WorldWideScience

Sample records for calorimeter monitoring system

  1. ATLAS Tile calorimeter calibration and monitoring systems

    CERN Document Server

    Chomont, Arthur Rene; The ATLAS collaboration

    2016-01-01

    The ATLAS Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs), located on the outside of the calorimeter. The readout is segmented into about 5000 cells (longitudinally and transversally), each of them being read out by two PMTs in parallel. To calibrate and monitor the stability and performance of each part of the readout chain during the data taking, a set of calibration systems is used. The TileCal calibration system comprises Cesium radioactive sources, laser and charge injection elements and it allows to monitor and equalize the calorimeter response at each stage of the signal production, from scin...

  2. A purity monitoring system for liquid argon calorimeters

    International Nuclear Information System (INIS)

    For liquid argon calorimeters electronegative impurities dissolved in the medium degrade the detector response and deteriorate the energy resolution, especially at high energies. A concept for a purity monitoring system for liquid argon calorimeters has been developed and is presented here. Special combined monitors of 241Am- and 207Bi-cells are used to monitor the concentration of impurities. The working principle as well as results from test measurements are discussed

  3. Forward hadron calorimeter of European hybrid spectrometer monitoring system

    International Nuclear Information System (INIS)

    The light-monitoring system of the forward neutral-hadron calorimeter of the European hybrid spectrometer is described. A general block diagram of the system, the functional relationships of the modules, and the ideology of the mathematical support are presented. The calorimeter records neutral particles in momentum range of 10-400 MeV/c. The calorimeter consists of 200 identical counters in modules of four each in a 10 X 20 matrix. The counters are made from plastic scintillators interlayed by steel plates. Light is collected by means of a rod reemitter admitted along the counter axis

  4. Monitoring the pre-processor system of the ATLAS level-1 calorimeter trigger

    International Nuclear Information System (INIS)

    The Pre-Processor (PPr) System of the ATLAS Level-1 Calorimeter Trigger is a highly parallel system, with hard-wired algorithms implemented in ASICs, to receive, digitise and process over 7000 analogue trigger tower signals from the entire ATLAS Calorimetry, and to transmit the determined transverse energy deposits to the object-finding processors of the calorimeter trigger: Cluster Processor and Jet/Energy-sum Processor. The PPr System consists of 8 crates, each of which being equipped with 16 Preprocessor Modules, that can each receive and process 64 analogue input signals. The Preprocessor System provides facilities to monitor the operation and performance of both its individual components and the Level-1 Calorimeter Trigger: pipelined readout of event based monitoring data to the DAQ System, in order to document the Level-1 Trigger decision, diagnostic features implemented in PPrASIC to establish rate maps and energy spectra per trigger tower, and output interface to the crate controller CPU. Monitoring software for trigger-specific applications is developed and presented in this talk. (orig.)

  5. A cryogenic monitor system for the Liquid Argon Calorimeter in the SLD detector

    Energy Technology Data Exchange (ETDEWEB)

    Fox, M.J.; Fox, J.D.

    1988-10-01

    This paper describes the monitoring electronics system design for the Liquid Argon Calorimeter (LAC) portion of the SLD detector. This system measures temperatures and liquid levels inside the LAC cryostat and transfers the results over a fiber-optic serial link to an external monitoring computer. System requirements, unique design constraints, and detailed analog, digital and software designs are presented. Fault tolerance and the requirement for a single design to work in several different operating environments are discussed. 4 refs., 3 figs., 1 tab.

  6. A cryogenic monitor system for the Liquid Argon Calorimeter in the SLD detector

    International Nuclear Information System (INIS)

    This paper describes the monitoring electronics system design for the Liquid Argon Calorimeter (LAC) portion of the SLD detector. This system measures temperatures and liquid levels inside the LAC cryostat and transfers the results over a fiber-optic serial link to an external monitoring computer. System requirements, unique design constraints, and detailed analog, digital and software designs are presented. Fault tolerance and the requirement for a single design to work in several different operating environments are discussed. 4 refs., 3 figs., 1 tab

  7. Forward hadronic calorimeter of the European Hybrid Spectrometer. The monitoring system

    International Nuclear Information System (INIS)

    The forward hadronic calorimeter (FHC) of the European Hybrid Spectrometer (EHS) is a component of the calorimetric detector system that ensures recording the neutral component of the secondary particles directed forward in the center-of-mass system in the 10-400 GeV/s pulse range. The monitoring system for FHC of the EHS is described. The general block-diagram of the system functional interconnection of the modules and the software organization are presented. The light monitoring system realized for FHC permits to continuously control each detector counter operation. Following the stability of all stages of the light conversion path enables to localize failures quickly and unambiguously and to determine their reasons. One of the advantages of the described in the paper technique of rapid sensitivity control of the counters is its fitness for adjusting the detector to a mode corresponding to any of previously performed calibrations to an accuracy of about 5%

  8. The Monitoring and Calibration Web Systems for the ATLAS Tile Calorimeter Data Quality Analysis

    CERN Document Server

    Sivolella, A; The ATLAS collaboration; Ferreira, F

    2012-01-01

    The Tile Calorimeter (TileCal), one of the ATLAS detectors, has four partitions, where each one contains 64 modules and each module has up to 48 PhotoMulTipliers (PMTs), totalizing more than 10,000 electronic channels. The Monitoring and Calibration Web System (MCWS) supports data quality analyses at channels level. This application was developed to assess the detector status and verify its performance, presenting the problematic known channels list from the official database that stores the detector conditions data (COOL). The bad channels list guides the data quality validator during analyses in order to identify new problematic channels. Through the system, it is also possible to update the channels list directly in the COOL database. MCWS generates results, as eta-phi plots and comparative tables with masked channels percentage, which concerns TileCal status, and it is accessible by all ATLAS collaboration. Annually, there is an intervention on LHC (Large Hadronic Collider) when the detector equipments (P...

  9. Integration of the monitoring and offline analysis systems of the ATLAS hadronic calorimeter

    International Nuclear Information System (INIS)

    Full text: During the ATLAS detector operation, collaborators perform innumerous analysis related to the calibration in order to acquire detailed information about the hadronic calorimeter (TileCal) equipment. Through the analysis, it is possible to detect faults that would affect data acquisition, which are of physics interest. Some defects examples are: saturation of reading channels, problems in the acquired signal digitization and high signal-to-noise ratio (SNR). Since the commissioning period, members of the collaboration between CERN and UFRJ developed Web systems to support the hard task of monitoring the TileCal equipment. The Tile Commissioning Web System (TCWS) integrates different applications, each one presenting part of the commissioning process. The Web Interface for Shifters (WIS) displays the most recent calibration runs and assists the monitoring of the modules operation. The TileComm Analysis (TCA) allows access to histograms that represents the status of modules and corresponding channels functioning. The Timeline provides the history of the calibration rounds and the state of all modules in chronological order. The Data Quality Monitoring (DQM) contains the status of the histograms, modules and channels. The E-log stores and displays all reports about calibrations. Web Monitoring and Calibration System (MCWS) allows the visualization of the most recent channel status of each module. DCS (Detector Control System) Web System monitors the operation of modules power supply. After the ATLAS operation has started the number of equipment calibrations increased significantly, which has prompted the development of a system that would display all previous information through a centralized way. The Dashboard allows the collaborator to easily access the latest runs or to search for specific ones. After selecting a run, it is possible to check the status of each barrel module through a schematic figure, to view the 10 latest status of a certain module, and

  10. The Monitoring and Calibration Web Systems for the ATLAS Tile Calorimeter Data Quality Analysis

    Science.gov (United States)

    Sivolella, A.; Maidantchik, C.; Ferreira, F.

    2012-12-01

    The Tile Calorimeter (TileCal) is one of the ATLAS sub-detectors. The read-out is performed by about 10,000 PhotoMultiplier Tubes (PMTs). The signal of each PMT is digitized by an electronic channel. The Monitoring and Calibration Web System (MCWS) supports the data quality analysis of the electronic channels. This application was developed to assess the detector status and verify its performance. It can provide to the user the list of TileCal known problematic channels, that is stored in the ATLAS condition database (COOL DB). The bad channels list guides the data quality validator in identifying new problematic channels and is used in data reconstruction and the system allows to update the channels list directly in the COOL database. MCWS can generate summary results, such as eta-phi plots and comparative tables of the masked channels percentage. Regularly, during the LHC (Large Hadron Collider) shutdown a maintenance of the detector equipments is performed. When a channel is repaired, its calibration constants stored in the COOL database have to be updated. Additionally MCWS system manages the update of these calibration constants values in the COOL database. The MCWS has been used by the Tile community since 2008, during the commissioning phase, and was upgraded to comply with ATLAS operation specifications. Among its future developments, it is foreseen an integration of MCWS with the TileCal control Web system (DCS) in order to identify high voltage problems automatically.

  11. The Monitoring and Calibration Web Systems for the ATLAS Tile Calorimeter Data Quality Analysis

    CERN Document Server

    Sivolella, A; Ferreira, F

    2012-01-01

    The Tile Calorimeter (TileCal) is one of the ATLAS sub-detectors. The read-out is performed by about 10,000 PhotoMultiplier Tubes (PMTs). The signal of each PMT is digitized by an electronic channel. The Monitoring and Calibration Web System (MCWS) supports the data quality analysis of the electronic channels. This application was developed to assess the detector status and verify its performance. It can provide to the user the list of TileCal known problematic channels, that is stored in the ATLAS condition database (COOL DB). The bad channels list guides the data quality validator in identifying new problematic channels and is used in data reconstruction and the system allows to update the channels list directly in the COOL database. MCWS can generate summary results, such as eta-phi plots and comparative tables of the masked channels percentage. Regularly, during the LHC (Large Hadron Collider) shutdown a maintenance of the detector equipments is performed. When a channel is repaired, its calibration const...

  12. Study of the optical monitoring system of the scintillating crystal involved in the electromagnetic calorimeter of CMS experiment

    International Nuclear Information System (INIS)

    The prospect of the experimental discovery of the Higgs boson is one of the motivations to build the large hadron collider (LHC). Proton beams will collide and the emitted particles will be detected by ATLAS and CMS equipment. In each detector the electromagnetic calorimeter will allow the characterisation of the 2 photons coming from one of the disintegration channels of the Higgs boson. CMS collaboration has chosen an homogeneous calorimeter fitted with PbWO4 crystals. Each crystal with its photodetector and its electronic device forms one detection channel. The resolution of the detection channels should not deteriorate all along the operating time. The optical monitoring system of the crystals logs then controls the response of each detection channel in order to allow an accurate calibration of the calorimeter. The optical properties, the resistance to irradiation of PbWO4 crystals and the modelling of light collection are investigated in this work. The description of the different components of the optical monitoring system highlights the technical difficulties we had to challenge. An experimental testing bench has been set up to study the coupling between the scintillation signal and the signal that feeds the monitoring system, this coupling has been studied under irradiation in the conditions of CMS operating. (A.C.)

  13. An LED-Based Gain Monitoring System for the PrimEx Hybrid Calorimeter at Jefferson Lab

    Science.gov (United States)

    Underwood, Jarreas

    2003-10-01

    The PrimEx Collaboration is preparing to perform a high precision ( ˜ 1.4%) measurement of the neutral pion decay width through two gamma decay mode. Knowledge of the pion decay width with such high accuracy will provide a stringent test of the fundamental symmetry breaking issue in QCD - the chiral anomaly. The theoretical prediction of the decay width is precise, and the 1.4% level measurement in PrimEx is adequate for this test. Pions will be produced in nuclear targets by the coherent photoproduction in the Coulomb field of a nucleus at small angles (Primakoff effect). The energy and coordinates of the resultant decay photons will be detected in a high resolution HYbrid CALorimeter (HYCAL) which consists of about 1200 lead tungstate crystal scintillators surrounded by ˜ 600 lead glass Cherenkov counters. HYCAL will be furnished with precise ˜ 0.1% gain monitoring system based on blue super-bright light emitting diodes. A 700-channel prototype system has been constructed for the prototype HYCAL-0 calorimeter. This system has been tested for both long-term stability and performance in the CEBAF photon beam. Additionally, fluctuations in the calorimeter high voltages were simulated during the beam test. The results of these tests will be presented. This project is being supported by NSF grants PHY-0079840 and PHY-0072466

  14. Stabilized dye laser for crystal electromagnetic calorimeter monitoring

    CERN Document Server

    Singovsky, A V; Korzhik, M V; Lopatik, A; Peigneux, J P; Moinester, M A; Steiner, V

    2002-01-01

    A slow laser output drift stabilization system was described. The system stabilized the light output of a commercial dye laser to the level of 0.3%. The results showed that the use of a stabilized laser light source for monitoring of electromagnetic calorimeter crystals would simplify the monitoring system design. It would also improve the overall monitoring system performance by removing the light output correction term. (Edited abstract) 15 Refs. --- 22 --- AN

  15. ATLAS Tile Calorimeter time calibration, monitoring and performance

    CERN Document Server

    Davidek, Tomas; The ATLAS collaboration

    2016-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the central region of the ATLAS experiment at the LHC. This sampling device is made of plastic scintillating tiles alternated with iron plates and its response is calibrated to electromagnetic scale by means of several dedicated calibration systems. The accurate time calibration is important for the energy reconstruction, non-collision background removal as well as for specific physics analyses. The initial time calibration with so-called splash events and subsequent fine-tuning with collision data are presented. The monitoring of the time calibration with laser system and physics collision data is discussed as well as the corrections for sudden changes performed still before the recorded data are processed for physics analyses. Finally, the time resolution as measured with jets and isolated muons particles is presented.

  16. Design and application of calorimeters for monitoring biological processes in stirred tank bioreactors

    OpenAIRE

    Regestein, Lars

    2013-01-01

    Developing and improving online monitoring techniques for processes is always a matter of interest for industrial and research applications. Independent of kind and complexity of the reaction, measuring the heat generation (calorimetry) is a universal tool for process monitoring. Therefore, two new calorimetric measurement techniques (chip calorimeter and reactor calorimeter) for process monitoring in stirred tank reactors were developed, validated and applied to several biological systems. ...

  17. The ATLAS tile calorimeter web systems for data quality

    International Nuclear Information System (INIS)

    The ATLAS detector consists of four major components: inner tracker, calorimeter, muon spectrometer and magnet system. In the Tile Calorimeter (TileCal), there are 4 partitions, each partition has 64 modules and each module has up to 48 channels. During the ATLAS pre-operation phase, a group of physicists need to analyze the Tile Calorimeter data quality, generate reports and update the official database, when necessary. The Tile Commissioning Web System (TCWS) retrieves information from different directories and databases, executes programs that generate results, stores comments and verifies the calorimeter status. TCWS integrates different applications, each one presenting a unique data view. The Web Interface for Shifters (WIS) supports monitoring tasks by managing test parameters and all the calorimeter status. The TileComm Analysis stores plots, automatic analyses results and comments concerning the tests. With the necessity of increasing granularity, a new application was created: the Monitoring and Calibration Web System (MCWS). This application supports data quality analyses at the channel level by presenting the automatic analyses results, the problematic known channels and the channels masked by the shifters. Through the web system, it is possible to generate plots and reports, related to the channels, identify new bad channels and update the Bad Channels List at the ATLAS official database (COOL DB). The Data Quality Monitoring Viewer (DQM Viewer) displays the data quality automatic results through an oriented visualization.

  18. Detector Control System of the ATLAS Tile Calorimeter

    CERN Document Server

    Arabidze, G; The ATLAS collaboration; Ribeiro, G; Santos, H; Vinagre, F

    2011-01-01

    The main task of the ATLAS Tile calorimeter Detector Control System (DCS) is to enable the coherent and safe operation of the calorimeter. All actions initiated by the operator, as well as all errors, warnings and alarms concerning the hardware of the detector are handled by DCS. The Tile calorimeter DCS controls and monitors mainly the low voltage and high voltage power supply systems, but it is also interfaced with the infrastructure (cooling system and racks), the calibration systems, the data acquisition system, configuration and conditions databases and the detector safety system. The system has been operational since the beginning of LHC operation and has been extensively used in the operation of the detector. In the last months effort was directed to the implementation of automatic recovery of power supplies after trips. Current status, results and latest developments will be presented.

  19. Study of the optical monitoring system of the scintillating crystal involved in the electromagnetic calorimeter of CMS experiment; Etude du systeme de suivi optique des cristaux scintillants du calorimetre electromagnetique de l`experience CMS

    Energy Technology Data Exchange (ETDEWEB)

    Geleoc, M

    1998-09-04

    The prospect of the experimental discovery of the Higgs boson is one of the motivations to build the large hadron collider (LHC). Proton beams will collide and the emitted particles will be detected by ATLAS and CMS equipment. In each detector the electromagnetic calorimeter will allow the characterisation of the 2 photons coming from one of the disintegration channels of the Higgs boson. CMS collaboration has chosen an homogeneous calorimeter fitted with PbWO{sub 4} crystals. Each crystal with its photodetector and its electronic device forms one detection channel. The resolution of the detection channels should not deteriorate all along the operating time. The optical monitoring system of the crystals logs then controls the response of each detection channel in order to allow an accurate calibration of the calorimeter. The optical properties, the resistance to irradiation of PbWO{sub 4} crystals and the modelling of light collection are investigated in this work. The description of the different components of the optical monitoring system highlights the technical difficulties we had to challenge. An experimental testing bench has been set up to study the coupling between the scintillation signal and the signal that feeds the monitoring system, this coupling has been studied under irradiation in the conditions of CMS operating. (A.C.) 94 refs.

  20. The ATLAS liquid Argon calorimeters read-out system

    CERN Document Server

    Blondel, A; Fayard, L; La Marra, D; Léger, A; Matricon, P; Perrot, G; Poggioli, L; Prast, J; Riu, I; Simion, S

    2004-01-01

    The calorimetry of the ATLAS experiment takes advantage of different detectors based on the liquid Argon (LAr) technology. Signals from the LAr calorimeters are processed by various stages before being delivered to the Data Acquisition system. The calorimeter cell signals are received by the front-end boards, which digitize a predetermined number of samples of the bipolar waveform and sends them to the Read-Out Driver (ROD) boards. The ROD board receives triggered data from 1028 calorimeter cells, and determines the precise energy and timing of the signals by processing the discrete samplings of the pulse. In addition, it formats the digital stream for the following elements of the DAQ chain, and performs monitoring. The architecture and functionality of the ATLAS LAr ROD board are discussed, along with the final design of the Processing Unit boards housing the Digital Signal Processors (DSP). (9 refs).

  1. The pulsed light calibration system of the ZEUS calorimeter

    International Nuclear Information System (INIS)

    The ZEUS calorimeter is a compensating calorimeter consisting of uranium and scintillator plates. Light is transported via light guides to photomultiplier tubes (PMTs). The design goal is an energy calibration good to within 1%. Stability is measured and PMT gains are set using the signal from uranium radioactivity. Another important component of the calibration is the pulsed light system, which distributes light from a central laser or from distributed LEDs to the photomultiplier tubes via optical fibers. The light pulse gives a similar PMT response as a signal generated by a particle in the calorimeter. This has allowed the monitoring of the following properties of the readout chain: . Number of photoelectrons/GeV/PMT. This enables us to differentiate between changes in the photomultiplier tubes and changes in the calorimeter (such as radiation damage). . Linearity of the PMT readout chain between 0 and 400 GeV. . Time delays from the PMTs and from the electronics are known to within 1 nsec. It is necessary to know these delays in order to precisely calculate the reconstructed charge and to eliminate background to e-p interactions from beam gas events. . Short-term monitoring of PMT gain. This has been used to measure PMT gain changes under varying magnetic fields to better than 1% and will be used to measure the PMT gain under varying HERA background conditions. (orig.)

  2. Control, Test and Monitoring Software Framework for the ATLAS Level-1 Calorimeter Trigger

    CERN Document Server

    Achenbach, R; Aharrouche, M; Andrei, V; Åsman, B; Barnett, B M; Bauss, B; Bendel, M; Bohm, C; Booth, J R A; Bracinik, J; Brawn, I P; Charlton, D G; Childers, J T; Collins, N J; Curtis, C J; Davis, A O; Eckweiler, S; Eisenhandler, E F; Faulkner, P J W; Fleckner, J; Föhlisch, F; Gee, C N P; Gillman, A R; Goringer, C; Groll, M; Hadley, D R; Hanke, P; Hellman, S; Hidvegi, A; Hillier, S J; Johansen, M; Kluge, E E; Kühl, T; Landon, M; Lendermann, V; Lilley, J N; Mahboubi, K; Mahout, G; Meier, K; Middleton, R P; Moa, T; Morris, J D; Müller, F; Neusiedl, A; Ohm, C; Oltmann, B; Perera, V J O; Prieur, D P F; Qian, W; Rieke, S; Rühr, F; Sankey, D P C; Schäfer, U; Schmitt, K; Schultz-Coulon, H C; Silverstein, S; Sjölin, J; Staley, R J; Stamen, R; Stockton, M C; Tan, C L A; Tapprogge, S; Thomas, J P; Thompson, P D; Watkins, P M; Watson, A; Weber, P; Wessels, M; Wildt, M

    2008-01-01

    The ATLAS first-level calorimeter trigger is a hardware-based system designed to identify high-pT jets, electron/photon and tau candidates and to measure total and missing ET in the ATLAS calorimeters. The complete trigger system consists of over 300 customdesignedVME modules of varying complexity. These modules are based around FPGAs or ASICs with many configurable parameters, both to initialize the system with correct calibrations and timings and to allow flexibility in the trigger algorithms. The control, testing and monitoring of these modules requires a comprehensive, but well-designed and modular, software framework, which we will describe in this paper.

  3. The dry heat exchanger calorimeter system

    International Nuclear Information System (INIS)

    A radiometric isothermal heat flow calorimeter and preconditioner system that uses air instead of water as the heat exchange medium has been developed at Mound. The dry heat exchanger calorimeter is 42 inches high by 18 inches in diameter and the preconditioner is a 22 inch cube, making it extremely compact compared to existing units. The new system is ideally suited for transportable, stand-alone, or glovebox applications. Preliminary tests of the system have produced sample measurements with standard deviations less than 0.25% and sample errors less than 0.50%. These tests have shown that the dry heat exchanger system will yield acceptance data with an accuracy comparable to those of Mound water bath systems now in use. 4 figs., 1 tab

  4. The dry heat exchanger calorimeter system

    International Nuclear Information System (INIS)

    This paper reports on a radiometric isothermal heat flow calorimeter and preconditioner system that uses air instead of water as the heat exchange medium which has been developed for use with nuclear material. The dry heat exchanger calorimeter is 42 in. high by 18 in. in diameter and the preconditioner is a 22 in. cube, making it extremely compact compared to existing units. The new system is ideally suited for transportable, stand-alone, or glovebox applications. Preliminary tests of the system have produced sample measurements with standard deviations less than 0.25% and sample errors less than 0.50%. These tests have shown that the dry heat exchanger system will yield acceptable data with an accuracy comparable to those of Mound water bath systems now in use

  5. Monitoring light source for CMS lead tungstate crystal calorimeter at LHC

    CERN Document Server

    Zhang Liang Ying; Zhu, R Y; Liu, D T

    2001-01-01

    Light monitoring will serve as an intercalibration for Compact Muon Solenoid (CMS) lead tungstate crystals in situ at the Large Hadronic Collider, which is crucial for maintaining crystal calorimeter's subpercent constant term in the energy resolution. This paper presents the design of the CMS electromagnetic calorimeter monitoring light source and high-level distribution system. The correlations between variations of the light output and the transmittance for the CMS choice of yttrium-doped PbWO/sub 4/ crystals were investigated and were used to study monitoring linearity and sensitivity as a function of wavelength. The monitoring wavelength was determined so that a good linearity as well as adequate sensitivity can be achieved. The performance of a custom manufactured tunable laser system is presented. Issues related to monitoring precision are discussed. (12 refs).

  6. The CMS Electromagnetic Calorimeter Detector Control System

    International Nuclear Information System (INIS)

    This paper presents the Detector Control System (DCS) designed and implemented for the Electromagnetic Calorimeter (ECAL) of the Compact Muon Solenoid (CMS) experiment at CERN. The focus is on its distributed controls software architecture, the deployment of the application into production and its integration into the overall CMS DCS. The knowledge acquired from operational issues during the detector commissioning and the first phase of the Large Hadron Collider (LHC) physics runs is discussed and future improvements are presented.

  7. Radioactive source control and electronics for the ATLAS tile calorimeter cesium calibration system

    CERN Document Server

    Shalanda, N A; Kopikov, S; Shalimov, A; Soldatov, M; Solodkov, A; Starchenko, E A

    2003-01-01

    A system using a radioactive /sup 137/Cs source to calibrate and monitor the Hadron Calorimeter (TileCal) of the ATLAS experiment at the LHC is described. The system includes a set of sensors to monitor the position of the source which moves via hydraulic propulsion. The design of the sensors, the corresponding electronic modules and their performance are detailed. (6 refs).

  8. Development of a forward calorimeter system for the STAR experiment

    International Nuclear Information System (INIS)

    We present results of an R and D program to develop a forward calorimeter system (FCS) for the STAR experiment at the Relativistic Heavy Ion Collider at BNL. The FCS is a very compact, compensated, finely granulated, high resolution calorimeter system being developed for p+p and p+A program at RHIC. The FCS prototype consists of both electromagnetic and hadron calorimeters. The electromagnetic portion of the detector is constructed with W powder and scintillation fibers. The hadronic calorimeter is a traditional Pb/Sc-plate sandwich design. Both calorimeters were readout with Hamamatsu MPPCs. A full- scale prototype of the FCS was tested with a beam at FNAL in March 2014. We present details of the design, construction technique and performance of the FCS prototype during the test run at FNAL

  9. Floating data acquisition system for microwave calorimeter measurements on MTX

    Energy Technology Data Exchange (ETDEWEB)

    Sewall, N.R.; Meassick, S. (Lawrence Livermore National Lab., CA (USA))

    1989-09-13

    A microwave calorimeter has been designed for making 140-GHz absorption measurements on the MTX. Measurement of the intensity and spatial distribution of the FEL-generated microwave beam on the inner wall will indicate the absorption characteristics of the plasma when heated with a 140 GHz FEL pulse. The calorimeter works by monitoring changes of temperature in silicon carbide tiles located on the inner wall of the tokamak. Thermistors are used to measure the temperature of each tile. The tiles are located inside the tokamak about 1 cm outside of the limiter radius at machine potential. The success of this measurement depends on our ability to float the data acquisition system near machine potential and isolate it from the rest of the vault ground system. Our data acquisition system has 48 channels of thermistor signal conditioning, a multiplexer and digitizer section, a serial data formatter, and a fiber-optic transmitter to send the data out. Additionally, we bring timing signals to the interface through optical fibers to tell it when to begin measurement, while maintaining isolation. The receiver is an HP 200 series computer with a serial data interface; the computer provides storage and local display for the shot temperature profile. Additionally, the computer provides temporary storage of the data until it can be passed to a shared resource management system for archiving. 2 refs., 6 figs.

  10. Floating data acquisition system for microwave calorimeter measurements on MTX

    International Nuclear Information System (INIS)

    A microwave calorimeter has been designed for making 140-GHz absorption measurements on the MTX. Measurement of the intensity and spatial distribution of the FEL-generated microwave beam on the inner wall will indicate the absorption characteristics of the plasma when heated with a 140 GHz FEL pulse. The calorimeter works by monitoring changes of temperature in silicon carbide tiles located on the inner wall of the tokamak. Thermistors are used to measure the temperature of each tile. The tiles are located inside the tokamak about 1 cm outside of the limiter radius at machine potential. The success of this measurement depends on our ability to float the data acquisition system near machine potential and isolate it from the rest of the vault ground system. Our data acquisition system has 48 channels of thermistor signal conditioning, a multiplexer and digitizer section, a serial data formatter, and a fiber-optic transmitter to send the data out. Additionally, we bring timing signals to the interface through optical fibers to tell it when to begin measurement, while maintaining isolation. The receiver is an HP 200 series computer with a serial data interface; the computer provides storage and local display for the shot temperature profile. Additionally, the computer provides temporary storage of the data until it can be passed to a shared resource management system for archiving. 2 refs., 6 figs

  11. Floating data acquisition system for microwave calorimeter measurements on MTX

    International Nuclear Information System (INIS)

    A microwave calorimeter has been designed for making 140-GHz absorption measurements on the MTX. Measurement of the intensity and spatial distribution of the FEL-generated microwave beam on the inner wall will indicate the absorption characteristics of the plasma when heated with a 140 GHz FEL pulse. The calorimeter works by monitoring changes of temperature in silicon carbide tiles located on the inner wall of the tokamak. Thermistors are used to measure the temperature of each tile. The tiles are located inside the tokamak about 1 cm outside of the limiter radius at machine potential. The success of this measurement depends on our ability to float the data acquisition system near machine potential and isolate it from the rest of the vault ground system. Our data acquisition system has 48 channels of thermistor signal conditioning, a multiplexer and digitizer section, a serial data formatter, and a fiber-optic transmitter to send the data out. Additionally, we bring timing signals to the interface through optical fibers to tell it when to begin measurement, while maintaining isolation. The receiver is an HP 200 Series computer with a serial data interface; the computer provides storage and local display for the shot temperature profile. Additionally, the computer provides temporary storage of the data until it can be passed to a shared resource management system for archiving. 2 refs., 6 figs

  12. Bulk-assay calorimeter: Part 1. System design and operation. Part 2. Calibration and testing

    International Nuclear Information System (INIS)

    The Bulk-Assay Calorimeter is designed to measure the thermal power emitted by plutonium-containing samples. The sample power range of the instrument is 1.4 to 22.4 W. The instrument package consists of the calorimeter measurement chamber, the control circuit power bin, and the data acquisition system. Two sample preheating chambers and five calorimeter canisters for containing the samples are included. A set of 32 test points which monitor voltages at points within the calorimeter and its control circuitry are accessed by the data acquisition system. The use of the test points is described. System start-up and checkout are described. Sample assay and preheater operation procedures are given. The data acquisition system and data analysis software are described. The calorimeter was calibrated at 23 points with heat sources from 1.4 to 22.4 watts. The combined measurement error varied with sample power from 1.4% to 0.1% over the range of calibration measurements. Circuit diagrams for the calorimeter and schematics for the data acquisition system are included

  13. Web system to support analysis of the Tile Calorimeter commissioning

    International Nuclear Information System (INIS)

    This article describes the set of computer systems that support the data analysis and quality control during the Tile Calorimeter commissioning phase. The Tile Commissioning Web System (TCWS) encapsulates the steps to retrieve information, execute programs, access the outcomes, register statements and verify the equipment status. TCWS integrates different applications, each one presenting a particular view of the commissioning process. The TileComm Analysis stores plots and analysis results, provides equipment-oriented visualization, collects information regarding the equipment performance, and outlines its status in each test. The Timeline application provides the equipment status history in a chronological way. The Web Interface for Shifters supports monitoring tasks by managing test parameters, graphical views of the detector's performance, and information status of all equipment that was used in each test. The DCS Web System provides a standard way to verify the behaviour of power sources and the cooling system

  14. Monitoring light source for CMS lead tungstate crystal calorimeter at LHC

    CERN Document Server

    Zhang Li Yuan; Zhu Ren Yuan; Liu Dun Can

    2000-01-01

    Light monitoring will serve as an inter calibration for CMS lead tungstate crystals in situ at LHC, which is crucial for maintaining crystal calorimeter's sub percent constant term in the energy resolution. This paper presents the design of the CMS ECAL monitoring light source and high level distribution system. The correlations between variations of the light output and the transmittance for the CMS choice of Y doped PbWO//4 crystals were investigated, and were used to study monitoring linearity and sensitivity as a function of the wavelength. The monitoring wavelength was determined so that a good linearity as well as adequate sensitivity can be achieved. The performance of a custom manufactured tunable laser system is presented. Issues related to monitoring precision are discussed. 29 Refs.

  15. Beam Test of the ATLAS Level-1 Calorimeter Trigger System

    CERN Document Server

    Garvey, J; Mahout, G; Moye, T H; Staley, R J; Thomas, J P; Typaldos, D; Watkins, P M; Watson, A; Achenbach, R; Föhlisch, F; Geweniger, C; Hanke, P; Kluge, E E; Mahboubi, K; Meier, K; Meshkov, P; Rühr, F; Schmitt, K; Schultz-Coulon, H C; Ay, C; Bauss, B; Belkin, A; Rieke, S; Schäfer, U; Tapprogge, T; Trefzger, T; Weber, GA; Eisenhandler, E F; Landon, M; Apostologlou, P; Barnett, B M; Brawn, I P; Davis, A O; Edwards, J; Gee, C N P; Gillman, A R; Mirea, A; Perera, V J O; Qian, W; Sankey, D P C; Bohm, C; Hellman, S; Hidvegi, A; Silverstein, S

    2005-01-01

    The Level-1 Calorimter Trigger consists of a Preprocessor (PP), a Cluster Processor (CP), and a Jet/Energy-sum Processor (JEP). The CP and JEP receive digitised trigger-tower data from the Preprocessor and produce Region-of-Interest (RoIs) and trigger multiplicities. The latter are sent in real time to the Central Trigger Processor (CTP) where the Level-1 decision is made. On receipt of a Level-1 Accept, Readout Driver Modules (RODs), provide intermediate results to the data acquisition (DAQ) system for monitoring and diagnostic purpose. RoI information is sent to the RoI builder (RoIB) to help reduce the amount of data required for the Level-2 Trigger The Level-1 Calorimeter Trigger System at the test beam consisted of 1 Preprocessor module, 1 Cluster Processor Module, 1 Jet/Energy Module and 2 Common Merger Modules. Calorimeter energies were sucessfully handled thourghout the chain and trigger object sent to the CTP. Level-1 Accepts were sucessfully produced and used to drive the readout path. Online diagno...

  16. LHCb: First year of running for the LHCb calorimeter system

    CERN Multimedia

    Guz, Y

    2011-01-01

    The LHCb experiment is dedicated to precision measurements of CP violation and rare decays of B hadrons at the Large Hadron Collider (LHC) at CERN (Geneva) [1, 2]. LHCb is a single-arm spectrometer with a forward angular coverage from approximately 10 mrad to 300 mrad. It comprises a calorimeter system composed of four subdetectors [3]. It selects transverse energy hadron, electron and photon candidates for the first trigger level (L0), which makes a decision 4µs after the interaction. It provides the identification of electrons, photons and hadrons as well as the measurement of their energies and positions. The set of constraints resulting from these functionalities defines the general structure and the main characteristics of the calorimeter system and its associated electronics. A classical structure of an electromagnetic calorimeter (ECAL) followed by a hadron calorimeter (HCAL) has been adopted. In addition the system includes in front of them the Scintillating Pad Detector (SPD) and Pre-Showe...

  17. A study of aging effects in the gas-monitoring proportional counters of the BAC calorimeter in the ZEUS experiment

    International Nuclear Information System (INIS)

    The multi-cell proportional chambers in the backing calorimeter of the ZEUS experiment at the HERA storage ring are supplied with an Ar/CO2 gas mixture by an open gas system. Flow proportional counters with built-in 55Fe sources are used as gas system monitoring detectors. The results of the measurements of the aging effects of the gas-monitoring counters are presented

  18. Calibration and data quality systems of the ATLAS Tile Calorimeter during the LHC Run-I operations

    Science.gov (United States)

    Ženiš, T.

    2016-07-01

    The Tile Calorimeter is the hadronic calorimeter covering the central region of the ATLAS detector at the LHC. It consists of thin steel plates and scintillating tiles. Wavelength shifting fibers coupled to the tiles collect the produced light and are read out by photomultiplier tubes. The calibration scheme of the Tile Calorimeter comprises Cs radioactive source, laser and charge injection systems. Each stage of the signal production of the calorimeter from scintillation light to digitization is monitored and equalized. Description of the different TileCal calibration systems as well as the results on their performance in terms of calibration factors, linearity and stability is given. The data quality procedures and efficiency of the Tile Calorimeter during the LHC Run-1 data-taking period are presented as well.

  19. Calibration and Data Quality systems of the ATLAS Tile Calorimeter during the LHC Run-I operations

    CERN Document Server

    Zenis, Tibor; The ATLAS collaboration

    2015-01-01

    The Tile Calorimeter is the hadronic calorimeter covering the central region of the ATLAS detector at the LHC. It consists of thin steel plates and scintillating tiles. Wavelength shifting fibres coupled to the tiles collect the produced light and are read out by photomultiplier tubes. The calibration scheme of the Tile Calorimeter comprises Cs radioactive source, laser and charge injection systems. Each stage of the signal production of the calorimeter from scintillation light to digitization is monitored and equalized. Description of the different TileCal calibration systems as well as results on their performance in terms of calibration factors, linearity and stability will be given. The data quality procedures and data quality efficiency of the Tile Calorimeter during the LHC data-taking period are presented as well.

  20. Calibration and Data Quality systems of the ATLAS Tile Calorimeter during the LHC Run-I operations

    CERN Document Server

    Zenis, Tibor; The ATLAS collaboration

    2015-01-01

    The Tile Calorimeter is the hadronic calorimeter covering the central region of the ATLAS detector at the LHC. It consists of thin steel plates and scintillating tiles. Wavelength shifting fibres coupled to the tiles collect the produced light and are read out by photomultiplier tubes. The calibration scheme of the Tile Calorimeter comprises Cs radioactive source, laser and charge injection systems. Each stage of the signal production of the calorimeter from scintillation light to digitization is monitored and equalized. Description of the different TileCal calibration systems as well as the results on their performance in terms of calibration factors, linearity and stability are given. The data quality procedures and data quality efficiency of the Tile Calorimeter during the LHC data-taking period are presented as well.

  1. Purity control system of the liquid argon calorimeter of the ATLAS experiment

    International Nuclear Information System (INIS)

    At the ATLAS detector (LHC at CERN) a Liquid Argon calorimeter is used to precisely measure the energy of the electromagnetic interacting particles. Particles deposit their energy in the calorimeter by creating a particle shower. The ionization of the Liquid-Argon due to the shower particles can be used to determine the energy of the initial particle. Possible electronegative impurities in the calorimeter could reduce the ionization which would lead to a worse energy resolution. In order to monitor the purity of the Liquid-Argon several purity monitors are distributed over the calorimeter. Each monitor consists of a ionization chamber with two radioactive sources (241Am and 207Bi). The decay particles of the probes create a certain, known amount of charge carrier that are collected by applying an electromagnetic field. The measurement of the signal amplitude from these charge carriers can be used to measure the purity of the Liquid Argon. This talk gives an overview of the system with a focus of a new implementation of a OPC-UA server that reads out the monitors and determines the purity values. In addition results on the long term stability of the purity are shown.

  2. Monitoring Tool for Digital Errors in the ATLAS Tile Calorimeter Readout

    CERN Document Server

    Cuciuc, M; The ATLAS collaboration

    2012-01-01

    A software monitoring tools for easy visualization of digital errors that occurs during data taking in the Tile Calorimeter of the ATLAS experiment has been developed. This system is useful in keeping track of the performance over time as well as in making predictions about future failures. It can also correlate the digital errors with other problems, such as with power supplies, for diagnostic purposes. The ATLAS archive database is used to correlate the current digital error rates with the detector and data acquisition status. The results are stored locally so that users can monitor the evolution of error rates and localize problems. The system provides a flexible easy-to-use interface that can be accessed using a web browser.

  3. A compact light readout system for longitudinally segmented shashlik calorimeters

    CERN Document Server

    Berra, A; Cecchini, S; Cindolo, F; Jollet, C; Longhin, A; Ludovici, L; Mandrioli, G; Mauri, N; Meregaglia, A; Paoloni, A; Pasqualini, L; Patrizii, L; Pozzato, M; Pupilli, F; Prest, M; Sirri, G; Terranova, F; Vallazza, E; Votano, L

    2016-01-01

    The longitudinal segmentation of shashlik calorimeters is challenged by dead zones and non-uniformities introduced by the light collection and readout system. This limitation can be overcome by direct fiber-photosensor coupling, avoiding routing and bundling of the wavelength shifter fibers and embedding ultra-compact photosensors (SiPMs) in the bulk of the calorimeter. We present the first experimental test of this readout scheme performed at the CERN PS-T9 beamline in 2015 with negative particles in the 1-5~GeV energy range. In this paper, we demonstrate that the scheme does not compromise the energy resolution and linearity compared with standard light collection and readout systems. In addition, we study the performance of the calorimeter for partially contained charged hadrons to assess the $e/\\pi$ separation capability and the response of the photosensors to direct ionization.

  4. A compact light readout system for longitudinally segmented shashlik calorimeters

    Science.gov (United States)

    Berra, A.; Brizzolari, C.; Cecchini, S.; Cindolo, F.; Jollet, C.; Longhin, A.; Ludovici, L.; Mandrioli, G.; Mauri, N.; Meregaglia, A.; Paoloni, A.; Pasqualini, L.; Patrizii, L.; Pozzato, M.; Pupilli, F.; Prest, M.; Sirri, G.; Terranova, F.; Vallazza, E.; Votano, L.

    2016-09-01

    The longitudinal segmentation of shashlik calorimeters is challenged by dead zones and non-uniformities introduced by the light collection and readout system. This limitation can be overcome by direct fiber-photosensor coupling, avoiding routing and bundling of the wavelength shifter fibers and embedding ultra-compact photosensors (SiPMs) in the bulk of the calorimeter. We present the first experimental test of this readout scheme performed at the CERN PS-T9 beamline in 2015 with negative particles in the 1-5 GeV energy range. In this paper, we demonstrate that the scheme does not compromise the energy resolution and linearity compared with standard light collection and readout systems. In addition, we study the performance of the calorimeter for partially contained charged hadrons to assess the e / π separation capability and the response of the photosensors to direct ionization.

  5. ANL small-sample calorimeter system design and operation

    Energy Technology Data Exchange (ETDEWEB)

    Roche, C.T.; Perry, R.B.; Lewis, R.N.; Jung, E.A.; Haumann, J.R.

    1978-07-01

    The Small-Sample Calorimetric System is a portable instrument designed to measure the thermal power produced by radioactive decay of plutonium-containing fuels. The small-sample calorimeter is capable of measuring samples producing power up to 32 milliwatts at a rate of one sample every 20 min. The instrument is contained in two packages: a data-acquisition module consisting of a microprocessor with an 8K-byte nonvolatile memory, and a measurement module consisting of the calorimeter and a sample preheater. The total weight of the system is 18 kg.

  6. The clock and control system for the ATLAS Liquid Argon Calorimeter Phase-I upgrade

    International Nuclear Information System (INIS)

    A Liquid-argon Trigger Digitizer Board (LTDB) is being developed to upgrade the ATLAS Liquid Argon Calorimeter Phase-I trigger electronics. The LTDB located at the front end needs to obtain the clock signals and be configured and monitored remotely from the back end. A clock and control system is being developed for the LTDB and the major functions of the system have been evaluated. The design and evaluation of the clock and control system are presented in this paper

  7. Performance of the TGT liquid argon calorimeter and trigger system

    International Nuclear Information System (INIS)

    A novel concept of a liquid argon calorimeter, the 'Thin Gap Turbine' (TGT) calorimeter, is presented. A TGT test module, equipped with specially developed cold front-end electronics in radiation hard GaAs technology, has been operated in a particle beam. Results on its performance are given. A 40 MHz FADC system with a 'circular data store' and standalone readout and playback capability has been developed to test the properties of the TGT detector for trigger purposes. Results on trigger efficiency, response and energy resolution are given. 12 refs., 21 figs., 6 tabs

  8. Design and performance of LED calibration system prototype for the lead tungstate crystal calorimeter

    OpenAIRE

    Batarin, V. A.; Butler, J.; Davidenko, A. M.; Derevschikov, A. A.; Goncharenko, Y. M.; Grishin, V. N.; Kachanov, V A.; Khodyrev, V. Y.; Konstantinov, A. S.; Kormilitsin, V. A.; Kravtsov, V. I.; Kubota, Y.; Lukanin, V. S.; Matulenko, Y. A.; Melnick, Y. M.

    2005-01-01

    A highly stable monitoring system based on blue and red light emitting diodes coupled to a distribution network comprised of optical fibers has been developed for an electromagnetic calorimeter that uses lead tungstate crystals readout with photomultiplier tubes. We report of the system prototype design and on the results of laboratory tests. Stability better than 0.1% (r.m.s.) has been achieved during one week of prototype operation.

  9. Design and performance of LED calibration system prototype for the lead tungstate crystal calorimeter

    CERN Document Server

    Batarin, V A; Davidenko, A M; Derevshchikov, A A; Goncharenko, Yu M; Grishin, V N; Kachanov, V A; Khodyrev, V Yu; Konstantinov, A S; Kormilitsin, V A; Kravtsov, V I; Kubota, Y; Lukanin, V S; Matulenko, Yu A; Melnik, Yu M; Meshchanin, A P; Mikhalin, N E; Minaev, N G; Mochalov, V V; Morozov, D A; Nogach, L V; Ryazantsev, A V; Semenov, P A; Semenov, V K; Shestermanov, K E; Soloviev, L F; Stone, S; Uzunian, A V; Vasilev, A N; Yakutin, A E; Yarba, J V

    2006-01-01

    A highly stable monitoring system based on blue and red light emitting diodes coupled to a distribution network comprised of optical fibers has been developed for an electromagnetic calorimeter that uses lead tungstate crystals readout with photomultiplier tubes. We report of the system prototype design and on the results of laboratory tests. Stability better than 0.1% (r.m.s.) has been achieved during one week of prototype operation.

  10. Progress Status for the Mu2e Calorimeter System

    Energy Technology Data Exchange (ETDEWEB)

    Pezzullo, Gianantonio; et al.

    2015-02-13

    The Mu2e experiment at FNAL aims to measure the charged-lepton flavor violating neutrinoless conversion of a negative muon into an electron. The conversion results in a monochromatic electron with an energy slightly below the muon rest mass (104.97 MeV). The calorimeter should confirm that the candidates reconstructed by the extremely precise tracker system are indeed conversion electrons while performing a powerful $\\mu/e$ particle identification. Moreover, it should also provide a high level trigger for the experiment independently from the tracker system. The calorimeter should also be able to keep functionality in an environment where the background delivers a dose of ~ 10 krad/year in the hottest area and to work in the presence of 1 T axial magnetic field. These requirements translate in the design of a calorimeter with large acceptance, good energy resolution O(5%) and a reasonable position (time) resolution of ~<1 cm (<0.5ns). The baseline version of the calorimeter is composed by two disks of inner (outer) radius of 351 (660) mm filled by 1860 hexagonal $BaF_2$ crystals of 20 cm length. Each crystal is readout by two large area APD's. In this paper, we summarize the experimental tests done so far as well as the simulation studies in the Mu2e environment.

  11. The New Readout System of the NA62 LKr Calorimeter

    CERN Document Server

    Ceccucci, A; Farthouat, P; Lamanna, G; Rouet, J; Ryjov, V; Venditti, S

    2015-01-01

    The NA62 experiment [1] at CERN SPS (Super Proton Synchrotron) accelerator aims at studying Kaon decays with high precision. The high resolution Liquid Krypton (LKr) calorimeter, built for the NA48 [2] experiment, is a crucial part of the photon-veto system; to cope with the demanding NA62 re- quirements,itsback-endelectron icshadtobecompletelyrenewed. The new readout system is based on the Calorimeter REAdout Module (CREAM) [3], a 6U VME board whose design and pro- duction was sub-contracted to CAEN [4], with CERN NA62 group continuously supervising the de velopment and production phase. The first version of the board was delivered by the manufacturer in March 2013 and, as of June 2014, the full board production is ongoing. In addition to describing the CREAM board, all aspects of the new LKr readout system, including its integration within the NA62 TDAQ scheme, will be treated.

  12. Monitoring and data quality assessment of the ATLAS liquid argon calorimeter

    CERN Document Server

    Aad, Georges; Abbott, Brad; Abdallah, Jalal; Abdel Khalek, Samah; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Addy, Tetteh; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Agatonovic-Jovin, Tatjana; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Allbrooke, Benedict; Allison, Lee John; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Ammosov, Vladimir; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Anduaga, Xabier; Angelidakis, Stylianos; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Auerbach, Benjamin; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Azuelos, Georges; Azuma, Yuya; Baak, Max; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Backus Mayes, John; Badescu, Elisabeta; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Sarah; Balek, Petr; Balli, Fabrice; Banas, Elzbieta; Banerjee, Swagato; Bangert, Andrea Michelle; Bannoura, Arwa A E; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Bartsch, Valeria; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batkova, Lucia; Batley, Richard; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Katharina; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belloni, Alberto; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernard, Clare; Bernat, Pauline; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertolucci, Federico; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia, Olga; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boek, Thorsten Tobias; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Bohm, Jan; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Boldyrev, Alexey; Bolnet, Nayanka Myriam; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Borri, Marcello; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boutouil, Sara; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Branchini, Paolo; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Brelier, Bertrand; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Richard; Bressler, Shikma; Bristow, Kieran; Bristow, Timothy Michael; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Brown, Gareth; Brown, Jonathan; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Buehrer, Felix; Bugge, Lars; Bugge, Magnar Kopangen; Bulekov, Oleg; Bundock, Aaron Colin; Burckhart, Helfried; Burdin, Sergey; Burghgrave, Blake; Burke, Stephen; Burmeister, Ingo; Busato, Emmanuel; Büscher, Volker; Bussey, Peter; Buszello, Claus-Peter; Butler, Bart; Butler, John; Butt, Aatif Imtiaz; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Byszewski, Marcin; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Cameron, David; Caminada, Lea Michaela; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Castaneda-Miranda, Elizabeth; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cavaliere, Viviana; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerio, Benjamin; Cerny, Karel; Cerqueira, Augusto Santiago; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chan, Kevin; Chang, Philip; Chapleau, Bertrand; Chapman, John Derek; Charfeddine, Driss; Charlton, Dave; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Liming; Chen, Shenjian; Chen, Xin; Chen, Yujiao; Cheng, Hok Chuen; Cheng, Yangyang; Cheplakov, Alexander; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiefari, Giovanni; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Chouridou, Sofia; Chow, Bonnie Kar Bo; Christidi, Ilektra-Athanasia; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciocio, Alessandra; Cirkovic, Predrag; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Clarke, Robert; Cleland, Bill; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Coggeshall, James; Cole, Brian; Cole, Stephen; Colijn, Auke-Pieter; Collins-Tooth, Christopher; Collot, Johann; Colombo, Tommaso; Colon, German; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Connell, Simon Henry; Connelly, Ian; Consonni, Sofia Maria; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cooper-Smith, Neil; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Crispin Ortuzar, Mireia; Cristinziani, Markus; Crosetti, Giovanni; Cuciuc, Constantin-Mihai; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Daniells, Andrew Christopher; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Darmora, Smita; Dassoulas, James; Davey, Will; David, Claire; Davidek, Tomas; Davies, Eleanor; Davies, Merlin; Davignon, Olivier; Davison, Adam; Davison, Peter; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; De La Taille, Christophe; De la Torre, Hector; De Lorenzi, Francesco; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; De Zorzi, Guido; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dechenaux, Benjamin; Dedovich, Dmitri; Degenhardt, James; Deigaard, Ingrid; Del Peso, Jose; Del Prete, Tarcisio; Deliot, Frederic; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Domenico, Antonio; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; do Vale, Maria Aline Barros; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobos, Daniel; Dobson, Ellie; Doglioni, Caterina; Doherty, Tom; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Dubreuil, Emmanuelle; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Dudziak, Fanny; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Dwuznik, Michal; Dyndal, Mateusz; Ebke, Johannes; Edson, William; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Engelmann, Roderich; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Favareto, Andrea; Fayard, Louis; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Fehling-Kaschek, Mirjam; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Fernandez Perez, Sonia; Fernando, Waruna; Ferrag, Samir; Ferrando, James; Ferrara, Valentina; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Julia; Fisher, Matthew; Fisher, Wade Cameron; Fitzgerald, Eric Andrew; Flechl, Martin; Fleck, Ivor; Fleischmann, Philipp; Fleischmann, Sebastian; Fletcher, Gareth Thomas; Fletcher, Gregory; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Florez Bustos, Andres Carlos; Flowerdew, Michael; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Franchino, Silvia; Francis, David; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; French, Sky; Friedrich, Conrad; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gandrajula, Reddy Pratap; Gao, Jun; Gao, Yongsheng; Garay Walls, Francisca; Garberson, Ford; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gatti, Claudio; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giangiobbe, Vincent; Giannetti, Paola; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Stephen; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giugni, Danilo; Giuliani, Claudia; Giulini, Maddalena; Giunta, Michele; Gjelsten, Børge Kile; Gkialas, Ioannis; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Glonti, George; Goblirsch-Kolb, Maximilian; Goddard, Jack Robert; Godfrey, Jennifer; Godlewski, Jan; Goeringer, Christian; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Grabas, Herve Marie Xavier; Graber, Lars; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Francesco; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Gray, Heather; Graziani, Enrico; Grebenyuk, Oleg; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Grohs, Johannes Philipp; Grohsjean, Alexander; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Groth-Jensen, Jacob; Grout, Zara Jane; Grybel, Kai; Guan, Liang; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guicheney, Christophe; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Gunther, Jaroslav; Guo, Jun; Gupta, Shaun; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guttman, Nir; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Haefner, Petra; Hageboeck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Hall, David; Halladjian, Garabed; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Hanke, Paul; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Harrison, Paul Fraser; Hartjes, Fred; Harvey, Alex; Hasegawa, Satoshi; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Lukas; Heisterkamp, Simon; Hejbal, Jiri; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, James; Henderson, Robert; Hengler, Christopher; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Hensel, Carsten; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herrberg-Schubert, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, John; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hofmann, Julia Isabell; Hohlfeld, Marc; Holmes, Tova Ray; Hong, Tae Min; Hooft van Huysduynen, Loek; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Xueye; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Hurwitz, Martina; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikematsu, Katsumasa; Ikeno, Masahiro; Iliadis, Dimitrios; Ilic, Nikolina; Inamaru, Yuki; Ince, Tayfun; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Iturbe Ponce, Julia Mariana; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Matthew; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansen, Hendrik; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javůrek, Tomáš; Jeanty, Laura; Jeng, Geng-yuan; Jen-La Plante, Imai; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Joergensen, Morten Dam; Johansson, Erik; Johansson, Per; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Jussel, Patrick; Juste Rozas, Aurelio; Kaci, Mohammed; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kajomovitz, Enrique; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karastathis, Nikolaos; Karnevskiy, Mikhail; Karpov, Sergey; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Katre, Akshay; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Kehoe, Robert; Keil, Markus; Keller, John; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Khodinov, Alexander; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hee Yeun; Kim, Hyeon Jin; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kitamura, Takumi; Kittelmann, Thomas; Kiuchi, Kenji; Kladiva, Eduard; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klinkby, Esben; Klioutchnikova, Tatiana; Klok, Peter; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolanoski, Hermann; Koletsou, Iro; Koll, James; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Köneke, Karsten; König, Adriaan; König, Sebastian; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kreiss, Sven; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kurumida, Rie; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; La Rosa, Alessandro; La Rotonda, Laura; Labarga, Luis; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laier, Heiko; Lambourne, Luke; Lammers, Sabine; Lampen, Caleb; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lassnig, Mario; Laurelli, Paolo; Lavorini, Vincenzo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Le, Bao Tran; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire, Alexandra; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzen, Georg; Lenzi, Bruno; Leone, Robert; Leonhardt, Kathrin; Leontsinis, Stefanos; Leroy, Claude; Lester, Christopher; Lester, Christopher Michael; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Bo; Li, Haifeng; Li, Ho Ling; Li, Shu; Li, Xuefei; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linde, Frank; Lindquist, Brian Edward; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loddenkoetter, Thomas; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Lombardo, Vincenzo Paolo; Long, Jonathan; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Losty, Michael; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Lungwitz, Matthias; Lynn, David; Lysak, Roman; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Maček, Boštjan; Machado Miguens, Joana; Macina, Daniela; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeno, Mayuko; Maeno, Tadashi; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Mahmoud, Sara; Maiani, Camilla; Maidantchik, Carmen; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mamuzic, Judita; Mandelli, Beatrice; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany Andreina; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mantifel, Rodger; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchese, Fabrizio; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marques, Carlos; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian; Martin, Brian; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Homero; Martinez, Mario; Martin-Haugh, Stewart; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Matsunaga, Hiroyuki; Matsushita, Takashi; Mättig, Peter; Mättig, Stefan; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazzaferro, Luca; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; Mclaughlan, Tom; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Medinnis, Michael; Meehan, Samuel; Meera-Lebbai, Razzak; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mendoza Navas, Luis; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mergelmeyer, Sebastian; Meric, Nicolas; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Merritt, Hayes; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Miñano Moya, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Mitsui, Shingo; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Moeller, Victoria; Mohapatra, Soumya; Mohr, Wolfgang; Molander, Simon; Moles-Valls, Regina; Mönig, Klaus; Monini, Caterina; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Mora Herrera, Clemencia; Moraes, Arthur; Morange, Nicolas; Morel, Julien; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Klemens; Mueller, Thibaut; Mueller, Timo; Muenstermann, Daniel; Munwes, Yonathan; Murillo Quijada, Javier Alberto; Murray, Bill; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagai, Yoshikazu; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Nanava, Gizo; Narayan, Rohin; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negri, Guido; Negrini, Matteo; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neusiedl, Andrea; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Norberg, Scarlet; Nordberg, Markus; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nuti, Francesco; O'Brien, Brendan Joseph; O'grady, Fionnbarr; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Ohshima, Takayoshi; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olchevski, Alexander; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olivito, Dominick; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paganis, Efstathios; Pahl, Christoph; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panduro Vazquez, William; Pani, Priscilla; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Michael Andrew; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pearce, James; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Pelikan, Daniel; Peng, Haiping; Penning, Bjoern; Penwell, John; Perepelitsa, Dennis; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Jorgen; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petteni, Michele; Pettersson, Nora Emilia; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Piec, Sebastian Marcin; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Pingel, Almut; Pinto, Belmiro; Pires, Sylvestre; Pizio, Caterina; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Poddar, Sahill; Podlyski, Fabrice; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Pohl, Martin; Polesello, Giacomo; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Pospelov, Guennady; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Prabhu, Robindra; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Price, Darren; Price, Joe; Price, Lawrence; Prieur, Damien; Primavera, Margherita; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopapadaki, Eftychia-sofia; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Przysiezniak, Helenka; Ptacek, Elizabeth; Pueschel, Elisa; Puldon, David; Purohit, Milind; Puzo, Patrick; Pylypchenko, Yuriy; Qian, Jianming; Qin, Gang; Quadt, Arnulf; Quarrie, David; Quayle, William; Quilty, Donnchadha; Qureshi, Anum; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Ragusa, Francesco; Rahal, Ghita; Rajagopalan, Srinivasan; Rammensee, Michael; Rammes, Marcus; Randle-Conde, Aidan Sean; Rangel-Smith, Camila; Rao, Kanury; Rauscher, Felix; Rave, Tobias Christian; Ravenscroft, Thomas; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reinsch, Andreas; Reisin, Hernan; Relich, Matthew; Rembser, Christoph; Ren, Zhongliang; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Ridel, Melissa; Rieck, Patrick; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Rodrigues, Luis; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romeo, Gaston; Romero Adam, Elena; Rompotis, Nikolaos; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Anthony; Rose, Matthew; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Rud, Viacheslav; Rudolph, Christian; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Rutherfoord, John; Ruthmann, Nils; Ruzicka, Pavel; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sacerdoti, Sabrina; Saddique, Asif; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Yuichi; Sauvage, Gilles; Sauvan, Emmanuel; Savard, Pierre; Savu, Dan Octavian; Sawyer, Craig; Sawyer, Lee; Saxon, David; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaefer, Ralph; Schaelicke, Andreas; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R~Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Christopher; Schmitt, Sebastian; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schroeder, Christian; Schuh, Natascha; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwartzman, Ariel; Schwegler, Philipp; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Sciacca, Gianfranco; Scifo, Estelle; Sciolla, Gabriella; Scott, Bill; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekula, Stephen; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellers, Graham; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Serre, Thomas; Seuster, Rolf; Severini, Horst; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Sherwood, Peter; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shiyakova, Mariya; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Shushkevich, Stanislav; Sicho, Petr; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silbert, Ohad; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simoniello, Rosa; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinnari, Louise Anastasia; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Song, Hong Ye; Soni, Nitesh; Sood, Alexander; Sopko, Vit; Sopko, Bruno; Sosebee, Mark; Soualah, Rachik; Soueid, Paul; Soukharev, Andrey; South, David; Spagnolo, Stefania; Spanò, Francesco; Spearman, William Robert; Spighi, Roberto; Spigo, Giancarlo; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Stavina, Pavel; Steele, Genevieve; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoerig, Kathrin; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Subramania, Halasya Siva; Subramaniam, Rajivalochan; Succurro, Antonella; Sugaya, Yorihito; Suhr, Chad; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Svatos, Michal; Swedish, Stephen; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tam, Jason; Tamsett, Matthew; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanasijczuk, Andres Jorge; Tani, Kazutoshi; Tannoury, Nancy; Tapprogge, Stefan; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Christopher; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thoma, Sascha; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thong, Wai Meng; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Topilin, Nikolai; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Tran, Huong Lan; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Triplett, Nathan; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; True, Patrick; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tua, Alan; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turk Cakir, Ilkay; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ugland, Maren; Uhlenbrock, Mathias; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Urbaniec, Dustin; Urquijo, Phillip; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; Van Der Leeuw, Robin; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veloso, Filipe; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigne, Ralph; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Virzi, Joseph; Vitells, Ofer; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Adrian; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Wolfgang; Wagner, Peter; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Walsh, Brian; Wang, Chao; Wang, Chiho; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Xiaoxiao; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Warsinsky, Markus; Washbrook, Andrew; Wasicki, Christoph; Watanabe, Ippei; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weigell, Philipp; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wendland, Dennis; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; White, Andrew; White, Martin; White, Ryan; White, Sebastian; Whiteson, Daniel; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, John; Wilson, Alan; Wingerter-Seez, Isabelle; Winkelmann, Stefan; Winklmeier, Frank; Wittgen, Matthias; Wittig, Tobias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wright, Michael; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yamada, Miho; Yamaguchi, Hiroshi; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Un-Ki; Yang, Yi; Yanush, Serguei; Yao, Liwen; Yao, Weiming; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yen, Andy L; Yildirim, Eda; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zaytsev, Alexander; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Lei; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Lei; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Zinonos, Zinonas; Ziolkowski, Michael; Zitoun, Robert; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zurzolo, Giovanni; Zutshi, Vishnu; Zwalinski, Lukasz

    2014-01-01

    The liquid argon calorimeter is a key component of the ATLAS detector installed at the CERN Large Hadron Collider. The primary purpose of this calorimeter is the measurement of electrons and photons. It also provides a crucial input for measuring jets and missing transverse momentum. An advanced data monitoring procedure was designed to quickly identify issues that would affect detector performance and ensure that only the best quality data are used for physics analysis. This article presents the validation procedure developed during the 2011 and 2012 LHC data-taking periods, in which more than 98% of the proton–proton luminosity recorded by ATLAS at a centre-of-mass energy of 7–8 TeV had calorimeter data quality suitable for physics analysis.

