisms in non equilibrium plasmas generated by microwaves or high intensity laser pulses. Experiments point out that in magnetized plasmas X–B conversion takes place for under resonance values of the magnetic field, i.e. an electromagnetic mode is converted into an electrostatic wave. The strong self-generated electric field, of the order of 10{sup 7} V/m, causes a E × B drift which accelerates both ions and electrons, as it is evident by localized sputtering in the plasma chamber. These fields are similar (in magnitude) to the ones obtainable in laser generated plasmas at intensity of 10{sup 12} W/cm{sup 2}. In this latter case, we observe that the acceleration mechanism is driven by electrons drifting much faster than plasma bulk, thus generating an extremely strong electric field ∼10{sup 7} V/m. The two experiments confirm that ions acceleration at low energy is possible with table-top devices and following complementary techniques: i.e. by using microwave-driven (producing CW beams) plasmas, or non-equilibrium laser-driven plasmas (producing pulsed beams). Possible applications involve ion implantation, materials surface modifications, ion beam assisted lithography, etc.

  5. Particle-In-Cell Simulation of Electron Acceleration in Solar Coronal Jets

    CERN Document Server

    Baumann, G

    2012-01-01

    We investigate electron acceleration resulting from 3D magnetic reconnection between an emerging, twisted magnetic flux rope and a pre-existing weak, open magnetic field. We first follow the rise of an unstable, twisted flux tube with a resistive MHD simulation where the numerical resolution is enhanced by using fixed mesh refinement. As in previous MHD investigations of similar situations the rise of the flux tube into the pre-existing inclined coronal magnetic field results in the formation of a solar coronal jet. A snapshot of the MHD model is then used as an initial and boundary condition for a particle-in-cell simulation, using up to half a billion cells and over 20 billion charged particle. Particle acceleration occurs mainly in the reconnection current sheet, with accelerated electrons displaying a power law dN/dE distribution with an index of about -1.65. The main acceleration mechanism is a systematic electric field, striving to maintaining the electric current in the current sheet against losses cau...

  6. Power supply design for the filament of the high-voltage electron accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lige; Yang, Lei; Yang, Jun, E-mail: jyang@mail.hust.edu.cn; Huang, Jiang; Liu, Kaifeng; Zuo, Chen

    2015-12-21

    The filament is a key component for the electron emission in the high-voltage electron accelerator. In order to guarantee the stability of the beam intensity and ensure the proper functioning for the power supply in the airtight steel barrel, an efficient filament power supply under accurate control is required. The paper, based on the dual-switch forward converter and synchronous rectification technology, puts forward a prototype of power supply design for the filament of the high-voltage accelerator. The simulation is conducted with MATLAB-Simulink on the main topology and the control method. Loss analysis and thermal analysis are evaluated using the FEA method. Tests show that in this prototype, the accuracy of current control is higher than 97.5%, and the efficiency of the power supply reaches 87.8% when the output current is 40 A.

  7. Particle-in-cell simulations of plasma accelerators and electron-neutral collisions

    Energy Technology Data Exchange (ETDEWEB)

    Bruhwiler, David L.; Giacone, Rodolfo E.; Cary, John R.; Verboncoeur, John P.; Mardahl, Peter; Esarey, Eric; Leemans, W.P.; Shadwick, B.A.

    2001-10-01

    We present 2-D simulations of both beam-driven and laser-driven plasma wakefield accelerators, using the object-oriented particle-in-cell code XOOPIC, which is time explicit, fully electromagnetic, and capable of running on massively parallel supercomputers. Simulations of laser-driven wakefields with low ({approx}10{sup 16} W/cm{sup 2}) and high ({approx}10{sup 18} W/cm{sup 2}) peak intensity laser pulses are conducted in slab geometry, showing agreement with theory and fluid simulations. Simulations of the E-157 beam wakefield experiment at the Stanford Linear Accelerator Center, in which a 30 GeV electron beam passes through 1 m of preionized lithium plasma, are conducted in cylindrical geometry, obtaining good agreement with previous work. We briefly describe some of the more significant modifications of XOOPIC required by this work, and summarize the issues relevant to modeling relativistic electron-neutral collisions in a particle-in-cell code.

  8. Radiation Field Forming for Industrial Electron Accelerators Using Rare-Earth Magnetic Materials

    Science.gov (United States)

    Ermakov, A. N.; Khankin, V. V.; Shvedunov, N. V.; Shvedunov, V. I.; Yurov, D. S.

    2016-09-01

    The article describes the radiation field forming system for industrial electron accelerators, which would have uniform distribution of linear charge density at the surface of an item being irradiated perpendicular to the direction of its motion. Its main element is non-linear quadrupole lens made with the use of rare-earth magnetic materials. The proposed system has a number of advantages over traditional beam scanning systems that use electromagnets, including easier product irradiation planning, lower instantaneous local dose rate, smaller size, lower cost. Provided are the calculation results for a 10 MeV industrial electron accelerator, as well as measurement results for current distribution in the prototype build based on calculations.

  9. Direct acceleration of electrons by a CO2 laser in a curved plasma waveguide

    OpenAIRE

    Longqing Yi; Alexander Pukhov; Baifei Shen

    2016-01-01

    Laser plasma interaction with micro-engineered targets at relativistic intensities has been greatly promoted by recent progress in the high contrast lasers and the manufacture of advanced micro- and nano-structures. This opens new possibilities for the physics of laser-matter interaction. Here we propose a novel approach that leverages the advantages of high-pressure CO$_{2}$ laser, laser-waveguide interaction, as well as micro-engineered plasma structure to accelerate electrons to peak energ...

  10. ELECTRON AND PROTON ACCELERATION DURING THE FIRST GROUND LEVEL ENHANCEMENT EVENT OF SOLAR CYCLE 24

    Energy Technology Data Exchange (ETDEWEB)

    Li, C.; Sun, L. P. [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Firoz, Kazi A. [Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China); Miroshnichenko, L. I., E-mail: lic@nju.edu.cn [N. V. Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation (IZMIRAN), Russian Academy of Sciences, Troitsk, 142190 Moscow Region (Russian Federation)

    2013-06-10

    High-energy particles were recorded by near-Earth spacecraft and ground-based neutron monitors (NMs) on 2012 May 17. This event was the first ground level enhancement (GLE) of solar cycle 24. In this study, we try to identify the acceleration source(s) of solar energetic particles by combining in situ particle measurements from the WIND/3DP, GOES 13, and solar cosmic rays registered by several NMs, as well as remote-sensing solar observations from SDO/AIA, SOHO/LASCO, and RHESSI. We derive the interplanetary magnetic field (IMF) path length (1.25 {+-} 0.05 AU) and solar particle release time (01:29 {+-} 00:01 UT) of the first arriving electrons by using their velocity dispersion and taking into account contamination effects. We found that the electron impulsive injection phase, indicated by the dramatic change in the spectral index, is consistent with flare non-thermal emission and type III radio bursts. Based on the potential field source surface concept, modeling of the open-field lines rooted in the active region has been performed to provide escape channels for flare-accelerated electrons. Meanwhile, relativistic protons are found to be released {approx}10 minutes later than the electrons, assuming their scatter-free travel along the same IMF path length. Combining multi-wavelength imaging data of the prominence eruption and coronal mass ejection (CME), we obtain evidence that GLE protons, with an estimated kinetic energy of {approx}1.12 GeV, are probably accelerated by the CME-driven shock when it travels to {approx}3.07 solar radii. The time-of-maximum spectrum of protons is typical for shock wave acceleration.

  11. Van Allen Probes observations of prompt MeV radiation belt electron acceleration in nonlinear interactions with VLF chorus

    Science.gov (United States)

    Foster, J. C.; Erickson, P. J.; Omura, Y.; Baker, D. N.; Kletzing, C. A.; Claudepierre, S. G.

    2017-01-01

    Prompt recovery of MeV (millions of electron Volts) electron populations in the poststorm core of the outer terrestrial radiation belt involves local acceleration of a seed population of energetic electrons in interactions with VLF chorus waves. Electron interactions during the generation of VLF rising tones are strongly nonlinear, such that a fraction of the relativistic electrons at resonant energies are trapped by waves, leading to significant nonadiabatic energy exchange. Through detailed examination of VLF chorus and electron fluxes observed by Van Allen Probes, we investigate the efficiency of nonlinear processes for acceleration of electrons to MeV energies. We find through subpacket analysis of chorus waveforms that electrons with initial energy of hundreds of keV to 3 MeV can be accelerated by 50 keV-200 keV in resonant interactions with a single VLF rising tone on a time scale of 10-100 ms.

  12. Transport and Non-Invasive Position Detection of Electron Beams from Laser-Plasma Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Osterhoff, Jens; Sokollik, Thomas; Nakamura, Kei; Bakeman, Michael; Weingartner, R; Gonsalves, Anthony; Shiraishi, Satomi; Lin, Chen; vanTilborg, Jeroen; Geddes, Cameron; Schroeder, Carl; Esarey, Eric; Toth, Csaba; DeSantis, Stefano; Byrd, John; Gruner, F; Leemans, Wim

    2011-07-20

    The controlled imaging and transport of ultra-relativistic electrons from laser-plasma accelerators is of crucial importance to further use of these beams, e.g. in high peak-brightness light sources. We present our plans to realize beam transport with miniature permanent quadrupole magnets from the electron source through our THUNDER undulator. Simulation results demonstrate the importance of beam imaging by investigating the generated XUV-photon flux. In addition, first experimental findings of utilizing cavity-based monitors for non-invasive beam-position measurements in a noisy electromagnetic laser-plasma environment are discussed.

  13. The case for electron re-acceleration at galaxy cluster shocks

    Science.gov (United States)

    van Weeren, Reinout J.; Andrade-Santos, Felipe; Dawson, William A.; Golovich, Nathan; Lal, Dharam V.; Kang, Hyesung; Ryu, Dongsu; Brìggen, Marcus; Ogrean, Georgiana A.; Forman, William R.; Jones, Christine; Placco, Vinicius M.; Santucci, Rafael M.; Wittman, David; Jee, M. James; Kraft, Ralph P.; Sobral, David; Stroe, Andra; Fogarty, Kevin

    2017-01-01

    On the largest scales, the Universe consists of voids and filaments making up the cosmic web. Galaxy clusters are located at the knots in this web, at the intersection of filaments. Clusters grow through accretion from these large-scale filaments and by mergers with other clusters and groups. In a growing number of galaxy clusters, elongated Mpc-sized radio sources have been found1,2 . Also known as radio relics, these regions of diffuse radio emission are thought to trace relativistic electrons in the intracluster plasma accelerated by low-Mach-number shocks generated by cluster-cluster merger events 3 . A long-standing problem is how low-Mach-number shocks can accelerate electrons so efficiently to explain the observed radio relics. Here, we report the discovery of a direct connection between a radio relic and a radio galaxy in the merging galaxy cluster Abell 3411-3412 by combining radio, X-ray and optical observations. This discovery indicates that fossil relativistic electrons from active galactic nuclei are re-accelerated at cluster shocks. It also implies that radio galaxies play an important role in governing the non-thermal component of the intracluster medium in merging clusters.

  14. 1 MeV, 10 kW DC electron accelerator for industrial applications

    Science.gov (United States)

    Nayak, B.; Acharya, S.; Bhattacharjee, D.; Bakhtsingh, R. I.; Rajan, R.; Sharma, D. K.; Dewangan, S.; Sharma, V.; Patel, R.; Tiwari, R.; Benarjee, S.; Srivastava, S. K.

    2016-03-01

    Several modern applications of radiation processing like medical sterilization, rubber vulcanization, polymerization, cross-linking and pollution control from thermal power stations etc. require D.C. electron accelerators of energy ranging from a few hundred keVs to few MeVs and power from a few kilowatts to hundreds of kilowatts. To match these requirements, a 3 MeV, 30 kW DC electron linac has been developed at BARC, Mumbai and current operational experience of 1 MeV, 10 kW beam power will be described in this paper. The LINAC composed mainly of Electron Gun, Accelerating Tubes, Magnets, High Voltage source and provides 10 kW beam power at the Ti beam window stably after the scanning section. The control of the LINAC is fully automated. Here Beam Optics study is carried out to reach the preferential parameters of Accelerating as well as optical elements. Beam trials have been conducted to find out the suitable operation parameters of the system.

  15. Features of accelerated electron beam formation in LHCD experiments on FT-2 tokamak

    Science.gov (United States)

    Lashkul, S. I.; Rozhdestvensky, V. V.; Altukhov, A. B.; Dyachenko, V. V.; Esipov, L. A.; Kantor, M. Yu.; Krikunov, S. V.; Kuprienko, D. V.; Stepanov, A. Yu.

    2012-12-01

    In experiments with lower hybrid current drive (LHCD) on the FT-2 tokamak, lower hybrid (LH) waves have been successfully used for the first time to ensure effective additional heating of plasma electrons from 450 to 600 eV ( I Pl = 32 kA, Δ t RF = 14 ms, P RF = 100 kW, F = 920 MHz). Several factors influencing the efficiency of plasma heating have been discovered. In particular, significant growth of radiation losses in the LHCD regime has been found, which is probably related to an increase in the intensity of synchrotron radiation from accelerated electrons. The increase in this intensity in the 53-156 GHz frequency range was accompanied by short spikes of microwave radiation, which were observed only in a narrower frequency range (53-78 GHz) and apparently resulted from interaction of a runaway electron beam with significant local mirrors of toroidal magnetic field. A model of the additional heating of plasma electrons due to absorption of the microwave radiation generated by a beam of accelerated electrons is proposed.

  16. Electron Lenses and Cooling for the Fermilab Integrable Optics Test Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Stancari, G. [Fermilab; Burov, A. [Fermilab; Lebedev, V. [Fermilab; Nagaitsev, S. [Fermilab; Prebys, E. [Fermilab; Valishev, A. [Fermilab

    2015-11-05

    Recently, the study of integrable Hamiltonian systems has led to nonlinear accelerator lattices with one or two transverse invariants and wide stable tune spreads. These lattices may drastically improve the performance of high-intensity machines, providing Landau damping to protect the beam from instabilities, while preserving dynamic aperture. The Integrable Optics Test Accelerator (IOTA) is being built at Fermilab to study these concepts with 150-MeV pencil electron beams (single-particle dynamics) and 2.5-MeV protons (dynamics with self fields). One way to obtain a nonlinear integrable lattice is by using the fields generated by a magnetically confined electron beam (electron lens) overlapping with the circulating beam. The required parameters are similar to the ones of existing devices. In addition, the electron lens will be used in cooling mode to control the brightness of the proton beam and to measure transverse profiles through recombination. More generally, it is of great interest to investigate whether nonlinear integrable optics allows electron coolers to exceed limitations set by both coherent or incoherent instabilities excited by space charge.

  17. Luminescent tracks of high-energy photoemitted electrons accelerated by plasmonic fields

    Directory of Open Access Journals (Sweden)

    Di Vece Marcel

    2015-12-01

    Full Text Available The emission of an electron from a metal nanostructure under illumination and its subsequent acceleration in a plasmonic field forms a platform to extend these phenomena to deposited nanoparticles, which can be studied by state-of-the-art confocal microscopy combined with femtosecond optical excitation. The emitted and accelerated electrons leave defect tracks in the immersion oil, which can be revealed by thermoluminescence. These photographic tracks are read out with the confocal microscope and have a maximum length of about 80 μm, which corresponds to a kinetic energy of about 100 keV. This energy is consistent with the energy provided by the intense laser pulse combined with plasmonic local field enhancement. The results are discussed within the context of the rescattering model by which electrons acquire more energy. The visualization of electron tracks originating from plasmonic field enhancement around a gold nanoparticle opens a new way to study with confocal microscopy both the plasmonic properties of metal nano objects as well as high energy electron interaction with matter.

  18. Physical processes at work in sub-30 fs, PW laser pulse-driven plasma accelerators: Towards GeV electron acceleration experiments at CILEX facility

    Science.gov (United States)

    Beck, A.; Kalmykov, S. Y.; Davoine, X.; Lifschitz, A.; Shadwick, B. A.; Malka, V.; Specka, A.

