WorldWideScience

Sample records for calibration standards

  1. Radiological Calibration and Standards Facility

    Data.gov (United States)

    Federal Laboratory Consortium — PNNL maintains a state-of-the-art Radiological Calibration and Standards Laboratory on the Hanford Site at Richland, Washington. Laboratory staff provide expertise...

  2. Performance standard for dose Calibrator

    CERN Document Server

    Darmawati, S

    2002-01-01

    Dose calibrator is an instrument used in hospitals to determine the activity of radionuclide for nuclear medicine purposes. International Electrotechnical Commission (IEC) has published IEC 1303:1994 standard that can be used as guidance to test the performance of the instrument. This paper briefly describes content of the document,as well as explains the assessment that had been carried out to test the instrument accuracy in Indonesia through intercomparison measurement.Its is suggested that hospitals acquire a medical physicist to perform the test for its dose calibrator. The need for performance standard in the form of Indonesia Standard is also touched.

  3. Radiological standards and calibration laboratory capabilities

    International Nuclear Information System (INIS)

    The Radiological Standards and Calibrations Laboratory, a part of Pacific Northwest Laboratory (PNL), performs calibrations and upholds reference standards necessary to maintain traceability to national radiological standards. The facility supports U.S. Department of Energy (DOE) programs at the Hanford Site, programs sponsored by DOE Headquarters and other federal agencies, radiological protection programs at other DOE sites, and research programs sponsored through the commercial sector. The laboratory is located in the 318 Building of the Hanford Site's 300 Area. The facility contains five major exposure rooms and several laboratories used for exposure work preparation, low-activity instrument calibrations, instrument performance evaluations, instrument maintenance, instrument design and fabrication work, and thermoluminescent and radiochromic dosimetry. The major exposure facilities are a low-scatter room used for neutron and photon exposures, a source well room used for high-volume instrument calibration work, an x-ray facility used for energy response studies, a high-exposure facility used for high-rate photon calibration work, and a beta standards laboratory used for beta energy response studies and beta reference calibrations. Calibrations are routinely performed for personnel dosimeters, health physics instrumentations, photon transfer standards and alpha, beta and gamma field sources used throughout the Hanford Site. This report describes the standards and calibrations laboratory. Photographs that accompany the text appear in the Appendix and are designated Figure A.1 through A.29

  4. Standards for air monitoring calibration

    International Nuclear Information System (INIS)

    The US Department of Energy and the US Nuclear Regulatory Commission initiated a joint program to test the applicability of a performance-type testing standard. Draft American National Standards Institute (ANSI) Standard N42.17a was, because of difficulty in application, divided into three parts: (a) portable instruments, (b) air monitors, and (c) extended range. This new testing program used the criteria listed in parts a, b, and c to determine whether they could be used as the basis of an instrument qualification testing program. The results of the test were then provided to the standards committee, and appropriate changes were made in the standard. The detailed results of this testing program will be documented in the future. The purpose of this presentation is to discuss the current draft of the air monitoring standard, general test procedures, results of some of the tests, and the means by which the testing program could be implemented in the United States

  5. Calibration of surface roughness standards

    DEFF Research Database (Denmark)

    Thalmann, R.; Nicolet, A.; Meli, F.;

    2016-01-01

    organisations. Five surface texture standards of different type were circulated and on each of the standards several roughness parameters according to the standard ISO 4287 had to be determined. 32 out of 395 individual results were not consistent with the reference value. After some corrective actions the...... number of inconsistent results could be reduced to 20, which correspond to about 5% of the total and can statistically be expected. In addition to the material standards, two softgauges were circulated, which allow to test the software of the instruments used in the comparison. The comparison results...

  6. Calibration of surface roughness standards

    Science.gov (United States)

    Thalmann, R.; Nicolet, A.; Meli, F.; Picotto, G. B.; Matus, M.; Carcedo, L.; Hemming, B.; Ganioglu, O.; De Chiffre, L.; Saraiva, F.; Bergstrand, S.; Zelenika, S.; Tonmueanwai, A.; Tsai, C.-L.; Shihua, W.; Kruger, O.; de Souza, M. M.; Salgado, J. A.; Ramotowski, Z.

    2016-01-01

    The key comparison EURAMET.L-K8.2013 on roughness was carried out in the framework of a EURAMET project starting in 2013 and ending in 2015. It involved the participation of 17 National Metrology Institutes from Europe, Asia, South America and Africa representing four regional metrology organisations. Five surface texture standards of different type were circulated and on each of the standards several roughness parameters according to the standard ISO 4287 had to be determined. 32 out of 395 individual results were not consistent with the reference value. After some corrective actions the number of inconsistent results could be reduced to 20, which correspond to about 5% of the total and can statistically be expected. In addition to the material standards, two softgauges were circulated, which allow to test the software of the instruments used in the comparison. The comparison results help to support the calibraton and measurement capabilities (CMCs) of the laboratories involved in the CIPM MRA. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCL, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  7. Calibration of working standard ionization chambers and dose standardization

    International Nuclear Information System (INIS)

    Measurements were performed for the calibration of two working standard ionization chambers in the secondary standard dosimetry laboratory of Sudan. 600 cc cylindrical former type and 1800 cc cylindrical radical radiation protection level ionization chambers were calibrated against 1000 cc spherical reference standard ionization chamber. The chamber were calibrated at X-ray narrow spectrum series with beam energies ranged from (33-116 KeV) in addition to 1''3''7''Cs beam with 662 KeV energy. The chambers 0.6 cc and 0.3 cc therapy level ionization were used for dose standardization and beam output calibrations of cobalt-60 radiotherapy machine located at the National Cancer Institute, University of Gazira. Concerning beam output measurements for 6''0''Co radiotherapy machine, dosimetric measurements were performed in accordance with the relevant per IAEA dosimetry protocols TRS-277 and TRS-398. The kinetic energy released per unit mass in air (air kerma) were obtained by multiplying the corrected electrometer reading (nC/min) by the calibration factors (Gy/n C) of the chambers from given in the calibration certificate. The uncertainty of measurements of air kerma were calculated for the all ionization chambers (combined uncertainty) the calibration factors of these ionization chambers then were calculated by comparing the reading of air kerma of secondary standard ionization chambers to than from radical and farmer chambers. The result of calibration working standard ionization chambers showed different calibration factors ranged from 0.99 to 1.52 for different radiation energies and these differences were due to chambers response and specification. The absorbed dose to to water calculated for therapy ionization chamber using two code of practice TRS-277 and TRS-398 as beam output for 6''0''Co radiotherapy machine and it can be used as a reference for future beam output calibration in radiotherapy dosimetry. The measurement of absorbed dose to water showed that the

  8. Advisory Committee for the calibration standards of ionizing radiation measurement

    International Nuclear Information System (INIS)

    The principal items of the agenda were relating to: progress reports from the Laboratories, comparison between absorbed dose calibration standards and between exposition calibration standards (national calibration standards, humidity corrections for cavity chambers, quality of the radiation to be used in the comparisons), measurements in various fields (protection, industrial radiations and very high dose rates), physical quantities and unities and comparison between activity, power and exposition measurements. In appendix, description is given of the calorimeters used by some national Laboratories for measuring absorbed doses, together with two reports of air-walled chambers

  9. NIST-traceable SI Calibration of Standard Stars

    Science.gov (United States)

    McGraw, John T.; Zimmer, P. C.; Hines, D. C.; Woodward, J. T.; Cramer, C. E.; Lykke, K. R.; Brown, S. W.; Smith, A. W.; Fraser, G. T.; Stubbs, C. W.; Hull, A. B.; Zirzow, D. C.; Vorobiev, D. V.; Measurement Astrophysics Research Team

    2011-01-01

    We describe optical spectrophotometric observing techniques for bright stars, and two independent procedures for calibrating these observations to NIST-calibrated detectors, resulting in absolute spectral energy distributions in SI irradiance units of W/m2/nm. Stars, thermal point sources with physically well understood structures and atmospheres, radiate from the ultraviolet to the infrared and thus provide excellent radiometric standards against which to compare and calibrate ground- and space-based astronomical observations. We have evolved techniques for ground-based standardization of the spectral energy distributions of stars from 350 nm to 1050 nm for an initial set of standard stars with V < 5.5. With adequate photometric and spectrophotometric vetting, stable standard star candidates can be identified. The Measurement Astrophysics (MAP) standardization technique uses a unique objective spectrometer supported by an atmospheric extinction-sensing lidar for the stellar observations. The spectrometer is calibrated using two separate NIST detector-based standardization techniques. The first is implemented by observing a far-field, point-like NIST spectrophotometrically monitored source approximately one kilometer distant, and the second uses a near-field collimated source illuminated wavelength-by-wavelength using a monochrometer. We describe in detail the calibration procedures and analyze the utility of calibrating astronomical standard stars using two independent procedures. MAP standard star research is supported by NIST Award 60NANB9D9121 and NSF Grant AST-1009878.

  10. LLNL X-ray Calibration and Standards Laboratory

    International Nuclear Information System (INIS)

    The LLNL X-ray Calibration and Standards Laboratory is a unique facility for developing and calibrating x-ray sources, detectors, and materials, and for conducting x-ray physics research in support of our weapon and fusion-energy programs

  11. Radioactive standards and calibration methods for contamination monitoring instruments

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Makoto [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-06-01

    Contamination monitoring in the facilities for handling unsealed radioactive materials is one of the most important procedures for radiation protection as well as radiation dose monitoring. For implementation of the proper contamination monitoring, radiation measuring instruments should not only be suitable to the purpose of monitoring, but also be well calibrated for the objective qualities of measurement. In the calibration of contamination monitoring instruments, quality reference activities need to be used. They are supplied in different such as extended sources, radioactive solutions or radioactive gases. These reference activities must be traceable to the national standards or equivalent standards. On the other hand, the appropriate calibration methods must be applied for each type of contamination monitoring instruments. In this paper, the concepts of calibration for contamination monitoring instruments, reference sources, determination methods of reference quantities and practical calibration methods of contamination monitoring instruments, including the procedures carried out in Japan Atomic Energy Research Institute and some relevant experimental data. (G.K.)

  12. Advisory Committee for the calibration standards of ionizing radiations

    International Nuclear Information System (INIS)

    The C.C.E.M.R.I. (Comite Consultatif pour les Etalons de Mesure des Rayonnements Ionisants) comprises four sections: X and γ radiations, electrons; radionuclide measurement; neutron measurement; α energy standards. The activities of the four sections are reported, and the needs in calibration standards and international comparisons of radiation measurements according to planned duty programs and projects for future works are envisaged: international comparisons between exposure standards for 10-250 kV X-rays and 60Co photons; comparisons between absorbed doses for the 60Co gammas; development of an international system of calibration based on ionization chambers, precision in 4πβ(CP)-γ counting, and counting statistics; tests of transfer instruments intended for the comparison of fast neutron fluence rates, the neutron dosimetry for workmen protection and Cancer neutron therapy; extension of the list of calibration standards for α particle energies

  13. HPGe Detector Efficiency Calibration Using HEU Standards

    Energy Technology Data Exchange (ETDEWEB)

    Salaymeh, S.R.

    2000-10-12

    The Analytical Development Section of SRTC was requested by the Facilities Disposition Division (FDD) to determine the holdup of enriched uranium in the 321-M facility as part of an overall deactivation project of the facility. The 321-M facility was used to fabricate enriched uranium fuel assemblies, lithium-aluminum target tubes, neptunium assemblies, and miscellaneous components for the production reactors. The facility also includes the 324-M storage building and the passageway connecting it to 321-M. The results of the holdup assays are essential for determining compliance with the Solid Waste's Waste Acceptance Criteria, Material Control and Accountability, and to meet criticality safety controls. Two measurement systems will be used to determine highly enriched uranium (HEU) holdup: One is a portable HPGe detector and EG and G Dart system that contains high voltage power supply and signal processing electronics. A personal computer with Gamma-Vision software was used to provide an MCA card, and space to store and manipulate multiple 4096-channel g-ray spectra. The other is a 2 inches x 2 inches NaI crystal with an MCA that uses a portable computer with a Canberra NaI plus card installed. This card converts the PC to a full function MCA and contains the ancillary electronics, high voltage power supply and amplifier, required for data acquisition. This report describes and documents the HPGe point, line, area, and constant geometry-constant transmission detector efficiency calibrations acquired and calculated for use in conducting holdup measurements as part of the overall deactivation project of building 321-M.

  14. The Belgian laboratory for standard dosimetry calibrations used in radiotherapy

    International Nuclear Information System (INIS)

    Starting from the end of the year 2008, the RDC (Radiation Protection dosimetry and Calibrations) expertise group of SCK CEN took over the calibration and research activities at the Laboratory for Standard Dosimetry Ghent. The laboratory runs under a collaboration between SCK CEN and the University of Ghent, with the support of Federal Agency for Nuclear Control (FANC). The calibrations in Ghent were stopped at the beginning of 2008 and then restarted at the end of 2008. A new 60Co source was installed at Ghent, a Theratron 780 unit. All the calibration setups installed in the past to the old 60Co source had to move to the new source and measurement history had to be acquired. The calibration of cylindrical and plane-parallel ionization chambers in terms of absorbed dose to water was defined as the first priority, since there was an urgent need from the Belgian hospitals. These calibrations are presently done in Ghent as secondary standard calibrations, traceable to the water calorimeter of VSL, Delft, The Netherlands and following the recommendations from TRS-398 protocol. The second priority was restarting the calibrations of cylindrical ionization chambers in terms of air kerma. A cylindrical graphite ionization chamber of type CC01 is used for the absolute measurement of air kerma. Both setups are fully operational. Special efforts were done to implement the SCK CEN quality assurance (QA) system regarding ISO 17025 accreditation. The activity at the laboratory in Ghent was integrated as part of the Laboratory for Nuclear Calibrations (LNK-from the Dutch translation) of the SCK-CEN. Most of the activities of the LNK are already accredited by Belgian Accreditation Body (BELAC) with respect to the ISO-17025 standards. The quality assurance procedures were prepared and are routinely followed for the two new setups mentioned above: calibrations in terms of absorbed dose to water and air kerma in 60Co beam. During the preparation of the quality assurance procedures

  15. Syringe calibration factors and volume correction factors for the NPL secondary standard radionuclide calibrator

    CERN Document Server

    Tyler, D K

    2002-01-01

    The activity assay of a radiopharmaceutical administration to a patient is normally achieved via the use of a radionuclide calibrator. Because of the different geometries and elemental compositions between plastic syringes and glass vials, the calibration factors for syringes may well be significantly different from those for the glass containers. The magnitude of these differences depends on the energies of the emitted photons. For some radionuclides variations have been observed of 70 %, it is therefore important to recalibrate for syringes or use syringe calibration factors. Calibration factors and volume correction factors have been derived for the NPL secondary standard radionuclide calibrator, for a variety of commonly used syringes and needles, for the most commonly used medical radionuclide.

  16. Standard guide for calibrating reticles and light microscope magnifications

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2002-01-01

    1.1 This guide covers methods for calculating and calibrating microscope magnifications, photographic magnifications, video monitor magnifications, grain size comparison reticles, and other measuring reticles. Reflected light microscopes are used to characterize material microstructures. Many materials engineering decisions may be based on qualitative and quantitative analyses of a microstructure. It is essential that microscope magnifications and reticle dimensions be accurate. 1.2 The calibration using these methods is only as precise as the measuring devices used. It is recommended that the stage micrometer or scale used in the calibration should be traceable to the National Institute of Standards and Technology (NIST) or a similar organization. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory lim...

  17. Development of Hydrocarbon Flow Calibration Facility as a National Standard

    Science.gov (United States)

    Shimada, Takashi; Doihara, Ryouji; Terao, Yoshiya; Takamoto, Masaki

    A new primary standard for hydrocarbon flow measurements has been constructed at National Metrology Institute of Japan (NMIJ). The facility was designed for the calibration of hydrocarbon flowmeters in the flow rate range between 3 and 300 m3/h. The expanded uncertainty is estimated to be 0.03 % for volumetric flow rate and 0.02 % for mass flow rate (coverage factor: k = 2). The primary standard is based on a static and gravimetric method with a flying start and finish. The facility consists of two test rigs using kerosene and light oil as working fluids. The test lines for the flowmeters are 50, 100 and 150 mm in diameter and three servo positive displacement meters are used as working standards. To verify the calibration performance, a Coriolis flowmeter, a turbine meter and a positive displacement flowmeter have been calibrated at both test rigs. Furthermore, an international comparison with SP, Swedish National Testing Research Institute, was carried out. A screw-type positive displacement flowmeter was selected as the transfer standard and was calibrated at NMIJ and SP. The result shows that the two national standards at the two institutes agree within the quoted expanded uncertainties.

  18. Standard practice for torque calibration of testing machines and devices

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This practice covers procedures and requirements for the calibration of torque for static and quasi-static torque capable testing machines or devices. These may, or may not, have torque indicating systems and include those devices used for the calibration of hand torque tools. Testing machines may be calibrated by one of the three following methods or combination thereof: 1.1.1 Use of standard weights and lever arms. 1.1.2 Use of elastic torque measuring devices. 1.1.3 Use of elastic force measuring devices and lever arms. 1.1.4 Any of the methods require a specific uncertainty of measurement and a traceability derived from national standards of mass and length. 1.2 The procedures of 1.1.1, 1.1.2, and 1.1.3 apply to the calibration of the torque-indicating systems associated with the testing machine, such as a scale, dial, marked or unmarked recorder chart, digital display, etc. In all cases the buyer/owner/user must designate the torque-indicating system(s) to be calibrated and included in the repor...

  19. Monochromator-Based Absolute Calibration of a Standard Radiation Thermometer

    Science.gov (United States)

    Mantilla, J. M.; Hernanz, M. L.; Campos, J.; Martín, M. J.; Pons, A.; del Campo, D.

    2014-04-01

    Centro Español de Metrología (CEM) is disseminating the International Temperature Scale (ITS-90), at high temperatures, by using the fixed points of Ag and Cu and a standard radiation thermometer. However, the future mise-en-pratique for the definition of the kelvin ( MeP-K) will include the dissemination of the kelvin by primary methods and by indirect approximations capable of exceptionally low uncertainties or increased reliability. Primary radiometry is, at present, able to achieve uncertainties competitive with the ITS-90 above the silver point with one of the possible techniques the calibration for radiance responsivity of an imaging radiometer (radiance method). In order to carry out this calibration, IO-CSIC (Spanish Designated Institute for luminous intensity and luminous flux) has collaborated with CEM, allowing traceability to its cryogenic radiometer. A monochromator integrating sphere-based spectral comparator facility has been used to calibrate one of the CEM standard radiation thermometers. The absolute calibrated standard radiation thermometer has been used to determine the temperatures of the fixed points of Cu, Co-C, Pt-C, and Re-C. The results obtained are 1357.80 K, 1597.10 K, 2011.66 K, and 2747.64 K, respectively, with uncertainties ranging from 0.4 K to 1.1 K.

  20. The radioactive standard and the development of remote calibration technology

    CERN Document Server

    Sato, Y

    2003-01-01

    The situation of the radioactive standard and traceability are explained. Application of remote calibration technology based on internet technology is ascribed. In order to support the radioactive standard, a group of measurement instruments are working. It consists of 4 pi beta-gamma simultaneous measurement instrument, 4 pi gamma pressurized ionization chamber with standard source, gamma-ray spectrometer, liquid scintillation counter and charge particle measurement instrument. Their features are explained. The traceability system of radioactive standard in Japan is stated. New e-trace project proposed by the National Metrology Institute of Japan is explained. It was proved that the ionization system made possible the radioactive standard by e-trace. (S.Y.)

  1. Development of a low-level Ar-37 calibration standard

    CERN Document Server

    Williams, R M; Bowyer, T W; Day, A R; Fuller, E S; Haas, D A; Hayes, J C; Hoppe, E W; Humble, P H; Keillor, M E; LaFerriere, B D; Mace, E K; McIntyre, J I; Miley, H S; Myers, A W; Orrell, J L; Overman, C T; Panisko, M E; Seifert, A

    2016-01-01

    Argon-37 is an environmental signature of an underground nuclear explosion. Producing and quantifying low-level Ar-37 standards is an important step in the development of sensitive field measurement instruments. This paper describes progress at Pacific Northwest National Laboratory in developing a process to generate and quantify low-level Ar-37 standards, which can be used to calibrate sensitive field systems at activities consistent with soil background levels. This paper presents a discussion of the measurement analysis, along with assumptions and uncertainty estimates.

  2. Matrix Materials for Preparation of Marinelli Calibration Standards

    International Nuclear Information System (INIS)

    Due to the very low concentrations of radioactive nuclides in environmental samples (soils, water, plants, building materials, etc.) high volume samples are used when employing D3-ray spectrometry, A convenient procedure is to employ Marinelli beakers, which surround the spectrometer and enhance the detection efficiency. The spectrometry system must be calibrated to the Marinelli beaker geometry, but due to the great variety of the environmental samples, their density may vary in the general range 0.2 – 2 g cm-3. Variability in the sample chemical composition is not a major problem, since mass attenuation coefficients differ only slightly from one environmental sample to another, but the wide range of densities results in large differences in D3 -ray attenuation factors within the samples. Therefore, measurements of radionuclides from environmental samples by D3-ray spectrometry require a correction for self-attenuation of D3-rays. This correction can be minimized or avoided by direct calibration with certified D3-ray standard sources in matrices with a composition close to that of environmental samples to be assayed. The preparation of the standards can be made using “in house procedures. This can be done by homogeneously incorporating certified standard radionuclide sources into inactive matrices with a composition and density as close as possible to the samples

  3. A computerized standard flow-generator for spirometer calibration.

    Science.gov (United States)

    Kondo, T; Murata, T; Kuwahira, I; Ohta, Y; Yamabayashi, H; Ogushi, Y

    1989-12-01

    We analyzed the dynamic characteristics of a newly designed standard flow generator (SFG) to be used for spirometer calibration. The SFG consisted of a computer, large-bore cylinder, and piston driven by a high torque motor. The computer develops numerical equations to simulate a flow-volume pattern with different convexities of the descending limb. The excursion of the piston was processed according to the computer-developed equation. The computer's numerical solutions were compared to those of the SFG and agreement of the values of the peak flow, forced expiratory volume, and flow-volume pattern was satisfactory in repeated trials. Application of an external resistive load (3.5 cm H2O/sec) did not change the flow output. However, there were several minor disagreements due to the dynamic characteristics of the SFG. In an emphysema pattern the ascending limb of the generated flow-volume curve flattened and the descending limb was less convex compared to the preset pattern. When the SFG was generating sinusoidal waves of high frequency (e.g., 10.0 Hz) the flow output was deformed. The newly designed SFG was used to examine the dynamic characteristics of rolling-seal spirometers. There was an overshoot of the peak flow, over-convection, and oscillations of the descending limb in the spirometer output. These deformations were more prominent with the severe emphysema pattern. It is concluded that the SFG can be very useful in the examination and calibration of spirometers. PMID:2490270

  4. Electronic Correlated Noise Calibration Standard for Interferometric and Polarimetric Microwave Radiometers Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A new type of calibration standard is proposed which produces a pair of microwave noise signals to aid in the characterization and calibration of correlating...

  5. Accuracy, standardization, and interlaboratory calibration standards for foraminiferal Mg/Ca thermometry

    Science.gov (United States)

    Greaves, Mervyn; Barker, Stephen; Daunt, Caroline; Elderfield, Henry

    2005-02-01

    The use of liquid and solid standards for foraminiferal Mg/Ca and Sr/Ca determinations and interlaboratory calibration has been investigated. Preparation of single element standard solutions from primary solid standard material enables the preparation of mixed standard solutions with Mg/Ca and Sr/Ca ratios of known accuracy to better than 0.1%. We also investigated commercial reference materials to determine whether existing carbonate standards could be used as reference material for Mg/Ca determinations in foraminiferal calcite. We propose that, in the absence of a pure calcium carbonate standard certified for Mg/Ca, ECRM 752-1, a limestone CRM containing Mg/Ca within the range of typical foraminifera, is a suitable solid standard for interlaboratory calibration. Replicate Mg/Ca determinations showed that, provided silicate phases are removed by centrifugation, this material is homogenous within the precision of daily instrumental Mg/Ca determinations over a range of sample weights from 10 to 1000 mg, taken from two separate bottles of ECRM 752-1. Results gave an average value of Mg/Ca = 3.75 mmol/mol (0.015 s.d., 0.41% r.s.d.) on 118 determinations from the two bottles.

  6. The Moon as a photometric calibration standard for microwave sensors

    Science.gov (United States)

    Burgdorf, Martin; Buehler, Stefan A.; Lang, Theresa; Michel, Simon; Hans, Imke

    2016-08-01

    Instruments on satellites for Earth observation on polar orbits usually employ a two-point calibration technique, in which deep space and an onboard calibration target provide two reference flux levels. As the direction of the deep-space view is in general close to the celestial equator, the Moon sometimes moves through the field of view and introduces an unwelcome additional signal. One can take advantage of this intrusion, however, by using the Moon as a third flux standard, and this has actually been done for checking the lifetime stability of sensors operating at visible wavelengths. As the disk-integrated thermal emission of the Moon is less well known than its reflected sunlight, this concept can in the microwave range only be used for stability checks and intercalibration. An estimate of the frequency of appearances of the Moon in the deep-space view, a description of the limiting factors of the measurement accuracy and models of the Moon's brightness, and a discussion of the benefits from complementing the naturally occurring appearances of the Moon with dedicated spacecraft maneuvers show that it would be possible to detect photometric lifetime drifts of a few percent with just two measurements. The pointing accuracy is the most crucial factor for the value of this method. Planning such observations in advance would be particularly beneficial, because it allows observing the Moon at well-defined phase angles and putting it at the center of the field of view. A constant phase angle eliminates the need for a model of the Moon's brightness when checking the stability of an instrument. With increasing spatial resolution of future microwave sensors another question arises, viz. to what extent foreground emission from objects other than the Moon will contaminate the flux entering the deep-space view, which is supposed to originate exclusively in the cosmic microwave background. We conclude that even the brightest discreet sources have flux densities below the

  7. Standard practice for alternate actinide calibration for inductively coupled plasma-mass spectrometry

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2004-01-01

    1.1 This practice provides guidance for an alternate linear calibration for the determination of selected actinide isotopes in appropriately prepared aqueous solutions by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). This alternate calibration is mass bias adjusted using thorium-232 (232Th) and uranium-238 (238U) standards. One of the benefits of this standard practice is the ability to calibrate for the analysis of highly radioactive actinides using calibration standards at much lower specific activities. Environmental laboratories may find this standard practice useful if facilities are not available to handle the highly radioactive standards of the individual actinides of interest. 1.2 The instrument response for a series of determinations of known concentration of 232Th and 238U defines the mass versus response relationship. For each standard concentration, the slope of the line defined by 232Th and 238U is used to derive linear calibration curves for each mass of interest using interference equ...

  8. Calibration Standards for Surface Topography Measuring Systems down to Nanometric Range

    DEFF Research Database (Denmark)

    Trumpold, H.; De Chiffre, Leonardo; Andreasen, Jan Lasson;

    increasing use in industries ranging from automotive manufacture to ultraprecision manufacture of data storage systems and compact discs. Objectives The project is concerned with developing calibration standards including their production methods and calibration procedures as a consistent means of......-direction a small size vertical calibrator has been designed, built and tested. Primary calibration standards have been produced by ion-beam and plasma etching (step height standards), by holographic generation of sinusoidal structures with two-beam interference exposure and by ultra-precision diamond cutting...

  9. Development of a Low-Level Ar-37 Calibration Standard

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Richard M.; Aalseth, Craig E.; Bowyer, Ted W.; Day, Anthony R.; Fuller, Erin S.; Haas, Derek A.; Hayes, James C.; Hoppe, Eric W.; Humble, Paul H.; Keillor, Martin E.; LaFerriere, Brian D.; Mace, Emily K.; McIntyre, Justin I.; Miley, Harry S.; Myers, Allan W.; Orrell, John L.; Overman, Cory T.; Panisko, Mark E.; Seifert, Allen

    2016-03-07

    Argon-37 is an important environmental signature of an underground nuclear explosion. Producing and quantifying low-level 37Ar standards is an important step in the development of sensitive field measurement instruments for use during an On-Site Inspection, a key provision of the Comprehensive Nuclear-Test-Ban Treaty. This paper describes progress at Pacific Northwest National Laboratory (PNNL) in the development of a process to generate and quantify low-level 37Ar standard material, which can then be used to calibrate sensitive field systems at activities consistent with soil background levels. The 37Ar used for our work was generated using a laboratory-scale, high-energy neutron source to irradiate powdered samples of calcium carbonate. Small aliquots of 37Ar were then extracted from the head space of the irradiated samples. The specific activity of the head space samples, mixed with P10 (90% stable argon:10% methane by mole fraction) count gas, is then derived using the accepted Length-Compensated Internal-Source Proportional Counting method. Due to the low activity of the samples, a set of three Ultra-Low Background Proportional-Counters designed and fabricated at PNNL from radio-pure electroformed copper was used to make the measurements in PNNL’s shallow underground counting laboratory. Very low background levels (<10 counts/day) have been observed in the spectral region near the 37Ar emission feature at 2.8 keV. Two separate samples from the same irradiation were measured. The first sample was counted for 12 days beginning 28 days after irradiation, the second sample was counted for 24 days beginning 70 days after irradiation (the half-life of 37Ar is 35.0 days). Both sets of measurements were analyzed and yielded very similar results for the starting activity (~0.1 Bq) and activity concentration (0.15 mBq/ccSTP argon) after P10 count gas was added. A detailed uncertainty model was developed based on the ISO Guide to the Expression of Uncertainty in

  10. Calibration of brachytherapy sources. Guidelines on standardized procedures for the calibration of brachytherapy sources at Secondary Standard Dosimetry Laboratories (SSDLs) and hospitals

    International Nuclear Information System (INIS)

    Today, irradiation by brachytherapy is considered an essential part of the treatment for almost all the sites of cancer. With the improved localization techniques and treatment planning systems, it is now possible to have precise and reproducible dose delivery. However, the desired clinical results can only be achieved with a good clinical and dosimetric practice, i.e. with the implementation of a comprehensive quality assurance (QA) programme which includes detailed quality control procedures. As summarized in the present report, accidents in brachytherapy treatments have been caused due to the lack of traceable calibration of the sources, due to the incorrect use of quantities and units, or errors made in the dose calculation procedure. The International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources has established a requirement on the calibration of sources used for medical exposure. For sources used in brachytherapy treatments, a calibration traceable to a standards dosimetry laboratory is required. The present report deals with the calibration of brachytherapy sources and related quality control (QC) measurements, QC of ionization chambers and safety aspects related to the calibration procedures. It does not include safety aspects related to the clinical use of brachytherapy sources, which have been addressed in a recent IAEA publication, IAEA-TECDOC-1040, 'Design and Implementation of a Radiotherapy Programme: Clinical, Medical Physics, Radiation Protection and Safety Aspects'. The procedures recommended in this report yield traceability to internationally accepted standards. It must be realized, however, that a comprehensive QA programme for brachytherapy cannot rest on source calibration alone, but must ensure QC of all the equipment and techniques that are used for the dose delivery to the patient. The present publication incorporates the reports of several consultants meetings in the field of

  11. The 1998 calibration of Australian secondary standards of exposure and absorbed dose at 60Co

    International Nuclear Information System (INIS)

    New calibration factors are reported for several of the ionization chambers maintained at the Australian Radiation Laboratory (ARL) and at the Australian Nuclear Science and Technology Organisation (ANSTO) as Australian secondary standards of exposure/air kerma and absorbed dose at 60Co. These calibration factors supplement or replace the calibration factors given in earlier reports. Updated 90Sr reference source data are given for the ARL chambers, and for two of the ANSTO chambers. These results confirm the stability of the secondary standards. A re-calibration of the ANSTO reference electrometer is reported. This was carried out using an improved method, which is fully described

  12. Lyophilized standards for the calibration of real time PCR assay for hepatitis C virus RNA

    Institute of Scientific and Technical Information of China (English)

    WANG Lu-nan; WU Jian-min; DENG Wei; SHEN Zi-yu; CHEN Wen-xiang; LI Jin-ming

    2006-01-01

    Background Since October 1997, an international standard for hepatitis C virus (HCV) nucleic acid amplification technology assay, 96/790, has been available. We compared a series of lyophilized standards with known HCV RNA concentrations against the international standard in fluorescence quantitative PCR detection.Methods A series of lyophilized sera were calibrated by ROCHE COBAS AMPLICOR HCV Monitor test against the international standard and sent to various manufacturers to analyse the samples using their own kits.Then calibration curves from the series were compared with that obtained from the external standard calibration curve with the manufacture's series.Results The standard calibration curve with the series of lyophilized serum showed an excellent correlation(R2>0.98), slope and intercept that were similar to those from the manufacture's series. When the standard calibration curve from the series of lyophilized standards were used to define the values of the given sample,lower coefficients of variation between kits from different manufactures were obtained.Conclusion The results showed that the lyophilized standards could be used to setup the standard calibration curve for clinical HCV RNA quantitative PCR detection.

  13. Primary Solar Cell Standards- Comparison Of Extraterrestrial And Synthetic Calibration

    Science.gov (United States)

    Baur, C.; Siefer, G.; Kern, R.; Winter, S.

    2011-10-01

    First results of a comparison between two sets of reference cells are presented of which one was calibrated using an "extraterrestrial" method in the frame of a CNES balloon flight while the other set was calibrated using the SI-traceable "synthetic" differential spectral responsivity method of the German metrological institute PTB. Measuring a representative set of 3G28 triple-junction solar cells from AZUR SPACE Solar Power GmbH against the two different sets of reference cells gave results which were in very good agreement with each other especially when taking into account the non-ideal conditions that had to be coped with during this study.

  14. Legacy of NOAA, NASA and NIST Cooperation in Developing Radiometric Calibration Standards, Equipment and Methodologies

    OpenAIRE

    Datla, Raju; Weinreb, Michael; Cao, Changyong

    2012-01-01

    This report traces the historical development of radiometric standards and calibration methodologies over the past several decades for optical passive sensor calibration at the National Oceanic and Atmospheric Administration (NOAA), National Aeronautic and Space Administration (NASA) and National Institute of Standards and Technology (NIST), formerly National Bureau of Standards NBS. From the beginning, a remarkable goal oriented interaction between scientists and engineers of the 3 agencies ...

  15. Establishment of standard low energy x-ray, radioprotection levels, for calibration of instruments

    International Nuclear Information System (INIS)

    Seven standard low energy X-rays fields were established, radioprotection level, at the Calibration Laboratory of IPEN. Five of the standard calibration qualities used at the National Physical Laboratory, England, with energies between 16 and 38 keV, and two recommended by the International Standard Organization, with energies of 33 and 48 keV, were reproduced. The calibration conditions, radiotherapy level, from 14 to 21 keV, were also verified. Different portable radiation monitors as ionization chambers and Geiger-Mueller detectors were studied in relation to their energy dependence. (author)

  16. Characterization of a 137Cs standard source for calibration purposes ar CRCN-NE

    International Nuclear Information System (INIS)

    Radiation protection monitoring instruments should be calibrated by accredited calibration laboratories. To offer calibration services, a laboratory must accomplish all requirements established by the national regulatory agency. The Calibration Service of the Centro Regional de Ciencias Nucleares (CRCN-NE), Comissao Nacional de Energia Nuclear, Recife, Brazil, is trying to achieve this accreditation. In the present work, a 137Cs standard source was characterized following the national and international recommendations and the results are presented. This source is a commercially available single source irradiator model 28-8A, manufactured by JLShepherd and Associates, with initial activity of 444 GBq (05/13/03). To provide different air kerma rates, as required for the calibration of portable radiation monitors, this irradiator have a set of four lead attenuators with different thickness, providing attenuation factors equal to 2, 4, 10 and 100 times (nominally). The performed tests included: size and uniformity of the radiation standard field at calibration reference position, variation of the air kerma rate for different lead attenuators, determination of attenuation factors for each lead attenuator configuration, and determination of the radiation scattering at the calibration reference position. The results showed the usefulness of the 137Cs standard source for the calibration of radiation protection monitoring detectors. (author)

  17. Services of the CDRH X-ray calibration laboratory and their traceability to National Standards

    Energy Technology Data Exchange (ETDEWEB)

    Cerra, F.; Heaton, H.T. [Center for Devices and Radiological Health, Rockville, MD (United States)

    1993-12-31

    The X-ray Calibration Laboratory (XCL) of the Center for Devices and Radiological Health (CDRH) provides calibration services for the Food and Drug Administration (FDA). The instruments calibrated are used by FDA and contract state inspectors to verify compliance with federal x-ray performance standards and for national surveys of x-ray trends. In order to provide traceability of measurements, the CDRH XCL is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP) for reference, diagnostic, and x-ray survey instrument calibrations. In addition to these accredited services, the CDRH XCL also calibrates non-invasive kVp meters in single- and three-phase x-ray beams, and thermoluminescent dosimeter (TLD) chips used to measure CT beam profiles. The poster illustrates these services and shows the traceability links back to the National Standards.

  18. Establishing a standard calibration methodology for MOSFET detectors in computed tomography dosimetry

    International Nuclear Information System (INIS)

    Purpose: The use of metal-oxide-semiconductor field-effect transistor (MOSFET) detectors for patient dosimetry has increased by ∼25% since 2005. Despite this increase, no standard calibration methodology has been identified nor calibration uncertainty quantified for the use of MOSFET dosimetry in CT. This work compares three MOSFET calibration methodologies proposed in the literature, and additionally investigates questions relating to optimal time for signal equilibration and exposure levels for maximum calibration precision. Methods: The calibration methodologies tested were (1) free in-air (FIA) with radiographic x-ray tube, (2) FIA with stationary CT x-ray tube, and (3) within scatter phantom with rotational CT x-ray tube. Each calibration was performed at absorbed dose levels of 10, 23, and 35 mGy. Times of 0 min or 5 min were investigated for signal equilibration before or after signal read out. Results: Calibration precision was measured to be better than 5%–7%, 3%–5%, and 2%–4% for the 10, 23, and 35 mGy respective dose levels, and independent of calibration methodology. No correlation was demonstrated for precision and signal equilibration time when allowing 5 min before or after signal read out. Differences in average calibration coefficients were demonstrated between the FIA with CT calibration methodology 26.7 ± 1.1 mV cGy−1 versus the CT scatter phantom 29.2 ± 1.0 mV cGy−1 and FIA with x-ray 29.9 ± 1.1 mV cGy−1 methodologies. A decrease in MOSFET sensitivity was seen at an average change in read out voltage of ∼3000 mV. Conclusions: The best measured calibration precision was obtained by exposing the MOSFET detectors to 23 mGy. No signal equilibration time is necessary to improve calibration precision. A significant difference between calibration outcomes was demonstrated for FIA with CT compared to the other two methodologies. If the FIA with a CT calibration methodology was used to create calibration coefficients for the eventual

  19. Establishing a standard calibration methodology for MOSFET detectors in computed tomography dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Brady, S. L.; Kaufman, R. A. [Department of Radiological Sciences, St. Jude Children' s Research Hospital, Memphis, Tennessee 38105 (United States)

    2012-06-15

    Purpose: The use of metal-oxide-semiconductor field-effect transistor (MOSFET) detectors for patient dosimetry has increased by {approx}25% since 2005. Despite this increase, no standard calibration methodology has been identified nor calibration uncertainty quantified for the use of MOSFET dosimetry in CT. This work compares three MOSFET calibration methodologies proposed in the literature, and additionally investigates questions relating to optimal time for signal equilibration and exposure levels for maximum calibration precision. Methods: The calibration methodologies tested were (1) free in-air (FIA) with radiographic x-ray tube, (2) FIA with stationary CT x-ray tube, and (3) within scatter phantom with rotational CT x-ray tube. Each calibration was performed at absorbed dose levels of 10, 23, and 35 mGy. Times of 0 min or 5 min were investigated for signal equilibration before or after signal read out. Results: Calibration precision was measured to be better than 5%-7%, 3%-5%, and 2%-4% for the 10, 23, and 35 mGy respective dose levels, and independent of calibration methodology. No correlation was demonstrated for precision and signal equilibration time when allowing 5 min before or after signal read out. Differences in average calibration coefficients were demonstrated between the FIA with CT calibration methodology 26.7 {+-} 1.1 mV cGy{sup -1} versus the CT scatter phantom 29.2 {+-} 1.0 mV cGy{sup -1} and FIA with x-ray 29.9 {+-} 1.1 mV cGy{sup -1} methodologies. A decrease in MOSFET sensitivity was seen at an average change in read out voltage of {approx}3000 mV. Conclusions: The best measured calibration precision was obtained by exposing the MOSFET detectors to 23 mGy. No signal equilibration time is necessary to improve calibration precision. A significant difference between calibration outcomes was demonstrated for FIA with CT compared to the other two methodologies. If the FIA with a CT calibration methodology was used to create calibration

  20. Definition and production of calibration standard neutron sources for radiation protection device calibration

    International Nuclear Information System (INIS)

    To improve the characterization of radioprotection devices performances, it would be advisable to calibrate these devices in neutron spectra which are nearly like those met in practice (nuclear reactors, plutonium technology laboratories...). The purpose of this work is, in a first time, to choose the nature and the dimensions of the different shields used to achieve broad typical neutron spectra extending to lower energies from a 14.8 MeV neutron beam. The second step is the evaluation of spectral distribution and calculation of associated dosimetric quantities. For that, several spectrometric techniques are employed: on one hand, activation detectors and Bonner spheres method named rough spectrometry; on the other hand, an accurate spectrometry which uses recoil proton counters. The dosimetric quantities, especially the value of kerma deduced from these spectra must be in good agreement with those measured with a tissue equivalent ionization chamber

  1. Standardization of Laser Methods and Techniques for Vibration Measurements and Calibrations

    International Nuclear Information System (INIS)

    The realization and dissemination of the SI units of motion quantities (vibration and shock) have been based on laser interferometer methods specified in international documentary standards. New and refined laser methods and techniques developed by national metrology institutes and by leading manufacturers in the past two decades have been swiftly specified as standard methods for inclusion into in the series ISO 16063 of international documentary standards. A survey of ISO Standards for the calibration of vibration and shock transducers demonstrates the extended ranges and improved accuracy (measurement uncertainty) of laser methods and techniques for vibration and shock measurements and calibrations. The first standard for the calibration of laser vibrometers by laser interferometry or by a reference accelerometer calibrated by laser interferometry (ISO 16063-41) is on the stage of a Draft International Standard (DIS) and may be issued by the end of 2010. The standard methods with refined techniques proved to achieve wider measurement ranges and smaller measurement uncertainties than that specified in the ISO Standards. The applicability of different standardized interferometer methods to vibrations at high frequencies was recently demonstrated up to 347 kHz (acceleration amplitudes up to 350 km/s2). The relative deviations between the amplitude measurement results of the different interferometer methods that were applied simultaneously, differed by less than 1% in all cases.

  2. Advisory Committee for the Calibration Standards of Ionizing Radiation Measurement

    International Nuclear Information System (INIS)

    An account of the activity during the past two years and of the plans for future work is given for the three Sections of the Comite Consultatif pour les Etalons de Mesure des Rayonnements Ionisants. Section I (Rayons X et #betta#, electrons) studied in detail the results of an intercomparison of Frike dosimeters. A recommendation was made concerning the possibility of expressing calibrations made in terms of exposure in terms of air kerma or water kerma. Section II (Mesure des radionucleides) studied the results of recent international comparisons (55Fe, 133Ba and 134Cs) and made plans for new ones. Section III (Mesures neutroniques) presented the status of the international comparisons of neutron fluence rate in progress and decided to organize new ones. The reports of the Section chairmen are followed by the presentation of the work carried out at BIPM by the corresponding groups. The status of the proposal by Section III for a 14 MeV neutron dosimetry facility at BIPM is discussed in detail and a proposal is made for a neutron dosimetry intercomparison

  3. Calibration in medical diagnostic beams at the Swedish secondary standard dosimetry laboratory

    International Nuclear Information System (INIS)

    New diagnostic X-ray beams based on the IEC standard no. 1267 are now available at the Secondary Standard Dosimetry Laboratory in Sweden. These beams are alternatives to the ISO narrow qualities and BIPM qualities that until now have been used for calibration of diagnostic instruments. A procedure differing somewhat from the IEC standard but following the primary radiation standards laboratory at PTB has been used for defining the radiation quality. This report describes the characteristics of the new radiation beams and the estimated effect on calibration factors due to the change in radiation quality. The effect on existing calibration beams due to the reconstruction of filter wheels has been investigated concerning scattered radiation, half-value layers and air kerma rates

  4. Standardization of the calibration of brachytherapy sources at the IAEA dosimetry laboratory

    International Nuclear Information System (INIS)

    A new service to SSDLs has been initiated at the IAEA Dosimetry Laboratory for providing calibrations of well-type ionisation chambers, used in brachytherapy applications, which are traceable to the International Measurement System. Considering that the most common radionuclide used in the developing countries is 137Cs, two such sources of the type used for gynaecological intracavitary applications have been purchased by the Agency and calibrated at the National Institute of Standards and Technology (NIST), USA. These 137Cs reference sources together with a well-type ionization chamber constitute the IAEA brachytherapy dosimetry standard. Based on the recommendations by a group of experts, a method has been developed for transferring calibrations to SSDLs which is described in this paper. The method is based on the acquisition by the SSDLs of sources and equipment similar to those at the IAEA. The well-type chamber is to be calibrated at the IAEA Dosimetry Laboratory, and this will be used at the SSDL to calibrate its own reference sources. These sources can in turn by used to calibrate well-type chambers from hospital users and to calibrate other type of sources by performing measurements in air. In order to standardize the procedures for the two methods and to provide guidance to the SSDLs, measurements have been carried out at the IAEA Dosimetry Laboratory. The reproducibility of the two type of measurements has been found to be better than 0.5%, and the uncertainty of calibrations estimated to be less than 1.5% (one standard deviation). (author). 8 refs, 8 figs, 2 tabs

  5. Calibration of beta-particle ophthalmic applicators at the National Bureau of Standards

    International Nuclear Information System (INIS)

    The method used at the National Bureau of Standards for the calibration of strontium-90 + yttrium-90 beta-particle ophthalmic applicators in terms of absorbed dose to water, is described. The method involves measurement of ionization density at the applicator surface with an extrapolation chamber, correction for the difference in backscatter between the collection electrode and water, and application of the Bragg-Gray equation. The calibration obtained is an average over the active surface of the applicator. The overall uncertainty of the surface calibration is about + or - 15 percent

  6. Calibration of survey meters at the Algerian Secondary Standard Dosimetry Laboratory

    International Nuclear Information System (INIS)

    Full text: The Algerian Secondary Standard Dosimetry Laboratory, which became a Regional AFRA Designated Centre for French spoken countries, in the field of calibration since 2005, has developed and implemented methodologies for the calibration of radiation protection instruments such as survey meters. These instruments were initially calibrated in terms of air kerma free in air (NK) in 60Co, 137Cs gamma radiations. Although the recommended calibration quantity is H*(10) (Sv/h), most of instruments measure different physical quantities and problems about the expression of calibration factor in the calibration certificates are always raised. In order to switch to calibrations in terms of H*(10), a feasibility study was performed using instruments submitted for calibration at the SSDL. This paper presents the variation of the calibration coefficients, Fc, obtained since 2005 for three types of survey meters. The uncertainty components involved in the determination of Fc are analysed in details. Material and method: This study included the most used survey meters in Algeria and received at the SSDL in 2005 and 2006 which consist of 127 survey-meters of type Automess (different models), 80 Ludlum model 3 and 23 Graetz X 5 DE. Calibrations were performed using the beam output decay method. This output was determined with the Reference Standard chamber of type NE 2575 in 2005 and LS01 in 2006, both calibrated at the IAEA calibration laboratory. The average calibration coefficients, Fc, which converts the instruments reading to ambient equivalent absorbed dose, are calculated and the relative standard deviations assessed. The variation of calibration coefficients, for each type of instruments, is compared to the overall stated uncertainty for this coefficient. Results and discussion: The mean calibration coefficients in terms of H*(10) were lying from 0.993 ± 2.55% and 1.039 ± 3.16% for the Automess survey meters and from . The results are 1.215 ± 5.93%, 1.149 ± 14

  7. Nanoscale Calibration Standards and Methods: Dimensional and Related Measurements in the Micro- and Nanometer Range

    Science.gov (United States)

    Wilkening, Günter; Koenders, Ludger

    2005-08-01

    The quantitative determination of the properties of micro- and nanostructures is essential in research and development. It is also a prerequisite in process control and quality assurance in industry. The knowledge of the geometrical dimensions of structures in most cases is the base, to which other physical and chemical properties are linked. Quantitative measurements require reliable and stable instruments, suitable measurement procedures as well as appropriate calibration artefacts and methods. The seminar "NanoScale 2004" (6th Seminar on Quantitative Microscopy and 2nd Seminar on Nanoscale Calibration Standards and Methods) at the National Metrology Institute (Physikalisch-Technische Bundesanstalt PTB), Braunschweig, Germany, continues the series of seminars on Quantitative Microscopy. The series stimulates the exchange of information between manufacturers of relevant hard- and software and the users in science and industry. Topics addressed in these proceedings are a) the application of quantitative measurements and measurement problems in: microelectronics, microsystems technology, nano/quantum/molecular electronics, chemistry, biology, medicine, environmental technology, materials science, surface processing b) calibration & correction methods: calibration methods, calibration standards, calibration procedures, traceable measurements, standardization, uncertainty of measurements c) instrumentation and methods: novel/improved instruments and methods, reproducible probe/sample positioning, position-measuring systems, novel/improved probe/detector systems, linearization methods, image processing

  8. Calibration of Modulation Transfer Function of Surface Profilometers with 1D and 2D Binary Pseudo-random Array Standards

    Energy Technology Data Exchange (ETDEWEB)

    Yashchuk, Valeriy V.; McKinney, Wayne R.; Takacs, Peter Z.

    2008-05-19

    We suggest and describe the use of a binary pseudo-random grating as a standard test surface for calibration of the modulation transfer function of microscopes. Results from calibration of a MicromapTM-570 interferometric microscope are presented.

  9. Quantitative Analysis of Carbon Steel with Multi-Line Internal Standard Calibration Method Using Laser-Induced Breakdown Spectroscopy.

    Science.gov (United States)

    Pan, Congyuan; Du, Xuewei; An, Ning; Zeng, Qiang; Wang, Shengbo; Wang, Qiuping

    2016-04-01

    A multi-line internal standard calibration method is proposed for the quantitative analysis of carbon steel using laser-induced breakdown spectroscopy (LIBS). A procedure based on the method was adopted to select the best calibration curves and the corresponding emission lines pairs automatically. Laser-induced breakdown spectroscopy experiments with carbon steel samples were performed, and C, Cr, and Mn were analyzed via the proposed method. Calibration curves of these elements were constructed via a traditional single line internal standard calibration method and a multi-line internal standard calibration method. The calibration curves obtained were evaluated with the determination coefficient, the root mean square error of cross-validation, and the average relative error of cross-validation. All of the parameters were improved significantly with the proposed method. The results show that accurate and stable calibration curves can be obtained efficiently via the multi-line internal standard calibration method. PMID:26872822

  10. Investigation of Ultrasonic Calibration using Steel Standard Reference Blocks

    Directory of Open Access Journals (Sweden)

    Mohamed Galal Sayed ALI

    2012-12-01

    Full Text Available The equipment used in standardization must be adjusted in order that both the receiver amplifier and video display are linear over the range of distance and flaw size to be used. The failure to do that would result in different block-to-block response ratios because of the measurements depending on the scope reading or attenuator setting. In this paper, using two sets of steel reference blocks (area-amplitude and distance-amplitude to modified method to verify the linearity of the system of instruments used in the ultrasonic inspection. This method depends on the response from reference blocks with different hole diameters at constant gain and ratio between the figures slope at different gains. The linearity of the ultrasonic instruments can be measured with high precision. The results can be used effectively for determining resolution and sensitivity capabilities.

  11. Uncertainty Analysis of Spectral Irradiance Reference Standards Used for NREL Calibrations

    Energy Technology Data Exchange (ETDEWEB)

    Habte, A.; Andreas, A.; Reda, I.; Campanelli, M.; Stoffel, T.

    2013-05-01

    Spectral irradiance produced by lamp standards such as the National Institute of Standards and Technology (NIST) FEL-type tungsten halogen lamps are used to calibrate spectroradiometers at the National Renewable Energy Laboratory. Spectroradiometers are often used to characterize spectral irradiance of solar simulators, which in turn are used to characterize photovoltaic device performance, e.g., power output and spectral response. Therefore, quantifying the calibration uncertainty of spectroradiometers is critical to understanding photovoltaic system performance. In this study, we attempted to reproduce the NIST-reported input variables, including the calibration uncertainty in spectral irradiance for a standard NIST lamp, and quantify uncertainty for measurement setup at the Optical Metrology Laboratory at the National Renewable Energy Laboratory.

  12. On preparation of efficiency calibration standards for gamma-ray spectrometers

    International Nuclear Information System (INIS)

    The work on preparation of calibration standards started for the following reasons: development of gamma-spectrometry hardware and software requires adequate quality assurance system; the calibration standards offered by established firms are expensive. Preparation of standards in geometries to our specification would make them even more expensive; the analyst community accepted the idea of uniform quality assurance program and uniform calibration politics. Studied materials were: organic (styropore, ground coffee, tobacco leaves, seeds, flour, semolina, lentils, sugar, ion exchange resins, PTFE powder, rice, beans and bee honey) and inorganic (quartz sand, chalcedony sand, active charcoal, marble powder, zeolite, different clays, barite, soil, perlite, talc powder and their mixtures). Efficiency curves for geometry TB with different densities; Efficiency for different geometries; Comparison with Czech source 540-01, silicone resin, r = 0,98 g/cm3 for Co-60, Co-57, Cs-137 and Cs-139 are presented. Conclusions: A procedure for preparation of mixed-nuclide efficiency calibration standards in different geometries and having different densities has been developed. Advantages: different natural and artificial matrices used; gravimetrically controlled activity application; activated charcoal used as supporter of the activity; the preparation is in the container of the standard and no losses of activity occurs; high degree of activity distribution homogeneity; fixed volume of the standard

  13. Development of uranium standard glass for fission tracks technology calibration

    International Nuclear Information System (INIS)

    The uranium standard glass is developed to meet the need of application of fission tracks technology. It's main composition are SiO2, Na2O, CaO, Al2O3, etc. Tests indicate that uranium in the glass is well-distributed; the content (mass fraction) of element B is smaller than 3 μg/g, Cd smaller than 2.1 μg/g, and Th smaller than 0.3 μg/g. The acid-resisting property reaches the level of the first class optical glass; and the moist-resisting property reaches the level of the second class optical glass. The contents of uranium in UB1 and UB2 uranium glass determined by several laboratories are (1.89 +- 0.05) μg/g and (11.2 +- 0.2) μg/g respectively; the stability test after a year indicates that its properties are stable. (11 tabs., 1 figs.)

  14. Results of intercomparison of primary calibration standards for radionuclide source neutron emission

    International Nuclear Information System (INIS)

    UVVVR possesses a so-called manganese bath, i.e., a primary calibration standard for radionuclide neutron sources. The manganese bath assembly was tested in 1982 and in 1988 and compared with calibration standards of other metrological institutes. In 1982, Am-Be and 252Cf sources were tested in ASMW (DD), UVVVR (CS), VNIIM (SU) and RI (SU), in 1988, the 252Cf comparison involved UVVVR, VNIIM and NLMII (BG). The results of comparisons are tabulated. (E.J.). 3 tabs., 3 refs

  15. Designing valid and optimised standard addition calibrations: Application to the determination of anions in seawater.

    Science.gov (United States)

    Rodrigues, Joana; da Silva, Ricardo J N Bettencourt; Camões, M Filomena G F C; Oliveira, Cristina M

    2015-09-01

    A strategy for designing valid standard addition calibrations and for optimising their uncertainty is presented. The design of calibrations involves the development of models of the sensitivity and precision of the instrumental signal, in a wide range of analyte concentration (or any other studied quantity), and the definition of sample dilution and standard addition procedures that allow fulfilling the assumptions of the linear unweighted regression model in, typically, a smaller range of standard addition calibrations. Calibrators are prepared by diluting the sample and adding analyte with negligible uncertainty to fit in a concentration range where signals are homoscedastic. The minimisation of the uncertainty is supported on detailed measurement uncertainty models function of the calibrators preparation procedure and of analytical instrumentation performance. The number of collected signals replicates is defined by balancing their impact on the estimated expanded uncertainty, the resources needed and the target (maximum) uncertainty for the intended use of measurements. The calibration design strategy was successfully applied to the determination of the mass concentration (mg L(-1)) of Cl(-), Br(-), NO3(-) and SO4(-2) in seawater by ion chromatography. A target expanded uncertainty of 20% was defined for the determination of Cl(-), NO3(-) and SO4(-2), or 40% for the determination of the smaller mass concentration of Br(-). The developed measurement model produced reliable predictions of the measurement uncertainty from approximate concentration of the analyte in the sample, before its accurate quantification, thus proving optimisation is effective. Predictions are more prone to the variability of the measurement uncertainty estimation if based on low number of calibrators signals. The reported relative expanded uncertainty ranged from 7.1% to 49%. PMID:26003694

  16. Laboratory robotics -- An automated tool for preparing ion chromatography calibration standards

    Energy Technology Data Exchange (ETDEWEB)

    Chadwick, J.L.

    1995-04-01

    This paper describes the use of a laboratory robot as an automated tool for preparing multi-level calibration standards for On-Line Ion Chromatography (IC) Systems. The robot is designed for preparation of up to six levels of standards, with each level containing up to eleven ionic species in aqueous solution. The robot is required to add the standards` constituents as both a liquid and solid additions and to keep a record of exactly what goes into making up every standard. Utilizing a laboratory robot to prepare calibration standards provides significant benefits to the testing environment. These benefits include: accurate and precise calibration standards in individually capped containers with preparation traceability; automated and unattended multi-specie preparation for both anion and cation analytical channels; the ability to free up a test operator from a repetitive routine and re-apply those efforts to test operations; The robot uses a single channel IC to analyze each prepared standard for specie content and concentration. Those results are later used as a measure of quality control. System requirements and configurations, robotic operations, manpower requirements, analytical verification, accuracy and precision of prepared solutions, and robotic downtime are discussed in detail.

  17. Assuring the quality of the mammography calibrations in Cuban laboratory by comparison with Greek dosimetry standard

    International Nuclear Information System (INIS)

    The Secondary Standard Dosimetry Laboratory (SSDL) of Cuba has recently worked on preparation of the dissemination proposal of air kerma quantities for dose measurements at mammography beams into the country. This work was supported by IAEA coordinated research project. The X-ray equipment available at the laboratory is based on tungsten anode, and then the recommended RQR-M series based on molybdenum target and specified in IEC 61267 cannot be established at the SSDL. The calibration of the reference class chamber with flat response in any beams on mammography range is an option suggested in TRS 457 when not all radiation qualities are available. As an alternative some authors have suggested the use of radiation qualities based on tungsten anode and defined by IEC 1223-3-2, The Radcal 10X6M chamber was designated as secondary standard of the SSDL. The chamber was calibrated over the IEC 1223-3-2 range in the primary laboratory of Austria (BEV). The designation and calibration of the secondary standard was followed by the establishment of the IEC 1223-3-2 qualities at the SSDL of Cuba and preparation of the calibration procedures. Before introducing the calibrations by alternative method it was necessary to test the quality of the results provided by SSDL of Cuba to confirm both if this procedure can be properly operated by laboratory and the needs of customer are met. For this goal it was found the experienced laboratory from Greece that use appropriate X-ray spectra for calibration of mammography dosimeters. The Hellenic Ionizing Radiation Calibration Laboratory (HIRCL) of Greece maintains the MAGNA Ref 92650 chamber as secondary standard traceable to PTB in RQR-M qualities based on molybdenum target. The X-ray system used is the clinical mammography unit with some modifications to fit the needs of calibrations. The laboratories were agreed to initiate a bilateral comparison exercise to evaluate whether the results of calibration of both laboratories are similar

  18. Assembly of calibrated standard solutions of peptides and phosphopeptides using elemental mass spectrometry

    International Nuclear Information System (INIS)

    Full text: Absolute quantifications in analytical proteomics require the addition of measured amounts of internal standards, preferably of isotopically labelled analogs. A new method for the production of absolutely quantified standard solutions of (labeled or nonlabeled) phosphopeptides is introduced, based on capLC-ICPMS and detection of 31P. Quantification of the 31P signal of phosphopeptides is achieved relative to an internal standard (bis-nitrophenylphosphate). Development and control of the quantitative LC-MS method is presented. In addition, it is demonstrated that the method can be extended to the production of calibrated standard solutions of unmodified peptides. (author)

  19. EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (2012 Revision)

    Science.gov (United States)

    In 1997, the U.S. Environmental Protection Agency (EPA) in Research Triangle Park, North Carolina, revised its 1993 version of its traceability protocol for the assay and certification of compressed gas and permeation-device calibration standards. The protocol allows producers o...