  13. CALOR89: The code system for calorimeter analysis and design

    International Nuclear Information System (INIS)

    As part of a strong experimental high energy physics program, a substantial effort must be involved in calculational analysis of the detector system. This calculational capability must be fundamentally sound and based on previous interchange between theoretical calculations and experimental test programs. The CALOR89[1-6] system for analyzing calorimeters offers a solid approach for investigating all facets of detector systems and has been used in many calculational studies. CALOR89 is one of two major code systems recommended for analysis of SSC detector systems

  14. The CMS hadron calorimeter detector control system upgrade

    International Nuclear Information System (INIS)

    The detector control system of the CMS hadron calorimeter provides the 40.0788 MHz LHC clock to the front end electronics and supplies synchronization signals and I2C communication. Pedestals and diagnostic bits are controlled, and temperatures and voltages are read out. SIPM temperatures are actively stabilized by temperature readback and generation of correction voltages to drive the Peltier regulation system. Overall control and interfacing to databases and experimental DAQ software is provided by the software CCM Server. We report on design and development status, and implementation schedule of this system

  15. Calibration System with Optical Fibers for Calorimeters at Future Linear Collider Experiments

    CERN Document Server

    ,

    2012-01-01

    We report on several versions of the calibration and monitoring system dedicated to scintillator tile calorimeters built within the CALICE collaboration and intended for future linear collider experiments. Whereas the first, a 1 m3 analogue hadron calorimeter prototype, was already built and tested in beam, second-technological prototype-is currently being developed. Both prototypes are based on scintillating tiles that are individually read out by new photodetectors, silicon photomultipliers (SiPMs). Since the SiPM response shows a strong dependence on the temperature and bias voltage and the SiPM saturates due to the limited number of pixels, it needs to be monitored. The monitoring system has to have sufficient flexibility to perform several different tasks. The self-calibration property of the SiPMs can be used for the gain monitoring using a low intensity of the LED light. A routine monitoring of all SiPMs during test beam operations is achieved with a fixed-intensity light pulse. The full SiPM response ...

  16. Performance of the ATLAS Tile Calorimeter

    CERN Document Server

    Wilkens, H G S; The ATLAS collaboration

    2013-01-01

    The Tile Calorimeter is the central section of the ATLAS hadronic calorimeter. It is a key detector for the measurement of hadrons, jets, tau leptons and missing transverse energy. Because of its very good signal to noise ratio it is also useful for the identification and reconstruction of muons. The calorimeter consists of thin steel plates and 460,000 scintillating tiles configured into 4900 cells, each viewed by two photomultipliers. The calorimeter response is monitored to better than 1% using radioactive source, laser, and electronic charge injection systems. The calibration and performance of the calorimeter have been established through test beam measurements, cosmic ray muons and the large sample of pp collisions acquired in 2011 and 2012. Results on the calorimeter performance are presented, including the absolute energy scale, time resolution, and associated stabilities. In addition to the measurement of the energy and direction of hadronic showers and particles, the calorimeter determines the arriv...

  17. Performance of the ATLAS Tile Calorimeter

    CERN Document Server

    Cole, S; The ATLAS collaboration

    2013-01-01

    The Tile Calorimeter is the central section ($0 < |eta| < 1.7$) of the ATLAS hadronic calorimeter. It is a key detector for the measurement of hadrons, jets, tau leptons decaying hadronically, and missing transverse energy. Because of its very good signal to noise ratio it is also useful for the identification and reconstruction of muons. The calorimeter consists of thin steel plates and 460,000 scintillating tiles configured into 4900 cells, each viewed by two photomultipliers. The calorimeter response is monitored to better than 1% using radioactive source, laser, and electronic charge injection systems. The calibration and performance of the calorimeter have been established through test beam measurements, cosmic ray muons and the large sample of pp collisions acquired during 2011 and 2012. Results on the calorimeter performance will be presented, including the absolute energy scale, time resolution, and associated stabilities. These results demonstrate that the Tile Calorimeter is performing...

  18. Performance of the ATLAS Tile Calorimeter

    CERN Document Server

    Shimizu, S; The ATLAS collaboration

    2012-01-01

    The Tile Calorimeter is the central section of the ATLAS hadronic calorimeter. It is a key detector for the measurement of hadrons, jets, tau leptons and missing transverse energy. Because of its very good signal to noise ratio it is also useful for the identification and reconstruction of muons. The calorimeter consists of thin steel plates and 460,000 scintillating tiles configured into 4900 cells, each viewed by two photomultipliers. The calorimeter response is monitored to better than 1% using radioactive source, laser, and electronic charge injection systems. The calibration and performance of the calorimeter have been established through test beam measurements, cosmic ray muons and the large sample of pp collisions acquired in 2011 and 2012. Results on the calorimeter performance will be presented, including the absolute energy scale, time resolution, and associated stabilities. These results demonstrate that the Tile Calorimeter is performing well within the design requirements and is giving essential ...

  19. LHCb : First years of running for the LHCb calorimeter system and preparation for run 2

    CERN Multimedia

    Chefdeville, Maximilien

    2015-01-01

    The LHCb experiment is dedicated to precision measurements of CP violation and rare decays of B hadrons at the Large Hadron Collider (LHC) at CERN (Geneva). It comprises a calorimeter system composed of four subdetectors: a Scintillating Pad Detector (SPD) and a Pre-Shower detector (PS) in front of an electromagnetic calorimeter (ECAL) which is followed by a hadron calorimeter (HCAL). They are used to select transverse energy hadron, electron and photon candidates for the first trigger level and they provides the identification of electrons, photons and hadrons as well as the measurement of their energies and positions. The calorimeter has been pre-calibrated before its installation in the pit. The calibration techniques have been tested with data taken in 2010 and used regularly during run 1. For run 2, new calibration methods have been devised to follow and correct online the calorimeter detector response. The design and construction characteristics of the LHCb calorimeter will be recalled. Strategies for...

  20. Central hadron calorimeter of UA1

    International Nuclear Information System (INIS)

    An iron-scintillator sampling calorimeter is described, which measures hadronic energy in proton-antiproton interactions at the CERN 540 GeV SPS collider. Construction details are given of the instrumentation of the magnet pieces of the UA1 experiment and of the methods used to measure the calorimeter response and resolution. The system of lasers and quartz fibres, which allows long term monitoring of the calorimeter response, is also described. (author)

  1. The monitoring and data quality assessment of the ATLAS liquid argon calorimeter

    International Nuclear Information System (INIS)

    The ATLAS experiment is designed to study the proton-proton (pp) collisions produced at the Large Hadron Collider (LHC) at CERN. Liquid argon (LAr) sampling calorimeters are used for all electromagnetic calorimetry in the pseudo-rapidity region |η| < 3.2, as well as for hadronic calorimetry in the range 1.5 < |η| < 4.9. The electromagnetic calorimeters use lead as passive material and are characterized by an accordion geometry that allows a fast and uniform response without azimuthal gaps. Copper and tungsten were chosen as passive material for the hadronic calorimetry; while a classic parallel-plate geometry was adopted at large polar angles, an innovative design based on cylindrical electrodes with thin liquid argon gaps is employed at low angles, where the particle flux is higher. All detectors are housed in three cryostats maintained at about 88.5 K. The 182,468 cells are read out via front-end boards housed in on-detector crates that also contain monitoring, calibration, trigger and timing boards. In the first three years of LHC operation, approximately 27 fb−1 of pp collision data were collected at centre-of-mass energies of 7-8 TeV. Throughout this period, the calorimeter consistently operated with performances very close to specifications, with high data-taking efficiency. This is in large part due to a sophisticated data monitoring procedure designed to quickly identify issues that would degrade the detector performance, to ensure that only the best quality data are used for physics analysis. After a description of the detector design, main characteristics and operation principles, this paper details the data quality assessment procedures developed during the 2011 and 2012 LHC data-taking periods, when more than 98% of the luminosity recorded by ATLAS had high quality LAr calorimeter data suitable for physics analysis

  2. Performance of the ATLAS Tile Calorimeter

    CERN Document Server

    Solodkov, Alexander; The ATLAS collaboration

    2015-01-01

    The Tile Calorimeter (TileCal), the central section of the hadronic calorimeter of the ATLAS experiment, is a key detector component to detect hadrons, jets and taus and to measure the missing transverse energy. Due to the very good muon signal to noise ratio it assists the spectrometer in the identification and reconstruction of muons. The calorimeter consists of thin steel plates and 460,000 scintillating tiles configured into 5182 cells, each viewed by two photomultipliers. The calorimeter response and its readout electronics is monitored to better than 1\\% using radioactive source, laser and charge injection systems. The performance of the calorimeter has been measured and monitored using calibration data, cosmic ray muons and the large sample of proton-proton collisions acquired in 2011 and 2012. The results demonstrate a very good understanding of the performance of the Tile Calorimeter that is well within the design expectations.

  3. Monitoring system

    International Nuclear Information System (INIS)

    The patent relates to monitoring systems for, and a method of monitoring, industrial process plants or apparatus. The system monitors a plurality of data signals representing a number of parameters of a plant or apparatus. One application of the invention is in nuclear reactors for the detection of fault conditions. (U.K.)

  4. The data-acquisition and second level trigger system for the ZEUS calorimeter

    International Nuclear Information System (INIS)

    ZEUS and HERA are introduced in chapter 1 with emphasis on the ZEUS Calorimeter and the ZEUS trigger system. The analog and digital electronics developed for the readout of the Calorimeter signals, and the hardware for the Calorimeter Second Level Trigger and data-acquisition system, is described in chapter 2. Emphasis is put on the hardware developed at NIKHEF, which is based on the transputer as the main processing element. The ZEUS trigger and data-acquisition environment as well as the calibration procedures needed for the Calorimeter impose several requirements on the design of the data-acquisition system. The requirements, their implications for the design of the transputer network architecture and the design itself, are described in detail in chapter 3. The software developed for the Calorimeter data-acquisition is described in chapter 4. It includes both the software for the Calorimeter data-acquisition as that required for the calibration of the Calorimeter. First experiences with the CAL-SLT algorithms, obtained during the 1992 HERA running periods, are presented in chapter 5. Chapter 6 discusses the performance of the Calorimeter data-acquisition system. (orig.)

  5. Performance of the ATLAS Tile Calorimeter

    CERN Document Server

    Heelan, Louise; The ATLAS collaboration

    2015-01-01

    The ATLAS Tile hadronic calorimeter (TileCal) provides highly-segmented energy measurements of incoming particles. It is a key detector for the measurement of hadrons, jets, tau leptons and missing transverse energy. It is also useful for identification and reconstruction of muons due to good signal to noise ratio. The calorimeter consists of thin steel plates and 460,000 scintillating tiles configured into 5000 cells, each viewed by two photomultipliers. The calorimeter response and its readout electronics is monitored to better than 1% using radioactive source, laser and charge injection systems. The calibration and performance of the calorimeter have been established through test beam measurements, cosmic ray muons and the large sample of proton-proton collisions acquired in 2011 and 2012. Results on the calorimeter performance are presented, including the absolute energy scale, timing, noise and associated stabilities. The results demonstrate that the Tile Calorimeter has performed well within the design ...

  6. The ATLAS Tile Calorimeter Calibration and Performance

    CERN Document Server

    Meyer, C; The ATLAS collaboration

    2013-01-01

    The Tile Calorimeter (TileCal) is the central section of the ATLAS hadronic calorimeter at the Large Hadron Collider. Scintillation light produced in the tiles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The resulting electronic signals from approximately 10000 PMTs are measured and digitized before being transferred to off-detector data-acquisition systems. It is a key detector for the measurement of hadrons, jets, tau leptons and missing transverse energy. Because of its very good signal to noise ratio it is also useful for the identification and reconstruction of muons. The calorimeter response is monitored to better than 1% using radioactive source, laser, and charge injection systems. This multi-faceted calibration system allows to monitor and equalize the calorimeter response at each stage of the signal production, from scintillation light to digitization. The performance of the calorimeter has also been established through test beam measurements, cosmic ray muons and t...

  7. The CMS central hadron calorimeter DAQ system upgrade

    Science.gov (United States)

    Whitbeck, A.; Hirschauer, J.

    2015-05-01

    The CMS central hadron calorimeters will undergo a complete replacement of their data acquisition system electronics. The replacement is phased, with portions of the replacement starting in 2014 and continuing through LHC Long Shutdown 2 in 2018. The existing VME electronics will be replaced with a μTCA-based system. New on-detector QIE electronics cards will transmit data at 4.8 GHz to the new μHTR cards residing in μTCA crates in the CMS electronics cavern. The μTCA crates are controlled by the AMC13, which accepts system clock and trigger throttling control from the CMS global DAQ system. The AMC13 distributes the clock to the μHTR and reads out data buffers from the μHTR into the CMS data acquisition system. The AMC 13 also provides the clock for in-crate GLIBs which in turn distribute the clock to the on-detector front end electronics. We report on the design, development status, and schedule of the DAQ system upgrades.

  8. The CMS central hadron calorimeter DAQ system upgrade

    International Nuclear Information System (INIS)

    The CMS central hadron calorimeters will undergo a complete replacement of their data acquisition system electronics. The replacement is phased, with portions of the replacement starting in 2014 and continuing through LHC Long Shutdown 2 in 2018. The existing VME electronics will be replaced with a μTCA-based system. New on-detector QIE electronics cards will transmit data at 4.8 GHz to the new μHTR cards residing in μTCA crates in the CMS electronics cavern. The μTCA crates are controlled by the AMC13, which accepts system clock and trigger throttling control from the CMS global DAQ system. The AMC13 distributes the clock to the μHTR and reads out data buffers from the μHTR into the CMS data acquisition system. The AMC 13 also provides the clock for in-crate GLIBs which in turn distribute the clock to the on-detector front end electronics. We report on the design, development status, and schedule of the DAQ system upgrades

  9. The upgrade of the laser calibration system for the ATLAS hadron calorimeter TileCal

    CERN Document Server

    Spalla, Margherita; The ATLAS collaboration

    2014-01-01

    The Tile Calorimeter (TileCal), the central section of the hadronic calorimeter of the ATLAS experiment, is a key detector component to detect hadrons, jets and taus and to measure the missing transverse energy. TileCal is built of steel and scintillating tiles coupled to optical fibers and read‐out by photomultipliers (PMT). The performance of TileCal relies on a continuous, high resolution calibration of the individual response of the 10,000 channels forming the detector. The calibration is based on a three level architecture: a charge injection system used to monitor the full electronics chain including front-end amplifiers, digitizers and event builder blocks for each individual channel; a distributed optical system using laser pulses to excite all PMTs; and a mobile Cesium radiative source which is driven through the detector cell floating inside a pipe system. This architecture allows for a cascade calibration of the electronics, of the PMT and electronics, and of full chain including the active detec...

  10. Precision temperature monitoring (PTM) and Humidity monitoring (HM) sensors of the CMS electromagnetic calorimeter

    CERN Multimedia

    2006-01-01

    A major aspect for the ECAL detector control is the monitoring of the system temperature and the verification that the required temperature stability of the crystal volume and the APDs, expected to be (18 ± 0.05)C, is achieved. The PTM is designed to read out thermistors, placed on both the front and back of the crystals, with a relative precision better than 0.01 C. In total there are ten sensors per supermodule. The humidity level in the electronics compartment is monitored by the HM system and consists of one humidity sensor per module.

  11. A sampling ADC data acquisition system for the electromagnetic calorimeters of COMPASS

    Energy Technology Data Exchange (ETDEWEB)

    Mann, Alexander; Angerer, Heinz; Konorov, Igor; Kraemer, Markus; Paul, Stephan [Physik-Department E18, Technische Universitaet, Muenchen (Germany)

    2009-07-01

    For the readout of the two electromagnetic calorimeters of the two stage COMPASS spectrometer at CERN, a sampling ADC (SADC) based data acquisition system was developed. The shaped photomultiplier signals are continuously digitized with 80 MHz and processed within field programmable gate arrays (FPGAs). The FPGAs implement zero suppression, latency buffering and provide an option to derive online calorimeter trigger decisions. In total, 4704 calorimeter channels are currently read by two different SADC module types with 10 bit and 12 bit resolution, respectively. With modified FPGA firmware, the same modules are also used in other applications, e.g. for medical imaging (PET) and ultracold neutron experiments.

  12. A sampling ADC data acquisition system for the electromagnetic calorimeters of COMPASS

    International Nuclear Information System (INIS)

    For the readout of the two electromagnetic calorimeters of the two stage COMPASS spectrometer at CERN, a sampling ADC (SADC) based data acquisition system was developed. The shaped photomultiplier signals are continuously digitized with 80 MHz and processed within field programmable gate arrays (FPGAs). The FPGAs implement zero suppression, latency buffering and provide an option to derive online calorimeter trigger decisions. In total, 4704 calorimeter channels are currently read by two different SADC module types with 10 bit and 12 bit resolution, respectively. With modified FPGA firmware, the same modules are also used in other applications, e.g. for medical imaging (PET) and ultracold neutron experiments.

  13. The monitoring and data quality assessment of the ATLAS liquid argon calorimeter

    CERN Document Server

    Simard, O; The ATLAS collaboration

    2014-01-01

    The ATLAS experiment is designed to study the proton-proton collisions produced at the Large Hadron Collider (LHC) at CERN. Liquid argon (LAr) sampling calorimeters are used for all electromagnetic calorimetry in the pseudo-rapidity region |η|< 3.2, as well as for hadronic calorimetry in the range 1.5<|η|<4.9. The electromagnetic calorimeters use lead as passive material and are characterized by an accordion geometry that allows a fast and uniform response without azimuthal gaps. Copper and tungsten were chosen as passive material for the hadronic calorimetry; while a classic parallel-plate geometry was adopted at large polar angles, an innovative design based on cylindrical electrodes with thin liquid argon gaps is employed for the coverage at low angles, where the particle flux is higher. All detectors are housed in three cryostats maintained at about 88.5K. The approximately 200K cells are read out via front-end boards housed in on-detector crates that also contain monitoring, calibration, trigg...

  14. The monitoring and data quality assessment of the ATLAS liquid argon calorimeter

    CERN Document Server

    Simard, O

    2014-01-01

    The ATLAS experiment is designed to study the proton-proton ($pp$) collisions produced at the Large Hadron Collider (LHC) at CERN. Liquid argon (LAr) sampling calorimeters are used for all electromagnetic calorimetry in the pseudo-rapidity region $|\\eta|< 3.2$, as well as for hadronic calorimetry in the range $1.5 < |\\eta| < 4.9$. The electromagnetic calorimeters use lead as passive material and are characterized by an accordion geometry that allows a fast and uniform response without azimuthal gaps. Copper and tungsten were chosen as passive material for the hadronic calorimetry; while a classic parallel-plate geometry was adopted at large polar angles, an innovative design based on cylindrical electrodes with thin liquid argon gaps is employed at low angles, where the particle flux is higher. All detectors are housed in three cryostats maintained at about 88.5~K. The 182,468 cells are read out via front-end boards housed in on-detector crates that also contain monitoring, calibration, trigger and t...

  15. Electromagnetic Calorimeter for Hades Experiment

    Science.gov (United States)

    Kugler, A.; Blume, C.; Czyžycki, W.; Epple, E.; Fabbietti, L.; Galatyuk, T.; Golubeva, M.; Guber, F.; Hlaváč, S.; Ivashkin, A.; Kajetanowic, M.; Kardan, B.; Koenig, W.; Lapidus, K.; Lisowski, E.; Pietraszko, J.; Reshetin, A.; Rost, A.; Salabura, P.; Sobolev, Y. G.; Svoboda, O.; Tlusty, P.; Traxler, M.

    2014-06-01

    Electromagnetic calorimeter (ECAL) is being developed to complement the dilepton spectrometer HADES currently operating at GSI Darmstadt, Germany. ECAL will enable the HADES@FAIR experiment to measure data on neutral meson production in heavy ion collisions at the energy range of 2-10 A GeV on the beam of future accelerator SIS100@FAIR. The calorimeter will also improve the electron-hadron separation and will as well be used for the detection of photons from strange resonances in elementary and heavy ion reactions. Calorimeter modules constructed of lead glass Cherenkov counter, photomultiplier, HV divider and optical fiber are described in the detail. Two prototypes of novel front-end electronics based on TRB3 are presented. A dedicated LED based system being developed to monitor the stability of the calorimeter during beamtime is introduced as well.

  16. Web System for Data Quality Assessment of Tile Calorimeter During the ATLAS Operation

    CERN Document Server

    Guimaraes Ferreira, F; The ATLAS collaboration; Fink Grael, F; Sivolella Gomes, A; Balabram Filho, L

    2010-01-01

    TileCal is the barrel hadronic calorimeter of the ATLAS experiment and has ~10 000 electronic channels. Supervising the detector behavior is a very important task to ensure proper operation. Collaborators perform analyzes over reconstructed data of calibration runs in order to give detailed considerations about failures and to assert the equipment status. Then, the data quality responsible provides the list of problematic channels that should not be considered for physics analysis. Since the commissioning period, our group has developed seven web systems that guide the collaborators through the data quality assessment task. Each system covers a part of the job, providing information on the latest runs, displaying status from the automatic monitoring framework, giving details about power supplies operation, presenting the generated plots and storing the validation outcomes, assisting to write logbook entries, creating and submitting the bad channels list to the conditions database and publishing the equipment ...

  17. Web System for Data Quality Assessment of Tile Calorimeter During the ATLAS Operation

    CERN Document Server

    Maidantchik1, C; The ATLAS collaboration; Grael, F; Sivolella, A; Balabram, L

    2011-01-01

    TileCal is the barrel hadronic calorimeter of the ATLAS experiment and has about 10 000 electronic channels. Supervising the detector behavior is a very important task to ensure proper operation. Collaborators perform analyzes over reconstructed data of calibration runs in order to give detailed considerations about failures and to assert the equipment status. Since the commissioning period, our group has developed seven web systems that guide the collaborators through the data quality assessment task. Each system covers a part of the job, providing information on the latest runs, displaying status from the automatic monitoring framework, giving details about power supplies operation, presenting the generated plots and storing the validation outcomes, assisting to write logbook entries, creating and submitting the bad channels list to the conditions database and publishing the equipment performance history. Due to the beginning of the operation, runs are acquired more often. The increasing amount of data repr...

  18. The analog processing system for the Liquid Argon Calorimeter for SLD at SLAC

    International Nuclear Information System (INIS)

    The analog processing system for the Liquid Argon Calorimeter for the SLD project at SLAC is described. Amplification, storage of the analog information, and multiplexing is realized on specially developed hybrids, which will be mounted directly on the detector. This leads to a substantial reduction of the cable plant. Test results for the amplifier and for the sampling and multiplexing hybrid (CDU hybrid) are presented. The latter hybird contains a custom monolithic device, the Calorimeter Data Unit

  19. Upgrade of the Laser calibration system for the ATLAS hadronic calorimeter TileCal

    Science.gov (United States)

    van Woerden, Marius Cornelis

    2016-07-01

    We present in this contribution the new system for Laser calibration of the ATLAS hadronic calorimeter TileCal. The Laser system is a part of the three stage calibration apparatus designed to compute the calibration factors of the individual cells of TileCal. The Laser system is mainly used to correct for short term drifts of the readout of the individual cells. A sub-percent accuracy in the control of the calibration factors is required. To achieve this goal in the LHC Run2 conditions, a new Laser system was designed. The architecture of the system is described with details on the new optical line used to distribute Laser pulses in each individual detector module and on the new electronics used to drive the Laser, to read out optical monitors and to interface the system with the ATLAS readout, trigger and slow control. The LaserII system has been fully integrated into the framework used for measuring calibration factors and for monitoring data quality. First results on the Laser system performances studied are presented.

  20. Calorimeter detectors

    CERN Document Server

    de Barbaro, P; The ATLAS collaboration

    2013-01-01

    Although the instantaneous and integrated luminosity in HL-LHC will be far higher than the LHC detectors were originally designed for, the Barrel calorimeters of the four experiments are expected to continue to perform well  throughout the Phase II program. The conditions for the End-Cap calorimeters are far more challenging and whilst some detectors will require relatively modest changes, others require far more substantial upgrades. We present the results of longevity and performance studies for the calorimeter systems of the four main LHC experiments and outline the upgrade options under consideration. We include a discussion of the R&D required to make the final technology choices for the upgraded detectors.

  1. Mitigation of calorimeter noise.

    Energy Technology Data Exchange (ETDEWEB)

    Santi, P. A. (Peter A.); Bracken, D. S. (David S.); Smith, M. K. (Morag K.)

    2004-01-01

    One of the main factors that limit the sensitivity of calorimeters is the noise in the calorimeter response. A previous study into the sources of noise in a Wheatstone bridge calorimeter used by Department of Energy (DOE) facilities has shown that the control system for maintaining the water bath at a constant temperature was an important contributor to the noise in the system. In order to minimize the contribution that the control system makes to the noise in the calorimeter response, a new control system for the calorimeter has been developed. An experimental and analytical study has been performed to determine the effectiveness of this new control system in reducing the response noise in a Wheatstone bridge calorimeter. The results of this study are presented along with their implications for future work in minimizing the equilibrium noise of calorimeters.

  2. Performance of the ATLAS Tile Calorimeter

    CERN Document Server

    Solodkov, Alexander; The ATLAS collaboration

    2015-01-01

    The ATLAS Tile hadronic calorimeter (TileCal) provides highly-segmented energy measurements of incoming particles. It is a key detector for the measurement of hadrons, jets, tau leptons and missing transverse energy. It is also useful for identification and reconstruction of muons due to good signal to noise ratio. The calorimeter consists of thin steel plates and 460,000 scintillating tiles configured into 5000 cells, each viewed by two photomultipliers. The calorimeter response and its readout electronics is monitored to better than 1% using radioactive source, laser and charge injection systems. The calibration and performance of the calorimeter have been established through test beam measurements, cosmic ray muons and the large sample of muons and single hadrons from proton-proton collisions acquired in 2011 and 2012. The results demonstrate that the Tile Calorimeter has performed well within the design requirements and it has given essential contribution to reconstructed objects and physics results.

  3. A NEW ELECTRONIC BOARD TO DRIVE THE LASER CALIBRATION SYSTEM OF THE ATLAS HADRON CALORIMETER

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00086824; The ATLAS collaboration

    2016-01-01

    The LASER calibration system of the ATLAS hadron calorimeter aims at monitoring the ~10000 PMTs of the TileCal. The LASER light injected in the PMTs is measured by sets of photodiodes at several stages of the optical path. The monitoring of the photodiodes is performed by a redundant internal calibration system using an LED, a radioactive source, and a charge injection system. The LASer Calibration Rod (LASCAR) electronics card is a major component of the LASER calibration scheme. Housed in a VME crate, its main components include a charge ADC, a TTCRx, a HOLA part, an interface to control the LASER, and a charge injection system. The 13 bits ADC is a 2000pc full-scale converter that processes up to 16 signals stemming from 11 photodiodes, 2 PMTs, and 3 charge injection channels. Two gains are used (x1 and x4) to increase the dynamic range and avoid a saturation of the LASER signal for high intensities. The TTCRx chip (designed by CERN) retrieves LHC signals to synchronize the LASCAR card with the collider. T...

  4. International workshop on calorimeter simulation

    International Nuclear Information System (INIS)

    The aim of the Juelich workshop was to provide an overview of the state of calorimeter simulation and the methods used. This resulted in 29 contributions to the following topics: Code systems relevant to calorimeter simulation, vectorization and code speed-up, simulation of calorimeter experiments, special applications of calorimeter simulation. This report presents the viewgraphs of the given talks. (orig./HSI)

  5. Windows Calorimeter Control (WinCal) system configuration control board (SCCB) operating procedure

    International Nuclear Information System (INIS)

    This document describes the operating procedure for the System Configuration Control Board (SCCB) performed in support of the Windows Calorimeter Control (WinCal) system. This board will consist of representatives from Babcock and Wilcox Hanford Company Babcock and Wilcox Protec, Inc.; and Lockheed Martin Services, Inc. In accordance with agreements for the joint use of the Babcock and Wilcox Hanford Company calorimeters located in the Hanford Site Plutonium Finishing Plant (PFP) Nondestructive Assay Laboratory, concurrence regarding changes to the WinCal system will be obtained from the International Atomic Energy Agency (IAEA). Further, changes to the WinCal software will be communicated to Los Alamos National Laboratory

  6. Upgrade of the Laser Calibration System for the ATLAS Hadronic Calorimeter TileCal

    CERN Document Server

    Van Woerden, Marius Cornelis; The ATLAS collaboration

    2015-01-01

    We present in this contribution the new system for laser calibration of the ATLAS hadronic calorimeter TileCal. The laser system is a part of the three stage calibration apparatus designed to compute the calibration constants of the individual cells of TileCal. The laser system is mainly used to correct for short term (one month) drifts of the readout of the individual cells. A sub-percent accuracy in the control of the calibration constants is required to keep the systematics effects introduced by relative cell miscalibration below the irreducible systematics in determining the parameters of the reconstructed hadronic jets. To achieve this goal in the LHC run II conditions, a new laser system was designed. The architecture of the system is described with details on the new optical line used to distribute laser pulses in each individual detector module and on the new electronics used to drive the laser, to readout the system optical monitors and to interface the system with the Atlas readout, trigger, and slo...

  7. Upgrade of the Laser Calibration System for the ATLAS Hadronic Calorimeter TileCal

    CERN Document Server

    Van Woerden, Marius Cornelis; The ATLAS collaboration

    2015-01-01

    We present in this contribution the new system for laser calibration of the ATLAS hadronic calorimeter TileCal. The laser system is a part of the three stage calibration apparatus designed to compute the calibration constants of the individual cells of TileCal. The laser system is mainly used to correct for short term (one month) drifts of the readout of the individual cells. A sub-percent accuracy in the control of the calibration constants is required to keep the systematics effects introduced by relative cell miscalibration below the irreducible systematics in determining the parameters of the reconstructed hadronic jets. To achieve this goal in the LHC Run 2 conditions, a new laser system was designed. The architecture of the system is described with details on the new optical line used to distribute laser pulses in each individual detector module and on the new electronics used to drive the laser, to readout the system optical monitors and to interface the system with the Atlas readout, trigger, and slow...

  8. The ATLAS liquid argon calorimeter high-voltage system: commissioning, optimisation, and LHC relative luminosity measurement.

    CERN Document Server

    Arfaoui, Samir; Monnier, E

    2011-01-01

    The main goals of the ATLAS scientific programme are the observation or exclusion of physics beyond the Standard Model (SM), as well as the measurement of production cross-sections of SM processes. In oder to do so,it is important to measure the luminosity at the interaction point with great precision. The ATLAS luminosity is extracted using several detectors with varying efficiencies and acceptances. Different methods, such as inclusive - or coincidence - event counting and calorimeter integrated current measurements, are calibrated and cross-compared to provide the most accurate luminosity determination. In order to provide more cross-checks and a better control on the systematic uncertainties, an independent measurement using the liquid argon (LAr) forward calorimeter (FCal), based on the readout current of its high-voltage system, has been developed. This document describes how the LAr calorimeter high-voltage system has been installed and commissioned, as well as its application to a relative luminosity ...

  9. The ATLAS liquid argon calorimeter high-voltage system: commissioning, optimisation and LHC relative luminosity measurement

    International Nuclear Information System (INIS)

    The main goals of the ATLAS scientific programme are the observation or exclusion of physics beyond the Standard Model (SM), as well as the measurement of production cross-sections of SM processes. In order to do so, it is important to measure the luminosity at the interaction point with great precision. The ATLAS luminosity is extracted using several detectors with varying efficiencies and acceptances. Different methods, such as inclusive - or coincidence - event counting and calorimeter integrated current measurements, are calibrated and cross-compared to provide the most accurate luminosity determination. In order to provide more cross-checks and a better control on the systematic uncertainties, an independent measurement using the liquid argon (LAr) forward calorimeter (FCal), based on the readout current of its high-voltage system, has been developed. This document describes how the LAr calorimeter high-voltage system has been installed and commissioned, as well as its application to a relative luminosity determination. (author)

  10. Web System for Data Quality Assessment of Tile Calorimeter During the ATLAS Operation

    International Nuclear Information System (INIS)

    TileCal, the barrel hadronic calorimeter of the ATLAS experiment, gathers almost about 10,000 electronic channels. The supervision of the detector behavior is very important in order to ensure proper operation. Collaborators perform analysis over reconstructed data of calibration runs for giving detailed considerations about the equipment status. During the commissioning period, our group has developed seven web systems to support the data quality (DQ) assessment task. Each system covers a part of the process by providing information on the latest runs, displaying the DQ status from the monitoring framework, giving details about power supplies operation, presenting the generated plots and storing the validation outcomes, assisting to write logbook entries, creating and submitting the bad channels list to the conditions database and publishing the equipment performance history. The ATLAS operation increases amount of data that are retrieved, processed and stored by the web systems. In order to accomplish the new requirements, an optimized data model was designed to reduce the number of needed queries. The web systems were reassembled in a unique system in order to provide an integrated view of the validating process. The server load was minimized by using asynchronous requests from the browser.

  11. Run 1 Performance of the ATLAS Tile Calorimeter

    CERN Document Server

    Heelan, Louise; The ATLAS collaboration

    2014-01-01

    The ATLAS Tile hadronic calorimeter (TileCal) provides highly-segmented energy measurements of incoming particles. It is a key detector for the measurement of hadrons, jets, tau leptons and missing transverse energy. It is also useful for identification and reconstruction of muons due to good signal to noise ratio. The calorimeter consists of thin steel plates and 460,000 scintillating tiles configured into 5000 cells, each viewed by two photomultipliers. The calorimeter response and its readout electronics is monitored to better than 1% using radioactive source, laser and charge injection systems. The calibration and performance of the calorimeter have been established through test beam measurements, cosmic ray muons and the large sample of proton-proton collisions acquired in 2011 and 2012. Results on the calorimeter performance are presented, including the absolute energy scale, timing, noise and associated stabilities. The results demonstrate that the Tile Calorimeter has performed well within the design ...

  12. Improving the Compact Muon Solenoid Electromagnetic Calorimeter control and safety systems for the Large Hadron Collider Run 2

    CERN Document Server

    Da Silva Di Calafiori, Diogo Raphael; Djambazov, L; Holme, O; Lustermann, W; Adzic, P; Cirkovic, P; Jovanovic, D; Zelepoukine, S

    2015-01-01

    The first long shutdown of the Large Hadron Collider (LS1, 2013-2015) provided an opportunity for significant upgrades of the detector control and safety systems of the CMS Electromagnetic Calorimeter. A thorough evaluation was undertaken, building upon experience acquired during several years of detector operations. Substantial improvements were made to the monitoring systems in order to extend readout ranges and provide improved monitoring precision and data reliability. Additional remotely controlled hardware devices and automatic software routines were implemented to optimize the detector recovery time in the case of failures. The safety system was prepared in order to guarantee full support for both commercial off-the-shelf and custom hardware components throughout the next accelerator running period. The software applications were modified to operate on redundant host servers, to fulfil new requirements of the experiment. User interface extensions were also added to provide a more complete overview of t...

  13. Calorimeter insertion

    CERN Multimedia

    2006-01-01

    Calorimeter insertion between toroids in the ATLAS experiment detector Calorimeters are surrounding the inner detector. Calorimeters will absorb and measure the energies of the most charged and neutral particles after the collisions. The saved energy in the calorimeter is detected and converted to signals that are taken out with data taking electronics.

  14. Overview of the LHCb Calorimeter Detectors

    CERN Document Server

    Perret, P

    2013-01-01

    The LHCb calorimeter system is composed of four subdetectors: an electromagnetic calorimeter (ECAL) followed by a hadron calorimeter (HCAL). In addition the system includes in front of them the Scintillating Pad Detector (SPD) and Pre-Shower (PS). It is used to select transverse energy hadron, electron and photon candidates for the first trigger level and it provides the identification of electrons, photons and hadrons as well as the measurement of their energies and positions. The design and construction characteristics of the LHCb calorimeter will be recalled. Strategies for monitoring and calibration during data taking will be detailed in all aspects. Scintillating fibres, plastics and photomultipliers suffer from ageing due to radiation damage or high currents. Different methods which are used to calibrate the detectors and to recover the initial performances will be presented. The performances achieved will be illustrated in selected channels of interest for B physics.

  15. Development of an ADC Radiation Tolerance Characterization System for the Upgrade of the ATLAS LAr Calorimeter

    CERN Document Server

    Liu, Hongbin; Chen, Kai; Kierstead, James; Lanni, Francesco; Takai, Helio; Jin, Ge

    2016-01-01

    ATLAS LAr calorimeter will perform its Phase-I upgrade during the long shut down (LS2) in 2018, a new LAr Trigger Digitizer Board (LTDB) will be designed and installed. Several commercial-off-the-shelf (COTS) multichannel high-speed ADCs have been selected as possible backups of the radiation tolerant ADC ASICs for LTDB. In order to evaluate the radiation tolerance of these back up commercial ADCs, we developed an ADC radiation tolerance characterization system, which includes the ADC boards, data acquisition (DAQ) board, signal generator, external power supplies and a host computer. The ADC board is custom designed for different ADCs, which has ADC driver and clock distribution circuits integrated on board. The Xilinx ZC706 FPGA development board is used as DAQ board. The data from ADC are routed to the FPGA through the FMC (FPGA Mezzanine Card) connector, de-serialized and monitored by the FPGA, and then transmitted to the host computer through the Gigabit Ethernet. A software program has been developed wit...

  16. High wattage calorimeter system for measurement of the EP-61 container

    International Nuclear Information System (INIS)

    EG and G Mound Applied Technologies has developed a calorimeter for the measurement of high wattage samples while maintaining the accuracy usually associated with lower wattage samples. The calorimeter system is suitable for measuring General Purpose Heat Source (GPHS) type samples in both the EP-61 ''flashlight'' and the Fuel Clad Canister (FCC) packaging configurations. The system is configured with a Mound Electrical Calibration Heater (MECH) which can be used as a secondary system standard. Tests of the system using samples of both the FCC and the EP-61 type have produced assay results with an accuracy of less than ±0.05% at one sigma, while use of the MECH has produced results with an accuracy of less than ±0.04% at one sigma. The system has been tested over the range from 40 to 120 watts

  17. The ATLAS Forward Calorimeter

    Science.gov (United States)

    Artamonov, A.; Bailey, D.; Belanger, G.; Cadabeschi, M.; Chen, T.-Y.; Epshteyn, V.; Gorbounov, P.; Joo, K. K.; Khakzad, M.; Khovanskiy, V.; Krieger, P.; Loch, P.; Mayer, J.; Neuheimer, E.; Oakham, F. G.; O'Neill, M.; Orr, R. S.; Qi, M.; Rutherfoord, J.; Savine, A.; Schram, M.; Shatalov, P.; Shaver, L.; Shupe, M.; Stairs, G.; Strickland, V.; Tompkins, D.; Tsukerman, I.; Vincent, K.

    2008-02-01

    Forward calorimeters, located near the incident beams, complete the nearly 4π coverage for high pT particles resulting from proton-proton collisions in the ATLAS detector at the Large Hadron Collider at CERN. Both the technology and the deployment of the forward calorimeters in ATLAS are novel. The liquid argon rod/tube electrode structure for the forward calorimeters was invented specifically for applications in high rate environments. The placement of the forward calorimeters adjacent to the other calorimeters relatively close to the interaction point provides several advantages including nearly seamless calorimetry and natural shielding for the muon system. The forward calorimeter performance requirements are driven by events with missing ET and tagging jets.

  18. Preliminary study on field buses for the control system of the high voltage of the ATLAS hadronic calorimeter

    International Nuclear Information System (INIS)

    We present here after a preliminary study on field buses for the control system of the high voltage of the photomultipliers of the TILECAL calorimeter. After some generalities, different commercial buses are reviewed (CAN, ARCET, WorldFIP, Profibus and LonWorks). The Profibus and LonWorks solution are more extensively studies as a possible solution for the high voltage system of the TILE hadronic calorimeter. (authors)

  19. The calorimeter system of the new muon g-2 experiment at Fermilab

    Science.gov (United States)

    Alonzi, L. P.; Anastasi, A.; Bjorkquist, R.; Cauz, D.; Cantatore, G.; Dabagov, S.; Sciascio, G. Di; Di Stefano, R.; Fatemi, R.; Ferrari, C.; Fienberg, A. T.; Fioretti, A.; Frankenthal, A.; Gabbanini, C.; Gibbons, L. K.; Giovanetti, K.; Goadhouse, S. D.; Gohn, W. P.; Gorringe, T. P.; Hampai, D.; Hertzog, D. W.; Iacovacci, M.; Kammel, P.; Karuza, M.; Kaspar, J.; Kiburg, B.; Li, L.; Marignetti, F.; Mastroianni, S.; Moricciani, D.; Pauletta, G.; Peterson, D. A.; Počanić, D.; Santi, L.; Smith, M. W.; Sweigart, D. A.; Tishchenko, V.; Van Wechel, T. D.; Venanzoni, G.; Wall, K. B.; Winter, P.; Yai, K.

    2016-07-01

    The electromagnetic calorimeter for the new muon (g-2) experiment at Fermilab will consist of arrays of PbF2 Čerenkov crystals read out by large-area silicon photo-multiplier (SiPM) sensors. We report here the requirements for this system, the achieved solution and the results obtained from a test beam using 2.0-4.5 GeV electrons with a 28-element prototype array.

  20. Slides for a talk entitled "Performance of the ATLAS Tile Calorimeter" at the CHEF2013 conference.

    CERN Document Server

    WILKENS, H; The ATLAS collaboration

    2013-01-01

    The Tile Calorimeter is the central section of the ATLAS hadronic calorimeter. It is a key detector for the measurement of hadrons, jets, tau leptons and missing transverse energy. Because of its very good signal to noise ratio it is also useful for the identification and reconstruction of muons. The calorimeter consists of thin steel plates and 460,000 scintillating tiles configured into 4900 cells, each viewed by two photomultipliers. The calorimeter response is monitored to better than 1% using radioactive source, laser, and electronic charge injection systems. The calibration and performance of the calorimeter have been established through test beam measurements, cosmic ray muons and the large sample of pp collisions acquired in 2011 and 2012. Results on the calorimeter performance are presented, including the absolute energy scale, time resolution, and associated stabilities. In addition to the measurement of the energy and direction of hadronic showers and particles, the calorimeter determines the arriv...

  1. Development and Test of the Cooling System for the ATLAS Hadron Tile Calorimeter

    CERN Document Server

    Schlager, Gerolf

    2002-01-01

    The ATLAS detector is a general-purpose experiment for proton-proton collisions designed to investigate the full range of physical processes at the Large Hadron Collider (LHC). The ATLAS Tile Hadron Calorimeter is designed to measure the energies of jets with a resolution of E/E = 50%/pE 3%, for j j<3. This thesis presents the detailed studies which were carried out with prototypes of the Tilecal cooling system during my year as technical student at CERN. The results will be used to validate and to determine the nal design of the cooling system of the ATLAS Tile calorimeter. The performance of the cooling unit built for the calibration of Tilecal modules was evaluated for various parameters like temperature stability and safety conditions during operation. Additionally I contributed to the analysis of the calorimeter response for di erent cooling temperatures. These results determined the constraints on the operation conditions of the cooling system in terms of temperature stability that will be needed d...

  2. Data acquisition system and link and data aggregator for the CALICE analogue hadron calorimeter

    International Nuclear Information System (INIS)

    The Analogue Hadron Calorimeter (AHCAL) is one of the several calorimeter designs developed by the CALICE collaboration for future linear colliders. It is a high granularity sampling calorimeter with plastic scintillator tiles of 3 x 3 cm2, adding up to ∝8'000'000 sensors. This large amount of channels requires a powerful data acquisition system (DAQ). In this DAQ system, the Link and Data Aggregator module (LDA) acts as an intermediate component to group together several layers units, dispatching control signals and merging data. A first LDA design (mini-LDA), intended to be flexible but limited to a small number of layers, has been successfully used during the end-of-the-year 2014 CERN Test Beam program. A second prototype (wing-LDA), compatible with a complete detector design, is operating during the Test Beam program of 2015. This talk will present the current status of the DAQ and the LDA, with recent results from Test Beam and future plans.

  3. Data acquisition system and link and data aggregator for the CALICE analogue hadron calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Caudron, Julien; Adam, Lennart; Bauss, Bruno; Buescher, Volker; Chau, Phi; Degele, Reinhold; Geib, Karl-Heinrich; Krause, Sascha; Liu, Yong; Masetti, Lucia; Schaefer, Ulrich; Spreckels, Rouven; Tapprogge, Stefan; Wanke, Rainer [Johannes-Gutenberg Universitaet, Mainz (Germany); Collaboration: CALICE-D-Collaboration

    2015-07-01

    The Analogue Hadron Calorimeter (AHCAL) is one of the several calorimeter designs developed by the CALICE collaboration for future linear colliders. It is a high granularity sampling calorimeter with plastic scintillator tiles of 3 x 3 cm{sup 2}, adding up to ∝8'000'000 sensors. This large amount of channels requires a powerful data acquisition system (DAQ). In this DAQ system, the Link and Data Aggregator module (LDA) acts as an intermediate component to group together several layers units, dispatching control signals and merging data. A first LDA design (mini-LDA), intended to be flexible but limited to a small number of layers, has been successfully used during the end-of-the-year 2014 CERN Test Beam program. A second prototype (wing-LDA), compatible with a complete detector design, is operating during the Test Beam program of 2015. This talk will present the current status of the DAQ and the LDA, with recent results from Test Beam and future plans.

  4. Calibration and Performance of the ATLAS Tile Calorimeter

    CERN Document Server

    Peralva, B S; The ATLAS collaboration

    2013-01-01

    TileCal is the hadronic calorimeter covering the most central region of the ATLAS experiment at the LHC. It is a key detector for the measurement of hadrons, jets, tau leptons and missing transverse energy. Scintillation light produced in the tiles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The resulting electronic signals from approximately 10000 PMTs are measured and digitized before being transferred to off-detector data-acquisition systems. The calorimeter response is monitored to better than 1% using radioactive source, laser, and charge injection systems. This multi-faceted calibration system allows to monitor and equalize the calorimeter response at each stage of the signal production, from scintillation light to digitization. This contribution presents a brief description of the different TileCal calibration systems as well as the latest results on their performance in terms of calibration factors, linearity and stability. The performance of the Tile Calorimeter with...

  5. The clock distribution system for the ATLAS Liquid Argon Calorimeter Phase-I Upgrade Demonstrator

    International Nuclear Information System (INIS)

    A prototype Liquid-argon Trigger Digitizer Board (LTDB), called the LTDB Demonstrator, has been developed to demonstrate the functions of the ATLAS Liquid Argon Calorimeter Phase-I trigger electronics upgrade. Forty Analog-to-Digital converters and four FPGAs with embedded multi-gigabit-transceivers on each Demonstrator need high quality clocks. A clock distribution system based on commercial components has been developed for the Demonstrator. The design of the clock distribution system is presented. The performance of the clock distribution system has been evaluated. The components used in the clock distribution system have been qualified to meet radiation tolerance requirements of the Demonstrator

  6. AIDA: concerted calorimeter development

    CERN Multimedia

    Felix Sefkow

    2013-01-01

    AIDA – the EU-funded project bringing together more than 80 institutes worldwide – aims at developing new detector solutions for future accelerators. Among the highlights reported at AIDA’s recent annual meeting in Frascati was the completion of an impressive calorimeter test beam programme, conducted by the CALICE collaboration over the past two years at CERN’s PS and SPS beam lines.   The CALICE tungsten calorimeter prototype under test at CERN. This cubic-metre hadron calorimeter prototype has almost 500,000 individually read-out electronics channels – more than all the calorimeters of ATLAS and CMS put together. Calorimeter development in AIDA is mainly motivated by experiments at possible future electron-positron colliders, namely ILC or CLIC. The physics requirements of such future machines demand extremely high-performance calorimetry. This is best achieved using a finely segmented system that reconstructs events using the so-called pa...

  7. Implementation and performance of the Detector Control System for the electromagnetic calorimeter of the CMS experiment

    CERN Document Server

    Adzic, P; Cavallari, F; Di Calafiori, D; Dissertori, G; Gómez-Reino, Robert; Inyakin, A; Jovanovic, D; Leshev, G; Milenovic, P; Ofierzynski, R; Punz, T; Puzovic, J; Zelepoukine, S

    2007-01-01

    In this presentation we describe the main design objectives, the detailed specifications and the final layout of the Detector Control System (DCS) for the electromagnetic calorimeter (ECAL) of the CMS experiment. Emphasis is put on the system implementation and specific hardware and software solutions in each of its sub-systems. The latest results from the tests of final prototypes of these subsystems during the 2006 ECAL test-beam programme, as well as the installation and commissioning of the whole DCS at the CMS experimental construction site are discussed.

  8. Performance of the prototype readout system for the CMS endcap hadron calorimeter upgrade

    CERN Document Server

    Pastika, Nathaniel Joseph

    2015-01-01

    The CMS experiment at the CERN Large Hadron Collider (LHC) will upgrade the photon detection and readout systems of its barrel and endcap hadron calorimeters (HCAL) through the second long shutdown of the LHC in 2018. The upgrade includes new silicon photomultipliers (SiPMs), SiPM control electronics, signal digitization via the Fermilab QIE11 ASIC, data formatting and serialization via a Microsemi FPGA, and data transmission via CERN Versatile Link technology. The first prototype system for the endcap HCAL has been assembled and characterized on the bench and in a test beam. The design of this new system and prototype performance is described.

  9. Performance of the prototype readout system for the CMS endcap hadron calorimeter upgrade

    Science.gov (United States)

    Pastika, N. J.

    2016-03-01

    The CMS experiment at the CERN Large Hadron Collider (LHC) will upgrade the photon detection and readout systems of its barrel and endcap hadron calorimeters (HCAL) through the second long shutdown of the LHC in 2018. The upgrade includes new silicon photomultipliers (SiPMs), SiPM control electronics, signal digitization via the Fermilab QIE11 ASIC, data formatting and serialization via a Microsemi FPGA, and data transmission via CERN Versatile Link technology. The first prototype system for the endcap HCAL has been assembled and characterized on the bench and in a test beam. The design of this new system and prototype performance are described.

  10. GSPEL - Calorimeter Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Testing performance claims on heat transfer components The Calorimeter Lab, located in the Ground Systems Power and Energy Lab (GSPEL), is one of the largest in the...