    2014-03-01

    Optimal regimes and physical processes at work are identified for the first round of laser wakefield acceleration experiments proposed at a future CILEX facility. The Apollon-10P CILEX laser, delivering fully compressed, near-PW-power pulses of sub-25 fs duration, is well suited for driving electron density wakes in the blowout regime in cm-length gas targets. Early destruction of the pulse (partly due to energy depletion) prevents electrons from reaching dephasing, limiting the energy gain to about 3 GeV. However, the optimal operating regimes, found with reduced and full three-dimensional particle-in-cell simulations, show high energy efficiency, with about 10% of incident pulse energy transferred to 3 GeV electron bunches with sub-5% energy spread, half-nC charge, and absolutely no low-energy background. This optimal acceleration occurs in 2 cm length plasmas of electron density below 1018 cm-3. Due to their high charge and low phase space volume, these multi-GeV bunches are tailor-made for staged acceleration planned in the framework of the CILEX project. The hallmarks of the optimal regime are electron self-injection at the early stage of laser pulse propagation, stable self-guiding of the pulse through the entire acceleration process, and no need for an external plasma channel. With the initial focal spot closely matched for the nonlinear self-guiding, the laser pulse stabilizes transversely within two Rayleigh lengths, preventing subsequent evolution of the accelerating bucket. This dynamics prevents continuous self-injection of background electrons, preserving low phase space volume of the bunch through the plasma. Near the end of propagation, an optical shock builds up in the pulse tail. This neither disrupts pulse propagation nor produces any noticeable low-energy background in the electron spectra, which is in striking contrast with most of existing GeV-scale acceleration experiments.

  19. Physical processes at work in sub-30 fs, PW laser pulse-driven plasma accelerators: Towards GeV electron acceleration experiments at CILEX facility

    Energy Technology Data Exchange (ETDEWEB)

    Beck, A., E-mail: beck@llr.in2p3.fr [Laboratoire Leprince-Ringuet – École Polytechnique, CNRS-IN2P3, Palaiseau 91128 (France); Kalmykov, S.Y., E-mail: skalmykov2@unl.edu [Department of Physics and Astronomy, University of Nebraska – Lincoln, Nebraska 68588-0299 (United States); Davoine, X. [CEA, DAM, DIF, Arpajon F-91297 (France); Lifschitz, A. [Laboratoire d' Optique Appliquée, ENSTA ParisTech-CNRS UMR7639-École Polytechnique, Palaiseau 91762 (France); Shadwick, B.A. [Department of Physics and Astronomy, University of Nebraska – Lincoln, Nebraska 68588-0299 (United States); Malka, V. [Laboratoire d' Optique Appliquée, ENSTA ParisTech-CNRS UMR7639-École Polytechnique, Palaiseau 91762 (France); Specka, A. [Laboratoire Leprince-Ringuet – École Polytechnique, CNRS-IN2P3, Palaiseau 91128 (France)

    2014-03-11

    Optimal regimes and physical processes at work are identified for the first round of laser wakefield acceleration experiments proposed at a future CILEX facility. The Apollon-10P CILEX laser, delivering fully compressed, near-PW-power pulses of sub-25 fs duration, is well suited for driving electron density wakes in the blowout regime in cm-length gas targets. Early destruction of the pulse (partly due to energy depletion) prevents electrons from reaching dephasing, limiting the energy gain to about 3 GeV. However, the optimal operating regimes, found with reduced and full three-dimensional particle-in-cell simulations, show high energy efficiency, with about 10% of incident pulse energy transferred to 3 GeV electron bunches with sub-5% energy spread, half-nC charge, and absolutely no low-energy background. This optimal acceleration occurs in 2 cm length plasmas of electron density below 10{sup 18} cm{sup −3}. Due to their high charge and low phase space volume, these multi-GeV bunches are tailor-made for staged acceleration planned in the framework of the CILEX project. The hallmarks of the optimal regime are electron self-injection at the early stage of laser pulse propagation, stable self-guiding of the pulse through the entire acceleration process, and no need for an external plasma channel. With the initial focal spot closely matched for the nonlinear self-guiding, the laser pulse stabilizes transversely within two Rayleigh lengths, preventing subsequent evolution of the accelerating bucket. This dynamics prevents continuous self-injection of background electrons, preserving low phase space volume of the bunch through the plasma. Near the end of propagation, an optical shock builds up in the pulse tail. This neither disrupts pulse propagation nor produces any noticeable low-energy background in the electron spectra, which is in striking contrast with most of existing GeV-scale acceleration experiments.

  20. Treatment of industrial effluents using electron beam accelerator and adsorption with activated carbon: a comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira Sampa, M.H. de E-mail: mhosampa@ipen.br; Rela, Paulo Roberto; Las Casas, Alexandre; Nunes Mori, Manoel; Lopes Duarte, Celina

    2004-10-01

    This paper presents preliminary results of a study that compares the use of electron beam processing and activated carbon adsorption to clean up a standardized organic aqueous solution and a real industrial effluent. The electron beam treatment was performed in a batch system using the IPEN's Electron Beam Accelerators from Radiation Dynamics Inc., Dynamitron 37.5 kW. The granular activated carbon removal treatment was performed using charcoal made from wood 'pinus'. If the adequate irradiation dose is delivered to the organic pollutant, it is possible to conclude for the studied compounds that the Electron Beam Process is similar to the activated carbon process in organic removal efficiency.

  1. Modification and alignment of beam line of 10 MeV RF electron beam accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Barnwal, R; Ghodke, S R; Bhattacharjee, D; Kumar, M; Jayaprakash, D; Chindarkar, A R; Mishra, R L; Kumar, M; P, Dixit K; S, Acharya; Barje, S R; Lawangare, N K; C, Saroj P; Nimje, V T; Chandan, S; Tillu, A R; V, Sharma; Chavan, R B [Accelerator and Pulse Power Division, BARC, Mumbai, India-400085 (India); Dolas, S [Centre for Design and Manufacturing, BARC, Mumbai, India-400085 (India); Kulkarni, S Y [SAMEER, IIT Powai campus, Mumbai, India-400076 (India)], E-mail: rajesh_barc47@indiatimes.com (and others)

    2008-05-01

    A 10 MeV, 10 kW RF industrial Electron linac designed and developed at BARC is installed at the Electron Beam Center Kharghar, Navi Mumbai. The entire RF accelerator assembly consists of Electron gun, RF source, RF linac structure, Beam diagnostic chamber, Drift tube, Scanning magnet, Beam sensing aperture, Scan horn, and is spread over two floors at EBC. The paper discusses in detail about the alignment procedure adopted for the equipments of 10 MeV RF beamline. The complete electron beamline will be maintained under ultra high vacuum of the order of 10-7 torr. The paper discusses about the present problem of alignment, measurement technique of alignment, reason for misalignment, possible ways to solve the problem, equipment used for alignment, supports and arrestors, verification of alignment under vacuum.

  2. Modification & alignment of beam line of 10 MeV RF electron beam accelerator

    Science.gov (United States)

    Barnwal, R.; Ghodke, S. R.; Bhattacharjee, D.; Kumar, M.; Jayaprakash, D.; Chindarkar, A. R.; Mishra, R. L.; Dolas, S.; Kulkarni, S. Y.; Kumar, M.; P, Dixit K.; S, Acharya; Barje, S. R.; Lawangare, N. K.; C, Saroj P.; Nimje, V. T.; Chandan, S.; Tillu, A. R.; V, Sharma; Chavan, R. B.; V, Yadav; P, Roychowdhury; Mittal, K. C.; Chakravarthy, D. P.; Ray, A. K.

    2008-05-01

    A 10 MeV, 10 kW RF industrial Electron linac designed and developed at BARC is installed at the Electron Beam Center Kharghar, Navi Mumbai. The entire RF accelerator assembly consists of Electron gun, RF source, RF linac structure, Beam diagnostic chamber, Drift tube, Scanning magnet, Beam sensing aperture, Scan horn, and is spread over two floors at EBC. The paper discusses in detail about the alignment procedure adopted for the equipments of 10 MeV RF beamline. The complete electron beamline will be maintained under ultra high vacuum of the order of 10-7 torr. The paper discusses about the present problem of alignment, measurement technique of alignment, reason for misalignment, possible ways to solve the problem, equipment used for alignment, supports & arrestors, verification of alignment under vacuum

  3. Ultra-High-Contrast Laser Acceleration of Relativistic Electrons in Solid Targets

    Energy Technology Data Exchange (ETDEWEB)

    Higginson, Drew Pitney [Univ. of California, San Diego, CA (United States)

    2013-01-01

    The cone-guided fast ignition approach to Inertial Con nement Fusion requires laser-accelerated relativistic electrons to deposit kilojoules of energy within an imploded fuel core to initiate fusion burn. One obstacle to coupling electron energy into the core is the ablation of material, known as preplasma, by laser energy proceeding nanoseconds prior to the main pulse. This causes the laser-absorption surface to be pushed back hundreds of microns from the initial target surface; thus increasing the distance that electrons must travel to reach the imploded core. Previous experiments have shown an order of magnitude decrease in coupling into surrogate targets when intentionally increasing the amount of preplasma. Additionally, for electrons to deposit energy within the core, they should have kinetic energies on the order of a few MeV, as less energetic electrons will be stopped prior to the core and more energetic electrons will pass through the core without depositing much energy. Thus a quantitative understanding of the electron energy spectrum and how it responds to varied laser parameters is paramount for fast ignition. For the rst time, this dissertation quantitatively investigates the acceleration of electrons using an ultra-high-contrast laser. Ultra-high-contrast lasers reduce the laser energy that reaches the target prior to the main pulse; drastically reducing the amount of preplasma. Experiments were performed in a cone-wire geometry relevant to fast ignition. These experiments irradiated the inner-tip of a Au cone with the laser and observed electrons that passed through a Cu wire attached to the outer-tip of the cone. The total emission of K x-rays is used as a diagnostic to infer the electron energy coupled into the wire. Imaging the x-ray emission allowed an e ective path-length of electrons within the wire to be determined, which constrained the electron energy spectrum. Experiments were carried out on the ultra-high-contrast Trident laser at Los

  4. Direct acceleration of electrons by a CO2 laser in a curved plasma waveguide

    Science.gov (United States)

    Yi, Longqing; Pukhov, Alexander; Shen, Baifei

    2016-06-01

    Laser plasma interaction with micro-engineered targets at relativistic intensities has been greatly promoted by recent progress in the high contrast lasers and the manufacture of advanced micro- and nano-structures. This opens new possibilities for the physics of laser-matter interaction. Here we propose a novel approach that leverages the advantages of high-pressure CO2 laser, laser-waveguide interaction, as well as micro-engineered plasma structure to accelerate electrons to peak energy greater than 1 GeV with narrow slice energy spread (~1%) and high overall efficiency. The acceleration gradient is 26 GV/m for a 1.3 TW CO2 laser system. The micro-bunching of a long electron beam leads to the generation of a chain of ultrashort electron bunches with the duration roughly equal to half-laser-cycle. These results open a way for developing a compact and economic electron source for diverse applications.

  5. Nanosecond pulse-width electron diode based on dielectric wall accelerator technology

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Quantang, E-mail: zhaoquantang@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Z.M.; Yuan, P.; Cao, S.C.; Shen, X.K.; Jing, Y. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Yu, C.S. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Li, Z.P.; Liu, M.; Xiao, R.Q. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Zong, Y.; Wang, Y.R. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhao, H.W. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2013-11-21

    An electron diode using a short section of dielectric wall accelerator (DWA) has been under development at the Institute of Modern Physics (IMP), Chinese Academy of Sciences. Tests have been carried out with spark gap switches triggered by lasers. The stack voltage efficiency of a four-layer of Blumleins reached about 60–70% with gas filled spark gap switching. The generated pulse voltage of peak amplitude of 23 kV and pulse width of 5 ns is used to extract and accelerate an electron beam of 320 mA, measured by a fast current transformer. A nanosecond pulse width electron diode was achieved successfully. Furthermore, the principle of a DWA is well proven and the development details and discussions are presented in this article. -- Highlights: •The key technology of DWA, including switches and pulse forming lines were studied. •The SiC PCSS obtained from Shanghai Institute were tested. •Two layers ZIP lines (new structure) and four layers Blumlein lines were studied with laser triggered spark gap switches. •A nanosecond pulse-width electron diode based on DWA technologies is achieved and studied experimentally. •The principle of DWA is also proved by the diode.

  6. Neutron research and facility development at the Oak Ridge Electron Linear Accelerator 1970 to 1995

    Energy Technology Data Exchange (ETDEWEB)

    Peelle, R.W.; Harvey, J.A.; Maienschein, F.C.; Weston, L.W.; Olsen, D.K.; Larson, D.C.; Macklin, R.L.

    1982-07-01

    This report reviews the accomplishments of the first decade of operation of the Oak Ridge Electron Linear Accelerator (ORELA) and discusses the plans for the facility in the coming decade. Motivations for scientific and applied research during the next decade are included. In addition, ORELA is compared with competing facilities, and prospects for ORELA's improvement and even replacement are reported. Development efforts for the next few years are outlined that are consistent with the anticipated research goals. Recommendations for hardware development include improving the electron injection system to give much larger short-pulse currents on a reliable basis, constructing an Electron Beam Injector Laboratory to help make this improvement possible, continuing a study of possibly replacing the electron accelerator with a proton machine, and replacing or upgrading the facility's data-acquistion and immediate-analysis computer systems. Increased operating time and more involvement of nuclear theorists are recommended, and an effective staff size for optimum use of this unique facility is discussed. A bibliography of all ORELA-related publications is included.

  7. Implications of X-ray Observations for Electron Acceleration and Propagation in Solar Flares

    CERN Document Server

    Holman, Gordon D; Aurass, Henry; Battaglia, Marina; Grigis, Paolo C; Kontar, Eduard P; Liu, Wei; Saint-Hilaire, Pascal; Zharkova, Valentina V

    2011-01-01

    High-energy X-rays and gamma-rays from solar flares were discovered just over fifty years ago. Since that time, the standard for the interpretation of spatially integrated flare X-ray spectra at energies above several tens of keV has been the collisional thick-target model. After the launch of the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) in early 2002, X-ray spectra and images have been of sufficient quality to allow a greater focus on the energetic electrons responsible for the X-ray emission, including their origin and their interactions with the flare plasma and magnetic field. The result has been new insights into the flaring process, as well as more quantitative models for both electron acceleration and propagation, and for the flare environment with which the electrons interact. In this article we review our current understanding of electron acceleration, energy loss, and propagation in flares. Implications of these new results for the collisional thick-target model, for general fla...

  8. Recent developments in the application of electron accelerators for polymer processing

    Science.gov (United States)

    Chmielewski, A. G.; Al-Sheikhly, M.; Berejka, A. J.; Cleland, M. R.; Antoniak, M.

    2014-01-01

    There are now over 1700 high current, electron beam (EB) accelerators being used world-wide in industrial applications, most of which involve polymer processing. In contrast to the use of heat, which transfers only about 5-10% of input energy into energy useful for materials modification, radiation processing is very energy efficient, with 60% or more of the input energy to an accelerator being available for affecting materials. Historic markets, such as the crosslinking of wire and cable jacketing, of heat shrinkable tubings and films, of partial crosslinking of tire components and of low-energy EB to cure or dry inks and coatings remain strong. Accelerator manufacturers have made equipment more affordable by down-sizing units while maintaining high beam currents. Very powerful accelerators with 700 kW output have made X-ray conversion a practical alternative to the historic use of radioisotopes, mainly cobalt-60, for applications as medical device sterilization. New EB end-uses are emerging, such as the development of nano-composites and nano-gels and the use of EB processing to facilitate biofuel production. These present opportunities for future research and development.

  9. Alchemy in Cambridge. An Annotated Catalogue of Alchemical Texts and Illustrations in Cambridge Repositories.

    Science.gov (United States)

    Timmermann, Anke

    2015-01-01

    Alchemy in Cambridge captures the alchemical content of 56 manuscripts in Cambridge, in particular the libraries of Trinity College, Corpus Christi College and St John's College, the University Library and the Fitzwilliam Museum. As such, this catalogue makes visible a large number of previously unknown or obscured alchemica. While extant bibliographies, including those by M.R. James a century ago, were compiled by polymathic bibliographers for a wide audience of researchers, Alchemy in Cambridge benefits from the substantial developments in the history of alchemy, bibliography, and related scholarship in recent decades. Many texts are here identified for the first time. Another vital feature is the incorporation of information on alchemical illustrations in the manuscripts, intended to facilitate research on the visual culture of alchemy. The catalogue is aimed at historians of alchemy and science, and of high interest to manuscript scholars, historians of art and historians of college and university libraries.

  10. Simulations of slow positron production using a low energy electron accelerator

    CERN Document Server

    O'Rourke, B E; Kinomura, A; Kuroda, R; Minehara, E; Ohdaira, T; Oshima, N; Suzuki, R

    2011-01-01

    Monte Carlo simulations of slow positron production via energetic electron interaction with a solid target have been performed. The aim of the simulations was to determine the expected slow positron beam intensity from a low energy, high current electron accelerator. By simulating (a) the fast positron production from a tantalum electron-positron converter and (b) the positron depth deposition profile in a tungsten moderator, the slow positron production probability per incident electron was estimated. Normalizing the calculated result to the measured slow positron yield at the present AIST LINAC the expected slow positron yield as a function of energy was determined. For an electron beam energy of 5 MeV (10 MeV) and current 240 $\\mu$A (30 $\\mu$A) production of a slow positron beam of intensity 5 $\\times$ 10$^{6}$ s$^{-1}$ is predicted. The simulation also calculates the average energy deposited in the converter per electron, allowing an estimate of the beam heating at a given electron energy and current. For...