  20. Transfer standard device to improve the traceable calibration of physiotherapy ultrasound machines

    NARCIS (Netherlands)

    Hekkenberg, R.T.; Richards, A.; Beissner, K.; Zeqiri, B.; Bezemer, R.A.; Hodnett, M.; Prout, G.; Cantrall, C.

    2006-01-01

    Ultrasound (US) physiotherapy as a clinical treatment is extremely common in the Western world. Internationally, regulation to ensure safe application of US physiotherapy by regular calibration ranges from nil to mandatory. The need for a portable power standard (PPS) has been addressed within a Eur

  1. DIRECT CALIBRATION OF GC/MS SYSTEMS USING SRM (STANDARD REFERENCE MATERIAL) GAS CYLINDERS

    Science.gov (United States)

    A cryogenic trapping system has been developed for use in calibrating GC/MS systems for the analysis of volatile organic compounds. This system provides for direct Standard Reference Material (SRM) traceability on data generated on gaseous samples. The cryogenic trap is a coil of...

  2. Secondary calibration laboratory for ionizing radiation laboratory accreitation program National Institute of Standards and Technology National Voluntary Laboratory Accreditation Program

    Energy Technology Data Exchange (ETDEWEB)

    Martin, P.R.

    1993-12-31

    This paper presents an overview of the procedures and requirements for accreditation under the Secondary Calibration Laboratory for Ionizing Radiation Program (SCLIR LAP). The requirements for a quality system, proficiency testing and the onsite assessment are discussed. The purpose of the accreditation program is to establish a network of secondary calibration laboratories that can provide calibrations traceable to the primary national standards.

  3. A wideband calibration procedure for symmetric planar sensors using an unknown load standard

    International Nuclear Information System (INIS)

    A new calibration method, suitable for planar sensors and other non-coaxial devices, is presented. Assuming that the matching network of the device under test is symmetrical, simplifications are made, leading to a procedure that uses a single parallel unknown standard named TYS (thru-Y-side). The de-embedding equations are developed and the results of its application are reported, showing a bandwidth wider than thru-reflect-match. Finally, the calibration is applied to the characterization of a planar sensor and the permittivity determination of three known materials, compared with the widely used thru-reflect-line method. (paper)

  4. SIMULTANEOUS CALIBRATION OF MOLECULAR WEIGHT SEPARATION AND COLUMN DISPERSION OF SEC WITH CHARACTERIZED POLYMER STANDARDS

    Institute of Scientific and Technical Information of China (English)

    CHENG Rongshi; BO Shuqin

    1983-01-01

    With the aid of the theoretical relationship between the calibration relation of a SEC column for the monodisperse polymer species under ideal working condition and the effective relations between the molecular weight and the elution volume for characterized polymer samples, a computational procedure for simultaneous calibration of molecular weight separation and column dispersion is proposed. From the experimental chromatograms of narrow MWD polystyrene standards and broad MWD 1,2-polybutadiene fractions the spreading factors of a SEC column was deduced by the proposed method. The variation of the spreading factor with the elution volume is independent upon the polymer sample used.

  5. One-Port Direct/Reverse Method for Characterizing VNA Calibration Standards

    CERN Document Server

    Monsalve, Raul A; Mozdzen, Thomas J; Bowman, Judd D

    2016-01-01

    This paper introduces a one-port method for estimating model parameters of VNA calibration standards. The method involves measuring the standards through an asymmetrical passive network connected in direct mode and then in reverse mode, and using these measurements to compute the S-parameters of the network. The free parameters of the calibration standards are estimated by minimizing a figure of merit based on the expected equality of the S-parameters of the network when used in direct and reverse modes. The capabilities of the method are demonstrated through simulations, and real measurements are used to estimate the actual offset delay of a 50-$\\mathbf{\\Omega}$ calibration load that is assigned zero delay by the manufacturer. The estimated delay is $38.8$ ps with a $1\\sigma$ uncertainty of $2.1$ ps for this particular load. This result is verified through measurements of a terminated airline. The measurements agree better with theoretical models of the airline when the reference plane is calibrated using th...

  6. Calibration of photon and beta ray sources used in brachytherapy. Guidelines on standardized procedures at Secondary Standards Dosimetry Laboratories

    International Nuclear Information System (INIS)

    It has generally been recognized that international harmonization in radiotherapy dosimetry is essential. Consequently, the IAEA has given much effort to this, for example by publishing a number of reports in the Technical Reports Series (TRS) for external beam dosimetry, most notably TRS-277 and more recently TRS-398. Both of these reports describe in detail the steps to be taken for absorbed dose determination in water and they are often referred to as 'dosimetry protocols'. Similar to TRS-277, it is expected that TRS-398 will be adopted or used as a model by a large number of countries as their national protocol. In 1996, the IAEA established a calibration service for low dose rate (LDR) 137 Cs brachytherapy sources, which is the most widely used source for treatment of gynecological cancer. To further enhance harmonization in brachytherapy dosimetry, the IAEA published in 1999 IAEA-TECDOC-1079 entitled 'Calibration of Brachytherapy Sources. Guidelines on Standardized Procedures for the Calibration of Brachytherapy Sources at Secondary Standard Dosimetry Laboratories (SSDLs) and Hospitals'. The report was well received and was distributed in a large number of copies to the members of the IAEA/WHO network of SSDLs and to medical physicists working with brachytherapy. The present report is an update of the aforementioned TECDOC. Whereas TECDOC-1079 described methods for calibrating brachytherapy sources with photon energies at or above those of 192Ir, the current report has a wider scope in that it deals with standardization of calibration of all the most commonly used brachytherapy sources, including both photon and beta emitting sources. The latter sources have been in use for a few decades already, but their calibration methods have been unclear. Methods are also described for calibrating sources used in the rapidly growing field of cardiovascular angioplasty. In this application, irradiation of the vessel wall is done in an attempt to prevent restenosis after

  7. Development of a Primary Standard for Calibration of [18F]FDG Activity Measurement Systems

    International Nuclear Information System (INIS)

    The 18F national primary standard was developed by the INMRI-ENEA using the 4πβ Liquid Scintillation Spectrometry Method with 3H-Standard Efficiency Tracing. Measurements were performed at JRCIspra under a scientific collaboration between the Institute for Health and Consumer Production, the Amersham Health and the National Institute for Occupational Safety and Prevention (ISPESL). The goal of the work was to calibrate, with minimum uncertainty, the INMRI-ENEA transfer standard portable well-type ionisation chamber as well as other JRC-Ispra and Amersham Health reference Ionising Chambers used for FDG activity measurement

  8. Experimental comparison between total calibration factors and components calibration factors of reference dosemeters used in secondary standard laboratory dosemeters

    International Nuclear Information System (INIS)

    A quantitative comparison of component calibration factors with the corresponding overall calibration factor was used to evaluate the adopted component calibration procedure in regard to parasitic elements. Judgement of significance is based upon the experimental uncertainty of a well established procedure for determination of the overall calibration factor. The experimental results obtained for different ionization chambers and different electrometers demonstrate that for one type of electrometer the parasitic elements have no influence on its sensitivity considering the experimental uncertainty of the calibration procedures. In this case the adopted procedure for determination of component calibration factors is considered to be equivalent to the procedure of determination of the overall calibration factor and thus might be used as a strong quality control measure in routine calibration. (Author)

  9. X radiation qualities characterization following the standard IEC 61267 recommendations at the calibration laboratory of IPEN

    International Nuclear Information System (INIS)

    This work presents a methodology for the X radiation qualities characterization following the new recommendations of the standard 61267 of the International Electrotechnical Commission (IEC) to establish a new procedure for calibration of dosimetric systems used in the field of diagnostic radiology. The reference qualities radiation of IEC 61267: RQR 2 to RQR 10, RQA 2 to RQA 10, RQB 2 to RQB 10 and RQN 2 to RQN 10 were implanted at the calibration laboratory of IPEN (LCI). Their characteristics were analyzed through measurements of beam parameters such as: Practical peak voltage (PPV), specific additional filtrations for each qualities (high purity aluminum of about 99.9%), 1st and 2nd Half Value Layers, homogeneity coefficient. The inherent filtration of the X ray tube was also determined. With the establishment of these radiation qualities, the LCI will be ready to calibrate the measuring instruments of radiation in the new qualities, allowing an improvement in radiological services offered by IPEN. (author)

  10. A practical implementation of microphone free-field comparison calibration according to the standard IEC 61094-8

    DEFF Research Database (Denmark)

    Barrera Figueroa, Salvador; Torras Rosell, Antoni; Rasmussen, Knud;

    2012-01-01

    An international standard concerned with the calibration of microphones in a free field by comparison has recently been published. The standard contemplates two main calibration methodologies for determining the sensitivity of a microphone under test when compared against a reference microphone...

  11. Numerical Simulation and Experimental Validation of Calibrant-Loaded Extraction Phase Standardization Approach.

    Science.gov (United States)

    Alam, Md Nazmul; Pawliszyn, Janusz

    2016-09-01

    We present the kinetics of calibrant release and analyte uptake between the sample and calibrant-loaded extraction phase, CL-EP, with a finite-element analysis (FEA) using COMSOL Multiphysics software package. Effect of finite and infinite sample volume conditions, as well as various sample environment parameters such as fluid flow velocity, temperature, and presence of a binding matrix component were investigated in detail with the model in relation to the performance of the calibration. The simulation results supported by experimental data demonstrate the suitability of the CL-EP method for analysis of samples with variation of the sample environment parameters. The calibrant-loaded approach can provide both total and free concentrations from a single experiment based on whether the partition coefficient (Kes) value being used is measured in a matrix-matched sample or in a matrix-free sample, respectively. Total concentrations can also be obtained by utilizing CL-EP in combination with external matrix-matched calibrations, which can be employed to automate the sampling process and provide corrections for variations in sample preparation, matrix effects, and detection processes. This approach is also suitable for very small volumes of sample, where addition of an internal standard in the sample is either troublesome or can change the sample characteristics. PMID:27508421

  12. Supersymmetric backgrounds to standard model calibration processes at the CERN LHC

    International Nuclear Information System (INIS)

    One of the first orders of business for LHC experiments after beam turn-on will be to calibrate the detectors using well-understood standard model (SM) processes such as W and Z production and tt production. These familiar SM processes can be used to calibrate the electromagnetic and hadronic calorimeters, and also to calibrate the associated missing transverse energy signal. However, the presence of new physics may already affect the results coming from these standard benchmark processes. We show that the presence of relatively low mass supersymmetry (SUSY) particles may give rise to significant deviations from SM predictions of Z+jets and W+jets events for jet multiplicity ≥4 or ≥5, respectively. Furthermore, the presence of low mass SUSY may cause nonstandard deviations to appear in top quark invariant and transverse mass distributions. Thus, effects that might be construed as detector malperformance could in fact be the presence of new physics. We advocate several methods to check when new physics might be present within SM calibration data.

  13. Development of traceability methodology for optical coherence tomography (OCT) using step height standard as calibration reference

    Science.gov (United States)

    Couceiro, Iakyra B.; Ferreira da Silva, Thiago; Tarelho, Luiz V. G.; Azeredo, Carlos L. S.; Malinovski, Igor; Grieneisein, Hans P. H.; Barros, Wellington S.; Faria, Giancarlo V.; von der Weid, Jean P.; Amaral, Marcello M.; Raele, Marcus P.; de Freitas, Anderson Z.

    2011-05-01

    This paper presents a methodology for providing traceability to OCT measurements linked to Length SI unit. The link to primary length standard is provided by an interference microscope (IM). The chosen transfer standard was a step height gauge block. The results for IM and OCT showed good agreement for step height standards, such that the OCT will be able to perform reliable measurements of complex surface topographies and to ensure traceability to the length scale. The main uncertainty components were evaluated for the OCT system. In addition, OCT also was used for measuring a surface roughness standard -a depth standard - in order to test this methodology for round groove profiles. Results were found to be in good agreement with the calibration certificate.

  14. Selection and evaluation of gamma decay standards for detector calibration using coincidence method

    International Nuclear Information System (INIS)

    Coincidence method for calibration of gamma detectors using suitable calibration standards with two cascading gamma rays is analyzed. From the list of recommended gamma ray standards currently under reevaluation by the CRP, 14 radionuclides were selected as the potential source candidates for the coincidence method. The following sources were selected 24Na, 46Sc, 60Co, 66Ga, 75Se, 88Y, Nb94, 111In, 123mTe, 133Ba, 134Cs, 152Eu, 154Eu and 207Bi. Reaction 11B (p,γ) 12C* was also selected as a source of high energy gamma rays. Experimental data on angular correlation coefficients for selected sources were collected from the literature and evaluated according to the recommended procedure. Theoretical angular correlation coefficients were calculated and compared to the evaluated data. (author)

  15. Standard test method for calibration of surface/stress measuring devices

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1997-01-01

    Return to Contents page 1.1 This test method covers calibration or verification of calibration, or both, of surface-stress measuring devices used to measure stress in annealed and heat-strengthened or tempered glass using polariscopic or refractometry based principles. 1.2 This test method is nondestructive. 1.3 This test method uses transmitted light, and therefore, is applicable to light-transmitting glasses. 1.4 This test method is not applicable to chemically tempered glass. 1.5 Using the procedure described, surface stresses can be measured only on the “tin” side of float glass. 1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  16. Air kerma standardization for diagnostic radiology, and requirements proposal for calibration laboratories

    International Nuclear Information System (INIS)

    The demand for calibration services and quality control in diagnostic radiology has grown in the country since the publication of the governmental regulation 453, issued by the Ministry of Health in 1998. At that time, to produce results facing the new legislation, many laboratories used different standards and radiation qualities, some of which could be inadequate. The international standards neither supplied consistent radiation qualities and standardization for the different types of equipment available. This situation changed with the publication of the new edition of the IEC 61267 standard, published in 2005. A metrology network was created, but it is not yet accredited by the accreditation organism of the country, INMETRO. The objective of this work was to implement the standardization of the air kerma for the un attenuated qualities (RQR) of IEC 61267, and to develop a requirement proposal for instruments calibration laboratories. Results of interlaboratory comparisons demonstrate that the quantity is standardized and internationally traceable. A laboratory requirement proposal was finalized and it shall be submitted to INMETRO to be used as auxiliary normative document in laboratory accreditation. (author)

  17. Development of sulfide calibration standards for the laser ablation inductively-coupled plasma mass spectrometry technique

    Science.gov (United States)

    Wilson, S.A.; Ridley, W.I.; Koenig, A.E.

    2002-01-01

    The requirements of standard materials for LA-ICP-MS analysis have been difficult to meet for the determination of trace elements in sulfides. We describe a method for the production of synthetic sulfides by precipitation from solution. The method is detailed by the production of approximately 200 g of a material, PS-1, with a suite of chalcophilic trace elements in an Fe-Zn-Cu-S matrix. Preliminary composition data, together with an evaluation of the homogeneity for individual elements, suggests that this type of material meets the requirements for a sulfide calibration standard that allows for quantitative analysis. Contamination of the standard with Na suggests that H2S gas may prove a better sulfur source for future experiments. We recommend that calibration data be collected in whatever mode is closest to that employed for the analysis of the unknown material, because of variable fractionation effects as a function of analytical mode. For instance, if individual spot analyses are attempted on unknown sample, then a raster of several individual spot analyses, not a continuous scan, should be collected and averaged for the standard. Hg and Au are exceptions to the above and calibration data should always be collected in a scanning mode. Au is more heterogeneously distributed than other trace metals and large-area scans are required to provide an average value for calibration purposes. We emphasize that the values given in Table 1 are preliminary values. Further chemical characterization of this standard, through a round-robin analysis program, will allow the USGS to provide both certified and recommended values for individual elements. The USGS has developed PS-1 as a potential new LA-ICP-MS standard for use by the analytical community, and requests for this material should be addressed to S. Wilson. However, it is stressed that an important aspect of the method described here is the flexibility for individual investigators to produce sulfides with a wide range

  18. PAS-cal: a Generic Recombinant Peptide Calibration Standard for Mass Spectrometry

    OpenAIRE

    Breibeck, Joscha; Serafin, Adam; Reichert, Andreas; Maier, Stefan; Küster, Bernhard; Skerra, Arne

    2014-01-01

    We describe the design, preparation, and mass-spectrometric characterization of a new recombinant peptide calibration standard with uniform biophysical and ionization characteristics for mass spectrometry. “PAS-cal” is an artificial polypeptide concatamer of peptide cassettes with varying lengths, each composed of the three small, chemically stable amino acids Pro, Ala, and Ser, which are interspersed by Arg residues to allow site-specific cleavage with trypsin. PAS-cal is expressed at high y...

  19. A primary standard for low-g shock calibration by laser interferometry

    International Nuclear Information System (INIS)

    This paper presents a novel implementation of a primary standard for low-g shock acceleration calibration by laser interferometry based on rigid body collision at National Institute of Metrology, China. The mechanical structure of the standard device and working principles involved in the shock acceleration exciter, laser interferometers and virtual instruments are described. The novel combination of an electromagnetic exciter and a pneumatic exciter as the mechanical power supply of the standard device can deliver a wide range of shock acceleration levels. In addition to polyurethane rubber, two other types of material are investigated to ensure a wide selection of cushioning pads for shock pulse generation, with pulse shapes and data displayed. A heterodyne He–Ne laser interferometer is preferred for its precise and reliable measurement of shock acceleration while a homodyne one serves as a check standard. Some calibration results of a standard acceleration measuring chain are shown in company with the uncertainty evaluation budget. The expanded calibration uncertainty of shock sensitivity of the acceleration measuring chain is 0.8%, k = 2, with the peak acceleration range from 20 to 10 000 m s−2 and pulse duration from 0.5 to 10 ms. This primary shock standard can meet the traceability requirements of shock acceleration from various applications of industries from automobile to civil engineering and therefore is used for piloting the ongoing shock comparison of Technical Committee of Acoustics, Ultrasound and Vibration (TCAUV) of Asia Pacific Metrology Program (APMP), coded as APMP.AUV.V-P1. (paper)

  20. Development of an optical fiber standard for OTDRs distance scale calibration

    Science.gov (United States)

    Bermudez, J. C.

    2006-02-01

    The development of a single mode optical fiber standard, for the distance scale calibration of Optical Time Domain Reflectometers (ODTRs) is presented. The configuration of the standard is based on a Recirculating Delay Line (RDL) which generates a series of reflections at constant intervals of time; such reflections are used as distance references using a nominal group index of the fiber. The optical modulation-phase-shift technique was used to characterize the transit time of the reference fiber, at the 1310 nm and 1550 nm communications windows. The characterization method provides the sensibility coefficients of the two dominant influence quantities, optical signal wavelength and temperature of the fiber.

  1. Dental Hygiene Faculty Calibration Using Two Accepted Standards for Calculus Detection: A Pilot Study.

    Science.gov (United States)

    Santiago, Lisa J; Freudenthal, Jacqueline J; Peterson, Teri; Bowen, Denise M

    2016-08-01

    Faculty calibration studies for calculus detection use two different standards for examiner evaluation, yet the only therapeutic modality that can be used for nonsurgical periodontal treatment is scaling/root debridement or planing. In this study, a pretest-posttest design was used to assess the feasibility of faculty calibration for calculus detection using two accepted standards: that established by the Central Regional Dental Testing Service, Inc. (CRDTS; readily detectible calculus) and the gold standard for scaling/root debridement (root roughness). Four clinical dental hygiene faculty members out of five possible participants at Halifax Community College agreed to participate. The participants explored calculus on the 16 assigned teeth (64 surfaces) of four patients. Calculus detection scores were calculated before and after training. Kappa averages using CRDTS criteria were 0.561 at pretest and 0.631 at posttest. Kappa scores using the scaling/root debridement or planing standard were 0.152 at pretest and 0.271 at posttest. The scores indicated improvement from moderate (Kappa=0.41-0.60) to substantial agreement (Kappa=0.61-0.80) following training using the CRDTS standard. Although this result differed qualitatively and Kappas were significantly different from 0, the differences for pre- to post-Kappas for patient-rater dyads using CRDTS were not statistically significant (p=0.778). There was no difference (p=0.913) in Kappa scores pre- to post-training using the scaling/root debridement standard. Despite the small number of participants in this study, the results indicated that training to improve interrater reliability to substantial agreement was feasible using the CRDTS standard but not using the gold standard. The difference may have been due to greater difficulty in attaining agreement regarding root roughness. Future studies should include multiple training sessions with patients using the same standard for scaling/root debridement used for

  2. [A progress in the standardization in clinical enzymology using calibrators adapted to several techniques].

    Science.gov (United States)

    Dourson, J L; Lessinger, J M; Férard, G

    1997-01-01

    Results in enzymology obtained in routine conditions, differ considerably according to the measurement procedures, and the use of conversion factors is not an advisable solution. Some studies show that between-laboratory agreement of results can be improved by using validated enzyme calibrators. The conditions, which are required to define a strategy for the development of such calibrators, are described in a first part. The example of lipase activity, which is measured in routine conditions with important between-method discrepancy, is studied in a second part. This example emphasised the need of an a priori control of the validity of the calibrators. Under these conditions, between-method agreement is in fact considerably improved. With the collaboration of manufacturers for the development of validated enzyme multicalibrators, it will be possible to improve the efficiency of the information transmitted by clinical chemists to clinicians. Thus, enzyme activities measurements could benefit from the same improvement as immunoassay of proteins with the use of CRM 470 by manufacturers to calibrate their standards. PMID:9238425

  3. Comparison of calibration coefficients in the IAEA/WHO network of secondary standards dosimetry laboratories

    International Nuclear Information System (INIS)

    The paper describes the methodology, measurements, evaluation and analysis of the results of the IAEA programme for the comparison of calibration coefficients for radiotherapy dosimetry in the IAEA/World Health Organization network of secondary standards dosimetry laboratories (SSDLs). A pilot study was initiated in 1995 and the comparison programme started in 1997. In this programme ionization chambers that belong to the SSDLs are calibrated sequentially at the SSDL, at the IAEA and again at the SSDL. Since 1997, 42 SSDLs have participated in this comparison programme, although only 34 laboratories have effectively completed the process. The results from six participants were outside the acceptance limit set by the IAEA, but the follow-up process has improved the calibration procedures at these SSDLs. The results of the comparison, grouped according to the traceability of the SSDL measurements, are presented and discussed. As part of its own quality assurance programme, the IAEA participated in a regional comparison organized by the Sistema Interamericano de Metrologia (SIM, the regional metrology organization for the Americas) from 2000 to 2002, in which four SSDLs from Latin America also participated. Taking into account the differences in the primary standards to which the various SSDLs are traceable, the results of the IAEA-SIM comparison show good consistency and demonstrate the robustness of the international measurement system in radiotherapy dosimetry. (author)

  4. Calibrating and training of neutron based NSA techniques with less SNM standards

    Energy Technology Data Exchange (ETDEWEB)

    Geist, William H [Los Alamos National Laboratory; Swinhoe, Martyn T [Los Alamos National Laboratory; Bracken, David S [Los Alamos National Laboratory; Freeman, Corey R [Los Alamos National Laboratory; Newell, Matthew R [Los Alamos National Laboratory

    2010-01-01

    Accessing special nuclear material (SNM) standards for the calibration of and training on nondestructive assay (NDA) instruments has become increasingly difficult in light of enhanced safeguards and security regulations. Limited or nonexistent access to SNM has affected neutron based NDA techniques more than gamma ray techniques because the effects of multiplication require a range of masses to accurately measure the detector response. Neutron based NDA techniques can also be greatly affected by the matrix and impurity characteristics of the item. The safeguards community has been developing techniques for calibrating instrumentation and training personnel with dwindling numbers of SNM standards. Monte Carlo methods have become increasingly important for design and calibration of instrumentation. Monte Carlo techniques have the ability to accurately predict the detector response for passive techniques. The Monte Carlo results are usually benchmarked to neutron source measurements such as californium. For active techniques, the modeling becomes more difficult because of the interaction of the interrogation source with the detector and nuclear material; and the results cannot be simply benchmarked with neutron sources. A Monte Carlo calculated calibration curve for a training course in Indonesia of material test reactor (MTR) fuel elements assayed with an active well coincidence counter (AWCC) will be presented as an example. Performing training activities with reduced amounts of nuclear material makes it difficult to demonstrate how the multiplication and matrix properties of the item affects the detector response and limits the knowledge that can be obtained with hands-on training. A neutron pulse simulator (NPS) has been developed that can produce a pulse stream representative of a real pulse stream output from a detector measuring SNM. The NPS has been used by the International Atomic Energy Agency (IAEA) for detector testing and training applications at the

  5. Low and medium energy standard X-Ray calibration facility in Bhabha Atomic Research Centre

    International Nuclear Information System (INIS)

    Due to increased use of radioisotopes in medical, industrial, R and D etc., applications, the need of radiation protection level instruments has increased many folds. Type testing of newly developed instruments is essential before their routine use. Depending on intended photon energy range specified by manufacturer, the evaluation of energy response characteristics of the instrument requires International Organization for Standardization (ISO) recommended for low and medium X-ray beam qualities. Also type testing as per international standards provides confidence, traceability in measurements and to ascertain healthy operating condition of these instruments for their intended long time use. Calibration of radiation monitoring instruments at low and medium energy X-ray is presently carried out only at the national apex laboratory (Bhabha Atomic Research Centre in India). The beam qualities and measurement techniques are available as per recommendations of ISO 4037 and International Atomic Energy Agency (IAEA) Safety Report Series 16. Present paper is intended to provide information about the low and medium energy standard X-ray calibration facility available at Radiation Standards Section, Radiological Physics and Advisory Division, Bhabha Atomic Research Centre for radiation field users and instrument manufacturers/developers to avail this facility

  6. Precise and accurate measurements of strong-field photoionisation and a transferrable laser intensity calibration standard

    CERN Document Server

    Wallace, W C; Khurmi, C; U., Satya Sainadh; Calvert, J E; Laban, D E; Pullen, M G; Bartschat, K; Grum-Grzhimailo, A N; Wells, D; Quiney, H M; Tong, X M; Litvinyuk, I V; Sang, R T; Kielpinski, D

    2016-01-01

    Ionization of atoms and molecules in strong laser fields is a fundamental process in many fields of research, especially in the emerging field of attosecond science. So far, demonstrably accurate data have only been acquired for atomic hydrogen (H), a species that is accessible to few investigators. Here we present measurements of the ionization yield for argon, krypton, and xenon with percentlevel accuracy, calibrated using H, in a laser regime widely used in attosecond science. We derive a transferrable calibration standard for laser peak intensity, accurate to 1.3%, that is based on a simple reference curve. In addition, our measurements provide a much-needed benchmark for testing models of ionisation in noble-gas atoms, such as the widely employed single-active electron approximation.

  7. Calibration of the Gaia RVS from ground-based observations of candidate standard stars

    OpenAIRE

    Chemin, L.; Soubiran, C.; Crifo, Françoise; Jasniewicz, Gérard; Katz, David; Hestroffer, Daniel; Udry, Stéphane

    2011-01-01

    International audience The Radial Velocity Spectrometer (RVS) on board of Gaia will perform a large spectroscopic survey to determine the radial velocities of some 1.5 × 10^8 stars. We present the status of ground-based observations of a sample of 1420 candidate standard stars designed to calibrate the RVS. Each candidate star has to be observed several times before Gaia launch (and at least once during the mission) to ensure that its radial velocity remains stable during the whole mission...

  8. Calibration of the Gaia Radial Velocity Spectrometer from ground-based observations of candidate standard stars

    OpenAIRE

    Chemin, L.; Soubiran, C.; Crifo, F.; Jasniewicz, G.; Katz, D.; Hestroffer, D.; Udry, S.

    2011-01-01

    The Radial Velocity Spectrometer (RVS) on board of Gaia will perform a large spectroscopic survey to determine the radial velocities of some 1.5x10^8 stars. We present the status of ground-based observations of a sample of 1420 candidate standard stars designed to calibrate the RVS. Each candidate star has to be observed several times before Gaia launch (and at least once during the mission) to ensure that its radial velocity remains stable during the whole mission. Observations are performed...

  9. Electromagnetic coupling into two standard calibration shields on the Sandia cable tester

    Energy Technology Data Exchange (ETDEWEB)

    Warne, Larry Kevin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Basilio, Lorena I. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Langston, William L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Chen, Kenneth C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hudson, Howard Gerald [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Morris, M. E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stronach, S. L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Johnson, W. A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Derr, W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-02-01

    This report presents analytic transmission line models for calculating the shielding effectiveness of two common calibration standard cables. The two cables have different canonical aperture types, which produce the same low frequency coupling but different responses at resonance. The dominant damping mechanism is produced by the current probe loads at the ends of the cables, which are characterized through adaptor measurements. The model predictions for the cables are compared with experimental measurements and good agreement between the results is demonstrated. This setup constitutes a nice repeatable geometry that nevertheless exhibits some of the challenges involved in modeling non-radio frequency geometries.

  10. Application of calibration standardization method to the analysis of diuretic pharmaceutical herbs

    International Nuclear Information System (INIS)

    Calibration standardization of X-ray fluorescence method was carried out for the determination of the anorganic contents in diuretic herbs as called Folia Betulae, Stylus Maydis, Flores Verbasci, Equisetum Arvense and Flos Helichrysi, growing in Turkey. These herbs are widely used in pharmacy and public health for kidney disease therapy. Herb samples were steeped in the water and mixed through the pure cellulose, then pelletized in the intermediate thickness. An annular source of 109Cd (3.7 MBq) was used for excitation of fluorescent K lines of elements lying between potassium and zirconium. Toxic elements in considerable amounts were not found. (author)

  11. Update of X- and γ-ray decay data standards for detector calibration and other applications

    International Nuclear Information System (INIS)

    The Third Research Co-ordination Meeting to Update X- and γ-ray Decay Data Standards for Detector Calibration and Other Applications was held at IAEA Headquarters, Vienna from 21 to 24 October 2002. A primary aim of ths meeting was to review progress in the evaluation and recommendation of the specified decay data. CRP participants reviewed the status of their evaluations, as agreed at the previous meetings, and demonstrated that good progress had been made. Details of the content and presentational format of the recommended database were agreed, with an aim of completion by the end of 2002 and publication of the IAEA-TECDOC report in 2003. (author)

  12. Development of a primary thoron activity standard for the calibration of thoron measurement instruments

    International Nuclear Information System (INIS)

    The LNHB and IRSN are working on a reference atmosphere for thoron (220Rn) instrument calibration. The LNHB, as the national metrology institute for activity measurement in France, has to create a new thoron reference standard in order to estimate with accuracy the thoron concentration of a reference atmosphere. The measurement system presented in this paper is based on a reference volume using an alpha detector, which is able to measure thoron and its decay products to define the thoron concentration of a thoron reference atmosphere. This paper presents the first results with this new system using a well-known radon (222Rn) atmosphere and a thoron (220Rn) atmosphere. (authors)

  13. X-ray and gamma-ray standards for detector calibration

    International Nuclear Information System (INIS)

    The IAEA established a Co-ordinated Research Programme (CRP) on the Measurements and Evaluation of X- and Gamma-Ray Standards for Detector Efficiency Calibration in 1986 with the aim of alleviating the generation of such discrepancies. Within the framework of this CRP, representatives of nine research groups from six Member States and one international organization performed a number of precise measurements and systematic in-depth evaluations of the required decay data. They have also contributed to the development of evaluation methodology and measurement techniques, and stimulated a number of such studies at laboratories not directly involved in the IAEA project. The results of the work of the CRP, which was finished in 1990, are presented in this report. Recommended values of half-lives and photon emission probabilities are given for a carefully selected set of radionuclides that are suitable for detector efficiency calibration (X-rays from 5 to 90 keV and gamma-rays from 30 to about 3000 keV). Detector efficiency calibration for higher gamma-ray energies (up to 14 MeV) is also considered. The evaluation procedures used to obtain the recommended values and their estimated uncertainties are reported, and a summary of the remaining discrepancies is given. Refs and tabs

  14. Calibration of double focusing Glow Discharge Mass Spectrometry instruments with pin-shaped synthetic standards

    International Nuclear Information System (INIS)

    Calibration of two commercially available glow discharge double focusing mass spectrometers, the VG 9000 and Element GD, is described using synthetic pin standards pressed from solution doped copper and zinc matrices. A special pressing die was developed for this purpose and optimal results were obtained with the highest possible pressures, i.e., 95 kN·cm−2. This calibration approach permits the determination of trace element mass fractions down to μg·kg−1 with small uncertainties and additionally provides traceability of the GD-MS results in the most direct manner to the SI (International System of Units). Results were validated by concurrent measurements of a number of compact copper and zinc certified reference materials. The impact of the sample pin cross-section (circular or square) was investigated with the use of a new pin-sample holder system for the Element GD. The pin-sample holder was designed by the manufacturer for pin-samples having circular cross-section; however, samples with square pin cross-section were also shown to provide acceptable results. Relative Sensitivity Factors for some 50 analytes in copper (VG 9000, Element GD) and zinc matrices (VG 9000) are presented. The field of applicability of GD-MS may be considerably extended via analysis of pin geometry samples based on their ease of preparation, especially with respect to the accuracy and traceability of the results and the enhanced number of analytes which can be reliably calibrated using such samples. - Highlights: ► GD-MS instruments were calibrated with synthetic pin standards of copper and zinc. ► This provides accurate determination of trace element mass fractions down to ppb. ► Measurement results obtain small uncertainties and are traceable to the SI. ► The standard preparation pressure of ≥ 95 kN·cm−2 is needed for accurate results. ► New/more accurate RSFs for some 50 analytes in each matrix were determined.

  15. Calibration of dosimeters and survey instruments for photons at the Malaysian Secondary Standard Dosimetry Laboratory

    International Nuclear Information System (INIS)

    Radiation protection infrastructures are well established in Malaysia. The infrastructures include laws and regulations regarding the use of ionising radiations, regulatory body to enforce the regulations, the radiation protection services and radiation protection training capability. The Atomic Energy Licensing Board (AELB) is the regulatory body responsible for licensing and enforcement of the law and regulation while Malaysian Institute for Nuclear Technology Research (MINT) through its Secondary Standard Dosimetry Laboratory (SSDL) is to provide radiation protection services throughout the country. The laboratory facilitates the proper radiation calibration and verification of the instruments used for the measurement of radiation ensuring the safe use of nuclear technology. The rapid growth in the application of nuclear technology is obviously to be welcomed but there must be someway of ensuring that the safety aspects really meet the required standards. (J.P.N.)

  16. Interlaboratory comparison study of calibration standards for foraminiferal Mg/Ca thermometry

    Science.gov (United States)

    Greaves, M.; Caillon, N.; Rebaubier, H.; Bartoli, G.; Bohaty, S.; Cacho, I.; Clarke, L.; Cooper, M.; Daunt, C.; Delaney, M.; Demenocal, P.; Dutton, A.; Eggins, S.; Elderfield, H.; Garbe-Schoenberg, D.; Goddard, E.; Green, D.; Groeneveld, J.; Hastings, D.; Hathorne, E.; Kimoto, K.; Klinkhammer, G.; Labeyrie, L.; Lea, D. W.; Marchitto, T.; MartíNez-Botí, M. A.; Mortyn, P. G.; Ni, Y.; Nuernberg, D.; Paradis, G.; Pena, L.; Quinn, T.; Rosenthal, Y.; Russell, A.; Sagawa, T.; Sosdian, S.; Stott, L.; Tachikawa, K.; Tappa, E.; Thunell, R.; Wilson, P. A.

    2008-08-01

    An interlaboratory study of Mg/Ca and Sr/Ca ratios in three commercially available carbonate reference materials (BAM RS3, CMSI 1767, and ECRM 752-1) was performed with the participation of 25 laboratories that determine foraminiferal Mg/Ca ratios worldwide. These reference materials containing Mg/Ca in the range of foraminiferal calcite (0.8 mmol/mol to 6 mmol/mol) were circulated with a dissolution protocol for analysis. Participants were asked to make replicate dissolutions of the powdered samples and to analyze them using the instruments and calibration standards routinely used in their laboratories. Statistical analysis was performed in accordance with the International Standardization Organization standard 5725, which is based on the analysis of variance (ANOVA) technique. Repeatability (RSDr%), an indicator of intralaboratory precision, for Mg/Ca determinations in solutions after centrifuging increased with decreasing Mg/Ca, ranging from 0.78% at Mg/Ca = 5.56 mmol/mol to 1.15% at Mg/Ca = 0.79 mmol/mol. Reproducibility (RSDR%), an indicator of the interlaboratory method precision, for Mg/Ca determinations in centrifuged solutions was noticeably worse than repeatability, ranging from 4.5% at Mg/Ca = 5.56 mmol/mol to 8.7% at Mg/Ca = 0.79 mmol/mol. Results of this study show that interlaboratory variability is dominated by inconsistencies among instrument calibrations and highlight the need to improve interlaboratory compatibility. Additionally, the study confirmed the suitability of these solid standards as reference materials for foraminiferal Mg/Ca (and Sr/Ca) determinations, provided that appropriate procedures are adopted to minimize and to monitor possible contamination from silicate mineral phases.

  17. Airborne hygrometer calibration inter-comparison against a metrological water vapour standard

    Science.gov (United States)

    Smorgon, Denis; Boese, Norbert; Ebert, Volker

    2014-05-01

    Water vapour is the most important atmospheric greenhouse gas, which causes a major feedback to warming and other changes in the climate system. Knowledge of the distribution of water vapour and its climate induced changes is especially important in the upper troposphere and lower stratosphere (UT/LS) where vapour plays a critical role in atmospheric radiative balance, cirrus cloud formation, and photochemistry. But, our understanding of water in the UT/LS is limited by significant uncertainties in current UT/LS water measurements. One of the most comprehensive inter-comparison campaigns for airborne hygrometers, termed AQUAVIT (AV1) [1], took place in 2007 at the AIDA chamber at the Karlsruhe Institute of Technology (KIT) in Germany. AV1 was a well-defined, referred, blind inter-comparison of 22 airborne field instruments from 17 international research groups. One major metrological deficit of AV1, however, was, that no traceable reference instrument participated in the inter-comparison experiments and that the calibration procedures of the participating instruments were not monitored or interrogated. Consequently a follow-up inter-comparison was organized in April 2013, which for the first time also provides a traceable link to the international humidity scale. This AQUAVIT2 (AV2) campaign (details see: http://www.imk-aaf.kit.edu/aquavit/index.php/Main_Page) was again located at KIT/AIDA and organised by an international organizing committee including KIT, PTB, FZJ and others. Generally AV2 is divided in two parallel comparisons: 1) AV2-A uses the AIDA chamber for a simultaneous comparison of all instruments (incl. sampling and in-situ instruments) over a broad range of conditions characteristic for the UT/LS; 2) AV2-B, about which this paper is reporting, is a sequential comparison of selected hygrometers and (when possible) their reference calibration infrastructures by means of a chilled mirror hygrometer traced back to the primary National humidity standard

  18. A BAYESIAN METHOD FOR CALCULATING REAL-TIME QUANTITATIVE PCR CALIBRATION CURVES USING ABSOLUTE PLASMID DNA STANDARDS

    Science.gov (United States)

    In real-time quantitative PCR studies using absolute plasmid DNA standards, a calibration curve is developed to estimate an unknown DNA concentration. However, potential differences in the amplification performance of plasmid DNA compared to genomic DNA standards are often ignore...

  19. Calibration of the Gaia Radial Velocity Spectrometer from ground-based observations of candidate standard stars

    CERN Document Server

    Chemin, L; Crifo, F; Jasniewicz, G; Katz, D; Hestroffer, D; Udry, S

    2011-01-01

    The Radial Velocity Spectrometer (RVS) on board of Gaia will perform a large spectroscopic survey to determine the radial velocities of some 1.5x10^8 stars. We present the status of ground-based observations of a sample of 1420 candidate standard stars designed to calibrate the RVS. Each candidate star has to be observed several times before Gaia launch (and at least once during the mission) to ensure that its radial velocity remains stable during the whole mission. Observations are performed with the high-resolution spectrographs SOPHIE, NARVAL and CORALIE, completed with archival data of the ELODIE and HARPS instruments. The analysis shows that about 7% of the current catalogue exhibits variations larger than the adopted threshold of 300 m/s. Consequently, those stars should be rejected as reference targets, due to the expected accuracy of the Gaia RVS. Emphasis is also put here on our observations of bright asteroids to calibrate the ground-based velocities by a direct comparison with celestial mechanics. ...

  20. Binary Pseudo-random Grating Standard for Calibration of Surface Profilometers

    Energy Technology Data Exchange (ETDEWEB)

    Yashchuk, Valeriy; Yashchuk, Valeriy V.; McKinney, Wayne R.; Takacs, Peter Z.

    2008-01-16

    We suggest and describe the use of a binary pseudo-random (BPR) grating as a standard test surface for measurement of the modulation transfer function (MTF) of interferometric microscopes. Knowledge of the MTF of a microscope is absolutely necessary to convert the measured height distribution of a surface undergoing metrology into an accurate power spectral density (PSD) distribution. For an'ideal' microscope with an MTF function independent of spatial frequency out to the Nyquist frequency of the detector array with zero response at higher spatial frequencies, a BPR grating would produce a flat 1D PSD spectrum, independent of spatial frequency. For a'real' instrument, the MTF is found as the square root of the ratio of the PSD spectrum measured with the BPR grating to the'ideal,' spatial frequency independent, PSD spectrum. We present the results from a measurement of the MTF of MicromapTM-570 interferometric microscope demonstrating a high efficiency for the calibration method.

  1. Calibration and standards beamline 6.3.2 at the ALS

    Energy Technology Data Exchange (ETDEWEB)

    Underwood, J.H.; Gullikson, E.M.; Koike, M. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    More sophisticated optics for the x-ray, soft x-ray and far ultraviolet spectral regions being developed for synchrotron radiation research and many other applications, require accurate calibration and standards facilities for measuring reflectivity of mirrors and multilayer coatings, transmission of thin films, bandpass of multilayers, efficiency of gratings or detectors, etc. For this purpose beamline 6.3.2 was built at the ALS. Its energy coverage, versatility, simplicity and convenience also make it useful for a wide range of other experiments. The paper describes the components of this beamline, consisting of: a four jaw aperture; a horizontal focusing mirror; a monochromator; exit slit; vertical focusing mirror; mechanical and vacuum system; reflectometer; filter wheels; and data acquisition system.

  2. Satellite-Mounted Light Sources as Photometric Calibration Standards for Ground-Based Telescopes

    CERN Document Server

    Albert, Justin

    2011-01-01

    A significant and growing portion of systematic error on a number of fundamental parameters in astrophysics and cosmology is due to uncertainties from absolute photometric and flux standards. A path toward achieving major reduction in such uncertainties may be provided by satellite-mounted light sources, resulting in improvement in the ability to precisely characterize atmospheric extinction, and thus helping to usher in the coming generation of precision results in astronomy. Using a campaign of observations of the 532 nm pulsed laser aboard the CALIPSO satellite, collected using a portable network of cameras and photodiodes, we obtain initial measurements of atmospheric extinction, which can apparently be greatly improved by further data of this type. For a future satellite-mounted precision light source, a high-altitude balloon platform under development (together with colleagues) can provide testing as well as observational data for calibration of atmospheric uncertainties.

  3. Free-field reciprocity calibration of laboratory standard (LS) microphones using a time selective technique

    DEFF Research Database (Denmark)

    Rasmussen, Knud; Barrera Figueroa, Salvador

    2006-01-01

    Although the basic principle of reciprocity calibration of microphones in a free field is simple, the practical problems are complicated due to the low signal-to-noise ratio and the influence of cross talk and reflections from the surroundings. The influence of uncorrelated noise can be reduced by...... FFT-based time-selective technique. The complex electrical transfer impedance is measured in linear frequency steps from a few kHz to about three times the resonance frequency of the microphones. The missing values at low frequencies are estimated from a detailed knowledge of the pressure...... sensitivities. Next an inverse FFT is applied and a time window around the main signal is used to eliminate cross talk and reflections. Finally, the signal is transformed back to the frequency domain and the free field sensitivities calculated. The standard procedure at DPLA involves measurements at four...

  4. Development, improvement and calibration of neutronic reaction rates measurements: elaboration of a standard techniques basis

    International Nuclear Information System (INIS)

    In order to improve and to validate the neutronics calculation schemes, perfecting integral measurements of neutronics parameters is necessary. This thesis focuses on the conception, the improvement and the development of neutronics reaction rates measurements, and aims at building a base of standard techniques. Two subjects are discussed. The first one deals with direct measurements by fission chambers. A short presentation of the different usual techniques is given. Then, those last ones are applied through the example of doubling time measurements on the EOLE facility during the MISTRAL 1 experimental programme. Two calibration devices of fission chambers are developed: a thermal column located in the central part of the MINERVE facility, and a calibration cell using a pulsed high flux neutron generator and based on the discrimination of the energy of the neutrons with a time-of-flight method. This second device will soon allow to measure the mass of fission chambers with a precision of about 1 %. Finally, the necessity of those calibrations will be shown through spectral indices measurements in core MISTRAL 1 (UO2) and MISTRAL 2 (MOX) of the EOLE facility. In each case, the associated calculation schemes, performed using the Monte Carlo MCNP code with the ENDF-BV library, will be validated. Concerning the second one, the goal is to develop a method for measuring the modified conversion ratio of 238U (defined as the ratio of 238U capture rate to total fission rate) by gamma-ray spectrometry of fuel rods. Within the framework of the MISTRAL 1 and MISTRAL 2 programmes, the measurement device, the experimental results and the spectrometer calibration are described. Furthermore, the MCNP calculations of neutron self-shielding and gamma self-absorption are validated. It is finally shown that measurement uncertainties are better than 1 %. The extension of this technique to future modified conversion ratio measurements for 242Pu (on MOX rods) and 232Th (on Thorium rods

  5. Development, improvement and calibration of neutronic reaction rate measurements: elaboration of a base of standard techniques

    International Nuclear Information System (INIS)

    In order to improve and to validate the neutronic calculation schemes, perfecting integral measurements of neutronic parameters is necessary. This thesis focuses on the conception, the improvement and the development of neutronic reaction rates measurements, and aims at building a base of standard techniques. Two subjects are discussed. The first one deals with direct measurements by fission chambers. A short presentation of the different usual techniques is given. Then, those last ones are applied through the example of doubling time measurements on the EOLE facility during the MISTRAL 1 experimental programme. Two calibration devices of fission chambers are developed: a thermal column located in the central part of the MINERVE facility, and a calibration cell using a pulsed high flux neutron generator and based on the discrimination of the energy of the neutrons with a time-of-flight method. This second device will soon allow to measure the mass of fission chambers with a precision of about 1 %. Finally, the necessity of those calibrations will be shown through spectral indices measurements in core MISTRAL 1 (UO2) and MISTRAL 2 (MOX) of the EOLE facility. In each case, the associated calculation schemes, performed using the Monte Carlo MCNP code with the ENDF-BV library, will be validated. Concerning the second one, the goal is to develop a method for measuring the modified conversion ratio of 238U (defined as the ratio of 238U capture rate to total fission rate) by gamma-ray spectrometry of fuel rods. Within the framework of the MISTRAL 1 and MISTRAL 2 programmes, the measurement device, the experimental results and the spectrometer calibration are described. Furthermore, the MCNP calculations of neutron self-shielding and gamma self-absorption are validated. It is finally shown that measurement uncertainties are better than 1 %. The extension of this technique to future modified conversion ratio measurements for 242Pu (on MOX rods) and 232Th (on Thorium rods

  6. Automatable on-line generation of calibration curves and standard additions in solution-cathode glow discharge optical emission spectrometry

    International Nuclear Information System (INIS)

    Two methods are described that enable on-line generation of calibration standards and standard additions in solution-cathode glow discharge optical emission spectrometry (SCGD-OES). The first method employs a gradient high-performance liquid chromatography pump to perform on-line mixing and delivery of a stock standard, sample solution, and diluent to achieve a desired solution composition. The second method makes use of a simpler system of three peristaltic pumps to perform the same function of on-line solution mixing. Both methods can be computer-controlled and automated, and thereby enable both simple and standard-addition calibrations to be rapidly performed on-line. Performance of the on-line approaches is shown to be comparable to that of traditional methods of sample preparation, in terms of calibration curves, signal stability, accuracy, and limits of detection. Potential drawbacks to the on-line procedures include signal lag between changes in solution composition and pump-induced multiplicative noise. Though the new on-line methods were applied here to SCGD-OES to improve sample throughput, they are not limited in application to only SCGD-OES—any instrument that samples from flowing solution streams (flame atomic absorption spectrometry, ICP-OES, ICP-mass spectrometry, etc.) could benefit from them. - Highlights: • Describes rapid, on-line generation of calibration standards and standard additions • These methods enhance the ease of analysis and sample throughput with SCGD-OES. • On-line methods produce results comparable or superior to traditional calibration. • Possible alternative, null-point-based methods of calibration are described. • Methods are applicable to any system that samples from flowing liquid streams

  7. InfraRed Standards Used for Spectrophotometric Calibration - Application to the Medium Resolution Spectrometer of {MIRI}

    Science.gov (United States)

    Decin, L.; Bauwens, E.; Blommaert, J. A. D. L.

    2007-04-01

    One of the main ingredients in establishing the relation between input signal and output flux from a spectrometer, is the accurate determination of the {spectrophotometric calibration}. In case of spectrometers onboard satellites, the accuracy of this part of the calibration pedigree is ultimately linked to the reliability of the candidate calibrators as being fiducial. In this contribution, we deal with the spectrophotometric calibration of {infrared} spectrometers in the 2-200 μm wavelength range. We outline a general selection procedure to arrive at a set of fiducial IR calibrators, and apply the method to the Medium Resolution Spectrometer of MIRI which will be onboard the James Webb Space Telescope.

  8. Non-matrix Matched Glass Disk Calibration Standards Improve XRF Micronutrient Analysis of Wheat Grain across Five Laboratories in India.

    Science.gov (United States)

    Guild, Georgia E; Stangoulis, James C R

    2016-01-01

    Within the HarvestPlus program there are many collaborators currently using X-Ray Fluorescence (XRF) spectroscopy to measure Fe and Zn in their target crops. In India, five HarvestPlus wheat collaborators have laboratories that conduct this analysis and their throughput has increased significantly. The benefits of using XRF are its ease of use, minimal sample preparation and high throughput analysis. The lack of commercially available calibration standards has led to a need for alternative calibration arrangements for many of the instruments. Consequently, the majority of instruments have either been installed with an electronic transfer of an original grain calibration set developed by a preferred lab, or a locally supplied calibration. Unfortunately, neither of these methods has been entirely successful. The electronic transfer is unable to account for small variations between the instruments, whereas the use of a locally provided calibration set is heavily reliant on the accuracy of the reference analysis method, which is particularly difficult to achieve when analyzing low levels of micronutrient. Consequently, we have developed a calibration method that uses non-matrix matched glass disks. Here we present the validation of this method and show this calibration approach can improve the reproducibility and accuracy of whole grain wheat analysis on 5 different XRF instruments across the HarvestPlus breeding program. PMID:27375644

  9. Standard practice for calibration of torque-measuring instruments for verifying the torque indication of torque testing machines

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This practice is to specify procedure for the calibration of elastic torque-measuring instruments. Note 1—Verification by deadweight and a lever arm is an acceptable method of verifying the torque indication of a torque testing machine. Tolerances for weights used are tabulated in Practice WK6364; methods for calibration of the weights are given in NIST Technical Note 577, Methods of Calibrating Weights for Piston Gages. 1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard. 1.3 This practice is intended for the calibration of static or quasi-static torque measuring instruments. The practice is not applicable for high speed torque calibrations or measurements. 1.4 This standard does not purport to address all of the safety concerns, if any,...

  10. Calibration standard of body tissue with magnetic nanocomposites for MRI and X-ray imaging

    Science.gov (United States)

    Rahn, Helene; Woodward, Robert; House, Michael; Engineer, Diana; Feindel, Kirk; Dutz, Silvio; Odenbach, Stefan; StPierre, Tim

    2016-05-01

    We present a first study of a long-term phantom for Magnetic Resonance Imaging (MRI) and X-ray imaging of biological tissues with magnetic nanocomposites (MNC) suitable for 3-dimensional and quantitative imaging of tissues after, e.g. magnetically assisted cancer treatments. We performed a cross-calibration of X-ray microcomputed tomography (XμCT) and MRI with a joint calibration standard for both imaging techniques. For this, we have designed a phantom for MRI and X-ray computed tomography which represents biological tissue enriched with MNC. The developed phantoms consist of an elastomer with different concentrations of multi-core MNC. The matrix material is a synthetic thermoplastic gel, PermaGel (PG). The developed phantoms have been analyzed with Nuclear Magnetic Resonance (NMR) Relaxometry (Bruker minispec mq 60) at 1.4 T to obtain R2 transverse relaxation rates, with SQUID (Superconducting QUantum Interference Device) magnetometry and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) to verify the magnetite concentration, and with XμCT and 9.4 T MRI to visualize the phantoms 3-dimensionally and also to obtain T2 relaxation times. A specification of a sensitivity range is determined for standard imaging techniques X-ray computed tomography (XCT) and MRI as well as with NMR. These novel phantoms show a long-term stability over several months up to years. It was possible to suspend a particular MNC within the PG reaching a concentration range from 0 mg/ml to 6.914 mg/ml. The R2 relaxation rates from 1.4 T NMR-relaxometry show a clear connection (R2=0.994) with MNC concentrations between 0 mg/ml and 4.5 mg/ml. The MRI experiments have shown a linear correlation of R2 relaxation and MNC concentrations as well but in a range between MNC concentrations of 0 mg/ml and 1.435 mg/ml. It could be shown that XμCT displays best moderate and high MNC concentrations. The sensitivity range for this particular XμCT apparatus yields from 0.569 mg/ml to 6.914 mg/ml. The

  11. EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (EPA/600/R-12/531, May 2012)

    Science.gov (United States)

    In 1997, the U.S. Environmental Protection Agency (EPA) in Research Triangle Park, North Carolina, revised its 1993 version of its traceability protocol for the assay and certification of compressed gas and permeation-device calibration standards. The protocol allows producers of...

  12. Development and validation of a portable gas phase standard generation and calibration system for volatile organic compounds

    Directory of Open Access Journals (Sweden)

    P. Veres

    2010-01-01

    Full Text Available We report on the development of an accurate, portable, dynamic calibration system for volatile organic compounds (VOCs. The Mobile Organic Carbon Calibration System (MOCCS combines the production of gas-phase VOC standards using permeation or diffusion sources with quantitative total organic carbon (TOC conversion on a palladium surface to CO2 in the presence of oxygen, and the subsequent CO2 measurement. MOCCS was validated using three different comparisons: (1 TOC of high accuracy methane standards compared well to expected concentrations (3% relative error, (2 a gas-phase benzene standard was generated using a permeation source and measured by TOC and gas chromatography mass spectrometry (GC-MS with excellent agreement (<4% relative difference, and (3 total carbon measurement of 4 known gas phase mixtures were performed and compared to a calculated carbon content to agreement within the stated uncertainties of the standards. Measurements from laboratory biomass burning experiments of formic acid by negative-ion proton-transfer chemical-ionization mass spectrometry (NI-PT-CIMS and formaldehyde by proton transfer reaction-mass spectrometry (PTR-MS, both calibrated using MOCCS, were compared to open path Fourier transform infrared spectroscopy (OP-FTIR to validate the MOCCS calibration and were found to compare well (R2 of 0.91 and 0.99 respectively.

  13. Calibration of a tertiary standard in N-ISO qualities for radioprotection and personal dosimetry

    International Nuclear Information System (INIS)

    Dosimetric calibration of radiation monitors and personal dosimeters in different radiological quantities are performed in order to obtain accurate measurements, for this reason the SSDL calculates the dosimetry calibration factor and its associated uncertainty, for each range of use. The calibration factor is performed using the known radiation field method and its uncertainty is calculated according to the ISO recommendations. The SSDL calculates the expanded uncertainty (Uc) with a coverage factor that provides a level of not less than 95 % of confidence. (authors).

  14. Air index compensated interferometer as a prospective novel primary standard for baseline calibrations

    International Nuclear Information System (INIS)

    We describe the status of the development of an interferometer for absolute distance measurements with an intrinsic compensation of the refractive index of air, intended as a primary standard for the calibration of geodetic baselines. Two frequency-doubled Nd:YAG lasers are offset locked with a frequency difference of ≈20 GHz at the infrared 1064 nm fundamental wavelength. The resulting synthetic wavelengths of 15 mm for the infrared and 7.5 mm for the frequency-doubled green light are used as the scale for the measurements. Longer synthetic wavelengths are generated by acousto-optic frequency shifters. Based on the dispersion in air between green and infrared light the refractive index can be compensated. The attempt is demanding since uncertainties of the interferometric measurements for the optical wavelengths are scaled by a factor of nearly 300 000 in the refractive index compensated result. First comparisons up to 50 m length between this interferometer and a HeNe reference are presented. The deviations are smaller than ± 200 µm and dominated by a non-linearity from problems in the collimation of the measurement beams. In the linear parts the deviations are below ± 100 µm. (paper)

  15. Compilation, back-calibration and standardization of aeroradiometric surveys from Namibia, Southern Africa

    International Nuclear Information System (INIS)

    During 1992 and 1993 select portions of existing government airborne radiometric data covering almost 91,000 km2 of central Namibia were compiled into a master digital data set. This compilation involved the interactive, semi-automated digital recovery of approximately 42,000 line kilometres of original analogue chart traces. A further 49,000 line kilometres of digital data were also reprocessed. Available data represented ten different surveys collected over 12 years with a variety of spectrometers, spectral windows and survey parameters. Preliminary digital grids of each radioelement were compiled, verified and used to select representative sites for ground measurements within each survey block. Results obtained from the ground program were used to back-calibrate the airborne data, standardize the various surveys and convert airborne measurements into equivalent ground concentrations of uranium, thorium and potassium. The quality and consistency of final map products conclusively demonstrates that existing analogue radiometric data, in various states of preservation, can be successfully recovered, combined with modern digital data, and utilized to assist exploration, mapping and environmental studies. (author)

  16. Radioactivity in environmental samples: calibration standards measurement methods, quality assurance, and data analysis

    International Nuclear Information System (INIS)

    The numerous environmental radioactivity measurements made by and for the U.S. Environmental Protection Agency (U.S.EPA) include measurements on samples of water, urine, food, milk, and air filters. Calibration standards are listed which are available in the form of water solutions and soils for a wide range of radionuclides. Method validation procedures for U.S. EPA approval include protocol development and single-laboratory and multiple-laboratory evaluation for precision and accuracy. Inter-laboratory comparison studies are conducted for both cross-check and performance evaluation samples and involve 295 federal, state, and local laboratories. For water samples, 80% to 90% of the participating laboratories are within the control limits for most of the radionuclides measured; however, some problem areas exist, especially for radium-228 and strontium-89 and -90. For milk and food samples, more than 90% of the laboratories are within control limits for cobalt-60 and cesium-137 but some problems exist for the measurement of strontium-90, iodine-131, and potassium-40. For tritium, 91% of the laboratories are within the control limit for water samples and 87% are within the control limits for the urine samples. The laboratory performance for air filter samples shows some problems for gross beta, strontium-90 and cesium-137 measurements. (author)

  17. The effects of ambient conditions on the calibration of air flow plate standards

    Directory of Open Access Journals (Sweden)

    Miao Qian

    2013-01-01

    Full Text Available The volume flow rate measured by air flow plate is influenced by the ambient conditions during the calibration. A series of numerical examples are conducted for the relationship and the outcomes demonstrated that the calibration is quite sensitive to the atmospheric pressure and the ambient temperature, but insensitive to relative humidity. The experiment model has been applied to calibration results with wide ranging ambient conditions. In conclusion, the results of this study demonstrate the benefits to calibration data of minimizing the effects of ambient conditions.