  11. Performance and Operation of the CMS Electromagnetic Calorimeter

    CERN Document Server

    Chatrchyan, S; Sirunyan, A M; Adam, W; Arnold, B; Bergauer, H; Bergauer, T; Dragicevic, M; Eichberger, M; Erö, J; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hänsel, S; Hoch, M; Hörmann, N; Hrubec, J; Jeitler, M; Kasieczka, G; Kastner, K; Krammer, M; Liko, D; Magrans de Abril, I; Mikulec, I; Mittermayr, F; Neuherz, B; Oberegger, M; Padrta, M; Pernicka, M; Rohringer, H; Schmid, S; Schöfbeck, R; Schreiner, T; Stark, R; Steininger, H; Strauss, J; Taurok, A; Teischinger, F; Themel, T; Uhl, D; Wagner, P; Waltenberger, W; Walzel, G; Widl, E; Wulz, C E; Chekhovsky, V; Dvornikov, O; Emeliantchik, I; Litomin, A; Makarenko, V; Marfin, I; Mossolov, V; Shumeiko, N; Solin, A; Stefanovitch, R; Suarez Gonzalez, J; Tikhonov, A; Fedorov, A; Karneyeu, A; Korzhik, M; Panov, V; Zuyeuski, R; Kuchinsky, P; Beaumont, W; Benucci, L; Cardaci, M; De Wolf, E A; Delmeire, E; Druzhkin, D; Hashemi, M; Janssen, X; Maes, T; Mucibello, L; Ochesanu, S; Rougny, R; Selvaggi, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Adler, V; Beauceron, S; Blyweert, S; D'Hondt, J; De Weirdt, S; Devroede, O; Heyninck, J; Kalogeropoulos, A; Maes, J; Maes, M; Mozer, M U; Tavernier, S; Van Doninck, W; Van Mulders, P; Villella, I; Bouhali, O; Chabert, E C; Charaf, O; Clerbaux, B; De Lentdecker, G; Dero, V; Elgammal, S; Gay, A P R; Hammad, G H; Marage, P E; Rugovac, S; Vander Velde, C; Vanlaer, P; Wickens, J; Grunewald, M; Klein, B; Marinov, A; Ryckbosch, D; Thyssen, F; Tytgat, M; Vanelderen, L; Verwilligen, P; Basegmez, S; Bruno, G; Caudron, J; Delaere, C; Demin, P; Favart, D; Giammanco, A; Grégoire, G; Lemaitre, V; Militaru, O; Ovyn, S; Piotrzkowski, K; Quertenmont, L; Schul, N; Beliy, N; Daubie, E; Alves, G A; Pol, M E; Souza, M H G; Carvalho, W; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Mundim, L; Oguri, V; Santoro, A; Silva Do Amaral, S M; Sznajder, A; Fernandez Perez Tomei, T R; Ferreira Dias, M A; Gregores, E M; Novaes, S F; Abadjiev, K; Anguelov, T; Damgov, J; Darmenov, N; Dimitrov, L; Genchev, V; Iaydjiev, P; Piperov, S; Stoykova, S; Sultanov, G; Trayanov, R; Vankov, I; Dimitrov, A; Dyulendarova, M; Kozhuharov, V; Litov, L; Marinova, E; Mateev, M; Pavlov, B; Petkov, P; Toteva, Z; Chen, G M; Chen, H S; Guan, W; Jiang, C H; Liang, D; Liu, B; Meng, X; Tao, J; Wang, J; Wang, Z; Xue, Z; Zhang, Z; Ban, Y; Cai, J; Ge, Y; Guo, S; Hu, Z; Mao, Y; Qian, S J; Teng, H; Zhu, B; Avila, C; Baquero Ruiz, M; Carrillo Montoya, C A; Gomez, A; Gomez Moreno, B; Ocampo Rios, A A; Osorio Oliveros, A F; Reyes Romero, D; Sanabria, J C; Godinovic, N; Lelas, K; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Dzelalija, M; Brigljevic, V; Duric, S; Kadija, K; Morovic, S; Fereos, R; Galanti, M; Mousa, J; Papadakis, A; Ptochos, F; Razis, P A; Tsiakkouri, D; Zinonos, Z; Hektor, A; Kadastik, M; Kannike, K; Müntel, M; Raidal, M; Rebane, L; Anttila, E; Czellar, S; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Klem, J; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Nysten, J; Tuominen, E; Tuominiemi, J; Ungaro, D; Wendland, L; Banzuzi, K; Korpela, A; Tuuva, T; Nedelec, P; Sillou, D; Besancon, M; Chipaux, R; Dejardin, M; Denegri, D; Descamps, J; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Gentit, F X; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Lemaire, M C; Locci, E; Malcles, J; Marionneau, M; Millischer, L; Rander, J; Rosowsky, A; Rousseau, D; Titov, M; Verrecchia, P; Baffioni, S; Bianchini, L; Bluj, M; Busson, P; Charlot, C; Dobrzynski, L; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Paganini, P; Sirois, Y; Thiebaux, C; Zabi, A; Agram, J L; Besson, A; Bloch, D; Bodin, D; Brom, J M; Conte, E; Drouhin, F; Fontaine, J C; Gelé, D; Goerlach, U; Gross, L; Juillot, P; Le Bihan, A C; Patois, Y; Speck, J; Van Hove, P; Baty, C; Bedjidian, M; Blaha, J; Boudoul, G; Brun, H; Chanon, N; Chierici, R; Contardo, D; Depasse, P; Dupasquier, T; El Mamouni, H; Fassi, F; Fay, J; Gascon, S; Ille, B; Kurca, T; Le Grand, T; Lethuillier, M; Lumb, N; Mirabito, L; Perries, S; Vander Donckt, M; Verdier, P; Djaoshvili, N; Roinishvili, N; Roinishvili, V; Amaglobeli, N; Adolphi, R; Anagnostou, G; Brauer, R; Braunschweig, W; Edelhoff, M; Esser, H; Feld, L; Karpinski, W; Khomich, A; Klein, K; Mohr, N; Ostaptchouk, A; Pandoulas, D; Pierschel, G; Raupach, F; Schael, S; Schultz von Dratzig, A; Schwering, G; Sprenger, D; Thomas, M; Weber, M; Wittmer, B; Wlochal, M; Actis, O; Altenhöfer, G; Bender, W; Biallass, P; Erdmann, M; Fetchenhauer, G; Frangenheim, J; Hebbeker, T; Hilgers, G; Hinzmann, A; Hoepfner, K; Hof, C; Kirsch, M; Klimkovich, T; Kreuzer, P; Lanske, D; Merschmeyer, M; Meyer, A; Philipps, B; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Sowa, M; Steggemann, J; Szczesny, H; Teyssier, D; Zeidler, C; Bontenackels, M; Davids, M; Duda, M; Flügge, G; Geenen, H; Giffels, M; Haj Ahmad, W; Hermanns, T; Heydhausen, D; Kalinin, S; Kress, T; Linn, A; Nowack, A; Perchalla, L; Poettgens, M; Pooth, O; Sauerland, P; Stahl, A; Tornier, D; Zoeller, M H; Aldaya Martin, M; Behrens, U; Borras, K; Campbell, A; Castro, E; Dammann, D; Eckerlin, G; Flossdorf, A; Flucke, G; Geiser, A; Hatton, D; Hauk, J; Jung, H; Kasemann, M; Katkov, I; Kleinwort, C; Kluge, H; Knutsson, A; Kuznetsova, E; Lange, W; Lohmann, W; Mankel, R; Marienfeld, M; Meyer, A B; Miglioranzi, S; Mnich, J; Ohlerich, M; Olzem, J; Parenti, A; Rosemann, C; Schmidt, R; Schoerner-Sadenius, T; Volyanskyy, D; Wissing, C; Zeuner, W D; Autermann, C; Bechtel, F; Draeger, J; Eckstein, D; Gebbert, U; Kaschube, K; Kaussen, G; Klanner, R; Mura, B; Naumann-Emme, S; Nowak, F; Pein, U; Sander, C; Schleper, P; Schum, T; Stadie, H; Steinbrück, G; Thomsen, J; Wolf, R; Bauer, J; Blüm, P; Buege, V; Cakir, A; Chwalek, T; De Boer, W; Dierlamm, A; Dirkes, G; Feindt, M; Felzmann, U; Frey, M; Furgeri, A; Gruschke, J; Hackstein, C; Hartmann, F; Heier, S; Heinrich, M; Held, H; Hirschbuehl, D; Hoffmann, K H; Honc, S; Jung, C; Kuhr, T; Liamsuwan, T; Martschei, D; Mueller, S; Müller, Th; Neuland, M B; Niegel, M; Oberst, O; Oehler, A; Ott, J; Peiffer, T; Piparo, D; Quast, G; Rabbertz, K; Ratnikov, F; Ratnikova, N; Renz, M; Saout, C; Sartisohn, G; Scheurer, A; Schieferdecker, P; Schilling, F P; Schott, G; Simonis, H J; Stober, F M; Sturm, P; Troendle, D; Trunov, A; Wagner, W; Wagner-Kuhr, J; Zeise, M; Zhukov, V; Ziebarth, E B; Daskalakis, G; Geralis, T; Karafasoulis, K; Kyriakis, A; Loukas, D; Markou, A; Markou, C; Mavrommatis, C; Petrakou, E; Zachariadou, A; Gouskos, L; Katsas, P; Panagiotou, A; Evangelou, I; Kokkas, P; Manthos, N; Papadopoulos, I; Patras, V; Triantis, F A; Bencze, G; Boldizsar, L; Debreczeni, G; Hajdu, C; Hernath, S; Hidas, P; Horvath, D; Krajczar, K; Laszlo, A; Patay, G; Sikler, F; Toth, N; Vesztergombi, G; Beni, N; Christian, G; Imrek, J; Molnar, J; Novak, D; Palinkas, J; Szekely, G; Szillasi, Z; Tokesi, K; Veszpremi, V; Kapusi, A; Marian, G; Raics, P; Szabo, Z; Trocsanyi, Z L; Ujvari, B; Zilizi, G; Bansal, S; Bawa, H S; Beri, S B; Bhatnagar, V; Jindal, M; Kaur, M; Kaur, R; Kohli, J M; Mehta, M Z; Nishu, N; Saini, L K; Sharma, A; Singh, A; Singh, J B; Singh, S P; Ahuja, S; Arora, S; Bhattacharya, S; Chauhan, S; Choudhary, B C; Gupta, P; Jain, S; Jain, S; Jha, M; Kumar, A; Ranjan, K; Shivpuri, R K; Srivastava, A K; Choudhury, R K; Dutta, D; Kailas, S; Kataria, S K; Mohanty, A K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Guchait, M; Gurtu, A; Maity, M; Majumder, D; Majumder, G; Mazumdar, K; Nayak, A; Saha, A; Sudhakar, K; Banerjee, S; Dugad, S; Mondal, N K; Arfaei, H; Bakhshiansohi, H; Fahim, A; Jafari, A; Mohammadi Najafabadi, M; Moshaii, A; Paktinat Mehdiabadi, S; Rouhani, S; Safarzadeh, B; Zeinali, M; Felcini, M; Abbrescia, M; Barbone, L; Chiumarulo, F; Clemente, A; Colaleo, A; Creanza, D; Cuscela, G; De Filippis, N; De Palma, M; De Robertis, G; Donvito, G; Fedele, F; Fiore, L; Franco, M; Iaselli, G; Lacalamita, N; Loddo, F; Lusito, L; Maggi, G; Maggi, M; Manna, N; Marangelli, B; My, S; Natali, S; Nuzzo, S; Papagni, G; Piccolomo, S; Pierro, G A; Pinto, C; Pompili, A; Pugliese, G; Rajan, R; Ranieri, A; Romano, F; Roselli, G; Selvaggi, G; Shinde, Y; Silvestris, L; Tupputi, S; Zito, G; Abbiendi, G; Bacchi, W; Benvenuti, A C; Boldini, M; Bonacorsi, D; Braibant-Giacomelli, S; Cafaro, V D; Caiazza, S S; Capiluppi, P; Castro, A; Cavallo, F R; Codispoti, G; Cuffiani, M; D'Antone, I; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Giordano, V; Giunta, M; Grandi, C; Guerzoni, M; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Odorici, F; Pellegrini, G; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G; Torromeo, G; Travaglini, R; Albergo, S; Costa, S; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Broccolo, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Frosali, S; Gallo, E; Genta, C; Landi, G; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bertani, M; Bianco, S; Colafranceschi, S; Colonna, D; Fabbri, F; Giardoni, M; Passamonti, L; Piccolo, D; Pierluigi, D; Ponzio, B; Russo, A; Fabbricatore, P; Musenich, R; Benaglia, A; Calloni, M; Cerati, G B; D'Angelo, P; De Guio, F; Farina, F M; Ghezzi, A; Govoni, P; Malberti, M; Malvezzi, S; Martelli, A; Menasce, D; Miccio, V; Moroni, L; Negri, P; Paganoni, M; Pedrini, D; Pullia, A; Ragazzi, S; Redaelli, N; Sala, S; Salerno, R; Tabarelli de Fatis, T; Tancini, V; Taroni, S; Buontempo, S; Cavallo, N; Cimmino, A; De Gruttola, M; Fabozzi, F; Iorio, A O M; Lista, L; Lomidze, D; Noli, P; Paolucci, P; Sciacca, C; Azzi, P; Bacchetta, N; Barcellan, L; Bellan, P; Bellato, M; Benettoni, M; Biasotto, M; Bisello, D; Borsato, E; Branca, A; Carlin, R; Castellani, L; Checchia, P; Conti, E; Dal Corso, F; De Mattia, M; Dorigo, T; Dosselli, U; Fanzago, F; Gasparini, F; Gasparini, U; Giubilato, P; Gonella, F; Gresele, A; Gulmini, M; Kaminskiy, A; Lacaprara, S; Lazzizzera, I; Margoni, M; Maron, G; Mattiazzo, S; Mazzucato, M; Meneghelli, M; Meneguzzo, A T; Michelotto, M; Montecassiano, F; Nespolo, M; Passaseo, M; Pegoraro, M; Perrozzi, L; Pozzobon, N; Ronchese, P; Simonetto, F; Toniolo, N; Torassa, E; Tosi, M; Triossi, A; Vanini, S; Ventura, S; Zotto, P; Zumerle, G; Baesso, P; Berzano, U; Bricola, S; Necchi, M M; Pagano, D; Ratti, S P; Riccardi, C; Torre, P; Vicini, A; Vitulo, P; Viviani, C; Aisa, D; Aisa, S; Babucci, E; Biasini, M; Bilei, G M; Caponeri, B; Checcucci, B; Dinu, N; Fanò, L; Farnesini, L; Lariccia, P; Lucaroni, A; Mantovani, G; Nappi, A; Piluso, A; Postolache, V; Santocchia, A; Servoli, L; Tonoiu, D; Vedaee, A; Volpe, R; Azzurri, P; Bagliesi, G; Bernardini, J; Berretta, L; Boccali, T; Bocci, A; Borrello, L; Bosi, F; Calzolari, F; Castaldi, R; Dell'Orso, R; Fiori, F; Foà, L; Gennai, S; Giassi, A; Kraan, A; Ligabue, F; Lomtadze, T; Mariani, F; Martini, L; Massa, M; Messineo, A; Moggi, A; Palla, F; Palmonari, F; Petragnani, G; Petrucciani, G; Raffaelli, F; Sarkar, S; Segneri, G; Serban, A T; Spagnolo, P; Tenchini, R; Tolaini, S; Tonelli, G; Venturi, A; Verdini, P G; Baccaro, S; Barone, L; Bartoloni, A; Cavallari, F; Dafinei, I; Del Re, D; Di Marco, E; Diemoz, M; Franci, D; Longo, E; Organtini, G; Palma, A; Pandolfi, F; Paramatti, R; Pellegrino, F; Rahatlou, S; Rovelli, C; Alampi, G; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Biino, C; Borgia, M A; Botta, C; Cartiglia, N; Castello, R; Cerminara, G; Costa, M; Dattola, D; Dellacasa, G; Demaria, N; Dughera, G; Dumitrache, F; Graziano, A; Mariotti, C; Marone, M; Maselli, S; Migliore, E; Mila, G; Monaco, V; Musich, M; Nervo, M; Obertino, M M; Oggero, S; Panero, R; Pastrone, N; Pelliccioni, M; Romero, A; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Trapani, P P; Trocino, D; Vilela Pereira, A; Visca, L; Zampieri, A; Ambroglini, F; Belforte, S; Cossutti, F; Della Ricca, G; Gobbo, B; Penzo, A; Chang, S; Chung, J; Kim, D H; Kim, G N; Kong, D J; Park, H; Son, D C; Bahk, S Y; Song, S; Jung, S Y; Hong, B; Kim, H; Kim, J H; Lee, K S; Moon, D H; Park, S K; Rhee, H B; Sim, K S; Kim, J; Choi, M; Hahn, G; Park, I C; Choi, S; Choi, Y; Goh, J; Jeong, H; Kim, T J; Lee, J; Lee, S; Janulis, M; Martisiute, D; Petrov, P; Sabonis, T; Castilla Valdez, H; Sánchez Hernández, A; Carrillo Moreno, S; Morelos Pineda, A; Allfrey, P; Gray, R N C; Krofcheck, D; Bernardino Rodrigues, N; Butler, P H; Signal, T; Williams, J C; Ahmad, M; Ahmed, I; Ahmed, W; Asghar, M I; Awan, M I M; Hoorani, H R; Hussain, I; Khan, W A; Khurshid, T; Muhammad, S; Qazi, S; Shahzad, H; Cwiok, M; Dabrowski, R; Dominik, W; Doroba, K; Konecki, M; Krolikowski, J; Pozniak, K; Romaniuk, Ryszard; Zabolotny, W; Zych, P; Frueboes, T; Gokieli, R; Goscilo, L; Górski, M; Kazana, M; Nawrocki, K; Szleper, M; Wrochna, G; Zalewski, P; Almeida, N; Antunes Pedro, L; Bargassa, P; David, A; Faccioli, P; Ferreira Parracho, P G; Freitas Ferreira, M; Gallinaro, M; Guerra Jordao, M; Martins, P; Mini, G; Musella, P; Pela, J; Raposo, L; Ribeiro, P Q; Sampaio, S; Seixas, J; Silva, J; Silva, P; Soares, D; Sousa, M; Varela, J; Wöhri, H K; Altsybeev, I; Belotelov, I; Bunin, P; Ershov, Y; Filozova, I; Finger, M; Finger, M Jr; Golunov, A; Golutvin, I; Gorbounov, N; Kalagin, V; Kamenev, A; Karjavin, V; Konoplyanikov, V; Korenkov, V; Kozlov, G; Kurenkov, A; Lanev, A; Makankin, A; Mitsyn, V V; Moisenz, P; Nikonov, E; Oleynik, D; Palichik, V; Perelygin, V; Petrosyan, A; Semenov, R; Shmatov, S; Smirnov, V; Smolin, D; Tikhonenko, E; Vasil'ev, S; Vishnevskiy, A; Volodko, A; Zarubin, A; Zhiltsov, V; Bondar, N; Chtchipounov, L; Denisov, A; Gavrikov, Y; Gavrilov, G; Golovtsov, V; Ivanov, Y; Kim, V; Kozlov, V; Levchenko, P; Obrant, G; Orishchin, E; Petrunin, A; Shcheglov, Y; Shchetkovskiy, A; Sknar, V; Smirnov, I; Sulimov, V; Tarakanov, V; Uvarov, L; Vavilov, S; Velichko, G; Volkov, S; Vorobyev, A; Andreev, Yu; Anisimov, A; Antipov, P; Dermenev, A; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Matveev, V; Pashenkov, A; Postoev, V E; Solovey, A; Solovey, A; Toropin, A; Troitsky, S; Baud, A; Epshteyn, V; Gavrilov, V; Ilina, N; Kaftanov, V; Kolosov, V; Kossov, M; Krokhotin, A; Kuleshov, S; Oulianov, A; Safronov, G; Semenov, S; Shreyber, I; Stolin, V; Vlasov, E; Zhokin, A; Boos, E; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Klyukhin, V; Kodolova, O; Lokhtin, I; Petrushanko, S; Sarycheva, L; Savrin, V; Snigirev, A; Vardanyan, I; Dremin, I; Kirakosyan, M; Konovalova, N; Rusakov, S V; Vinogradov, A; Akimenko, S; Artamonov, A; Azhgirey, I; Bitioukov, S; Burtovoy, V; Grishin, V; Kachanov, V; Konstantinov, D; Krychkine, V; Levine, A; Lobov, I; Lukanin, V; Mel'nik, Y; Petrov, V; Ryutin, R; Slabospitsky, S; Sobol, A; Sytine, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Djordjevic, M; Jovanovic, D; Krpic, D; Maletic, D; Puzovic, J; Smiljkovic, N; Aguilar-Benitez, M; Alberdi, J; Alcaraz Maestre, J; Arce, P; Barcala, J M; Battilana, C; Burgos Lazaro, C; Caballero Bejar, J; Calvo, E; Cardenas Montes, M; Cepeda, M; Cerrada, M; Chamizo Llatas, M; Clemente, F; Colino, N; Daniel, M; De La Cruz, B; Delgado Peris, A; Diez Pardos, C; Fernandez Bedoya, C; Fernández Ramos, J P; Ferrando, A; Flix, J; Fouz, M C; Garcia-Abia, P; Garcia-Bonilla, A C; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Marin, J; Merino, G; Molina, J; Molinero, A; Navarrete, J J; Oller, J C; Puerta Pelayo, J; Romero, L; Santaolalla, J; Villanueva Munoz, C; Willmott, C; Yuste, C; Albajar, C; Blanco Otano, M; de Trocóniz, J F; Garcia Raboso, A; Lopez Berengueres, J O; Cuevas, J; Fernandez Menendez, J; Gonzalez Caballero, I; Lloret Iglesias, L; Naves Sordo, H; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Chuang, S H; Diaz Merino, I; Diez Gonzalez, C; Duarte Campderros, J; Fernandez, M; Gomez, G; Gonzalez Sanchez, J; Gonzalez Suarez, R; Jorda, C; Lobelle Pardo, P; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Martinez Ruiz del Arbol, P; Matorras, F; Rodrigo, T; Ruiz Jimeno, A; Scodellaro, L; Sobron Sanudo, M; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Albert, E; Alidra, M; Ashby, S; Auffray, E; Baechler, J; Baillon, P; Ball, A H; Bally, S L; Barney, D; Beaudette, F; Bellan, R; Benedetti, D; Benelli, G; Bernet, C; Bloch, P; Bolognesi, S; Bona, M; Bos, J; Bourgeois, N; Bourrel, T; Breuker, H; Bunkowski, K; Campi, D; Camporesi, T; Cano, E; Cattai, A; Chatelain, J P; Chauvey, M; Christiansen, T; Coarasa Perez, J A; Conde Garcia, A; Covarelli, R; Curé, B; De Roeck, A; Delachenal, V; Deyrail, D; Di Vincenzo, S; Dos Santos, S; Dupont, T; Edera, L M; Elliott-Peisert, A; Eppard, M; Favre, M; Frank, N; Funk, W; Gaddi, A; Gastal, M; Gateau, M; Gerwig, H; Gigi, D; Gill, K; Giordano, D; Girod, J P; Glege, F; Gomez-Reino Garrido, R; Goudard, R; Gowdy, S; Guida, R; Guiducci, L; Gutleber, J; Hansen, M; Hartl, C; Harvey, J; Hegner, B; Hoffmann, H F; Holzner, A; Honma, A; Huhtinen, M; Innocente, V; Janot, P; Le Godec, G; Lecoq, P; Leonidopoulos, C; Loos, R; Lourenço, C; Lyonnet, A; Macpherson, A; Magini, N; Maillefaud, J D; Maire, G; Mäki, T; Malgeri, L; Mannelli, M; Masetti, L; Meijers, F; Meridiani, P; Mersi, S; Meschi, E; Meynet Cordonnier, A; Moser, R; Mulders, M; Mulon, J; Noy, M; Oh, A; Olesen, G; Onnela, A; Orimoto, T; Orsini, L; Perez, E; Perinic, G; Pernot, J F; Petagna, P; Petiot, P; Petrilli, A; Pfeiffer, A; Pierini, M; Pimiä, M; Pintus, R; Pirollet, B; Postema, H; Racz, A; Ravat, S; Rew, S B; Rodrigues Antunes, J; Rolandi, G; Rovere, M; Ryjov, V; Sakulin, H; Samyn, D; Sauce, H; Schäfer, C; Schlatter, W D; Schröder, M; Schwick, C; Sciaba, A; Segoni, I; Sharma, A; Siegrist, N; Siegrist, P; Sinanis, N; Sobrier, T; Sphicas, P; Spiga, D; Spiropulu, M; Stöckli, F; Traczyk, P; Tropea, P; Troska, J; Tsirou, A; Veillet, L; Veres, G I; Voutilainen, M; Wertelaers, P; Zanetti, M; Bertl, W; Deiters, K; Erdmann, W; Gabathuler, K; Horisberger, R; Ingram, Q; Kaestli, H C; König, S; Kotlinski, D; Langenegger, U; Meier, F; Renker, D; Rohe, T; Sibille, J; Starodumov, A; Betev, B; Caminada, L; Chen, Z; Cittolin, S; Da Silva Di Calafiori, D R; Dambach, S; Dissertori, G; Dittmar, M; Eggel, C; Eugster, J; Faber, G; Freudenreich, K; Grab, C; Hervé, A; Hintz, W; Lecomte, P; Luckey, P D; Lustermann, W; Marchica, C; Milenovic, P; Moortgat, F; Nardulli, A; Nessi-Tedaldi, F; Pape, L; Pauss, F; Punz, T; Rizzi, A; Ronga, F J; Sala, L; Sanchez, A K; Sawley, M C; Sordini, V; Stieger, B; Tauscher, L; Thea, A; Theofilatos, K; Treille, D; Trüb, P; Weber, M; Wehrli, L; Weng, J; Zelepoukine, S; Amsler, C; Chiochia, V; De Visscher, S; Regenfus, C; Robmann, P; Rommerskirchen, T; Schmidt, A; Tsirigkas, D; Wilke, L; Chang, Y H; Chen, E A; Chen, W T; Go, A; Kuo, C M; Li, S W; Lin, W; Bartalini, P; Chang, P; Chao, Y; Chen, K F; Hou, W S; Hsiung, Y; Lei, Y J; Lin, S W; Lu, R S; Schümann, J; Shiu, J G; Tzeng, Y M; Ueno, K; Velikzhanin, Y; Wang, C C; Wang, M; Adiguzel, A; Ayhan, A; Azman Gokce, A; Bakirci, M N; Cerci, S; Dumanoglu, I; Eskut, E; Girgis, S; Gurpinar, E; Hos, I; Karaman, T; Karaman, T; Kayis Topaksu, A; Kurt, P; Önengüt, G; Önengüt Gökbulut, G; Ozdemir, K; Ozturk, S; Polatöz, A; Sogut, K; Tali, B; Topakli, H; Uzun, D; Vergili, L N; Vergili, M; Akin, I V; Aliev, T; Bilmis, S; Deniz, M; Gamsizkan, H; Guler, A M; Öcalan, K; Serin, M; Sever, R; Surat, U E; Zeyrek, M; Deliomeroglu, M; Demir, D; Gülmez, E; Halu, A; Isildak, B; Kaya, M; Kaya, O; Ozkorucuklu, S; Sonmez, N; Levchuk, L; Lukyanenko, S; Soroka, D; Zub, S; Bostock, F; Brooke, J J; Cheng, T L; Cussans, D; Frazier, R; Goldstein, J; Grant, N; Hansen, M; Heath, G P; Heath, H F; Hill, C; Huckvale, B; Jackson, J; Mackay, C K; Metson, S; Newbold, D M; Nirunpong, K; Smith, V J; Velthuis, J; Walton, R; Bell, K W; Brew, C; Brown, R M; Camanzi, B; Cockerill, D J A; Coughlan, J A; Geddes, N I; Harder, K; Harper, S; Kennedy, B W; Murray, P; Shepherd-Themistocleous, C H; Tomalin, I R; Williams, J H; Womersley, W J; Worm, S D; Bainbridge, R; Ball, G; Ballin, J; Beuselinck, R; Buchmuller, O; Colling, D; Cripps, N; Davies, G; Della Negra, M; Foudas, C; Fulcher, J; Futyan, D; Hall, G; Hays, J; Iles, G; Karapostoli, G; MacEvoy, B C; Magnan, A M; Marrouche, J; Nash, J; Nikitenko, A; Papageorgiou, A; Pesaresi, M; Petridis, K; Pioppi, M; Raymond, D M; Rompotis, N; Rose, A; Ryan, M J; Seez, C; Sharp, P; Sidiropoulos, G; Stettler, M; Stoye, M; Takahashi, M; Tapper, A; Timlin, C; Tourneur, S; Vazquez Acosta, M; Virdee, T; Wakefield, S; Wardrope, D; Whyntie, T; Wingham, M; Cole, J E; Goitom, I; Hobson, P R; Khan, A; Kyberd, P; Leslie, D; Munro, C; Reid, I D; Siamitros, C; Taylor, R; Teodorescu, L; Yaselli, I; Bose, T; Carleton, M; Hazen, E; Heering, A H; Heister, A; John, J St; Lawson, P; Lazic, D; Osborne, D; Rohlf, J; Sulak, L; Wu, S; Andrea, J; Avetisyan, A; Bhattacharya, S; Chou, J P; Cutts, D; Esen, S; Kukartsev, G; Landsberg, G; Narain, M; Nguyen, D; Speer, T; Tsang, K V; Breedon, R; Calderon De La Barca Sanchez, M; Case, M; Cebra, D; Chertok, M; Conway, J; Cox, P T; Dolen, J; Erbacher, R; Friis, E; Ko, W; Kopecky, A; Lander, R; Lister, A; Liu, H; Maruyama, S; Miceli, T; Nikolic, M; Pellett, D; Robles, J; Searle, M; Smith, J; Squires, M; Stilley, J; Tripathi, M; Vasquez Sierra, R; Veelken, C; Andreev, V; Arisaka, K; Cline, D; Cousins, R; Erhan, S; Hauser, J; Ignatenko, M; Jarvis, C; Mumford, J; Plager, C; Rakness, G; Schlein, P; Tucker, J; Valuev, V; Wallny, R; Yang, X; Babb, J; Bose, M; Chandra, A; Clare, R; Ellison, J A; Gary, J W; Hanson, G; Jeng, G Y; Kao, S C; Liu, F; Liu, H; Luthra, A; Nguyen, H; Pasztor, G; Satpathy, A; Shen, B C; Stringer, R; Sturdy, J; Sytnik, V; Wilken, R; Wimpenny, S; Branson, J G; Dusinberre, E; Evans, D; Golf, F; Kelley, R; Lebourgeois, M; Letts, J; Lipeles, E; Mangano, B; Muelmenstaedt, J; Norman, M; Padhi, S; Petrucci, A; Pi, H; Pieri, M; Ranieri, R; Sani, M; Sharma, V; Simon, S; Würthwein, F; Yagil, A; Campagnari, C; D'Alfonso, M; Danielson, T; Garberson, J; Incandela, J; Justus, C; Kalavase, P; Koay, S A; Kovalskyi, D; Krutelyov, V; Lamb, J; Lowette, S; Pavlunin, V; Rebassoo, F; Ribnik, J; Richman, J; Rossin, R; Stuart, D; To, W; Vlimant, J R; Witherell, M; Apresyan, A; Bornheim, A; Bunn, J; Chiorboli, M; Gataullin, M; Kcira, D; Litvine, V; Ma, Y; Newman, H B; Rogan, C; Timciuc, V; Veverka, J; Wilkinson, R; Yang, Y; Zhang, L; Zhu, K; Zhu, R Y; Akgun, B; Carroll, R; Ferguson, T; Jang, D W; Jun, S Y; Paulini, M; Russ, J; Terentyev, N; Vogel, H; Vorobiev, I; Cumalat, J P; Dinardo, M E; Drell, B R; Ford, W T; Heyburn, B; Luiggi Lopez, E; Nauenberg, U; Stenson, K; Ulmer, K; Wagner, S R; Zang, S L; Agostino, L; Alexander, J; Blekman, F; Cassel, D; Chatterjee, A; Das, S; Gibbons, L K; Heltsley, B; Hopkins, W; Khukhunaishvili, A; Kreis, B; Kuznetsov, V; Patterson, J R; Puigh, D; Ryd, A; Shi, X; Stroiney, S; Sun, W; Teo, W D; Thom, J; Vaughan, J; Weng, Y; Wittich, P; Beetz, C P; Cirino, G; Sanzeni, C; Winn, D; Abdullin, S; Afaq, M A; Albrow, M; Ananthan, B; Apollinari, G; Atac, M; Badgett, W; Bagby, L; Bakken, J A; Baldin, B; Banerjee, S; Banicz, K; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Biery, K; Binkley, M; Bloch, I; Borcherding, F; Brett, A M; Burkett, K; Butler, J N; Chetluru, V; Cheung, H W K; Chlebana, F; Churin, I; Cihangir, S; Crawford, M; Dagenhart, W; Demarteau, M; Derylo, G; Dykstra, D; Eartly, D P; Elias, J E; Elvira, V D; Evans, D; Feng, L; Fischler, M; Fisk, I; Foulkes, S; Freeman, J; Gartung, P; Gottschalk, E; Grassi, T; Green, D; Guo, Y; Gutsche, O; Hahn, A; Hanlon, J; Harris, R M; Holzman, B; Howell, J; Hufnagel, D; James, E; Jensen, H; Johnson, M; Jones, C D; Joshi, U; Juska, E; Kaiser, J; Klima, B; Kossiakov, S; Kousouris, K; Kwan, S; Lei, C M; Limon, P; Lopez Perez, J A; Los, S; Lueking, L; Lukhanin, G; Lusin, S; Lykken, J; Maeshima, K; Marraffino, J M; Mason, D; McBride, P; Miao, T; Mishra, K; Moccia, S; Mommsen, R; Mrenna, S; Muhammad, A S; Newman-Holmes, C; Noeding, C; O'Dell, V; Prokofyev, O; Rivera, R; Rivetta, C H; Ronzhin, A; Rossman, P; Ryu, S; Sekhri, V; Sexton-Kennedy, E; Sfiligoi, I; Sharma, S; Shaw, T M; Shpakov, D; Skup, E; Smith, R P; Soha, A; Spalding, W J; Spiegel, L; Suzuki, I; Tan, P; Tanenbaum, W; Tkaczyk, S; Trentadue, R; Uplegger, L; Vaandering, E W; Vidal, R; Whitmore, J; Wicklund, E; Wu, W; Yarba, J; Yumiceva, F; Yun, J C; Acosta, D; Avery, P; Barashko, V; Bourilkov, D; Chen, M; Di Giovanni, G P; Dobur, D; Drozdetskiy, A; Field, R D; Fu, Y; Furic, I K; Gartner, J; Holmes, D; Kim, B; Klimenko, S; Konigsberg, J; Korytov, A; Kotov, K; Kropivnitskaya, A; Kypreos, T; Madorsky, A; Matchev, K; Mitselmakher, G; Pakhotin, Y; Piedra Gomez, J; Prescott, C; Rapsevicius, V; Remington, R; Schmitt, M; Scurlock, B; Wang, D; Yelton, J; Ceron, C; Gaultney, V; Kramer, L; Lebolo, L M; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Adams, T; Askew, A; Baer, H; Bertoldi, M; Chen, J; Dharmaratna, W G D; Gleyzer, S V; Haas, J; Hagopian, S; Hagopian, V; Jenkins, M; Johnson, K F; Prettner, E; Prosper, H; Sekmen, S; Baarmand, M M; Guragain, S; Hohlmann, M; Kalakhety, H; Mermerkaya, H; Ralich, R; Vodopiyanov, I; Abelev, B; Adams, M R; Anghel, I M; Apanasevich, L; Bazterra, V E; Betts, R R; Callner, J; Castro, M A; Cavanaugh, R; Dragoiu, C; Garcia-Solis, E J; Gerber, C E; Hofman, D J; Khalatian, S; Mironov, C; Shabalina, E; Smoron, A; Varelas, N; Akgun, U; Albayrak, E A; Ayan, A S; Bilki, B; Briggs, R; Cankocak, K; Chung, K; Clarida, W; Debbins, P; Duru, F; Ingram, F D; Lae, C K; McCliment, E; Merlo, J P; Mestvirishvili, A; Miller, M J; Moeller, A; Nachtman, J; Newsom, C R; Norbeck, E; Olson, J; Onel, Y; Ozok, F; Parsons, J; Schmidt, I; Sen, S; Wetzel, J; Yetkin, T; Yi, K; Barnett, B A; Blumenfeld, B; Bonato, A; Chien, C Y; Fehling, D; Giurgiu, G; Gritsan, A V; Guo, Z J; Maksimovic, P; Rappoccio, S; Swartz, M; Tran, N V; Zhang, Y; Baringer, P; Bean, A; Grachov, O; Murray, M; Radicci, V; Sanders, S; Wood, J S; Zhukova, V; Bandurin, D; Bolton, T; Kaadze, K; Liu, A; Maravin, Y; Onoprienko, D; Svintradze, I; Wan, Z; Gronberg, J; Hollar, J; Lange, D; Wright, D; Baden, D; Bard, R; Boutemeur, M; Eno, S C; Ferencek, D; Hadley, N J; Kellogg, R G; Kirn, M; Kunori, S; Rossato, K; Rumerio, P; Santanastasio, F; Skuja, A; Temple, J; Tonjes, M B; Tonwar, S C; Toole, T; Twedt, E; Alver, B; Bauer, G; Bendavid, J; Busza, W; Butz, E; Cali, I A; Chan, M; D'Enterria, D; Everaerts, P; Gomez Ceballos, G; Hahn, K A; Harris, P; Jaditz, S; Kim, Y; Klute, M; Lee, Y J; Li, W; Loizides, C; Ma, T; Miller, M; Nahn, S; Paus, C; Roland, C; Roland, G; Rudolph, M; Stephans, G; Sumorok, K; Sung, K; Vaurynovich, S; Wenger, E A; Wyslouch, B; Xie, S; Yilmaz, Y; Yoon, A S; Bailleux, D; Cooper, S I; Cushman, P; Dahmes, B; De Benedetti, A; Dolgopolov, A; Dudero, P R; Egeland, R; Franzoni, G; Haupt, J; Inyakin, A; Klapoetke, K; Kubota, Y; Mans, J; Mirman, N; Petyt, D; Rekovic, V; Rusack, R; Schroeder, M; Singovsky, A; Zhang, J; Cremaldi, L M; Godang, R; Kroeger, R; Perera, L; Rahmat, R; Sanders, D A; Sonnek, P; Summers, D; Bloom, K; Bockelman, B; Bose, S; Butt, J; Claes, D R; Dominguez, A; Eads, M; Keller, J; Kelly, T; Kravchenko, I; Lazo-Flores, J; Lundstedt, C; Malbouisson, H; Malik, S; Snow, G R; Baur, U; Iashvili, I; Kharchilava, A; Kumar, A; Smith, K; Strang, M; Alverson, G; Barberis, E; Boeriu, O; Eulisse, G; Govi, G; McCauley, T; Musienko, Y; Muzaffar, S; Osborne, I; Paul, T; Reucroft, S; Swain, J; Taylor, L; Tuura, L; Anastassov, A; Gobbi, B; Kubik, A; Ofierzynski, R A; Pozdnyakov, A; Schmitt, M; Stoynev, S; Velasco, M; Won, S; Antonelli, L; Berry, D; Hildreth, M; Jessop, C; Karmgard, D J; Kolberg, T; Lannon, K; Lynch, S; Marinelli, N; Morse, D M; Ruchti, R; Slaunwhite, J; Warchol, J; Wayne, M; Bylsma, B; Durkin, L S; Gilmore, J; Gu, J; Killewald, P; Ling, T Y; Williams, G; Adam, N; Berry, E; Elmer, P; Garmash, A; Gerbaudo, D; Halyo, V; Hunt, A; Jones, J; Laird, E; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Stickland, D; Tully, C; Werner, J S; Wildish, T; Xie, Z; Zuranski, A; Acosta, J G; Bonnett Del Alamo, M; Huang, X T; Lopez, A; Mendez, H; Oliveros, S; Ramirez Vargas, J E; Santacruz, N; Zatzerklyany, A; Alagoz, E; Antillon, E; Barnes, V E; Bolla, G; Bortoletto, D; Everett, A; Garfinkel, A F; Gecse, Z; Gutay, L; Ippolito, N; Jones, M; Koybasi, O; Laasanen, A T; Leonardo, N; Liu, C; Maroussov, V; Merkel, P; Miller, D H; Neumeister, N; Sedov, A; Shipsey, I; Yoo, H D; Zheng, Y; Jindal, P; Parashar, N; Cuplov, V; Ecklund, K M; Geurts, F J M; Liu, J H; Maronde, D; Matveev, M; Padley, B P; Redjimi, R; Roberts, J; Sabbatini, L; Tumanov, A; Betchart, B; Bodek, A; Budd, H; Chung, Y S; de Barbaro, P; Demina, R; Flacher, H; Gotra, Y; Harel, A; Korjenevski, S; Miner, D C; Orbaker, D; Petrillo, G; Vishnevskiy, D; Zielinski, M; Bhatti, A; Demortier, L; Goulianos, K; Hatakeyama, K; Lungu, G; Mesropian, C; Yan, M; Atramentov, O; Bartz, E; Gershtein, Y; Halkiadakis, E; Hits, D; Lath, A; Rose, K; Schnetzer, S; Somalwar, S; Stone, R; Thomas, S; Watts, T L; Cerizza, G; Hollingsworth, M; Spanier, S; Yang, Z C; York, A; Asaadi, J; Aurisano, A; Eusebi, R; Golyash, A; Gurrola, A; Kamon, T; Nguyen, C N; Pivarski, J; Safonov, A; Sengupta, S; Toback, D; Weinberger, M; Akchurin, N; Berntzon, L; Gumus, K; Jeong, C; Kim, H; Lee, S W; Popescu, S; Roh, Y; Sill, A; Volobouev, I; Washington, E; Wigmans, R; Yazgan, E; Engh, D; Florez, C; Johns, W; Pathak, S; Sheldon, P; Andelin, D; Arenton, M W; Balazs, M; Boutle, S; Buehler, M; Conetti, S; Cox, B; Hirosky, R; Ledovskoy, A; Neu, C; Phillips II, D; Ronquest, M; Yohay, R; Gollapinni, S; Gunthoti, K; Harr, R; Karchin, P E; Mattson, M; Sakharov, A; Anderson, M; Bachtis, M; Bellinger, J N; Carlsmith, D; Crotty, I; Dasu, S; Dutta, S; Efron, J; Feyzi, F; Flood, K; Gray, L; Grogg, K S; Grothe, M; Hall-Wilton, R; Jaworski, M; Klabbers, P; Klukas, J; Lanaro, A; Lazaridis, C; Leonard, J; Loveless, R; Magrans de Abril, M; Mohapatra, A; Ott, G; Polese, G; Reeder, D; Savin, A; Smith, W H; Sourkov, A; Swanson, J; Weinberg, M; Wenman, D; Wensveen, M; White, A

    2010-01-01

    The operation and general performance of the CMS electromagnetic calorimeter using cosmic-ray muons are described. These muons were recorded after the closure of the CMS detector in late 2008. The calorimeter is made of lead tungstate crystals and the overall status of the 75848 channels corresponding to the barrel and endcap detectors is reported. The stability of crucial operational parameters, such as high voltage, temperature and electronic noise, is summarised and the performance of the light monitoring system is presented.

  12. Development of a water boil-off spent-fuel calorimeter system

    International Nuclear Information System (INIS)

    A calorimeter system was developed to measure decay heat generation rates of unmodified spent fuel assemblies from commercial nuclear reactors. The system was designed, fabricated, and successfully tested using the following specifications: capacity of one BWR or PWR spent fuel assembly; decay heat generation range 0.1 to 2.5 kW; measurement time of < 12 h; and an accuracy of +-10% or better. The system was acceptance tested using a dc reference heater to simulate spent fuel assembly heat generation rates. Results of these tests indicated that the system could be used to measure heat generation rates between 0.5 and 2.5 kW within +- 5%. Measurements of heat generation rates of approx. 0.1 kW were obtained within +- 15%. The calorimeter system has the potential to permit measurements of heat generation rates of spent fuel assemblies and other devices in the 12- to 14-kW range. Results of calorimetry of a Turkey Point spent fuel assembly indicated that the assembly was generating approx. 1.55 kW

  13. Automatic low-temperature calorimeter

    International Nuclear Information System (INIS)

    This paper describes a low-temperature adiabatic calorimeter with a range of 1.5-500K. The system for maintaining adiabatic conditions is implemented by two resitance thermometers, whose sensitivity at low temperatures is several orders higher than that of thermocouples. The calorimeter cryostat is installed in an STG-40 portable Dewar flask. The calorimeter is controlled by an Elektronika-60 microcomputer. Standard platinum and germanium thermometers were placed inside of the calorimeter to calibrate the thermometers of the calorimeter and the shield, and the specific heats of specimens of OSCh 11-4 copper and KTP-8 paste were measured to demonstrate the possibilities of the described calorimeter. Experience with the calorimeter has shown that a thorough study of the dependence of heat capacity on temperature (over 100 points for one specimen) can be performed in one or two dats

  14. LHCb calorimeter electronics. Photon identification. Calorimeter calibration

    International Nuclear Information System (INIS)

    LHCb is one of the four large experiments installed on the LHC accelerator ring. The aim of the detector is to precisely measure CP violation observables and rare decays in the B meson sector. The calorimeter system of LHCb is made of four sub-systems: the scintillating pad detector, the pre-shower, the electromagnetic (ECAL) and hadronic (HCAL) calorimeters. It is essential to reconstruct B decays, to efficiently trigger on interesting events and to identify electrons and photons. After a review of the LHCb detector sub-systems, the first part of this document describes the calorimeter electronics. First, the front-end electronics in charge of measuring the ECAL and HCAL signals from the photomultipliers is presented, then the following section is an overview of the control card of the four calorimeters. The chapters three and four concern the test software of this electronics and the technological choices making it tolerant to radiations in the LHCb cavern environment. The measurements performed to ensure this tolerance are also given. The second part of this document concerns both the identification of the photons with LHCb and the calibration of the calorimeters. The photon identification method is presented and the performances given. Finally, the absolute energy calibration of the PRS and ECAL, based on the data stored in 2010 is explained. (author)

  15. Quality control and calibration of the ZEUS forward and rear calorimeters with 60Co sources

    International Nuclear Information System (INIS)

    We present the motivation for and the design of a mobile 60Co source system used as part of the quality control and calibration monitoring scheme for the ZEUS calorimeters. A 2 mCi 60Co source is pushed by a computer controlled drive mechanism through guide tubes which extend into the calorimeter. Measurements of induced photocurrents as a function of the source position allow checks on the calorimeter response. We present results obtained during the initial scan of all 1024 towers of the forward and rear calorimeter modules. (orig.)

  16. Maintaining and improving the control and safety systems for the Electromagnetic Calorimeter of the CMS experiment

    CERN Document Server

    Di Calafiori, Diogo Raphael; Dissertori, Günther; Holme, Oliver; Jovanovic, Dragoslav; Lustermann, Werner; Zelepoukine, Serguei

    2012-01-01

    This paper presents the current architecture of the control and safety systems designed and implemented for the Electromagnetic Calorimeter (ECAL) of the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC). An evaluation of system performance during all CMS physics data taking periods is reported, with emphasis on how software and hardware solutions are used to overcome limitations, whilst maintaining and improving reliability and robustness. The outcomes of the CMS ECAL Detector Control System (DCS) Software Analysis Project were a fundamental step towards the integration of all control system applications and the consequent piece-by-piece software improvements allowed a smooth transition to the latest revision of the system. The ongoing task of keeping the system in-line with new hardware technologies and software platforms specified by the CMS DCS Group is discussed. The structure of the comprehensive support service with detailed incident logging is presented in addition to a complet...

  17. Distributed System Contract Monitoring

    CERN Document Server

    D, Adrian Francalanza Ph; D, Gordon Pace Ph; 10.4204/EPTCS.68.4

    2011-01-01

    The use of behavioural contracts, to specify, regulate and verify systems, is particularly relevant to runtime monitoring of distributed systems. System distribution poses major challenges to contract monitoring, from monitoring-induced information leaks to computation load balancing, communication overheads and fault-tolerance. We present mDPi, a location-aware process calculus, for reasoning about monitoring of distributed systems. We define a family of Labelled Transition Systems for this calculus, which allow formal reasoning about different monitoring strategies at different levels of abstractions. We also illustrate the expressivity of the calculus by showing how contracts in a simple contract language can be synthesised into different mDPi monitors.

  18. The upgrade and re-validation of the Compact Muon Solenoid Electromagnetic Calorimeter Control System

    CERN Multimedia

    Holme, Oliver; Di Calafiori, Diogo; Dissertori, Günther; Djambazov, Lubomir; Jovanovic, Dragoslav; Lustermann, Werner; Zelepoukine, Serguei

    2013-01-01

    The Electromagnetic Calorimeter (ECAL) is one of the sub-detectors of the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) at CERN. The Detector Control System (DCS) that has been developed and implemented for the CMS ECAL was deployed in accordance with the LHC schedule and has been supporting the CMS data-taking since LHC physics runs started in 2009. During these years, the control system has been regularly adapted according to operational experience and new requirements, always respecting the constraints imposed on significant changes to a running system. Several hardware and software upgrades and system extensions were therefore deferred to the first LHC Long Shutdown (LS1). This paper presents the main architectural differences between the system that supported the CMS ECAL during its first years and the new design for the coming physics runs after LS1. Details on the upgrade planning, including the certification methods performed in the CMS ECAL DCS laboratory facilities, repor...

  19. Inductive Monitoring System (IMS)

    Data.gov (United States)

    National Aeronautics and Space Administration — IMS: Inductive Monitoring System The Inductive Monitoring System (IMS) is a tool that uses a data mining technique called clustering to extract models of normal...

  20. Flight Systems Monitor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I project will develop the Flight System Monitor which will use non-intrusive electrical monitoring (NEMO). The electronic system health of...

  1. Integrator based readout in Tile Calorimeter of the ATLAS experiment

    CERN Document Server

    Gonzalez Parra, G

    2012-01-01

    TileCal is the hadronic tile calorimeter of the ATLAS experiment at LHC/CERN. To equalize the response of individual TileCal cells with a precision better than 1 % and to monitor the response of each cell over time, a calibration and monitoring system based on a Cs137 radioactive source driven through the calorimeter volume by liquid flow has been implemented. This calibration system relies on dedicated readout chain based on a slow integrators that read currents from the TileCal photomultipliers integrating over milliseconds during the calibration runs. Moreover, during the LHC collisions the TileCal integrator based readout provides the signal coming from inelastic proton- proton collisions at low momentum transfer (MB) which is used to monitor ATLAS instantaneously luminosity and to continuously monitor the response of all calorimeter cells during data-taking.

  2. Upgrade of the Trigger System of the ATLAS Liquid Argon calorimeters

    CERN Document Server

    Kanaya, N; The ATLAS collaboration

    2014-01-01

    The ATLAS detector was designed and build to study proton-proton collisions produced at the LHC at centre-of-mass energies up to 14 TeV and instantaneous luminosities up to 1034 cm^-2s^-1. Liquid argon (LAr) sampling calorimeters are employed for all electromagnetic calorimetry in the pseudorapidity region |η| <3.2, and for hadronic calorimetry in the region from |η| = 1.5 to |η| = 4.9. The ATLAS Liquid Argon (LAr) calorimeters produce a total of 182,486 signals, which are digitized and processed by the front-end and back-end electronics for each triggered event. In addition, the front-end electronics sums analog signals to provide coarse-grained energy sums, called trigger towers, to the first-level trigger system, which is optimized for nominal LHC luminosities. In 2019, instantaneous luminosities of (2-3)×1034 cm^-2s^-1 are expected, far beyond that for which the detector was designed. In order to cope with this increased trigger rate, an improved spatial granularity of the trigger primitives is pro...

  3. Upgrade of the Trigger System of the ATLAS Liquid Argon calorimeters

    CERN Document Server

    Kanaya, N; The ATLAS collaboration

    2014-01-01

    ATLAS detector was designed and build to study proton-proton collisions produced at the LHC at centre-of-mass energies up to 14 TeV and instantaneous luminosities up to 1034 cm-2s-1. Liquid argon (LAr) sampling calorimeters are employed for all electromagnetic calorimetry in the pseudorapidity region |η| <3.2, and for hadronic calorimetry in the region from |η| = 1.5 to |η| = 4.9. The ATLAS Liquid Argon (LAr) calorimeters produce a total of 182,486 signals, which are digitized and processed by the front-end and back-end electronics for each triggered event. In addition, the front-end electronics sums analog signals to provide coarse-grained energy sums, called trigger towers, to the first-level trigger system, which is optimized for nominal LHC luminosities. In 2020, instantaneous luminosities of (2-3)×1034 cm-2s-1 are expected, far beyond that for which the detector was designed. In order to cope with this increased trigger rate, an improved spatial granularity of the trigger primitives is proposed, t...

  4. Upgrade of the Trigger Readout System of the ATLAS Liquid Argon Calorimeters

    CERN Document Server

    Marino, CP; The ATLAS collaboration

    2013-01-01

    The ATLAS detector was designed and built to study proton-proton collisions produced at the LHC at centre-of-mass energies up to 14 TeV and instantaneous luminosities up to 10^34 cm^-2 s^-1. Liquid argon (LAr) sampling calorimeters are employed for all electromagnetic calorimetry in the pseudorapidity region |eta|<3.2, and for hadronic calorimetry in the region from |eta|=1.5 to |eta|=4.9. The ATLAS Liquid Argon (LAr) calorimeters produce a total of 182,486 signals which are digitizedand processed by the front-end and back-end electronics at every triggered event. In addition, the front-end electronics sums analog signals to provide coarsely grained energy sums, called trigger towers, to the first-level trigger system, which is optimized for nominal LHC luminosities. In 2018, an instantaneous luminosity of 2-3 x 10^34 cm^-2 s^-1 is expected, far beyond the nominal one for which the detector was designed. In order to cope with this increased trigger rate, an improved spatial granularity of the trigger primi...

  5. Upgrade of the Trigger Readout System of the ATLAS Liquid Argon Calorimeters

    CERN Document Server

    Marino, CP; The ATLAS collaboration

    2014-01-01

    The ATLAS detector was designed and built to study proton-proton collisions produced at the LHC at centre-of-mass energies up to 14 TeV and instantaneous luminosities up to $10^{34} \\rm{cm}^{-2} \\rm{s}^{-1}$. Liquid argon (LAr) sampling calorimeters are employed for all electromagnetic calorimetry in the pseudorapidity region $|\\eta|$ < 3.2, and for hadronic calorimetry in the region from $|\\eta|=$1.5 to $|\\eta|=$4.9. The ATLAS Liquid Argon (LAr) calorimeters produce a total of 182,486 signals which are digitized and processed by the front-end and back-end electronics at every triggered event. In addition, the front-end electronics sums analog signals to provide coarsely grained energy sums, called trigger towers, to the first-level trigger system, which is optimized for nominal LHC luminosities. In 2018, an instantaneous luminosity of 2-3 $\\times 10^{34} \\rm{cm}^{-2} \\rm{s}^{-1}$ is expected, far beyond the nominal one for which the detector was designed. In order to cope with this increased trigger rate,...

  6. Battery Monitoring System

    Directory of Open Access Journals (Sweden)

    Pavuluri Mounika* , M.Anil Kumar

    2013-04-01

    Full Text Available The project of BMS (Battery Monitoring System gives online and offline status of batteries which are monitored by the bank so that we can prevent the batteries prior to failure However, Battery Monitoring System specifically measure, record and analyze the individual cell and battery module parameters in detail.Continuous monitoring and analysis of these parameters can be used to identify battery or cell deterioration, hence prompting action to avoid unplanned power interruption.Battery Monitoring System (BMS is a microprocessor based intelligent system capable of monitoring the health of battery bank. BMS calculates the battery’s capacity, deterioration of batteries in battery bank during the charge / discharge cycles and actual efficiency of the batteries.It continuously monitors each cell in the battery bank to identify deterioration in the cell prior to failure,identifies the net charge in the battery bank by monitoring charging and discharging currents.

  7. Simplified Monitoring System

    CERN Document Server

    Jelinskas, Adomas

    2013-01-01

    This project can be considered as a model for a simplified grid monitoring. In particular, I was creating a specific monitoring instance, which can be easily set up on a machine and, depending on an input information, automatically start monitoring services using Nagios software application. I had to automate the set up process and configuration of the monitoring system in order for the user to use it easily. I developed a script which automatically sets up the monitoring system, configures it and starts monitoring. I put the script, files and instructions in the repository 'https://git.cern.ch/web/?p=cosmic.git;a=summary' under the sub-directory called SNCG.

  8. LHCb calorimeter electronics. Photon identification. Calorimeter calibration

    CERN Document Server

    Machefert, F

    LHCb is one of the four large experiments installed on the LHC accelerator ring. The aim of the detector is to precisely measure CP violation observables and rare decays in the B meson sector. The calorimeter system of LHCb is made of four sub-systems: the scintillating pad detector, the preshower, the electromagnetic (ECAL) and hadronic (HCAL) calorimeters. It is essential to reconstruct B decays, to efficiently trigger on interesting events and to identify electrons and photons. After a review of the LHCb detector sub-systems, the first part of this document describes the calorimeter electronics. First, the front-end electronics in charge of measuring the ECAL and HCAL signals from the photomultipliers is presented, then the following section is an overview of the control card of the four calorimeters. The chapters three and four concern the test software of this electronics and the technological choices making it tolerant to radiations in the LHCb cavern environment. The measurements performed to ensure th...

  9. LHCb: High Voltage system for the LHCb calorimeter detectors at CERN

    CERN Multimedia

    Konoplyannikov, A

    2006-01-01

    All calorimeters are equipped with Hamamatsu photo tubes as devices for light to signal conversion. Eight thousand R7899-20 tubes are used for the electromagnetic and hadronic calorimeters and two hundred 64 channels multi-anode R7600 -00-M64 for Scintillator-Pad/Preshower detectors. Similar photo-detectors are widely used in the Molecular Imaging applications.

  10. Improving Code Quality of the Compact Muon Solenoid Electromagnetic Calorimeter Control Software to Increase System Maintainability

    CERN Multimedia

    Holme, Oliver; Dissertori, Günther; Djambazov, Lubomir; Lustermann, Werner; Zelepoukine, Serguei

    2013-01-01

    The Detector Control System (DCS) software of the Electromagnetic Calorimeter (ECAL) of the Compact Muon Solenoid (CMS) experiment at CERN is designed primarily to enable safe and efficient operation of the detector during Large Hadron Collider (LHC) data-taking periods. Through a manual analysis of the code and the adoption of ConQAT [1], a software quality assessment toolkit, the CMS ECAL DCS team has made significant progress in reducing complexity and improving code quality, with observable results in terms of a reduction in the effort dedicated to software maintenance. This paper explains the methodology followed, including the motivation to adopt ConQAT, the specific details of how this toolkit was used and the outcomes that have been achieved. [1] ConQAT, Continuous Quality Assessment Toolkit; https://www.conqat.org/

  11. Performance of the electronics for the liquid argon calorimeter system of the SLC large detector

    International Nuclear Information System (INIS)

    Results of performance tests on electrons for the Liquid Argon Calorimeter (LAC) for the SLD experiment at SLAC are presented. The behavior of a sub-unit called a ''tophat,'' which processes 720 detector signals, is described. The electronics consists of charge sensitive preamplifiers, analog memories , A/D converters, and associated control and readout circuitry. An internal charge injection system is used to calibrate the overall response of the devices. Linearity is better than 1% for 0-28 pC charge at the input of the amplifiers. Noise (expressed as equivalent input charge) is less than 3,000 electrons at a shaping time of 4 μs, with a slope of 2,600 e/sup -//nF. Crosstalk to adjacent channels is less than 0.5%. The power consumption at a duty cycle of 13% is 61 W

  12. The development of the Global Feature Extractor for the LHC Run-3 upgrade of L1 Calorimeter trigger system

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00065614; The ATLAS collaboration; Chen, Hucheng; Chen, Kai; Lanni, Francesco; Takai, Helio; Tang, Shaochun; Wu, Weihao; ATLAS Collaboration

    2016-01-01

    The Global Feature Extractor (gFEX) is one of several modules in LHC Run-3 upgrade of Level 1 Calorimeter (L1Calo) trigger system in ATLAS experiment. It is a single Advanced Telecommunications Computing Architecture (ATCA) module for large-area jet identifying with three Xilinx Virtex UltraScale FPGAs for data processing and a system-on-chip (SoC) FPGA for control and monitoring. A pre-prototype board has been designed to verify all functionalities, which includes one Xilinx Virtex-7 FPGA, one Zynq FPGA, several MiniPODs, MicroPODs, DDR3 SDRAM and other components. The performance of pre-prototype has been tested and evaluated. As a major challenge, the high-speed links in FPGAs are stable at 12.8 Gb/s with Bit Error Ratio (BER) < 10-15 (no error detected). The low-latency parallel GPIO (General Purpose I/O) buses for communication between FPGAs are stable at 960 Mb/s. The peripheral components of Zynq FPGA like DDRs, UART, SPI flashes, Ethernet and so on, have also been verified. The test results of pre-...

  13. Monitoring and data quality assessment of the ATLAS liquid argon calorimeter

    Czech Academy of Sciences Publication Activity Database

    Aad, G.; Abajyan, T.; Abbott, B.; Böhm, Jan; Chudoba, Jiří; Havránek, Miroslav; Hejbal, Jiří; Jakoubek, Tomáš; Kepka, Oldřich; Kupčo, Alexander; Kůs, Vlastimil; Lokajíček, Miloš; Lysák, Roman; Marčišovský, Michal; Mikeštíková, Marcela; Myška, Miroslav; Němeček, Stanislav; Šícho, Petr; Staroba, Pavel; Svatoš, Michal; Taševský, Marek; Vrba, Václav

    2014-01-01

    Roč. 9, Jul (2014), s. 1-39. ISSN 1748-0221 R&D Projects: GA MŠk(CZ) LG13009 Institutional support: RVO:68378271 Keywords : missing-energy * data acquisition * ATLAS * CERN LHC Coll * monitoring performance Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.399, year: 2014

  14. Remote Maintenance Monitoring System

    Data.gov (United States)

    Department of Transportation — The Remote Maintenance and Monitoring System (RMMS) is a collection of subsystems that includes telecommunication components, hardware, and software, which serve to...

  15. Aerospace Systems Monitor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Proposal Title: Aerospace Systems Monitor PHASE 1 Technical Abstract: This Phase II STTR project will continue development and commercialization of the Aerospace...

  16. Distributed System Contract Monitoring

    Directory of Open Access Journals (Sweden)

    Adrian Francalanza Ph.D

    2011-09-01

    Full Text Available The use of behavioural contracts, to specify, regulate and verify systems, is particularly relevant to runtime monitoring of distributed systems. System distribution poses major challenges to contract monitoring, from monitoring-induced information leaks to computation load balancing, communication overheads and fault-tolerance. We present mDPi, a location-aware process calculus, for reasoning about monitoring of distributed systems. We define a family of Labelled Transition Systems for this calculus, which allow formal reasoning about different monitoring strategies at different levels of abstractions. We also illustrate the expressivity of the calculus by showing how contracts in a simple contract language can be synthesised into different mDPi monitors.

  17. General programmable Level-1 trigger with 3D-Flow assembly system for calorimeters of different sizes and event rates

    International Nuclear Information System (INIS)

    Experience demonstrates that fine tuning on the trigger of an experiment is often achieved only after running the experiment and analyzing the first data acquired. It is desirable that identification and, consequently, selection of interesting events be made on a more refined identification of particles. Use of an innovative parallel-processing system architecture together with an instruction set allows identification of objects (particles) among the data coming from a calorimeter in a programmable manner, utilizing the information related to their shape in two- or three-dimensional form, rather than applying only a programmable threshold proportional to their energy. The architecture is flexible, allowing execution of simple algorithms as well as complex pattern recognition algorithms. It is scalable in the sense that the same hardware can be used for small or large calorimeters having a slow or fast event rate. The simple printed circuit board (accommodating 16 x 3D-Flow processors) on a 4 in. x 4 in. board described herein uses the same hardware to build a large Level-1 programmable trigger (by interconnecting many boards in a matrix array) and is capable of implementing simple or complex pattern recognition algorithms at different event input rates (by cascading boards one on top of another). With the same hardware one can build low-cost, programmable Level-1 triggers for a small and low-event-rate calorimeter, or high-performance, programmable Level-1 triggers for a large calorimeter capable of sustaining up to 60 million events per second

  18. The ATLAS LAr Calorimeter Level 1 Trigger Signal pre-Processing System: Installation, Commissioning and Calibration Results.

    CERN Document Server

    Boulahouache, C; The ATLAS collaboration

    2009-01-01

    The Liquid Argon calorimeter is one of the main sub-detectors in the ATLAS experiment at the LHC. It provides precision measurements of electrons, photons, jets and missing transverse energy produced in the LHC pp collisions. The calorimeter information is a key ingredient in the first level (L1) trigger decision to reduce the 40 MHz p-p bunch crossing rate to few 100 kHz of accepted events waiting to be readout in full precision, in the system pipelines. This presentation covers the LAr calorimeter electronics used to prepare signals for the L1 trigger. After exiting the cryostat, part of the current signal, at the front end, is directly split off the main readout path and summed with neighbouring channels forming trigger towers which are transmitted in analog form over 50 to 70 meters to the counting room. There, the signals are calibrated, reordered and futher summed for fast digitization using the L1 trigger hardware. Many factors like calorimeter capacitances and pulse shapes have to be taken into accoun...

  19. Maintaining and improving the control and safety systems for the Electromagnetic Calorimeter of the CMS experiment

    Science.gov (United States)

    Di Calafiori, D.; Adzic, P.; Dissertori, G.; Holme, O.; Jovanovic, D.; Lustermann, W.; Zelepoukine, S.

    2012-12-01

    This paper presents the current architecture of the control and safety systems designed and implemented for the Electromagnetic Calorimeter (ECAL) of the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC). An evaluation of system performance during all CMS physics data taking periods is reported, with emphasis on how software and hardware solutions are used to overcome limitations, whilst maintaining and improving reliability and robustness. The outcomes of the CMS ECAL Detector Control System (DCS) Software Analysis Project were a fundamental step towards the integration of all control system applications and the consequent piece-by-piece software improvements allowed a smooth transition to the latest revision of the system. The ongoing task of keeping the system in-line with new hardware technologies and software platforms specified by the CMS DCS Group is discussed. The structure of the comprehensive support service with detailed incident logging is presented in addition to a complete test setup for reproducing failures and for testing solutions prior to deployment into production. A correlation between the acquired experience, the development of new software tools and a reduction in the DCS support load is highlighted.

  20. Maintaining and improving the control and safety systems for the Electromagnetic Calorimeter of the CMS experiment

    International Nuclear Information System (INIS)

    This paper presents the current architecture of the control and safety systems designed and implemented for the Electromagnetic Calorimeter (ECAL) of the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC). An evaluation of system performance during all CMS physics data taking periods is reported, with emphasis on how software and hardware solutions are used to overcome limitations, whilst maintaining and improving reliability and robustness. The outcomes of the CMS ECAL Detector Control System (DCS) Software Analysis Project were a fundamental step towards the integration of all control system applications and the consequent piece-by-piece software improvements allowed a smooth transition to the latest revision of the system. The ongoing task of keeping the system in-line with new hardware technologies and software platforms specified by the CMS DCS Group is discussed. The structure of the comprehensive support service with detailed incident logging is presented in addition to a complete test setup for reproducing failures and for testing solutions prior to deployment into production. A correlation between the acquired experience, the development of new software tools and a reduction in the DCS support load is highlighted.

  1. Monitoring Cray Cooling Systems

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, Don E [ORNL; Ezell, Matthew A [ORNL; Becklehimer, Jeff [Cray, Inc.; Donovan, Matthew J [ORNL; Layton, Christopher C [ORNL

    2014-01-01

    While sites generally have systems in place to monitor the health of Cray computers themselves, often the cooling systems are ignored until a computer failure requires investigation into the source of the failure. The Liebert XDP units used to cool the Cray XE/XK models as well as the Cray proprietary cooling system used for the Cray XC30 models provide data useful for health monitoring. Unfortunately, this valuable information is often available only to custom solutions not accessible by a center-wide monitoring system or is simply ignored entirely. In this paper, methods and tools used to harvest the monitoring data available are discussed, and the implementation needed to integrate the data into a center-wide monitoring system at the Oak Ridge National Laboratory is provided.

  2. Upgrade of the Laser Calibration System of the Atlas Hadron Calorimeter

    CERN Document Server

    Gris, Philippe Luc Yves; The ATLAS collaboration

    2015-01-01

    The new laser calibration scheme of the ATLAS Tile calorimeter is presented with a focus on improvements of three critical aspects (optics, calibration, electronics). The resulting performance in terms of stability is also indicated.

  3. The ATLAS Tile Calorimeter performance at LHC in pp collisions at 7 TeV

    CERN Document Server

    Bertolucci, F; The ATLAS collaboration

    2011-01-01

    The Tile Calorimeter (TileCal), the central section of the hadronic calorimeter of the ATLAS experiment, is a key detector component to detect hadrons, jets and taus and to measure the missing transverse energy. Due to the very good muon signal to noise ratio it assists the muon spectrometer in the identification and reconstruction of muons. TileCal is built of steel and scintillating tiles coupled to optical fibers and read out by photomultipliers. The calorimeter is equipped with systems that allow to monitor and to calibrate each stage of the read-out system exploiting different signal sources: laser light, charge injection and a radioactive source. It also uses the minimus bias current integrated over thousands of LHC collisions to monitor the response stability and the LHC luminosity. The performance of the calorimeter has been measured and monitored using calibration data, random triggered data, cosmic muons, splash events and more importantly LHC collision events. The results presented assess the absol...