  11. Laser Acceleration and Deflection of 96.3 keV Electrons with a Silicon Dielectric Structure

    CERN Document Server

    Leedle, Kenneth J; Byer, Robert L; Harris, James S

    2014-01-01

    Radio frequency particle accelerators are ubiquitous in ultra-small and ultrafast science, but their size and cost has prompted exploration of compact and scalable alternatives like the dielectric laser accelerator. We present the first demonstration of high gradient laser acceleration and deflection of electrons with a silicon structure. Driven by a five nanojoule, 130 fs mode-locked Ti:Sapphire laser at 907 nm wavelength, our devices achieve accelerating gradients in excess of 200 MeV/m and sub-optical cycle streaking of 96.30 keV electrons. These results pave the way for high gradient silicon dielectric laser accelerators using commercial lasers and sub-femtosecond electron beam experiments.

  12. The effect of longitudinal density gradient on electron plasma wake field acceleration

    CERN Document Server

    Tsiklauri, David

    2016-01-01

    3-, 2- and 1-dimensional, particle-in-cell, fully electromagnetic simulations of electron plasma wake field acceleration in the blow out regime are presented. Earlier results are extended by (i) studying the effect of longitudinal density gradient; (ii) avoiding use of co-moving simulation box; (iii) inclusion of ion motion; and (iv) studying fully electromagnetic plasma wake fields. It is established that injecting driving and trailing electron bunches into a positive density gradient of ten-fold increasing density over 10 cm long Lithium vapor plasma, results in spatially more compact and three times larger, compared to the uniform density case, electric fields (-6.4 x 10^{10} V/m), leading to acceleration of the trailing bunch up to 24.4 GeV (starting from initial 20.4 GeV), with an energy transfer efficiencies from leading to trailing bunch of 75 percent. In the uniform density case -2.5 x 10^{10} V/m wake is created leading to acceleration of the trailing bunch up to 22.4 GeV, with an energy transfer eff...

  13. Generation of high quality electron beams via ionization injection in a plasma wakefield accelerator

    Science.gov (United States)

    Vafaei-Najafabadi, Navid; Joshi, Chan; E217 SLAC Collaboration

    2016-10-01

    Ionization injection in a beam driven plasma wakefield accelerator has been used to generate electron beams with over 30 GeV of energy in a 130 cm of lithium plasma. The experiments were performed using the 3 nC, 20.35 GeV electron beam at the FACET facility of the SLAC National Accelerator Laboratory as the driver of the wakefield. The ionization of helium atoms in the up ramp of a lithium plasma were injected into the wake and over the length of acceleration maintained an emittance on the order of 30 mm-mrad, which was an order of magnitude smaller than the drive beam, albeit with an energy spread of 10-20%. The process of ionization injection occurs due to an increase in the electric field of the drive beam as it pinches through its betatron oscillations. Thus, this energy spread is attributed to the injection region encompassing multiple betatron oscillations. In this poster, we will present evidence through OSIRIS simulations of producing an injected beam with percent level energy spread and low emittance by designing the plasma parameters appropriately, such that the ionization injection occurs over a very limited distance of one betatron cycle. Work at UCLA was supported by the NSF Grant Number PHY-1415386 and DOE Grant Number DE-SC0010064. Work at SLAC was supported by DOE contract number DE-AC02-76SF00515. Simulations used the Hoffman cluster at UCLA.

  14. Ant colony method to control variance reduction techniques in the Monte Carlo simulation of clinical electron linear accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Pareja, S. [Servicio de Radiofisica Hospitalaria, Hospital Regional Universitario ' Carlos Haya' , Avda. Carlos Haya, s/n, E-29010 Malaga (Spain)], E-mail: garciapareja@gmail.com; Vilches, M. [Servicio de Fisica y Proteccion Radiologica, Hospital Regional Universitario ' Virgen de las Nieves' , Avda. de las Fuerzas Armadas, 2, E-18014 Granada (Spain); Lallena, A.M. [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad de Granada, E-18071 Granada (Spain)

    2007-09-21

    The ant colony method is used to control the application of variance reduction techniques to the simulation of clinical electron linear accelerators of use in cancer therapy. In particular, splitting and Russian roulette, two standard variance reduction methods, are considered. The approach can be applied to any accelerator in a straightforward way and permits, in addition, to investigate the 'hot' regions of the accelerator, an information which is basic to develop a source model for this therapy tool.

  15. Nano-scale electron bunching in laser-triggered ionization injection in plasma accelerators

    CERN Document Server

    Xu, X L; Li, F; Wan, Y; Wu, Y P; Hua, J F; Pai, C -H; Lu, W; An, W; Yu, P; Mori, W B; Joshi, C

    2015-01-01

    Ionization injection is attractive as a controllable injection scheme for generating high quality electron beams using plasma-based wakefield acceleration. Due to the phase dependent tunneling ionization rate and the trapping dynamics within a nonlinear wake, the discrete injection of electrons within the wake is nonlinearly mapped to discrete final phase space structure of the beam at the location where the electrons are trapped. This phenomenon is theoretically analyzed and examined by three-dimensional particle-in-cell simulations which show that three dimensional effects limit the wave number of the modulation to between $> 2k_0$ and about $5k_0$, where $k_0$ is the wavenumber of the injection laser. Such a nano-scale bunched beam can be diagnosed through coherent transition radiation upon its exit from the plasma and may find use in generating high-power ultraviolet radiation upon passage through a resonant undulator.

  16. Nanoscale Electron Bunching in Laser-Triggered Ionization Injection in Plasma Accelerators

    Science.gov (United States)

    Xu, X. L.; Pai, C.-H.; Zhang, C. J.; Li, F.; Wan, Y.; Wu, Y. P.; Hua, J. F.; Lu, W.; An, W.; Yu, P.; Joshi, C.; Mori, W. B.

    2016-07-01

    Ionization injection is attractive as a controllable injection scheme for generating high quality electron beams using plasma-based wakefield acceleration. Because of the phase-dependent tunneling ionization rate and the trapping dynamics within a nonlinear wake, the discrete injection of electrons within the wake is nonlinearly mapped to a discrete final phase space structure of the beam at the location where the electrons are trapped. This phenomenon is theoretically analyzed and examined by three-dimensional particle-in-cell simulations which show that three-dimensional effects limit the wave number of the modulation to between >2 k0 and about 5 k0, where k0 is the wave number of the injection laser. Such a nanoscale bunched beam can be diagnosed by and used to generate coherent transition radiation and may find use in generating high-power ultraviolet radiation upon passage through a resonant undulator.

  17. Generation of 20 kA electron beam from a laser wakefield accelerator

    Science.gov (United States)

    Li, Y. F.; Li, D. Z.; Huang, K.; Tao, M. Z.; Li, M. H.; Zhao, J. R.; Ma, Y.; Guo, X.; Wang, J. G.; Chen, M.; Hafz, N.; Zhang, J.; Chen, L. M.

    2017-02-01

    We present the experimentally generated electron bunch from laser-wakefield acceleration (LWFA) with a charge of 620 pC and a maximum energy up to 0.6 GeV by irradiating 80 TW laser pulses at a 3 mm Helium gas jet. The charge of injected electrons is much larger than the normal scaling laws of LWFA in bubble regime. We also got a quasi-monoenergetic electron beam with energy peaked at 249 MeV and a charge of 68 pC with the similar laser conditions but lower plasma density. As confirmed by 2D particle-in-cell simulations, the boosted bunch charge is due to the continuous injection caused by the self-steepening and self-compression of a laser pulse. During the nonlinear evolution of the laser pulse, the bubble structure broadens and stretches, leading to a longer dephasing length and larger beam charge.

  18. Structure of a strong supernova shock wave and rapid electron acceleration confined in its transition region

    CERN Document Server

    Shimada, Nobue; Amano, Takanobu; 10.1063/1.3322828

    2010-01-01

    A new rapid energization process within a supernova shock transition region (STR) is reported by utilizing numerical simulation. Although the scale of a STR as a main dissipation region is only several hundreds of thousands km, several interesting structures are found relating to generation of a root of the energetic particles. The nonlinear evolution of plasma instabilities lead to a dynamical change in the ion phase space distribution which associates with change of the field properties. As a result, different types of large-amplitude field structures appear. One is the leading wave packet and another is a series of magnetic solitary humps. Each field structure has a microscopic scale (~ the ion inertia length). Through the multiple nonlinear scattering between these large-amplitude field structures, electrons are accelerated directly. Within a STR, quick thermalization realizes energy equipartition between the ion and electron, hot electrons play an important role in keeping these large-amplitude field str...

  19. An Electron Bunch Compression Scheme for a Superconducting Radio Frequency Linear Accelerator Driven Light Source

    Energy Technology Data Exchange (ETDEWEB)

    C. Tennant, S.V. Benson, D. Douglas, P. Evtushenko, R.A. Legg

    2011-09-01

    We describe an electron bunch compression scheme suitable for use in a light source driven by a superconducting radio frequency (SRF) linac. The key feature is the use of a recirculating linac to perform the initial bunch compression. Phasing of the second pass beam through the linac is chosen to de-chirp the electron bunch prior to acceleration to the final energy in an SRF linac ('afterburner'). The final bunch compression is then done at maximum energy. This scheme has the potential to circumvent some of the most technically challenging aspects of current longitudinal matches; namely transporting a fully compressed, high peak current electron bunch through an extended SRF environment, the need for a RF harmonic linearizer and the need for a laser heater. Additional benefits include a substantial savings in capital and operational costs by efficiently using the available SRF gradient.

  20. Evidence for acceleration of outer zone electrons to relativistic energies by whistler mode chorus

    Directory of Open Access Journals (Sweden)

    N. P. Meredith

    Full Text Available We use plasma wave and electron data from the Combined Release and Radiation Effects Satellite (CRRES to investigate the viability of a local stochastic electron acceleration mechanism to relativistic energies driven by gyroresonant interactions with whistler mode chorus. In particular, we examine the temporal evolution of the spectral response of the electrons and the waves during the 9 October 1990 geomagnetic storm. The observed hardening of the electron energy spectra over about 3 days in the recovery phase is coincident with prolonged substorm activity, as monitored by the AE index and enhanced levels of whistler mode chorus waves. The observed spectral hardening is observed to take place over a range of energies appropriate to the resonant energies associated with Doppler-shifted cyclotron resonance, as supported by the construction of realistic resonance curves and resonant diffusion surfaces. Furthermore, we show that the observed spectral hardening is not consistent with energy-independent radial diffusion models. These results provide strong circumstantial evidence for a local stochastic acceleration mechanism, involving the energisation of a seed population of electrons with energies of the order of a few hundred keV to relativistic energies, driven by wave-particle interactions involving whistler mode chorus. The results suggest that this mechanism contributes to the reformation of the relativistic outer zone population during geomagnetic storms, and is most effective when the recovery phase is characterised by prolonged substorm activity. An additional significant result of this paper is that we demonstrate that the lower energy part of the storm-time electron distribution is in steady-state balance, in accordance with the Kennel and Petschek (1966 theory of limited stably-trapped particle fluxes.

    Key words. Magnetospheric physics (storms and substorms, energetic particles, trapped – Space plasma physics (wave

  1. Measurement of depth distributions of (3)H and (14)C induced in concrete shielding of an electron accelerator facility.

    Science.gov (United States)

    Endo, Akira; Harada, Yasunori; Kawasaki, Katsuya; Kikuchi, Masamitsu

    2004-06-01

    The estimation of radioactivity induced in concrete shielding is important for the decommissioning of accelerator facilities. Concentrations of (3)H and (14)C in the concrete shielding of an electron linear accelerator were measured, and the depth distributions of (3)H and (14)C and gamma-ray emitters were discussed in relation to their formation reactions.

  2. Concepts and techniques: Active electronics and computers in safety-critical accelerator operation

    Energy Technology Data Exchange (ETDEWEB)

    Frankel, R.S.

    1995-12-31

    The Relativistic Heavy Ion Collider (RHIC) under construction at Brookhaven National Laboratory, requires an extensive Access Control System to protect personnel from Radiation, Oxygen Deficiency and Electrical hazards. In addition, the complicated nature of operation of the Collider as part of a complex of other Accelerators necessitates the use of active electronic measurement circuitry to ensure compliance with established Operational Safety Limits. Solutions were devised which permit the use of modern computer and interconnections technology for Safety-Critical applications, while preserving and enhancing, tried and proven protection methods. In addition a set of Guidelines, regarding required performance for Accelerator Safety Systems and a Handbook of design criteria and rules were developed to assist future system designers and to provide a framework for internal review and regulation.

  3. Electron-beam dynamics for an advanced flash-radiography accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Ekdahl, Carl August Jr. [Los Alamos National Laboratory

    2015-06-22

    Beam dynamics issues were assessed for a new linear induction electron accelerator. Special attention was paid to equilibrium beam transport, possible emittance growth, and beam stability. Especially problematic would be high-frequency beam instabilities that could blur individual radiographic source spots, low-frequency beam motion that could cause pulse-to-pulse spot displacement, and emittance growth that could enlarge the source spots. Beam physics issues were examined through theoretical analysis and computer simulations, including particle-in cell (PIC) codes. Beam instabilities investigated included beam breakup (BBU), image displacement, diocotron, parametric envelope, ion hose, and the resistive wall instability. Beam corkscrew motion and emittance growth from beam mismatch were also studied. It was concluded that a beam with radiographic quality equivalent to the present accelerators at Los Alamos will result if the same engineering standards and construction details are upheld.

  4. Matching sub-fs electron bunches for laser-driven plasma acceleration at SINBAD

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, J., E-mail: jun.zhu@desy.de [Deutsches Elektronen-Synchrotron, DESY, Hamburg (Germany); Universität Hamburg, Hamburg (Germany); Assmann, R.W.; Dorda, U.; Marchetti, B. [Deutsches Elektronen-Synchrotron, DESY, Hamburg (Germany)

    2016-09-01

    We present theoretical and numerical studies of matching sub-femtosecond space-charge-dominated electron bunch into the Laser-plasma Wake Field Accelerator (LWFA) foreseen at the SINBAD facility. The longitudinal space-charge (SC) effect induced growths of the energy spread and longitudinal phase-space chirp are major issues in the matching section, which will result in bunch elongation, emittance growth and spot size dilution. In addition, the transverse SC effect would lead to a mismatch of the beam optics if it were not compensated for. Start-to-end simulations and preliminary optimizations were carried out in order to understand the achievable beam parameters at the entrance of the plasma accelerator.

  5. Accelerating Chart Review Using Automated Methods on Electronic Health Record Data for Postoperative Complications

    Science.gov (United States)

    Hu, Zhen; Melton, Genevieve B.; Moeller, Nathan D.; Arsoniadis, Elliot G.; Wang, Yan; Kwaan, Mary R.; Jensen, Eric H.; Simon, Gyorgy J.

    2016-01-01

    Manual Chart Review (MCR) is an important but labor-intensive task for clinical research and quality improvement. In this study, aiming to accelerate the process of extracting postoperative outcomes from medical charts, we developed an automated postoperative complications detection application by using structured electronic health record (EHR) data. We applied several machine learning methods to the detection of commonly occurring complications, including three subtypes of surgical site infection, pneumonia, urinary tract infection, sepsis, and septic shock. Particularly, we applied one single-task and five multi-task learning methods and compared their detection performance. The models demonstrated high detection performance, which ensures the feasibility of accelerating MCR. Specifically, one of the multi-task learning methods, propensity weighted observations (PWO) demonstrated the highest detection performance, with single-task learning being a close second.

  6. Wake field of electron beam accelerated in a RF-gun of free electron laser 'ELSA'

    CERN Document Server

    Salah, W

    1999-01-01

    Wake field effects driven by a coasting relativistic charged particle beam have been studied for various cavity geometries. In the particular case of a cylindrical 'pill-box' cavity, an analytical expression of the (E, B)(x, t) map has been obtained as a development on the complete base cavity normal modes. We extend this method to the case of an accelerated beam, which leaves the downstream face of the cavity with a thermal velocity, and becomes relativistic in a few cm. This situation is very different from the classical wake of an ultrarelativistic beam for two reasons: (a) in the case of an ultrarelativistic beam, the field directly generated by beam particles in their wake can be neglected, and the so-called wake field is the electromagnetic linear response of the cavity to the exciting signal which is the beam. For a transrelativistic beam, the direct field must be taken into account and added to cavity response, which is no longer linear, except for low-intensity beam; (b) causality prevents any beam's...