  18. Standard practice of calibration of force-measuring instruments for verifying the force indication of testing machines

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2006-01-01

    1.1 The purpose of this practice is to specify procedures for the calibration of force-measuring instruments. Procedures are included for the following types of instruments: 1.1.1 Elastic force-measuring instruments, and 1.1.2 Force-multiplying systems, such as balances and small platform scales. Note 1Verification by deadweight loading is also an acceptable method of verifying the force indication of a testing machine. Tolerances for weights for this purpose are given in Practices E 4; methods for calibration of the weights are given in NIST Technical Note 577, Methods of Calibrating Weights for Piston Gages. 1.2 The values stated in SI units are to be regarded as the standard. Other metric and inch-pound values are regarded as equivalent when required. 1.3 This practice is intended for the calibration of static force measuring instruments. It is not applicable for dynamic or high speed force calibrations, nor can the results of calibrations performed in accordance with this practice be assumed valid for...

  19. Development of transfer standard devices for ensuring the accurate calibration of ultrasonic physical therapy machines in clinical use

    International Nuclear Information System (INIS)

    Physical therapy ultrasound is widely applied to patients. However, many devices do not comply with the relevant standard stating that the actual power output shall be within ±20% of the device indication. Extreme cases have been reported: from delivering effectively no ultrasound or operating at maximum power at all powers indicated. This can potentially lead to patient injury as well as mistreatment. The present European (EC) project is an ongoing attempt to improve the quality of the treatment of patients being treated with ultrasonic physical-therapy. A Portable ultrasound Power Standard (PPS) is being developed and accurately calibrated. The PPS includes: Ultrasound transducers (including one exhibiting an unusual output) and a driver for the ultrasound transducers that has calibration and proficiency test functions. Also included with the PPS is a Cavitation Detector to determine the onset of cavitation occurring within the propagation medium. The PPS will be suitable for conducting in-the-field accreditation (proficiency testing and calibration). In order to be accredited it will be important to be able to show traceability of the calibration, the calibration process and qualification of testing staff. The clinical user will benefit from traceability because treatments will be performed more reliably

  20. Development of transfer standard devices for ensuring the accurate calibration of ultrasonic physical therapy machines in clinical use

    Energy Technology Data Exchange (ETDEWEB)

    Hekkenberg, R T [TNO Prevention and Health, Zernikedreef 9, 2333 CK Leiden (Netherlands); Richards, A [National Measurement Laboratory, CSIRO, Bradfield Rd, West Lindfield 2070, Sydney (Australia); Beissner, K [Physikalisch-Technische Bundesanstalt, PTB, Bundesallee 100, D-38116 Braunschweig (Germany); Zeqiri, B [National Physical Laboratory, NPL, Queens Road, Teddington, TW11 0LW (United Kingdom); Prout, G [National Measurement Laboratory, CSIRO, Bradfield Rd, West Lindfield 2070, Sydney (Australia); Cantrall, Ch [National Measurement Laboratory, CSIRO, Bradfield Rd, West Lindfield 2070, Sydney (Australia); Bezemer, R A [TNO Prevention and Health, Zernikedreef 9, 2333 CK Leiden (Netherlands); Koch, Ch [Physikalisch-Technische Bundesanstalt, PTB, Bundesallee 100, D-38116 Braunschweig, (Germany); Hodnett, M [National Physical Laboratory, NPL, Queens Road, Teddington, TW11 0LW (United Kingdom)

    2004-01-01

    Physical therapy ultrasound is widely applied to patients. However, many devices do not comply with the relevant standard stating that the actual power output shall be within {+-}20% of the device indication. Extreme cases have been reported: from delivering effectively no ultrasound or operating at maximum power at all powers indicated. This can potentially lead to patient injury as well as mistreatment. The present European (EC) project is an ongoing attempt to improve the quality of the treatment of patients being treated with ultrasonic physical-therapy. A Portable ultrasound Power Standard (PPS) is being developed and accurately calibrated. The PPS includes: Ultrasound transducers (including one exhibiting an unusual output) and a driver for the ultrasound transducers that has calibration and proficiency test functions. Also included with the PPS is a Cavitation Detector to determine the onset of cavitation occurring within the propagation medium. The PPS will be suitable for conducting in-the-field accreditation (proficiency testing and calibration). In order to be accredited it will be important to be able to show traceability of the calibration, the calibration process and qualification of testing staff. The clinical user will benefit from traceability because treatments will be performed more reliably.

  1. Standard Test Method for Calibration of Non-Concentrator Photovoltaic Secondary Reference Cells

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This test method covers calibration and characterization of secondary terrestrial photovoltaic reference cells to a desired reference spectral irradiance distribution. The recommended physical requirements for these reference cells are described in Specification E1040. Reference cells are principally used in the determination of the electrical performance of a photovoltaic device. 1.2 Secondary reference cells are calibrated indoors using simulated sunlight or outdoors in natural sunlight by reference to a primary reference cell previously calibrated to the same desired reference spectral irradiance distribution. 1.3 Secondary reference cells calibrated according to this test method will have the same radiometric traceability as the of the primary reference cell used for the calibration. Therefore, if the primary reference cell is traceable to the World Radiometric Reference (WRR, see Test Method E816), the resulting secondary reference cell will also be traceable to the WRR. 1.4 This test method appli...

  2. Direct calibration of GC/MS systems using SRM (Standard Reference Material) gas cylinders. Project report, January 1984-August 1985

    International Nuclear Information System (INIS)

    A cryogenic trapping system has been developed for use in calibrating GC/MS systems for the analysis of volatile organic compounds. This system provides for direct Standard Reference Material (SRM) traceability on data generated on gaseous samples. The cryogenic trap is a coil of stainless steel tubing immersed in a cryogen to trap and preconcentrate organic species present in a gaseous sample. The trap also contains a heated injection port for the addition of isotopically labeled compounds for use in isotope dilution measurements. The first part of this research is concerned with the development of IDMS as an independent method for the quantification of analytes in gaseous samples to be used as standards. Results are presented for the determination of bromobenzene in nitrogen at nominal concentrations of 1 and 25 ppb. In the second part of the research, a calibration curve method was developed for using these standards in auditing the performance of GC/MS systems

  3. Quality control of secondary standards and calibration systems, therapy level, of National Laboratory of Metrology from Ionizing Radiations (LNMRI)

    International Nuclear Information System (INIS)

    The results of quality control program of secondary standards, therapy level, and the calibration system of clinical dosemeters were analysed from 1984, when a change in the laboratory installation occurred and new standards were obtained. The national and the international intercomparisons were emphasised. The results for graphite wall chambers were compared, observing a maximum variation of about 0,6%. In the case of Delrin (TK01) wall chambers, the maximum variation was 1,7%. The results of post intercomparisons with thermoluminescent dosemeters have presented derivations lesser than 1%, securing the standards consistence at LNMRI with the international metrological system. (C.G.C.)

  4. Standardization of calibration of clinic dosemeters using electric currents and charges

    International Nuclear Information System (INIS)

    Clinical dosimeters used in radiotherapy are calibrated in Latin American countries, including Brazil, as a complete 'system, i.e., ionization chamber and electrometer together. Some countries, as European ones, and USA calibrate them by component, i.e., ionisation chamber apart from electrometer. This method is more advantageous than the previous one, since it makes possible the automation of the calibration process, allowing the acquisition of data related to the chamber and the electrometer measurements independently, as well as the substitution of one of the components, in case of failure. This work proposes a method for standardisation of low intensity electric charge and currents in order to implement electric calibration of electrometers. This will make possible the implementation of a by components calibration technique, by components, of clinical dosimeters in Brazil. The results obtained with the calibration by components prove that the proposed method of standardisation of low electric charges and currents is viable. The difficulties found for the generation and measurement of low intensity electric charges and currents and the procedures adopted for the calibration by components are presented. Additionally, a current source was built to yield reference electric charges that will make possible the quality control clinical dosimeters. This source will also allow the user to identify the defective components of the dosimeters, through a simple verification test. (author)

  5. Calibration process of survey meters and dosemeters at Standard Dosimetry Laboratory, Nuclear Energy Unit, Malaysia

    International Nuclear Information System (INIS)

    Techniques of calibration and its possible uses are reviewed and discussed. Three main techniques identified are substitution, simultaneous irradiation and inverse square law. The scope of application of each technique is discussed in detail. In addition, tests which are performed on the calibrated dosemeters including energy dependence, angular dependence as well as linearity are explained. For the above purposes, photon radiations from 30 keV to 1250 keV were used. The radiations are obtained by means of an X-ray machine, PHILIPS Model MCN 32, Cs 137 and C60. At the end of the report, several forms tht are required for giving the calibration services are attached. (author)

  6. The use of calibration standards and the correction for sample self-attenuation in gamma-ray nondestructive assay

    International Nuclear Information System (INIS)

    The efficient use of appropriate calibration standards and the correction for the attenuation of the gamma rays within an assay sample by the sample itself are two important and closely related subjects in gamma-ray nondestructive assay. Much research relating to those subjects has been done in the Nuclear Safeguards Research and Development program at the Los Alamos National Laboratory since 1970. This report brings together most of the significant results of that research. Also discussed are the nature of appropriate calibration standards and the necessary conditions on the composition, size, and shape of the samples to allow accurate assays. Procedures for determining the correction for the sample self-attenuation are described at length including both general principles and several specific useful cases. The most useful concept is that knowing the linear attenuation coefficient of the sample (which can usually be determined) and the size and shape of the sample and its position relative to the detector permits the computation of the correction factor for the self-attenuation. A major objective of the report is to explain how the procedures for determining the self-attenuation correction factor can be applied so that calibration standards can be entirely appropriate without being particularly similar, either physically or chemically, to the items to be assayed. This permits minimization of the number of standards required to assay items with a wide range of size, shape, and chemical composition

  7. Use of calibration standards and the correction for sample self-attenuation in gamma-ray nondestructive assay

    International Nuclear Information System (INIS)

    The efficient use of appropriate calibration standards and the correction for the attenuation of the gamma rays within an assay sample by the sample itself are two important and closely related subjects in gamma-ray nondestructive assay. Much research relating to those subjects has been done in the Nuclear Safeguards Research and Development program at the Los Alamos National Laboratory since 1970. This report brings together most of the significant results of that research. Also discussed are the nature of appropriate calibration standards and the necessary conditions on the composition, size, and shape of the samples to allow accurate assays. Procedures for determining the correction for the sample self-attenuation are described at length including both general principles and several specific useful cases. The most useful concept is that knowing the linear attenuation coefficient of the sample (which can usually be determined) and the size and shape of the sample and its position relative to the detector permits the computation of the correction factor for the self-attenuation. A major objective of the report is to explain how the procedures for determining the self-attenuation correction factor can be applied so that calibration standards can be entirely appropriate without being particularly similar, either physically or chemically, to the items to be assayed. This permits minimization of the number of standards required to assay items with a wide range of size, shape, and chemical composition. 17 references, 18 figures, 2 tables

  8. Temperature calibration procedure for thin film substrates for thermo-ellipsometric analysis using melting point standards

    International Nuclear Information System (INIS)

    Highlights: • Facile temperature calibration method for thermo-ellipsometric analysis. • The melting point of thin films of indium, lead, zinc, and water can be detected by ellipsometry. • In-situ calibration of ellipsometry hot stage, without using any external equipment. • High-accuracy temperature calibration (±1.3 °C). - Abstract: Precise and accurate temperature control is pertinent to studying thermally activated processes in thin films. Here, we present a calibration method for the substrate–film interface temperature using spectroscopic ellipsometry. The method is adapted from temperature calibration methods that are well developed for thermogravimetric analysis and differential scanning calorimetry instruments, and is based on probing a transition temperature. Indium, lead, and zinc could be spread on a substrate, and the phase transition of these metals could be detected by a change in the Ψ signal of the ellipsometer. For water, the phase transition could be detected by a loss of signal intensity as a result of light scattering by the ice crystals. The combined approach allowed for construction of a linear calibration curve with an accuracy of 1.3 °C or lower over the full temperature range

  9. Photometric calibration of the HST wide-field/planetary camera. I - Ground-based observations of standard stars

    Science.gov (United States)

    Harris, Hugh C.; Baum, William A.; Hunter, Deidre A.; Kreidl, Tobias J.

    1991-01-01

    This paper describes the observation and analysis of field stars, undertaken as a step toward understanding the photometric properties of the filters and CCDs aboard the Wide-Field/Planetary Camera of the Hubble Space Telescope. Ground-based CCD observations have been made simulating 15 of the most important WF/PC passbands. Data are presented here for an equatorial network of stars including many UBVRI standards and some spectrophotometric standards. They serve to establish a photometric system that will be used in the calibration of in-flight data and that is useful for the calibration of other ground-based data. Transformations between WF/PC and other photometric systems are discussed, as well as the effects of interstellar absorption and atmospheric extinction on data in the WF/PC system. Synthetic photometry has been used as an aid in the data analysis and is described.

  10. A practical implementation of microphone free-field comparison calibration according to the standard IEC 61094-8

    DEFF Research Database (Denmark)

    Barrera Figueroa, Salvador; Torras-Rosell, Antoni; Rasmussen, Knud; Jacobsen, Finn; Cutanda Henriquez, Vicente; Juhl, Peter Møller

    2012-01-01

    the reference and test microphones are measured, whereas the second requires a source with a symmetrical directivity that ensures that the microphones placed at opposite positions are subjected to the same sound pressure. The two methods have been investigated experimentally in an extended frequency......An international standard concerned with the calibration of microphones in a free field by comparison has recently been published. The standard contemplates two main calibration methodologies for determining the sensitivity of a microphone under test when compared against a reference microphone....... The two methodologies assume that the two microphones are exposed to the same sound pressure. This can be achieved by measuring the ratio of output voltages either sequentially or simultaneously. The first method requires a stable source to ensure that the sound pressure is approximately the same when...

  11. Linear model correction: A method for transferring a near-infrared multivariate calibration model without standard samples.

    Science.gov (United States)

    Liu, Yan; Cai, Wensheng; Shao, Xueguang

    2016-12-01

    Calibration transfer is essential for practical applications of near infrared (NIR) spectroscopy because the measurements of the spectra may be performed on different instruments and the difference between the instruments must be corrected. For most of calibration transfer methods, standard samples are necessary to construct the transfer model using the spectra of the samples measured on two instruments, named as master and slave instrument, respectively. In this work, a method named as linear model correction (LMC) is proposed for calibration transfer without standard samples. The method is based on the fact that, for the samples with similar physical and chemical properties, the spectra measured on different instruments are linearly correlated. The fact makes the coefficients of the linear models constructed by the spectra measured on different instruments are similar in profile. Therefore, by using the constrained optimization method, the coefficients of the master model can be transferred into that of the slave model with a few spectra measured on slave instrument. Two NIR datasets of corn and plant leaf samples measured with different instruments are used to test the performance of the method. The results show that, for both the datasets, the spectra can be correctly predicted using the transferred partial least squares (PLS) models. Because standard samples are not necessary in the method, it may be more useful in practical uses. PMID:27380302

  12. Implementation of ISO guide 25 in a medical dosimetry secondary standards calibration laboratory

    International Nuclear Information System (INIS)

    Currently, there is a great deal of discussion among industry and government agencies about ISO 9000 accreditation. U.S. manufacturers with ISO 9000 accreditation are regarded more favorably by European countries. The principles behind the ISO 9000 accreditation are based on the Total Quality Management (TQM) principles that are being implemented in many U.S. industries. This paper will deal only with the calibration issue. There is a difference in the areas covered by ISO 9000 and ISO Guide 25 documents. ISO 9000, in particular ISO 9001 - ISO 9003, cover the open-quotes calibrationclose quotes of inspection, measuring and test equipment. This equipment is basically used for open-quotes factory calibrationsclose quotes to determine that equipment is performing within manufacturer specifications. ISO Guide 25 is specifically for open-quotes calibration and testing laboratories,close quotes generally laboratories that have painstaking procedures to reduce uncertainties and establish high accuracy of the transfer of calibration. The experience of the University of Wisconsin Accredited Dosimetry Calibration Laboratory in conforming to ISO Guide 25 will be outlined. The entire laboratory staff must become familiar with the process and an individual with direct authority must become the one to maintain the quality of equipment and calibrations in the role of open-quotes quality-assurance manager.close quotes

  13. Calibration of photon and beta ray sources used in brachytherapy. Guidelines on standardized procedures at Secondary Standards Dosimetry Laboratories (SSDLs) and hospitals

    International Nuclear Information System (INIS)

    It has generally been recognized that international harmonization in radiotherapy dosimetry is essential. Consequently, the IAEA has given much effort to this, for example by publishing a number of reports in the Technical Reports Series (TRS) for external beam dosimetry, most notably TRS-277 and more recently TRS-398. Both of these reports describe in detail the steps to be taken for absorbed dose determination in water and they are often referred to as 'dosimetry protocols'. Similar to TRS-277, it is expected that TRS-398 will be adopted or used as a model by a large number of countries as their national protocol. In 1996, the IAEA established a calibration service for low dose rate (LDR) 137 Cs brachytherapy sources, which is the most widely used source for treatment of gynecological cancer. To further enhance harmonization in brachytherapy dosimetry, the IAEA published in 1999 IAEA-TECDOC-1079 entitled 'Calibration of Brachytherapy Sources. Guidelines on Standardized Procedures for the Calibration of Brachytherapy Sources at Secondary Standard Dosimetry Laboratories (SSDLs) and Hospitals'. The report was well received and was distributed in a large number of copies to the members of the IAEA/WHO network of SSDLs and to medical physicists working with brachytherapy. The present report is an update of the aforementioned TECDOC. Whereas TECDOC-1079 described methods for calibrating brachytherapy sources with photon energies at or above those of 192Ir, the current report has a wider scope in that it deals with standardization of calibration of all the most commonly used brachytherapy sources, including both photon and beta emitting sources. The latter sources have been in use for a few decades already, but their calibration methods have been unclear. Methods are also described for calibrating sources used in the rapidly growing field of cardiovascular angioplasty. In this application, irradiation of the vessel wall is done in an attempt to prevent restenosis after

  14. Test and Calibration of the Digital World-Wide Standardized Seismograph

    Science.gov (United States)

    Peterson, Jon; Hutt, Charles R.

    1982-01-01

    BACKGROUND During the past decade there has been steady progress in the modernization of the global seismograph network operated by the U.S. Geological Survey (USGS). The World-Wide Standardized Seismograph Network (WWSSN) has been augmented by new stations with advanced instrumentation, including the Seismic Research Observatories (SRO) and the modified High-Gain Long-Period (ASRO) stations. One goal in the modernization effort has been to improve signal resolution in the long-period band. A second goal has been to generate a global digital data base to support contemporary computer-based analysis and research. In 1976, a Panel on Seismograph Networks was established by the Committee on Seismology of the National Academy of Sciences to review progress in network seismology and recommend actions that would lead to an improved global data base for seismology. One recommendation in the Panel report (Engdahl, 1977) called for upgrading selected WWSSN stations by the installation of digital recorders. This was viewed as an economical way of expanding the digital network, which had proven itself to be a very promising new tool for earthquake and explosion research. Funds for the development and assembly of 15 digital recorders were provided to the USGS by the Defense Advanced Research Projects Agency and an ad hoc panel of scientists was convened by the Committee on Seismology to advise the USGS on the selection of stations to be upgraded and on data recording requirements. A total of 19 digital World-Wide Standardized Seismograph (DWWSS) systems will be operational when all are installed. The additional systems were made available through purchase by the USGS and other organizations; for example, the University of Bergen purchased and installed a DWWSS-type recorder and agreed to furnish the USGS with the data. A list of operational and planned DWWSS network stations is given in Table 1.1. As one might expect, the digital recorder turned out to be somewhat more

  15. EASYTRAC Project: Work package 6.4 Reversal technique to calibrate gear and thread standards

    DEFF Research Database (Denmark)

    Carmignato, Simone; De Chiffre, Leonardo; Larsen, Erik;

    This report was produced as a part of the project EASYTRAC, an EU project under the programme Competitive and Sustainable Growth: Contract No. G6RD-CT-2000-00188, coordinated by UNIMETRIK S.A. (Spain). The project is concerned with low uncertainty calibrations on coordinate measuring machines (CMMs...

  16. Preliminary calibration of fission-track zeta constant for NBS SRM 962a using fish canyon tuff apatite age standard

    International Nuclear Information System (INIS)

    The Zeta method for the calibration of fission-track dating against other radiometric dating techniques has been described by Hurford and Green (1983). In this paper, the data for the Zeta calibration were obtained using 4π -Conversion Procedure (Suzuki et. al., 1984). The preliminary Zeta value determined from this work was found to be 224.52 ± 38.73, showing significant difference from values obtained by workers elsewhere using equivalent standard glass dosimeter. Factors that might have contributed to such discrepancy are discussed. From this study and work done by other fission-track workers, it is obvious that a wide range of Zeta values are in common use. However consistency in track-counting remains the prime factor for getting reliable ages for unknown samples

  17. A standard stellar library for evolutionary synthesis; 1, Calibration of theoretical spectra

    CERN Document Server

    Lejeune, T; Buser, R

    1997-01-01

    A comprehensive hybrid library of synthetic stellar spectra based on three original grids of model atmosphere spectra by Kurucz (1995), Fluks et al. (1994), and Bessell et al. (1989, 1991) is presented. The combined library is intended for multiple-purpose synthetic photometry applications and is constructed in order (i) to cover the largest possible ranges in Teff, log g, and [M/H]), (ii) to provide flux spectra with useful resolution on the uniform grid of wavelengths, and (iii) to provide realistic synthetic broad-band colors for the largest possible parameter and wavelength ranges. For each value of the effective temperature and for each wavelength, we calculate the correction function that must be applied to a (theoretical) solar-abundance model flux spectrum which yields synthetic UBVRIJHKL colors matching the (empirical) color-temperature calibrations derived from observations. The calibration algorithm is designed to preserve the original differential grid properties implied by metallicity and/or lumi...

  18. Color standardization in whole slide imaging using a color calibration slide

    Directory of Open Access Journals (Sweden)

    Pinky A Bautista

    2014-01-01

    Full Text Available Background: Color consistency in histology images is still an issue in digital pathology. Different imaging systems reproduced the colors of a histological slide differently. Materials and Methods: Color correction was implemented using the color information of the nine color patches of a color calibration slide. The inherent spectral colors of these patches along with their scanned colors were used to derive a color correction matrix whose coefficients were used to convert the pixels′ colors to their target colors. Results: There was a significant reduction in the CIELAB color difference, between images of the same H & E histological slide produced by two different whole slide scanners by 3.42 units, P < 0.001 at 95% confidence level. Conclusion: Color variations in histological images brought about by whole slide scanning can be effectively normalized with the use of the color calibration slide.

  19. Development of Multicolor Flow Cytometry Calibration Standards: Assignment of Equivalent Reference Fluorophores (ERF) Unit

    OpenAIRE

    Wang, Lili; Gaigalas, Adolfas K

    2011-01-01

    A procedure is described for assigning the number of equivalent reference fluorophores (ERF) values to microspheres labeled with a fluorophore designed to produce a fluorescence response in a given fluorescence channel of a multicolor flow cytometer. A fluorimeter was calibrated by a series of solutions of the reference fluorophores. The fluorimeter was used to obtain the microsphere fluorescence intensity, and a multicolor flow cytometer was used to obtain the microsphere concentration. The ...

  20. Variations in performance of LCDs are still evident after DICOM gray-scale standard display calibration.

    LENUS (Irish Health Repository)

    Lowe, Joanna M

    2010-07-01

    Quality assurance in medical imaging is directly beneficial to image quality. Diagnostic images are frequently displayed on secondary-class displays that have minimal or no regular quality assurance programs, and treatment decisions are being made from these display types. The purpose of this study is to identify the impact of calibration on physical and psychophysical performance of liquid crystal displays (LCDs) and the extent of potential variance across various types of LCDs.

  1. Preliminary Experiments to Develop a He-W Calibration Standard Using Laser Induced Breakdown Spectroscopy

    Science.gov (United States)

    Shaw, Guinevere; Andre, Nicolas; Bannister, Mark; Biewer, Theodore; Martin, Madhavi; Meyer, Fred; Wirth, Brian

    2015-11-01

    To address the needs of future fusion reactors, laser based diagnostic techniques for plasma-material interactions (PMI) are being developed at ORNL. Laser-induced breakdown spectroscopy (LIBS) is a technique for measuring elemental surface composition, and is a possible diagnostic for characterizing elemental concentrations in plasma-facing materials. The purpose of the LIBS system described here is to quantify helium (He) concentration in exposed tungsten (W) targets. To accurately quantify He concentration in situ a calibration stranded must be developed, including extensive calibration of the entire LIBS system. To accomplish this, two LIBS setups were explored: ex-situ LIBS and in-situ LIBS. Ex-situ LIBS experiments used W targets exposed to a He + ion beam to determine laser parameters and calibration settings for in-situ experiments. Results will be discussed. In-situ LIBS analysis will be assessed for W targets exposed to He plasma. Preliminary results will be discussed. Research sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U. S. Department of Energy.

  2. In Situ Determination of Trace Elements in Fish Otoliths by Laser Ablation Double Focusing Sector Field Inductively Coupled Plasma Mass Spectrometry Using a Solution Standard Addition Calibration Method

    Science.gov (United States)

    Chen, Z.; Jones, C. M.

    2002-05-01

    Microchemistry of fish otoliths (fish ear bones) is a very useful tool for monitoring aquatic environments and fish migration. However, determination of the elemental composition in fish otolith by ICP-MS has been limited to either analysis of dissolved sample solution or measurement of limited number of trace elements by laser ablation (LA)- ICP-MS due to low sensitivity, lack of available calibration standards, and complexity of polyatomic molecular interference. In this study, a method was developed for in situ determination of trace elements in fish otoliths by laser ablation double focusing sector field ultra high sensitivity Finnigan Element 2 ICP-MS using a solution standard addition calibration method. Due to the lack of matrix-match solid calibration standards, sixteen trace elements (Na, Mg, P, Cr, Mn, Fe, Ni, Cu, Rb, Sr, Y, Cd, La, Ba, Pb and U) were determined using a solution standard calibration with Ca as an internal standard. Flexibility, easy preparation and stable signals are the advantages of using solution calibration standards. In order to resolve polyatomic molecular interferences, medium resolution (M/delta M > 4000) was used for some elements (Na, Mg, P, Cr, Mn, Fe, Ni, and Cu). Both external calibration and standard addition quantification strategies are compared and discussed. Precision, accuracy, and limits of detection are presented.

  3. A continuously and widely tunable analog baseband chain with digital-assisted calibration for multi-standard DBS applications

    International Nuclear Information System (INIS)

    This paper presents a continuously and widely tunable analog baseband chain with a digital-assisted calibration scheme implemented on a 0.13 μm CMOS technology. The analog baseband is compliant with several digital broadcasting system (DBS) standards, including DVB-S, DVB-S2, and ABS-S. The cut-off frequency of the baseband circuit can be changed continuously from 4.5 to 32 MHz. The gain adjustment range is from 6 to 55.5 dB with 0.5 dB step. The calibration includes automatic frequency tuning (AFT) and automatic DC offset calibration (DCOC) to achieve less than 6% cut-off frequency deviation and 3 mV residual output offset. The out-of-band IIP2 and IIP3 of the overall chain are 45 dBm and 18 dBm respectively, while the input referred noise (IRN) is 17.4 nV/√Hz. All circuit blocks are operated at 2.8 V from LDO and consume current of 20.4 mA in the receiving mode. (semiconductor integrated circuits)

  4. A continuously and widely tunable analog baseband chain with digital-assisted calibration for multi-standard DBS applications

    Science.gov (United States)

    Songting, Li; Jiancheng, Li; Xiaochen, Gu; Hongyi, Wang

    2013-06-01

    This paper presents a continuously and widely tunable analog baseband chain with a digital-assisted calibration scheme implemented on a 0.13 μm CMOS technology. The analog baseband is compliant with several digital broadcasting system (DBS) standards, including DVB-S, DVB-S2, and ABS-S. The cut-off frequency of the baseband circuit can be changed continuously from 4.5 to 32 MHz. The gain adjustment range is from 6 to 55.5 dB with 0.5 dB step. The calibration includes automatic frequency tuning (AFT) and automatic DC offset calibration (DCOC) to achieve less than 6% cut-off frequency deviation and 3 mV residual output offset. The out-of-band IIP2 and IIP3 of the overall chain are 45 dBm and 18 dBm respectively, while the input referred noise (IRN) is 17.4 nV/√Hz. All circuit blocks are operated at 2.8 V from LDO and consume current of 20.4 mA in the receiving mode.

  5. An interferometric Abbe-type comparator for the calibration of internal and external diameter standards

    International Nuclear Information System (INIS)

    We developed an Abbe-type comparator using a laser interferometer and a linear variable differential transformer (LVDT) probe as displacement sensors, which can measure the diameter of ring and plug gauges up to 300 mm. The measurement system is configured according to the Abbe principle, and consists of translation stages, a laser interferometer, an LVDT probe and an electronic controller. The main translation stage is made by using a precision ceramic guide and air bearing pads, and is driven by a backlash-free lead screw and a micro-stepping motor. The laser interferometer measures the displacement of a moving mirror aligned with the probe coaxially. The environmental effect is corrected automatically during the measurement. The effective diameter of the probe ball is calibrated using a reference gauge block. The performance of each component was evaluated through experiments and the measurement uncertainty of the overall system was analyzed. We measured three diameter artifacts, which are 11.95 mm and 100 mm ring gauges and a 98.5 mm plug gauge, and compared the measured values with the calibrated ones. They were consistent with each other within 0.3 µm, which is less than the expanded measurement uncertainty (k = 2)

  6. Traceable Pyrgeometer Calibrations

    Energy Technology Data Exchange (ETDEWEB)

    Dooraghi, Mike; Kutchenreiter, Mark; Reda, Ibrahim; Habte, Aron; Sengupta, Manajit; Andreas, Afshin; Newman, Martina

    2016-05-02

    This poster presents the development, implementation, and operation of the Broadband Outdoor Radiometer Calibrations (BORCAL) Longwave (LW) system at the Southern Great Plains Radiometric Calibration Facility for the calibration of pyrgeometers that provide traceability to the World Infrared Standard Group.

  7. Development and evaluation of a set of group delay standards. [deep space tracking station calibration

    Science.gov (United States)

    Otoshi, T. Y.; Beatty, R. W.

    1976-01-01

    A set of cable assemblies serving as group delay standards having nominal delays of 15, 30, and 60 nsec are described. Various types of measurements were performed on the cable standards, including impedance, microwave phase shift, RF pulse burst delay, modulation pulsed delay, and envelope phase shift measurements. The results of these tests are given, and various sources of error are discussed, in particular, dispersion and internal reflections.

  8. Calibration uncertainty

    DEFF Research Database (Denmark)

    Heydorn, Kaj; Anglov, Thomas

    2002-01-01

    Methods recommended by the International Standardization Organisation and Eurachem are not satisfactory for the correct estimation of calibration uncertainty. A novel approach is introduced and tested on actual calibration data for the determination of Pb by ICP-AES. The improved calibration...... uncertainty was verified from independent measurements of the same sample by demonstrating statistical control of analytical results and the absence of bias. The proposed method takes into account uncertainties of the measurement, as well as of the amount of calibrant. It is applicable to all types of...

  9. Development, improvement and calibration of neutronic reaction rate measurements: elaboration of a base of standard techniques; Developpement, amelioration et calibration des mesures de taux de reaction neutroniques: elaboration d`une base de techniques standards

    Energy Technology Data Exchange (ETDEWEB)

    Hudelot, J.P

    1998-06-19

    In order to improve and to validate the neutronic calculation schemes, perfecting integral measurements of neutronic parameters is necessary. This thesis focuses on the conception, the improvement and the development of neutronic reaction rates measurements, and aims at building a base of standard techniques. Two subjects are discussed. The first one deals with direct measurements by fission chambers. A short presentation of the different usual techniques is given. Then, those last ones are applied through the example of doubling time measurements on the EOLE facility during the MISTRAL 1 experimental programme. Two calibration devices of fission chambers are developed: a thermal column located in the central part of the MINERVE facility, and a calibration cell using a pulsed high flux neutron generator and based on the discrimination of the energy of the neutrons with a time-of-flight method. This second device will soon allow to measure the mass of fission chambers with a precision of about 1 %. Finally, the necessity of those calibrations will be shown through spectral indices measurements in core MISTRAL 1 (UO{sub 2}) and MISTRAL 2 (MOX) of the EOLE facility. In each case, the associated calculation schemes, performed using the Monte Carlo MCNP code with the ENDF-BV library, will be validated. Concerning the second one, the goal is to develop a method for measuring the modified conversion ratio of {sup 238}U (defined as the ratio of {sup 238}U capture rate to total fission rate) by gamma-ray spectrometry of fuel rods. Within the framework of the MISTRAL 1 and MISTRAL 2 programmes, the measurement device, the experimental results and the spectrometer calibration are described. Furthermore, the MCNP calculations of neutron self-shielding and gamma self-absorption are validated. It is finally shown that measurement uncertainties are better than 1 %. The extension of this technique to future modified conversion ratio measurements for {sup 242}Pu (on MOX rods) and

  10. Comparison of two standard dosimetry protocols for output calibration of 60Co teletherapy machines

    International Nuclear Information System (INIS)

    Two protocols for output calibration of 60Co teletherapy machines were studied in two steps. In the first step, two methods for timer error determination were studied both in air and in water: the two-exposure method with the short exposure time ranging in value form ts=0.1tL to ts=0.7tL, where tL is the long exposure time; and the single/multiple exposure method with the number of exposures ranging from n=2 to n=9. The results showed better precision for the two-exposure method with smaller ratios of ts to tL and for the single/multiple exposure method with the greater n, and also showed better precision for in-air than in-water measurements in both protocols. A comparison was made between the two-exposure protocol with ts=0.2tL, 0.3tL and 0.5tL and the single/multiple exposure protocol with n=6. In-air measurements showed the best results with ts=0.2tL in terms of both precision and decay constants estimated from the regression of exposure rate against time. In the second step, the protocol with n=6 was used in comparing the output value measured in air with that measured in water. The dose rates at 5 cm depth in water determined by these two methods of measurement were comparable to within ±0.5%. (author). 8 refs, 3 figs, 2 tabs

  11. Contributed Review: Absolute spectral radiance calibration of fiber-optic shock-temperature pyrometers using a coiled-coil irradiance standard lamp

    Energy Technology Data Exchange (ETDEWEB)

    Fat’yanov, O. V., E-mail: fatyan1@gps.caltech.edu; Asimow, P. D., E-mail: asimow@gps.caltech.edu [Division of Geological and Planetary Sciences 252-21, California Institute of Technology, Pasadena, California 91125 (United States)

    2015-10-15

    We describe an accurate and precise calibration procedure for multichannel optical pyrometers such as the 6-channel, 3-ns temporal resolution instrument used in the Caltech experimental geophysics laboratory. We begin with a review of calibration sources for shock temperatures in the 3000-30 000 K range. High-power, coiled tungsten halogen standards of spectral irradiance appear to be the only practical alternative to NIST-traceable tungsten ribbon lamps, which are no longer available with large enough calibrated area. However, non-uniform radiance complicates the use of such coiled lamps for reliable and reproducible calibration of pyrometers that employ imaging or relay optics. Careful analysis of documented methods of shock pyrometer calibration to coiled irradiance standard lamps shows that only one technique, not directly applicable in our case, is free of major radiometric errors. We provide a detailed description of the modified Caltech pyrometer instrument and a procedure for its absolute spectral radiance calibration, accurate to ±5%. We employ a designated central area of a 0.7× demagnified image of a coiled-coil tungsten halogen lamp filament, cross-calibrated against a NIST-traceable tungsten ribbon lamp. We give the results of the cross-calibration along with descriptions of the optical arrangement, data acquisition, and processing. We describe a procedure to characterize the difference between the static and dynamic response of amplified photodetectors, allowing time-dependent photodiode correction factors for spectral radiance histories from shock experiments. We validate correct operation of the modified Caltech pyrometer with actual shock temperature experiments on single-crystal NaCl and MgO and obtain very good agreement with the literature data for these substances. We conclude with a summary of the most essential requirements for error-free calibration of a fiber-optic shock-temperature pyrometer using a high-power coiled tungsten halogen

  12. Contributed Review: Absolute spectral radiance calibration of fiber-optic shock-temperature pyrometers using a coiled-coil irradiance standard lamp

    International Nuclear Information System (INIS)

    We describe an accurate and precise calibration procedure for multichannel optical pyrometers such as the 6-channel, 3-ns temporal resolution instrument used in the Caltech experimental geophysics laboratory. We begin with a review of calibration sources for shock temperatures in the 3000-30 000 K range. High-power, coiled tungsten halogen standards of spectral irradiance appear to be the only practical alternative to NIST-traceable tungsten ribbon lamps, which are no longer available with large enough calibrated area. However, non-uniform radiance complicates the use of such coiled lamps for reliable and reproducible calibration of pyrometers that employ imaging or relay optics. Careful analysis of documented methods of shock pyrometer calibration to coiled irradiance standard lamps shows that only one technique, not directly applicable in our case, is free of major radiometric errors. We provide a detailed description of the modified Caltech pyrometer instrument and a procedure for its absolute spectral radiance calibration, accurate to ±5%. We employ a designated central area of a 0.7× demagnified image of a coiled-coil tungsten halogen lamp filament, cross-calibrated against a NIST-traceable tungsten ribbon lamp. We give the results of the cross-calibration along with descriptions of the optical arrangement, data acquisition, and processing. We describe a procedure to characterize the difference between the static and dynamic response of amplified photodetectors, allowing time-dependent photodiode correction factors for spectral radiance histories from shock experiments. We validate correct operation of the modified Caltech pyrometer with actual shock temperature experiments on single-crystal NaCl and MgO and obtain very good agreement with the literature data for these substances. We conclude with a summary of the most essential requirements for error-free calibration of a fiber-optic shock-temperature pyrometer using a high-power coiled tungsten halogen

  13. Contributed Review: Absolute spectral radiance calibration of fiber-optic shock-temperature pyrometers using a coiled-coil irradiance standard lamp

    Science.gov (United States)

    Fat'yanov, O. V.; Asimow, P. D.

    2015-10-01

    We describe an accurate and precise calibration procedure for multichannel optical pyrometers such as the 6-channel, 3-ns temporal resolution instrument used in the Caltech experimental geophysics laboratory. We begin with a review of calibration sources for shock temperatures in the 3000-30 000 K range. High-power, coiled tungsten halogen standards of spectral irradiance appear to be the only practical alternative to NIST-traceable tungsten ribbon lamps, which are no longer available with large enough calibrated area. However, non-uniform radiance complicates the use of such coiled lamps for reliable and reproducible calibration of pyrometers that employ imaging or relay optics. Careful analysis of documented methods of shock pyrometer calibration to coiled irradiance standard lamps shows that only one technique, not directly applicable in our case, is free of major radiometric errors. We provide a detailed description of the modified Caltech pyrometer instrument and a procedure for its absolute spectral radiance calibration, accurate to ±5%. We employ a designated central area of a 0.7× demagnified image of a coiled-coil tungsten halogen lamp filament, cross-calibrated against a NIST-traceable tungsten ribbon lamp. We give the results of the cross-calibration along with descriptions of the optical arrangement, data acquisition, and processing. We describe a procedure to characterize the difference between the static and dynamic response of amplified photodetectors, allowing time-dependent photodiode correction factors for spectral radiance histories from shock experiments. We validate correct operation of the modified Caltech pyrometer with actual shock temperature experiments on single-crystal NaCl and MgO and obtain very good agreement with the literature data for these substances. We conclude with a summary of the most essential requirements for error-free calibration of a fiber-optic shock-temperature pyrometer using a high-power coiled tungsten halogen

  14. Development of a calibration stand for the monitoring of atmospheric contamination by means of standard radioactive aerosols

    International Nuclear Information System (INIS)

    After a reminder of both the main physical laws governing aerosols and fluid mechanics, the methods and technologies used to develop a calibration equipment for the monitoring of atmospheric contamination by means of standard radioactive aerosols are presented. The preliminary tests checked the chief performances of the stand, the characteristics of which had been established for the purpose of the certification of atmospheric contamination monitors. These 'dynamic' tests were devised to measure the coefficient of the effect of natural radioactivity on the measurement of man-made activity and the measurement efficiency of artificial alpha and/or beta activity for a given installation. The tests conducted on the various components of the stand demonstrated the good operation of the installation, which allowed to carry out certification tests on three detectors

  15. Design and realisation of a calibration service (a standard test bench) for radon-222 and its short-lived daughter products in air

    International Nuclear Information System (INIS)

    The aim of the project is to adapt an existing radioactive aerosol calibration installation 'ICARE' at the Saclay Nuclear Research Centre (CEA), in order to provide precise activity concentrations of 222Rn and its short-life decay products that may be used to calibrate measuring instruments. ICARE is essentially a wind tunnel in which aerosols calibrated in size and labelled with 137Cs or 239Pu are injected upstream of the test section. A new line of injection has been designed including three standard sources of 222Rn and a reference device for the activity concentration measurements of this gas. (R.P.) 8 refs., 6 figs

  16. The ACS survey of globular clusters. XIII. Photometric calibration in comparison with Stetson standards

    CERN Document Server

    Hempel, Maren; Anderson, Jay; Aparicio, Antonio; Bedin, Luigi R; Chaboyer, Brian; Majewski, Steven R; Marín-Franch, Antonio; Milone, Antonino; Paust, Nathaniel E Q; Piotto, Giampaolo; Reid, I Neill; Rosenberg, Alfred; Siegel, Michael

    2013-01-01

    In this study we compare the photometric data of 34 Milky Way globular clusters, observed within the ACS Treasury Program (PI: Ata Sarajedini) with the corresponding ground-based data, provided by the Photometric Standard Field Catalogs of Stetson (2000, 2005). We focus on the transformation between the HST/ACS F606W to V-band and F814W to I-band only. The goal is to assess the validity of the filter transformation equations by Sirianni et al.(2005) with respect to their dependence on metallicity, Horizontal Branch morphology, mass and integrated (V-I) colour of the various globular clusters. Such a dependence is expected due to the fact that the transformation equations are based on the observations of only one globular cluster, i.e., NGC 2419. Surprisingly, the correlation between offset and metallicity is found to be weak, with a low level significance. The correlation between offset and Horizontal Branch structure, as well as total cluster mass is still weaker. Based on the available data we do not find t...

  17. CRM Assessment: Determining the Generalization of Rater Calibration Training. Summary of Research Report: Gold Standards Training

    Science.gov (United States)

    Baker, David P.

    2002-01-01

    The extent to which pilot instructors are trained to assess crew resource management (CRM) skills accurately during Line-Oriented Flight Training (LOFT) and Line Operational Evaluation (LOE) scenarios is critical. Pilot instructors must make accurate performance ratings to ensure that proper feedback is provided to flight crews and appropriate decisions are made regarding certification to fly the line. Furthermore, the Federal Aviation Administration's (FAA) Advanced Qualification Program (AQP) requires that instructors be trained explicitly to evaluate both technical and CRM performance (i.e., rater training) and also requires that proficiency and standardization of instructors be verified periodically. To address the critical need for effective pilot instructor training, the American Institutes for Research (AIR) reviewed the relevant research on rater training and, based on "best practices" from this research, developed a new strategy for training pilot instructors to assess crew performance. In addition, we explored new statistical techniques for assessing the effectiveness of pilot instructor training. The results of our research are briefly summarized below. This summary is followed by abstracts of articles and book chapters published under this grant.

  18. Assembly and use of permanent secondary standards for calibration of infrared spectrophotometer for determination of isotopic purity of nuclear grade heavy water

    International Nuclear Information System (INIS)

    Infrared spectrophotometer like any other instrument for quantitative or qualitative measurement of a property of a sample requires calibration or standardization with respect to a set of samples of known values of the parameter. For heavy water application, standards made out of nuclear grade heavy water are to be used. Since heavy water is hygroscopic in nature, standards tend to get degraded with time and thus shelf-life of heavy water standards is limited. Therefore, a paramount set of secondary standards assembled using wire mesh or glass plate of known transmittance is found as a better alternative for analysing heavy water, especially on routine basis. The paper describes this methodology. (author)

  19. THE ACS SURVEY OF GLOBULAR CLUSTERS. XIII. PHOTOMETRIC CALIBRATION IN COMPARISON WITH STETSON STANDARDS

    Energy Technology Data Exchange (ETDEWEB)

    Hempel, Maren [Instituto de Astrofísica, Facultad de Fisica, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, 7820436 Macul, Santiago (Chile); Sarajedini, Ata [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611 (United States); Anderson, Jay; Reid, I. Neill, E-mail: mhempel@astro.puc.cl, E-mail: ata@astro.ufl.edu, E-mail: jayander@stsci.edu, E-mail: inr@stsci.edu [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); and others

    2014-03-01

    In this study we compare the photometric data of 34 Milky Way globular clusters, observed within the Advanced Camera for Surveys (ACS) Treasury Program (PI: A. Sarajedini) with the corresponding ground-based data, provided by the Photometric Standard Field Catalogs of Stetson. We focus on the transformation between the Hubble Space Telescope/ACS F606W to V-band and F814W to I-band only. The goal is to assess the validity of the filter transformation equations by Sirianni et al. with respect to their dependence on metallicity, horizontal branch morphology, mass, and integrated (V – I) color of the various globular clusters. The transformation equations as recommended by Sirianni et al. are based on synthetic photometry, were mostly tested on NGC 2419, and may introduce additional uncertainties when applied to different stellar populations. Such a dependence is expected due to the fact that the transformation equations are based on the observations of only one globular cluster, i.e., NGC 2419. Surprisingly, the correlation between offset and metallicity is found to be weak, with a low level significance. The correlation between offset and horizontal branch structure, as well as total cluster mass is still weaker. Based on the available data we do not find the photometric offset to be linked to multiple stellar populations, e.g., as found in NGC 0288, NGC 1851, and NGC 5139. The results of this study show that there are small systematic offsets between the transformed ACS- and observed ground-based photometry, and that these are only weakly correlated, if at all, with various cluster parameters and their underlying stellar populations. As a result, investigators wishing to transform globular cluster photometry from the Sirianni et al. ground-based V, I system onto the Stetson system simply need to add –0.040 (±0.012) to the V magnitudes and –0.047 (±0.011) to the I magnitudes. This in turn means that the transformed ACS V – I colors match the ground

  20. Radiometric calibration of optical microscopy and microspectroscopy apparata over a broad spectral range using a special thin-film luminescence standard

    Directory of Open Access Journals (Sweden)

    J. Valenta

    2015-04-01

    Full Text Available Application capabilities of optical microscopes and microspectroscopes can be considerably enhanced by a proper calibration of their spectral sensitivity. We propose and demonstrate a method of relative and absolute calibration of a microspectroscope over an extraordinary broad spectral range covered by two (parallel detection branches in visible and near-infrared spectral regions. The key point of the absolute calibration of a relative spectral sensitivity is application of the standard sample formed by a thin layer of Si nanocrystals with stable and efficient photoluminescence. The spectral PL quantum yield and the PL spatial distribution of the standard sample must be characterized by separate experiments. The absolutely calibrated microspectroscope enables to characterize spectral photon emittance of a studied object or even its luminescence quantum yield (QY if additional knowledge about spatial distribution of emission and about excitance is available. Capabilities of the calibrated microspectroscope are demonstrated by measuring external QY of electroluminescence from a standard poly-Si solar-cell and of photoluminescence of Er-doped Si nanocrystals.

  1. Radiometric calibration of optical microscopy and microspectroscopy apparata over a broad spectral range using a special thin-film luminescence standard

    International Nuclear Information System (INIS)

    Application capabilities of optical microscopes and microspectroscopes can be considerably enhanced by a proper calibration of their spectral sensitivity. We propose and demonstrate a method of relative and absolute calibration of a microspectroscope over an extraordinary broad spectral range covered by two (parallel) detection branches in visible and near-infrared spectral regions. The key point of the absolute calibration of a relative spectral sensitivity is application of the standard sample formed by a thin layer of Si nanocrystals with stable and efficient photoluminescence. The spectral PL quantum yield and the PL spatial distribution of the standard sample must be characterized by separate experiments. The absolutely calibrated microspectroscope enables to characterize spectral photon emittance of a studied object or even its luminescence quantum yield (QY) if additional knowledge about spatial distribution of emission and about excitance is available. Capabilities of the calibrated microspectroscope are demonstrated by measuring external QY of electroluminescence from a standard poly-Si solar-cell and of photoluminescence of Er-doped Si nanocrystals

  2. Weight-based synthesized standards preparation for correction-free calibration in X-ray fluorescence determination of tungsten in high-speed steel

    International Nuclear Information System (INIS)

    This paper suggests a correction-free calibration method in wavelength dispersive X-ray fluorescence analysis in order to determine tungsten as a major alloyed element in high-speed steels accurately. Matrix effects on fluorescent X-ray intensity of tungsten Lα line were minimized by borate fusion, and the total amount of tungsten in the glassy matrix could be quantified. Glass bead specimens were prepared with 10 to 12 mg of the steel sample and 4.0 g of lithium tetraborate as a flux agent. Without untraceable X-ray intensity correction, a linear calibration curve was obtained by measuring synthesized calibration standards prepared by using standard solutions. As compared with fundamental parameter calculations, the present method gave more accurate results of tungsten in certified reference materials of high-speed steel. (author)

  3. Comparison of the Calibration of Standard Platinum Thermometers by Comparison in the Range from -80°C to 300°C

    Science.gov (United States)

    Bojkovski, J.; Arifovic, N.; Hodzic, N.; Hoxha, M.; Misini, M.; Petrusova, O.; Simic, S.; Vukicevic, T.; Drnovsek, J.

    2016-03-01

    In this paper, an interlaboratory comparison in the field of measurement of temperature is presented. Within the comparison, calibration of a standard platinum resistance thermometer (SPRT) by comparisons in the range from -80°C to 300°C was performed. At the same time, in order to support the calibration and measurement capabilities (CMCs) entries of the participating laboratories, we have registered this as EURAMET Project 1251 (Comparison of the calibration of standard platinum resistance thermometers in the range from -80°C to 300°C by comparison). It was recommended that the participants use their standard procedure for the calibration of the standard platinum resistance thermometers and follow instructions from the protocol of EURAMET Project 1251 during the temperature calibration and, if possible, avoid making extra time-consuming measurements. The interlaboratory comparison was organized by the University of Ljubljana, Faculty of Electrical Engineering, Laboratory of Metrology and Quality (MIRS/UL-FE/LMK) in the scope of the IPA 2011 project. The interlaboratory comparison included a maximum of eleven measurement points. However, certain laboratories did not perform measurements at all points in the range. They have performed only measurements in the range that they cover. Prior to the calibration by comparison in each laboratory, a test measurement at the triple point of water or ice point was done in order to assess the stability of the instruments. Results of the comparison show that all the measurements agree within declared uncertainties and thus supporting declared capabilities of the participating laboratories.

  4. Update of X- and γ-ray decay data standards for detector calibration and other applications. Summary report of the 1. research co-ordination meeting

    International Nuclear Information System (INIS)

    The discussions and conclusions of the First Research Co-ordination Meeting to Update X- and γ-ray Decay Data Standards for Detector Calibration are described in this summary report. The agreed list of radionuclides to be evaluated is given, along with the evaluation procedures and assignment of tasks among participants of the CRP. 14 presentations given at the meeting were indexed separately

  5. Spectral Irradiance Calibration in the Infrared. Part 4; 1.2-35 micrometer Spectra of Six Standard Stars

    Science.gov (United States)

    Cohen, Martin; Witteborn, Fred C.; Walker, Russell, G.; Bregman, Jesse D.; Wooden, Diane H.

    1995-01-01

    Five new absolutely calibrated continuous stellar spectra from 1.2 to 35 microns are presented. The spectra were constructed as far as possible from actual observed spectral fragments taken from the ground, the Kuiper Airborne Observatory (KAO), and the IRAS Low Resolution Spectrometer (LRS). These stars (beta Peg, alpha Boo, beta And, beta Gem, and alpha Hya) augment the author's already created complete absolutely calibrated spectrum for alpha Tau. All these spectra have a common calibration pedigree. The wavelength coverage is ideal for calibration of many existing and proposed ground-based, airborne, and satellite sensors.

  6. Spectral Irradiance Calibration in the Infrared. Part 4; 1.2 - 35 microns Spectra of Six Standard Stars

    Science.gov (United States)

    Cohen, Martin; Witteborn, Fred C.; Walker, Russell G.; Bregman, Jesse D.; Wooden, Diane H.

    1995-01-01

    We present five new absolutely calibrated continuous stellar spectra from 1.2 to 35 microns, constructed as far as possible from actual observed spectral fragments taken from the ground, the Kuiper Airborne Observatory (KAO), and the IRAS Low Resolution Spectrometer (LRS). These stars- beta Peg, alpha Boo, beta And, beta Gem, and alpha Hya-augment our already created complete absolutely calibrated spectrum for alpha Tau. All these spectra have a common calibration pedigree. The wavelength coverage is ideal for calibration of many existing and proposed ground-based, airborne, and satellite sensors.

  7. Spectral Irradiance Calibration in the Infrared. 4; 1.2-35um Spectra of Six Standard Stars

    Science.gov (United States)

    Cohen, Martin; Witteborn, Fred C.; Walker, Russell G.; Bregman, Jesse D.; Wooden, Diane H.

    1995-01-01

    We present five new absolutely calibrated continuous stellar spectra from 1.2 to 35 microns, constructed as far as possible from actual observed spectral fragments taken from the ground, the Kuiper Airborne Observatory (KAO), and the IRAS Low Resolution Spectrometer (LRS). These stars, Beta Peg, Delta Boo, Beta And, Beta Gem, and Delta Hya, augment our already created complete absolutely calibrated spectrum for a Tau. All these spectra have a common calibration pedigree. The wavelength coverage is ideal for calibration of many existing and proposed ground-based, airborne, and satellite sensors.

  8. The standardization methods of radioactive sources (125I, 131I, 99mTc, and 18F) for calibrating nuclear medicine equipment in Indonesia

    Science.gov (United States)

    Wurdiyanto, G.; Candra, H.

    2016-03-01

    The standardization of radioactive sources (125I, 131I, 99mTc and 18F) to calibrate the nuclear medicine equipment had been carried out in PTKMR-BATAN. This is necessary because the radioactive sources used in the field of nuclear medicine has a very short half-life in other that to obtain a quality measurement results require special treatment. Besides that, the use of nuclear medicine techniques in Indonesia develop rapidly. All the radioactive sources were prepared by gravimetric methods. Standardization of 125I has been carried out by photon- photon coincidence methods, while the others have been carried out by gamma spectrometry methods. The standar sources are used to calibrate a Capintec CRC-7BT radionuclide calibrator. The results shows that calibration factor for Capintec CRC-7BT dose calibrator is 1,03; 1,02; 1,06; and 1,04 for 125I, 131I, 99mTc and 18F respectively, by about 5 to 6% of the expanded uncertainties.

  9. Report on the consultants' meeting on preparation of the proposal for a coordinated research project to update X- and γ-ray decay data standards for detector calibration

    International Nuclear Information System (INIS)

    The IAEA Nuclear Data Section has been charged by the International Nuclear Data Committee to consider the establishment of a Coordinated Research Project (CRP) to update the IAEA database of X-ray and γ-ray Standards for Detector Calibration. This CRP should re-define the radionuclides most suited for detector calibration, extending applications to safeguards, materials analysis, environmental monitoring, and medical use. This document is a report on the Consultants' Meeting held at IAEA, Vienna, between 24-25 November 1997 to assess the current needs, re-define the most suitable radionuclides, and advise the IAEA Nuclear Data Section on the need and form of such a CRP

  10. A novel strategy for preparing calibration standards for the analysis of plant materials by laser-induced breakdown spectroscopy: A case study with pellets of sugar cane leaves

    International Nuclear Information System (INIS)

    Calibration is still a challenging task when dealing with the direct analysis of solids. This is particularly true for laser-induced breakdown spectroscopy (LIBS), and laser ablation inductively coupled plasma optical emission spectrometry/mass spectrometry, when the calibrations are matrix-dependent and/or appropriate certified reference materials are generally not available. Looking at the analysis of plant materials in the form of pressed pellets by LIBS, a new method to overcome and/or minimize this difficulty is proposed by keeping the matrix constant in order to produce matrix-matched calibration pellets. To achieve this goal and to test this novel approach, ground sugar cane leaves were chosen and submitted to acid extractions for obtaining the corresponding blank or a material containing very low concentrations of the analytes. The resulting dried solid material was used either as a blank or a low concentration standard, and also homogeneously mixed with the original plant material at appropriate ratios as well. The corresponding pellets were used as calibration standards and ablated at 30 different sites by applying 25 laser pulses per site with a Q-switched Nd:YAG at 1064 nm. The plasma emission collected by lenses was directed through an optical fiber towards a spectrometer equipped with Echelle optics and intensified charge-coupled device. Delay time and integration time gate were fixed at 2.0 and 5.0 μs, respectively. This calibration strategy was tested for the determination of Ca, Mg, K, P, Cu, Mn, and Zn by LIBS in pellets of leaves from 17 varieties of sugar cane and good correlations were obtained with inductively coupled plasma optical emission spectrometry results in the corresponding acid digests. The proposed approach was also useful to estimate the limits of detection based on measurements of blanks, as recommended by IUPAC, or with the aid of a low concentration standard. - Highlights: • Blanks and/or low concentration standards of plant

  11. A novel strategy for preparing calibration standards for the analysis of plant materials by laser-induced breakdown spectroscopy: A case study with pellets of sugar cane leaves

    Energy Technology Data Exchange (ETDEWEB)

    Silva Gomes, Marcos da [Universidade de São Paulo, Centro de Energia Nuclear na Agricultura (CENA), Laboratório de Química Analítica, Caixa Postal 96, CEP 13416-000, Piracicaba, SP (Brazil); Universidade Federal de São Carlos, Departamento de Química, Rodovia Washington Luiz km 235, São Carlos, SP (Brazil); Gustinelli Arantes de Carvalho, Gabriel [Universidade de São Paulo, Centro de Energia Nuclear na Agricultura (CENA), Laboratório de Química Analítica, Caixa Postal 96, CEP 13416-000, Piracicaba, SP (Brazil); Santos, Dário [Universidade Federal de São Paulo, Departamento de Ciências Exatas e da Terra, Rua Professor Arthur Riedel 275, Diadema, SP (Brazil); Krug, Francisco José, E-mail: fjkrug@cena.usp.br [Universidade de São Paulo, Centro de Energia Nuclear na Agricultura (CENA), Laboratório de Química Analítica, Caixa Postal 96, CEP 13416-000, Piracicaba, SP (Brazil)

    2013-08-01

    Calibration is still a challenging task when dealing with the direct analysis of solids. This is particularly true for laser-induced breakdown spectroscopy (LIBS), and laser ablation inductively coupled plasma optical emission spectrometry/mass spectrometry, when the calibrations are matrix-dependent and/or appropriate certified reference materials are generally not available. Looking at the analysis of plant materials in the form of pressed pellets by LIBS, a new method to overcome and/or minimize this difficulty is proposed by keeping the matrix constant in order to produce matrix-matched calibration pellets. To achieve this goal and to test this novel approach, ground sugar cane leaves were chosen and submitted to acid extractions for obtaining the corresponding blank or a material containing very low concentrations of the analytes. The resulting dried solid material was used either as a blank or a low concentration standard, and also homogeneously mixed with the original plant material at appropriate ratios as well. The corresponding pellets were used as calibration standards and ablated at 30 different sites by applying 25 laser pulses per site with a Q-switched Nd:YAG at 1064 nm. The plasma emission collected by lenses was directed through an optical fiber towards a spectrometer equipped with Echelle optics and intensified charge-coupled device. Delay time and integration time gate were fixed at 2.0 and 5.0 μs, respectively. This calibration strategy was tested for the determination of Ca, Mg, K, P, Cu, Mn, and Zn by LIBS in pellets of leaves from 17 varieties of sugar cane and good correlations were obtained with inductively coupled plasma optical emission spectrometry results in the corresponding acid digests. The proposed approach was also useful to estimate the limits of detection based on measurements of blanks, as recommended by IUPAC, or with the aid of a low concentration standard. - Highlights: • Blanks and/or low concentration standards of plant

  12. NBS (National Bureau of Standards) measurement services: calibration of beta-particle-emitting ophthalmic applicators. Final report

    International Nuclear Information System (INIS)

    The service provides calibrations for (90)Sr + (90)Y beta-particle ophthalmic applicators. The calibration determines the average surface absorbed-dose rate to water over the active area of the applicator. The technique used is to measure current per unit mass of air at the active surface with an extrapolation ionization chamber, and to convert this into absorbed-dose rate with Bragg-Gray cavity ionization theory. The extrapolation chamber measurements are made in three parts. Data-book measurements and a calibration report are given for one particular applicator

  13. Standard Test Method for Calibration of Primary Non-Concentrator Terrestrial Photovoltaic Reference Cells Using a Tabular Spectrum

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This test method is intended to be used for calibration and characterization of primary terrestrial photovoltaic reference cells to a desired reference spectral irradiance distribution, such as Tables G173. The recommended physical requirements for these reference cells are described in Specification E1040. Reference cells are principally used in the determination of the electrical performance of photovoltaic devices. 1.2 Primary photovoltaic reference cells are calibrated in natural sunlight using the relative spectral response of the cell, the relative spectral distribution of the sunlight, and a tabulated reference spectral irradiance distribution. 1.3 This test method requires the use of a pyrheliometer that is calibrated according to Test Method E816, which requires the use of a pyrheliometer that is traceable to the World Radiometric Reference (WRR). Therefore, reference cells calibrated according to this test method are traceable to the WRR. 1.4 This test method is a technique that may be used ...