  4. The ATLAS Tile Calorimeter performance at LHC in pp collisions at 7 TeV

    CERN Document Server

    Bertolucci, F; The ATLAS collaboration

    2012-01-01

    The Tile Calorimeter (TileCal), the central section of the % hadronic calorimeter of the ATLAS % experiment, is a key detector component % to detect hadrons, jets and taus and to % measure the missing transverse energy. % Due to the very good muon signal to noise % ratio it assists the muon % spectrometer in the identification and reconstruction % of muons. ewline %%%% TileCal is built of steel and % scintillating tiles coupled to optical fibers % and read out by photomultipliers. The calorimeter % is equipped with systems that allow to % monitor and to calibrate each stage of the % read-out system exploiting different signal % sources: laser light, charge injection and a radioactive % source. It also uses the Minimum Bias % current integrated over thousands % of LHC collisions to monitor the response % stability and the LHC luminosity.\\ %%%%% The performance of the calorimeter has % been measured and monitored using % calibration data, random triggered data, cosmic % muons, splash events and more importantly...

  5. Safety system status monitoring

    International Nuclear Information System (INIS)

    The Pacific Northwest Laboratory has studied the safety aspects of monitoring the preoperational status of safety systems in nuclear power plants. The goals of the study were to assess for the NRC the effectiveness of current monitoring systems and procedures, to develop near-term guidelines for reducing human errors associated with monitoring safety system status, and to recommend a regulatory position on this issue. A review of safety system status monitoring practices indicated that current systems and procedures do not adequately aid control room operators in monitoring safety system status. This is true even of some systems and procedures installed to meet existing regulatory guidelines (Regulatory Guide 1.47). In consequence, this report suggests acceptance criteria for meeting the functional requirements of an adequate system for monitoring safety system status. Also suggested are near-term guidelines that could reduce the likelihood of human errors in specific, high-priority status monitoring tasks. It is recommended that (1) Regulatory Guide 1.47 be revised to address these acceptance criteria, and (2) the revised Regulatory Guide 1.47 be applied to all plants, including those built since the issuance of the original Regulatory Guide

  6. Neonatal Monitoring System

    Directory of Open Access Journals (Sweden)

    L. Suresh

    2014-07-01

    Full Text Available Childbirth is generally time of joy for parents and families. As per the medical reports each year 4 million newborns die within 28 days of birth and more suffer from disability, disease, infection and injury. The enabling environment for safe childbirth depends on the care and attention required to newborns by health personnel and the availability of adequate health-care facilities, equipment, and medicines and emergency care when needed. Neonatal monitoring refers to the monitoring of vital physiological parameters of premature infants. Continuous health monitoring of the neonates provides crucial parameters for early detection of adverse events. Health monitoring for the neonates provides crucial parameters for urgent diagnoses and corresponding medical procedures, subsequently increasing the survival rates. In the present paper, we propose a proto type design of a neonatal monitoring system. The system is designed and integrated with different health measurement and display devices. The prototype design is very much useful for monitor the physiological parameters of infants.

  7. ATLAS liquid argon calorimeter back end electronics

    CERN Document Server

    Bán, J; Bellachia, F; Blondel, A; Böttcher, S; Clark, A; Colas, Jacques; Díaz-Gómez, M; Dinkespiler, B; Efthymiopoulos, I; Escalier, M; Fayard, Lo; Gara, A; He, Y; Henry-Coüannier, F; Hubaut, F; Ionescu, G; Karev, A; Kurchaninov, L; Lafaye, R; Laforge, B; La Marra, D; Laplace, S; Le Dortz, O; Léger, A; Liu, T; Martin, D; Matricon, P; Moneta, L; Monnier, E; Oberlack, H; Parsons, J A; Pernecker, S; Perrot, G; Poggioli, L; Prast, J; Przysiezniak, H; Repetti, B; Rosselet, L; Riu, I; Schwemling, P; Simion, S; Sippach, W; Strässner, A; Stroynowski, R; Tisserant, S; Unal, G; Wilkens, H; Wingerter-Seez, I; Xiang, A; Yang, J; Ye, J

    2007-01-01

    The Liquid Argon calorimeters play a central role in the ATLAS (A Toroidal LHC Apparatus) experiment. The environment at the Large Hadron Collider (LHC) imposes strong constraints on the detectors readout systems. In order to achieve very high precision measurements, the detector signals are processed at various stages before reaching the Data Acquisition system (DAQ). Signals from the calorimeter cells are received by on-detector Front End Boards (FEB), which sample the incoming pulse every 25ns and digitize it at a trigger rate of up to 75~kHz. Off-detector Read Out Driver (ROD) boards further process the data and send reconstructed quantities to the DAQ while also monitoring the data quality. In this paper, the ATLAS Liquid Argon electronics chain is described first, followed by a detailed description of the off-detector readout system. Finally, the tests performed on the system are summarized.

  8. The development of the Global Feature Extractor for the LHC Run-3 upgrade of the ATLAS L1 Calorimeter trigger system

    CERN Document Server

    Wu, Weihao; The ATLAS collaboration; Chen, Hucheng; Lanni, Francesco; Takai, Helio; Tang, Shaochun; ATLAS TDAQ Collaboration

    2016-01-01

    The Global Feature Extractor (gFEX) is one of several modules in LHC Run-3 upgrade of Level 1 Calorimeter (L1Calo) trigger system in the ATLAS experiment. It is a single Advanced Telecommunications Computing Architecture (ATCA) module for large-area jet identification with three Xilinx UltraScale FPGAs for data processing and a system-on-chip (SoC) FPGA for control and monitoring. A pre-prototype board has been designed to verify all functionalities. The performance of this pre-prototype has been tested and evaluated. As a major achievement, the high-speed links in FPGAs are stable at 12.8 Gb/s with Bit Error Ratio (BER) < 10-15 (no error detected). The low-latency parallel GPIO (General Purpose I/O) buses for communication between FPGAs are stable at 960 Mb/s. Besides that, the peripheral components of Soc FPGA have also been verified. After laboratory tests, the link speed test with LAr (Liquid Argon Calorimeter) Digital Processing Blade (LDPB) AMC card has been carried out at CERN for determination of t...

  9. The ATLAS Tile Calorimeter

    CERN Document Server

    Henriques Correia, Ana Maria

    2015-01-01

    TileCal is the Hadronic calorimeter covering the most central region of the ATLAS experiment at the LHC. It uses iron plates as absorber and plastic scintillating tiles as the active material. Scintillation light produced in the tiles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs). The resulting electronic signals from the approximately 10000 PMTs are measured and digitised every 25 ns before being transferred to off-detector data-acquisition systems. This contribution will review in a first part the performances of the calorimeter during run 1, obtained from calibration data, and from studies of the response of particles from collisions. In a second part it will present the solutions being investigated for the ongoing and future upgrades of the calorimeter electronics.

  10. Upgrade of the monitoring system of LHCb ECAL

    CERN Document Server

    Guz, Iouri; Chernov, Evgeny; Egorychev, Victor; Kandybei, Sergii; Kvaratskheliya, Tengiz; Obraztsov, Vladimir; Perret, Pascal; Philippov, Sergey; Savrina, Daria; Shatalov, Sppavel; Zakoriuchkina, Tatiana; Zhokhov, Anatoli; Zvyagintsev, Serguei

    2016-01-01

    The LHCb ECAL is a shashlik calorimeter of 6016 cells, covering 7.686.24 m2 area. To monitor the readout chain of each ECAL cell, the LHCb ECAL is equipped with a LED based monitoring system. During the LHC Run I (2009-2012) it was found that the precision of the monitoring suffers from the radiation degradation of transparency of polystyrene clear fibers used to transport the LED light to the ECAL photomultipliers. In order to improve the performance of the monitoring system, and especially in view of significant increase of LHCb working luminosity foreseen after 2018, the present plastic fibers have been replaced by radiation hard quartz fibers. The design of the upgraded version of the LHCb ECAL monitoring system is described here. The usage and performance of the new system for the ECAL calibration during the LHCb Run II are discussed.

  11. Gas calorimeter workshop: proceedings

    International Nuclear Information System (INIS)

    Gas calorimeters combining functions of energy measurement and fine tracking have become more and more popular in the past few years. They help identify muons, gammas, electrons, and hadrons within dense tracks from transverse and longitudinal shower development. Fine segmentation capability using pads and strips on the cathodes have made gas-sampling calorimeters very attractive for colliding-beam detectors where a large multiplicity of particles are detected in a projected geometry. Linearity, energy resolution, shower position resolution, multishower resolution, and calibration questions were discussed in detail at the workshop. Ease of energy calibration by monitoring radioactive sources, good gain uniformity, and gain stability obtained were among the topics of the speakers. There was a discussion session on the operation mode of wire chambers. Gas calorimeters have been used successfully at CERN, Cornell, Fermilab, and SLAC for experiments. Some of the results from those large-scale devices were reported. Future usage of gas-sampling calorimeters for colliding-beam experiments at Fermilab and CERN were discussed. Wire chambers using extruded conductive plastic tubes have made construction easy of pads and strips which can conveniently read out induced signals from the cathode. The results of extensive studies on such devices were discussed. Separate entries were prepared for the data base for the 17 papers presented

  12. Remote monitoring system

    International Nuclear Information System (INIS)

    The present invention provides a system for remote diagnosis of facilities disposed to not accessible places and for confirming a state of the inside of closed chambers upon occurrence of abnormality. Namely, a flying type monitoring robot is used as a monitoring means. When monitoring the inside of a closed vessel in the plant, a mechanism for securing the flying type monitoring robot secured to the chamber can be released from outside of the chamber. Then, when abnormality should occur in the chamber, the condition can be confirmed from various view points by remote operation. In addition, if the securing mechanism is released by alarm signals of a different plant monitoring system, influences of abnormality occurred in a different plant applied to the closed chamber can be confirmed, and presence or absence of abnormality can be monitored by remote operation. In addition, when an automatic navigation system is loaded on the flying type monitoring robot, the securing mechanism can be released by alarm signals of the different plant monitoring system in addition to the robot can stand-by while hovering at a predetermined place and fly to a place to be assumed as abnormal under automatic control. (I.S.)

  13. Radiation monitoring system

    International Nuclear Information System (INIS)

    Along with the wide developments of the fields of environment research and fields of nuclear applications, the radiation monitoring requirements on working places are indispensable. In nuclear researching, carrying and storing nuclear sources are in routine. Then, the radiation intensity should be monitor continuously. This system helps nuclear officer able to know and acquire information from places where exist nuclear radiations continuously. (author)

  14. Research and development for a free-running readout system for the ATLAS LAr Calorimeters at the high luminosity LHC

    Science.gov (United States)

    Hils, Maximilian

    2016-07-01

    The ATLAS Liquid Argon (LAr) Calorimeters were designed and built to measure electromagnetic and hadronic energy in proton-proton collisions produced at the Large Hadron Collider (LHC) at centre-of-mass energies up to 14 TeV and instantaneous luminosities up to 1034 cm-2 s-1. The High Luminosity LHC (HL-LHC) programme is now developed for up to 5-7 times the design luminosity, with the goal of accumulating an integrated luminosity of 3000 fb-1. In the HL-LHC phase, the increased radiation levels and an improved ATLAS trigger system require a replacement of the Front-end (FE) and Back-end (BE) electronics of the LAr Calorimeters. Results from research and development of individual components and their radiation qualification as well as the overall system design will be presented.

  15. Flat-plate boiloff calorimeters for testing of thermal insulation systems

    Science.gov (United States)

    Fesmire, J. E.; Johnson, W. L.; Kelly, A. O.; Meneghelli, B. J.; Swanger, A. M.

    2015-12-01

    Cryostats have been developed and standardized for laboratory testing of thermal insulation systems in a flat-plate configuration. Boiloff calorimetry is the measurement principle for determining the effective thermal conductivity (ke) and heat flux (q) of test specimens under a wide range of actual conditions. Cryostat-500 is thermally guarded to measure absolute thermal performance when calibrated with a known reference via an adjustable-edge guard ring. With liquid nitrogen as the energy meter, the cold boundary temperature can be adjusted to any temperature between 77 K and approximately 300 K by the interposition of a thermal resistance layer between the cold mass and the specimen. A low thermal conductivity suspension system has compliance rods that adjust for specimen thickness and compression force. Material type, thickness, density, flatness, compliance, outgassing, and temperature sensor placement are important test considerations, and edge effects and calibration techniques for the apparatus are crucial. Over the full vacuum pressure range, the thermal performance capability is nearly four orders of magnitude. The horizontal configuration provides key advantages over the vertical cylindrical cryostats for testing at ambient pressure conditions. Cryostat-500’s design and test methods, other flat-plate boiloff calorimeters, and results for select thermal insulation materials (composites, foams, aerogels) are discussed.

  16. Absolute Energy Calibration with the Neutron-Activated Liquid-Source System at BaBar's CsI(Tl) Calorimeter

    OpenAIRE

    Bauer, Johannes M.; Group, for the BaBar Collaboration EMC

    2003-01-01

    The electro-magnetic calorimeter at the BaBar detector, part of the asymmetric B Factory at SLAC, measures photons in the energy range from 20 MeV to 8 GeV with good resolution. The calorimeter is calibrated at the low energy end with 6.13 MeV photons obtained from a liquid source system. During the calibration, a fluorine-rich liquid is activated via a neutron generator and pumped past the front of the calorimeter's crystals. Decays that occur in front of the crystals emit photons of well-de...

  17. Remote maintenance monitoring system

    Science.gov (United States)

    Simpkins, Lorenz G. (Inventor); Owens, Richard C. (Inventor); Rochette, Donn A. (Inventor)

    1992-01-01

    A remote maintenance monitoring system retrofits to a given hardware device with a sensor implant which gathers and captures failure data from the hardware device, without interfering with its operation. Failure data is continuously obtained from predetermined critical points within the hardware device, and is analyzed with a diagnostic expert system, which isolates failure origin to a particular component within the hardware device. For example, monitoring of a computer-based device may include monitoring of parity error data therefrom, as well as monitoring power supply fluctuations therein, so that parity error and power supply anomaly data may be used to trace the failure origin to a particular plane or power supply within the computer-based device. A plurality of sensor implants may be rerofit to corresponding plural devices comprising a distributed large-scale system. Transparent interface of the sensors to the devices precludes operative interference with the distributed network. Retrofit capability of the sensors permits monitoring of even older devices having no built-in testing technology. Continuous real time monitoring of a distributed network of such devices, coupled with diagnostic expert system analysis thereof, permits capture and analysis of even intermittent failures, thereby facilitating maintenance of the monitored large-scale system.

  18. Aerospace Systems Monitor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase I STTR project will demonstrate the Aerospace System Monitor (ASM). This technology transforms the power distribution network in a spacecraft or aircraft...

  19. Monitoring Systems and Services

    OpenAIRE

    Brokmann, Alwin

    2003-01-01

    The DESY Computer Center is the home of O(1000) computers supplying a wide range of different services Monitoring such a large installation is a challenge. After a long time running a SNMP based commercial Network Management System, the evaluation of a new System was started. There are a lot of different commercial and freeware products on the market, but none of them fully satisfied all our requirements. After re-valuating our original requirements we selected NAGIOS as our monitoring and al...

  20. MAC calorimeters and applications

    International Nuclear Information System (INIS)

    The MAC detector at PEP features a large solid-angle electromagnetic/hadronic calorimeter system, augmented by magnetic charged-particle tracking, muon analysis and scintillator triggering. Its implementation in the context of electron-positron annihilation physics is described, with emphasis on the utilization of calorimetry

  1. Personal dose monitoring system

    International Nuclear Information System (INIS)

    The integration of an electronic personal dosemeter in a personal monitoring system is expected to enable the real-time evaluation of measured values, achieve higher efficiency and realize other such advantages. Fuji Electric has developed an electronic personal dosemeter capable of measuring gamma rays (X-rays), beta rays and neutrons, and has realized a monitoring system that integrates this electronic personal dosemeter with a doorway-monitoring device. A radiation source calibration device conforming to JIS has also been developed. In the future, Fuji Electric intends to develop low cost, high precision and easy-to-use products for use at a wide range of facilities. (author)

  2. A scalable gigabit data acquisition system for calorimeters for linear collider

    CERN Document Server

    Gastaldi, F; Magniette, F; Boudry, V

    2015-01-01

    prototypes of ultra-granular calorimeters for the International Linear Collider (ILC). Our design is generic enough to cope with other applications with some minor adaptations. The DAQ is made up of four different modules, including an optional concentrator. A Detector InterFace (DIF) is placed at one end of the detector elements (SLAB) holding up to 160 ASICs. It is connected by a single HDMI cable which is used to transmit both slow-control and readout data over a serial link 8b/10b encoded characters at 50 Mb/s to the Gigabit Concentrator Card (GDCC). One GDCC controls up to 7 DIFs, distributes the system clock and ASICs configuration, and collects data from them. Each DIFs data packet is encapsulated in Ethernet format and sent out via an optical or copper link. The Data Concentrator Card (DCC) is a multiplexer (1 to 8) that can be optionally inserted between the GDCC and the DIFs, increasing the number of managed ...

  3. A compact pre-processor system for the ATLAS level-1 calorimeter trigger

    CERN Document Server

    Pfeiffer, U

    1999-01-01

    This thesis describ es the researc h whose aim is to dev elop a compact Pre-Pro cessor system for the A TLAS Lev el-1 Calorimeter T rigger. Con tributions to the p erformance and the arc hitecture of the Pre-Pro cessor w ere made. A demonstrator Multi-Chip Mo dule (PPrD- MCM) w as dev elop ed and assem bled whic h p erforms most of the prepro cessing of four analogue trigger-to w er signals. The prepro cessing includes digitisation to 8-bit precision, iden ti cation of the corresp onding bunc h-crossing in time (BCID), calibration of the transv erse energy , readout of ra w trigger data, and high-sp eed serial data transmission to the trigger pro cessors. The demonstrator Multi-Chip Mo dule has a size of 15.9 cm 2 and it consists of 9 dies. The MCM w as designed with a smallest feature size of 100 m and it w as fabricated in a laminated MCM-L pro cess o ered b yW urth Elektronik. A Flip-Chip in terconnection ASIC (Finco) w as dev elop ed for the PPrD-MCM and fabricated in a 0.8 m BiCMOS- pro cess o ered b ...

  4. A segmented scintillator-lead photon calorimeter using a double wavelength shifter optical readout system

    International Nuclear Information System (INIS)

    The construction and performance of a prototype scintillator-lead photon calorimeter using a double wavelength shifter optical readout is described. The calorimeter is divided into four individual cells consisting of 44 layers of 3 mm lead plus 1 cm thick scintillator. The edges of each scintillator plate are covered by acrylic bars doped with a wavelength shifting material. The light produced in each scintillator plate is first converted in these bars, then converted a second time in a set of acrylic rods which run longitudinally through the calorimeter along the corners of each calorimeter cell. A photomultiplier is attached to each of these rods at the back end of the calorimeter. The energy resolution obtained with incident in the energy range 2-30 GeV is sigma/E = 0.12/√E. The uniformity of response across the front face of each cell was measured. Showers within each cell can be localised with an accuracy of better than sigma = 7 mm. (orig.)

  5. Research and Development for a Free-Running Readout System for the ATLAS LAr Calorimeters at the High Luminosity LHC

    CERN Document Server

    Hils, Maximilian; The ATLAS collaboration

    2015-01-01

    The ATLAS Liquid Argon (LAr) Calorimeters were designed and built to measure electromagnetic and hadronic energy in proton-proton collisions produced at the Large Hadron Collider (LHC) at centre-of-mass energies up to \\SI{14}{\\tera\\electronvolt} and instantaneous luminosities up to \\SI{d34}{\\per\\centi\\meter\\squared\\per\\second}. The High Luminosity LHC (HL-LHC) programme is now developed for up to 5-7 times the design luminosity, with the goal of accumulating an integrated luminosity of \\SI{3000}{\\per\\femto\\barn}. In the HL-LHC phase, the increased radiation levels require a replacement of the front-end (FE) electronics of the LAr Calorimeters. Furthermore, the ATLAS trigger system is foreseen to increase the trigger accept rate and the trigger latency which requires a larger data volume to be buffered. Therefore, the LAr Calorimeter read-out will be exchanged with a new FE and a high bandwidth back-end (BE) system for receiving data from all \

  6. Research and Development for a Free-Running Readout System for the ATLAS LAr Calorimeters at the High Luminosity LHC

    CERN Document Server

    Hils, Maximilian; The ATLAS collaboration

    2015-01-01

    The ATLAS Liquid Argon (LAr) Calorimeters were designed and built to measure electromagnetic and hadronic energy in proton-proton collisions produced at the LHC at centre-of-mass energies up to 14 TeV and instantaneous luminosities up to $10^{34} \\text{cm}^{-2} \\text{s}^{-1}$. The High Luminosity LHC (HL-LHC) programme is now developed for up to 5-7 times the design luminosity, with the goal of accumulating an integrated luminosity of $3000~\\text{fb}^{-1}$. In the HL-LHC phase, the increased radiation levels require a replacement of the front-end electronics of the LAr Calorimeters. Furthermore, the ATLAS trigger system is foreseen to increase the trigger accept rate by a factor 10 to 1 MHz and the trigger latency by a factor of 20 which requires a larger data volume to be buffered. Therefore, the LAr Calorimeter read-out will be exchanged with a new front-end and a high bandwidth back-end system for receiving data from all 186.000 channels at 40 MHz LHC bunch-crossing frequency and for off-detector buffering...

  7. Copilot: Monitoring Embedded Systems

    Science.gov (United States)

    Pike, Lee; Wegmann, Nis; Niller, Sebastian; Goodloe, Alwyn

    2012-01-01

    Runtime verification (RV) is a natural fit for ultra-critical systems, where correctness is imperative. In ultra-critical systems, even if the software is fault-free, because of the inherent unreliability of commodity hardware and the adversity of operational environments, processing units (and their hosted software) are replicated, and fault-tolerant algorithms are used to compare the outputs. We investigate both software monitoring in distributed fault-tolerant systems, as well as implementing fault-tolerance mechanisms using RV techniques. We describe the Copilot language and compiler, specifically designed for generating monitors for distributed, hard real-time systems. We also describe two case-studies in which we generated Copilot monitors in avionics systems.

  8. Operation of the enhanced ATLAS First Level Calorimeter Trigger at the start of Run-2

    CERN Document Server

    Palka, Marek; The ATLAS collaboration

    2015-01-01

    In 2015 the LHC will operate with a higher center-of-mass energy and proton beams luminosity. To keep a high trigger efficiency against an increased event rate, part of ATLAS Level-1 Calorimeter Trigger electronics have been re-designed or newly introduced (Pre-Processors, Merging Modules and Topological Processors). Additionally, to achieve the best possible resolution for the reconstructed physics objects, complex calibration and monitoring systems are employed. Hit rates and energy spectra down to channel level, based on reconstructed events, are supervised with the calorimeter trigger hardware. The performance of the upgraded Level-1 Calorimeter Trigger at the beginning of LHC Run-2 is illustrated.

  9. Urine Monitoring System

    Science.gov (United States)

    Feedback, Daniel L.; Cibuzar, Branelle R.

    2009-01-01

    The Urine Monitoring System (UMS) is a system designed to collect an individual crewmember's void, gently separate urine from air, accurately measure void volume, allow for void sample acquisition, and discharge remaining urine into the Waste Collector Subsystem (WCS) onboard the International Space Station. The Urine Monitoring System (UMS) is a successor design to the existing Space Shuttle system and will resolve anomalies such as: liquid carry-over, inaccurate void volume measurements, and cross contamination in void samples. The crew will perform an evaluation of airflow at the ISS UMS urinal hose interface, a calibration evaluation, and a full user interface evaluation. o The UMS can be used to facilitate non-invasive methods for monitoring crew health, evaluation of countermeasures, and implementation of a variety of biomedical research protocols on future exploration missions.

  10. The multiplexed ADC system and the FASTBUS readout for the DELPHI forward electromagnetic calorimeter

    International Nuclear Information System (INIS)

    Two modules will be used to digitize and store the signals of the DELPHI Forward Electromagnetic Calorimeter (FEMC): these are the ADC card and the Optical Receiver with Front-End Buffer unit (OFB). A description of these modules and their performance are presented. (orig.)

  11. Engineering prototype of the CALICE analog hadron calorimeter

    International Nuclear Information System (INIS)

    A new prototype of a tile hadron calorimeter (AHCAL) for the International Linear Collider detector is currently developed within the CALICE collaboration. The aim is to improve the energy resolution by measuring details of the shower development and combining them with the data of the tracking chamber (particle flow). The prototype is based on scintillating tiles that are read out by novel Silicon-Photomultiplier (SiPM). This new prototype will take into account all design aspects that are demanded by the intended operation at the ILC It will contain about 2500 detector channels. This is the first calorimeter design which makes full use of the high integration potential of the novel photo-sensor technology. Main focus of this contribution is the mechanical and electrical integration of the front-end electronics into the calorimeter absorber structure, with the aim of maintaining high-density calorimeter. Integration aspects and scalability to an ILC detector are discussed. For the analog calorimeter the proposal of an integrated light-calibration system for calibration and gain monitoring are presented, addressing temperature and bias dependence of the SiPM gain. First results from the measurements with one prototype module at the DESY test beam are presented, which demonstrate the quality of the readout system, and of the light-calibration system.

  12. The liquid argon calorimeter subsystem

    International Nuclear Information System (INIS)

    During the past several months, Tennessee, Mississippi, and the Oak Ridge National Laboratory have been coordinating efforts to benchmark the CALOR89 code system against the DO and HELIOS prototype calorimeter data, and to use the CALOR89 system to generate currently needed data for radiation damage studies, signal collection time, and compensation characteristics of various calorimeter designs. This report describes these results and gives our plans and projected budgets for the following year. 8 refs., 5 figs

  13. Car monitoring information systems

    Directory of Open Access Journals (Sweden)

    Alica KALAŠOVÁ

    2008-01-01

    Full Text Available The objective of this contribution is to characterize alternatives of information systems used for managing, processing and evaluation of information related to company vehicles. Especially we focus on logging, transferring and processing of on-road vehicle movement information in inland and international transportation. This segment of company information system has to monitor the car movement – actively or passively – according to demand of the company and after the processing it has to evaluate and give the complex monitoring of a situation of all the company vehicles to the controller.

  14. Fish farm monitoring system

    OpenAIRE

    Svetičič, Urh

    2015-01-01

    The purpose of this bachelor's theses is to develop a system that will enable monitoring over the basic parameters in fish farms. That is why we have made an embedded system which is composed of four sensors and the STM32F4 Discovery board. This board is then connected through Ethernet module to Raspberry Pi 2, where the database is built. All together is monitored through web interface. The paper is composed of two parts. The first part is intended for a theoretical introduction in which ...

  15. Wearable Health Monitoring Systems

    Science.gov (United States)

    Bell, John

    2015-01-01

    The shrinking size and weight of electronic circuitry has given rise to a new generation of smart clothing that enables biological data to be measured and transmitted. As the variation in the number and type of deployable devices and sensors increases, technology must allow their seamless integration so they can be electrically powered, operated, and recharged over a digital pathway. Nyx Illuminated Clothing Company has developed a lightweight health monitoring system that integrates medical sensors, electrodes, electrical connections, circuits, and a power supply into a single wearable assembly. The system is comfortable, bendable in three dimensions, durable, waterproof, and washable. The innovation will allow astronaut health monitoring in a variety of real-time scenarios, with data stored in digital memory for later use in a medical database. Potential commercial uses are numerous, as the technology enables medical personnel to noninvasively monitor patient vital signs in a multitude of health care settings and applications.

  16. Demonstrator System for the Phase-I Upgrade of the Trigger Readout Electronics of the ATLAS Liquid Argon Calorimeters

    CERN Document Server

    FRAGNAUD, J; The ATLAS collaboration

    2014-01-01

    The trigger readout electronics of the ATLAS LAr Calorimeters will be improved for the Phase-I luminosity upgrade of the LHC to enhance the trigger feature extraction. Signals with higher spatial granularity will be digitized and processed by newly developed front-end and back-end components. In order to evaluate technical and performance aspects, a demonstrator system is being set up which is planned to be installed on the ATLAS detector during the upcoming LHC run. Results from system tests of the analog signal treatment, the trigger digitizer, the optical signal transmission and the FPGA-based back-end are reported.

  17. Icinga Monitoring System Interface

    CERN Document Server

    Neculae, Alina Georgiana

    2014-01-01

    The aim of this project is to develop a web interface that would be used by the Icinga monitoring system to manage the CMS online cluster, in the experimental site. The interface would allow users to visualize the information in a compressed and intuitive way, as well as modify the information of each individual object and edit the relationships between classes.

  18. ELECTROMAGNETIC CALORIMETER (ECAL)

    CERN Multimedia

    Roger Rusack

    Occupancy of the trigger primitives during a global run: the observed pattern is consistent with the polar angle dependence of the transverse energy equivalent of the electronic noise in the endcaps.   Progress on ECAL since the last CMS week has been mostly on three major fronts: we have continued with the installation and commissioning of the preshower detectors; the endcap calorimeter trigger has been installed and tested; and there have been many changes to the calorimeter detector control and safety systems. Both Preshower (ES) endcaps were installed in CMS on schedule, just before Easter. There followed a campaign of "first commissioning" to ensure that all services were correctly connected (electrical, optical, cooling, etc.). Apart from some optical ribbons that had to be replaced the process went rather smoothly, finishing on 23rd April. All power supplies are installed and operational. The cooling system (two branches of the joint Tracker-Preshower system) is fully fun...

  19. Benzene Monitor System report

    Energy Technology Data Exchange (ETDEWEB)

    Livingston, R.R.

    1992-10-12

    Two systems for monitoring benzene in aqueous streams have been designed and assembled by the Savannah River Technology Center, Analytical Development Section (ADS). These systems were used at TNX to support sampling studies of the full-scale {open_quotes}SRAT/SME/PR{close_quotes} and to provide real-time measurements of benzene in Precipitate Hydrolysis Aqueous (PHA) simulant. This report describes the two ADS Benzene Monitor System (BMS) configurations, provides data on system operation, and reviews the results of scoping tests conducted at TNX. These scoping tests will allow comparison with other benzene measurement options being considered for use in the Defense Waste Processing Facility (DWPF) laboratory. A report detailing the preferred BMS configuration statistical performance during recent tests has been issued under separate title: Statistical Analyses of the At-line Benzene Monitor Study, SCS-ASG-92-066. The current BMS design, called the At-line Benzene Monitor (ALBM), allows remote measurement of benzene in PHA solutions. The authors have demonstrated the ability to calibrate and operate this system using peanut vials from a standard Hydragard{trademark} sampler. The equipment and materials used to construct the ALBM are similar to those already used in other applications by the DWPF lab. The precision of this system ({+-}0.5% Relative Standard Deviation (RSD) at 1 sigma) is better than the purge & trap-gas chromatograpy reference method currently in use. Both BMSs provide a direct measurement of the benzene that can be purged from a solution with no sample pretreatment. Each analysis requires about five minutes per sample, and the system operation requires no special skills or training. The analyzer`s computer software can be tailored to provide desired outputs. Use of this system produces no waste stream other than the samples themselves (i.e. no organic extractants).

  20. Calibration of the Tile Hadronic Calorimeter of ATLAS at LHC

    CERN Document Server

    Boumediene, D

    2015-01-01

    The TileCal is the hadronic calorimeter covering the most central region of the ATLAS experiment at LHC. It is a sampling calorimeter with iron plates as absorber and plastic scintillating tiles as the active material. The scintillation light produced by the passage of charged particles is transmitted by wavelength shifting fibers to about 10000 photomultiplier tubes (PMTs). Integrated to the calorimeter, there is a composite device that allows to monitor and/or equalize the signals at various stages of their formation. This device is based on signal generation from different sources: radioactive, Laser, charge injection and minimum bias events produced in proton-proton collisions. Recent performances of these systems as well TileCal calibration stability are presented.

  1. ATLAS-Hadronic Calorimeter

    CERN Multimedia

    2003-01-01

    Hall 180 work on Hadronic Calorimeter The ATLAS hadronic tile calorimeter The Tile Calorimeter, which constitutes the central section of the ATLAS hadronic calorimeter, is a non-compensating sampling device made of iron and scintillating tiles. (IEEE Trans. Nucl. Sci. 53 (2006) 1275-81)

  2. Design of an FPGA-based embedded system for the ATLAS Tile Calorimeter front-end electronics test-bench

    International Nuclear Information System (INIS)

    The portable test-bench for the certification of the ATLAS tile hadronic calorimeter front-end electronics has been redesigned for the present Long Shutdown (LS1) of LHC, improving its portability and expanding its functionalities. This paper presents a new test-bench based on a Xilinx Virtex-5 FPGA that implements an embedded system using a PowerPC 440 microprocessor hard core and custom IP cores. A light Linux version runs on the PowerPC microprocessor and handles the IP cores which implement the different functionalities needed to perform the desired tests such as TTCvi emulation, G-Link decoding, ADC control and data reception

  3. The AMS-02 electromagnetic calorimeter

    CERN Document Server

    Cadoux, F; Chambert-Hermel, V; Chen, G; Chen, H; Coignet, G; Di Falco, S; Dubois, J M; Falchini, E; Franzoso, A; Fougeron, D; Fouque, N; Galeotti, S; Girard, L; Goy, C; Hermel, R; Incagli, M; Kossakowski, R; Lieunard, B; Liu, Y; Liu, Z; Lomtadze, T A; Maestro, P; Marrocchesi, P S; Paoletti, R; Pilo, F; Rosier-Lees, S; Spinella, F; Turini, N; Valle, G D; Venanzoni, G; Vialle, J P; Yu, Z; Zhuang, H

    2002-01-01

    The Electromagnetic Calorimeter (ECAL) of the AMS-02 experiment is a lead-scintillating fibers sampling calorimeter characterized by high granularity that allows to image the longitudinal and lateral showers development, a key issue to provide high electron/hadron discrimination. The light collection system and the FE electronics are designed to let the calorimeter operate over a wide energy range from few GeV up to 1 TeV. A full-scale prototype of the e.m. calorimeter was tested at CERN in October 2001 using electrons and pions beams with energy ranging from 3 to 100 GeV. Effective sampling thickness, linearity and energy resolution were measured. (8 refs).

  4. CERN GSM monitoring system

    CERN Multimedia

    Ghabrous Larrea, C

    2009-01-01

    As a result of the tremendous development of GSM services over the last years, the number of related services used by organizations has drastically increased. Therefore, monitoring GSM services is becoming a business critical issue in order to be able to react appropriately in case of incident. In order to provide with GSM coverage all the CERN underground facilities, more than 50 km of leaky feeder cable have been deployed. This infrastructure is also used to propagate VHF radio signals for the CERN’s fire brigade. Even though CERN’s mobile operator monitors the network, it cannot guarantee the availability of GSM services, and for sure not VHF services, where signals are carried by the leaky feeder cable. So, a global monitoring system has become critical to CERN. In addition, monitoring this infrastructure will allow to characterize its behaviour over time, especially with LHC operation. Given that commercial solutions were not yet mature, CERN developed a system based on GSM probes and an application...

  5. Hydrogen monitoring system

    International Nuclear Information System (INIS)

    The system for measuring the hydrogen concentration within the containment of nuclear power plants is equipped with H2 sensors. By this way it is possible to monitor the area and time distribution of hydrogen concentration after a Loss of Coolant Accident continuously, simultaneously and without a sampling system, e.g. without radiation exposure of the operating personal. The locations inside containment to be supervised abd the positioning of the sensors are tailored to suit the individual plant conditions. The measuring values are indicated in the main control room. The system is designed to be back fitted in existing NPPs. (Authors)

  6. Performance of the ATLAS Calorimeters and Commissioning for LHC Run-2

    CERN Document Server

    Rossetti, Valerio; The ATLAS collaboration

    2015-01-01

    The ATLAS general-purpose experiment at the Large Hadron Collider (LHC) is equipped with electromagnetic and hadronic liquid-argon (LAr) calorimeters and a hadronic scintillator-steel sampling calorimeter (TileCal) for measuring energy and direction of final state particles in the pseudorapidity range $|\\eta| < 4.9$. The calibration and performance of the calorimetry system was established during beam tests, cosmic ray muon measurements and in particular the first three years of pp collision data-taking. During this period, referred to as Run-1, approximately 27~fb$^{-1}$ of data have been collected at the center-of-mass energies of 7 and 8~TeV. Results on the calorimeter operation, monitoring and data quality, as well as their performance will be presented, including the calibration and stability of the electromagnetic scale, response uniformity and time resolution. These results demonstrate that the LAr and Tile calorimeters perform excellently within their design requirements. The calorimetry system thu...

  7. Monitoring Aviation Data: The Monitor System

    OpenAIRE

    Wittmer, Andreas

    2013-01-01

    The main intention in connection with the Monitor project was to design, plan and realise a monitoring system that is capable of continuously describing and evaluating long-term trends and challenges within the air transport sector. The following objectives were addressed by the project: - Gaining a better understanding of the dynamic nature of developments in air transport and the behaviour of the different actors within the aviation system - Balancing economic interests, ecological co...

  8. Electronics and Calibration system for the CMS Beam Halo Monitor

    CERN Document Server

    Tosi, Nicolò; Fabbri, Franco L; Finkel, Alexey; Orfanelli, Stella; Loos, R; Montanari, Alessandro; Rusack, R; Stickland, David P

    2014-01-01

    In the context of increasing luminosity of LHC, it will be important to accurately measure the Machine Induced Background. A new monitoring system will be installed in the cavern of the Compact Muon Solenoid (CMS) experiment for measuring the beam background at high radius. This detector is composed of synthetic quartz Cherenkov radiators, coupled to fast photomultiplier tubes (PMT). The readout chain of this detector will make use of many components developed for the Phase 1 upgrade to the CMS Hadron Calorimeter electronics, with a dedicated firmware and readout adapted to the beam monitoring requirements. The PMT signal will be digitized by a charge integrating ASIC (QIE10), providing both the signal rise time and the charge integrated over one bunch crossing. The backend electronics will record bunch-by-bunch histograms, which will be published to CMS and the LHC using the newly designed CMS beam instrumentation specific DAQ. A calibration monitoring system has been designed to generate triggered pulses of...

  9. Bulk laundry monitoring system

    International Nuclear Information System (INIS)

    Protective wear (like boiler suits, hand gloves etc.) is essential while handling radioactive material in plants/laboratories. During the course of work, it is quite possible that protective wear may get contaminated. These protective wears are packed in laundry bags and send to Decontamination Centre (DC). There is a need for monitoring the laundry bags at the time of receipt, as well as before dispatch to respective locations to comply with AERB guidelines, To avoid cross contamination during wash cycle, contaminated bags (> 0.5 mR/h on surface) need to be segregated. Present paper describes the development of such system for monitoring surface dose rate on bags at the time of receipt. The system installed at ETP after calibration, effectively segregates the contaminated bags from the rest and prevents from cross contamination during wash cycle. Reduction in man-rem consumption due to semi automatic monitoring. Improved sensitivity due to good geometry, long counting time, background and attenuation corrections. Optimum utilization of decontamination chemicals based on level of contamination and keeping track of its inventory. Generation of decontamination process data base for improvement

  10. Design Principles and Operational Results of the Cryogenic System for the ATLAS Liquid Argon Calorimeter

    CERN Document Server

    Fabre, C; Chalifour, M; Gonidec, G; Passardi, Giorgio; Petit, P; Pezzetti, M; Wicek, F

    2009-01-01

    The ATLAS liquid argon calorimeter housed in three independent cryostats containing a total argon volume of about 78 m3 has been installed in the underground cavern. The three detectors have been cooled down following stringent temperature gradient limits and have been filled with liquid argon. The cryostats are now in a stable condition for periods going up to almost two years. The temperature uniformity within each of the three detector volumes is found to be within 70 mK rms, while the temperature stability stays below 5 mK rms.

  11. ATLAS electromagnetic calorimeter, construction and test of a large scale system

    CERN Document Server

    Tayalati, Y

    2004-01-01

    The construction of the ATLAS liquid argon presamplers and accordion calorimeters are about to be completed. The first half-length barrel wheel is already installed in the cryostat and assembly of the second wheel is about to be finished. Modules for the first end-cap wheel are ready and the assembly of the first wheel is well under way. From 55000 output channels of the first barrel wheel only four channels are malfunctioning and a very small fraction of high voltage area has showed problems, ~0.15%. After a review of the construction, production, and assembly, results concerning the energy and position resolution are shown.

  12. A BiCMOS synchronous pulse discriminator for the LHCb calorimeter system

    CERN Document Server

    Bota, S; Gascón, D; Graciani, R

    2002-01-01

    A monolithic prototype for the analogue readout of the Scintillator Pad Detector (SPD) of the LHCb calorimeter is presented. A low power version that works at 3.3 V has been designed using the 0.8 mu m Bi CMOS technology of AMS. It consists of a charge discriminator with a dual path structure formed by an integrator, a pile-up correction, a subtractor and a comparator. The chip also includes a DAC and serial digital control interface to program the threshold of the discriminator. Design, simulation and test results for different prototypes of the circuit will be presented and described. (8 refs).

  13. Induced Seismicity Monitoring System

    Science.gov (United States)

    Taylor, S. R.; Jarpe, S.; Harben, P.

    2014-12-01

    There are many seismological aspects associated with monitoring of permanent storage of carbon dioxide (CO2) in geologic formations. Many of these include monitoring underground gas migration through detailed tomographic studies of rock properties, integrity of the cap rock and micro seismicity with time. These types of studies require expensive deployments of surface and borehole sensors in the vicinity of the CO2 injection wells. Another problem that may exist in CO2 sequestration fields is the potential for damaging induced seismicity associated with fluid injection into the geologic reservoir. Seismic hazard monitoring in CO2 sequestration fields requires a seismic network over a spatially larger region possibly having stations in remote settings. Expensive observatory-grade seismic systems are not necessary for seismic hazard deployments or small-scale tomographic studies. Hazard monitoring requires accurate location of induced seismicity to magnitude levels only slightly less than that which can be felt at the surface (e.g. magnitude 1), and the frequencies of interest for tomographic analysis are ~1 Hz and greater. We have developed a seismo/acoustic smart sensor system that can achieve the goals necessary for induced seismicity monitoring in CO2 sequestration fields. The unit is inexpensive, lightweight, easy to deploy, can operate remotely under harsh conditions and features 9 channels of recording (currently 3C 4.5 Hz geophone, MEMS accelerometer and microphone). An on-board processor allows for satellite transmission of parameter data to a processing center. Continuous or event-detected data is kept on two removable flash SD cards of up to 64+ Gbytes each. If available, data can be transmitted via cell phone modem or picked up via site visits. Low-power consumption allows for autonomous operation using only a 10 watt solar panel and a gel-cell battery. The system has been successfully tested for long-term (> 6 months) remote operations over a wide range

  14. The Danish Marine Monitoring System

    DEFF Research Database (Denmark)

    Ærtebjerg, G.

    1997-01-01

    Indeholder abstracts fra Workshop on Marine Monitoring Systems and Technology, Risø, 17-18 April 1996.......Indeholder abstracts fra Workshop on Marine Monitoring Systems and Technology, Risø, 17-18 April 1996....

  15. Informatics monitoring system of environment

    International Nuclear Information System (INIS)

    In this paper the Informatic monitoring system of environment the Slovak Republic (SR) is presented. Monitoring of environment in the SR is based on operation of the following partial monitoring systems (PMS): Air; Water; Soil; Biota (fauna and flora); Forest; Geological factors; Waste; Food and Feed Contamination; Meteorology and climatology; Radiation monitoring. Results of monitoring are presented on the web-site http://atlas.sazp.sk/ and http://atlas.sazp.sk/aplikacie.php

  16. ATLAS calorimeters energy calibration for jets

    International Nuclear Information System (INIS)

    The calibration of ATLAS barrel calorimeters (including pre shower system, electromagnetic Liquid Argon calorimeter and scintillating hadron tile calorimeter) was done by standard calibration and weighting technique approaches. The standard calibration gives the bad linearity for hadron non compensated calorimeter. The calibration with weighting technique, in comparison with standard calibration, restores linearity and improves energy resolution up to (σ/E)2 = (38.6%/√E)2 + (1.5%)2 for η 0.6. 6 refs., 4 figs., 1 tab

  17. Storage monitoring system - 1997

    International Nuclear Information System (INIS)

    Sandia National Laboratories has several ongoing projects in the area of nuclear materials management. These projects establish a core capability in monitoring stored nuclear materials. The overarching goal of these projects is to get the right sensor information to the right user to enhance the safety, security and to verify the legitimacy of use of stored nuclear materials. An effort has been initiated to merge these projects into a common system. This paper provides an overview of several of these projects and the integration activities between them

  18. Upgrade of the LHCb ECAL monitoring system

    CERN Document Server

    Rabusov, Andrey

    2014-01-01

    During the LHCb running in 2011 and 2012 it was found that the precision of PMT gain monitoring with LED system is affected by radiation damage of the long light guides transporting LED light to calorimeter cells. It was decided to replace in 2014 the present light guides to new ones that should be made of radiation tolerant quartz fibers. After the replacement, the system requires full tuning. It includes adjustment of the LED flash agnitudes and delays, and, after that, adjustment of the PIN diode system. My work was the following: to adjust the PIN signal amplitudes. This included a rough equalization of the amplitudes of signal from the 4 or 2 LEDs served by each PIN diode (achieved by mechanical adjustment of positions of corresponding fibers with respect to the PIN), and then reducing the PIN signal amplitude to the middle of the ADC range when necessary (total of 40 resistive attenuators were produced for this); to find timing corrections for ADCs digitizing the PIN signals; perform a PMT gain measure...

  19. Airborne monitoring system

    International Nuclear Information System (INIS)

    A complete system for tracking, mapping, and performing a composition analysis of a radioactive plume and contaminated area was developed at the NRCN. The system includes two major units : An airborne unit for monitoring and a ground station for analyzing. The airborne unit is mounted on a helicopter and includes file following. Four radiation sensor, two 2'' x 2'' Nal (Tl) sensors horizontally separated by lead shield for mapping and spectroscopy, and two Geiger Mueller (GM) tubes as part of the safety system. A multichannel analyzer card is used for spectroscopy. A navigation system, based on GPS and a barometric altitude meter, is used to locate the plume or ground data. The telemetry system, consisting of a transceiver and a modem, transfers all the data in real time to the ground station. An industrial PC (Field Works) runs a dedicated C++ Windows application to manage the acquired data. An independent microprocessor based backup system includes a recorder, display, and key pad. The ground station is based on an industrial PC, a telemetry system, a color printer and a modem to communicate with automatic meteorology stations in the relevant area. A special software controls the ground station. Measurement results are analyzed in the ground station to estimate plume parameters including motion, location, size, velocity, and perform risk assessment. (authors)

  20. Re-integration and Consolidation of the Detector Control System for the Compact Muon Solenoid Electromagnetic Calorimeter

    CERN Multimedia

    Holme, Oliver; Dissertori, Günther; Djambazov, Lubomir; Lustermann, Werner; Zelepoukine, Serguei

    2013-01-01

    The current shutdown of the Large Hadron Collider (LHC), following three successful years of physics data-taking, provides an opportunity for major upgrades to be performed on the Detector Control System (DCS) of the Electromagnetic Calorimeter (ECAL) of the Compact Muon Solenoid (CMS) experiment. The upgrades involve changes to both hardware and software, with particular emphasis on taking advantage of more powerful servers and updating third-party software to the latest supported versions. The considerable increase in available processing power enables a reduction from fifteen to three or four servers. To host the control system on fewer machines and to ensure that previously independent software components could run side-by-side without incompatibilities, significant changes in the software and databases were required. Additional work was undertaken to modernise and concentrate I/O interfaces. The challenges to prepare and validate the hardware and software upgrades are described along with details of the ...

  1. Waste monitoring system for effluents

    International Nuclear Information System (INIS)

    The waste monitoring system in use at Los Alamos National Laboratory's Plutonium Facility, TA-55, is a computer-based system that proves real-time information on industrial effluents. Remote computers monitor discharge events and data moves from one system to another via a local area network. This report describes the history, system design, summary, instrumentation list, displays, trending screens, and layout of the waste monitoring system

  2. Preliminary study on field buses for the control system of the high voltage of the ATLAS hadronic calorimeter; Etude preliminaire d`un reseau de terrain pour le systeme de controle des hautes tensions du calorimetre hadronique d`Atlas

    Energy Technology Data Exchange (ETDEWEB)

    Drevet, F.; Chadelas, R.; Montarou, G.

    1996-12-31

    We present here after a preliminary study on field buses for the control system of the high voltage of the photomultipliers of the TILECAL calorimeter. After some generalities, different commercial buses are reviewed (CAN, ARCET, WorldFIP, Profibus and LonWorks). The Profibus and LonWorks solution are more extensively studies as a possible solution for the high voltage system of the TILE hadronic calorimeter. (authors).

  3. Area monitoring intelligent system - SIMA

    International Nuclear Information System (INIS)

    The area monitoring intelligent system (SIMA) is an equipment to be used in radioprotection. SIMA has the function of monitoring the radiation levels of determined areas of the installations where radioactive materials are handled. (Author)

  4. Design and performance of the SAPHIR lead-glass calorimeter

    International Nuclear Information System (INIS)

    For the WA80 fixed-target heavy-ion experiment at the CERN-SPS, a 1278 element lead-glass calorimeter has been constructed to measure photons in the energy range from 0.2 to 20 GeV. We describe the design of the detector, the achieved energy and position resolution, the gain monitoring system and the performance of the high-energy photon trigger. The quality of photon identification and π0 invariant mass reconstruction is discussed. (orig.)

  5. STATUS OF THE ATLAS LIQUID ARGON CALORIMETER AND ITS PERFORMANCE

    CERN Document Server

    Berillari, T; The ATLAS collaboration

    2011-01-01

    The liquid argon (LAr) calorimeters are used in ATLAS for all electromagnetic and for hadron calorimetry. The LAr calorimeter system consists of an electromagnetic barrel calorimeter and two endcaps with electromagnetic, hadronic and forward calorimeters. The latest status of the detector as well as problems and solutions addressed during the last years will be presented. Aspects of operation of a large detector over a long time period will be summarized and selected topics showing the performance of the detector will be shown.

  6. Remote Patient Monitoring System

    Directory of Open Access Journals (Sweden)

    Sherin Sebastian

    2012-10-01

    Full Text Available The Telemedicine system comprises of both hardware and software components at both the patient and doctor ends. A leading field for application of telemedicine is in the field of cardiology where ECG is the major tool for diagnosis. The proposed project in this paper provides an image based techniques to acquire and analyse a constant streaming of ECG signal through digital camera for image capturing, information extraction and analysis performed using MATLAB tools as well as data sending system based on internet network. The method captures the vital signs and parameters from the ICU monitoring machine using a webcam and transmits the image through the internet. This original image is then availed to the consulting doctor via an ANDROID cell phone. In case of anomaly a notification is send to the doctor’s phone. The paper proposes a method to capture, compare and generate alert regarding the patient’s condition using the heart rate and make the captured image be available to the physician.

  7. CERN Safety System Monitoring - SSM

    CERN Document Server

    Hakulinen, T; Valentini, F; Gonzalez, J; Salatko-Petryszcze, C

    2011-01-01

    CERN SSM (Safety System Monitoring) [1] is a system for monitoring state-of-health of the various access and safety systems of the CERN site and accelerator infrastructure. The emphasis of SSM is on the needs of maintenance and system operation with the aim of providing an independent and reliable verification path of the basic operational parameters of each system. Included are all network-connected devices, such as PLCs, servers, panel displays, operator posts, etc. The basic monitoring engine of SSM is a freely available system-monitoring framework Zabbix [2], on top of which a simplified traffic-light-type web-interface has been built. The web-interface of SSM is designed to be ultra-light to facilitate access from handheld devices over slow connections. The underlying Zabbix system offers history and notification mechanisms typical of advanced monitoring systems.

  8. CERN safety system monitoring - SSM

    International Nuclear Information System (INIS)

    CERN SSM (Safety System Monitoring) is a system for monitoring state-of-health of the various access and safety systems of the CERN site and accelerator infrastructure. The emphasis of SSM is on the needs of maintenance and system operation with the aim of providing an independent and reliable verification path of the basic operational parameters of each system. Included are all network-connected devices, such as PLCs (local purpose control unit), servers, panel displays, operator posts, etc. The basic monitoring engine of SSM is a freely available system-monitoring framework Zabbix, on top of which a simplified traffic-light-type web-interface has been built. The web-interface of SSM is designed to be ultra-light to facilitate access from hand-held devices over slow connections. The underlying Zabbix system offers history and notification mechanisms typical of advanced monitoring systems. (authors)

  9. Level-1 Calorimeter Trigger starts firing

    CERN Multimedia

    Stephen Hillier

    2007-01-01

    L1Calo is one of the major components of ATLAS First Level trigger, along with the Muon Trigger and Central Trigger Processor. It forms all of the first-level calorimeter-based triggers, including electron, jet, tau and missing ET. The final system consists of over 250 custom designed 9U VME boards, most containing a dense array of FPGAs or ASICs. It is subdivided into a PreProcessor, which digitises the incoming trigger signals from the Liquid Argon and Tile calorimeters, and two separate processor systems, which perform the physics algorithms. All of these are highly flexible, allowing the possibility to adapt to beam conditions and luminosity. All parts of the system are read out through Read-Out Drivers, which provide monitoring data and Region of Interest (RoI) information for the Level-2 trigger. Production of the modules is now essentially complete, and enough modules exist to populate the full scale system in USA15. Installation is proceeding rapidly - approximately 90% of the final modules are insta...

  10. Advanced border monitoring sensor system

    Science.gov (United States)

    Knobler, Ronald A.; Winston, Mark A.

    2008-04-01

    McQ has developed an advanced sensor system tailored for border monitoring that has been delivered as part of the SBInet program for the Department of Homeland Security (DHS). Technology developments that enhance a broad range of features are presented in this paper, which address the overall goal of the system to improving unattended ground sensor system capabilities for border monitoring applications. Specifically, this paper addresses a system definition, communications architecture, advanced signal processing to classify targets, and distributed sensor fusion processing.

  11. Performance of the ATLAS hadronic Tile calorimeter

    CERN Document Server

    Bartos, Pavol; The ATLAS collaboration

    2016-01-01

    The Tile Calorimeter (TileCal) of the ATLAS experiment at the LHC is the central hadronic calorimeter designed for energy reconstruction of hadrons, jets, tau-particles and missing transverse energy. TileCal is a scintillator-steel sampling calorimeter and it covers the region of pseudorapidity < 1.7. The scintillation light produced in the scintillator tiles is transmitted to photomultiplier tubes (PMTs). Signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. Each stage of the signal production from scintillation light to the signal reconstruction is monitored and calibrated. Results on the calorimeter operation and performance are presented, including the calibration, stability, absolute energy scale, uniformity and time resolution. These results show that the TileCal performance is within the design requirements and has given essential contribution to reconstructed objects and physics results.

  12. ELECTROMAGNET CALORIMETER (ECAL)

    CERN Multimedia

    R. Rusack

    Installation is under way of the last piece of the electromagnetic calorimeter. This is the preshower (ES) that sits in front of the two endcap calorimeters. The construction of the ES was completed in December and went through a detailed set of tests in December and January. The two preshower detectors have a total of 4300 silicon sensors with 137,000 strips. After final assembly and system testing in January, only two of the strips were found to be defective. Once CMS was fully opened a new support structure (‘Gazprom’) was put into place underneath the beam pipe, to support the Surkov platform, on which the preshower installation takes place. In the early hours of 26th February the first two Dees, which form the ‘ES+’ endcap,  were transported to P5 , a journey that took two and a half hours. The Dees, still inside environmental protection boxes, were then lowered  underground and moved to the ‘+’ end of CMS. Installation start...

  13. Reactor monitoring system

    International Nuclear Information System (INIS)

    The present invention concerns a device for monitoring the inside of an FBR type reactor which can not be monitored by a usual optical camera. An ultrasonic camera having an excellent propagating property in a liquid metal sodium is scanned, and reflected waves of the ultrasonic waves are received as signals. The signals are processed by using a virtual realistic feeling (VR) technique such as a head mounting type image display (HMD) and a three dimensional pointing device. With such procedures, the inside of the FBR type reactor can be observed with such a realistic feeling that the inside of the FBR type reactor were seen directly. (I.S.)

  14. Testing the PreProcessor modules of the ATLAS level-1 calorimeter Trigger

    International Nuclear Information System (INIS)

    The PreProcessor (PPr) System of the ATLAS Level-1 Calorimeter Trigger is a highly parallel system which receives, digitises and processes about 7200 analogue calorimeter trigger signals from the entire ATLAS Calorimetry. Its key component is a custom build ASIC which determines the transverse energy deposits and transmits them to the object-finding processors of the calorimeter trigger: Cluster Processor and Jet/Energy-Sum Processor. The PPr System consists of 124 identical 9U VME PreProcessor Modules (PPMs), which fit into 8 crates. Each module receives and processes 64 analogue calorimeter trigger signals. Before the modules are installed in the electronic cavern of the experiment, their proper operation has to be ensured. An extensive test procedure has been developed to establish all functions of the PPM in short and long periods of operation. The modules are tested both individually as well as in a crate configuration similar to that of the final system. The transmission of the real-time data over 15m long LVDS cables and the readout are checked with a dedicated VME based system, which emulates both the processors of the calorimeter trigger and a DAQ readout module. Additionally, periodic monitoring of the temperatures and voltages across each board is performed during tests to verify the operating conditions of the modules

  15. BES monitoring and displaying system

    International Nuclear Information System (INIS)

    BES Monitoring and Displaying System (BESMDS) is projected to monitor and display the running status of DAQ and Slow Control systems of BES through the Web for worldwide accessing. It provides a real-time remote means of monitoring as well as an approach to study the environmental influence upon physical data taking. The system collects real-time data separately from BES Online subsystems by network sockets and stores the data into a database. People can access the system through its web site, which retrieves data on request from the database and can display results in dynamically reacted images. Its web address is http://besmds.ihep.ac.cn/

  16. Gas House Autonomous System Monitoring

    Science.gov (United States)

    Miller, Luke; Edsall, Ashley

    2015-01-01

    Gas House Autonomous System Monitoring (GHASM) will employ Integrated System Health Monitoring (ISHM) of cryogenic fluids in the High Pressure Gas Facility at Stennis Space Center. The preliminary focus of development incorporates the passive monitoring and eventual commanding of the Nitrogen System. ISHM offers generic system awareness, adept at using concepts rather than specific error cases. As an enabler for autonomy, ISHM provides capabilities inclusive of anomaly detection, diagnosis, and abnormality prediction. Advancing ISHM and Autonomous Operation functional capabilities enhances quality of data, optimizes safety, improves cost effectiveness, and has direct benefits to a wide spectrum of aerospace applications.

  17. The ATLAS Liquid Argon Calorimeter Construction, Integration, Commissioning

    CERN Document Server

    Aleksa, Martin

    2006-01-01

    The ATLAS liquid argon (LAr) calorimeter system consists of an electromagnetic barrel calorimeter and two end caps with electromagnetic, hadronic and forward calorimeters. The liquid argon sampling technique, with an accordion geometry was chosen for the barrel electromagnetic calorimeter (EMB) and adapted to the end cap (EMEC). The hadronic end cap calorimeter (HEC) uses a copper-liquid argon sampling technique with flat plate geometry and is subdivided in depth in two wheels per end-cap. Finally, the forward calorimeter (FCAL) is composed of three modules employing cylindrical electrodes with thin liquid argon gaps. The construction of the full calorimeter system is complete since mid-2004. Production modules constructed in the home institutes were integrated into wheels at CERN in 2003-2004, and inserted into the three cryostats. They passed their first complete cold test before the lowering into the ATLAS cavern. Results of quality checks (e.g. electrical, mechanical, ...) performed on all the 190304 read...

  18. Development of the Trigger Readout System for the Phase-I Upgrade of the ATLAS Liquid Argon Calorimeters

    CERN Document Server

    Xu, Hao; The ATLAS collaboration

    2015-01-01

    The ATLAS Liquid Argon (LAr) Calorimeters were designed and built to measure electromagnetic and hadronic energy in proton-proton collisions produced at the LHC at centre-of-mass energies up to 14 TeV and at instantaneous luminosities up to 1034cm-2s-1. An LHC upgrade is planned to enhance the luminosities to 2-3 x 1034cm-2s-1 and to deliver an integrated luminosity of about 300 fb-1 during Run 3 from 2019 through 2021. In order to improve the identification performance for electrons, photons, taus, jets, missing energy at high background rejection rates, an improved spatial granularity of the trigger primitives has been proposed. Therefore, a new trigger readout system is being designed to digitize and process the signals with higher spatial granularity. A demonstrator system has been developed and installed on the ATLAS detector to evaluate the technical and performance aspects. Analog signal parameters including noise and cross-talk have been analyzed. The performance of the new demonstrator system in the ...