  7. GeV electron acceleration by a Gaussian field laser with effect of beam width parameter in magnetized plasma

    Science.gov (United States)

    Ghotra, Harjit Singh; Kant, Niti

    2017-01-01

    Electron acceleration due to a circularly polarized (CP) Gaussian laser field has been investigated theoretically in magnetized plasma. A Gaussian laser beam possesses trapping forces on electrons during its propagation through plasma. A single particle simulation indicates a resonant enhancement of electron acceleration with a Gaussian laser beam. The plasma is magnetized with an axial magnetic field in same direction as that of laser beam propagation. The dependence of laser beam width parameter on electron energy gain with propagation distance has been presented graphically for different values of laser intensity. Electron energy gain is relatively high where the laser beam parameter is at its minimum value. Enhanced energy gain of the order of GeV is reported with magnetic field under 20 MG in plasma. It is also seen that the axial magnetic field maintains the electron acceleration for large propagation distance even with an increasing beam width parameter.

  8. Beam-Induced Multipactoring and Electron-Cloud Effects in Particle Accelerators

    CERN Document Server

    Caspers, Friedhelm; Scandale, Walter; Zimmermann, F

    2009-01-01

    In the beam pipe of high-energy proton or positron accelerators an “electron cloud” can be generated by a variety of processes, e.g. by residual-gas ionization, by photoemission from synchrotron radiation, and, most importantly, by secondary emission via a beam-induced multipactoring process. The electron cloud commonly leads to a degradation of the beam vacuum by several orders of magnitude, to fast beam instabilities, to beam-size increases, and to fast or slow beam losses. At the Large Hadron Collider (LHC), the cloud electrons could also give rise to an additional heat load inside cold superconducting magnets. In addition to the direct heat deposition from incoherently moving electrons, a potential “magnetron effect” has been conjectured, where electrons would radiate coherently when moving in a strong magnetic field under the simultaneous influence of a beam-induced electric “wake” field that may become resonant with the cyclotron frequency. Electron-cloud effects are already being observed w...

  9. Channeling of relativistic laser pulses in underdense plasmas and subsequent electron acceleration

    Directory of Open Access Journals (Sweden)

    Naseri N.

    2013-11-01

    Full Text Available This contribution is concerned with the nonlinear behavior of a relativistic laser pulse focused in an underdense plasma and with the subsequent generation of fast electrons. Specifically, we study the interaction of laser pulses having their intensity Iλ2 in the range [1019, 1020]  W/cm2  μm2, focused in a plasma of electron density n0 such that the ratio n0/nc lies in the interval [10−3, 2 × 10−2], nc denoting the critical density; the laser pulse power PL exceeds the critical power for laser channeling Pch. The laser-plasma interaction in such conditions is investigated by means of 3D Particle in Cell (PIC simulations. It is observed that the laser front gives rise to the excitation of a surface wave which propagates along the sharp boundaries of the electron free channel created by the laser pulse. The mechanism responsible for the generation of the fast electrons observed in the PIC simulations is then analyzed by means of a test particles code. It is thus found that the fast electrons are generated by the combination of the betatron process and of the acceleration by the surface wave. The maximum electron energy observed in the simulations with Iλ2 = 1020  W/cm2  μm2 and n0/nc = 2 × 10−2 is 350 MeV.

  10. The new Cambridge English course student 1

    CERN Document Server

    Swan, Michael

    1991-01-01

    The New Cambridge English Course is a course teachers and students can rely on to cover the complete range and depth of language and skills needed from beginner to upper-intermediate level. Each level is designed to provide at least 72 hours of class work using the Student's Book, with additional self-study material provided in the Practice Book. The course has a proven multi-syllabus approach which integrates work on all the vital aspects of language study: grammar, vocabulary, pronunciation, skills, notions and functions.

  11. Cambridge IGCSE english as a second language

    CERN Document Server

    Reynolds, John

    2014-01-01

    Revised edition for the 2015 syllabus offering the easiest and most cost effective way to teach both the speaking and listening components with one set of books covering two years and free digital material. This title has been written for the revised Cambridge IGCSE English as a Second Language (0510 and 0511) syllabuses, for first teaching from 2013. ? Prepares students for their exams with a focus on assessed language features, such as inference, opinion and attitude. ? Develops language abilities at an appropriate pace with extra interactive tests on a free CD-ROM. We are working with Cambr

  12. Non-Maxwellian electron distributions by direct laser acceleration in near-critical plasmas

    Science.gov (United States)

    Toncian, T.; Wang, C.; Arefiev, A.; McCary, E.; Meadows, A.; Blakeney, J.; Chester, C.; Roycroft, R.; Fu, H.; Yan, X. Q.; Schreiber, J.; Pomerantz, I.; Quevedo, H.; Dyer, G.; Gaul, E.; Ditmire, T.; Hegelich, B. M.

    2015-11-01

    The irradiation of few nm thick targets by a finite-contrast high-intensity short-pulse laser results in a strong pre-expansion of these targets at the arrival time of the main pulse. The targets will decompress to near and lower than critical electron densities plasmas extending over lengths of few micrometers. The laser-matter interaction of the main pulse with such a highly localized but inhomogeneous the target leads to the generation of a channel and further self focussing of the laser beam. As measured in a experiment conducted with the GHOST laser system at UT Austin, 2D PIC simulations predict Direct Laser Acceleration of non-Maxwellian electron distribution in the laser propagation direction for such targets. The hereby high density electron bunches have potential applications as injector beams for a further wakefield acceleration stage. This work was supported by NNSA cooperative agreement DE-NA0002008, the DARPA's PULSE program (12-63-PULSE-FP014) and the AFOSR (FA9550-14-1-0045).

  13. Spectral evolution of GRB 060904A observed with Swift and Suzaku -- Possibility of Inefficient Electron Acceleration

    CERN Document Server

    Yonetoku, Daisuke; Murakami, Toshio; Emura, Naomi; Aoyama, Yuka; Kidamura, Takashi; Kodaira, Hironobu; Kodama, Yoshiki; Kozaka, Ryota; Nashimoto, Takuro; Okuno, Shinya; Yokota, Satoshi; Yoshinari, Satoru; Abe, Keiichi; Onda, Kaori; Tashiro, Makoto S; Urata, Yuji; Nakagawa, Yujin E; Sugita, Satoshi; Yamaoka, Kazutaka; Yoshida, Atsumasa; Ishimura, Takuto; Kawai, Nobuyuki; Shimokawabe, Takashi; Kinugasa, Kenzo; Kohmura, Takayoshi; Kubota, Kaori; Sugiyasu, Kei; Ueda, Yoshihiro; Masui, Kensuke; Nakazawa, Kazuhiro; Takahashi, Tadayuki; Maeno, Shouta; Sonoda, Eri; Yamauchi, Makoto; Kuwahara, Makoto; Tamagawa, Toru; Matsuura, Daisuke; Suzuki, Motoko; Barthelmy, Scott; Gehrels, Neil; Nousek, John

    2007-01-01

    We observed an X-ray afterglow of GRB 060904A with the Swift and Suzaku satellites. We found rapid spectral softening during both the prompt tail phase and the decline phase of an X-ray flare in the BAT and XRT data. The observed spectra were fit by power-law photon indices which rapidly changed from $\\Gamma = 1.51^{+0.04}_{-0.03}$ to $\\Gamma = 5.30^{+0.69}_{-0.59}$ within a few hundred seconds in the prompt tail. This is one of the steepest X-ray spectra ever observed, making it quite difficult to explain by simple electron acceleration and synchrotron radiation. Then, we applied an alternative spectral fitting using a broken power-law with exponential cutoff (BPEC) model. It is valid to consider the situation that the cutoff energy is equivalent to the synchrotron frequency of the maximum energy electrons in their energy distribution. Since the spectral cutoff appears in the soft X-ray band, we conclude the electron acceleration has been inefficient in the internal shocks of GRB 060904A. These cutoff spectr...

  14. A Stable High-Energy Electron Source from Laser Wakefield Acceleration

    Science.gov (United States)

    Zhang, Ping; Zhao, Baozhen; Liu, Cheng; Yan, Wenchao; Golovin, Grigory; Banerjee, Sudeep; Chen, Shouyuan; Haden, Daniel; Fruhling, Colton; Umstadter, Donald

    2016-10-01

    The stability of the electron source from laser wake-field acceleration (LWFA) is essential for applications, such as novel x-ray sources and fundamental experiments in high field physics. To obtain such a stable source, we used an optimal laser pulse and a novel gas nozzle. The high-power laser pulse on target was focused to a diffraction-limited spot by the use of adaptive wavefront correction and the pulse duration was transform limited by the use of spectral feedback control. An innovative design for the nozzle led to a stable, flat-top profile with diameters of 4 mm and 8 mm with a high Mach-number ( 6). In experiments to generate high-energy electron beams by LWFA, we were able to obtain reproducible results with beam energy of 800 MeV and charge >10 pC. Higher charge but broader energy spectrum resulted when the plasma density was increased. These developments have resulted in a laser-driven wakefield accelerator that is stable and robust. With this device, we show that narrowband high-energy x-rays beams can be generated by the inverse-Compton scattering process. This accelerator has also been used in recent experiments to study nonlinear effects in the interaction of high-energy electron beams with ultraintense laser pulses. This material is based upon work supported by NSF No. PHY-153700; US DOE, Office of Science, BES, # DE-FG02-05ER15663; AFOSR # FA9550-11-1-0157; and DHS DNDO # HSHQDC-13-C-B0036.

  15. The Study of Advanced Accelerator Physics Research at UCLA Using the ATF at BNL: Vacuum Acceleration by Laser of Free Electrons

    Energy Technology Data Exchange (ETDEWEB)

    Cline, David B. [Univ. of California, Los Angeles, CA (United States)

    2016-09-07

    An experiment was designed and data were taken to demonstrate that a tightly focused laser on vacuum can accelerate an electron beam in free space. The experiment was proof-of-principle and showed a clear effect for the laser beam off and on. The size of the effect was about 20% and was consistent over 30 laser and beam shots.

  16. The Study of Advanced Accelerator Physics Research at UCLA Using the ATF at BNL: Vacuum Acceleration by Laser of Free Electrons

    Energy Technology Data Exchange (ETDEWEB)

    Cline, David B. [Univ. of California, Los Angeles, CA (United States)

    2016-09-07

    An experiment was designed and data taken to demonstrate that a tightly focused laser on vacuum can accelerate an electron beam in free space. The experiment was proof-of-principle and showed a clear effect for the laser beam off and on. The size of the effect was about 20% and was consistent over 30 laser and beam shots.

  17. Photon activation analysis of the scraper in a 200-MeV electron accelerator using gamma-spectrometry depth profiling

    CERN Document Server

    Lijuan, He; Guobing, Yu; Guangyi, Ren; Zongjin, Duan

    2014-01-01

    For a high energy electron facility, the estimates of induced radioactivity in materials are of major importance to keep exposure to personnel and to the environment as low as reasonably achievable. In addition, an accurate prediction of induced radioactivity is also essential for the design, operation and decommissioning of a high energy electron linear accelerator. The research of induced radioactivity focuses on the photonuclear reaction, whose giant resonance response in the copper is ranging from 10 MeV to 28 MeV. The 200 MeV electron linac of NSRL is one of the earliest high-energy electron linear accelerators in P. R. China. The electrons are accelerated to 200 MeV by five acceleration tubes and collimated by the scrapers made of copper. At present, it is the first retired high-energy electron linear accelerator in domestic. Its decommissioning provides an efficient way for the induced radioactivity research of such accelerators, and is a matter of great significance to the accumulation of the induced ...

  18. Laser-driven wakefield electron acceleration and associated radiation sources; Acceleration electronique par sillage laser et sources de rayonnements associees

    Energy Technology Data Exchange (ETDEWEB)

    Davoine, X

    2009-10-15

    The first part of this research thesis introduces the basic concepts needed for the understanding of the laser-driven wakefield acceleration. It describes the properties of the used laser beams and plasmas, presents some notions about laser-plasma interactions for a better understanding of the physics of laser-driven acceleration. The second part deals with the numerical modelling and the presentation of simulation tools needed for the investigation of laser-induced wakefield acceleration. The last part deals with the optical control of the injection, a technique analogous to the impulsion collision scheme.

  19. Electron Acceleration by a Bichromatic Chirped Laser Pulse in Underdense Plasmas

    CERN Document Server

    Pocsai, Mihály András; Varró, Sándor

    2015-01-01

    A theoretical study of laser and plasma based electron acceleration is presented. An effective model has been used, in which the presence of an underdense plasma has been taken account via its index of refraction $n_{m}$. In the confines of this model, the basic phenomena can be studied by numerically solving the classical relativistic equations of motion. The key idea of this paper is the application of chirped, bichromatic laser fields. We investigated the advantages and disadvantages of mixing the second harmonic to the original $\\lambda = 800 \\, \\mathrm{nm}$ wavelength pulse. We performed calculations both for plane wave and Gaussian pulses.

  20. Measurements of Neutron Induced Cross Sections at the Oak Ridge Electron Linear Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Guber, K.H.; Harvey, J.A.; Hill, N.W.; Koehler, P.E.; Leal, L.C.; Sayer, R.O.; Spencer, R.R.

    1999-09-20

    We have used the Oak Ridge Electron Linear Accelerator (ORELA) to measure neutron total and the fission cross sections of 233U in the energy range from 0.36 eV to ~700 keV. We report average fission and total cross sections. Also, we measured the neutron total cross sections of 27Al and Natural chlorine as well as the capture cross section of Al over an energy range from 100 eV up to about 400 keV.

  1. Induced radioactivity of materials by stray radiation fields at an electron accelerator

    CERN Document Server

    Rokni, S H; Gwise, T; Liu, J C; Roesler, S

    2002-01-01

    Samples of soil, water, aluminum, copper and iron were irradiated in the stray radiation field generated by the interaction of a 28.5 GeV electron beam in a copper-dump in the Beam Dump East facility at the Stanford Linear Accelerator Center. The specific activity induced in the samples was measured by gamma spectroscopy and other techniques. In addition, the isotope production in the samples was calculated with detailed Monte Carlo simulations using the FLUKA code. The calculated activities are compared to the experimental values and differences are discussed.

  2. Practical method and device for enhancing pulse contrast ratio for lasers and electron accelerators

    Science.gov (United States)

    Zhang, Shukui; Wilson, Guy

    2014-09-23

    An apparatus and method for enhancing pulse contrast ratios for drive lasers and electron accelerators. The invention comprises a mechanical dual-shutter system wherein the shutters are placed sequentially in series in a laser beam path. Each shutter of the dual shutter system has an individually operated trigger for opening and closing the shutter. As the triggers are operated individually, the delay between opening and closing first shutter and opening and closing the second shutter is variable providing for variable differential time windows and enhancement of pulse contrast ratio.

  3. On the non-thermal electron-to-proton ratio at cosmic ray acceleration sites

    Science.gov (United States)

    Merten, Lukas; Becker Tjus, Julia; Eichmann, Björn; Dettmar, Ralf-Jürgen

    2017-04-01

    The luminosity ratio of electrons to protons as it is produced in stochastic acceleration processes in cosmic ray sources is an important quantity relevant for several aspects of the modeling of the sources themselves. It is usually assumed to be around 1: 100 in the case of Galactic sources, while a value of 1: 10 is typically assumed when describing extragalactic sources. It is supported by observations that the average ratios should be close to these values. At this point, however, there is no possibility to investigate how each individual source behaves. When looking at the physics aspects, a 1: 100 ratio is well supported in theory when making the following assumptions: (1) the total number of electrons and protons that is accelerated are the same; (2) the spectral index of both populations after acceleration is αe =αp ≈ 2.2 . In this paper, we reinvestigate these assumptions. In particular, assumption (2) is not supported by observational data of the sources and PIC simulation yield different spectral indices as well. We present the detailed calculation of the electron-to-proton ratio, dropping the assumption of equal spectral indices. We distinguish between the ratio of luminosities and the ratio of the differential spectral behavior, which becomes necessary for cases where the spectral indices of the two particle populations are not the same. We discuss the possible range of values when allowing for different spectral indices concerning the spectral behavior of electrons and protons. Additionally, it is shown that the minimum energy of the accelerated population can have a large influence on the results. We find, in the case of the classical minimum energy of T0 , e =T0 , p = 10 keV, that when allowing for a difference in the spectral indices of up to 0.1 with absolute spectral indices varying between 2.0 particle number ratio is in the range 0.008

  4. Electron acceleration by tightly focused radially polarized few-cycle laser pulses

    Institute of Scientific and Technical Information of China (English)

    Liu Jin-Lu; Sheng Zheng-Ming; Zheng Jun

    2012-01-01

    Within the framework of plane-wave angular spectrum analysis of the electromagnetic field structure,a solution valid for tightly focused radially polarized few-cycle laser pulses propagating in vacuum is presented.The resulting field distribution is significantly different from that based on the paraxial approximation for pulses with either small or large beam diameters.We compare the electron accelerations obtained with the two solutions and find that the energy gain obtained with our new solution is usually much larger than that with the paraxial approximation solution.