  14. A novel strategy for preparing calibration standards for the analysis of plant materials by laser-induced breakdown spectroscopy: A case study with pellets of sugar cane leaves

    Science.gov (United States)

    da Silva Gomes, Marcos; de Carvalho, Gabriel Gustinelli Arantes; Santos, Dário, Junior; Krug, Francisco José

    2013-08-01

    Calibration is still a challenging task when dealing with the direct analysis of solids. This is particularly true for laser-induced breakdown spectroscopy (LIBS), and laser ablation inductively coupled plasma optical emission spectrometry/mass spectrometry, when the calibrations are matrix-dependent and/or appropriate certified reference materials are generally not available. Looking at the analysis of plant materials in the form of pressed pellets by LIBS, a new method to overcome and/or minimize this difficulty is proposed by keeping the matrix constant in order to produce matrix-matched calibration pellets. To achieve this goal and to test this novel approach, ground sugar cane leaves were chosen and submitted to acid extractions for obtaining the corresponding blank or a material containing very low concentrations of the analytes. The resulting dried solid material was used either as a blank or a low concentration standard, and also homogeneously mixed with the original plant material at appropriate ratios as well. The corresponding pellets were used as calibration standards and ablated at 30 different sites by applying 25 laser pulses per site with a Q-switched Nd:YAG at 1064 nm. The plasma emission collected by lenses was directed through an optical fiber towards a spectrometer equipped with Echelle optics and intensified charge-coupled device. Delay time and integration time gate were fixed at 2.0 and 5.0 μs, respectively. This calibration strategy was tested for the determination of Ca, Mg, K, P, Cu, Mn, and Zn by LIBS in pellets of leaves from 17 varieties of sugar cane and good correlations were obtained with inductively coupled plasma optical emission spectrometry results in the corresponding acid digests. The proposed approach was also useful to estimate the limits of detection based on measurements of blanks, as recommended by IUPAC, or with the aid of a low concentration standard.

  15. Effect of storage regime on the stability of DNA used as a calibration standard for real-time polymerase chain reaction.

    Science.gov (United States)

    Podivinsky, Ellen; Love, John L; van der Colff, Loraine; Samuel, Laly

    2009-11-01

    This article looks at storage factors influencing the stability of potential DNA calibration standards for use in quantitative polymerase chain reaction (PCR). Target sequences from the bacteria Campylobacter jejuni were cloned into a plasmid vector. Samples of these potential calibration standards were stored at +4, -20, and -80 degrees C as aqueous and lyophilized samples and were prepared as both single-use aliquots and multiple-use preparations. Results showed that the samples stored as single-use aqueous solutions at +4 degrees C and lyophilized samples stored at +4 and -20 degrees C were the most stable. Samples stored as frozen aqueous solutions at -20 degrees C were the least stable. PMID:19549501

  16. Air kerma standardization for diagnostic radiology, and requirements proposal for calibration laboratories; Padronizacao da grandeza Kerma no ar para radiodiagnostico e proposta de requisitos para laboratorios de calibracao

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Manoel Mattos Oliveira

    2009-07-01

    The demand for calibration services and quality control in diagnostic radiology has grown in the country since the publication of the governmental regulation 453, issued by the Ministry of Health in 1998. At that time, to produce results facing the new legislation, many laboratories used different standards and radiation qualities, some of which could be inadequate. The international standards neither supplied consistent radiation qualities and standardization for the different types of equipment available. This situation changed with the publication of the new edition of the IEC 61267 standard, published in 2005. A metrology network was created, but it is not yet accredited by the accreditation organism of the country, INMETRO. The objective of this work was to implement the standardization of the air kerma for the un attenuated qualities (RQR) of IEC 61267, and to develop a requirement proposal for instruments calibration laboratories. Results of interlaboratory comparisons demonstrate that the quantity is standardized and internationally traceable. A laboratory requirement proposal was finalized and it shall be submitted to INMETRO to be used as auxiliary normative document in laboratory accreditation. (author)

  17. Fabrication of SO/sub 2/preparation system and calibration of PINSTECH sulfur standard for /sup 34/S/sup 32/S mass spectrometric analysis

    International Nuclear Information System (INIS)

    This report describes the fabrication and standardization of operation procedures of a SO/sub 2/ preparation system used for the extraction of sulfur dioxide gas from sulfur minerals (aqueous sulfate, elemental sulfur, and sulfides) for sulfur isotope ratio measurements on a gas source mass spectrometer for hydrological, geological and environmental applications. SO/sub 2/ preparation procedure as described by Fumitaka Yanagisawa and Hitoshi Sakai (1983) is adopted with some modifications. A chemically pure BaSO/sub 4/ powder is chosen as PINSTECH Sulfur Standard PSS-I for routine laboratory /sup 34/S analysis. PSS-1 is calibrated against the International Atomic Energy Agency (IAEA) standard Cannon Diablo Troilite (CDT) using the NBS-127 sulfur standard Sigma /sup 34/S values of PSS-1 as analyzed at PINSTECH and Institute fur Hydorlogie, Munich are found to be 14.58 +-0.07 % CDT (n=6) and 14.59+-0.15% CDT (n=2) respectively. NBS-127 is BaSO/sub 4/ powder from the National Bureau of Standards, USA and has been calibrated against CDT. Interlaboratory comparison of various standards is also documented. Using this system, the reproducibility of sulfur isotope ratio measurements is better than +-0.2 % (n=10). (author)

  18. The Optics and Alignment of the Divergent Beam Laboratory X-ray Powder Diffractometer and its Calibration Using NIST Standard Reference Materials

    OpenAIRE

    Cline, James P.; Mendenhall, Marcus H.; Black, David; Windover, Donald; Henins, Albert

    2015-01-01

    The laboratory X-ray powder diffractometer is one of the primary analytical tools in materials science. It is applicable to nearly any crystalline material, and with advanced data analysis methods, it can provide a wealth of information concerning sample character. Data from these machines, however, are beset by a complex aberration function that can be addressed through calibration with the use of NIST Standard Reference Materials (SRMs). Laboratory diffractometers can be set up in a range o...

  19. Update of X- and γ-ray decay data standards for detector calibration and other applications. Summary report of the second research co-ordination meeting

    International Nuclear Information System (INIS)

    The Second Research Co-ordination Meeting to Update X- and γ-ray Decay Data Standards for Detector Calibration was held at PTB Braunschweig from 10 to 12 May 2000. A primary aim of this meeting was to review progress in the evaluation and recommendation of data under the auspices of the CRP. All CRP activities were reviewed, and actions agreed for the remaining 18 months of the programme. Separate indexing was provided for 13 contributions to the meeting

  20. Spectral Irradiance Calibration in the Infrared. Part 6; 3-35 microns Spectra of Three Southern Standard Stars

    Science.gov (United States)

    Cohen, Martin; Witteborn, Fred C.; Bregman, Jesse D.; Wooden, Diane H.; Salama, Alberto; Metcalfe, Leo

    1996-01-01

    We present three new absolutely calibrated continuous stellar spectra from 3 to 35 microns, constructed as far as possible from actual observed spectral fragments taken from the Kuiper Airborne Observatory (KAO), and the IRAS Low Resolution Spectrometer (LRS). These stars- alpha(sup 1) Cen, alpha TrA, and epsilon Car-augment our previous archive of complete absolutely calibrated spectra for northern K and M giants. All these spectra have a common calibration pedigree. The wavelength coverage is ideal for calibration of many existing and proposed ground-based, airborne, and satellite sensors. KAO and IRAS data in the 15-30 micron range suggest that the spectra of cool giants are close to Rayleigh-Jeans slopes. Our observations of alpha(sup 1) Cen, absolutely calibrated via our adopted Sirius model, indicate an angular diameter in very good agreement with values in the literature, demonstrating 'closure' of the set of spectra within our absolute framework. We compare our observed alpha(sup 1) Cen spectrum with a published grid of theoretical models from Kurucz, and adopt a plausible theoretical shape, that fits our spectrum, as a secondary reference spectrum in the southern sky.

  1. Calibration of the modulation transfer function of surface profilometers with binary pseudo-random test standards: expanding the application range

    International Nuclear Information System (INIS)

    A modulation transfer function (MTF) calibration method based on binary pseudo-random (BPR) gratings and arrays (Proc. SPIE 7077-7 (2007), Opt. Eng. 47, 073602 (2008)) has been proven to be an effective MTF calibration method for a number of interferometric microscopes and a scatterometer (Nucl. Instr. and Meth. A616, 172 (2010)). Here we report on a further expansion of the application range of the method. We describe the MTF calibration of a 6 inch phase shifting Fizeau interferometer. Beyond providing a direct measurement of the interferometer's MTF, tests with a BPR array surface have revealed an asymmetry in the instrument's data processing algorithm that fundamentally limits its bandwidth. Moreover, the tests have illustrated the effects of the instrument's detrending and filtering procedures on power spectral density measurements. The details of the development of a BPR test sample suitable for calibration of scanning and transmission electron microscopes are also presented. Such a test sample is realized as a multilayer structure with the layer thicknesses of two materials corresponding to BPR sequence. The investigations confirm the universal character of the method that makes it applicable to a large variety of metrology instrumentation with spatial wavelength bandwidths from a few nanometers to hundreds of millimeters.

  2. Calibration of the modulation transfer function of surface profilometers with binary pseudo-random test standards: expanding the application range

    Energy Technology Data Exchange (ETDEWEB)

    Yashchuk, Valeriy V.; Anderson, Erik H.; Barber, Samuel K.; Bouet, Nathalie; Cambie, Rossana; Conley, Raymond; McKinney, Wayne R.; Takacs, Peter Z.; Voronov, Dmitriy L.

    2011-03-14

    A modulation transfer function (MTF) calibration method based on binary pseudo-random (BPR) gratings and arrays [Proc. SPIE 7077-7 (2007), Opt. Eng. 47, 073602 (2008)] has been proven to be an effective MTF calibration method for a number of interferometric microscopes and a scatterometer [Nucl. Instr. and Meth. A616, 172 (2010)]. Here we report on a further expansion of the application range of the method. We describe the MTF calibration of a 6 inch phase shifting Fizeau interferometer. Beyond providing a direct measurement of the interferometer's MTF, tests with a BPR array surface have revealed an asymmetry in the instrument's data processing algorithm that fundamentally limits its bandwidth. Moreover, the tests have illustrated the effects of the instrument's detrending and filtering procedures on power spectral density measurements. The details of the development of a BPR test sample suitable for calibration of scanning and transmission electron microscopes are also presented. Such a test sample is realized as a multilayer structure with the layer thicknesses of two materials corresponding to BPR sequence. The investigations confirm the universal character of the method that makes it applicable to a large variety of metrology instrumentation with spatial wavelength bandwidths from a few nanometers to hundreds of millimeters.

  3. Calibration of the modulation transfer function of surface profilometers with binary pseudo-random test standards: Expanding the application range

    Energy Technology Data Exchange (ETDEWEB)

    Yashchuk, Valeriy V; Anderson, Erik H.; Barber, Samuel K.; Bouet, Nathalie; Cambie, Rossana; Conley, Raymond; McKinney, Wayne R.; Takacs, Peter Z.; Voronov, Dmitriy L.

    2010-07-26

    A modulation transfer function (MTF) calibration method based on binary pseudo-random (BPR) gratings and arrays [Proc. SPIE 7077-7 (2007), Opt. Eng. 47(7), 073602-1-5 (2008)] has been proven to be an effective MTF calibration method for a number of interferometric microscopes and a scatterometer [Nucl. Instr. and Meth. A 616, 172-82 (2010]. Here we report on a significant expansion of the application range of the method. We describe the MTF calibration of a 6 inch phase shifting Fizeau interferometer. Beyond providing a direct measurement of the interferometer's MTF, tests with a BPR array surface have revealed an asymmetry in the instrument's data processing algorithm that fundamentally limits its bandwidth. Moreover, the tests have illustrated the effects of the instrument's detrending and filtering procedures on power spectral density measurements. The details of the development of a BPR test sample suitable for calibration of scanning and transmission electron microscopes are also presented. Such a test sample is realized as a multilayer structure with the layer thicknesses of two materials corresponding to BPR sequence. The investigations confirm the universal character of the method that makes it applicable to a large variety of metrology instrumentation with spatial wavelength bandwidths from a few nanometers to hundreds of millimeters.

  4. Calibration and operation of the AAEC working standard of measurement for the activity of radionuclides. Pt. 2. Ion chamber analysis

    International Nuclear Information System (INIS)

    As a secondary method for the determination of radioactivity, the ion chamber is both convenient and precise. The equations used in the calibration of the equipment and in the calculation of unknown activities are fully derived, and it is shown that the experimental procedure outlined is the optimum for both precision and convenience

  5. ORNL calibrations facility

    International Nuclear Information System (INIS)

    The ORNL Calibrations Facility is operated by the Instrumentation Group of the Industrial Safety and Applied Health Physics Division. Its primary purpose is to maintain radiation calibration standards for calibration of ORNL health physics instruments and personnel dosimeters. This report includes a discussion of the radioactive sources and ancillary equipment in use and a step-by-step procedure for calibration of those survey instruments and personnel dosimeters in routine use at ORNL

  6. Analytical multicollimator camera calibration

    Science.gov (United States)

    Tayman, W.P.

    1978-01-01

    Calibration with the U.S. Geological survey multicollimator determines the calibrated focal length, the point of symmetry, the radial distortion referred to the point of symmetry, and the asymmetric characteristiecs of the camera lens. For this project, two cameras were calibrated, a Zeiss RMK A 15/23 and a Wild RC 8. Four test exposures were made with each camera. Results are tabulated for each exposure and averaged for each set. Copies of the standard USGS calibration reports are included. ?? 1978.

  7. Concentration effects on laser-based δ18 O and δ2 H measurements and implications for the calibration of vapour measurements with liquid standards.

    Science.gov (United States)

    Schmidt, Markus; Maseyk, Kadmiel; Lett, Céline; Biron, Philippe; Richard, Patricia; Bariac, Thierry; Seibt, Ulli

    2010-12-30

    Recently available isotope ratio infrared spectroscopy can directly measure the isotopic composition of atmospheric water vapour (δ(18) O, δ(2) H), overcoming one of the main limitations of isotope ratio mass spectrometry (IRMS) methods. Calibrating these gas-phase instruments requires the vapourisation of liquid standards since primary standards in principle are liquids. Here we test the viability of calibrating a wavelength-scanned cavity ring-down spectroscopy (CRDS) instrument with vapourised liquid standards. We also quantify the dependency of the measured isotope values on the water concentration for a range of isotopic compositions. In both liquid and vapour samples, we found an increase in δ(18) O and δ(2) H with water vapour concentration. For δ(18) O, the slope of this increase was similar for liquid and vapour, with a slight positive relationship with sample δ-value. For δ(2) H, we found diverging patterns for liquid and vapour samples, with no dependence on δ-value for vapour, but a decreasing slope for liquid samples. We also quantified tubing memory effects to step changes in isotopic composition, avoiding concurrent changes in the water vapour concentration. Dekabon tubing exhibited much stronger, concentration-dependent, memory effects for δ(2) H than stainless steel or perfluoroalkoxy (PFA) tubing. Direct vapour measurements with CRDS in a controlled experimental chamber agreed well with results obtained from vapour simultaneously collected in cold traps analysed by CRDS and IRMS. We conclude that vapour measurements can be calibrated reliably with liquid standards. We demonstrate how to take the concentration dependencies of the δ-values into account. Copyright © 2010 John Wiley & Sons, Ltd. PMID:21080508

  8. SEALDH-II: An airborne, autonomous, calibration-free TDLAS Hygrometer. First in-flight results with metrological links to the German Primary Humidity Standards

    Science.gov (United States)

    Buchholz, B.; Ebert, V.

    2014-12-01

    The accuracy and comparability of airborne hygrometers remains under debate often only reaching ±10% under static lab conditions or even >±30% in flight. This often limits atmospheric models as well as other species sensors which need to be corrected for water vapor dilution or cross sensitivity. Further challenges come from the huge dynamic range (2-40000 ppmv), the strong spatial gradients (up to several 1000 ppmv/s). and the difficult and error-prone calibration processes, very often without any direct links to the accurate global metrological water vapor scales, which are defined via national primary humidity generators. To fill this gap and provide "traceable", i.e. metrologically validated, airborne hygrometers we developed the Selective Extractive Airborne Laser Diode Hygrometer, SEALDH, which uses dTDLAS with a special, calibration-free data evaluation to circumvent the need for frequent field calibrations and to ensure high accuracy and comparability by a holistic data quality assurance concept in combination with extensive metrological validations at national primary standards. Thus SEALDH-II can be used in a calibration-free field sensor mode (with an absolute, metrologically defined uncertainty of 4.3% +- 3ppmv). The response time is mainly limited by the gas flow and significantly below 1 sec, yielding precision down to 0.08 ppmv (1σ, 1sec) measured at 600 ppmv and 1000 hPa. Its excellent long-term stability, field transfer standard. SEALDH-II has been recently operated without any failures for over 50 hours on several airborne science missions (DENCHAR, AIRTOSS-I, and AIRTOSS-II). In addition SEALDH participated in the representative, international comparison AquaVIT-II. The performance during these missions and the value of a traceability will be demonstrated and discussed.

  9. In-situ calibration of clinical built-in KAP meters with traceability to a primary standard using a reference KAP meter

    Science.gov (United States)

    Malusek, A.; Helmrot, E.; Sandborg, M.; Grindborg, J.-E.; Alm Carlsson, G.

    2014-12-01

    The air kerma-area product (KAP) is used for settings of diagnostic reference levels. The International Atomic Energy Agency (IAEA) recommends that doses in diagnostic radiology (including the KAP values) be estimated with an accuracy of at least ±7% (k = 2). Industry standards defined by the International Electrotechnical Commission (IEC) specify that the uncertainty of KAP meter measurements should be less than +/- 25% (k = 2). Medical physicists willing to comply with the IAEA’s recommendation need to apply correction factors to KAP values reported by x-ray units. The aim of this work is to present and evaluate a calibration method for built-in KAP meters on clinical x-ray units. The method is based on (i) a tandem calibration method, which uses a reference KAP meter calibrated to measure the incident radiation, (ii) measurements using an energy-independent ionization chamber to correct for the energy dependence of the reference KAP meter, and (iii) Monte Carlo simulations of the beam quality correction factors that correct for differences between beam qualities at a standard laboratory and the clinic. The method was applied to the KAP meter in a Siemens Aristos FX plus unit. It was found that values reported by the built-in KAP meter differed from the more accurate values measured by the reference KAP meter by more than 25% for high tube voltages (more than 140 kV) and heavily filtered beams (0.3 mm Cu). Associated uncertainties were too high to claim that the IEC’s limit of 25% was exceeded. Nevertheless the differences were high enough to justify the need for a more accurate calibration of built-in KAP meters.

  10. Optical Path Length Calibration: A Standard Approach for Use in Absorption Cell-Based IR-Spectrometric Gas Analysis

    OpenAIRE

    Javis Anyangwe Nwaboh; Oliver Witzel; Andrea Pogány; Olav Werhahn; Volker Ebert

    2014-01-01

    We employed a comparison method to determine the optical path length of gas cells which can be used in spectroscopic setup based on laser absorption spectroscopy or FTIR. The method is based on absorption spectroscopy itself. A reference gas cell, whose length is a priori known and desirably traceable to the international system of units (SI), and a gas mixture are used to calibrate the path length of a cell under test. By comparing spectra derived from pressure-dependent measurements on the ...

  11. (60)Co in cast steel matrix: A European interlaboratory comparison for the characterisation of new activity standards for calibration of gamma-ray spectrometers in metallurgy.

    Science.gov (United States)

    Tzika, Faidra; Burda, Oleksiy; Hult, Mikael; Arnold, Dirk; Marroyo, Belén Caro; Dryák, Pavel; Fazio, Aldo; Ferreux, Laurent; García-Toraño, Eduardo; Javornik, Andrej; Klemola, Seppo; Luca, Aurelian; Moser, Hannah; Nečemer, Marijan; Peyrés, Virginia; Reis, Mario; Silva, Lidia; Šolc, Jaroslav; Svec, Anton; Tyminski, Zbigniew; Vodenik, Branko; Wätjen, Uwe

    2016-08-01

    Two series of activity standards of (60)Co in cast steel matrix, developed for the calibration of gamma-ray spectrometry systems in the metallurgical sector, were characterised using a European interlaboratory comparison among twelve National Metrology Institutes and one international organisation. The first standard, consisting of 14 disc shaped samples, was cast from steel contaminated during production ("originally"), and the second, consisting of 15 similar discs, from artificially-contaminated ("spiked") steel. The reference activity concentrations of (60)Co in the cast steel standards were (1.077±0.019) Bqg(-1) on 1 January 2013 12h00 UT and (1.483±0.022) Bqg(-1) on 1 June 2013 12h00 UT, respectively. PMID:27236833

  12. Isolation and purification of the xenon fraction of 252Cf spontaneous fission products for the production of radioactive xenon calibration standards

    International Nuclear Information System (INIS)

    Idaho National Laboratory (INL) produces 135Xe, 133mXe, 133Xe, and 131mXe standards for the calibration and testing of the collection equipment and analytical techniques used to monitor radioactive xenon emissions. At INL, xenon is produced and collected as one of several spontaneous fission products from a 252Cf source in a stagnant volume of pressurized helium. Solids are separated from gases by sintered steel filtration. Further chromatographic purification of the fission gases separates the xenon fraction for selective collection. An explanation of gas system, separation, and purification is presented. 135Xe and 133Xe activity ratio adjustments are explained. (author)

  13. Use of CRM's as mutual calibrating materials and control of synthetic multielement standards as used in INAA

    International Nuclear Information System (INIS)

    The comparability of analytical results from different laboratories requires accurately known concentrations in the applied standards. Dilution effects of different multielement synthetic standard solutions have been studied by measuring 10 - 12 different concentrations of the same solution. Peak area comparison of four Certified Reference Materials (CRM's) using one value for the evaluation of the other three repetitively led to the intercomparison (degree of compatibility) of the certified values. The idea of the preparation of each laboratory's ''secondary reference standard'' by comparison of synthetic multielement standards with as many CRM's as practically feasible is advocated to improve the reliability of analytical results. (author)

  14. Remote calibration of ionization chambers for radioactivity calibration

    International Nuclear Information System (INIS)

    A new calibration technique, referred to as e-trace, has been developed by the National Institute of Advanced Industrial Science and Technology (AIST). The e-trace technique enables rapid remote calibration of measurement equipment and requires minimal resources. We calibrated radioisotope calibrators of the Japan Radioisotope Association (JRIA) and the Nishina Memorial Cyclotron Center (NMCC) remotely and confirmed that remote calibration provided results that are consistent with the results obtained by existing methods within the limits of uncertainty. Accordingly, e-trace has been approved as the standard calibration method at AIST. We intend to apply remote calibration to radioisotope calibrators in hospitals and isotope facilities. (author)

  15. Fabrication of grating-like polystyrene latex monolayer structure as three-dimensional calibration standards for scanning probe microscope

    Institute of Scientific and Technical Information of China (English)

    Zhu Guo-Dong; Zeng Zhi-Gang; Guo Zhang; Du Qiang-Guo; Yan Xue-Jian

    2009-01-01

    This paper illuminates the preparation of grating-like polystyrene latex monolayer structure, which can minimize the effects of the size deviation of spheres and the defect transfer on the accuracy as calibration samples for micro-scopes. The latex films are grown on freshly cleaved mica substrates by vertical deposition method. The concentration dependence of the structure and the topography of latex films is characterized by optical microscope, ultraviolet-visible transmission spectrum and scanning probe microscope. The origination of such a grating-like structure is also discussed.

  16. Critical issues for implementation of the standard NBR ISO/IEC 17025:2005 in Testing and Calibration Laboratory: case study at a public institution

    International Nuclear Information System (INIS)

    The public institution aims to promote excellence in public management to contribute to the quality of services provided to its customers and to increase competitiveness in the country, as well as its international projection. A technical barrier to trade that can lead to dissatisfaction and achieve the reputation of the institution is failing the test or calibration results and measurement data, thereby accreditation is regarded as the first essential step to facilitate the mutual acceptance of test results and calibration or measurement data. For recognition, laboratories need to demonstrate full compliance with both the sections of ISO/IEC 17025:2005, i.e. management and technical requirements. This research aims to discuss the critical aspects for implementation of ABNT NBR ISO / IEC 17025:2005 for calibration and testing of a Public Institution seeking accreditation of its laboratories with INMETRO, national accreditation body Laboratories. Besides getting preventive, corrective and improvement actions continues guidelines. Furthermore, the methodology used was to conduct a literature search and apply a questionnaire to identify the degree of agreement / disagreement of the foundations of the standard servers. Analysis of the results showed that the critical issues were: commitment, training, resources (infrastructure, human) and culture. (author)

  17. Use of CRM's as mutual calibrating materials and control of synthetic multielement standards as used in INAA

    International Nuclear Information System (INIS)

    Dilution effects of different multielement synthetic standard solutions were studied by measuring 10-12 different concentrations of the same solution. Peak area comparison of four Certified Reference Materials (CRMs) using one value for the evaluation of the other three repetitively led to the intercomparison (degree of compatibility) of the certified values. The idea of the preparation of each laboratory's 'secondary reference standard' by comparison of synthetic multielement standards with as many CRMs as practically feasible is advocated to improve the reliability of analytical results. (author)

  18. RF impedance measurement calibration

    International Nuclear Information System (INIS)

    The intent of this note is not to explain all of the available calibration methods in detail. Instead, we will focus on the calibration methods of interest for RF impedance coupling measurements and attempt to explain: (1). The standards and measurements necessary for the various calibration techniques. (2). The advantages and disadvantages of each technique. (3). The mathematical manipulations that need to be applied to the measured standards and devices. (4). An outline of the steps needed for writing a calibration routine that operated from a remote computer. For further details of the various techniques presented in this note, the reader should consult the references

  19. Preparation of Calibration Standards of N1-H Paralytic Shellfish Toxin Analogues by Large-Scale Culture of Cyanobacterium Anabaena circinalis (TA04

    Directory of Open Access Journals (Sweden)

    Toshiyuki Suzuki

    2011-03-01

    Full Text Available Mouse bioassay is the official testing method to quantify paralytic shellfish toxins (PSTs in bivalves. A number of alternative analytical methods have been reported. Some methods have been evaluated by a single laboratory validation. Among the different types of methods, chemical analyses are capable of identifying and quantifying the toxins, however a shortage of the necessary calibration standards hampers implementation of the chemical analyses in routine monitoring of PSTs in bivalves. In our present study, we studied preparation of major PST analogues as calibrants by large-scale cultivation of toxic freshwater cyanobacteria Anabaena circinalis TA04. The cells were steadily grown in 10 L bottle for 28 days. The primary N1-H toxins, C1/C2, were produced at a concentration of 1.3 ± 0.1 µmol/L. The intracellular and extracellular toxins occupied 80% and 20%, respectively. Over 220 µmol of the toxins was obtained from approximately 200 L of the culture over six months, demonstrating that it is sufficient to prepare saxitoxin analogues. The toxins were chemically converted to six N1-H analogues. Preparation of the analogues was carried out at relatively high yields (50–90%. The results indicate that our preparation method is useful to produce N1-H toxins. In our present study, detailed conditions for preparation of one of the rare N1-H analogues, gonyautoxin-5, were investigated.

  20. The Optics and Alignment of the Divergent Beam Laboratory X-ray Powder Diffractometer and its Calibration Using NIST Standard Reference Materials.

    Science.gov (United States)

    Cline, James P; Mendenhall, Marcus H; Black, David; Windover, Donald; Henins, Albert

    2015-01-01

    The laboratory X-ray powder diffractometer is one of the primary analytical tools in materials science. It is applicable to nearly any crystalline material, and with advanced data analysis methods, it can provide a wealth of information concerning sample character. Data from these machines, however, are beset by a complex aberration function that can be addressed through calibration with the use of NIST Standard Reference Materials (SRMs). Laboratory diffractometers can be set up in a range of optical geometries; considered herein are those of Bragg-Brentano divergent beam configuration using both incident and diffracted beam monochromators. We review the origin of the various aberrations affecting instruments of this geometry and the methods developed at NIST to align these machines in a first principles context. Data analysis methods are considered as being in two distinct categories: those that use empirical methods to parameterize the nature of the data for subsequent analysis, and those that use model functions to link the observation directly to a specific aspect of the experiment. We consider a multifaceted approach to instrument calibration using both the empirical and model based data analysis methods. The particular benefits of the fundamental parameters approach are reviewed. PMID:26958446

  1. Report on key comparison COOMET.AUV.A-K5: pressure calibration of laboratory standard microphones in the frequency range 2 Hz to 10 kHz

    Science.gov (United States)

    Dobrowolska, D.; Kosterov, A.

    2016-01-01

    This is the final report for regional key comparison COOMET.AUV.A-K5 on the pressure calibration of laboratory standard microphones in the frequency range from 2 Hz to 10 kHz. Two laboratories—Central Office of Measures (GUM)—the national metrology institute for Poland and the State Enterprise Scientific-Research Institute for Metrology of Measurement and Control Systems (DP NDI Systema)— the designated institute for acoustics in Ukraine took part in this comparison with the GUM as a pilot. One travelling type LS1P microphone was circulated to the participants and results in the form of regular calibration certificates were collected. The results of the DP NDI Systema obtained in this comparison were linked to the CCAUV.A-K5 key comparison through the joint participation of the GUM. The degrees of equivalence were computed for DP NDI Systema with respect to the CCAUV.A-K5 key comparison reference value. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCAUV, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  2. The energy calibration and precision of a gamma spectrometry unit - Method using the electron annihilation energy as the only standard

    International Nuclear Information System (INIS)

    Spectrometry using Ge(Li) detectors is discussed. The excellent resolution of this type of detector, the mathematical analysis of the spectral lines of the pulses, and the reproducibility of the spectrometer enable highly accurate measurements of the abscises (some 10-5) corresponding to the peaks. A method using the annihilation energy of the electron as the only standard was developed. The method is applied to the measurement of the gamma ray energies of the radioelements: 22Na, 24Na, 56Mn, 56Co, 59Fe, 72Ga, 88Y, 122Sb, 124Sb and 137Cs. (author)

  3. The PROMIS Physical Function item bank was calibrated to a standardized metric and shown to improve measurement efficiency

    DEFF Research Database (Denmark)

    Rose, Matthias; Bjørner, Jakob; Gandek, Barbara;

    2014-01-01

    of 16,065 adults answered item subsets (n>2,200/item) on the Internet, with oversampling of the chronically ill. Classical test and item response theory methods were used to evaluate 149 PROMIS PF items plus 10 Short Form-36 and 20 Health Assessment Questionnaire-Disability Index items. A graded...... response model was used to estimate item parameters, which were normed to a mean of 50 (standard deviation [SD]=10) in a US general population sample. RESULTS: The final bank consists of 124 PROMIS items covering upper, central, and lower extremity functions and instrumental activities of daily living....... In simulations, a 10-item computerized adaptive test (CAT) eliminated floor and decreased ceiling effects, achieving higher measurement precision than any comparable length static tool across four SDs of the measurement range. Improved psychometric properties were transferred to the CAT's superior ability...

  4. Automatic Titrator Calibration Standard Solution of Silver Nitrate%自动电位滴定仪标定硝酸银标准溶液

    Institute of Scientific and Technical Information of China (English)

    马玉芬

    2012-01-01

      Using the configuration DM141-SC-type silver electrode DL58 automatic titrator calibration standard solution of silver nitrate, accuracy and precision compared with manual titration with a large degree of increase, and simple operation, equipment maintenance, more accurate titration results .Titration process signal acquisition is 0.1mV, minimum feed rate can be titrated to achieve 0.001ml, is the recommended method.%  采用配置DM141-SC型银电极的DL58型自动电位滴定仪标定硝酸银标准溶液,准确度及精密度均较手动滴定有很大程度的提高,且操作简单,仪器维护方便,滴定结果更准确,滴定过程采集信号为0.1mV,滴定最小进给量可达到0.001mL,是目前值得推荐的方法.

  5. Noble metals as permanent chemical modifiers for the determination of mercury in environmental reference materials using solid sampling graphite furnace atomic absorption spectrometry and calibration against aqueous standards

    Science.gov (United States)

    da Silva, Alessandra Furtado; Welz, Bernhard; Curtius, Adilson J.

    2002-12-01

    Iridium, palladium, rhodium and ruthenium, thermally deposited on the platform, were investigated as permanent modifiers for the determination of mercury in ash, sludge, marine and river sediment reference materials, ground to a particle size of 50 μm, using solid sampling graphite furnace atomic absorption spectrometry. A total mass of 250 μg of each modifier was applied using 25 injections of 20 μl of modifier solution (500 mg l -1), and executing a temperature program for modifier conditioning after each injection. The performance of palladium was found to be most consistent, taking the characteristic mass as the major criterion, resulting in an excellent correlation between the measured integrated absorbance values and the certified mercury contents. Mercury was found to be lost in part from aqueous solutions during the drying stage in the presence of all the investigated permanent modifiers, as well as in the presence of the palladium and magnesium nitrates modifier added in solution. A loss-free determination of mercury in aqueous solutions could be reached only after the addition of potassium permanganate, which finally made possible the use of aqueous standards for the direct analysis of solid samples. A characteristic mass of 55-60 pg Hg was obtained for the solid samples, using Pd as a permanent modifier, and also in aqueous solutions after the addition of permanganate. The results obtained for mercury in ash, sludge and sediment reference materials, using direct solid sapling and calibration against aqueous standards, as well as the detection limit of 0.2 mg kg -1 were satisfactory for a routine procedure.

  6. Noble metals as permanent chemical modifiers for the determination of mercury in environmental reference materials using solid sampling graphite furnace atomic absorption spectrometry and calibration against aqueous standards

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Alessandra Furtado da; Welz, Bernhard; Curtius, Adilson J

    2002-12-02

    Iridium, palladium, rhodium and ruthenium, thermally deposited on the platform, were investigated as permanent modifiers for the determination of mercury in ash, sludge, marine and river sediment reference materials, ground to a particle size of 50 {mu}m, using solid sampling graphite furnace atomic absorption spectrometry. A total mass of 250 {mu}g of each modifier was applied using 25 injections of 20 {mu}l of modifier solution (500 mg l{sup -1}), and executing a temperature program for modifier conditioning after each injection. The performance of palladium was found to be most consistent, taking the characteristic mass as the major criterion, resulting in an excellent correlation between the measured integrated absorbance values and the certified mercury contents. Mercury was found to be lost in part from aqueous solutions during the drying stage in the presence of all the investigated permanent modifiers, as well as in the presence of the palladium and magnesium nitrates modifier added in solution. A loss-free determination of mercury in aqueous solutions could be reached only after the addition of potassium permanganate, which finally made possible the use of aqueous standards for the direct analysis of solid samples. A characteristic mass of 55-60 pg Hg was obtained for the solid samples, using Pd as a permanent modifier, and also in aqueous solutions after the addition of permanganate. The results obtained for mercury in ash, sludge and sediment reference materials, using direct solid sapling and calibration against aqueous standards, as well as the detection limit of 0.2 mg kg{sup -1} were satisfactory for a routine procedure.

  7. Calibration of farmer dosemeters

    International Nuclear Information System (INIS)

    The Farmer Dosemeters of Atomic Energy Medical Centre (AEMC) Jamshoro were calibrated in the Secondary Standard Dosimetry Laboratory (SSDL) at PINSTECH, using the NPL Secondary Standard Therapy level X-ray exposure meter. The results are presented in this report. (authors)

  8. Radiation monitor calibration technique

    International Nuclear Information System (INIS)

    Reference radiations in the Secondary Standard Dosimetry Laboratory, OAEP have been improved and modified by employing lead attenuators. To identify low-level exposure rate, shadow-cone method has been applied. The secondary standard dosemeter has been used periodically to check the constancy of reference radiations to assure the calibration of dosemeters and dose-ratemeters used for radiation protection

  9. Sandia WIPP calibration traceability

    Energy Technology Data Exchange (ETDEWEB)

    Schuhen, M.D. [Sandia National Labs., Albuquerque, NM (United States); Dean, T.A. [RE/SPEC, Inc., Albuquerque, NM (United States)

    1996-05-01

    This report summarizes the work performed to establish calibration traceability for the instrumentation used by Sandia National Laboratories at the Waste Isolation Pilot Plant (WIPP) during testing from 1980-1985. Identifying the calibration traceability is an important part of establishing a pedigree for the data and is part of the qualification of existing data. In general, the requirement states that the calibration of Measuring and Test equipment must have a valid relationship to nationally recognized standards or the basis for the calibration must be documented. Sandia recognized that just establishing calibration traceability would not necessarily mean that all QA requirements were met during the certification of test instrumentation. To address this concern, the assessment was expanded to include various activities.

  10. Sandia WIPP calibration traceability

    International Nuclear Information System (INIS)

    This report summarizes the work performed to establish calibration traceability for the instrumentation used by Sandia National Laboratories at the Waste Isolation Pilot Plant (WIPP) during testing from 1980-1985. Identifying the calibration traceability is an important part of establishing a pedigree for the data and is part of the qualification of existing data. In general, the requirement states that the calibration of Measuring and Test equipment must have a valid relationship to nationally recognized standards or the basis for the calibration must be documented. Sandia recognized that just establishing calibration traceability would not necessarily mean that all QA requirements were met during the certification of test instrumentation. To address this concern, the assessment was expanded to include various activities

  11. Parameters influencing SPET regional brain uptake of technetium-99m hexamethylpropylene amine oxime measured by calibrated point sources as an external standard

    International Nuclear Information System (INIS)

    Using calibrated point sources as an external standard to convert SPET brain counts into absolute values of regional brain uptake (rBU) of technetium-99m hexamethylpropylene amine oxime (HMPAO), the relative contribution of different parameters to interindividual variability of cerebellar rBU was examined in 33 healthy volunteers. Stepwise regression analysis identified body surface as the most important factor underlying interindividual variability, when compared with brain volume. In the normal volunteer population presented, age decrement of rBU corrected for body surface and brain volume equalled 60.5-0.20xage. Based on the data of eight normal volunteers, including four test-retest studies with heart rate (HR) differences greater than 5 units and four test-stress studies with doubling of heart rate after bicycle exercise, influence of heart rate may be expressed by the equation ΔrBU = 0.35 ΔHR. Clinically, estimation of the relative influence of different factors allows normalization and extension of the applicability of the rBU quantification method used from longitudinal studies to group comparisons. Interestingly, results of the Daily Stress Inventory Scale and a subjective rating scale suggest the absence of a significant influence of minor stress on rBU. When using one vial per patient, chromatography may be omitted in clinical routine practice and lipophilicity may be estimated as 90% of the injected dose, if administered within 10 min after preparation. Finally, sensitivity of the quantification method was tested in eight volunteers using acetazolamide brain activation and showed a mean increase in cerebellar rBU of 30.2%, varying between 14.1% and 75.9%. (orig./MG)

  12. The influence of the calibration standard and the chemical composition of the water samples residue in the counting efficiency of proportional detectors for gross alpha and beta counting. Application on the radiologic control of the IPEN-CNEN/SP

    International Nuclear Information System (INIS)

    In this work the efficiency calibration curves of thin-window and low background gas-flow proportional counters were determined for calibration standards with different energies and different absorber thicknesses. For the gross alpha counting we have used 241Am and natural uranium standards and for the gross beta counting we have used 90Sr/90Y and 137Cs standards in residue thicknesses ranging from 0 to approximately 18 mg/cm2. These sample thicknesses were increased with a previously determined salted solution prepared simulating the chemical composition of the underground water of IPEN The counting efficiency for alpha emitters ranged from 0,273 +- 0,038 for a weightless residue to only 0,015 +- 0,002 in a planchet containing 15 mg/cm2 of residue for 241Am standard. For natural uranium standard the efficiency ranged from 0,322 +- 0,030 for a weightless residue to 0,023 +- 0,003 in a planchet containing 14,5 mg/cm2 of residue. The counting efficiency for beta emitters ranged from 0,430 +- 0,036 for a weightless residue to 0,247 +- 0,020 in a planchet containing 17 mg/cm2 of residue for 137Cs standard. For 90Sr/90Y standard the efficiency ranged from 0,489 +- 0,041 for a weightless residue to 0,323 +- 0,026 in a planchet containing 18 mg/cm2 of residue. Results make evident the counting efficiency variation with the alpha or beta emitters energies and the thickness of the water samples residue. So, the calibration standard, the thickness and the chemical composition of the residue must always be considered in the gross alpha and beta radioactivity determination in water samples. (author)

  13. 基于ASAM标准的汽车电控系统匹配标定系统设计%Design of Automotive Electronic Control System Calibration System based on ASAM Standards

    Institute of Scientific and Technical Information of China (English)

    温泉; 张广秀; 张建

    2012-01-01

    ASAM-MCD standards is a set of widely-agreed calibration criterion in industry. Application of the criterion can standardize data exchange methods, software and hardware tools development, and thereby decrease development cost and periods. This paper discusses the main features of CCP and ASAP2 standardized interface for the description data. We have developed the electric vehicle control unit calibration system according to the ASAM-MCD standards. The system can implement file-based parameters monitoring, measurement and calibration.%ASAM—MCD标准是一套得到工业界广泛认可的匹配标定规范。通过该规范的实施,可以对ECU开发过程中用到的数据交换方法和软硬件工具进行标准化,从而减少汽车电子领域的开发成本、缩短开发周期。本文论述了ASAM—MCD标准中的CAN标定协议和ASAP2数据接口规范的主要特点,并根据该标准开发了电动汽车用整车控制器匹配标定系统。通过该系统可以实现基于文件的参数监控、测量和标定。

  14. Primary Research on the Standard System of Air Vehicle Calibration Models Used in Wind Tunnel Test%飞行器风洞试验标模体系研究初探

    Institute of Scientific and Technical Information of China (English)

    战培国; 罗月培

    2011-01-01

    风洞试验标模是一种评估风洞试验准度和验证CFD算法的通用校准模型.本文归纳分析了北大西洋公约组织AGARD系列、法国ONERAM系列为代表的国外风洞试验标模发展情况,阐述了我国DBM、GBM、HSCM风洞标模系列的发展现状,探讨了建立和完善风洞试验标模体系的一些问题,意在为国内风洞和试验技术发展提供参考.%The standard air vehicle calibration model is a common calibration model used for evaluating wind tunnel test results and validating CFD methods.This paper analyses the development of overseas wind tunnel calibration models,typically,NATO AGARD series and ONERA M series in France,introduces state of the art domestic calibration models,such as DBM,CBM and HSCM series,discusses some problems about setting up and consummating the system of calibration models.The purpose is to provide thoughts and references for the development of domestic wind tunnel techniques.

  15. Mammography calibration: Factor or fit?

    International Nuclear Information System (INIS)

    Dose measurements in mammography x-ray have become more important and a basic path in quality assurance programmes. It is recognized by the international guidelines that it is necessary to have calibration services offered for mammography beams in order to help the improvement of the clinical diagnosis. Major efforts have been made by several laboratories in order to establish an appropriate and traceable calibration infrastructure and to provide the basis for a quality control programme in mammography. The indication of a dosimeter, whose reference point is positioned at the point of test, is compared with the conventional true value of the quantity to be measured. The calibration coefficient is then the ratio of the conventional true value to the indicated. The Primary Standard Dosimetry Laboratory - PSDL or the Secondary Standard Dosimetry Laboratory - SSDL provides the calibration coefficient of the dosimeters in reference to the Half Value Layers - HVL implemented in their laboratories. The dosimetry calibration data is enough when the user has the same system as the laboratory where the ionization chamber has been calibrated. However, there are other calibration systems that have different calibration qualities implemented using different combinations of anode and filter and, therefore, there is no direct relation with the calibration coefficient. How to deal with this? There are two different ways to obtain calibration coefficients when the user's implemented qualities are different from the calibration laboratory's qualities. The first is the interpolation of each calibration coefficient stated in the certificate. The second is the fit of all calibration coefficients, separately for non-attenuated and attenuated beam qualities, to obtain a function by which the calibration coefficients can be determined at each beam quality. The second one includes the statistical fluctuation. The dosimetry calibration data must fit an analytical form, as for example a

  16. SPOTS Calibration Example

    Directory of Open Access Journals (Sweden)

    Patterson E.

    2010-06-01

    Full Text Available The results are presented using the procedure outlined by the Standardisation Project for Optical Techniques of Strain measurement to calibrate a digital image correlation system. The process involves comparing the experimental data obtained with the optical measurement system to the theoretical values for a specially designed specimen. The standard states the criteria which must be met in order to achieve successful calibration, in addition to quantifying the measurement uncertainty in the system. The system was evaluated at three different displacement load levels, generating strain ranges from 289 µstrain to 2110 µstrain. At the 289 µstrain range, the calibration uncertainty was found to be 14.1 µstrain, and at the 2110 µstrain range it was found to be 28.9 µstrain. This calibration procedure was performed without painting a speckle pattern on the surface of the metal. Instead, the specimen surface was prepared using different grades of grit paper to produce the desired texture.

  17. The kinetics-based enzyme-linked immunosorbent assay for coronavirus antibodies in cats: calibration to the indirect immunofluorescence assay and computerized standardization of results through normalization to control values.

    OpenAIRE

    Barlough, J E; Jacobson, R H; Downing, D R; Lynch, T J; Scott, F. W.

    1987-01-01

    The computer-assisted, kinetics-based enzyme-linked immunosorbent assay for coronavirus antibodies in cats was calibrated to the conventional indirect immunofluorescence assay by linear regression analysis and computerized interpolation (generation of "immunofluorescence assay-equivalent" titers). Procedures were developed for normalization and standardization of kinetics-based enzyme-linked immunosorbent assay results through incorporation of five different control sera of predetermined ("ex...

  18. Calibration Database Logic Analysis and Implementation based on ASAM Standard%基于ASAM标准的标定数据库逻辑分析与编程实现

    Institute of Scientific and Technical Information of China (English)

    宋维群; 杨世春; 李明; 崔海港; 曹耀光

    2012-01-01

    In this article, ASAM -2MC standard proposed by ASAM organization standardizes data needed in calibration of automotive electronic control system. In-depth analysis is made to ASAM-2MC standard and logic relation and database algorithm between calibrated information items are introduced, and calibration database management software in compliance with ASAM-2MC standard is developed. The interpretation of a21 description document used in calibration of engine electronic control system shows that this software is able to classify control parameters in vehicle development, display and provide visual interface to analyze and correct the items in the interface.%ASAM组织提出的ASAM-2MC标准对汽车电子控制系统标定过程中所需要的数据信息进行了规范.深入分析了ASAM-2MC标准并提出了相应的标定信息项目实体之间的逻辑关系及数据库解析算法,开发了符合ASAM-2MC标准的标定数据库管理软件.通过对发动机电控系统标定过程中使用的a21描述文件的解析表明,该软件能够对整车开发过程中与控制相关的参数信息进行分类,显示并提供可视化界面对其中的项目进行分析与修改.

  19. Calibration bench of flowmeters

    International Nuclear Information System (INIS)

    This equipment is devoted to the comparison of signals from two turbines installed in the Cabri experimental loop. The signal is compared to the standard turbine. The characteristics and the performance of the calibration bench are presented. (A.L.B.)

  20. NVLAP calibration laboratory program

    Energy Technology Data Exchange (ETDEWEB)

    Cigler, J.L.

    1993-12-31

    This paper presents an overview of the progress up to April 1993 in the development of the Calibration Laboratories Accreditation Program within the framework of the National Voluntary Laboratory Accreditation Program (NVLAP) at the National Institute of Standards and Technology (NIST).

  1. NHEXAS PHASE I ARIZONA STUDY--STANDARD OPERATING PROCEDURE FOR OPERATION, CALIBRATION AND MAINTENANCE OF THE SENTEX SCENTOGUN PORTABLE PHOTOIONIZATION DETECTOR (UA-F-4.1)

    Science.gov (United States)

    The purpose of this SOP is to describe the procedures for the operation, calibration, and maintenance of the Sentex Scentogun portable photoionization detector (PID). The sampling Scentogun was used to collect volatile organic compound (VOC) levels during the Arizona NHEXAS proj...

  2. NHEXAS PHASE I ARIZONA STUDY--STANDARD OPERATING PROCEDURE FOR OPERATION, CALIBRATION AND MAINTENANCE OF FIXED AND ADJUSTABLE VOLUME PIPETTE GUNS (BCO-L-9.0)

    Science.gov (United States)

    The purpose of this SOP is to describe the general procedures for the operation, calibration, and maintenance of fixed- and adjustable-volume pipette guns. This procedure was followed to ensure consistent data retrieval during the Arizona NHEXAS project and the "Border" study. Ke...

  3. Calibration of nuclear medicine gamma counters

    International Nuclear Information System (INIS)

    In this paper the practical problem of nuclear medicine gamma counters calibration has been solved by using dose calibrators CRC-15R with standard error ±5%. The samples from technetium generators have been measured both by dose calibrators CRC-15R and gamma counter ICN Gamma 3.33 taking into account decay correction. Only the linear part of the curve has practical meaning. The advantage of this procedure satisfies the requirements from international standards: the calibration of sources used for medical exposure be traceable to a standard dosimetry laboratory and radiopharmaceuticals for nuclear medicine procedures be calibrated in terms of activity of the radiopharmaceutical to be administered. (author)

  4. ATLAS calorimeters energy calibration for jets

    International Nuclear Information System (INIS)

    The calibration of ATLAS barrel calorimeters (including pre shower system, electromagnetic Liquid Argon calorimeter and scintillating hadron tile calorimeter) was done by standard calibration and weighting technique approaches. The standard calibration gives the bad linearity for hadron non compensated calorimeter. The calibration with weighting technique, in comparison with standard calibration, restores linearity and improves energy resolution up to (σ/E)2 = (38.6%/√E)2 + (1.5%)2 for η 0.6. 6 refs., 4 figs., 1 tab

  5. Strain Gauge Balance Calibration and Data Reduction at NASA Langley Research Center

    Science.gov (United States)

    Ferris, A. T. Judy

    1999-01-01

    This paper will cover the standard force balance calibration and data reduction techniques used at Langley Research Center. It will cover balance axes definition, balance type, calibration instrumentation, traceability of standards to NIST, calibration loading procedures, balance calibration mathematical model, calibration data reduction techniques, balance accuracy reporting, and calibration frequency.

  6. Camera calibration

    OpenAIRE

    Andrade-Cetto, J.

    2001-01-01

    This report is a tutorial on pattern based camera calibration for computer vision. The methods presented here allow for the computation of the intrinsic and extrinsic parameters of a camera. These methods are widely available in the literature, and they are only summarized here as an easy and comprehensive reference for researchers at the Institute and their collaborators.

  7. Physiotherapy ultrasound calibrations

    International Nuclear Information System (INIS)

    Calibration of physiotherapy ultrasound equipment has long been a problem. Numerous surveys around the world over the past 20 years have all found that only a low percentage of the units tested had an output within 30% of that indicatd. In New Zealand, a survey carried out by the NRL in 1985 found that only 24% had an output, at the maximum setting, within + or - 20% of that indicated. The present performance Standard for new equipment (NZS 3200.2.5:1992) requires that the measured output should not deviate from that indicated by more than + or - 30 %. This may be tightened to + or - 20% in the next few years. Any calibration is only as good as the calibration equipment. Some force balances can be tested with small weights to simulate the force exerted by an ultrasound beam, but with others this is not possible. For such balances, testing may only be feasible with a calibrated source which could be used like a transfer standard. (author). 4 refs., 3 figs

  8. Mathematical efficiency calibration in gamma spectroscopy

    CERN Document Server

    Kaminski, S; Wilhelm, C

    2003-01-01

    Mathematical efficiency calibration with the LabSOCS software was introduced for two detectors in the measurement laboratory of the Central Safety Department of Forschungszentrum Karlsruhe. In the present contribution, conventional efficiency calibration of gamma spectroscopy systems and mathematical efficiency calibration with LabSOCS are compared with respect to their performance, uncertainties, expenses, and results. It is reported about the experience gained, and the advantages and disadvantages of both methods of efficiency calibration are listed. The results allow the conclusion to be drawn that mathematical efficiency calibration is a real alternative to conventional efficiency calibration of gamma spectroscopy systems as obtained by measurements of mixed gamma ray standard sources.

  9. Mercury Calibration System

    Energy Technology Data Exchange (ETDEWEB)

    John Schabron; Eric Kalberer; Joseph Rovani; Mark Sanderson; Ryan Boysen; William Schuster

    2009-03-11

    U.S. Environmental Protection Agency (EPA) Performance Specification 12 in the Clean Air Mercury Rule (CAMR) states that a mercury CEM must be calibrated with National Institute for Standards and Technology (NIST)-traceable standards. In early 2009, a NIST traceable standard for elemental mercury CEM calibration still does not exist. Despite the vacature of CAMR by a Federal appeals court in early 2008, a NIST traceable standard is still needed for whatever regulation is implemented in the future. Thermo Fisher is a major vendor providing complete integrated mercury continuous emissions monitoring (CEM) systems to the industry. WRI is participating with EPA, EPRI, NIST, and Thermo Fisher towards the development of the criteria that will be used in the traceability protocols to be issued by EPA. An initial draft of an elemental mercury calibration traceability protocol was distributed for comment to the participating research groups and vendors on a limited basis in early May 2007. In August 2007, EPA issued an interim traceability protocol for elemental mercury calibrators. Various working drafts of the new interim traceability protocols were distributed in late 2008 and early 2009 to participants in the Mercury Standards Working Committee project. The protocols include sections on qualification and certification. The qualification section describes in general terms tests that must be conducted by the calibrator vendors to demonstrate that their calibration equipment meets the minimum requirements to be established by EPA for use in CAMR monitoring. Variables to be examined include linearity, ambient temperature, back pressure, ambient pressure, line voltage, and effects of shipping. None of the procedures were described in detail in the draft interim documents; however they describe what EPA would like to eventually develop. WRI is providing the data and results to EPA for use in developing revised experimental procedures and realistic acceptance criteria based on

  10. Proposed Josephson voltage standard

    Science.gov (United States)

    Chang, C. C.; Holderman, L. B.; Toots, J.

    1980-01-01

    Relatively-simple microwave integrated circuit comprising two resonators linked by Josephson junction could be set up to generate standard Josephson volt in any industrial laboratory. Standard cells and electronic equipment could be readily compared and calibrated to this standard.

  11. An empirical calibration for 4He quantification in minerals and rocks by laser fusion and noble gas mass spectrometry using Cerro de Mercado (Durango, Mexico) fluorapatite as a standard

    International Nuclear Information System (INIS)

    An empirical calibration with a natural mineral standard (fluorapatite from Cerro de Mercado, Mexico) is proposed as a method to determine the 4He concentration of mineral and rock samples. The procedure is based on the fusion of several aliquots of the fluorapatite standard with a well-spaced weight distribution in order to obtain a good correlation in coordinates of 4He peak height versus fluorapatite weight. The weight is then converted to moles using the accepted mineral age (31.4 Ma) and appropriate formula. Experimental peak height of 4He for the unknown samples are converted to moles with the regression determined for fluorapatite. The procedure is fast and inexpensive, and both precision and accuracy are always below 10% and usually about 3-5%

  12. Mercury CEM Calibration

    Energy Technology Data Exchange (ETDEWEB)

    John F. Schabron; Joseph F. Rovani; Susan S. Sorini

    2007-03-31

    The Clean Air Mercury Rule (CAMR) which was published in the Federal Register on May 18, 2005, requires that calibration of mercury continuous emissions monitors (CEMs) be performed with NIST-traceable standards. Western Research Institute (WRI) is working closely with the Electric Power Research Institute (EPRI), the National Institute of Standards and Technology (NIST), and the Environmental Protection Agency (EPA) to facilitate the development of the experimental criteria for a NIST traceability protocol for dynamic elemental mercury vapor generators. The traceability protocol will be written by EPA. Traceability will be based on the actual analysis of the output of each calibration unit at several concentration levels ranging from about 2-40 ug/m{sup 3}, and this analysis will be directly traceable to analyses by NIST using isotope dilution inductively coupled plasma/mass spectrometry (ID ICP/MS) through a chain of analyses linking the calibration unit in the power plant to the NIST ID ICP/MS. Prior to this project, NIST did not provide a recommended mercury vapor pressure equation or list mercury vapor pressure in its vapor pressure database. The NIST Physical and Chemical Properties Division in Boulder, Colorado was subcontracted under this project to study the issue in detail and to recommend a mercury vapor pressure equation that the vendors of mercury vapor pressure calibration units can use to calculate the elemental mercury vapor concentration in an equilibrium chamber at a particular temperature. As part of this study, a preliminary evaluation of calibration units from five vendors was made. The work was performed by NIST in Gaithersburg, MD and Joe Rovani from WRI who traveled to NIST as a Visiting Scientist.

  13. Direct chlorine determination in crude oils by energy dispersive X-ray fluorescence spectrometry: An improved method based on a proper strategy for sample homogenization and calibration with inorganic standards

    International Nuclear Information System (INIS)

    Official guidelines to perform chlorine determination in crude oil are (i) American Society for Testing and Materials (ASTM) D6470, which is based on the extraction of water from the oil and subsequent determination of the chloride by potentiometry, (ii) ASTM D3230, that measures the conductivity of a solution of crude oil in a mixture of organic solvents and (iii) US Environmental Protection Agency (EPA) 9075 that uses energy dispersive X-ray fluorescence spectrometry to quantify chlorine and it is applicable for the range from 200 μg g-1 to percent levels of the analyte. The goal of this work is to propose method to quantify lower amounts of chlorine in crude oil using energy dispersive X-ray fluorescence spectrometry using a simple calibration strategy. Sample homogenization procedure was carefully studied in order to enable accurate results. The calibration curve was made with standards prepared by diluting aqueous NaCl standard in glycerin. The method presented a linear response that covers the range from 8 to at least 100 μg g-1 of chlorine. Chlorine in crude oil samples from Campos Basin - Brazil were quantified by the proposed method and by potentiometry after extraction of chlorine from the oil. Results achieved using both methods were statistically the same at 95% confidence level.