  19. Development of the Trigger Readout System for Phase-I Upgrade of the ATLAS Liquid Argon Calorimeters

    CERN Document Server

    Xu, Hao; The ATLAS collaboration

    2015-01-01

    The ATLAS Liquid Argon (LAr) Calorimeters were designed and built to measure electromagnetic and hadronic energy in proton-proton collisions produced at the LHC at centre-of-mass energies up to 14 TeV and at instantaneous luminosities up to 10^34 cm^-2s^-1. An LHC upgrade is planned to enhance the luminosities to 2-3 x 10^34 cm^-2 s^-1 and to deliver an integrated luminosity of about 300 fb^-1 during Run 3 from 2019 through 2021. In order to improve the identification performance for electrons, photons, taus, jets, missing energy at high background rejection rates, an improved spatial granularity of the trigger primitives has been proposed. Therefore, a new trigger readout system is being designed to digitize and process the signals with higher spatial granularity. A demonstrator system has been developed and installed on the ATLAS detector to evaluate the technical and performance aspects. Analog signal parameters including noise and cross-talk have been analyzed. The performance of the new readout system is...

  20. Determination of Absorbed Dose to Water in Megavoltage Electron Beams Using a Calorimeter-Fricke Hybrid System

    International Nuclear Information System (INIS)

    A water calorimeter-Fricke solution hybrid dosimetry system was developed at the National Research Council of Canada to be used for reference dosimetry for high energy electron beams in the energy range produced by medical linear accelerators. The system uses water calorimetry for higher energy beams of 18 MeV and 22 MeV, while Fricke dosimetry is used for the lower energies of 4 MeV, 8 MeV and 12 MeV. Fricke solution dosimetry was also used for 18 MeV and 22 MeV to determine the Fricke solution's ε·G(Fe3+) coefficient needed for calculations at lower energies. The deviation from linearity of the system in the dose range from 6 to 52 Gy was typically 0.2-0.3% for all energies, while the average repeatability for a single dosimeter was about 1%. As a practical application, the energy dependence of the response of a parallel-plate ionization chamber was investigated. It was found that at higher energies, the predictions were similar to those calculated by TG-51 and TRS 398, while for lower energies, differences were observed of up to 1%, consistent with new Monte Carlo and experimental investigations of chamber perturbation corrections,. (author)

  1. Unattended Monitoring System Design Methodology

    International Nuclear Information System (INIS)

    A methodology for designing Unattended Monitoring Systems starting at a systems level has been developed at Sandia National Laboratories. This proven methodology provides a template that describes the process for selecting and applying appropriate technologies to meet unattended system requirements, as well as providing a framework for development of both training courses and workshops associated with unattended monitoring. The design and implementation of unattended monitoring systems is generally intended to respond to some form of policy based requirements resulting from international agreements or domestic regulations. Once the monitoring requirements are established, a review of the associated process and its related facilities enables identification of strategic monitoring locations and development of a conceptual system design. The detailed design effort results in the definition of detection components as well as the supporting communications network and data management scheme. The data analyses then enables a coherent display of the knowledge generated during the monitoring effort. The resultant knowledge is then compared to the original system objectives to ensure that the design adequately addresses the fundamental principles stated in the policy agreements. Implementation of this design methodology will ensure that comprehensive unattended monitoring system designs provide appropriate answers to those critical questions imposed by specific agreements or regulations. This paper describes the main features of the methodology and discusses how it can be applied in real world situations

  2. Turbomachine monitoring system and method

    Energy Technology Data Exchange (ETDEWEB)

    Delvaux, John McConnell

    2016-02-23

    In an embodiment, a system includes a turbomachine having a first turbomachine component including a first mechanoluminescent material. The first turbomachine component is configured to produce a first light emission upon exposure to a mechanical stimulus sufficient to cause mechanoluminescence by the first mechanoluminescent material. The system also includes a turbomachine monitoring system configured to monitor the structural health of the first component based on detection of the first light emission.

  3. Large capacity water and air bath calorimeters

    International Nuclear Information System (INIS)

    EG and G Mound Applied Technologies has developed an 11 in. x 17 in. sample size water bath and an 11 in. x 17 in. sample size air bath calorimeter which both function under servo control mode of operation. The water bath calorimeter has four air bath preconditioners to increase sample throughput and the air bath calorimeter has two air bath preconditioners. The large capacity calorimeters and preconditioners were unique to Mound design which brought about unique design challenges. Both large capacity systems calculate the optimum set temperature for each preconditioner which is available to the operator. Each system is controlled by a personal computer under DOS which allows the operator to download data to commercial software packages when the calorimeter is idle. Qualification testing yielded a one standard deviation of 0.6% for 0.2W to 3.0W Pu-238 heat standard range in the water bath calorimeter and a one standard deviation of 0.3% for the 6.0W to 20.0W Pu-238 heat standard range in the air bath calorimeter

  4. An intelligent fetal monitoring system

    International Nuclear Information System (INIS)

    An intelligent monitoring system is constructed by a multi-micro-computer system. The monitoring signals are fetal heart rate (FHR) and uterine contraction (UC) through the conventional monitoring device for a day until the delivery. These signals are fed to a micro-computer in digital format, and evaluated by the computer in real time according to the diagnostic algorithm of the expert physician. Monitoring signals are always displayed on the CRT screen and in the case of dangerous state of the fetus, warning signal will appear on the screen and the doctor or nurse will be called. All these signals are sent to the next micro-computer with 10MB hard disk system. On this computer, the doctor and nurse can retrieve and inspect the details of the process by clock-key and/or events-key. After finishing monitoring process, summarized report is constructed and printed out on the paper

  5. Radiation monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Aghina, Mauricio A.C.; Farias, Marcos S. de; Lacerda, Fabio de; Heimlich, Adino [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    Design of a portable low-power multichannel analyzer with wireless connectivity for remote radiation monitoring, powered from a solar panel with a internal battery to be operated in field. The multichannel analyzer is based on a single microcontroller which performs the digital functions and an analog signal processing board for implementing a Gaussian shaper preamplifier, a Gaussian stretcher, sample and hold, pile-up rejector and a 10 bit ADC. Now this design is to be used with a NaI(Ti) scintillator detector. This multichannel analyzer is designed to be a part of radiation monitoring network. All of them are connected, by radio in a radius of 10 kilometers, to a supervisor computer that collects data from the network of multichannel analyzers and numerically display the latest radiation measurements or graphically display measurements over time for all multichannel analyzers. Like: dose rate, spectra and operational status. Software also supports remotely configuring operating parameters (such as radiation alarm level) for each monitor independently. (author)

  6. Radiation monitoring system

    International Nuclear Information System (INIS)

    Design of a portable low-power multichannel analyzer with wireless connectivity for remote radiation monitoring, powered from a solar panel with a internal battery to be operated in field. The multichannel analyzer is based on a single microcontroller which performs the digital functions and an analog signal processing board for implementing a Gaussian shaper preamplifier, a Gaussian stretcher, sample and hold, pile-up rejector and a 10 bit ADC. Now this design is to be used with a NaI(Ti) scintillator detector. This multichannel analyzer is designed to be a part of radiation monitoring network. All of them are connected, by radio in a radius of 10 kilometers, to a supervisor computer that collects data from the network of multichannel analyzers and numerically display the latest radiation measurements or graphically display measurements over time for all multichannel analyzers. Like: dose rate, spectra and operational status. Software also supports remotely configuring operating parameters (such as radiation alarm level) for each monitor independently. (author)

  7. Performance of the ATLAS Tile Hadronic Calorimeter at LHC in Run 1 and planned upgrades

    CERN Document Server

    Solovyanov, Oleg; The ATLAS collaboration

    2014-01-01

    The Tile Calorimeter (TileCal) is the central section of the ATLAS hadronic calorimeter at the Large Hadron Collider, a key detector for the measurements of hadrons, jets, tau leptons and missing transverse energy. Scintillation light produced in the tiles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs). The resulting electronic signals from approximately 10000 PMTs are digitized before being transferred to off-detector data-acquisition systems. The data quality procedures used during the LHC data-taking and the evolution of the detector status are explained in the presentation. The energy and the time reconstruction performance of the digitized signals is presented and the noise behaviour and its improvement during the detector consolidation in maintenance periods are shown. A set of calibration systems allow monitoring and equalization of the calorimeter channels responses via signal sources that act at every stage of the signal path, from scintillation light to digitized signal...

  8. Expert system for plant monitoring

    International Nuclear Information System (INIS)

    The expert system developed to improve the monitoring of purification cycles in nuclear fuel reprocessing plants is biefly described and its adaptation to optimization in the chemical industry is considered

  9. Wearable Health Monitoring Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this proposal is to demonstrate the feasibility of producing a wearable health monitoring system for the human body that is functional,...

  10. Solar Power Systems Web Monitoring

    CERN Document Server

    Kumar, Bimal Aklesh

    2011-01-01

    All over the world the peak demand load is increasing and the load factor is decreasing year-by-year. The fossil fuel is considered insufficient thus solar energy systems are becoming more and more useful, not only in terms of installation but monitoring of these systems is very crucial. Monitoring becomes very important when there are a large number of solar panels. Monitoring would allow early detection if the output falls below required level or one of the solar panel out of 1000 goes down. In this study the target is to monitor and control a developed solar panel by using available internet foundation. This web-enabled software will provide more flexibility over the system such as transmitting data from panel to the host computer and disseminating information to relevant stake holders barring any geographical barrier. The software would be built around web server with dynamic HTML and JAVA, this paper presents the preliminary design of the proposed system.

  11. Operating Room Status Monitoring System

    OpenAIRE

    Kane, Francis R.

    1982-01-01

    A system has been devised at The Medical College of Virginia to schedule, monitor, and display the status of twenty-four operating rooms. A switch in each room indicates room status. Room status is matched with scheduling information to provide an airport-like display on 16 video monitors placed about the operating room area. Management and medical information is captured by the system.

  12. Gundremmingen's new core monitoring system

    International Nuclear Information System (INIS)

    The nuclear core monitoring system KSIM (KernSIMulator) was developed for the Gundremmingen nuclear power station and commissioned in June 1994. It replaces the old core monitoring system (P1) running on the station's process computer, and helps the operators further exploit the operational limits of the core. In this way KSIM can make a substantial contribution to operational safety and reactor flexibility and, in consequence, provide a tangible financial benefit. (author)

  13. Electronics and Calibration system for the CMS Beam Halo Monitor

    CERN Document Server

    Tosi, Nicolo

    2014-01-01

    In the context of increasing luminosity of LHC, it will be important to accurately measure the Machine Induced Background. A new monitoring system will be installed in the CMS cavern for measuring the beam background at high radius. This detector is composed of synthetic quartz Cherenkov radiators, coupled to fast photomultiplier tubes (PMT). The readout chain of this detector will make use of many components developed for the Phase 1 upgrade to the CMS Hadron Calorimeter electronics, with a dedicated firmware and readout adapted to the beam monitoring requirements. The PMT signal will be digitized by a charge integrating ASIC (QIE10), providing both the signal rise time and the charge integrated over one bunch crossing.The backend electronics will record bunch-by-bunch histograms, which will be published to CMS and the LHC using the newly designed CMS beam instrumentation specific DAQ. A calibration monitoring system has been designed to generate triggered pulses of light to monitor the efficiency of the sys...

  14. A grid job monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Dumitrescu, Catalin; /Fermilab; Nowack, Andreas; /Aachen, Tech. Hochsch.; Padhi, Sanjay; /UC, San Diego; Sarkar, Subir; /INFN, Pisa /Pisa, Scuola Normale Superiore

    2010-01-01

    This paper presents a web-based Job Monitoring framework for individual Grid sites that allows users to follow in detail their jobs in quasi-real time. The framework consists of several independent components: (a) a set of sensors that run on the site CE and worker nodes and update a database, (b) a simple yet extensible web services framework and (c) an Ajax powered web interface having a look-and-feel and control similar to a desktop application. The monitoring framework supports LSF, Condor and PBS-like batch systems. This is one of the first monitoring systems where an X.509 authenticated web interface can be seamlessly accessed by both end-users and site administrators. While a site administrator has access to all the possible information, a user can only view the jobs for the Virtual Organizations (VO) he/she is a part of. The monitoring framework design supports several possible deployment scenarios. For a site running a supported batch system, the system may be deployed as a whole, or existing site sensors can be adapted and reused with the web services components. A site may even prefer to build the web server independently and choose to use only the Ajax powered web interface. Finally, the system is being used to monitor a glideinWMS instance. This broadens the scope significantly, allowing it to monitor jobs over multiple sites.

  15. A grid job monitoring system

    International Nuclear Information System (INIS)

    This paper presents a web-based Job Monitoring framework for individual Grid sites that allows users to follow in detail their jobs in quasi-real time. The framework consists of several independent components: (a) a set of sensors that run on the site CE and worker nodes and update a database, (b) a simple yet extensible web services framework and (c) an Ajax powered web interface having a look-and-feel and control similar to a desktop application. The monitoring framework supports LSF, Condor and PBS-like batch systems. This is one of the first monitoring systems where an X.509 authenticated web interface can be seamlessly accessed by both end-users and site administrators. While a site administrator has access to all the possible information, a user can only view the jobs for the Virtual Organizations (VO) he/she is a part of. The monitoring framework design supports several possible deployment scenarios. For a site running a supported batch system, the system may be deployed as a whole, or existing site sensors can be adapted and reused with the web services components. A site may even prefer to build the web server independently and choose to use only the Ajax powered web interface. Finally, the system is being used to monitor a glideinWMS instance. This broadens the scope significantly, allowing it to monitor jobs over multiple sites.

  16. A Grid job monitoring system

    International Nuclear Information System (INIS)

    This paper presents a web-based Job Monitoring framework for individual Grid sites that allows users to follow in detail their jobs in quasi-real time. The framework consists of several independent components : (a) a set of sensors that run on the site CE and worker nodes and update a database, (b) a simple yet extensible web services framework and (c) an Ajax powered web interface having a look-and-feel and control similar to a desktop application. The monitoring framework supports LSF, Condor and PBS-like batch systems. This is one of the first monitoring systems where an X.509 authenticated web interface can be seamlessly accessed by both end-users and site administrators. While a site administrator has access to all the possible information, a user can only view the jobs for the Virtual Organizations (VO) he/she is a part of. The monitoring framework design supports several possible deployment scenarios. For a site running a supported batch system, the system may be deployed as a whole, or existing site sensors can be adapted and reused with the web services components. A site may even prefer to build the web server independently and choose to use only the Ajax powered web interface. Finally, the system is being used to monitor a glideinWMS instance. This broadens the scope significantly, allowing it to monitor jobs over multiple sites.

  17. Design Studies of the Calorimeter Systems for the sPHENIX Experiment at RHIC and Future Upgrade Plans

    International Nuclear Information System (INIS)

    The PHENIX Experiment at RHIC is planning a series of major upgrades that will enable a comprehensive measurement of jets in relativistic heavy ion collisions, provide enhanced physics capabilities for studying nucleon-nucleus and polarized proton collisions, and allow a detailed study of electron-nucleus collisions at the Electron Ion Collider at Brookhaven (eRHIC). The first of these upgrades, sPHENIX, will be based on the former BaBar magnet and will include a hadronic calorimeter and new electromagnetic calorimeter that will cover ±1.1 units in pseudorapidity and 2π in azimuth in the central region, resulting in a factor of 6 increase in acceptance over the present PHENIX detector. The electromagnetic calorimeter will be a tungsten scintillating fiber design with a radiation length ∼ 7 mm and a Moliere radius ∼ 2 cm. It will have a total depth of ∼ 18 radiation lengths and an energy resolution ∼ 15%/√E. The hadronic calorimeter will consist of steel plates with scintillating tiles in between that are read out with wavelength shifting fibers, It will have a total depth of ∼ 5 interaction lengths and an energy resolution 100%/√E. Both calorimeters will use silicon photomultipliers as the readout sensor. Detailed design studies and Monte Carlo simulations for both calorimeters have been carried out and prototype detectors have been constructed and tested in a test beam at Fermilab in February 2014. This contribution describes these design studies for the sPHENIX experiment and its future upgrade plans at RHIC

  18. Design Studies of the Calorimeter Systems for the sPHENIX Experiment at RHIC and Future Upgrade Plans

    Science.gov (United States)

    Woody, C.; Kistenev, E.; PHENIX Collaboration

    2015-02-01

    The PHENIX Experiment at RHIC is planning a series of major upgrades that will enable a comprehensive measurement of jets in relativistic heavy ion collisions, provide enhanced physics capabilities for studying nucleon-nucleus and polarized proton collisions, and allow a detailed study of electron-nucleus collisions at the Electron Ion Collider at Brookhaven (eRHIC). The first of these upgrades, sPHENIX, will be based on the former BaBar magnet and will include a hadronic calorimeter and new electromagnetic calorimeter that will cover ±1.1 units in pseudorapidity and 2π in azimuth in the central region, resulting in a factor of 6 increase in acceptance over the present PHENIX detector. The electromagnetic calorimeter will be a tungsten scintillating fiber design with a radiation length ~ 7 mm and a Moliere radius ~ 2 cm. It will have a total depth of ~ 18 radiation lengths and an energy resolution ~ 15%/√E. The hadronic calorimeter will consist of steel plates with scintillating tiles in between that are read out with wavelength shifting fibers, It will have a total depth of ~ 5 interaction lengths and an energy resolution 100%/√E. Both calorimeters will use silicon photomultipliers as the readout sensor. Detailed design studies and Monte Carlo simulations for both calorimeters have been carried out and prototype detectors have been constructed and tested in a test beam at Fermilab in February 2014. This contribution describes these design studies for the sPHENIX experiment and its future upgrade plans at RHIC.

  19. A calorimeter with array detectors

    International Nuclear Information System (INIS)

    A 5 x 25 = 125 detector array has been designed for a calorimeter. Each element is consisted of a graphite block and a chromel-alumel. A new '0'-point set up was designed by using the critical temperature of the liquid nitrogen as the '0'-point of the temperature. A FY-1 data acquisition system was used for the detector array. The energy distribution of the electron beam has been measured on large-area diode with the system

  20. Operation of the enhanced ATLAS First Level Calorimeter Trigger at the start of LHC Run-2

    CERN Document Server

    Palka, Marek; The ATLAS collaboration

    2015-01-01

    In 2015 the LHC is already operating with a higher center-of-mass energy and proton beams luminosity. To keep a high trigger efficiency against an increased event rate, part of ATLAS Level-1 Calorimeter Trigger electronics have been re-designed or newly introduced (Pre-Processors, Merging Modules and Topological Processors). Additionally, to achieve the best possible resolution for the reconstructed physics objects, complex calibration and monitoring systems are employed. Hit rates and energy spectra down to channel level, based on reconstructed events, are supervised with the calorimeter trigger hardware. In this paper the performance of the upgraded Level-1 Calorimeter Trigger at the beginning of LHC Run-2 is illustrated.

  1. Software studies of GLD calorimeter

    Indian Academy of Sciences (India)

    H Matsunaga

    2007-12-01

    The baseline design of the GLD calorimeter is scintillator-strip arrays interleaved with absorber plates. We present preliminary performance studies of the hit clustering with this calorimeter using a simulator. Also, simulation results of a `digital' calorimeter, which is an option of the GLD calorimeter, are presented.

  2. Monitoring the DIRAC distributed system

    CERN Document Server

    Santinelli, R; Nandakumar, R

    2010-01-01

    DIRAC, the LHCb community Grid solution, is intended to reliably run large data mining activities. The DIRAC system consists of various services (which wait to be contacted to perform actions) and agents (which carry out periodic activities) to direct jobs as required. An important part of ensuring the reliability of the infrastructure is the monitoring and logging of these DIRAC distributed systems. The monitoring is done collecting information from two sources – one is from pinging the services or by keeping track of the regular heartbeats of the agents, and the other from the analysis of the error messages generated both by agents and services and collected by a logging system. This allows us to ensure that the components are running properly and to collect useful information regarding their operations. The process status monitoring is displayed using the SLS sensor mechanism that also automatically allows to plot various quantities and keep a history of the system. A dedicated GridMap interface (Service...

  3. Upgrading the ATLAS fast calorimeter simulation

    CERN Document Server

    Hubacek, Zdenek; The ATLAS collaboration

    2016-01-01

    Many physics and performance studies with the ATLAS detector at the Large Hadron Collider require very large samples of simulated events, and producing these using the full GEANT4 detector simulation is highly CPU intensive. Often, a very detailed detector simulation is not needed, and in these cases fast simulation tools can be used to reduce the calorimeter simulation time. In ATLAS, a fast simulation of the calorimeter systems was developed, called Fast Calorimeter Simulation (FastCaloSim). It provides a parametrized simulation of the particle energy response at the calorimeter read-out cell level. It is interfaced to the standard ATLAS digitization and reconstruction software, and can be tuned to data more easily than with GEANT4. An improved parametrization is being developed, to eventually address shortcomings of the original version. It makes use of statistical techniques such as principal component analysis, and a neural network parametrization to optimise the amount of information to store in the ATL...

  4. Heater drain system transient monitoring

    International Nuclear Information System (INIS)

    Feedwater heater drain systems are susceptible to unstable, two phase flow conditions. These instabilities are difficult to predict and are dependent on plant-specific system designs and operating conditions. Therefore, significant vibrations and transient events can occur that the systems are not specifically designed for. This paper describes how heater drain system responses due to unanticipated transient events at a nuclear plant were captured and quantified using a digital data acquisition system. The setup of the data acquisition system, including the determination of what parameters to monitor and how to effectively capture potential transient events, is discussed. This paper also discusses the monitoring results and their relevance to system modification evaluations and root cause evaluations

  5. A Novel Radiation Monitoring System

    International Nuclear Information System (INIS)

    An ultra reliable radiation monitoring system is essential in order to provide safety to the workers in nuclear plants. The system should be able to detect minor fluctuations of the radiation field and activate an alarm when file radiation field exceeds predefined thresholds. The system implementation requires qualification for nuclear applications such as IEEE 323 and IEC 61503. In this paper such system is presented, it is a novel modular system that provides reliable monitoring of y radiation field. Although such systems were developed in the past, the presented system is based on modern electronics and 'went file extra mile' to provide a very high reliability achieved by using sophisticated methods of BIT (Built In Test) and feedback loops

  6. Performance of the Demonstrator System for the Phase-I Upgrade of the Trigger Readout Electronics of the ATLAS Liquid Argon Calorimeters

    International Nuclear Information System (INIS)

    For the Phase-I luminosity upgrade of the LHC a higher granularity trigger readout of the ATLAS LAr Calorimeters is foreseen to enhance the trigger feature extraction and background rejection. The new readout system digitizes the detector signals, which are grouped into 34000 so-called Super Cells, with 12 bit precision at 40 MHz and transfers the data on optical links to the digital processing system, which extracts the Super Cell energies. A demonstrator version of the complete system has now been installed and operated on the ATLAS detector. Results from the commissioning and performance measurements are reported

  7. Performance of the Demonstrator System for the Phase-I Upgrade of the Trigger Readout Electronics of the ATLAS Liquid-Argon Calorimeters

    CERN Document Server

    Dumont Dayot, Nicolas; The ATLAS collaboration

    2015-01-01

    For the Phase-I luminosity upgrade of the LHC a higher granularity trigger readout of the ATLAS LAr Calorimeters is foreseen in order to enhance the trigger feature extraction and background rejection. The new readout system digitizes the detector signals, which are grouped into 34000 so-called Super Cells, with 12 bit precision at 40 MHz and transfers the data on optical links to the digital processing system, which extracts the Super Cell energies. A demonstrator version of the complete system has now been installed and operated on the ATLAS detector. Results from the commissioning and performance measurements will be reported.

  8. Performance of the Demonstrator System for the Phase-I Upgrade of the Trigger Readout Electronics of the ATLAS Liquid Argon Calorimeters

    CERN Document Server

    Dumont Dayot, Nicolas; The ATLAS collaboration

    2015-01-01

    For the Phase-I luminosity upgrade of the LHC a higher granularity trigger readout of the ATLAS LAr Calorimeters is foreseen in order to enhance the trigger feature extraction and background rejection. The new readout system digitizes the detector signals, which are grouped into 34000 so-called Super Cells, with 12 bit precision at 40 MHz and transfers the data on optical links to the digital processing system, which extracts the Super Cell energies. A demonstrator version of the complete system has now been installed and operated on the ATLAS detector. Results from the commissioning and performance measurements will be reported.

  9. Calorimeter Process Variable Archiving

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, David; /Fermilab

    2002-01-14

    These steps were taken to maintain weekly archives: (1) Friday morning you stop the archiver and wait for it to finish writing data (the lock file will be removed from the directory); (2) move the current archive information to a PC via FTP; (3) remove all previous archive information in the previous directory; (4) move the current archive into the previous directory; (5) start a new archive; (6) burn a CDROM of the archive; and (7) copy the current archive to a specific directory. There are 2 ways to check if the Calorimeter Archiver is running, either through the WEB based front end or directly from a command line. Once the archiver is running it can be monitored from a WEB page. This only works with a browser launched from the online machine running the archiver. Each time the browser is reloaded there should be an update reported in the last write check field. You might have to wait a few minutes to see the update. Calorimetry currently takes readings every (300 sec.) 5 minutes. The second method to verify the archiver is running is to issue a command from a Linux cluster machine.

  10. Database usage for the CMS ECAL Laser Monitoring System

    CERN Document Server

    Timciuc, Vladlen

    2009-01-01

    The CMS detector at LHC is equipped with a high precision electromagnetic crystal calorimeter (ECAL). The crystals experience a transparency change when exposed to radiation during LHC operation, which recovers in absents of irradiation on the time scale of hours. This change of the crystal response is monitored with a laser system which performs a transparency measurement of each crystal of the ECAL within twenty minutes. The monitoring data is analyzed on a PC farm attached to the central data acquisition system of CMS. After analyzing the raw data, a reduced data set is stored in the Online Master Data Base (OMDS) which is connected to the online computing infrastructure of CMS. The data stored in OMDS, representing the largest data set stored in OMDS for ECAL, contains all necessary information to perform a detailed crystal response monitoring as well as an analysis of the dynamics of the transparency change. For the CMS physics event data reconstruction, only a reduced set of information from the transpa...

  11. Evaluation of Radiation Monitoring System

    International Nuclear Information System (INIS)

    As a part of the continuous improvement policy of the NRCN, a novel radiation monitoring system is being developed. The challenge in developing such a system is to assure that the system provides safety improvement. In order to achieve this goal, a set of parameters was defined to estimate the safety performance of the current system. The values of these parameters will be used as a reference for a comparison between the current system and the developed one. This paper describes the method for evaluating the defined parameters: stability and accuracy of the ionization current and the response time of the system

  12. The essential systems status monitor

    International Nuclear Information System (INIS)

    Installation of the Essential Systems Status Monitor (ESSM) at the CEGB's Heysham II Nuclear Power Station in the United Kingdom was completed in 1987. This software system is based on fault tree analysis techniques and provides on-line facilities to allow plant operators to quickly perform probabilistic systems availability assessments in an interactive environment. This paper discusses the functions and techniques of the Heysham ESSM together with many new features which have already been implemented in a prototype version 2 module. (author)

  13. GTA Beamloss-Monitor System

    International Nuclear Information System (INIS)

    The GTA Beamless-Monitor System at Los Alamos National Laboratory has been designed to detect high-energy particle loss in the accelerator beamline and shut down the accelerator before any damage can occur. To do this, the Beamless-Monitor System measures the induced gamma radiation, from (p, γ) reactions, at 15 selected points along the beamline, converts this measured radiation to electrical signals integrates and compares them to preset limits, and, in the event of an over-limit condition causes the Fast-Protect System to shut down the entire accelerator. The system dynamic range exceeds 70 dB which will enable experimenters to use the Beamless-Monitor System to help steer the beam as well as provide signals for a Fast-Protect System. The system response time is less than 7 μs assuming a step-function, worst-case beam spill of 50 mA. The system resolution, based on the noise floor of the electronics is about 1.3 mRads/s. Production units have been built and meet the above specifications. The remainder of the system will be installed and tested later in 1992/1993 with the GTA accelerator. The ionization chamber sensitivity and response time are described in the paper

  14. Integrator based read-out in Tile Calorimeter of the ATLAS experiment

    CERN Document Server

    Gonzalez, G; The ATLAS collaboration

    2011-01-01

    TileCal, the central hadronic calorimeter of the ATLAS experiment at the CERN Large Hadron Collider (LHC), is built of steel and scintillating tiles with redundant readout by optical fibers and uses photomultipliers as photodetectors. It provides measurements for hadrons, jets and missing transverse energy. To equalize the response of individual TileCal cells with a precision better than 1% and to monitor the response of each cell over time, a calibration and monitoring system based on a Cesium 137 radioactive source driven through the calorimeter volume by liquid flow has been implemented. This calibration system relies on dedicated readout chain based on slow integrators that read currents from the TileCal photomultipliers averaged over milliseconds during the calibration runs. During the LHC collisions the TileCal integrator based readout provides monitoring of the beam conditions and of the stability of the TileCal optics, including stability of the photomultiplier gains. The work to be presented will foc...

  15. The ZEUS uranium calorimeter

    International Nuclear Information System (INIS)

    The uranium-scintillator calorimeter of the ZEUS experiment in the HERA electron proton collider at DESY in Hamburg, Germany, is described. It covers 99.8% of the solid angle, has an energy resolution 35%/√E for single hadrons and jets, and 17.5%/√E for electrons. e/h is 1 within 2% in energy range of 2 to 100 GeV. Test beam results show that inter calibration at the 1% level is achievable using uranium radioactivity. The calorimeter was commissioned in April 1992, and has been taken data since May 1992. Main characteristics of the calorimeter construction, readout, and trigger were reviewed. Experience from the first data taking period, including results on noise, stability of calibration, background from HERA accelerator, and performance of the calorimeter trigger is discussed. (author). 28 refs., 21 figs., 1 tab

  16. Calorimeters for biotechnology

    International Nuclear Information System (INIS)

    The isothermal and temperature scanning calorimeters manufactured by Calorimetry Sciences Corporation are briefly described. Applications of calorimetry to determine thermodynamics and kinetics of reactions of interest in biotechnology are described with illustrative examples

  17. Power Transformer Intelligence Monitor System

    Institute of Scientific and Technical Information of China (English)

    Sun Jianshe; Shi Lei

    2006-01-01

    An auto-monitoring system has been created that could monitor the main parameter of power transformers. It reads data of V&I by precision rectifier circuit and amplifier, and converted electric energy into pulse signal by means of sensor technique and pulse converter circuit, it is sent into microcomputer to process, completed monitoring to power transformer parameters and running state by software system. It can register all kinds of key data, and provide all kinds of virtual technical data for managing sections and can auto-form all kinds of electric annual reports and monthly reports analysis graphs such as managing graphs. It notably improves the safety and reliability of transformer, with strong anti-jamming technique and unique function, it can be used on the transformers in railway' s self-closing lines and all kinds of transformer stations.

  18. Last Few Metres for the Barrel Calorimeter

    CERN Multimedia

    Nyman, T.

    On Friday 4th November, the ATLAS Barrel Calorimeter was moved from its assembly point at the side of the ATLAS cavern to the centre of the toroidal magnet system. The detector was finally aligned, to the precision of within a millimetre, on Wednesday 9th November. The ATLAS installation team, led by Tommi Nyman, after having positioned the Barrel Calorimeter in its final location in the ATLAS experimental cavern UX15. The Barrel Calorimeter which will absorb and measure the energy of photons, electrons and hadrons at the core of the ATLAS detector is 8.6 meters in diameter, 6.8 meters long, and weighs over 1600 Tonnes. It consists of two concentric cylindrical detector elements. The innermost comprises aluminium pressure vessels containing the liquid argon electromagnetic calorimeter and the solenoid magnet. The outermost is an assembly of 64 hadron tile calorimeter sectors. Assembled 18 meters away from its final position, the Barrel Calorimeter was relocated with the help of a railway, which allows ...

  19. ATLAS: last few metresfor the Calorimeter

    CERN Multimedia

    2005-01-01

    On Friday 4th November, the ATLAS Barrel Calorimeter was moved from its assembly point at the side of the ATLAS cavern to the centre of the toroidal magnet system. The detector was finally aligned, to the precision of within a millimetre, on Wednesday 9th November. The ATLAS installation team, led by Tommi Nyman, after having positioned the Barrel Calorimeter in its final location in the ATLAS experimental cavern UX15. The Barrel Calorimeter which will absorb and measure the energy of photons, electrons and hadrons at the core of the ATLAS detector is 8.6 meters in diameter, 6.8 meters long, and weighs over 1600 Tonnes. It consists of two concentric cylindrical detector elements. The innermost comprises aluminium pressure vessels containing the liquid argon electromagnetic calorimeter and the solenoid magnet. The outermost is an assembly of 64 hadron tile calorimeter sectors. Assembled 18 meters away from its final position, the Barrel Calorimeter was relocated with the help of a railway, which allows the ...

  20. Design and operating experience with electric systems for high rate liquid argon calorimeters

    International Nuclear Information System (INIS)

    A number of experiments have been instrumented by an ADC scheme utilizing an integrated amplifier, a packaged delay line, the difference of two samples taken Before and After the signal exits the delay, and a multiplexer to a single ADC for a system. Design features, operating peculiarities, and experience to date are discussed

  1. Thermoluminescence dosimetry environmental monitoring system

    International Nuclear Information System (INIS)

    In this report, characteristics and performances of an environmental monitoring system with thermoluminescence dosimetry are presented. Most of the work deals with the main physical parameters necessary for measurements of ambiental dose. At the end of this report some of level doses in the environment around the site of the ENEA Center of Energy Research Salluggia (Italy) are illustrated

  2. Calorimeter operating system implemented on a Z-80 microcomputer in read only memory

    International Nuclear Information System (INIS)

    The operations necessary for nondestructive, calorimetric determination of the power in watts of a radioactive sample were implemented on a Z-80 based microprocessor. The resulting system reduces the size of the analyzer electronics and determines the sample value independent of operator calculations. The time required for analysis is reduced approximately 40% using the prediction of equilibration technique. The system is capable of running in stand-alone mode or in the remote in communication with a minicomputer. All running operations can be controlled remotely from the minicomputer over an RS-232 serial communications link. This package reduces the cost of the electronics by some $7000 to $10,000 while maintaining a 0.5 μV out of 1.0 V resolution. This report describes the Z-80 microprocessor and associated equipment used

  3. ATLAS tile calorimeter cesium calibration control and analysis software

    International Nuclear Information System (INIS)

    An online control system to calibrate and monitor ATLAS Barrel hadronic calorimeter (TileCal) with a movable radioactive source, driven by liquid flow, is described. To read out and control the system an online software has been developed, using ATLAS TDAQ components like DVS (Diagnostic and Verification System) to verify the hardware before running, IS (Information Server) for data and status exchange between networked computers, and other components like DDC (DCS to DAQ Connection), to connect to PVSS-based slow control systems of Tile Calorimeter, high voltage and low voltage. A system of scripting facilities, based on Python language, is used to handle all the calibration and monitoring processes from hardware perspective to final data storage, including various abnormal situations. A QT based graphical user interface to display the status of the calibration system during the cesium source scan is described. The software for analysis of the detector response, using online data, is discussed. Performance of the system and first experience from the ATLAS pit are presented

  4. Wearable vital parameters monitoring system

    Science.gov (United States)

    Caramaliu, Radu Vadim; Vasile, Alexandru; Bacis, Irina

    2015-02-01

    The system we propose monitors body temperature, heart rate and beside this, it tracks if the person who wears it suffers a faint. It uses a digital temperature sensor, a pulse sensor and a gravitational acceleration sensor to monitor the eventual faint or small heights free falls. The system continuously tracks the GPS position when available and stores the last valid data. So, when measuring abnormal vital parameters the module will send an SMS, using the GSM cellular network , with the person's social security number, the last valid GPS position for that person, the heart rate, the body temperature and, where applicable, a valid fall alert or non-valid fall alert. Even though such systems exist, they contain only faint detection or heart rate detection. Usually there is a strong correlation between low/high heart rate and an eventual faint. Combining both features into one system results in a more reliable detection device.

  5. ENERGY MONITORING SYSTEM BERBASIS WEB

    Directory of Open Access Journals (Sweden)

    Novan Zulkarnain

    2013-11-01

    Full Text Available Government through the Ministry of Energy and Mineral Resources (ESDM encourages the energy savings at whole buildings in Indonesia. Energy Monitoring System (EMS is a web-based solution to monitor energy usage in a building. The research methods used are the analysis, prototype design and testing. EMS consists of hardware which consists of electrical sensors, temperature-humidity sensor, and a computer. Data on EMS are designed using Modbus protocol, stored in MySQL database application, and displayed on charts through Dashboard on LED TV using PHP programming.

  6. Performance of the ATLAS hadronic Tile calorimeter

    CERN Document Server

    Bartos, Pavol; The ATLAS collaboration

    2016-01-01

    Performance of the ATLAS hadronic Tile calorimeter The Tile Calorimeter (TileCal) of the ATLAS experiment at the LHC is the central hadronic calorimeter designed for energy reconstruction of hadrons, jets, tau-particles and missing transverse energy. TileCal is a scintillator-steel sampling calorimeter and it covers the region of pseudorapidity < 1.7. The scintillation light produced in the scintillator tiles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The analog signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. The TileCal frontend electronics reads out the signals produced by about 10000 channels measuring energies ranging from ~30 MeV to ~2 TeV. Each stage of the signal production from scintillation light to the signal reconstruction is monitored and calibrated. The performance of the calorimeter have been studied in-situ employing cosmic ray muons and a large sample of proton-proton collisions acquired during the operations o...

  7. Intrusion Detection System: Security Monitoring System

    OpenAIRE

    ShabnamNoorani,; Sharmila Gaikwad Rathod

    2015-01-01

    An intrusion detection system (IDS) is an ad hoc security solution to protect flawed computer systems. It works like a burglar alarm that goes off if someone tampers with or manages to get past other security mechanisms such as authentication mechanisms and firewalls. An Intrusion Detection System (IDS) is a device or a software application that monitors network or system activities for malicious activities or policy violations and produces reports to a management station.Intrusio...

  8. Complementary neutron flux monitoring system

    International Nuclear Information System (INIS)

    The present work is an example for that, how with modern technical instruments it is possible to compensate disadvantage and to increase technical resources of the old systems, without a change of given system totally with new one. The system detail design and implementation was possible mostly, due to the international conferences and courses organized by IAEA and technical information provided by the agency. The system acts as a complementary to the existing systems for the reactor core neutron flux monitoring AKNP. The new system extends the measurement range of the original AKNP system approximately by two decades. It allows neutron flux to be monitored during refuelling. The system is permitted for use by Bulgarian Nuclear Safety Authority - CUAEPP. The system also calculates the reactivity and thus allows the operator to monitor the criticality condition very precisely. The system calculates also the period of the reactor and has adjustable setpoints at two levels for alarm and pre-alarm, both for counting rate and period. The system sends the analog signals for the counting rate and for the period as well as digital signals for the alarm and pre-alarm to the refueling machine cabin for on-line control. It also produces sound and blinks (LEDs) if any setpoint is reached. It should be mentioned that the refueling machine panel do not need additional power supply and thus high reliability is achieved. The system automatically stores the data for neutron flux, period, reactivity, alarm and prealarm state and value, reactor kinetic parameters(β,λ and source) on hard disk. The stored data can be reviewed very easy and printed. Depending on the hard disk capacity the storage period can be longer than a year. The old system for neutron flux monitoring during refuelling, which operated with 3 removable neutron fission chambers KNT-54 located next to the reactor core is now obsolete and is decommissioned. This have the significant impact on personnel dose

  9. Calibrating and preserving the energy scale of the Tile Calorimeter cells during four years of LHC data-taking

    CERN Document Server

    Dubreuil, E; The ATLAS collaboration

    2013-01-01

    TileCal is the hadronic calorimeter covering the most central region of ATLAS experiment at the LHC. This sampling calorimeter uses iron plates as absorber and plastic scintillating tiles as the active material. Scintillation light produced in the tiles is transmitted by wavelength shifting fibers to photomultipliers tubes (PMTs). The resulting electronic signals from the approximatively 10000 PMTs are measured and digitized every 25 ns before being transferred to off-detector data-acquisition systems. A set of calibration systems allow to monitor and equalize the calorimeter at each stage of the signal production, from scintillation light to digitization. This calibration suite is based on signal generation from different sources: A Cs radioactive source, laser light, charge injection and charge integration over thousands of bunch crossings of minimum bias events produced in proton-proton collisions. This contribution presents a brief description of the different TileCal calibration systems and their perform...

  10. Design, Performance, and Calibration of CMS Hadron Endcap Calorimeters

    CERN Document Server

    Baiatian, G; Emeliantchik, Igor; Massolov, V; Shumeiko, Nikolai; Stefanovich, R; Damgov, Jordan; Dimitrov, Lubomir; Genchev, Vladimir; Piperov, Stefan; Vankov, Ivan; Litov, Leander; Bencze, Gyorgy; Laszlo, Andras; Pal, Andras; Vesztergombi, Gyorgy; Zálán, Peter; Fenyvesi, Andras; Bawa, Harinder Singh; Beri, Suman Bala; Bhatnagar, Vipin; Kaur, Manjit; Kohli, Jatinder Mohan; Kumar, Arun; Singh, Jas Bir; Acharya, Bannaje Sripathi; Banerjee, Sunanda; Banerjee, Sudeshna; Chendvankar, Sanjay; Dugad, Shashikant; Kalmani, Suresh Devendrappa; Katta, S; Mazumdar, Kajari; Mondal, Naba Kumar; Nagaraj, P; Patil, Mandakini Ravindra; Reddy, L; Satyanarayana, B; Sharma, Seema; Sudhakar, Katta; Verma, Piyush; Hashemi, Majid; Mohammadi-Najafabadi, M; Paktinat, S; Babich, Kanstantsin; Golutvin, Igor; Kalagin, Vladimir; Kamenev, Alexey; Konoplianikov, V; Kosarev, Ivan; Moissenz, K; Moissenz, P; Oleynik, Danila; Petrosian, A; Rogalev, Evgueni; Semenov, Roman; Sergeyev, S; Shmatov, Sergey; Smirnov, Vitaly; Vishnevskiy, Alexander; Volodko, Anton; Zarubin, Anatoli; Druzhkin, Dmitry; Ivanov, Alexander; Kudinov, Vladimir; Orlov, Alexandre; Smetannikov, Vladimir; Gavrilov, Vladimir; Gershtein, Yuri; Ilyina, N; Kaftanov, Vitali; Kisselevich, I; Kolossov, V; Krokhotin, Andrey; Kuleshov, Sergey; Litvintsev, Dmitri; Ulyanov, A; Safronov, Grigory; Semenov, Sergey; Stolin, Viatcheslav; Demianov, A; Gribushin, Andrey; Kodolova, Olga; Petrushanko, Sergey; Sarycheva, Ludmila; Teplov, V; Vardanyan, Irina; Yershov, A; Abramov, Victor; Goncharov, Petr; Kalinin, Alexey; Khmelnikov, Alexander; Korablev, Andrey; Korneev, Yury; Krinitsyn, Alexander; Kryshkin, V; Lukanin, Vladimir; Pikalov, Vladimir; Ryazanov, Anton; Talov, Vladimir; Turchanovich, L; Volkov, Alexey; Camporesi, Tiziano; de Visser, Theo; Vlassov, E; Aydin, Sezgin; Bakirci, Mustafa Numan; Cerci, Salim; Dumanoglu, Isa; Eskut, Eda; Kayis-Topaksu, A; Koylu, S; Kurt, Pelin; Onengüt, G; Ozkurt, Halil; Polatoz, A; Sogut, Kenan; Topakli, Huseyin; Vergili, Mehmet; Yetkin, Taylan; Cankoc, K; Esendemir, Akif; Gamsizkan, Halil; Güler, M; Ozkan, Cigdem; Sekmen, Sezen; Serin-Zeyrek, M; Sever, Ramazan; Yazgan, Efe; Zeyrek, Mehmet; Deliomeroglu, Mehmet; Gülmez, Erhan; Isiksal, Engin; Kaya, Mithat; Ozkorucuklu, Suat; Levchuk, Leonid; Sorokin, Pavel; Grynev, B; Lyubynskiy, Vadym; Senchyshyn, Vitaliy; Hauptman, John M; Abdullin, Salavat; Elias, John E; Elvira, D; Freeman, Jim; Green, Dan; Los, Serguei; ODell, V; Ronzhin, Anatoly; Suzuki, Ichiro; Vidal, Richard; Whitmore, Juliana; Arcidy, M; Hazen, Eric; Heering, Arjan Hendrix; Lawlor, C; Lazic, Dragoslav; Machado, Emanuel; Rohlf, James; Varela, F; Wu, Shouxiang; Baden, Drew; Bard, Robert; Eno, Sarah Catherine; Grassi, Tullio; Jarvis, Chad; Kellogg, Richard G; Kunori, Shuichi; Mans, Jeremy; Skuja, Andris; Podrasky, V; Sanzeni, Christopher; Winn, Dave; Akgun, Ugur; Ayan, S; Duru, Firdevs; Merlo, Jean-Pierre; Mestvirishvili, Alexi; Miller, Michael; Norbeck, Edwin; Olson, Jonathan; Onel, Yasar; Schmidt, Ianos; Akchurin, Nural; Carrell, Kenneth Wayne; Gusum, K; Kim, Heejong; Spezziga, Mario; Thomas, Ray; Wigmans, Richard; Baarmand, Marc M; Mermerkaya, Hamit; Ralich, Robert; Vodopiyanov, Igor; Kramer, Laird; Linn, Stephan; Markowitz, Pete; Cushman, Priscilla; Ma, Yousi; Sherwood, Brian; Cremaldi, Lucien Marcus; Reidy, Jim; Sanders, David A; Karmgard, Daniel John; Ruchti, Randy; Fisher, Wade Cameron; Tully, Christopher; Bodek, Arie; De Barbaro, Pawel; Budd, Howard; Chung, Yeon Sei; Haelen, T; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Barnes, Virgil E; Laasanen, Alvin T

    2008-01-01

    Detailed measurements have been made with the CMS hadron calorimeter endcaps (HE) in response to beams of muons, electrons, and pions. Readout of HE with custom electronics and hybrid photodiodes (HPDs) shows no change of performance compared to readout with commercial electronics and photomultipliers. When combined with lead-tungstenate crystals, an energy resolution of 8\\% is achieved with 300 GeV/c pions. A laser calibration system is used to set the timing and monitor operation of the complete electronics chain. Data taken with radioactive sources in comparison with test beam pions provides an absolute initial calibration of HE to approximately 4\\% to 5\\%.

  11. Design and performance of the SAPHIR lead-glass calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Baumeister, H.; Beckmann, P.; Berger, F.; Brummund, N.; Clewing, G.; Dragon, L.; Glasow, R.; Grzonka, D.; Hassenmeier, W.; Kampert, K.H.; Loehner, H.; Peitzmann, T.; Purschke, M.; Santo, R.; Verhoeven, W.; Wienke, R. (Muenster Univ. (Germany, F.R.). Inst. fuer Kernphysik); CERN-SPS WA80 Collaboration

    1990-06-15

    For the WA80 fixed-target heavy-ion experiment at the CERN-SPS, a 1278 element lead-glass calorimeter has been constructed to measure photons in the energy range from 0.2 to 20 GeV. We describe the design of the detector, the achieved energy and position resolution, the gain monitoring system and the performance of the high-energy photon trigger. The quality of photon identification and {pi}{sup 0} invariant mass reconstruction is discussed. (orig.).

  12. The LHCb EM calorimeter and π0 detection

    International Nuclear Information System (INIS)

    The LHCb calorimeter system comprises a preshower detector, an electromagnetic and a hadronic calorimeter. The purpose of the calorimeters is to identify and provide an energy and position measurement of photons, electrons and hadrons. The calorimeters are an essential part of the LHCb trigger, and are used in offline analysis. Good photon identification is important for the study of B decays with π0s in the final state, an example of which is the Bd0→ π+π-π0 decay. This provides an alternative channel to Bd0→ π+π- for the measurement of the angle α of the unitarity triangle

  13. HADRON CALORIMETER (HCAL)

    CERN Multimedia

    A. Skuja

    HCAL installation and commissioning is approaching completion. Work continues on commissioning of HE-, HF- and the minus wheels of HO. We expect that all commissioning will be completed by mid-March. HCAL commissioning is interleaved with integration of HCAL and the Global Calorimeter Trigger (GCT). HCAL is attempting to take data using the HPD self-trigger as part of the GCT trigger path. Initial attempts in mid-February have not succeeded. Work continues on HCAL and the GCT. HPD lifetimes at 4 Tesla are being measured in Princeton. After more than a month of testing in a 4 Tesla field there are no sur¬prises. As the lifetime measurements proceed, the HPD response at intermediate fields of 1 Tesla will be verified and analyzed. Work also continues on HCAL calibration and DCS/DSS at Point 5. More details for some of the subsystems are presented in what follows. HE HE plus The cooling system of HE+ is functional now. The HE+ final connections to the LV system are complete. LV and HV tests to ev...

  14. HADRON CALORIMETER (HCAL)

    CERN Multimedia

    A. Skuja

    During the last 3 months commissioning of HCAL has continued for HO and HE+. We have also started the commissioning of the first wedge of HB+. Progress continues to be made by our Trigger/DAQ, DCS and DPG colleagues. HF will be used to obtain a Luminosity measurement for CMS. A first test of the modifications to the HF electronics was made in the August CMS global run. In addition to installation and commissioning of various parts of HCAL, we also completed a very successful summer Test Beam period which saw measurements of the combined HE/EE/ES calorimeter system in the H2 test beam. Installation and Commissioning a. HB commissioning This week, part of the final water-cooling system for HB was commissioned. Eighteen HB- wedges and two pilot wedges on HB+ have been connected to the water circuit on YB0. On Sept 6, 2007 cabling and commissioning was started for the first HB readout box (RBX) using temporary set of cables. We have connected RBX-17 to the Low Voltage PS and the HCAL Detector Control Sy...

  15. 29 CFR 1954.2 - Monitoring system.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 9 2010-07-01 2010-07-01 false Monitoring system. 1954.2 Section 1954.2 Labor Regulations...) PROCEDURES FOR THE EVALUATION AND MONITORING OF APPROVED STATE PLANS General § 1954.2 Monitoring system. (a... Act, the Assistant Secretary has established a State Program Performance Monitoring System....

  16. Software Oriented Data Monitoring System

    CERN Document Server

    K, Phani Nandan

    2010-01-01

    This project "Software Oriented Data Monitoring System" deals with real time monitoring of patients' parameters like body temperature, heart rate etc. The parameters are checked at regular intervals and Short Messaging Service (SMS) is sent to concerned doctor regarding the measured values. If the obtained parameters are above or below critical values, an alert SMS is also sent to the concerned doctor. This system is very much useful in hospitals, which saves the valuable time of the doctor who otherwise will have to monitor the patients throughout the day. Here the analog data from the sensors is first converted into digital form and is fed to the parallel port of the computer. This data obtained is converted into useful parameters, which is monitored and checked for safe limits. Appropriate SMS is sent to the doctor depending on whether the request is from an alert or routine signal. This is possible by interfacing a mobile phone (Siemens c35i) to the serial port of the computer. The SMS is sent from the co...

  17. Corral Monitoring System assessment results

    International Nuclear Information System (INIS)

    This report describes the results of a functional and operational assessment of the Corral Monitoring Systems (CMS), which was designed to detect and document accountable items entering or leaving a monitored site. Its development was motivated by the possibility that multiple sites in the nuclear weapons states of the former Soviet Union might be opened to such monitoring under the provisions of the Strategic Arms Reduction Treaty. The assessment was performed at three levels. One level evaluated how well the planned approach addressed the target application, and which involved tracking sensitive items moving into and around a site being monitored as part of an international treaty or other agreement. The second level examined the overall design and development approach, while the third focused on individual subsystems within the total package. Unfortunately, the system was delivered as disassembled parts and pieces, with very poor documentation. Thus, the assessment was based on fragmentary operating data coupled with an analysis of what documents were provided with the system. The system design seemed to be a reasonable match to the requirements of the target application; however, important questions about site manning and top level administrative control were left unanswered. Four weaknesses in the overall design and development approach were detected: (1) poor configuration control and management, (2) inadequate adherence to a well defined architectural standard, (3) no apparent provision for improving top level error tolerance, and (4) weaknesses in the object oriented programming approach. The individual subsystems were found to offer few features or capabilities that were new or unique, even at the conceptual level. The CMS might possibly have offered a unique combination of features, but this level of integration was never realized, and it had no unique capabilities that could be readily extracted for use in another system

  18. Corral Monitoring System assessment results

    Energy Technology Data Exchange (ETDEWEB)

    Filby, E.E.; Haskel, K.J.

    1998-03-01

    This report describes the results of a functional and operational assessment of the Corral Monitoring Systems (CMS), which was designed to detect and document accountable items entering or leaving a monitored site. Its development was motivated by the possibility that multiple sites in the nuclear weapons states of the former Soviet Union might be opened to such monitoring under the provisions of the Strategic Arms Reduction Treaty. The assessment was performed at three levels. One level evaluated how well the planned approach addressed the target application, and which involved tracking sensitive items moving into and around a site being monitored as part of an international treaty or other agreement. The second level examined the overall design and development approach, while the third focused on individual subsystems within the total package. Unfortunately, the system was delivered as disassembled parts and pieces, with very poor documentation. Thus, the assessment was based on fragmentary operating data coupled with an analysis of what documents were provided with the system. The system design seemed to be a reasonable match to the requirements of the target application; however, important questions about site manning and top level administrative control were left unanswered. Four weaknesses in the overall design and development approach were detected: (1) poor configuration control and management, (2) inadequate adherence to a well defined architectural standard, (3) no apparent provision for improving top level error tolerance, and (4) weaknesses in the object oriented programming approach. The individual subsystems were found to offer few features or capabilities that were new or unique, even at the conceptual level. The CMS might possibly have offered a unique combination of features, but this level of integration was never realized, and it had no unique capabilities that could be readily extracted for use in another system.

  19. Semantic remote patient monitoring system.

    Science.gov (United States)

    Shojanoori, Reza; Juric, Radmila

    2013-02-01

    We propose an automated and personalized remote patient monitoring (RPM) system, which is applied to care homes and is dependent on the manipulation of semantics describing situations during patient monitoring in ontological models. Decision making in RPM is based on reasoning performed upon ontologies, which secures the delivery of appropriate e-health services in care homes. Our working experiment shows an example of preventive e-healthcare, but it can be extended to any situation that requires either urgent action from healthcare professionals or a simple recommendation during RPM. We use Semantic Web technology and OWL/SWRL-enabled ontologies to illustrate the proposal and feasibility of implementing this RPM system as a software solution in pervasive healthcare. It will be of interest to healthcare professionals, who can directly shape and populate the proposed ontological model, and software engineers, who would consider using OWL/SWRL when creating e-health services in general. PMID:23363406

  20. HADRON CALORIMETER (HCAL)

    CERN Multimedia

    D. Green

    The organization of CMS HCAL contains four “geographic” efforts, HB, HO, HE and HF. In addition there are presently five “common” HCAL activities. These ef¬forts are concentrated on electronics, on controls (DCS), on physics objects (JetMet), on Installation and Commissioning (I&C), and on Test Beam (TB) and Cosmic Challenge (MTCC) data taking. HCAL has begun planning to re-organize to be synchronized with the overall CMS management structure. HF The full production of the wedges is completed for some time. The 2004 test beam work has established the radioactive source calibration system for HF works at the 5 % level or better and a note is completed. The calibration of the complete HF is complete. HF is now in the UX cavern and will be hooked up and read out as soon as the services are available. HE The two HE calorimeters are installed and an initial calibration has been established. In the MTCC the HE was read out and muon data was observed. Event b...

  1. Monitoring system for thermal plasma

    International Nuclear Information System (INIS)

    In the Thermal plasma applications laboratory it has been the degradation project of oils for isolation in transformers. These are a very hazardous residues and at this time in the country they are stored in metal barrels. It has been the intention to undergo the oils to plasma for degradate them to non-hazardous residues. The system behavior must be monitored to establish the thermal plasma behavior. (Author)

  2. PC based vibration monitoring system

    International Nuclear Information System (INIS)

    Health of large rotating machinery gets reflected in the vibration signature of the rotor and supporting structures and proper recording of these signals and their analysis can give a clear picture of the health of the machine. Using these data and their trending, it is possible to predict an impending trouble in the machine so that preventive action can be taken in time and catastrophic failure can be avoided. Continuous monitoring and analysis can give quick warning and enable operator to take preventive measures. Reactor Control Division, BARC is developing a PC based Vibration monitoring system for turbo generator machinery. The System can acquire 20 vibration signals at a rate of 5000 samples per second and also 15 process signals at a rate of 100 samples/ sec. The software for vibration monitoring system includes acquisition modules, analysis modules and Graphical User Interface module. The acquisition module involves initialization, setting of required parameters and acquiring the data from PC-based data acquisition cards. The acquired raw vibration data is then stored for analysis using various software packages. The display and analysis of acquired data is done in LabVIEW 7.0 where the data is displayed in time as well as frequency domain along with the RMS value of the signal. (author)

  3. LHCb Calorimeter modules arrive at CERN

    CERN Multimedia

    2002-01-01

    Two of the three components of the LHCb Calorimeter system have started to arrive from Russia. Members of the LHCb Calorimeter group with the ECAL and HCAL modules that have just arrived at CERN. The first two of the 56 Hadron Calorimeter (HCAL) modules and 1200 of the 3300 modules of the Electromagnetic Calorimeter (ECAL) have reached CERN from Russia. The third part of the system, the Preshower detector, is still being prepared in Russia. The calorimeter system identifies and triggers on high-energy particles, namely electrons, hadrons and photons by measuring their positions and energies. The HCAL is going to be a pure trigger device. The ECAL will also be used in the triggering, but in addition it will reconstruct neutral pions and photons from B meson decays. One of the major aims of the LHCb experiment is to study CP violation through B meson decays including Bs mesons with high statistics in different decay modes. CP violation (violation of charge and parity) is necessary to explain why the Universe...

  4. ATLAS - End-Cap calorimeter

    CERN Multimedia

    2006-01-01

    The End-cap calorimeter was moved with the help of the rails and this calorimeter will measure the energy of particles close to the beam axis when protons collide. Cooling is important for maximum detector efficiency.

  5. Testing a liquid Argon calorimeter

    CERN Multimedia

    1976-01-01

    Physicists from Karlsruhe test a liquid argon calorimeter in the neutral beam b16 at the PS. The calorimeter was meant to supply some neutral particles identification at the Split-Field Magnet Facility for R416.

  6. Results from ATLAS Calorimeter Combined Test Beam

    CERN Document Server

    Tarrade, F

    2007-01-01

    Beam tests of combinations of ATLAS calorimeters have been performed both for the barrel and end cap parts. During a combined test beam in summer 2004 a slice of the ATLAS barrel detector - including all detector sub systems from the inner tracker, the calorimetry to the muon system - was exposed to particle beams (electrons, pions, photons, muons) with different energies (1GeV to 350GeV). The aim was to study the combined performance of the different detector sub systems in ATLAS-like conditions. We will present the electronics calibration scheme of the electromagnetic calorimeter and its implementation. The following studies on the combined testbeam data have been performed and will be presented: performance of the electromagnetic calorimetry down to very low energies (> GeV), photon reconstruction including converted photons and position measurements using the very precise ATLAS tracker and the electromagnetic calorimeter. These measurements have been compared to Monte Carlo simulations showing the good de...

  7. ALICE Zero Degree Calorimeter

    CERN Multimedia

    De Marco, N

    2013-01-01

    Two identical sets of calorimeters are located on both sides with respect to the beam Interaction Point (IP), 112.5 m away from it. Each set of detectors consists of a neutron (ZN) and a proton (ZP) Zero Degree Calorimeter (ZDC), positioned on remotely controlled platforms. The ZN is placed at zero degree with respect to the LHC beam axis, between the two beam pipes, while the ZP is positioned externally to the outgoing beam pipe. The spectator protons are separated from the ion beams by means of the dipole magnet D1.

  8. The SDC central calorimeter

    International Nuclear Information System (INIS)

    An overview of the calorimeter being designed and constructed by Solenoidal Detector Collaboration (SDC) for use at the Superconducting SuperCollider is presented. The collaboration have chosen to build a sampling calorimeter using scintillating tile with wavelength-shifter fiber readout as the detector medium, and absorber media of lead and iron for the electromagnetic and hadronic compartments. This choice was based on a substantial amount of R ampersand D and Monte Carlo simulation calculations, which showed that it both met the necessary experimental specifications in addition to being a cost effect design

  9. Simulation and validation of the ATLAS Tile Calorimeter response

    CERN Document Server

    Karpov, S N; The ATLAS collaboration

    2014-01-01

    The Tile Calorimeter (TileCal) is the central section of the ATLAS hadronic calorimeter at the Large Hadron Collider. Scintillation light produced in the tiles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The resulting electronic signals from approximately 10000 PMTs are measured and digitized before being transferred to off-detector data-acquisition systems.