  5. Electron beam dynamics in the long-pulse, high-current DARHT-II linear induction accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Ekdahl, Carl A [Los Alamos National Laboratory; Abeyta, Epifanio O [Los Alamos National Laboratory; Aragon, Paul [Los Alamos National Laboratory; Archuleta, Rita [Los Alamos National Laboratory; Cook, Gerald [Los Alamos National Laboratory; Dalmas, Dale [Los Alamos National Laboratory; Esquibel, Kevin [Los Alamos National Laboratory; Gallegos, Robert A [Los Alamos National Laboratory; Garnett, Robert [Los Alamos National Laboratory; Harrison, James F [Los Alamos National Laboratory; Johnson, Jeffrey B [Los Alamos National Laboratory; Jacquez, Edward B [Los Alamos National Laboratory; Mccuistian, Brian T [Los Alamos National Laboratory; Montoya, Nicholas A [Los Alamos National Laboratory; Nath, Subrato [Los Alamos National Laboratory; Nielsen, Kurt [Los Alamos National Laboratory; Oro, David [Los Alamos National Laboratory; Prichard, Benjamin [Los Alamos National Laboratory; Rowton, Lawrence [Los Alamos National Laboratory; Sanchez, Manolito [Los Alamos National Laboratory; Scarpetti, Raymond [Los Alamos National Laboratory; Schauer, Martin M [Los Alamos National Laboratory; Seitz, Gerald [Los Alamos National Laboratory; Schulze, Martin [Los Alamos National Laboratory; Bender, Howard A [Los Alamos National Laboratory; Broste, William B [Los Alamos National Laboratory; Carlson, Carl A [Los Alamos National Laboratory; Frayer, Daniel K [Los Alamos National Laboratory; Johnson, Douglas E [Los Alamos National Laboratory; Tom, C Y [Los Alamos National Laboratory; Williams, John [Los Alamos National Laboratory; Hughes, Thomas [Los Alamos National Laboratory; Anaya, Richard [LLNL; Caporaso, George [LLNL; Chambers, Frank [LLNL; Chen, Yu - Jiuan [LLNL; Falabella, Steve [LLNL; Guethlein, Gary [LLNL; Raymond, Brett [LLNL; Richardson, Roger [LLNL; Trainham, C [NSTEC/STL; Watson, Jim [LLNL; Weir, John [LLNL; Genoni, Thomas [VOSS; Toma, Carsten [VOSS

    2009-01-01

    The DARHT-II linear induction accelerator (LIA) now accelerates 2-kA electron beams to more than 17 MeV. This LIA is unique in that the accelerated current pulse width is greater than 2 microseconds. This pulse has a flat-top region where the final electron kinetic energy varies by less than 1% for more than 1.5 microseconds. The long risetime of the 6-cell injector current pulse is 0.5 {micro}s, which can be scraped off in a beam-head cleanup zone before entering the 68-cell main accelerator. We discuss our experience with tuning this novel accelerator; and present data for the resulting beam transport and dynamics. We also present beam stability data, and relate these to previous stability experiments at lower current and energy.

  6. Direct laser acceleration of electrons in a strong azimuthal magnetic field

    Science.gov (United States)

    Wang, Tao; Toncian, Toma; Stark, David; Arefiev, Alexey

    2016-10-01

    Recently published particle-in-cell simulations indicate that a high-intensity laser irradiating an over-critical plasma can induce relativistic transparency and drive a Megatesla magnetic field while propagating into the plasma. At the same time, the quasi-static electric field in this regime is an order of magnitude weaker than the quasi-static magnetic field as a result of ion mobility and the fact that electrons are irradiated by a high intensity laser pulse. We have examined analytically and numerically direct laser acceleration of electrons in such an azimuthal magnetic field. We have considered a general case of a laser beam propagating with a superluminal phase velocity and compared the results to those for a luminal case. Our key finding is that the maximum gamma-factor that can be attained by electrons has a pronounced threshold, with a significant enhancement of the electron energy taking place above the threshold. The threshold is a function of the azimuthal magnetic field and of the initial transverse electron momentum. This work was supported by the National Science Foundation under Grant No. 1632777.

  7. Electron acceleration in a nonrelativistic shock with very high Alfv\\'en Mach number

    CERN Document Server

    Matsumoto, Y; Hoshino, M

    2013-01-01

    Electron acceleration associated with various plasma kinetic instabilities in a nonrelativistic, very-high-Alfv\\'en Mach-number ($M_A \\sim 45$) shock is revealed by means of a two-dimensional fully kinetic PIC simulation. Electromagnetic (ion Weibel) and electrostatic (ion-acoustic and Buneman) instabilities are strongly activated at the same time in different regions of the two-dimensional shock structure. Relativistic electrons are quickly produced predominantly by the shock surfing mechanism with the Buneman instability at the leading edge of the foot. The energy spectrum has a high-energy tail exceeding the upstream ion kinetic energy accompanying the main thermal population. This gives a favorable condition for the ion acoustic instability at the shock front, which in turn results in additional energization. The large-amplitude ion Weibel instability generates current sheets in the foot, implying another dissipation mechanism via magnetic reconnection in a three-dimensional shock structure in the very-hi...

  8. Atomic Resolution Imaging at an Ultralow Accelerating Voltage by a Monochromatic Transmission Electron Microscope

    Science.gov (United States)

    Morishita, Shigeyuki; Mukai, Masaki; Suenaga, Kazu; Sawada, Hidetaka

    2016-10-01

    Transmission electron microscopy using low-energy electrons would be very useful for atomic resolution imaging of specimens that would be damaged at higher energies. However, the resolution at low voltages is degraded because of geometrical and chromatic aberrations. In the present study, we diminish the effect of these aberrations by using a delta-type corrector and a monochromator. The dominant residual aberration in a delta-type corrector, which is the sixth-order three-lobe aberration, is counterbalanced by other threefold aberrations. Defocus spread caused by chromatic aberration is reduced by using a monochromated beam with an energy spread of 0.05 eV. We obtain images of graphene and demonstrate atomic resolution at an ultralow accelerating voltage of 15 kV.

  9. High Power Amplifiers Chain nonlinearity influence on the accelerating beam stability in free electron laser (FLASH)

    CERN Document Server

    Cichalewski, w

    2010-01-01

    The high power amplifiers transfer characteristics nonlinearities can have a negative influence on the overall system performance. This is also true for the TESLA superconducting cavities accelerating field parameters control systems. This Low Level Radio Frequency control systems uses microwave high power amplifiers (like 10 MW klystrons) as actuators in the mentioned feedback loops. The amplitude compression and phase deviations phenomena introduced to the control signals can reduce the feedback performance and cause electron beam energy instabilities. The transfer characteristics deviations in the Free Electron Laser in Hamburg experiment have been investigated. The outcome of this study together with the description of the developed linearization method based on the digital predistortion approach have been described in this paper. Additionally, the results from the linearization tool performance tests in the FLASH's RF systems have been placed.

  10. Temporal characterization of ultrashort ionization-injected electron bunches generated from a laser wakefield accelerator

    CERN Document Server

    Zhang, C J; Wan, Y; Guo, B; Pai, C -H; Wu, Y P; Li, F; Chu, H -H; Gu, Y Q; Mori, W B; Joshi, C; Wang, J; Lu, W

    2016-01-01

    A new concept to diagnose the temporal characteristics of ultrashort electron bunches generated from a laser wakefield accelerator is described. When the ionization-injected bunch interacts with the back of the drive laser it is deflected and stretched along the direction of the electric field of the laser. Upon exiting the plasma if the bunch goes through a narrow slit in front of the dipole magnet that disperses the electrons in the plane of the laser polarization, it can form a series of bunchlets that have different energies but separated by half a laser wavelength. By analyzing the modulated energy spectrum, the beam current profile and the longitudinal (energy versus time) phase space are recovered. This concept is demonstrated through particle-in-cell simulations and experiment.

  11. Electron-scale shear instabilities: magnetic field generation and particle acceleration in astrophysical jets

    CERN Document Server

    Alves, E P; Fonseca, R A; Silva, L O

    2014-01-01

    Strong shear flow regions found in astrophysical jets are shown to be important dissipation regions, where the shear flow kinetic energy is converted into electric and magnetic field energy via shear instabilities. The emergence of these self-consistent fields make shear flows significant sites for radiation emission and particle acceleration. We focus on electron-scale instabilities, namely the collisionless, unmagnetized Kelvin-Helmholtz instability (KHI) and a large-scale dc magnetic field generation mechanism on the electron scales. We show that these processes are important candidates to generate magnetic fields in the presence of strong velocity shears, which may naturally originate in energetic matter outburst of active galactic nuclei and gamma-ray bursters. We show that the KHI is robust to density jumps between shearing flows, thus operating in various scenarios with different density contrasts. Multidimensional particle-in-cell (PIC) simulations of the KHI, performed with OSIRIS, reveal the emergen...

  12. Radio Diagnostics of Electron Acceleration Sites During the Eruption of a Flux Rope in the Solar Corona

    Science.gov (United States)

    Carley, Eoin P.; Vilmer, Nicole; Gallagher, Peter T.

    2016-12-01

    Electron acceleration in the solar corona is often associated with flares and the eruption of twisted magnetic structures known as flux ropes. However, the locations and mechanisms of such particle acceleration during the flare and eruption are still subject to much investigation. Observing the exact sites of particle acceleration can help confirm how the flare and eruption are initiated and how they evolve. Here we use the Atmospheric Imaging Assembly to analyze a flare and erupting flux rope on 2014 April 18, while observations from the Nançay Radio Astronomy Facility allow us to diagnose the sites of electron acceleration during the eruption. Our analysis shows evidence of a pre-formed flux rope that slowly rises and becomes destabilized at the time of a C-class flare, plasma jet, and the escape of ≳75 keV electrons from the rope center into the corona. As the eruption proceeds, continued acceleration of electrons with energies of ˜5 keV occurs above the flux rope for a period over 5 minutes. At the flare peak, one site of electron acceleration is located close to the flare site, while another is driven by the erupting flux rope into the corona at speeds of up to 400 km s-1. Energetic electrons then fill the erupting volume, eventually allowing the flux rope legs to be clearly imaged from radio sources at 150-445 MHz. Following the analysis of Joshi et al. (2015), we conclude that the sites of energetic electrons are consistent with flux rope eruption via a tether cutting or flux cancellation scenario inside a magnetic fan-spine structure. In total, our radio observations allow us to better understand the evolution of a flux rope eruption and its associated electron acceleration sites, from eruption initiation to propagation into the corona.

  13. Electron Acceleration in Pulsar-wind Termination Shocks: An Application to the Crab Nebula Gamma-Ray Flares

    Science.gov (United States)

    Kroon, John J.; Becker, Peter A.; Finke, Justin D.; Dermer, Charles D.

    2016-12-01

    The γ-ray flares from the Crab Nebula observed by AGILE and Fermi-LAT reaching GeV energies and lasting several days challenge the standard models for particle acceleration in pulsar-wind nebulae because the radiating electrons have energies exceeding the classical radiation-reaction limit for synchrotron. Previous modeling has suggested that the synchrotron limit can be exceeded if the electrons experience electrostatic acceleration, but the resulting spectra do not agree very well with the data. As a result, there are still some important unanswered questions about the detailed particle acceleration and emission processes occurring during the flares. We revisit the problem using a new analytical approach based on an electron transport equation that includes terms describing electrostatic acceleration, stochastic wave-particle acceleration, shock acceleration, synchrotron losses, and particle escape. An exact solution is obtained for the electron distribution, which is used to compute the associated γ-ray synchrotron spectrum. We find that in our model the γ-ray flares are mainly powered by electrostatic acceleration, but the contributions from stochastic and shock acceleration play an important role in producing the observed spectral shapes. Our model can reproduce the spectra of all the Fermi-LAT and AGILE flares from the Crab Nebula, using magnetic field strengths in agreement with the multi-wavelength observational constraints. We also compute the spectrum and duration of the synchrotron afterglow created by the accelerated electrons, after they escape into the region on the downstream side of the pulsar-wind termination shock. The afterglow is expected to fade over a maximum period of about three weeks after the γ-ray flare.

  14. Improving linear accelerator service response with a real- time electronic event reporting system.

    Science.gov (United States)

    Hoisak, Jeremy D P; Pawlicki, Todd; Kim, Gwe-Ya; Fletcher, Richard; Moore, Kevin L

    2014-09-08

    To track linear accelerator performance issues, an online event recording system was developed in-house for use by therapists and physicists to log the details of technical problems arising on our institution's four linear accelerators. In use since October 2010, the system was designed so that all clinical physicists would receive email notification when an event was logged. Starting in October 2012, we initiated a pilot project in collaboration with our linear accelerator vendor to explore a new model of service and support, in which event notifications were also sent electronically directly to dedicated engineers at the vendor's technical help desk, who then initiated a response to technical issues. Previously, technical issues were reported by telephone to the vendor's call center, which then disseminated information and coordinated a response with the Technical Support help desk and local service engineers. The purpose of this work was to investigate the improvements to clinical operations resulting from this new service model. The new and old service models were quantitatively compared by reviewing event logs and the oncology information system database in the nine months prior to and after initiation of the project. Here, we focus on events that resulted in an inoperative linear accelerator ("down" machine). Machine downtime, vendor response time, treatment cancellations, and event resolution were evaluated and compared over two equivalent time periods. In 389 clinical days, there were 119 machine-down events: 59 events before and 60 after introduction of the new model. In the new model, median time to service response decreased from 45 to 8 min, service engineer dispatch time decreased 44%, downtime per event decreased from 45 to 20 min, and treatment cancellations decreased 68%. The decreased vendor response time and reduced number of on-site visits by a service engineer resulted in decreased downtime and decreased patient treatment cancellations.

  15. Coupled-Multiplier Accelerator Produces High-Power Electron Beams for Industrial Applications

    Science.gov (United States)

    Hatridge, M.; McIntyre, P.; Roberson, S.; Sattarov, A.; Thomas, E.; Meitzler, Charles

    2003-08-01

    The coupled multiplier is a new approach to efficient generation of MeV d.c. power for accelerator applications. High voltage is produced by a series of modules, each of which consists of a high-power alternator, step-up transformer, and 3-phase multiplier circuit. The alternators are connected mechanically along a rotating shaft, and connected by insulating flexible couplers. This approach differs from all previous d.c. technologies in that power is delivered to the various stages of the system mechanically, rather than through capacitive or inductive electrical coupling. For this reason the capital cost depends linearly on required voltage and power, rather than quadratically as with conventional technologies. The CM technology enables multiple electron beams to be driven within a common supply and insulating housing. MeV electron beam is extremely effective in decomposing organic contaminants in water. A 1 MeV, 100 kW industrial accelerator using the CM technology has been built and is being installed for treatment of wastewater at a petrochemical plant.

  16. Electron and Ion Acceleration in Relativistic Shocks with Applications to GRB Afterglows

    CERN Document Server

    Warren, Donald C; Bykov, Andrei M; Lee, Shiu-Hang

    2015-01-01

    We have modeled the simultaneous first-order Fermi shock acceleration of protons, electrons, and helium nuclei by relativistic shocks. By parameterizing the particle diffusion, our steady-state Monte Carlo simulation allows us to follow particles from particle injection at nonthermal thermal energies to above PeV energies, including the nonlinear smoothing of the shock structure due to cosmic-ray (CR) backpressure. We observe the mass-to-charge (A/Z) enhancement effect believed to occur in efficient Fermi acceleration in non-relativistic shocks and we parameterize the transfer of ion energy to electrons seen in particle-in-cell (PIC) simulations. For a given set of environmental and model parameters, the Monte Carlo simulation determines the absolute normalization of the particle distributions and the resulting synchrotron, inverse-Compton, and pion-decay emission in a largely self-consistent manner. The simulation is flexible and can be readily used with a wide range of parameters typical of gamma-ray burst ...