  14. Direct chlorine determination in crude oils by energy dispersive X-ray fluorescence spectrometry: An improved method based on a proper strategy for sample homogenization and calibration with inorganic standards

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, Adriana [Department of Chemistry, Pontifical Catholic University of Rio de Janeiro, Rua Marques de Sao Vicente 225. Gavea. Rio de Janeiro. RJ. 22451-900 (Brazil); Saavedra, Alvaro; Tristao, Maria Luiza B. [Leopoldo Americo Miguez de Mello Research Center, Petrobras (CENPES), Cidade Universitaria, Quadra 7, Ilha do Fundao, Rio de Janeiro 21949-900 (Brazil); Nele, Marcio [Escola de Quimica/Universidade Federal do Rio de Janeiro, Cidade Universitaria, Rio de Janeiro, 21949-900 (Brazil); Aucelio, Ricardo Q., E-mail: aucelior@puc-rio.br [Department of Chemistry, Pontifical Catholic University of Rio de Janeiro, Rua Marques de Sao Vicente 225. Gavea. Rio de Janeiro. RJ. 22451-900 (Brazil)

    2011-05-15

    Official guidelines to perform chlorine determination in crude oil are (i) American Society for Testing and Materials (ASTM) D6470, which is based on the extraction of water from the oil and subsequent determination of the chloride by potentiometry, (ii) ASTM D3230, that measures the conductivity of a solution of crude oil in a mixture of organic solvents and (iii) US Environmental Protection Agency (EPA) 9075 that uses energy dispersive X-ray fluorescence spectrometry to quantify chlorine and it is applicable for the range from 200 {mu}g g{sup -1} to percent levels of the analyte. The goal of this work is to propose method to quantify lower amounts of chlorine in crude oil using energy dispersive X-ray fluorescence spectrometry using a simple calibration strategy. Sample homogenization procedure was carefully studied in order to enable accurate results. The calibration curve was made with standards prepared by diluting aqueous NaCl standard in glycerin. The method presented a linear response that covers the range from 8 to at least 100 {mu}g g{sup -1} of chlorine. Chlorine in crude oil samples from Campos Basin - Brazil were quantified by the proposed method and by potentiometry after extraction of chlorine from the oil. Results achieved using both methods were statistically the same at 95% confidence level.

  15. Liquid Krypton Calorimeter Calibration Software

    CERN Document Server

    Hughes, Christina Lindsay

    2013-01-01

    Calibration of the liquid krypton calorimeter (LKr) of the NA62 experiment is managed by a set of standalone programs, or an online calibration driver. These programs are similar to those used by NA48, but have been updated to utilize classes and translated to C++ while maintaining a common functionality. A set of classes developed to handle communication with hardware was used to develop the three standalone programs as well as the main driver program for online calibration between bursts. The main calibration driver has been designed to respond to run control commands and receive burst data, both transmitted via DIM. In order to facilitate the process of reading in calibration parameters, a serializable class has been introduced, allowing the replacement of standard text files with XML configuration files.

  16. Pseudo Linear Gyro Calibration

    Science.gov (United States)

    Harman, Richard; Bar-Itzhack, Itzhack Y.

    2003-01-01

    Previous high fidelity onboard attitude algorithms estimated only the spacecraft attitude and gyro bias. The desire to promote spacecraft and ground autonomy and improvements in onboard computing power has spurred development of more sophisticated calibration algorithms. Namely, there is a desire to provide for sensor calibration through calibration parameter estimation onboard the spacecraft as well as autonomous estimation on the ground. Gyro calibration is a particularly challenging area of research. There are a variety of gyro devices available for any prospective mission ranging from inexpensive low fidelity gyros with potentially unstable scale factors to much more expensive extremely stable high fidelity units. Much research has been devoted to designing dedicated estimators such as particular Extended Kalman Filter (EKF) algorithms or Square Root Information Filters. This paper builds upon previous attitude, rate, and specialized gyro parameter estimation work performed with Pseudo Linear Kalman Filter (PSELIKA). The PSELIKA advantage is the use of the standard linear Kalman Filter algorithm. A PSELIKA algorithm for an orthogonal gyro set which includes estimates of attitude, rate, gyro misalignments, gyro scale factors, and gyro bias is developed and tested using simulated and flight data. The measurements PSELIKA uses include gyro and quaternion tracker data.

  17. Calibration Binaries

    Science.gov (United States)

    Drummond, J.

    2011-09-01

    Two Excel Spreadsheet files are offered to help calibrate telescope or camera image scale and orientation with binary stars for any time. One is a personally selected list of fixed position binaries and binaries with well-determined orbits, and the other contains all binaries with published orbits. Both are derived from the web site of the Washington Double Star Library. The spreadsheets give the position angle and separation of the binaries for any entered time by taking advantage of Excel's built in iteration function to solve Kepler's transcendental equation.

  18. ALTEA calibration

    Science.gov (United States)

    Zaconte, V.; Altea Team

    The ALTEA project is aimed at studying the possible functional damages to the Central Nervous System (CNS) due to particle radiation in space environment. The project is an international and multi-disciplinary collaboration. The ALTEA facility is an helmet-shaped device that will study concurrently the passage of cosmic radiation through the brain, the functional status of the visual system and the electrophysiological dynamics of the cortical activity. The basic instrumentation is composed by six active particle telescopes, one ElectroEncephaloGraph (EEG), a visual stimulator and a pushbutton. The telescopes are able to detect the passage of each particle measuring its energy, trajectory and released energy into the brain and identifying nuclear species. The EEG and the Visual Stimulator are able to measure the functional status of the visual system, the cortical electrophysiological activity, and to look for a correlation between incident particles, brain activity and Light Flash perceptions. These basic instruments can be used separately or in any combination, permitting several different experiments. ALTEA is scheduled to fly in the International Space Station (ISS) in November, 15th 2004. In this paper the calibration of the Flight Model of the silicon telescopes (Silicon Detector Units - SDUs) will be shown. These measures have been taken at the GSI heavy ion accelerator in Darmstadt. First calibration has been taken out in November 2003 on the SDU-FM1 using C nuclei at different energies: 100, 150, 400 and 600 Mev/n. We performed a complete beam scan of the SDU-FM1 to check functionality and homogeneity of all strips of silicon detector planes, for each beam energy we collected data to achieve good statistics and finally we put two different thickness of Aluminium and Plexiglas in front of the detector in order to study fragmentations. This test has been carried out with a Test Equipment to simulate the Digital Acquisition Unit (DAU). We are scheduled to

  19. Mercury Continuous Emmission Monitor Calibration

    Energy Technology Data Exchange (ETDEWEB)

    John Schabron; Eric Kalberer; Ryan Boysen; William Schuster; Joseph Rovani

    2009-03-12

    Mercury continuous emissions monitoring systems (CEMs) are being implemented in over 800 coal-fired power plant stacks throughput the U.S. Western Research Institute (WRI) is working closely with the Electric Power Research Institute (EPRI), the National Institute of Standards and Technology (NIST), and the Environmental Protection Agency (EPA) to facilitate the development of the experimental criteria for a NIST traceability protocol for dynamic elemental mercury vapor calibrators/generators. These devices are used to calibrate mercury CEMs at power plant sites. The Clean Air Mercury Rule (CAMR) which was published in the Federal Register on May 18, 2005 and vacated by a Federal appeals court in early 2008 required that calibration be performed with NIST-traceable standards. Despite the vacature, mercury emissions regulations in the future will require NIST traceable calibration standards, and EPA does not want to interrupt the effort towards developing NIST traceability protocols. The traceability procedures will be defined by EPA. An initial draft traceability protocol was issued by EPA in May 2007 for comment. In August 2007, EPA issued a conceptual interim traceability protocol for elemental mercury calibrators. The protocol is based on the actual analysis of the output of each calibration unit at several concentration levels ranging initially from about 2-40 {micro}g/m{sup 3} elemental mercury, and in the future down to 0.2 {micro}g/m{sup 3}, and this analysis will be directly traceable to analyses by NIST. The EPA traceability protocol document is divided into two separate sections. The first deals with the qualification of calibrator models by the vendors for use in mercury CEM calibration. The second describes the procedure that the vendors must use to certify the calibrators that meet the qualification specifications. The NIST traceable certification is performance based, traceable to analysis using isotope dilution inductively coupled plasma

  20. Calibrating Fundamental British Values: How Head Teachers Are Approaching Appraisal in the Light of the Teachers' Standards 2012, Prevent and the Counter-Terrorism and Security Act, 2015

    Science.gov (United States)

    Revell, Lynn; Bryan, Hazel

    2016-01-01

    In requiring that teachers should "not undermine fundamental British values (FBV)," a phrase originally articulated in the Home Office counter-terrorism document, Prevent, the Teachers' Standards has brought into focus the nature of teacher professionalism. Teachers in England are now required to promote FBV within and outside school,…

  1. Quantification of technetium-99m hexamethylpropylene amine oxime brain uptake in routine clinical practice using calibrated point sources as an external standard: phantom and human studies

    International Nuclear Information System (INIS)

    Quantitative methods for calculation of regional cerebral blood flow with technetium-99m hexamethyl-propylene amine oxime (99mTc-HMPAO) have been proposed. These methods are very labour intensive and therefore are not useful in routine clinical practice. We describe a simple alternative method, using calibrated point sources as a scaling factor, whereby the tomographic slices are displayed as regional 99mTc-HMPAO brain uptake per cm3 brain tissue in percent of the injected lipophilic dose. The method was validated on Jaszczak and Hoffman phantoms using a three-detector system with HR parallel and HR fan-beam collimators. Under the optimal conditions described in this paper, the measured to real activity ratio was 1.00 (SD=0.06). The reproducibility of the cerebellar uptake in a group of ten normal volunteers and five patients was studied. Intra-individually a mean deviation of 12.6% was observed for the total group. For those patients with a heart rate difference of less than 5 units between the two studies, a mean deviation of 7.2% was obtained. Quantitative 99mTc-HMPAO brain uptake images can be useful for longitudinal studies, especially for follow-up, activation and pharmacological studies. (orig.)

  2. Automated Calibration of Dosimeters for Diagnostic Radiology

    International Nuclear Information System (INIS)

    Calibration of dosimeters for diagnostic radiology includes current and charge measurements, which are often repetitive. However, these measurements are usually done using modern electrometers, which are equipped with an RS-232 interface that enables instrument control from a computer. This paper presents an automated system aimed to the measurements for the calibration of dosimeters used in diagnostic radiology. A software application was developed, in order to achieve the acquisition of the electric charge readings, measured values of the monitor chamber, calculation of the calibration coefficient and issue of a calibration certificate. A primary data record file is filled and stored in the computer hard disk. The calibration method used was calibration by substitution. With this system, a better control over the calibration process is achieved and the need for human intervention is reduced. the automated system will be used in the calibration of dosimeters for diagnostic radiology at the Cuban Secondary Standard Dosimetry Laboratory of the Center for Radiation Protection and Hygiene. (Author)

  3. Calibration of beta dosimeter and personal dosimeter

    International Nuclear Information System (INIS)

    This paper introduces ISO standard ISO 6980 which prepared especially for the calibration of beta dosimeter and personal dosimeter. The standard has three aspects including method of production of reference beta particle radiations, calibration fundamentals related to basic quantities characterizing the radiation field, and calibration of area and personal dosemters and the determination of their response as a function of beta radiation energy and angle of incidence. Here particular emphasis is placed on the determination of basic quantity of tissue absorbed dose at a depth of 0.07 mm in the tissue slab phantom and calibration procedure by mean of the calibration quantity of directional dose equivalent H'(0.07, Ω) and personal dose equivalent Hp (0.07, Ω). Finally, combined standard uncertainty for the determination of absorbed dose rate and component uncertainties of calibration is given as examples. (authors)

  4. Ørsted Pre-Flight Magnetometer Calibration Mission

    DEFF Research Database (Denmark)

    Risbo, T.; Brauer, Peter; Merayo, José M.G.; Nielsen, Otto V; Petersen, Jan Raagaard; Primdahl, Fritz

    2003-01-01

    overall calibration results are given. The temperature calibrations are explained and reported on. The overall calibration model standard deviation is about 100 pT rms. Comparisons with the later in-flight calibrations show that, except for the unknown satellite offsets, an agreement within 4 nT was...

  5. Programmable and automatic calibrator for radio sources at 45 MHz

    Science.gov (United States)

    Aparici, J.; May, J.; Salas, F.; Ventura, J.

    1981-12-01

    The design, construction and operation of a standard calibrator is presented. The calibrator consists of saturated diodes controlled by an indirect feed-back system and a digital-to-analog converter. The advantages over similar designs are described, as for instance, high-resolution in the calibration scale, good stability, very fast calibrations, use of balanced electronic switches, etc.

  6. Trinocular Calibration Method Based on Binocular Calibration

    OpenAIRE

    CAO Dan-Dan; Luo, Chun; GAO Shu-Yuan; Wang, Yun; Li, Wen-Bin; XU Zhen-Ying

    2012-01-01

    In order to solve the self-occlusion problem in plane-based multi-camera calibration system and expand the measurement range, a tri-camera vision system based on binocular calibration is proposed. The three cameras are grouped into two pairs, while the public camera is taken as the reference to build the global coordinate. By calibration of the measured absolute distance and the true absolute distance, global calibration is realized. The MRE (mean relative error) of the global calibration of ...

  7. Laboratory implantation for well type ionization chambers calibration

    International Nuclear Information System (INIS)

    The Radiological Science Laboratory is implanting a service for calibration of well type chambers by IAEA training program. The kerma rate in the air (mu Gy/h) of the linear Cs-137 reference source CDCS-J4 have been determined using a well type chamber Standard Imaging HDR-1000 model, which have been calibrated at Secondary Standard Laboratory Calibration of IAEA, whereas two HDR-1000 Plus chambers were calibrated too, following the same standards. The results were compared with Wisconsin University calibration certification and has demonstrated that well type ionization chamber calibration can be used in brachytherapy for several kinds of radionuclides. (Author)

  8. Extracting the MESA SR4000 calibrations

    Science.gov (United States)

    Charleston, Sean A.; Dorrington, Adrian A.; Streeter, Lee; Cree, Michael J.

    2015-05-01

    Time-of-flight range imaging cameras are capable of acquiring depth images of a scene. Some algorithms require these cameras to be run in `raw mode', where any calibrations from the off-the-shelf manufacturers are lost. The calibration of the MESA SR4000 is herein investigated, with an attempt to reconstruct the full calibration. Possession of the factory calibration enables calibrated data to be acquired and manipulated even in "raw mode." This work is motivated by the problem of motion correction, in which the calibration must be separated into component parts to be applied at different stages in the algorithm. There are also other applications, in which multiple frequencies are required, such as multipath interference correction. The other frequencies can be calibrated in a similar way, using the factory calibration as a base. A novel technique for capturing the calibration data is described; a retro-reflector is used on a moving platform, which acts as a point source at a distance, resulting in planar waves on the sensor. A number of calibrations are retrieved from the camera, and are then modelled and compared to the factory calibration. When comparing the factory calibration to both the "raw mode" data, and the calibration described herein, a root mean squared error improvement of 51:3mm was seen, with a standard deviation improvement of 34:9mm.

  9. Dosimetry standards

    International Nuclear Information System (INIS)

    The following leaflets are contained in this folder concerning the National Physical Laboratory's measurement services available in relation to dosimetry standards: Primary standards of X-ray exposure and X-ray irradiation facilities, X-ray dosimetry at therapy levels, Protection-level X-ray calibrations, Therapy-level gamma-ray facility, Fricke dosemeter reference service, Low-dose-rate gamma-ray facility, Penetrameter and kV meter calibration, Measurement services for radiation processing, Dichromate dosemeter reference service, Electron linear accelerator. (U.K.)

  10. Absolute sensitivity calibration of extreme ultraviolet photoresists

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Juanita; Naulleau, Patrick P.; Gullikson, Eric M.; Aquila, Andrew; George, Simi; Niakoula, Dimitra

    2008-05-16

    One of the major challenges facing the commercialization of extreme ultraviolet (EUV) lithography remains simultaneously achieving resist sensitivity, line-edge roughness, and resolution requirement. Sensitivity is of particular concern owing to its direct impact on source power requirements. Most current EUV exposure tools have been calibrated against a resist standard with the actual calibration of the standard resist dating back to EUV exposures at Sandia National Laboratories in the mid 1990s. Here they report on an independent sensitivity calibration of two baseline resists from the SEMATECH Berkeley MET tool performed at the Advanced Light Source Calibrations and Standards beamline. The results show the baseline resists to be approximately 1.9 times faster than previously thought based on calibration against the long standing resist standard.

  11. In-situ calibration and certification of high dc voltage

    International Nuclear Information System (INIS)

    A technical calibration service developed by an electrical standards laboratory to support a production facility in the calibration and certification of electron beam welder is described. The in-situ certification process utilizing standards traceable to NBS, documented procedures, applicable error analyses, and certified tolerances assigned to the calibration results are discussed

  12. Structured light camera calibration

    Science.gov (United States)

    Garbat, P.; Skarbek, W.; Tomaszewski, M.

    2013-03-01

    Structured light camera which is being designed with the joined effort of Institute of Radioelectronics and Institute of Optoelectronics (both being large units of the Warsaw University of Technology within the Faculty of Electronics and Information Technology) combines various hardware and software contemporary technologies. In hardware it is integration of a high speed stripe projector and a stripe camera together with a standard high definition video camera. In software it is supported by sophisticated calibration techniques which enable development of advanced application such as real time 3D viewer of moving objects with the free viewpoint or 3D modeller for still objects.

  13. Synthetic multi-element standards: a good tool for calibration and quality control of irradiation facilities used for neutron activation analysis

    International Nuclear Information System (INIS)

    Neutron activation analysis (NAA) is a physical technique used for the absolute measurement of the concentration of substances in solids and liquids. The method uses neutron irradiation which is commonly realised using a nuclear reactor in order to activate (make radioactive) different isotopes of the elements present in the sample. The radionuclides produced in this way emit gamma-rays that are characteristic of the elements present in the sample. Using gamma-ray spectrometry these radionuclides can then be identified and quantified, and hence their concentration in the sample can be determined. Although NAA is a straightforward method it requires a sound control of the many physical parameters involved to obtain accurate results and to guarantee a set accuracy in routine analysis. The accuracy of NAA depends on the specific measurement method used. One can perform NAA in a relative way by co-irradiating a known standard and the unknown sample in the same conditions and by comparing the ratio of gamma-rays they emit. Relative NAA has limited applicability since it requires reference standards with a comparable composition as the unknown. A more generally applicable method is the k0-NAA method. In the k0-NAA method all measurements are relative to the element Au resulting in 198Au when irradiated. The k0-NAA method further relies on the fact that the neutron energy spectrum produced in a given position in the reactor can be parameterised with two parameters: the shape factor of the epithermal neutron flux, indicating the deviation of the epithermal neutron spectrum from the ideal 1/E shape approximated by a 1/E1+a distribution, with E the neutron energy; f: the thermal-to-epithermal neutron flux ratio. The parameters f and a are characteristic for the irradiation facility (reactor and irradiation channels) and may change or fluctuate in time according to the irradiation conditions. The way elements activate (become radioactive) when interacting with neutrons is

  14. Establishment of 6- to 7-MeV high-energy gamma-ray calibration fields produced using the 4-MV Van de Graaff accelerator at the Facility of Radiation Standards, Japan Atomic Energy Agency.

    Science.gov (United States)

    Kowatari, Munehiko; Tanimura, Yoshihiko

    2016-03-01

    A 6- to 7-MeV high-energy gamma-ray field, produced by the nuclear reaction of (19)F(p, αγ)(16)O, has been established at the Facility of Radiation Standards (FRS) in Japan Atomic Energy Agency for calibration purposes. Basic dosimetric quantities (i.e. averaged gamma-ray energy, air-kerma-to-dose equivalent conversion coefficients and air kerma rates at the point of test) have been precisely determined through a series of measurements using the NaI(Tl) spectrometer and an ionisation chamber coupled with an appropriate build-up material. The measurements obtained comply with values recommended by the International Organization for Standardization for an 'R-F field'. The neutron contamination component for the field has also been measured by means of a conventional neutron dose equivalent meter (the so-called neutron rem-counter) and determined to be ∼0.5 % of the total dose equivalent. PMID:26012483

  15. Calibration of Nacelle-based Lidar instrument

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Courtney, Michael

    This report presents the result of the lidar calibration performed for a two-beam nacelle based lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements....

  16. Intercomparison and calibration of dose calibrators used in nuclear medicine facilities

    CERN Document Server

    Costa, A M D

    2003-01-01

    The aim of this work was to establish a working standard for intercomparison and calibration of dose calibrators used in most of nuclear medicine facilities for the determination of the activity of radionuclides administered to patients in specific examinations or therapeutic procedures. A commercial dose calibrator, a set of standard radioactive sources, and syringes, vials and ampoules with radionuclide solutions used in nuclear medicine were utilized in this work. The commercial dose calibrator was calibrated for radionuclide solutions used in nuclear medicine. Simple instrument tests, such as linearity response and variation response with the source volume at a constant source activity concentration were performed. This instrument may be used as a reference system for intercomparison and calibration of other activity meters, as a method of quality control of dose calibrators utilized in nuclear medicine facilities.

  17. Recommended Inorganic Chemicals for Calibration.

    Science.gov (United States)

    Moody, John R.; And Others

    1988-01-01

    All analytical techniques depend on the use of calibration chemicals to relate analyte concentration to instrumental parameters. Discusses the preparation of standard solutions and provides a critical evaluation of available materials. Lists elements by group and discusses the purity and uses of each. (MVL)

  18. Compilation and evaluation of high energy γ-ray standards from nuclear reactions. Work performed under the coordinated research project 'Update of X- and γ-ray decay data standards for detector calibration'

    International Nuclear Information System (INIS)

    The report presents the following aspects needed for the compilation and evaluation of high energy γ-ray standards from nuclear reactions: evaluation of emission probabilities of γ-rays with energies 4.44 MeV and 15.11 MeV from 12C*, preparation of the list of reactions suitable for production of the above mentioned excited radionuclide, and compilation and evaluation of cross sections for these reactions, including inelastic proton scattering on 12C and radiative capture on 11B

  19. Research on digital calibration method for optical surface defect dimension

    Science.gov (United States)

    Chen, Xiaoyu; Liu, Dong; Wang, Shitong; Cao, Pin; Gao, Xin; Yang, Yongying

    2012-10-01

    A digital calibration method for defect dimension of the optical surface is put forward to get the correspondence between the actual scale of defect on optical surface and the number of pixels of the defect image captured by CCD. Standard scratches, with their width ranging from 0.5μm to 40μm, are fabricated by electron beam exposure and reactive ion beam etching on two kinds of standard calibration board, quartz calibration board with and without chromium film. Calibration experiments are accomplished in five different microscope magnifications. Threshold segmentation, morphological operation and feature extraction are carried out in the images of calibration board to obtain the width of standard scratches in pixels. Interpret the theoretic trend of the calibration function as well as the linear range of it, and fit the calibration function based on the experimental results. According to the analysis and comparing of the calibration results in different microscope magnifications, error source and the factors limiting the resolving accuracy of the calibration system are analyzed. Ultimately, a standardization process including fabrication of the standard scratch, establishment of the standard calibration library for different microscope magnifications and the rapid calibration of actual detect is established. The calibration of the defects on the optical element in the size of 450mm× 450mm is successfully realized.

  20. Calibration metrology for fixed irradiation sensors

    International Nuclear Information System (INIS)

    After having recalled the regulatory and technical framework of the calibration of radioprotection measurement instruments, and outlined some technical and operational constraints, the authors report the development of an in situ calibration methodology, i.e. without displacement of the sensor. After the presentation of the calibration chain (from the measurement given by a fixed sensor to the reference value given by a primary standard), they indicate the definition and calculation of the different calibration coefficients allowing the linking up of the different levels, and also the taking of uncertainties into account. They finally report the validation of results

  1. Calibration services for medical applications of radiation

    Energy Technology Data Exchange (ETDEWEB)

    DeWerd, L.A.

    1993-12-31

    Calibration services for the medical community applications of radiation involve measuring radiation precisely and having traceability to the National Institute of Standards and Technology (NIST). Radiation therapy applications involve the use of ionization chambers and electrometers for external beams and well-type ionization chamber systems as well as radioactive sources for brachytherapy. Diagnostic x-ray applications involve ionization chamber systems and devices to measure other parameters of the x-ray machine, such as non-invasive kVp meters. Calibration laboratories have been established to provide radiation calibration services while maintaining traceability to NIST. New radiation applications of the medical community spur investigation to provide the future calibration needs.

  2. Calibration services for medical applications of radiation

    International Nuclear Information System (INIS)

    Calibration services for the medical community applications of radiation involve measuring radiation precisely and having traceability to the National Institute of Standards and Technology (NIST). Radiation therapy applications involve the use of ionization chambers and electrometers for external beams and well-type ionization chamber systems as well as radioactive sources for brachytherapy. Diagnostic x-ray applications involve ionization chamber systems and devices to measure other parameters of the x-ray machine, such as non-invasive kVp meters. Calibration laboratories have been established to provide radiation calibration services while maintaining traceability to NIST. New radiation applications of the medical community spur investigation to provide the future calibration needs

  3. Efficiency calibration of low background gamma spectrometer

    International Nuclear Information System (INIS)

    A method of efficiency calibration is described. The authors used standard ores of U, Ra and Th (power form), KCl and Cs-137 sources to do calibration volume-sources which were directly placed on the detector end cap. In such a measuring geometry, it is not necessary to make coincidence-summing correction. The efficiency calibration curve obtained by the method were compared with results measured by Am-241, Cd-109 and Eu-152 calibration sources. The agree in the error of about 5%

  4. SNR 1E 0102.2-7219 as an X-ray Calibration Standard in the 0.5-1.0 keV Bandpass and Its Application to the CCD Instruments aboard Chandra, Suzaku, Swift and XMM-Newton

    CERN Document Server

    Plucinsky, Paul P; Foster, Adam; Haberl, Frank; Miller, Eric D; Pollock, A M T; Sembay, Steve

    2016-01-01

    We desire a simple comparison of the absolute effective areas of the current generation of CCD instruments onboard the following observatories: Chandra ACIS-S3, XMM-Newton (EPIC-MOS and EPIC-pn), Suzaku XIS, and Swift XRT and a straightforward comparison of the time-dependent response of these instruments across their respective mission lifetimes. We have been using 1E 0102.2-7219, the brightest supernova remnant in the Small Magellanic Cloud, to evaluate and modify the response models of these instruments. 1E 0102.2-7219 has strong lines of O, Ne, and Mg below 1.5 keV and little or no Fe emission to complicate the spectrum. As part of the activities of the International Astronomical Consortium for High Energy Calibration (IACHEC), we have developed a standard spectral model for 1E 0102.2-7219. The model is empirical in that it includes Gaussians for the identified lines, an absorption component in the Galaxy, another absorption component in the SMC, and two thermal continuum components. In our fits, the mode...

  5. The CIEMAT Neutron Standards Laboratory (LPN): National Reference Facility for the Calibration of Neutron Measurement Equipment; El Laboratorio de Patrones Neutronicos del CIEMAT: instalacion de referencia nacional para la calibracion de equipos de medida neutronica

    Energy Technology Data Exchange (ETDEWEB)

    Mendez, R.

    2014-04-01

    This is a new facility that, in keeping with the recommendations of standard ISO 8529:1, has 20m5-Be and 252Cf neutron sources stored in water inside a 9 m x 7.5 m x 8 m Irradiation Room with 1.25 m concrete walls that is accessed through a 6.5 ton sliding shielded door. These sources are remotely handled from the Control Room by means of a system that places them in the geometric center of the room and aligns them with the equipment or materials to be irradiated arranged on a base plate. The facility has a series of interlocks that guarantee safety during operations with sources, and the verification measurements have demonstrated the suitability of the shielding used. The LPN will be the answer to the demand for a national laboratory for neutron measurement equipment calibration and equipment and material irradiation under controlled conditions, and it will position our country at the same level as our European partners. (Author)

  6. Calibration Monitor for Dark Energy Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, M. E.

    2009-11-23

    The goal of this program was to design, build, test, and characterize a flight qualified calibration source and monitor for a Dark Energy related experiment: ACCESS - 'Absolute Color Calibration Experiment for Standard Stars'. This calibration source, the On-board Calibration Monitor (OCM), is a key component of our ACCESS spectrophotometric calibration program. The OCM will be flown as part of the ACCESS sub-orbital rocket payload in addition to monitoring instrument sensitivity on the ground. The objective of the OCM is to minimize systematic errors associated with any potential changes in the ACCESS instrument sensitivity. Importantly, the OCM will be used to monitor instrument sensitivity immediately after astronomical observations while the instrument payload is parachuting to the ground. Through monitoring, we can detect, track, characterize, and thus correct for any changes in instrument senstivity over the proposed 5-year duration of the assembled and calibrated instrument.

  7. Radiation protection dosimetry and calibrations

    International Nuclear Information System (INIS)

    At the SCK-CEN different specialised services are delivered for a whole range of external and internal customers in the radiation protection area. For the expertise group of radiation protection dosimetry and calibrations, these services are organized in four different laboratories: dosimetry, anthropogammametry, nuclear calibrations and non-nuclear calibrations. The services are given by a dedicated technical staff who has experience in the handling of routine and specialised cases. The scientific research that is performed by the expertise group makes sure that state-of-the-art techniques are being used, and that constant improvements and developments are implemented. Quality Assurance is an important aspect for the different services, and accreditation according national and international standards is achieved for all laboratories

  8. 40 CFR 1065.790 - Mass standards.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Mass standards. 1065.790 Section 1065... ENGINE-TESTING PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration Standards § 1065.790 Mass standards. (a) PM balance calibration weights. Use PM balance calibration weights...

  9. Guidelines on calibration of neutron measuring devices

    International Nuclear Information System (INIS)

    The International Atomic Energy Agency and the World Health Organization have agreed to establish an IAEA/WHO Network of Secondary Standard Dosimetry Laboratories (SSDLs) in order to improve accuracy in applied radiation dosimetry throughout the world. These SSDLs must be equipped with, and maintain, secondary standard instruments, which have been calibrated against primary standards, and must be nominated by their governments for membership of the network. The majority of the existing SSDLs were established primarily to work with photon radiation (X-rays and gamma rays). Neutron sources are, however, increasingly being applied in industrial processes, research, nuclear power development and radiation biology and medicine. Thus, it is desirable that the SSDLs in countries using neutron sources on a regular basis should also fulfil the minimum requirements to calibrate neutron measuring devices. It is the primary purpose of this handbook to provide guidance on calibration of instruments for radiation protection. A calibration laboratory should also be in a position to calibrate instrumentation being used for the measurement of kerma and absorbed dose and their corresponding rates. This calibration is generally done with photons. In addition, since each neutron field is usually contaminated by photons produced in the source or by scatter in the surrounding media, neutron protection instrumentation has to be tested with respect to its intrinsic photon response. The laboratory will therefore need to possess equipment for photon calibration. This publication deals primarily with methods of applying radioactive neutron sources for calibration of instrumentation, and gives an indication of the space, manpower and facilities needed to fulfil the minimum requirements of a calibration laboratory for neutron work. It is intended to serve as a guide for centres about to start on neutron dosimetry standardization and calibration. 94 refs, 8 figs, 12 tabs

  10. Calibration and intercomparison methods of dose calibrators used in nuclear medicine facilities

    International Nuclear Information System (INIS)

    Dose calibrators are used in most of the nuclear medicine facilities to determine the amount of radioactivity administered to a patient in a particular investigation or therapeutic procedure. It is therefore of vital importance that the equipment used presents good performance and is regular;y calibrated at a authorized laboratory. This occurs of adequate quality assurance procedures are carried out. Such quality control tests should be performed daily, other biannually or yearly, testing, for example, its accuracy and precision, the reproducibility and response linearity. In this work a commercial dose calibrator was calibrated with solution of radionuclides used in nuclear medicine. Simple instrument tests, such as response linearity and the response variation of the source volume increase at a constant source activity concentration, were performed. This instrument can now be used as a working standard for calibration of other dose calibrators/ An intercomparison procedure was proposed as a method of quality control of dose calibrators used in nuclear medicine facilities. (author)

  11. TOD to TTP calibration

    Science.gov (United States)

    Bijl, Piet; Reynolds, Joseph P.; Vos, Wouter K.; Hogervorst, Maarten A.; Fanning, Jonathan D.

    2011-05-01

    The TTP (Targeting Task Performance) metric, developed at NVESD, is the current standard US Army model to predict EO/IR Target Acquisition performance. This model however does not have a corresponding lab or field test to empirically assess the performance of a camera system. The TOD (Triangle Orientation Discrimination) method, developed at TNO in The Netherlands, provides such a measurement. In this study, we make a direct comparison between TOD performance for a range of sensors and the extensive historical US observer performance database built to develop and calibrate the TTP metric. The US perception data were collected doing an identification task by military personnel on a standard 12 target, 12 aspect tactical vehicle image set that was processed through simulated sensors for which the most fundamental sensor parameters such as blur, sampling, spatial and temporal noise were varied. In the present study, we measured TOD sensor performance using exactly the same sensors processing a set of TOD triangle test patterns. The study shows that good overall agreement is obtained when the ratio between target characteristic size and TOD test pattern size at threshold equals 6.3. Note that this number is purely based on empirical data without any intermediate modeling. The calibration of the TOD to the TTP is highly beneficial to the sensor modeling and testing community for a variety of reasons. These include: i) a connection between requirement specification and acceptance testing, and ii) a very efficient method to quickly validate or extend the TTP range prediction model to new systems and tasks.

  12. e-Calibrations: using the Internet to deliver calibration services in real time at lower cost

    International Nuclear Information System (INIS)

    The National Institute of Standards and Technology (NIST) is expanding into a new frontier in the delivery of measurement services. The Internet will be employed to provide industry with electronic traceability to national standards. This is a radical departure from the traditional modes of traceability and presents many new challenges. The traditional mail-based calibration service relies on sending artifacts to the user, who then mails them back to NIST for evaluation. The new service will deliver calibration results to the industry customer on-demand, in real-time, at a lower cost. The calibration results can be incorporated rapidly into the production process to ensure the highest quality manufacturing. The service would provide the US radiation processing industry with a direct link to the NIST calibration facilities and its expertise, and provide an interactive feedback process between industrial processing and the national measurement standard. Moreover, an Internet calibration system should contribute to the removal of measurement-related trade barriers

  13. Trinocular Calibration Method Based on Binocular Calibration

    Directory of Open Access Journals (Sweden)

    CAO Dan-Dan

    2012-10-01

    Full Text Available In order to solve the self-occlusion problem in plane-based multi-camera calibration system and expand the measurement range, a tri-camera vision system based on binocular calibration is proposed. The three cameras are grouped into two pairs, while the public camera is taken as the reference to build the global coordinate. By calibration of the measured absolute distance and the true absolute distance, global calibration is realized. The MRE (mean relative error of the global calibration of the two camera pairs in the experiments can be as low as 0.277% and 0.328% respectively. Experiment results show that this method is feasible, simple and effective, and has high precision.

  14. Another look at volume self-calibration: calibration and self-calibration within a pinhole model of Scheimpflug cameras

    Science.gov (United States)

    Cornic, Philippe; Illoul, Cédric; Cheminet, Adam; Le Besnerais, Guy; Champagnat, Frédéric; Le Sant, Yves; Leclaire, Benjamin

    2016-09-01

    We address calibration and self-calibration of tomographic PIV experiments within a pinhole model of cameras. A complete and explicit pinhole model of a camera equipped with a 2-tilt angles Scheimpflug adapter is presented. It is then used in a calibration procedure based on a freely moving calibration plate. While the resulting calibrations are accurate enough for Tomo-PIV, we confirm, through a simple experiment, that they are not stable in time, and illustrate how the pinhole framework can be used to provide a quantitative evaluation of geometrical drifts in the setup. We propose an original self-calibration method based on global optimization of the extrinsic parameters of the pinhole model. These methods are successfully applied to the tomographic PIV of an air jet experiment. An unexpected by-product of our work is to show that volume self-calibration induces a change in the world frame coordinates. Provided the calibration drift is small, as generally observed in PIV, the bias on the estimated velocity field is negligible but the absolute location cannot be accurately recovered using standard calibration data.

  15. LIDAR Velodyne HDL-64E Calibration Using Pattern Planes

    Directory of Open Access Journals (Sweden)

    Gerardo Atanacio-Jiménez

    2011-11-01

    Full Text Available This work describes a method for calibration of the Velodyne HDL‐64E scanning LIDAR system. The principal contribution was expressed by a pattern calibration signature, the mathematical model and the numerical algorithm for computing the calibration parameters of the LIDAR. In this calibration pattern the main objective is to minimize systematic errors due to geometric calibration factor. It describes an algorithm for solution of the intrinsic and extrinsic parameters. Finally, its uncertainty was calculated from the standard deviation of calibration result errors.

  16. Sensor Calibration Design Based on D-Optimality Criterion

    Directory of Open Access Journals (Sweden)

    Hajiyev Chingiz

    2016-09-01

    Full Text Available In this study, a procedure for optimal selection of measurement points using the D-optimality criterion to find the best calibration curves of measurement sensors is proposed. The coefficients of calibration curve are evaluated by applying the classical Least Squares Method (LSM. As an example, the problem of optimal selection for standard pressure setters when calibrating a differential pressure sensor is solved. The values obtained from the D-optimum measurement points for calibration of the differential pressure sensor are compared with those from actual experiments. Comparison of the calibration errors corresponding to the D-optimal, A-optimal and Equidistant calibration curves is done.

  17. Calibration of PIXE yields using binary thin films on Si

    International Nuclear Information System (INIS)

    We describe the use of binary thin films on Si to calibrate the yields in proton-induced X-ray emission (PIXE) measurements. Besides of the element to be calibrated, the standards also contain a common reference element. The incorporation of a common reference element allows one to eliminate errors in the accumulated beam charge during the calibration of the PIXE set-up. The binary calibration standards allow us to determine the response function with an accuracy close to 1%. As an example, we will perform the calibration for Fe and Co, and we will determine the Co concentration in Fe1−xCox thin films

  18. Spinning angle optical calibration apparatus

    Science.gov (United States)

    Beer, Stephen K.; Pratt, II, Harold R.

    1991-01-01

    An optical calibration apparatus is provided for calibrating and reproducing spinning angles in cross-polarization, nuclear magnetic resonance spectroscopy. An illuminated magnifying apparatus enables optical setting an accurate reproducing of spinning "magic angles" in cross-polarization, nuclear magnetic resonance spectroscopy experiments. A reference mark scribed on an edge of a spinning angle test sample holder is illuminated by a light source and viewed through a magnifying scope. When the "magic angle" of a sample material used as a standard is attained by varying the angular position of the sample holder, the coordinate position of the reference mark relative to a graduation or graduations on a reticle in the magnifying scope is noted. Thereafter, the spinning "magic angle" of a test material having similar nuclear properties to the standard is attained by returning the sample holder back to the originally noted coordinate position.

  19. The physical principles of XRF calibrations

    International Nuclear Information System (INIS)

    Full text: XRF Control and calibration software has come a long way in recent years. Advances in the multiple regression software sophistication and speed of computers have provided an essential resource to the XRF analyst. Over recent years there has been a trend amongst some analysts to develop XRF calibrations based exclusively on the statistical information given by calibration software. Multiple regression statistics are designed for non-correlated data sets but give unpredictable results if there are significant correlations in the standards used. This is typical for calibrations weighted towards certified reference materials (CRM's) which, being natural materials, contain correlated concentrations. Purely statistical methods in calibration development have applicability only over very short concentration ranges and for materials whose composition varies little. Beyond these ranges, the calibration has the potential to be unstable and has been known to produce significant deviations in analysis of unknown samples. The statistical information generated during XRF calibrations can be a very useful tool when used in conjunction with knowledge of the physics behind the correction factors applied. The matrix coefficients represent physical absorption/enhancement effects within the sample and are not arbitrary numbers used to get a good fit to the calibration line. Inappropriate use of matrix factors and overlap factors can produce low RMS values but erroneous results in unknown samples. This talk will contain examples to demonstrate hazards with different calibration strategies and will include coverage of the following topics: physical effects occurring within the sample as a result of X-ray irradiation; use of multiple regression statistics and what role it plays in the calibration; calibration strategies using synthetic and CRM standards; determining appropriate theoretical and semi-empirical matrix corrections and line overlap factors. Copyright (1999

  20. Automated Camera Calibration

    Science.gov (United States)

    Chen, Siqi; Cheng, Yang; Willson, Reg

    2006-01-01

    Automated Camera Calibration (ACAL) is a computer program that automates the generation of calibration data for camera models used in machine vision systems. Machine vision camera models describe the mapping between points in three-dimensional (3D) space in front of the camera and the corresponding points in two-dimensional (2D) space in the camera s image. Calibrating a camera model requires a set of calibration data containing known 3D-to-2D point correspondences for the given camera system. Generating calibration data typically involves taking images of a calibration target where the 3D locations of the target s fiducial marks are known, and then measuring the 2D locations of the fiducial marks in the images. ACAL automates the analysis of calibration target images and greatly speeds the overall calibration process.

  1. Calibration of CES functions for real-world multisectoral modeling

    OpenAIRE

    Sancho, Ferrán

    2007-01-01

    We show how to calibrate CES production and utility functions when indirect taxation affecting inputs and consumption is present. These calibrated functions can then be used in computable general equilibrium models. Taxation modifies the standard calibration procedures since any taxed good has two associated prices and a choice of reference value units has to be made. We also provide an example of computer code to solve the calibration of CES utilities under two alternate normalizations. To o...

  2. Calibrating pen dosimeters with and without a phantom

    Energy Technology Data Exchange (ETDEWEB)

    Nonato, Fernanda B.C.; Cescon, Claudinei T.; Caldas, Linda V.E., E-mail: fbnonato@ipen.b, E-mail: ctcescon@ipen.b, E-mail: lcaldas@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Thirty one direct reading dosimeters (pen dosimeters) were calibrated and tested in standard beams of gamma radiation, with and without the use of a phantom. The calibration was performed with a Co-60 source and tested with a Cs-137 source. The dose-response curves of the pen dosimeters and their calibration factors for a Co-60 source, with and without the use of a phantom were obtained. The results show the need to calibrate the pen dosimeters with a phantom. (author)

  3. Colour calibration for colour reproduction

    OpenAIRE

    Emmel, P.; R. D. Hersch

    2000-01-01

    Due to the proliferation of low-cost colour devices (digital colour cameras, scanners, printers etc.) during the last few years, colour calibration has become an important issue. Such devices should faithfully reproduce colour images, but experience shows they don't. Among the main reasons, we note the diversity of acquisition, display and printing technologies which makes standardization difficult. Each device has a different gamut, i.e. a different set of colours that it can acquire or repr...

  4. Tool calibration system for micromachining system

    Science.gov (United States)

    Miller, Donald M.

    1979-03-06

    A tool calibration system including a tool calibration fixture and a tool height and offset calibration insert for calibrating the position of a tool bit in a micromachining tool system. The tool calibration fixture comprises a yokelike structure having a triangular head, a cavity in the triangular head, and a port which communicates a side of the triangular head with the cavity. Yoke arms integral with the triangular head extend along each side of a tool bar and a tool head of the micromachining tool system. The yoke arms are secured to the tool bar to place the cavity around a tool bit which may be mounted to the end of the tool head. Three linear variable differential transformer's (LVDT) are adjustably mounted in the triangular head along an X axis, a Y axis, and a Z axis. The calibration insert comprises a main base which can be mounted in the tool head of the micromachining tool system in place of a tool holder and a reference projection extending from a front surface of the main base. Reference surfaces of the calibration insert and a reference surface on a tool bar standard length are used to set the three LVDT's of the calibration fixture to the tool reference position. These positions are transferred permanently to a mastering station. The tool calibration fixture is then used to transfer the tool reference position of the mastering station to the tool bit.

  5. Spiral reader calibration

    International Nuclear Information System (INIS)

    The method to calibrate the spiral reader (SR) is presented. A brief description of the main procedures of the calibration program SCALP, adapted for the IHEP equipment and purposes, is described. The precision characteristics of the IHEP SR have been analysed on the results, presented in the form of diagrams. There is a calibration manual for the user

  6. Electromagnetic Calorimeter Calibration with $\\pi^{0}$

    CERN Multimedia

    Puig Navarro, A

    2009-01-01

    Several methods can be used in order to achieve precise calibration of the LHCb Electromagnetic Calorimeter (ECAL) once reasonable cell equalization has been reached. At low transverse energy, the standard calibration procedure is an iterative method based on the fit of the $\\gamma\\gamma$ invariant mass distribution for each cell of the decay $\\pi^{0}\\to\\gamma\\gamma$ with resolved photons. A new technique for generating the combinatorial background of such decays directly from data has been developed. Knowledge of the background could allow an alternative calibration method based on a event by event fit of the same $\\gamma\\gamma$ invariant mass distribution where contributions from groups of cells are considered in a single fit. The background generation procedure and this possible new calibration method are presented in this poster, in addition to an overview of the LHCb Calorimetry system and ECAL calibration techniques.

  7. Calibration of Sr-90 ophthalmic applicators

    International Nuclear Information System (INIS)

    The purpose of this paper is to alert users of Sr-90 ophthalmic applicators about potential large errors in calibration of these devices. A discrepancy of more than 50% in calibration of Sr-90 ophthalmic applicators between the US National Institute of Standards and Technology (NIST) and one foreign manufacturer (the world's only remaining supplier) has been reported. A single-plane Sr-90 ophthalmic applicator was calibrated by the manufacturer, by NIST, and by the University of Wisconsin. The manufacturer's close rate calibration is confined to a 3-mm-diameter active area, while NIST measures all beta radiation emitted into a 2-PI solid angle. The discrepancy was verified by means of a technique based on that of NIST. Reports of calibrations at NIST of applicators made by several American manufacturers (no longer available) indicate that large discrepancies exist for other manufacturers as well

  8. Residual gas analyzer calibration

    Science.gov (United States)

    Lilienkamp, R. H.

    1972-01-01

    A technique which employs known gas mixtures to calibrate the residual gas analyzer (RGA) is described. The mass spectra from the RGA are recorded for each gas mixture. This mass spectra data and the mixture composition data each form a matrix. From the two matrices the calibration matrix may be computed. The matrix mathematics requires the number of calibration gas mixtures be equal to or greater than the number of gases included in the calibration. This technique was evaluated using a mathematical model of an RGA to generate the mass spectra. This model included shot noise errors in the mass spectra. Errors in the gas concentrations were also included in the valuation. The effects of these errors was studied by varying their magnitudes and comparing the resulting calibrations. Several methods of evaluating an actual calibration are presented. The effects of the number of gases in then, the composition of the calibration mixture, and the number of mixtures used are discussed.

  9. Calibration of personnel dose meters

    International Nuclear Information System (INIS)

    Methods of calibrating both film and thermoluminescent dose meters (TLD) to photon and electron radiations are described. K fluorescent X-rays, heavily filtered X-ray beams, and isotope gamma rays are used at the Los Alamos calibration facility to measure the energy and angular response of radiation detectors over a photon energy range of 10 to 1000keV. Beam spectra, alignment, size and uniformity are discussed. The energy and angular response of dose meters to electrons is measured with beta-emitting isotopes varying in maximum energy from 770 to 2300keV. A free-air ionization chamber is the primary standard used in the measurement of photon radiation. Thimble-sized ionization chambers, calibrated to the free-air chamber, serve as secondary standards. Electron radiation is measured with an end-window ionization chamber having a 7mg/cm2 approximately tissue-equivalent plastic wall. Photon calibrations are performed with personnel dose meters in air, on a phantom, and in a phantom. If the personnel dose meter and secondary chamber are both in air, or both on or both in a phantom, the response of the LiF TLD chip, relative to the secondary chamber, is the same. However, the film dose meter shows a larger relative response on or in the phantom than in air. With beta sources, personnel dose meters are calibrated by exposing the dose meter either in air to a high-dose-rate 90Sr (90Y) source, or in contact with a low-dose-rate uranium source. The differences in personnel dose meter response observed between the two methods are discussed. The personnel dose meters are calibrated to determine penetrating doses by placing the secondary chamber 1cm deep in a phantom and the personnel dose meter on the surface, with a filter over the TLD to simulate 1cm depth. Non-penetrating dose calibrations are measured by placing both chamber and dose meter on the surface of the phantom. (author)

  10. HPS instrument calibration laboratory accreditation program

    Energy Technology Data Exchange (ETDEWEB)

    Masse, F.X; Eisenhower, E.H.; Swinth, K.L.

    1993-12-31

    The purpose of this paper is to provide an accurate overview of the development and structure of the program established by the Health Physics Society (HPS) for accrediting instrument calibration laboratories relative to their ability to accurately calibrate portable health physics instrumentation. The purpose of the program is to provide radiation protection professionals more meaningful direct and indirect access to the National Institute of Standards and Technology (NIST) national standards, thus introducing a means for improving the uniformity, accuracy, and quality of ionizing radiation field measurements. The process is designed to recognize and document the continuing capability of each accredited laboratory to accurately perform instrument calibration. There is no intent to monitor the laboratory to the extent that each calibration can be guaranteed by the program; this responsibility rests solely with the accredited laboratory.

  11. HPS instrument calibration laboratory accreditation program

    International Nuclear Information System (INIS)

    The purpose of this paper is to provide an accurate overview of the development and structure of the program established by the Health Physics Society (HPS) for accrediting instrument calibration laboratories relative to their ability to accurately calibrate portable health physics instrumentation. The purpose of the program is to provide radiation protection professionals more meaningful direct and indirect access to the National Institute of Standards and Technology (NIST) national standards, thus introducing a means for improving the uniformity, accuracy, and quality of ionizing radiation field measurements. The process is designed to recognize and document the continuing capability of each accredited laboratory to accurately perform instrument calibration. There is no intent to monitor the laboratory to the extent that each calibration can be guaranteed by the program; this responsibility rests solely with the accredited laboratory

  12. Selection of stars to calibrate Gaia

    Science.gov (United States)

    Carrasco, J. M.; Voss, H.; Jordi, C.; Fabricius, C.; Pancino, E.; Altavilla, G.

    2015-05-01

    Gaia is an all-sky survey satellite, launched by ESA on 19th December 2013, to obtain parallaxes and proper motions to microarcsecond level precision, radial velocities and astrophysical parameters for about one billion objects down to a limiting magnitude of 20. The chosen strategy to perform the photometric calibration is to split the process into two steps, internal and external calibration. The internal calibration will combine all different transits of a given source to a common reference internal system producing a 'mean' Gaia observation. This internal calibration accounts for the differential instrumental effects (in sensitivity, aperture, PSF, etc.). They depend on the colour and type of the source. For this reason, a selection of calibration sources ensuring a good representation of all kind of observed sources is needed. The entire magnitude and colour range of the sources have to be covered by these calibration stars and for all calibration intervals. It is a challenge to obtain a suitable colour distribution for the standards, especially for bright sources and the daily large scale calibration intervals. Once the mean Gaia observations are produced, a final step, the external calibration, transforms them to absolute fluxes and wavelengths. In principle, few calibration sources are needed (about 200 spectrophotometric standard stars, SPSS, are currently being considered). They need to have accurate determinations of their absolute fluxes and their non-variability need to be ensured below 1% precision. For this purpose, a big international observational effort is being done (using telescopes as 2.2m@CAHA, TNG@LaPalma, NTT@LaSilla, LaRuca@SPM, and others). During this observational effort some cases of non-expected variability of the SPSS candidates have been discovered.

  13. Calibration of routine dosimeters in radiation processing: Validation procedure for in-plant calibration

    Directory of Open Access Journals (Sweden)

    Šećerov Bojana Lj.

    2011-01-01

    Full Text Available The essential prerequisite of radiation dosimetry is to provide quality assurance and documentation that the irradiation procedure has been carried out according to the specification requirement of correct calibration of the chosen dosimetry system. At the Radiation Plant of the Vinča Institute of Nuclear Sciences we compared two recommended protocols of irradiation procedures in the calibration of dosimetry systems in radiation processing: (1 by irradiation of routine dosimeters (ethanol-chlorobenzene - ECB at the calibration laboratory and (2, by in-plant calibration with alanine transfer - dosimeters. The critical point for in-plant calibration is irradiation geometry, so we carefully positioned the phantom carrying both dosimeters in order to minimize dose gradients across the sample. The analysis of results obtained showed that the difference among determined absorbed doses for the construction of calibration curves between these two methods, (alanine vs. ECB, is less than 1%. The difference in combined standard uncertainty for each calibration procedure is 0.1%. These results demonstrate that our in-plant calibration is as good as calibration by irradiation at the calibration laboratory and validates our placement of the irradiation phantom during irradiation.

  14. Preliminary evaluation of a Neutron Calibration Laboratory

    International Nuclear Information System (INIS)

    In the past few years, Brazil and several other countries in Latin America have experimented a great demand for the calibration of neutron detectors, mainly due to the increase in oil prospection and extraction. The only laboratory for calibration of neutron detectors in Brazil is localized at the Institute for Radioprotection and Dosimetry (IRD/CNEN), Rio de Janeiro, which is part of the IAEA SSDL network. This laboratory is the national standard laboratory in Brazil. With the increase in the demand for the calibration of neutron detectors, there is a need for another calibration services. In this context, the Calibration Laboratory of IPEN/CNEN, Sao Paulo, which already offers calibration services of radiation detectors with standard X, gamma, beta and alpha beams, has recently projected a new calibration laboratory for neutron detectors. In this work, the ambient equivalent dose rate (H⁎(10)) was evaluated in several positions inside and around this laboratory, using Monte Carlo simulation (MCNP5 code), in order to verify the adequateness of the shielding. The obtained results showed that the shielding is effective, and that this is a low-cost methodology to improve the safety of the workers and evaluate the total staff workload. (author)

  15. Use of Ethanol/Diesel Blend and Advanced Calibration Methods to Satisfy Euro 5 Emission Standards without DPF Utilisation d’un carburant Diesel éthanolé à l’aide de méthodes de calibration avancées afin de satisfaire les normes Euro 5 sans filtre à particules

    Directory of Open Access Journals (Sweden)

    Magand S.

    2011-11-01

    innovative calibration methods, based on the simultaneous optimisation of engine basic settings and cold correction maps, are introduced in order to better suit to the new formulation impact on combustion and catalyst light-off and to drop off engine-out unburned hydrocarbons and carbon monoxide emissions. This stage allows pushing forward the work on test bed facilities in order to reduce the amount of vehicle tests. Tests on a chassis dynamometer are only used to validate the engine test bed results and to perform final tuning of cold correction maps. This alternative blend shows potential to achieve Euro 5 standard with Euro 4 Diesel vehicle configuration, without any hardware modification and without a Diesel particulate filter in the exhaust line. Such an innovative fuel formulation seems to be an interesting answer to the trade-off in the forthcoming years between cost and emissions reduction to achieve sustainable mobility. The presented calibration methods and tools allow to fully take advantage of this alternative fuel in a reduced time scale. L’utilisation des biocarburants s’est développée durant ces dernières années de façon importante afin de diversifier les sources d’énergies et de limiter la hausse des émissions de gaz à effet de serre du secteur des transports. L’un des carburants renouvelables les plus adaptés à une production de masse est l’éthanol. Celui-ci est aujourd’hui principalement utilisé dans les moteurs à allumage commandé, alors que la part des véhicules Diesel sur le marché européen est de l’ordre de 60 %. Ce constat nous a incité à proposer une formulation innovante utilisant de l’éthanol pour les applications Diesel. Les principaux verrous technologiques pour cette utilisation sont la miscibilité, la température d’éclair, la lubrification ou encore l’indice de cétane. Des travaux ont été réalisés pour optimiser la formulation contenant de l’éthanol, des biodiesels de première et seconde g

  16. Calibration of Ground-based Lidar instrument

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Gómez Arranz, Paula

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...... measurements are given for information only....

  17. Development of the national radionuclide dose calibrator standardisation service

    International Nuclear Information System (INIS)

    The Australian Nuclear Science and Technology Organisation (ANSTO) acts as agent for the CSIRO Division of Applied Physics. ANSTO maintains the Australian primary standard of measurement for activity. The standard includes all nuclear medicine gamma emitters and a new standard for pure positron emitters. All radionuclide dose calibrators require calibration report. To satisfy the requirements of section 10 of the National Measurement Act, hospital departments and practices using radionuclide dose calibrators must ensure that they are traceable to the Australian primary standard of measurement. Each requires a current calibration report determined by ANSTO. For this reason, ANSTO has developed the National Radionuclide Dose Calibrator Standardisation Service, which activities are briefly presented. A list of publications by the Radiation Standards Laboratory is also included. 21 refs., 4 figs

  18. Calibration of two 90Sr+90Y dermatological applicators

    International Nuclear Information System (INIS)

    The 90Sr+90Y applicators need to be periodically calibrated, but in Brazil the service it not offered yet. The recommended method for the calibration of this kind of applicators is the use of extrapolation chambers. An alternative method for the calibration of clinical applicators is the use of thermoluminescent dosimeters. A dosimetric method of these applicators was already developed at Instituto de Pesquisas Energeticas e Nucleares (IPEN) and several types of thermoluminescent dosimeters were studied in previous works. The aim of this work was the application of this method to calibrate two dermatological applicators. Thin CaSO4:Dy pellets, with and without 10% of graphite were utilized. The reproducibility of these pellets was studied, and calibration curves were obtained using a standard applicator calibrated at the National Institute of Standards and Technology (NIST), USA. Both applicators showed similar results. The TL materials tested showed usefulness for dosimetry and calibration of this kind of applicators. (author)

  19. Wind Tunnel Force Balance Calibration Study - Interim Results

    Science.gov (United States)

    Rhew, Ray D.

    2012-01-01

    Wind tunnel force balance calibration is preformed utilizing a variety of different methods and does not have a direct traceable standard such as standards used for most calibration practices (weights, and voltmeters). These different calibration methods and practices include, but are not limited to, the loading schedule, the load application hardware, manual and automatic systems, re-leveling and non-re-leveling. A study of the balance calibration techniques used by NASA was undertaken to develop metrics for reviewing and comparing results using sample calibrations. The study also includes balances of different designs, single and multi-piece. The calibration systems include, the manual, and the automatic that are provided by NASA and its vendors. The results to date will be presented along with the techniques for comparing the results. In addition, future planned calibrations and investigations based on the results will be provided.

  20. PACS photometer calibration block analysis

    CERN Document Server

    Moór, A; Kiss, Cs; Balog, Z; Billot, N; Marton, G

    2013-01-01

    The absolute stability of the PACS bolometer response over the entire mission lifetime without applying any corrections is about 0.5% (standard deviation) or about 8% peak-to-peak. This fantastic stability allows us to calibrate all scientific measurements by a fixed and time-independent response file, without using any information from the PACS internal calibration sources. However, the analysis of calibration block observations revealed clear correlations of the internal source signals with the evaporator temperature and a signal drift during the first half hour after the cooler recycling. These effects are small, but can be seen in repeated measurements of standard stars. From our analysis we established corrections for both effects which push the stability of the PACS bolometer response to about 0.2% (stdev) or 2% in the blue, 3% in the green and 5% in the red channel (peak-to-peak). After both corrections we still see a correlation of the signals with PACS FPU temperatures, possibly caused by parasitic h...

  1. High performance grid for the metric calibration of thermographic cameras

    International Nuclear Information System (INIS)

    The metric calibration of thermographic cameras would make possible the acquisition of geometric data if the principles of photogrammetry are followed. Both the distortion effects introduced in the images by the lens and the perspective effect can be corrected if the calibration parameters are known. This paper presents a calibration grid that allows the automatic metric calibration of thermographic cameras. This calibration grid is made of light and easy-to-find materials to guarantee its portability and handling. The calibration parameters obtained with the presented calibration grid are verified and compared with those obtained with a temperature-based calibration grid through the evaluation of the accuracy and repeatability in the modelling of a standard artefact previously certified

  2. Experience with a factory-calibrated HPGe detector

    Science.gov (United States)

    Bossus, D. A. W.; Swagten, J. J. J. M.; Kleinjans, P. A. M.

    2006-08-01

    For k0-based analysis, an HPGe detector has to be used. This detector has to be absolutely calibrated in a reference position and with a defined geometry so that, using SOLCOI/KAYZERO software package, for example, efficiencies of other positions and sample geometries can be calculated. This reference calibration is a time-consuming procedure during which the detector is not available for analyses. Therefore, DSM Resolve decided to purchase a "factory-calibrated" detector. Efficiency calibrations were ordered for a point-source geometry at a coincidence-free distance from the detector and for two additional distances closer to the detector. After delivery, the factory calibration was checked at DSM Resolve using a limited set of PTB-calibrated reference sources. At the end, we decided nevertheless to perform a standard and full calibration of the detector, because it turned out that the factory-calibrated detector was not accurate enough to be used for quantitative analyses.