  10. Hadron showers in a highly granular calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, Benjamin

    2010-11-15

    A future electron-positron collider like the planned International Linear Collider (ILC) needs excellent detectors to exploit the full physics potential. Different detector concepts have been evaluated for the ILC and two concepts on the particle-flow approach were validated. To make particle-flow work, a new type of imaging calorimeters is necessary in combination with a high performance tracking system, to be able to track the single particles through the full detector system. These calorimeters require an unprecedented level of both longitudinal and lateral granularity. Several calorimeter technologies promise to reach the required readout segmentation and are currently studied. This thesis addresses one of these: The analogue hadron calorimeter technology. It combines work on the technological aspects of a highly granular calorimeter with the study of hadron shower physics. The analogue hadron calorimeter technology joins a classical scintillator-steel sandwich design with a modern photo-sensor technology, the silicon photomultiplier (SiPM). The SiPM is a millimetre sized, magnetic field insensitive, and low cost photo-sensor, that opens new possibilities in calorimeter design. This thesis outlines the working principle and characteristics of these devices. The requirements for an application specific integrated circuit (ASIC) to read the SiPM are discussed; the performance of a prototype chip for SiPM readout, the SPIROC, is quantified. Also the SiPM specific reconstruction of a multi-thousand channel prototype calorimeter, the CALICE AHCAL, is explained; the systematic uncertainty of the calibration method is derived. The AHCAL does not only offer a test of the calorimeter technology, it also allows to record hadron showers with an unprecedented level of details. Test-beam measurements have been performed with the AHCAL and provide a unique sample for the development of novel analysis techniques and the validation of hadron shower simulations. A method to

  11. Hadron showers in a highly granular calorimeter

    International Nuclear Information System (INIS)

    A future electron-positron collider like the planned International Linear Collider (ILC) needs excellent detectors to exploit the full physics potential. Different detector concepts have been evaluated for the ILC and two concepts on the particle-flow approach were validated. To make particle-flow work, a new type of imaging calorimeters is necessary in combination with a high performance tracking system, to be able to track the single particles through the full detector system. These calorimeters require an unprecedented level of both longitudinal and lateral granularity. Several calorimeter technologies promise to reach the required readout segmentation and are currently studied. This thesis addresses one of these: The analogue hadron calorimeter technology. It combines work on the technological aspects of a highly granular calorimeter with the study of hadron shower physics. The analogue hadron calorimeter technology joins a classical scintillator-steel sandwich design with a modern photo-sensor technology, the silicon photomultiplier (SiPM). The SiPM is a millimetre sized, magnetic field insensitive, and low cost photo-sensor, that opens new possibilities in calorimeter design. This thesis outlines the working principle and characteristics of these devices. The requirements for an application specific integrated circuit (ASIC) to read the SiPM are discussed; the performance of a prototype chip for SiPM readout, the SPIROC, is quantified. Also the SiPM specific reconstruction of a multi-thousand channel prototype calorimeter, the CALICE AHCAL, is explained; the systematic uncertainty of the calibration method is derived. The AHCAL does not only offer a test of the calorimeter technology, it also allows to record hadron showers with an unprecedented level of details. Test-beam measurements have been performed with the AHCAL and provide a unique sample for the development of novel analysis techniques and the validation of hadron shower simulations. A method to

  12. Monitoring Systems for Hydropower Plants

    Directory of Open Access Journals (Sweden)

    Damaschin Pepa

    2015-07-01

    Full Text Available One of the most important issue in hydro power industry is to determine the necessary degree of automation in order to improve the operation security. Depending upon the complexity of the system (the power plant equipment the automation specialist will build a philosophy of control following some general principals of security and operation. Helped by the modern digital equipment, today is relative easy to design a complete monitoring and supervising system including all the subparts of a hydro aggregate. A series of sensors and transducers specific for each auxiliary installation of the turbine and generator will be provided, together with a PLC or an industrial PC that will run an application software for implementing the security and control algorithms. The purpose of this paper is to offer a general view of these issues, providing a view of designing an automation & control and security system for hydro power plants of small, medium and big power.

  13. Geiger projection calorimeter

    International Nuclear Information System (INIS)

    In view of a second generation p-decay experiment in the Gran Sasso Laboratory, a digital tracking calorimeter is being developed, based on the use of plastic tubes of the Mont Blanc detector type, which are operated in limited Geiser mode

  14. The ATLAS tile calorimeter

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    Louis Rose-Dulcina, a technician from the ATLAS collaboration, works on the ATLAS tile calorimeter. Special manufacturing techniques were developed to mass produce the thousands of elements in this detector. Tile detectors are made in a sandwich-like structure where these scintillator tiles are placed between metal sheets.

  15. Monitoring of solar thermal systems

    Energy Technology Data Exchange (ETDEWEB)

    Bleom, H.; Colombo, R.; Gilliaert, D.; Tebaldi, P. (Joint Research Centre, Ispra (Italy))

    1990-01-01

    Large solar thermal systems, which are in direct competition with so-called classical heat or cold producing systems (as fuel burners, air conditioners, ...) show, at the same time similarities and major differences. The classical systems are factory-packaged and modular systems (consequently they have a rather high reliability), and are site mounted. Solar thermal systems, however, are location dependent designs based on factory-made components (each of them having well known characteristics, reliability and durability). These components have to be connected and dimensioned in order to optimize the energy output in relation to the financial investments, the overall system reliability and durability, and maintenance. The analysis and the evaluation of the level of success of each of the projects should be enlarged and assisted with an intercomparison of different similar projects, leading to more general conclusions about: the usefulness of solar systems; the performance, i.e. the solar fraction of systems; the functioning and reliability of components; the effectiveness of different control strategies; proposals for improvements in the design, dimensioning and control strategies of systems; the impact on employment and on the environment of the introduction of solar systems; and to develop the necessary tools to assess the replicability of the techniques applied, even extended to other climates. This whole task could be largely facilitated by the introduction of some level of uniformity for the evaluation of the projects, through format sheets and/or guidelines for each of the following items: description of the project; set up of the monitoring of the system; and presentation of the results. Each of these is discussed.

  16. The ATLAS Liquid Argon Calorimeter: Construction, Integration, Commissioning

    International Nuclear Information System (INIS)

    The ATLAS liquid argon (LAr) calorimeter system consists of an electromagnetic barrel calorimeter and two end caps with electromagnetic, hadronic and forward calorimeters. The liquid argon sampling technique, with an accordion geometry was chosen for the barrel electromagnetic calorimeter (EMB) and adapted to the end cap (EMEC). The hadronic end cap calorimeter (HEC) uses a copper-liquid argon sampling technique with flat plate geometry and is subdivided in depth in two wheels per end-cap. Finally, the forward calorimeter (FCAL) is composed of three modules employing cylindrical electrodes with thin liquid argon gaps.The construction of the full calorimeter system is complete since mid-2004. Production modules constructed in the home institutes were integrated into wheels at CERN in 2003-2004, and inserted into the three cryostats. They passed their first complete cold test before the lowering into the ATLAS cavern. Results of quality checks (e.g. electrical, mechanical, ...) performed on all the 190304 read-out channels after cool down will be reported. End 2004 the ATLAS barrel electromagnetic (EM) calorimeter was installed in the ATLAS cavern and since summer 2005 the front-end electronics are being connected and tested. Results of this first commissioning phase will be shown to demonstrate the high standards of quality control for our detectors

  17. The future of remote ECG monitoring systems.

    Science.gov (United States)

    Guo, Shu-Li; Han, Li-Na; Liu, Hong-Wei; Si, Quan-Jin; Kong, De-Feng; Guo, Fu-Su

    2016-09-01

    Remote ECG monitoring systems are becoming commonplace medical devices for remote heart monitoring. In recent years, remote ECG monitoring systems have been applied in the monitoring of various kinds of heart diseases, and the quality of the transmission and reception of the ECG signals during remote process kept advancing. However, there remains accompanying challenges. This report focuses on the three components of the remote ECG monitoring system: patient (the end user), the doctor workstation, and the remote server, reviewing and evaluating the imminent challenges on the wearable systems, packet loss in remote transmission, portable ECG monitoring system, patient ECG data collection system, and ECG signals transmission including real-time processing ST segment, R wave, RR interval and QRS wave, etc. This paper tries to clarify the future developmental strategies of the ECG remote monitoring, which can be helpful in guiding the research and development of remote ECG monitoring. PMID:27582770

  18. Intrusion Detection System: Security Monitoring System

    Directory of Open Access Journals (Sweden)

    ShabnamNoorani,

    2015-10-01

    Full Text Available An intrusion detection system (IDS is an ad hoc security solution to protect flawed computer systems. It works like a burglar alarm that goes off if someone tampers with or manages to get past other security mechanisms such as authentication mechanisms and firewalls. An Intrusion Detection System (IDS is a device or a software application that monitors network or system activities for malicious activities or policy violations and produces reports to a management station.Intrusion Detection System (IDS has been used as a vital instrument in defending the network from this malicious or abnormal activity..In this paper we are comparing host based and network based IDS and various types of attacks possible on IDS.

  19. HARP: high pressure argon readout for calorimeters

    International Nuclear Information System (INIS)

    Steel tubes of approximately 8 mm O.D., filled with Argon gas to approx.200 bar, are considered as the active element for a charge collecting sampling calorimeter readout system. The tubes are permanently sealed and operated in the ion chamber mode, with the charge collection on a one-millimeter concentric anode. We present the motivation for such a device, including Monte Carlo predictions of performance. The method of construction and signal collection are discussed, with initial results on leakage and ageing of the filling gas. A prototype electromagnetic calorimeter is described

  20. Evolutionary Autonomous Health Monitoring System (EAHMS) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — For supporting NASA's Robotics, Tele-Robotics and Autonomous Systems Roadmap, we are proposing the "Evolutionary Autonomous Health Monitoring System" (EAHMS) for...

  1. Monte Carlo Simulation of HERD Calorimeter

    CERN Document Server

    Xu, M; Dong, Y W; Lu, J G; Quan, Z; Wang, L; Wang, Z G; Wu, B B; Zhang, S N

    2014-01-01

    The High Energy cosmic-Radiation Detection (HERD) facility onboard China's Space Station is planned for operation starting around 2020 for about 10 years. It is designed as a next generation space facility focused on indirect dark matter search, precise cosmic ray spectrum and composition measurements up to the knee energy, and high energy gamma-ray monitoring and survey. The calorimeter plays an essential role in the main scientific objectives of HERD. A 3-D cubic calorimeter filled with high granularity crystals as active material is a very promising choice for the calorimeter. HERD is mainly composed of a 3-D calorimeter (CALO) surrounded by silicon trackers (TK) from all five sides except the bottom. CALO is made of 9261 cubes of LYSO crystals, corresponding to about 55 radiation lengths and 3 nuclear interaction lengths, respectively. Here the simulation results of the performance of CALO with GEANT4 and FLUKA are presented: 1) the total absorption CALO and its absorption depth for precise energy measure...

  2. A real time monitoring system

    International Nuclear Information System (INIS)

    A real time monitoring system is described. It was initially developed to be used as a man-machine interface between a basic principles simulator of the Embalse Nuclear Power Plant and the operators. This simulator is under construction at the Bariloche Atomic Center's Process Control Division. Due to great design flexibility, this system can also be used in real plants. The system is designed to be run on a PC XT or AT personal computer with high resolution graphics capabilities. Three interrelated programs compose the system: 1) Graphics Editor, to build static image to be used as a reference frame where to show dynamically updated data. 2) Data acquisition and storage module. It is a memory resident module to acquire and store data in background. Data can be acquired and stored without interference with the operating system, via serial port or through analog-to-digital converter attached to the personal computer. 3) Display module. It shows the acquired data according to commands received from configuration files prepared by the operator. (Author)

  3. Microfabricated BTU monitoring device for system-wide natural gas monitoring.

    Energy Technology Data Exchange (ETDEWEB)

    Einfeld, Wayne; Manginell, Ronald Paul; Robinson, Alex Lockwood; Moorman, Matthew Wallace

    2005-11-01

    The natural gas industry seeks inexpensive sensors and instrumentation to rapidly measure gas heating value in widely distributed locations. For gas pipelines, this will improve gas quality during transfer and blending, and will expedite accurate financial accounting. Industrial endusers will benefit through continuous feedback of physical gas properties to improve combustion efficiency during use. To meet this need, Sandia has developed a natural gas heating value monitoring instrument using existing and modified microfabricated components. The instrument consists of a silicon micro-fabricated gas chromatography column in conjunction with a catalytic micro-calorimeter sensor. A reference thermal conductivity sensor provides diagnostics and surety. This combination allows for continuous calorimetric determination with a 1 minute analysis time and 1.5 minute cycle time using air as a carrier gas. This system will find application at remote natural gas mining stations, pipeline switching and metering stations, turbine generators, and other industrial user sites. Microfabrication techniques will allow the analytical components to be manufactured in production quantities at a low per-unit cost.

  4. Radiation monitor system for nuclear power plants

    International Nuclear Information System (INIS)

    The system has 8 kinds of radiation monitors and 2 stage microcomputers designed for processing the data from each monitor, storaging the information, printing out and displaying on the colour CRT. The function of the system includes high-value alarm, warm alarm and failure alarm, so called three-level alarms. Two functions of the alarms are the threshold alarm and the tendency alarm, so that this system is an intelligency system. This system has high reliability and very wide range when LOCA accident takes place. It is aseismic and immune to industrial interference. The system can meet IEC-761-1 standard and is of nuclear safety 3rd class. Also the following monitors were designed: 133Xe monitor, 131I monitor, low-level liquid monitor and high radiation γ area monitor. The system can meet the requirements of nuclear power plants

  5. Readiness of the ATLAS Liquid Argon Calorimeter for LHC Collisions

    CERN Document Server

    Aad, G; Abdallah, J; Abdelalim, A A; Abdesselam, A; Abdinov, O; Abi, B; Abolins, M; Abramowicz, H; Abreu, H; Acharya, B S; Adams, D L; Addy, T N; Adelman, J; Adorisio, C; Adragna, P; Adye, T; Aefsky, S; Aguilar-Saavedra, J A; Aharrouche, M; Ahlen, S P; Ahles, F; Ahmad, A; Ahmed, H; Ahsan, M; Aielli, G; Akdogan, T; Åkesson, T P A; Akimoto, G; Akimov, A V; Aktas, A; Alam, M S; Alam, M A; Albert, J; Albrand, S; Aleksa, M; Aleksandrov, I N; Alessandria, F; Alexa, C; Alexander, G; Alexandre, G; Alexopoulos, T; Alhroob, M; Aliev, M; Alimonti, G; Alison, J; Aliyev, M; Allport, P P; Allwood-Spiers, S E; Almond, J; Aloisio, A; Alon, R; Alonso, A; Alviggi, M G; Amako, K; Amelung, C; Ammosov, V V; Amorim, A; Amorós, G; Amram, N; Anastopoulos, C; Andeen, T; Anders, C F; Anderson, K J; Andreazza, A; Andrei, V; Anduaga, X S; Angerami, A; Anghinolfi, F; Anjos, N; Antonaki, A; Antonelli, M; Antonelli, S; Antunovic, B; Anulli, F; Aoun, S; Arabidze, G; Aracena, I; Arai, Y; Arce, A T H; Archambault, J P; Arfaoui, S; Arguin, J-F; Argyropoulos, T; Arik, E; Arik, M; Armbruster, A J; Arnaez, O; Arnault, C; Artamonov, A; Arutinov, D; Asai, M; Asai, S; Asfandiyarov, R; Ask, S; Åsman, B; Asner, D; Asquith, L; Assamagan, K; Astbury, A; Astvatsatourov, A; Atoian, G; Auerbach, B; Auge, E; Augsten, K; Aurousseau, M; Austin, N; Avolio, G; Avramidou, R; Axen, D; Ay, C; Azuelos, G; Azuma, Y; Baak, M A; Baccaglioni, G; Bacci, C; Bach, A; Bachacou, H; Bachas, K; Backes, M; Badescu, E; Bagnaia, P; Bai, Y; Bailey, D C; Bain, T; Baines, J T; Baker, O K; Baker, M D; Baltasar Dos Santos Pedrosa, F; Banas, E; Banerjee, P; Banerjee, S; Banfi, D; Bangert, A; Bansal, V; Baranov, S P; Baranov, S; Barashkou, A; Barber, T; Barberio, E L; Barberis, D; Barbero, M; Bardin, D Y; Barillari, T; Barisonzi, M; Barklow, T; Barlow, N; Barnett, B M; Barnett, R M; Baron, S; Baroncelli, A; Barr, A J; Barreiro, F; BarreiroGuimarães da Costa, J; Barrillon, P; Barros, N; Bartoldus, R; Bartsch, D; Bastos, J; Bates, R L; Bathe, S; Batkova, L; Batley, J R; Battaglia, A; Battistin, M; Bauer, F; Bawa, H S; Bazalova, M; Beare, B; Beau, T; Beauchemin, P H; Beccherle, R; Becerici, N; Bechtle, P; Beck, G A; Beck, H P; Beckingham, M; Becks, K H; Bedajanek, I; Beddall, A J; Beddall, A; Bednár, P; Bednyakov, V A; Bee, C; Begel, M; Behar Harpaz, S; Behera, P K; Beimforde, M; Belanger-Champagne, C; Bell, P J; Bell, W H; Bella, G; Bellagamba, L; Bellina, F; Bellomo, M; Belloni, A; Belotskiy, K; Beltramello, O; Ben Ami, S; Benary, O; Benchekroun, D; Bendel, M; Benedict, B H; Benekos, N; Benhammou, Y; Benincasa, G P; Benjamin, D P; Benoit, M; Bensinger, J R; Benslama, K; Bentvelsen, S; Beretta, M; Berge, D; Bergeaas Kuutmann, E; Berger, N; Berghaus, F; Berglund, E; Beringer, J; Bernardet, K; Bernat, P; Bernhard, R; Bernius, C; Berry, T; Bertin, A; Besson, N; Bethke, S; Bianchi, R M; Bianco, M; Biebel, O; Biesiada, J; Biglietti, M; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Biscarat, C; Bitenc, U; Black, K M; Blair, R E; Blanchard, J-B; Blanchot, G; Blocker, C; Blocki, J; Blondel, A; Blum, W; Blumenschein, U; Bobbink, G J; Bocci, A; Boehler, M; Boek, J; Boelaert, N; Böser, S; Bogaerts, J A; Bogouch, A; Bohm, C; Bohm, J; Boisvert, V; Bold, T; Boldea, V; Boldyrev, A; Bondarenko, V G; Bondioli, M; Boonekamp, M; Booth, J R A; Bordoni, S; Borer, C; Borisov, A; Borissov, G; Borjanovic, I; Borroni, S; Bos, K; Boscherini, D; Bosman, M; Bosteels, M; Boterenbrood, H; Bouchami, J; Boudreau, J; Bouhova-Thacker, E V; Boulahouache, C; Bourdarios, C; Boyd, J; Boyko, I R; Bozovic-Jelisavcic, I; Bracinik, J; Braem, A; Branchini, P; Brandenburg, G W; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Brelier, B; Bremer, J; Brenner, R; Bressler, S; Breton, D; Brett, N D; Britton, D; Brochu, F M; Brock, I; Brock, R; Brodbeck, T J; Brodet, E; Broggi, F; Bromberg, C; Brooijmans, G; Brooks, W K; Brown, G; Brubaker, E; Bruckman de Renstrom, P A; Bruncko, D; Bruneliere, R; Brunet, S; Bruni, A; Bruni, G; Bruschi, M; Buanes, T; Bucci, F; Buchanan, J; Buchholz, P; Buckley, A G; Budagov, I A; Budick, B; Büscher, V; Bugge, L; Bulekov, O; Bunse, M; Buran, T; Burckhart, H; Burdin, S; Burgess, T; Burke, S; Busato, E; Bussey, P; Buszello, C P; Butin, F; Butler, B; Butler, J M; Buttar, C M; Butterworth, J M; Byatt, T; Caballero, J; Cabrera Urbán, S; Caforio, D; Cakir, O; Calafiura, P; Calderini, G; Calfayan, P; Calkins, R; Caloba, L P; Caloi, R; Calvet, D; Camarri, P; Cambiaghi, M; Cameron, D; Campabadal-Segura, F; Campana, S; Campanelli, M; Canale, V; Canelli, F; Canepa, A; Cantero, J; Capasso, L; Capeans-Garrido, M D M; Caprini, I; Caprini, M; Capua, M; Caputo, R; Caracinha, D; Caramarcu, C; Cardarelli, R; Carli, T; Carlino, G; Carminati, L; Caron, B; Caron, S; Carrillo Montoya, G D; Carron Montero, S; Carter, A A; Carter, J R

    2010-01-01

    The ATLAS liquid argon calorimeter has been operating continuously since August 2006. At this time, only part of the calorimeter was readout, but since the beginning of 2008, all calorimeter cells have been connected to the ATLAS readout system in preparation for LHC collisions. This paper gives an overview of the liquid argon calorimeter performance measured in situ with random triggers, calibration data, cosmic muons, and LHC beam splash events. Results on the detector operation, timing performance, electronics noise, and gain stability are presented. High energy deposits from radiative cosmic muons and beam splash events allow to check the intrinsic constant term of the energy resolution. The uniformity of the electromagnetic barrel calorimeter response along eta (averaged over phi) is measured at the percent level using minimum ionizing cosmic muons. Finally, studies of electromagnetic showers from radiative muons have been used to cross-check the Monte Carlo simulation. The performance results obtained u...

  6. Stack Monitoring System At PUSPATI TRIGA Reactor

    International Nuclear Information System (INIS)

    This paper describes the current Stack Monitoring System at PUSPATI TRIGA Reactor (RTP) building. A stack monitoring system is a continuous air monitor placed at the reactor top for monitoring the presence of radioactive gaseous in the effluent air from the RTP building. The system consists of four detectors that provide the reading for background, particulate, Iodine and Noble gas. There is a plan to replace the current system due to frequent fault of the system, thus thorough understanding of the current system is required. Overview of the whole system will be explained in this paper. Some current results would be displayed and moving forward brief plan would be mentioned. (author)

  7. Performance of the ATLAS Tile Hadronic Calorimeter at LHC in Run 1 and planned upgrades

    International Nuclear Information System (INIS)

    The Tile Calorimeter (TileCal) is the central section of the ATLAS hadronic calorimeter at the Large Hadron Collider, a key detector for the measurements of hadrons, jets, tau leptons and missing transverse energy. Scintillation light produced in the tiles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs). The resulting electronic signals from approximately 10000 PMTs are digitized before being transferred to off-detector data-acquisition systems. The data quality procedures used during the LHC data-taking and the evolution of the detector status are explained in the presentation. The energy and the time reconstruction performance of the digitized signals is presented and the noise behaviour and its improvement during the detector consolidation in maintenance periods are shown. A set of calibration systems allow monitoring and equalization of the calorimeter channels responses via signal sources that act at every stage of the signal path, from scintillation light to digitized signal. These partially overlapping systems are described in detail, their individual performance is discussed as well as the comparative results from measurements of the evolution of the calorimeter response with time during the full LHC data-taking period. The TileCal upgrade aims at replacing the majority of the on- and off-detector electronics so that all calorimeter signals will be directly digitized and sent to the off-detector electronics in the counting room. To achieve the required reliability, redundancy has been introduced at different levels. For the off-detector electronics a special pre-processor board is being developed, which will take care of the initial trigger processing, while the main data are temporarily stored in the pipeline and de-randomiser memories

  8. Performance of the ATLAS Tile Hadronic Calorimeter at LHC in Run 1 and planned upgrades

    Science.gov (United States)

    Solovyanov, O.

    2014-10-01

    The Tile Calorimeter (TileCal) is the central section of the ATLAS hadronic calorimeter at the Large Hadron Collider, a key detector for the measurements of hadrons, jets, tau leptons and missing transverse energy. Scintillation light produced in the tiles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs). The resulting electronic signals from approximately 10000 PMTs are digitized before being transferred to off-detector data-acquisition systems. The data quality procedures used during the LHC data-taking and the evolution of the detector status are explained in the presentation. The energy and the time reconstruction performance of the digitized signals is presented and the noise behaviour and its improvement during the detector consolidation in maintenance periods are shown. A set of calibration systems allow monitoring and equalization of the calorimeter channels responses via signal sources that act at every stage of the signal path, from scintillation light to digitized signal. These partially overlapping systems are described in detail, their individual performance is discussed as well as the comparative results from measurements of the evolution of the calorimeter response with time during the full LHC data-taking period. The TileCal upgrade aims at replacing the majority of the on- and off-detector electronics so that all calorimeter signals will be directly digitized and sent to the off-detector electronics in the counting room. To achieve the required reliability, redundancy has been introduced at different levels. For the off-detector electronics a special pre-processor board is being developed, which will take care of the initial trigger processing, while the main data are temporarily stored in the pipeline and de-randomiser memories.

  9. Environmental monitor and reader system

    International Nuclear Information System (INIS)

    The invention resides in an environmental radioactivity monitoring system arranged to be electrically powered and having at least one sensor. The sensor comprises a continuously operable radioactivity detector for providing an electrical signal output in proportion to radioactive dose received, an electrical signal store for receiving the output from the detector, an intermittently operable electric signal recording device, and a timing circuit which is arranged to initiate the operation of the recording device for a finite period at predetermined time intervals. A circuit discharges the store into the tape input terminal during each period, so that it receives the integrated dose of the previous quarter of an hour. In the preferred form of the invention, the sensor is provided with a source of local electric power which may include solar cells. (UK)

  10. The Evolution of the Control System for the Electromagnetic Calorimeter of the Compact Muon Solenoid Experiment at the Large Hadron Collider

    CERN Multimedia

    Holme, Oliver; Dissertori, Günther; Lustermann, Werner; Zelepoukine, Serguei

    2011-01-01

    This paper discusses the evolution of the Detector Control System (DCS) designed and implemented for the Electromagnetic Calorimeter (ECAL) of the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) as well as the operational experience acquired during the LHC physics data taking periods of 2010 and 2011. The current implementation in terms of functionality and planned hardware upgrades are presented. Furthermore, a project for reducing the long-term software maintenance, including a year-long detailed analysis of the existing applications, is put forward and the current outcomes which have informed the design decisions for the next CMS ECAL DCS software generation are described. The main goals for the new version are to minimize external dependencies enabling smooth migration to new hardware and software platforms and to maintain the existing functionality whilst substantially reducing support and maintenance effort through homogenization, simplification and standardization of the contr...

  11. NA48 prototype calorimeter

    CERN Multimedia

    1990-01-01

    This is a calorimeter, a detector which measures the energy of particles. When in use, it is filled with liquid krypton at -152°C. Electrons and photons passing through interact with the krypton, creating a shower of charged particles which are collected on the copper ribbons. The ribbons are aligned to an accuracy of a tenth of a millimetre. The folding at each end allows them to be kept absolutely flat. Each shower of particles also creates a signal in scintillating material embedded in the support disks. These flashes of light are transmitted to electronics by the optical fibres along the side of the detector. They give the time at which the interaction occurred. The photo shows the calorimeter at NA48, a CERN experiment which is trying to understand the lack of anti-matter in the Universe today.

  12. UA2 central calorimeter

    CERN Multimedia

    The UA2 central calorimeter measured the energy of individual particles created in proton-antiproton collisions. Accurate calibration allowed the W and Z masses to be measured with a precision of about 1%. The calorimeter had 24 slices like this one, each weighing 4 tons. The slices were arranged like orange segments around the collision point. Incoming particles produced showers of secondary particles in the layers of heavy material. These showers passed through the layers of plastic scintillator, generating light which was taken by light guides (green) to the data collection electronics. The amount of light was proportional to the energy of the original particle. The inner 23 cm of lead and plastic sandwiches measured electrons and photons; the outer 80 cm of iron and plastic sandwiches measured strongly interacting hadrons. The detector was calibrated by injecting light through optical fibres or by placing a radioactive source in the tube on the bottom edge.

  13. Acoustic emission leak monitoring system LMS-96

    International Nuclear Information System (INIS)

    On-line acoustic emission leak monitoring under industrial conditions of nuclear power plants is a problem with specific features setting specific demands on the leak monitoring system. The paper briefly reviews those problems (attenuation pattern of a real structure, acoustic background, alarm system, etc.) and the solution of some of them is discussed. Information is presented on the Acoustic Emission Leak Monitoring System LMS-96 by SKODA NUCLEAR MACHINERY and the system's function is briefly described. (author)

  14. Project W-420 stack monitoring system upgrades

    International Nuclear Information System (INIS)

    This project will execute the design, procurement, construction, startup, and turnover activities for upgrades to the stack monitoring system on selected Tank Waste Remediation System (TWRS) ventilation systems. In this plan, the technical, schedule, and cost baselines are identified, and the roles and responsibilities of project participants are defined for managing the Stack Monitoring System Upgrades, Project W-420

  15. Risk-based systems configuration monitoring system

    International Nuclear Information System (INIS)

    The paper presents the work done in the frame of the Research Contract No. 6993/RB - ''Risk based systems configuration monitoring system'' part of the coordinated programme ''Development of safety related expert systems''. The aim of this contract was to develop the prototype of an expert system based on PSA technology to be use for controlling the plant systems configuration taking into account the risk. The software prototype implementation was done using Visual Basic language, under Windows environment. The implemented prototype has the following features: store data/knowledge about components and human factor; store data/knowledge about the plant system and systems components, providing facilities to modify/search data/knowledge, based on the general knowledge; generate the logic model of the system; provide minimal cut sets and path sets determination; provide information to be used by the user for configuration risk management; provide user friendly interface (graphical interface under windows). The prototype can be independently used as an operator support system or for other on-line or off-line applications. After the testing of the prototype, some of the conclusions are: the developed software can be one of the most useful tools to be used by designers, PSA analysts, operators and regulatory for evaluation of the safety and reliability of the plant systems; the structure of the General Knowledge Base included into the prototype offers the possibility to combine knowledge introduced by different users. This feature can be the basis for the development of a knowledge acquisition system; the developed software and methodology can offer the basis for the risk-based data collection system development. (author). 12 refs, 30 figs

  16. The CMS Outer Hadron Calorimeter

    CERN Document Server

    Acharya, Bannaje Sripathi; Banerjee, Sunanda; Banerjee, Sudeshna; Bawa, Harinder Singh; Beri, Suman Bala; Bhandari, Virender; Bhatnagar, Vipin; Chendvankar, Sanjay; Deshpande, Pandurang Vishnu; Dugad, Shashikant; Ganguli, Som N; Guchait, Monoranjan; Gurtu, Atul; Kalmani, Suresh Devendrappa; Kaur, Manjit; Kohli, Jatinder Mohan; Krishnaswamy, Marthi Ramaswamy; Kumar, Arun; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mondal, Naba Kumar; Nagaraj, P; Narasimham, Vemuri Syamala; Patil, Mandakini Ravindra; Reddy, L V; Satyanarayana, B; Sharma, Seema; Singh, B; Singh, Jas Bir; Sudhakar, Katta; Tonwar, Suresh C; Verma, Piyush

    2006-01-01

    The CMS hadron calorimeter is a sampling calorimeter with brass absorber and plastic scintillator tiles with wavelength shifting fibres for carrying the light to the readout device. The barrel hadron calorimeter is complemented with a outer calorimeter to ensure high energy shower containment in CMS and thus working as a tail catcher. Fabrication, testing and calibrations of the outer hadron calorimeter are carried out keeping in mind its importance in the energy measurement of jets in view of linearity and resolution. It will provide a net improvement in missing $\\et$ measurements at LHC energies. The outer hadron calorimeter has a very good signal to background ratio even for a minimum ionising particle and can hence be used in coincidence with the Resistive Plate Chambers of the CMS detector for the muon trigger.

  17. Monitored Geologic Repository Operations Monitoring and Control System Description Document

    Energy Technology Data Exchange (ETDEWEB)

    E.F. Loros

    2000-06-29

    The Monitored Geologic Repository Operations Monitoring and Control System provides supervisory control, monitoring, and selected remote control of primary and secondary repository operations. Primary repository operations consist of both surface and subsurface activities relating to high-level waste receipt, preparation, and emplacement. Secondary repository operations consist of support operations for waste handling and treatment, utilities, subsurface construction, and other selected ancillary activities. Remote control of the subsurface emplacement operations, as well as, repository performance confirmation operations are the direct responsibility of the system. In addition, the system monitors parameters such as radiological data, air quality data, fire detection status, meteorological conditions, unauthorized access, and abnormal operating conditions, to ensure a safe workplace for personnel. Parameters are displayed in a real-time manner to human operators regarding surface and subsurface conditions. The system performs supervisory monitoring and control for both important to safety and non-safety systems. The system provides repository operational information, alarm capability, and human operator response messages during emergency response situations. The system also includes logic control to place equipment, systems, and utilities in a safe operational mode or complete shutdown during emergency response situations. The system initiates alarms and provides operational data to enable appropriate actions at the local level in support of emergency response, radiological protection response, evacuation, and underground rescue. The system provides data communications, data processing, managerial reports, data storage, and data analysis. This system's primary surface and subsurface operator consoles, for both supervisory and remote control activities, will be located in a Central Control Center (CCC) inside one of the surface facility buildings. The system

  18. Sleep Monitoring System Using Kinect Sensor

    OpenAIRE

    Jaehoon Lee; Min Hong; Sungyong Ryu

    2015-01-01

    Sleep activity is one of crucial factors for determining the quality of human life. However, a traditional sleep monitoring system onerously requires many devices to be attached to human body for achieving sleep related information. In this paper, we proposed and implemented the sleep monitoring system which can detect the sleep movement and posture during sleep using a Microsoft Kinect v2 sensor without any body attached devices. The proposed sleep monitoring system can readily gather the sl...

  19. Computer Jet-Engine-Monitoring System

    Science.gov (United States)

    Disbrow, James D.; Duke, Eugene L.; Ray, Ronald J.

    1992-01-01

    "Intelligent Computer Assistant for Engine Monitoring" (ICAEM), computer-based monitoring system intended to distill and display data on conditions of operation of two turbofan engines of F-18, is in preliminary state of development. System reduces burden on propulsion engineer by providing single display of summary information on statuses of engines and alerting engineer to anomalous conditions. Effective use of prior engine-monitoring system requires continuous attention to multiple displays.

  20. Digital Solution to Mining Image Monitor System

    Institute of Scientific and Technical Information of China (English)

    刘越男; 孙继平; 苏辉; 那景芳

    2001-01-01

    The thesis describes an advanced digital solution to mining digital image monitor system, which makes up the shortage of the traditional mining analog image monitor. It illustrates the system components and how to choose the encoder bandwidth of the system. The problem of image multicast and its solution in LAN are also discussed.

  1. Software For Monitoring VAX Computer Systems

    Science.gov (United States)

    Farkas, Les; Don, Ken; Lavery, David; Baron, Amy

    1994-01-01

    VAX Continuous Monitoring System (VAXCMS) computer program developed at NASA Headquarters to aid system managers in monitoring performances of VAX computer systems through generation of graphic images summarizing trends in performance metrics over time. VAXCMS written in DCL and VAX FORTRAN for use with DEC VAX-series computers running VMS 5.1 or later.

  2. Innovative portable radiation monitoring system

    International Nuclear Information System (INIS)

    A new generation of portable monitoring systems is presented. The system consists of RAM R-200, a portable gamma meter designed for measuring wide range gamma radiation fields, and external probes for beta-gamma contamination, and high range gamma fields. The meter and the external probes were designed to withstand vibrations, shocks and extreme temperature conditions. The meter is lightweight - less than 500 g, compact - 80 x 35 x 130 mm, with emphasis on ergonomic design and ease of operation. It contains an internal detector with two energy compensated GM tubes for gamma field measurement in the range of 0.1 μSv/h to 1 Sv/h, and flat energy response to gamma radiation from 60 keV to 1350 keV. Low power consumption techniques enable more than 100 hours of continuous operation with a single 9V standard battery. The meter and the high range gamma probe meet the IEC1017-1 and ANSI-N42 standards. The meter includes signal processing electronics and embedded microprocessor circuitry. Dedicated software for data processing was developed, enabling smoothed analog and digital readout and fast response. Additional functions include accumulated dose calculation, malfunction detection and appropriate alarm, dose rate and accumulated thresholds, serial RS-232 communication with the external probes or with a PC. The RAM R-200 supports the logging or dose-rate measurements and acquisition time into its internal backed-up memory. Due to the importance of the audible indication to the user of such system an intensive study was done. Two audible indication modes are available. A conventional mode based on a short 'chirp' every pulse measured and variable frequency mode according to the field intensity. In the latter mode the meter automatically normalizes the frequency response with the actual measured field. The meter and the external probes include an internal microcontroller circuitry, power supplies for the internal electronics and detector high voltage, and output signal

  3. Testbeam studies of production modules of the ATLAS Tile Calorimeter

    International Nuclear Information System (INIS)

    We report test beam studies of 11% of the production ATLAS Tile Calorimeter modules. The modules were equipped with production front-end electronics and all the calibration systems planned for the final detector. The studies used muon, electron and hadron beams ranging in energy from 3 to 350 GeV. Two independent studies showed that the light yield of the calorimeter was ∼70pe/GeV, exceeding the design goal by 40%. Electron beams provided a calibration of the modules at the electromagnetic energy scale. Over 200 calorimeter cells the variation of the response was 2.4%. The linearity with energy was also measured. Muon beams provided an intercalibration of the response of all calorimeter cells. The response to muons entering in the ATLAS projective geometry showed an RMS variation of 2.5% for 91 measurements over a range of rapidities and modules. The mean response to hadrons of fixed energy had an RMS variation of 1.4% for the modules and projective angles studied. The response to hadrons normalized to incident beam energy showed an 8% increase between 10 and 350 GeV, fully consistent with expectations for a noncompensating calorimeter. The measured energy resolution for hadrons of σ/E=52.9%/√(E)+5.7% was also consistent with expectations. Other auxiliary studies were made of saturation recovery of the readout system, the time resolution of the calorimeter and the performance of the trigger signals from the calorimeter.

  4. Environmental monitoring system with TLD

    International Nuclear Information System (INIS)

    Presently work the methodology used by the Laboratory of Thermoluminescent Dosimetry (TLD) of the Nuclear Regulatory Authority (RNA) to gauge it system of environmental monitoring in function of the media absorbed dose rate in free air and the environmental dose equivalent, H*(10), according to the recommendation ICRU Report 47 is described. It was studied the response of the environmental dosemeter (DA) in fields of photonic radiation of energies W60, Wl 10, W200 and 137 Cs. The irradiations were carried out following the recommendations of the standard ISO:4037. It was analyzed the response in the DA of the detectors LiF: Mg, Ti and CaF2: Dy for the different radiation qualities and the relative response at 137 Cs of both. The methodology used in the evaluation of the dose includes: the correction of the readings of both detectors by fading, gotten experimentally, the witness of transfers, the energy answer and the value of the zero. The dose is calculated applying the average pondered in uncertainty of the dose obtained for each type of detector. Its were analyzed and calculated the uncertainties that affect to the measurement following the recommendation of the Argentine standard IRAM 35050. The detection limit of the absorbed dose rate in free air of this system it is 3.5 n Gy/h for a period of sampling of 3 months. With this detection limit environmental dose equivalent rates of the order of 70 n Sv/h are measured with an expanded uncertainty of the order of 10% with a cover factor k = 2. (Author)

  5. ATLAS Tile Calorimeter HL-LHC Upgrade

    CERN Document Server

    Dandoy, Jeffrey Rogers; The ATLAS collaboration

    2015-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the central region of the ATLAS detector at the LHC. It is a sampling calorimeter consisting of alternating thin steel plates and scintillating tiles.Wavelength shifting fibers coupled to the tiles collect the produced light and are read out by photomultiplier tubes.An analog sum of the processed signal of several photomultipliers serves as input to the first level of trigger.Photomultiplier signals are then digitized and stored on detector and are only transferred off detector once the first trigger acceptance has been confirmed. TileCal will undergo a major replacement of its on- and off-detector electronics for the high luminosity program of the LHC in 2024. All signals are digitized and then transferred directly to the off-detector electronics, where the signals are reconstructed, stored, and sent to the first level of trigger at a rate of 40 MHz. This will provide better precision of the calorimeter signals used by the trigger system and...

  6. The new ATLAS Fast Calorimeter Simulation

    CERN Document Server

    Dias, Flavia; The ATLAS collaboration

    2016-01-01

    A very large number of simulated events is required for physics and performance studies with the ATLAS detector at the Large Hadron Collider. Producing these with the full GEANT4 detector simulation is highly CPU intensive. As a very detailed detector simulation is not always required, fast simulation tools have been developed to reduce the calorimeter simulation time by a few orders of magnitude. The fast simulation of ATLAS for the calorimeter systems used in Run 1, called Fast Calorimeter Simulation (FastCaloSim), provides a parameterized simulation of the particle energy response at the calorimeter read-out cell level. It is then interfaced to the ATLAS digitization and reconstruction software. In Run 1, about 13 billion events were simulated in ATLAS, out of which 50% were produced using fast simulation. For Run 2, a new parameterisation is being developed to improve the original version: It incorporates developments in geometry and physics lists of the last five years and benefits from knowledge acquire...

  7. Upgrading the ATLAS Fast Calorimeter Simulation

    CERN Document Server

    Hubacek, Zdenek; The ATLAS collaboration

    2016-01-01

    Many physics and performance studies with the ATLAS detector at the Large Hadron Collider require very large samples of simulated events, and producing these using the full GEANT4 detector simulation is highly CPU intensive. Often, a very detailed detector simulation is not needed, and in these cases fast simulation tools can be used to reduce the calorimeter simulation time by a few orders of magnitude. In ATLAS, a fast simulation of the calorimeter systems was developed, called Fast Calorimeter Simulation (FastCaloSim). It provides a parametrized simulation of the particle energy response at the calorimeter read-out cell level. It is interfaced to the standard ATLAS digitization and reconstruction software, and can be tuned to data more easily than with GEANT4. The original version of FastCaloSim has been very important in the LHC Run-1, with several billion events simulated. An improved parametrisation is being developed, to eventually address shortcomings of the original version. It incorporates developme...

  8. Distributed Monitoring System Based on ICINGA

    CERN Multimedia

    Haen, C; Neufeld, N

    2011-01-01

    The LHCb online system relies on a large and heterogeneous I.T. infrastructure : it comprises more than 2000 servers and embedded systems and more than 200 network devices. While for the control and monitoring of detectors, PLCs, and readout boards an industry standard SCADA system PVSSII has been put in production, we use a low level monitoring system to monitor the control infrastructure itself. While our previous system was based on a single central NAGIOS server, our current system uses a distributed ICINGA infrastructure.

  9. Simulation and validation of the ATLAS Tile Calorimeter response

    CERN Document Server

    Karpov, S N; The ATLAS collaboration

    2014-01-01

    The Tile Calorimeter is the central section of the ATLAS hadronic calorimeter at the Large Hadron Collider. Scintillation light produced in the tiles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The resulting electronic signals from approximately 10000 PMTs are measured and digitized before being transferred to off-detector data acquisition systems. This contribution describes the detailed simulation of this large scale calorimeter from the implementation of the geometrical elements down to the realistic description of the electronics readout pulses, the special noise treatment and the signal reconstruction. The improved description of the optical and electronic signal propagation is highlighted and the validation with the real particle data is presented.

  10. Development of real-time low energy electron calorimeter

    International Nuclear Information System (INIS)

    A low energy electron beam calorimeter with a thin film window has been fabricated to facilitate a reliable method of dose assessment for electron beam energies down to 200 keV. The system was designed to incorporate a data-logger in order that it could be used on the self-shielded 200 keV facility at MINT. In use, the calorimeter started logging temperature a short time before it passed under the beam and it continued taking data until well after the end of the irradiation. Data could be retrieved at any time after the calorimeter had emerged from the irradiator

  11. Modernizing the monitoring of Mass Storage systems

    CERN Document Server

    Terrien, Alexandre

    2016-01-01

    The monitoring of a system is essential to ensure its efficiency. On a computer system, this monitoring is partly done via the analysis of log messages. The monitoring of CASTOR, a mass-storage system responsible for the storage of 150Pb of scientific data at CERN, was being done with tools developed by the IT-ST-FDO section. Those tools recently encountered some performance limitations due to the increase in the quantity of data produced by CERN's experiments. In this paper, I will describe how I managed to modernize CASTOR's monitoring tools by leveraging services centrally managed by CERN's IT department.

  12. REAL TIME WIRELESS AIR POLLUTION MONITORING SYSTEM

    OpenAIRE

    Raja Vara Prasad Y; Mirza Sami Baig; Mishra, Rahul K; Rajalakshmi, P.; U. B. Desai; S. N. Merchant

    2011-01-01

    Air pollution has significant influence on the concentration of constituents in the atmosphere leading to effects like global warming and acid rains. To avoid such adverse imbalances in the nature, an air pollution monitoring system is utmost important. This paper attempts to develop an effective solution for pollution monitoring using wireless sensor networks (WSN) on a real time basis namely real time wireless air pollution monitoring system. Commercially available discrete gas sensors for ...

  13. Apparatus, System, And Method For Roadway Monitoring

    KAUST Repository

    Claudel, Christian G.

    2015-06-02

    An apparatus, system, and method for monitoring traffic and roadway water conditions. Traffic flow and roadway flooding is monitored concurrently through a wireless sensor network. The apparatus and system comprises ultrasound rangefinders monitoring traffic flow, flood water conditions, or both. Routing information may be calculated from the traffic conditions, such that routes are calculated to avoid roadways that are impassable or are slow due to traffic conditions.

  14. Innovation of Temelin diagnostic and monitoring systems

    International Nuclear Information System (INIS)

    Diagnostic and monitoring systems MAFES-TSF, MAFES-DMS, HUMOS and LEMOP were installed at the 1st and 2nd units of the NPP Temelin in the framework of the NPP project. Innovations of the diagnostic and monitoring systems have been prepared and implemented aiming to increase existing information on operational status of the primary circuit components and to increase the nuclear safety of the equipments as well. The contribution deals for example with an extension of the MAFES-TSF systems to perform an assessment of fatigue lifetime of new, not yet in the system involved component parts, with practical application of the MAFES-DMS systems for monitoring of steam pipeline vibrations and with usage of the LEMOP systems for an identification of coolant leaks. Selected results of monitored events and monitoring channel tests are given and discussed. (author)

  15. Status of the ATLAS Liquid Argon Calorimeter and its Performance

    CERN Document Server

    Barillari, T; The ATLAS collaboration

    2011-01-01

    The ATLAS experiment is designed to study the proton-proton collisions produced at the LHC with a centre-of-mass energy of 14 TeV. Liquid argon (LAr) sampling calorimeters are used in ATLAS for all electromagnetic calorimetry covering the pseudorapidity region |eta|<3.2, as well as for hadronic calorimetry from |eta|=1.4 to |eta|=4.8. The calorimeter system consists of an electromagnetic barrel calorimeter and two endcaps with electromagnetic (EMEC), hadronic (HEC) and forward (FCAL) calorimeters. The lead-liquid argon sampling technique with an accordion geometry was chosen for the barrel electromagnetic calorimeter (EMB) and adapted to the endcap (EMEC). This geometry allows a uniform acceptance over the whole azimuthal range without any gap. The hadronic endcap calorimeter (HEC) uses a copper-liquid argon sampling technique with plate geometry and is subdivided into two wheels in depth per end-cap. Finally, the forward calorimeter (FCAL) is composed of three modules featuring cylindrical electrodes ...

  16. Performance of the Tile PreProcessor Demonstrator for the ATLAS Tile Calorimeter Phase II Upgrade

    International Nuclear Information System (INIS)

    The Tile Calorimeter PreProcessor demonstrator is a high performance double AMC board based on FPGA resources and QSFP modules. This board has been designed in the framework of the ATLAS Tile Calorimeter Demonstrator project for the Phase II Upgrade as the first stage of the back-end electronics. The TilePPr demonstrator has been conceived to receive and process the data coming from the front-end electronics of the TileCal Demonstrator module, as well as to configure it. Moreover, the TilePPr demonstrator handles the communication with the Detector Control System to monitor and control the front-end electronics. The TilePPr demonstrator represents 1/8 of the final TilePPr that will be designed and installed into the detector for the ATLAS Phase II Upgrade

  17. Performance of the TilePPr demonstrator for the ATLAS Tile Calorimeter Phase II Upgrade

    CERN Document Server

    Carrio Argos, Fernando; The ATLAS collaboration

    2015-01-01

    The Tile Calorimeter Pre-processor (TilePPr) demonstrator is a high performance double AMC board based on FPGA resources and QSFP modules. This board has been designed in the framework of the ATLAS Tile Calorimeter (TileCal) Demonstrator Project for the Phase II Upgrade as the first stage of the off-detector electronics. The TilePPr demonstrator has been conceived for receiving and processing the data coming from the on-detector electronics of the TileCal Demonstrator module, as well as for configuring it. Moreover, the TilePPr demonstrator handles the communication with the Detector Control System to monitor and control the on-detector electronics.

  18. Performance of the Tile PreProcessor Demonstrator for the ATLAS Tile Calorimeter Phase II Upgrade

    CERN Document Server

    Carrio Argos, Fernando; The ATLAS collaboration

    2015-01-01

    The Tile Calorimeter PreProcessor (TilePPr) demonstrator is a high performance double AMC board based on FPGA resources and QSFP modules. This board has been designed in the framework of the ATLAS Tile Calorimeter (TileCal) Demonstrator Project for the Phase II Upgrade as the first stage of the back-end electronics. The TilePPr demonstrator has been conceived for receiving and processing the data coming from the front-end electronics of the TileCal Demonstrator module, as well as for configuring it. Moreover, the TilePPr demonstrator handles the communication with the Detector Control System to monitor and control the front-end electronics. The TilePPr demonstrator represents 1/8 of the final TilePPr that will be designed and installed into the detector for the ATLAS Phase II Upgrade.

  19. Configuration of Risk Monitor System by PLant Defense-In.Depth Monitor and Relability Monitor

    DEFF Research Database (Denmark)

    Yoshikawa, Hidekazu; Lind, Morten; Yang, Ming;

    2012-01-01

    A new method of risk monitor system of a nuclear power plant has been proposed from the aspect by what degree of safety functions incorporated in the plant system is maintained by multiple barriers of defense-in-depth (DiD). Wherein, the central idea is plant DiD risk monitor and reliability...... monitor derived from the four aspects of (i) design principle of nuclear safety to realize DiD concept, (ii) definition of risk and risk to be monitored, (iii) severe accident phenomena as major risk, (iv) scheme of risk ranking, and (v) dynamic risk display. In this paper, the overall frame of the...... proposed frame on risk monitor system is summarized and the detailed discussion is made on the definitions of major terminologies of risk, risk ranking, anatomy of fault occurrence, two-layer configuration of risk monitor, how to configure individual elements of plant DiD risk monitor and its example...

  20. Photomultipliers on an LHCb calorimeter

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    An engineer attaches photomultiplier tubes to the electromagnetic calorimeter on the LHCb experiment. These large wall detectors will be used to study the bottom quark, a heavy, short-lived version of quarks found in protons and neutrons. The electromagnetic calorimeter will be used to detect photons, electrons and positrons produced by the decay of these short-lived quarks.

  1. Scintillating fiber ribbon --- tungsten calorimeter

    International Nuclear Information System (INIS)

    We describe an ultra-high density scintillating fiber and tungsten calorimeter used as an active beam-dump for electrons. Data showing the calorimeter response to electrons with momenta between 50 and 350 GeV/c are presented. 9 figs

  2. The design of radiation monitor passageway system

    International Nuclear Information System (INIS)

    The Radiation Monitor Passageway System is designed as four modules, the radiation detection modules, the control modules, the mechanism modules and the optional modules. this system integrate the radiation detection technology and door ban control technology. It is a effective radiation monitor equipment with high detect sensitiveness, it will be hopeful devoted to national nuclear safeguard. (authors)

  3. The hadron calorimeter prototype beam-test results

    CERN Document Server

    Coca, C; Rosca, A; Ajinenko, I; Dorokhov, A E; Dzhelyadin, R I; Konoplyannikov, A K; Matveev, V; Novikov, V; Yushchenko, O P; Ranyuk, Y

    2000-01-01

    Here We present here the beam-test results obtained with the HCAL Prototype exposed on the X7 beam line of the CERN SPS accelerator. The iron plate: - scintillator tile sampling calorimeter has been tested in the bearn momenta range 10 = 80 GeV/c. The measured energy, angular and coordinate dependences of the HCAL responce and resolution were found to be corresponding to the LHCb design requirements. The angular and X-Y coordinate uniformity have been checked and compared with stand-alone Monte-Carlo simulation program predictions. The radioactive source calibration procedure has been developed. The LED pulse system allows to monitor the short-term stability of the detector. New 40 MHz front-end electronics have been tested and compared with ordinary charge integrating ADC's. The results of the first combined calorimeter tests are also presented. The signal shapes have been studied for FICA L., instrumented with different fiber types and were found to satisfy the I,IICb performance requirements.

  4. Graphite calorimeter, the primary standard of absorbed dose at BNM-LNHB

    International Nuclear Information System (INIS)

    The graphite calorimeter is the standard for absorbed dose to water at BNM-LNHB. The transfer from absorbed dose to graphite to absorbed dose to water is then performed by means of chemical dosimeters and ionisation chamber measurements. Therefore the quality of graphite calorimeter measurements is essential. The present graphite calorimeter is described. The characteristics of this calorimeter are pointed out. Special attention is given to the thermal feedback of the core, which is the main difference with the Domen-type calorimeter. The repeatability and reproducibility of the mean absorbed dose in the calorimeter core are presented in detail. As an example, individual measurements in the 20 MV photon beam from our Saturne 43 linac are given. The y-axis quantity is the mean absorbed dose in the core divided by the reference ionisation chamber charge. Both are normalised to the monitor ionisation chamber charge. The standard deviation (of the distribution itself) is 0.12 % for the first set of measurements performed in 1999. In 2002, for each different series, the standard deviation is 0.03%. The improvement on the 2002 standard deviation is mainly due to the change of the ionisation chamber used for the beam monitoring of the linac. Some benefit also comes from changes on the thermal control and measuring systems (nanovoltmeters, Wheatstone bridges, power supplies, determination of the measuring bridge sensitivity (V/Ω.) ). The maximum difference between the means of the three series is 0.08%. This difference is due to the variation of not only the calorimetric measurements but also of the reference ionisation chamber response, of the position of the assembly and of the monitoring of the beam. The stability of the linac (electron energy, photon beam shape) has to be very good too in order to obtain this global performance. The correction factors necessary to determine the absorbed dose to graphite at the reference point in an homogeneous phantom from the

  5. The pipelined readout for the ZEUS calorimeter

    International Nuclear Information System (INIS)

    The electron-proton storage ring complex HERA under construction at DESY in Hamburg is the first machine of a new generation of colliders. Since physics to be studied at HERA (covered in chapter 2) base on the precise measurement of kinematic variables over a very large range of energies, a foremost emphasis is set in calorimetry. After long studies and an ambitious test program, the ZEUS collaboration has built a high resolution depleted uranium-scintillator calorimeter with photomultiplier readout, the state of the art in detectors of this type. In chapter 3 the principles of calorimetry are reviewed and the construction of the ZEUS calorimeter is described. Mainly due to the large dynamic range and the short bunch crossing times a novel concept for the readout in an analog pipelined fashion had to be designed. This concept is explained in chapter 4. The solid state implementation of the pipeline required two integrated circuits which were developed specially for the ZEUS calorimeter in collaboration with an electronics research institute and produced by industry. The design and construction of these devices and the detailed testing which has been performed for properties critical in the readout is covered in chapters 5 and 6. The whole pipelined readout is a complicated setup with many steps and collaborating systems. Its implementation and the information to operate it are covered in chapter 7. Finally the concepts presented and the applications discussed have been installed and tested on a test beam calibration experiment. There, the modules of the calorimeter have been calibrated. Chapter 8 presents results from these measurements which show excellent performance of the electronics as well as optimal properties of the calorimeter modules. (orig./HSI)

  6. Storage monitoring systems for the year 2000

    Energy Technology Data Exchange (ETDEWEB)

    Nilsen, C.; Pollock, R.

    1997-12-31

    In September 1993, President Clinton stated the US would ensure that its fissile material meet the highest standards of safety, security, and international accountability. Frequent human inspection of the material could be used to ensure these standards. However, it may be more effective and less expensive to replace these manual inspections with virtual inspections via remote monitoring technologies. To prepare for this future, Sandia National Laboratories has developed several monitoring systems, including the Modular Integrated Monitoring System (MIMS) and Project Straight-Line. The purpose of this paper is to describe a Sandia effort that merges remote monitoring technologies into a comprehensive storage monitoring system that will meet the near-term as well as the long-term requirements for these types of systems. Topics discussed include: motivations for storage monitoring systems to include remote monitoring; an overview of the needs and challenges of providing a storage monitoring system for the year 2000; an overview of how the MIMS and Straight-Line can be enhanced so that together they create an integrated and synergistic information system by the end of 1997; and suggested milestones for 1998 and 1999 to assure steady progress in preparing for the needs of 2000.

  7. Storage monitoring systems for the year 2000

    International Nuclear Information System (INIS)

    In September 1993, President Clinton stated the US would ensure that its fissile material meet the highest standards of safety, security, and international accountability. Frequent human inspection of the material could be used to ensure these standards. However, it may be more effective and less expensive to replace these manual inspections with virtual inspections via remote monitoring technologies. To prepare for this future, Sandia National Laboratories has developed several monitoring systems, including the Modular Integrated Monitoring System (MIMS) and Project Straight-Line. The purpose of this paper is to describe a Sandia effort that merges remote monitoring technologies into a comprehensive storage monitoring system that will meet the near-term as well as the long-term requirements for these types of systems. Topics discussed include: motivations for storage monitoring systems to include remote monitoring; an overview of the needs and challenges of providing a storage monitoring system for the year 2000; an overview of how the MIMS and Straight-Line can be enhanced so that together they create an integrated and synergistic information system by the end of 1997; and suggested milestones for 1998 and 1999 to assure steady progress in preparing for the needs of 2000

  8. Supervisory monitoring system in nuclear power plants

    International Nuclear Information System (INIS)

    Monitoring of a power plant is one of the essential tasks during operation and the computer-based implementations are nowadays seemingly quite mature. However, presently these are still not satisfactory enough to meet the high standards to the licensing requirements and they are mostly not truly integrated to the plant's design-based monitoring system. This is basically due to the robustness problem as the majority of the methods are not robust enough for the monitoring of the safety parameter set in a plant or intelligent supervision. Therefore, a supervisory monitoring system (SMS) in a plant is necessary to supervise the monitoring tasks: determining the objectives to be obtained and finding the means to support them. SMS deals with the changing plant status and the coordination of the information flow among the monitoring subunits. By means of these robustness and consistency in monitoring is achieved. The paper will give the guidelines of knowledge and data management techniques in a framework of robust comprehensive and coordinated monitoring which is presented as supervisory monitoring. Such a high level monitoring serves for consistent and immediate actions in fault situations while this particularly has vital importance in preventing imminent severe accidents next to the issues of recognition of the monitoring procedures for licensing and enhanced plant safety. (author). 8 refs, 5 figs

  9. ELECTROMAGNETIC CALORIMETER (ECAL)

    CERN Multimedia

    D. Barney

    2012-01-01

      All necessary improvements to the online system and configuration to cope with the high-pile-up running conditions in 2012 have been commissioned successfully before the start of data-taking and during 2012 RunA. Hardware interventions included a rework of the preshower HV distribution system (increasing the number of working silicon sensor channels by 2%) and the deployment of two new lasers (blue and green) to improve the long-term stability of the monitoring system. The new lasers were deployed before the start of 2012 running and have been steadily producing monitoring constants since April, in parallel with the old laser, which is still used for the default monitoring corrections. Improvements to the DAQ include a firmware upgrade to recover on-the-fly from many types of suspected single-event upsets (SEUs). Configuration changes include new zero-suppression settings applied online and a new tuning for the algorithm to reduce the rate of anomalous signals firing the Level-1 trigger. Moreo...