  17. Accelerated electronic structure-based molecular dynamics simulations of shock-induced chemistry

    Science.gov (United States)

    Cawkwell, Marc

    2015-06-01

    The initiation and progression of shock-induced chemistry in organic materials at moderate temperatures and pressures are slow on the time scales available to regular molecular dynamics simulations. Accessing the requisite time scales is particularly challenging if the interatomic bonding is modeled using accurate yet expensive methods based explicitly on electronic structure. We have combined fast, energy conserving extended Lagrangian Born-Oppenheimer molecular dynamics with the parallel replica accelerated molecular dynamics formalism to study the relatively sluggish shock-induced chemistry of benzene around 13-20 GPa. We model interatomic bonding in hydrocarbons using self-consistent tight binding theory with an accurate and transferable parameterization. Shock compression and its associated transient, non-equilibrium effects are captured explicitly by combining the universal liquid Hugoniot with a simple shrinking-cell boundary condition. A number of novel methods for improving the performance of reactive electronic structure-based molecular dynamics by adapting the self-consistent field procedure on-the-fly will also be discussed. The use of accelerated molecular dynamics has enabled us to follow the initial stages of the nucleation and growth of carbon clusters in benzene under thermodynamic conditions pertinent to experiments.

  18. Time-Dependent Electron Acceleration in Blazar Transients: X-Ray Time Lags and Spectral Formation

    CERN Document Server

    Lewis, Tiffany R; Finke, Justin D

    2016-01-01

    Electromagnetic radiation from blazar jets often displays strong variability, extending from radio to $\\gamma$-ray frequencies. In a few cases, this variability has been characterized using Fourier time lags, such as those detected in the X-rays from Mrk~421 using BeppoSAX. The lack of a theoretical framework to interpret the data has motivated us to develop a new model for the formation of the X-ray spectrum and the time lags in blazar jets based on a transport equation including terms describing stochastic Fermi acceleration, synchrotron losses, shock acceleration, adiabatic expansion, and spatial diffusion. We derive the exact solution for the Fourier transform of the electron distribution, and use it to compute the Fourier transform of the synchrotron radiation spectrum and the associated X-ray time lags. The same theoretical framework is also used to compute the peak flare X-ray spectrum, assuming that a steady-state electron distribution is achieved during the peak of the flare. The model parameters are...

  19. A direct current rectification scheme for microwave space power conversion using traveling wave electron acceleration

    Science.gov (United States)

    Manning, Robert M.

    1993-01-01

    The formation of the Vision-21 conference held three years ago allowed the present author to reflect and speculate on the problem of converting electromagnetic energy to a direct current by essentially reversing the process used in traveling wave tubes that converts energy in the form of a direct current to electromagnetic energy. The idea was to use the electric field of the electromagnetic wave to produce electrons through the field emission process and accelerate these electrons by the same field to produce an electric current across a large potential difference. The acceleration process was that of cyclotron auto-resonance. Since that time, this rather speculative ideas has been developed into a method that shows great promise and for which a patent is pending and a prototype design will be demonstrated in a potential laser power beaming application. From the point of view of the author, a forum such as Vision-21 is becoming an essential component in the rather conservative climate in which our initiatives for space exploration are presently formed. Exchanges such as Vision-21 not only allows us to deviate from the 'by-the-book' approach and rediscover the ability and power in imagination, but provides for the discussion of ideas hitherto considered 'crazy' so that they may be given the change to transcend from the level of eccentricity to applicability.

  20. On the speed and acceleration of electron beams triggering interplanetary type III radio bursts

    CERN Document Server

    Krupar, Vratislav; Soucek, Jan; Santolik, Ondrej; Maksimovic, Milan; Kruparova, Oksana

    2015-01-01

    Type III radio bursts are intense radio emissions triggered by beams of energetic electrons often associated with solar flares. These exciter beams propagate outwards from the Sun along an open magnetic field line in the corona and in the interplanetary (IP) medium. We performed a statistical survey of 29 simple and isolated IP type III bursts observed by STEREO/Waves instruments between January 2013 and September 2014. We investigated their time-frequency profiles in order to derive the speed and acceleration of exciter electron beams. We show these beams noticeably decelerate in the IP medium. Obtained speeds range from $\\sim$ 0.02c up to $\\sim$ 0.35c depending on initial assumptions. It corresponds to electron energies between tens of eV and hundreds of keV, and in order to explain the characteristic energies or speeds of type III electrons ($\\sim 0.1$c) observed simultaneously with Langmuir waves at 1 au, the emission of type III bursts near the peak should be predominately at double plasma frequency. Der...

  1. Three-dimensional simulation of laser–plasma-based electron acceleration

    Indian Academy of Sciences (India)

    A Upadhyay; K Patel; B S Rao; P A Naik; P D Gupta

    2012-04-01

    A sequential three-dimensional (3D) particle-in-cell simulation code PICPSI-3D with a user friendly graphical user interface (GUI) has been developed and used to study the interaction of plasma with ultrahigh intensity laser radiation. A case study of laser–plasma-based electron acceleration has been carried out to assess the performance of this code. Simulations have been performed for a Gaussian laser beam of peak intensity 5 × 1019 W/cm2 propagating through an underdense plasma of uniform density 1 × 1019 cm-3, and for a Gaussian laser beam of peak intensity 1.5 × 1019 W/cm2 propagating through an underdense plasma of uniform density 3.5 × 1019 cm-3. The electron energy spectrum has been evaluated at different time-steps during the propagation of the laser beam. When the plasma density is 1 × 1019 cm-3, simulations show that the electron energy spectrum forms a monoenergetic peak at ∼ 14 MeV, with an energy spread of ± 7 MeV. On the other hand, when the plasma density is 3.5 × 1019 cm-3, simulations show that the electron energy spectrum forms a monoenergetic peak at ∼ 23 MeV, with an energy spread of ± 7.5 MeV.

  2. Terahertz radiation as a bunch diagnostic for laser-wakefield-accelerated electron bunches

    Energy Technology Data Exchange (ETDEWEB)

    van Tilborg, Jeroen; Schroeder, Carl; Filip, Catalin; Toth, Csaba; Geddes, Cameron; Fubiani, Gwenael; Esarey, Eric; Leemans, Wim

    2011-06-17

    Experimental results are reported from two measurement techniques (semiconductor switching and electro-optic sampling) that allow temporal characterization of electron bunches produced by a laser-driven plasma-based accelerator. As femtosecond electron bunches exit the plasma-vacuum interface, coherent transition radiation (at THz frequencies) is emitted. Measuring the properties of this radiation allows characterization of the electron bunches. Theoretical work on the emission mechanism is presented, including a model that calculates the THz wave form from a given bunch profile. It is found that the spectrum of the THz pulse is coherent up to the 200 {micro}m thick crystal (ZnTe) detection limit of 4 THz, which corresponds to the production of sub-50 fs (rms) electron bunch structure. The measurements demonstrate both the shot-to-shot stability of bunch parameters that are critical to THz emission (such as total charge and bunch length), as well as femtosecond synchronization among bunch, THz pulse, and laser beam.

  3. Ultrarelativistic electron butterfly distributions created by parallel acceleration due to magnetosonic waves

    Science.gov (United States)

    Li, Jinxing; Bortnik, Jacob; Thorne, Richard M.; Li, Wen; Ma, Qianli; Baker, Daniel N.; Reeves, Geoffrey D.; Fennell, Joseph F.; Spence, Harlan E.; Kletzing, Craig A.; Kurth, William S.; Hospodarsky, George B.; Angelopoulos, Vassilis; Blake, J. Bernard.

    2016-04-01

    The Van Allen Probe observations during the recovery phase of a large storm that occurred on 17 March 2015 showed that the ultrarelativistic electrons at the inner boundary of the outer radiation belt (L* = 2.6-3.7) exhibited butterfly pitch angle distributions, while the inner belt and the slot region also showed evidence of sub-MeV electron butterfly distributions. Strong magnetosonic waves were observed in the same regions and at the same time periods as these butterfly distributions. Moreover, when these magnetosonic waves extended to higher altitudes (L* = 4.1), the butterfly distributions also extended to the same region. Combining test particle calculations and Fokker-Planck diffusion simulations, we successfully reproduced the formation of the ultrarelativistic electron butterfly distributions, which primarily result from parallel acceleration caused by Landau resonance with magnetosonic waves. The coexistence of ultrarelativistic electron butterfly distributions with magnetosonic waves was also observed in the 24 June 2015 storm, providing further support that the magnetosonic waves play a key role in forming butterfly distributions.

  4. Characterization of the primary source of electrons in linear accelerators in clinical use; Caracterizacion de la fuente primaria de electrones en aceleradores lineales de uso clinico

    Energy Technology Data Exchange (ETDEWEB)

    Gomez Extremera, M.; Gonzalez Infantes, W.; Lallena rojo, A. M.; Anguiano Millan, M.

    2013-07-01

    Monte Carlo simulation is currently considered the most accurate method for calculations of doses due to electrons. The objective of the work is the characterization of the primary source of electrons from an accelerator of clinical use with Monte Carlo simulation, in order to build a model of sources involving a substantial saving of time of calculation in the simulation of treatment. (Author)

  5. Current-voltage and kinetic energy flux relations for relativistic field-aligned acceleration of auroral electrons

    Directory of Open Access Journals (Sweden)

    S. W. H. Cowley

    2006-03-01

    Full Text Available Recent spectroscopic observations of Jupiter's "main oval" auroras indicate that the primary auroral electron beam is routinely accelerated to energies of ~100 keV, and sometimes to several hundred keV, thus approaching the relativistic regime. This suggests the need to re-examine the classic non-relativistic theory of auroral electron acceleration by field-aligned electric fields first derived by Knight (1973, and to extend it to cover relativistic situations. In this paper we examine this problem for the case in which the source population is an isotropic Maxwellian, as also assumed by Knight, and derive exact analytic expressions for the field-aligned current density (number flux and kinetic energy flux of the accelerated population, for arbitrary initial electron temperature, acceleration potential, and field strength beneath the acceleration region. We examine the limiting behaviours of these expressions, their regimes of validity, and their implications for auroral acceleration in planetary magnetospheres (and like astrophysical systems. In particular, we show that for relativistic accelerating potentials, the current density increases as the square of the minimum potential, rather than linearly as in the non-relativistic regime, while the kinetic energy flux then increases as the cube of the potential, rather than as the square.

  6. Two-dimensional angular energy spectrum of electrons accelerated by the ultra-short relativistic laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Borovskiy, A. V. [Department of Computer Science and Cybernetics, Baikal State University of Economics and Law, 11 Lenin Street, Irkutsk 664003 (Russian Federation); Galkin, A. L. [Coherent and Nonlinear Optics Department, A.M. Prokhorov General Physics Institute of the RAS, 38 Vavilov Street, Moscow 119991 (Russian Federation); Department of Physics of MBF, Pirogov Russian National Research Medical University, 1 Ostrovitianov Street, Moscow 117997 (Russian Federation); Kalashnikov, M. P., E-mail: galkin@kapella.gpi.ru [Max-Born-Institute for Nonlinear Optics and Short-Time Spectroscopy, 2a Max-Born-Strasse, Berlin 12489 (Germany)

    2015-04-15

    The new method of calculating energy spectra of accelerated electrons, based on the parameterization by their initial coordinates, is proposed. The energy spectra of electrons accelerated by Gaussian ultra-short relativistic laser pulse at a selected angle to the axis of the optical system focusing the laser pulse in a low density gas are theoretically calculated. The two-peak structure of the electron energy spectrum is obtained. Discussed are the reasons for its appearance as well as an applicability of other models of the laser field.

  7. Characteristic parameters of 6--21 MeV electron beams from a 21 MeV linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ghazi, M.S.A.L. (Department of Medical Physics, Thunder Bay Regional Cancer Centre, Ontario Cancer Treatment and Research Foundation, Thunder Bay, Ontario P7A 7T1, (Canada) Department of Physics, Lakehead University, Thunder Bay, Ontario P7B 5E1, (Canada) Lingman, D. Department of Medical Physics, Thunder Bay Regional Cancer Centre, Ontario Cancer Treatment and Research Foundation, Thunder Bay, Ontario P7A 7T1, (Canada) Department of Computer Science, Lakehead University, Thunder Bay, Ontario P7B 5E1, (Canada)); Gilbert, L.D. (Thekkumthala, J. Department of Medical Physics, Thunder Bay Regional Cancer Centre, Ontario Cancer Treatment and Research Foundation, Thunder Bay, Ontario P7A 7T1, (Canada))

    1991-07-01

    Dosimetry measurements have been carried out for the electron beams produced by a linear accelerator at energies 6, 8, 10, 14, 18, and 21 MeV. Characteristic parameters of the central axis dose distributions were derived and compared to corresponding values of electron beams from other accelerators in clinical use where such a comparison is appropriate. A comprehensive set of dosimetric parameters is provided for electron beam treatment planning. The data include central axis depth dose, range--energy parameters, beam penumbra and uniformity.

  8. Electromagnetic acceleration of material from a plate hit by a pulsed electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, M.

    1998-04-16

    An intense pulsed electron beam traversing a thin metal plate creates a volume of dense plasma. Current flows in this plasma as a result of the charge and magnetic field introduced by the relativistic electrons. A magnetic field may linger after the electron beam pulse because of the conductivity of the material. This field decays by both diffusing out of the conducting matter and causing it to expand. If the magnetized matter is of low density and high conductivity it may expand quickly. Scaling laws for this acceleration are sought by analyzing the idealization of a steady axisymmetric flow. This case simplifies a general formulation based on both Euler`s and Maxwell`s equations. As an example, fluid with conductivity {sigma} = 8 x 10{sup 4} Siemens/m, density {rho} = 8 x 10{sup -3} kg/m{sup 3}, and initially magnetized to B = 1 Tesla can accelerate to v = 10{sup 4} m/s within a distance comparable to L = 1 mm and a time comparable to {sigma}{mu}L{sup 2} = 100 ns, which is the magnetic diffusion time. If instead, {sigma} = 8 x 10{sup 3} Siemens/m and {rho} = 8 x 10{sup -5} kg/m{sup 3} then v = 10{sup 5} m/s with a magnetic diffusion time {sigma}{mu}L{sup 2} = 10 ns. These idealized flows have R{sub M} = {sigma}{mu}vL = 1, where R{sub M} is the magnetic Reynolds number. The target magnetizes by a thermal electric effect.

  9. The Whipple Museum and Cavendish Laboratory, Cambridge

    Science.gov (United States)

    Pippard, Brian

    The Whipple Museum is part of the History and Philosophy of Science Department in the University of Cambridge. It is on your right as soon as you enter Free School Lane from Pembroke Street, and is normally open between 1:30 and 4:30 P.M. on weekdays. The main room, a hall with hammer-beam roof, is a relic of Stephen Perse’s school (1624) now flourishing elsewhere in the city. It houses a large collection of mathematical, physical and astronomical instruments — abaci, Napier’s bones, slide rules; sextants and other surveying instruments; telescopes, compasses and pocket sundials (especially of ivory from Nuremberg 1500-1700); and a Grand Orrery by George Adams (1750). The gallery of a second room is used for special exhibitions, often of items from the well-stocked store. Some specialist catalogues have been compiled and are on sale.

  10. Stochastic Acceleration of Electrons by the Right-Hand Extraordinary Mode in the High Density Plasma Region

    Institute of Scientific and Technical Information of China (English)

    XIAO Fu-Liang; ZHENG Hui-Nan; WANG Shui

    2005-01-01

    @@ The resonant acceleration of electrons by the superluminous R-X mode is evaluated in the high density plasma region of Earth, specifically around the geostationary orbit. The corresponding resonant frequency range together with the harmonic N required for producing a significant acceleration is studied in detail. It is found that the stochastic acceleration is basically controlled by the harmonic N and a dimensionless parameter α = |Ωe2|/ωp2e (where |Ωe| and ωpe are the electron gyrofrequency and plasma frequency respectively). For α = 0.1 (around the geostationary orbit), there are not gyroresonances occurring between electrons and right-hand extraordinarymode electromagnetic waves until higher harmonics N ≥ 4; while for α = 0.5, the gyroresonance begins at N = 2.Substantial acceleration of electrons by the right-hand extraordinary mode is possible for those higher harmonic(N > 1) resonances over a wide range of wave normal angles θ. This indicates that higher harmonic resonance can play an important role on the electron acceleration in the high density plasma region (α< 1).

  11. Electron Acceleration at a Coronal Shock Propagating Through a Large-scale Streamer-like Magnetic Field

    CERN Document Server

    Kong, Xiangliang; Guo, Fan; Feng, Shiwei; Du, Guohui; Li, Gang

    2016-01-01

    With a test-particle simulation, we investigate the effect of large-scale coronal magnetic fields on electron acceleration at an outward-propagating coronal shock with a circular front. The coronal field is approximated by an analytical solution with a streamer-like magnetic field featured by partially open magnetic field and a current sheet at the equator atop the closed region. We show that the large-scale shock-field configuration, especially the relative curvature of the shock and the magnetic field line across which the shock is sweeping, plays an important role in the efficiency of electron acceleration. At low shock altitudes, when the shock curvature is larger than that of magnetic field lines, the electrons are mainly accelerated at the shock flanks; at higher altitudes, when the shock curvature is smaller, the electrons are mainly accelerated at the shock nose around the top of closed field lines. The above process reveals the shift of efficient electron acceleration region along the shock front dur...