  3. The COS Calibration Pipeline

    Science.gov (United States)

    Hodge, Philip E.; Keyes, C.; Kaiser, M.

    2007-12-01

    The COS calibration pipeline (CALCOS) includes three main components: basic calibration, wavelength calibration, and spectral extraction. Calibration of modes using the far ultraviolet (FUV) and near ultraviolet (NUV) detectors share a common structure, although the individual reference files differ and there are some additional steps for the FUV channel. The pipeline is designed to calibrate data acquired in either ACCUM or time-tag mode. The basic calibration includes pulse-height filtering and geometric correction for FUV, and flat-field, deadtime, and Doppler correction for both detectors. Wavelength calibration can be done either by using separate lamp exposures or by taking several short lamp exposures concurrently with a science exposure. For time-tag data, the latter mode ("tagflash") will allow better correction of potential drift of the spectrum on the detector. One-dimensional spectra will be extracted and saved in a FITS binary table. Separate columns will be used for the flux-calibrated spectrum, error estimate, and the associated wavelengths. CALCOS is written in Python, with some functions in C. It is similar in style to other HST pipeline code in that it uses an association table to specify which files to be included, and the calibration steps to be performed and the reference files to use are specified by header keywords. Currently, in conjunction with the Instrument Definition Team (led by J. Green), the ground-based reference files are being refined, delivered, and tested with the pipeline.

  4. Energy calibration via correlation

    Science.gov (United States)

    Maier, Daniel; Limousin, Olivier

    2016-03-01

    The main task of an energy calibration is to find a relation between pulse-height values and the corresponding energies. Doing this for each pulse-height channel individually requires an elaborated input spectrum with an excellent counting statistics and a sophisticated data analysis. This work presents an easy to handle energy calibration process which can operate reliably on calibration measurements with low counting statistics. The method uses a parameter based model for the energy calibration and concludes on the optimal parameters of the model by finding the best correlation between the measured pulse-height spectrum and multiple synthetic pulse-height spectra which are constructed with different sets of calibration parameters. A CdTe-based semiconductor detector and the line emissions of an 241Am source were used to test the performance of the correlation method in terms of systematic calibration errors for different counting statistics. Up to energies of 60 keV systematic errors were measured to be less than ~ 0.1 keV. Energy calibration via correlation can be applied to any kind of calibration spectra and shows a robust behavior at low counting statistics. It enables a fast and accurate calibration that can be used to monitor the spectroscopic properties of a detector system in near realtime.

  5. European intercomparison of diagnostic dosemeters: calibration of the reference dosemeters

    International Nuclear Information System (INIS)

    The paper describes both the organisational and technical steps taken in the calibration of the reference dosemeters used in the intercomparison of diagnostic dosemeters carried out in Europe in 1990. A brief account is given on the activities by the coordinating centres in the 19 countries and by the calibrating institution to establish the operational framework necessary for carrying out the calibration. The second part describes the calibration of the dosemeters against PTB's primary standards in terms of the equipment used and of the individual steps of measurement taken. An assessment of the uncertainties associated with the calibration is presented

  6. U.S.-MEXICO BORDER PROGRAM ARIZONA BORDER STUDY--STANDARD OPERATING PROCEDURE FOR OPERATION, CALIBRATION AND MAINTENANCE OF FIXED AND ADJUSTABLE VOLUME PIPETTE GUNS (BCO-L-9.0)

    Science.gov (United States)

    The purpose of this SOP is to describe the general procedures for the operation, calibration, and maintenance of fixed- and adjustable-volume pipette guns. This procedure was followed to ensure consistent data retrieval during the Arizona NHEXAS project and the Border study. Keyw...

  7. Comparison of Spectral Radiance Calibration Techniques Used for Backscatter Ultraviolet Satellite Instruments

    Science.gov (United States)

    Kowalewski, Matthew G.; Janz, Scott

    2014-01-01

    Methods for determining the absolute radiometric calibration sensitivities of backscatter ultraviolet (BUV) satellite instruments are compared as part of an effort to minimize pre-launch calibration errors. An internally illuminated integrating sphere source has been used for the Shuttle Solar BUV (SSBUV), Total Ozone Mapping Spectrometer (TOMS), Ozone Mapping Instrument (OMI), and Global Ozone Monitoring Experiment 2 (GOME-2) using standardized procedures traceable to national standards. These sphere-based sensitivities agree to within three percent [k equals 2] relative to calibrations performed using an external diffuser illuminated by standard irradiance sources, the customary radiance calibration method for BUV instruments. The uncertainty for these calibration techniques as implemented at the NASA Goddard Space Flight Centers Radiometric Calibration and Development Laboratory is shown to be 4 percent at 250nm [k equals 2] when using a single traceable calibration standard. Significant reduction in the uncertainty of nearly 1 percent is demonstrated when multiple calibration standards are used.

  8. Calibration of radiation protection monitoring equipment

    International Nuclear Information System (INIS)

    The facilities and equipment required for calibrating radiation protection monitoring equipment are both complex and expensive. The staff required to operate the equipment and perform the standardization have to be experienced, well trained and technically competent in the use of secondary or primary radiation standards and equipment. Thus an organization cannot commit considerable resources to perform calibration work purely for academic or scientific reasons. In most cases it must be justified by legal requirements pertaining within the country. These legal requirements on measuring devices for radiation protection purposes may be broadly divided into those relating to instruments intended for area monitoring and to those intended for individual monitoring

  9. ACCESS: Design, Calibration Strategy, and Status

    Science.gov (United States)

    Kaiser, M. E.; Access Team

    2016-05-01

    ACCESS, Absolute Color Calibration Experiment for Standard Stars, is a series of rocket-borne sub-orbital missions and ground-based experiments designed to enable improvements in the precision of the astrophysical flux scale through the transfer of absolute laboratory detector standards from the National Institute of Standards and Technology (NIST) to a network of stellar standards with a calibration accuracy of 1% and a spectral resolving power of 500 across the 0.35–1.7μm bandpass. Establishing improved spectrophotometric standards is important for a broad range of missions and is relevant to many astrophysical problems. Systematic errors associated with problems such as dark energy now compete with the statistical errors and thus limit our ability to answer fundamental questions in astrophysics.

  10. Photogrammetric camera calibration

    Science.gov (United States)

    Tayman, W.P.; Ziemann, H.

    1984-01-01

    Section 2 (Calibration) of the document "Recommended Procedures for Calibrating Photogrammetric Cameras and Related Optical Tests" from the International Archives of Photogrammetry, Vol. XIII, Part 4, is reviewed in the light of recent practical work, and suggestions for changes are made. These suggestions are intended as a basis for a further discussion. ?? 1984.

  11. The GERDA calibration system

    International Nuclear Information System (INIS)

    A system with three identical custom made units is used for the energy calibration of the GERDA Ge diodes. To perform a calibration the 228Th sources are lowered from the parking positions at the top of the cryostat. Their positions are measured by two independent modules. One, the incremental encoder, counts the holes in the perforated steel band holding the sources, the other measures the drive shaft's angular position even if not powered. The system can be controlled remotely by a Labview program. The calibration data is analyzed by an iterative calibration algorithm determining the calibration functions for different energy reconstruction algorithms and the resolution of several peaks in the 228Th spectrum is determined. A Monte Carlo simulation using the GERDA simulation software MAGE has been performed to determine the background induced by the sources in the parking positions.

  12. Protocols for calibrating multibeam sonar

    OpenAIRE

    Foote, Kenneth G.; Chu, Dezhang; Hammar, Terence R.; Baldwin, Kenneth C.; Mayer, Larry A.; Hufnagle, Lawrence C. jr.; Jech, J. Michael

    2005-01-01

    Development of protocols for calibrating multibeam sonar by means of the standard-target method is documented. Particular systems used in the development work included three that provide the water-column signals, namely the SIMRAD SM2000/90- and 200-kHz sonars and RESON SeaBat 8101 sonar, with operating frequency of 240 kHz. Two facilities were instrumented specifically for the work: a sea well at the Woods Hole Oceanographic Institution and a large, indoor freshwater tank at the University o...

  13. The PREMOS/PICARD instrument calibration

    Science.gov (United States)

    Schmutz, Werner; Fehlmann, André; Hülsen, Gregor; Meindl, Peter; Winkler, Rainer; Thuillier, Gérard; Blattner, Peter; Buisson, François; Egorova, Tatiana; Finsterle, Wolfgang; Fox, Nigel; Gröbner, Julian; Hochedez, Jean-François; Koller, Silvio; Meftah, Mustapha; Meisonnier, Mireille; Nyeki, Stephan; Pfiffner, Daniel; Roth, Hansjörg; Rozanov, Eugene; Spescha, Marcel; Wehrli, Christoph; Werner, Lutz; Wyss, Jules U.

    2009-08-01

    PREMOS is a space experiment scheduled to fly on the French solar mission PICARD. The experiment comprises filter radiometers and absolute radiometers to measure the spectral and total solar irradiance. The aim of PREMOS is to contribute to the long term monitoring of the total solar irradiance, to use irradiance observations for 'nowcasting' the state of the terrestrial middle atmosphere and to provide long term sensitivity calibration for the solar imaging instrument SODISM on PICARD. In this paper we describe the calibration of the instruments. The filter radiometer channels in the visible and near IR were characterized at PMOD/WRC and the UV channels were calibrated at PTB Berlin. The absolute radiometers were compared with the World Radiometric Reference at PMOD/WRC and a power calibration relative to a primary cryogenic radiometer standard was performed in vacuum and air at NPL.

  14. Photometric Calibration of the Swift Ultraviolet/Optical Telescope

    CERN Document Server

    Poole, T S; Page, M J; Landsman, W; Holland, S T; Roming, P; Kuin, N P M; Brown, P J; Gronwall, C; Hunsberger, S; Koch, S; Mason, K O; Schady, P; Berk, D Vanden; Blustin, A J; Boyd, P; Broos, P; Carter, M; Chester, M M; Cucchiara, A; Hancock, B; Huckle, H; Immler, S; Ivanushkina, M; Kennedy, T; Marshall, F; Morgan, A; Pandey, S; de Pasquale, M; Smith, P J; Still, M

    2007-01-01

    We present the photometric calibration of the Swift UltraViolet/Optical Telescope (UVOT) which includes: optimum photometric and background apertures, effective area curves, colour transformations, conversion factors for count rates to flux, and the photometric zero points (which are accurate to better than 4 per cent) for each of the seven UVOT broadband filters. The calibration was performed with observations of standard stars and standard star fields that represent a wide range of spectral star types. The calibration results include the position dependent uniformity, and instrument response over the 1600-8000A operational range. Because the UVOT is a photon counting instrument, we also discuss the effect of coincidence loss on the calibration results. We provide practical guidelines for using the calibration in UVOT data analysis. The results presented here supersede previous calibration results.

  15. Calibration of dermatological applicators of 90 Sr+90 Y

    International Nuclear Information System (INIS)

    90 Sr+90 Y dermatological applicators are widely used in the treatment of skin lesions. Despite calibrated by the manufacturers, these sources must be re-calibrated periodically by standard laboratories. Articles published by different authors show the discrepancies between manufacturers and standard laboratories calibrations of 90 Sr+90 Y applicators. Ionization chambers with variable volume, named extrapolation chambers, are utilized for the calibration of such sources. An extrapolation chamber was developed at IPEN for the calibration of 90 Sr+90 Y dermatological applicators. This chamber shows a good performance in the detection of beta particles. The aim of this work is to establish and to apply a routine calibration procedure to a dermatological applicator, based on former work developed in this institution. (author)

  16. An automated linearity test for direct voltage calibrators

    Science.gov (United States)

    Endsley, Ross

    1990-04-01

    The complete calibration of direct voltage calibrators should include a linearity calibration. The method described uses a string of thermally lagged resistors in series across a stable voltage source to provide fixed reference points for the calibration. A high-resolution digital multimeter is used to compare voltage increments in the output of the calibrator. The calibrator and the instruments in the linearity test system are controlled by computer via the IEEE-488 bus. The measured linearity is the result of standard ration techniques. The test is suggested not only as a general purpose technique, but also as a source of assistance in dealing with traceability questions arising over instruments employing international calibration routines.

  17. A Novel Calibrator for Electronic Transformers Based on IEC 61850

    Directory of Open Access Journals (Sweden)

    Baoxiang PAN

    2013-01-01

    Full Text Available It is necessary for electronic transformer to make calibration before putting it into practice. To solve the problems in actual calibration process, a novel electronic transformer calibrator is designed. In principle, this system adopts both the direct method and the difference method, which are two popular methods for electronic transformer calibration, by this way the application of the system is extended with its reliability improved. In the system design, based on virtual instrument technology, LabVIEW and WinPCap toolkit are used to develop the application software, and it is able to calibrate those electronic transformers following the standard of IEC 61850. In the calculation of ratio and phase error based on fast Fourier transform, a new window function is introduced, and thus the accuracy of calibration, influenced by the frequency vibration, is improved. This research provides theoretic support and practical reference to the development of intelligent calibrator for electronic transformers.

  18. Calibration curve for germanium spectrometers from solutions calibrated by liquid scintillation counting

    International Nuclear Information System (INIS)

    The beta-gamma emitters ''60Co, ''137 Cs, ''131 I, ''210 Pb y ''129 Iare radionuclides for which the calibration by the CIEMAT/NIST method ispossible with uncertainties less than 1%. We prepared, from standardized solutions of these radionuclides, samples in vials of 20 ml. We obtained the calibration curves, efficiency as a function of energy, for two germanium detectors. (Author) 5 refs

  19. Calibrations of photomultiplier tubes

    International Nuclear Information System (INIS)

    The experimental methods for calibration photomultiplier tubes used in the multichannel fast-pulse-detection system of Thomson scattering measurements for nuclear fusion devices is reported. The most important parameters of the photomultiplier tubes to be calibrated include: linearity of output electric signals to input light signals, response time of pulsed light, spectral response, absolute responsibility, and sensitivity as a function of the chain voltage. The calibrations of all these parameters are carried out by using EMI 9558 B and RCA 7265 photomultiplier tubes respectively. The experimental methods presented in the paper are common to those quantitative measurements that require phomultiplier tubes as detectors

  20. Equipment for dosemeter calibration

    International Nuclear Information System (INIS)

    The device is used for precise calibration of dosimetric instrumentation, such as used at nuclear facilities. The high precision of the calibration procedure is primarily due to the fact that one single and steady radiation source is used. The accurate alignment of the source and the absence of shielding materials in the beam axis make for high homogeneity of the beam and reproducibility of the measurement; this is also contributed to by the horizontal displacement of the optical bench, which ensures a constant temperature field and the possibility of adjusting the radiation source at a sufficient distance from the instrument to be calibrated. (Z.S.). 3 figs

  1. Lidar Calibration Centre

    Science.gov (United States)

    Pappalardo, Gelsomina; Freudenthaler, Volker; Nicolae, Doina; Mona, Lucia; Belegante, Livio; D'Amico, Giuseppe

    2016-06-01

    This paper presents the newly established Lidar Calibration Centre, a distributed infrastructure in Europe, whose goal is to offer services for complete characterization and calibration of lidars and ceilometers. Mobile reference lidars, laboratories for testing and characterization of optics and electronics, facilities for inspection and debugging of instruments, as well as for training in good practices are open to users from the scientific community, operational services and private sector. The Lidar Calibration Centre offers support for trans-national access through the EC HORIZON2020 project ACTRIS-2.

  2. U.S. Department of Energy Office of Legacy Management Calibration Facilities - 12103

    International Nuclear Information System (INIS)

    This paper describes radiometric calibration facilities located in Grand Junction, Colorado, and at three secondary calibration sites. These facilities are available to the public for the calibration of radiometric field instrumentation for in-situ measurements of radium (uranium), thorium, and potassium. Both borehole and hand-held instruments may be calibrated at the facilities. Aircraft or vehicle mounted systems for large area surveys may be calibrated at the Grand Junction Regional Airport facility. These calibration models are recognized internationally as stable, well-characterized radiation sources for calibration. Calibration models built in other countries are referenced to the DOE models, which are also widely used as a standard for calibration within the U.S. Calibration models are used to calibrate radiation detectors used in uranium exploration, remediation, and homeland security. (authors)

  3. In-Field Absolute Calibration of Ground and Airborne VIS-NIR-SWIR Hyperspectral Point Spectrometers

    Directory of Open Access Journals (Sweden)

    Offer Rozenstein

    2014-01-01

    Full Text Available Spectrometer calibration and measurements of spectral radiance are often required when performing ground, aerial, and space measurements. While calibrating a spectrometer in the field using an integrating sphere is practically unachievable, calibration against a quartz halogen (QH lamp is a quite easy and feasible option. We describe a calibration protocol whereby a professional QH lamp, operating with a stabilized current source, is first calibrated in the laboratory against a US National Institute of Standards and Technology (NIST traceable integrating sphere and, then, used for the field calibration of a spectrometer before a ground or airborne campaign. Another advantage of the lamp over the integrating sphere is its ability to create a continuous calibration curve at the spectrometer resolution, while the integrating sphere is calibrated only for a few discrete wavelengths. A calibrated lamp could also be used for a secondary continuous calibration of an un-calibrated integrating sphere.

  4. User-calibration of Mettler AT200 analytical balance

    International Nuclear Information System (INIS)

    The purpose of this technical implementing procedure (TIP) is to describe the calibration of the Mettler AT200 analytical balance or similar type balance (henceforth called the balance). This balance is used for activities of the Scientific Investigation Plan (SIP) ''Metal Barrier Selection and Testing'' (SIP-CM-01, WBS nr. 1.2.2.5.1). In particular, it will be used for Activity E-20-50, ''Long-Term Corrosion Studies.'' The balance will be used for weighing test specimens and reagent chemicals. However, it is not limited to these uses. The calibration procedures consist of activating the internal (self) calibration of the apparatus, and weighing and recording of traceable standards. The balance is equipped with self (internal) calibration and linearization capabilities. It has an internal (built in) set of weights which are used for self calibration. The standard weights are traceable to National Institute of Standards and Technology (NIST)

  5. Calibration of sound velocimeter in pure water

    Science.gov (United States)

    Li, Zhiwei; Zhang, Baofeng; Li, Tao; Zhu, Junchao; Xie, Ziming

    2016-01-01

    Accurate measurement of sound speed is important to calibrate a sound velocity profiler which provides real-time sound velocity to the sonar equipment in oceanographic survey. The sound velocity profiler calculates the sound speed by measuring the time-of-flight of a 1 MHz single acoustic pulse to travel over about 300 mm path. A standard sound velocimeter instrument was invited to calibrate the sound velocity profiler in pure water at temperatures of 278,283, 288, 293, 298, 303 and 308K in a thermostatic vessel at one atmosphere. The sound velocity profiler was deployed in the thermostatic vessel alongside the standard sound velocimeter instrument and two platinum resistance thermometers (PRT) which were calibrated to 0.002k by comparison with a standard PRT. Time of flight circuit board was used to measure the time-of-flight to 22 picosecond precision. The sound speed which was measured by the sound velocity profiler was compared to the standard sound speed calculated by UNESCO to give the laboratory calibration coefficients and was demonstrated agreement with CTD-derived sound speed using Del Grosso's seawater equation after removing a bias.

  6. Calibration of 133Ba by Sum-Peak Method

    International Nuclear Information System (INIS)

    A calibration laboratory should have several methods of measurement in order to ensure robustness on the values applied. The National Laboratory for Metrology of Ionizing Radiation, (LNMRI IRD), provides gamma sources of radionuclide in various geometries and standardized in activity with reduced uncertainties. Some absolute and relative methods of calibrations could be used routinely. Relative methods require standards to determine the activity of sample to be calibrated, while the absolute methods do not need, simply make the counting and the calculation of the activity is obtained directly. The great advantage of calibrations of radionuclides by absolute method is the accuracy and low uncertainties. 133Ba is a radionuclide enough used in research laboratories and calibration of detectors for environmental analysis and, according to the scheme, it decays 100% by electron capture and emits about 14 energy gamma and X-ray lines, forming several coincidences. However, the classical methods of absolute measurement, as coincidence 4 πβ-γ have difficulty to calibrate 133Ba due to its complex decay scheme. The sum-peak method, developed by Brickman, could allow this calibration. It is used for radionuclide calibration that emits at least two photons in coincidence. Therefore, it was developed a methodology that combines gamma spectrometry technique with sum-peak method to standardize 133Ba samples. Activity results obtained proved compatible, with uncertainties of less than 1%, and, when compared with other methods of calibration, sum-peak demonstrated the feasibility of this methodology, particularly, for simplicity and effectiveness. (author)

  7. Traceable Pyrgeometer Calibrations

    Energy Technology Data Exchange (ETDEWEB)

    Dooraghi, Mike; Kutchenreiter, Mark; Reda, Ibrahim; Habte, Aron; Sengupta, Manajit; Andreas, Afshin; Newman, Martina; Webb, Craig

    2016-05-02

    This presentation provides a high-level overview of the progress on the Broadband Outdoor Radiometer Calibrations for all shortwave and longwave radiometers that are deployed by the Atmospheric Radiation Measurement program.

  8. Air Data Calibration Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This facility is for low altitude subsonic altimeter system calibrations of air vehicles. Mission is a direct support of the AFFTC mission. Postflight data merge is...

  9. Approximation Behooves Calibration

    DEFF Research Database (Denmark)

    da Silva Ribeiro, André Manuel; Poulsen, Rolf

    2013-01-01

    Calibration based on an expansion approximation for option prices in the Heston stochastic volatility model gives stable, accurate, and fast results for S&P500-index option data over the period 2005–2009.......Calibration based on an expansion approximation for option prices in the Heston stochastic volatility model gives stable, accurate, and fast results for S&P500-index option data over the period 2005–2009....

  10. Scanner calibration revisited

    Directory of Open Access Journals (Sweden)

    Pozhitkov Alexander E

    2010-07-01

    Full Text Available Abstract Background Calibration of a microarray scanner is critical for accurate interpretation of microarray results. Shi et al. (BMC Bioinformatics, 2005, 6, Art. No. S11 Suppl. 2. reported usage of a Full Moon BioSystems slide for calibration. Inspired by the Shi et al. work, we have calibrated microarray scanners in our previous research. We were puzzled however, that most of the signal intensities from a biological sample fell below the sensitivity threshold level determined by the calibration slide. This conundrum led us to re-investigate the quality of calibration provided by the Full Moon BioSystems slide as well as the accuracy of the analysis performed by Shi et al. Methods Signal intensities were recorded on three different microarray scanners at various photomultiplier gain levels using the same calibration slide from Full Moon BioSystems. Data analysis was conducted on raw signal intensities without normalization or transformation of any kind. Weighted least-squares method was used to fit the data. Results We found that initial analysis performed by Shi et al. did not take into account autofluorescence of the Full Moon BioSystems slide, which led to a grossly distorted microarray scanner response. Our analysis revealed that a power-law function, which is explicitly accounting for the slide autofluorescence, perfectly described a relationship between signal intensities and fluorophore quantities. Conclusions Microarray scanners respond in a much less distorted fashion than was reported by Shi et al. Full Moon BioSystems calibration slides are inadequate for performing calibration. We recommend against using these slides.

  11. Calibrating nacelle lidars

    Energy Technology Data Exchange (ETDEWEB)

    Courtney, M.

    2013-01-15

    Nacelle mounted, forward looking wind lidars are beginning to be used to provide reference wind speed measurements for the power performance testing of wind turbines. In such applications, a formal calibration procedure with a corresponding uncertainty assessment will be necessary. This report presents four concepts for performing such a nacelle lidar calibration. Of the four methods, two are found to be immediately relevant and are pursued in some detail. The first of these is a line of sight calibration method in which both lines of sight (for a two beam lidar) are individually calibrated by accurately aligning the beam to pass close to a reference wind speed sensor. A testing procedure is presented, reporting requirements outlined and the uncertainty of the method analysed. It is seen that the main limitation of the line of sight calibration method is the time required to obtain a representative distribution of radial wind speeds. An alternative method is to place the nacelle lidar on the ground and incline the beams upwards to bisect a mast equipped with reference instrumentation at a known height and range. This method will be easier and faster to implement and execute but the beam inclination introduces extra uncertainties. A procedure for conducting such a calibration is presented and initial indications of the uncertainties given. A discussion of the merits and weaknesses of the two methods is given together with some proposals for the next important steps to be taken in this work. (Author)

  12. Energy calibration via correlation

    CERN Document Server

    Maier, Daniel

    2015-01-01

    The main task of an energy calibration is to find a relation between pulse-height values and the corresponding energies. Doing this for each pulse-height channel individually requires an elaborated input spectrum with an excellent counting statistics and a sophisticated data analysis. This work presents an easy to handle energy calibration process which can operate reliably on calibration measurements with low counting statistics. The method uses a parameter based model for the energy calibration and concludes on the optimal parameters of the model by finding the best correlation between the measured pulse-height spectrum and multiple synthetic pulse-height spectra which are constructed with different sets of calibration parameters. A CdTe-based semiconductor detector and the line emissions of an 241 Am source were used to test the performance of the correlation method in terms of systematic calibration errors for different counting statistics. Up to energies of 60 keV systematic errors were measured to be le...

  13. 49 CFR 325.25 - Calibration of measurement systems.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Calibration of measurement systems. 325.25 Section... SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION GENERAL REGULATIONS COMPLIANCE WITH INTERSTATE MOTOR CARRIER NOISE EMISSION STANDARDS Instrumentation § 325.25 Calibration of measurement systems. (a)(1)...

  14. Critical issues for implementation of the standard NBR ISO/IEC 17025:2005 in Testing and Calibration Laboratory: case study at a public institution; Aspectos criticos para implantacao da norma NBR ISO/IEC 17025:2005 em laboratorio de ensaio e calibracao: estudo de caso em uma instituicao publica

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Denise Confar Carvalho de

    2013-07-01

    The public institution aims to promote excellence in public management to contribute to the quality of services provided to its customers and to increase competitiveness in the country, as well as its international projection. A technical barrier to trade that can lead to dissatisfaction and achieve the reputation of the institution is failing the test or calibration results and measurement data, thereby accreditation is regarded as the first essential step to facilitate the mutual acceptance of test results and calibration or measurement data. For recognition, laboratories need to demonstrate full compliance with both the sections of ISO/IEC 17025:2005, i.e. management and technical requirements. This research aims to discuss the critical aspects for implementation of ABNT NBR ISO / IEC 17025:2005 for calibration and testing of a Public Institution seeking accreditation of its laboratories with INMETRO, national accreditation body Laboratories. Besides getting preventive, corrective and improvement actions continues guidelines. Furthermore, the methodology used was to conduct a literature search and apply a questionnaire to identify the degree of agreement / disagreement of the foundations of the standard servers. Analysis of the results showed that the critical issues were: commitment, training, resources (infrastructure, human) and culture. (author)

  15. TL dosimeters for gamma and thermal neutrons used at ENEA. Accuracy and calibration standards; Dosimetri a TL per neutroni termici e gamma impiegati in ENEA: metodo, calibrazione e qualificazione

    Energy Technology Data Exchange (ETDEWEB)

    Fantuzzi, E.; Gualdrini, G.F.; Monteventi, F.; Morelli, B.; Uleri, G. [ENEA, Centro Ricerche Ezio Clementel, Bologna (Italy). Dipt. Ambiente

    1998-07-01

    This work summaries the experimental results achieved on the characterisation of dosimetric systems used at ENEA (National Agency for New Technology, Energy and the Environment) laboratory in Bologna (Italy) and describes the calibration method either for a two-element dosemeter Harshaw and for a two-element dosemeter assembled at ENEA with higher sensitivity LiF detectors. Both calculation algorithm and calibration procedure have been defined and analyzed in terms of the dosimetric reference quantities. In addition, parameters responsible and crucial for the dosimetric reference quantities. In addition, parameters responsible and crucial for the dosimetric results are pointed out. Finally, intercomparisons between experimental data and numerical data (Monte Carlo code) are shown. [Italian] Vengono esposti i metodi utilizzati per la calibrazione di un dosimetro Harshaw e di uno con maggiore sensibilita' prodotto dal centro ENEA di Bologna con LiF. Sono stati definiti sia l'algoritmo di calcolo sia la procedura di calibrazione ed analizzate le problematiche legate alle grandezze di riferimento. Sono state inoltre individuate le specifiche variabili che possono incidere sul dato dosimetrico ed infine esposti i risultati di interconfronti sperimentali e di calcolo con tecnica Monte Carlo.

  16. Hydro acoustic transducer's calibration by the reciprocity

    International Nuclear Information System (INIS)

    This paper presents a calibration technique of underwater acoustic transducers, hydroacoustics, known as three-transducer spherical-wave reciprocity and performs an assessment of the type B standard uncertainty of the results obtained for the frequency measurement used

  17. Measurement quality assurance for beta particle calibrations at NIST

    Energy Technology Data Exchange (ETDEWEB)

    Soares, C.G.; Pruitt, J.S. [National Institute of Standards and Technology, Gaithersburg, MD (United States)

    1993-12-31

    Standardized beta-particle fields have been established in an international standard and have been adopted for use in several U.S. dosimeter and instrument testing standards. Calibration methods and measurement quality assurance procedures employed at the National Institute of Standards and Technology (NIST) for beta-particle calibrations in these reference fields are discussed. The calibration facility including the NIST-automated extrapolation ionization chamber is described, and some sample results of calibrations are shown. Methods for establishing and maintaining traceability to NIST of secondary laboratories are discussed. Currently, there are problems in finding a good method for routine testing of traceability to NIST. Some examples of past testing methods are given and solutions to this problem are proposed.

  18. Calibration of ionization chambers used in LDR brachytherapy

    International Nuclear Information System (INIS)

    In this work was developed a calibration procedure of well-type ionization chambers used for measurements of I-125, seed type. It was used as a standard an ionization chamber Capintec CRC-15BT, with calibration certificate of the University of Wisconsin. It were calibrated two well-type ionization chambers of Capintec CRC-15R model. A source of I-125 was used in clinical use (18.5 to 7.4 MBq). The results showed that with the application of calibration factors was possible to decrease read deviate from 16% to just 1.0%

  19. Manual Calibration System for Daya Bay Reactor Neutrino Experiment

    Institute of Scientific and Technical Information of China (English)

    HUANG; Han-xiong; RUAN; Xi-chao; REN; Jie; LV; Yin-long; FAN; Cheng-jun; CHEN; Yan-nan; WANG; Zhao-hui; ZHOU; Zu-ying; HOU; Long; ZHANG; Jia-wen; ZHANG; Yin-hong; YU; Chao-ju; HE; Wei; ZHOU; Bin

    2012-01-01

    <正>The neutrino mixing angle θ13 with a significance of 7.7 standard deviations has been published by the Daya Bay anti-neutrino experiment collaboration in 2012. To understand the non-uniformity and the energy non-linearity of the anti-neutrino detector (AD), a calibration campaign for the AD1 with the Manual Calibration System (MCS) has been finished. The aim of this calibration plan is to deploy the calibration sources to any positions inside the Inner Acrylic Vessel (IAV), to study detail properties of AD.

  20. Photometric calibrations for 21st century science

    Energy Technology Data Exchange (ETDEWEB)

    Kent, Stephen; /Fermilab; Kaiser, Mary Elizabeth; /Johns Hopkins U.; Deustua, Susana E.; /Baltimore, Space Telescope Sci.; Smith, J.Allyn; /Austin Peay State U.; Adelman, Saul; /Citadel Military Coll.; Allam, Sahar S.; /Fermilab; Baptista, Brian; /Indiana U.; Bohlin, Ralph C.; /Baltimore, Space Telescope Sci.; Clem, James L.; /Louisiana State U.; Conley, Alex; /Colorado U.; Edelstein, Jerry; /UC, Berkeley, Space Sci. Dept. /NOAO, Tucson

    2009-02-01

    The answers to fundamental science questions in astrophysics, ranging from the history of the expansion of the universe to the sizes of nearby stars, hinge on our ability to make precise measurements of diverse astronomical objects. As our knowledge of the underlying physics of objects improves along with advances in detectors and instrumentation, the limits on our capability to extract science from measurements is set, not by our lack of understanding of the nature of these objects, but rather by the most mundane of all issues: the precision with which we can calibrate observations in physical units. In principle, photometric calibration is a solved problem - laboratory reference standards such as blackbody furnaces achieve precisions well in excess of those needed for astrophysics. In practice, however, transferring the calibration from these laboratory standards to astronomical objects of interest is far from trivial - the transfer must reach outside the atmosphere, extend over 4{pi} steradians of sky, cover a wide range of wavelengths, and span an enormous dynamic range in intensity. Virtually all spectrophotometric observations today are calibrated against one or more stellar reference sources, such as Vega, which are themselves tied back to laboratory standards in a variety of ways. This system's accuracy is not uniform. Selected regions of the electromagnetic spectrum are calibrated extremely well, but discontinuities of a few percent still exist, e.g., between the optical and infrared. Independently, model stellar atmospheres are used to calibrate the spectra of selected white dwarf stars, e.g. the HST system, but the ultimate accuracy of this system should be verified against laboratory sources. Our traditional standard star systems, while sufficient until now, need to be improved and extended in order to serve future astrophysics experiments. This white paper calls for a program to improve upon and expand the current networks of

  1. Activities of Radiation Standard Section

    International Nuclear Information System (INIS)

    A brief account of the various facilities and services provided by the Radiation Standards Section (RSS) of the Bhabha Atomic Research Centre, Bombay is given. RSS maintains the primary and secondary standards of various parameters of radiation measurements. It ensures accurate radiological measurements as per international requirements, through periodic international intercomparisons of national standards. It also provides calibration services to various users of radiation sources and instruments. The activities of RSS are described under the headings: (1) Radiological Metrology Standards, (2) Radionuclide Standards, Neutron Metrology, (4) Instruments Calibration, (5) Non-ionizing Radiations, and (6) Instrumentation. (author). figs., tabs

  2. Calibration of the MACHO photometry database

    Energy Technology Data Exchange (ETDEWEB)

    Alcock, A

    1998-10-23

    The MACHO Project is a microlensing survey that monitors the brightnesses of ~60 million stars in the Large Magellanic Cloud (LMC), Small Magellanic Cloud, and Galactic bulge. The database presently contains more photometric measurements than previously recorded in the history of astronomy. We describe the calibration of the MACHO two-color photometry and transformation to the standard Kron-Cousins V and R system. This allows for proper comparison with all other observations on the Kron-Cousins standard system. The highest precision calibrations are for ~9 million stars in the LMC bar. For these stars, independent photometric measurements in field-overlap regions indicate standard deviations δvR = 0.020 mag. Calibrated MACHO photometry data are compared with published photometric sequences and with new Hubble Space Telescope observations. We additionally describe the first application of these calibrated data: the construction of the "efficiency" color-magnitude diagram which will be used to calculate our experimental sensitivity for detecting microlensing in the LMC.

  3. HAWC Timing Calibration

    CERN Document Server

    Huentemeyer, Petra; Dingus, Brenda

    2009-01-01

    The High-Altitude Water Cherenkov (HAWC) Experiment is a second-generation highsensitivity gamma-ray and cosmic-ray detector that builds on the experience and technology of the Milagro observatory. Like Milagro, HAWC utilizes the water Cherenkov technique to measure extensive air showers. Instead of a pond filled with water (as in Milagro) an array of closely packed water tanks is used. The event direction will be reconstructed using the times when the PMTs in each tank are triggered. Therefore, the timing calibration will be crucial for reaching an angular resolution as low as 0.25 degrees.We propose to use a laser calibration system, patterned after the calibration system in Milagro. Like Milagro, the HAWC optical calibration system will use ~1 ns laser light pulses. Unlike Milagro, the PMTs are optically isolated and require their own optical fiber calibration. For HAWC the laser light pulses will be directed through a series of optical fan-outs and fibers to illuminate the PMTs in approximately one half o...

  4. Calibration Under Uncertainty.

    Energy Technology Data Exchange (ETDEWEB)

    Swiler, Laura Painton; Trucano, Timothy Guy

    2005-03-01

    This report is a white paper summarizing the literature and different approaches to the problem of calibrating computer model parameters in the face of model uncertainty. Model calibration is often formulated as finding the parameters that minimize the squared difference between the model-computed data (the predicted data) and the actual experimental data. This approach does not allow for explicit treatment of uncertainty or error in the model itself: the model is considered the %22true%22 deterministic representation of reality. While this approach does have utility, it is far from an accurate mathematical treatment of the true model calibration problem in which both the computed data and experimental data have error bars. This year, we examined methods to perform calibration accounting for the error in both the computer model and the data, as well as improving our understanding of its meaning for model predictability. We call this approach Calibration under Uncertainty (CUU). This talk presents our current thinking on CUU. We outline some current approaches in the literature, and discuss the Bayesian approach to CUU in detail.

  5. GTC Photometric Calibration

    Science.gov (United States)

    di Cesare, M. A.; Hammersley, P. L.; Rodriguez Espinosa, J. M.

    2006-06-01

    We are currently developing the calibration programme for GTC using techniques similar to the ones use for the space telescope calibration (Hammersley et al. 1998, A&AS, 128, 207; Cohen et al. 1999, AJ, 117, 1864). We are planning to produce a catalogue with calibration stars which are suitable for a 10-m telescope. These sources will be not variable, non binary and do not have infrared excesses if they are to be used in the infrared. The GTC science instruments require photometric calibration between 0.35 and 2.5 microns. The instruments are: OSIRIS (Optical System for Imaging low Resolution Integrated Spectroscopy), ELMER and EMIR (Espectrógrafo Multiobjeto Infrarrojo) and the Acquisition and Guiding boxes (Di Césare, Hammersley, & Rodriguez Espinosa 2005, RevMexAA Ser. Conf., 24, 231). The catalogue will consist of 30 star fields distributed in all of North Hemisphere. We will use fields containing sources over the range 12 to 22 magnitude, and spanning a wide range of spectral types (A to M) for the visible and near infrared. In the poster we will show the method used for selecting these fields and we will present the analysis of the data on the first calibration fields observed.

  6. Herschel celestial calibration sources: Four large main-belt asteroids as prime flux calibrators for the far-IR/sub-mm range

    CERN Document Server

    Mueller, T G; Nielbock, M; Lim, T; Teyssier, D; Olberg, M; Klaas, U; Linz, H; Altieri, B; Pearson, C; Bendo, G; Vilenius, E

    2013-01-01

    Celestial standards play a major role in observational astrophysics. They are needed to characterise the performance of instruments and are paramount for photometric calibration. During the Herschel Calibration Asteroid Preparatory Programme approximately 50 asteroids have been established as far-IR/sub-mm/mm calibrators for Herschel. The selected asteroids fill the flux gap between the sub-mm/mm calibrators Mars, Uranus and Neptune, and the mid-IR bright calibration stars. All three Herschel instruments observed asteroids for various calibration purposes, including pointing tests, absolute flux calibration, relative spectral response function, observing mode validation, and cross-calibration aspects. Here we present newly established models for the four large and well characterized main-belt asteroids (1) Ceres, (2) Pallas, (4) Vesta, and (21) Lutetia which can be considered as new prime flux calibrators. The relevant object-specific properties (size, shape, spin-properties, albedo, thermal properties) are w...

  7. Absolute spectral radiance responsivity calibration of sun photometers

    International Nuclear Information System (INIS)

    Sun photometers are designed to measure direct solar irradiance and diffused sky radiance for the purpose of atmospheric parameters characterization. A sun photometer is usually calibrated by using a lamp-illuminated integrating sphere source for its band-averaged radiance responsivity, which normally has an uncertainty of 3%-5% at present. Considering the calibration coefficients may also change with time, a regular high precision calibration is important to maintain data quality. In this paper, a tunable-laser-based facility for spectral radiance responsivity calibration has been developed at the Key Laboratory of Optical Calibration and Characterization, Chinese Academy of Sciences. A reference standard radiance radiometer, calibrated against cryogenic radiometer, is used to determine the radiance from a laser-illuminated integrating sphere source. Spectral radiance responsivity of CIMEL CE318-2 sun photometer is calibrated using this new calibration system with a combined standard uncertainty of about 0.8%. As a validation, the derived band-averaged radiance responsivity are compared to that from a Goddard Space Flight Center lamp-based sphere calibration and good agreements (difference <1.4%) are found from 675 to 1020 nm bands.

  8. Calibrating nacelle lidars

    DEFF Research Database (Denmark)

    Courtney, Michael

    Nacelle mounted, forward looking wind lidars are beginning to be used to provide reference wind speed measurements for the power performance testing of wind turbines. In such applications, a formal calibration procedure with a corresponding uncertainty assessment will be necessary. This report...... accurately aligning the beam to pass close to a reference wind speed sensor. A testing procedure is presented, reporting requirements outlined and the uncertainty of the method analysed. It is seen that the main limitation of the line of sight calibration method is the time required to obtain a...... inclination introduces extra uncertainties. A procedure for conducting such a calibration is presented and initial indications of the uncertainties given. A discussion of the merits and weaknesses of the two methods is given together with some proposals for the next important steps to be taken in this work....

  9. TARGETLESS CAMERA CALIBRATION

    Directory of Open Access Journals (Sweden)

    L. Barazzetti

    2012-09-01

    Full Text Available In photogrammetry a camera is considered calibrated if its interior orientation parameters are known. These encompass the principal distance, the principal point position and some Additional Parameters used to model possible systematic errors. The current state of the art for automated camera calibration relies on the use of coded targets to accurately determine the image correspondences. This paper presents a new methodology for the efficient and rigorous photogrammetric calibration of digital cameras which does not require any longer the use of targets. A set of images depicting a scene with a good texture are sufficient for the extraction of natural corresponding image points. These are automatically matched with feature-based approaches and robust estimation techniques. The successive photogrammetric bundle adjustment retrieves the unknown camera parameters and their theoretical accuracies. Examples, considerations and comparisons with real data and different case studies are illustrated to show the potentialities of the proposed methodology.

  10. Calibration Report for the WRAP Facility Gamma Energy Analysis System

    International Nuclear Information System (INIS)

    The Waste Receiving And Processing facility (WRAP) adheres to providing gamma-ray spectroscopy instrument calibrations traceable to the National Institute for Standards and Technology (NIST) standards. The detectors are used to produce quantitative results for the Waste Isolation Pilot Plant (WIPP) and must meet calibration programmatic calibration goals. Instruments must meet portions of ANSI N42.14, 1978 guide for Germanium detectors. The Non-Destructive Assay (NDA) Gamma Energy Analysis (GEA) utilizes NIST traceable line source standards for the detector system calibrations. The counting configuration is a series of drums containing the line sources and different density filler matrices. The drums are used to develop system efficiencies with respect to density. The efficiency and density correction factors are required for the processing of drummed waste materials of similar densities. The calibration verification is carried out after the calibration is deemed final, by counting a second drum of NIST traceable sources. Three in-depth calibrations have been completed on one of the two systems to date, the first being the system acceptance plan. This report has a secondary function; that being the development of the instrument calibration errors which are to be folded into the Total Instrument Uncertainty document, HNF-4050

  11. Calibration Report for the WRAP Facility Gamma Energy Analysis System

    International Nuclear Information System (INIS)

    The Waste Receiving And Processing facility (WRAP) adheres to providing gamma-ray spectroscopy instrument calibrations traceable to the National Institute for Standards and Technology (NIST) standard(4). The detectors are used to produce quantitative results for the Waste Isolation Pilot Plant (WIPP) and must meet calibration programmatic calibration goals. Instruments must meet portions of ANSI N42.14, 1978 guide for Germanium detectors. The Non-Destructive Assay (NDA) Gamma Energy Analysis (GEA) utilizes NIST traceable line source standards for the detector system calibrations. The counting configuration is a series of drums containing the line sources and different density filler matrices. The drums are used to develop system efficiencies with respect to density. The efficiency and density correction factors are required for the processing of drummed waste materials of similar densities. The calibration verification is carried out after the calibration is deemed final, by counting a second drum of NIST traceable sources. Three in-depth calibrations have been completed on one of the two systems to date, the first being the system acceptance plan. This report has a secondary function; that being the development of the instrument calibration errors which are to be folded into the Total Instrument Uncertainty document, HNF-4050

  12. Thermal neutron calibration of a tritium extraction facility using the 6Li(n,t)4He/197Au(n,γ)198Au cross section ratio for standardization

    International Nuclear Information System (INIS)

    Absolute tritium activities in a neutron-activated metallic lithium samples have been measured by liquid scintillation methods to provide data needed for the determination of capture-to-fission ratios in fast breeder reactor spectra and for recent measurements of the 7Li(n,n't)4He cross section. The tritium extraction facility used for all these experiments has now been calibrated by measuring the 6Li(n,t)4He/197Au/n,γ)198Au activity ratio for thermal neutrons and comparing the result with the well-known cross sections. The calculated-to-measured activity ratio was found to be 1.033 +- 0.018. 2 figures, 20 tables

  13. Precision Calibration of Radio Interferometers Using Redundant Baselines

    CERN Document Server

    Liu, Adrian; Morrison, Scott; Lutomirski, Andrew; Zaldarriaga, Matias

    2010-01-01

    Growing interest in 21 cm tomography has led to the design and construction of broadband radio interferometers with low noise, moderate angular resolution, high spectral resolution, and wide fields of view. With characteristics somewhat different from traditional radio instruments, these interferometers will require new calibration techniques in order to reach their design sensitivities. We propose a calibration method that eliminates the need for calibrator point sources by taking advantage of the fact that many of these new instruments possess a large number of redundant baselines. The method is unbiased and the computational cost of the calibration is much less than that for the standard initial step of computing interferometric correlations. We also develop a general calibration formalism that includes both our method and traditional calibration methods as special cases, and show how slight deviations from perfect redundancy and coplanarity can be taken into account.

  14. Calibration of PIXE yields using binary thin films on Si

    Energy Technology Data Exchange (ETDEWEB)

    Meersschaut, J., E-mail: Johan.Meersschaut@imec.be [Imec, Kapeldreef 75, B-3001 Leuven (Belgium); Carbonel, J.; Popovici, M. [Imec, Kapeldreef 75, B-3001 Leuven (Belgium); Zhao, Q.; Vantomme, A. [IKS, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Vandervorst, W. [Imec, Kapeldreef 75, B-3001 Leuven (Belgium); IKS, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium)

    2014-07-15

    We describe the use of binary thin films on Si to calibrate the yields in proton-induced X-ray emission (PIXE) measurements. Besides of the element to be calibrated, the standards also contain a common reference element. The incorporation of a common reference element allows one to eliminate errors in the accumulated beam charge during the calibration of the PIXE set-up. The binary calibration standards allow us to determine the response function with an accuracy close to 1%. As an example, we will perform the calibration for Fe and Co, and we will determine the Co concentration in Fe{sub 1−x}Co{sub x} thin films.

  15. A portable, automated, inexpensive mass and balance calibration system

    International Nuclear Information System (INIS)

    Reliable mass measurements are essential for a nuclear production facility or process control laboratory. DOE Order 5630.2 requires that traceable standards be used to calibrate and monitor equipment used for nuclear material measurements. To ensure the reliability of mass measurements and to comply with DOE traceability requirements, a portable, automated mass and balance calibration system is used at the Savannah River Plant. Automation is achieved using an EPSON HX-20 notebook computer, which can be operated via RS232C interfacing to electronic balances or function with manual data entry if computer interfacing is not feasible. This economical, comprehensive, user-friendly system has three main functions in a mass measurement control program (MMCP): balance certification, calibration of mass standards, and daily measurement of traceable standards. The balance certification program tests for accuracy, precision, sensitivity, linearity, and cornerloading versus specific requirements. The mass calibration program allows rapid calibration of inexpensive mass standards traceable to certified Class S standards. This MMCP permits daily measurement of traceable standards to monitor the reliability of balances during routine use. The automated system verifies balance calibration, stores results for future use, and provides a printed control chart of the stored data. Another feature of the system permits three different weighing routines that accommodate their need for varying degrees of reliability in routine weighing operations

  16. The MINOS calibration detector

    International Nuclear Information System (INIS)

    This paper describes the MINOS calibration detector (CalDet) and the procedure used to calibrate it. The CalDet, a scaled-down but functionally equivalent model of the MINOS Far and Near detectors, was exposed to test beams in the CERN PS East Area during 2001-2003 to establish the response of the MINOS calorimeters to hadrons, electrons and muons in the range 0.2-10GeV/c. The CalDet measurements are used to fix the energy scale and constrain Monte Carlo simulations of MINOS

  17. Individual dosimetry and calibration

    International Nuclear Information System (INIS)

    In 1995 both the Individual Dosimetry and Calibration Sections worked under the condition of a status quo and concentrated fully on the routine part of their work. Nevertheless, the machine for printing the bar code which will be glued onto the film holder and hence identify the people when entering into high radiation areas was put into operation and most of the holders were equipped with the new identification. As far as the Calibration Section is concerned the project of the new source control system that is realized by the Technical Support Section was somewhat accelerated

  18. Kinematic calibration of orthoglide-type mechanisms

    CERN Document Server

    Pashkevich, Anatoly; Wenger, Philippe

    2006-01-01

    The paper proposes a novel calibration approach for the Orthoglide-type mechanisms based on observations of the manipulator leg parallelism during mo-tions between the prespecified test postures. It employs a low-cost measuring system composed of standard comparator indicators attached to the universal magnetic stands. They are sequentially used for measuring the deviation of the relevant leg location while the manipulator moves the TCP along the Cartesian axes. Using the measured differences, the developed algorithm estimates the joint offsets that are treated as the most essential parameters to be adjusted. The sensitivity of the meas-urement methods and the calibration accuracy are also studied. Experimental re-sults are presented that demonstrate validity of the proposed calibration technique

  19. MODIS Solar Reflective Calibration Traceability

    Science.gov (United States)

    Xiong, Xiaoxiong; Butler, Jim

    2009-01-01

    Long-term climate data records often consist of observations made by multiple sensors. It is, therefore, extremely important to have instrument overlap, to be able to track instrument stability, to quantify, measurement uncertainties, and to establish absolute scale traceable to the International System of Units (SI). The Moderate Resolution Imaging Spectroradiometer (MODIS) is a key instrument for both the Terra and Aqua missions, which were launched in December 1999 and May 2002, respectively. It has 20 reflective solar bands (RSB) with wavelengths from 0.41 to 2.2 micrometers and observes the Earth at three nadir spatial resolutions: 0.25km, 0.5km, and 1km. MODIS RSB on-orbit calibration is reflectance based with reference to the bidirectional reflectance factor (BRF) of its on-board solar diffuser (SD). The SD BRF characterization was made pre-launch by the instrument vendor using reference samples traceable directly to the National Institute of Standards and Technology (NIST). On-orbit SD reflectance degradation is tracked by an on-board solar diffuser monitor (SDSM). This paper provides details of this calibration chain, from prelaunch to on-orbit operation, and associated uncertainty assessments. Using MODIS as an example, this paper also discusses challenges and key design requirements for future missions developed for accurate climate studies.

  20. MODIS solar reflective calibration traceability

    Science.gov (United States)

    Xiong, Xiaoxiong; Butler, Jim

    2009-08-01

    Long-term climate data records often consist of observations made by multiple sensors. It is, therefore, extremely important to have instrument overlap, to be able to track instrument stability, to quantify measurement uncertainties, and to establish an absolute measurement scale traceable to the International System of Units (SI). The Moderate Resolution Imaging Spectroradiometer (MODIS) is a key instrument for both the Terra and Aqua missions, which were launched in December 1999 and May 2002, respectively. It has 20 reflective solar bands (RSB) with wavelengths from 0.41 to 2.2μm and observes the Earth at three nadir spatial resolutions: 0.25km, 0.5km, and 1km. MODIS RSB on-orbit calibration is reflectance based with reference to the bi-directional reflectance factor (BRF) of its on-board solar diffuser (SD). The SD BRF characterization was made pre-launch by the instrument vendor using reference samples traceable directly to the National Institute of Standards and Technology (NIST). On-orbit SD reflectance degradation is tracked by an on-board solar diffuser stability monitor (SDSM). This paper provides details of this calibration chain, from pre-launch to on-orbit operation, and associated uncertainty assessments. Using MODIS as an example, this paper also discusses challenges and key design requirements for future missions developed for accurate climate studies.

  1. Near-Infrared Camera Calibration for Optical Surgical Navigation.

    Science.gov (United States)

    Cai, Ken; Yang, Rongqian; Lin, Qinyong; Liu, Sujuan; Chen, Huazhou; Ou, Shanxing; Huang, Wenhua; Zhou, Jing

    2016-03-01

    Near-infrared optical tracking devices, which are important components of surgical navigation systems, need to be calibrated for effective tracking. The calibration results has a direct influence on the tracking accuracy of an entire system. Therefore, the study of calibration techniques is of theoretical significance and practical value. In the present work, a systematic calibration method based on movable plates is established, which analyzes existing calibration theories and implements methods using calibration reference objects. First, the distortion model of near-infrared cameras (NICs) is analyzed in the implementation of this method. Second, the calibration images from different positions and orientations are used to establish the required linear equations. The initial values of the NIC parameters are calculated with the direct linear transformation method. Finally, the accurate internal and external parameters of the NICs are obtained by conducting nonlinear optimization. Analysis results show that the relative errors of the left and right NICs in the tracking system are 0.244 and 0.282 % for the focal lengths and 0.735 and 1.111 % for the principal points, respectively. The image residuals of the left and right image sets are both less than 0.01 pixel. The standard error of the calibration result is lower than 1, and the measurement error of the tracking system is less than 0.3 mm. The experimental data show that the proposed method of calibrating NICs is effective and can generate favorable calibration results. PMID:26728393

  2. Calibration Of Oxygen Monitors

    Science.gov (United States)

    Zalenski, M. A.; Rowe, E. L.; Mcphee, J. R.

    1988-01-01

    Readings corrected for temperature, pressure, and humidity of air. Program for handheld computer developed to ensure accuracy of oxygen monitors in National Transonic Facility, where liquid nitrogen stored. Calibration values, determined daily, based on entries of data on barometric pressure, temperature, and relative humidity. Output provided directly in millivolts.

  3. Commodity-Free Calibration

    Science.gov (United States)

    2008-01-01

    Commodity-free calibration is a reaction rate calibration technique that does not require the addition of any commodities. This technique is a specific form of the reaction rate technique, where all of the necessary reactants, other than the sample being analyzed, are either inherent in the analyzing system or specifically added or provided to the system for a reason other than calibration. After introduction, the component of interest is exposed to other reactants or flow paths already present in the system. The instrument detector records one of the following to determine the rate of reaction: the increase in the response of the reaction product, a decrease in the signal of the analyte response, or a decrease in the signal from the inherent reactant. With this data, the initial concentration of the analyte is calculated. This type of system can analyze and calibrate simultaneously, reduce the risk of false positives and exposure to toxic vapors, and improve accuracy. Moreover, having an excess of the reactant already present in the system eliminates the need to add commodities, which further reduces cost, logistic problems, and potential contamination. Also, the calculations involved can be simplified by comparison to those of the reaction rate technique. We conducted tests with hypergols as an initial investigation into the feasiblility of the technique.

  4. Measurement System & Calibration report

    DEFF Research Database (Denmark)

    Vesth, Allan; Kock, Carsten Weber

    This Measurement System & Calibration report is describing DTU’s measurement system installed at a specific wind turbine. A major part of the sensors has been installed by others (see [1]) the rest of the sensors have been installed by DTU. The results of the measurements, described in this report...

  5. Calibration with Absolute Shrinkage

    DEFF Research Database (Denmark)

    Øjelund, Henrik; Madsen, Henrik; Thyregod, Poul

    2001-01-01

    In this paper, penalized regression using the L-1 norm on the estimated parameters is proposed for chemometric je calibration. The algorithm is of the lasso type, introduced by Tibshirani in 1996 as a linear regression method with bound on the absolute length of the parameters, but a modification...

  6. Calibration issues for MUSE

    Science.gov (United States)

    Kelz, Andreas; Roth, Martin; Bauer, Svend; Gerssen, Joris; Hahn, Thomas; Weilbacher, Peter; Laux, Uwe; Loupias, Magali; Kosmalski, Johan; McDermid, Richard; Bacon, Roland

    2008-07-01

    The Multi-Unit Spectroscopic Explorer (MUSE) is an integral-field spectrograph for the VLT for the next decade. Using an innovative field-splitting and slicing design, combined with an assembly of 24 spectrographs, MUSE will provide some 90,000 spectra in one exposure, which cover a simultaneous spectral range from 465 to 930nm. The design and manufacture of the Calibration Unit, the alignment tests of the Spectrograph and Detector sub-systems, and the development of the Data Reduction Software for MUSE are work-packages under the responsibility of the AIP, who is a partner in a European-wide consortium of 6 institutes and ESO, that is led by the Centre de Recherche Astronomique de Lyon. MUSE will be operated and therefore has to be calibrated in a variety of modes, which include seeing-limited and AO-assisted operations, providing a wide and narrow-field-of-view. MUSE aims to obtain unprecedented ultra-deep 3D-spectroscopic exposures, involving integration times of the order of 80 hours at the VLT. To achieve the corresponding science goals, instrumental stability, accurate calibration and adequate data reduction tools are needed. The paper describes the status at PDR of the AIP related work-packages, in particular with respect to the spatial, spectral, image quality, and geometrical calibration and related data reduction aspects.

  7. Entropic calibration revisited

    Energy Technology Data Exchange (ETDEWEB)

    Brody, Dorje C. [Blackett Laboratory, Imperial College, London SW7 2BZ (United Kingdom)]. E-mail: d.brody@imperial.ac.uk; Buckley, Ian R.C. [Centre for Quantitative Finance, Imperial College, London SW7 2AZ (United Kingdom); Constantinou, Irene C. [Blackett Laboratory, Imperial College, London SW7 2BZ (United Kingdom); Meister, Bernhard K. [Blackett Laboratory, Imperial College, London SW7 2BZ (United Kingdom)

    2005-04-11

    The entropic calibration of the risk-neutral density function is effective in recovering the strike dependence of options, but encounters difficulties in determining the relevant greeks. By use of put-call reversal we apply the entropic method to the time reversed economy, which allows us to obtain the spot price dependence of options and the relevant greeks.

  8. LOFAR Facet Calibration

    Science.gov (United States)

    van Weeren, R. J.; Williams, W. L.; Hardcastle, M. J.; Shimwell, T. W.; Rafferty, D. A.; Sabater, J.; Heald, G.; Sridhar, S. S.; Dijkema, T. J.; Brunetti, G.; Brüggen, M.; Andrade-Santos, F.; Ogrean, G. A.; Röttgering, H. J. A.; Dawson, W. A.; Forman, W. R.; de Gasperin, F.; Jones, C.; Miley, G. K.; Rudnick, L.; Sarazin, C. L.; Bonafede, A.; Best, P. N.; Bîrzan, L.; Cassano, R.; Chyży, K. T.; Croston, J. H.; Ensslin, T.; Ferrari, C.; Hoeft, M.; Horellou, C.; Jarvis, M. J.; Kraft, R. P.; Mevius, M.; Intema, H. T.; Murray, S. S.; Orrú, E.; Pizzo, R.; Simionescu, A.; Stroe, A.; van der Tol, S.; White, G. J.

    2016-03-01

    LOFAR, the Low-Frequency Array, is a powerful new radio telescope operating between 10 and 240 MHz. LOFAR allows detailed sensitive high-resolution studies of the low-frequency radio sky. At the same time LOFAR also provides excellent short baseline coverage to map diffuse extended emission. However, producing high-quality deep images is challenging due to the presence of direction-dependent calibration errors, caused by imperfect knowledge of the station beam shapes and the ionosphere. Furthermore, the large data volume and presence of station clock errors present additional difficulties. In this paper we present a new calibration scheme, which we name facet calibration, to obtain deep high-resolution LOFAR High Band Antenna images using the Dutch part of the array. This scheme solves and corrects the direction-dependent errors in a number of facets that cover the observed field of view. Facet calibration provides close to thermal noise limited images for a typical 8 hr observing run at ∼ 5\\prime\\prime resolution, meeting the specifications of the LOFAR Tier-1 northern survey.