  10. D0 Silicon Upgrade: End Calorimeter Transfer Bridge Modification

    International Nuclear Information System (INIS)

    During the assembly of major components into the D0 Detector, a transfer bridge was required to move the North-End Calorimeter from the clean room,over the cable bridge and onto the north sidewalk of the assembly hall. This experiment is now at the beginning stages of the next phase, namely the upgrade of this Detector for future physics research. A major piece of this upgrade is the installation of a solenoid magnet into the Central Calorimeter. In order to accomplish this, the South End Calorimeter has to be removed from the detector and the North End Calorimeter must be moved an additional 20-inch from its nominal open position (total 60-inch movement). The South End Calorimeter will be removed from the detector using the equipment designed for its installation. The calorimeter will be staged on the south sidewalk during the installation of the solenoid magnet and the central tracking systems. The North End Calorimeter is moved 60-inch to give more space between calorimeters during magnet, tracker and cable installation work. This movement will allow the calorimeter to remain coupled to the cryo system. However, this movement requires an extension be added to the center beam. This extension will support the rear wheels of the calorimeter and in the case of the end calorimeters, carry the majority of the weight. The extension is to be a modification of the transfer bridge. This modification, basically has T1 steel blocks added to one end and legs to the sidewalk supports at the other. The T1 steel blocks are notched to fit into the center beam porches and are welded to bridge rails. This design is the same as that for the installation bridge (3740.312-ME-273456), including the welds and weld procedures which are identical in both cases. Since load testing is impractical, the critical welds will be non-destructive tested by ultrasonic means. The laboratory, through the FESS Department, has a contract with M.Q.S. Inspection Inc. The results of this testing will be

  11. The LHCb hadron calorimeter prototype

    International Nuclear Information System (INIS)

    LHCb is a Large Hadron Collider Beauty experiment dedicated for precision measurements of CP violation and rare phenomena. The experiment is built as a single arm detector covering a forward angle between ∼ 15 mrad and ∼ 300 mrad. It consists in a vertex detector, a tracking system, two RICH detectors, a calorimeter system comprising a preshower, electromagnetic and hadron sections, and a muon system. The role of the calorimeters is to provide identification of the electrons and hadrons for trigger and offline analysis with measurements of position and energy. The hadron calorimeter (HCAL) has to provide data for the trigger and to assist in background suppression when B decays are reconstructed. In 1997 an HCAL prototype stack of 3 modules, each having the dimensions 96 x 16 x 153 cm3, has been constructed and exposed to the X7 test beams of the SPS at CERN. Each module is constructed from scintillator tiles embedded in an iron structure, which are parallel to the beam direction in a staggered arrangement. The cell segmentation of the 1997 prototype was 16 x 16 cm2 and had a 2-fold in depth readout. Around 3760 spacer plates and weld straps necessary for all 6 modules were supplied by Romanian group of IFIN-HH in 1997, as well as about 200 master plates for two modules in 1998. The assembling of the modules was performed at CERN by people of our group, IHEP Serpukhov and CERN. During November 1997 test beam data were taken with pion and electron beams of 5 up to 50 GeV/c momenta. The energy spectra for pions were obtained. A shift of about 1.3 GeV of the energy mean value with respect to the beam energy was observed for all studied energies. This could be due to different effects. The energy resolution as a function of the beam energy fitted by the dependence σ/E = a/√E + b gives parameters in agreement with the values expected from Monte Carlo. Uniformity response for pions at 20 GeV oscillates within 2.5 % around the mean value. Data taken with ECAL

  12. HADRON CALORIMETER (HCAL)

    CERN Multimedia

    A. Skuja

    Central Calorimeter (HB/HE/HO) Photodetectors The main activity of the HCAL group during the present shutdown is the replacement of a small fraction of the Central Calorimeter (HB/HE/HO) photodetectors -- the Hybrid Photo-Detectors (HPDs). During the MTCC of 2006 it was established that all HPDs exhibit a low rate of discharge generating large random pulses. This behaviour persists at the full CMS field. However, at relatively low fields (0.5 Tesla) this discharge rate increases dramatically and becomes very large for a fraction of the HPDs. The HO HPDs which sit in the gap of the return yoke are thus adversly affected. These discharge pulses have been labelled "HPD noise" (which must be distinguished from low level electronic noise which manifests itself as pedestal noise for all HPD readout channels). Additional intermediate level noise can be generated by ion-feedback arising from thermal and field emission electrons. Ion feedback noise never exceeds the equivalent of few 10s of GeV, the...

  13. Electromagnetic Calorimeter for HADES

    CERN Document Server

    Czyzycki, W; Fabbietti, L; Golubeva, M; Guber, F; Ivashkin, A; Kajetanowicz, M; Krasa, A; Krizek, F; Kugler, A; Lapidus, K; Lisowski, E; Pietraszko, J; Reshetin, A; Salabura, P; Sobolev, Y; Stanislav, J; Tlusty, P; Torrieri, T; Traxler, M

    2011-01-01

    We propose to build the Electromagnetic calorimeter for the HADES di-lepton spectrometer. It will enable to measure the data on neutral meson production from nucleus-nucleus collisions, which are essential for interpretation of dilepton data, but are unknown in the energy range of planned experiments (2-10 GeV per nucleon). The calorimeter will improve the electron-hadron separation, and will be used for detection of photons from strange resonances in elementary and HI reactions. Detailed description of the detector layout, the support structure, the electronic readout and its performance studied via Monte Carlo simulations and series of dedicated test experiments is presented. The device will cover the total area of about 8 m^2 at polar angles between 12 and 45 degrees with almost full azimuthal coverage. The photon and electron energy resolution achieved in test experiments amounts to 5-6%/sqrt(E[GeV]) which is sufficient for the eta meson reconstruction with S/B ratio of 0.4% in Ni+Ni collisions at 8 AGeV....

  14. ELECTROMAGNETIC CALORIMETER (ECAL)

    CERN Multimedia

    P. Bloch

    ECAL crystal calorimeter (EB + EE) The Barrel and Endcaps ECAL calorimeters have been used routinely in global runs. The CRAFT data have confirmed that ECAL performance is the same with or without magnetic field. The CRUZET and CRAFT runs have allowed experience to be gained with ECAL operation in many areas, in particular for the trigger and the calibration sequence using gap events (laser events and LED pulsing). More details can be found in the Commissioning/DPG report in this bulletin.   The last components remaining to be installed and commissioned are the specific Endcap Trigger modules (TCC-48). Most of the modules have been delivered to LLR and half of them are already at CERN. In parallel, large progress has been made on the validation of the TCC-48 firmware. Preshower (ES) The Preshower project has also made impressive progress during Autumn. All the elements required to complete the detector assembly are at hand. Ladder assembly, test and calibration with cosmic rays at the operating ...

  15. A Study On The Stability Of The LED Gain Monitoring System For The CMS-HF PMTs During 2009

    CERN Document Server

    Özbek, Melih

    The Hadronic Forward (HF) calorimeter improves the jet detection and the missing transverse energy resolution of the Compact Muon Solenoid (CMS). In HF, the Photo Multiplier Tubes (PMTs) convert optical signals (i.e., Čerenkov light) to electrical signals. For monitoring the PMT gains, LED signals are extensively used. LED data collected throughout 2009 were thoroughly studied in this thesis. The focus was analyzing the stability of the LED system over time by graphical means. Also, by plotting the average charge versus position, it was possible to identify problematic channels.

  16. The Front End Electronics of the Scintillator Pad Detector of LHCb Calorimeter

    CERN Document Server

    Gascon, David; Bota, S; Comerma, A; Diéguez, A; Garrido, L; Gaspar, A; Graciani, R; Graciani, E; Herms, A; Llorens, M; Luengo, S; Picatoste, E; Riera, J; Rosselló, M; Ruiz, H; Tortella, S; Vilasís, X

    2007-01-01

    In this paper the Front End electronics of the Scintillator Pad Detector (SPD) is outlined. The SPD is a sub-system of the Calorimeter of the LHCb experiment designed to discriminate between charged and neutral particles for the first level trigger. The system design is presented, describing its different functionalities implemented through three different cards and several ASICs. These functionalities are signal processing and digitization, data transmission, interface with control and timing systems of the experiment, low voltage power supply distribution and monitoring. Special emphasis is placed on installation and commissioning subjects such as cabling, grounding, shielding and power distribution.

  17. The CERN GSM monitoring system

    International Nuclear Information System (INIS)

    This paper presents the way CERN has approached the problem of monitoring its own GSM infrastructure, especially in the Large Hadron Collider (LHC) accelerator tunnel and other underground facilities, where a leaky feeder cable carries mobile phone signals, and where this technology is the only means for inter-personnel communications.

  18. AP1000 radiation monitoring system design and engineering solution

    International Nuclear Information System (INIS)

    It presents the design concept and solution, including system integration architecture, communication network design and monitoring software of Radiation Monitoring System in Sanmen and Haiyang AP1000 nuclear power plant. The design of AP1000 radiation monitoring system has been simplified comparing to general Pressurized Water Reactor. Radiation monitoring network is composed of the radiation monitoring computer system (CRPS-1000) and four kinds of radiation monitors through standard interface. The data of radiation monitoring system are monitored and managed by CRPS-1000. (authors)

  19. Nuclear safety, control and monitoring systems

    International Nuclear Information System (INIS)

    The review of basic systems supporting safety of technological processes, which were developed and implemented at the Mayak site, is given. The purpose of the self-sustaining chain reaction emergency warning system is to register any anomalously high level of instantaneous γ-radiation, provide sound and light alarm signals, estimate the γ-radiation absorbed dose rate. The purpose of the automated radiation monitoring system is to provide radiation safety of process personnel by continuous remote monitoring of the radiological situation and control of the alarm devices and operating mechanisms. The automated radiation monitoring system provides continuous monitoring γ-radiation exposure dose rate; collection and processing of data from measurement units; prompt notification to regional and federal executive authorities about any accidents and provision of informational support of decision-making. The neutron detection system is used to measure the frequency of impulses that characterise the flux of neutrons emitted by the plutonium solution in the process vessels, prepare and transfer information to the central process control system at its automated workplace locations. The goals of the system for automatic monitoring of nuclear shipments are to provide integrated online monitoring for nuclear, radiation, environmental and fire safety, branch power supply, radiation and meteorological monitoring of the sanitary protection zones and observation zones, as well as transmission of operative data to the Rosatom's Crisis Response Centre

  20. EDGAR, a new plant radiation monitoring system

    International Nuclear Information System (INIS)

    The EDGAR system is a new radiation monitoring system for nuclear power plant, reprocessing plant and nuclear research reactor for radioactive contamination, gamma and neutron field monitoring. Developed by French Atomic Energy Agency, this system provides not only complete functions of standard RMS, also allows spectroscopy level detection of alpha and beta particles based on a patented collimator unit. A complete computerized approach has been taken allowing full installation control in a single PC based display and communication unit. (author)

  1. Environmental radiation monitoring system based on GIS

    International Nuclear Information System (INIS)

    With the application enlargement of nuclear technology and the necessary of anti-terror, it is becoming more and more important to establish and update the environmental radiation monitoring system. The design goal, main function and the position of GIS technology of environmental radiation monitoring system were discussed in this study. Both the requirement of managing capability and emergency responding were considered. In this system, J2EE platform and the model of a computer with dual screen were utilized. (authors)

  2. Monitoring mental healthcare on a system level

    DEFF Research Database (Denmark)

    Bramesfeld, Anke; Amaddeo, Francesco; Caldas-de-Almeida, José; Cardoso, Graça; Depaigne-Loth, Anne; Derenne, Rose; Donisi, Valeria; Jørgensen, Mette; Lindelius, Birgitta; Lora, Antonio; Mainz, Jan; Mulder, Cornelis Lambert; Szecsenyi, Joachim; Killaspy, Helen

    2016-01-01

    AIMS: Routinely collected data can be used to monitor the performance and improve the quality of mental healthcare systems. Data-based and system-level Quality Monitoring Programmes in Mental Health Care (QMP-MHC) are increasingly being implemented in EU countries. They are believed to be...... indispensable for the sustainable improvement of the quality of mental healthcare. However, there is a paucity of comparative research on national strategies in quality monitoring. This study explores the status of system-level Quality Monitoring Programmes in Mental Health Care (QMP-MHC) in EU countries. It...... were all members of a Europe-wide network of researchers and members of public institutions involved in quality assessment and performance monitoring of mental healthcare. RESULTS: Country profiles were gathered from England, Denmark, France, Germany, Italy, the Netherlands, Portugal, and Sweden. All...

  3. Test Results of a Phi Monitoring System

    CERN Document Server

    Figueroa, Carlos; Burgos, C; Ferrrando, A; Matorras, Francisco; Molinero, Antonio; Rodriguo, T; Shvachkin, V

    1997-01-01

    The development and tests of a Phi monitoring system prototype designed for the CMS Muon Spectrometer alignment are described. The system, using a sweeping laser beam, defines a light reference plane to be used for the continuous monitoring of the Muon detectors. The performance of the system in the Laboratory was satisfactory. It showed good stability and linearity response behaviour. With the appropriate selection of components it can monitor large range position shifts ( up to 1-2 cm) with good accuracy at long distances ( ~ 60 mu accuracy at 10 m).

  4. Computer-controlled radiation monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Homann, S.G.

    1994-09-27

    A computer-controlled radiation monitoring system was designed and installed at the Lawrence Livermore National Laboratory`s Multiuser Tandem Laboratory (10 MV tandem accelerator from High Voltage Engineering Corporation). The system continuously monitors the photon and neutron radiation environment associated with the facility and automatically suspends accelerator operation if preset radiation levels are exceeded. The system has proved reliable real-time radiation monitoring over the past five years, and has been a valuable tool for maintaining personnel exposure as low as reasonably achievable.

  5. Computer-controlled radiation monitoring system

    International Nuclear Information System (INIS)

    A computer-controlled radiation monitoring system was designed and installed at the Lawrence Livermore National Laboratory's Multiuser Tandem Laboratory (10 MV tandem accelerator from High Voltage Engineering Corporation). The system continuously monitors the photon and neutron radiation environment associated with the facility and automatically suspends accelerator operation if preset radiation levels are exceeded. The system has proved reliable real-time radiation monitoring over the past five years, and has been a valuable tool for maintaining personnel exposure as low as reasonably achievable

  6. Blood monitoring systems and methods thereof

    Science.gov (United States)

    Mir, Jose (Inventor); Zander, Dennis (Inventor)

    2012-01-01

    A blood monitoring system is capable of monitoring the blood of a subject in vivo. The blood monitoring system comprises: 1) an array of movable microneedle micromachined within associated wells; 2) array of motion actuators able to move each needle in and out of their associated wells; 3) array of microvalves associated with each microneedle able to control the flow of air around the microneedle; 4) an array of chemical sensors inserted into patient by movable microneedles; 5) an array of inductors able to measure chemical concentration in the vicinity of inserted chemical sensors; 6) conducting vias that provide timed actuating signal signals from a control system to each motion actuator; 7) conducting vias that transmit signal produced by array of chemical sensors to the control system for processing, although the blood monitoring system can comprise other numbers and types of elements in other configurations.

  7. Simulation and validation of the ATLAS Tile Calorimeter at LHC

    CERN Document Server

    Artamonov, A; The ATLAS collaboration

    2013-01-01

    --Simulation and validation of the ATLAS Tile Calorimeter at LHC TileCal is the hadronic calorimeter covering the most central region of the ATLAS experiment at the LHC. This sampling calorimeter uses iron plates as absorber and plastic scintillating tiles as the active material. Scintillation light produced in the tiles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs). The resulting electronic signals from the approximately 10000 PMTs are measured and digitized every 25 ns before being transferred to off-detector data-acquisition systems. This contribution describes the detailed simulation of this large scale calorimeter from the implementation of the geometrical elements down to the realistic description of the electronics readout pulses, the special noise treatment and the signal reconstruction. Detector non-uniformities and imperfections are also represented. Detailed validation has shown that the simulated detector response characteristics have been successfully integrated and...

  8. Limerick Nuclear Generating Station vibration monitoring system

    International Nuclear Information System (INIS)

    Philadelphia Electric Company utilizes a vibration monitoring computer system at its Limerick Nuclear Generating Station to evaluate machine performance. Performance can be evaluated through instantaneous sampling, online static and transient data. The system functions as an alarm monitor, displaying timely alarm data to the control area. The passage of time since the system's inception has been a learning period. Evaluation through continuous use has led to many enhancements in alarm handling and in the acquisition and display of machine data. Due to the system's sophistication, a routine maintenance program is a necessity. This paper describes the system's diagnostic tools and current utilization. System development and maintenance techniques will also be discussed

  9. Implementation of the risk monitoring system

    International Nuclear Information System (INIS)

    Experience in the preparation of a risk monitor is described, comprising both foreign experience and experience in the preparation of risk monitoring systems. The importance of risk monitoring for the control and assessment of the NPP operation is highlighted, including related topics such as risk oriented indicators and emergency sequence precursors. Information sources necessary for setting up the monitor are discussed in detail. Special attention is paid to the transformation of the 'classical PSA model' into a model suitable for risk monitoring, particularly the transformation of event trees into top logic, and to the inevitable interventions into the failure tree logic especially in relation to the boundary condition setting. The creation of databases describing the PSA model and its relation to the plant systems and possibilities of reactor unit configuration change are outlined. The topic of data input during work with the risk monitor, both off-line and in semi-real time, is also discussed. Available risk monitoring software tools are described and samples of output for the demonstration model in the Safety Monitor code are presented. Basic information is also given regarding the applicability of the risk monitor in configuration risk management and in risk-informed licensing

  10. The CDF miniplug calorimeters

    Energy Technology Data Exchange (ETDEWEB)

    Lami, Stefano

    2002-06-28

    Two MiniPlug calorimeters, designed to measure the energy and lateral position of particles in the (forward) pseudorapidity region of 3.6 < |{nu}| < 5.2 of the CDF detector, have been recently installed as part of the Run II CDF upgrade at the Tevatron {bar p}p collider. They consist of lead/liquid scintillator read out by wavelength shifting fibers arranged in a pixel-type towerless geometry suitable for ''calorimetric tracking''. The design concept, the prototype performance and the final design of the MiniPlugs are here described. A recent cosmic ray test resulted in a light yield of approximately 100 pe/MIP, which exceeds our design requirements.

  11. The KLOE electromagnetic calorimeter

    International Nuclear Information System (INIS)

    A general purpose detector, KLOE, is under construction for operations at the Frascati φ factory, DAΦNE. Its central mission is the study of direct CP violation in K0 decays, which places very stringent requirements on electromagnetic shower measurements in the 20-280 MeV/c region. We have chosen to use a lead-scintillator sampling calorimeter, EmC, consisting of very thin (0.5 mm) lead layers in which are embedded 1 mm diameter scintillating fibers. Much prototyping and testing has been done during its design, yielding, for the final EmC, an expected energy resolution of σ(E)/E similar 4.4%/√(E(GeV)) and a time resolution of similar 46 ps/√(E(GeV)), with excellent linearity in the region of interest and with little dependence on incidence angle and entry position. (orig.)

  12. A plasma process monitor/control system

    Energy Technology Data Exchange (ETDEWEB)

    Stevenson, J.O.; Ward, P.P.; Smith, M.L. [Sandia National Labs., Albuquerque, NM (United States); Markle, R.J. [Advanced Micro Devices, Inc., Austin, TX (United States)

    1997-08-01

    Sandia National Laboratories has developed a system to monitor plasma processes for control of industrial applications. The system is designed to act as a fully automated, sand-alone process monitor during printed wiring board and semiconductor production runs. The monitor routinely performs data collection, analysis, process identification, and error detection/correction without the need for human intervention. The monitor can also be used in research mode to allow process engineers to gather additional information about plasma processes. The plasma monitor can perform real-time control of support systems known to influence plasma behavior. The monitor can also signal personnel to modify plasma parameters when the system is operating outside of desired specifications and requires human assistance. A notification protocol can be selected for conditions detected in the plasma process. The Plasma Process Monitor/Control System consists of a computer running software developed by Sandia National Laboratories, a commercially available spectrophotometer equipped with a charge-coupled device camera, an input/output device, and a fiber optic cable.

  13. Quaternion Based Omnidirectional Machine Condition Monitoring System

    Directory of Open Access Journals (Sweden)

    Wai-Kit Wong

    2011-05-01

    Full Text Available Thermal monitoring is useful for revealing some serious electrical problems in a factory that oftengo undetected until a serious breakdown occurs. In factories, there are various types offunctioning machines to be monitored. When there is any malfunctioning of a machine, extra heatwill be generated which can be picked up by thermal camera for image processing andidentification purpose. In this paper, a new and effective omnidirectional machine conditionmonitoring system applying log-polar mapper, quaternion based thermal image correlator andmax-product fuzzy neural network classifier is proposed for monitoring machine condition in anomnidirectional view. With this monitoring system, it is convenient to detect and monitor theconditions of (overheat or not of more than one machines in an omnidirectional view captured byusing a single thermal camera. Log-polar mapping technique is used to unwarp omnidirectionalthermal image into panoramic form. Two classification characteristics namely: peak to sideloberatio (PSR and real to complex ratio of the discrete quaternion correlation output (p-value areapplied in the proposed machine condition monitoring system. Large PSR and p-value observe ina good match among correlation of the input thermal image with a particular reference image,while small PSR and p-value observe in a bad/not match among correlation of the input thermalimage with a particular reference image. Simulation results also show that the proposed system isan efficient omnidirectional machine monitoring system with accuracy more than 97%

  14. The Authenticated Tracking and Monitoring System (ATMS)

    International Nuclear Information System (INIS)

    The Authenticated Tracking and Monitoring System (ATMS) has been designed to address the need for global monitoring of the status and location of proliferation-sensitive items. Conceived to utilize the proposed Global Verification and Location System (GVLS) satellite link, ATMS could use the existing International Maritime Satellite commercial communication system until GVLS is operational. The ATMS concept uses sensor packs to monitor items and environmental conditions, collects a variety of event data through a sensor processing unit, and transmits the data to a satellite, which then sends data to ground stations. Authentication and encryption algorithms will be used to secure the data. A typical ATMS application would be to track and monitor the safety and security of a number of items in transit along a scheduled shipping route. This paper also discusses a proof-of-concept system demonstration

  15. Automatic calorimetry system monitors RF power

    Science.gov (United States)

    Harness, B. W.; Heiberger, E. C.

    1969-01-01

    Calorimetry system monitors the average power dissipated in a high power RF transmitter. Sensors measure the change in temperature and the flow rate of the coolant, while a multiplier computes the power dissipated in the RF load.

  16. Monitoring System for ALICE Surface Areas

    CERN Document Server

    Demirbasci, Oguz

    2016-01-01

    I have been at CERN for 12 weeks within the scope of Summer Student Programme working on a monitoring system project for surface areas of the ALICE experiment during this period of time. The development and implementation of a monitoring system for environmental parameters in the accessible areas where a cheap hardware setup can be deployed were aim of this project. This report explains how it was developed by using Arduino, Raspberry PI, WinCC OA and DIM protocol.

  17. Application of megapixel video monitoring system

    International Nuclear Information System (INIS)

    This paper expounds the advantages of Megapixel camera, and the structure of million pixels video monitoring system, puts forward to solve the key technical of resolution and frame rate combined with the actual engineering requirements, realizes the core technology of megapixel video monitoring system, gives the design method of million pixels video, data compression, data transmission, data storage and video server, and puts forward effective solutions in construction of the problems during the implementation. (authors)

  18. Rotor fatigue monitoring data acquisition system

    Science.gov (United States)

    Smith, Scott M.

    1993-01-01

    The 40 by 80 Foot Wind Tunnel of the National Full Scale Aerodynamics Complex (NFAC) had a requirement to monitor rotor fatigue during a test. This test subjected various rotor components to stress levels higher than their structural fatigue limits. A data acquisition system was developed to monitor the cumulative fatigue damage of rotor components using National Instruments hardware and LabVIEW software. A full description of the data acquisition system including its configuration and salient features, is presented in this paper.

  19. Design, Construction and Testing of the Digital Hadron Calorimeter (DHCAL) Electronics

    CERN Document Server

    Adams, C; Bilki, B; Butler, J; Corriveau, F; Cundiff, T; Drake, G; Francis, K; Guarino, V; Haberichter, B; Hazen, E; Hoff, J; Holm, S; Kreps, A; DeLurgio, P; Monte, L Dal; Mucia, N; Norbeck, E; Northacker, D; Onel, Y; Pollack, B; Repond, J; Schlereth, J; Smith, J R; Trojand, D; Underwood, D; Velasco, M; Walendziak, J; Wood, K; Wu, S; Xia, L; Zhang, Q; Zhao, A

    2016-01-01

    A novel hadron calorimeter is being developed for future lepton colliding beam detectors. The calorimeter is optimized for the application of Particle Flow Algorithms (PFAs) to the measurement of hadronic jets and features a very finely segmented readout with 1 x 1 cm2 cells. The active media of the calorimeter are Resistive Plate Chambers (RPCs) with a digital, i.e. one-bit, readout. To first order the energy of incident particles in this calorimeter is reconstructed as being proportional to the number of pads with a signal over a given threshold. A large-scale prototype calorimeter with approximately 500,000 readout channels has been built and underwent extensive testing in the Fermilab and CERN test beams. This paper reports on the design, construction, and commissioning of the electronic readout system of this prototype calorimeter. The system is based on the DCAL front-end chip and a VME-based back-end.

  20. Automatic monitoring system for ''F'' installation

    International Nuclear Information System (INIS)

    The design and operation procedure of the first part of automatic radiation monitoring system of the Laboratory of Nuclear Problems, JINR, (''F'' Installation) are described. The system consists of 50 data measuring lines from which 30 are used to monitor by means of radiation de-- tectors; 12- to control the state of branch circuits, and orhers give auxiliary information on the accelerator performance. The data are handled and registered by a crate controller with built-in microcomputer once in some seconds. The monitoring results are output on a special light panel, a sound signaling and on a print

  1. Monitoring system for industrial gases pollutants

    International Nuclear Information System (INIS)

    The system is designed for monitoring gas pollutants in air, in a chemical plant. It consists of gas detectors with transmitter and modules for environmental conditions measurement, data loggers and a central monitoring station which role is to collect data, generate alarms if pollutants concentration becomes over limit and create database. A dedicated software permits data collecting and processing in order to get solutions for minimising human and technological risks. The system role is monitoring the pollution sources and the surrounded areas that might be affected, for keeping gas pollutants concentration at an acceptable level and to minimise the pollution effects. (author)

  2. Data monitoring system for PV solar generators

    International Nuclear Information System (INIS)

    The two 1.5 kWp photovoltaic (PV) solar generators are installed and the new PC data monitoring system is developed by applying EC standards for European Solar Test Installation (ESTI). The schematic system diagram of PV generator is presented. The recording parameters for analytical and global monitoring are discussed. The meteorological data from ESTI sensors, temperature sensor and electrical data from inverter and calibrated shunt are stored via analog digital converters (ADC) on a hard disk of data storage PC. Data Logger and Monitor software for automatic data acquisition, treatment and visual distance control of all output PV data from PV solar generator has been created

  3. X-Ray Calorimeter Arrays for Astrophysics

    Science.gov (United States)

    Kilbourne, Caroline A.

    2009-01-01

    High-resolution x-ray spectroscopy is a powerful tool for studying the evolving universe. The grating spectrometers on the XMM and Chandra satellites started a new era in x-ray astronomy, but there remains a need for instrumentation that can provide higher spectral resolution with high throughput in the Fe-K band (around 6 keV) and can enable imaging spectroscopy of extended sources, such as supernova remnants and galaxy clusters. The instrumentation needed is a broad-band imaging spectrometer - basically an x-ray camera that can distinguish tens of thousands of x-ray colors. The potential benefits to astrophysics of using a low-temperature calorimeter to determine the energy of an incident x-ray photon via measurement of a small change in temperature was first articulated by S. H. Moseley over two decades ago. In the time since, technological progress has been steady, though full realization in an orbiting x-ray telescope is still awaited. A low-temperature calorimeter can be characterized by the type of thermometer it uses, and three types presently dominate the field. The first two types are temperature-sensitive resistors - semiconductors in the metal-insulator transition and superconductors operated in the superconducting-normal transition. The third type uses a paramagnetic thermometer. These types can be considered the three generations of x-ray calorimeters; by now each has demonstrated a resolving power of 2000 at 6 keV, but only a semiconductor calorimeter system has been developed to spaceflight readiness. The Soft X-ray Spectrometer on Astro-H, expected to launch in 2013, will use an array of silicon thermistors with I-IgTe x-ray absorbers that will operate at 50 mK. Both the semiconductor and superconductor calorimeters have been implemented in small arrays, kilo-pixel arrays of the superconducting calorimeters are just now being produced, and it is anticipated that much larger arrays will require the non-dissipative advantage of magnetic thermometers.

  4. Moisture monitoring and control system engineering study

    International Nuclear Information System (INIS)

    During the past 50 years, a wide variety of chemical compounds have been placed in the 149 single-shell tanks (SSTS) on the Hanford Site. A concern relating to chemical stability, chemical control, and safe storage of the waste is the potential for propagating reactions as a result of ferrocyanide-oxidizer and organic-oxidizer concentrations in the SSTS. Propagating reactions in fuel-nitrate mixtures are precluded if the amounts of fuel and moisture present in the waste are within specified limits. Because most credible ignition sources occur near the waste surface, the main emphasis of this study is toward monitoring and controlling moisture in the top 14 cm (5.5 in.) of waste. The purpose of this engineering study is to recommend a moisture monitoring and control system for use in SSTs containing sludge and saltcake. This study includes recommendations for: (1) monitoring and controlling moisture in SSTs; (2) the fundamental design criteria for a moisture monitoring and control system; and (3) criteria for the deployment of a moisture monitoring and control system in hanford Site SSTs. To support system recommendations, technical bases for selecting and using a moisture monitoring and control system are presented. Key functional requirements and a conceptual design are included to enhance system development and establish design criteria

  5. Electromagnetic shower detector-calorimeters

    International Nuclear Information System (INIS)

    A brief review of the state-of-the-art of electromagnetic calorimeters is presented. The choice of detector based on the experimental requirements in cost, spatial resolution, energy resolution, and hadron rejection is discussed

  6. LYSO crystal calorimeter readout with silicon photomultipliers

    Science.gov (United States)

    Berra, A.; Bonvicini, V.; Cecchi, C.; Germani, S.; Guffanti, D.; Lietti, D.; Lubrano, P.; Manoni, E.; Prest, M.; Rossi, A.; Vallazza, E.

    2014-11-01

    Large area Silicon PhotoMultipliers (SiPMs) are the new frontier of the development of readout systems for scintillating detectors. A SiPM consists of a matrix of parallel-connected silicon micropixels operating in limited Geiger-Muller avalanche mode, and thus working as independent photon counters with a very high gain (~106). This contribution presents the performance in terms of linearity and energy resolution of an electromagnetic homogeneous calorimeter composed of 9 ~ 18X0 LYSO crystals. The crystals were readout by 36 4×4 mm2 SiPMs (4 for each crystal) produced by FBK-irst. This calorimeter was tested at the Beam Test Facility at the INFN laboratories in Frascati with a single- and multi-particle electron beam in the 100-500 MeV energy range.

  7. LHCb: Upgrade of the LHCb calorimeter electronics

    CERN Multimedia

    Mauricio Ferre, J

    2013-01-01

    The LHCb collaboration foresees a major upgrade of the detector for the high luminosity run that should take place after 2018. Apart from the increase of the instantaneous luminosity at the interaction point of the experiment, one of the major ingredients of this upgrade is a full readout at 40MHz of the sub-detectors and the acquisition of the data by a large farm of PC. The trigger will be done by this farm and should increase the overall trigger efficiency with respect to the current detector, especially in hadronic B meson decays. A general overview of the modifications foreseen to the calorimeter system and the integration of the electromagnetic and hadronic calorimeters in this new scheme will be described.

  8. Seismic monitoring system replacement at Temelin plant

    International Nuclear Information System (INIS)

    The VVER-1000 plants under construction at Temelin (Czech Republic) were designed with an automatic reactor trip system triggered on seismic peak accelerations. Within the plant I and C upgrade, Westinghouse designed a digital Seismic Monitoring System to be integrated in an Artificial Intelligence based Diagnostic and Monitoring System. The system meets the requirements of the emerging standards prepared by the US NRC on the basis of EPRI studies, which recommend a detailed data evaluation and a pre-shutdown plant inspection before orderly shutdown, if required, rather than immediate emergency shutdown. The paper presents the arguments about automatic trip, as discussed in an IAEA meeting attended by expert consultants from Japan, Russia, US and Eastern and Western Europe. It describes the system installed at Temelin, including the plant specific criteria for OBE exceedance. Finally it presents the capabilities and limitations of the integration into an overall Diagnostic and Monitoring System

  9. Data Center Equipment Location and Monitoring System

    DEFF Research Database (Denmark)

    2013-01-01

    Abstract: Data center equipment location systems include hardware and software to provide information on the location, monitoring, and security of servers and other equipment in equipment racks. The systems provide a wired alternative to the wireless RFID tag system by using electronic ID tags...

  10. The timing control unit (TCU) and the fan-out (FO) for the DELPHI SAT calorimeter

    International Nuclear Information System (INIS)

    Two specially developed fastbus modules for readout control and monitoring of the SAT calorimeter detector in the DELPHI experiment at CERN are described. The report is intended as a complete technical manual for these modules. 14 refs

  11. A study of aging effects in gas proportional detectors at the BAC calorimeter of the ZEUS experiment

    International Nuclear Information System (INIS)

    The multicell proportional chambers at the backing calorimeter of the ZEUS experiment at the storage ring HERA are supplied with a gas mixture of Ar/CO2 by an open gas system. Flow proportional counters with the build-up 55Fe sources are used as gas system monitoring detectors. The ZEUS experiment is planned to collect data for about 10 years. Therefore, the lifetime of the Ar/CO2 mixture should be known. In this paper, the results of laboratory tests and preliminary measurements of the aging effects for monitoring counters are presented. ((orig.))

  12. Remote monitoring system workshop and technical cooperation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Soo; Kwack, E. H.; Yoon, W. K.; Kim, J. S.; Cha, H. Y.; Na, W.W

    2000-06-01

    RMS workshop at the year focus on installing the material monioring system at technology lab. within TCNC. This system was developed by cooperative monitoring center(CMC) belonging to Sandia national lab. MMS consisted of data storage computer, data collection computer and easily connet to DCM-14 camera using monitoring the NPP by IAEA. The system run when the motion is catching and stroes the event data to MMS server. Also, the system communicate with the internet and then they access to check the event data only if the authencated person.

  13. Remote monitoring system workshop and technical cooperation

    International Nuclear Information System (INIS)

    RMS workshop at the year focus on installing the material monioring system at technology lab. within TCNC. This system was developed by cooperative monitoring center(CMC) belonging to Sandia national lab. MMS consisted of data storage computer, data collection computer and easily connet to DCM-14 camera using monitoring the NPP by IAEA. The system run when the motion is catching and stroes the event data to MMS server. Also, the system communicate with the internet and then they access to check the event data only if the authencated person

  14. Performance of the ATLAS Calorimeters in LHC Run-1 and Run-2

    CERN Document Server

    Burghgrave, Blake; The ATLAS collaboration

    2016-01-01

    The ATLAS experiment at the Large Hadron Collider (LHC) is equipped with electromagnetic and hadronic liquid-argon (LAr) calorimeters and a hadronic scintillator-steel sampling calorimeter (TileCal) for measuring energy and direction of final state particles in the pseudorapidity range |η|<4.9. The calibration and performance of the calorimetry system was established during beam tests, cosmic ray muon measurements and in particular the first three years of pp collision data-taking. During this period, referred to as Run-1, approximately 27~fb−1 of data have been collected at the center-of-mass energies of 7 and 8~TeV. Following a period of detector consolidation during a long shutdown, Run-2 started in 2015 with approximately 3.9~fb−1 of data at a center-of-mass energy of 13~TeV recorded in this year. Results on the calorimeter operation, monitoring and data quality, as well as their performance will be presented, including the calibration and stability of the electromagnetic scale, response uniformit...

  15. ELECTROMAGNETIC CALORIMETER (ECAL)

    CERN Multimedia

    T. Tabarelli

    2012-01-01

      ECAL has been stably running with an up-time efficiency of 99.4% during Run 2012D, with about half of the inefficiency due to a single downtime episode. More than 99% of the collected data are certified good by ECAL for offline analysis. The monitoring system and calibration chain have also been working smoothly, with an excellent stability of the new laser source, after final tuning during the technical stop in September. Some drifts in the response upon monitoring corrections and some degradation in the resolution throughout Run 2012C and 2012D have been observed and will be corrected in the next reprocessing. Calibration constants for the full 2012 dataset –– derived with well-established procedures –– are going to be delivered by the end of the pp run. In parallel to this, studies of the performance evolution have been carried out to predict the longevity of ECAL towards HL-LHC. Radiation damage effects are studied from P5 data, particularly in the end...

  16. ELECTROMAGNETIC CALORIMETER (ECAL)

    CERN Multimedia

    2011-01-01

    All components of ECAL – EB, EE and ES – operated well throughout 2010 with few problems, and negligible evolution of dead channels. About 2% of the ES silicon sensors were unplugged in the second part of the year due to unacceptable increases in leakage currents attributed to radiation damage of the surfaces. The LHC winter technical stop allowed many improvements to the ECAL infrastructure at Point 5. For example, the High Voltage distribution systems for the EE and ES were both improved, with further modifications planned for the ES later in the year. Monitoring and alarming of power supplies was also improved, increasing the level of safety. Some cables in the USC and UXC were re-worked, recovering the operation of some environmental monitoring sensors and improving robustness overall. A thorough Readiness Review Workshop was organised at the end of January 2011 to review 2010 data quality and online and offline operations, and to prepare for the higher luminosities in 2011. All prese...

  17. Computerized plutonium laboratory-stack monitoring system

    International Nuclear Information System (INIS)

    The Los Alamos Scientific Laboratory has recently designed and constructed a Plutonium Research and Development Facility to meet design criteria imposed by the United States Energy Research and Development Administration. A primary objective of the design criteria is to assure environmental protection and to reliably monitor plutonium effluent via the ventilation exhaust systems. A state-of-the-art facility exhaust air monitoring system is described which establishes near ideal conditions for evaluating plutonium activity in the stack effluent. Total and static pressure sensing manifolds are incorporated to measure average velocity and integrated total discharge air volume. These data are logged at a computer which receives instrument data through a multiplex scanning system. A multipoint isokinetic sampling assembly with associated instrumentation is described. Continuous air monitors have been designed to sample from the isokinetic sampling assembly and transmit both instantaneous and integrated stack effluent concentration data to the computer and various cathode ray tube displays. The continuous air monitors also serve as room air monitors in the plutonium facility with the primary objective of timely evacuation of personnel if an above tolerance airborne plutonium concentration is detected. Several continuous air monitors are incorporated in the ventilation system to assist in identification of release problem areas

  18. Monitoring the CMS strip tracker readout system

    International Nuclear Information System (INIS)

    The CMS Silicon Strip Tracker at the LHC comprises a sensitive area of approximately 200 m2 and 10 million readout channels. Its data acquisition system is based around a custom analogue front-end chip. Both the control and the readout of the front-end electronics are performed by off-detector VME boards in the counting room, which digitise the raw event data and perform zero-suppression and formatting. The data acquisition system uses the CMS online software framework to configure, control and monitor the hardware components and steer the data acquisition. The first data analysis is performed online within the official CMS reconstruction framework, which provides many services, such as distributed analysis, access to geometry and conditions data, and a Data Quality Monitoring tool based on the online physics reconstruction. The data acquisition monitoring of the Strip Tracker uses both the data acquisition and the reconstruction software frameworks in order to provide real-time feedback to shifters on the operational state of the detector, archiving for later analysis and possibly trigger automatic recovery actions in case of errors. Here we review the proposed architecture of the monitoring system and we describe its software components, which are already in place, the various monitoring streams available, and our experiences of operating and monitoring a large-scale system

  19. Monitoring system of ECCS injection system upon periodical inspection

    International Nuclear Information System (INIS)

    An ECCS reactor injection system is automatically monitored upon periodical inspection. That is, a memory device stores information of the stand-by state of the ECCS reactor injection system upon periodical inspection. A data input means inputs monitoring item data in the present state. A required monitoring target is designated by the input means. A judging means compares the data of the monitoring target with the stand-by state information successively, to judge whether or not the monitoring target is in a predetermined stand-by state. A display means displays the result of the judgment. In the present system thus constituted, since it can be automatically judged whether or not the ECCS reactor injection system, as a monitoring target, is in the predetermined stand-by state, it is possible to reduce the operator's burden and improve the safety. (I.S.)

  20. Tritium monitor and collection system

    Energy Technology Data Exchange (ETDEWEB)

    Baker, J.D.; Wickham, K.L.; Ely, W.E.; Tuggle, D.G.; Meikrantz, D.H.; Grafwaller, E.G.; Maltrud, H.R.; Bourne, G.L.

    1991-03-26

    This system measures tritium on-line and collects tritium from a flowing inert gas stream. It separates the tritium from other non-hydrogen isotope contaminating gases, whether radioactive or not. The collecting portion of the system is constructed of various zirconium alloys called getters. These alloys adsorb tritium in any of its forms at one temperature and at a higher temperature release it as a gas. The system consists of four on-line getters and heaters, two ion chamber detectors, two collection getters, and two guard getters. When the incoming gas stream is valved through the on-line getters, 99.9% of it is adsorbed and the remainder continues to the guard getter where traces of tritium not collected earlier are adsorbed. The inert gas stream then exits the system to the decay chamber. Once the on-line getter has collected tritium for a predetermined time, it is valved off and the next online getter is valved on. Simultaneously, the first getter is heated and a pure helium purge is employed to carry the tritium from the getter. The tritium loaded gas stream is then routed through an ion chamber which measures the tritium activity. The ion chamber effluent passes through a collection getter that readsorbs the tritium and is removable from the system once it is loaded and is then replaced with a clean getter. Prior to removal of the collection getter, the system switches to a parallel collection getter. The effluent from the collection getter passes through a guard getter to remove traces of tritium prior to exiting the system. The tritium loaded collection getter, once removed, is analyzed by liquid scintillation techniques. The entire sequence is under computer control except for the removal and analysis of the collection getter.

  1. Tritium monitor and collection system

    Science.gov (United States)

    Bourne, Gary L.; Meikrantz, David H.; Ely, Walter E.; Tuggle, Dale G.; Grafwallner, Ervin G.; Wickham, Keith L.; Maltrud, Herman R.; Baker, John D.

    1992-01-01

    This system measures tritium on-line and collects tritium from a flowing inert gas stream. It separates the tritium from other non-hydrogen isotope contaminating gases, whether radioactive or not. The collecting portion of the system is constructed of various zirconium alloys called getters. These alloys adsorb tritium in any of its forms at one temperature and at a higher temperature release it as a gas. The system consists of four on-line getters and heaters, two ion chamber detectors, two collection getters, and two guard getters. When the incoming gas stream is valved through the on-line getters, 99.9% of it is adsorbed and the remainder continues to the guard getter where traces of tritium not collected earlier are adsorbed. The inert gas stream then exits the system to the decay chamber. Once the on-line getter has collected tritium for a predetermined time, it is valved off and the next on-line getter is valved on. Simultaneously, the first getter is heated and a pure helium purge is employed to carry the tritium from the getter. The tritium loaded gas stream is then routed through an ion chamber which measures the tritium activity. The ion chamber effluent passes through a collection getter that readsorbs the tritium and is removable from the system once it is loaded and is then replaced with a clean getter. Prior to removal of the collection getter, the system switches to a parallel collection getter. The effluent from the collection getter passes through a guard getter to remove traces of tritium prior to exiting the system. The tritium loaded collection getter, once removed, is analyzed by liquid scintillation techniques. The entire sequence is under computer control except for the removal and analysis of the collection getter.

  2. Acoustic emission monitoring of composite containment systems

    International Nuclear Information System (INIS)

    This paper considers two different types of composite containment system, and two different types of acoustic emission (AE) monitoring approach. The first system is a composite reinforced pressure vessel (CRPV) which is monitored both during construction and in-service using a broadband modal acoustic emission (MAE) technique. The second system is a membrane cargo containment system which is monitored using both a global as well as a local AE technique. For the CRPV, the damage assessment is concerned mainly with the integrity of the composite outer layer at the construction stage, and possible fatigue cracking of the inner steel liner at the in-service stage. For the membrane tank, the damage assessment is concerned with locating and quantifying any abnormal porosities that might develop in-service. By comparing and contrasting the different types of structural system and different monitoring approaches inferences are drawn as to what role AE monitoring could take in the damage assessment of other types of composite containment system. (Detailed technical data have not been included, due to client confidentiality constraints.)

  3. Diabetes Monitoring System Using Mobile Computing Technologies

    Directory of Open Access Journals (Sweden)

    Mashael Saud Bin-Sabbar

    2013-03-01

    Full Text Available Diabetes is a chronic disease that needs to regularly be monitored to keep the blood sugar levels within normal ranges. This monitoring depends on the diabetic treatment plan that is periodically reviewed by the endocrinologist. The frequent visit to the main hospital seems to be tiring and time consuming for both endocrinologist and diabetes patients. The patient may have to travel to the main city, paying a ticket and reserving a place to stay. Those expenses can be reduced by remotely monitoring the diabetes patients with the help of mobile devices. In this paper, we introduce our implementation of an integrated monitoring tool for the diabetes patients. The designed system provides a daily monitoring and monthly services. The daily monitoring includes recording the result of daily analysis and activates to be transmitted from a patient’s mobile device to a central database. The monthly services require the patient to visit a nearby care center in the patient home town to do the medical examination and checkups. The result of this visit entered into the system and then synchronized with the central database. Finally, the endocrinologist can remotely monitor the patient record and adjust the treatment plan and the insulin doses if need.

  4. Reactivity monitoring in ADS systems

    International Nuclear Information System (INIS)

    Monitoring reactivity in an ADS should be performed on-line with a simple, accurate and robust technique. Within the range of experimental reactor techniques, no single technique can be selected which meet these requirements. Therefore a combination of different techniques has to be chosen in a way that various off-line techniques serve as a calibration for the on-line measurement technique. As an on-line measurement technique, the current/flux reactivity indicator is the most simple and robust solution. It is based on the fact that in a subcritical multiplying medium with a driving source the flux level is proportional to the driving source intensity, hence the beam current, and the reactivity level. However, since the proportionality constant depends on a number of core dependent parameters and detector characteristics, this current-to-flux indicator has to be calibrated on a regular basis. For this calibration, one could benefit from the occurrence of accelerator beam trips to determine the reactivity level in dollars by means of a prompt jump analysis of the flux level change. Hence, the prompt jump reactivity indicator could act as a first calibration tool of the current-to-flux indicator. Since the prompt jump indicator still relies on the value for the effective delayed neutron fraction to determine reactivity level, complementary techniques have to be used to obtain a more accurate determination of the reactivity. Techniques based on reactor noise methods such as RAPJA technique which is combination of the Rossi-alpha method and Prompt jump analysis can be used in this respect. In the future the bi-spectral ratio from the Cf - source driven noise analysis could be used for this purpose. (author)

  5. Radiation monitoring system in medical facilities

    International Nuclear Information System (INIS)

    (1) RI selective liquid effluent monitor is, in many cases, used at medical facilities to obtain data for density of radioactivity of six radionuclides. In comparison with the conventional gross measuring systems, over-evaluation is less, and the monitor is more practical. (2) Preventive monitor for loss of radium needle is a system which prevents missing of radium needle at a flush-toilet in radium treatment wards, and this monitor is capable of sensing a drop-off of radium needle of 0.5 mCi (minimum). (3) Short-lived positron gas measuring device belongs to a BABY CYCLOTRON installed in a hospital, and this device is used to measure density of radioactivity, radioactive impurity and chemical impurity of produced radioactive gas. (author)

  6. Performance of the ATLAS Tile calorimeter

    CERN Document Server

    Bertoli, Gabriele; The ATLAS collaboration

    2015-01-01

    The Tile Calorimeter (TileCal) of the ATLAS experiment at the LHC is the central hadronic calorimeter designed for energy reconstruction of hadrons, jets, tau­particles and missing transverse energy. TileCal is a scintillator­steel sampling calorimeter and it covers the region of pseudorapidity < 1.7. The scintillation light produced in the tiles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The analog signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. The TileCal front­end electronics read out the signals produced by about 10000 channels measuring energies ranging from ~30 MeV to ~2 TeV. The read­out system is responsible for reconstructing the data in real­time. The digitized signals are reconstructed with the Optimal Filtering algorithm, which computes for each channel the signal amplitude, time and quality factor at the required high rate. Each stage of the signal production from scintillation light to the signal reconstruc...

  7. The environmental radiation monitoring system in Spain

    OpenAIRE

    Rosario Salas Collantes; Carmen Rey del Castillo

    2010-01-01

    The system of environmental radiation monitoring established in Spain is composed of several networks with different objectives, a monitoring network in the vicinity of the facilities and several national networks financed and managed by public agencies. The operators of the facilities are responsible for the conduct of its Environmental Radiological Surveillance Program as directed by the CSN. Moreover, the Directorate General of Civil Defense and Emergencies has a Radioactivity Warning Ne...

  8. Quaternion Based Omnidirectional Machine Condition Monitoring System

    OpenAIRE

    Wai-Kit Wong; Chu-Kiong Loo; Way-Soong Lim

    2011-01-01

    Thermal monitoring is useful for revealing some serious electrical problems in a factory that oftengo undetected until a serious breakdown occurs. In factories, there are various types offunctioning machines to be monitored. When there is any malfunctioning of a machine, extra heatwill be generated which can be picked up by thermal camera for image processing andidentification purpose. In this paper, a new and effective omnidirectional machine conditionmonitoring system applying log-polar map...

  9. Demonstration of expert systems in automated monitoring

    International Nuclear Information System (INIS)

    The Reactor Systems Section of Oak Ridge National Laboratory's Instrumentation and Controls Division has been developing expertise in the application of artificial intelligence (AI) tools and techniques to control complex systems. One of the applications developed demonstrates the capabilities of a rule-based expert system to monitor a nuclear reactor. Based on the experience acquired with the demonstration described in this paper, a 2-yr program was initiated during fiscal year 1985 for the development and implementation of an intelligent monitoring adviser to the operators of the HFIR facility. The intelligent monitoring system will act as an alert and cooperative expert to relieve the operators of routine tasks, request their attention when abnormalities are detected, and provide them with interactive diagnostic aid and project action/effects information as needed or on demand

  10. Integrated environmental monitoring and information system

    International Nuclear Information System (INIS)

    The concept of the environmental monitoring within the territory of the Slovak Republic and the concept of the integrated environmental information system of the Slovak Republic were accepted and confirmed by the Government Order No. 449/1992. The state monitoring system covering the whole territory of Slovakia is the most important and consists of 13 Partial Monitoring Systems (PMSs). List of PMSs is included. The listed PMSs are managed according to the concept of the Sectoral Information System (SIS) of the Ministry of the Environment of the Slovak Republic (MESR) which was established by the National Council Act No. 261/1995 Coll. on the SIS. The SIS consists of 18 subsystems which are listed. The overviews of budget of PMSs as well as of environmental publications and periodicals of the MESR are included

  11. MINT centralized radiation monitoring system via ethernet

    International Nuclear Information System (INIS)

    Computer networking technologies allow user to receive data and other information easier and faster. This paper describes the development of centralized radiation monitoring system for monitoring of area radiation levels in various locations in MINT complex via Ethernet. The system utilizes a Local Area Network (LAN) known as MINT-NET as a communication media for data acquisition of the area radiation levels from radiation detectors. The development of the system involves system configuration, wiring and hardware installation, interface and software development. Apart from that data distribution package in a web form is also developed. Besides monitoring the area radiation levels in MINT centrally, additional features are developed for effective radiation level trend observation and studies. (Author)

  12. The AGS Booster Beam Position Monitor system

    International Nuclear Information System (INIS)

    To accelerate both protons and heavy ions, the AGS Booster requires a broadband (multi-octave) beam position monitoring system with a dynamic range spanning several orders of magnitude (2 x 1010 to 1.5 x 1013 particles per pulse). System requirements include the ability to acquire single turn trajectory and average orbit information with ± 0.1 mm resolution. The design goal of ± 0.5 mm corrected accuracy requires that the detectors have repeatable linear performance after periodic bakeout at 300 degree C. The system design and capabilities of the Booster Beam Position Monitor will be described, and initial results presented. 7 refs., 5 figs

  13. Embedded data acquisition system for neutron monitors

    International Nuclear Information System (INIS)

    This article presents the design and implementation of a new data acquisition system to be used as replacement for the old ones that have been in use with neutron monitors for the last decades and, which are eventually becoming obsolete. This new system is also intended to be used in new installations, enabling these scientific instruments to use today's communication networks to send data and receive commands from the operators. This system is currently running in two stations: KIEL2, in the Christian-Albrechts-Universität zu Kiel, Kiel, Germany, and CALMA, in the Castilla-La Mancha Neutron Monitor, Guadalajara, Spain

  14. Development of the simulation monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Katsumi [Research Organization for Information Science and Technology, Tokai, Ibaraki (Japan); Watanabe, Tadashi; Kume, Etsuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-01-01

    Large-scale simulation technique is studied at the Center for Promotion of Computational Science and Engineering for the computational science research in nuclear fields. Visualization and animation processing techniques are developed for efficient understanding of simulation results. The development of the simulation monitoring system, which is used for real-time visualization of ongoing simulations or for successive visualization of calculated results, is described in this report. The standard visualization tool AVS5 or AVS/EXPRESS is used for the simulation monitoring system, and thus, this system can be utilized in various computer environments. (author)

  15. Development of the simulation monitoring system

    International Nuclear Information System (INIS)

    Large-scale simulation technique is studied at the Center for Promotion of Computational Science and Engineering for the computational science research in nuclear fields. Visualization and animation processing techniques are developed for efficient understanding of simulation results. The development of the simulation monitoring system, which is used for real-time visualization of ongoing simulations or for successive visualization of calculated results, is described in this report. The standard visualization tool AVS5 or AVS/EXPRESS is used for the simulation monitoring system, and thus, this system can be utilized in various computer environments. (author)

  16. Modernization of WWER-1000 radiation monitoring systems

    International Nuclear Information System (INIS)

    A modernization scheme of the radiation monitoring system for WWER-1000 is proposed. It has a purpose to comply with international standards and to reduce operational and maintenance cost by deleting obsolete components and reducing the number of detector channels. Detailed layouts of I/C system architecture, digital radiation monitoring system (DRAMS) architecture and LRP block diagram are presented. If planned and implemented properly, this program can provide cost savings by reducing time required to access and display data and maintenance cost by deleting obsolete parts and decreasing the number of detector channels. 3 figs

  17. Optimising corrosion monitoring in district heating systems

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel; Thorarinsdottir, R.I.; Andersen, A.; Nielsen, Lars Vendelbo

    2002-01-01

    A three-year project - financially supported by the Nordic Industrial Fund - on monitoring of corrosion in district heating systems has been initiated with participation of researchers and industrial partners in Denmark, Finland, Iceland, Norway and Sweden. The primary objective of the project is...... to improve the quality control in district heating systems by corrosion monitoring. In Danish systems electrochemical impedance spectroscopy (EIS), linear polarisation resistance (LPR), high-sensitive electrical resistance (ER) technology, crevice corrosion probes, as well as weight loss coupons will...

  18. Experience with the BEACON core monitoring system

    International Nuclear Information System (INIS)

    The BEACON operational core support system was developed for use in pressurized water reactors to provide an integrated system to perform reactor core monitoring, core measurement reduction, core analysis and follow, and core predictions. It is based on the very fast and accurate three-dimensional SPNOVA nodal program. The experience to date has shown the importance of an accurate integrated system. The benefits accrued are greater for the total system than the benefits that are possible separately

  19. Research and Construction the Net Monitor System

    OpenAIRE

    Ruining Huang; Lei Li; Yunjiang Lou

    2012-01-01

    A Net Monitor system is presented in this paper. The system is based on STMicroelectronics board FLTK3D, which provides hardware platform for TV functions--3D film, IPTV, 3D game, cable television and so on. The whole system includes the Linux Operating System (OS), embedded web browser, Media player, clouding applications, video conference and 3D game. It utilizes the reference model of the CLFS (Cross Linux From Scratches) principle to construct the embedded Linux OS. Cloud applications are...

  20. HADRON CALORIMETER (HCAL)

    CERN Multimedia

    J. Spalding

    2011-01-01

    Throughout the entire proton-proton run of 2011, all HCAL calorimeters operated very efficiently. Over 99% of HCAL readout and trigger channels were alive. However, during the year we did face two hardware problems. One major operation problem was the occasional loss of data from a single RBX caused by single event upsets (SEUs). The rate of RBX data loss was on average one incident per 10 pb–1 of integrated luminosity. This led to approximately 1% of CMS data loss. In order to mitigate this problem, HCAL has introduced an automatic reset of the RBX. With this reset, full operation was restored within about one minute. The final hardware correction of the problem will be possible only during a long shutdown (LS1) in 2013-’14. Another hardware problem that developed in 2011 was the failure of QPLL (quartz phase lock loops) chips. This led to the loss of phase of the readout clock with respect to the LHC clock. As a consequence, in two sections in HCAL (10 degree in φ on HB and 1...

  1. ELECTROMAGNETIC CALORIMETER (ECAL)

    CERN Multimedia

    P. Bloch

    ECAL Barrel (EB) The cabling of the ECAL Barrel services on YB0 was completed early December 2007. The team has now commissioned the complete Barrel. To run all the supermodules in parallel, it is necessary to remove the heat from the service cables on YB0. The corresponding thermal screens are being installed and, for the time being, a max¬imum of 25 supermodules has been run concurrently. EB is read out regularly with a local DAQ as well as with the central DAQ and trigger. The calorimeter trigger has also been commissioned, allowing us to trigger on cosmic muons. ECAL Endcaps (EE) The Endcaps crystal production will be completed before the end of March 2008, as planned. The gluing of the VPTs (Vacuum Photo Triodes) on the crystals and the assembly of Supercrystals (sets of 25 crystals) are proceeding at the pace of 16 Supercrystals (400 channels) per week. Two thirds of the Supercrystals needed for the complete EE have been produced. Their mounting on the Dee backplates (including the connectio...

  2. HADRON CALORIMETER (HCAL)

    CERN Multimedia

    A. Skuja

    Since the beginning of 2007, HCAL has made significant progress in the installation and commissioning of both hardware and software. A large fraction of the physical Hadron Calorimeter modules have been installed in UX5. In fact, the only missing pieces are HE- and part of HO. The HB+/- were installed in the cryostat in March. HB scintillator layer-17 was installed above ground before the HB were lowered. The HB- scintillator layer-0 was installed immediately after completion of EB- installation. HF/HCAL Commissioning The commissioning and checkout of the HCAL readout electronics is also proceeding at a rapid pace in Bldg. 904 and USC55. All sixteen crates of HCAL VME readout electronics have been commissioned and certified for service. Fifteen are currently operating in the S2 level of USC55. The last crate is being used for firmware development in the Electronics Integration Facility in 904. All installed crates are interfaced to their VME computers and receive synchronous control from the fully-equipp...

  3. HADRON CALORIMETER (HCAL)

    CERN Multimedia

    J. Spalding and A. Skuja

    2010-01-01

    Splash and Collision Data HCAL recorded the beam-on-collimator (splash) and the first collision data in November and December 2009, and provided triggers to CMS with the forward calorimeter, HF. Splash events were used to improve the energy inter-calibration of the HB and HE channels, with the basic assumption that the energy deposited in the detector by the large flux of muons that passed through in splash events was a smooth function in eta and phi. The new HB and HE calibration coefficients were applied prior to the collision data taking. For HO, a similar analysis is being finalized. Splash events were also used to determine the relative timing between channels in HB and HE, and new delay settings were calculated based on splashes from one beam, applied and verified with the splash events from the other beam. During Fall 2009, the HF technical trigger was improved in order to be effectively used as one of the main CMS triggers during the collision data taking. Collisions were successfully recorded by all...

  4. HADRON CALORIMETER (HCAL)

    CERN Multimedia

    J. Spalding

    2011-01-01

    All the HCAL calorimeters are ready for data-taking in 2011 and participated fully in the cosmic running and initial beam operations in the last few weeks. Several improvements were made during the winter technical stop, including replacement of the light-guide sleeves in HF, improvements to the low voltage power connections, and separation of HF from HB and HE in the DAQ partitions. During the 2010 running a form of anomalous noise in the HF was identified as being caused by scintillation when charged particles pass through a portion of the air light-guide sleeve. This portion was constructed from a non-conductive mirror-like material called “HEM”. To suppress these anomalous signals, during the recent winter technical stop all sleeves in the detector were replaced with sleeves made of Tyvek. The detector has been recommissioned with all channels fully operational. Recalibration of the detector will be required due to the differing reflectivity of the new sleeves compared with the HEM sl...

  5. HADRON CALORIMETER (HCAL)

    CERN Multimedia

    by J. Spalding and A. Skuja

    2010-01-01

    Operations and Maintenance All HCAL sub-detectors participated throughout the recent data taking with 7 TeV collisions. A timing scan of HF was performed to optimize the timing across the detectors and to set the overall time position of the ~10-ns wide signals within the 25-ns integration time slice. This position was chosen to ensure that the trigger primitives in physics events are generated synchronously at the desired bunch crossing, while also providing discrimination between the calorimeter signals and anomalous signals due to interactions within the photomultiplier tubes. This timing discrimination is now used in the standard filter algorithms for anomalous signals. For HB and HE, once the statistics needed to assess the timing of a sufficient number of channels was accumulated, it was verified that the time settings determined with cosmic, splash events and initial collision data were appropriate for the 7 TeV collision data taking. A further fine-tuning of the HB and HE time settings will be perfo...