  12. Teachers Learning: Professional Development and Education. Cambridge Education Research Series

    Science.gov (United States)

    McLaughlin, Colleen, Ed.

    2012-01-01

    "Teachers Learning: Professional Development and Education" is part of The Cambridge Education Research series, edited by senior colleagues at the University of Cambridge Faculty of Education, which has a longstanding tradition of involvement in high quality, innovative teacher education and continuing professional development.…

  13. Computations of longitudinal electron dynamics in the recirculating cw RF accelerator-recuperator for the high average power FEL

    Science.gov (United States)

    Sokolov, A. S.; Vinokurov, N. A.

    1994-03-01

    The use of optimal longitudinal phase-energy motion conditions for bunched electrons in a recirculating RF accelerator gives the possibility to increase the final electron peak current and, correspondingly, the FEL gain. The computer code RECFEL, developed for simulations of the longitudinal compression of electron bunches with high average current, essentially loading the cw RF cavities of the recirculator-recuperator, is briefly described and illustrated by some computational results.

  14. Solving the Accelerator-Condenser Coupling Problem in a Nanosecond Dynamic Transmission Electron Microscope

    Energy Technology Data Exchange (ETDEWEB)

    Reed, B W; LaGrange, T; Shuttlesworth, R M; Gibson, D J; Campbell, G H; Browning, N D

    2009-12-29

    We describe a modification to a transmission electron microscope (TEM) that allows it to briefly (using a pulsed-laser-driven photocathode) operate at currents in excess of 10 mA while keeping the effects of condenser lens aberrations to a minimum. This modification allows real-space imaging of material microstructure with a resolution of order 10 nm over regions several {micro}m across with an exposure time of 15 ns. This is more than 6 orders of magnitude faster than typical video-rate TEM imaging. The key is the addition of a weak magnetic lens to couple the large-diameter high-current beam exiting the accelerator into the acceptance aperture of a conventional TEM condenser lens system. We show that the performance of the system is essentially consistent with models derived from ray tracing and finite element simulations. The instrument can also be operated as a conventional TEM by using the electron gun in a thermionic mode. The modification enables very high electron current densities in {micro}m-sized areas and could also be used in a non-pulsed system for high-throughput imaging and analytical TEM.

  15. Collisionless Weibel shocks and electron acceleration in gamma-ray bursts

    CERN Document Server

    Ardaneh, Kazem; Nishikawa, Ken-Ichi; Lembége, Bertrand

    2015-01-01

    A study of collisionless external shocks in gamma-ray bursts is presented. The shock structure, electromagnetic fields, and process of electron acceleration are assessed by using a self-consistent 3D particle-in-cell simulation. In accordance with hydrodynamic shock systems, the formed shock is composed of a forward and reverse shock separated by a contact discontinuity. The establishment of the shock transitions is controlled by the ion Weibel instability. The ion filaments are sources the strong transversal electromagnetic fields at the two sides of the double shock structure with a length about 30-100 ion skin depths. In regard to the electrons, they are heated up to a maximum energy $\\epsilon_{ele}\\approx \\sqrt{\\epsilon_b}$ (normalized to the total incoming energy). Moreover, the jet electrons behind the reverse shock are trapped due to the presence of an ambipolar electric field accompanying with reflection by the strong transversal magnetic fields in the shocked region. In a similar process to the shock...

  16. The design of the electron beam dump unit of Turkish Accelerator Center (TAC)

    Science.gov (United States)

    Cite, L. H.; Yilmaz, M.

    2016-03-01

    The required simulations of the electron beam interactions for the design of electron beam dump unit for an accelerator which will operate to get two Infra-Red Free Electron Lasers (IR-FEL) covering the range of 3-250 microns is presented in this work. Simulations have been carried out to understand the interactions of a bulk of specially shaped of four different and widely used materials for the dump materials for a 77 pC, 40 MeV, 13 MHz repetition rate e-beam. In the simulation studies dump materials are chosen to absorb the 99% of the beam energy and to restrict the radio-isotope production in the bulk of the dump. A Lead shielding also designed around the dump core to prevent the leakage out of the all the emitted secondary radiations, e.g., neutrons, photons. The necessary dump material requirements, for the overall design considerations and the possible radiation originated effects on the dump unit, are discussed and presented.

  17. Non-Maxwellian electron distributions resulting from direct laser acceleration in near-critical plasmas

    CERN Document Server

    Toncian, T; McCary, E; Meadows, A; Arefiev, A V; Blakeney, J; Serratto, K; Kuk, D; Chester, C; Roycroft, R; Gao, L; Fu, H; Yan, X Q; Schreiber, J; Pomerantz, I; Bernstein, A; Quevedo, H; Dyer, G; Ditmire, T; Hegelich, B M

    2015-01-01

    The irradiation of few nm thick targets by a finite-contrast high-intensity short-pulse laser results in a strong pre-expansion of these targets at the arrival time of the main pulse. The targets decompress to near and lower than critical densities plasmas extending over few micrometers, i.e. multiple wavelengths. The interaction of the main pulse with such a highly localized but inhomogeneous target leads to the generation of a short channel and further self-focusing of the laser beam. Experiments at the GHOST laser system at UT Austin using such targets measured non-Maxwellian, peaked electron distribution with large bunch charge and high electron density in the laser propagation direction. These results are reproduced in 2D PIC simulations using the EPOCH code, identifying Direct Laser Acceleration (DLA) as the responsible mechanism. This is the first time that DLA has been observed to produce peaked spectra as opposed to broad, maxwellian spectra observed in earlier experiments. This high-density electron...

  18. Study of field-limiting defects in superconducting RF cavities for electron-accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Aderhold, Sebastian

    2015-02-15

    Superconducting radio-frequency resonators made from niobium are an integral part of many accelerator projects. Their main advantage are the low ohmic losses resulting in the possibility for a long pulse structure and high duty cycles up to continous wave (cw) operation. The European X-Ray Free-Electron Laser (XFEL) and the International Linear Collider (ILC) are based on this technology. In some cases the resonators reach accelerating electric fields close to the theoretical limit of bulk niobium. Yet most resonators are limited at lower fields and mass production for large scale accelerator projects suffers from the spread in the achievable gradient per resonator. The main limitations are field emission and the breakdown of superconductivity (quench). While field emission is mostly attributed to the overall surface cleanliness of the resonator, quench is usually associated with local defects. Optical inspection of the inner surface of the resonators with unprecedented resolution, accuracy and a special illumination has been established at DESY and used to study such local surface defects. More than 30 resonators have been inspected. Distinctive features from these inspections have been catalogued and assessed for their potential risk for the performance of the resonator. Several confirmed quenching defects could be extracted for further analysis and could be traced back to likely origins in the production process. A new, automated set-up for optical inspection of large series of resonators, named OBACHT, has been developed and successfully commissioned. Its design includes the minimal need for operator interference, reproducibility, robustness and versatility, in order to fit the requirements for application both in a laboratory and in a production environment. To facilitate the comparison of the results obtained during the global R and D effort on resonators for the ILC, the ILC global yield database has been established. The yield and selection rules for the

  19. The extent of non-thermal particle acceleration in relativistic, electron-positron reconnection

    Energy Technology Data Exchange (ETDEWEB)

    Werner, Greg [University of Colorado; Guo, Fan [Los Alamos National Laboratory

    2015-07-21

    Reconnection is studied as an explanation for high-energy flares from the Crab Nebula. The production of synchrotron emission >100 MeV challenges classical models of acceleration. 3D simulation shows that reconnection, converting magnetic energy to kinetic energy, can accelerate beyond γrad. The power-law index and high-energy cutoff are important for understanding the radiation spectrum dN/dγ = f(γ) ∝ γ. α and cutoff were measured vs. L and σ, where L is system (simulation) size and σ is upstream magnetization (σ = B2/4πnmc2). α can affect the high-energy cutoff. In conclusion, for collisionless relativistic reconnection in electron-positron plasma, without guide field, nb/nd=0.1: (1) relativistic magnetic reconnection yields power-law particle spectra, (2) the power law index decreases as σ increases, approaching ≈1.2. (3) the power law is cut off at an energy related to acceleration within a single current layer, which is proportional to the current layer length (for small systems, that length is the system length, yielding γc2 ≈ 0.1 L/ρ0; for large systems, the layer length is limited by secondary tearing instability, yielding γc1 ≈ 4σ; the transition from small to large is around L/ρ0 = 40σ.). (4) although the large-system energy cutoff is proportional to the average energy per particle, it is significantly higher than the average energy per particle.

  20. Re-commissioning of an electron accelerator: industrial-type in research style

    Science.gov (United States)

    Ehlermann, D. A. E.; Morriseau, D.

    2002-03-01

    After 25 years of utilization in 1992, the electron linear accelerator was replaced by a modern type, CIRCE III of CGR-MeV (now Thomson-CSF). The goal had been to bring a typical industrial-style machine-source of radiation to the research institute in order to enable it to study any relevant parameter in radiation processing of food under commercial conditions. The machine should be as close in design to industrial practices, but at the same time allow for research into dosimetry and process control. As the FRCN moved to its new site, the decision was to re-install the accelerator there. At this occasion and based on the operating experiences of the recent years, several new features were introduced: the scan mode was changed from during-pulse to shot-by-shot; the bending magnet was modified from 107° to 253° (pretzel-type); the exploitable scanning width was increased from 40 to 80 cm. After this modification, the machine characteristics had to be verified. For the changed scan-mode the adjustment of pulse repetition rate, scan frequency, transport velocity, and beam cross-section in both directions, had to be established for the targeted low-dose treatments (about 100 Gy). Furthermore, the facility has now two separated beam-outlets, one for handling the prepacked materials on a transport system, the other one for bulk material handling (not yet installed) and for bremsstrahlung-mode experiments. First results with the accelerator after its transfer to the new site are reported; the radiation field characteristics after the modifications are given.

  1. Physics and engineering design of the accelerator and electron dump for SPIDER

    Science.gov (United States)

    Agostinetti, P.; Antoni, V.; Cavenago, M.; Chitarin, G.; Marconato, N.; Marcuzzi, D.; Pilan, N.; Serianni, G.; Sonato, P.; Veltri, P.; Zaccaria, P.

    2011-06-01

    The ITER Neutral Beam Test Facility (PRIMA) is planned to be built at Consorzio RFX (Padova, Italy). PRIMA includes two experimental devices: a full size ion source with low voltage extraction called SPIDER and a full size neutral beam injector at full beam power called MITICA. SPIDER is the first experimental device to be built and operated, aiming at testing the extraction of a negative ion beam (made of H- and in a later stage D- ions) from an ITER size ion source. The main requirements of this experiment are a H-/D- extracted current density larger than 355/285 A m-2, an energy of 100 keV and a pulse duration of up to 3600 s. Several analytical and numerical codes have been used for the design optimization process, some of which are commercial codes, while some others were developed ad hoc. The codes are used to simulate the electrical fields (SLACCAD, BYPO, OPERA), the magnetic fields (OPERA, ANSYS, COMSOL, PERMAG), the beam aiming (OPERA, IRES), the pressure inside the accelerator (CONDUCT, STRIP), the stripping reactions and transmitted/dumped power (EAMCC), the operating temperature, stress and deformations (ALIGN, ANSYS) and the heat loads on the electron dump (ED) (EDAC, BACKSCAT). An integrated approach, taking into consideration at the same time physics and engineering aspects, has been adopted all along the design process. Particular care has been taken in investigating the many interactions between physics and engineering aspects of the experiment. According to the 'robust design' philosophy, a comprehensive set of sensitivity analyses was performed, in order to investigate the influence of the design choices on the most relevant operating parameters. The design of the SPIDER accelerator, here described, has been developed in order to satisfy with reasonable margin all the requirements given by ITER, from the physics and engineering points of view. In particular, a new approach to the compensation of unwanted beam deflections inside the accelerator

  2. ELECTRON ACCELERATION AT A CORONAL SHOCK PROPAGATING THROUGH A LARGE-SCALE STREAMER-LIKE MAGNETIC FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Xiangliang; Chen, Yao; Feng, Shiwei; Du, Guohui [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, and Institute of Space Sciences, Shandong University, Weihai, Shandong 264209 (China); Guo, Fan [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Li, Gang, E-mail: yaochen@sdu.edu.cn [Department of Space Science and CSPAR, University of Alabama in Huntsville, Huntsville, AL 35899 (United States)

    2016-04-10

    Using a test-particle simulation, we investigate the effect of large-scale coronal magnetic fields on electron acceleration at an outward-propagating coronal shock with a circular front. The coronal field is approximated by an analytical solution with a streamer-like magnetic field featuring a partially open magnetic field and a current sheet at the equator atop the closed region. We show that the large-scale shock-field configuration, especially the relative curvature of the shock and the magnetic field line across which the shock is sweeping, plays an important role in the efficiency of electron acceleration. At low shock altitudes, when the shock curvature is larger than that of the magnetic field lines, the electrons are mainly accelerated at the shock flanks; at higher altitudes, when the shock curvature is smaller, the electrons are mainly accelerated at the shock nose around the top of closed field lines. The above process reveals the shift of the efficient electron acceleration region along the shock front during its propagation. We also find that, in general, the electron acceleration at the shock flank is not as efficient as that at the top of the closed field because a collapsing magnetic trap can be formed at the top. In addition, we find that the energy spectra of electrons are power-law-like, first hardening then softening with the spectral index varying in a range of −3 to −6. Physical interpretations of the results and implications for the study of solar radio bursts are discussed.

  3. Development of a dual-pulse RF driver for an S-band (= 2856 MHz) RF electron linear accelerator

    Science.gov (United States)

    Cha, Sungsu; Kim, Yujong; Lee, Byeong-No; Lee, Byung Cheol; Cha, Hyungki; Ha, Jang Ho; Park, Hyung Dal; Lee, Seung Hyun; Kim, Hui Su; Buaphad, Pikad

    2016-04-01

    The radiation equipment research division of Korea Atomic Energy Research Institute has developed a Container Inspection System (CIS) using a Radio Frequency (RF) electron linear accelerator for port security. The primary purpose of the CIS is to detect nuclear materials and explosives, as well country-specific prohibited substances, e.g., smuggled. The CIS consists of a 9/6 MeV dualenergy electron linear accelerator for distinguishing between organic and inorganic materials. The accelerator consists of an electron gun, an RF accelerating structure, an RF driver, a modulator, electromagnets, a cooling system, a X-ray generating target, X-ray collimator, a detector, and a container moving system. The RF driver is an important part of the configuration because it is the RF power source: it supplies the RF power to the accelerating structure. A unique aspect of the RF driver is that it generates dual RF power to generate dual energy (9/6 MeV). The advantage of this RF driver is that it can allow the pulse width to vary and can be used to obtain a wide range of energy output, and pulse repetition rates up to 300 Hz. For this reason, 140 W (5 MW - 9 MeV) and 37 W (3.4 MW - 6 MeV) power outputs are available independently. A high power test for 20 minutes demonstrate that stable dual output powers can be generated. Moreover, the dual power can be applied to the accelerator which has stable accelerator operation. In this paper, the design, fabrication and high power test of the RF driver for the RF electron linear accelerator (linac) are presented.

  4. First results of 28 GHz superconducting electron cyclotron resonance ion source for KBSI accelerator

    Science.gov (United States)

    Park, Jin Yong; Lee, Byoung-Seob; Choi, Seyong; Kim, Seong Jun; Ok, Jung-Woo; Yoon, Jang-Hee; Kim, Hyun Gyu; Shin, Chang Seouk; Hong, Jonggi; Bahng, Jungbae; Won, Mi-Sook

    2016-02-01

    The 28 GHz superconducting electron cyclotron resonance (ECR) ion source has been developed to produce a high current heavy ion for the linear accelerator at KBSI (Korea Basic Science Institute). The objective of this study is to generate fast neutrons with a proton target via a p(Li,n)Be reaction. The design and fabrication of the essential components of the ECR ion source, which include a superconducting magnet with a liquid helium re-condensed cryostat and a 10 kW high-power microwave, were completed. The waveguide components were connected with a plasma chamber including a gas supply system. The plasma chamber was inserted into the warm bore of the superconducting magnet. A high voltage system was also installed for the ion beam extraction. After the installation of the ECR ion source, we reported the results for ECR plasma ignition at ECRIS 2014 in Russia. Following plasma ignition, we successfully extracted multi-charged ions and obtained the first results in terms of ion beam spectra from various species. This was verified by a beam diagnostic system for a low energy beam transport system. In this article, we present the first results and report on the current status of the KBSI accelerator project.