  9. LOFAR facet calibration

    CERN Document Server

    van Weeren, R J; Hardcastle, M J; Shimwell, T W; Rafferty, D A; Sabater, J; Heald, G; Sridhar, S S; Dijkema, T J; Brunetti, G; Brüggen, M; Andrade-Santos, F; Ogrean, G A; Röttgering, H J A; Dawson, W A; Forman, W R; de Gasperin, F; Jones, C; Miley, G K; Rudnick, L; Sarazin, C L; Bonafede, A; Best, P N; Bîrzan, L; Cassano, R; Chyży, K T; Croston, J H; Ensslin, T; Ferrari, C; Hoeft, M; Horellou, C; Jarvis, M J; Kraft, R P; Mevius, M; Intema, H T; Murray, S S; Orrú, E; Pizzo, R; Simionescu, A; Stroe, A; van der Tol, S; White, G J

    2016-01-01

    LOFAR, the Low-Frequency Array, is a powerful new radio telescope operating between 10 and 240 MHz. LOFAR allows detailed sensitive high-resolution studies of the low-frequency radio sky. At the same time LOFAR also provides excellent short baseline coverage to map diffuse extended emission. However, producing high-quality deep images is challenging due to the presence of direction dependent calibration errors, caused by imperfect knowledge of the station beam shapes and the ionosphere. Furthermore, the large data volume and presence of station clock errors present additional difficulties. In this paper we present a new calibration scheme, which we name facet calibration, to obtain deep high-resolution LOFAR High Band Antenna images using the Dutch part of the array. This scheme solves and corrects the direction dependent errors in a number of facets that cover the observed field of view. Facet calibration provides close to thermal noise limited images for a typical 8 hr observing run at $\\sim$ 5arcsec resolu...

  10. Computerized 50 liter volume calibration system

    International Nuclear Information System (INIS)

    A system has been designed for the Savannah River Site that will be used to calibrate product shipping containers. For accountability purposes, it is necessary that these containers be calibrated to a very high precision. The Computerized 50 Liter Volume Calibration System (CVCS), which is based on the Ideal Gas Law (IGL), will use reference volumes with precision of no less ±0.03%, and helium to calibrate the containers to have a total error of no greater than ±0.10%. A statistical interpretation of the system has given a theoretical total calculated error of ±0.08%. Tests with the system will be performed once fabrication is complete to experimentally verify the calculated error. Since the total error was calculated using the worst case scenario, the actual error should be significantly less than the calculated value. The computer controlled, totally automated system is traceable to the National Institute of Standards and Technology. The design, calibration procedure, and statistical interpretation of the system will be discussed. 1 ref

  11. Pleiades Absolute Calibration : Inflight Calibration Sites and Methodology

    Science.gov (United States)

    Lachérade, S.; Fourest, S.; Gamet, P.; Lebègue, L.

    2012-07-01

    In-flight calibration of space sensors once in orbit is a decisive step to be able to fulfil the mission objectives. This article presents the methods of the in-flight absolute calibration processed during the commissioning phase. Four In-flight calibration methods are used: absolute calibration, cross-calibration with reference sensors such as PARASOL or MERIS, multi-temporal monitoring and inter-bands calibration. These algorithms are based on acquisitions over natural targets such as African deserts, Antarctic sites, La Crau (Automatic calibration station) and Oceans (Calibration over molecular scattering) or also new extra-terrestrial sites such as the Moon and selected stars. After an overview of the instrument and a description of the calibration sites, it is pointed out how each method is able to address one or several aspects of the calibration. We focus on how these methods complete each other in their operational use, and how they help building a coherent set of information that addresses all aspects of in-orbit calibration. Finally, we present the perspectives that the high level of agility of PLEIADES offers for the improvement of its calibration and a better characterization of the calibration sites.

  12. Calibrated Properties Model

    International Nuclear Information System (INIS)

    The purpose of this Model Report is to document the Calibrated Properties Model that provides calibrated parameter sets for unsaturated zone (UZ) flow and transport process models for the Office of Repository Development (ORD). The UZ contains the unsaturated rock layers overlying the repository and host unit, which constitute a natural barrier to flow, and the unsaturated rock layers below the repository which constitute a natural barrier to flow and transport. This work followed, and was planned in, ''Technical Work Plan (TWP) for: Performance Assessment Unsaturated Zone'' (BSC 2002 [160819], Section 1.10.8 [under Work Package (WP) AUZM06, Climate Infiltration and Flow], and Section I-1-1 [in Attachment I, Model Validation Plans]). In Section 4.2, four acceptance criteria (ACs) are identified for acceptance of this Model Report; only one of these (Section 4.2.1.3.6.3, AC 3) was identified in the TWP (BSC 2002 [160819], Table 3-1). These calibrated property sets include matrix and fracture parameters for the UZ Flow and Transport Model (UZ Model), drift seepage models, and drift-scale and mountain-scale coupled-process models from the UZ Flow, Transport and Coupled Processes Department in the Natural Systems Subproject of the Performance Assessment (PA) Project. The Calibrated Properties Model output will also be used by the Engineered Barrier System Department in the Engineering Systems Subproject. The Calibrated Properties Model provides input through the UZ Model and other process models of natural and engineered systems to the Total System Performance Assessment (TSPA) models, in accord with the PA Strategy and Scope in the PA Project of the Bechtel SAIC Company, LLC (BSC). The UZ process models provide the necessary framework to test conceptual hypotheses of flow and transport at different scales and predict flow and transport behavior under a variety of climatic and thermal-loading conditions. UZ flow is a TSPA model component

  13. FLAGCAL:A flagging and calibration package for radio interferometric data

    CERN Document Server

    Prasad, Jayanti

    2011-01-01

    We describe a flagging and calibration pipeline intended for making quick look images from GMRT data. The package identifies and flags corrupted visibilities, computes calibration solutions and interpolates these onto the target source. These flagged calibrated visibilities can be directly imaged using any standard imaging package. The pipeline is written in "C" with the most compute intensive algorithms being parallelized using OpenMP.

  14. Traceable calibration of hospital 192Ir HDR sources

    International Nuclear Information System (INIS)

    A HDR 1000 PLUS well type ionization chamber, procured from Standard Imaging, USA, and maintained by medical Physics and Safety Section (MPSS), Bhabha Atomic Research Centre (BARC), India, as a reference well chamber 1 (RWCH1), was traceably calibrated against the primary standard established by Radiological Standards Laboratory (RSL), BARC for 192Ir HDR source, in terms of air kerma strength (AKS). An indigenously developed well-type ionization chamber, reference well chamber 2 (RWCH2) and electrometer system, fabricated by CD High Tech (CDHT) Instruments Private Ltd., Bangalore, India, was in turn calibrated against RWCH1. The CDHT system (i.e. RWCH2 and CDHT electrometer system) was taken to several hospitals, in different regions of the country, to check the calibration status of 192Ir HDR sources. The result of this calibration audit work is reported here. (author)

  15. Field calibration of cup anemometers

    DEFF Research Database (Denmark)

    Schmidt Paulsen, Uwe; Mortensen, Niels Gylling; Hansen, Jens Carsten;

    2007-01-01

    A field calibration method and results are described along with the experience gained with the method. The cup anemometers to be calibrated are mounted in a row on a 10-m high rig and calibrated in the free wind against a reference cup anemometer. The method has been reported [1] to improve the...... statistical bias on the data relative to calibrations carried out in a wind tunnel. The methodology is sufficiently accurate for calibration of cup anemometers used for wind resource assessments and provides a simple, reliable and cost-effective solution to cup anemometer calibration, especially suited for...

  16. Calibration of modified parallel-plate rheometer through calibrated oil and lattice Boltzmann simulation

    DEFF Research Database (Denmark)

    Ferraris, Chiara F; Geiker, Mette Rica; Martys, Nicos S;

    2007-01-01

    inapplicable here. This paper presents the analysis of a modified parallel plate rheometer for measuring cement mortar and propose a methodology for calibration using standard oils and numerical simulation of the flow. A lattice Boltzmann method was used to simulate the flow in the modified rheometer, thus...... rheological data should be extracted from the experimental results....

  17. On the calibration of radiotherapy dosemeters in Australia

    International Nuclear Information System (INIS)

    Full text: Dosemeters for external beam radiotherapy are calibrated in Australia by ARPANSA, against the national primary standards of exposure and absorbed dose. The primary standards are free air chambers for exposure at low and medium energy X-rays, a graphite cavity chamber for exposure at 60Co, and a graphite calorimeter for absorbed dose at 60Co and high energy (MV) X -rays. Radiotherapy dosemeters are calibrated against these standards using a well documented formalism to provide calibration factors suitable for use with dosimetry protocols. A dosemeter usually comprises an ionization chamber connected to an independent electrometer. These are calibrated separately if possible. A combined calibration factor is reported together with the electrometer calibration factor (sensitivity). The dosimetry protocol used in radiotherapy centres in Australia and New Zealand is currently the simplified version of the IAEA TRS277 protocol, published by the New Zealand NRL and recommended by the ACPSEM. This protocol requires the use of an exposure or air kerma calibration factor at 60Co (Nx or Nk) to evaluate the absorbed dose to air calibration factor ND. The chamber is then placed in a water phantom with its centre displaced from the reference point by peff. ARPANSA can also supply calibration factors in absorbed dose to water (ND,w), as required as input to the new IAEA CoP. If an absorbed dose to water calibration factor is used by the radiotherapy centre, the chamber should be placed with its centre at the reference point in the water phantom. ARPANSA has for some years coordinated the participation of Australian radiotherapy centres in the IAEA TLD Quality Audit service. Note that this service does not represent a calibration and should not be referred to as such. The only calibration is that provided by ARPANSA for a reference dosemeter at each radiotherapy centre. As soon as the ANSTO SSDL is operational, calibrations of reference dosemeters will also be available

  18. Ophthalmic applicators: An overview of calibrations following the change to SI units

    International Nuclear Information System (INIS)

    Since the NIST dose to water standard for 90Sr/90Y ophthalmic applicators was introduced, numerous sources have undergone calibration either at NIST or at the University of Wisconsin Accredited Dosimetry Calibration Laboratory (UWADCL). From 1997 to 2008, 222 of these beta-emitting sources were calibrated at the UWADCL, and prior reference source strength values were available for 149 of these sources. A survey of UWADCL ophthalmic applicator calibrations is presented here, demonstrating an average discrepancy of -19% with a standard deviation of ±16% between prior reference values and the NIST-traceable UWADCL absorbed dose to water calibrations. Values ranged from -49% to +42%.

  19. Viscometry for liquids calibration of viscometers

    CERN Document Server

    Gupta, S V

    2014-01-01

    This book is written for scientists involved in the calibration of viscometers. A detailed description for stepping up procedures to establish the viscosity scale and obtaining sets of master viscometers is given in the book. Uncertainty considerations for standard oils of known viscosity are presented. The modern viscometers based on principles of  tuning fork, ultrasonic, PZT, plate waves, Love waves, micro-cantilever and vibration of optical fiber are discussed to inspire the reader to further research and to generate improved versions. The primary standard for viscosity is pure water. Measurements of its viscosity with accuracy/uncertainty achieved are described. The principles of rotational and oscillation viscometers are explained to enhance the knowledge in calibration work. Devices used for specific materials and viscosity in non SI units are discussed with respect to the need to correlate viscosity values obtained by various devices. The description of commercial viscometers meets the needs of the u...

  20. Calibration of reference dosimeters for external beam radiotherapy

    International Nuclear Information System (INIS)

    Traceability, accuracy and consistency of radiation measurements are essential in radiation dosimetry, particularly in radiotherapy, where the outcome of treatments is highly dependent on the radiation dose delivered to patients. The role of Secondary Standards Dosimetry Laboratories (SSDLs) is crucial in providing traceable calibrations to hospitals, since they disseminate calibrations at specific radiation qualities appropriate to the use of radiation measuring instruments. To contribute to harmonization and consistency in radiation measurements, the IAEA and the World Health Organization (WHO) created a network of SSDLs in 1976. To provide SSDLs with a practical guide on calibration and quality control procedures in radiotherapy dosimetry, the IAEA published a manual in 1995 entitled Calibration of Dosimeters Used in Radiotherapy (Technical Reports Series (TRS) No. 374). The manual was a revision of a report, Calibration of Dose Meters Used in Radiotherapy (TRS-185), published in 1979. Although much of TRS-374 remains relevant, there are a number of reasons for preparing a new report, including the development of new dosimetry standards and an increased emphasis on implementing quality assurance systems to help calibration laboratories provide documented assurance to the user community of their commitment to offering consistent and reliable results. This report is not simply a revision of TRS-374, and should be regarded as a new publication with a new structure. Nevertheless, some material, especially that related to the calibration of dosimeters in terms of air kerma for kilovoltage X rays, has been extracted from TRS-374. It fulfils the need for a systematic and standardized approach to the calibration of reference dosimeters used in external beam radiotherapy by the SSDLs. It provides a framework for the operation of an SSDL within the international measurement system, a methodology for the calibration of instruments, and related quality control procedures to

  1. A single model procedure for estimating tank calibration equations

    International Nuclear Information System (INIS)

    A fundamental component of any accountability system for nuclear materials is a tank calibration equation that relates the height of liquid in a tank to its volume. Tank volume calibration equations are typically determined from pairs of height and volume measurements taken in a series of calibration runs. After raw calibration data are standardized to a fixed set of reference conditions, the calibration equation is typically fit by dividing the data into several segments--corresponding to regions in the tank--and independently fitting the data for each segment. The estimates obtained for individual segments must then be combined to obtain an estimate of the entire calibration function. This process is tedious and time-consuming. Moreover, uncertainty estimates may be misleading because it is difficult to properly model run-to-run variability and between-segment correlation. In this paper, the authors describe a model whose parameters can be estimated simultaneously for all segments of the calibration data, thereby eliminating the need for segment-by-segment estimation. The essence of the proposed model is to define a suitable polynomial to fit to each segment and then extend its definition to the domain of the entire calibration function, so that it (the entire calibration function) can be expressed as the sum of these extended polynomials. The model provides defensible estimates of between-run variability and yields a proper treatment of between-segment correlations. A portable software package, called TANCS, has been developed to facilitate the acquisition, standardization, and analysis of tank calibration data. The TANCS package was used for the calculations in an example presented to illustrate the unified modeling approach described in this paper. With TANCS, a trial calibration function can be estimated and evaluated in a matter of minutes

  2. Streak camera time calibration procedures

    Science.gov (United States)

    Long, J.; Jackson, I.

    1978-01-01

    Time calibration procedures for streak cameras utilizing a modulated laser beam are described. The time calibration determines a writing rate accuracy of 0.15% with a rotating mirror camera and 0.3% with an image converter camera.

  3. The Calibration Reference Data System

    Science.gov (United States)

    Greenfield, P.; Miller, T.

    2016-07-01

    We describe a software architecture and implementation for using rules to determine which calibration files are appropriate for calibrating a given observation. This new system, the Calibration Reference Data System (CRDS), replaces what had been previously used for the Hubble Space Telescope (HST) calibration pipelines, the Calibration Database System (CDBS). CRDS will be used for the James Webb Space Telescope (JWST) calibration pipelines, and is currently being used for HST calibration pipelines. CRDS can be easily generalized for use in similar applications that need a rules-based system for selecting the appropriate item for a given dataset; we give some examples of such generalizations that will likely be used for JWST. The core functionality of the Calibration Reference Data System is available under an Open Source license. CRDS is briefly contrasted with a sampling of other similar systems used at other observatories.

  4. Low-speed airspeed calibration data for a single-engine research-support aircraft

    Science.gov (United States)

    Holmes, B. J.

    1980-01-01

    A standard service airspeed system on a single engine research support airplane was calibrated by the trailing anemometer method. The effects of flaps, power, sideslip, and lag were evaluated. The factory supplied airspeed calibrations were not sufficiently accurate for high accuracy flight research applications. The trailing anemometer airspeed calibration was conducted to provide the capability to use the research support airplane to perform pace aircraft airspeed calibrations.

  5. Electroweak Calibration of the Higgs Characterization Model

    CERN Document Server

    CERN. Geneva

    2015-01-01

    I will present the preliminary results of histogram fits using the Higgs Combine histogram fitting package. These fits can be used to estimate the effects of electroweak contributions to the p p -> H mu+ mu- Higgs production channel and calibrate Beyond Standard Model (BSM) simulations which ignore these effects. I will emphasize my findings' significance in the context of other research here at CERN and in the broader world of high energy physics.

  6. Optical tweezers absolute calibration

    CERN Document Server

    Dutra, R S; Neto, P A Maia; Nussenzveig, H M

    2014-01-01

    Optical tweezers are highly versatile laser traps for neutral microparticles, with fundamental applications in physics and in single molecule cell biology. Force measurements are performed by converting the stiffness response to displacement of trapped transparent microspheres, employed as force transducers. Usually, calibration is indirect, by comparison with fluid drag forces. This can lead to discrepancies by sizable factors. Progress achieved in a program aiming at absolute calibration, conducted over the past fifteen years, is briefly reviewed. Here we overcome its last major obstacle, a theoretical overestimation of the peak stiffness, within the most employed range for applications, and we perform experimental validation. The discrepancy is traced to the effect of primary aberrations of the optical system, which are now included in the theory. All required experimental parameters are readily accessible. Astigmatism, the dominant effect, is measured by analyzing reflected images of the focused laser spo...

  7. Astrid-2 SSC ASUMagnetic Calibration

    DEFF Research Database (Denmark)

    Primdahl, Fritz

    1997-01-01

    Report of the inter calibration between the starcamera and the fluxgate magnetometer onboard the ASTRID-2 satellite. This calibration was performed in the night between the 15. and 16. May 1997 at the Lovö magnetic observatory.......Report of the inter calibration between the starcamera and the fluxgate magnetometer onboard the ASTRID-2 satellite. This calibration was performed in the night between the 15. and 16. May 1997 at the Lovö magnetic observatory....

  8. Optical Calibration of SNO+

    Science.gov (United States)

    Maneira, J.; Peeters, S.; Sinclair, J.

    2015-04-01

    SNO is being upgraded to SNO+, which has as its main goal the search for neutrinoless double-beta decay. The upgrade is defined by filling with a novel scintillator mixture containing 130Te. With a lower energy threshold than SNO, SNO+ will be sensitive to other exciting new physics. Here we are describing new optical calibration system that meets new, more stringent radiopurity requirements has been developed.

  9. Camera Calibration Using Silhouettes

    OpenAIRE

    Boyer, Edmond

    2005-01-01

    This report addresses the problem of estimating camera parameters from images where object silhouettes only are known. Several modeling applications make use of silhouettes, and while calibration methods are well known when considering points or lines matched along image sequences, the problem appears to be more difficult when considering silhouettes. However, such primitives encode also information on camera parameters by the fact that their associated viewing cones should present a common i...

  10. Program Calibrates Strain Gauges

    Science.gov (United States)

    Okazaki, Gary D.

    1991-01-01

    Program dramatically reduces personnel and time requirements for acceptance tests of hardware. Data-acquisition system reads output from Wheatstone full-bridge strain-gauge circuit and calculates strain by use of shunt calibration technique. Program nearly instantaneously tabulates and plots strain data against load-cell outputs. Modified to acquire strain data for other specimens wherever full-bridge strain-gauge circuits used. Written in HP BASIC.

  11. Calibration specimens for microscopy

    Czech Academy of Sciences Publication Activity Database

    Kolařík, Vladimír; Matějka, Milan; Matějka, František; Krátký, Stanislav; Urbánek, Michal; Horáček, Miroslav; Král, Stanislav; Bok, Jan

    Ostrava: TANGER Ltd, 2012, s. 713-716. ISBN 978-80-87294-32-1. [NANOCON 2012. International Conference /4./. Brno (CZ), 23.10.2012-25.10.2012] R&D Projects: GA MŠk ED0017/01/01; GA TA ČR TE01020233; GA MPO FR-TI1/576 Institutional support: RVO:68081731 Keywords : E-beam technology * calibration specimen * scanning electron microscopy Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  12. Calibrating bacterial evolution

    OpenAIRE

    Ochman, Howard; Elwyn, Susannah; Moran, Nancy A

    1999-01-01

    Attempts to calibrate bacterial evolution have relied on the assumption that rates of molecular sequence divergence in bacteria are similar to those of higher eukaryotes, or to those of the few bacterial taxa for which ancestors can be reliably dated from ecological or geological evidence. Despite similarities in the substitution rates estimated for some lineages, comparisons of the relative rates of evolution at different classes of nucleotide sites indicate no basis for their universal appl...

  13. Mesoscale hybrid calibration artifact

    Science.gov (United States)

    Tran, Hy D.; Claudet, Andre A.; Oliver, Andrew D.

    2010-09-07

    A mesoscale calibration artifact, also called a hybrid artifact, suitable for hybrid dimensional measurement and the method for make the artifact. The hybrid artifact has structural characteristics that make it suitable for dimensional measurement in both vision-based systems and touch-probe-based systems. The hybrid artifact employs the intersection of bulk-micromachined planes to fabricate edges that are sharp to the nanometer level and intersecting planes with crystal-lattice-defined angles.

  14. Calibrating Historical IR Sensors Using GEO, and AVHRR Infrared Tropical Mean Calibration Models

    Science.gov (United States)

    Scarino, Benjamin; Doelling, David R.; Minnis, Patrick; Gopalan, Arun; Haney, Conor; Bhatt, Rajendra

    2014-01-01

    Long-term, remote-sensing-based climate data records (CDRs) are highly dependent on having consistent, wellcalibrated satellite instrument measurements of the Earth's radiant energy. Therefore, by making historical satellite calibrations consistent with those of today's imagers, the Earth-observing community can benefit from a CDR that spans a minimum of 30 years. Most operational meteorological satellites rely on an onboard blackbody and space looks to provide on-orbit IR calibration, but neither target is traceable to absolute standards. The IR channels can also be affected by ice on the detector window, angle dependency of the scan mirror emissivity, stray-light, and detector-to-detector striping. Being able to quantify and correct such degradations would mean IR data from any satellite imager could contribute to a CDR. Recent efforts have focused on utilizing well-calibrated modern hyper-spectral sensors to intercalibrate concurrent operational IR imagers to a single reference. In order to consistently calibrate both historical and current IR imagers to the same reference, however, another strategy is needed. Large, well-characterized tropical-domain Earth targets have the potential of providing an Earth-view reference accuracy of within 0.5 K. To that effort, NASA Langley is developing an IR tropical mean calibration model in order to calibrate historical Advanced Very High Resolution Radiometer (AVHRR) instruments. Using Meteosat-9 (Met-9) as a reference, empirical models are built based on spatially/temporally binned Met-9 and AVHRR tropical IR brightness temperatures. By demonstrating the stability of the Met-9 tropical models, NOAA-18 AVHRR can be calibrated to Met-9 by matching the AVHRR monthly histogram averages with the Met-9 model. This method is validated with ray-matched AVHRR and Met-9 biasdifference time series. Establishing the validity of this empirical model will allow for the calibration of historical AVHRR sensors to within 0.5 K, and thereby

  15. Dosimetry and Calibration Section

    International Nuclear Information System (INIS)

    The two tasks of the Dosimetry and Calibration Section at CERN are the Individual Dosimetry Service which assures the personal monitoring of about 5000 persons potentially exposed to ionizing radiation at CERN, and the Calibration Laboratory which verifies all the instruments and monitors. This equipment is used by the sections of the RP Group for assuring radiation protection around CERN's accelerators, and by the Environmental Section of TISTE. In addition, nearly 250 electronic and 300 quartz fibre dosimeters, employed in operational dosimetry, are calibrated at least once a year. The Individual Dosimetry Service uses an extended database (INDOS) which contains information about all the individual doses ever received at CERN. For most of 1997 it was operated without the support of a database administrator as the technician who had assured this work retired. The Software Support Section of TIS-TE took over the technical responsibility of the database, but in view of the many other tasks of this Section and the lack of personnel, only a few interventions for solving immediate problems were possible

  16. Calibrated Properties Model

    International Nuclear Information System (INIS)

    The purpose of this model report is to document the calibrated properties model that provides calibrated property sets for unsaturated zone (UZ) flow and transport process models (UZ models). The calibration of the property sets is performed through inverse modeling. This work followed, and was planned in, ''Technical Work Plan (TWP) for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Sections 1.2.6 and 2.1.1.6). Direct inputs to this model report were derived from the following upstream analysis and model reports: ''Analysis of Hydrologic Properties Data'' (BSC 2004 [DIRS 170038]); ''Development of Numerical Grids for UZ Flow and Transport Modeling'' (BSC 2004 [DIRS 169855]); ''Simulation of Net Infiltration for Present-Day and Potential Future Climates'' (BSC 2004 [DIRS 170007]); ''Geologic Framework Model'' (GFM2000) (BSC 2004 [DIRS 170029]). Additionally, this model report incorporates errata of the previous version and closure of the Key Technical Issue agreement TSPAI 3.26 (Section 6.2.2 and Appendix B), and it is revised for improved transparency

  17. Study on the Calibration of Environmental Survey Meter

    International Nuclear Information System (INIS)

    Study on calibration of environmental survey meter using 60Co dan 137Cs standard gamma sources made in P3KRBiN had been done. Shadow-shield and free field calibration techniques were used to calibrate a variety of environmental survey meters, which are typically energy compensated GM counter, high-pressure ionization chamber and Na(I)Tl counter. The exposure rate from the gamma source was calculated based on its activities given by the manufacture. The shadow shield calibration technique was carried out in the calibration room with the size of 12 m x 6.6 m x 2.94 m with and without shadow shield at the source to detector distances of 100 cm, 150 cm and 200 cm and the height of the source from the floor was 110 cm. The calibration factor was determined by the ratio between the exposure rate of the gamma source and the reading with and without shadow shield. The free field calibration technique was carried out at free field with the size of 80 m x 70 m with and without the sources present at the source to detector distances of 100 cm, 150 cm and 200 cm and the height of the source from the floor was 100 cm. The calibration factor was determined by the ratio between the nominal exposure rate of the gamma source and the reading with and without the source present. Generally, the calibration results using shadow shield and free field calibration techniques for all survey meters were in the permitted range which was 0.8 ≤ CF ≤ 1.2 for 137Cs gamma source. So shadow shield calibration technique can be used for calibration the environmental survey meter. (author)

  18. SWIR calibration of Spectralon reflectance factor

    Science.gov (United States)

    Georgiev, Georgi T.; Butler, James J.; Cooksey, Catherine; Ding, Leibo; Thome, Kurtis J.

    2011-11-01

    Satellite instruments operating in the reflective solar wavelength region require accurate and precise determination of the Bidirectional Reflectance Factor (BRF) of laboratory-based diffusers used in their pre-flight and on-orbit radiometric calibrations. BRF measurements are required throughout the reflected-solar spectrum from the ultraviolet through the shortwave infrared. Spectralon diffusers are commonly used as a reflectance standard for bidirectional and hemispherical geometries. The Diffuser Calibration Laboratory (DCaL) at NASA's Goddard Space Flight Center is a secondary calibration facility with reflectance measurements traceable to those made by the Spectral Tri-function Automated Reference Reflectometer (STARR) facility at the National Institute of Standards and Technology (NIST). For more than two decades, the DCaL has provided numerous NASA projects with BRF data in the ultraviolet (UV), visible (VIS) and the Near InfraRed (NIR) spectral regions. Presented in this paper are measurements of BRF from 1475 nm to 1625 nm obtained using an indium gallium arsenide detector and a tunable coherent light source. The sample was a 50.8 mm (2 in) diameter, 99% white Spectralon target. The BRF results are discussed and compared to empirically generated data from a model based on NIST certified values of 6°directional-hemispherical spectral reflectance factors from 900 nm to 2500 nm. Employing a new NIST capability for measuring bidirectional reflectance using a cooled, extended InGaAs detector, BRF calibration measurements of the same sample were also made using NIST's STARR from 1475 nm to 1625 nm at an incident angle of 0° and at viewing angle of 45°. The total combined uncertainty for BRF in this ShortWave Infrared (SWIR) range is less than 1%. This measurement capability will evolve into a BRF calibration service in SWIR region in support of NASA remote sensing missions.

  19. One-point calibration for calibration-free laser-induced breakdown spectroscopy quantitative analysis

    International Nuclear Information System (INIS)

    We present a new method for improving the reliability of quantitative analysis by laser-induced breakdown spectroscopy (LIBS). The method can be considered as a variation of the calibration-free LIBS approach; although not completely standard-less, only one standard of known composition and similar matrix to the one to be analyzed is needed. On the other hand, the one-point calibration approach allows the empirical determination of essential experimental and spectroscopic parameters, whose knowledge is often imprecise or lacking; the result is a definite improvement of the trueness of LIBS analysis with respect to the traditional calibration-free approach. The characteristics and advantages of the proposed one-point calibration LIBS approach will be demonstrated on a set of copper-based samples of known composition. - Highlights: • A new method for improving the quantitative analysis by LIBS is presented. • Only one standard of known composition is needed for the analysis. • A set of copper-based samples of known composition is analyzed. • The concentrations calculated result remarkably close to the nominal concentrations

  20. Safety enhancement through calibration and maintenance

    International Nuclear Information System (INIS)

    Although radiation causes an alarming effect to living organism, it has been accepted for diagnostic and therapy in medicine as well as quality control and test method in industry. Due to the benefit gained, public at large is willing to accept the risk on condition that proper protection and safety standard is implemented and practised. Instrument plays a very important role not only in generation radiation but also measuring it. Therefore to ensure safety it is fair to say that all instrument must be calibrated to a certain standard and maintained to operate to its design specifications from time to time. (author)

  1. Photon personal dosemeter calibration based on ISO 4037-3

    International Nuclear Information System (INIS)

    The aim of this paper is to present the results of the influence of this new standard compared with the previously approved calibration protocol. The former calibration protocol used a 30 cm x 30 cm x 15 cm PMMA phantom and included back-scatter correction factors estimated from Monte Carlo calculations. Previous studies (Ginjaume et al., 2001) had shown, for a specific type of dosemeter, that the differences between both calibrations were very small, within 2%. This work planned, within the framework of the 2001 national intercomparison, to enlarge the preliminary conclusions by studying the influence of the calibration procedure on a larger set of dosemeters, which would be representative of the different Spanish Dosimetry Services. We were also interested in confirming that the new calibration procedure would not influence the general performance of the services and the corresponding registered doses

  2. Neutron calibration techniques for comparison of tokamak results

    International Nuclear Information System (INIS)

    A workshop on 1--3 August 1989 reviewed the techniques, uncertainties, and experiences of neutron calibration on PLT, TFTR, JET, Tore Supra, JT-60, JIPPT-IIU, Alcator C-Mod, ATF, FT, ASDEX, Textor, and DIII-D. In the summary session, the workshop participants discussed possible consensus neutron calibration techniques appropriate to D-D plasmas in tokamaks. The application of such techniques would facilitate a more accurate comparison of neutron yields from different devices, and also allow new calibration techniques to relate their precision to a reference value. General agreement was reached on the suitability of two techniques: (1) a 252Cf source calibration of epithermal neutron detectors, and (2) threshold neutron activation of Ni foils placed vertically above or below the plasma. This paper will present details on detector positioning, neutron transport calculations, and interlab normalization needed to accomplish the standardized calibration using a Cf neutron source

  3. Calibrating echelle spectrographs with Fabry-Perot etalons

    CERN Document Server

    Bauer, Florian F; Reiners, Ansgar

    2015-01-01

    Over the past decades hollow-cathode lamps have been calibration standards for spectroscopic measurements. Advancing to cm/s radial velocity precisions with the next generation of instruments requires more suitable calibration sources with more lines and less dynamic range problems. Fabry-Perot interferometers provide a regular and dense grid of lines and homogeneous amplitudes making them good candidates for next generation calibrators. We investigate the usefulness of Fabry-Perot etalons in wavelength calibration, present an algorithm to incorporate the etalon spectrum in the wavelength solution and examine potential problems. The quasi periodic pattern of Fabry-Perot lines is used along with a hollow-cathode lamp to anchor the numerous spectral features on an absolute scale. We test our method with the HARPS spectrograph and compare our wavelength solution to the one derived from a laser frequency comb. The combined hollow-cathode lamp/etalon calibration overcomes large distortion (50 m/s) in the wavelengt...

  4. Calibration effects on orbit determination

    Science.gov (United States)

    Madrid, G. A.; Winn, F. B.; Zielenbach, J. W.; Yip, K. B.

    1974-01-01

    The effects of charged particle and tropospheric calibrations on the orbit determination (OD) process are analyzed. The calibration process consisted of correcting the Doppler observables for the media effects. Calibrated and uncalibrated Doppler data sets were used to obtain OD results for past missions as well as Mariner Mars 1971. Comparisons of these Doppler reductions show the significance of the calibrations. For the MM'71 mission, the media calibrations proved themselves effective in diminishing the overall B-plane error and reducing the Doppler residual signatures.

  5. High speed gel permeation chromatography calibration procedures. Period covered: January--March 1976

    Energy Technology Data Exchange (ETDEWEB)

    Kohn, E.; Ashcraft, R.

    1976-01-01

    A High Speed Gel Permeation Chromatograph (HSGPC) calibration curve was generated by use of approximately 160 calibration runs employing polystyrene and hydrocarbon standards which were fitted by a fifth degree polynomial. Three substances, the peroxide of tetrahydrofuran, o-dichlorobenzene, and HMX were evaluated as internal standards to correct for small fluctuations in flow rate from run-to-run, and were found to be satisfactory. The utility of a composite calibration mixture was also established.

  6. A variable acceleration calibration system

    Science.gov (United States)

    Johnson, Thomas H.

    2011-12-01

    A variable acceleration calibration system that applies loads using gravitational and centripetal acceleration serves as an alternative, efficient and cost effective method for calibrating internal wind tunnel force balances. Two proof-of-concept variable acceleration calibration systems are designed, fabricated and tested. The NASA UT-36 force balance served as the test balance for the calibration experiments. The variable acceleration calibration systems are shown to be capable of performing three component calibration experiments with an approximate applied load error on the order of 1% of the full scale calibration loads. Sources of error are indentified using experimental design methods and a propagation of uncertainty analysis. Three types of uncertainty are indentified for the systems and are attributed to prediction error, calibration error and pure error. Angular velocity uncertainty is shown to be the largest indentified source of prediction error. The calibration uncertainties using a production variable acceleration based system are shown to be potentially equivalent to current methods. The production quality system can be realized using lighter materials and a more precise instrumentation. Further research is needed to account for balance deflection, forcing effects due to vibration, and large tare loads. A gyroscope measurement technique is shown to be capable of resolving the balance deflection angle calculation. Long term research objectives include a demonstration of a six degree of freedom calibration, and a large capacity balance calibration.

  7. Automatic force balance calibration system

    Science.gov (United States)

    Ferris, Alice T.

    1995-05-01

    A system for automatically calibrating force balances is provided. The invention uses a reference balance aligned with the balance being calibrated to provide superior accuracy while minimizing the time required to complete the calibration. The reference balance and the test balance are rigidly attached together with closely aligned moment centers. Loads placed on the system equally effect each balance, and the differences in the readings of the two balances can be used to generate the calibration matrix for the test balance. Since the accuracy of the test calibration is determined by the accuracy of the reference balance and current technology allows for reference balances to be calibrated to within +/-0.05% the entire system has an accuracy of +/-0.2%. The entire apparatus is relatively small and can be mounted on a movable base for easy transport between test locations. The system can also accept a wide variety of reference balances, thus allowing calibration under diverse load and size requirements.

  8. High-dose secondary calibration laboratory accreditation program

    International Nuclear Information System (INIS)

    There is a need for high-dose secondary calibration laboratories to serve the multi-billion dollar radiation processing industry. This need is driven by the desires of industry for less costly calibrations and faster calibration-cycle response time. Services needed include calibration irradiations of routine processing dosimeters and the supply of reference standard transfer dosimeters for irradiation in the production processing facility. In order to provide measurement quality assurance and to demonstrate consistency with national standards, the high-dose secondary laboratories would be accredited by means of an expansion of an existing National Voluntary Laboratory Accreditation Program. A laboratory performance criteria document is under development to implement the new program

  9. NVLAP activities at Department of Defense calibration laboratories

    International Nuclear Information System (INIS)

    There are 367 active radiological instrument calibration laboratories within the U.S. Department of Defense (DoD). Each of the four services in DoD manages, operates, and certifies the technical proficiency and competency of those laboratories under their cognizance. Each service has designated secondary calibration laboratories to trace all calibration source standards to the National Institute of Standards and Technology. Individual service radiological calibration programs and capabilities, present and future, are described, as well as the measurement quality assurance (MQA) processes for their traceability. National Voluntary Laboratory Accreditation Program (NVLAP) programs for dosimetry systems are briefly summarized. Planned NVLAP accreditation of secondary laboratories is discussed in the context of current technical challenges and future efforts

  10. High-dose secondary calibration laboratory accreditation program

    Energy Technology Data Exchange (ETDEWEB)

    Humphreys, J.C. [National Institute of Standards and Technology, Gaithersburg, MD (United States)

    1993-12-31

    There is a need for high-dose secondary calibration laboratories to serve the multi-billion dollar radiation processing industry. This need is driven by the desires of industry for less costly calibrations and faster calibration-cycle response time. Services needed include calibration irradiations of routine processing dosimeters and the supply of reference standard transfer dosimeters for irradiation in the production processing facility. In order to provide measurement quality assurance and to demonstrate consistency with national standards, the high-dose secondary laboratories would be accredited by means of an expansion of an existing National Voluntary Laboratory Accreditation Program. A laboratory performance criteria document is under development to implement the new program.

  11. NVLAP activities at Department of Defense calibration laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Schaeffer, D.M. [Defense Nuclear Agency, Alexandria, VA (United States)

    1993-12-31

    There are 367 active radiological instrument calibration laboratories within the U.S. Department of Defense (DoD). Each of the four services in DoD manages, operates, and certifies the technical proficiency and competency of those laboratories under their cognizance. Each service has designated secondary calibration laboratories to trace all calibration source standards to the National Institute of Standards and Technology. Individual service radiological calibration programs and capabilities, present and future, are described, as well as the measurement quality assurance (MQA) processes for their traceability. National Voluntary Laboratory Accreditation Program (NVLAP) programs for dosimetry systems are briefly summarized. Planned NVLAP accreditation of secondary laboratories is discussed in the context of current technical challenges and future efforts.

  12. Rectifying calibration error of Goldmann applanation tonometer is easy!

    Directory of Open Access Journals (Sweden)

    Nikhil S Choudhari

    2014-01-01

    Full Text Available Purpose: Goldmann applanation tonometer (GAT is the current Gold standard tonometer. However, its calibration error is common and can go unnoticed in clinics. Its company repair has limitations. The purpose of this report is to describe a self-taught technique of rectifying calibration error of GAT. Materials and Methods: Twenty-nine slit-lamp-mounted Haag-Streit Goldmann tonometers (Model AT 900 C/M; Haag-Streit, Switzerland were included in this cross-sectional interventional pilot study. The technique of rectification of calibration error of the tonometer involved cleaning and lubrication of the instrument followed by alignment of weights when lubrication alone didn′t suffice. We followed the South East Asia Glaucoma Interest Group′s definition of calibration error tolerance (acceptable GAT calibration error within ±2, ±3 and ±4 mm Hg at the 0, 20 and 60-mm Hg testing levels, respectively. Results: Twelve out of 29 (41.3% GATs were out of calibration. The range of positive and negative calibration error at the clinically most important 20-mm Hg testing level was 0.5 to 20 mm Hg and -0.5 to -18 mm Hg, respectively. Cleaning and lubrication alone sufficed to rectify calibration error of 11 (91.6% faulty instruments. Only one (8.3% faulty GAT required alignment of the counter-weight. Conclusions: Rectification of calibration error of GAT is possible in-house. Cleaning and lubrication of GAT can be carried out even by eye care professionals and may suffice to rectify calibration error in the majority of faulty instruments. Such an exercise may drastically reduce the downtime of the Gold standard tonometer.

  13. Standard dilution analysis.

    Science.gov (United States)

    Jones, Willis B; Donati, George L; Calloway, Clifton P; Jones, Bradley T

    2015-02-17

    Standard dilution analysis (SDA) is a novel calibration method that may be applied to most instrumental techniques that will accept liquid samples and are capable of monitoring two wavelengths simultaneously. It combines the traditional methods of standard additions and internal standards. Therefore, it simultaneously corrects for matrix effects and for fluctuations due to changes in sample size, orientation, or instrumental parameters. SDA requires only 200 s per sample with inductively coupled plasma optical emission spectrometry (ICP OES). Neither the preparation of a series of standard solutions nor the construction of a universal calibration graph is required. The analysis is performed by combining two solutions in a single container: the first containing 50% sample and 50% standard mixture; the second containing 50% sample and 50% solvent. Data are collected in real time as the first solution is diluted by the second one. The results are used to prepare a plot of the analyte-to-internal standard signal ratio on the y-axis versus the inverse of the internal standard concentration on the x-axis. The analyte concentration in the sample is determined from the ratio of the slope and intercept of that plot. The method has been applied to the determination of FD&C dye Blue No. 1 in mouthwash by molecular absorption spectrometry and to the determination of eight metals in mouthwash, wine, cola, nitric acid, and water by ICP OES. Both the accuracy and precision for SDA are better than those observed for the external calibration, standard additions, and internal standard methods using ICP OES. PMID:25599250

  14. Smart Calibration of Excavators

    DEFF Research Database (Denmark)

    Bro, Marie; Døring, Kasper; Ellekilde, Lars-Peter; Hansen, Mikael Sonne; Markvorsen, Steen; Spence, David; Stolpe, Mathias; Sølvason, Dorthe

    2005-01-01

    Excavators dig holes. But where is the bucket? The purpose of this report is to treat four different problems concerning calibrations of position indicators for excavators in operation at concrete construction sites. All four problems are related to the question of how to determine the precise...... geographic and/or site-relative position of a given excavator and its bucket. However, our presentations and solutions to the problems can, nevertheless, be read and studied in any order and independently of each other. This also implies and induces a gentle warning to the reader: The {\\em{notation}} need...

  15. Calibrated user-friendly reverse transcriptase-PCR assay

    DEFF Research Database (Denmark)

    Bor, M V; Sørensen, B S; Rammer, P;

    1998-01-01

    We report a competitive reverse transcriptase-PCR (RT-PCR) assay and a calibrated user-friendly RT-PCR assay (CURT-PCR) for epidermal growth factor receptor (EGFR) mRNA. A calibrator was prepared from isolated rat liver RNA, and the amount of EGFR mRNA was determined by competitive RT-PCR. In CURT-PCR......, a calibration curve was developed by plotting the ratio between the amount of PCR product originating from the calibrator and the RNA internal standard vs the amount of EGFR mRNA present in the calibrator. A fixed amount of RNA internal standard was coamplified with the EGFR mRNA present in the...... calibrator or in the sample, using the same primer set. The primers were chosen in regions of the EGFR mRNA that show 100% homology between human, rat, and mouse. The amount of EGFR in the unknown samples was calculated from the calibration curve based on the ratio between PCR product originating from the...

  16. Common Calibration Source for Monitoring Long-term Ozone Trends

    Science.gov (United States)

    Kowalewski, Matthew

    2004-01-01

    Accurate long-term satellite measurements are crucial for monitoring the recovery of the ozone layer. The slow pace of the recovery and limited lifetimes of satellite monitoring instruments demands that datasets from multiple observation systems be combined to provide the long-term accuracy needed. A fundamental component of accurately monitoring long-term trends is the calibration of these various instruments. NASA s Radiometric Calibration and Development Facility at the Goddard Space Flight Center has provided resources to minimize calibration biases between multiple instruments through the use of a common calibration source and standardized procedures traceable to national standards. The Facility s 50 cm barium sulfate integrating sphere has been used as a common calibration source for both US and international satellite instruments, including the Total Ozone Mapping Spectrometer (TOMS), Solar Backscatter Ultraviolet 2 (SBUV/2) instruments, Shuttle SBUV (SSBUV), Ozone Mapping Instrument (OMI), Global Ozone Monitoring Experiment (GOME) (ESA), Scanning Imaging SpectroMeter for Atmospheric ChartographY (SCIAMACHY) (ESA), and others. We will discuss the advantages of using a common calibration source and its effects on long-term ozone data sets. In addition, sphere calibration results from various instruments will be presented to demonstrate the accuracy of the long-term characterization of the source itself.

  17. Validation of calibration procedures for freeform parts on CMMs

    DEFF Research Database (Denmark)

    Savio, Enrico; De Chiffre, Leonardo

    2003-01-01

    The paper describes the validation of a new method for establishment of traceability of freeform measurements on coordinate measuring machines currently being considered for development as a new ISO standard. The method deals with calibration by: i) repeated measurements of a given uncalibrated w...... calibration of local deviations on CMMs in two different laboratories, as well as of three different freeform items from industrial applications: a turbine blade, a screw compressor rotor and a bevel gear....

  18. Calibration of FARSITE simulator in northern Iranian forests

    OpenAIRE

    Jahdi, R.; Salis, M. (Miguel) de; A. A. Darvishsefat; Mostafavi, M. A.; Alcasena, F.; Etemad, V.; Lozano, O.; D. Spano

    2015-01-01

    Wildfire simulators based on empirical or physical models need to be locally calibrated and validated when used under conditions that differ from those where the simulators were originally developed. This study aims to calibrate the FARSITE fire spread model considering a set of recent wildfires that occurred in northern Iranian forests. Site-specific fuel models in the study areas were selected by sampling the main natural vegetation type complexes and assigning standard fu...

  19. More Accurate Pinhole Camera Calibration with Imperfect Planar Target

    OpenAIRE

    Strobl, Klaus H.; Hirzinger, Gerd

    2011-01-01

    This paper presents a novel approach to camera calibration that improves final accuracy with respect to standard methods using precision planar targets, even if now inaccurate, unmeasured, roughly planar targets can be used. The work builds on a recent trend in camera calibration, namely concurrent optimization of scene structure together with the intrinsic camera parameters. A novel formulation is presented that allows maximum likelihood estimation in the case of inaccurate targets, as it ex...

  20. Rectifying calibration error of Goldmann applanation tonometer is easy!

    OpenAIRE

    Choudhari, Nikhil S; Krishna P Moorthy; Tungikar, Vinod B; Mohan Kumar; Ronnie George; Harsha L Rao; Sirisha Senthil; Lingam Vijaya; Chandra Sekhar Garudadri

    2014-01-01

    Purpose: Goldmann applanation tonometer (GAT) is the current Gold standard tonometer. However, its calibration error is common and can go unnoticed in clinics. Its company repair has limitations. The purpose of this report is to describe a self-taught technique of rectifying calibration error of GAT. Materials and Methods: Twenty-nine slit-lamp-mounted Haag-Streit Goldmann tonometers (Model AT 900 C/M; Haag-Streit, Switzerland) were included in this cross-sectional interventional pilot study....

  1. Use of Radiometrically Calibrated Flat-Plate Calibrators in Calibration of Radiation Thermometers

    Science.gov (United States)

    Cárdenas-García, D.; Méndez-Lango, E.

    2015-08-01

    Most commonly used, low-temperature, infrared thermometers have large fields of view sizes that make them difficult to be calibrated with narrow aperture blackbodies. Flat-plate calibrators with large emitting surfaces have been proposed for calibrating these infrared thermometers. Because the emissivity of the flat plate is not unity, its radiance temperature is wavelength dependent. For calibration, the wavelength pass band of the device under test should match that of the reference infrared thermometer. If the device under test and reference radiometer have different pass bands, then it is possible to calculate the corresponding correction if the emissivity of the flat plate is known. For example, a correction of at is required when calibrating a infrared thermometer with a "" radiometrically calibrated flat-plate calibrator. A method is described for using a radiometrically calibrated flat-plate calibrator that covers both cases of match and mismatch working wavelength ranges of a reference infrared thermometer and infrared thermometers to be calibrated with the flat-plate calibrator. Also, an application example is included in this paper.

  2. Approaches on calibration of bolometer and establishment of bolometer calibration device

    Science.gov (United States)

    Xia, Ming; Gao, Jianqiang; Ye, Jun'an; Xia, Junwen; Yin, Dejin; Li, Tiecheng; Zhang, Dong

    2015-10-01

    Bolometer is mainly used for measuring thermal radiation in the field of public places, labor hygiene, heating and ventilation and building energy conservation. The working principle of bolometer is under the exposure of thermal radiation, temperature of black absorbing layer of detector rise after absorption of thermal radiation, which makes the electromotive force produced by thermoelectric. The white light reflective layer of detector does not absorb thermal radiation, so the electromotive force produced by thermoelectric is almost zero. A comparison of electromotive force produced by thermoelectric of black absorbing layer and white reflective layer can eliminate the influence of electric potential produced by the basal background temperature change. After the electromotive force which produced by thermal radiation is processed by the signal processing unit, the indication displays through the indication display unit. The measurement unit of thermal radiation intensity is usually W/m2 or kW/m2. Its accurate and reliable value has important significance for high temperature operation, labor safety and hygiene grading management. Bolometer calibration device is mainly composed of absolute radiometer, the reference light source, electric measuring instrument. Absolute radiometer is a self-calibration type radiometer. Its working principle is using the electric power which can be accurately measured replaces radiation power to absolutely measure the radiation power. Absolute radiometer is the standard apparatus of laser low power standard device, the measurement traceability is guaranteed. Using the calibration method of comparison, the absolute radiometer and bolometer measure the reference light source in the same position alternately which can get correction factor of irradiance indication. This paper is mainly about the design and calibration method of the bolometer calibration device. The uncertainty of the calibration result is also evaluated.

  3. Dosimetry and Calibration Section

    International Nuclear Information System (INIS)

    The Dosimetry and Calibration Section fulfils two tasks within CERN's Radiation Protection Group: the Individual Dosimetry Service monitors more than 5000 persons potentially exposed to ionizing radiation on the CERN sites, and the Calibration Laboratory verifies throughout the year, at regular intervals, over 1000 instruments, monitors, and electronic dosimeters used by RP Group. The establishment of a Quality Assurance System for the Individual Dosimetry Service, a requirement of the new Swiss Ordinance for personal dosimetry, put a considerable workload on the section. Together with an external consultant it was decided to identify and then describe the different 'processes' of the routine work performed in the dosimetry service. The resulting Quality Manual was submitted to the Federal Office for Public Health in Bern in autumn. The CERN Individual Dosimetry Service will eventually be officially endorsed after a successful technical test in March 1999. On the technical side, the introduction of an automatic development machine for gamma films was very successful. It processes the dosimetric films without an operator being present, and its built-in regeneration mechanism keeps the concentration of the processing chemicals at a constant level

  4. Two-Step Camera Calibration Method Developed for Micro UAV'S

    Science.gov (United States)

    Gašparović, M.; Gajski, D.

    2016-06-01

    The development of unmanned aerial vehicles (UAVs) and continuous price reduction of unmanned systems attracted us to this research. Professional measuring systems are dozens of times more expensive and often heavier than "amateur", non-metric UAVs. For this reason, we tested the DJI Phantom 2 Vision Plus UAV. Phantom's smaller mass and velocity can develop less kinetic energy in relation to the professional measurement platforms, which makes it potentially less dangerous for use in populated areas. In this research, we wanted to investigate the ability of such non-metric UAV and find the procedures under which this kind of UAV may be used for the photogrammetric survey. It is important to emphasize that UAV is equipped with an ultra wide-angle camera with 14MP sensor. Calibration of such cameras is a complex process. In the research, a new two-step process is presented and developed, and the results are compared with standard one-step camera calibration procedure. Two-step process involves initially removed distortion on all images, and then uses these images in the phototriangulation with self-calibration. The paper presents statistical indicators which proved that the proposed two-step process is better and more accurate procedure for calibrating those types of cameras than standard one-step calibration. Also, we suggest two-step calibration process as the standard for ultra-wideangle cameras for unmanned aircraft.

  5. Absolute calibration of soft X-ray plates by using a self-calibrated X-ray bolometer

    International Nuclear Information System (INIS)

    The sensitivity of soft X-ray plates, Kodak 101-05 and ILFORD Q-PLATE at 1.1 keV was measured by using a self-calibrated X-ray bolometer as a standard detector for absolute measurements of soft X-rays. Cross-calibration was also made by using an X-ray sensitive diamond detector. Good agreement in the absolute sensitivity was obtained between the bolometer and the diamond detector. (author)

  6. Intelligent electric energy meter GPS standard clock synchronization clock calibration technology development andapplication based on%基于GPS标准时钟的智能电能表时钟同步校准技术开发和应用

    Institute of Scientific and Technical Information of China (English)

    黄建硕; 李福东

    2015-01-01

    针对智能电能表时钟管理问题,分析了电能表时钟工作原理和管理标准,在现有用电信息采集系统(主站)中开发了时钟管理相关软件模块,搭建了时钟校对实验平台。通过实验测试和现场应用,实现了基于GPS标准时钟的智能电能表时钟同步校准,提高了电能计量的可靠性。%Aiming at the intelligent electrical energy table clock management problems,analyzes the working principle of the electric energy meter clock and management standards,in the existing electric information acquisition system(master station)in the development of the management software module clock,clock calibrationexperiment platform is built.Through the experimental test and field application,the intelligent electric energy meter GPS standard clock calibration based on clock synchronization,improve the reliability of electric energy metering.

  7. Influence of filter thickness on PESA calibration

    International Nuclear Information System (INIS)

    Elemental analysis of air particulate matter collected on Teflon filters using ion beam analysis (IBA) allows simultaneous analysis of the hydrogen content. Hydrogen is determined by a method known as particle elastic scattering analysis (PESA). The hydrogen concentration in the air particulate matter samples is determined by comparing the ratio of the hydrogen peak yield to the yields from standards of known hydrogen composition. The study presented in this paper shows that this process can be inaccurate if the calibration standards used are of different thicknesses compared to the air pollution samples. A series of experiments were undertaken to investigate the effect of sample and standard thickness on the determination of hydrogen concentrations. It was found that the filter thickness and the distribution of the air particulate matter within the filter significantly affected the yield of the hydrogen peak in the PESA spectra. Therefore, it is important to consider the effect of thickness and the distribution of the hydrogen in both the calibration standards and the sample filters for PESA analysis

  8. Primary calibration of AM and PM noise measurements

    OpenAIRE

    Rubiola, Enrico

    2009-01-01

    This report describes a method for the primary calibration of phase noise and amplitude noise measurement systems. In the field of metrology, the term "primary" refers to a standard whose quantity value and measurement uncertainty are established without relation to another measurement standard for a quantity of the same kind; or to a procedure used to realize the definition of a measurement unit and obtain the quantity value and measurement uncertainty of a primary measurement standard. Acco...

  9. Calibration of high resolution digital camera based on different photogrammetric methods

    International Nuclear Information System (INIS)

    This paper presents method of calibrating high-resolution digital camera based on different configuration which comprised of stereo and convergent. Both methods are performed in the laboratory and in the field calibration. Laboratory calibration is based on a 3D test field where a calibration plate of dimension 0.4 m × 0.4 m with grid of targets at different height is used. For field calibration, it uses the same concept of 3D test field which comprised of 81 target points located on a flat ground and the dimension is 9 m × 9 m. In this study, a non-metric high resolution digital camera called Canon Power Shot SX230 HS was calibrated in the laboratory and in the field using different configuration for data acquisition. The aim of the calibration is to investigate the behavior of the internal digital camera whether all the digital camera parameters such as focal length, principal point and other parameters remain the same or vice-versa. In the laboratory, a scale bar is placed in the test field for scaling the image and approximate coordinates were used for calibration process. Similar method is utilized in the field calibration. For both test fields, the digital images were acquired within short period using stereo and convergent configuration. For field calibration, aerial digital images were acquired using unmanned aerial vehicle (UAV) system. All the images were processed using photogrammetric calibration software. Different calibration results were obtained for both laboratory and field calibrations. The accuracy of the results is evaluated based on standard deviation. In general, for photogrammetric applications and other applications the digital camera must be calibrated for obtaining accurate measurement or results. The best method of calibration depends on the type of applications. Finally, for most applications the digital camera is calibrated on site, hence, field calibration is the best method of calibration and could be employed for obtaining accurate

  10. Calibration and intercomparison methods of dose calibrators used in nuclear medicine facilities; Metodos de calibracao e de intercomparacao de calibradores de dose utilizados em servicos de medicina nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Alessandro Martins da

    1999-07-01

    Dose calibrators are used in most of the nuclear medicine facilities to determine the amount of radioactivity administered to a patient in a particular investigation or therapeutic procedure. It is therefore of vital importance that the equipment used presents good performance and is regular;y calibrated at a authorized laboratory. This occurs of adequate quality assurance procedures are carried out. Such quality control tests should be performed daily, other biannually or yearly, testing, for example, its accuracy and precision, the reproducibility and response linearity. In this work a commercial dose calibrator was calibrated with solution of radionuclides used in nuclear medicine. Simple instrument tests, such as response linearity and the response variation of the source volume increase at a constant source activity concentration, were performed. This instrument can now be used as a working standard for calibration of other dose calibrators/ An intercomparison procedure was proposed as a method of quality control of dose calibrators used in nuclear medicine facilities. (author)

  11. Guidelines for the calibration of personnel dosimeters

    International Nuclear Information System (INIS)

    This guide describes minimum acceptable performance levels for personnel dosimetry systems used at Department of Energy (DOE) facilities. The goal is to improve both the quality of radiological calibrations and the methods of comparing reported occupational doses between DOE facilities. Reference calibration techniques are defined. A standard for evaluation of personnel dosimetry systems and recommended design parameters for personnel dosimeters are also included. Approximate intervals for the radiation energies for which these guidelines are appropriate are 15 keV to 2 MeV for photons; above 0.3 MeV for beta particles; and 1 keV to 2 MeV for neutrons. An analysis of ANSI N13.11 was completed using performance evaluations of selected personnel dosimetry systems in use at DOE facilities. The results of this analysis are incorporated in the guidelines

  12. Camera Calibration: a USU Implementation

    OpenAIRE

    Ma, Lili; Chen, YangQuan; Moore, Kevin L.

    2003-01-01

    The task of camera calibration is to estimate the intrinsic and extrinsic parameters of a camera model. Though there are some restricted techniques to infer the 3-D information about the scene from uncalibrated cameras, effective camera calibration procedures will open up the possibility of using a wide range of existing algorithms for 3-D reconstruction and recognition. The applications of camera calibration include vision-based metrology, robust visual platooning and visual docking of mobil...

  13. Calibration procedure for zenith plummets

    Directory of Open Access Journals (Sweden)

    Jelena GUČEVIĆ

    2013-09-01

    Full Text Available Zenith plummets are used mainly in applied geodesy, in civil engineering surveying, for materialization of the local vertical. The error of the vertical deflection of the instrument is directly transferred to the error of the observing construction. That is why a proper calibration procedure for the zenithlot is required. Metrological laboratory of the Faculty of Civil Engineering in Belgrade developed such calibration procedure. Here we present a mathematical model of the calibration and some selected results.

  14. Calibration procedure for zenith plummets

    OpenAIRE

    Jelena GUČEVIĆ; Delčev, Siniša; Vukan OGRIZOVIĆ

    2013-01-01

    Zenith plummets are used mainly in applied geodesy, in civil engineering surveying, for materialization of the local vertical. The error of the vertical deflection of the instrument is directly transferred to the error of the observing construction. That is why a proper calibration procedure for the zenithlot is required. Metrological laboratory of the Faculty of Civil Engineering in Belgrade developed such calibration procedure. Here we present a mathematical model of the calibration and som...

  15. Summary of KOMPSAT-5 Calibration and Validation

    Science.gov (United States)

    Yang, D.; Jeong, H.; Lee, S.; Kim, B.