  6. Synchronous Phasors Monitoring System Application Possibilities

    Czech Academy of Sciences Publication Activity Database

    Kasembe, A. G.; Müller, Z.; Švec, J.; Tlustý, J.; Valouch, Viktor

    Eilat : IEEE, 2012, s. 1-3. ISBN 978-1-4673-4680-1. [2012 IEEE Convention of Electrical and Electronics Engineers in Israel /27./. Eilat (IL), 14.11.2012-17.11.2012] Institutional support: RVO:61388998 Keywords : phasor measurement unit * wide area monitoring system * transmission system Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  7. Active system monitoring applied on wind turbines

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad; Parbo, Henrik;

    2009-01-01

    A concept for active system monitoring (ASM) applied on wind turbines is presented in this paper. The concept is based on an injection of a small periodic auxiliary signal in the system. An investigation of the signature from the auxiliary input in residual (error) signals can then be applied for...

  8. Shared performance monitor in a multiprocessor system

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, George; Gara, Alan G.; Salapura, Valentina

    2012-07-24

    A performance monitoring unit (PMU) and method for monitoring performance of events occurring in a multiprocessor system. The multiprocessor system comprises a plurality of processor devices units, each processor device for generating signals representing occurrences of events in the processor device, and, a single shared counter resource for performance monitoring. The performance monitor unit is shared by all processor cores in the multiprocessor system. The PMU comprises: a plurality of performance counters each for counting signals representing occurrences of events from one or more the plurality of processor units in the multiprocessor system; and, a plurality of input devices for receiving the event signals from one or more processor devices of the plurality of processor units, the plurality of input devices programmable to select event signals for receipt by one or more of the plurality of performance counters for counting, wherein the PMU is shared between multiple processing units, or within a group of processors in the multiprocessing system. The PMU is further programmed to monitor event signals issued from non-processor devices.

  9. Decision support system for structure synthesis of monitoring systems

    Directory of Open Access Journals (Sweden)

    Skatkov A. V.

    2008-04-01

    Full Text Available The paper is concerned with a structure synthesis of monitoring systems. In the article a decision support system for such synthesis was proposed and described. In the first phase of the process, the proposed classification of monitoring systems is used. Then adaptive algorithms, simulation and analytic modeling are used. The results of studies carried out by means of the proposed program are represented. The topicality of proposed approach was demonstrated. It should be mentioned, that algorithms were thoroughly described, the computing experiments were carried out. The authors believe that the proposed decision support system has many advantages and, consequently, is very useful in structure synthesis of monitoring systems.

  10. Calorimeter measurements of absorbed doses at the heavy water enriched uranium reactor

    International Nuclear Information System (INIS)

    Application of calorimetry measurements of absorbed doses was imposed by the need of good knowledge of the absorbed dose values in the reactor experimental channels. Other methods are considered less reliable. The work was done in two phases: calorimetry measurements at lower reactor power (13-80 kW) by isothermal calorimeter, and differential calorimeter constructions for measurements at higher power levels (up to 1 MW). This report includes the following four annexes, papers: Isothermal calorimeter for reactor radiation monitoring, to be published; Calorimeter dosimetry of reactor radiation, presented at the Symposium about nuclear fuel held in april 1961; Radiation dosimetry of the reactor RA at Vinca, published in the Bull. Inst. Nucl. Sci. 1961; Differential calorimeter for reactor radiation dosimetry

  11. The development of a virtual heat bath for calorimeters

    Energy Technology Data Exchange (ETDEWEB)

    Pickrell, M.M.; Bracken, D.S.; Rudy, C.R.

    1998-12-31

    All existing calorimeter systems for sensitive nuclear assay employ a heat bath surrounding the sample chamber. The purpose of the heat bath is to maintain a constant temperature so that a fixed temperature difference is maintained across the thermal resistance of the calorimeter. Present calorimeter systems all employ an active, feedback-controlled system to maintain a fixed temperature. An alternative would be to allow the heat-bath temperature to change, to measure it, and to compensate the assay for this change. Two significant observations make this approach possible: (1) the effect on the measurement of a temperature change in the heat bath is differential in form and (2) temperature measurement systems are very accurate when measuring differences in temperature (either in time or between two locations). From these observations, the authors have developed a virtual heat-bath compensation system. The control theory and results will be presented.

  12. A system for environmental monitoring

    International Nuclear Information System (INIS)

    The system described in this paper consists of a reader, multi-element dosemeters, and dose algorithm. The reader is a medium capacity non-contact gas heating unit interfaced to an application software package that evaluates and manages generated data. The dosemeter consists of elements that are 240 mg.cm-2 thick and which are symmetrically filtered. The two CaF2:Dy (TLD-200) elements are shielded by 80 mg.cm-2 ABS plastic, 0.25 mm tantalum and 0.05 mm lead. The two LiF:Mg,Ti (TLD-100) are shielded by the 80 mg.cm-2 ABS plastic only. The response of this system was characterised according to the criteria established in the ANSI Standard N545, Section 4, as modified by NRC Regulatory Guide 4.13. The procedures applied to study the energy response, fading, linearity, uniformity, minimum detectability, reproducibility, reponse dependence on angle of incidence are described, reviewed, and the results presented. The study also included self-irradiation, sensitivity to light and moisture, and performance in actual field conditions. The results demonstrate that this dosemeter satisfies all of the N545-1975 performance requirements. The dose calculation algorithm developed for this dosemeter is outlined and the accuracy of its performance in various pure and mixed fields has been determined. The results are presented and discussed. (author)

  13. Runtime-Monitoring for Industrial Control Systems

    Directory of Open Access Journals (Sweden)

    Helge Janicke

    2015-12-01

    Full Text Available Industrial Control Systems (ICS are widely deployed in nation’s critical national infrastructures such as utilities, transport, banking and health-care. Whilst Supervisory Control and Data Acquisition (SCADA systems are commonly deployed to monitor real-time data and operations taking place in the ICS they are typically not equipped to monitor the functional behaviour of individual components. In this paper (This paper expands on an earlier position paper presented at the International Symposium for Industrial Control System and SCADA Cyber Security Research 2014, we are presenting a runtime-monitoring technology that provides assurances of the functional behaviour of ICS components and demonstrates how this can be used to provide additional protection of the ICS against cyber attacks similar to the well-known Stuxnet attack.

  14. Wireless boundary monitor system and method

    International Nuclear Information System (INIS)

    A wireless boundary monitor system used to monitor the integrity of a boundary surrounding an area uses at least two housings having at least one transmitting means for emitting ultrasonic pressure waves to a medium. Each of the housings has a plurality of receiving means for sensing the pressure waves in the medium. The transmitting means and the receiving means of each housing are aimable and communicably linked. At least one of the housings is equipped with a local alarm means for emitting a first alarm indication whereby, when the pressure waves propagating from a transmitting means to a receiving means are sufficiently blocked by an object a local alarm means or a remote alarm means or a combination thereof emit respective alarm indications. The system may be reset either manually or automatically. This wireless boundary monitor system has useful applications in both indoor and outdoor environments. 4 figs

  15. LHCb: Monitoring the DIRAC Distribution System

    CERN Multimedia

    Nandakumar, R; Santinelli, R

    2009-01-01

    DIRAC is the LHCb gateway to any computing grid infrastructure (currently supporting WLCG) and is intended to reliably run large data mining activities. The DIRAC system consists of various services (which wait to be contacted to perform actions) and agents (which carry out periodic activities) to direct jobs as required. An important part of ensuring the reliability of the infrastructure is the monitoring and logging of these DIRAC distributed systems. The monitoring is done collecting information from two sources - one is from pinging the services or by keeping track of the regular heartbeats of the agents, and the other from the analysis of the error messages generated by both agents and services and collected by the logging system. This allows us to ensure that he components are running properly and to collect useful information regarding their operations. The process status monitoring is displayed using the SLS sensor mechanism which also automatically allows one to plot various quantities and also keep ...

  16. ELECTROMAGNETIC CALORIMETER (ECAL)

    CERN Multimedia

    D. Barney

    2012-01-01

      There are no major concerns for the ECAL running and operation in 2012. The necessary ameliorations to the system were planned in December, and reviewed in a dedicated workshop at the end of January. Many interventions have taken place, mainly on the Trigger and DAQ side in order to bring all software into line with central developments (e.g. SLC5, XDAQ11 and use of SVN). In addition, steps are being taken to improve the recovery time of the system from “single event upsets (SEU)”, which are suspected to be the cause of some downtimes in 2011 (and, if so, would be more frequent in 2012 due to higher luminosities). A new blue laser, for crystal transparency monitoring, is currently being commissioned in Caltech and will be installed at P5 in March. We have optimised the ECAL zero-suppression settings applied online in preparation for the LHC running with high pile-up conditions. The algorithm to reduce the rate of anomalous signals  (“spikes”) fir...

  17. Degradation Modelling for Health Monitoring Systems

    International Nuclear Information System (INIS)

    Condition-monitoring plays an increasingly important role for technical processes in order to improve reliability, availability, maintenance and lifetime of equipment. With increasing demands for efficiency and product quality, plus progress in the integration of automatic control systems in high-cost mechatronic and critical safety processes, the field of health monitoring is gaining interest. A similar research field is concerned with an estimation of the remaining useful life. A central question in these fields is the modelling of degradation; degradation is a process of a gradual and irreversible accumulation of damage which will finally result in a failure of the system. This paper is based on a current research project and explores various degradation modelling techniques. These results are explained on the basis of an industrial product – a system for the generation of health status information for pump systems. The result of this fuzzy-logic based system is a single number indicating the current health of a pump system

  18. Degradation Modelling for Health Monitoring Systems

    Science.gov (United States)

    Stetter, R.; Witczak, M.

    2014-12-01

    Condition-monitoring plays an increasingly important role for technical processes in order to improve reliability, availability, maintenance and lifetime of equipment. With increasing demands for efficiency and product quality, plus progress in the integration of automatic control systems in high-cost mechatronic and critical safety processes, the field of health monitoring is gaining interest. A similar research field is concerned with an estimation of the remaining useful life. A central question in these fields is the modelling of degradation; degradation is a process of a gradual and irreversible accumulation of damage which will finally result in a failure of the system. This paper is based on a current research project and explores various degradation modelling techniques. These results are explained on the basis of an industrial product - a system for the generation of health status information for pump systems. The result of this fuzzy-logic based system is a single number indicating the current health of a pump system.

  19. Smart Sensor Network System For Environment Monitoring

    Directory of Open Access Journals (Sweden)

    Javed Ali Baloch

    2012-07-01

    Full Text Available SSN (Smart Sensor Network systems could be used to monitor buildings with modern infrastructure, plant sites with chemical pollution, horticulture, natural habitat, wastewater management and modern transport system. To sense attributes of phenomena and make decisions on the basis of the sensed value is the primary goal of such systems. In this paper a Smart Spatially aware sensor system is presented. A smart system, which could continuously monitor the network to observe the functionality and trigger, alerts to the base station if a change in the system occurs and provide feedback periodically, on demand or even continuously depending on the nature of the application. The results of the simulation trials presented in this paper exhibit the performance of a Smart Spatially Aware Sensor Networks.

  20. Autonomous remote monitoring system for landslides

    Science.gov (United States)

    Manetti, Luca; Terribilini, Andrea; Knecht, Alfredo

    2002-07-01

    There is a general tendency in systems for environmental monitoring towards ever more automatic and autonomous operation. Moreover, technologies and instruments are available to reliably interconnect distributed, disparate components. This allows the measurement, logging, data processing and interpretation activities to be carried out by separate units at different locations in near real-time. Building on the results of a previous research and development project at SUPSI, which focused on movement monitoring with GPS, the system has been generalized to accommodate a range of other sensors, thus rendering it even more interesting for geotechnical applications. In particular a laser distance meter and a robotized theodolite have been integrated. First results confirm an expected increase in robustness of the combined measurement network, which is particularly important in unfavorable stand-alone GPS reception conditions. Due to the modular architecture of the system, other sensor types, ranging from simple analog or digital sensors to complex measuring instruments may be supported with minimal effort. Measurements are transmitted via cellular or point-to-point radio links to a control station, which provides for post-processing and system management. The control station may be remotely accessed via an Internet connection. The system takes advantage of a standard and flexible database structure which has been tailored to measurement and monitoring projects using different sensors. The system represents an architecture for remote monitoring tasks requiring a high degree of autonomy, reliability and automation. The solution can be advantageously applied to remote, near real-time measurements of low dynamics movements.

  1. A dose monitoring system for dental radiography

    Science.gov (United States)

    Lee, Chena; Kim, Jo-Eun; Symkhampha, Khanthaly; Lee, Woo-Jin; Huh, Kyung-Hoe; Yi, Won-Jin; Heo, Min-Suk; Choi, Soon-Chul; Yeom, Heon-Young

    2016-01-01

    Purpose The current study investigates the feasibility of a platform for a nationwide dose monitoring system for dental radiography. The essential elements for an unerring system are also assessed. Materials and Methods An intraoral radiographic machine with 14 X-ray generators and five sensors, 45 panoramic radiographic machines, and 23 cone-beam computed tomography (CBCT) models used in Korean dental clinics were surveyed to investigate the type of dose report. A main server for storing the dose data from each radiographic machine was prepared. The dose report transfer pathways from the radiographic machine to the main sever were constructed. An effective dose calculation method was created based on the machine specifications and the exposure parameters of three intraoral radiographic machines, five panoramic radiographic machines, and four CBCTs. A viewing system was developed for both dentists and patients to view the calculated effective dose. Each procedure and the main server were integrated into one system. Results The dose data from each type of radiographic machine was successfully transferred to the main server and converted into an effective dose. The effective dose stored in the main server is automatically connected to a viewing program for dentist and patient access. Conclusion A patient radiation dose monitoring system is feasible for dental clinics. Future research in cooperation with clinicians, industry, and radiologists is needed to ensure format convertibility for an efficient dose monitoring system to monitor unexpected radiation dose. PMID:27358817

  2. Remote System of Temperature Monitoring and Control

    Directory of Open Access Journals (Sweden)

    Vítor Carvalho

    2008-11-01

    Full Text Available This paper presents a system capable of monitoring and control remotely the temperature of a physical space. This work was part of a final year graduation of the Industrial Informatics Course at the Polytechnic Institute of Cávado and Ave. It was developed by an undergraduate student using a LabVIEW custom application with a methodology of on-off control. The local user can use a touch screen display to configure the system setpoint temperature and for overall monitoring. For remote access it can be used any device supporting LabVIEW environment.

  3. Diesel starting system monitor: Prototype development

    International Nuclear Information System (INIS)

    The US Department of Energy (DOE) effort to extend the operational lives of commercial nuclear power plants is examining methods for predicting the performance of specific equipment. This paper focuses on predictive monitoring as a means for reducing equipment surveillance, maintenance, and outages. Realizing these goals will result in nuclear plants that are more reliable, have lower maintenance costs, and have longer lives. This report describes a prognostic monitoring system that has been developed to predict starting performance in emergency diesels. A prototype system has been built and tested on an engine at Sandia National Laboratories. 6 refs., 8 figs

  4. Design of Wind Turbine Vibration Monitoring System

    Directory of Open Access Journals (Sweden)

    Shoubin Wang

    2013-04-01

    Full Text Available In order to ensure safety of wind turbine operation and to reduce the occurrence of faults as well as to improve the reliability of wind turbine operation, a vibration monitoring for wind turbine is developed. In this paper, it analyses the enlargement of all the parts of the structure and the working mechanism, the research method of wind turbine operation vibration is introduced, with the focus being the use of the sensor principle. Finally the hardware design and software of this system is introduced and the main function of this system is described, which realizes condition monitoring of the work state of wind turbines.

  5. Thermal dynamics of bomb calorimeters.

    Science.gov (United States)

    Lyon, Richard E

    2015-12-01

    The thermal dynamics of bomb calorimeters are modeled using a lumped heat transfer analysis in which heat is released in a pressure vessel/bomb immersed in a stirred water bath that is surrounded by a static air space bounded by an insulated (static) jacket, a constant/controlled temperature jacket (isoperibol), or a changing temperature (adiabatic) jacket. The temperature history of the water bath for each of these boundary conditions (methods) is well described by the two-term solution for the calorimeter response to a heat impulse (combustion), allowing the heat transfer coefficients and thermal capacities of the bomb and water bath to be determined parametrically. The validated heat transfer model provides an expression for direct calculation of the heat released in an arbitrary process inside a bomb calorimeter using the temperature history of the water bath for each of the boundary conditions (methods). This result makes possible the direct calculation of the heat of combustion of a sample in an isoperibol calorimeter from the recorded temperature history without the need for semi-empirical temperature corrections to account for non-adiabatic behavior. Another useful result is that the maximum temperature rise of the water bath in the static jacket method is proportional to the total heat generated, and the empirical proportionality constant, which is determined by calibration, accounts for all of the heat losses and thermal lags of the calorimeter. PMID:26724069

  6. GSM BASED IRRIGATION CONTROL AND MONITORING SYSTEM

    OpenAIRE

    GODFREY A. MILLS; STEPHEN K. ARMOO; AGYEMAN K. ROCKSON; ROBERT A. SOWAH; MOSES A. ACQUAH

    2013-01-01

    Irrigated agriculture is one of the primary water consumers in most parts of the world. With developments in technology, efforts are being channeled into automation of irrigation systems to facilitate remote control of the irrigation system and optimize crop production and cost effectiveness. This paper describes an on-going work on GSM based irrigation monitoring and control systems. The objective of the work is to provide an approach that helps farmers to easily access, manage and regulate ...

  7. The Straightness Monitor System at ATF2

    Energy Technology Data Exchange (ETDEWEB)

    Hildreth, Michael; /Notre Dame U.; Aryshev, Alexander; /Royal Holloway, U. of London; Boogert, Stewart; /Oxford U., JAI; Honda, Yosuke; /KEK, Tsukuba; Tauchi, Toshiaki; /KEK, Tsukuba; Terunuma, Nobuhiro; /KEK, Tsukuba; White, Glen; /SLAC

    2012-07-06

    The demonstration of absolute stability of the position of the focused beam is the primary goal of the ATF2 commissioning effort. We have installed a laser interferometer system that will eventually correct the measurement of high-precision Beam Position Monitors used in the ATF2Final Focus Steering Feedback for mechanical motion or vibrations. Here, we describe the installed system and present preliminary data on the short- and long-term mechanical stability of the BPM system.

  8. Choosing a TLD system for personal monitoring

    International Nuclear Information System (INIS)

    An account is given of the Defence Radiological Protection Service conducting an investigation into the feasibility of changing from film to TLD for personal monitoring of MOD workers. The operational requirements, an assessment of commercial systems and a data processing system are out-lined. Some details of a pilot study of the complete system and 7 months full operating experience on completion of the pilot study are given. (U.K.)

  9. Trend Monitoring System (TMS) graphics software

    Science.gov (United States)

    Brown, J. S.

    1979-01-01

    A prototype bus communications systems, which is being used to support the Trend Monitoring System (TMS) and to evaluate the bus concept is considered. A set of FORTRAN-callable graphics subroutines for the host MODCOMP comuter, and an approach to splitting graphics work between the host and the system's intelligent graphics terminals are described. The graphics software in the MODCOMP and the operating software package written for the graphics terminals are included.

  10. Hanger-type laundry monitor system

    International Nuclear Information System (INIS)

    Laundry monitor is installed in nuclear power plants or other nuclear facilities in order to efficiently detect radioactive contamination remains on the surfaces of the working clothes which were used in the controlled area and washed afterward. The number of the working clothes which must be measured has been increasing in accordance with the increase of the nuclear facilities. This fact and recent intensified radiation control require automatic, high-speed and high sensitive measurement. Conveyer-type laundry monitor in which the working clothes are inserted by the metal net conveyer has been generally used, and recently new system with an automatic folder has become more popular. But, this type of system has not so big capacity because the clothes are conveyed longitudinally and also requires considerable wide space when installed. Fuji electric Co., Ltd. has been engaging in research and development for an optimum laundry monitor system used in nuclear facilities since the joint investigation with ten electric power companies in Japan in 1982. Consequently hanger-type laundry monitor system using automatic hanger conveyer was developed and 2 systems were delivered to Chubu Electric Power Co., Ltd. in 1986. This system permits to detect radioactive contamination on the working clothes, pick the contaminated clothes out and fold the uncontaminated clothes fully automatically and continuously. Moreover it allows to shorten the measurement time because the clothes are conveyed transversely and save the installation space, so that this will be regarded as considerably complete system in the world. This report describes the outline of the hanger-type laundry monitor system. (author)

  11. National Satellite Forest Monitoring systems for REDD+

    Science.gov (United States)

    Jonckheere, I. G.

    2012-12-01

    Reducing Emissions from Deforestation and Forest Degradation (REDD) is an effort to create a financial value for the carbon stored in forests, offering incentives for developing countries to reduce emissions from forested lands and invest in low-carbon paths to sustainable development. "REDD+" goes beyond deforestation and forest degradation, and includes the role of conservation, sustainable management of forests and enhancement of forest carbon stocks. In the framework of getting countries ready for REDD+, the UN-REDD Programme assists developing countries to prepare and implement national REDD+ strategies. For the monitoring, reporting and verification, FAO supports the countries to develop national satellite forest monitoring systems that allow for credible measurement, reporting and verification (MRV) of REDD+ activities. These are among the most critical elements for the successful implementation of any REDD+ mechanism. The UN-REDD Programme through a joint effort of FAO and Brazil's National Space Agency, INPE, is supporting countries to develop cost- effective, robust and compatible national monitoring and MRV systems, providing tools, methodologies, training and knowledge sharing that help countries to strengthen their technical and institutional capacity for effective MRV systems. To develop strong nationally-owned forest monitoring systems, technical and institutional capacity building is key. The UN-REDD Programme, through FAO, has taken on intensive training together with INPE, and has provided technical help and assistance for in-country training and implementation for national satellite forest monitoring. The goal of the support to UN-REDD pilot countries in this capacity building effort is the training of technical forest people and IT persons from interested REDD+ countries, and to set- up the national satellite forest monitoring systems. The Brazilian forest monitoring system, TerraAmazon, which is used as a basis for this initiative, allows

  12. Evaluation of a multiport groundwater monitoring system

    International Nuclear Information System (INIS)

    In 1988 and 1989, Pacific Northwest Laboratory installed a multiport groundwater monitoring system in two wells on the Hanford Site: one near the 216-B-3 Pond in the center of the Hanford Site and one just north of the 300 Area near the Columbia River. The system was installed to provide the US Department of Energy with needed three-dimensional data on the vertical distribution of contaminants and hydraulic heads on the Hanford Site. This study evaluates the ability of the multiport system to obtain hydrogeologic data at multiple points vertically in a single borehole, and addresses the representativeness of the data. Data collected from the two wells indicate that the multiport system is well suited for groundwater monitoring networks requiring three-dimensional characterization of the hydrogeologic system. A network of these systems could provide valuable information on the hydrogeologic environment. However, the advantages of the multiport system diminish when the system is applied to long-term monitoring networks (30+ years) and to deeper wells (<300 ft). For shallow wells, the multiport system provides data in a cost-effective manner that would not be reasonably obtainable with the conventional methods currently in use at the Hanford Site. 17 refs., 28 figs., 6 tabs

  13. Decision Fusion System for Bolted Joint Monitoring

    Directory of Open Access Journals (Sweden)

    Dong Liang

    2015-01-01

    Full Text Available Bolted joint is widely used in mechanical and architectural structures, such as machine tools, industrial robots, transport machines, power plants, aviation stiffened plate, bridges, and steel towers. The bolt loosening induced by flight load and environment factor can cause joint failure leading to a disastrous accident. Hence, structural health monitoring is critical for the bolted joint detection. In order to realize a real-time and convenient monitoring and satisfy the requirement of advanced maintenance of the structure, this paper proposes an intelligent bolted joint failure monitoring approach using a developed decision fusion system integrated with Lamb wave propagation based actuator-sensor monitoring method. Firstly, the basic knowledge of decision fusion and classifier selection techniques is briefly introduced. Then, a developed decision fusion system is presented. Finally, three fusion algorithms, which consist of majority voting, Bayesian belief, and multiagent method, are adopted for comparison in a real-world monitoring experiment for the large aviation aluminum plate. Based on the results shown in the experiment, a big potential in real-time application is presented that the method can accurately and rapidly identify the bolt loosening by analyzing the acquired strain signal using proposed decision fusion system.

  14. Background compensation methodologies for contamination monitoring systems

    International Nuclear Information System (INIS)

    Radiation surveillance program in the various nuclear facilities incorporate contamination monitoring as an important component. Contamination monitoring programs constitute monitoring for alpha and beta contamination of the physical entities associated with the working personnel that include his hands, feet, clothing, shoes as well as the general surface areas in the working environment like floors. All these measurements are fraught with the contribution of the ambient gamma background radiation fields. These inhibit a proper and precise estimation of the contamination concentration being monitored. This paper investigates the efficacy of two methodologies that have been incorporated in two of the contamination monitoring systems developed in the Division. In the first system discussed, a high degree of gamma compensation has been achieved for an uniform exposure of the order of 50 nSv/hr to 100 mSv/hr. In the second system discussed, the degree of gamma compensation achieved is equal to those dictated by the statistical nature of the uncertainties associated with the subtraction of background from the source data. These two methods can be very effectively employed depending on the application requirement. A minimum detection level equivalent to 0.37 Bq/cdm2 has been achieved in both these cases

  15. Environmental radiation monitoring system with GPS (global positioning system)

    International Nuclear Information System (INIS)

    This system combines a radiation monitoring car with GPS and a data processor (personal computer). It distributes the position information acquired through GPS to the data such as measured environmental radiation dose rate and energy spectrum. It also displays and edits the data for each measuring position on a map. Transmitting the data to the power station through mobile phone enables plan managers to easily monitor the environmental radiation dose rate nearby and proper emergency monitoring. (author)

  16. Development of a thermoluminescent personnel monitoring system

    International Nuclear Information System (INIS)

    Thermoluminescent personnel monitoring system has been developed by the Division of Radiological Protection, Bhabha Atomic Research Centre (BARC), Bombay. The system is presently in use for estimation of personnel doses of radiation workers of BARC, other units of the Department of Atomic Energy, and Defence medical units in India. The report gives salient features of the TLD personnel monitoring system. The report discusses design considerations of thermoluminescent dosimetry (TLD) badge for measurement of X and β;, γ personnel exposures, a filter combination to compensate for energy dependence of the TLD disc and angular dependence of the badge. The badge reader incorporates a semiautomatic mechanical arrangement wherein the TLD cards are read, raising the heater after positioning the TLD discs one by one. Various figures illustrate the mechanical layouts and electronics circuits used in the system. Periodic quality assurance check of the system which ensures a good reproducibility, is also described. (author)

  17. An interactive beam position monitor system simulator

    International Nuclear Information System (INIS)

    A system simulator has been implemented to aid the development of the RHIC position monitor system. Based on the LabVIEW software package by National Instruments, this simulator allows engineers and technicians to interactively explore the parameter space of a system during the design phase. Adjustable parameters are divided into three categories: beam, pickup, and electronics. The simulator uses these parameters in simple formulas to produce results in both time-domain and frequencydomain. During the prototyping phase, these simulated results can be compared to test data acquired with the same software package. The RHIC position monitor system is presented as an example, but the software is applicable to several other systems as well

  18. Monitoring the atlas distributed data management system

    International Nuclear Information System (INIS)

    The ATLAS Distributed Data Management (DDM) system is evolving to provide a production-quality service for data distribution and data management support for production and users' analysis. Monitoring the different components in the system has emerged as one of the key issues to achieve this goal. Its distributed nature over different grid infrastructures (EGEE, OSG and NDGF) with infrastructure-specific data management components makes the task particularly challenging. Providing simple views over the status of the DDM components and data to users and site administrators is essential to effectively operate the system under realistic conditions. In this paper we present the design of the DDM monitor system, the information flow, data aggregation. We discuss the available usage, the interactive functionality for end-users and the alarm system

  19. Decision support system for structure synthesis of monitoring systems

    OpenAIRE

    Skatkov A. V.; Voronin D. Y.; Danilchuk D. N.

    2008-01-01

    The paper is concerned with a structure synthesis of monitoring systems. In the article a decision support system for such synthesis was proposed and described. In the first phase of the process, the proposed classification of monitoring systems is used. Then adaptive algorithms, simulation and analytic modeling are used. The results of studies carried out by means of the proposed program are represented. The topicality of proposed approach was demonstrated. It should be mentioned, that algor...

  20. The Prism Plastic Calorimeter (PPC)

    CERN Multimedia

    2002-01-01

    This proposal supports two goals: \\\\ \\\\ First goal:~~Demonstrate that current, widely used plastic technologies allow to design Prism Plastic Calorimeter~(PPC) towers with a new ``liquid crystal'' type plastic called Vectra. It will be shown that this technique meets the requirements for a LHC calorimeter with warm liquids: safety, hermeticity, hadronic compensation, resolution and time response. \\\\ \\\\ Second goal:~~Describe how one can design a warm liquid calorimeter integrated into a LHC detector and to list the advantages of the PPC: low price, minimum of mechanical structures, minimum of dead space, easiness of mechanical assembly, accessibility to the electronics, possibility to recirculate the liquid. The absorber and the electronic being outside of the liquid and easily accessible, one has maximum flexibility to define them. \\\\ \\\\ The R&D program, we define here aims at showing the feasibility of these new ideas by building nine towers of twenty gaps and exposing them to electron and hadron beams.

  1. Microprocessor-based radiation monitoring systems

    International Nuclear Information System (INIS)

    This paper describes digital radiation monitoring systems. The benefits of the microprocessor-based systems are given and compared with those of the conventional analog systems. Four configurations are described including safety channels. The design utilizes the microprocessors to produce a decentralized and communications-oriented system with strong stand-alone characteristics. The operational features are discussed with emphasis on basic human factors. The many computations are detailed, and sensitivity is defined. The digital system can provide considerable savings. The consoles use color and shape for quick awareness and calculated values for accurate assessments. The data are recorded on disk to enable automatic reports

  2. 30 CFR 27.21 - Methane-monitoring system.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Methane-monitoring system. 27.21 Section 27.21... APPROVAL OF MINING PRODUCTS METHANE-MONITORING SYSTEMS Construction and Design Requirements § 27.21 Methane-monitoring system. (a) A methane-monitoring system shall be so designed that any machine or equipment,...

  3. REAL TIME WIRELESS AIR POLLUTION MONITORING SYSTEM

    Directory of Open Access Journals (Sweden)

    Raja Vara Prasad Y

    2011-06-01

    Full Text Available Air pollution has significant influence on the concentration of constituents in the atmosphere leading to effects like global warming and acid rains. To avoid such adverse imbalances in the nature, an air pollution monitoring system is utmost important. This paper attempts to develop an effective solution for pollution monitoring using wireless sensor networks (WSN on a real time basis namely real time wireless air pollution monitoring system. Commercially available discrete gas sensors for sensing concentration of gases like CO2, NO2, CO and O2 are calibrated using appropriate calibration technologies. These pre-calibrated gas sensors are then integrated with the wireless sensor motes for field deployment at the campus and the Hyderabad city using multi hop data aggregation algorithm. A light weight middleware and a web interface to view the live pollution data in the form of numbers and charts from the test beds was developed and made available from anywhere on the internet. Other parameters like temperature and humidity were also sensed along with gas concentrations to enable data analysis through data fusion techniques. Experimentation carried out using the developed wireless air pollution monitoring system under different physical conditions show that the system collects reliable source of real time fine-grain pollution data.

  4. Harassment Monitoring System Using Android Smartphone

    OpenAIRE

    Shivu Gururaj, Dr. Raj Shekhar M. Patil

    2013-01-01

    In this paper we propose a system for monitoring harassment. It is essentially software installed on phone which informs the security (e.g. police) and dear ones (e.g. parents) with location details and seeking for help message. It posts the same details on server to notify public for help.

  5. Harassment Monitoring System Using Android Smartphone

    Directory of Open Access Journals (Sweden)

    Shivu Gururaj, Dr. Raj Shekhar M Pati

    2013-09-01

    Full Text Available In this paper we propose a system for monitoring harassment. It is essentially software installed on phone which informs the security (e.g. police and dear ones (e.g. parents with location details and seeking for help message. It posts the same details on server to notify public for help.

  6. Monitoring System for Uninterruptible Power Supply

    Directory of Open Access Journals (Sweden)

    S. A.Z. Murad

    2007-01-01

    Full Text Available In industrial process today, reliability of equipment is very important. Power supply must be able to cater the need of industrial process. In case of power failure, backup power supply system must be able to support the main process plant. This is to ensure smooth operation and product quality. In order to do this, uninterruptible power supply (UPS system can be used to ensure the reliability, stability and consistency of the entire system. This UPS system must be monitored in order to enable them to react accordingly in response to a fault or power failure. In this project, monitoring system for UPS was designed by using visual basic (VB to provide a safe and constant 12V DC supply in the case of power disruption. The main power supply, 240V AC was converted to 12V DC as output voltage and a battery will be used as part of the backup system. This system will be able to control the source of power which offers power from LIVE line or power from BATTERY line. The main output voltage was 12V DC and the battery level will be monitored using GUI software created using VB.

  7. Commissioning and LED system tests of the engineering prototype of the analog hadronic calorimeter of the CALICE collaboration

    Energy Technology Data Exchange (ETDEWEB)

    Hartbrich, Oskar

    2012-10-15

    This thesis describes measurements on the LED system and commissioning of the AHCAL EPT, to be used as an active layer in an upcoming hadron test beam. The performed tests of the integrated LED system prove, that it can be used to calibrate SiPM gains on the HBU. The performance of calibrating multiple channels at the same time suffers from inhomogeneities in the LED amplitude for different channels. This was initially suspected to be caused by part variances in the LED production process, but the spatial distribution of LED threshold voltages over the HBU suggest a systematic effect, probably depending on the signal distance between the driver OPAMPs and the LED circuit. Compensation of these differences in pulse amplitude via switchable capacities integrated onto the HBU helps to reduce the spread of threshold voltages, but does not fulfill the goal of one single V{sub Calib} value for the whole setup. Further tests on the LED system performed with an upgraded test stand at Wuppertal confirm the spatial distribution of LED amplitudes. Inspection of the trigger signals arriving at the channel pulser circuits show a degraded signal correlated to the observed pulse amplitude. The test stand setup also allows to measure the time offsets between LED pulses on different channels, which has to be incorporated into a possible TDC offset calibration using the LED system. The spatial distribution of timing offsets also shows similar characteristics as for the amplitudes. Ongoing measurements and research with the test stand aim to improve on these issues, yielding a calibration system that meets all performance requirements. From the commissioning phase of the EPT layer, many new insights about the HBU2 and the SPIROC chips arise. Many crucial parameters of the setup have to be calibrated for each channel separately, raising the need for efficient measurement procedures, optimised for automation and short measurement times. Such schemes are proposed for the input DAC setup

  8. Commissioning and LED system tests of the engineering prototype of the analog hadronic calorimeter of the CALICE collaboration

    International Nuclear Information System (INIS)

    This thesis describes measurements on the LED system and commissioning of the AHCAL EPT, to be used as an active layer in an upcoming hadron test beam. The performed tests of the integrated LED system prove, that it can be used to calibrate SiPM gains on the HBU. The performance of calibrating multiple channels at the same time suffers from inhomogeneities in the LED amplitude for different channels. This was initially suspected to be caused by part variances in the LED production process, but the spatial distribution of LED threshold voltages over the HBU suggest a systematic effect, probably depending on the signal distance between the driver OPAMPs and the LED circuit. Compensation of these differences in pulse amplitude via switchable capacities integrated onto the HBU helps to reduce the spread of threshold voltages, but does not fulfill the goal of one single VCalib value for the whole setup. Further tests on the LED system performed with an upgraded test stand at Wuppertal confirm the spatial distribution of LED amplitudes. Inspection of the trigger signals arriving at the channel pulser circuits show a degraded signal correlated to the observed pulse amplitude. The test stand setup also allows to measure the time offsets between LED pulses on different channels, which has to be incorporated into a possible TDC offset calibration using the LED system. The spatial distribution of timing offsets also shows similar characteristics as for the amplitudes. Ongoing measurements and research with the test stand aim to improve on these issues, yielding a calibration system that meets all performance requirements. From the commissioning phase of the EPT layer, many new insights about the HBU2 and the SPIROC chips arise. Many crucial parameters of the setup have to be calibrated for each channel separately, raising the need for efficient measurement procedures, optimised for automation and short measurement times. Such schemes are proposed for the input DAC setup and

  9. Polystyrene calorimeter for electron beam dose measurements

    DEFF Research Database (Denmark)

    Miller, A.

    1995-01-01

    Calorimeters from polystrene have been constructed for dose measurement at 4-10 MeV electron accelerators. These calorimeters have been used successfully for a few years, and polystyrene calorimeters for use at energies down to 1 MeV and being tested. Advantage of polystyrene as the absorbing...

  10. Monitoring in educational development projects : the development of a monitoring system

    OpenAIRE

    Plomp, Tjeerd; Huijsman, Hari; Kluyfhout, Eric

    1992-01-01

    Monitoring in education is usually focused on the monitoring of educational systems at different levels. Monitoring of educational projects receives only recently explicit attention. The paper discusses first the concepts of educational monitoring and evaluation. After that, the experience with developing a monitoring system in an educational development project is described as a case. These experiences, in combination with literature on project monitoring in other contexts, provide a rich so...

  11. Mobile Monitoring System for Nuclear Contamination Analysis

    International Nuclear Information System (INIS)

    In case of a nuclear accident, it is essential to have extensive knowledge concerning the nature of the radioactive plume expansion, for further analysis. For this purpose a mobile monitoring system may provide important data about the plume characteristics. An advanced Mobile Monitoring System is under development at the Nuclear Research Center-Negev. The system is composed of a network of mobile stations, typically installed onboard vehicles, which transmit radiation measurements along with position information to a central station. The mobile network's communications infrastructure is based on Motorola Mobile Logic Unit devices, which are state-of-the-art reliable modems with an integrated Global Positioning System module. The radiation measurements received by the central station are transferred to a risk assessment program, which evaluates the expected hazards to the populated areas located in the estimated plume's expansion direction

  12. Energy Consumption Monitoring System for Large Complexes

    Science.gov (United States)

    Jorge, André; Guerreiro, João; Pereira, Pedro; Martins, João; Gomes, Luís

    This paper describes the development of an open source system for monitoring and data acquisition of several energy analyzers. The developed system is based on a computer with Internet/Intranet connection by means of RS485 using Modbus RTU as communication protocol. The monitoring/metering system was developed for large building complexes and was validated in the Faculdade de Ciências e Tecnologia University campus. The system considers two distinct applications. The first one allows the user to verify, in real time, the energy consumption of any department in the complex, produce load diagrams, tables and print, email or save all available data. The second application keeps records of active/reactive energy consumption in order to verify the existence of some anomalous situation, and also monthly charge energy consumption to each corresponding department.

  13. Advanced Virus Monitoring and Analysis System

    OpenAIRE

    Fauzi Adi Rafrastara; Faizal M. A.

    2011-01-01

    This research proposed an architecture and a system which able to monitor the virus behavior and classify them as a traditional or polymorphic virus. Preliminary research was conducted to get the current virus behavior and to find the certain parameters which usually used by virus to attack the computer target. Finally, “test bed environment” is used to test our system by releasing the virus in a real environment, and try to capture their behavior, and followed by generating the conclusion th...

  14. Development of in-situ monitoring system

    International Nuclear Information System (INIS)

    Development of in-situ monitoring system using an optical fiber to measure the real time temperature variation of subsurface water for the evaluation of flow characteristics. We describe the feasibility of developing a fiber-optic temperature sensor using a thermochromic material. A sensor-tip is fabricated by mixing of a thermochromic material powder. The relationships between the temperatures and the output voltages of detectors are determined to measure the temperature of water. It is expected that the fiber-optic temperature monitoring sensor using thermochromic material can be used to measure the real time temperature variation of subsurface water

  15. Beacon core monitoring system: load follow qualification

    International Nuclear Information System (INIS)

    The BEACON operational core monitoring and support system was used to analyze a load swing maneuver. This analysis showed the ability of BEACON to predict and monitor these conditions and serves as the basis for the qualification of BEACON in load swing operation. The results demonstrate the capability to predict the reactivity transients as a result of the xenon depletion, power defect and control rod position. They also show the reliability of using the core exit thermocouples to predict the radial power distribution throughout the transient

  16. Advanced Risk Management and Monitoring System, ARMMS

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kil Yoo; Han, Sang Hoon; Lim, Ho Gon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-10-15

    Many risk informed regulation and applications (RIR and A) are approved and used for the nuclear power plants(NPPs), and more RIR and A will be actively applied in Korea. Also, since Korean NPPs are recently exported to other country such as UAE, RIR and A would be applied to the exported NPPs. Thus, a tool which will help the user apply RIR and A is required. KAERI is being developing a tool, called ARMMS (Advanced Risk Management and Monitoring System), for this purpose. The design plan of ARMMS was introduced in the Ref, and in this paper, the actual implementation of ARMMS is introduced, and the performance monitoring module is introduced

  17. Progress on the Level-1 Calorimeter Trigger

    CERN Multimedia

    Eric Eisenhandler

    The Level-1 Calorimeter Trigger (L1Calo) has recently passed a number of major hurdles. The various electronic modules that make up the trigger are either in full production or are about to be, and preparations in the ATLAS pit are well advanced. L1Calo has three main subsystems. The PreProcessor converts analogue calorimeter signals to digital, associates the rather broad trigger pulses with the correct proton-proton bunch crossing, and does a final calibration in transverse energy before sending digital data streams to the two algorithmic trigger processors. The Cluster Processor identifies and counts electrons, photons and taus, and the Jet/Energy-sum Processor looks for jets and also sums missing and total transverse energy. Readout drivers allow the performance of the trigger to be monitored online and offline, and also send region-of-interest information to the Level-2 Trigger. The PreProcessor (Heidelberg) is the L1Calo subsystem with the largest number of electronic modules (124), and most of its fu...

  18. Wireless monitoring system for personal dose

    International Nuclear Information System (INIS)

    Fuji Electric has developed a system for the higher radiation controlled area in nuclear power plants, in which exposure dose data measured on the wearer's chest, hands, and legs are transferred by wireless to the data control equipment so that the exposure dose can be controlled in real time. The system using a specified low-power radio wave causes no interference to the other types of dosimeters. The data control equipment automatically saves data received from the dosimeters and also has functions of calibration of dosimeters and maintenance of the wireless system. This paper describes the wireless monitoring system that consists of chest and parts dosimeters and data control equipment. (author)

  19. Replaceable Sensor System for Bioreactor Monitoring

    Science.gov (United States)

    Mayo, Mike; Savoy, Steve; Bruno, John

    2006-01-01

    A sensor system was proposed that would monitor spaceflight bioreactor parameters. Not only will this technology be invaluable in the space program for which it was developed, it will find applications in medical science and industrial laboratories as well. Using frequency-domain-based fluorescence lifetime technology, the sensor system will be able to detect changes in fluorescence lifetime quenching that results from displacement of fluorophorelabeled receptors bound to target ligands. This device will be used to monitor and regulate bioreactor parameters including glucose, pH, oxygen pressure (pO2), and carbon dioxide pressure (pCO2). Moreover, these biosensor fluorophore receptor-quenching complexes can be designed to further detect and monitor for potential biohazards, bioproducts, or bioimpurities. Biosensors used to detect biological fluid constituents have already been developed that employ a number of strategies, including invasive microelectrodes (e.g., dark electrodes), optical techniques including fluorescence, and membrane permeable systems based on osmotic pressure. Yet the longevity of any of these sensors does not meet the demands of extended use in spacecraft habitat or bioreactor monitoring. It was therefore necessary to develop a sensor platform that could determine not only fluid variables such as glucose concentration, pO2, pCO2, and pH but can also regulate these fluid variables with controlled feedback loop.

  20. Ubiquitous Health Monitoring Systems: Addressing Security Concerns

    Directory of Open Access Journals (Sweden)

    Mahmoud Elkhodr

    2011-01-01

    Full Text Available Problem statement: It is important to secure the transmission of patient’s EHR in remote health monitoring systems. Security is among the main issues that need to be realized for the adaption of this monitoring technology. The face of healthcare is changing as ubiquitous computing technologies are being incorporated into the existing infrastructure. We specify the requirements, needed security mechanism, outstanding issues and the future challenges as well as the open problems that need to be achieved. Approach: Although there were benefits to technology, approaches that offer reliable privacy and security features must be presented to users in order to make these systems socially accepted. Results: We investigated the privacy and security implications generated from the deployment of remote health monitoring technology. To achieve these security requirements, building on the strengths of Transport Layer Security (TLS protocol, a trust negotiation approach was proposed. The application of this approach results in significant improvements in overcoming security related concerns compared to the traditional identity-based only access control techniques. Conclusion: We believe these considerations will eventually contribute toward an efficient and practical deployment of remote monitoring systems.

  1. Trigger processing using reconfigurable logic in the CMS calorimeter trigger

    CERN Document Server

    Brooke, J J; Heath, G P; Maddox, A J; Newbold, D; Rabbetts, P D

    2001-01-01

    We present the design of the Global Calorimeter Trigger processor for the CMS detector at LHC. This is a fully pipelined processor system which collects data from all the CMS calorimeters and produces summary information used in forming the Level-1 trigger decision for each event. The design in based on the use of state-of-the-art reconfigurable logic devices (FPGAs) and fast data links. We present the results of device testing using a low-latency pipelined sort algorithm, which demonstrate that an FPGA can be used to perform processing previously foreseen to require custom ASICs. Our design approach results in a powerful, flexible and compact processor system. (0 refs).

  2. Methods, apparatus, and systems for monitoring transmission systems

    Energy Technology Data Exchange (ETDEWEB)

    Polk, Robert E; Svoboda, John M.; West, Phillip B.; Heath, Gail L.; Scott, Clark L.

    2016-07-19

    A sensing platform for monitoring a transmission system, and method therefor, may include a sensor that senses one or more conditions relating to a condition of the transmission system and/or the condition of an environment around the transmission system. A control system operatively associated with the sensor produces output data based on an output signal produced by the sensor. A transmitter operatively associated with the control system transmits the output data from the control system.

  3. The environmental radiation monitoring system in Spain

    Directory of Open Access Journals (Sweden)

    Rosario Salas Collantes

    2010-12-01

    Full Text Available The system of environmental radiation monitoring established in Spain is composed of several networks with different objectives, a monitoring network in the vicinity of the facilities and several national networks financed and managed by public agencies. The operators of the facilities are responsible for the conduct of its Environmental Radiological Surveillance Program as directed by the CSN. Moreover, the Directorate General of Civil Defense and Emergencies has a Radioactivity Warning Network (RAR consisting of over 900 automatic stations measuring dose rate distributed nationwide. The Environmental Radioactivity Monitoring Network (Revira, managed by the CSN, is a nationwide network, consists of a Network of Sampling Stations (REM and a Network of Automatic Stations for continuous monitoring (REA. The autonomous communities of Valencia, Catalonia, Extremadura and the Basque Country have their own automated networks similar to that of the CSN. Revira provides information on the radioactivity in the air, soil, water (drinking, inland and sea and of food. The sampling and analysis programs are tailored to radiological recommendations laid down in the European Union Commission. The REM has the collaboration of laboratories in universities and the Centre for Energy, Environmental and Technological Research (CIEMAT for execution. The monitoring of inland and coastal waters is undertaken by the Centre for Studies and Experimentation of Public Works, Ministry of Public Works (CEDEX.

  4. A Resilient Condition Assessment Monitoring System

    Energy Technology Data Exchange (ETDEWEB)

    Humberto Garcia; Wen-Chiao Lin; Semyon M. Meerkov

    2012-08-01

    An architecture and supporting methods are presented for the implementation of a resilient condition assessment monitoring system that can adaptively accommodate both cyber and physical anomalies to a monitored system under observation. In particular, the architecture includes three layers: information, assessment, and sensor selection. The information layer estimates probability distributions of process variables based on sensor measurements and assessments of the quality of sensor data. Based on these estimates, the assessment layer then employs probabilistic reasoning methods to assess the plant health. The sensor selection layer selects sensors so that assessments of the plant condition can be made within desired time periods. Resilient features of the developed system are then illustrated by simulations of a simplified power plant model, where a large portion of the sensors are under attack.

  5. GSM & web-based flood monitoring system

    Science.gov (United States)

    Pagatpat, J. C.; Arellano, A. C.; Gerasta, O. J.

    2015-06-01

    The purpose of this project is to develop a local real-time river flood monitoring and warning system for the selected communities near MandulogRiver. This study focuses only on the detection and early warning alert system (via website and/or cell phone text messages) that alerts local subscribers of potential flood events. Furthermore, this system is interactive wherein all non-registered subscribers could inquire the actual water level of the desired area location they want to monitor. An estimated time a particular river waterway will overflow is also included in the analyses. The hardware used in the design is split into several parts namely: the water level detector, GSM module, and microcontroller development board.

  6. A design methodology for unattended monitoring systems

    International Nuclear Information System (INIS)

    The authors presented a high-level methodology for the design of unattended monitoring systems, focusing on a system to detect diversion of nuclear materials from a storage facility. The methodology is composed of seven, interrelated analyses: Facility Analysis, Vulnerability Analysis, Threat Assessment, Scenario Assessment, Design Analysis, Conceptual Design, and Performance Assessment. The design of the monitoring system is iteratively improved until it meets a set of pre-established performance criteria. The methodology presented here is based on other, well-established system analysis methodologies and hence they believe it can be adapted to other verification or compliance applications. In order to make this approach more generic, however, there needs to be more work on techniques for establishing evaluation criteria and associated performance metrics. They found that defining general-purpose evaluation criteria for verifying compliance with international agreements was a significant undertaking in itself. They finally focused on diversion of nuclear material in order to simplify the problem so that they could work out an overall approach for the design methodology. However, general guidelines for the development of evaluation criteria are critical for a general-purpose methodology. A poor choice in evaluation criteria could result in a monitoring system design that solves the wrong problem

  7. Development of Metallic Magnetic Calorimeters for Nuclear Safeguards Applications

    Energy Technology Data Exchange (ETDEWEB)

    Bates, Cameron Russell [Univ. of California, Berkeley, CA (United States)

    2015-03-11

    Many nuclear safeguards applications could benefit from high-resolution gamma-ray spectroscopy achievable with metallic magnetic calorimeters. This dissertation covers the development of a system for these applications based on gamma-ray detectors developed at the University of Heidelberg. It demonstrates new calorimeters of this type, which achieved an energy resolution of 45.5 eV full-width at half-maximum at 59.54 keV, roughly ten times better than current state of the art high purity germanium detectors. This is the best energy resolution achieved with a gamma-ray metallic magnetic calorimeter at this energy to date. In addition to demonstrating a new benchmark in energy resolution, an experimental system for measuring samples with metallic magnetic calorimeters was constructed at Lawrence Livermore National Laboratory. This system achieved an energy resolution of 91.3 eV full-width at half-maximum at 59.54 keV under optimal conditions. Using this system it was possible to characterize the linearity of the response, the count-rate limitations, and the energy resolution as a function of temperature of the new calorimeter. With this characterization it was determined that it would be feasible to measure 242Pu in a mixed isotope plutonium sample. A measurement of a mixed isotope plutonium sample was performed over the course of 12 days with a single two-pixel metallic magnetic calorimeter. The relative concentration of 242Pu in comparison to other plutonium isotopes was determined by direct measurement to less than half a percent accuracy. This is comparable with the accuracy of the best-case scenario using traditional indirect methods. The ability to directly measure the relative concentration of 242Pu in a sample could enable more accurate accounting and detection of indications of undeclared activities in nuclear safeguards, a better constraint on source material in forensic samples containing plutonium, and improvements in verification in a future plutonium

  8. Performance of the ATLAS Tile Calorimeter

    CERN Document Server

    Cerda Alberich, Leonor; The ATLAS collaboration

    2015-01-01

    The Tile Calorimeter of the ATLAS experiment at the LHC is the central hadronic calorimeter designed for energy reconstruction of hadrons, jets, tau-particles and missing transverse energy. The performance of the calorimeter has been studied employing cosmic ray muons and the large sample of proton-proton collisions acquired during the Run 1 of LHC (2010-2012). Results on the calorimeter performance on absolute energy scale, timing, noise and associated stabilities are presented. The results show that the Tile Calorimeter performance is within the design requirements of the detector.

  9. ELECTRONICS FOR CALORIMETERS AT LHC.

    Energy Technology Data Exchange (ETDEWEB)

    RADEKA,V.

    2001-09-11

    Some principal design features of front-end electronics for calorimeters in experiments at the LHC will be highlighted. Some concerns arising in the transition from the research and development and design phase to the construction will be discussed. Future challenges will be indicated.

  10. COE1 Calorimeter Operations Manual

    Energy Technology Data Exchange (ETDEWEB)

    Santi, Peter Angelo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-12-15

    The purpose of this manual is to describe the operations of the COE1 calorimeter which is used to measure the thermal power generated by the radioactive decay of plutonium-bearing materials for the purposes of assaying the amount of plutonium within the material.

  11. The CMS central hadron calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, J.; E892 Collaboration

    1996-12-31

    The CMS central hadron calorimeter is a copper absorber/ scintillator sampling structure. We describe design choices that led us to this concept, details of the mechanical and optical structure, and test beam results. We discuss calibration techniques, and finally the anticipated construction schedule.

  12. ELECTRONICS FOR CALORIMETERS AT LHC

    International Nuclear Information System (INIS)

    Some principal design features of front-end electronics for calorimeters in experiments at the LHC will be highlighted. Some concerns arising in the transition from the research and development and design phase to the construction will be discussed. Future challenges will be indicated

  13. Knowledge based systems for condition monitoring

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, J.R.; Burt, G.M.; Moyes, A.

    1997-12-31

    A key issue in the operation of power system plant is deriving maximum financial benefit while staying within technical, contractual and regulatory constraints. Moreover, the capital investment required for much power system plant necessitates high levels of plant availability to make a reasonable rate-of-return. Thus, the minimisation of operational costs resulting from unplanned plant outages, unnecessary maintenance and under-utilisation of plant capabilities has become a core objective of power system plant operation. Rationalisation of power system control functions has resulted in the use of centralised control rooms from which large and complex power systems are operated. Extensive measurement, monitoring and control systems have been developed which provide operators with data from which power system plant behaviour can be evaluated. However, in the event of a serious operational incident, significant amounts of data are generated. Under such circumstances it has been found that operators are inhibited in assessing the situation, and hence the effectiveness of the subsequent operational response can be reduced. The role of knowledge based systems (KBSs) in condition monitoring is to support operational decision making through the provision of timely and focused information. (Author)

  14. Monitoring and crisis system of radiation safety

    International Nuclear Information System (INIS)

    In this paper we have briefly described our practical experiences with the most complex Radiation Monitoring System we have designed. This system consists of number of stations; those data are collected in the main crisis center of the whole system. The main center integrates RMS Central Database, the IMS Model Suite workstation and the Graphics workstation. The radiations probes of the RP series are the base for stationary , portable sets and for sets measuring underwater radiation. The radiation and meteorological data, which are necessary for reasonable interpretation of radiation data, are archived in RMS Central database. The Lagrangian trajectory model from the IMS Model Suite serves for radiation dispersion modeling. (authors)

  15. Delta count-rate monitoring system

    International Nuclear Information System (INIS)

    A need for a more effective way to rapidly search for gamma-ray contamination over large areas led to the design and construction of a very sensitive gamma detection system. The delta count-rate monitoring system was installed in a four-wheel-drive van instrumented for environmental surveillance and accident response. The system consists of four main sections: (1) two scintillation detectors, (2) high-voltage power supply amplifier and single-channel analyzer, (3) delta count-rate monitor, and (4) count-rate meter and recorder. The van's 6.5-kW generator powers the standard nuclear instrument modular design system. The two detectors are mounted in the rear corners of the van and can be run singly or jointly. A solid-state bar-graph count-rate meter mounted on the dashboard can be read easily by both the driver and passenger. A solid-state strip chart recorder shows trends and provides a permanent record of the data. An audible alarm is sounded at the delta monitor and at the dashboard count-rate meter if a detected radiation level exceeds the set background level by a predetermined amount

  16. Integrated monitoring and surveillance system demonstration project

    International Nuclear Information System (INIS)

    We present a summary of efforts associated with the installation of an integrated system for the surveillance and monitoring of stabilized plutonium metals and oxides in long-term storage. The product of this effort will include a Pu storage requirements document, baseline integrated monitoring and surveillance system (IMSS) prototype and test bed that will be installed in the Fuel Manufacturing Facility (FMF) nuclear material vault at Argonne National Laboratory - West (ANL-W), and a Pu tracking database including data analysis capabilities. The prototype will be based on a minimal set of vault and package monitoring requirements as derived from applicable DOE documentation and guidelines, detailed in the requirements document, including DOE-STD-3013-96. The use of standardized requirements will aid individual sites in the selection of sensors that best suit their needs while the prototype IMSS, located at ANL-W, will be used as a test bed to compare and contrast sensor performance against a baseline integrated system (the IMSS), demonstrate system capabilities, evaluate potential technology gaps, and test new hardware and software designs using various storage configurations. With efforts currently underway to repackage and store a substantial quantity of plutonium and plutonium-bearing material within the DOE complex, this is an opportune time to undertake such a project. 4 refs

  17. An integrated system for pipeline condition monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Strong, Andrew P.; Lees, Gareth; Hartog, Arthur; Twohig, Richard; Kader, Kamal; Hilton, Graeme; Mullens, Stephen; Khlybov, Artem [Schlumberger, Southampton (United Kingdom); Sanderson, Norman [BP Exploration, Sunbury (United Kingdom)

    2009-07-01

    In this paper we present the unique and innovative 'Integriti' pipeline and flow line integrity monitoring system developed by Schlumberger in collaboration with BP. The system uses optical fiber distributed sensors to provide simultaneous distributed measurements of temperature, strain and vibration for the detection, monitoring, and location of events including: Third Party Interference (TPI), including multiple simultaneous disturbances; geo-hazards and landslides; gas and oil leaks; permafrost protection. The Integriti technology also provides a unique means for tracking the progress of cleaning and instrumented pigs using existing optical telecom and data communications cables buried close to pipelines. The Integriti solution provides a unique and proactive approach to pipeline integrity management. It performs analysis of a combination of measurands to provide the pipeline operator with an event recognition and location capability, in effect providing a hazard warning system, and offering the operator the potential to take early action to prevent loss. Through the use of remote, optically powered amplification, an unprecedented detection range of 100 km is possible without the need for any electronics and therefore remote power in the field. A system can thus monitor 200 km of pipeline when configured to monitor 100 km upstream and downstream from a single location. As well as detecting conditions and events leading to leaks, this fully integrated system provides a means of detecting and locating small leaks in gas pipelines below the threshold of present online leak detection systems based on monitoring flow parameters. Other significant benefits include: potential reductions in construction costs; enhancement of the operator's existing integrity management program; potential reductions in surveillance costs and HSE risks. In addition to onshore pipeline systems this combination of functionality and range is available for practicable

  18. CMS Forward Calorimeters Phase II Upgrade

    CERN Document Server

    Bilki, Burak

    2014-01-01

    The Phase II Upgrade of the CMS forward calorimeters (electromagnetic and hadronic) originates from the fact that these calorimeters will not be sufficiently performant with the expected High Luminosity LHC conditions, planned to be started in 2025. The major challenge is to preserve/improve the high performance of the current forward detectors with new devices that can withstand the unprecedented radiation levels and disentangle the very large event pileup. CMS elected two design concepts to be presented in the Phase II Upgrade Technical Proposal Shashlik electromagnetic calorimeter + Hadronic Endcap Rebuild, and High Granularity Calorimeter. The former concept is based on reconstructing the endcap electromagnetic calorimeter with a shashlik design and replacing the active media of the endcap hadron calorimeter with radiation tolerant active media with a possibility to extend the coverage. The latter concept is concentrating on constructing a high granularity (both longitudinally and laterally) calorimeter ...

  19. Simulation and validation of the ATLAS Tile Calorimeter response

    Science.gov (United States)

    Karpov, S. N.

    2014-09-01

    The Tile Calorimeter is the central section of the ATLAS hadronic calorimeter at the Large Hadron Collider. Scintillation light produced in the tiles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The resulting electronic signals from approximately 10000 PMTs are amplified, shaped and digitized before being transferred to off-detector data acquisition systems. This paper describes the detailed simulation of this large scale calorimeter from the implementation of the geometrical elements down to the realistic description of the electronics readout pulses, the special noise treatment and the signal reconstruction. Recently improved description of the optical and electronic signal propagation is highlighted and the validation with the real particle data is presented.

  20. Software for airborne radiation monitoring system

    International Nuclear Information System (INIS)

    The Airborne Radiation Monitoring System monitors radioactive contamination in the air or on the ground. The contamination source can be a radioactive plume or an area contaminated with radionuclides. This system is composed of two major parts: Airborne Unit carried by a helicopter, and Ground Station carried by a truck. The Airborne software is intended to be the core of a computerized airborne station. The software is written in C++ under MS-Windows with object-oriented methodology. It has been designed to be user-friendly: function keys and other accelerators are used for vital operations, a help file and help subjects are available, the Human-Machine-Interface is plain and obvious. (authors)