  5. Stability of a mobile electron linear accelerator system for intraoperative radiation therapy.

    Science.gov (United States)

    Beddar, A Sam

    2005-10-01

    The flexibility of mobile electron accelerators, which are designed to be transported to an operating room and plugged into a normal 3-phase outlet, make them ideal for use in intraoperative radiation therapy. However, their transportability may cause trepidation among potential users, who may question the stability of such an accelerator over a period of use. In order to address this issue, we have studied the short-term stability of the Mobetron system over 20 daily quality assurance trials. Variations in output generally varied within +/-2% for the four energies produced by the unit (4, 6, 9, and 12 MeV) and changes in energy produced an equivalent shift of less than 1 mm on the depth-dose curve. Hours of inactivity, with the Mobetron powered on for use either throughout the day or overnight, led to variations in output of about 1%. Finally, we have tested the long-term stability of the absolute dose output of the Mobetron, which showed a change of about 1% per year.

  6. VLA Observations of Solar Decimetric Spike Bursts: Direct Signature of Accelerated Electrons in Reconnection Outflow Region

    Science.gov (United States)

    Chen, B.; Bastian, T.; Gary, D. E.

    2014-12-01

    Solar decimetric spike bursts, which appear in a radio dynamic spectrum as a cluster of short-lived and narrowband brightenings, have been suggested as a possible signature of many, "elementary" particle accelerations at or near a magnetic reconnection site. Their dynamic spectral feature can be potentially used to diagnose important parameters of the reconnection site such as plasma density and spatial size of the fragmentation. Yet direct observational evidence supporting this scenario has been elusive mainly due to the lack of imaging observations. The upgraded Karl G. Jansky Very Large Array (VLA) provides the first opportunity of performing simultaneous radio imaging and dynamic spectroscopy, which allows radio sources to be imaged at every spatio-temporal pixel in the dynamic spectrum. Here we report Jansky VLA observations of decimetric spike bursts recorded during an eruptive solar limb flare. Combined with EUV and X-ray data from SDO and RHESSI, we show that the spike bursts coincide spatially with a loop-top hard X-ray source, which are located in a region where supra-arcade downflows meet the underlying hot, EUV/X-ray loops. We interpret the observed spike bursts as a direct signature of non-thermal electrons accelerated by turbulences and/or shocks in the reconnection outflow region.

  7. The Continuous Electron Beam Accelerator Facility: CEBAF at the Jefferson Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Leemann, Chrisoph; Douglas, David R; Krafft, Geoffrey A

    2001-08-01

    The Jefferson Laboratory's superconducting radiofrequency (srf) Continuous Electron Beam Accelerator Facility (CEBAF) provides multi-GeV continuous-wave (cw) beams for experiments at the nuclear and particle physics interface. CEBAF comprises two antiparallel linacs linked by nine recirculation beam lines for up to five passes. By the early 1990s, accelerator installation was proceeding in parallel with commissioning. By the mid-1990s, CEBAF was providing simultaneous beams at different but correlated energies up to 4 GeV to three experimental halls. By 2000, with srf development having raised the average cavity gradient up to 7.5 MV/m, energies up to nearly 6 GeV were routine, at 1-150 muA for two halls and 1-100 nA for the other. Also routine are beams of >75% polarization. Physics results have led to new questions about the quark structure of nuclei, and therefore to user demand for a planned 12 GeV upgrade. CEBAF's enabling srf technology is also being applied in other projects.

  8. First results of 28 GHz superconducting electron cyclotron resonance ion source for KBSI accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Yong; Lee, Byoung-Seob; Choi, Seyong; Kim, Seong Jun; Ok, Jung-Woo; Yoon, Jang-Hee; Kim, Hyun Gyu; Shin, Chang Seouk; Hong, Jonggi; Bahng, Jungbae; Won, Mi-Sook, E-mail: mswon@kbsi.re.kr [Busan Center, Korea Basic Science Institute, Busan 609-735 (Korea, Republic of)

    2016-02-15

    The 28 GHz superconducting electron cyclotron resonance (ECR) ion source has been developed to produce a high current heavy ion for the linear accelerator at KBSI (Korea Basic Science Institute). The objective of this study is to generate fast neutrons with a proton target via a p(Li,n)Be reaction. The design and fabrication of the essential components of the ECR ion source, which include a superconducting magnet with a liquid helium re-condensed cryostat and a 10 kW high-power microwave, were completed. The waveguide components were connected with a plasma chamber including a gas supply system. The plasma chamber was inserted into the warm bore of the superconducting magnet. A high voltage system was also installed for the ion beam extraction. After the installation of the ECR ion source, we reported the results for ECR plasma ignition at ECRIS 2014 in Russia. Following plasma ignition, we successfully extracted multi-charged ions and obtained the first results in terms of ion beam spectra from various species. This was verified by a beam diagnostic system for a low energy beam transport system. In this article, we present the first results and report on the current status of the KBSI accelerator project.

  9. Acceleration of energetic electrons by waves in inhomogeneous solar wind plasmas

    Science.gov (United States)

    Krafft, C.; Volokitin, A.

    2017-04-01

    The paper studies the influence of the background plasma density fluctuations on the dynamics of the Langmuir turbulence generated by electron beams, for parameters typical for solar type III beams and plasmas near 1 AU. A self-consistent Hamiltonian model based on the Zakharov and the Newton equations is used, which presents several advantages compared to the Vlasov approach. Beams generating Langmuir turbulence can be accelerated as a result of wave transformation effects or/and decay cascade processes; in both cases, the beam-driven Langmuir waves transfer part of their energy to waves of smaller wavenumbers, which can be reabsorbed later on by beam particles of higher velocities. As a consequence, beams can conserve a large part of their initial kinetic energy while propagating and radiating wave turbulence over long distances in inhomogeneous plasmas. Beam particles can also be accelerated in quasi-homogeneous plasmas due to the second cascade of wave decay, the wave transformation processes being very weak in this case. The net gains and losses of energy of a beam and the wave turbulence it radiates are calculated as a function of the average level of plasma density fluctuations and the beam parameters. The results obtained provide relevant information on the mechanism of energy reabsorption by beams radiating Langmuir turbulence in solar wind plasmas.

  10. BioEM: GPU-accelerated computing of Bayesian inference of electron microscopy images

    CERN Document Server

    Cossio, Pilar; Baruffa, Fabio; Rampp, Markus; Lindenstruth, Volker; Hummer, Gerhard

    2016-01-01

    In cryo-electron microscopy (EM), molecular structures are determined from large numbers of projection images of individual particles. To harness the full power of this single-molecule information, we use the Bayesian inference of EM (BioEM) formalism. By ranking structural models using posterior probabilities calculated for individual images, BioEM in principle addresses the challenge of working with highly dynamic or heterogeneous systems not easily handled in traditional EM reconstruction. However, the calculation of these posteriors for large numbers of particles and models is computationally demanding. Here we present highly parallelized, GPU-accelerated computer software that performs this task efficiently. Our flexible formulation employs CUDA, OpenMP, and MPI parallelization combined with both CPU and GPU computing. The resulting BioEM software scales nearly ideally both on pure CPU and on CPU+GPU architectures, thus enabling Bayesian analysis of tens of thousands of images in a reasonable time. The g...

  11. Design of photon converter and photoneutron target for High power electron accelerator based BNCT.

    Science.gov (United States)

    Rahmani, Faezeh; Seifi, Samaneh; Anbaran, Hossein Tavakoli; Ghasemi, Farshad

    2015-12-01

    An electron accelerator, ILU-14, with current of 10 mA and 100 kW in power has been considered as one of the options for neutron source in Boron Neutron Capture Therapy (BNCT). The final design of neutron target has been obtained using MCNPX to optimize the neutron production. Tungsten in strip shape and D2O in cylindrical form have been proposed as the photon converter and the photoneutron target, respectively. In addition calculation of heat deposition in the photon target design has been considered to ensure mechanical stability of target. The results show that about 8.37×10(12) photoneutron/s with average energy of 615 keV can be produced by this neutron source design. In addition, using an appropriate beam shaping assembly an epithermal neutron flux of the order of 1.24×10(8) cm(-2) s(-1) can be obtained for BNCT applications.

  12. Status report on electron cyclotron resonance ion sources at the Heavy Ion Medical Accelerator in Chiba

    CERN Document Server

    Kitagawa, A; Sekiguchi, M; Yamada, S; Jincho, K; Okada, T; Yamamoto, M; Hattori, T G; Biri, S; Baskaran, R; Sakata, T; Sawada, K; Uno, K

    2000-01-01

    The Heavy Ion Medical Accelerator in Chiba at the National Institute of Radiological Sciences (NIRS) is not only dedicated to cancer therapy, it is also utilized with various ion species for basic experiments of biomedical science, physics, chemistry, etc. Two electron cyclotron resonance (ECR) ion sources are installed for production of gaseous ions. One of them, the NIRS-ECR, is a 10 GHz ECR ion source, and is mainly operated to produce C/sup 4+/ ions for daily clinical treatment. This source realizes good reproducibility and reliability and it is easily operated. The other source, the NIRS-HEC, is an 18 GHz ECR ion source that is expected to produce heavier ion species. The output ion currents of the NIRS-ECR and the NIRS-HEC are 430e mu A for C/sup 4+/ and 1.1e mA for Ar/sup 8+/, respectively. (14 refs).

  13. Early Commissioning Experience and Future Plans for the 12 GeV Continuous Electron Beam Accelerator Facility

    Energy Technology Data Exchange (ETDEWEB)

    Spata, Michael F. [JLAB

    2014-12-01

    Jefferson Lab has recently completed the accelerator portion of the 12 GeV Upgrade for the Continuous Electron Beam Accelerator Facility. All 52 SRF cryomodules have been commissioned and operated with beam. The initial beam transport goals of demonstrating 2.2 GeV per pass, greater than 6 GeV in 3 passes to an existing experimental facility and greater than 10 GeV in 5-1/2 passes have all been accomplished. These results along with future plans to commission the remaining beamlines and to increase the performance of the accelerator to achieve reliable, robust and efficient operations at 12 GeV are presented.

  14. Synergistic Direct/Wakefield Acceleration of Plasma Electrons In the Plasma Bubble Regime Using Tailored Laser Pulses

    Science.gov (United States)

    Shvets, Gennady

    2016-10-01

    The integration of direct laser acceleration (DLA) and laser wakefield acceleration (LWFA) is a new approach to plasma-based acceleration that confers several benefits over both schemes taken separately. Such integration requires a significant portion of the laser energy (e.g., a separate laser pulse) to trail the main bubble-producing laser pulse, and resonantly interact with the trapped accelerated electrons undergoing betatron motion inside the plasma bubble. I will demonstrate how electron dephasing from the accelerating wakefield, which is one of the key limitations of LWFA, is reduced by their growing undulating motion. Moreover, the distinct energy gains from wake and the laser pulse are compounding, thereby increasing the total energy gain. Even more significant increases of the overall acceleration can be obtained by moving away from single-frequency laser format toward combining mid-infrared laser pulses for plasma bubble generation with short-wavelength trailing pulses for DLA. Various injection mechanisms, such as ionization injection, external injection, self-injection, and their advantages will also be discussed. Translating these new concepts into specific experiments will take advantage of recent technological advances in synchronizing laser and electron beams, and using multiple beamlines for producing sophisticated laser pulse formats.

  15. 76 FR 13665 - Cambridge Tool & Die, Including On-Site Leased Workers From Action Total Staffing, Cambridge, OH...

    Science.gov (United States)

    2011-03-14

    ... Register on January 26, 2011 (76 FR 4731). At the request of the State agency, the Department reviewed the... Employment and Training Administration Cambridge Tool & Die, Including On-Site Leased Workers From Action Total Staffing, Cambridge, OH; Amended Certification Regarding Eligibility To Apply for...

  16. Double ionization effect in electron accelerations by high-intensity laser pulse interaction with a neutral gas

    Science.gov (United States)

    Nandan Gupta, Devki

    2013-11-01

    We study the effect of laser-induced double-ionization of a helium gas (with inhomogeneous density profile) on vacuum electron acceleration. For enough laser intensity, helium gas can be found doubly ionized and it strengthens the divergence of the pulse. The double ionization of helium gas can defocus the laser pulse significantly, and electrons are accelerated by the front of the laser pulse in vacuum and then decelerated by the defocused trail part of the laser pulse. It is observed that the electrons experience a very low laser-intensity at the trailing part of the laser pulse. Hence, there is not much electron deceleration at the trailing part of the pulse. We found that the inhomogeneity of the neutral gas reduced the rate of tunnel ionization causing less defocusing of the laser pulse and thus the electron energy gain is reduced.

  17. Double ionization effect in electron accelerations by high-intensity laser pulse interaction with a neutral gas

    Directory of Open Access Journals (Sweden)

    Gupta Devki Nandan

    2013-11-01

    Full Text Available We study the effect of laser-induced double-ionization of a helium gas (with inhomogeneous density profile on vacuum electron acceleration. For enough laser intensity, helium gas can be found doubly ionized and it strengthens the divergence of the pulse. The double ionization of helium gas can defocus the laser pulse significantly, and electrons are accelerated by the front of the laser pulse in vacuum and then decelerated by the defocused trail part of the laser pulse. It is observed that the electrons experience a very low laser-intensity at the trailing part of the laser pulse. Hence, there is not much electron deceleration at the trailing part of the pulse. We found that the inhomogeneity of the neutral gas reduced the rate of tunnel ionization causing less defocusing of the laser pulse and thus the electron energy gain is reduced.

  18. A study of the energy enhancement of electron in radio frequency (RF) linear accelerator of iris loaded waveguards

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Huy-Bich [Nong Lam Univ., Hochiminh City (Viet Nam). Faculty of Engineering and Technology; National Univ., Hochiminh City (Viet Nam). National Key Lab. of Digital Control and System Engineering (DCSELAB); Trinh, Hoa-Lang [Natural Science Univ., Hochiminh City (Viet Nam). Faculty of Physics - Physical Engineering; Nong Lam Univ., Hochiminh City (Viet Nam). Faculty of Engineering and Technology; Chau, Van-Tao; Nguyen, Van-Tuong [Natural Science Univ., Hochiminh City (Viet Nam). Faculty of Physics - Physical Engineering

    2014-06-15

    In this paper, the Hamiltonian theory of particle motion has been applied for developing the motion equations of electrons in linear accelerator of Iris-loaded waveguides. Using J. C. Slater assumption for determining electric field in Oz direction, the energy increase of electron in the guide wave pipe following the linacs resonance cavity with circulated electromagnetic distribution and repeat-cycle of given number of resonance cavities has been developed. The energy gain of electron following the electron way in Oz axle direction of the accelerator with the different injection phase and phase shift of RF has been obtained. The results indicate that the energy increase of electron depends on the injection phase of RF and cell-to-cell phase shift.

  19. Multi-chromatic narrow-energy-spread electron bunches from laser wakefield acceleration with dual color lasers

    CERN Document Server

    Zeng, Ming; Yu, Lu-Le; Mori, Warren B; Sheng, Zheng-Ming; Hidding, Bernhard; Jaroszynski, Dino; Zhang, Jie

    2014-01-01

    A method based on laser wakefield acceleration is proposed that can generate electron bunches with an energy spectrum containing multiple spikes each with very narrow energy spread. The method is demonstrated through multi-dimensional particle-in-cell simulations. The beating of bichromatic short pulse laser fields allows controlled ionization injection of electrons into an accelerating bucket. Due to the different dispersion of the two color pulses co-propagating in the background plasma, the peak amplitude of the combined laser field oscillates during the propagation. Ionization injection occurs when the peak amplitude exceeds an ionization threshold. The threshold is exceeded for limited durations at different propagation distances. Electrons from each injection duration produce separate electron bunches. This combined with an oscillating bubble in multi-dimensions produces an energy spectrum with multi-chromatic spikes, where each spike has an energy spread less than 1%. Such electron bunches could be use...

  20. Radio Diagnostics of Electron Acceleration Sites During the Eruption of a Flux Rope in the Solar Corona

    CERN Document Server

    Carley, Eoin P; Gallagher, Peter T

    2016-01-01

    Electron acceleration in the solar corona is often associated with flares and the eruption of twisted magnetic structures known as flux ropes. However, the locations and mechanisms of such particle acceleration during the flare and eruption are still subject to much investigation. Observing the exact sites of particle acceleration can help confirm how the flare and eruption are initiated are initiated and how they evolve. Here we use the Atmospheric Imaging Assembly to analyse a flare and erupting flux rope on 2014-April-18, while observations from the Nancay Radio Astronomy Facility allows us to diagnose the sites of electron acceleration during the eruption. Our analysis shows evidence for a pre-formed flux rope which slowly rises and becomes destabilised at the time of a C-class flare, plasma jet and the escape of >75 keV electrons from rope center into the corona. As the eruption proceeds, continued acceleration of electrons with energies of ~5 keV occurs above the flux rope for a period over 5 minutes. A...