    2013-12-01

    Korean Multi-Purpose Satellite 5 (KOMPSAT-5), equipped with high resolution X-band (9.66 GHz) Synthetic Aperture Radar (SAR), is planning to be launched on August 22, 2013. With the satellite's primary mission objective being providing Geographical Information System (GIS), Ocean monitoring and Land management, and Disaster and ENvironment monitoring (GOLDEN), it is expected that its applications for scientific research on geographical processes will be extensive. In order to meet its mission objective, the KOMPSAT-5 will provide three different kinds of SAR imaging modes; High Resolution Mode (1 m resolution, 5 km swath), Standard Mode (3 m resolution, 30 km swath), and Wide Swath Mode (20 m resolution, 100 km swath). The KOMPSAT-5 will be operated in a 550 km sun-synchronous, dawn- dusk orbit with a 28-day ground repeat cycle providing valuable image information on Earth surface day-or-night and even in bad weather condition. After successful launch of the satellite, it will go through Launch and Early Operation (LEOP) and In-Orbit Testing (IOT) period about for 6 months to carry out various tests on satellite bus and payload systems. The satellite bus system will be tested during the first 3 weeks after the launch focusing on the Attitude and Orbit Control Subsystem (AOCS) and Integrated GPS Occultation Receiver (IGOR) calibration. With the completion of bus system test, the SAR payload system will be calibrated during initial In-Flight check period (11 weeks) by the joint effort of Thales Alenia Space Italy (TAS-I) and Korea Aerospace Research Institute (KARI). The pointing and relative calibration will be carried out during this period by analyzing the doppler frequency and antenna beam pattern of reflected microwave signal from selected regions with uniform backscattering coefficients (e.g. Amazon rainforest). A dedicated SAR calibration, called primary calibration, will be allocated at the end of LEOP for 12 weeks to perform thorough calibration activities

  16. Calibration Techniques for VERITAS

    CERN Document Server

    Hanna, David

    2007-01-01

    VERITAS is an array of four identical telescopes designed for detecting and measuring astrophysical gamma rays with energies in excess of 100 GeV. Each telescope uses a 12 m diameter reflector to collect Cherenkov light from air showers initiated by incident gamma rays and direct it onto a `camera' comprising 499 photomultiplier tubes read out by flash ADCs. We describe here calibration methods used for determining the values of the parameters which are necessary for converting the digitized PMT pulses to gamma-ray energies and directions. Use of laser pulses to determine and monitor PMT gains is discussed, as are measurements of the absolute throughput of the telescopes using muon rings.

  17. Segmental calibration for commercial AFM in vertical direction

    Science.gov (United States)

    Shi, Yushu; Gao, Sitian; Lu, Mingzhen; Li, Wei; Xu, Xuefang

    2013-01-01

    Atomic force microscopy (AFM) is most widely applied in scientific research and industrial production. AFM is a scanning probe imaging and measuring device, useful for physical and chemical studies. Depends on its basic structure, microscopic surface pattern can be measured and captured by mechanically scanning. Its vertical and horizon resolution can reach to 0.01nm and 0.1nm. Commonly the measurement values of commercial AFM are directly from scanning piezoelectric tube, so that it not a traceable value. In order to solve the problem of commercial AFM's traceability, step height standard references are applied to calibrate the piezoelectric ceramic housing in scanning tube. All of the serial of step height standard references, covering the commercial AFM vertical scale, are calibrated by Metrology AFM developed by National Institute of Metrology (NIM), China. Three interferometers have been assembled in its XYZ axis, therefore the measurement value can directly trace to laser wavelength. Because of nonlinear characteristic of PZT, the method of segmental calibration is proposed. The measurement scale can be divided into several subsections corresponding to the calibrated values of the series of step height standards references. By this method the accuracy of measurements can be ensured in each segment measurement scale and the calibration level of the whole instrument can be promoted. In order to get a standard step shape by commercial AFM, substrate removal method is applied to deal with the bow shape problem.

  18. Multi-element quantification of ancient glasses by LA-ICPMS using sum normalization calibration

    International Nuclear Information System (INIS)

    Full text: LA-ICPMS for the quantitative analysis of ancient glasses is subject to calibration issues which have been addressed in this work. We will demonstrate that complementary analysis for internal standardization is unnecessary by applying a so-called sum normalization calibration technique by simultaneously measuring 54 elemental oxides and normalizing them to 100 % w/w. Crucial to this approach to assume a random internal standard concentration (e.g. [SiO2]), and to let the normalization algorithm find the internal standard concentration and all other oxide concentrations, based on external calibration with several glass standards replicating historic compositions. Data regarding evaluation and application will be shown. (author)

  19. Secondary standard dosimetry laboratory at INFLPR

    Energy Technology Data Exchange (ETDEWEB)

    Scarlat, F.; Minea, R.; Scarisoreanu, A.; Badita, E.; Sima, E.; Dumitrascu, M.; Stancu, E.; Vancea, C., E-mail: scarlat.f@gmail.com [National Institute for Laser, Plasma and Radiation Physics - INFLPR, Bucharest (Romania)

    2011-07-01

    National Institute for Laser, Plasma and Radiation Physics (INFLPR) has constructed a High Energy Secondary Standard Dosimetry Laboratory SSDL-STARDOOR - for performing dosimetric calibrations according to ISO IEC SR/EN 17025:2005 standards. This is outfitted with UNIDOS Secondary Standard Dosimeter from PTW (Freiburg Physikalisch-Technische Werksttaten) calibrated at the PTB-Braunschweig (German Federal Institute of Physics and Metrology). A radiation beam of the quality of Q used by our laboratory as calibration source are provided by INFLPR 7 MeV electron beam linear accelerator mounted in our facility. (author)

  20. NBS (National Bureau of Standards) measurement services: radiometric standards in the vacuum ultraviolet. Final report

    International Nuclear Information System (INIS)

    The radiometric calibration program carried out by the vacuum-ultraviolet radiometry group in the Atomic and Plasma Radiation Division of the National Bureau of Standards is presented in detail. The calibration services are first listed, followed by descriptions of the primary standards, which are the hydrogen arc and the blackbody line arc, and the secondary standards, which are the argon mini- and maxi-arcs and the deuterium arc lamp. Next, the calibration methods involving both spectral radiance and irradiance are discussed along with their uncertainties. Finally, the intercomparison of standards as a method of quality control is described

  1. Secondary standards dosimetry laboratories

    International Nuclear Information System (INIS)

    The Secondary Standards Dosimetry Laboratory (SSDL) is part of an international network of dosimetry laboratories established by the IAEA and WHO. The network services maintain the consistency and accuracy of the therapeutic dose by exercising a national and international intercomparison program as well as providing calibration services to the end users, mainly radiotherapy departments in hospitals. The SSDL's are designated by national laboratories (such as Primary Standards Dosimetry Laboratories, PSDL's) to provide national and international absorbed dose traceability for users in that country. The advantage of the SSDL is that the absorbed dose measurements are consistent among the stakeholder countries.The Physics and Safety divisions have recently re-established an SSDL at ANSTO. The SSDL utilises a collimated cobalt-60 source of activity 170 TBq and dose rate of SmGy/sec at 1 metre (within ±2%), and provides a service to calibrate therapy level thimble ionisation chambers and electrometers

  2. Calibration of SeaWiFS. I. Direct techniques

    International Nuclear Information System (INIS)

    We present an overview of the calibration of the Sea-viewing Wide Field-of-View Sensor (SeaWiFS) from its performance verification at the manufacturer's facility in the completion of its third year of on-orbit measurements. These calibration procedures have three principal parts: a prelaunch radiometric calibration that is traceable to the National Institute of Standards and Technology; the Transfer-to-Orbit Experiment, a set of measurements that determine changes in the instrument's calibration from its manufacture to the start of on-orbit operations; and measurements of the sun and the moon to determine radiometric changes on orbit. To our knowledge, SeaWiFS is the only instrument that uses routine lunar measurements to determine changes in its radiometric sensitivity. On the basis of these methods, the overall uncertainty in the SeaWiFS top-of-the-atmosphere radiances is estimated to be 4-5%. We also show the results of comparison campaigns with aircraft- and ground-based measurements, plus the results of an experiment, called the Southern Ocean Band 8 Gain Study. These results are used to check the calibration of the SeaWiFS bands. To date, they have not been used to change the instrument's prelaunch calibration coefficients. In addition to these procedures, SeaWiFS is a vicariously calibrated instrument for ocean-color measurements. In the vicarious calibration of the SeaWiFS visible bands, the calibration coefficients are modified to force agreement with surface truth measurements from the Marine Optical Buoy, which is moored off the Hawaiian Island of Lanai. This vicarious calibration is described in a companion paper

  3. Special calibrations and multi-isotopes acquisitions in scintillation cameras

    International Nuclear Information System (INIS)

    Aim: Our experience has been demonstrating that in the multi-isotopes procedures practiced in Nuclear Medicine, the quality of the images tends to be below the mono-isotopes acquisitions. Investigating the problem, we verified that its origin resides in the presence of the scattering radiation, which falls in windows of lower energy isotopes, and it is not considered in calibration procedures. Methodology: We performed a quantitative analysis using multi-isotopes sources, 18F - 99mTc and 131I - 99mTc, a dual head Elscint Helix scintillation camera with a capacity to acquire positrons emission collimated images and several evaluation with and without special calibration. We analyzed spectra to evaluate the behavior of the scattering radiation and adopted the protocol IAEA-TECDOC 602 /1992 and NEMA Standards Publication NU 1-1994 for the quantification of the intrinsic integral and differential uniformity. Special calibrations, energy (if available) and flood correction, were made with multi-isotopes sources in similar proportion to clinical procedures. Results: The results shows degradation in the lower energy isotopes images (99mTc) produced by scattering radiation of high energy isotope when standards calibration was performed. When special calibrations were made a better performance of the integral and differential uniformity coefficient occurred. Conclusions: The use of special calibrations, energy (if available) and flood correction, accomplished with multi-isotopes sources in similar proportions to clinical procedures, allows recovery of the existent quality patterns in mono-isotope acquisitions

  4. Comparison of calibrations of a well type ionization chamber between the IAEA and the SSDL of Finland

    International Nuclear Information System (INIS)

    Since 1996, the IAEA has maintained standards for Low Dose Rate (LDR) brachytherapy dosimetry. These standards consist of two 137Cs sources, calibrated at the National Institute of Standards and Technology (NIST), USA. As with all calibrations, maintaining our knowledge and confidence in of the standards at the highest possible level is essential. One way of verifying the quality of our calibrations is by means of a comparison with another SSDL. The purpose of this report is to describe such a comparison. A comparison was performed between the IAEA and the SSDL of Finland (STUK). A well type chamber, HDR 1000Plus (Standard Imaging, USA) was calibrated at the IAEA Dosimetry Laboratory and sent to STUK. After calibration by STUK the chamber was returned to the IAEA and a check of the chamber's response was made. This was done in order to verify that the chamber calibration had not been altered as a result of transportation

  5. Calibration service of radiation detectors and dosemeters at IPEN/ Sao Paulo

    International Nuclear Information System (INIS)

    The Calibration Laboratory of Instituto de Pesquisas Energeticas e Nucleares, IPEN, has already over 25 years been calibrating instruments used in radiation protection and therapy measurements and belonging to hospitals, industries, clinics and other users located in Sao Paulo and in other parts of Brazil. At the present time, the Calibration Laboratory is part of the Radiation Metrology Center and it acts in the Radiation Protection, Radiation Therapy, Nuclear Medicine and Diagnostic Radiology areas, using special set-ups with gamma and beta radiation sealed sources, alpha and beta radiation plane sources and low and intermediate energies of X radiation. Moreover, it has reference instruments for each calibration area with traceability to the Brazilian National Laboratory for Metrology of Ionizing Radiation (secondary standards) and international laboratories (primary standards). The number of tested instruments is increasing annually (from 170 in 1980 to 1871 in 2005), and for the development of new techniques and radiation detectors the continuous improvement of the existing calibration methods is necessary, as well as the establishment of new calibration services to be offered by the Calibration Laboratory for Brazilian and South American users. The objective of this study is to show the evolution of the calibration service developed at IPEN, describing the applied methods and the calibrated instruments types. The quality system implantation process following the basis of the NBR IEC/ISO 17025 standard is also presented with some tools used in the calibration procedures. (Author)

  6. Calibration service of radiation detectors and dosemeters at IPEN/ Sao Paulo

    Energy Technology Data Exchange (ETDEWEB)

    Potiens, M.P.A.; Caldas, L.V.E. [IPEN, CNEN/SP, Sao Paulo (Brazil)]. e-mail: mppalbu@ipen.br

    2006-07-01

    The Calibration Laboratory of Instituto de Pesquisas Energeticas e Nucleares, IPEN, has already over 25 years been calibrating instruments used in radiation protection and therapy measurements and belonging to hospitals, industries, clinics and other users located in Sao Paulo and in other parts of Brazil. At the present time, the Calibration Laboratory is part of the Radiation Metrology Center and it acts in the Radiation Protection, Radiation Therapy, Nuclear Medicine and Diagnostic Radiology areas, using special set-ups with gamma and beta radiation sealed sources, alpha and beta radiation plane sources and low and intermediate energies of X radiation. Moreover, it has reference instruments for each calibration area with traceability to the Brazilian National Laboratory for Metrology of Ionizing Radiation (secondary standards) and international laboratories (primary standards). The number of tested instruments is increasing annually (from 170 in 1980 to 1871 in 2005), and for the development of new techniques and radiation detectors the continuous improvement of the existing calibration methods is necessary, as well as the establishment of new calibration services to be offered by the Calibration Laboratory for Brazilian and South American users. The objective of this study is to show the evolution of the calibration service developed at IPEN, describing the applied methods and the calibrated instruments types. The quality system implantation process following the basis of the NBR IEC/ISO 17025 standard is also presented with some tools used in the calibration procedures. (Author)

  7. Tectonic calibrations in molecular dating

    Institute of Scientific and Technical Information of China (English)

    Ullasa KODANDARAMAIAH

    2011-01-01

    Molecular dating techniques require the use of calibrations, which are usually fossil or geological vicariance-based.Fossil calibrations have been criticised because they result only in minimum age estimates. Based on a historical biogeographic perspective, Ⅰ suggest that vicariance-based calibrations are more dangerous. Almost all analytical methods in historical biogeography are strongly biased towards inferring vicariance, hence vicariance identified through such methods is unreliable. Other studies, especially of groups found on Gondwanan fragments, have simply assumed vicariance. Although it was previously believed that vicariance was the predominant mode of speciation, mounting evidence now indicates that speciation by dispersal is common, dominating vicariance in several groups. Moreover, the possibility of speciation having occurred before the said geological event cannot be precluded. Thus, geological calibrations can under- or overestimate times, whereas fossil calibrations always result in minimum estimates. Another major drawback of vicariant calibrations is the problem of circular reasoning when the resulting estimates are used to infer ages of biogeographic events. Ⅰ argue that fossil-based dating is a superior alternative to vicariance, primarily because the strongest assumption in the latter, that speciation was caused by the said geological process, is more often than not the most tenuous. When authors prefer to use a combination of fossil and vicariant calibrations, one suggestion is to report results both with and without inclusion of the geological constraints. Relying solely on vicariant calibrations should be strictly avoided.

  8. Field calibration of cup anemometers

    DEFF Research Database (Denmark)

    Kristensen, L.; Jensen, G.; Hansen, A.;

    2001-01-01

    An outdoor calibration facility for cup anemometers, where the signals from 10 anemometers of which at least one is a reference can be can be recorded simultaneously, has been established. The results are discussed with special emphasis on the statisticalsignificance of the calibration expressions...

  9. Calibration and characterization of the extremities dosemeters

    International Nuclear Information System (INIS)

    The increase of the use of diagnostic techniques and therapy in the medical sector by using radiation sources, as in the nuclear medicine and interventionist radiology, is providing a great progress for the health improvement. However, these used techniques can generate an exposure workers increase. These expositions occur mainly on specific parts of the body such as the hands; these can stay in direct contact or very near to the radiation source due to the used technique during medical procedures. In both cases it is necessary a dosimetry of the specific parts of the body according to the national regulation on radiological protection; the Comissao Nacional de Energia Nuclear - CNEN responsible for the nuclear medicine through the CNEN-NN-3.01 standard and Agencia Nacional de Vigilancia Sanitaria - ANVISA responsible for the X ray diagnostic equipment through Portaria 453/98 standard of the Health department. In both cases the extremities dosimetry is necessary for these professionals checking the of application principles of radiological protection through the comparison of the found values of dose with the limits allowed for the current law. For this dosimetric verification it is necessary the characterization with the type tests and calibration of the extremities dosemeters, assuring the trustworthiness of the joined results. This work had as objective the calibration and characterization of the extremities dosemeters made at CDTN in the 'Personal Dose Equivalent for Extremities - Hp(0,07)', using a finger simulator in gamma radiation fields (60Co and 137Cs) and X rays; having the process of the system calibration accomplished based on international ISO/DIS 12794-1 standard, which establishes the performance criteria and tests for determining the performance of the thermoluminescence dosemeters to be used for measuring the radiation doses to the extremities due to photons. (author)

  10. 基于稳定竞争自适应重加权采样的光谱分析无标模型传递方法%Calibration Transfer without Standards for Spectral Analysis Based on Stability Competitive Adaptive Reweighted Sampling

    Institute of Scientific and Technical Information of China (English)

    张晓羽; 李庆波; 张广军

    2014-01-01

    A novel calibration transfer method based on stability competitive adaptive reweighted sampling (SCARS) was pro-posed in the present paper .An informative criterion ,i .e .the stability index ,defined as the absolute value of regression coeffi-cient divided by its standard deviation was used .And the root mean squared error of prediction (RMSEP) after transfer was also used .The wavelength variables which were important and insensitive to influence of measurement parameters were selected . And then the differences in responses of different instruments or measurement conditions for a specific sample were eliminated or reduced to improve the calibration transfer results .Moreover ,in the proposed method ,the spectral variables were compressed , making calibration transfer more stable .The application of the proposed method to calibration transfer of NIR analysis was eval-uated by analyzing the corn with different NIR spectrometers .The results showed that this method can well correct the differ-ence between instruments and improve the analytical accuracy .The transfer results obtained by the proposed method ,orthogonal signal correction (OSC) ,Monte Carlo uninformative variable elimination (MCUVE) and competitive adaptive reweighted sam-pling (CARS) ,respectively ,for corn with different NIR spectrometers indicated that the former gave the best analytical accura-cy ,and was effective for the spectroscopic data compression which can simplify and optimize the transfer process .%提出了一种基于稳定竞争自适应重加权采样(stability competitive adaptive reweighted sampling , SCARS)的无标模型传递方法。利用有用信息标准即稳定度指数(定义为回归系数除以其标准偏差的绝对值)和传递后的预测均方根误差(root mean squared error of prediction ,RMSEP),选择重要的、受测样参数影响不敏感的波长变量,能够消除或减少不同仪器或测量条件对样本信息反应差异,提高模

  11. The Advanced LIGO Photon Calibrators

    CERN Document Server

    Karki, S; Kandhasamy, S; Abbott, B P; Abbott, T D; Anders, E H; Berliner, J; Betzwieser, J; Daveloza, H P; Cahillane, C; Canete, L; Conley, C; Gleason, J R; Goetz, E; Kissel, J S; Izumi, K; Mendell, G; Quetschke, V; Rodruck, M; Sachdev, S; Sadecki, T; Schwinberg, P B; Sottile, A; Wade, M; Weinstein, A J; West, M; Savage, R L

    2016-01-01

    The two interferometers of the Laser Interferometry Gravitaional-wave Observatory (LIGO) recently detected gravitational waves from the mergers of binary black hole systems. Accurate calibration of the output of these detectors was crucial for the observation of these events, and the extraction of parameters of the sources. The principal tools used to calibrate the responses of the second-generation (Advanced) LIGO detectors to gravitational waves are systems based on radiation pressure and referred to as Photon Calibrators. These systems, which were completely redesigned for Advanced LIGO, include several significant upgrades that enable them to meet the calibration requirements of second-generation gravitational wave detectors in the new era of gravitational-wave astronomy. We report on the design, implementation, and operation of these Advanced LIGO Photon Calibrators that are currently providing fiducial displacements on the order of $10^{-18}$ m/$\\sqrt{\\textrm{Hz}}$ with accuracy and precision of better ...

  12. Antenna Calibration and Measurement Equipment

    Science.gov (United States)

    Rochblatt, David J.; Cortes, Manuel Vazquez

    2012-01-01

    A document describes the Antenna Calibration & Measurement Equipment (ACME) system that will provide the Deep Space Network (DSN) with instrumentation enabling a trained RF engineer at each complex to perform antenna calibration measurements and to generate antenna calibration data. This data includes continuous-scan auto-bore-based data acquisition with all-sky data gathering in support of 4th order pointing model generation requirements. Other data includes antenna subreflector focus, system noise temperature and tipping curves, antenna efficiency, reports system linearity, and instrument calibration. The ACME system design is based on the on-the-fly (OTF) mapping technique and architecture. ACME has contributed to the improved RF performance of the DSN by approximately a factor of two. It improved the pointing performances of the DSN antennas and productivity of its personnel and calibration engineers.

  13. TIME CALIBRATED OSCILLOSCOPE SWEEP CIRCUIT

    Science.gov (United States)

    Smith, V.L.; Carstensen, H.K.

    1959-11-24

    An improved time calibrated sweep circuit is presented, which extends the range of usefulness of conventional oscilloscopes as utilized for time calibrated display applications in accordance with U. S. Patent No. 2,832,002. Principal novelty resides in the provision of a pair of separate signal paths, each of which is phase and amplitude adjustable, to connect a high-frequency calibration oscillator to the output of a sawtooth generator also connected to the respective horizontal deflection plates of an oscilloscope cathode ray tube. The amplitude and phase of the calibration oscillator signals in the two signal paths are adjusted to balance out feedthrough currents capacitively coupled at high frequencies of the calibration oscillator from each horizontal deflection plate to the vertical plates of the cathode ray tube.

  14. Calibration and temperature profile of a tungsten filament lamp

    International Nuclear Information System (INIS)

    The goal of this work proposed for undergraduate students and teachers is the calibration of a tungsten filament lamp from electric measurements that are both simple and precise, allowing to determine the temperature of tungsten filament as a function of the current intensity. This calibration procedure was first applied to a conventional filament lamp (lamp used in automotive lighting) and then tested on a standard tungsten ribbon lamp. The calibration procedure developed was checked by determining the calibration point of the tungsten ribbon lamp with an accuracy of 2%. In addition, for low current intensity, it was observed that the temperature of the filament was not uniform; an explanation is proposed by considering a simple heat transfer model.

  15. Calibration and temperature profile of a tungsten filament lamp

    Energy Technology Data Exchange (ETDEWEB)

    De Izarra, Charles [Groupe de Recherche sur l' Energetique des Milieux Ionises, UMR6606 Universite d' Orleans, CNRS, Faculte des Sciences, Site de Bourges, rue Gaston Berger, BP 4043, 18028 Bourges Cedex (France); Gitton, Jean-Michel, E-mail: Charles.De_Izarra@univ-orleans.f [College Littre, 10 rue Littre, Bourges (France)

    2010-07-15

    The goal of this work proposed for undergraduate students and teachers is the calibration of a tungsten filament lamp from electric measurements that are both simple and precise, allowing to determine the temperature of tungsten filament as a function of the current intensity. This calibration procedure was first applied to a conventional filament lamp (lamp used in automotive lighting) and then tested on a standard tungsten ribbon lamp. The calibration procedure developed was checked by determining the calibration point of the tungsten ribbon lamp with an accuracy of 2%. In addition, for low current intensity, it was observed that the temperature of the filament was not uniform; an explanation is proposed by considering a simple heat transfer model.

  16. Calibration Tests of Industrial and Scientific CCD Cameras

    Science.gov (United States)

    Shortis, M. R.; Burner, A. W.; Snow, W. L.; Goad, W. K.

    1991-01-01

    Small format, medium resolution CCD cameras are at present widely used for industrial metrology applications. Large format, high resolution CCD cameras are primarily in use for scientific applications, but in due course should increase both the range of applications and the object space accuracy achievable by close range measurement. Slow scan, cooled scientific CCD cameras provide the additional benefit of additional quantisation levels which enables improved radiometric resolution. The calibration of all types of CCD cameras is necessary in order to characterize the geometry of the sensors and lenses. A number of different types of CCD cameras have been calibrated a the NASA Langley Research Center using self calibration and a small test object. The results of these calibration tests will be described, with particular emphasis on the differences between standard CCD video cameras and scientific slow scan CCD cameras.

  17. A simple laboratory-based radon calibration system

    International Nuclear Information System (INIS)

    Measurements of 222Rn ('radon') in the environment are important in the geosciences and radiation-protection fields. We demonstrate here a simple laboratory-based calibration system to evaluate the efficiency of radon detectors with a reproducibility of about ±2%. The system uses a closed-loop air circulation design with 226Ra adsorbed onto MnO2-impregnated fiber as a radon source. Two RAD7 radon detectors (Durridge Co., Inc.) that were precisely calibrated at Durridge's in-house calibration facility are used as secondary standards. By parallel analysis of the radon-enriched air within the closed loop, the test RAD7s are assigned a calibration coefficient to be applied to future measurements. We also performed a side-by-side intercomparison with two RAD7s in a high-radon natural environmental setting (limestone cave in Florida) that produced comparable results. (author)

  18. One step geometrical calibration method for optical coherence tomography

    International Nuclear Information System (INIS)

    We present a novel one-step calibration methodology for geometrical distortion correction for optical coherence tomography (OCT). A calibration standard especially designed for OCT is introduced, which consists of an array of inverse pyramidal structures. The use of multiple landmarks situated on four different height levels on the pyramids allow performing a 3D geometrical calibration. The calibration procedure itself is based on a parametric model of the OCT beam propagation. It is validated by experimental results and enables the reduction of systematic errors by more than one order of magnitude. In future, our results can improve OCT image reconstruction and interpretation for medical applications such as real time monitoring of surgery. (paper)

  19. Traceability of radionuclide calibrators measurements in nuclear medicine

    International Nuclear Information System (INIS)

    In nuclear medicine, the administered doses of the radiopharmaceutical are expressed through the amount of radioactivity contained in the drug. The measurement of this activity, performed using a radionuclide calibrator, is of the utmost importance to guarantee the national and international comparability of clinic results and the radiological safety of the patient. In this paper, the transferring of the becquerel unit to the radionuclide calibrators employed in the nuclear medicine practice in Cuba is detailed. The obtained results with an in situ calibration service, which is based on the direct comparison with standards of the specific measured radionuclides, are presented. Outcomes of international and national measurement comparisons are shown. They validate the uncertainty estimates of the calibration coefficients installed in the instruments for measurements of 99Tcm , 131I and 201Tl, the main gamma emitters that have been used in Cuban nuclear medicine. (author)

  20. TOD to TTP calibration

    NARCIS (Netherlands)

    Bijl, P.; Reynolds, J.P.; Vos, W.K.; Hogervorst, M.A.; Fanning, J.D.

    2011-01-01

    The TTP (Targeting Task Performance) metric, developed at NVESD, is the current standard US Army model to predict EO/IR Target Acquisition performance. This model however does not have a corresponding lab or field test to empirically assess the performance of a camera system. The TOD (Triangle Orien

  1. Calibration of germanium detectors

    International Nuclear Information System (INIS)

    The process of determining the energy-dependent detection probability with measurements using Ge (Li) and high-grade germanium detectors is described. The paper explains which standards are best for a given purpose and given requirements as to accuracy, and how to assess measuring geometry variations and summation corrections. (DG)

  2. Requirements for gamma radiation survey meter calibration

    International Nuclear Information System (INIS)

    This guide describes the minimum requirements for calibrating a portable analog gamma radiation survey meter by means of a beam calibrator, with a known calibration source. If an alternative method of calibration is to be used the licensee should make a written request to the Atomic Energy Control Board that describes the calibration method to be used, and request the Board's permission to use that method in place of the requirements contained in this guide. This guide explains: the responsibility for survey meter calibration if licensees calibrate their own survey meters, use the services of a Canadian calibration agency, and use the services of a non-Canadian calibration agency; the requirements for survey meter calibration and the supporting documentation; the requirements for record-keeping; and, a calibration certificate, a calibration sticker, and a notification of failure to calibrate form, with examples

  3. Statistical design of mass spectrometry calibration procedures

    International Nuclear Information System (INIS)

    The main objective of this task was to agree on calibration procedures to estimate the system parameters (i.e., dead-time correction, ion-counting conversion efficiency, and detector efficiency factors) for SAL's new Finnigan MAT-262 mass spectrometer. SAL will use this mass spectrometer in a clean-laboratory which was opened in December 1995 to measure uranium and plutonium isotopes on environmental samples. The Finnigan MAT-262 mass spectrometer has a multi-detector system with seven Faraday cup detectors and one ion- counter for the measurement of very small signals (e.g. 10-17 Ampere range). ORNL has made preliminary estimates of the system parameters based on SAL's experimental data measured in late 1994 when the Finnigan instrument was relatively new. SAL generated additional data in 1995 to verify the calibration procedures for estimating the dead-time correction factor, the ion-counting conversion factor and the Faraday cup detector efficiency factors. The system parameters estimated on the present data will have to be reestablished when the Finnigan MAT-262 is moved-to the new clean- laboratory. Different methods will be used to analyzed environmental samples than the current measurement methods being used. For example, the environmental samples will be electroplated on a single filament rather than using the current two filament system. An outline of the calibration standard operating procedure (SOP) is included

  4. Linear accelerator calibration monitor with a memory

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, R.L.; Ekstrand, K.E.

    1979-09-01

    A calibration monitor has been designed for measuring the constancy of linear accelerator or cobalt unit output between full calibrations. This monitor is battery-operated, light-weight, and slides into the shadow tray attachment on a linear accelerator or cobalt unit for easy setup. It provides a digital readout of the dose delivered, and a consistency check can be made in less than two minutes. The precision of the monitor, determined by cobalt-60 irradiations over a 2 1/2 month period, is +- 0.6% (standard deviation). The monitor also retains the dose reading in a CMOS digital counter indefinitely, hence it can be used in the same fashion as mailed thermoluminescent dosimeters (TLD) for calibration checks at remote facilities without the complicated readout procedures associated with TLD. The monitor can be mailed to a remote facility, positioned without ambiguity, and irradiated; and the reading can be verified on return to the originating center simply by pressing a switch. The monitor can easily be set up to carry out a ''blind'' check in which the reading obtained is not known to the remote facility.

  5. Linear accelerator calibration monitor with a memory

    International Nuclear Information System (INIS)

    A calibration monitor has been designed for measuring the constancy of linear accelerator or cobalt unit output between full calibrations. This monitor is battery-operated, light-weight, and slides into the shadow tray attachment on a linear accelerator or cobalt unit for easy setup. It provides a digital readout of the dose delivered, and a consistency check can be made in less than two minutes. The precision of the monitor, determined by cobalt-60 irradiations over a 2 1/2 month period, is +- 0.6% (standard deviation). The monitor also retains the dose reading in a CMOS digital counter indefinitely, hence it can be used in the same fashion as mailed thermoluminescent dosimeters (TLD) for calibration checks at remote facilities without the complicated readout procedures associated with TLD. The monitor can be mailed to a remote facility, positioned without ambiguity, and irradiated; and the reading can be verified on return to the originating center simply by pressing a switch. The monitor can easily be set up to carry out a ''blind'' check in which the reading obtained is not known to the remote facility

  6. Calibrating the PAU Survey's 46 Filters

    Science.gov (United States)

    Bauer, A.; Castander, F.; Gaztañaga, E.; Serrano, S.; Sevilla, N.; Tonello, N.; PAU Team

    2016-05-01

    The Physics of the Accelerating Universe (PAU) Survey, being carried out by several Spanish institutions, will image an area of 100-200 square degrees in 6 broad and 40 narrow band optical filters. The team is building a camera (PAUCam) with 18 CCDs, which will be installed in the 4 meter William Herschel Telescope at La Palma in 2013. The narrow band filters will each cover 100Å, with the set spanning 4500-8500Å. The broad band set will consist of standard ugriZy filters. The narrow band filters will provide low-resolution (R˜50) photometric "spectra" for all objects observed in the survey, which will reach a depth of ˜24 mag in the broad bands and ˜22.5 mag (AB) in the narrow bands. Such precision will allow for galaxy photometric redshift errors of 0.0035(1+z), which will facilitate the measurement of cosmological parameters with precision comparable to much larger spectroscopic and photometric surveys. Accurate photometric calibration of the PAU data is vital to the survey's science goals, and is not straightforward due to the large and unusual filter set. We outline the data management pipelines being developed for the survey, both for nightly data reduction and coaddition of multiple epochs, with emphasis on the photometric calibration strategies. We also describe the tools we are developing to test the quality of the reduction and calibration.

  7. Calibrating the Prominence Magnetometer (ProMag)

    Science.gov (United States)

    Fox, Lewis; Casini, R.

    2013-07-01

    The Prominence Magnetometer (ProMag) is a dual-channel, dual-beam, slit-scanning, full Stokes spectro-polarimeter designed by the High Altitude Observatory at the National Center for Atmospheric Research (HAO/NCAR) for the study of the magnetism of solar prominences and filaments. It was deployed in August 2009 at the 40 cm coronagraph of the Evans Solar Facility (ESF) of the National Solar Observatory on Sacramento Peak (NSO/SP). In its standard mode of operation it acquires spectro-polarimetric maps of solar targets simultaneously in the two chromospheric lines of He I at 587.6 nm and 1083.0 nm. Since August 2011 ProMag has operated in “patrol mode” with a dedicated observer. We aim to routinely measure the vector magnetic field in prominences. The electro-optic modulator and polarization analyzer are integrated into a single mechanical unit located at the coude feed of the telescope. This location was necessary for proper co-alignment of the dual beams, but complicates the precise polarimeter calibration necessary to achieve the sensitivity required for prominence measurements (calibration method for ProMag, using a polarizer and retarder at coronagraph prime focus. Calibrations are recorded before and after observations. We discuss the success of this method and its limitations.

  8. Optical tweezers calibration with Bayesian inference

    Science.gov (United States)

    Türkcan, Silvan; Richly, Maximilian U.; Le Gall, Antoine; Fiszman, Nicolas; Masson, Jean-Baptiste; Westbrook, Nathalie; Perronet, Karen; Alexandrou, Antigoni

    2014-09-01

    We present a new method for calibrating an optical-tweezer setup that is based on Bayesian inference1. This method employs an algorithm previously used to analyze the confined trajectories of receptors within lipid rafts2,3. The main advantages of this method are that it does not require input parameters and is insensitive to systematic errors like the drift of the setup. Additionally, it exploits a much larger amount of the information stored in the recorded bead trajectory than standard calibration approaches. The additional information can be used to detect deviations from the perfect harmonic potential or detect environmental influences on the bead. The algorithm infers the diffusion coefficient and the potential felt by a trapped bead, and only requires the bead trajectory as input. We demonstrate that this method outperforms the equipartition method and the power-spectrum method in input information required (bead radius and trajectory length) and in output accuracy. Furthermore, by inferring a higher order potential our method can reveal deviations from the assumed second-order potential. More generally, this method can also be used for magnetic-tweezer calibration.

  9. The Impact of Indoor and Outdoor Radiometer Calibration on Solar Measurements: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Habte, Aron; Sengupta, Manajit; Andreas, Afshin; Reda, Ibrahim; Robinson, Justin

    2016-07-01

    Accurate solar radiation data sets are critical to reducing the expenses associated with mitigating performance risk for solar energy conversion systems, and they help utility planners and grid system operators understand the impacts of solar resource variability. The accuracy of solar radiation measured by radiometers depends on the instrument performance specification, installation method, calibration procedure, measurement conditions, maintenance practices, location, and environmental conditions. This study addresses the effect of calibration methodologies and the resulting calibration responsivities provided by radiometric calibration service providers such as the National Renewable Energy Laboratory (NREL) and manufacturers of radiometers. Some of these radiometers are calibrated indoors, and some are calibrated outdoors. To establish or understand the differences in calibration methodology, we processed and analyzed field-measured data from these radiometers. This study investigates calibration responsivities provided by NREL's broadband outdoor radiometer calibration (BORCAL) and a few prominent manufacturers. The reference radiometer calibrations are traceable to the World Radiometric Reference. These different methods of calibration demonstrated 1% to 2% differences in solar irradiance measurement. Analyzing these values will ultimately assist in determining the uncertainties of the radiometer data and will assist in developing consensus on a standard for calibration.

  10. Calibration of the Capintec CRC-712M dose calibrator for 18F

    International Nuclear Information System (INIS)

    Primary standardisation was performed on a solution of 18F using the 4πβ-γ coincidence counting efficiency-tracing extrapolation method with 60Co used as a tracer nuclide. The result was used to calibrate the ANSTO secondary standard ionisation chamber which is used to disseminate Australian activity standards for gamma emitters. Using the secondary activity standard for 18F, the Capintec CRC-712M dose calibrator at the Australian National Medical Cyclotron (NMC) Positron Emission Tomography (PET) Quality Control (QC) Section was calibrated. The dial setting number recommended by the manufacturer for the measurement of the activity of 18F is 439. In this work, the dial setting numbers for the activity measurement of the solution of 18F in Wheaton vials were experimentally determined to be 443+/-12, 446+/-12, 459+/-11, 473+/-15 for 0.1, 1, 4.5 and 9ml solution volumes, respectively. The uncertainties given above are expanded uncertainties (k=2) giving an estimated level of confidence of 95%. The activities determined using the manufacturer recommended setting number 439 are 0.8%, 1.4%, 4.0% and 6.5% higher than the standardised activities, respectively. It is recommended that a single dial setting number of 459 determined for 4.5ml is used for 0.1-9ml solution in Wheaton vials in order to simplify the operation procedure. With this setting the expended uncertainty (k=2) in the activity readout from the Capintec dose calibrator would be less than 6.2%

  11. Calibration of the Capintec CRC-712M dose calibrator for {sup 18}F

    Energy Technology Data Exchange (ETDEWEB)

    Mo, L. [Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Road, Lucas Heights, NSW 2234 (Australia) and Institute of Medical Physics, School of Physics, University of Sydney, NSW 2006 (Australia)]. E-mail: lmx@ansto.gov.au; Reinhard, M.I. [Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Road, Lucas Heights, NSW 2234 (Australia); Davies, J.B. [Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Road, Lucas Heights, NSW 2234 (Australia); Institute of Medical Physics, School of Physics, University of Sydney, NSW 2006 (Australia); Alexiev, D. [Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Road, Lucas Heights, NSW 2234 (Australia); Baldock, C. [Institute of Medical Physics, School of Physics, University of Sydney, NSW 2006 (Australia)

    2006-04-15

    Primary standardisation was performed on a solution of {sup 18}F using the 4{pi}{beta}-{gamma} coincidence counting efficiency-tracing extrapolation method with {sup 60}Co used as a tracer nuclide. The result was used to calibrate the ANSTO secondary standard ionisation chamber which is used to disseminate Australian activity standards for gamma emitters. Using the secondary activity standard for {sup 18}F, the Capintec CRC-712M dose calibrator at the Australian National Medical Cyclotron (NMC) Positron Emission Tomography (PET) Quality Control (QC) Section was calibrated. The dial setting number recommended by the manufacturer for the measurement of the activity of {sup 18}F is 439. In this work, the dial setting numbers for the activity measurement of the solution of {sup 18}F in Wheaton vials were experimentally determined to be 443+/-12, 446+/-12, 459+/-11, 473+/-15 for 0.1, 1, 4.5 and 9ml solution volumes, respectively. The uncertainties given above are expanded uncertainties (k=2) giving an estimated level of confidence of 95%. The activities determined using the manufacturer recommended setting number 439 are 0.8%, 1.4%, 4.0% and 6.5% higher than the standardised activities, respectively. It is recommended that a single dial setting number of 459 determined for 4.5ml is used for 0.1-9ml solution in Wheaton vials in order to simplify the operation procedure. With this setting the expended uncertainty (k=2) in the activity readout from the Capintec dose calibrator would be less than 6.2%.

  12. Calibration of High Frequency MEMS Microphones

    Science.gov (United States)

    Shams, Qamar A.; Humphreys, William M.; Bartram, Scott M.; Zuckewar, Allan J.

    2007-01-01

    calibrate these microphones at frequencies up to 80 kHz. The technique relied on the use of a random, ultrasonic broadband centrifugal sound source located in a small anechoic chamber. Phase calibrations of the MEMS microphones were derived from cross spectral phase comparisons between the reference and test substitution microphones and an adjacent and invariant grazing-incidence 1/8-inch standard microphone.

  13. Regression calibration with more surrogates than mismeasured variables

    KAUST Repository

    Kipnis, Victor

    2012-06-29

    In a recent paper (Weller EA, Milton DK, Eisen EA, Spiegelman D. Regression calibration for logistic regression with multiple surrogates for one exposure. Journal of Statistical Planning and Inference 2007; 137: 449-461), the authors discussed fitting logistic regression models when a scalar main explanatory variable is measured with error by several surrogates, that is, a situation with more surrogates than variables measured with error. They compared two methods of adjusting for measurement error using a regression calibration approximate model as if it were exact. One is the standard regression calibration approach consisting of substituting an estimated conditional expectation of the true covariate given observed data in the logistic regression. The other is a novel two-stage approach when the logistic regression is fitted to multiple surrogates, and then a linear combination of estimated slopes is formed as the estimate of interest. Applying estimated asymptotic variances for both methods in a single data set with some sensitivity analysis, the authors asserted superiority of their two-stage approach. We investigate this claim in some detail. A troubling aspect of the proposed two-stage method is that, unlike standard regression calibration and a natural form of maximum likelihood, the resulting estimates are not invariant to reparameterization of nuisance parameters in the model. We show, however, that, under the regression calibration approximation, the two-stage method is asymptotically equivalent to a maximum likelihood formulation, and is therefore in theory superior to standard regression calibration. However, our extensive finite-sample simulations in the practically important parameter space where the regression calibration model provides a good approximation failed to uncover such superiority of the two-stage method. We also discuss extensions to different data structures.

  14. Radiometric calibration of the in-flight blackbody calibration system of the GLORIA interferometer

    Directory of Open Access Journals (Sweden)

    C. Monte

    2014-01-01

    Atmosphere is an airborne, imaging, infrared Fourier transform spectrometer that applies the limb-imaging technique to perform trace gas and temperature measurements in the Earth's atmosphere with three-dimensional resolution. To ensure the traceability of these measurements to the International Temperature Scale and thereby to an absolute radiance scale, GLORIA carries an on-board calibration system. Basically, it consists of two identical large-area and high-emissivity infrared radiators, which can be continuously and independently operated at two adjustable temperatures in a range from −50 °C to 0 °C during flight. Here we describe the radiometric and thermometric characterization and calibration of the in-flight calibration system at the Reduced Background Calibration Facility of the Physikalisch-Technische Bundesanstalt. This was performed with a standard uncertainty of less than 110 mK. Extensive investigations of the system concerning its absolute radiation temperature and spectral radiance, its temperature homogeneity and its short- and long-term stability are discussed. The traceability chain of these measurements is presented.

  15. Radiometric calibration of the in-flight blackbody calibration system of the GLORIA interferometer

    Directory of Open Access Journals (Sweden)

    C. Monte

    2013-06-01

    Full Text Available GLORIA is an airborne, imaging, infrared Fourier transform spectrometer that applies the limb-imaging technique to perform trace gas and temperature measurements in the Earth's atmosphere with 3-dimensional resolution. To ensure the traceability of these measurements to the International Temperature Scale and thereby to an absolute radiance scale, GLORIA carries an on-board calibration system. It basically consists of two identical large area and high emissivity infrared radiators, which can be continuously and independently operated at two adjustable temperatures in a range from −50 °C to 0 °C during flight. Here we describe the radiometric and thermometric characterization and calibration of the in-flight calibration system at the Reduced Background Calibration Facility of the Physikalisch-Technische Bundesanstalt with a standard uncertainty of less than 100 mK. Extensive investigations of the system concerning its absolute radiation temperature and spectral radiance, its temperature homogeneity and its short- and long-term stability are discussed. The traceability chain of these measurements is presented.

  16. Calibration of radiation measuring equipment for use in nuclear power plants and laboratories for quality assurance by KWU

    International Nuclear Information System (INIS)

    The calibration described is carried out for equipment developed by KWU for use in controlled areas and for radioactivity monitoring in nuclear power plants. For the design approval, these initial calibrations are made. Except for iodine measuring kits, the water, noble gas and aerosol monitoring equipment is calibrated integrally. PTB standards are used for this purpose, and special calibrations are carried out by KWU, especially of laboratory equipment including γ-γ concidences, such as borehole detectors and anticompton measuring kits. (DG)

  17. Simple and accurate empirical absolute volume calibration of a multi-sensor fringe projection system

    Science.gov (United States)

    Gdeisat, Munther; Qudeisat, Mohammad; AlSa`d, Mohammed; Burton, David; Lilley, Francis; Ammous, Marwan M. M.

    2016-05-01

    This paper suggests a novel absolute empirical calibration method for a multi-sensor fringe projection system. The optical setup of the projector-camera sensor can be arbitrary. The term absolute calibration here means that the centre of the three dimensional coordinates in the resultant calibrated volume coincides with a preset centre to the three-dimensional real-world coordinate system. The use of a zero-phase fringe marking spot is proposed to increase depth calibration accuracy, where the spot centre is determined with sub-pixel accuracy. Also, a new method is proposed for transversal calibration. Depth and transversal calibration methods have been tested using both single sensor and three-sensor fringe projection systems. The standard deviation of the error produced by this system is 0.25 mm. The calibrated volume produced by this method is 400 mm×400 mm×140 mm.

  18. Flexible calibration method for microscopic structured light system using telecentric lens.

    Science.gov (United States)

    Li, Beiwen; Zhang, Song

    2015-10-01

    This research presents a novel method to calibrate a microscopic structured light system using a camera with a telecentric lens. The pin-hole projector calibration follows the standard pin-hole camera calibration procedures. With the calibrated projector, the 3D coordinates of those feature points used for projector calibration are then estimated through iterative Levenberg-Marquardt optimization. Those 3D feature points are further used to calibrate the camera with a telecentric lens. We will describe the mathematical model of a telecentric lens, and demonstrate that the proposed calibration framework can achieve very high accuracy: approximately 10 μm with a volume of approximately 10(H) mm × 8(W) mm × 5(D) mm. PMID:26480093

  19. The ENEA calibration service for ionising radiations. Part 1: Photons

    International Nuclear Information System (INIS)

    The ENEA (National Agency for New Technology, Energy and the Environment) calibration service for ionizing radiations has been active for 40 years in the secondary standard dosimetry laboratory web. It has been the first center, in 1985, to be acknowledges by the Italian calibration service (SIT) for the two quantities for photons: exposure and air kerma. Since the Institute for the Radiation Protection of ENEA has moved to the new site in Montecuccolino (Bologna, Italy) in 1995, the whole laboratory has been renovated and all irradiation rooms together with radiation source and equipment have been reorganized according to the Χ, γ, β and neutron fields metrology requirements. The aim of this report, as the first part of a report describing all facilities available at the service, is to give a detailed description of all equipment s qualified for photon fields metrology including the secondary standards and the calibration procedures performed for radiation monitoring devices and dosemeters

  20. Calibration of surface contamination monitors at IPEN/Sao Paulo

    International Nuclear Information System (INIS)

    The need for effective monitoring of surface contamination is quantified in terms of activity per unit area; this quantity is used to specify the derived limits that are incorporated in the national regulations of radiation protection. These regulation recommend the calibration of all health physics instruments every 12 months. In the case of surface contamination monitors, a special set-up and a method were developed at the Calibration Laboratory of Sao Paulo, using standard alpha and beta radioactive sources. The monitors are being calibrated in the standard radioactive fields of Americium 241, Carbon 14, Chlorine 36, and Strontium 90 and Yttrium 90 sources, and the instrument efficiency is determined for each case in the range of 0.5 to 1.5 cm (alpha radiation) and 0.5 to 5.0 cm (beta radiation). Moreover, all instruments are being normally tested with Americium 241 sources of different activities. Instruments of different manufacturers and types were used for this study

  1. Surface dose rate calibration of Sr-90 plane ophthalmic applicators

    International Nuclear Information System (INIS)

    Calibration of an imported strontium-90 ophthalmic applicator at the U.S. National Bureau of Standards (now the National Institute of Standards and Technology) has disclose a significant discrepancy in dose rate calibration (32%-35%) with that quoted by the manufacturer. The University of Wisconsin has investigated this discrepancy and found that both laboratories use similar techniques and a version of the Bragg-Gray equation to yield dose rate estimates. Experimental results indicate a strong relationship between the size of the collecting electrode used in the extrapolation chamber and the resulting estimate of absorbed dose rate. Calibration of these applicators is reviewed and suggestions for improvement and further research are proposed

  2. Astrid-2 EMMA Magnetic Calibration

    DEFF Research Database (Denmark)

    Merayo, José M.G.; Brauer, Peter; Risbo, Torben;

    1998-01-01

    magnetometer readings in each position were related to the field magnitudes from the Observatory, and a least squares fit for the 9 magnetometer calibration parameters was performed (3 offsets, 3 scale values and 3 inter-axes angles). After corrections for the magnetometer digital-to-analogue converters...... fit calibration parameters. Owing to time shortage, we did not evaluate the temperature coefficients of the flight sensor calibration parameters. However, this was done for an identical flight spare magnetometer sensor at the magnetic coil facility belonging to the Technical University of Braunschweig...

  3. A New Measurement Principle for Determining the Polarization Direction of Calibration Transponder Antennas

    OpenAIRE

    Björn J. Döring; Schwerdt, Marco

    2016-01-01

    Polarimetric synthetic aperture radar (SAR) systems require verification and calibration of their polarimetric performance after launch. Dual-antenna calibration transponders with freely rotatable, linearly-polarized antennas are one of the most common calibration targets for this task. Because the transponders are used as a measurement standard, any misorientation of the polarization direction of the transponder antennas leads to characterization errors for the SAR instrument. In this paper,...

  4. Photometric Calibration of the [$\\alpha$/Fe] Element: I. Calibration with UBV Photometry

    CERN Document Server

    Karaali, S; Bilir, S

    2016-01-01

    We present the calibration of the [$\\alpha$/Fe] element in terms of the ultra-violet excess for 469 dwarf stars with $0.325<(B-V)_0 \\leq 0.775$ mag corresponding the spectral type range F0-K2. The star sample is separated into nine sub-samples with equal range in $(B-V)_0$ colour, $\\Delta(B-V)_0=0.05$ mag, and a third degree polynomial is fitted to each dataset. Our calibrations provide [$\\alpha$/Fe] elements in the range [0.0, 0.4]. We applied the procedure to two sets of field stars and two sets of clusters. The mean and the corresponding standard deviation of the residuals for 43 field stars taken from the Hypatia catalogue are [$\\alpha$/Fe]=-0.090 and $\\sigma =0.102$ dex, while for the 39 ones taken from the same catalogue of stars used in the calibration are [$\\alpha$/Fe]=-0.009 and $\\sigma = 0.079$ dex, respectively. We showed that the differences between the mean of the residuals and standard deviations for two sets of clusters ([$\\alpha$/Fe]=0.073 and $\\sigma = 0.91$ dex; [$\\alpha$/Fe]=-0.012 and $...

  5. Calibration of an Automatic System Using a Laser Signature

    Directory of Open Access Journals (Sweden)

    Edward F. Plinski

    2003-04-01

    Full Text Available The specific phenomenon, which appears in tuned CO2 lasers, called a laser signature, is used as a standard for calibration of the servomechanism. The proposed servomechanism can be used for continuous investigations of the laser signatures of different laser media.

  6. Design and calibration of a vacuum compatible scanning tunneling microscope

    Science.gov (United States)

    Abel, Phillip B.

    1990-01-01

    A vacuum compatible scanning tunneling microscope was designed and built, capable of imaging solid surfaces with atomic resolution. The single piezoelectric tube design is compact, and makes use of sample mounting stubs standard to a commercially available surface analysis system. Image collection and display is computer controlled, allowing storage of images for further analysis. Calibration results from atomic scale images are presented.

  7. Measurement and Calibration of PSD with Phase-shifting Interferometers

    Science.gov (United States)

    Lehan, J. P.

    2008-01-01

    We discuss the instrumental aspects affecting the measurement accuracy when determining PSD with phase shifting interferometers. These include the source coherence, optical train effects, and detector effects. The use of a carefully constructed calibration standard will also be discussed. We will end with a recommended measurement and data handling procedure.

  8. The calibration of radioprotection hardware

    International Nuclear Information System (INIS)

    After having recalled recent recommendations on dose limits on the basis of two radioprotection values (the equivalent and the efficient dose), this document indicates some characteristics of these values, and discusses how they are applied for individual monitoring and for area or ambient monitoring. It presents conventions aimed at simplifying radiation fields. Then, the author gives a precise overview of some general aspects concerning calibration operations: legal requirements, radioprotection hardware controls, calibration loop organisation (calibration definition, general physical values, reference radiation, conversion factors, and metrology), comparison between operational values and the protection value (irradiation geometries, conversion factors with respect to the geometries, comparison between efficient dose and operational values). He finally describes the calibration procedures: dosemeter location, energy response, angular response, flow rate response, uncertainties

  9. On chromatic and geometrical calibration

    DEFF Research Database (Denmark)

    Folm-Hansen, Jørgen

    1999-01-01

    The main subject of the present thesis is different methods for the geometrical and chromatic calibration of cameras in various environments. For the monochromatic issues of the calibration we present the acquisition of monochrome images, the classic monochrome aberrations and the various sources...... of non-uniformity of the illumination of the image plane. Only the image deforming aberrations and the non-uniformity of illumination are included in the calibration models. The topics of the pinhole camera model and the extension to the Direct Linear Transform (DLT) are described. It is shown how...... the correct interpolation method is described. For the chromatic issues of calibration we present the acquisition of colour and multi-spectral images, the chromatic aberrations and the various lens/camera based non-uniformities of the illumination of the image plane. It is described how the...

  10. Calibration of "Babyline" RP instruments

    CERN Document Server

    2015-01-01

      If you have old RP instrumentation of the “Babyline” type, as shown in the photo, please contact the Radiation Protection Group (Joffrey Germa, 73171) to have the instrument checked and calibrated. Thank you. Radiation Protection Group

  11. Pressure instrument calibration reaps SPC benefits

    Energy Technology Data Exchange (ETDEWEB)

    Kegel, T.M. [Colorado Engineering Experiment Station, Nunn, CO (United States)

    1995-12-01

    Calibration laboratories are faced with the need to become accredited or registered to one or more quality standards. One requirement common to all of these standards is the need to have in place a measurement assurance program. What is a measurement assurance program? Brian Belanger, in Measurement Assurance Programs: Part 1, describes it as a {open_quotes}quality assurance program for a measurement process that quantifies the total uncertainty of the measurements (both random and systematic components of error) with respect to national or designated standards and demonstrates that the total uncertainty is sufficiently small to meet the user`s requirements.{close_quotes} Rolf Schumacher is more specific in Measurement Assurance in Your Own Laboratory. He states, {open_quotes}Measurement assurance is the application of broad quality control principles to measurements of calibrations.{close_quotes} Here, the focus is on one important part of any measurement assurance program: implementation of statistical process control (SPC). Paraphrasing Juran`s Quality Control Handbook, a process is in statistical control if the only observed variations are those that can be attributed to random causes. Conversely, a process that exhibits variations due to assignable causes is not in a state of statistical control. Finally, Carrol Croarkin states, {open_quotes}In the measurement assurance context the measurement algorithm including instrumentation, reference standards and operator interactions is the process that is to be controlled, and its direct product is the measurement per se. The measurements are assumed to be valid if the measurement algorithm is operating in a state of control.{close_quotes} Implicit in this statement is the important fact that an out-of-control process cannot produce valid measurements. 7 figs.

  12. Rotary mode system initial instrument calibration

    Energy Technology Data Exchange (ETDEWEB)

    Johns, B.R.

    1994-10-01

    The attached report contains the vendor calibration procedures used for the initial instrument calibration of the rotary core sampling equipment. The procedures are from approved vendor information files.

  13. Rotary mode system initial instrument calibration

    International Nuclear Information System (INIS)

    The attached report contains the vendor calibration procedures used for the initial instrument calibration of the rotary core sampling equipment. The procedures are from approved vendor information files

  14. Beam Imaging and Luminosity Calibration

    CERN Document Server

    AUTHOR|(CDS)2081126; Klute, Markus; Medlock, Catherine Aiko

    2016-01-01

    We discuss a method to reconstruct two-dimensional proton bunch densities using vertex distributions accumulated during LHC beam-beam scans. The x-y correlations in the beam shapes are studied and an alternative luminosity calibration technique is introduced. We demonstrate the method on simulated beam-beam scans and estimate the uncertainty on the luminosity calibration associated to the beam-shape reconstruction to be below 1%.

  15. CERI: Ionizing Radiation Calibration Centre

    International Nuclear Information System (INIS)

    The CERI has been granted by the National Bureau of Metrology (BNM) as an Ionizing Radiation Calibration Centre and as an Estimation and Qualification Centre for the ionizing radiation measurement devices. This article gives some information on the scope covered by the BNM's grant and on the various equipment on which the laboratory relies. It describes the calibration and estimation activities and mentions many kinds of services which are offered to the users mainly in the medical and industrial fields

  16. The Third VLBA Calibrator Survey

    OpenAIRE

    Petrov, L.; Kovalev, Y. Y.; Fomalont, E.; Gordon, D

    2004-01-01

    This paper presents the third extension to the Very Large Baseline Array (VLBA) Calibrator Survey, containing 360 new sources not previously observed with very long baseline interferometry (VLBI). The survey, based on three 24 hour VLBA observing sessions, fills the areas on the sky above declination -45 degrees where the calibrator density is less than one source within a 4 degrees radius disk at any given direction. The positions were derived from astrometric analysis of the group delays de...

  17. Pressures Detector Calibration and Measurement

    CERN Document Server

    Kumara, I Made Gita

    2016-01-01

    This is report of my first and second projects (of 3) in NA61. I did data taking and analysis in order to do calibration of pressure detectors and verified it. I analyzed the data by ROOT software using the C ++ programming language. The first part of my project was determination of calibration factor of pressure sensors. Based on that result, I examined the relation between pressure drop, gas flow rate of in paper filter and its diameter.

  18. Calibration of photon and electron beams

    International Nuclear Information System (INIS)

    , fluence or equivalent dose, at a given point of interest in a given medium. A radiation dosimeter is defined as any device that is capable of providing a reading M that is a measure of the dose D deposited in the dosimeter's sensitive volume V by ionizing radiation. A dosimeter that produces a signal from which the dose in its sensitive volume can be determined without requiring calibration in a known field of radiation is referred to as an absolute dosimeter; Dosimeters requiring calibration in a known radiation field are called relative dosimeters. The basic output calibration of a clinical radiation beam, by virtue of a direct measurement of dose or dose rate in water under specific reference conditions, is referred to as reference dosimetry. Three types of reference dosimetry technique are currently known: (a) Calorimetry; (b) Fricke dosimetry; (c) Ionization chamber dosimetry. These dosimeters can be used as absolute dosimeters but are seldom used as such in clinics, because their use in absolute dosimetry is cumbersome and, moreover, calibration in a known radiation field offers certain advantages, such as traceability to a standards laboratory. When an absolute dosimeter is used independently, it relies on its own accuracy instead of referring to a standard in common with other radiation users

  19. WFC3: UVIS Dark Calibration

    Science.gov (United States)

    Bourque, Matthew; Biretta, John A.; Anderson, Jay; Baggett, Sylvia M.; Gunning, Heather C.; MacKenty, John W.

    2014-06-01

    Wide Field Camera 3 (WFC3), a fourth-generation imaging instrument on board the Hubble Space Telescope (HST), has exhibited excellent performance since its installation during Servicing Mission 4 in May 2009. The UVIS detector, comprised of two e2v CCDs, is one of two channels available on WFC3 and is named for its ultraviolet and visible light sensitivity. We present the various procedures and results of the WFC3/UVIS dark calibration, which monitors the health and stability of the UVIS detector, provides characterization of hot pixels and dark current, and produces calibration files to be used as a correction for dark current in science images. We describe the long-term growth of hot pixels and the impacts that UVIS Charge Transfer Efficiency (CTE) losses, postflashing, and proximity to the readout amplifiers have on the population. We also discuss the evolution of the median dark current, which has been slowly increasing since the start of the mission and is currently ~6 e-/hr/pix, averaged across each chip. We outline the current algorithm for creating UVIS dark calibration files, which includes aggressive cosmic ray masking, image combination, and hot pixel flagging. Calibration products are available to the user community, typically 3-5 days after initial processing, through the Calibration Database System (CDBS). Finally, we discuss various improvements to the calibration and monitoring procedures. UVIS dark monitoring will continue throughout and beyond HST’s current proposal cycle.

  20. Calibration of thermometers in the range from 4K to 40K

    International Nuclear Information System (INIS)

    Carbon and Germanium resistors have been calibrated against a standard in the temperature range from 4K to 40K. From the data, values of temperature are obtained with 0,1% error (std deviation). These calibrations have been also checked against specific heat measurements. (author)